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SUMMARY

The purpose of this test was to determine the combined
effects of nuclear radiation and liquid hydrogen on the
mechanical properties of various organic materials scheduled
for use in conjunction with the NERVA propulsion system.

The test consisted of the irradiation and subsequent
tensile testing, under several different environmental con-
ditions, of specimens made from the following materials:

1. Armalon TFE-405-CL-116
2. Armalon TFE-405-L-112
3. Armalon FEP-510-L-128
4. Teflon FEP

5. Superpolyme' SP-3

The specimens submerged in liquid hydrogen were irradiated
in the three cryogenic tensile test assemblies utilized pre-
viously in GTR-16 (GD/FW Report F7ZX-263-1). Three different
dose conditions were achieved by varying the irradiation time
and the spacing between the test assembly and the reactor. One
run was originally scheduled to accomplish all three specified
dose conditions, but a damaged LH2 transfer line necessitated

making two separate runs. The predicted gamma and neutron

exposures are as follows:



Exposure

Run Assembly- Neutrons

Assembly Time to-Closet Gamma (n/cm?,
Dose Location (hr) Spacing |ergs/gggcjl E>2.9 Mev)
High North 25  Normal 2.7 x 1010 5 x 1015
Intermediate East 25 19 in. 5.4 x 109 7.8 x 1014
Low North 1 Normal 1.1 x 109 2.0 x 1014

Analysis of the nuclear measurements made during the test
indicates that exposures were achieved that encompass the design,
or predicted, dose levels. An analysis and presentation of the
exposure profiles is contained in the body of the report.

After the irradiated specimens were tested, control specimens
were tested at nearly identical environmental condtions. An
analysis of the mechanical property data indicates that the
specimens of the three Armalon materials exhibited a high deg:ee
of damage at che high-dose condition. A definite, although
generally minor, effect was measured at the intermediate level,
and no damage was detected at the low dose level. A simi;ar
trend was encountered in the Teflon FEP material, except that a
more significant effect was detected at the intermediate dose
level. The fifth material tested was Superpolymer SP-3, which
exhibited no radiation-induced damage at any of the dose levels.

A detailed presentation of the data, along with a statistical
analysis, is contained in the text.
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1 INTRODUCTION

GTR Test 17 is a continuation of a series of irradiation
tests being conducted at the Nuclear Aerospace Research Facility
(NARF) of the Fort Worth Division of General Dynamics for the
Space Nuclear Propulsion Office at Cleveland, Ohio (SNPO-C).

The purpose of these tests is to determine the effects that a
cryogenic and/or nuclear radiation environment has on the com-
ponents and materials proposed for use in the NERVA engine.

The Aerojet-General Corporation (AGC) has prime responsibility
for development of the NERVA engine; the nuclear reactor in the
engine is being developed by Westinghouse Astronuclear Laboratory
(WANL). Previous tests in the series and the associated results
are given in References 1, 2, 3, and 4.

The test covered by this document is designated as 37/R102,
as set forth in the AGC final test specifications (Ref. 5). These
specifications stipulate: (1) the irradiation of organic tensile

specimens tc three dose levcls while submerged in LH,, (2) the

subsequent tensile testing to fracture under different envirommental

conditions, (3) testing of nonirradiated control specimens under
a nearly parallel set of environmental conditions, and (4) x-ray
diffraction studies of a selected group of specimens.

A list of the materials tested, the design exposures specified,
and a definition of the different environmental conditions is

1



presented at the beginning of Section II. This is followed by
a description of the specimen loading arrangement, the irradiation
and testing procedures, and a description of the hardware and
instrumentation.

Section III contains (1) a discussion of the methods used
for correlating and correcting the data, (2) a presentation and
discussion of the property data, (3) a statistical analysis of the
data, ani (4) a description of the dosimetry used, along with curves
showing integrated neutron fluxes and gamma doses to which the
specimens were exposed.

The NARF Radiation Effects Testing Facility 1is described in an

Appendix.



I1. TEST PROGRAM

The GTR Radiation Effects Testing System at NARF is de-
scribed briefly in the Appendix and in detail in Section 2 of
Reference 6. The GTR is located in a water-filled tank that
occupies one-third of a 20- by 30- by 27-ft-deep ''swimming
pool." The other two-thirds makes up the irradiation test cel?.
For irradiations, the reactor is traversed into a closet-like
structure located midway in the tank wall separiting the two
areas of the pool. Items to be irradiated may be placed at
any or all of the three sides: the north side, with 2 in. of
water shielding; or the east and west sides, with 4 in. of
water.

2.1 Test Description and Procedures

The test consisted of the irradiation and subsequent
testing of approximately 276 tensile specimens and 72 di=lec-
tric and elastic-constant specimens made from the following
organic materials:

1. Armslon TFE-405-CL-116 |

2. Armalon TFE-405-L-112

(€8]

Armalon FEP-510-1L-128
4., Teflon FEP

5. Superpolymer SP-3
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The specimens were irradiated in LH2 in the three cryogenic
test assemblies used in GTR-16. Each assembly was exposed to a
different gamma dose, each dose approximating one of the three
design exposures. The gamma dose and integrated fast-neutron flux

(E>7.9 Mev) predicted for each assembly are as follows:

Run Assembly- Exposure
Assembly Time to-Closet Gamma Neutrczms
Dose Location (hr) Spacing [ergs/gm(C)] (n/cm®)
High North 25  Normal 2.7 x 1010 5 x 1015
Intermediate East 25 19 in. 5.4 x 107 7.8 x 1014
Low North 1 Normal 1.1 x 10° 2.0 x 1014

2.1.1 Description of Test Conditions

Postirradiation testing was accomplished at several dif-
ferent environmental conditions. For comparison, nonirradiated
control specimens (92) were tested at conditions nearly parallel
to those of the irradiated specimens. An explanation of each
test condition and the symbolic representation of that condition
are given below:

Condition 1: LH,

After irradiation, specimens were tested in LH, with
no intervening warmup.

Condition 2: LH2 +» GHe -+ LH2

After irradiation, the specimens were warmed up to
ambient temperature in gaseous helium (GHe). The
specimens were held for 4 days in GHe, then returned

4



to and tested in LHp. The control specimens at this
condition were warmed up and held in air rather than
GHe, since oxidation 1is not considered relevant for
nonirradiated specimens.

Condition 3: LH2 + GHe + LH7? + Air -+ LH2

These specimens were subjected to the same GHe hold
and then returned to LH7, as described in Condition
2. The specimens were then warmed to ambient tem-
perature, held in air for 4 days, then returned to
and tested in LH7. No control specimens were tested
at this condition.

Condition 4: LH2 + GHe * LH + Air

The specimens tested at this condiiion were subjected
to the same environmental sequence as Condition 3,
except that the specimens were tested at ambient
temperature following the 4-day hold in air.

Condition 5: LHp + GHe » LHp + Air + 300°F » RT

The specimens tested at this condition were subjected
to the same environmental sequence as Condition 4.
After the 4-day hold in air, the specimens were placed
in an oven and subjected to a +300°F temperature for

8 hr. The specimens were then cooled and tested in
air at room temperature (RT). No control specimens
were tested at this condition.

Condition 6: RT as received

Only control specimens were tested in this condition
for a temperature-effect comparison. These specimens
were tested in air at ambient temperature in the as-
received form.

AR ori
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A summary of the specimens tested at the various conditions

is shown in Table 2-1.




Table 2-1

Summary Schedule of Test Specimens

Material Environmental Condition
1 2 3 4 S 6 Other
Control Specimens
Armalon
405-CL-116 4 4 - 4 - 4 3t
Armalon
405-L-112 4 A - 4 - 4 2
Armalon
510-L-128 & 4 - 4 - 4 4
Teflon FEP 4 4 - 4 - 4 3
Superpolymer
SP-3 4 4 - 4 - 4 s
Total 20 20 - 20 - 20 12
Irradiated Specimens
Armalon 1
405-CL-116 4 4 A A 4 = 6
Armalon d
405-L-112 4 4 4 4 4 - 6
Armalon
510-L-128 4 4 4 4 4 - 6
Teflon FEP 4 4 4 4 4 - 6
Superpolymer
SP-3 4 - 4 4 4 - -
Total for
Each Assembly 20 16 20 20 16 - 24

9Tensile specimens provided with extensometer tabs tested at LH,

temperature from the '"as received" condition.
ielectric and elastic-constant specimens.
COomitted from high-dose assembly.

itted from low- and intermediate-dose assc¢mblies.



2.1.2 Preparation of Specimens

All test specimens were provided by AGC. The specimens
were catalogued and their dimensions measured and recorded at
NARF. After a loading sequence was specified, as showwn {n
Table 2-2, a detailed loading schedule was prepared and the
specimens were identified and grouped accordingly.

2.1.3 Charging and Bleeding of Hydraulic Systems

The hydraulic plumbing for all three assemblies was
identical. Each system was charged and bled prior to loading
the specimens. A modificalL.ion has been incorporated in the
system since GTR-16 to permit pnstirradiation bleeding.

2.1.4 Loading of Specimens

All specimens were checked and loaded in accordance with
the prepared loading schedule. In each assembly, 14 tensile
specimens were installed on each of 4 pull rods, with 5 of
these specimens being secured only in the upper clevis. A
static rack was provided {n each assembly to hold the remain-

ing 36 tensile specimens and 24 'other-property' specimens.
A typical specimen loading is shown in Figure 2-1.

2.1.5 Thermal-Cycling and Leak-Checking of Test Assemblies

Each cryogenic materials test assembly was mated to an AGC
dewar and all cryogenic plumbing was hooked up and checked. All

instrumentation equipment was hooked up nnd checked out. Each




Table 2-2

Typical Specimen Loading for Each Pull-Assembly Rod

Dynamic Pull Order Material Specimen Length
(in.)
1 Superpolymer SP-3 9.75
2 Teflon FEP 10.25
) Teflon FEP 10.75
4 Armalon 405-CL-116 11.25
5 Arwalon 405-CL-116 11.75
6 Arwalon 510-L-128 12.25
7 Armalon 510-L-128 12.75
8 Armalon 405-L-112 13.25
9 Armalon 405-L-112 13.75
Static - Attached Armalon 405-CL-116 9.75
to Upper Clevis
Only Armalon 510-L-128 9.75
Armalon 405-L-112 9.75
Teflon FEP 9.75
Superpolymer SP-3 9.75
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system was then purged and thermal-cycled twice with LH,. Dur-
ing each thermal cycle, all seals, gaskets, and fittings were

checked for leaks. When each system was approved as being leak-
tight, the shroud was installed and pressure-checked.

2.1.6 Final Assembly Checkout in Irradiation Test Cell

The support stand for each assembly was positioned in the
test cell adjacent to the reactor closet. The test assemblies
were then lowered into position with the overhead crane, as
shown in Figure 2-2. Each dewar was filled with LH2 and the
liquid level stabilized. The test cell was then checked for
leaks, utilizing the General Monitor detection system. With
no detectable leakage, the reactor was brought to a power of
3 Mw outside the closet and slowly traversed into irradiation
position 2 in. from the inside of the north face of the closet.

2.1.7 Postirradiation Testing

At the conclusion of the irradiation period, the testing
procedure for the tensile specimens was started. Briefly, the
typical sequence of operations was as follows:

1. After reactor shutdown, 1 hr was allowed for the

temperature and liquid level to reach equilibrium

in each assembly and for air activation to diminish.
2. The hydraulic valves on the interconnect panel

were positioned to the desired system and the

pull rams were bled to remove any gas evolved
during irradiation.

10




Figure 2-2 gyptczllielt Assembly Being Installed in the Irradiation
es e
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3. The Instron tensile-test machine and the data-
acquisition system were zeroed, balanced, and made
ready for testing.

4. The Instron crosshead travel rate was set at 0.050
in./min, and 20 specimens (4 of each material) were
pulled at LH; temperature.

5. The LH? flow was terminated and the specimens
warmed with GHe. After a period of 4 (+1) days
in GHe at ambient temperature, the specimens
were again submerged in LH7 and 16 specimens
(4 of each material except Superpolymer SP-3)
pulled at this temperature.

6. The test assembly was removed from the test cell
and the dewar opened to expose the remaining
specimens to air for 4 (+1) days.

7. Twenty specimens were pulled at ambient tempera-
ture in the Instron at a strain rate of 0.050 in./min.

8. Sixteen specimens were warmed to 300°F and maintained
at that temperature for 8 hr. They were then cooled
to ambient temperature and pulled in the Instron at
0.050 in./min.

9. The remaining Z0 specimens that were statically irrad-
iated were loaded in the pulling assembly and, after
being submerged in LH2, were pulled at LH? temperature.

The dielectric and elastic-constunt specimens were returned

to Aerojet-General Corporation for postirradiation testing.

2.1.8 Control-Specimen Testing

Control tests were performed on the same five materials
under temperature-environment conditions parallel to the

irradiated specimens:

1. Twenty specimens were tested at ambient tempera-
ture in the Instron at 0.050 in./min strain rate.

12




(These specimens were tested in the as-received con-
dition without any thermal cycling having been
accomplished).

2. Sixty specimens were loaced in one pull assembly,
with 20 specimens installed on the 4 pull rods and
the other 40 on the static rack. The dewar was
thermal-cycled twice with LH,.

3. The dewar was refilled with LH, and the 20 speci-
mens on the pull rods were tested.

4. The dewar was opened up and the remaining 40 speci-
mens exposed to air for 4 days.

5. Twenty specimens were reloaded on the pull rods and
tested at LH7 temperature.

6. The remaining 20 specimens were then removed from
the static rack and tested at ambient temperature
in the Instron.

7. Twelve specimens were provided by AGC with gage-
length tabs and were tested at LHj temperature with-
out thermal cycling. One extensometer mechanism
was activated and utiliz~d to measure the strain
that occurred between the tabs.

2.2 Test Hardware and Instrumentation

2.2.1 Cryogenic Materials Test Assembly

The test assembly is rated for a load application of 12,000
1b. Each assembly has four pull positions. The tensile specimens
are secured between a stationary clevis and a movable clevis at
each pull position. The movable clevis is connected to two pull
rods extending through the flange plate. The pull rods extend
through two guide bushings and an asbestos sealing gland. Above

the flange plate the pull rods are connected to a pull-bar
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actuator. The hydraulic ram at each pousition is connecced to the
respective pull-bar actuator through a load-cell coupling. The
stationary clevis is secured to the base plate with 0.75-in. stain-
lese-steel (NAS1012-15) bolts. The base plate is, in turn, secured
to compression members to transmit loading to the ram mounting
structure (see Fig. 2-3).

2.2.2 Liquid-Hydrogen Dewar

The cylindrical dewar (Ref. AGC Drawing 090683) is composed of
two concentric cylinders, with similar 2:1 elliptical closures,
connected to a common circular top plate (Fig. 2-4). A vacuum is
maintained between the cylindrical vessels for insulation. A
relief valve is provided for the vacuum chamber. The inner vessel
contains the cryogen can, which is filled with LHy during operation.
The cryogen can is secured to the underside of the pulling assembly
flange plate. The evaporated cryogen is discharged over the top
edges of the cryogen can and from tlie bottom of the dewar cavity
through a 1.25-in. exhaust line.

The dewar 1is secured to the test-assembly flange plate with
rwenty 0.50-in. bolts and sealed with an 0.0625-in.-thick asbestos
gasket. The bolts are of A286 specification. They are an external-
wrenching type with allowables in tension of 140,(0C psi minimum
at room temperature. When the system is assembled, the test

assembly is eccentric to the dewar centerline by approtimately 5 in.

14
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Specifications and structural anaiyses of the dewars are

contained in References 7 and 8, respectively.

2.2.3 Equipment Safety Provisions

Safety provisions for all test equipment are listed as

follows:

1.

The entire upper portion of each test assembly is
enclosed in a shroud. All access fittings or
lines are routed into or through the shroud for
termination or connections. The shrouds are con-
tinuously purged with GHe at approximately 2 cfm
to maintain an inert atmosphere. The shroud
exhaust is routed through a 1.25-in. swing check
valve at the top of the shroud and vented out of
the pool to a vent stack at the north end of the
facility. The shroud vent lines are 1.5-in. stain-
less-steel flex lines and are paralleled into the
3-in. vent system.

A pop safety valve is incorporated as overpressure
protection for each test assembly and is set at 7.5 psi.
The valve is positioned in and vented into the shroud.
The valve is equipped with a hermetic microswitch tco
give an indication of actuation. Both a visual and
audible alarm are set off in the control room upon
actuation. The valve is connented to the dewar

by a 1.25-in. stainless-s.eel tube flanged at the
shroud and welded at the assembly mounting flange.

In case the valve should actuate, the shroud exhaust
is sized sufficiently to handle the normal boil-off.

A 2.00-in., 22-psi rupture disc is incorporated in
the dewar upper closure. The rupture disc is ported
to the shroud exhaust system for venting out of the
pool.

The normal exhaust is vented from the dewar to a

burn stack. The exhaust fitting at the dewar and

the rupture disc are enclosed in an inert shroud.

The shroud is purged continuously with GHe at approxi-
mately 2 cfm. The dewar-shroud exhaust is vented

into the pull-assembly shroud system.

17
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Liquid hydrogen is supplied to each dewar through

& 3/4-1in., vacuum-insulated, flexible supply line.

The termination at the test assembly is made inside
the shroud. A rigid,vacuum-insulated, stainless line
is routed out of the shroud and welded into the mount-
ing flange.

The electrical wiring required for liquid-level indica-
tion and temperature-monitoring thermocouples is routed
out of the dewar through a 2-in. stainless tube. The
tube is welded at the mounting flange and bolted with

an asbestos seal at the shroud. The wiring is terminated

at the shroud in a hermetic connector. This wiring,
plus addit‘onal instrumentation and control parameter
wiring, is routed out of the shroud through hermetic
connectors.

Dewar pressure and shroud pressure are monitored con-
tinuously throughout the test. IRC 0-15-psig trans-
ducers are utilized as pressure transmitters. The
output signal of each transducer is continuously
record-d on a strip recorder in the control room

(see Fig. 2-5). The transducers are mounted in the
handling arca and connected to the dewar and shroud
with 50 ft o 0..5-in. copper tubing. The line to the
dewar is routed *hrough the shroud with a connection
made inside the shioud.

2.2.4 Hydraulic System

Load application to the tensile and shear specimens is by

means of hydraulic rams. Each basic system has the following

components:

1.

A master cylinder (secured between the movable
crosshead and the load cell of the Instron tensile-
test machine (see Fig. 2-6).

Four slave (or pulling) cylinders located on each
assembly.

Pressure and return manifold gages.

18
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4., Make-up and bleed reservoir.

5. Supply reservoir and pressure pump.

6. Interconnecting lines, valves, and fittings.

Each cylinder has a bore of 3.25 in., a stroke of 14 in.,
and a rod diameter of 1.375 in. This gives an effective rod-end
piston area of 6.8 sq. in. The lines are connected to the i
cylinders to permit pressure application to the rod end. Bleed
fittings were recently added to the rams to permit bleeding the
rams with specimens installed.

2.2.5 Cryogenic Transier System

Liquid hydrogen is supplied to each test assembly from an
LH2 transfer trailer located adjacent to the reactor pool. An
LH2 supply manifold, equipped with remotely operated supply
valves, is located outside the facility shield. Each supply
valve is equipped with a pneumatically controlled positioner to
permit proportional control of the LHy flow. Each test assembly
is connected to the manifold with 90 ft (in two sections) of
nominal 0.75-1in.-ID, vacuum-insulated, flexible lines. The manifold |
is equipped with two inlet valves to permit change-over of the g
LH, trailers without interrupting flow to the test assemblies. %

2.2.6 Cryogenic Exhaust System

Liquid hydrogen is contained in a can inside of, and open to,

the main dewar cavity. The evaporated cryogen is exhausted through
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a 1.50-in. line ported from the bottom of the dewar cavity. The
exhaust is ported through a combination of flexible and rigid
1.50-1in. lines to a point outside the facility shield. Each 1.50-
in. line is routed through a gate valve and check valve into a
common 5-in. line. The 5-in. line ties into the burn stack. The
exhaust system is equipped to vacuum-purge the test assemblies.

The vacuum-purge system is composed of a valve network, a
mechanical vacuum gage, a compound pressure-vacuum gage, and a
vacuum pump. The valves are 1.50-in. unrestricted gate valves for
vacuum and/or cryogenic service. The vacuum pump is a Kinney KD-30
pump rated at 30 cfm pumping speed with an optimum capability of
10 microns. The pump and motor are class ''B'" explosion-proof and
are equipped with Lox-Safe o0il. The system is designed to purge
either an individual segment or all segments in parallel.

2.2.7 Cryogenic Level System

A liquid-level indication system is provided to continuously
monitor the liquid level in the test assemblies. The method in-
corporated is that of point level sensors. The system consists of
a sensor probe and an indication panel. The panel is presented in
Figure 2-5 and the probe can be seen in Figure 2-1. The probe
consists of seven 0.25-watt carbon resistors mounted in a rake

and spaced as follows:
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No. 1 29.50 in. from the dewar flange

No. 2 21.75 in. from the dewar flange

No. 3 19.00 in. from the dewar flange

No. 4 11.00 in. from the dewar flange

No. 5 9.00 in. from the dewar flange

No. 6 6.25 in. from the dewar flange

No. 7 4.12 in. from the dewar flange
The optimum control level is between points No. 4 and No. 5.

Each resistor in the probe is excited to dissipate its rated
power for meximum sensitivity and response. The large difference
in the heat-transfer rate of a sensor when it is in liquid and
when it is in vapor produces a temperature and corresponding
resistance change in the sensing element. As this resistance
reaches a threshold value, it activates an output signal in the
transistorized control panel. This signal triggers an indication
light and/or alarm system.

The liquid-level control system is utilized to maintain a
near constant level in each test assembly. A Bristol control
unit, with a +100° to -430°F range kit, is used as the controlling
device (see Fig. 2-7). A copper-constantan thermocouple is
positioned in the dewar relative to the desired control level.
The thermocouple EMF is converted to a proportional pneumatic

signal in the Bristol controller. This pneumatic signal is fed
23
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to the Fisher proportional positioner, which is an integral part

of the cryogen manifold and connected so as to control the outlet
valve.

2.2.8 Instrumentation

Applied Load Measurement. The applied load to each specimen

is measured by a four-arm strain-gage load cell and recorded on a i
Sanborn millivolt recorder. (The load cells can be seen in Figure

2-8.) The strain gages used are BLH type and were applied with the

Rokide process for optimum radiation resistance. Each load cell

was calibrated utilizing the Sanborn millivolt recorder for data
acquisition. Calibration data were obtained in representative

increments up to 10,000 1b (see Fig. 2-9).

Strain Measurement. A mechanism is provided at each pull

position to measure the specimen pull-rod displacement. This
measurement is continuous for the total rod movement. A Helipot
potentiometer (50,000 ohm, 360° rotation) is geared through a
rack and pinion to the specimen pull rods. The potentiometers
have nine equalliy spaced taps. Selection of gear ratio and
potentiometer tap spacing was made to give 360° of pot rotation
per 0.50 in. of rod movement. With the nine-tap pot, this pro-
vides full-scale deflection of the recorder for each 0.050 in.

of rod movement. This gives a resolution of from 0.5 to 1.0 mil.

Each position is calibrated in 0.025-in. increments for 2 in. of

25



Cryogenic Materials Test Azsembly Mated to AGC Dewar

2-8

Figure

26




NPC 23,800

100

TO

2
=
E it =]

//
|
b

50

K
ﬂﬂﬂﬂﬂ

Attenuat Setting
o x
A x
B x
© x10
o
o
/"’
T

[+ =] = o o

10 x 103

(at) peon

27

Bandwidth (%)

Pigure 2-9 Typical Load-Cell Calibrxtion Curves



#* 9

s s e, TR . =~

rod movement (Fig. 2-10). These mecﬁanisms can be seen in
Figure 2-8.

An extensometer mechanism is activated at one position of
one assembly to measure the strain between the shoulders of a
selected group of control specimens. Tabs are secured to the
upper and lower choulders with a 2-in. spacing between. Fingers
(or arms) are positioned relative to the tabs and connected to
concentric tubes which are in turn connected to a displacement
transducer (see Fig. 2-11). The transducer used is a Physical
Sciences variable-permeance type with a +1.000-in. range. The
cryogen gas seal around the concentric tubes is effected by a
cylinder-and-piston arrangement utilizing Teflon ''bal seals."
The extensometer mechanism is indexed from one specimen to another
by means of a combination hydraulic and pneumatic indexing system.
Each extensometer mechanism is calibrated to 0.800 in. in repre-
sentative progressive increments (see Fig. 2-12).

A 2-in. gage-length clip-on extensometer 1s used .»> measure
the strain within the elastic region of all specimens tested at
ambient temperature. This extensometer has an extremely high
resolution with a travel of 0.040 in. The transducer was cali-
brated in representative increments to the limit of its travel

( see Fig. 2-13).
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Cryogenic Materials Test Assembly Showing Extensometer

Machanisms Installed
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Temperature Monitoring. Eight copper-constantan thermo-

couples are provided in each dewar for monitoring the liquid,
vapor, and specimen temperatures.

Four of the thermocouples are provided to measure the tem-
perature of the hydrogen vapor and/or liquid and to supply the
signal for the liquid-level control system.

The remaining four thermocouples are provided to measure the
temperature of specimens during warmup. The output of these four

thermocouples is recorded on a Brown recorder.
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ITI. ANALYSIS AND DISCUSSION OF¥ RESULTS

In the original test plan, the three different. exposure
levels were to be achieved in one 25-hr, 3-Mw irradiation by
varying the spacing between the test assembly and the reactor
and by shielding. However, during the thermal-cycling opera-
tion prior to irradiation, one of the LH, transfer lines was
found to be damaged and not immediately repairable. Because
of this, the low-dose irradiation was delayed, but the assemblies
receiving the high and intermediate doses were irradiated as
planned (25 hr at 3 Mw) in the north and east positions, res-
pectively. The specimens were tested at the first two environ-
mental conditions and the equipment was then removed from the test
cell.

To achieve the low-dose exposure, the assembly was placed
in the north position and irradiated for 1 hr at 3 Mw. The
specimens were then tested and the equipment removed from the
test cell. Typical fractured specimens at the different dose
levels can be seen in Figures 3-1, 3-2, and 3-3. The remainder
of the testing was satisfactorily accomplished in accordance
with the test plan.

3.1 Correction and Correlation of Data

The specimers tested at ambient temperature were pulled

to fracture in the Instron tensile test machine. The strain
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for all materials, with the exception of Teflon, was measured
by a 2-in. gage-length clip-on extensometer. The strain re-
corded when testing the three types of Armalon material was
always within the operating range of the extensometeg.. However,
some extrapolation was necessdry with the strain data recorded
from testing of the Superpolymer SP-3 specimens, and because of
the extremely high elongation of Teflon, crosshead travel was
used as an indication of strain for this material.

The specimens tested at LH, temperature were pulled to
fracture in the remotely operated cryogenic tensile test
assemblies described in Section II. The load cells functioned
cuompletely satisfactorily and no correction of stress data
was required. The strain was measured by the rod-movement
mechanisms. These devices measure not just the strain that
occurs within the gage length, but the total, or gross, strain
that occurs in the system. For this reason, it was necessary
to consider two correction factors to determine the approximate
true strain that occurred within the reduced cross section of
the specimens. These two strain correction factors were applied
to the data Lrom all specimnens tested at LH2 temperature.

3.1.1 §System Error

As previously mentioned, the rod-movement mechanism

measures the total, or gross, strain that occurs in the
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complete pull-rod train. 7To eliminate the deflection that
occurred outside the specimen, the following correlation was
made.

Extensometer tabs were attached to the upper and lower grip
sections of 12 specimens (all materials except SP-3). These
spacimens were tested in LHZ using the same equipment and
instrumentation previously used for the irradiated and control
specimens. One extensometer mechanism, described in Section
2.2.8, was activated and used in the testing of these 12 speci-
mens. This mechanism measures, essentially, the strain that
occurs between the specimen shoulders. Average stress-strain
curves, drawn from both rod-movement and extensometer strain-
measurement values, are shown for the four materials in Figurés
3-4, 3-5, 3-6, and 3-7. A gage-length of 2 in. was assumed
for presentation of these curves. Frém a comparison of these
four sets of curves, it can be seen that the strain ratio of
extensometer data to rod-movement data is reasonably linear
and consistent. All four materials were considered separately,
and the combined average ratio (a) was found to be 0.665. A
typical plot of the ratio for one of the materials is shown
in Figure 3-8. The rod-movement strain data were multiplied
by 0.665 to eliminate the system error. This correlation was

used for all materials.
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3.1.2 Gage-Length Correction Factor

The previous section explains the method used to correct
for measured strain that occurs outside the specimen. This
section describes the method used to correct for strain that
occurs within the specimen but outside the reduced cross section.
The greater portion of this strain error occurs in the specimen
between the point of tangency at the reduced cross section and
the shoulder at each end. This error is significant and must
be eliminated to find the approximate true strain within the 2-in.
gage-length section.

A relationship can be determined for specimens of a given
configuration by considering the specimen geometry. A complete
and detailed explanation of the mathematical mechanics for
determination of this factor is presented in Appendix B of
Reference 3. In GTR Test 17, specimens of two basic configura-
tions were used, necessitating two sets of calculations:

1. The three Armalon materials and Teflon specimens

were fabricated from 0.125-in. sheet with 0.0625-
in. aluminum doublers bonded and riveted to each
side of the grip sections. The correction factor
for this configuration (bl) was found to be 0.6283.

2. The Superpolymer specimens were machined to a

0.125- by 0.500-in. reduced cross section from
0.25-in. sheet stock. The correction factor

for this configuration (bj) was found to be
0.6539.
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3.1.3 Combined Correction Factors

Congidering the correction factors explained in the two

previous sections, it is now possible to express or present,

for any of the materials tested in LH,, the approximate true

strain in terms of total rod movement at any load condition.

Given the following definitions:

by

approximate true unit strain for Armalon
405-CL-116, 405-L-112, and 510-L-128 and
for Teflon FEP;

approximate true unit strain for Superpolymer
SP-3;

combined correction factor for Armalon and
Teflon;

combined correction factor for Superpolymer
SP-3;

total rod movement;
gage length (2 in.);
system erzor correction factor (0.665);

gage-length correction factor for Armalon
and Teflon specimens (0.6283);

gage-length correction factor for Suﬁerpolymer
specimens (0.6539);

the approximate true strain may be found as follows:

€

€,

(RM/GL)*C;, where C; = abj
0.2089 *(RM) ;
(RM/GL)+Co, where Cy = aby

0.2174 +(RM).
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3.2 Presentation of Property Data

All irradiation specimens were submerged in LH; during the
irradiation period, then tested at the five different environ-
mental conditiona. Control specimens were tested at environmental
conditions nearly parallel to those of the irradiation specimens.
A description of these conditions is given in Section 2.1.1.

This section presents and discusses the mechanical-property
and x-ray diffraction (phyaical-property) data.

The mechanical property data are presented in several forms:
stress-strain curves, averaged-data plots of ultimate tensile
strength and ultimate strain, and tabulated detail data. All
data in this section are categorized by material and are tabulated
in accordance with dose and enviromnmental conditionm.

X-ray diffraction studies were accomplished on a selected
number of specimens - one specimen from each dose level (includ-
ing Control) of five materials at envirommental conditions
1, 2, and 3. All samples for analysis were taken from the
reduced cross section of the specimens, with the exception of
the high-dose Armalon specimens, in which case the samples were
taken from the grip areas. These studies indicated that there
was no significant change in the crystal structure from either
dose or envirommental condition for any of the materials tested.
A representative set of the x-ray traces is shown for each
material tested at envirommental condition 1.
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3.2.1 Armalon TFE-405-CL-116

This material was tested without difficulty at all test
conditions. 1In general, the specimens of this material did
not fail within the 2-in. gage length but fractured at
approximately the point of tangency of the reduced section.
This was true of the specimens tested at both room and LH2
temperatures. This can be seen in Figures 3-9 and 3-10.

A comparison of the ultimate tensile strength at the
different dose and environmental conditions is presented in
Figure 3-11. From these data it can be seen that a high degree
of damage was detected in the specimens subjected to the high
dose and tested at LH, temperature. A possible temperature
effect is also noted in the control and low-dose specimens.
The specimens tested at room temperature exhibited a gradual
decrease in strength with an increase in dose.

A comparison of ultimate strain at the different dose
and environmental conditions is presented in Figure 3-12,
These data indicate a trend similar to the ultimate-stress
data for specimens tested at LH2 temperature. For those
specimens tested at room temperature, there is very little
or no radiation-induced strain variation.

A tabulation of all detailed mechanical-property data

is presented in Table 3-1. A statistical analysis of these
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data is included in Section 3.3.
Average stress-strain relationships are presented in
Figures 3-13 through 3-17, showing the effects of dose level
on specimens tested at environmental conditions 1 through 5,
respectively. The stress-strain curves showing a comparison of
control specimens tested at conditions 4 and 6 are shown in
Figure 3-18; there appears to be a definite decrease in ultimate
strain with thermal cycling but no effect on ultimate stress.
The x-ray diffraction studies showed no radiation-induced
change at any of the conditions. A typical set of x-ray data

is shown in Figure 3-19.
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NPC 23,795
X-RAY DI FFRACTION STUDY

SPECIMEN X-RAY METHOD
Material _ Armalon 405-CL-116 Cu Tgt. Ni Pltr.
Form 1/8-1n. Sheet R. M. 16-1-4
Condition laminate N S11t 0.006

sl PR T 'IT}IIT{TT"IIJT T T V['
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(Spec. No.1-80)
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Pigure 3-19 Armalon 405-CL-116: Comparison of X-Ray Diffraction Data
for a Typical Set of Specimens Exposed to Different Dose
Levels and Tested at Environmental Condition 1
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3.2.2 Armalon TFE-%405-L-112

This materiel was tested at all test conditions, but
with some difficulty at the high-dose condition; the specimens
tended tn deform outside the gage length to the extent that
more than one specimen was pulled at once. This makes the
high-dose strain and load data for conditions 1 and 2 almost
impossible to interpret. On the second loading, for condition
3, the specimen spacing was increased and the data are con-
sidered more reliable.

The typical failure location of these specimens was also
outside the gage length and in several cases the fracture
was in or through the grip. A comparison cf typical failures
can be seen in Figures 3-20 and 3-21.

A comparison of tne ultimate tensile strength at the
different dose and environmental conditions is presented in
Figure 3-22. These data indicate some damage at the inter-
mediate-dose condition and considerable damage at the high-
dose condition. A comparison of ultimate strain at the dif-
ferent test conditions is presented in Figure 3-23. These |
data indicate a definite degradation of the material at the
high-dose condition.

Considerable data scatter was encountered with this material.

A post test follow-up uncovered the fact that the specimens

67
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of this material were fabricated from four large 0.125-in.-thick

sheets. The detailed data are prese?ted in Table 3-2, with
the sheet numbers identified with the specimens. From these
data is is obvious that there is an extremely high variation
between sheets. Because of this wide variation, the data are
rather difficult to interpret and impractical to average. No
stress-strain curves are included, but a detailed considera-
tion of the data is included in the statistical analysis (Sec.
3.3).

The x-ray diffraction studies showed no radiation-induced

change at any of the conditions. A typical set of x-ray data

is shown as Figure 3-24.
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X-RAY ODIFFRACTION STUDY

SPEC IMEN X-RAY METHOD
Material _Armalon 405-L-112 Cu Tgt. Ni Fltr.
Form 1/8-1in Sheet R, M. 16-1-4
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3.2.3 Armalon FEP-510-L-128

This material was tested satisfactorily at all conditicns,
and the data were found to be very consistent. The fractures
for this type of Armalon were also at the point of tangency
for the specimens tested at both LHp and room temperatures.
Representative fractures of this material can be seen in Figures
3-25 and 3-26.

A comparison of the ultimate tensile strength at the
different dose and environmental conditions is presented in
Figure 3-27. From these data it can be seen that extreme
damage was encountered in the specimens that were subjected
to the high dose and tested in LH7; some damage was detected
at the intermediate-dose condition, but no radiation effect
was noted at the low-dose condition. The specimens tested at
room temperature exhibited a gradual decrease in strength with
an increase in dose.

A comparison of ultimate strain at the different test
conditions is presented in Figure 3-28. These data are not
as clear-cut as the stress data, but some decrease is indicated
at the high-dose level.

A tabulaéion of all mechanical-property data is presented
in Table 3-3. A statistical analysis of this data is included

in Section 3.3.
77
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Average stress-strain relationships are presented in
Figures 3-29 through 3-33, showing the effects of dose level
on specimens tested at environmental conditions 1 through 5,
respectively. Stress-strain cirves shcwing a comparison of
control specimens tested at conditions 4 and 6 are shown in
Figure 3-34.

The x-ray diffraction studies showed no radiation-induced
change at any of the conditions. A typical set of x-ray data

is shown in Figure 3-35.
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3.2.4 Teflon FEP

A discrepancy was encountered in the testing of this
material in that all specimens subjected to the high dose,
and some at the intermediate dose, were damaged during the
irradiation and hydrogen cycling and could not be tested.
The damage is considered to have been caused by stress con-
centrations resulting from the riveted aluminum doublers.
Therefore, no high-dose data are available for this material.

Representative fractures of this material, tested at
both room and LH, temperature, are presented in Figures 3-36
and 3-37.

A comparison of the ultimate tensile strength at the
different dose and environmental conditions is presented in
Figure 3-38. These data indicate a similar damage trend as
the previous three materials. Very little or no damage was
detected in the low-dose specimens. Significant damage was
detected at the intermediate level. As previously mentioned,
the high-dose specimens could not be tested, but a visual
inspection indicated nearly total damage. This can be seen
in Figure 3-39.

A comparison of ultimate strain at the different test
conditions is presented in Figure 3-40. These data indicate

no change at the low-dose level but a very decided effect

93



at the intermediate level. The greatest effect was noted in
the specimens tested at room temperature. For condition 4
the strain depreciated from 4467 at the low-dose level to 1617%
at the intermediate-dose level. For condition 5 the damage was
even greater, with a span of from 4527% to 7.7%. This can possibly
be explained by the theory that the primary cause of irradiation
damage to Teflon is internal gas evolution. From this reasoning,
the specimens tested at room temperature after being subjected
to 300°F (cond. 5) would experience more damage fhan the specimens
tested directly at room temperature (cond. 4).

A tabulation of all detailed mechanical property data is
presented in Table 3-4. A statistical analysis of these data
is included in Section 3.3.

Average stress-strain relationships are présented in
Figures 3-41 through 3-45, showing the effects of dose level
on specimens tested at environmental conditions 1 through 5,
respectively. Stress-strain curves showing the comparison of
control specimens tested at conditions 4 and 6 are shown in
Figure 3-46.

The x-ray diffraction studies were made on specimens of
all dose levels, even though no other high-dose data are reported.

No radiation-induced change was indicated at any of the test

conditions. A typical set of x-ray data is shown in Figure 3-47.
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NPC 23,798
X-RAY DI FFRACTION STUDY
SPECIMEN X-RAY METHOD
Material __Teflon PEP Cu Tgt. Ni Fitr.
FOrm 1/8-1n. Sheet R,M, 16-}-4
Condition __Molded S1it 0.006
- a High -
(Spec. No.4-41)
- L
j i
e . Intermediate . -
a (Spec. No.4-63)
- .- o e S
. . o o .. J\. .
- ] 2 .
- + . ;# -. . -
) i (Spec. No.4-71) i o
; : .—‘L‘;&
50 O 18 N N |If'}' S AP 5 0 ) 1 R 1 % T T ]
- Lt - 3 e Loy PP SRR 5 i 58 P ) 501 S e B L - L
r L | - I | | ‘T R ; .—!. 1.3 : i " 1. l | -.r_: ! { .
: 4 — P R _._T._L._._.u.; _._.__J.I oo ¥ - S
. +|]l LA | control il 8 W (L
_J[ _1]. —E;_ - ;— H | < {Spee. IND.‘I-&GI] - il |
_* bows s 523 |+ isw Lhis
R 60 R B !-.i.li__. i
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Figure 3-47

Teflon FEP:

Comparison of X-Ray Diffraction Data for

& Typlical Set of Specimens Exposed to Different Dose
Lerels and Tested at Environmental Condition 1
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3.2.5 Superpolymer SP-3

All specimens of this meterial were tested satisfactorily
with good results. The data were found to be very consistent.
This material was found to exhibit an increase in strength
when tested at LH, temperature relative to room temperature,
but the elongation seemed to be relatively non-temperature
dependent.

Representative fractures of this material, tested at room
and LH, temperatures, are presented in Figures 3-48 and 3-49.

Comparisons of ultimate tensile strength and ultimate
strain at the different environmental conditions are presented
in Figures 3-50 and 3-51, respectively. From these data it
can be seen that the SP-3 material was damage;free at the
dose levels achieved in this test. However, some increase
in data scatter is indicated with an increase in dose. A
tabulation of detailed data is shown as Table 3-5. A statis-
tical analysis of the data is contained in Section 3.3.

Average stress-strain relationships are presented in
Figures 3-52 through 3-55, showing the effects of dose level
on specimens tested at environmental conditions 1, 3, 4, and 5,
respectively. Stress-strain curves showing a comparison of
control specimens tested at conditions 4 and 6 are shown in

Figure 3-56.
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The x-ray diffraction studies showed no change at any of
the conditions. A typical set of x-ray data is shown in Figure

3-57.
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NPC 23,799

X-RAY DI FFRA TION STUDY
SPECIMEN X-RAY METHOD
Material Superpolymer SP-3 Cu Tgt. N1 Fltr.
Form 1/8-1n. Section R. M. 10-1-4
Condition __Machined S1it 0,006
. :I . :-l » L] -» sc -»
$- -4 .- i - - - N -
High el o B H e
(Spee. No.5-7) - BEN SRR
a» L]
N
MR i 5 i T o [ ,
; [ b § -ﬁ! i ! 4 it = ] i
T v : | : | | S ]
t,,. Voma T i U TR B B
. Intermediate T 0 221
(Spec. No.5-2) 4
A B S e ey e =
REfaszeaEam ety ragans i Pk
gt !-% i !-—o—n[ IS u,
gt wrumn L
: Low -
(Spec. No,5-12)
| ) 3 ) . )
il c }\ A -8 3 c
= - Control > = q
o e - (Spec. No.5-25)
w2 e I '5""' ‘ id - J d
‘ Jk***A.. _‘*,th-"fiiJL“-fT S e et i i &f?'*‘
60 55 50 45 ho 20 35 30 25 20 15 10

Figure 3-57

Superpolymer SP-3: Comparison of X-Ray Diffraction Data
for a Typical Sat of Specimens Exposed to Different Dose
Levels and Tested at Environmental Condition 1
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3.3 Statistical Analysis

3.3.1 Discussion

The general over-all results of this experiment show that
there are obvious test-temperature effects (LH2 to Room Tempera-
ture) and radiation effects at the high-dose level (except for
Superpolymer SP-3).

Before going into the details of a statistical analysis
of the less obvious effects, it seems advisable to first dis-
cuss the lack of uniformity in the experimental units allocated
to the various envircnmental treatment conditions for Armalon
405-L-112. A cursory analysis of the date for this material
showed that there was considerably more variation within a group of
specimens for the same condition than would normally be expected.
A follow-up uncovered the fact that four different batches
(sheets) of this material were used to make up the sample units
for the experiment. These batches are denoted in this report
as A, B, C, and D. As can be seen in Table 3-2, the between-
batch variation is much larger than the variation within a batch
(analysis of variance shows this result). When this occurs,
special allocation of the sample units to the various environ-
mental conditions is required so that the comparisons made between
the various conditions are accurate and unbiased. As can be geen

in the detailed data (Table 3-2), the control specimens for
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condition 4 are all from batch A and the controls for condition
6 are from batch C. Thus, the observed difference in the ultimate-
stress averages, 21.0 - 14.1 = 6.9 ksi, could be the result of the
envirommen:al condition 4 vs 6, batch difference, or a combination
of both. In statistical terminology, the effect of the condition
4 vs 6 is confounded with batch differences.

Consider also the differences in the average values for condi-
tion 1 for

Low Doge - Control = 65.8 - 40.0 = 25.8 ksi

and

Intermediate Dose - Control = 42.8 - 40.0 = 2.8 ksi
The 25.8 difference is statistically significant; the 2.8 dif-
ference i8 not significant. This implies that the response
of the material increases and then decreases as a function of
dose. But since the batch variation is known, and the control
average is from batches B and C and the low-dose average is
from A and D, we have reason to suspect that the response
to dose is confounded with the batch effect. Had one not
known of the batch variation, the observed difference at the
intermediate dose would be considered insignificant on the
basis of the comparison made. A fair and more accurate esti-
mate of the effect at condition 1 is possible by comparing

the average values for the samples from batch B:
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Intermediate Dose - Control = 22.2 - 37.6 = -15.4 kul
This difference, -15.4, is statistically significant, which
indicates that there is material degradation at the inter-
mediate dose, contrary to the result obtained from the first
analysis. This last comparison between samples from the same
batch indicates the proper allocation one should make of the
experimental material to the various conditions so as to make
the comparisons fair and unbiased, i.e., one should make each
group as near alike as possible by allocating (randomly) one
sample from each batch.

Not only does batch variation affect the conclusions one
can draw from the Armalon 405-L-112 data, it casts some doubts
on the data on the other two Armalon materials. Although the
variation is not so evident as that above, there are some
peculiar effects not accounted for by just the sample varia-
tion. For example, the response curves for Armalon 405-CL-116
show considerable scatter from control data to the radiation
data. For condition 1 there is a significant increase and
then a decrease. For condition 2 there is a significant decrease.
For condition 3 there is a significant decrease, then increase,
then decrease. These results present a questionsable response
unless one realizes the possibility of the batch variation.

Neither is it reasonable to assume that Armalon 405-L-112
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is inferior to Armalon 116 and 128. The high batch variation dis-
covered in 112 may also be present in the other two materials,
but by the chance selection of the sampling process, the batches
for Armalon 116 and 128 were more alike than those selected for
Armalon 112, Observe that had only batch A been selected for
Armalon 112 the results would be somewhat in favor of Armalon 112,
because for room-temperature condition 4 only batch A was used
(except for one sample from batch C) and the average ultimate -
stress values for each dose are larger than those for Armalon 116
and lower than those for Armalon 128.

3.3.2 Conclusions

Tables 3-6 through 3-10 contain the average values of the
data for the various materials, test conditions, and radiation
levels (controls to high dose). A statistical analysis was
made by comparing the average values for each radiation level
(low, intermediate, and high) with its corresponding control
average. A ''t" test of significance was used tc evaluate
the observed differences in the averages being compared. A
probability level of 957 was used in the evaluation, with
those differences that exceeded or equaled the 95% confidence
level being noted in the tables. Tiie average values in the
tables are, in general, based on four observations each,
except whére noted (average/number of observations; n).

. In Table 3-7, the average for each batch within a con-
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Statistical Analysis:

Table 3-6

Armalon 405-CL-116

Stress (ksi)

Condition | Control { Low Dose | Intermediate Dose | High Dose
1 46.8 54. 1% 50.5 19.3%
2 62.7 55.4% 53.5% 24 . 7%
3 N.T.® 46 .9% 53.6% 26.2%
4 17.0 15.2% 13.0% 10.6%*
5 NT.D | 14.2% 11.9% N.T.
6 17.1
Strain (%)
1 3.1 3.8% 3.1 1.8/2%
2 4.5 3.8% 3.6% 2.6%
3 N.T.2 3.5% 4.0 2.5%
4 0.74 0.65 0.62 0.9
5 N.T.P 0.68 0.70 N.T.
6 1.08

8yse control average for condition 2
Use control average for condition 4
*Statistically significant
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Table 3-7

Statistical Analysis: Armalon 405-L-112

Stress (ksi)
Condition | Batch | Control | Low Dose | Intermediate Dose | High Dose

1 A c 72.0/2 63.4/2 N.D.

B 37.6/2 c 22.2/2% N.D.
2 A ¢ 71.5/1 69.2/2 N.D.

B 35.6/2 33.7/1 27.0/1% N.D.
3 B N.T.2 36.7/2 27.0/2% 19.4/2%

D N.T.2:¢| 60.4/2 58.8/1 c
4 A 21.0/4 18.1/3* 15.6/4% 12.9/4%
5 A N.T.b N.T. N.T. 13.1/4%
6 C 14.1/4

Strain (%)

1 A c 5.6/2 4.4/2 N.D.

B 3.6/2 c 3.0/2 N.D.
2 A c 5 7 /2 6.0/2 N.D

B 3.8/2 2.9/1 3.3/1 N.D
3 B |N.T.2 4.8/2 4.2/2 N.D.

D N.T.2:C 5.1/2 4.0/1 c
4 A 0.9/3 0.53/3% 0.65/4% 0.68/4%
5 A |N.T.P N.T. N.T. 0.70/3*%
6 C 1.2/4

N.T. Not tested
N.D. No data (testing difficulty or complete failure)

8yse control average for condition 2

Use control average for condition 4
©No samples of indicated batch tested at this radiation level
*Statistically significant
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Statistical Analysis:

Table 3-8

Armalcon 510-L-128

Stress (ksi)
Condition | Control | Low Dose | Intermediate Dose | High Dose
1 86.5 84.5 68.4% 32.4%
2 86.9 88.3 75.3% 34 .5%
3 N.T.2 86.9 77.8% 16.6%
4 26.8 23.5% 18.5% 10.5%
5 N.T.b 24 .8% 14.7% 8.9*%
6 26.8
Strain (%)
1 5.4 4.7 4.8 N.D.
7 5.3 4.8 4.6 2.4/1%
3 N.T.® 552 5.2 1.9%
4 1.4 1.3 1.4/3 1.3
5 N.T.P 1.2/2 1.0% 1.4
6 1.6
N.T. Not tested
N.D. No data (testing difficulty or complete failure)

8yse control average for condition 2
Use control average for condition 4
*Statistically significant




Table 3-9

Statistical Analysis: Teflon FEP

Stress (ksi)

Condition | Control | Low Dose Intermediate Dose | High Dose
1 23.9 22.7 N.D. N.D
2 24.0 22.3%* 15.2/3% N.D
3 N.T.® 23.9 19.1% N.D
4 3.6 3.0% 1.7% N.D
: N.T.D 3.1% 1.8/2% N.D
6 4.0

Strain (%)

1 3.8 3.7 N.D. N.D
2 3.9 3.6 2.3/3% N.D
3 N.T.® 3.7 2.9% N.D
4 455 446 161% N.D
5 N.T.D | 452 7.7/2% N.D
6 495

N.T. Not tested

N.D. No data (testing difficulty or complete failure)

8use control average for condition 2
Use control average for condition 4
*Statistically significant
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Table 3-10

Statistical Analysis: Superpolymer SP-3

Stress (ksi)

Condition | Control | Low Dose | Intermediate Dose | High Dose
il 16.3 16.1 1749 16.3
2 15.5 N.T. N.T. N.T.
3 N.T.2 16.8 1 7e2 16.0
4 10.5 11.9 11.6 1915
5 N.T.D iy, 11.8 11.2
6 11.0

Strain (%)

1 2.4 2.4 2.5 2.2
2 3.3 N.T. N.T. N.T.
3 N.T.2 3.4 3.9 3.6
4 4.4 5.7 5.8 5.1
5 N.T.P 5.2 5.0 5.0
6 4.9

N.T. Not tested
gUse control average for condition 2
Use control average for condition &4
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dition for the various radiation levels is listed. The comparisons
are thus made between the average values obtained from the same
batch. These comparisons result in a smaller sample size than

was planned, but the comparisons are unbiased with respect to

the batch effect.

Because of the possible unknown batch effect for the Armalon
material, cross comparisons between conditions within a given test
temperature were not made. Alco, comparisons between test tempera-
tures (LH2 and Room Temperature) are not made in this section
because a statistical treatment would not add to what is al-
ready obvious. ‘

A cross comparison between conditions within a given test
temperature for Tefl~n FEP indicates no significant differences
(probability, 0.95) with one exception. The measured strain
for the intermediate-dose specimens tested at condition 4 was
1617, but only 7.7% for condition 5. This indicates a definite
embrittlement resulting from subjecting the specimens to the
+300°F temperature.

For Superpolymer SP-3 there are significant differences
between conditions 1 and 3 at all radiation lcvels for the
strain measurements. Although there are no indicated signifi-
cant differences between the average values for Superpolymer,

there are some significant changes in the variability. The
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variation in the strain measurements at the different radiation
levels are significar“ly larger than the variation in the cor-
responding control data for conditions 4 and 5. The variation in
the stress data for conditions 4 and 5 increases with increasing
dose.

3.4 Nuclear Measurements

3.4.1 Designed Exposures

Extensive nuclear measurements, performed prior to and
during GTR-16, were utilized to provide data sufficient for
a reliable characterization of typical radiation fields within
test hardware located at the three irradiation positions sur-
rounding the reactor closet. This information was utilized
to stipulate equipment geometries required to achieve the
different gamma dose levels as specified in the AGC test
specifications. The following is a tabulation of the specified
gamma exposure conditions for GTR-17, with the corresponding
neutron integrated flux (E> 2.9 Mev), based on the reactor
operating at a power level of 3 Mw and positioned 2 in. from
the north face of the closet. The neutron flux for E>1.0

Mev would be 2.8 times that shown in the table below.

Run Assembly- Exposure
Assembly Time to-Closet Gamma Neutrons
Dose Location (hr) Spacing [ergs/em(C)] (n/cm?)
High North 25  Normal 2.7 x 1010 5 x 1012
Intermediate East 25 19 in. 5.4 x 109 7.8 x 1014
Low North 1  Normal  1.1x10° 2.0 x 10
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3.4.2 Measured Exposures

Nuclear detector packets were positioned in the following
strategic locations in order to measure the neutron flux and
the gamma dose in eech of the three test assemblies:

1. At each pull rod position in front of and behind
the specimens in the gas phase.

2. At each pull rod position in front of the dyna-

mic specimens and also between the dynamic and

static specimens in the liquid phase.
Each detector packet contained a bare and a cadmium-shielded
phosphorous pellet and a sulfur pellet for determining the
thermal- ard fast-neutron (E> 2.9 Mev) fluxes, respectively.
Each packet also contained a nitrous-oxide gamma dosimeter.
A typical installation is shown in Figure 3-58. Gamma and
neutron detectors were routinely processed in the NARF Nuclear
Measurement Facility. The neutron data were reduced by standard
foil techniques which have been programmed for use on the IBM
7090.

Figures 3-59, 3-60, and 3-61 show the gamma dose in ergs/gm(C)
as a function of dosimetry packet position in the high-, inter-
mediate-, and low-dose test assemblies, respectively. These
data reflect a temperature correction which relates the moles of

N, + 0, produced in the dosimeter at 30°C to that produced at LN,

temperature (-196°C). This correction factor yields very good
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results when applied to the gamma doses measured in the gas phase
where the temperature of the NZO dosimeter is approximately -200°C.
The gamma doses measured in the liquid phase are also reasonable
when this correction factor is used, but there {s indication that
the moles of N, + 0, produced in the dosimeter is probably greater
at LH2 temperature (-252°C) than at LNZ temperatures. In order
to present the most logical picture, therefore, measurements of
the gamma doses in the liquid phase reflect a temperature correc-
tion factor. The correction factor assumes a linear relationship
between the moles of N, + 0, produced in the dosimeter at LN,
temperature (-196°C), and that produced in the dosimeter at LH,
temperature (-252°C). Since the relationship is linear between
+30°C and -196°C, the assumption of linearity for LH2 temperature
is considered to be correct. Addicional research into the response
of the N,0 dosimeter when exposed to gamma radiation at LH2 tem-
perature is currently in progress.

The gamma dose measurements indicate that the design dose
was schieved in all three configurations.

Figures 3-62, 3-63, and 3-64 show the integrated neutron
flux in n/cm? (E>1.0 Mev) as a function of packet position in
the high-, intermediate-, and low-dose test assemblies, res-
pectively. These data are derived from measurements of the

neutron flux for E> 2.9 Mev made with sulfur pellets during
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the irradiation. Mapping experiments made prircc to this test
indicate that the ratio of § for E>1 Mev to § for E>2.9 Mev
is equal to 2.8. Applying this factor to the measured sulfur
flux yields a value of the flux for E>1 Mev.

The relative irradiation location of all specimens in

each of the three test assemblies is shown in Table 3-11.

145



h o

-+
L9-G10Z-7]0Z-€|0Z~-T|9L~219L-€]9L-T|9L-" owumﬁ 6C-G191-% o~-m~o~-~“¢~-w BL-C[L-T{9L-%[ST1-C[€9-C| 9T~ |"T-C|HT-1|8L-T{8L-C|BL-T|BL-7|92~%
99 -3|€T-%{61-€|61-TZ[SL-T|SL-C|SL-T|SL-"|6T-C||8S-G{Sl-9|CT-€{GU-T1 €L-T|€L-€|C€L-T E€L-%|ST1-C}|T9-S[E€T-V|CT-C|CT-V|L/=T|LL-C|LL-T{LL~%2~S
S9-S| Ei-2|81-€|8T-2{2S-C(TS-€[TS-T{TS-%(B1-G||LG-G|nl-n{vI-¢ qﬂcﬂ‘OmuN 0S-€|0S-T1|0S-%|"1-6||19-S|T2-H{TL-€|TT-T1|9S-Z|%S-E{¥S-1[%S-v|2T-C
T9-Gl L1-nfLT1-€1 L1-Z( 162 1S-€|TS-T}16-%|L1-S|[9S-CIET1~®»|ET-C md-A_mQ-N 67-Cl6v-116%-9|€1-G]|09-G{1Z-%|1C-€| 1Z-1|€S-T|€S-E|ES-(|ES-%|T1Z-S
Spoy 1INd putyag Xowy Spoy 11nd putyag oey $poy T1Ind PUTyed »AoeYy
97381 UO PIIUNCOK SUIMMEIIAS 273I¥1IG UO PI3IUNOK Suawydadg 213B3IS UO PAIUNOK SUIWIIAICS
16-6 | 0S-S | 675 | 8%-¢ A1uo (9=5 | 9v-s | s%-5 | wu-g A1uo §s-6 | ws-¢ | €s-5 | z5-§ £1uo
8-% L-9 9-% S-v 814370 =% €-v -9 1-% SJAITD Z1-% 11-9 o1-v% 6-% STA3TD
8-2 [ 4 9-Z s-2 aaddn o3 - €-Z -2 1- xaddn o3 t1-2 11-2 o1-7 6= 13ddn o3
8-¢€ (-€ 9-t S-t payoswily 7-€ £€-€ Z-¢ 1-¢ payoe31y Zi-¢ 11-¢ o1-¢ 6-¢ payowaly
8-1 (-1 9-1 S-1 313e3g *-1 -1 (45 { -1 213EB1S zi-1 11-1 o1-1 6-1 S13®IS
89-2 L9-2 99-2 S9-2 6 %9-2 €9-2 79-2 19-2 6 UST 1L-2 0L-2 69-2 6
- €7-2 tA ol 4 -7 ) o%-T 6€-T 8€-¢ Le-7 8 8v-¢ -7 9%-2 SHy-T 8
89-¢ L9-¢ | 99-¢ S9-¢ L 29-¢ €9-¢ 79-¢ 19-¢ L TL-¢€ T¢L-¢€ 0L-¢€ 69-¢ L
: |
r9-€ €y-t n-t 1o-¢ 9 o9-¢ 6€-¢ s€-¢ LE-¢ 9 gv-¢€ in-t 9%-¢ SH-¢ 9
89-1 19-7 99-1 S5-1 S %9-1 €9-1 79-1 19-1 S TL-1 -1 0L-1 69-1 S
-1 €v-1 -1 -1 ” 0%-1 6C-1 ge-1 Le-1 ¥ 8%-1 (71 99-1 So-1 Y
89-7 L9-% 99-% S9-% € 79-% €9-n 29-% 19-% € L= L= 04~ 69-% €
hada Ev-n tAai T7-% Z o%-% 6€-% 8€-% Le-v 4 897-% (9% 9%-% Su-v 4
8-S (549 98-S S-S 1 »-< £-< Z-¢< 1-S i Z1-s 11-¢ 01-¢ 6-< 1
% pod £ poy  pod 1 poy 4 poy £ poy Z poy 1 poy 7 poy ¢ pod ¢ Po¥ 1 pod
13p10 a3pl1Q a3p 10
Arqmassy 11ng 1Ind -udqg Aiqmassy [1nd 1ind "uég A1quassy 1Ind 1Ind -udqg
Ul pPajunoy suImIdIdg Ul PIJUNOK suawmydadsg UY PIIUNOK sSuawioIdg

A{quassy 9s0(-93Bipamiaiu

1

$IT[QWISSY 1IS3] S[®IAIIeK OTuadoAiD ut
SUIWIDIAS PIILIPBILI] JO UDIILDOT IATLR[3Y

10-£ 219qe]L

A{quassy 980Q-mo0

146



APPENDIX

GTR RADIATION EFFECTS TESTING SYSTEM
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APPENDIX

GTR RADIATION EFFECTS TESTING SYSTEM

The GTR Radiation Effects Testing System is located in the
Reactor Operations Area at the north end of the NaRF complex.
Figure A-1 is a plan view and Figure A-2 is a cutaway view of
the system. A closeup of the irradiation test cell and the
reactor tank is pictured in Figure A-3. During operation, the
reactor is moved into the closet-like structure built into the
north wall of the GTR tank. Items to be irradiated can be
located on the north, east, or west sides of the closet, as
indicated in the figures.

The reactor closet is constructed of 1l-in. aluminum plate
and is partially covered by 1/4-in.-thick boral to attenuate
thermal neutrons. The boral extends 36 in. east and west from
the closet along the tank wall and 36 in. up and down from the
horizontal centerline of the reactor core. The centerline is 57
in. above the test-cell floor.

The Ground Test Reactor (GTR) is a heterogeneous, highly
enriched, thermal reactor that utilizes water as neutron mod-
erator and reflector, as radiation shielding, and as coolant.
Maximum power generation is 3 Mw. The GTR, in an aluminum

enclosure to facilitate cooling-water flow, is suspended by an
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open framework that is carried on a horizontal positioning
mechanism at the top of the reactor tank. This mechanism per-
mits the reactor to be positioned at distances ranging from

2 to 87 in. from the north face of the closet.

Adjacent to the north wall of the irradiation cell is the
handling area. In this area, various connections are made for
cryogenic, hydraulic, and pneumatic equipment.

An integral part of the GTR testing facility 1is the sbhuttle
system, which is used to move test assemblies into irradiation
position. This system consists of cable-driven dollies mounted
on three sets of parallel tracks. The tracks extend from the
irradiation positions adjacent to the reactor closet, up an in-
cline to the north wall of the irradiation cell, and to a loading
area on the ramp just north of the handling area. The system can
be operated from either the control room or the dolly motor-drive
shed on the north ramp. Full-coverage televiewing of the entire
shuttle system is provided by means of a closed-circuit television
in the control room.

The control room (Fig. A-1l) is a below-grade, reinforced
concrete structure adjacent to the GTR system. The coutrol room
provides a shielded area for reactor instrumentation, control
consoles, and test systems ag well as special test equipment

needed to conduct radiation experiments.
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