UNCLASSIFIED

AD NUMBER

AD489668

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Admintrative/Operational Use; Aug 1966.
Other requests shall be referred to Rome
Air Development Center, Attn: EMLI,
Griffiss AFB, NY 13440.

AUTHORITY

RADC, USAF 1ltr, 17 Sep 1971

THIS PAGE IS UNCLASSIFIED

m R‘ADC-T§~»6§-4?4~, Volume [l

inal Rsp- : 5

RELIaBILITY CENTRAL AUTOMA IC DATA PROCESHKS SUBSYSTEM
Deta Menagement Systom Survey

Ayerboch Corporation

TECHNICAL REPORT NO. RADC-TR-48-474
August 1966

This document is sabject o specini
export controly and éach inamittal
to forr ipa govendineiB.or fotel

nationalt pw M giade
prios mﬁm
GAFS, .?. :mm

L8

wy

When US Govermsens denwisgs, specificatiohg,

 pebe ROVEISMEn? pescursmsat opemtion, the fovrrament thomby incums
For sy 2 deves: wud ' ’z&am}a’emmmzmw&aw
formuisted. farsiched, or i iy way sepplisd Be said drawlags. specificitions. or ather
data i3 not te be repandad, by implicadion or scherwian, ga in sy maaner Vrensing the
holder o any seliey f2.508 57 corporatio., o conveylng any sighia o permission many-
factarer, wae, or sell any parsamwd tnvention that ndy is ay way be relgted therets.

e i R g 8 NG

(79 Fade

@ TR b6— F 7= Vol=3

t!um; l” . Data Management System Survey,
Firald sl

Auesbach Corporation

(5AFL30(c02)-3820
(0AF-55/9

(105, 0, SQM— W, Cre wlé*f, M, Qs thal
? Hlu] This dacument is subject to special

~ export controls and each transmittal
to foreign governments or foreign
nationals may be made only with
prior approval of RADC (EMLD),
GAFBONY 13140,

(DAgy 66
Bsop () 1280~ TR-Vol- 3

MAINL ENE ENGINEERING MAPLE SMHADE, M 1.
9/23/66 240

0’7 050

RELIABILITY CENTRAL AUTOMATIC DATA PROCESSING SUBSYSTEM,

g e 2,

P e Spp——

FOREWORD

. This three-volume final technical report was prepared by the
Auerbach Corporation, Philadelphia 3, Pennsylvania under Contract AF
30(602)-3620, Project 5519, It is identified by the contractor as
128N-TR, The authors were Dr. J, Sable, W. Crowley, M. Rosenthal, S,
Forst, and P. Harper. The Rome Air Development Center Project Fngineer v
vas Cesper DeFiore, FMIID.

This techuscal report contains information embargoed from relesse »
to the Clearinghouse for Federal Scientific and Technicsal Information,
Department of Commerce, by AFR 400-10.

This technical report has been reviewed and is approved.

Approved: . t .
FRANK J. T NI
Chief, Information Processing Branch

’ ?
Approved: 2@0‘.& ,‘é 94 v

JAMES J. DIMEL, Colonel, USAF
Chief, Intel & Info Processing Division

Y

FOR THE COMMANDER(A 111 i
“TRVING J | GABELMAN —
Chief, Adyonced Studies Group

i1

ABSTRACT

" This report is a continuation and updating of o previous survey of data
management systems {RADC-TR-189, Voli. II, July 1965 (AD-469-269)).

GIS {(IBM), IDS (GE), and MULTICS (BTL GE, MIT) are discussed and
compared with DM-1 (AUERBACH Corporation}. Oi these systems, only DM-1
(described in Volumes I and Il of this Final Report) and GIS have all the characteristics
of a generalized data management system, as the ter.n is defined in this report. IDS

is a programming sysiem with extended random-access capability, and MULTICS

is an operating system for a multiuser, nultiprocess’ng system.

TABLE OF CONTENTS

Panagrapu Titee Pace

SECTION 1. INTRODUCTION

ol o

SECTION 1. TERMINOILOGY

SECTION HI. SYSTEM Re i ORTS

« 3.1 GIS SYSTEM REPORT. b Cets et et esees 3-1

Objectives. v v v v v v nonn T
Imygzicmientation and Status s e s s e e e -
System Deseriplion. . . oo v et e i tvevesesanss B
Comparison WithDM-1,....... -

.
Pk b ok ek
. .

e g 00 0
*
Ot =

w
-
Do

IDS..-..‘........... -------------- L T I T T B S S R R Y 3"16

i

Objeetives, ¢ v v v vt it i e i i e e iotesesrssonesssseneanses 316
Implementation and SLatus & v v v v v et vt b et n . e eaens 3-17
System Descriplion. « o o v oo vo vt v ts it dsasaenssas 3-17
Access Mechanisms . o v i v v v s s e vroucennrsnanssssesseess 3-23
Programmer Language O B X
Comparison With DM-1 e R4

© 60 02 2 0o 0
S Q1 DO

0919 1o 1o o

ad
)

MULTICS‘..!I.'Aonoollinll..o..c.l.nlo.llc.eioon. 3-25

ObJECLIVES. + v v v e v v nvneornsnsnsnsaneas et e, 3-25
Implementationand Status e e e e e . 3-26
User Languages. e e e i e e h e e e 3-26
Job Processing Strategy . ..o v vv v v i i I P
Processing Capability........... e et i 3220
File Structure v v v v e v v v vt C e et s e o e 3227
Coagarison With DM-1 it erinrans teeeenes 3-29

=23 I N L

SECTION IV. BIBLIOGRAPHY

4-1 GlSccOOloutolooluin"oll'lllo‘.ln.t.o.ot...'cn. 4"1

4.2 ms......'. --------- L R I I I I D I BN I I T T 4'1

4.3 h1U]¢‘TICS¢..0.00..00.0.".UO'D'DOOIltolnolobtiI‘O 4—1

T e .- BT S R e i

T A et e o N s s

LIST OF ILLUSTRATIONS

Fioune Titoe Pasz

3"1 AGISFﬂe...-......,....-..o..... oooooo @ 5 @ 0 o s 0 e 4 e 3"7 I

3-2 AGISFile Exampleo vttt e vntncreensenooncsenenas 3-8
3-3 Subrecord Occurrence Controlo oo vttt e vencoaneeans 3-10 .
3-4 Physical FOrmats. « o . ¢« c o e v s vt o s evutosnnoveooasecness 3-12
3-5 SPHt ReCOrdS. « v v o v v v et s s enansviossoeriancseonnneess 313 -
3-6 IndeX TYLEB. o . v o o o v o c oo avasnncunsosossoosonsnonens 3-14 i
3-7 Data Structures . . . oo e v v et e v oo venscenaasascaononas . 3-19
3-8 Purchasing Data EXAMPIE . o o o v v s o e ve e e eneenennesnsens 2220)
3-9 IDS Chain for Purchasing Data Example. 3-21
3-10 Format of IDSRECOTAS « 4 v v ¢ oo o v evevnonnnnrennneeness 3-22

N

e s T ———

SECTION I. INTRODUCTION

This comparative survey of large -scale data management systems is sub-
mitted to Rome Air Development Center in accordance with Change '"A" to Contract
AF 30 (602) - 3820, dated 14 October 1965, and is part of the Final Report for that
contract (Completion of ADPS DESIGN for Reliability Central). This report also iepre-
sents a continuation and updating of a survey of data management systems submitted to
RADC as part of a prior contract. *

These surveys are intended to document current techniques in data manage-
ment, and to indicate how the AUERBACH data management system for the Reliability
Analysis Ceﬁtral. DM-1, ** has drawn on availakle data management technology, and
vrhere it has contributed to that technology.

* J. Sable, et al: Design of Reliability Central Dats ement Subsystem.
RADC-TR-65-189, Vol II., July I9 -469- . Contrac - 3433,

** DM-1 s AUERBACH Corporation's designation fox the data management system
design referred to in the 1985 repo:t as the Reliabilily Central Data Management
System, Referencesto DM-1in this volume refer to the system des.gn as documented
in Volumes I and II of the 1966 Final Report. .

1-1

The systems covered ia the earlier (1965) survey are as follows:

RECOL (RCA)

ACSIMATIC (RCA)

ASO SYSTEM (University of Penneylvania)

IPS (IBM)

HQ, USAF SYSTEM (iBM) .
COLINGO (MITRE)

LUCID (SDC)

ADAM LTTTC ‘

In this report, some material on MULTICS (BTL, GE, MJT) is presented,
and IDS (GE) and IS (IBM) are covered in some detail. Of these three systems, only .

GIS has all the characteristics of a generalized data management system (as the term is
defined in Section I}, IDS is a programming system, and MULTICS is an operating
system, !

As stated in the 1965 survey, it is difficult to present a comparative survey
of several systex;ls in one technical area, without giving the erronecus impression that
judgment is being passed ~n the approach taken in the systems under consideration.
There is no such intent ir this report. In order to make comparative analysis meaningful,
the functions, design festures, and operational capabilities of the AUERBACH DM-1 are
compared with each of the other systems. These comparisons should be treated as
comparisons of facts, not as judgments as to whether the features planned for DM-]
should have been present in the other sysiems or vic versa.

e, <t A e oS e o+

For the benefit of the reader who has not read Volumes I and Il of this report.
DM-1| s an extended data management and operating system for data processing jobs.
It provides a user-oriented comriand ianguage and query system, but its programmer
interface is via a service package accessible through a procedure call (subroutine mode).
It doec not contain a unique procedural language, but it will accept (as does any operating
system) programs compiled from any source language. However, all references to the
data hase are made as logical {tem requests via service package calls so tuit 1o physical
I/0 statements exist in the source program (therefore, no 1/0 instructions appear in the
okicet program). This allows the programmer to code in any appropriate procedural

. language and allows data references to be parameterized and bound for the service

package at job execution time.

1-2

NSRS S S e e R SR o

A et of system support jobs exists in DM-1. These jobs, wlach cow "~

requzsted via a user-oriented command language, are used to deiine new daty viv.wiurpd

for the data base, iucorporate and maintain the datz, and enter new program ;v -
definitions.

o

R SR

ineie

28

SEZTION ii, TERMINOLOGY

Many daza processing centers exist in a problers environment vhich is
characterized by a large data base and itringent requirements for the rapid and
accurate assiinilation of new data, changes in the data structure, interrogation of
data content, and analytic results tased on data content. Examples of such problem
environments 12clude intelligence and command aud control applications in the miiitary
and managemen: information and inventory control applications in industry, to name
afev. A data management systen is defined as the software environment which the

- data processing corter provides as a tool to a staff of usars, programmers, and
. operators responsible for main*ecance, query, and analysis of the data base.

In order to sharply focus the uiszussion of system characteristics in this
study, it will e important to discriminatc among different, albeit closely related,
conrepts. Because of the still early atage of development of the data management
h system field, and the util{zation of equally new techniques in time and facility sharing,
thesa >~ncepts have not had the henefit of standardizatior of terminology.

L Al

2-1

b St ¢ A iy P, A i it e e I AP T

One aspect that is essential to the clear understanding ~f data management
systems is the distinction between data content and data structure. Data structure
refers to the relationship between items (as named classes of data) such as the generic
reiationship among EMPLOYEE NAME, EMPLOYEE RECORD, and PERSONNEL FILE
in 2 corporate data basc. The data coment of a data management system is the set of

data values that comprise declarative statements concerning the objects of the environ-
ment outside the machine system which are of interest to the users of the system {such
as the names cf specific 2mployees). This collection of declarative data about the out-
side world is called the data base and in some sense, represents an ahstract medel

of the objects in the outside world. The data bas~ makes up what is usually the majority
{but by no means all) of the data in the data management system. A large part of the
data in the system may pertain to the definition of data {names, structure, and format of
data items) and its location in the data base. This data-Gescriptive data (data about
dats) is located in the system directory (or directories).*

It is important o distinguish clearly between the physical and logical aspects
of data structure. Physical structure refers to the disposition of data on the storage

media and i usually connotated by such words as: bit, byte, word, page, segment, block,
irack, reel, etc. These words refer to the puysically accessible data elements that

are recognizable by the hardware at variuus processor and accessibility levels. In
particular, a page is the allocatable unit in core storage. Each page occupies a known
block of contiguous locations in core. A block, sometimes called segment,* is an
identifiable program or data unit which can occupy a page and can exist both in core

and in external storage media, possibly :n more than one copy.

Logical structure refers to the named data elements and their relatienships.

The named dats elements are called items and can be categorized into compound (struc-
tured) items and simple (elementary and/or terminal) items. Compound items are items

* One of the systems discussed later, IDS, does not have separate directories, but
carries structural information with the data and compiled with its programs.

** The word segment is used in a special sense by the designers of GIS. Its local -
definition appears in Paragraph 3.1 in that system report.

made up of other items; that is, they have a nested structure, Simple items are vari-
ables or names of properties or attributes of outside-world elements. They take data
values; that is, they are unstructured fields in the data base which can be characterized
as to type (binary, integei, alphanumeric, etc.) and length (fixed length or variable
length). For example, MANUFACTURER may be the name of a simple item or field

in the data base which, in a particular instance, has the value RCA. Synonymously, one
may say the attribute MANUFACTURER has the value RCA. The outside-world elements
that are described by the declarative data of the data base are messages, events, and/or
objects which form the reason-for-being of the system and are the main concern of its
users.

The term data base itself can be thought of as the name of the maximum item
of data — the root of a data structure tree and all its subnames. The data base is com-
posed of lesser compound items called statements, files, records, and links. A file is
a compound item made up of an arbitrary number of items called records which have
the same logical structure. That is, a replicated item and its parent are called a record
and a file, respectively. A link is an item that refers to another item which is physically
remote. There are two logical interpretations of the relationship between the source
item containing the link and the target item to which it points. One is a generic-specific
relationship in which the target item is logically embedded (but physically nen-embedded)
in thc source item (and therefore an item with more than one parent). Another interpre-
tatiou is an ordering relatiohship in which the source item precedes the target item (with
no generic relationship implied). The correct interpretation may be implicit in the proc-
essor, determined by context or position, or may be indicated by an explicit ""tag. "

In some systems, the term repeated group or repeated set is used to refer to
files that occur within records. The number of nesting levels of items within items is
logically unlimied and may reflect the hierarchic structure of objects in the outside
world (e.g., assemblies and sub-assembnlies of components in equipment and systems).

The term statement is use« -~ denote a compound item made up of anyr fixed
structure. Thus files or records are statements of a special kind.

Lo e e > s S

The following eymbols will be used in illustrating logical data strictures in
this survey:

Statement i

File

Field ' .

The following hypothetical structure employs these symbols:

{

Ca)
(=)
.
D
E
! — o |
| l
|
|
I {)
l
N J ;)
K, | '

2-4

,,,,,,

T fnE PENIORERTE. WEmaawr ko SEE 3 fhowr dEvee ANDEEwes T e
Lo T wet Bamemes o vl g & segie ems. w i C st D Yo e
s repmemraedios for seonvis o s T xef L T THEcommNCUR GRS T
seonrte wiL te el vheg fie veod wwe & S weoe ss S Sk owre. T 1 rececds
vt o Seide, Japd X Foarlkd X v mirawd av Yeapg 3 ok sieut s 20 o
wr e 7 opoerds.

WA BN

s { R R

PRrS

o

R

o

T~

SECTION lll., SYSTEM REPORTS

3.1 GIS SYSTEM REPORT

3.1.1 Objectives

GIS (Generalized Information System) is a comprehensive Data Management
System that is being develop-~' bv IBM Fcderal Systems Division. It is designed to
operate within Operating System /360 to support a wide variety of data processing appli-
cations by providing facilities for defining, maintaining, and processing data files and
unformatted text,

GIS provides a user-oriented interface which permits the description of logical
data relationships and processing tasks without concern for the processing devices,
physical formats, and device operations invoived in manipulating the data.

A number of variable parameter statements, which together constitute the GIS
language, are avaiisble to sllow a uaer to establish and modify the more static control
tables, to enter task specifications, and to control task execution. The parameter con-
tent of the control tables and task specification are combined at execution time to direct
and ocontrol the flow of program operations. A wide range of file structures and organiza-
tions can be estsblished, maintained, and used.

3-1

|
|

o ATy - W R e TS -

e e e

P " S

3.1.2 Implementation and Status

GIS is a set of programa for System/360 that are designed to perform data file
eatablishment, maintenance, retrieval, and presentation operations that are common to
imany data proceseing applications. C_S is expected to function on a range of System/360
configurations under control of OS/360. It may be op¢ rated in either a job sequential mode
or a teleprocessing (multiprogramming) mode with remote terminals. The minimum con-
figuration for the job sequential mode is Model 30 F (65, 536 bytes of core storage) and,
for the teleprocessing mcde, a Mcdel 40G (131, 072 bytes of core storage). In addition,
GIS programs require approximately 500, 000 bytes of direct access secondary storage
and an interval timer.

GIS programs are run a8 jobs under the 08/366. The iiplementation language
for the GIS translator and system programs is Assembler Language. Parts of GIS are
expected to be available in 1967.

Alihough quite different in concept and design from its predecessors, GIS is
the latest in an evolutionary line of IBM file control systems, represented by TUFF,
TUFF/TUG, FFS, and IPS, * developed for military operations control centers by IBM
Federal Systems Di* 3ion. GIS will be snupported by an IBM Applications Group (Type 11

support).

3.1.3 System Description

3.1.3.1 User €8

3.1.3.1.1 General, Although GIS runs as a job within 0S/360, it has many of the features
of an operating system itself. A GIS job is made up of a series of JOB control cards
followed by a task specification. Within each task GIS will exercise control over a number
of GIS and non-GIS (user supplied) programs.

08/360 provides the overall control at a given installation concerned with
receiving, queueing, and sxecuting jobs. Corememory allocation, channel time allocation,
program loading, snd multiprogramming functious are all handled by O5/360 The G'S

* See¢ RADC-TR-656-189, Voi. 1l for a discussion of IPS,

Ry o ndt e

Sl iR 4 R A

ke

mx! ey

Sopd g

run is initiated by 0S/360 in response to the GIS JOB cards. GIS itself hag a control
mechanism which interprets the task specification. '

The task specification contains task control information, the names of generalized
GIS service functions (e.g., CALL and QUERY), the parameters needed to perform the
desired action, and user-supplied (non-GIS) programs.

There are two basic modes of GIS operation: JOB-oriented and TP-oriented
(telecommunication processing-orientation). The TP-oriented mode takes advantage of
the capability of 0S/360 to handle multiple messages from the telecommunication devices
attached to tke sysiem. In the TP-oriented mode, multiprogramming contrals }n 0s/7e9
make it unnecessary to initiate a new job for each new fask specification. In thie'JOB-
oriented mode of operation, the user may enter the job from a variety of devices, including
telecommunication devices, but, as stated above, must initiate a new job for each task
specification. The job is then processed in accordance with the priority assigned by the

originator.

3.1.3.1.2 Job Specification Language. GIS provides a language for specifying the tasks that
compose a job, their parameters, and the condition for their execution. Task specifications
can be saved by GIS and executed when called by the user. -

The forma. for the request to save a task specification is given below:
SAVE INPUT STATEMENT SET <task name> <task specification>

A task specification in the GIS Language is a series of commands and conditional state-
meoents to execute GIS and user-supplied (non-GIS) programs. A task specification may
containopen (formal) parameters whose values must be supplied by the task specification
which names them, or by the user at request timeo,

A GI8 program named CALL will bind the formal parameters of a program. Its
parameters are a task name and its parameter value list:

CALL <task name> <parameter list>

The parameter list must svpply values for all the formal parameters of the task named.
Formal parameters in the task specification are named
18,82%,...

indicating the sequence in which their values must be supplied.

3-3

e U

PR E AR

- A AR ¥ e

Operation of this program or any other GIS program in a job requires a
commard of the form:
OPERATE GIS PG <program name>
PARAMETER EQ <parameter list>

. 4

For example, the statement:

OPERATE GIS PG CALL PAYROLL PARAMETER EQ AUG 7

will cause the GIS program "CALL" to bind the user supplied program "PAYROLL"
with its parameter "DATE" = AUG 7

For user (non-i1S) programs in which no parameter binding is necessary, the ccmmand
is of the form
! OPERATE <program name>

3.1.3.1.3 Query Language. As part of the job specification and request language dis-

cussed in the preceding paragraph, GIS has a condition-defining capability which permits
a logical (Boolean) condition that must be satisfied by each ecord before it is eligible
for further processing. Conditional statements can be inserted in any task specification
as a condition for further processing, such as retrieval, data reduction, updating, re-
porting, etc. When combined with a retrieval, reporting, or tabulating function, GIS
accomplishes what is called a QUERY. In a query, certain functional! and data reduction
operations to be rarrie. out, as well as the forma* la which the da:a is to be presented,
can be specified.

A QUERY task specification begins with the word QUERY, fo:.owed by a file
name, a logical condition to be satisfied by records of the file, and a statement specifying
the data to be extracted and the processing to be carried out on eligible records. Because
of the file name requirement, a QUERY {s imited to 2 single, identifiable file.

3.1.3.1.3.1 Conditional Statements. The conditional statements invoive terms which
take the following form:
<nam. of field> <comparison to be made> <basis of comparison>

e i YT T

These terms may be combined with AND, OR, ~nd AND NOT operators.
be used as required. For example,
IF AGE EQ 21 AND HAIR EQ BLOND OR BROWN
<name of field> may be any valid field name in the file being addressed.
<basis of comparison> may be any field value.

Parentheses may

<comparison to be made> may include any of the following operators:
{: » >, <, #, >, <, BETWEEN, SCAN, MASK, CHANGE}

The SCAN operator tests the field for the particular pattern of characters specified. The
MASK operator permits "don't-care' positions in the acan. The CHANGE operator does
not require a basis of comparison. It will indicate '"true" for any value which is different
from the value of the same field in the previous record.

rhe truth value of each term is evaluated with respect to the appropriate data
elements. These truth values are then combined according to the condition (IF — statement),
following the vsual rules of Boolean algebra with respect to the AND, OR, and AND NOT
connectives.

Those data items for which the condition is true are subject to the processing
given in the remainder of the QUVERY task specii.cation, as indicated below.

3.1.3.1.3.2 Summary Operations. A facility exiais to create summaries subsequent to
retrieval but prior to final output (i.e., ina QUERY). The following operators are included:

TOTAL - causea the aummas.on of the non-blank enulea
of the speciﬁed fiela for all selected reeonis

COUNT — oounts the number of non-blank en’um of a ‘ap'ecmad fteld,

TALLY — counts the number of times a proceaure encounters
the TALLY statement, ‘

AVERAGE -~ causes an swerige to be calmlated t‘or a specmed
field.

3.1.3.1.3.3 Dgta Presentstion. Two cmmmda may be uted to ~btain duta g:resenuttons ,
dnrlng an updste or reme\ral tesk. : ‘

LIST - distributes across the page the data (under associated
field headings) from the selected fields. A standard format
is used and the output appears on the device associated with
the query input device.

FORMAT - permits interrupted field headings and data lines,
variable width, height, and spacing, and output device selection.

Either command can be pre-stored in the task specification for the query or
added at run time.

3.1.3.1.4 Data Description Language. GIS gives the user'(e.g., the prog.ammer)
the ability to define a file once and then refer to the file and its records and fields, by
name (in task specifications), without further reference to its storage format or organ-
ization. GIS stores and refers to the data description so that tasks can be executed

which reference data elements symbolically. Data organization or fc *mat may be changed
without necessarily invalidating esta%!ished task spccifications which refer to the modified
data descriptions. The data descriptions and file processing controls are stored in a
standardized table structure for each file.

3.1.3.2 Data Organization and Structures

3.1.3.2.1 Data Base Organization. The most generic data"element in GI3 is the file,

and each data descripiion must begin with a file name and i8, in effect, a file description.
The types of structures which can exist in a file, however, are quite varied and general.

A file is composed of an arbitrary number of items, called records, of the
same logicel structure. A record may have a multilevel structure which may be described
as follows: a GIS record is composed of a single '"'segment"* followed by some defined
oumber of embedded files, where a segment is a string of a defined number of fields (at
the same level in the record).

This defines (recursively) what is called a {ile in GIS. The general logical struc-
ture of a GIS file is tllustrated in Figure 3-1.

* The word segment is GIS terminology. It is a DM-1 stitement whosc Subjtems are fields.

i Tt

A R T

t
b2
<

A GIS File

____[_——-\ An arbitrary numher
) »{ records

Segment ’ } A single segment

e
¢ Some fixed number
'l of fields
\
Some fixed
. number of
. files

Figure 3-1. A GIS File

When there i3 more than one embedded file in a record (at the same le-el), esch
embedded segment must be identified by one of several opticns {to be described helow; auch
as a key field which is coramon to ail regments at that level and which takes a unique value
for each embedded file. An example of a GIS file o: zanization is shown {n Figure 3-2,
which shows the structure of a hypothetical file called File Zero., The records of File
Zero contain & Level 00 segment (made up of fields C, D, and E) and two subfiles, These
emhbedded files, Subfile 1A and Subfile 1B, contain Level U1 segmenis wihcss firet field
is a key {ield whos~ value is "A" for Swbfile 1A and "B" for Subf!le 1B. The Level 01
segment in 1A recor:is comain the additional fields I' and G. The Leve! 01 segment of 18
records contains the field J in addition to the key. The 1A records also contain » Level 02
File. The Level 02 segmoent need not contain a key {ield as there is only one Level 02
segment type in the strueture. The Level 02 segment contains the information {ields H and 1.

e e gt s e

~1 File Zero

\—Record

Level 00
Segment

o

txs

. : Subfile
: 1A —

)
\fﬁzcords /

‘ Level 01
’ Segment
..' V'AH Ke}r
| | S
G
Level 42
File ——\
02
Subfile _R_t‘-cvrds /
1B N
: s 1B
: Records e e Level 02 <
) Segment
: - |
, Level 01 ;
Segment P 1 L
"B Key ‘
N ;
t 'Figure 3-2. A GIS File Examplc i
a L
? - :
i
’ g 3-8 ?
}
‘ .

Since the size of a subordinate {ile may be different in @ach parent record, a
definition of fi’e size (subreccrd occurrence controf) must be established for eack file.
Taree optioas .. svhrecord cccurrence conirol are provided by GIS, as illustrated in
Figure 3-3. In the first optoa, Figure 3-3(a), each segment must contain a record-
count field for each subordinaie file {(File 1A and File 1B).

In the «econd option, A key field which is present in every segment must be
definad, In Figure 3-2{3, this xey is shown 3 the first fieid of every segment. Its
value is "2 in every File Zero record, "1A'" in every File 1A record, and "1B" in
every File 1B record. Thus, the key field serves as anidentifier of every segment, thus
fulfilling the needs of subiacerd occurrence control at the expense of the space for this field

in every segment.

In the third option, a unigue one-character termination code is used to signal the
and «f every file. As indicated in Figure 3-3{c), the File Termination Code occurs as
a single character after the last record of every file. While this device is efficieat in
space, it is ussble only where it can be guaranteed that the bit pattern representing the
File Termination Code cannof cccur as the first character of a segment. *

A field is & terminal GIS item —~ the smallest unit of data that can be referenced
or described. The raquired descriptive elements for a field are its relative position in the
segment, its name (and synonym, if any), its type, and its length. Field type may be any
of the {oliowing:

{1} Binary,

{2} Decimal,

(3} Fleating point,
‘ (4 Alphammmeric.

T
s
&
ko
.
.,
v
s
3
I
bed
e
EN
g
B3
¥
)
e
3
¥
=
=
&
RN
¢
>
E3
2
W
=
N
¢
»
§
2
4

Tt

An alphmﬁmeric field may be eitter fixed or variable in length, whereas all others must
be fixed-length. Length control for a variable-length field may be provided by one of two
options: count or terminating code. In the count option, each oceurrence of the variable-~
length field will be preceded by a ""length' field indicating the number of churacters for
this occurrence of the field. In the terminating-code option a user-selected special
character is employed to mark the end of each occurrence of ihe variable-length field.

* The GIS Application Manual implies that this character meay not occur iu any field — a
considerably stronger restriction.

s M L ik I s i s)

T

e Ui A Ml vt 1+ o A

apny) Jupwujwray, ¢ uopdo (o

8po) UOPBUIULISL 3L %

g1 a4

(OO IDUIIINDOQD PIodaaqng £-¢ sandiyg

A3y :guondo {q

Hi a1g

013z M4

wmop :[wopdo (e

mawmdag
10 [@a¥]

1
ey |

a1 %13

hemeacng

" ¥
5 19A¥Y

epicaay €1 0

ﬁr:

3-10

3.1.3.2.2 Physical Data Formats. In order o accommedate various processing regquire-
- ments, GIS provides three physical format options for files shown in Figure 3-4. In the
first cption (Mnear record), shown in Figure 3-4(a), the data in each record is physically
stored in the same sequence ae its logical definition. That is, referring to the file shown
in Figure 3-3, the fields of the Level 00 segmer* are followed by all Level 01 segments
of File 1A, followed by all Level 01 records of File 1B. (f the 1A records had contained
a Level 02 File, those segments would have preceded the Level 01 segmenis of File 1B.)

In the second and third options (split records), only the segments in the same
level of each fﬂe'are stored contiguously. In option two (link type split record), shown
in Figure 3-4(), and Figure 3-5(a), & link field occurs as the last field of each embedded
segment. This field points from each embedded segment to the location of the segment

to which it ia subordinate (detail-to-master linkage).

In option three {(chain-type split records), shown in Figure 3-4(c) and Figure
3-5(b), a chain of links exists which originates in each master segment and threads
througu each record of an embedded file and back to the master. Thus, a master segment
would contain g link field for each of its embedded files and, also, a link field to the next
record (or its master, if it is the last record) at its own level. (Thus, a chain-type split

record has the same structure as aun IDS record, which is to be discussed in Paragraph
3.2). - -

3.1.3.2.3 Indexing. Indexes in GIS can be organized in any of the four ways shown in
Figure 3-6. The simple indexes shown inFigures 3-6(a) and (c) will index fields occurring
in the Level 00 segment of a file. The compound index shown in Figures 3-6(b) and (d)
can index ficlds occurring in either a Level 00 segment or a Level 01 segment. Either

a linear or split physical organization can be employed in a simple or compound index.
The index value entries are ordered by data-field value. In the case of a linear compound

index, the entries are ordered on both the argument (a Level 00 field value) and sub-
argument (Level 01 field value).

3.1.4 Comparison With DM-1 ’ ?

GIS will offer a programming language, a user-oriented query and command
language, and a set of basic data management functions such as data definition, update,

1A

1A

1A

1A

1B

1B

iB

1A

1A

1A

1B

1B

1A

1A

iB

1B

a) Linear Record Format

File 1A File Zero File 1B
_Segments __Segments Sements
}
s ——anl)
b) Link Type Split Recoids
File 1A File Zero File 1B
Segments Segments Segments
e >
P D
I _
- — -
/

¢) Chain Type Split Records

Figure 3-4. Physical Formats

3-12

L AV

o1

ar g

Poosy vy

VI

9dAyL ury (e

3-13

sadA], xopul °g-¢ 2an81yg

xapu] punodwo) dS (p

and query. GIS programs are compiled by the GIS translator and bacome jobs which

run within Operating System/360. Thue, although constrained to a particular operating
system, GIS provides the user with a data management system of broad ~apability. There
is a capability of incorporating user-aupplied non-GIS tasks in the GIS job. These may

be written in other procedural languages such as FORTRAN or COBOL but since they may
make no use of GIS services, and since they are bound to parameter and data spe~ifications
at compile time, they do not have the advantage of the data independence of GIS programs.

DM-1 differs from GIS in that the operating system functions of job control are
integrated with DM-1, whereas no procedural language, as such, is part of DM-1. As a
result, the user has a uniform interface with the system for entering the definitions of jobs
to be run, and for triggering their execution. The data-accesa s=rvices to tasks running
within DM-1 are provided by resident, reentrant system routines that are accessible via
calls in the object program which are executed dynamically. With the excepticn of 1/0
and the necessity of describing 1/0 parameters to DM-1, program development proceeds
a: normal, utilizing the languagea appropriate to the problem.

Both GIS and DM-1 have a query language with capability of expressing a logical
condition of complete generality. Likewise, both systems have indexes which can be used
for efficient retrieval of data which satisfies the conditional expression. DM-1 uses an
efficient search strategy which utilizes processing that is largely confined to the index in
determining the logical position of data satisfying the condition. In GIS, the indexes use
physical, rather than logical, addresses to refer to data, thereby implying more direct
access to data but additional maintenance due to physical data movement. In GIS, several
imex structures are offered, but it i3 not clear from available documentation whether these
are options open to the programmer or whether the choice of index structure is implied
by the type of data structure used, It is likewise uncliear whether the simple index structure
is used efficiently (e.g., logical product searches) to answer complex queries. GIS offers
the capability of using masks on the compared values to provide for a "don't-care'" capability
within a field. DM-1 does not preseutly have this capability (although it can be added). Also
availgble within the GIS query is the use of several summary operators such as COUNT
and AVERAGE. This capability is also potentially available in the DM-1 query but will
be implemented initially as anslytic tasks (invoked in the job using the query). .

In summary, both GIS and DM~-1 are high-capability data management systems
with some similarity in techniques used, such as data and index structuro and query and

3-15

job languages., Considerable differences exist, however, in the approach taken in the two
systems in the manner of interface of the data mauiagement system with the programmer
and with ihe operating system. The GIS programmer must use the GIS language az his
procedural language and compile an object program which runs as a job within the oper-
ating system. The DM-1 programmer uses standard procedural languages such ae CCBOL.
The data services of DM-1 are available to the programmer as resident executive level
services that a1¢ Integrated as an operating system/data management system environment.

3.2 DS

3.2.1 (l)!ectives

IDS (Integrated Data Store) is a programming system for implementing data
processing systems or applications. Through extensious to the COBOL language and
compiler, IDS permits the programmer to use mass random-access storage as an exten-
sion of memory. Furthermore, IDS is intended to give the programmer an efficient
data organization technique, and a language in which to implement data processing appli-
cations and systems. Some of the advantages claimed for the IDS programmer (as
compared to the COBOL programmer) are as follows:

(1) A reduction in time for the design and programming
involved in the implcmentation of business systems.

(2) A technique for organizing records that is based on
their meaning and acsociation with related records
in a mass storage environment.

(3) An efficient utilization of mass storage devices.

IDS provides a method of descriting complex information structures through
the association of data reocord oontents. Once the data is described, the system automatic-
ally creates a physical structure which suits the sardware requirements of the mass stor-
age device. The task of organizing data sets for meaningful association is handled by the
IDS System. This association is achieved by the use of chains, which provide cross-
referonce linkages between records of a file.

The COBOL language offers the programmer services in field and sequential
r¢ ord processing. However, it is inadequate when processing records in the random
evvironment of the mass storage. COBOL language state=~ots such as those for reud/
write operations producs se:lal ratler than random actions. The burden of organizing

3-18

e e m———— e i 30

¢

A

Lo T e T A VA

PR

data records and the responsibility for the logic involved in processing and maintaining
these records is placed upow. ihe pregrammer. IDS axtends the range of the COBOL
languaye by incorporating the four powerful D3 insiructions -~ STORE, RETRIEVE,
MODIFY, and OELETE ~ as extensions to the COBOL language. Theze perform the
logical fun xdons of record storage, retrieval, modification and deietion. These macro-
instructions work in conjunction with, and as a supplement to, the normal COBOL language.

3.2.2 Implementation and Status

The Integrated Data Store i8 a product of the General Eiectric Company's
corporate research inio integrated business systems. Its eariieat roots extend back to
the system of Report and File Maintenar -» Generators developed Ly the General Electric
Company at Hanford, Washington, That development work was culminated in the develop-
ment of 9PAC (later 90PAC), the Report and File Maintenance Generators for the IBM 7089.
The 9PAC ideas, which were well auited to seriai files, were further generalized to handie
the capabilities and help solve problems associated with randor -access storage.

The Integrated Dﬁt_a Store is pre_aenﬂy operationsl on the GE-205, GE-400,

- and GE-660 series computers. The GE-200 implemeniation was first used on a produc-

tion basis in early 1564. It requires 16K of memory for méaimum use. The GE-206 IDS
differs from the GE-400 and GE-600 IDZ in that it wag integrated with the general assembly

o language for the GE-200 rather tbah with COBOL. This caused some clumsiness in the

e

use of the language. Howsaver, the performance was not affected. IDS itaslf is implemented
in aaaembly Isnguage. '

3.2.3. System Description

3.2.3. 1 Orie Mou IDS iz oriened for use by system dasixmra md programmers
rather thus,&yitam users. That is, IDS does not contain a job request language, 2 job
apeciﬁ'eiiidu language, a query language, or other user-oriented langusges. It contains
a prognmmar language made up of the COBOL langusge plus a series of extensions de-
signed to augment CCROL by mhmdnohg a capability of processing linked data structures.

A descripﬂon of the IDS Syetam will be broken down into paragraphs concerning the file

structure in IDS, access mechaninms, prooessing capability, and programmer language
description.

3-17

e e v e v A 3

3.2.3.2 File Structure. IDS provides the ability to store and retrieve records of any
length within a mass memory. Each record type is defined by COBOL record definitions
to contain a specified number of fixed-size fields and to participate in a specified number
of chains. Different record types have different fields, may participate in potentially
different chains, and, therefore, may have different record lengths. The data fields may
be any format permissible within COBOL.

The most characteristic feature of IDS is its file structure. The IDS File
structure follows a threaded list format similar to that described by Perlis. (A threaded
list is a linked list structure in which the last item on every list is linked back to the
parent itexn that started the list}. In IDS, each record may be an element in a linked
list (since items are in a threaded list structure). A file of records may be subordinated
to a master record by linking to the first member of the subordinate file and chaining
from that point through each record in the subordinate file through the last one and then
back to the master record. This closed-loop chaining is characteristic of all detail
record structures in IDS. A diagram of this structure is shown in Figure 3-7(a).

In the notation of a tree diagram, this data structure would be represented as
shown in Figure 3-7(b). If stored as a contiguous string, this would be logically equivalent
to the embedded structure shown in Figure 3-7(c).

There is no limit to the number of records that may exiat in a chain or to the
number of detailed chains associated with a single master record in IDS. Likewise,
there i8 no limit to the depth of nesting that is permitted; i.e., a record in a chain that
is subordinate to a given record may in turn have other subordinate record chains. A
multilevel structure representing a hypothetical data base is given in Figure 3-8. The
IDS chaining approach to this structure is shown in Figure 3-9.

The items at a given level in an IDS record are fixed-format, fixed-length
records in the COBOL tradition; i.e., the length and format of a specific type of record
are fixed by the specifications of the system designer. Records may have any number of
data fields, each of which i» defined as some number of decimal, alphabetic, or alpha-
oumeric characters. Each record contains #n identification area {which will be discussed

* A.J. Perlis and C. Thornton, ""Symbol Manipulation by Threaded Lists,"
CACM 3.4 (April, 1966), 195-204.

3-18

Master Next Master ‘

abe mmamt e ;

B Last Detail 2
i . luuk to First Detail L{nks to Master g

Detail | def Detail | def

ail A 1

NN

Detail def

a) IDS Detail Chain Representing an

Embedded File in a Master Record p
s TN TS LI CHTE i (Lm0, T, (" C——" C—— — —_ — ——— ——— -
: Returi to Master I —!
A B |
|
P am—— G WS e ‘
T B
g . !]
Next Recorgd _} Next Record |
w—»—,—
Detail Chaig d
“ S e
VS T g
: c =
b) Tree Notation for IDS File
A
g ¢) Embedded File 1 d
i | .
S

Figure 3-7. Data Structures

3-12

.

Purchasing

File

Vendor j

._“Qrendor >
Record
—-—-n—l N -

1 Vendor Name ,

MINT) gl be

Order

L File

e e e

2 ST, i ARG S e

o v -

2

l=
ﬁ
— N
p——
"‘—.’_.’a—'
N
—‘—"’.‘

=
[
8
3
vy
[+

BRI v,

’
| (PO No_,

Figure 3-8. Purchasing Data Example

3-20 ’ . g

ajdurexy wie(Suigvyoang a0y urey) SAI 6-¢ dIndLg

!
i

o{yaMg 19pID wo—

oy1d AxousAug
a1qNg U193}

OIINNG JOPIQ = = e = P
=304 JODUIA SR R e e — {

I9pIO

s e e —— e varce P

i

Py PP seﬁ\—” cens sdse ssce
~\ Lxoyusau] /
- . J T v J ﬁ)
: ¥ _
~ sy
4 I# Wajg A3PIG UO o T wWey ¢
o a. e Lxopuaaug ~
ﬂ!ll.v ghwmoy T
b TN Y ¢ |
Wiy
wajy waY wa
AxoaAuy g W3 19p10 | I# .&, Kxoyusauy
] 98BYOINg]
Y
\ F .\ o3 o mmlion v @0
e ¢ o IL[.Q..\\ (-!ll"llllll s e HQEO r‘ll!il.l
\ —- L ..II-J. h
1y , _
ﬁ urey)

N

J0PUSA

A

S R R st sk b SR g g GRS R AR R T Sy v

e

3-21

————

Detatl of Chain Flelds (Structural Links)

El Pl MIT Nz Pz M2 N:3 F’3 N4 M

4
S~ -
.\ //
\\\\\ //’ -
Identification C![I [Filld‘s Data Fields
Field 1 (Declarative)
INEEE
N N, "= Link to next detail record of chain i

o
u

Link to pricr detail record of chain 1

=
i

i Link to maater record of chain {

Figure 8-16. Format ¢ IDS Records

below), & declarative area which can contain information concerning the objects or sub-
ject matter of the file, and a third area which contains structural links to other recorda.
These siructural 1inks consist of the address of the next record in the chain, the addres~
of a deiail, a subrecord to this one, or, optionally, links to prior records in the chain or
the master record of the chain. This threaded-list approach permits very flexible data
organizaiions $0 be represented in the system. Not only is the arbitrary nesting of one
file within a record of another permitted, but records may be linked according to arbi-
trary criteria of similarity. The format of a typical IDS record is shown in Figure 3-10,

The logical stivcture is mapped into a fixed block size on random-access
gtorage, e.g., disc. A block may contain any combination of record types that are
linked into their respective chains. Space is fully utilized by the automatic packing of
these records within the block. During processing, complete blocks are read into memory.

Therefore, with proper data organization, it is hoped that much of the needed information
will be available in a single file access.

3-22

S 4o e st . it e s m e e S————— e s e

57

Every block begins with & header record. This record contains several control
fields used by the system, as follows:

(3) Reference address of the block,

IR EREI T e

' o (2) Space available in the block for additional records, and

. (3 AnI1/C conirol symbol that indicates whether the block
i has been altered since retrieval.

Records within ihe block contain an identification field which gives the relative
location of the record in the block, the record type, and the record length.

3.2.4 Access Mechanisms

Mo N g
' W

An input-outpu: controller in IDS controls the mass storage device. Its major
function is to control the flow of blocks of records in and out of the paged memory in
response to commands to store, retrieve, modify, and delete specific data records. Tc

3 minimize the mass storage seek-and-transfer time, an inventory of data blocks is
maintained in memory. These blocks are stored in buffer areas in memory. The number
of buffer pages depends on the amount of space available after the IDS subroutines and the
problem-solving routines have been loaded.

el e

M N i

The greater the number of data blocks stored in core memory, the greater the
posaibility that the one that is needed next will already be there. To further improve the
possibility of finding the desired block in memory, the input-sutput controller keeps track
of the sequence of block utilization and bolds the most recertly active blocks in memory.
Blocks which are infrequently accessed are retired from memory as otho:3 are called in.
The input-output controller notes which pages have been modified and writes only the
modified pages back to mass storage.

oI R T A

: Once the input-output controller finds a place for the block in memory, it locates
o the record called for in the page. The fields from the record will be unpacked into working
: storage if a MOVE TO WORKING STORAGE command is specified.

2 ,*%gﬁ?‘?@'

;a’

g 3.2.8 Programmer Language

:% IDS provides the programmer with the ability and requirement to predefine
/- his records, their data fields, and their linkage fields. Once these records and fields
% have been defined, the programmer is free to operate upon the records without further
i

3-22

3

¥ ki

ey T

concern for the details of input or out-ut. the linkage of records, or the protection of the
data from erroneous iccezs.

All hardware manipulation and ‘nform-*i~n r2caggi, control of the disc
storage units is carried out automatical.y to arhic - .he fou» _ajcr processing functions:
(1) STORE - stor:s infoi.naticn and (i ¢ in’ chains,

(23 RETRIEVE — reirieves informati~- from the 1ile,

(3) MODIFY — changes or updat~s informaotivn and 1 links T -
- chains where necessary, an :

(4 DELETE - removes information fron. the file and re-
links chains.

3.2.6 Comparison With DM-1

IDS provides a system building tocl to the programmer by giving the COBOL
language and compiler the capability to process chained data sfructures in random-access
memory. This COBOL programmer orientation necessarily precludes the use of other
procedural languages for IDS programs, but it aliows IDS to be uncommitted to 2 particular
operating system, command languages, or data management strategy.

DM-1, on the other hand, is largely independent of any one procedural language.
In that sense, it is an cperating system which can accept and run objec: code that is
generated by a variety of translators. It provides data-access services dynamically at
run time through program calls to resident service routines. Definition of data structures
and program parameters are separate processes tha. are executed by system support
functions and which are prerequisite to task execution.

From the definition given in Section II, it can be seen that IDS is not a data !
mansgement system by itself, since it lacks a user-oriented interface. Rather, it is |
a set ~ tools wkick permits the COBOL programmer to solve a specific data management
problem: More generally, by providing random-access-oriented, logical-record processing
capabiiries which are not specifically avaibable in the COBOL language, IDS permits the
programmer to design and implement a specific data management system that is suited .

i 8 user's requirements. No guery language or other user-oriented command language
18 built into IDS. By being restricted to chained data structures, however, an ewser tially

3-24

N AL W

sequential search strategy must be used. Also, with chained struct:-Z, inuex pro-
cessing is possible, and link sddresses are embedded with the data. Powerful techniques
for performing logical product searches, such as address list intersection, are not
effective with the chaining type of access used in IDS,

DM-1 uses a centralized data structure definition table and physical contiguity
of structurally related data (within a block), in addition to logical linkage. This results
in compact data sets and efficient utilization of physical storage. Direct physical linkage
is used in only one table in DM-1. Another difference between IDS and DM-1 is the vari-
ability of items permitted. Fields may be of variable length (including zero) as well as
fixed length. Variable length items are stored in v:.:iable length space. It is also per-
mitted to define i.ems (of any structure) which need not be accounted for when they are
missing (in input data), and no space is dedicated for missing optional items in storage.

3.3 MULTICS

3.3.1 Objectives

PR N YO N, DO AR R RSy i TR 1 R N TR I

MUTTICS (MULTiplex Information and Computing Service) is an operating sys-
tem for the GE 645 computer system being developed by three organizations: The Bell
Telephone Laboratories, the General Electric Company, and Project MAC at MIT. The
system will be the etandard operating system for that computer ~ a multiprocessor for
simultaneous processing of real-time and batch jobs.

MULTICS is being developed as & monitor which will accept input from a large
mumber of remote consoles as well as control read-time applications, batch processing,
and jobs which are mixtures of batch processing and conscle requests. An interesting
feature of MULTICS is that it is designed zpecifically with low overhead costs in mind.
For example, an important goal is to operats effectively during overload. Scheduling
techniques have been specifically designed for this purpose.

a%

? The deaigners of MULTICS view the GE 645 computer center as an open-shop
; computer "utility" which must provide service on demand and without ‘advance notice.

2 There may be as many as 1000 remote typewriter consoles subscribing to the MULTICS
; facility. Dependirz on the program demands of the users, 2s many as 100 mauy be active
i at one time.

4

»,& 3-28

N

e v . wr e —————-

The MULTICS designers expect that, although an initial capability is expected to
be operational in 1966, the design of MULTICS will continue to evolve. Indeed, the basic
design philosophy is to permit and encourage this evolution in ~apability.

3.3.2 Implementation and Status

MULTICS is now in the preliminary stages of implementation, and detailed
design information has not been released. Available documentation* is concerned with
outlining gual:; and the techniques to accomplish thesegoals. Specific procedures for use of the
system have notbeen eetablished. The language in which MULTICSis being programmed is PL/1.

The minimum hardware configuration with which 645 MULTICS can run is one
645 CPU, 64K of core memory, one high-speed drum or one disc unit, four tape units, and
eight typewriter consoles. However, MULTICS will not run efficiently onthis minimum con-
figuration, and would normaily be operated thus only when a substantial part of a larger
configuration was unavailable for some reason.

A small but useful hardware complement would be 2 CPU units, 128K of core,
4 miliion words of high speed drum, 16 million words of disc, 8 tapes, 2 card readers,
2 line prinicrs, 1 card punch, and 30 consoles.

The initial implementation of 645 MULTICS software is designed to support »
maximum configuration of up to 8 CPU's, up to 16 million words of core, up to 2 high
speed drums, up to 300 million words of disc and disc-line devices, up to 32 tapes, up
to 8 card readers, 8 punches, 16 printers, and up to 1000 or more typewriter consoles.

It will not, of course, operate efficiently (or in some cases at all) with an arbitrary and
unbalanced mixture of these. For instance, 645 MULTICS would not run well with 6 CPU's
and 128K words of core.

3.3.3 User Languages

Specifications for user languages are not present in any available documentation.
It might be reasonable to assume, however, that a Job Specification Language is contem-
plated for the MULTICS system, **

* The sole source of information for this report is the set of six papers presented at the
1965 FJCC and referenced in the bibliography. Design details of MULTICS have
not been released as yet.
** This is conjecture. bt since the GE-645 is to operate as a time-sharad system, it
seems reasonable.

s e w v L

AE N g

e 9 SR At b i 1 e

The lack of a query language and item awareness at the field level keep
MULTICS ‘rom being considered a data management system.

3.3.4 Job Processing Strategy

Since MULTICS is meant to be the operating system of a computing utility
that serves manv cn-line users, a basic aspect of its bcharacter is discernible from its
job processing strategy. The designers claim that a computing facility tiat is almost
p>ver overioaded 8 spending too much money for computing hardware and that the gsystem

state will oscillzts between/overload and underioad. They further observe that the o

performance of the operaiing syst~m mvst be judged during the pericds of overioad, and
that denial of service to new u~ers during these periods is better than degrading service
over the entire population. The fol:owing somewhat contradictory statements are made:
the system must provil2 service on demand without advance notice and without batching
or pres~heduling; tue scheiuler should get information concerning the urgency o! iobs
from human beings, and dhe - ~heduler should not have any built-in assumptions that
console jobs are eit: ar mo~2 or leas urgent than absentee jobs, or that short runs are
either more or less urgent “»ar long runs. They do not resolve the question of how it
is possible to get an j.dicahcm of urgency from a console that has been locked by the
executive program ai.! depjed service because of an overload.

3.3.5 Processing {apabilsty

In the sense > 1 zemera! *ata management system, MULTICS bas very little
processing capability su..e w« i3 qu ve ~road in scope of application and deals with a data
structure whose riemeniu . re ez, vecords, and Ylocks. However, it is designad to be
an operating systern with mure *han the standsrd capability for multiuser contro;.
efficient paging, and data-acces= proteciion.

MULTICS 1oes mot inciade a query system or other user-oriented data manage-
ment function. Howewer 8tnce 1 a genaral-purpose operating system, MULTICS will
gupport jobs and provide all iat: nanagemeont services, and, p.esumably, will possess
the usual compleruent ¢t aervice ad utility functions.

3.3.6 File Structure

MULTICS data managemen: {. nc.ons are concerned mainly with the most general
types of data set manipulation. This .- mas’ of the functions deal with the data base only

3-27

as a set of files. There is little provision (published) for manipulation of the contents of
the files, except at the phLvsical level (1. e., blocks). One exception to this very general
statement is the fact that tl.» user has at his disposal the abiiity to create and manipulate
a directory or directories ot files. Since a directory is basically a file and allows the
manipulation of named data ses (for example, there are data-lirking operators), some
intermediate level data structur'ng facility is offered.

These comments are coireistent with the notion that a file is formatless at the
system level. In general, this conti tbutes to the fact that the user can view his storage
as being infinite and homogeneous. T.at is, the file designer need not worry about indivi-
dual formats (fields or records) being cnsistent with a particular disc, drum, or other
storage-medium addressing scheme.

The MULTICS system, as describd, offers the facilities to link nodes which
are not connected a priori in the basic structure, and to name paths through the tree,
as well as naming the nodes. There is also an vperator which allows the user to link
paths. These facilities are most useful in the MULTICS system if the user wishes to
write his own search procedure. A generalized secrch is offered, but it may be bypassed
in favor of one which is individually tailored to a particular file.

A tree hierarchy of directories exists. The directories consist of a lisi of
entries, each of which is a pointer to either a file, another directory, or another entry
in the sameor another directory. A master directory is at the root of the tree. Des-
criptive information concerning each entry in the directory is contained in the directory.
An access mode is associated with each entry. This assures privacy of files. A tree
search of directory branches is used to find a file. Records of the file are then accessed
sequentially, witk the file being viewed as a linear array with & single subscript. The
user may himself reference an element of a file by specifying the symbolic name of the
file and its linear index (subscript value). No data structuring capability within the
record (fields, sub-files, etc.' ig present in MULTICS. Data structuring is completely
defined by the user within his program. ‘

Facilities are included for the on-line maintenance of the directory by the
programmer/uaer. Files may be maintained either on-1'ne or off-line.

3-28

b
&
i
|

R i G

Y O e L

o
k2
Pl
{
e
5
&
.
.
i
ke
P
i
e

No output formatting is specified in the available documentation.

The user of MULTICS can assume an essentially unlimited amount of single-
level, on-line storage when designing a system. Since the features of most operating
systems are included in MULTICS, the user also has at his disposal other items such as
dynamic storage allocation and thelike. *

It is important to recognize, however, that MULTICS per se is not adata manage-
ment system as the term is used in this report. The currently described MULTICS sys-
tem is designed primarily as an operating system and, therefore, lacks many of the
features normally associated with a data management system (e.g., it lacks a query
language). Furthermore, the notion of file structure appears to be more oriented toward
systems operation and the control of program segments, rather than toward data files.
However, the file management aspects of the system are such that they warrant analysis
in this context,

The designers of the MULTICS system have paid particular attention to tke
problems of ensuring privacy to a file or a set of files. In general, the MULTICS sys-
tem will be designed so that permission to access a file will rest logically on the branches
(or branch) which point(s) to the file, There are five attributes to a set of permissions
which control access to a file (TRAP, PEAD, CXECUTE, WRITE, and APPEND). These
attributes are essentially boolean flags which may be on or off for a particular user.
TRAP is said to be logically powerful enough to subsume the other four attributes, which
are called usage attributes.

3.3.7 Comparison With DM-1

MULTICS is an operating system for the GE-645 computer which will be able
to support & broad spectrum of procedural languages an programming systems for data
processing and scientific applications in either user on-line or batch mode. The logical
data item services in MULTICS are limited to the file and record level. At those
levels, however, complete multilevel directory acceas can be constructed, with access-
rights safeguarded for reading and writing.

* It is important to remember that the usor is likely to be the programmer, and that
jobs are likely to mean the same as programs.

To a large extent, the data access services of MULTICS complement, rather
than overlap, those of DM-1. DM-1 furnishes logical item access services at all levels
of logical data structure, but relies on a separate input-output system for physical device
1/0 and storage allocation. Access rights protection exists at all data levels in DM-1, and
specific access rights may be contingent on the value of specified data items.

A basic objective of DM-1 (as well as MULTICS) is to achieve an optimal re-
sponse to non-planned service requests. The basic strategy in DM-1 which, it is felt, can
enable it to achieve this objective is the use of a stored user list and job description list.
All job requests wiil be requests from reco;nized users to run predefined jobs. (The acts
of adding new users or jobs to the lists are themselves predefined system support jobs.)
Each user has a known priority and rights for data access, and each job has an estimated

. running time. The intent in DM-1 is to read all job requests within a reasonable response
time and then to schedule job execution on the basis of the known urgency (a function of
priority, deadline, and running time estimatej of all jobs in the curre. mix.

SECTION IV. BIBLIOGRAPHY

4.. GIS

“ Generalized Information System Application Descrggtion,
!EEI, Ezﬁ‘ .= - 3
GIS Briefing Outline, IBM, GIS Fleld Support Group (Jenuary, 1966)

4.2 IDS
Introcduction io Integrated Data Store, GE Computer Department,
CPB-1048 (Etfﬁl. 1935).

Bachman, C. W, snd Williams, S. B, "A General-Purpose Programming
System for Random-Aocess Memories, " FICC (1964), 411-422.

Bachman, C. W, "Software for Rendom Access Processing." Datamation
(April, 1965),

P 8 of the Secound fum on Co ter-Centered Data Base
%tem. ol y Y ﬁfgglggsiﬁﬁ { N&Je%. r 1585), 3-237 o 3-375.
4.3 MULTICS
Corbato, F. J. and Vyssotsky, V. A. "Introduction and Cverview of the
MULTICS System, "* AFIPS 27, (Proc. FICC, 1963), 135-196,
Glaser, E. L., Couleur, J. F.. and Oliver, G. A, "Systerm Design of
4 Computer for Time-Sharing Applications, op.cft,, 197-202,

A., Corbato, E. J,, and Graham, K, M. “Structure of the
MULTICS Supervisor, " op.cit., 203-213,

Dalev, R. C. and Neumann, P, G, "A General-Purpose File System
for Secondary Storage, ' op.cit., 213-222,

Oasanna, J, F., Mikus, L. E,, and Dunten, 8. D, “Commurications
and Input-Output Switching in a Multiplex Computing Sva’em, " op. cit. ,
23i-241. -

4-2

AT

oo I ABSTTIRD
Stmn%z(ﬁuuﬁﬂctﬁon
DOCUMENT CONTROL DATA - RSD

{Podurity eiseciiication sl titis, body of adeteeos end ndesing mvnsiaticn miot be entered whor: he overall regort 12 clue2itied)
t. ORIBIMATING ACTIVITY (Cornporete autiter) 30 AEPORY SECURITY C LASSITICATION
Auerbach Corporation Unclagaified
Philadelphia 3, Pennsylvenia 19107 1k enous

3. AKPOMT TITLE

Reliability Central Automatic Date Processing Subsystem

® 6. DESCRIPTIVE NOTTS (Type of report end inclusive dates)
Final Report
. 8. AUTHOR(S) (Last name. f1e¢ naate, Mnitial)

Dr. J. Sable, W. Crowley, M. Rosenthal, S. Porst, P. Harper

6. REPORT DATE Ya YOTAL MO, 75 NO. OF REFS = .
| hugust 1966 /
04. CONTRACY ON CRANT NO. $e. ORiGIMATOR’'S REPORT NUMBENS) T
AP 30(602)-3820 :
B r- OJECT NO. 5’51; ,’ 1280"“‘
e ’ [T g;‘uzgowvon? NO(S) (Any othar numbsre that may be sasigred
‘¢ RADC-TR-66-k74 (3 Vols) .

10. AVAIL AI!LITV/LI‘IITA?ION NOTICES
This document is subject to special export controls and each transmittal to)
foreign governments or foreign nationals may be made only with prior approval of
RADC (EMLI), GAFB, NY 13kk0.

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Rome Air Development Center (FMIID)
Griffies Air Force Base, New York 13440

13. ABSTRACT

This is & three-volume final report produced for the Rome Air Development R
Center (RADC) under Contract AF 30(602)-3820. Vdlumes I and II are the Design)
Specification Report for the Autcwatic Data Proce Subsystem (ADPS) of
Reliability Central, known as Data Manager-l {DM-1) N Volume III is a survey
of major, computer-oriented on-line information and feact retrievax systems.

] S : - ._.____/)
Ce;The system deaign speciticction will be used for the implementation of the
computer programs required to operate the RADC Reliability Central. The vork !
. reported in these volumes is an extension and detailing of the functional
, system desig: devaloped&by Auerbach Corp. under Contract AF 30{602)-3433 and
reporte. in =TR-65-189, Design of Reliability Central Data Msnagement
Subgystem, J 1965. The DM-1 design provides for the incorporation of the
reliability data\eollected by the Tllinois Institute of Technology Research
Institute (IITRI)\ynder Contract AF 30(602)-3621 with Auerbach Corp. as
subcontractor.

e e e e e e e 275 - B .

DD "2 1473 (IMCLASSIPIED
Security Classificeton

UBCLABSIFIED
kcuﬂg Classification

‘e
KK7 WORDS

LINK A LINK & LINK C

ROLE Lad ROLE wy ROLE 't

File Structures

Prog-asming Languages

Date Processing .
Storage and Reztrieval

I

L. ORIGINATING ACYIVF. * Eanier the nome and addrese
of the contractor, subco. ;.1 -or, Crantee, Department of De-
{ense activity or sther ous . .zation {(corporate author) ivsuing
the report.

le. REPORT SECURTY CLASSIFICATION: Entar the over-
all security clamaification of the report. Indicate whether
“Reatricted Dsta” is included WMarking is to be in accord
ance with approprista secusity reguistions.

2b. GROUP: Autommtic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that ontional
markings have been used for Group 3 anrd Group 4 as suthor.
ized.

3. REPORT TITLE: Enter the complete report title in all
capital ietters. Tities in all cases should br unclaasified.
I a meaningful title cannot be selected without clasaifice
tion, show title classaificstion in all capitals in pasenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, &.g, interim, progress, summary, annual, or final,
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the namw(s) of suthor(s) as shown on
or in the report. Enter last name, first name, middie initial
If military, show rank end b anch of service. The name of
the principal «ithor in an absolute minimum requirement.

6 REPORT DATEL: Enter ths date of the report as day,
month, yvear, or month, yean 1 more than one date sppears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The totel page count
should foilow nomal paginstion procedures, i.e., znt3; the
number of pages conteining information

76, NUMBER OF REFERENCES Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If sppropriate, enter
the applicable number of the contract or grant under which
the report was written,

8, &, & §4. PROJRCT NUMBER: Emter the appropriste
militeary department idevtific: tlan, wuch as project sumber,
subproject number, system numbers, as* number, etc.

9¢. ORIGINATOR'S PEFORT WUMBER(S): Eater the offi-
cial report number », which 'w document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPQRT NUMBER(S): If the repont has been
sasigned any other repor v e (vither by the originetor
or by the sponsor), sl 2. ¢ rnis number(s).

10, AVAILABILITY/LIMi TATION NOTICES Enter any lim

itetions on furthor dissemunstion of ¢~ report, other than those]

INSTRUCTIONS

imposed by security classificetion, using standard statements
such as: '

(1) “‘Qualified requ<lan may obtain copies of this
report from DDC.'*

(2) “Foreign announcemant and dissemination of this
teport by DDC is not suthorized.**

(3 *U. 8. Government sgencies may obtain coplies of
this report directly irom DDC, Other qualified DDC
users shall requesi through

»

(#) **U. 8 military ageucies may obtain copies of this
report directly from DDC, Other qualified users
sha!l request through

(§5) '°All distribution of this report is controlled Qual-
ified DDC users shall request through

”

If the report has boen furnished to the Office of Technical
Services, Department of Commerce, for sele to the public, indi-
cate this fact and enter the price, if known

11, SUPPL.IMENTARY NOTES: Use for additional explens
tory notes.

12, SPONSL: 1nNG MILITARY ACTIVITY: Enter the name of
the departmental praject office or laborstory sponsoring (pay
ing for) the rescarch and development. Include addvess.

13. ABSTRACT: Ente: an sbsirect giving s brief and factual
summary of the document indicative of the report, even though
it may 2lvo appesr eleswhere in the body of the technical re-

port. If additional space is required, & continustion sheet uhail

be attachad.

It is highly desirsble that the abstract of claasified reporte

be unclassifisd. Each paragreph of the abstrect shall end witi,
an indication of the military security claseification of the in-
formation in the paragraph, represented as (T83), (3). (C). or (V)

There is no limitation on the leagth of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: ley words are technicelly mesningful terms
or short phrases tha: ~harecterize a report end may be used as
index entries for cataloging the report. Key words must he

selectad so that no aecurity cleasificction is vequired Identi-

fiers, such as squipment model designation, trade name, military

project code name, geographic location, may be used as key
words but will be followed by an indication of technicel ¢ n-
text. The sasignment of links, rules, and weightas is optional.

Security Clessification

T

