UNCLASSIFIED

AD NUMBER AD489981 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; SEP 1966. Other requests shall be referred to Ballistic Systems and Space Systems Division, Los Angeles, CA. **AUTHORITY** SAMSO ltr, 19 Jan 1972

ののののので

Lifting Reentry Communications

Volume II: Systems Calculations

SEPTEMBER 1966

Prepared by
REENTRY AND PLASMA-ELECTROMAGNETICS DEPARTMENT
Plasma Research Laboratory
Laboratories Division
Laboratory Operations
AEROSPACE CORPORATION

Prepared for BALLISTIC SYSTEMS AND SPACE SYSTEMS DIVISIONS
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
Los Angeles, California

Best Available Copy

NOTICE

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of SSD(SSTRT).

,

LIFTING REENTRY COMMUNICATIONS VOLUME II: SYSTEMS CALCULATIONS

Prepared by
REENTRY AND PLASMA-ELECTROMAGNETICS DEPARTMENT
Plasma Research Laboratory

Laboratories Division Laboratory Operations AEROSPACE CORPORATION

September 1966

Prepared for

BALLISTIC SYSTEMS AND SPACE SYSTEMS DIVISIONS
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
Los Angeles, California

FOREWORD

This report is published by the Aerospace Corporation, El Sagundo, California, under Air Force Contract No. AF 04(695)-669. The report was authored by the following members of the ad hoc Working Group on Reentry Communications:

Donald M. Dix Kurt E. Golden Edward C. Taylor Marc A. Kolpin Paul R. Caron

This working group was organized by Richard H. Huddlestone, Head, Reentry and Plasma-Electromagnetics Department, Plasma Research Laboratory in anticipation of the requirements of the Space Systems Division. The authors gratefully acknowledge Dr. Huddlestone's many suggestions and his constructive criticism.

The following figures have been adapted as indicated: Fig. B-5, from Ref. B-4; Fig. B-6, from Ref. B-5; Fig. B-7, from Ref. B-6; Fig. B-8, from Refs. B-7 and B-8; and Fig. H-1, from Ref. H-1.

This report, which documents research carried out from 1 July 1965 through 1 February 1966, was submitted on 20 September 1966 to Capt. R. F. Jones, SSTRT, for review and approval.

Information in this report is embargoed under the U. S. Export Control Act of 1949, administered by the Department of Commerce. This report may be released by departments or agencies of the U. S. Government to departments or agencies of foreign governments with which the United States has defense treaty commitments. Private individuals or firms must comply with Department of Commerce export control regulations.

Approved

R. X. Meyer, Director

Plasma Research Laboratory

Laboratories Division

Laboratory Operations

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

Robert F. Jones, Captain Space Systems Division

Air Force Systems Command

ABSTRACT

Calculations supporting the lifting reentry communications systems study are described in this volume. The application and interpretation of these calculations is presented in Volume I of this report. These calculations include the study of lifting reentry trajectories, aerodynamic calculations, signal attenuation, system margins, system modifications, communications fin heat transfer, magnetic window, coolant injection, electrophilic seeding, and quasi-optical and optical systems.

CONTENTS

FORE	WORI)	ii
ABSTI	RACT		iii
INTRO	DUC'	TION	1-1
APPE	NDIC:	ES:	
	A.	LIFTING REENTRY TRAJECTORIES	A-
	В.	AERODYNAMIC CALCULATIONS	B-
	Ç.	SIGNAL ATTENUATION	C-
:	D.	SYSTEM MARGINS	D-
	E.	SYSTEM MODIFICATIONS	E-
	F.	COMMUNICATIONS FIN HEAT TRANSFER	F-
•	G,	MAGNETIC WINDOW	G-
:	H.	COOLANT INJECTION	Н-
:	I.	ELECTROPHILIC SEEDING	I-1
	7	OHACI OTHICAL AND OTHICAL EVENTENCE	T 4

FIGURES

A-i,	Flight Geometry	A-Z
B-1.	Plasma Frequency in Air, Density	B-2
B-2.	Plasma Frequency in Air, Temperature	B-2
B-3.	Degree of Ionization in Air	B-3
B-4.	Collision Frequency in Air	B-3
B-5.	Plasma Frequency and Electron Collision Frequency in Equilibrium Air Behind Normal Shocks	B-4
B-6.	Temperature and Density Behind Normal and Oblique Shocks	B-5
B-7.	Normalized Blunt Body Shock Detachment $\Delta R = 2/\{3[\rho_2/(\rho_1 - 1)]\}$	B-5
B-8.	Shock Angle vs Body Angle for Wedges and Cones	B-5
B-9.	Maximum Plasma Frequency in Boundary Layer: Shock Angle = 50 deg	B-6
B-10.	Maximum Plasma Frequency in Boundary Layer: Shock Angle = 40 deg	B-6
B-11.	Maximum Plasma Frequency in Boundary Layer: Shock Angle = 30 deg	B-7
B-12.	Maximum Plasma Frequency in Boundary Layer: Shock Angle = 20 deg	B-7
B-13.	Collision Frequency at Peak Boundary Layer Condition: Shock Angle = 50 deg	B-8
B-14.	Collision Frequency at Peak Boundary Layer Condition: Shock Angle = 40 deg	B-8
B-15.	Collision Frequency at Peak Boundary Layer Condition: Shock Angle = 30 deg	B-9
B-16.	Collision Frequency at Peak Boundary Layer Condition: Shock Angle = 20 deg	B-9
B-17.	Wedge Boundary Layer Thickness (Laminar): Shock Angle = 50 deg	B-10
B-18.	Wedge Boundary Layer Thickness (Laminar): Shock Angle = 40 deg	B-10
B-19.	Wedge Boundary Layer Thickness (Laminar): Shock Angle = 30 deg	B-11

FIGURES (Continued)

D-EU.	Shock Angle = 20 deg	B-11
B-21.	Boundary Layer Edge Reynolds Number (per foot) for Wedge	B-12
D-1.	Antenna Gain vs Frequency	D-3
D-2.	Effective Antenna Temperature	D-3
D-3.	Typical Free Space System Margin	D-3
G-1.	Coil Geometry	G-1
H-1.	Cooling Effectiveness as a Function of Temperature for Various Coolants	H-1
H-2.	Quasi One-Dimensional Mixing Process	H-2
I-1.	Reduction of Equilibrium Electron Concentrations in Seeded Air	I-4
I-2.	Reduction of Nonequilibrium Electron Concentrations in Seeded Ionized Gases	1-4

TABLES

C-I.	Stagnation Point Attenuation	C-Z
C-11.	Shock Layer Attenuation, 50-deg Wedge	C-3
C-III.	Shock Layer Attenuation, 40-deg Wedge	C-4
C-IV.	Boundary Layer Attenuation, 40-deg Wedge	C-5
C-V.	Shock Layer Attenuation, 30-deg Wedge	C-6
C-VI.	Boundary Layer Attenuation, 30-deg Wedge	C-7
C-VII.	Boundary Layer Attenuation, 20-deg Wedge	C-8
C-VIII.	Shock Layer Attenuation, 50-deg Cone	C-9
C-IX.	Shock Layer Attenuation, 40-deg Cone	C-10
C-X.	Boundary Layer Actenuation, 40-deg Cone	C-11
C-XI.	Shock Layer Attenuation, 30-deg Cone	C-12
C-XII.	Boundary Layer Attenuation, 30-deg Cone	C-13
C-XIII.	Boundary Layer Attenuation, 20-deg Cone	C-14
C-XIV.	Shock Laver Thickness vs Ionization Distance for Cones	
	and Wedges	C-15
E-1.	Behavior of Breakdown Parameter R	E-2
H-I.	Species Concentration in Air	H-6
H-II.	Evaporation Times, Free Molecular Flow	H-6

1. INTRODUCTION

This report is the second of three volumes describing the analysis of lifting reentry communications systems. This volume contains the details of investigations that form the basis of the argument in Volume I; Volume III contains an extensive tabulation of transmission and reflection coefficients for a plasma slab.

Each investigation presented in this report has been specifically referred to in Volume I as an appendix, Appendices A through J. These analyses are intended to have meaning only in the context of the total argument presented in Volume I, and this relationship is emphasized in each section of this volume.

APPENDIX A

LIFTING REENTRY TRAJECTORIES

This appendix gives a short derivation of the equations of motion of a gliding reentry vehicle and discusses the assumptions made to obtain the trajectories shown in Figs. 1 through 3 of Volume I, Section II-A-1.

1. EQUATIONS OF MOTION

The flight geometry is illustrated in Fig. A-1. The pertinent symbols are

C_D = drag coefficient

C_T = lift coefficient

D = aerodynamic drag

g = acceleration of gravity, assumed constant

H = altitude above earth surface

L = aerodynamic lift

M = Mach number

m = mass of the R/V

 \overline{R} = earth radius

r = radial position of vehicle from center of earth

Re = Reynolds number

S = aerodynamic reference area

T = local temperature

U = magnitude of velocity vector

 $U_0 = orbital velocity (r_0 g)^{1/2}$

W = weight of vehicle

 α = angle of attack of R/V

 θ = path angle

 ρ = local density

 ρ_s = density at sea level

Fig. A-1. Flight Geometry

The definitions

$$L = SC_L \rho U^2 / 2 \tag{A-1}$$

and

$$D = SC_D \rho U^2 / 2$$
 (A-2)

lead to the equations of motion

$$-\frac{dU}{dt} = -g \sin \theta + \frac{C_D S}{m} \rho \frac{U^2}{2}$$
 (A-3)

and

$$U \frac{d\theta}{dt} = g \cos \theta - \frac{U^2 \cos \theta}{r} - \frac{C_L S \rho U^2}{2m}$$
 (A-4)

The initial conditions are t = 0, $U = U_0$, $\theta = \theta_0$, and $H = H_0$.

The relation $\rho(H)$ may be taken from a standard atmosphere table or be approximated by the isothermal atmosphere

$$\frac{\rho}{\rho_S} = \exp[-(g/RT)H] \qquad (A-5)$$

The dependence of C_D and C_L on α , Re, and M must be determined for the particular geometry under consideration. The altitude of the R/V as a function of time is given by

$$H = H_0 - \int_0^t U \sin \theta \, dt \qquad (A-6)$$

2. EQUILIBRIUM TRAJECTORY

An equilibrium lifting reentry trajectory is characterized by a small path angle and a small rate of change in the path angle. Under these circumstances, the equations of motion become

$$\frac{dU}{dt} = \frac{-C_D S}{m} \rho \frac{U^2}{2}$$
 (A-7)

and

$$\frac{U}{U_0} = \left[\frac{r/r_0}{1 + r(C_L S/m)(\rho/2)}\right]^{1/2}$$
 (A-8)

If we introduce $\rho = \rho_s \exp[-(g/RT)H]$, the velocity can be computed as a function of altitude from Eq. (A-8). Integration of Eq. (A-7) will give t(U). For $r = r_0 = \text{constant}$, the integration yields

$$t - t_i = \frac{U_0}{2g} \frac{L}{D} \ln \left\{ \frac{[1 + (U_i/U_0)]}{[1 - (U_i/U_0)]} \frac{[1 - (U/U_0)]}{[1 + (U/U_0)]} \right\}$$
(A-9)

Trajectory 1 of Fig. 2, Volume I, has been computed from Eqs. (A-8) and (A 9) using the ARDC Atmosphere Tables. Trajectory 1 corresponds to an entry with U_0 = 25.6 kft/sec, $\theta \approx 0$, and a ballistic parameter W/C_LS of 200 lb/ft².

3. NONEQUILIBRIUM TRAJECTORY

As illustrated by Fig. 1, Volume I, a nonzero initial path angle leads to oscillations of the trajectory in the altitude vs velocity plane. To consider the increased depth of blackout encountered during the low-altitude high-velocity pullout, we have defined an idealized and rather extreme nonequilibrium trajectory which is the envelope of trajectories computed by numerically integrating Eqs. (A-3) and (A-4) for $\theta_0 \neq 0$ and W/C_LA = 200 lb/ft². The corresponding time scale was determined by observing that the time elapsed from the reentry point is approximately independent of altitude.

The numerical integration of Eqs. (A-7) and (A-8) was originally performed by the General Dynamics Corp., Fort Worth, and the results made available to us by Mr. W. C. Melton of ESTO, Aerospace Corp.

APPENDIX B

AERODYNAMIC CALCULATIONS

This appendix is a compilation of results obtained by the methods described in Volume I, Section II-A-3.

1. OUTER INVISCID FLOW

Figures B-1 through B-4 show the plasma frequency, degree of ionization, and collision frequency in equilibrium air. The plasma frequency and degree of ionization are taken from work by Bleviss (Ref. B-1), which was based on the results of Logan and Treanor (Ref. B-2). The collision frequency was obtained from Bachynski, et al. (Ref. B-3).

Figures B-5 through B-8 show inviscid shock layer properties for cones, wedges, and axisymmetric stagnation points. These figures were adapted as follows: Fig. B-5 from Ref. B-4; Fig. B-6 from Ref. B-5; Fig. B-7 from Ref. B-6; and Fig. B-8 from Refs. B-7 and B-8.

2. VISCOUS BOUNDARY LAYER

The boundary layer properties were obtained from an existing computer program that is described in Ref. B-8. The maximum plasma frequency in the boundary layer on cones and wedges is presented in Figs. B-9 through B-12. Figures B-13 through B-16 show the collision frequency. It is to be noted that these properties differ by as much as 50% from the best available data (see Volume I, Ii-A-3). The normalized boundary layer thickness $\delta/(x) = 1/2$ for wedges is shown in Figs. B-17 through B-20 (The boundary layer thickness in inches is δ , and the distance along the surface of the vehicle measured from the nose in feet is x.); the conical boundary layer thickness is less by a factor of $(3)^{-1/2}$. Figure B-21 presents representative values of the Reynolds number at the boundary layer edge.

Fig. B-1. Plasma Frequency in Air, Density

Fig. B-3. Degree of Ionization in Air

TEMPERATURE, "K x 10"3

Fig. B-4. Collision Frequency in Air

Fig. B-5: Plasma Frequency and Electron Collision Frequency in Equilibrium Air Behind Normal Shocks

Fig. B-6. Temperature and Density Behind Normal and Oblique Shocks

Fig. B-7. Normalized Blunt Body Shock Detachment $\Delta R = 2/\{3[\rho_2/(\rho_1 - 1)]\}$

Fig. B-8. Shock Angle vs Body Angle for Wedges and Cones

Fig. B-9. Maximum Plasma Frequency in Boundary Layer: Shock Angle = 50 deg

Fig. B-11. Maximum Plasma Frequency in Boundary Layer: Shock Angle = 30 deg

Fig. B-13. Coll sion Frequency at Peak Boundary Layer Condition:
Shock Angle = 50 deg

Fig. B-15. Collision Frequency at Peak Boundary Layer Condition: Shock Angle = 30 deg

Fig. B-16. Collision Frequency at Peak Boundary Layer Condition: Shock Angle = 20 deg

Fig. B-17. Wedge Boundary Layer Thickness (Laminar): Shock Angle = 50 deg

Fig. B-19. Wedge Boundary Layer Thickness (Laminar): Shock Angle = 30 deg

Fig. B-21. Boundary Layer Edge Reynolds Number (per foot) for Wedge

REFERENCES

- B-1. Z. O. Bleviss, unpublished work.
- B-2. J. G. Logan, Jr., and L. E. Treanor, Tables of Thermodynamic Properties of Air from 3000 K to 10000 K at Intervals of 100 K, BE-1007-3-A, Cornell Aeronautical Lab., Inc., Buffalo, New York (January 1957).
- B-3. M. P. Bachynski, T. W. Johnston, and I. W. Shkarofsky, Electromagnetic Properties of High Temperature Air, Proc. IRE 48, 347 (1960).
- B-4. H. M. Musal, Jr., Plasma Frequency and Electron Collision Frequency Charts for Hypersonic Vehicle Equilibrium Flow Fields in Air, TR 62-209C, General Motors Corp. Defense Research Lab., Santa Barbara, Calif. (December 1962).
- B-5. C. E. Witliff and J. T. Curtis, Normal Shock Wave Parameters in Equilibrium Air, Rept. CAL-111, Cornell Aeronautical Lab., Inc., Buffalo, New York (November 1961).
- B-6. H. Serbin, "Supersonic Flow Around Blunt Bodies," J. Aerospace Sci. 25, 58-59 (1958).
- B-7. S. Feldman, Hypersonic Gas Dynamic Charts for Equilibrium Air, RR40, Avco-Everett Research Lab., Everett, Mass. (January 1957).
- B-8. M. F. Romig, Conical Flow Parameters for Air in Dissociation Equilibrium, RR7, Convair Scientific Research Lab., San Diego, Calif. (May 1960).

APPENDIX C

SIGNAL ATTENUATION

Signal attenuation calculated as indicated in Volume I, Section II-C-1, for cones, wedges, and stagnation points are presented in Tables C-I through C-XIII. The calculations were made for five signal frequencies (0.25, 0.5, 1.0, 5.0, 10 GHz) for representative points along both equilibrium glide and transient trajectories (see Volume I, Section II-A-1). Results are presented according to the following tabulation:

Configuration	Body Station	Flow Field	Table
Stag. Pt.	nose (3-in. radius)	Shock Layer	C-1
Sharp Wedge (50°)	{1 ft 5 ft	Shock Layer	C-II
Sharp Wedge (30°, 40°)	{1 ft 5 ft	Shock Layer Boundary Layer	C-III, V C-IV, VI
Sharp Wedge (20°)	{1 ft 5 ft	Boundary Layer	C-VII
Sharp Cone (50°)	{1 ft 5 ft	Shock Layer	C-AIII
Sharp Cone (30°, 40°)	1 ft 5 ft	{Shock Layer {Boundary Layer	C-IX, XI C-X, XII
Sharp Cone (20°)	{1 ft 5 ft	Boundary Layer	C-XIII

Table C-XIV presents the characteristic incubation distance for electrons behind plane shock waves in air (Ref. C-1) compared with the appropriate shock layer thicknesses. These data have been used in the discussion of the importance of nonequilibrium effects in Volume I, Section II-C-2.

Table C-I. Stagnation Point Attenuation

4. in. f · 259 hdfs f · 250 hdfs f · 250 hdfs f · 1 cdfs f · 10 cdfs								•••	Attennation de			
0,112 13 6,5 3,4 0,25 0,0 0,113 23 3,6 3,5 1,0 1,0 1,0 0,113 34 34,0 35,0 23,5 12,0 11,0 0,132 34 34,0 35,0 23,0 23,0 11,0 0,132 34 35,0 35,0 23,0 23,0 11,0 0,132 34 35,0 35,0 23,0 23,0 11,0 0,132 34 35,0 35,0 26,0 26,0 15,0 0,144 35 35,0 35,0 37,0 27,0 15,0 0,153 35 35,0 36,0 37,0 27,0 16,0 0,153 42 44,0 37,0 37,0 37,0 37,0 0,154 35 36,0 36,0 37,0 37,0 37,0 0,154 36 37,0 37,0 37,0 37,0 37,0	Altitude, Velocity f. Glis		- C		*			3				E Section
0.102 1.3 6.5 3.4 0.25 0.0 0.0 0.111 2.9 2.6.0 2.2.5 17.8 3.0 0.0 0.111 2.9 2.6.0 2.2.5 17.8 3.0 0.0 0.122 3.4 35.0 35.0 25.0 25.0 11.0 0.132 3.5 35.0 35.0 35.0 25.0 25.0 11.0 0.132 3.5 35.0 35.0 35.0 25.0 25.0 15.0 0.134 3.5 35.0 35.0 35.0 35.0 25.0 25.0 25.0 0.135 3.5 35.0 35.0 35.0 35.0 35.0 35.0 35.	, Taranta		+	1	344/8	#	# LTM 647 7 1	, i	1 - 1 (41)			6 F ST419.
0.111 229 26,0 22.5 7.8 3.6 0.0111 20 0.0112 34 35.0 35.0 25.0 25.0 111.0 111.0 111.2 35.0 35.0 25.0 25.0 15	25.6 6.5	6.5		2.5	×	0. 102	e.	6.5	ю. Э	0.25	0	•••
0.118 34 34,0 30,5 18,0 11.0 0.123 34 35,0 35,0 25,0 15,0 0.136 35 35,0 35,0 25,0 15,0 0.144 35 36,0 37,0 25,0 15,0 0.153 35 35,0 37,0 25,0 22,0 0.153 25 36,0 37,0 25,0 22,0 0.154 35 35,0 37,0 25,0 25,0 0.157 39 40,0 40,0 37,0 40,0 0.156 41 44,0 36,0 37,0 40,0 0.157 42 44,0 44,0 36,0 40,0 0.156 41 42,0 44,0 36,0 37,0 0.156 41 42,0 44,0 36,0 37,0 0.157 36 37,0 40,0 40,0 40,0 0.156 36 37,0 40,0 <td>25.0 18.0</td> <td></td> <td></td> <td>1.2</td> <td>`</td> <td>0. 111</td> <td>2</td> <td>26.0</td> <td>22.5</td> <td>2.0</td> <td>6</td> <td>-</td>	25.0 18.0			1.2	`	0. 111	2	26.0	22.5	2.0	6	-
0.123 34 35.0 35.0 23.0 15.0 0.136 35 35.0 25.0 18.0 0.144 34 35.0 35.0 25.0 18.0 0.153 35 35.0 37.0 25.0 22.0 0.153 35 35.0 37.0 25.0 22.0 0.105 26 20.0 14.0 37.0 25.0 0.117 39 46.0 40.0 37.0 40.0 0.126 41 41.0 44.0 35.0 47.0 0.127 39 46.0 47.0 62.0 37.0 0.126 41 42.0 44.0 36.0 36.0 37.0 0.126 41 42.0 44.0 47.0 62.0 47.0 47.0 0.126 41 42.0 44.0 44.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 <t< td=""><td>24.0 28.0</td><td>0.97</td><td></td><td>% 8 %</td><td>è,</td><td>0.118</td><td>×</td><td>÷.</td><td>30.5</td><td>0.83</td><td>0.=</td><td></td></t<>	24.0 28.0	0.97		% 8 %	è,	0.118	×	÷.	30.5	0.83	0.=	
0.132 35.0 36.0 36.0 26.0 18.0 0.144 35 36.0 37.0 28.0 22.0 0.153 35 36.0 37.0 28.0 22.0 0.102 13 6.5 37.0 28.0 22.0 0.103 26 20.0 14.0 37.0 7.3 0.117 39 41.0 42.0 44.0 36.0 39.0 0.123 42 44.0 44.0 36.0 39.0 39.0 0.124 43 44.0 44.0 36.0 39.0 39.0 0.125 41 42.0 44.0 36.0 39.0 39.0 0.125 42 44.0 44.0 36.0 39.0 39.0 0.126 41 42.0 44.0 36.0 39.0 39.0 0.127 42 44.0 44.0 36.0 39.0 39.0 0.127 36 37.0 42.0 40.0 39.0 39.0 0.147 35 36.0 39	23.0 32.0	0.25		4. o .	è.	0, 123	*	35.0	35.0	23.0	15.0	314
0.1146 34 36.0 35.0 28.0 22.0 0.144 35 36.0 37.0 29.0 22.0 0.163 13 6.5 37.0 29.0 23.0 0.102 13 6.5 37.0 29.0 23.0 0.103 26 20.0 14.0 37.0 7.3 0.117 39 46.0 46.0 36.0 37.0 0.126 41 44.0 44.0 36.0 36.0 0.127 39 44.0 44.0 36.0 37.0 0.126 41 44.0 44.0 36.0 36.0 0.127 42 44.0 44.0 36.0 36.0 0.127 42 44.0 44.0 44.0 36.0 0.128 42 44.0 44.0 44.0 36.0 0.126 42 44.0 44.0 44.0 46.0 46.0 0.129 36 37.0	22.0 35.0	0 35.0		5. 0 X	, °	0.132	35	35.0	3,	0.92	0.8	-
0.153 35 36.0 37.0 29.0 23.0 0.153 35 35.0 38.0 32.0 23.0 0.102 13 6.5 3.8 0.25 5.6 0.103 26 20.0 14.0 3.3 1.2 0.111 36 33.0 28.0 3.3 1.2 0.123 42 46.0 40.0 28.0 34.0 0.124 41 42.0 44.0 36.0 34.0 0.125 41 42.0 44.0 36.0 34.0 0.125 41 42.0 44.0 36.0 40.0 0.126 41 42.0 44.0 36.0 40.0 0.126 42 40.0 44.0 56.0 40.0 0.136 36 36.0 42.0 40.0 43.0 0.147 36 36.0 42.0 42.0 40.0 0.147 36 36.0 42.0	220 21.0 36.0 5.5×	0 -X		₹. 5×	e '	0.136	*	36.0	35.0	28.0	22.0	-
0.163 35 35 36 32 35	26.0 37.0	0 37.0		6. N	, o	0.144	35	36.0	37.0	29.0	23.0	
0.102 13 6.5 3.8 0.25 6.0 6.0 0.105 0.105 20.0 14.0 3.3 1.2 1.2 0.105 20.0 14.0 3.3 1.2 1.2 0.111 36 33.0 28.0 15.0 15.0 9.3 1.2 0.111 36 33.0 28.0 15.0 34.0 34.0 34.0 34.0 0.123 42 44.0 44.0 34.0 62.0 60.0 34.0 0.125 42 44.0 44.0 44.0 34.0 52.0 60.0 0.125 42 40.0 44.0 62.0 60.0 58.0 0.125 42 40.0 44.0 62.0 60.0 58.0 0.125 42 40.0 44.0 55.0 53.0 0.145 36 35.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42	19.0 36.0 7.0×	0 36.0 7.0×	7.0×	×	~ ~	0.153	35	35.0	38.0	32.0	23.62	_
0.102 113 6.5 3.8 0.25 6.0 0.105 26 20.0 14.0 3.3 1.2 0.111 36 20.0 14.0 3.3 1.2 0.117 39 46.0 40.0 28.0 7.3 0.123 42 44.0 44.0 36.0 39.0 0.126 41 42.0 44.0 36.0 39.0 0.126 41 44.0 44.0 58.0 58.0 0.127 42 40.0 44.0 58.0 50.0 0.132 38 40.0 42.0 40.0 58.0 0.147 35 38.0 40.0 42.0 40.0 0.147 35 38.0 40.0 40.0 38.0 0.154 36 39.0 40.0 36.0 28.0 0.154 31 36.0 34.0 24.0 28.0 0.183 31 36.0 34.0												
0.105 26 20.0 14.0 3.3 1.2 0.111 36 33.0 28.0 15.0 7.3 0.117 39 46.0 40.0 28.0 7.0 0.120 39 41.0 44.0 36.0 39.0 0.120 41 42.0 44.0 36.0 39.0 0.126 41 42.0 44.0 52.0 60.0 0.129 42 40.0 44.0 55.0 58.0 0.139 36 37.0 40.0 56.0 50.0 0.147 36 37.0 40.0 43.0 50.0 0.147 36 37.0 40.0 43.0 40.0 0.141 36 38.0 40.0 43.0 50.0 0.146 36 37.0 40.0 36.0 50.0 0.147 38 36.0 36.0 36.0 24.0 0.183 31 36.0 36.0	25.6 6.5	6.5		х	**	0. 102	13	ę.	3.8	0.25	0.0	N
0.111 36 33.0 28.0 15.0 4.3 0.117 39 46.0 40.0 28.0 24.0 0.120 39 41.0 44.0 36.0 39.0 0.126 41 42.0 47.0 62.0 60.0 0.126 41 42.0 44.0 56.0 56.0 0.129 42 40.0 44.0 55.0 58.0 0.136 36 37.0 40.0 56.0 50.0 0.147 36 37.0 40.0 43.0 50.0 0.147 35 38.0 40.0 42.0 40.0 0.147 35 38.0 40.0 42.0 40.0 0.147 35 38.0 40.0 42.0 40.0 0.154 34 38.0 40.0 36.0 28.0 0.154 34 36.0 34.0 24.0 24.0 0.183 31 32.0 34.0	280 25.6 13.0 5.5×1	6 13.0 5.9	<u></u>	5.5 × 1		0.105	92	20.0	0.4	3.3	2.3	P.I
0.117 39 46.0 40.0 28.0 24.0 0.120 39 41.0 44.0 36.0 39.0 0.125 42 44.0 47.0 62.0 60.0 0.126 41 42.0 44.0 58.0 58.0 0.129 42 40.0 44.0 55.0 58.0 0.132 38 40.0 42.0 59.0 50.0 0.147 36 37.0 40.0 43.0 43.0 0.147 35 38.0 40.0 42.0 40.0 0.147 35 38.0 40.0 43.0 43.0 0.147 35 38.0 40.0 36.0 40.0 0.154 34 36.0 39.0 36.0 28.0 0.154 31 36.0 34.0 26.0 24.0 0.154 31 36.0 34.0 24.0 24.0 0.155 26.0 34.0 27.0 </td <td>25.6 25.0 1.0</td> <td>4 25.0 1.0</td> <td>-</td> <td>1.6 × 10</td> <td><u> </u></td> <td>0. 111</td> <td>*</td> <td>33.0</td> <td>28.0</td> <td>35.0</td> <td></td> <td>8</td>	25.6 25.0 1.0	4 25.0 1.0	-	1.6 × 10	<u> </u>	0. 111	*	33.0	28.0	35.0		8
0.120 39 41.0 44.0 36.0 39.0 0.123 42 44.0 47.0 62.0 60.0 0.126 41 42.0 46.0 62.0 60.0 0.126 42 40.0 44.0 55.0 58.0 0.132 38 40.0 42.0 59.0 60.0 0.141 36 37.0 40.0 43.0 43.0 0.147 35 38.0 40.0 42.0 40.0 0.147 35 38.0 40.0 43.0 40.0 0.162 34 36.0 39.0 36.0 36.0 0.154 34 36.0 34.0 28.0 24.0 0.163 31 36.0 34.0 24.0 24.0 0.183 31 32.0 20.0 13.0 24.0 0.195 26.0 27.0 20.0 13.0 24.0 0.201 10.0 2.0 10.7 0.7 0.7	25.6 42.0 4.4	4.7	-	4.4 × 10	· ·	0.117	3	46. 0	40.0	0.82	24.0	r;
0.125 42 44.0 47.0 62.0 60.0 60.0 0.126 41 42.0 44.0 45.0 60.0 58.0 60.0 0.126 42 40.0 44.0 55.0 55.0 55.0 55.0 0.122 38 40.0 42.0 54.0 54.0 50.0 60.135 38 60.0 42.0 42.0 42.0 43.0 43.0 60.0 60.141 38 38 0 40.0 40.0 35.0 60.0 60.154 38 38 0 40.0 34.0 28.0 60.154 38 38 0 34.0 34.0 22.0 60.158 38 0 22.0 60.0 34.0 22.0 60.158 38 31 32.0 34.0 22.0 60.150 60.201 40.0 34.0 22.0 60.150 60.201 40.0 34.0 22.0 60.150 60.201 40.0 34.0 60.0 34.0 60.0 60.0 60.201 40.0 34.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 6	25.6 65.0 9	6 65.0	_	9. K X 10	. :	0.120	33	41.0	÷.	36.0 36.0	39.0	21
0.126 41 42.0 46.0 60.0 58.0 0.0 0.129 0.129 42 40.0 44.0 55.0 55.0 55.0 0.129 0.132 38 40.0 42.0 54.0 54.0 50.0 0.141 35 38.0 40.0 42.0 42.0 42.0 43.0 43.0 0.141 35 38.0 40.0 40.0 35.0 0.154 38.0 38.0 40.0 36.0 35.0 0.154 38.0 38.0 38.0 38.0 36.0 36.0 36.0 36.0 28.0 0.174 35 35.0 36.0 37.0 37.0 27.0 0.183 31 32.0 27.0 27.0 13.0 24.0 0.180 0.195 26.0 13.0 27.0 13.0 27.0 0.195 26.0 12.0 12.0 13.0 27.0 0.201 40.0 27.0 13.0 27.0 0.195 26.0 13.0 27.0 13.0 27.0 13.0 27.0 12.0 13.0 27.0 13.0 27.0 12.0 13.0 27.0 27.0 12.0 13.0 27.0 27.0 13.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	25.6 100.0 2	6 100.0 2	~	2, 0 × 10	0 (0. 123	45	÷.0	47.0	62.0	60.0	C 2
0.129 42 40.0 44.0 55.0 53.0 60.129 3.1 40.0 44.0 54.0 55.0 53.0 60.132 3.8 40.0 42.0 54.0 54.0 50.0 60.141 3.8 31.0 40.0 42.0 42.0 42.0 43.0 60.0 60.141 3.8 38.0 40.0 40.0 35.0 60.0 60.154 3.8 36.0 38.0 34.0 22.0 60.183 31 32.0 34.0 22.0 13.0 60.183 31 32.0 20.0 13.0 24.0 60.201 40.0 22.0 60.201 40.0 24.0 60.201 40.0 24.0 60.201 40.0 24.0 60.201 40.0 24.0 60.201 40.0 24.0 60.201 40.0 24.0 60.201 40.0 24.0 60.201 40.0 24.0 60.201 40.0 24.0 60.201 40.0 24.0 60.201 40.0 24.0 60.201 40.0 24.0 60.2 60.2 60.2 60.2 60.2 60.2 60.2 60	25.0 95.0 2	0 95.0 2	~	2.0 × 10	,	0.126	¥	42.0	46.0	0.9	24.0	23
0.132 34 40.0 42.0 54.0 50.0 50.0 0.136 35 37.0 40.0 43.0 43.0 43.0 43.0 0.141 35 38.0 40.0 40.0 35.0 0.141 35 38.0 40.0 36.0 35.0 0.154 35 36.0 38.0 34.0 22.0 22.0 0.183 31 32.0 34.0 22.0 13.0 24.0 0.183 22.0 12.0 13.0 24.0 13.0 2.201 13.0 2	24.0 82.0	0 82.0		1.8 × 10	<u> </u>	0. 129	7	40.0	°.	55.0	53.0	~
0.146 36 37.0 40.0 43.0 43.0 43.0 0.141 38.0 38.0 40.0 42.0 42.0 40.0 35.0 0.141 38.0 40.0 39.0 36.0 38.0 40.0 36.0 38.0 0.154 38.0 38.0 39.0 36.0 36.0 38.0 37.0 37.0 27.0 0.183 31 32.0 37.0 37.0 27.0 27.0 20.0 13.0 24.0 0.201 12.0 12.0 13.0 24.0 0.201 12.0 12.0 13.0 27.0 20.0 13.0 20.0 12.0 12.0 13.0 27.0 20.0 13.0 24.0 0.201 12.0 12.0 13.0 27.0 20.0 13.0 27.0 20.0 13.0 27.0 20.0 13.0 27.0 20.0 13.0 27.0 20.0 13.0 27.0 20.0 13.0 27.0 20.0 13.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 27	23.0 75.0	0 75.0		1.5 × 10	9	0.132	2	60.0	42.0	¥.0	\$0.0	~
0.141 36 34.0 42.0 42.0 49.0 0.141 35.0 38.0 40.0 39.0 35.0 0.154 35.0 38.0 40.0 36.0 35.0 35.0 0.154 35.0 35.0 34.0 27.0 0.183 31 32.0 34.0 20.0 13.0 24.0 0.195 26.0 20.0 12.0 13.0 24.0 0.201 12.0 12.0 13.0 24.0 0.201 12.0 12.0 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.00 0.201 13.0 2.001 13.001 13.0 2.001 13.0 2.001 13.0 2.001 13.0 2.001 13.0 2.001 13.0 2.	22.0 65.0	0.59		1.5 × 16	9		×	37.0	0.0	43.0	43.0	2
0.1647 35 38.0 40.0 40.0 35.0 0.164 0.165 35 36.0 38.0 34.0 27.0 0.163 0.167 33 35.0 38.0 34.0 27.0 0.163 0.201 20 20.0 20.0 13.0 2.0 0.2 0.201 12.0 12.0 13.0 7.0 0.2 0.207 4 3.8 3.2 0.3 0.1 0.1	21.0 58.0 1.3×	0.35	×	1. 3 × E	9		×	о. Ж	42.0	42.0	49.0	C4
0.154 34 36.0 36.0 36.0 28.0 0.162 35 36.0 38.0 34.0 27.0 0.174 33 35.0 37.0 34.0 28.0 0.183 31 32.0 34.0 26.0 24.0 0.183 31 32.0 27.0 20.0 13.0 0.201 40 25.0 20.0 13.0 7.0 0.207 4 3.8 3.2 0.5 0.1	20.0 50.0 1.1 x	90.0 1.1×	<u>:</u>	1.1 × 1.	2	0, 147	35	38.0	40.0	0.0	35.0	~:
0.162 35 36.0 38 0 34.0 27.0 0.174 33 35.0 37 0 34.0 28.0 0.183 31 32.0 34.0 26.0 0.183 31 32.0 34.0 24.0 0.201 26.0 27.0 20.0 13.0 0.201 20 20.0 13.0 7.0 0.201 12.0 10.0 2.9 0.7 0.207 4 3.8 3.2 0.5 0.1	19.0 13.0 8.2×	0 43.0 8.2×	4.2×	×	• •		X			36.0	28.0	~
0.162 35 36.0 38.0 34.0 27.0 0.174 33 35.0 37.0 34.0 28.0 0.183 31 32.0 34.0 26.0 24.0 0.195 26 26.0 27.0 24.0 13.0 0.201 40 20.0 13.0 7.0 7.0 0.207 12.0 10.0 2.9 0.7 0.7 0.207 4 3.8 3.2 0.5 0.1 0.1	-											
0.174 33 35.0 37.0 34.0 25.0 0.183 31 32.0 34.0 30.0 24.0 0.195 26 26.0 27.0 20.0 13.0 0.201 40 20.0 20.0 13.0 7.0 0.201 10 12.0 10.0 2.9 0.7 0.207 4 3.8 3.2 0.5 0.1	18.0 38.0 8.1×	0 38.0 8.1 ×	** **	8. t. x	~	0.162	35	36.0		×.0	27.0	1.2
0.183 31 32.0 34.0 30.0 24.0 0.195 26 26.0 27.0 20.0 13.0 0.201 20 20.0 20.0 13.0 7.0 0.201 10 12.0 10.0 2.9 0.7 0.207 4 3.8 3.2 0.5 0.1	37.0 9.1×	0 37.0 9.1×	4.1×	4.1 × 1	*0	0. 574	23	35.0		0.7	0.82	1.2
0.201	\$6.0 31.0 7.0×	0 31.0 1.0×	¥.0.*	9.0 × 1	~	0. 183	32		ž.	30.0	24.0	1.2
0.201 60 20.0 20.0 13.0 7.0 0.7 0.201 10.0 2.9 0.7 0.7 0.207 4 3.8 3.2 0.5 0.1	15.0 22.0 8.8×	G 22.0 8.8×		×		0 195	92	56.0	27.0	20.0	13.0	1.2
0.207 t 3.8 3.2 0.3 0.1	14.0 16.0 9.0×	0 16.0 4.0×	×0.4	×	~_ ~	0. 201	07	20.0	27.0	13.0	7.0	1.2
0.207 4 3.8 3.2 0.3 0.1	13.6 B.O 4.2×	8.0 4.2×	0 4.2×	×	~_·	9. 208	01	12.0	10.0	2.9	0.7	2.1
A	12.0 4.0 9.2×	0 4.0 4.2×	* × × ×	×	~ <u>.</u>	0. 207	*				7.0	1.2

Table C-II. Shock Layer Attenuation, 50-deg Wedge

											Attenuatios,	69 'c					
Time.	Altitude,	Velocity,	ئە <u>ئ</u>	,	43 m.	d(5 ft),	\$2 - 1	(• 250 MHs	05 1	f n 500 MHs	f e 1 GHs	#3	(• 5 GHs	i iii	1	(= 19 GHr	Trajeci.
*	1	KII/860	5	200/002		in.		3 ft	=	5.18	=	-	=	2	=	2 (1	. Trene
0	00 00 00 00 00 00 00 00 00 00 00 00 00	25.6	 •	9.0 × 10,	\$	5. 22	26.0	5	21 0	\$\$	14.0	F	÷	0.1	°	00	-
8	. 565	25.0	10.0	6.5 × 10 ⁵	\$	*	63.0	-	42.0	361	\$7.0	257	38.0	212.0	0.0	27.0	
95	247	24.0	17.0	1.5×10°	1:1	5.85	97.0	Large	0 96	Large	95.0	494	77.0	440 0	63.0	366.0	-
06;	\$136	23.0	20.0	2.2 × 10°	1.19	5.93	100.0	:	104. c	Large	118.0	*	105.0	Large	0.0	472.0	-
230	223	22.0	22.0	2.9 × 10°	1. 28	2 3	102.0	Large	123.0	i i	1 30. 0	*09	128.0	1	103.0	\$72.0	•
275	220	21.0	22.0	3.2 × 10°	¥:	6.70	0.00	1.11	124.0	Ligi	139.0	3	134.0	1	110.0	6.4.0	
320	517	20.0	21.0	3.8 × 10°	1. 38	÷.90	91.0	Large	117.0	Large	133.0	ş	131.0	Esal	100.0	\$61.0	
365	207	19.0	20.5	4.4 × 109	*:	7. 38	0.11	Large	114.0	Largo	133.0	119	139.0	Lin	112.0	8.0	-
										#W 01.							
٥	300	25.6	3.4	9.0 × 107	8	. 5. 23	26.0	=	0	*	7.7		•				•
2	087	25.6	6.9	3.0 × 10	\$.:	27.5	\$0.0	2		3 5	37.0		0	90	5 6		
3	560	25.6	13.5	9.8 × 108	\$:	5. 22	90.0	1	79.0	•	70.0	*21	57.0	246.0	9	212.0	۰ ۸
\$	240	25.6	23.2	2.5 × 10°	1.04	5.42	4.0	1	106.0	Large	118.0		9.0	438.0	0.0	471.0	~
120	220	25.6	35.0	3.6 × 109	\$	5.22	117 3	Large	.0	Lere	168.9	Lara	171.0	Pras	159.0	Larze	~
3	200	25.6	9.95	1.2 × 10 ¹⁰	8.	5. 22	100.0	Large	131.0		185.0	7,016	260.0	.ere.	270.0	į	~
170	200	25.0	55.0	1.2 × 10 ¹⁰	\$	¥ .	100.0	:	133.3	Large	181.0	; ;	26.5 0	1678	233.0	į	~
562	202	24.0	\$0.0	1.2 × 10 10	1:13	5. 65	105.0	Large	136.0	, i	192.0		268.0	Large	265.0	**	*
240	200	23.0	45.0	9.5 × 10	::	5.93	102.0	Large	134.0	· strai	184.0	Large	243.0	iens:	236.0	-trai	*
275	002	22.3	40.0	8.3×10°	1.23	*	103.0		139.0	1	188. C	:	230.0	Lary	213.0	1	~
š	302	21.0	74.0	7.3×10°	÷.	6. 70	0.0	Lerge	125 0	Large	184.0	:	200.0		206.0	1	~
2	88	20.0	29.0	6.5×10	*:	6.40			114.0	ż	160.0	3	120.0	1	170.0	į	~
375	802	5.0	22.0	5.5×10°	\$	7. 31	0.0	1	113.0		133.0	612	150.0	1212	128.0	1	7
\																	
919	500	. 0.	18.0	4.9×10°	\$	7. 31	75.0	Large	97.0	. Training	123.0		115.0	1	*		7
\$	Ĭ.	17.0	14.5	5.5 × 10°	7.	7.72	0,73	236	78.0	1478	43.0	423		ie:	\$	243.0	?;
\$	3	0.91	÷	5.5 × 10°		B. 23	13.0	154	\$3.0	523	\$	ž	. \$2.0	275.0	1:	63.0	?;
\$:	13.0	\$ \$	5.8 × 10³	1.7	2	38.0	5	ž	š	ž	2	17.0	R 2. 0	•	0,	1.2
S T	11		e 4	6.1 × 10,	:	3.	17.0	;	9.	2	22.0	ž	*	12.3	· ·	ş	7.
529	673	0.5	2.2	6.5 × 10,	\$	10. 30	÷.	÷	12.0	5	12.0	3	:	4 10	0.2	:	1.2
670	<u>'</u>	12.0	1.6	T. 2 × 107	2.29	11.40	7.5	2	0	*	5.2	~	•	6: ^	0	2	1.2

Table C-III. Shock Layer Attenuation, 40-deg Wedge

_								,							
C			£	ets m,		100 at 2 1 1	3.	-	801.7	4	10000	1	9 11 1	á	1
	2	\$. 9 × 10.7	2	2	9.9	z	•	:	3	93.0	:	3	:	:	-
	:	4. 1 × 10	2	3.	3	3		Ĭ.	ž	<u>.</u>	• *	ž	÷	Ş	-
		9. 5 × 10	2	4.71	6.13	177	;	135.0	;	222.9		2.	::	;	-
	• :	1. 4 × 10	2 .	2	;	167	:	263.0	*	177.0	*	2 th. 0	×.*	. %.	-
	• 2	1. 0 × 10	\$	3. 22	61.0	777	3	***	• • •	. .	• 7.	. 26.	27.0	143.0	-
	•	2.1 × 10	<u>.</u>	\$.22	\$7.0	•	\$5.0	217.0	÷:	365.0		. W.	• • •	•	-
	:	7.4 × 10	1.07	X.	\$	ž	•1.•	179.0	¥.3	274.0	35.4	173.0	7.	4.4	-
	•:	3.0 × 10	1.13	5. 65	31.0	š	÷:	ž	:		\$\$. 0	110.0	:	:	***
	~ ~	5.9 × 107	2	+.5	 	2	•	:	;	33.0	:	•	•	•	~
	*	2.0 × 10	\$.	4. 55	33.0	=	27.0	107.0	::	•1.0	7.4	1.1	:	?	~
	6.	6. 2 × 10	8	4, 50	55.0	8	51.0	206. 0	*	9.782	27.0		7.0	7	~
	15.0	1. 5 × 10°	\$	4.50	13.0	**	77.0	316.	76.0	333.0	3	****	3	ž.	~
	0 · *	3. 5 × 10°	\$	4.50	97.0	ž	•	•	Ĭ.	•		į		38.0	~
	37.0	7.8 × 109	\$	4. 50	8.0	ş	3.	•		S. 6.	165.0		 	1	~
	, ,	7.0 × 109	\$	4. 50	74.0	ž	6.101	•	145.0	610.3	194.0		• • •	• •	~
	0.0g	2. 1 × 10	3	4.71	130.0	•	124.0		14.0	•	• 72 .	*	121.0		~
	0 %	t. 0 × 10	3	7	3	**	•:	329.0	103.0	• .			ż	•	~
	0.07	5. 1 × 109	\$	\$.22	• :	077	3	265.0	3.0	415.0	• 3.0	•	:	*	~
	5.5	4. 0 × 10°	\$	\$.22	43.0	173		235.0	72.0	317.0	67.0		×.×	216.0	~
	°.	4.1 × 109	1.07	7. X	÷.0	3	*	126.0	63.0	275.0	53.0	271.0	* * *	110.0	~
	• ·	3. 8 × 109		5. 65	3.0	:	÷.0	. 	°.≎	<u>*</u>	7.0	3	7.5	9.	~
			. :		•	;	;	:	:	•	,	;			•
			: :	;		: 4			: :			•			: :
	3		•	• •	<u> </u>	;	<u>.</u>	:	:	:	:			•	•
	9	3. 9 × 10	*:	3	0.0	si Si	÷	°.3	». •	3	7.0	:	•	•	?
	02.1	4.0 × 10	2.3	7.23	·,	•	2.0	27.0	2.5	8 .2	-	•	•	0	7,1
	9.63	4.1 × 109	÷:	7.80	0.7	2	*:	14.0	:	2.5	-	7.0	0,	0	~:
	0.65	4.5 × 109	*:	1.12		•	<u>:</u>	*:	*:	4.2	9	7.0	•	0	~:
	8	4. 8 × 109	1.67	8.35	•:	•		•	6.3	\$. \$	0 0	9	0.0	9	1.2

Table C-IV. Boundary Layer Attenuation, 40-deg Wedge

		T-																													
	Trapert : Equit	_	-	<u>-</u>	-		-	-			~	•	~	~	~	~	~	~	~	~	~	~	•		~;	* ';	7.	73	~	7.	2 ,1
	\$	1.		•	0 17		۲.		:	-	r	,	•	\$.0	2	5	3	5.0	\$	\$. \$	=	:	:		~	-	;	*	:	:	•
	# S ! .		•	0.61	2.0	•	-	•	-			,	•	27.0	¥.	*	2			•	•	•	-		:	•	•	•	• •	•	• 6
		ļ.		\$	0 ±	27.0	÷.	2.2	•;		,				2	•	2			*	• •	•	•	···	•	:			:	6.3	;
7	H + 1 5 H4		•	÷.	9.5	0.	• •	~	•			•	٠	31.0	2.	:	3.0	13.0	0.12		:		-			-	-	9.	•	•	٥ ٨
Attenuation, dB			•	63.0		*	2.5	0.0	•		•		•	*	8.0	• .	17.0		0.	• 5	8.0	0.57	4.7		3					;	:
	# 1	ŀ		7.0	27.0	* .*	6.0	•	;		•	•	•		3	•		37.0	3.5	23.0	• • •	•			7.	*:	:	:	:	:	•
<u> </u>	a the	-	,	67.0	53.0	45.0	31.0	33.0	• :			<u> </u>		• • •	•	• • •	• •	• • •	•:•	• .	4.0	1.0	•			•;	•	:	- -	:	٠ ۲
	HAN POST II	 -	•	\$ 9.		•	• ::	•					•	•:	• •	• •	•	 	•	\$. °	••••	•:	•;		. ;	• .	•	:	••	•	:
}	===	<u> </u>	_ <u>.</u>	7.0	52.0	0.9			• •				•	3.0	12.0	- -	53.0	•	4.0	35.0	23.0	7.0	• • •		•	•	•:		:	•	:
	******	-	•	• ;		***			<u>-</u>				•	51.0	• • •	<u>.</u>	•	37.0	×.0	27.0		13.0	:		•		:	:	-	:	:
	_ <u>_</u>	<u> </u>		6. %	*	. 8	*	3.	7.					::	•		 ::	-:	2.	* .	- z		9.33		*		*		0.27	•. 25	• 24
·		_		•	•	•	<u>•</u>	<u>•</u>	•					•	•	<u>•</u>	•	•	_	<u>•</u>	<u>•</u>		<u>•</u>		-	•	_	•	<u>•</u>	<u>•</u>	•
	1	ŀ	•	ë.	÷.	0°.	5.	÷	÷.		٠	•	•	÷.	=	÷.	<u>:</u>	3	=	=	=	:	:			:	=	=	÷.	=	=
	300/200		•	4.8 × 10	1.5 × 10	2.1 × 109	2. 6 × 10	3. 2 × 10	3.9 × 10		٠			1.6 × 10	3. 2 × 10	6.6 × 109	6.3 × 10	6.2 × 10	6.0 × 10	5.8 × 10	9.4 × 10	9. 1 × 10	4.9 × 10		4. 6 × 10*	5.6 × 10	6.1 4.10	7.2 × 10	7.9 × 10	8.6 × 10	9. 3 × 10
	- - 8			• •	16.5	5.5	9.	, ,	-				•	26.5	:	0:10	•	•	• 3	23.0	15.0	•	3		2 .	2	:	•	*	• 20	=
	Velocity, hft/eec	\$3.4	25.0	\$4.0	13.0	52.0	31.6	9.0	• •		79.6	25.6	25.6	23.6-	28.4	3.4	33.0	***	33.0	22.0	**	::	•		. 0.	17.0	9.	. 3. 0	:	•	÷.:
	Altitude.	3	:	747	*	727	**	**	102		8	2	97	\$	977	8	:	:	š	207	8	<u>\$</u>	:		2	26.	3	3	ž	ŗ	3
	Time,		8	951	š	\$	27.5	2	\$		•	2	3	8	2	3	ž	÷	3	11.	ž	<u>*</u>	ž.		:	\$	£	3	ž	523	Ŗ

Table C-V. Shock Layer Attenuation, 30-deg Wedge

	Traject	Trans.	-	_	_	-	•	-	-	-		~	~	~	*	~	~	*	4	۸,	~	~	~	4		1,2	1.2	1.2	7.7	1,2	1.2	7.7
		П	0.0	0.0			•	•	0.0	•	·			۰		6	75.0		- c	÷.0	0.	0	0.0	0.0		0,	0.0	0.0	0.0	•		<u>.</u>
	10 GH	11 8 11	•	•	-	·	•	•	•	-	A		• •	- -	•	0.0	0	<u>\$</u>	0.1	0.0	_	•	•	•				۰			•	•
		F	•	•				-		_	-	•	o'	-	ö		71	•			<u>.</u>	_	·	-		·			÷	a 		
	2 GHz	11.2	0	-	0	9	°,	-	· ·	÷			0.5		<u>;</u>	3.0	160.0	131.0	.0	40.0	•	ö	·:	o. 0		o o	°	•	ö		0	•
Attemation, dB		=	9	•	·	:	°.	°.	· ·	· ·		•		7.0		0. 0.	0 67	22.7	ŏ o	9	0.7	9.	8.	°.		÷.	6.0	•	:	°,	e.	•
Attenu	ž	3,1	-	54.5	39.0	35.5	ea *	÷. 5	:	~		1.7	15.5	46.0	85.0	135.0	73.0	150.0	105.0	\$.0	0.4	21.5	7.0	5.6		9. 8	0.50	0.35	0. 20	0.10	9.00	
	:	118 1 111	0. 10	£ 7	9	8	5	8.9	0.25	07.0		0 10	1. 10	7.80	18.5	32.00	41.00	36.00	24 30	22.00	9 50	2.90	0.85	0.40		0 2	0, 1	0.1	0.0	0.0	0.0	
	KH.	Ę,	7.5	32.0	0.0	37.3	24.3	17.0	7 9	3.5		6. 75	26.00	25 00	\$7.00	125.00	147.00	133.00	98 50	79 50	47.00	24.30	13.00	÷		3.5	6.1	7:	0.5	7.0	· · ·	
	2 \$ 50	18 5 18	0. ♦	8	3	Q¥ .9	3	3	0 83	0. 55		0.45	3.40	12. 50	23.50	33, 50	\$.8	36. 50	24 70	23.00	00 71	5.50	02 7	 0	·	o. s	6.3	7.0	 	0.0	0.0	•
	ECH.	į,	13.0	\$.8 5.9	49 0	0 0	0 82	0.71	0 01	*:		13.0	37.5	0.04	95.0	113.0	123.0	85.0	78 5	71.5	6.0	22.5	12.0	7.0		5. 60	7.	2.00	8.	0, 39	0.25	•
)52 + 1	11.5	4:4	10.7	5 52	10 7	* *	3.8	7.1	-			1.5	19.0	28.0	37.0	39.0	35.5	75.5	22.5	13.8	0.0	3.0	5:		5:	s+ o	0.35	0. 10	0. 10	4.00	•
	4(5 (1)	٤	3.66	3 66	3. 77	\$.	:	÷ 30	4.60	9		3.66	3.66	3.66	3.66	3.66	3.66	3.66	3 77	3. %	* :	8	• • •	÷.80		8	4.92	5.34	5.73	e. 0\$	6.58	•
		E.	0.73	0.73	6. 75	02 0	¥	98 0	24 0	96.0		0.73	0 73	0.73	0.73	0.73	0.73	0.73	0.75	G. £0	0.8	0.86	0.92	96.0			6. 9 8	1.07	1. 15	1.2.1	1. 32	•
		rad/esc	1 0 × 107	01 × 1 Z	5.8 × 108	8.0 × 108	1.1 × 109	1 3 × 109	1.4×109	1.7×109		3 0 × 10 ⁷	1.0 × 10 ⁸	3.2 × 10	9.0 × 10	9 × 10	4 0 × 109	3.9 × 10 ⁹	3.5 × 10 ⁹	3.1 × 109	3.0 × 10 ⁹	2.5 × 109	2.3 × 109	2.2 × 10 ⁹		2.0 × 109	2.2 × 10 ⁹	2.3 × 10 ⁹	2.2 × 10 ⁹	5 5 × 109	2.5 × 10 ⁹	•
		CH1	0.90	8	2.40	8	3	0 35	99 0	09 0		· ·	9:	3.0	5.0	7.9	11.0	9.5	9.9	٠.	30	1:3	6.3	6.3		0.50	0.40	9.31	07.0	0.13	٩٥.٠	
	Velority.	kft/sec	9 52	0 57	0 •7	2 8 2	0 77	21.0	50.0	19.0		9 57	25.6	25.6	25.6	25.6	9 52	0 57	24.0	23.0	22.0	21,0	20.0	19.0	•	6.0	17.0	16.0	15.0	•	13.0	12.0
	Altitude,	PŲ	38	597	7+7	**	222	077	717	202	•	300	087	097	740	077	902	700	82	8	200	200	007	007		32	761	š	182	921	02:	164
		20	0	001	5.	8.1	087	52.5	320	\$65		G	3	9	8	071	150	170	\$62	0+7	275	305	ž	375		614	450	438	÷	\$8	623	670

Table C-VI. Boundary Layer Attenuation, 30-deg Wedge

The control of the co												Attenuation, 40	4					
10 10 10 10 10 10 10 10	Tims.	Alintude.	Velocity. hft/sec	\$, <u>į</u>	, a	465 18,	# ·	*	+ 15 28	李	14:4	## A	1111	1 5 E	a v	TH'S	Traject 1 = Equit 2 : Trans
	۰	300	25.6		,			·	٠			l				ŀ	ŀ	-
10	8	:	25.0		•	•	•	,	•			•				•		-
1	3.	447	\$.	÷ 00	6.9 × 10	07.0	•	•	0.51	6.1	13.9	1.1	*	7.	•	•	•	-
	š	*	6.5.0	3.43	1. 1 × 10	9. 31		•	3.0	-	15.5	•	0.0	~	•	•	9.0	-
	2	122	8.2°	5.5	1.5 × 10	0.27	0.53	-	•	7	5.0	•	-	9	~	:	•	-
	Ę	077	21.0	5.10	1, 9 × 10	6.24	0.5	*.*		*.	•	•		•		:	:	•
	å	**	20.0	1. 55	2. 3 × 10°	9. 22	0.4	7.0	÷	::	7.7	•	7:	•	•	•	•	-
10 10 10 10 10 10 10 10	ź		19.0	:	2.9 × 10°	0. 20	÷	:	*:	,.	:		•	:	:	:	•	-
18. 18. 18. 18. 18. 18. 18. 18. 18. 18.																		
1		3	75.6	•	,	•			•									
	• •	1			. ,		•					,	,					•
	R	ţ		•	,		•		•	•	•		,	•		•		~
	3	3	39.6				•		٠			•		•	•		,	~
	2	2	25.4	9.30	1.0 × 10	6. 32	2.	9:0	0 ;;	27.0	43.6	22.00	0 X	1.1	21.5	*	•	~
	•21	22	15.6	12.50	2.4 × 10	÷.		16.0	•	25.0	• 2	\$1. 8	*	:	*:	2	:	~
25. 10.0 (10	3	3	28.6	19.50	5. 0 × 10°	:	9. 32	25.0	35.0	25.0	33.	21.00	37.0	•	28.0	3	23.0	~
11	Ë	2	23.0	16.00	4. 0 × 10°	.:	6.33		å	22.0	*	18.8	33.0	e.	21.0	:	13.3	~
	£	2	***	 8	4.6 × 10	:	Z.	•	27.5	16.0	23.0	12.00	23.0	•		:	7	~
	*	30	23.	2	4.4 × 10 ²	::	9. 35	• • •		• ::	17.0	9.5		7.	*	*	3	~
	22	<u>.</u>	2.	\$	4.1 × 10	3.3	9.35	•	5.0	7.5	12.5	3. 40	•	•		 	3	~
	£	807		3.15	4 . x 10	6.17	0.31	5.3	:	٠.٠		67 .	•	•	:	8.	-	~
	3	8		2. T	3. 8 × 10	6.11	*	7.7	£.3	5.3	3.4	. 5	:	•	:		9.	-
	Ĕ	ž.		1.24	3.6 × 10°	:	9.39	:	• 7	•.1	:	6.30	• •	:	:	:	:	~
																	•	
	•	ž		×.	3.4 × 10°	÷	\$:	•	~	;	•	:	:	:	•	•	7
**************************************	\$	ä	13.0		4:×10°	::	. 34	:	7.	;		•	•	•	•	:	•	- 3
6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	£	Ē	•	27.0	4.5 × 10		*	:	:		:	:	•	•	•	•	:	7.
	3	ā	9.	::	9.2 × 10°	:	£.33	:	:	0	:	;	•	•	•	:	:	~:
	ŝ	Ĕ	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•		1.2
	ŝ	2		•	•	•	•	•	•	•		,	•	٠	•	•	•	~.
	2	ī	2.2	٠	•	•	•	٠	•	•	•	•	•	,	•	•	,	7.7

Table C-VII. Boundary Layer Attenuation, 20-deg Wedge

1. 1. 1. 1. 1. 1. 1. 1.												Attomation, 48	M. 48					
14 14 17 17 17 17 17 17	Time,	Ahiryde. Eft	Velocity.		704/200		4(5 ft), in.	1 . R	S MHs	-	1:	1 . 1	*	3	35	=	8	Trapert 17 Equal
12 12 12 12 12 12 12 12	•	300	23.6	·					·				[.	ŀ		Ŀ	ŀ	-
13	8	3	78.0	•	٠	•	•	٠		•	•	٠	•	,	•		,	-
134 134 0.846 6.23 10.24 0.54	3	**	24.0	1, 910	3.7 × 10	0.50	0: :0		•••	6.9	•	~	•	٠	•		,	-
225 11.0 0.330 11.0 10.30 0.30 0.31 0.30 0.31 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	2	*	23.0	0,860	6.2 × 10	0, 0	6.0	7.	3.3	•	:	:	•	•	•		,	-
11.0 0.345	82	227	22.0	0.710	6.5 × 10	*	2	0.7	6.5		:	;		٠	•	•	•	-
150 0.255 1.3 × 1.0 × 1.0 0.25 0.2	275	077	21.0	0.520	1.1 × 10°	9. X	0.72	6.3	:	:	•	0.0		٠	•			-
15.0 0.245 1.5 × 10 ³ 0.25 0.59 0.11 0.2 0.9 0.1 0.2 0.1 0.2 0.1 0.2 0.	330	*	0.02	0.375	1.3×109	8.5	3	7.0	•		7.0	•	-		•	•	,	-
256 23.6 1	\$9.	201	19.0	0.265	1.5 × 109	97.0	0.5	.0.	**	•	-	9		•	•	•		-
256 23.6 1.356 5.4 x; 0																		
256 25.6 25.6 25.7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•																	
246 25.6 1.3	•	3	9. 9. 9.		,	•			•	•	•	•		•		٠	•	~
246 25.6 1.250 5.4 × 10	2	2	9. 6	,	•	•		•				•	•	,		•	•	~
250 23.6 1,280 5.4 × 10 6.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0	3	3	25.6	•	•	•	•	•	•	•	•	•	- 1	•	•	,	•	~
250 25.6 (4.800 2.6×10 ² 0.19 0.44 10.1 16.0 6.0 13.9 7.9 7.9 6.1 0.2 1.0 1.0 16.0 8.1 15.0 4.1 10.4 0.2 1.0 1.0 1.0 16.0 8.1 15.0 4.1 10.4 0.2 1.0 2.0 0.45 8.5 12.0 8.2 12.0 12.0 0.45 8.5 12.0 12.0 12.0 0.45 8.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	\$	\$	25.6	2.350	5.4 × 10	\$	*	10.2	17.0	3.6	• :	<u>.</u>	*	•	•	٠		, ~
250 23.0 1.850 2.4 × 100 2.4 × 10 0.4 11.0 16.0 8.1 15.0 4.1 10.4 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2	077	25.6	3.250	1.2 × 10	0.29	3.0		9.9	• •	12.0	6.3		-		٠	•	~
260 24.0 2.790 2.1x10 ³ 0.20 0.46 8.1 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	?	8	\$3. 6	• • • • •	2.6 × 10°	0.19	÷.	0.=	6.9	-	15.0	÷	- 0. - 0.	7.0	:	•	•	~
200 24.0 2.1×10° 0.20 0.46 5.1 9.6 1.5 1.6 4.4 0.0 0.1 0.20 2.1 1.6 4.4 0.0 0.1 1.6 1.5 1.1 1.6 1.4 0.0 0.1 1.2 0.2 1.1 0.40 1.2 1.2 1.3 1.1 1.4 0.1 0.2 1.3 0.3 1.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	2	87	55.0	3.956	2.5 × 109	0.20	0.45	\$:	12.0	~ .	12.0			ē	•	•		~
200 23.0 1.850 2.4 × 10 ² 0.21 0.47 2.8 5.6 1.5 3.1 0.8 1.9 0.0 0.0 0.0 0.1 0.40 0.21 0.47 0.21 0.49 0.21 0.49 0.21 0.49 0.21 0.49 0.21 0.49 0.21 0.49 0.22 0.40 0.49 0.22 0.40 0.49 0.22 0.40 0.49 0.22 0.40 0.49 0.22 0.40 0.49 0.49 0.49 0.49 0.49 0.49 0.49	507	8	24.0	2. 7%	2.4×10	0.20	÷.		•	7.5	7.3	•	*	0	-	•	•	~
200 21.0 0.000 2.2 x 10 ³ 0.21 0.40 1.2 2.0 0.7 1.7 0.3 0.7 0.7 0.0 0.0 0.0 0.2 0.50 0.22 0.50 0.50 0.5	9	8	23.0	 86	2.4×10°	0.21	0.47	~;	•	<u>.</u>		•	•	•	•	•	•	~
200 21.0 0,000 2.2 x 10° 0,000 2.2 0.50 0.1 0.5 0.1 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	22	8	22.0	6.2.5	2.2 × 109	0.21		7.	*	0.1		•	6.7	•	0,	•	•	~
200 0.51 0.51 0.51 0.51 0.50 0.51 0.50 0.51 0.51	305	8	21.0	0.800	2.2 × 10°	0.22	3.		•	5.0	:	7.0	•	;	•	•	•	~
200 0.10 2.0 x10 3.0 0.11 0.2 0.10 0.11 0.2 0.10 0.11 0.2 0.11 0.2 0.11 0.11	3	8	50.0	9. 505	2.1 × 109	0.23	0.51	?		;	6.9	•	-	•	•	•	•	~
200 119.0 0.1182 1.9 × 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	375	8	9.6	0.310	2.0 × 10	7 7.0	0.53	ë	7.0	•	- 6	•	•	•	•	•		~
280 119 0 0 119 0 0 119 0 0 119 0 11											÷							
	:	867	19.0	9. 182	1.9×109	97.70	6.5	ő		ő	•	0.0	9		· · · · · · · · · · · · · · · · · · ·			7.
	3	ž	17.0	•	,		,	.•	•	•			•	•	•	•	•	~
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ŧ	=	16.0	•	•	,				•	•	,		•	,	•	•	2.1
176 170 170 170 170 170 170 170 170 170 170	3	2	15.0	•	•		•	•	•	•	•	•		•	•	•	•	?:
1.00 13.00	ŝ	**	9.	•	•			•	•	•	•	•		•		•	•	~:
	625	2	0.5		•	,	,		•			. •	•	•		•	,	~:
	67	<u>:</u>	12.0	•	•		•		• .			. •				•	•	?:

Table C-VIII. Shock Layer Attenuation, 50-deg Cone

	_	T 2 Trans.	0.1	5.9	-	-	-	-	-	-	-			7	~	~	~	~	~	~	~	~	~	~	,,	-1		2 .	1: 2	1. 2	1. 2	7.7	
	9	1, 10 CM	_		155.0	64.	223.0	220.0	240.0	227.0	•			<i>-</i>	÷.	210.0	374.0	-	1	\$60.0	\$25.0	46.0	421.0	11.0	247.0			165.0	8.0	;	•	0.15 	•
	-	Ė	0.0	7.0	2	*	÷.	\$	÷.	=			0	<u>.</u>	=	;	- ×	124.0	77	11.0	\$	5.	:	72.	;			2,	;	:	:	<u>:</u>	•
	CH4	11.	ē	42.0	198.0	234.0	256.0	257.0	272.0	273.3		,	- ;	<u>.</u>	-	•	•; ^	•	÷03.	3	ž.	÷	÷	347.0	200.0		ď.	23. •	4	3	-	=	•
	5 .)	F	6.0	•	35.0	46.0	\$1.0	93.0	54.0	54.0			·	;	23.0	;	61.0	129.0	128.0	122.0	111.0	15.0	91.0	17.0	58.0			43.0	28.0	**	1.5		•
4.8	SH.	Į,	24.0	122.0	219.0	249.0	263.0	247.0	283.0	0.692			6.87 1		192.0	247.0	348.0	• •	414.0	422.0	407.0	365.0	162.e	337.0	*			223.0	155.0			÷	
Attenuation, 48	()		7.7	9	53.0	9.0	0.	•	67.0	62.0	_		* ;	:	• 7	61.0		*:	97.0	***	96.0	:	:	73.0	5.0			9.46	ž	-23.0	.2.	;	
Att	MHC	į.	9.0	137.0	216.0	235.0	239.0	239.0	247.0	225.0		:	3	•	155.0	232.0	296.0	285.0	288.0	295.0	294.0	265.0	280.0	268.0	215.0			•	:35.0	:	3	Ė	
	905 × 7	W. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	35.0	57.0	42.0	• : •	13.0	63.0				3		67.0	62.0	74.0	76.0	77.0	71.0	77.0		70.0	69.0	9.9			\$0.0	35.0	23.3	:	£.1	
	=	11.5	.0	9.00	0.4	211.0	140.0	3.0	0.88	167.0			÷	-	152.0	18.0	203.0	207.0	210.0	210.0	310.0	172.0	14.0	142.0	157.0			. 33.0	2	i	=	ล้	•
	1 . 250	1 4 H	. . . 0	•:	57.0	59.0	57.9	\$7.0	\$5.0	*		• ;	•	2	÷.	:	•:•	42.0	62.0	47.0	62.0	\$.0	36.0		47.0			42.0	 			£.1	
	415 ftl.		79.7	2. 72	2. 92	2. 92	26.7	3.25	*	3			3 :	¥ ;	3	3	3	33.7	2,72	26.7	7. 45	. 1. 91.	7. 28	# :	3			2.7	2	*	8.	\$	
	B.	•	0.52	÷.		0.50	0.58	0.65	2.0	0.73		;	· ·		~ · · ·	23.0	0.52	0.52	0.54	*	0.50	0.58	3.0	6.72	6.73			27.5	9.0	2	3	8	7
		rac/000	7.5 × 107	6.0 × 10	1.4 × 109	2.0 × 10°	2.6 × 10°	2.7 × 109	3.2 × 109	4.0 × 10°			0 × 10		9.0 × 10	2.2 × 10	\$.6 × 10	1.1 × 10 10	1.05×1010	9.5 × 10	6.2 × 10°	7.1 ×109	6.5 x 10	3.7 ×10	8.0 × 10.		-	4.2 ×10%	8.0 × 10.	8.0 ×10	•	9.5 ×109	-
		충	*	2.6	15.5		19.8		0.8	17.0		;	; ;	;		8	2.0	93.0	20.0	•	÷.	ž	:	28.0	i				:	•	7.4	2.0	
	Velocity.	M/400	25. 6	55.0	5¢.0	23.0	22.0	21.0	20.0	19.0			??		5 .	*	25.4	25.6		* *	23.0	22.0	21.0	8.					2.0	:	15.0	÷	
	Albutude.	, E	201	ž	247	2.2	222	220	\$12	202			<u> </u>	2	3	2	220	2	8	8	2	ž	ş	8	*			\$	Ī	ī	2	Ę	
	-		۰	8	3	\$	8	23	976	36			• ;	2	3	*	2	2	Ē	\$	3	£	¥	2	ž	: Y		3	ş	\$	3	£	

Ţ.

Table C-IX. Shock Layer Attenuation, 40-deg Cone

10 10 10 10 10 10 10 10												1	Astronotion, 48					
March March Color Angle March Marc				٠	,	1	4,4		MHe		- F.	٤	*	(.)	3	•I • J	3	Trapect.
No.	Time,	Animes.	Market V	÷		<i>f</i> 4	;	1,11	N.	H H	Ē	Ę	W.	Ē	Į,	N -	7.5	2 . Trans
10 10 10 10 10 10 10 10		857	3.6	:	2.2 × 10	:	2.2	3.1	67.0	1.1	19.0	=	• •	•	:	•	•••	-
10	8	. 3	\$3.0	3). y x 10	;	7. 70	\$\$.e	71.0			•	•	¥.4	23.0	7.9	8 .8	-
15	2	74)	»; •	8		÷	2	9		ž.		\$. •	ž.	. : • :	**	~	7.4	-
10		*	23.0	8 .	1.3 x 10°	2.	15.7	34.0	111.0	*	117.0		115.0		• ;	**	7.0	-
11	2	227	22.6	8	1.7 * 10	6. \$2	27.62	13.0		×.		2	11.0		\$. 0.	;	•	-
15.0 15.0 15.0 15.1 15.0			-	8	601 x 6.7	6.52	3	• •		2.3	3	23.0	:		\$	~	•:	•
15.0 15.0 15.0 15.1 15.0				3		*	7. 07	25.0	78.	25.0	÷:-	41.6		•	*	*	•	-
13.6 1.85 5.2 x 1.7 1.1	1	2	•	3	2.7.x.10°	3.	2	•		•	83.0	17.0	3	3	7.	:	:	-
1.00 1.00																		
15.0 15.0 1.5 × 10 1.5 × 10 1.5	•	3		7	4, 2 × 10,	*	92 7	7.1	27.0	-	• •	:	÷.	:	⇒	:	•	. ~
15.6 15.6 15.6 15.8 15.6	• ;					•	2.20	•	25.0	• :		*	43.0	:	•	•	0.0	~
13.0 13.0	R :	3	-		•	3	2.20	•	*	2.	3	41.0	9.7	~	26.0	2.0	*	~
13.6 13.00 1.0 × 10 × 10 1.0	3 .			3 8	601.7	3	77.7		¥.	•	157.0		172.0	26.0	125.6		\$	~
13.00 1.00	2	3 :		3 3			97.		.47.	\$3.0	171.0	7	214.0	43.0		11.	174.0	~
12.0 12.0	2	5	9.6	2 :				•	Ş	•	0.00	67.0	276.0	72.0	4.0	3		~
25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	2	£	•	B :	N X N X		} :			5		67.0	279.0	3	3	3	× .0	~
250 23.0 23.00 5.9 x 10 0.00 2.0 2.0 110 110 110 110 110 110 110 110 110 1	2	\$		3 3	×	\$	3				* **	0	234.0	\$2.0	9.7. 2	47.0	× ×	~
13.0 13.0	ž	2	\$. 0	\$ \$.0×10.	‡	7							•	2.0		102.0	~
200 11:00 4.0×10 ³ 0.53 2.62 34.0 117.0 33.0 121.0 27.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	2	2	23.0	8.2	5.0 × 10,	o. \$	- -	:	2	3		į į			, ,,		1	•
200 11.0 1.00 4.0×10° 0.11 2.01 17.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	275	2	22.0	ž 2	4.0 × 10°	0.52	7,7	*	17.0	• :	3	•	•				3	• •
200 13.0 1.7 x 10 ³ 0.55 1.7 0 16.0 16.0 16.0 16.0 16.0 17.0 17.0 16.0 17.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	ş	82	2i.e	2.0	4.0 × 10°	0.52	2. 62	36.0	92.0	÷	121.0	27.0	0.0	22. 0		•	*	•
200 19 0 5.0h 31 x 10 10 61 2.82 17.0 46.0 16.0 35.0 64.0 2.0 17.0 6.1 2.0 17.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	3	2	200	\$	3.7 × 10°	3.0	7. 83	24.0	70.	23.0	2.0	25.0	•	•	:	7	• · ·	~
18.0 1.00 1.00 1.0 1.1 1.2 1.1 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	375	2	:	. 8	, 1 × 10	3.	7. 83	• 2.	• •	•••	•	5.0	: :	7.	6 2		77	~
250 18.0 3.00 3.0×10° 0.65 3.24 4.4 18.0 4.0 21.6 2.0 17.0 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						,				-							•	
190 1.00 1.0×10 0.61 1.14 12.0 17.0 10.0 14.0 17.0 10.0 17.0 11.0 17.0 17.0 17.0 17														,	•		•	•
15.0 1.70 1.3×10° 0.65 1.24 4.4 18.0 4.0 21.6 2.0 17.0 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9	2	:	3.8	2.0 × 10.	o. £	»: :	12.0	37.0	•	ž	* •	:	:	•		•	-
182 15.0 0.90 3.9×10° 0.69 3.45 1.6 9.0 1.7 9.0 0.7 6.6 0.0 0.2 0.3 0.0 1.7 1.0 0.0 0.2 0.3 0.3 0.3 1.3 1.0 0.4 1.3 0.0 0.4 1.3 0.0 0.4 1.9×10° 0.9 0.6 1.3 0.6 1.3 0.6 1.3 0.6 0.8 0.0 0.0 0.4 1.9×10° 0.9 0.6 1.3 0.	450	Ī	17.0	1.70	3.3×10	0. 65	3.2	*;	•	•	51.6	*;	17.0	<u>.</u>	•	•	:	~
15.0 0.90 3.9×10° 0.75 3.77 2.0 8.6 1.3 8.0 0.6 4.1 0.0 0.2 0.3 0.0 0.2 0.3 0.0 0.2 0.3 0.0 0.	\$	3		.:	3,3× 10°	\$	3.45	•	:	1.1	•	•	;	:	: .	ė	.	~
176 14.0 0.60 3.9×10° 0.82 4.06 1.3 4.7 0.8 4.5 0.4 1.7 0.0 0.0 0.0 1.7 1.0 0.0 0.0 0.0 1.7 1.0 0.42 3.9×10° 0.90 4.50 0.6 3.0 0.4 2.2 0.2 0.8 0.0 0.0 0.0 1.7 12.0 0.23 4.1×10° 0.94 4.70 0.2 0.8 0.1 0.7 0.0 0.3 0.0 1.0 0.3 0.0 1.0 1.1 0.0 1.1 0.0 1.1 0.0 1.1 0.0 1.1 0.0 1.1 0.0 1.1 0.0 1.1 0.0 1.1 0.0 1.1 0.0 1.1 0.1 0	\$		15.0	9.	3.9 × 10	0.75	3.77	7.	•	:	•	•	-	•	?	e •	•	1. 2
170 13.0 0.42 3.9×10° 0.90 4.50 0.6 3.0 0.4 2.2 0.2 0.0 0.9 0.0 0.9 0.9 0.9 0.9 0.9 0.1 0.7 0.0 0.3 0.0 0.2 0.0 1.	3	727	•	3	3.9 × 10°	0. 82	4 . 8	1.3			4.5	•	-	•	:	•	•	~ :
12.0 0.25 4.1×10° 0.94 4.70 0.2 0.8 0.1 6.7 0.0 0.3 0.0 1.0 0.5 0.0 1.	\$29	170	13.0	0.45	3.9 × 10		4.50	••	3.0	•	2.2	6.2	:	:	e es	:	•	~
	5		12.0	0.25	. 1 × 10	6	4. 70	0. 2			6.4	•	•	•	:	8.8	0.0	1. 2

Table C-X. Boundary Layer Attenuation, 40-deg Cone

											Altenuation, 48	9					
T.m.e,	Autude.	Velocity,	_`~	,	1 to 10	ets n.	1, 259	KH:	š.	. 500 Mits		GH.	C. S. CH.	¥.	1 · 10 CHs	3	Trajeti I Equil
ž		36/100	5	786/986	┇	:	:		=	,	:	:	_ :			=	f Trans.
•	300	35.4	•	•	•	٠	•	•		,	,		,	•	•	•	•
8	***	25.0	•	٠	•	,	•	٠	•	•	•	•		•	•	•	-
3	447	\$.	12.3	9.3 × 10	:		8	÷.	26.0	36.0	?	5.0	;	2.8	2.5	6.0	-
š	*	33.0	.:.	1.45 × 10°	::	•. 35	2.2	34.0	22.0	22.0	•••	53.0	•	8.2	:	-	_
2	127	7	:	2.0 × 10	6.13	8.	•	27.0	9.0	23.0	12.0	0.02	÷.	7. 85	:	5.	-
22	*	: :	7.0	2.5 × 10°	o. 12	6. 27	- · · · · · · · · · · · · · · · · · · ·	0.61	•:	17.0	;	5.0	•	22 ~	0.0	6	_
82	:	÷	7.	3.0 × 10°	9	6. 25	7.5	12.7	:	0.0	3.5		6.3	9	•	•	_
590	â	19.0	3,7	3.7 × 10°	0.10	6.22	.: ::	7.0	9.	• •	?	?:		0. 25		• •	-
						•											
•	ğ	3.4		•		. •	•	•				•	٠	•	•	٠	~
2	92	33.6	•	•		•	•	•		,	٠	•	•	•	٠	•	~
3	3	23.6	•	,		•		•		•		•	•	•	•	•	~
8	*	\$. \$2	23.00	1. 45 × 10°	3	. 35		\$	¥.•	3	32.0	97.0	17.0	¥. •	. 6	9	~
ž	877	3.6	34.00	3.1 × 10	•. 110	• 22	*	47.0	¥.•	5	33.0	•	2	\$	•	33.6	~
ž	*	3.6	51.8	6.4 × 10.0	6.073	9.16	33.0	42.0	×.•	*	7.0	•	24.0	*	•	17.0	~
2	907	33.0	\$	6.1 × 109		0.17	*	39.0	31.0	42.0	30.	\$	20.0	\$	÷	×.	~
ž	2	. 0.72	32.00	6.0 × 10°	6. 07¢	. 17	*	¥.	24.0	35.0	53.0	33.0	• • •		• •	0.07	~
ž	\$	23.0	2.8	5.7 × 10°	0.01		2.0	0.82		\$.0	• •	¥	7.0	12.0	:	• •	•
£	ž	7	8.	8.4 × 10°		•	17.0	2.0	13.0	25.0	13.0	9.8	÷	÷.	<u>*</u>	\$.9	~
§	. \$. 9,1%		5.2 × 10°	*	• ::	 	:	:		*:	•:	5:	6.4	~	:	~
3	\$	9.92	2	4.8 × 10	*	9.13	7.3	12.0	4.5	•	•	•		•	~	•	~
ž	2	=	× .	4.6 × 10		9. 20	2.3	3	:	\$.	:	\$	0		0.	-	
											٠.						
					•								•				
:	3	:	*	4.3 × 10°	. 3	*	:	**	:	5.3	:	:	•	-	:	0	
\$	Ī	1.	2	\$.3 × 10°	78.0	9.18	:	:	:	-	:	•	• ·	•	;	:	
ŧ	=	16.	<u>:</u>	\$.8 × 10°	•	• ::	7.	:	;	:	6.2	:	0.0	•	:	•	~ :
Ī.	79.		3	6.7 × 10°	. 076	0.17	:	?	:	:	•	:	•	•	:	•	7. 2
š	*:	÷	•. 33	7.4 × 10	9. 672	• :	:	:	:	:	•	•	•	•	;	•	~ :
ş	**	•::	:	f.1 × 100	6.067	6.13	:	:	•	0.0	•	0.0	•	6.3	-	:	~ :
670	Ĭ	12.0	٠	•	•	•	•		•	•	•	·	•				1, 2

Table C-XI. Shock Layer Attenuation, 30-deg Cone

											Attennesia.	3					
					;									ſ			Traject.
Time,	Alterbude. hin	Velocity. Mt/sec	. . 5	railone	Ž ;	1 m			1 1 100 MM.	12.	TR CH.	3	14:15 CH: 1	E Š	# 15 of # 1	_	11.1
٠	300	43.6	3.	401 × 5.5	9.36	8.1	0.10	1'1		6.3	• •	1.0	• •	0.0	• •	:	-
8	1	23.0	:	1.9 × 10.	*	<u>.</u>	*	:	:	F.4	•	:	•	•	:	•	-
:	*	24.0	*:	9.0 × 10g	:	<u>.</u>	2 ~	• •		:	<u>:</u>	**	•	•	•	•	-
:	2	2.0	8	1.2 × 10	7	7.10	3.	• •	:	•	*	:	•	•	•	•	-
**	47	12.0	3	1.0 × 10°	*	*	=	•	•	2:0	-	3	•	•	:	3	-
£	*	21.0	6. 55	1.1 × 10	\$	2	3	3	3	:	3	:	•	:	3	;	-
821	*17	9.02	3	1.2 × 10°	3	*	*	:	;	7:	3	:	:	:	;	3	•
ž	67	• • •	*	1.5 % 300	3.4	3 -	\$	F.3	7.	:	3	3	6.9	•	3	3	
						,						- 1544 				i i	
•	1	2 2	3	2.5 × 10 ²	2	*	:	:	:	:	• •	:	•	•	3	:	~
2	2	13.6	2:	9.0 × 10.7	3	3.	::	• •	3	•		:	:	:	•	•	~
9,	3	33.6	8 7	3.0 × 10	3	3		17.	1.1		3	::	;	-	:	•	
\$	*	***	3. 20	7.9 × 10	3.	*	27.20	×		3		23.0		9.5	;	•	•
2	22	23.6	\$	1.6 x 100	2	2	:	47.4	5.0	• •	• • •	*	*	10.0	3	•	*
š	8	25.6	3.	3.6 × 109	*	:	20.22	• • •	• • •	3.6	1.0	3	**	• •	•	7.7	. ~
5,	8	25.0	\$ 3	3.4 × 10°	3		*	*	17.0	•	•	65.0	3.4	Š	•	;	~
£	8		8	3.0 × 10	\$			3	•:	3.0	*	×	F	**	3	3	~
*	3	3.0	2.50	3.0 × 1C	3.	2. 10	7. 10	8.	• •	8.8	::	•	~	:	•	7.0	N
275	*	12.0	3:	2.7 × 10°	*	2	2.50	14.	**	• :	•	:	3	7.7	;	:	~
ş	807	23.0	8 :	2.4 × 100	\$	2	*	;	::	•	:	5.3	:	•	•••	:	~
ş	27	\$. •	\$	2.1 × 109	3	*	:	•	3.	2.9	7.	:	:	•	:	•	*
27.5	2		2 6	2.0 × 10°	.52	3	3	2.9	7	•:	3	**	•	•	•	3	~
						٠,				:						•	
		٠.															
:	8	• =	0.35	1.7 × 109	*	27.72	22.0	:	:		•	7	•	•	:	•	7 '1
95	Ĭ	17.0	8.	2.0 × 10°	3.	3	27.5	:	;	:	•	~	•	•	:	:	7.
\$	=	16.0	9.13	2.0 × 10°	3.	3.8	:		•	6.2	•	:	•	:	:	•	1. 2
ž	=	15.0	6.13	2.1 × 10°	9.63	3.3		7.	:		•	:	0.	•	:	•	1. 2
\$15	Ē	14.0		2.2 × 109	9.71	3.55	6.00	:	:	•	0.0	•	•	•	:	•	7.
\$	621	13.0	•			,	•	•	•	•	•	•	,	٠	•	•	7:
670	<u>=</u>	12.0		•				·			7	-				7	?:

Table C-XII. Boundary Layer Attenuation, 30-deg Cone

											Amenation, 48						
T in	A Ritude.	Velocity.	<u>,``</u>		É	Ę	1:35	1 - 250 MHs) = 594	MHs	(.10	35	· · ·	3	:	. 10 QK	Traject
ž	<u> </u>	M/1.36	충	rad/eec	4	9	ų -	y 5	บร พา	N S	¥ I	וא נע	4	R 5.R	ų	_	. Tree
•	390	25.4			•	•		•	٠	•		·	•	٠	·		-
š	*	\$3.0	•	•	•	•			•	٠	•		,	•		•	
ž	243	% %	3. 20	6.4 × 10	2.2	3	-	8 - 2	:	•	*:	•	0.0	0.0	•	0	-
<u>*</u>	*	23.0	2.7	1.0 × 10	9: :		6.1	\$:		•	*:	•	:	•	•	•	-
*	123	77.	2. 20	1.4×10°	. :	×	:	2.3	:	*	?	:	•	•	•	•	-
£	22	÷:	3	1.0 × 10	C. 14	. X	¥:	3.20		:	?	•	•	•	6.3	•	-
ă	\$17	9. 9.	:	2.1 × 10°	:	*	:		:	:	:	:	;	•		4	-
ž	207	:	:	2.6 × 10°	= :	. 22	:	3	3	:	;	:	•	•	:	•	-
				·	•					-							
•	\$	33.6	•		•	•		•	•	•	•	•	•	•	•	•	~
2	2	32.4	<i>:</i>	•		•		•	•	•	•	•		٠	,	•	~
3	3	33.6	•	•	•	•	•	•	,	•	•	•	٠	•	•	•	~
*	2	3.°E	7.78	9.3 × 10		3	*:*	3.	:	23.0	• •	•	3	•	•	7.0	~
ž	*	23.4		2.2 × 10°	*:	X				27.0	•::	88	2.0	4.0	:	7.7	~
3	ž	13.4	17.20	4.5 × 10°	*	:	•	25.0	• • •			21.0	7.4	• =	::	\$.4	~
Ë	242	25.0	1. Xe	4.4 × 10	3	2	• • •	21.0	•	21.0	12.0		5.7	•	•	2.	~
ž	3	ž	*	4.2 × 10°		*	•:	17.0	•::	÷.	7.3	•:	7:	3.8	~ .	•	N
ž	*	13.0	ž	4.0 × 109	*	# ·	Ş	•::	2.3	• •	2.2	3	:	•	:	•	~
£	3	27.	*	3.6 ×10°	. 33	\$7.5 \$1.20	*:	Ş		;	1.1		•	•	•	•	~
¥	3		*	1.7 × 10°		2.0	•	Ş	6.5	7	•	:	;		•	•	~
*	*	ź	:	3.5 × 10°	# .	2	:	:		~:	70	•	;	•	:	•	~
Ĕ	2	19.	***	3.3 × 10°		2.0	:	;	7	\$3		3	:	•	•	:	~
											 		1. 1 X				
÷	3	•	3	% 1 × 10°	• :: •	# ·	- 3	3	. 3	7	3	:	3	•	:	3	
\$	Ĭ	17.0	ž	3.7 × 10		27.	•	ë	j	7.0	3	•		:	3	3	
\$	=	16.0	*	4.0 × 10	1	2	•	;	្វ	3	•	•	;	•	:	;	~
‡	ā	18.0	4.115	4.7 × 10°	. 3	2	•	:	;	•	;	;	3	•	:	:	~ :
š	Ē	7	•	•	•	•	•	•	•		•	•	,	•	•	•	7 '
3	Ē	13.0	•		•	•	١.	•	•	•	•	•	•	1	•	-	~ :
Ş	<u> </u>	12.0	1	•	•	•	٠,	,	•	•	•	•	•		٠	•	

											Atternation, 48	3					
	A Ittitude.	Velocity	÷	1	3 .,	E 10 10 10 10 10 10 10 10 10 10 10 10 10			3							\blacksquare	1
	ıμ	hft/ooc	Gits.	100/100	ġ	· ·	u l u l	N.S	1 H 1 H 1 H 1	4,4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ų,	4.1.4.	Ł	## # P	7	1.0
Ů	300	35.6	·					٠	•	٠	·	·	ŀ	Ŀ	•	_	-
<u>\$</u>	\$	15.0	,			•		•		•	•	•	•	·	٠	•	_
3	192	9.9	:	3.4 4 10	2	3	:	•	~ ~	•	• •	•	:	•	•	•	-
š	*	83.0	9.74	\$.5 - 10	9. 25	0.55	:	~:	:	;	•	•	•	:	•	•	-
2	121	52.0	÷	7.7 - 10	0. 22	3	<u>.</u>	•	:	?	•	•	•	:		•	•
3.3	927	21.0	;	\$.5 × 10	0. 23	:	-	:	:	-	•	•	•	:	•	9	
921	\$14	9.0	•. 31	1.1 × 10		*	•		•	:	•	•	•	3	•	•	٠ -
*	201		6.22	1.4 109	9. 10	4.0	•	;	:	:	:	•	•	:	•	•	
		_															
•	3	78.6		•	•	•		•	•	•			٠	•	•	•	~
2	*	23.6	٠	,		•			•		•	•	•	,	,	•	~
3	3	13.6	•	•		•		٠			••	•		•		•	
:	3	25.6	8 .	4.9 × 100	97.0	. 53	•	*	1.1	•;	5	*:		,	٠		. ~
=	22	\$3. 6	2.3	1.1 × 10°	0.17		;	• •	• :	7.5	:	5.2		•	•	•	•
3	807	45.6	4.20	2.3 × 10°	9.12	6. 27	;		•	•	~~		•	•		•	~
8	2	25.0	3.4	2.2 < 107	0.12	6.27		:	1.7	:	• • • • • • • • • • • • • • • • • • •	2.2	•	•		٠	~
5	*	24.0	2.50	2.2 × 10	~ · · ·	0.23	3.3	5.3	1:1	•	:	:	•	•		-, 4	~
9 .	8	23.0	3:	2.1 4 10	::	27.0	:	2.0	•		7.0	•	•	•		•	~
275	2	22.0	.:.	2.1 × 10	9. 5	22.0	9.7	:		•	7.	?	•	•	•	•	~
ž	ž	21.0	6.67	2.0 × 10°	0.14	3	:	• • •		:	•	:	,	•	•	•	~
ž	802	20.0	0.42	<u>:</u>	9.14	9.3	. v	7.	:	:	•	•	,	•	•	•	~
ĕ	%	19.0	97.0	• • • • • • • • • • • • • • • • • • • •	<u>:</u>	0.32	:	-	•	:		:	٠,	•	•	•	,
	,									:					į.	,	
•		,	,		,	;		,		,			1		,		
	3	o 	:		<u>.</u>	 27 .	 o	 	• •	•	•	•	•	•	•	•	~:
\$	ž	17.0	•	•	•					•	•	•	•	•		•	·-
ŧ	3	<u>.</u>	,	•	,	•				•			•	•	,	•	7.5
3	21	15.0	•	٠.		•	•	•	•	•	•	•	,	•		•	~ :
ş	57.5	14.0		,				•		•	•	•	,	•		•	1. 2
\$23	0.	13.0	•	,	•	•	,			•	,	•	•	•		•	*
670	ž	12.0	•		•	•	,			•		•	•	•	•	•	~ :
							1					1			1		

Table C-XIV. Shock Layer Thickness vs Ionization Distance for Cones and Wedges

	dis ni, diemit, dir ni, dis ni, diemit,	1	• •		_	-					9	-		_			=	\$1.0	:	2 .	:	200	\$	•	:	-	:	•	_
		+	*	•	÷	•	٠		_		3				~	2.2	*	<u>.</u>	<u>.</u>	- X	£	\$	7.3	 <u> </u>	- 22	€.	2	3	_
L	(K)		-	- 2	=	=	ž -	Z	*		-	- Z	- ¥		=	_	=	==	=	7.	<u> </u>	2	*	*	*	-	=	*	
	1	-	:	~	:	-	:	:			× 5.8	=	*	=======================================	•	6.5		2	*	3	3	*	*	 	-	:	\$? 	•	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	3	£.7	7	5. 22	27.5	X,	\$		3	3.	3	3	3	3	3	Ę	7	5.22	2.3	3	\$ 6	 	2.3	3	7.20	2	;
1	611 RJ.	3	. \$	*	*	<u>:</u>	:	:	:		*	2		*	*		\$	2	. 5	<u>:</u>	ž	:	=	3	2	±	7	:	
	age E	2	¥10.	•	7.0	• ;	•		•		• .	×16.0	•	. •	•:	•	•	:	=	-	**		*	•	•	•	•	•	
	1 m 2	3	3	2.7	*	=	2	3	3		3	3	3 :	3	3.	3	3	£ .	*	•	2	3	\$ •	2	7	X	2	\$	
]	Tu u	:	.3	. 3	:	3	*	2	*			. 3	. 73	5.3	. 3	. 3	5.	£ .	3	I	*	2	*	*	*			7.	
	Toward.	8.6	8	*	*	*	2	2	• 73		¥16.8	:	3	3	97.0	9. 12	÷. 15		6. 20	6. 23	. 30	:	3.	•	3	:	:	:	
	e mi	3	2.2	7	2:	*	3.23	*	3		3	3.	3.	3.	3.	3.	¥. %	2.2	2	2.		*	3	*	* *	:		× ×	
3	T WILL	3.	*	3	:	3.	::	. 71	. 2		3	3	3.	2	3.	3.	<u>z</u>	2	* *	3	:	÷. ;	2.3	 ¥.	:	*	*	8	
r	Telegist 2	× 10.0	•	5.3	•	:	:	•:	*.		×	:	:	:	:	:	•	•	*	:	•	:	-	:	• ;	•	•	•	_
69.	lu u	22.7	2.30	2	2. 51	3	3.	3 :	: :		2.	*:	2. 20	*	2	7. 20	*	* .	2. 51	3.7	3.	2	¥	 7. 12	: :	3. 45	3.77		
3	ונו שו: נייי	:	*	*	:	3.	2	1	÷		\$	3	*	3	3	¥.	*	‡ •	3	ä	3.	*	:	3		• •	. T	3	-
	4(1 N), 4(5 N), 4(6 mid.), 4(f N), 4(5 N), 4(6 mid.) 4(1 N), 4(5 N), 4(5 mid.), 4(1 N), 4(5 N), 4(1 mid.), 4(1 N),	, e	>10.0	×10.0	¥.0.0	•	•	•	•		×	710.0	210.0	•	•:	:	•	7.7	•	•	•	•	,	•	,		•	•	
800	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	::	\$	• :	7.30	*	*	3		*	3	:	3	=	3	£	1.1	::	2	2	* 4	3	2.72	2.2	3.03	3.23	3. 55	
١	La.	2.0	\$	\$	3	:	*	3	2		2	2.	2	*	*	2	\$	*	3	*	*	3.	3.	3	3.	÷:	3.	6.71	
	Velacity.	•	3.0	24.0	23.0	9.77	•		•		3.4	13.6	25.6	25.6	33.4	28.4	13.0	• •	3.0	2.5	1.0		••	 :	• 1.	• • •	. Y.		•
	Abilitado.	٠	<u> </u>	. 142	*	127	927	=======================================	107		ž	*	3	:	***		*	¥.	*	:	*				ž	<u>.</u>	ä	ž.	
	i.	1	į	2	*	*	£	*	*		•	2	3	*	:	3	Ë	Ę	*	£	£	3	Ĕ	 •	3	ŧ	3	£	

REFERENCE

C-1. S. C. Lin and J. D. Teare, "Rate of Ionization Behind Shock Waves in Air, II. Theoretical Interpretations," Phys. Fluids 6, 355-375 (1963).

APPENDIX D

SYSTEM MARGINS

As discussed in Volume I, Section II-D, the free space system margin, which is defined as the amount of plasma attenuation that the reentry vehicle system can tolerate while it effectively transmits information, is a function of frequency. The calculations which lead to the frequency dependence exhibited in Fig. 23 of Volume I are presented here.

The free space system margin M is given by

$$M = 10 \log_{10} [(S/N)_{J}/(S/N)_{T}]$$
 (D-1)

where $(S/N)_0$ is the signal-to-noise ratio neglecting plasma attenuation and $(S/N)_T$ is the threshold signal-to-noise ratio. If we take the noise figure of the receiver to be unity, the link equation may be written

$$(S/N)_0 = \left(\frac{\lambda_0}{4\pi R}\right)^2 \frac{P_T G_T G_R}{kT_0 \Delta f L}$$
 (D-2)

where λ_0 is the free space wavelength, R is the range, P_T is the transmitter power, G_T is the transmitting antenna gain, G_R is the receiving antenna gain, Δf is the rf bandwidth, L represents miscellaneous losses, k is Boltzmann's constant, and T_e is an effective noise temperature given by

$$T_e = 290 \, ^{\circ} \text{K} + T_A$$
 (D-3)

where T is the effective antenna temperature.

As discussed in Volume I, parameters were chosen as follows:

$$(5/N)_{T} = 10$$
 $R = 100 \text{ mi}$
 $\lambda_{0} = 0.03 \text{ to } 300 \text{ m}$
 $P_{T} = 1 \text{ W}$
 $G_{T} = 1$
 $f = 300 \text{ kHz}$
 $L = 10$

The receiving antenna gain and effective antenna temperature are dependent on frequency, and this dependence is illustrated in Figs. D-1 and D-2. These graphs are intended to be representative rather than to provide ultimate design criteria. The data points of Fig. D-1 were obtained from manufacturer's catalogues and published characteristics. The data of Fig. D-2 were obtained from Refs. D-1, D-2, and D-3. In the frequency range below 10 MHz the noise is largely atmospheric, whereas in the range between 10 MHz and 500 MHz the noise is largely galactic.

The results of the system margin calculation are given in Fig. D-3. As discussed in Volume I, system margins for other transmitter power levels, receiver bandpasses, antenna gains, and ranges can easily be obtained from Fig. D-3 and Eq. (D-2).

Fig. D-1. Antenna Gain vs Frequency

+ 30 + 20 WWF START E HF SYSTEM 48 MARGIN TRAPS. POWER +1 W BANDWIOTH + 300 LHz + 10 FREE SPACE PATH . 100 MILES SIGNAL / NOISE - 10 48 MISC. LOSSES . 10 48 - 10 REC. ANT. GAIN - FUNCTION OF FREQ. GE HF SYSTEM NOISE . FUNCTION OF FREQ. NOTE: ALL EXAMPLES WERE TRANSFORMED TO AM EQUINALENT 300-202 BANDWIGHT AND 10-48 S/N - 20 - 30 L 000,00 1000 100 FREQUENCY, MHz

Fig. D-3. Typical Free Space System Margin

REFERENCES

- D-1. H. L. Stiltz, Aerospace Telemetry Prentice-Hall, Inc., Englewood Cliffs, N.J., (1961). Chap. 7.
- D-2. G. H. Krassner, and J. V. Michaels, Introduction to Space Communication Systems, McGraw-Hill Book Co., Inc., New York (1964). Chap. 4.
- D-3. International Telephone and Telegrath Corportation, Reference Data for Radio Engineers, American Book Stratford Press, New York (1957). Chap. 25.

APPENDIX E

SYSTEM MODIFICATION

Calculations pertinent to the evaluation of the feasibility of increasing the rf power of lifting reentry communications systems are presented in this appendix. The application of the results is presented in Sections III-B, III-D, and III-E of Volume I.

1. POWER AMPLIFIER WEIGHT PENALTY

The weight of a power amplifier over the range of conventional telemetry frequencies may be considered to be directly proportional to both the power output and the operating frequency (Ref. E-1). At 250 MHz, a 6-oz water-cooled tube (EIMAC 4W300B) delivers about 200 W of rf power with an input of about 300 W of dc power. A power supply capable of delivering 300 W for a 10-min period should weigh about 3 lb (this estimate includes batteries and converter). The water required to dissipate 100 W for 10 min is less than 0.1 lb. Allowing 1 lb for the tube and associated components and 3 lb for the power supply, we estimate the total weight for the 200-W amplifier to be 4 lb. Using this estimate for normalization, we derive the relation

$$W = P_0 f(1.25 \times 10^4)^{-1} lb$$
 (E-1)

where W is the weight penalty, Po is the output power in W, and f is the frequency in MHz.

We observe that an EIMAC X-1134 Telemetry Amplifier Package delivers 20 W of CW rf power at 8000 MHz. The package weight is 10 lb, indicating a total weight of 11 lb if we allow 1 lb for a 200-W 28-V source. Our weight-penalty formula gives 13 lb for such a system, and this is taken to indicate that we may use the formula to make sufficiently accurate estimates.

2. BREAKDOWN LIMITATIONS FOR PULSED SOURCES

Radio frequency breakdown limitations for CW sources have been discussed in Volume I, Section II-B-4. Here we determine whether breakdown limitations can be reduced by using a source that is pulsed in such a way that average power remains constant while the duty cycle is reduced.

For pulsed rf energy, breakdown occurs when the ionization rate v, multiplied by the pulse-length r exceeds a certain constant (Ref. E-2). Since the pulse-length is inversely proportional to the peak power, the power is proportional to the square of the electric field E, and the ionization rate is a function of the electric field, we conclude that the condition for avoiding breakdown may be written

$$R = \frac{v_1(E)}{E^2} < constant$$
 (E-2)

Table E-I, which is based on calculations presented in Ref. E-2, indicates that the quantity R defined by Eq. (E-2) is an increasing function of peak power and, therefore, a decreasing function of pulse-length. We conclude that breakdown limitations become more severe for a given pulse of electromagnetic energy as the pulse-length is reduced (see Volume I, Section III-B).

E (relative)	(E) (relative)	E ² (relative)	R (rela
2	1.5	A	0.4

E (relative)	(E) (relative)	E ² (relative)	R (relative)
2	1.5	4	0.4
3	15	9	1.7
4	40	16	2. 5
5	150	25	6
10	3000	100	30

Table E-I. Behavior of Breakdown Parameter R

REFERENCES

- E-1. G. E. Mueller, "A Pragmatic Approach to Space Communication," Proc. IRE 48, 557 (1960).
- E-2. A. D. MacDonald, "High Frequency Breakdown of Air at High Altitudes," Proc. IRE 47, 436 (1959).

APPENDIX F

COMMUNICATIONS FIN HEAT TRANSFER

In Fig. 25 of Volume I, Section III-C, results of heat transfer calculations are presented to assess the feasibility of the communications fin concept. The relationships used in these calculations are reproduced here. The notation is defined in the referenced literature (Ref. F-1).

1. STAGNATION-LINE HEAT TRANSFER

The heat transfer to the 0.25-in. radius leading edge of the communication fin has been calculated for the entire nonequilibrium trajectory using the following relationship:

$$\dot{q}_{st} = \frac{0.576}{Pr_{w}^{0.6}} (\rho_{e}\mu_{e})^{0.44} (\rho_{w}\mu_{w})^{0.06} \left(\frac{dU_{e}}{ds}\right)^{0.5} (h_{r} - h_{w}) \left[1 + (Le^{0.52} - 1)\frac{h_{D}}{h_{e}}\right]$$
(F-1)

This expression is a modification, by Kemp, Rose, and Detra (Ref. F-2), of the original relationship given by Fay and Riddell (Ref. F-3). Conditions at the wall were arbitrarily chosen to correspond to $T_{uv} = 273$ K.

2. FLAT-PLATE HEAT TRANSFER

The heat transfer to the side of the fin and 1 ft from the leading edge has been calculated using the relationship

$$\dot{q} = 1.383 \frac{k^*}{x} (Re_x^*)^{1/2} (Pr^*)^{1/3} (h_r - h_w)$$
 (F-2)

where k*, Re*, and Pr* are evaluated at a temperature T* given by

$$T^* = \frac{h^*}{c_{p_{ideal}}} = \frac{0.28h_e + 0.5h_w + 0.22h_r}{0.24}$$
 (F-3)

The ideal gas equation of state and the Sutherland viscosity law are assumed. Wall conditions were chosen to correspond to $T_{\rm w} = 1300^{\circ}{\rm K}$. Heat transfer rates calculated were compared with the calculations of Miles and Waldman (Ref. F-4) and were found to be in good agreement.

REFERENCES

- F-1. H. H. Koelle, ed., Handbook of Astronautical Engineering, McGraw-Hill Book Co., Inc., New York (1961).
- F-2. N. H. Kemp, P. H. Rose, and R. W. Detra, Laminar Heat Transfer around Blunt Bodies in Dissociated Air, AVCO Research Lab.

 Research Rept. 15. (1958)
- F-3. J. A. Fay and F. R. Riddell, "Stagnation Point Heat Transfer in Dissociated Air," AVCO Research Lab. Research Rept. 1 (1957).
- P. Miles and G. Waldman, Laminur Boundary Layer Skin Friction, Heat Transfer and Displacement Thickness Correlations for Sharp Cones, RAD-TM 62-90, Avco Corp., Research and Advanced Development Div., Wilmington, Mass. (November 1962).

APPENDIX G

MAGNETIC WINDOW

Formulas and sample calculations pertinent to magnetic window systems are presented here. The application of these results to the evaluation of magnetic window as a reentry communications system is presented in Volume I, Section III-D.

1. DERIVATION OF FORMULAS

a. COIL GEOMETRY

We envision a coil composed of copper or aluminum wire wrapped around a circular antenna aperture. Figure G-1 is a cross-sectional view of the coil showing the average diameter d, the cross-sectional width a, the aperture diameter b, and the distance to the sheath y.

Fig. G-1. Coil Geometry

b. CURRENT REQUIREMENT

The total current I_T in a cross section of the coil is equal to the number of turns in the coil multiplied by the current at the input terminals. The total current requirement is linearly related to the magnetic field strength required in the sheath. For our purposes, this relationship is approximated

by assuming that the equivalent uniform magnetic field of the coil has the same dependence on the displacement y as the axial field. With this approximation, we obtain

$$\overline{B} \approx \overline{B}_0 \left(1 + \frac{4y^2}{d^2} \right)^{-3/2}$$
B-1)

and to complete the specification of the current requirement we estimate

$$\overline{B}_0 \approx \frac{\mu_0^{\mathrm{I}} T}{\mathrm{d}} \tag{G-2}$$

In the above expressions, \overline{B} is the average field in the sheath, \overline{B}_0 is the average field in the plane of the coil, and μ_0 is the magnetic permeability of free space. (MKS units are used for all quantities except weights, which are given in pounds.)

c. SYSTEM WEIGHT AND APERTURE DIAMETER

The total system consists of the coil, the batteries, and the cooling system. If we assign a weight to the coil-supporting structure equal to 10% of the coil weight, and a weight to the cooling system equal to twice the weight of the water required to dissipate ohmic heat losses, we obtain

$$W = \pi d \left[1. 1 \rho A + \frac{I_T^2 rt}{A} \left(\frac{2}{L} + \frac{1}{B} \right) \right]$$
 (G-3)

where

W = system weight, lb

 ρ = specific density of conductor, lb/m^3

 $A = a^2 = cross-sectional area of coil, m^2 (see Fig. G-1)$

r = resistivity of coil material, chm-m

t = total time of operation, sec

L = specific heat of vaporization of water, J/lb

B = specific energy capacity of batteries, J/lb

The value of cross-sectional area A is taken as the value that minimizes the system weight. The minimization procedure yields

$$W = 2.2 \times 10^{-2} I_{T} d(r \rho t)^{1/2} lb$$

$$A = 3.2 \times 10^{-3} I_{T} (r t/\rho)^{1/2} m^{2}$$

$$b = d - A^{1/2} m$$
(G-4)

We note that system weight is directly proportional to the magnetic field and the square root of the on-time.

The voltage input V_{in} and the current input I_{in} are determined by the number of turns N in the coil; the number of turns is determined by the size of the coil wire. If the cross-sectional area of the wire is σ , we have

$$N = A/\sigma$$

$$V_{in} = NI_{T}(r\pi d/A)$$

$$I_{in} = I_{in}/N \tag{G-5}$$

2. SAMPLE CALCULATIONS

Representative requirements for a magnetic window system capable of limiting signal attenuation to 40 dB at a station 1 ft from the apex of a wedge with a 50-deg angle of attack have been presented in Volume I, Section III-C-3-b. The estimated parameters of this system were

d = 4 in.
y = 1 in.

$$\overline{B}$$
 = 0.16 Wb/m² (1600 G)
t = 500 sec

We took the following parameters as representative:

L =
$$10^6$$
 J/lb
B = 1.1×10^5 J/lb (30 W-h/lb)
r = 2.2×10^{-8} ohm-m (copper)
r = 3.9×10^{-8} ohm-m (aluminum)
 $\rho = 2 \times 10^4$ lb/m³ (copper)
 $\rho = 6 \times 10^3$ lb/m³ (aluminum)
 $\mu_0 = 4\pi \times 10^{-7}$ H/m

Using these values in Eq. (G-4), we find that for a copper coil the system weight is about 17 lb, and the aperture diameter is about 2.5 in. For an aluminum coil, the system weight is about 12.5 lb, and the aperture diameter is about 1.5 in.

As indicated in Volume I, Section IV-B, the evaluation of the magnetic field approximations and aperture effects is designated as a task for a future research effort.

APPENDIX H

COOLANT INJECTION

The various calculations pertinent to the evaluation of coolent injection as an alleviation technique as described in Volume I, Section III-E, are collected here.

1. PROPERTIES OF COOLANTS

Figure H-1 is adapted from Ref. H-1. The data in the figure are discussed in the argument for the selection of water as an injectant in Volume I, Section III-E-1.

Fig. H-1. Cooling Effectiveness as a Function of Temperature for Various Coolants

2. QUASI ONE-DIMENSIONAL CONSTANT-PRESSURE MIXING PROCESS

As pointed out in Volume I, Section III-E-2-b, we use a technique identical to that of Ref. H-1.

Consider injection into a streamtube as indicated in Fig. H-2.

Fig. H-2. Quasi One-Dimensional Mixing Process

The properties are assumed uniform across the cross sections of the stream-tube at Stations 1 and 2. The conservation equations are (we assume $U_c \approx 0$)

$$\rho_1 U_1^2 A_1 = \rho_2 U_2^2 A_2 \tag{H-1}$$

$$\rho_1 U_1 A_1 + \dot{m}_c = \rho_2 U_2 A_2 \tag{H-2}$$

$$\rho_1 U_1 A_1 \left[h_1 + \frac{1}{2} \left(U_1^2 \right) \right] + \dot{m}_c h_c = \rho_2 U_2 A_2 \left[h_2 + \frac{1}{2} \left(U_2^2 \right) \right]$$
 (H-3)

where ρ is the dencity; U is the velocity, h is the enthalpy, \dot{m}_{c} is the injection rate, and A is the cross-sectional area. We now specifically define

$$C = \frac{\rho_{C_2}}{\rho_2} = \text{mass fraction of coolant at Station 2}$$

 ρ_{c_2} = density of coolant at Station 2

 ρ_{a_2} = density of air at Station 2

$$C_Q = \frac{\dot{m}_c}{\rho_1 A_1 U_1}$$
 = mass ratio of injectant to incoming flow

Noting that $C = C_O/(1 + C_O)$, we obtain

$$h_2 = [1/(1 + C_Q)] [h_1 + C (U_1^2/2) + C_Q h_c$$
 (H-4)

Thus, for a given state at Station 1 and an injection ratio C_Q , we may calculate the enthalpy at Station 2, and the pertinent properties of the mixture may be deduced. The electron density is obtained from data for equilibrium air as a function of the temperature and the air density. The collision frequency is obtained (approximately) from the data for equilibrium air (Appendix B, Fig. B-4), where it is assumed that the electron-neutral cross section for helium is seven times greater than that of air on a unit mass basis. Hence, the ordinate in Fig. B-4 is interpreted as $\nu(\rho_Q/\rho_{eff})$, where

$$\frac{\rho_{\text{eff}}}{\rho_0} = \frac{\rho_{a_2}}{\rho_0} + 7 \left(\frac{\rho_{c_2}}{\rho_0}\right) = \frac{1 + 6C}{1 - C}$$
 (H-5)

and the parameter ρ/ρ_0 is interpreted as ρ_{a_2}/ρ_0 . This is an adequate approximation at the low electron densities of interest, since electron-ion interactions do not contribute significantly to the total electron collision frequency.

The calculation of system weight requirements is described in Volume I. Section III-E-2.

3. ELECTRONEGATIVES AS CATALYSTS

The relaxation time of air in the presence of an electronegative gas is given by $(\sigma_A c_e n_E)^{-1}$, where σ_A is the attachment cross section, c_e is the mean thermal speed of the electrons, and n_E is the number density of the electronegative particles. For SF₆, σ_A is of the order of 10^{-16}cm^2 (see Appendix I). For a typical reentry case (say, a local velocity about 15 kft/sec and a local pressure of about 0.01 atm) the equilibration time should be about 50 µsec. To obtain a relaxation time of 5 µsec n_E should be about 10^{14} /cc. Since SF₆ is about ten times heavier than water, the water weight is about equal to the weight of air, and the air density is about 10^{17} /cc, we conclude that the injected mixture should contain about a 1% by weight concentration of SF₆ (see Volume I, Section III-F-2-b).

4. ESTIMATE OF DROPLET SIZE

The following empirical expressions for droplet sizes in breakup of liquid jets in air streams are taken from Ref. H-2:

$$\overline{D}/D_0 = 3.9(We/Re)^{0.25}$$
 (H-6)

$$D_{\text{max}}/D_0 = 22.3(\text{We/Re})^{0.29}$$
 (H-7)

where

D = volume average droplet diameter

D_{max} = maximum droplet diameter

D = orifice diameter

 $We = \sigma/D_{o}\rho_{s}V_{s}^{2}$

 $Re = D_0 V_{\pi} / v$

 σ = surface tension of liquid

 $\rho_s = air-stream density$

V = air stream velocity

v =liquid kinematic velocity

For water

 $\sigma = 65 \, \text{dyn/cm}$

$$v = 4.7 \times 10^{-3} \text{ g/sec-cm (at } 60^{\circ}\text{C})$$

For

$$D_0 = 0.01 \text{ in.}$$

$$V_g = 4.5 \times 10^5$$
 cm/sec

$$\rho_{g} = 1.29 \times 10^{-5} \text{ g/cc}$$

we obtain

$$D_{\text{max}} = 10.8 \,\mu$$

As discussed in Volume I, Section III-E-2-b, we conclude that a reasonable estimate for the droplet size in the air stream is from 5 to 10μ .

5. EVAPORATION OF WATER DROPLETS

a. Free Molecular Flow

For a droplet of water in air

$$qd^2 = -\frac{1}{6}\rho L \frac{d}{dt} (d^3) \qquad (H-8)$$

where q is the energy flux, d is the diameter of the droplet, ρ is the specific density of water, and L is the energy per unit mass required for evaporation of water. We readily obtain

$$t_e = \frac{2d_0L\rho}{q}(1 - f^{1/3})$$
 (H-9)

where t_e is the evaporation time, d₀ is the initial drop diameter, and f is the ratio of the unevaporated water weight to the initial water weight. The energy flux q is given by

$$q = \sum_{i} n_{i} c_{i} E_{i}$$
 (H-10)

and

$$E_{i} = 2kT + \frac{1}{2}\phi_{i} \qquad (H-11)$$

where the summation is over species, n_i is the particle number density, c_i is the thermal velocity, E_i is the energy per particle, and ϕ_i is the energy obtained from recombination processes. Taking 5.1 eV as the recombination energy for oxygen, 9.8 eV as the recombination energy for nitrogen, and the concentrations listed in Table H-I, we obtain the results listed in Table H-II.

Table H-I. Species Concentration in Air

т, *к	[N ₂]	[N]	[0]
5950	034	0. 37	0. 28
4000	0.65	-	0.35

Table H-II. Evaporation Times, Free Molecular Flow

Evaporation, %	t _e , µ	sec
Evaporation, &	5950°K rate	40'00°K rate
70	0. 062	0. 27
- 80	0. 078	0.34
90	9. 100	. 0.44
100	0.190	0.55

b. Continuum Flow

For the continuum case, the energy flux is given by (see Ref. H-3 and references cited therein)

$$q = \frac{N_{Nu}k_{f}(h_{m} - h_{w})}{dC_{p, w}}$$
 (H-12)

where

$$N_{Nu} = \frac{2C_{p, m}L}{C_{\hat{p}, \hat{v}, \hat{f}(h_{m} - h_{w})}} \ln \left(1 + \frac{C_{p, v, f}}{C_{p, m}} \frac{h_{m} - h_{w}}{L}\right)$$
(H-13)

and

N_{Nu} = Nusselt number

 k_f = thermal conductivity of air at $T_f = \frac{1}{2} (T_{drop} + T_{mixture})$

h_ = enthalpy of mixture

h_u = enthalpy of water

C_{p, m} = frozen specific heat of mixture

 $C_{p,v,f} = \text{specific heat of vapor at } T_{f}$

Assuming

$$C_{p,m} = C_{p,v,f}$$

L = 1000 Btu/lb

$$k_f \approx 2.2 \times 10^{-5} \text{ Btu/(ft)(sec)}^{\circ}\text{K}$$

$$\rho = 62.4 \text{ lb/ft}^3$$

we readily obtain

$$t_{s} = 4.9 \times 10^{-5} (1 - f^{2/3})$$
 (H-14)

This approximate formula leads to times t_e of 0.032, 0.038, and 0.049 msec for 80, 90, and 100% evaporation. The application of these results and the results in Appendix H-5-a are discussed in Volume I, Section III-E-2-b.

6. DROPLET DYNAMICS

The equation of motion of a droplet parallel to the air stream is taken as

$$-m \frac{d}{dt} (U_{air} - U_{drop}) = \frac{1}{2} C_D \rho_{air} \frac{\pi d^2}{4} (U_{air} - U_{drop})^2$$
 (H-15)

where the notation is standard. If the water jet is perpendicular to the flow, x is the distance along a streamline, y is the distance perpendicular to the streamline, and U_i is the initial velocity of the droplets, then

$$\frac{dx}{dt} = U_{air} \left(1 - \frac{1}{1 + \frac{3}{4} C_{D} \frac{\rho_{air}}{\rho_{drop}} \frac{U_{air}}{d} t} \right)$$
 (H-16)

$$\frac{dy}{dt} = U_1 \tag{H-17}$$

For $U_{air} = 15 \text{ kft/sec}$, $C_D = 2$, $\rho_{air}/\rho_{drop} = 4 \times 10^{-6}$, $d = 10\mu$, and a lateral velocity of 150 ft/sec, the following results are obtained

î, μsec	x, cm	y, cm
20	0.55	0.1
100	9. 7	0.5
200	31.2	1.0

These values are the basis for the conclusion that the lateral spreading of the injectant is not severe (Volume I, Section III-E-2-b).

REFERENCES

- H-1. R. H. Adams and J. J. Rossi, Research of Aerodynamic Methods of Producing Antenna Windows in a Plasma Sheath, Sci. Rept. No. 1, Mithras Inc. (October 1964).
- H-2. R. D. Ingebo and H. H. Foster, <u>Drop-Size Distribution for Cross-current Breakup of Liquid Jets in Air Streams</u>, TN 4087, NACA (October 1957).
- H-3. I. E. Beckwith and J. K. Huffman, Injection and Distribution of Liquids in the Flow Fields of Blunt Shapes at Hypersonic Speeds, TM X-989, NASA (August 1964).

APPENDIX I

ELECTROPHILIC SEEDING

Communication difficulties created by the plasmas that surround spacecraft during atmospheric reentry have stimulated considerable research on the effect of electronegative gas injection on the ionization levels in hot gases. The experiments of Carswell and Cloutier (Ref. I-1) indicate that concentration of SF6 on the order of the initial electron concentration are very effective in quenching argon plasmas produced by an rf discharge. Conversely, the experiments of Fuhs (Ref. I-2) and Hoffman and Westbrook (Ref. I-3) indicate that SF₆ is much less effective in argon arc jets and seeded nitrogen-oxygen flame plasmas. Theoretical results if this area have been either specialized (Refs. I-2 and I-4) or inconclusive (Ref. I-3). It will be shown here that equilibrium ionization levels of high-temperature air are not significantly affected by the presence of electronegative species but that nonequilibrium levels can be rapidly driven to equilibrium levels by the electron-attachment and charge-transfer mechanism. These conclusions are consistent with the experimental observations, and they provide the basis for evaluating the usefulness of these mechanisms in Sections III-E, III-F, and III-G of Volume I.

1. EQUILIBRIUM

The equilibrium concentrations of the various species in seeded air for a given temperature and pressure are obtained by simultaneously solving the chemical equilibrium equations associated with the pertinent reactions and the appropriate conservation equations. At the temperatures and pressures of interest, the dominant species in air are N₂, N, O₂, O, NO, NO⁺, and e⁻. If X represents the electronegative component, the mixture will also contain X, X⁻, and whatever compounds can be formed by X with N and O. The equilibrium electron density will be a function of temperature, pressure, and initial seed-gas concentration. The exact solution of this problem requires

detailed knowledge of chemistry and use of an electronic computer; the problem is considerably simplified, however, if only the reduction in electron density as a function of seed-gas concentration is required. If the optimistic assumption is made that the electronegative species interact only with electrons, and the reasonable assumption is made that the variations in the concentrations of N and O due to the injection of the electronegative gas are negligible, we obtain

$$\frac{n_{e}[NO^{\dagger}]}{[N][O]} = K_{I}$$

$$\frac{n_{e}(N_{E} - N_{E}^{-})}{N_{E}^{-}} = K_{A}$$

$$K_{I} = \frac{\binom{n_{e}^{0}}{2}}{[N][O]}$$

$$K_{A} = \left(\frac{2\pi m_{e}kT}{h^{2}}\right)^{3/2} \exp(-E_{A}/kT)$$

$$n_{e} + N_{E}^{-} = [NO^{\dagger}]$$
(I-1)

where n_e^0 is the initial electron concentration, n_e is the equilibrium electron concentration, N_E is the initial electronegative species concentration, N_E is the equilibrium negative ion concentration, K_I is the chemical equilibrium constant for the ionization reaction, K_A is the chemical equilibrium constant for the electron attachment reaction, E_A is the electron affinity of the electronegative species, and the other symbols are standard. These equations lead to

$$\left(\frac{n_e}{n_e^0}\right)^2 = \frac{n_e + K_A}{N_E + n_e + K_A} \gtrsim \frac{K_A}{N_E + K_A} \tag{I-2}$$

This expression differs from the analogous equation of Ref. I-3 because here account has been taken of Le Chatelier's principle — as the electronegative component removes electrons, the reaction $N+O\to NO^++e^-$ will produce more electrons. Known electron affinities do not exceed 4 V, therefore the limit of the attachment mechanism effectiveness can easily be calculated. Such calculations for 10% concentrations of 4-V electronegative species in air have been performed for temperatures and pressures characteristic of the reentry environment, and the results are presented in Fig. I-1. The curve labelled $\rho/\rho_0=10^{-2}$ compares favorably with exact calculations (Ref. I-4) for 5% concentrations of F_2 , thus indicating the validity of the assumptions described. The electronegative concentrations required for a reentry system were calculated from Eqs. (I-1) and (I-2), and the results are presented in Volume I, Section III-F-2.

2. NONEQUILIBRIUM

When the electron density is higher than the equilibrium level, the approach to equilibrium in the presence of an electronegative component is given by

$$\frac{dn_e}{dt} = -\alpha_R n_e^2 - \alpha_A N_E n_e \qquad (I-3)$$

where α_R is the electron-ion recombination rate constant, and α_A is the electron attachment rate constant. As pointed out by Carswell and Cloutier, we may assume that the rate at which the electronegative component transfers electrons to positive ions is much faster than the attachment rate, thus N_E may be regarded as a constant. If we make the transformation $t \rightarrow \alpha_R n_e^0 \tau$ so that, in the absence of the electronegative component, the electron density decays to one-half its initial value when $\tau=1$, we obtain the solutions given in Fig. I-2, where the seeding parameter r represents the ratio $\alpha_A N_E / \alpha_R n_e^0$. The experimental curves presented by Carswell and Cloutier are in agreement with the theoretical curves for a seeded argon plasma when the reasonable

Fig. I-1. Reduction of Equilibrium Electron Concentrations in Seeded Air

Fig. I-2. Reduction of Nonequilibrium Electron Concentrations in Seeded Ionized Gases

assignments α_R , $\alpha_A \sim 10^{-9}$ are made (Refs. I-5 and 6). (The value for α_A is based on an electron attachment cross section of $10^{-16} \mathrm{cm}^2$.) The dashed line in the figure represents the measured curve for the unseeded plasma — the discrepancy is probably due to the fact that the electrons must be cooled before they can recombine with positive ions (the reported initial temperature was 7×10^{4} K).

It may be concluded from these considerations that electrophilic seeding is not effective in reducing equilibrium electron density levels in nonexpanding flows but that it can be effective in catalyzing the electron-ion recombination process in expanding flows or in flows which have been cooled by injection of foreign material. The specific application of these conclusions to the reentry communications problem have been discussed in Volume I, Section III-E, III-F, and III-G.

REFERENCES

- 1-1. A. I. Carswell and G. G. Cloutier, "Supersonic Plasma Streams Seeded with Electronegative Gases," Phys. Fluids 7, 602 (1964).
- I-2. A. E. Fuhs, Thermal Ionization and Electronegative Species, TDR-165(3153)TN-2, Aerospace Corp. (September 1962).
- I-3 J. Hoffman and E. A. Westbrook, "Flame Plasma Seeded with Sulfur Hexafluoride," Phys. Fluids 8, 1410 (1965).
- I-4. A. R. Hochstim, "Electron Concentration in Closed Form For High Temperature Air and Air Additives," Planetary and Space Sciences 6, 79 (1961).
- I-5. I. S. Buchel 'nikova, "Cross Sections for the Capture of Slow Electrons by O₂ and H₂O Molecules and Molecules of Halogen Compounds," <u>JETP (USSR)</u> 35, 783 (1959).
- I-6. L. B. Loeb, "The Recombination of Ions," Handbuch der Physik, Band XXI, Springer-Verlay, Berlin (1956).

APPENDIX J

QUASI-OPTICAL AND OPTICAL SYSTEMS

The power requirements for the systems described in Volume I, Section III-I are derived here.

1. MILLIMETER SYSTEM

The power P_R required at the input of a state-of-the-art 95-GHz receiver is given by

$$P_{R} = (S/N)(NF)kT\Delta f \qquad (J-1)$$

where

S/N = 10 (signal-to-noise power ratio)

NF = 40 (receiver noise figure)

 $kT = 4 \times 10^{-21} W/Hz$ (noise power per cycle)

 $\Delta f = 300 \text{ kHz}$ (receiver bandpass)

We readily obtain $P_R = 4.8 \times 10^{-13} W$. The required output power P_T for an omnidirectional system is given by

$$P_T = 4\pi (R^2/A_R) P_R \qquad (J-2)$$

where R is the range, and A_R is the effective area of the receiver antenna. For a range of 100 miles and an area of 200 ft² we obtain $P_T = 9$ mW. Allowing for miscellaneous losses of 10 dB; we estimate a requirement of 90 mW for an omnidirectional clear-weather system. This estimate is discussed in Volume I. Section III-1-1.

2. INJECTION LASER SYSTEM

The signal-to-noise ratio at the output of a photomultiplier is given by

$$S/N = \frac{I_S^2}{2e\Delta f(\overline{I}_S + \overline{I}_B + \overline{I}_D)}$$
 (J-3)

where I_S is the current due to the signal, I_B is the current due to the background radiation, and I_D is the dark current of the tube. In this case, the dark current is negligible, and the required received power is given by

$$P_{R} = (h\nu/q)(S/N) \Delta f \left\{ 1 + \left[1 + (2qP_{B}/h\nu\Delta f)(S/N)^{-1} \right]^{1/2} \right\}$$
 (J-4)

where P_B represents the background radiation power, $h\nu$ is the photon energy, q is the quantum efficiency of the photomultiplier, and Δf is the bandpass of the video system.

The noise power is given by

$$P_B = I_D \Omega_R A_R B + I_V (A_V/R^2) A_R B$$
 (J-5)

where

 $I_D = \text{spectral density of daylight noise} = 10^{-3} \text{W sr}^{-1} \text{m}^{-2} \text{Å}^{-1}$

 $I_V = \text{spectral density of vehicle radiation} \approx 10 \text{W sr}^{-1} \text{m}^{-2} \text{Å}^{-1}$

 $A_R = receiving aperture = 1 m^2$

B = optical filter bandpass =10Å

 $\Omega_{\rm R}$ = receiving field of view $\approx 10^{-6} {\rm sr}$

using the indicated estimates, we obtain

$$P_D \approx 10^{-8} \text{W (daylight noise)}$$
 $P_V \approx 2 \times 10^{-8} \text{W (vehicle noise)}$
 $P_R \approx 3 \times 10^{-8} \text{W}$

Taking $q \approx 3 \times 10^{-3}$, $hv = 2.2 \times 10^{-19} J$, and $\Delta f = 10^8 Hz$ (corresponding to a pulse length of 10 nsec), we obtain $P_R \approx 3 \times 10^{-8} W$. If atmospheric losses are estimated as 6 dB, a requirement of 50 kW pulses for an omnidirectional transmitting system with a range of 100 miles is indicated. If the transmitted power can be concentrated in a beam with a width of about 10 deg, the peak power requirement is reduced by a factor of about 500, indicating a requirement for 100-W pulses. As discussed in Volume I, Section III-I-2, this estimate is a reasonable requirement for future systems.

Security Classification

DOCUMENT CONTROL DATA - RED (Security classification of title body of abstract and indexing ennotation must be entered when the overall report in classifie (-				
1. One Child Till C. A. Titor ** (Company agrees)		125 REPORT SECURITY CLASS FICATION		
Aerospace Corporation El Segundo, California		Unclassified		
		25 GROUP		
3 NEPORT TITLE				
LIFTING REENTRY COMMUNICATIONS: VOLUME II, SYSTEMS CALCULATIONS				
4 JESCRIPTIVE HOTES (Type of report and Inclusive dates)				
5 AUTHOM(5) (Last name litret name, initial)	5 AUTHON(5) (Last nama litret name, initial)			
Dix, Donald M., Golden, Kurt E., Taylor, Edward C., Koplin, Marc A., and Caron, Paul R.				
4 REPORT DATE	78 TOTAL NO OF P	ACTS	75 NO OF REFS	
September 1966	73		27	
BE CONTRACT OR GRANT HO	SE ORIGINATOR'S REPORT NUMBER(S)			
AF 04(695)-669	TR-669(6220-10)-3, Vol II			
5 PROJECT MG		•		
с	35 OTHER REPORT NO(S) (Any other numbers that may be assigned this report)			
d	SSD-TR-66-73, Vol II			
10 AVAILABILITY/LIMITATION HOTICES				
This document is subject to special to foreign governments or foreign napproval of SSD(SSTRT).	export controls ationals may be	s and e e made	ach transmittal only with prior	
11 SUPPLEMENTARY NOTES	18. SPONSORING MILITARY ACTIVITY			
	Space Systems Division			
	Air Force Systems Command			
	Los Angeles, California			
13 ABSTRACT				

Calculations supporting the lifting reentry communications systems study are described in this volume. The application and interpretation of these calculations is presented in Volume I of this report. These calculations include the study of lifting reentry trajectories, aerodynamic calculations, signal attenuation, system margins, system modifications, communications in heat transfer, magnetic window, coclant injection, electrophilic seeding, and quasi-optical and optical systems.

DD FORM 1473

UNCLASSIFIED

Security Classification

UNCLASSIFIED

Security Classification KEY WORDS Communications Systems Reentry Coramunications Lifting Reentry Antenna Window Aerodynamics RF Attenuation RF Breakdown Aerodynamic Shaping Fluid Injection Magnetic Window Electrophilic Seeding Millimeter Waves Optical Communications Systems High-Frequency Communications Communications Blackout Abstract (Continued)

UNCLASSIFIED

Security Classification