
UNCLASSIFIED

AD NUMBER

AD489661

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Jul 1966.
Other requests shall be referred to Rome
Air Development Center, Griffiss AFB, NY.

AUTHORITY

RADC USAF ltr, 17 Sep 1971

THIS PAGE IS UNCLASSIFIED

RADC-TR 65-397, Vol 1I
FINAL REPORT

0o
ANALYSIS OF

SMALL ASSOCIATIVE MEMORIES FOR
DATA STORAGE AND RETRIEVAL SYSTEMS

VOLUME 1i. TECHNICAL DISCUSSION

Robert S. Green, Dr. Jack Minker, and Warren E. Shindle

TECHNICAL REPORT NO. RADC-TR-65-397, Vol II

Jt'ly 1966

"This document is abject to speI&l
e4Mprt coatiehs and each ttuismittal
to fomeign govommonts or foreip
"atioftials may be m" oly with

m at appm•a; of RADC (EMII),
rs. my. 13440.

R~a•w h; leT.wmlfoý Division
Alt FPco Sysi • Co&mond

Gflffl" Air Faote B.s., Now Yck

ANALYSIS OF

SMALL ASSOCIATIVE MEMORIES FOR
DATA STORAGE AND RETRIEVA ', SYSTEMS

VOLUME II. TECHNICAL DISCUSSION

Robert S. Green, Dr. Jack Minker. and Warren E. Shindle

This document is subject to special
export controls and each transmittal
to foreign governments or forelIr-
nationals may be made only with
prior approval of RADC (EMLI),
GAFB, N.Y. 1.3440.

I -i, I..(i 'if, I. f Il'." - A~ k - •APL, '. d

FOREWORD

This report was prepared by the Auerbach Corp., Philadelphia, Pa.; under Contract

Number AF30(602) -3564; Project Number 4594 and Task Number 459402. The

RADC project engineer is Ronald J. Ferris, EMUD.

This is a final report and covers the period of work from October 1964 to September
1965; the originator' s report number is 1231-TR2.

The results of this study are contained in two volumes: Volume I presents in sum-
mary form, an introduction, findings, conclusions, and recommendations. In addi-

ticn, t his volumc conLains a discussion on associative memories and the comparative
analyses of the associative memory configurations studied. A short critique of the

Goodyear Associative Processor and a bibliography are also given in this volume.

Volume II contains the detailed discussion of the study. This volume specifies the
problem of "how" the study was conducted. It presents the technical details, the

relevant flowcharts, algorithms, and encoding. Each section of this vJolume contains
information pertinent to the approach, technical details, and the findings and con-

clusions. Supplementary information relevant to the study is contained in the ap-
pendices.

The principal investigators on this study were Mr. James Dugan, Mr. Robert Shaw
Green (Project Engineer - hardware related studies), Mrs. Renee Jasper, Mr.
Marvin Katz, Dr. Jack Minker (Program Manager), Mr. James Mulford, and Mr.
Warren E. Shiudle (Project Engineer - problem analysis and programming related
studies). The authors would like to express their appreciation to the numerous mem-
bers of the AUERBACH technical staff who were called upon for expert advice or,

specialized areas of study. These are: 1r. George Ncborak, Mr. Sheldon Einhorn,
Mr. Don Russel, Mr. Ken Rose, Mr. Lawrence Feidelman, Mr. Ralph Howe, Mr.
Arthur Hughes, Mr. Stephen Leibholz, Mr. Lester Probst, Mr. Robert Rossheim,and

Dr. Jerome Sa~le.

Release of subject report to the gcneral pubLi. 'Aa prohibited by the
Strategic Trade Control Program, Mutual Defense Assistance Control List
(revised 6 January 65). published by the Department of State.

"This technical report has been revieved and is approved.

A ppo~.~,JR0 Approv
Col~onel,, USAFCheI ?rcsirZBah

hi~eft Intel and InfoCheI ?osir bac
Processing Div . .

FOR THE COPAMANDER-

/1 V1 NG . GASELMANChief, Advanced Stud,*% Group

TABLE OF CONTENTS
"4 (Summary of Volumes I and II)

VOLUME I
Management Report

Section I Management Summary 1-1

Section II Discussion and Comparative Analyses of Associative
Memories 2-1

Section In Critique of the Goodyear Aerospace Corporation
Associative Processor 3-1

Bibliography B-1

VOLUME II
Technical Discussion

Section I Introduction 1-1

Section II Hybrid Associative Configurations 2-1

Section Mf The Sea Surveillance Problem 3-1

Section IV Data Base 4-1

Section V Input Message Processing 5-1

Section VI File Maintenance 6-1

Section VII Query Processing 7-1

Section VllI Comparison of the A2 and GAP Associative Systems.... 8-1

Appendix A Preliminary Programming Manual for the Goodyear
Associative Processor A-1

Appendix B Detailed Timing Equations B-i

Appendix C Routines C-1

ift4"

• I

TABLE OF CONTENTS, VOLUME II

Section Page

I INTRODUCTION 1-1

1.1 Overall Scope of RADC Associative Memory Program 1-2
1.2 Study Considerations 1-3
1.3 Problem Selection 1-6
1.4 Study Restrictions 1-10

1.5 Summary of V&•'une lI Contents 1-10

II HYBRID ASSOCIATIVE CONFIGURATIONS 2-1

2.1 Introduction 2-1
2.2 Ground Rules 2-•i
2.3 Associative Memories 2-2
2.4 H' rid Configuration Parameters and Possibilities 2-10
2.5 Description and Logic of the Configurations Studied 2-20
2.6 Timing of Associative Memory Configuration 2-78
2.7 Cost .. 2-94
2.8 Comparison of Configurations 2-104
2.9 Comments on the 1604-B 2-108

III THE SEA SURVEILLANCE PROBLEM 3-1

3.1 AIntroduction 3-1
3.2 Data Base Contents 3-2

3.3 Input Message Processing 3-3
3 4 Maintenance Operations 3-4
3.5 Query Operations 3-5
3.6 System Constraints 3-8
3.7 Statistics 3-9
3.8 Evaluation 3-9

iV DATA BASE 4-1

4.1 Introduction 4-1

4.2 File Structures and File Design Considerations 4-1
4.3 Multi-List Structure for Sea Surveillance Problem 4-9
4.4 Physicn./Record Layout. 4-20
4.5 Inflifhnce of Associative Memories on Data Base

C-. ganiization 4-27
4.6 Impact of Disc File on Associative Memories 4-31

iv

T1ABLE OF CONTENTS, VOLUME II (Cont.)

Section Page

V INPUT MESSAGE PROCESSING 5-1

5.1 Introduction 5-1
5.2 Input Message - Procedural Logic 5-3
5.3 Attribute Spilt Routine 5-4

5.4 Sub-String Processor 5-20
5.5 Maintenance Order Generators 5-26

VI FILE MAINTENANCE 6-1

6.1 Introduction 6-1
6. 2 File Maintenance Problcms Peculiar to This System 6-3
6.3 Description of the File Maintenance Order 6-4

6.4 File Maintenance Order Families 6-5
6.5 Transaction Codes 6-5
6.6 File Maintenance Processing 6-6

6.7 Assembler 6-7

6.8 Router .. 6-13

6.9 Executing Routines 6-13
6.10 Related Transaction Routine 6-29
6.11 Family Control and Write 6-30

VII QUERY PROCESSING 7-1

7.1 Introduction 7-1
7.2 User's Query Language 7-1
7.3 Query Pre-Processor 7-16
7.4 Run Routine 7-39
7.5 Controller 7-46

7.6 Input Routine 7-53
7.7 Queries 7-66
7.8 Output Functions 7-70
7.9 Tag Memory 7-80

VIII COMPARISON OF THE A2 AND GAP ASOCIATIVE
SYSTEMS .. 8-1

8.1 Introduction 8-1
8.2 Reduction ot GAP to A2 8-2

•-•V

TABLE OF CONTENTS, VOLUME H (Cont.) ..

Section Page

Appendices

A PRELIMINARY PROGRAMMING MANUAL FOR THE GOODYEAR
ASSOCIATIVE PROCESSOR * * A-I

B DFTATLED TIMING EQUATIO1. B-1

C ROUTINES C-I

vi

I'-

LIST OF ILLUSTRATIONS, VOLUME H

Figure Page

1-1 Problem Selection Possibilities vs. Selection Criteria 1-9

2-1 Basic Elements of a Memory in Words of n Bits 2-6

2-2 Associative Elements Added to a Basic Memory 2-7

2-3 GAP Associative Implementation 2-9

2-4 Elements of Associative Technology.................... 2-11

2-5 Associative Memory Parameters 2-13

2-6 Pos:zble Searches 2-14

2-7 AM Logic Mechanization Possibilities 2-16

2-8 Connection and Configuration Parameters........ 2-19

2-9 AM Logic Mechanization Possibilities 2-21

2-10 Basic Equipment Configuration 2-23

2-11 Associative Memory as a Peripheral Unit in the Al and A2
Configurations 2-24

2-12 Associative Memory in the GAP Peripheral Device Configuration
via a Direct Access Channel 2-25

2-13 Associative Memory Integrated into 1604-B as High Order 2048
Words-Controlled by 77 and 00 0 2-26

2-14 Detail of Integrated Associative Memory Configuration 2-27

2-15 Block Diagram of GAP Connected to the 1604-B Computer 2-30

2-16 Logic Block Diagram for Small AM 2-35

2-17 Logic Cross Section 2-37

2-18 Alternate Logic Configurations 2-38

2-19 Search Algorithms 2-43

2-20 Register Block Diagram - Model A2 2-51

2-21 S Register Logic, One Stage 2-53

2-22 A3 1604-B Associative Memory Integrated Configurations 2-66

2-23 Instruction Execution Sequence 2-81

2-24 Skeleton of Response Re.,oh!ver 2-83

vii

LIST OF ILLUSTRATIONS, VOLUMI (Cont.)

Figure Page

2-25 Resolution Steps vs. Probability of ONE in Given

Position of S 2-85

2-26 Estimated Goodyear Response Store Confif.iiration 2-96

2-27 Al Response Store 2-100

2-28 A2 Response Store 2-102

4-1 File Organization for the Sea Surveiilance Problem o4-11/12

5-1 Input Message Processor Organization 5-5

5-2 Example of Message Distribution Table 5-8

5-3 Attribute Split Routine (4 sheets) 5-11

5-4 Sub-String Processor (4 sheets) 5-22

5-5 Examples of Reduction of Input Messages to Maintenance Orders . 5-27

6-1 File Maintenance Processing Flow (General) U-

6-2 Assembler (2 sheets) 6-14

6-3 Router 6-16

6-4 ERI Routine 6-18

6-5 EI2 Routine 6-19

6-6 ER3 Routine 6-20

6-7 ERDI Routine 6-23

6-8 ERCI 6-25

7-1 Scan for Pushdown Point Flow Chart 7-9/10

7-2 Double Negation DN1 - AM Form7-12

7-3 Procedure for 4,-uble Negation, DN2 7-13

7-4 Query Prc -rocessor (3 sheets) 7-29/3C

B-i Resolution Steps vs. Probability of ONE in Given

Position of S B-4

viii

LIST OF' TABLES, VOLUME I1

Table Page

2-1 Comparison of Response Store Configurations 2-41

2-2 A J Listruction Set 2-44

2-3 Functions for Logical Operations 2-55

2-4 Instruction Fields 2-57

2-5 Opcodes for 778 Instructions 2-70

2-6 Search Instructions 2-74

2-7 Logic for Search Operations 2-74

2-8 W-Field Control 2-77

2-9 BB Control2-77

2-10 GAP Instruction Times 2-89

2-11 A2 Timings 2-91

2-12 A3 Instruction Timings 2-92

2-13 A3 Control Instruction Timing 2-9,1

2-14 Goodyear Response Store Estimate 2-97

2-15 Estimated Costs of Array and Associated Electronics 2-98

2-16 Cost Estimate for Registers and Other Circuits 2-9S

2-17 Estimated Costs for GAP 2-9S

2-18 Al Response Store Costs 2-1(1

2-19 Summary of Al Costs 2-103

2-20 Cost Comparison of AMs 2-103

2-21 Transfer Rate for 1604-B-A3 Move Instruction 2-105

2-22 A Comparison of Configurations 2-110

S1 Attribute Identifier 4-21

Rules ýor Interpreting Record Selector 6-11

Command List Represcntatton 7-467

7-2 Subroutine Timing Comparison 7-71

ix

.it

LIST OF TABLES, VOLUME II (Cont.)

Table Page

7-3 Timing of Representative Questions 7-73

7-4 1604-B Frequency and Number of Instructions per Subroutines 7-75

7-5 GAP F iequency and Number of Instructions per Subroutine 7-76

EVALUATION

I. Study Objective:

The objective of this work was to determine the value of state-of-the-art associative

memories to more efficient execution of typical non-numeric and intelligence problems

by the general purpose computer. Thus it was not the intent to provide an absolute

figure of merit which would set the value of small associative memories. Nor was
it the intent to evaluate tne full range of memory logic design or nature of connection

to the computer which an associativc memory device may take. It was hoped howevor,

that a useful reference point would be established with which to guide further btudik.s.
It shculd be noted that these studies are the first significant attempts to evaluate

an associative memory in a system contc.Nt; * i.e., the associative memory is con-
s idered in association with a general purpose computer, typical peripheral hardware,

and system programming.

II. Approach:

A. Selection of CDC 1604B and CDC 818 Disc

At the outset it was realized that the CDC 1604B computer, the CDC 818 disc and the
Goodyear associative processor might not result in an optimum combination for the
problems selected. Rather, the selection was based on the fol!owing:

1. The CDC 1604B is representative of "second generation" computers
which are the most prominent in Air Force use today. Moreover, due to the

high cost of replacing computer systems, it may be some time before
present systems are replaced. Consequently, considerable savings might
be realized from determining how these computers could be used more ef-

ficiently.

2. RADC recognized that there are several factors in addition to the choice
of an associative memory and a general purpose computer which affect

study results. These factors are associated with the software and with file
structure, query statements, etc. thus by selecting the CDC 1604B and the
CDC 818 disc, we provide the capability to modify the software and gain a
more thorough understanding of the role of software in evaluating associa-

tive memories.

*See Mr. Ronald Ferris' comments in Volum- 'I of the International Federation for

Information Processing 1965 proceedings under the panel session on Content Address-

able Memories.

&xi

I

3. Since the hardware is available at RADC, the software programs de-

veloped can be implemented and exercised in order to provide empirical data
with a minimum of cost and time.

It should be emphasized that the selection of the CDC 1604B computer and CDC 818 disc
does not affect the accuracy of the comparison made between the associative memory

configuration and the non-associative memory configuration, since in both cabez the
same general purpose computer and disc were used. In fact, this is the type of data
that is of interest to us.

B. Selection of Goodyear Associative Processor (GAP)

The primary intent of this effort was to evaluate the GAP merely as a first step in
a long range plan to evaluate associative memories. Consequently, whether or not
the GAP is optimally designed for a specific task is relatively unimportant. Instead
it should be viewed as a research tool for use in obtaining valuable informati n per-
taining to associative processing, particularly in the area of software. Accordingly
the GAP design was selected with the intent to evaluate a state-of-the-art product with
reasonable cost. Finally, it should be emphasized that evaluation of GAP cannot be
construed as an evaluation of Goodyear Aerospace's capability to design computers.

C. Selection of Problems

The problems used throughout the study are actually processing functions. The intent
was to choose a set of processing functions common to many specific problems and in
so doing obtain generalizable results. Hence, the term see surveillance merely in-

dicates the source of the processing functions employed.

The selection of problems is a very important step and should not be taken lightly.
The approach utilized in this study was briefly the following: *

1. Identify a class of problems within the Air Force

2. Identify the processing functions within that class and select the most
common.

3. Based on a set of criteria; i.e., priority, availability of data base, etc.
a final set of processing functions were selected. The criteria used in this
analysis is as follows:

*•This work was performed in-the-house at RADC. The details of this work are con-

talned in a report located at RADC.

xii

_ Ip
a. Does the product satisfy an operational requirement?

(1) Has a machine program been written to produce it?
(2) How many producers use it?

(3) Has the data base been built?

b. Are the program steps (operations, algorithm, etc.) common to
other programs 'i

c. is the program and data base description accessable ?

(1) Is it releasable to contractor (Security) ?

(2) How soon can it be delivered to contractor (where do we get it

and must it be sanitized) ?

d. Has program been written for 1604B class machine, i.e., is it one
of these: 7090, 1410, 1218?

D. Evaluation Criteria and Measures

The following criteria and measures were developed by RADC, Auerbach Corporation

and Goodyear Aerospace Corporation for use in their respective investigations:

Criteria Measures

A. Complexity of Programming 1. No. of Instructions in program.

Required 2. Total time and cost of program.
3. Time and cost of producing general

flow charts (problem anal,'sis &
definition).

4. Time and cost of detailed flow charts

(required for time analysis)

B. Accuracy of Programming 1. No. of errors listed in (A3) and
(A4) above.

2. Type of errors located in (A3) and
(A4) above.

C. Complexity of Hardware Required 1. Type and number of components used
(AM) 'n AM e.go; 100 transistors.

2. Cost of AM and necessary interface.

3. Time and cost for each AM macro

instruction.
4. Time and cost for each basic AM

instruction.

5. No. of AM searches required to
comphete each AM macro & basic
instruction.

xlii

iI
I\.... .

Criteria (Cont.) Measures (Cont.)

D. Reliability of Hardware 1. Reliability of each component multi-
plied by some factors, e.g., no. of
components.

E. System Efficiency 1. Time to execute program (machine
run time).

2. Total cost of programming, hardware,
and machine running time.

3. No. of AM & 1604B instructions used

(and not used) and frequency of each.
4. Amount of data that is read into and

out of AM and frequency of transfers.
5. Time AM is idle.
6. Time required for 1604B to set up

AM processing (data transfers etc.).
7. Ratio of storage requirements vs

availabilities.
8. Time 1604B is idle.
9. Time disc is idle. N/IA

10. %of relative running & idle times tor
the 1604B, Disc, & AM.

Key

N/A Not Applicable to Goodyear

III. Use of Study Results:

The results of this study provide a good reference point when determining the usefulness
of proposed associative memories. It is believed that this type of investigation, i.e..
within a sy3tem context is a most important and necessary step. It is our hope that
workers in the associative memory fild can use this and future studies as a yardstick
in designirg associative memory - general purpose computer configurations. RADC
encourage 3 a closc examination of criterie and measures to be used in evaluation of
associative memories. We also encourage those interested to examine this effort
critically and would make welcome suggestions.

xiv

SECTION 1. INTRODUCTION

During the past few years a grest deal of speculation has arisen concerning

the effectiveness of associative memories, both large and small, within a compt ting

system. The concept of an associative n.ei.aory in which data is acessed by content

rather than by its physical adoress has had considerable intuitive appeal for those in-

terested in data manipulation rather than computational problems.

The technology associated with Implementing such devices has made some

progress. Several small associative memories have been implemented which contain

approximately 2, 048 words of memory and, depending upon the device, each word has

48 bits. Such memories have been constructed from so-called BILOC, BICORE, or

similar devices. This technology is rather limited with respect to the c-re sizes that

can be achieved at a reasonable cost. The technology associated with large memories

is, on the other hand, being developed on the research level. Superconductive devices

are being utilized in this technology.

Although considerable attention has been paid to the hardware aspects for

both large ard small associative memories ýAM), several other aspects nf importance

have not received adequate attention. Thus, if one reviews the extensive literature as

noted in the bibliography contained in 'Volume I of this report, very little may be found

which describes the manner in wuich an AM.11 ca,, be integrated within a vomputer system,

the programming tools that a-e required to take effective advantage of the memory, or

the advantage or disadvantage of such memories in specific applications. Considering

the early state of this growing technology, this is not surprising.

Rome Air Development Center (RADC) has developed a comprehensive plan

to determine the advantages and disadvantages of both large and small associative

memories. The work reported by the AIJERBACi4 rCornnr~tion in these volumes is

part of this comprehensive plan. Specifically, the study has focused attention upon

"small associative memories as typified by the Goodyear Associative Mer'ory (a , -

scription of the Goodyear Associative Processor (GAP) is contained in Appendix A).

RADC has requested that the AUERBACH Corporation investigate a total

data storage and retrieval system to determine the effectiveness of a s, -called

1-

hybrid associative computer system for such a problem, and to answer some of the

following questions:

(1) What is the most effective hybrid system?

(2) How can au associative memory be integrated best into
the computer system?

(3) What are the costs associated. with developing such
devices ?

(4) What possible variants should be considered of the
GAP technology which might enhance the AM or
decrease the cost with little effect on the processing?

(5) How effective are the variant systems?

(6) Will any of the AMs affect the overall processing
in the various systems enough to warrant its use.

(7) Is a smail associative memory effective?

(8) What is the influence of an AM on flowcharting
conventions and on programming?

Answers to most of these questions are found throughout this volume.

Volume I, the .aanagement report, provides the answers and limitations upon the

answers as well as references to Volume II in which the detailed support is provided

for the general statements.

1. 1 OVERALL SCOPE OF RADC ASSOCIATIVE MEMORY PROGRAM

The larger goal of the investigation is to aid RADC in the evaluation of the

applicability and usefulness of a class of small associative memories available in the

present state of the technology. This study is only one part of a larger and more com-

prehensive effort being directed by RADC, and while this investigation has a clearly

defined and self-contained goal, the larger context must be considered. Insights and

specific results and conclusions of this study are reported to RADC whether they are

of primary importance to the fulfillment of the contract or a secondary result of the

study.

Within the framework of the larger RADC effort, the overall goal of this

investigation may be stated: Evaluate the applicability, effectiveness, and efficiency

1-2

of hybrid associative processors. The evaluation is to be periarmed by comparing

associatively oriented systems against the best conventional systems employing

otherwise comparabie equipment. A sufficient range of hybrid organizations and depth

of analysis is to be included to ensure a concrete and positive evaluation. The inve's-

tigation is to consider both programming and equipment factors.

Within this context, decisions have been made affecting the specific scope

methodology, and its relationship to other research projects sponsored by RADC.

1.2 STUDY CONSIDERATIONS

1.2.1 Approach Considerations

Several approaches can be taken in investigating the effectiveness of small

associative memories. Each approach has certain advantages and disadvantages.

One approach widely used to evaluate alternative conventional equipment is

to select several complicated problems and to code these problems in detail for the

alternative configurations. -Advantages to sucb an approach are:

(1) A large number of manageable problems can be
defined, detailed, and analyzed.

(2) Alternative situations can be considered; e. g. ,
alternative data structures, and record and file
organizations may be considered.

(3) Alternative problems L earing upon several sub-
ject areas could be considered, e. g., compiler
developments, language developments, and data
retrieval.

Disadvantages attendant with such an approach are:

(1) The importance that one should attach to each
individual problem is difficult to define since
its frequency of use in a particular system may
be difficult to assess.

(2) Problems of importance to specific areas of
interest on a particular problem may not have
been covered.

S

A second approach is to select a single comprehensive problem, potentially

rich in associative memory operations for study. This approach has several advantages:

(1) A comprehensive system is viewed for all data processing
funcLions so that the frequency of operations is known and
no processes are overlooked.

(2) Areas which may not have been selected for associative
memory operations may be uncovered by being forced to
review all processes.

(3) Assumptions as to the location of data which may tend to
bias a solution towards the associative memory is avoided
since one must take cognizance of the precise location of
data as developed in previous processing steps.

(4) The associative memory can be utilized to store more
than one class of data as required by dynamic system
processing.

As with the previous approach, there are certain inherent disadvantages. Some of

these are:

(1) The solution reached for a particular problem may be
specific and may preclude generalization to other
problems.

(2) The specific problem may be such that the full extent of
the AM is not utilized.

(3) Alternative solutions might not be evaluated sufficiently
since sufficient time for each alternative might not be
possible.

(4) Excessive time might be spent in systems design of the
problem taking time away from study of the detai:s of
associative memory processing.

RW-lizing the advantages and dicadvantages attendant with each approach,

RADC selected the latter for the AUERBACH Corporation and the fo,rmer for other con-

tractors. i'he study realized all of the advantages in this approach. By being forced to

think at both a &vstems and a detailed level, many observations concerining associative

memory processih q were developed. At the same time, several of the above disadvantages

are pertinent. The qolution reached is believed to be sufficiently general and applicable

to problems of the same class. However, the queries and maintenance operations

1-4

specified as "typical" in the sea surveillance problem did not sufficiently exercise the

AMs studied. That is, the queries were very simple and did not require much

processing while the data resided in the associative memory. More complex questions

could have shown the AM to greater advantage. Alternative solutions (e. g., differe•t

file structures) could not be studied. Thus, perhaps a more clever file structure than

that utilized in this study could have been devised which would have shown the AMs to

greater advantage. The authors cannot assess this since sufficient time did not exist

for exploring this possibility. They can verify that some time was spent in systems

design which could have been spent more profitably on the 6.!tails of AM programming.

In spite of this, much was learned about the organization of a system around an AM, 'the

effect of an AM upon system organization, and flowcharting.

The study team believes that, in th ý maia, the advantages of the approach

outweighed the disadvantages. A large amount of information of considerable interest

and importance to associative memory technology has been developed and is reported

in these volumes.

1. 2. 1. 1 Hardware Approach. As representative of the current technology of small

associative memories, the Goodyear Ass-ciative Processor was selected for study.

In addition to Ptudying the Goodyear Associative Processor in detail, both

from the hardware and software viewpoints, several variant AMs based upon the

Goodyear technology were to be studied. There were several AM variations that were

of particular interest to the study.

(1) Logical Organization oi the AM: The range of
variation desired was to investigrte a minimal
control u.A.t requiring detailed control by instruc-
tion from the 1604-B and one which was independent
of the 1604-Et.

(2) Interface with the 1604-B. The variations to be con-
sidered ranged from one which required no modifica-
to the 1604-B to one which would have a special
"channel and special register to one fully Integrated
with the 1604-B.

(3) Instruction Set. The variations would be from a
minimal set which would decrease costs of the
AM to one in which extensive search capabilities
gencral!zing the GAP would be developed.

1-5

J _

The selection U1 the specific memories studied were developed after extensive

meetings between the programmers and tlh hardware designers. The details con-

cerning the specific memories chosen are presented in Section Hi of this report.

1. 2. 1.2 Cost Analysis. Costing played a major role in the selection of the specific

variants that were to be exercised in the study. To determine the costs involved, the

approach utilized was to study GAP thoroughly, develop logic diagrams, and estimate

the amount of equipment that would be required. AUERBACH's knowledge of the state

of the art of integrated circuit technology and BILOC devices was utilized. The approach

was to develop cost factors to permit other hardware variations to be costed. Wherever

the cost analysis was to show a minor increase in cost to implement a particular capa-

bility desired by a programmer, the feature was added. Cost analysis information is

provided in Section II.

1. 2. 1. 3 Programming. The problem to be programmed was to be, effected in a general

manner. The natt,re of intelligence problems is such that if a system were based upon

the specific roquirements, other requirements would arise requiring further program-

ming. The approach was, therefore, to permit arbitrary Lgical conditions to be

specified to the resultinz system. This approach avoids biasing programs to handle very

specific tasks, which potentially have little utility thereafter.

In addition to considering the Goodyear Associative Processor and the variant

associative memories, a non-associative memory configuration consisting of the system

without an AM was to be evaluated.

To develop a unified approach for the sea surveillance problem for all con-

figurations was a challenge. It is believed that the approach taken achieved a unified

approach. The file structure developed is appropriate for all systems, although it is

biased for associated memory processing. To show the variation in AM and non-AM,

machii n code was developed for the GAP and the non-AM solution. Coding for the variant

AMB was not performed explicitly. In one instance the instruction complement of the AM

was such that GAP codirg was a subset of the AM aud its effect could :e estimated; in a

second instance, the GAP was simulated and the variation in time noted.

1.3 PROBLEM SELECTION

The specific problem utilized in the study was selected by RtADC. It was

recognized that the study results would depend upon the potential that such memories

1-6

[I
have to aid the problem selected. The general area of the prob.em was to be data

S storage and retrieval of formatted files relevant to the intelligence community. The
selection criteria utilized to choose the data base and problem were:

(1) Actual Problem. The problem selected should represent
an actual problem within the intelligence community.

(2) Problem Solution Exists. A solution to the problem
must exist fo" a conventional computer organization.
The solution • not be implemented.

(3) Solution is Operational. There must be at least one
operating solution to the problem. (A very strong
preference is given to operational solutions.)

(4) Problem Statistics Available. Problem statistics,
if required, should either be available or readily
accessible to the project. Problem statistics are:

(a) Data base size

(b) Number of files -

(c) Record and file relationships

(d) Term relationqhips

(e) Query complexity

(f) Query volume per day

(g) Maintenance complexity

(h) Maintenance update per day

(i) Query response speed

(W) Maintenance response speed

(5) Representative Problem. The problem should be
representative of a class of probinms. It should not
be special and restricted in form, solution, or need.

(6) Complex Operations. The procedures required in the
problem solution should be suffici,hnly complex to
present a challenge in the development of a solution.

(7) Large Data Base. The data base should not be so
small as to be trivially accommodated by current
equipment and techniques. It must require the best
design and equipment for solution,

1-7

(8) Potential for Associative Memory. If po&,sible, the
problem chosen should !zprotentist application for
an associative memory in the dcsign of a solution.

The above criteria were considered as guidcs rather than absolutes.

The following problem- were considered by RADC:

(1) Sea surveillance. Several data bases concerning ships,
their locaions, characteristics, cargo, and ports are
contairid within the sea surveillance problem. Queries
and maintenance orders are presented to the computer.

(2) Naval Logistics. Information concerning logistic re-
quirements for ships and ports is maintained. Queries
and maintenance orders are of importance.

(3) Army Order of Battle. The order of battle concerning
foreign countries is maintained and updated. PeculiaritX,.s
arise because of Lhe questionable nature of the data
recelved. Processing data into the system and queries
is important.

(4) Air Force Intelligence Center. This center maintains,
updates, and queries a large data base concerning intel-
ligence information. The d.: a is maintained on tape.

(5) Air Force Command Post. This facility contains in-
.nation (currently stored on disc files) pertaining to
airfield facilities, status of forces, war requirements
material, strike plans, and strike capability.

(6) Strategic Air Command. Although it is known that a data
bas(exists, no substantial information is known concerning
its characteristics.

Figure 1-1 relates the criteria for sele:tion to the above probleme. RADC

selected the sea surveillance problem since several solutions exist (one of which is im-

piemented) and the types of qujries that are posed and the maintenance operations known.

This problem is characte'istic of a class of problems of interest to intelligence date

procesving.

In using the sea surveillance problem as our test vehicle it should be clear

that no attempt has been made to achieve a formal solution to the entire sea surveillance

problem. Where it was believed tihat the work was not necessary for AM evaluation,

portions were omitted or the most convenient method of approach was taken. For example,

no attempt was made to define a user's query language since it is known that such languages

exist.

1-8

I

Fx

x I x
0~ a 7

.1 0- -m

0 41

400 0L 40

(D0

r.k " .a

9 x

'4W1

o Co

41 -9

1.4 STUDY RESTRICTIONS

Several study restrictions are important tc note as they affect the generality

of the results. The restrictions imposed by RADC are as follows:

(1) Small Associative Memories. The study was re-
stricted to include only associative memprties within
the state of the art. Thus, only small associative
memories have been investigated. In particular, the
Goodyear Associative Processor was specified by
RADC as typical of the technology of associative
memories. The observations and ewtdusions de-
veloped therefore do not necessarily extend to large . -'

associative memories. The h~ardware techniques for
large AMs will be considerably different from those of
the GAP.

(2) CDC 1604-B. The central processor to b- utilized as
typical was the CDC 1604-B. It should not be construed
that this is an ideal central processor. Rather, it was /
selected because RADC has procured an ass ,,iative
memory to physically attach to the CDC 1604 No
attempt was made to determine an "ideal centi
processor." Features of the 1604-B that proveo, r n-
bersome are noted in the appropriate sections.

(3) CDC 818 Disc and Control. RADC selected this disc
for the study since it is attached to the CDC 1604-B
at the RADC facility. This disc imposes severe
restrictions upon the generality of the results. Block
sizcs of 32 words were found to be too .,nall. The file
str'cture developed to focus-in upon the data was
tailored towards the peculiarities of this disc to avoid
bias. For a different disc, a modified file structure
would have been developed.

i. 5 SUMMARY OF VOLUME 11 CONTENTS

This volume is intended to present technical details concerning the approach.

As such, it contains information at a detailed level concerning the hardware investigations,

problem analysis, and programming inves.,gations. Relevant observations are contained

within each section. The reecier would be best advised to read Volume I in its entirety

and then refer to the particular section of his interest within Volume I1.

Section I of Volume IU has set forth the goals and objectives of the study,

study methodology and Iiritutions, and rationale for the choice of the specific problem
ehoseri for study.

i- 10

4P

L

4

ip ,Section II, a volume In its own right, presents all ot the details of the hardware
investigations. The reasons for the particular designs chosen for study are

presented. For each design developed by AUERBACH, 1 detailed description of the AM

and itrs Interface with the CDC 1604-B is submitted. The programming manual for each

AM is also given in this section. The programming manual for the-Goodyear Associative

Proce03sor (GAP), which was the primary AM to be studied, was given to AUERBACH for

use in this study by RADC and is included as Appendix A. The time to execuhe each in-

struction in the various AMs are included. Because of the peculiarities associated with
GAP, timing of the GAP instructions was developed by statistical means as noted in

Appendix B. As requested by RADC, AUERBACH has developed cost6 associated with

producing each device. The information isbf.sufficient generality so that costing of

other memories can be performed provided that they are based on the Goodyear technology

as indicated by GAP. Costing figures do not include the research and development

efforts that were required to achieve the first device and should be considered as

relative costs rather than absolute costs.

Ad previously noted, the basic problem studied was the sea surveillance problem

defined in thu Office cf Naval Research document. * A description of this problem is

contained in Section M. The AUERBACH approach towards developing a system which

would store the data files, and respond to queries, new input messages, and maintenance

orders is discussed. Although specific queries are listed for the sea surveillance

problem in Section HI, the approach taken was to permit arbitrary queries to be pre-

sentd to the system so as not to bias the results for particular queries and thereby have

results of general utility. To handle arbitrary queries, an operating system has been

developed. The operating system is described in this section. The configlration, which

consists of an associative memory, the CDC 1604-B, the CDC 818-B Disc, magnetic

tapes, and conventional input and output equipment, is described in Section II.

The data base associated with the sea surveillance problem ts too large to be

stored entirely within the associative memory. To gain ready access to the data, a

disc file is utilized. The particular file structure chosen to tocus in rapidly upon the

data is a multi-list file structure in which the linkagc ,c records is taken and placed

into directories. The file structure was organized to obtain maximum efficiency of the

•' Sea Surveillanc.- Data Base Representation as Test Vehicle. Prepared by IBM for the
Office of Naval Research, Washington, D. C., Cootract NONR 4420(00), June 30, 1964.

• i 1-1 .

CDC 818 Disc. The considerations which led to the choice of the file structure, the

precise organization of the files, and their physical location on disc is described in

Section IV. A discussion of the implication of associative memories for file structures

of 'W.e type studied in this report is also presented in this secLior,.

The data base that exists is a dynamic one. New entries arise (e. g., a ship

has left port, or a ship is at a new locatin) which must be placed into the data bese.

Section V describes the processing that must take place on the input data. As with

queries, a generalized approach is taken to the problem. Several significant routines

are developed for associative memory processing. These are (1) SPG (selectedn ner-

formance operation) .vhich effectively segments data in the AM and permits operations

upon sections of data in AM, and (2) the tLM dispatcher which controls segments of data

going into AM when the data is larger than one AM in capacity. B.'h of Lhe routines are

used extensively in succeeding sections. It is noted that a tag memory such as the A2

memory (see Paragraph 2. 5.4 for a description of the A2 memory) obviates the need

for SPO as required by all other AMs (GAP, Al, and A3) studied. The degree of

utility of an AM for imput processing is also described.

File maintenance is discussed in Section VI. This subject is related closely

to input message processing. During input processing, messages and data are gen-

erated which are passed along to the maintenance routine. The data consist of directories

that have already been looked up and are appended to the messages by the input message

processing function. A data element in a record that must be changed affects not only the

data record itself, but all directories that ire rei.-ed. All of this data is stored in an

AM. An advantage of AM processing over conventional core processing pertains because

a large number of operations is affected in making all of the changes that are required.

The A3 memory (see Paragraph 2. 5. 5),which permits data to Le transmitted directly

from AM to dischas an advantage over the other AMs studied, butallAMs showto ad-

vantage. Timing of typical situations is included in this section as are other comments

concerning AM processing.

A considerable amount of effort was expended on query processing as described

in Section VII. The manner in which query generality is achieved is described. Numerous

algorithms are developed in the section to effect processing upon the data. The utility of

a Tagzmemorysuch as A2 is noted. The difficulty with GAP because of its inability to

perform data dependent processing O !thout going beck and forth between AM and core is

1-12

-J

V1

eliminated by the A3 memory. (An example of a data dependent operation is a request to

get the next highest value based upon a previous search operation. That is, the output of

the first search is used as the comparand in a subsequent search.) The processing of

Polish pre-fixed strings is performed and comments are made concerning compiler

processing. Several routines utilized in the processing are noted as is the timing of

typical uses of the routine. Those queries listed in Section 1II which are amenable to

processing are timed for several AM configurations and for a conventional system with-

out an AM. It is noted that if several features are added to the CDC 1604-B, then one of

the AMs (A3) is at least as good as the conventional approach while the others are not.

More complicated* queries than those described in Section mI are required "efore an AM

can be shown to effect a significant improvement over conventional processing.

Section VIII compares the A2 memory to the GAP. It describes how the A2

memory may be prograirrned to si-nulate GAP. Thus, the ccatrast in timing between

the two devices can be obtained. It should be noted that A? is half as costly as GAP and

yet the time differential in operations is not that great. Considering the fact that in this

type of problem the two memories take the same time to load, the disparity in timing

between the two is even smaller. A2 has tag bits while GAP does not. Although GAP is

on a special channel to facilitate multi-processing while A2 is not, no advantage could be

taken of this feature.

As previously noted, Appendix A reproduces the Goodyear Programming Manual

for GAP as received from RADC. Appendix B presents the timing for GAP as developed A

by AUERBACH. Appendix C describeb &everal routines, presents the coding of these

routines both for AM and non-AM configurations. The instructioas utilized are tabu-

*i lated for the reader's interest.

SRequiring more AM prucetessing fur each load of data.

S~1-13

)

S S SECTION II. HYBRID ASSOCIATIVE CONFIGURATIONS

2.1 INTRODUCTION

This section discusses, from the equipment viewpoint, the hybrid associative

configurations that have been studied. Ground rules were established under which the equip-

ment study was conducted. The following paragraphs contain discussions concerning:

(1) The purpc-,e and philosophy of associative memories.

(2) A description of the particular associative memory implemen-

tation employed in this study.

(3) Design parameters and configuration parameters.

(4) A description of the logic of the configurations studied
in depth. (The GAP, Al, A2, and A3 configurations.)

(5) A comparison of the configurations.

(6) Some comments on the suitability of the Control Data 1604-B
computer as an element of the hybrid ccnfiguration.

Throughout this section it is assumed that the reader has some knowledge of the

1604-B computer and some of the previous work done in the field of associative memories.

2.2 GROUND RULES

The ground rules given below have been established by RADC and have set some

of the limits of this study. Other limits are implied by these ground rules, either directly

or indirectly, or by the amount of effort which was authorized for the investigations. The

ground rules which are pertinent to the equipment investigation are:

(1) Any configuration studies must be physically realizable
within one year.

I (2) The Goodyear Aerospace Corporation associative memory
technology is to be taken as representative of technology
realizable in one year.

b (3) The Control Data 1604-B computer shall be utilized, but
may be modified as needed.

(4) The Goodyear Associative Processor (GAP), as defined by
Guo.year Aerospace Corporation and RADC, shall be studied.

2-1

(5) The Control DEta 318 Disc shall be used for storage
of the data base in the study.

2.3 ASSOCIATIVE MEMORIES

2.3.1 Purose and Philosophy of Associative Memories

In the following discussion, the environment of the modern high-speed, large-scale,

digital computer is assumed.

The common introduction to digital computers treats the high-speed internal memory

of the computer as a set of numbered cubby holes. Each item of information, be it character,

word, block, or bit, resides in one of these cubby holes or mail boxes and is identified by the

number or address of that cubby hole. Thus, each item stored in the memory of a computer

system exists in a unique one-to-one relationship with a number chosen from a dense set of

integers. The cubby hole number is commonly referred to as an address of the item and will

be so referred to throughout this report.

The names or addresses of each item of information are used in two distinct ways

in a computer. First, the address is used in each instruction which requires an operand to

specify which of the various items stored in memory is in fact to be the operand of the opera-

tion. Second, the addresses are used by the Instruction sequencing mechanism of the computer

to cause instructions to be executed in proper order and sequence. In fact, it is this direct

one-to-one mapping of data to address which is the basis for almost all information trans-

formations and instruction sequencing in a computer. By properly placing his program and

data in memory locations, the programmer is free to use all the tricksof indexing and indirect

and relative addressing developed by the profession throug'i the years. It is important to

realize that in order to use his data and sequence his program, the programmer must know

the absolute location in memory or the absolute address of his programs and data, alterna-

tively; address numbers can be bound at execution time by a mechanism s-applied either through

system software or through special hardware that forms part of the central processing equip-

n•ient. In any case, some base address must be known for every item of program and data

which is to be referenced during a computation. In the end, no matter how remote the pro-

grammer is fr -n his absolute instruction and data addresses, the computer hardware, when

calling for the retrieval from memory of instructions or data, must supply an absolute address

and this address must be derived by a mecebnism other than the memory itself.

2-2

'4i

Fortunately, the requirements of an absolute addressing system, though cumber-

some, are comfortably accommodated by programming aids and special hardware in a com-

puter. Thus, in general, the programmer need only know the location relative to some refer-

ence point in 4is coding of instructions and data which he references. Indexing mechanisms,

indirect addressing, and system software provide for the final binding of relative or symbolic

addresses at execution time. *

When a programmer does not know the exact location of the item he desires, it is

necessary to search the area of memory which he knows or suspects contains the desired

item. Knowing the element size of each item of information, the standard addressing

scheme allows a program to inspect each element in the pertinent memory area

until the desired item is located. Frequently this process is performed, not to find the item

that is identified by such a search, but to find the next item or some item in a fixed addressing

relationship to the item found. At times the desired result of such a search is the address

of the item found. An associative or content addressed memory is designed to perform this

search automatically and in a very short time relative to the programmed search time on a

normal computer. The end event is to identify or develop an operand address for a particular

operation in the computer. Operand addresses can be hadjapriori, by calculation, or by

search. A priori addresses are supplied at coding time by a programmer who, at the same

time, arranges to have his operands placed in the appropriate memory locations. Operand

addresses are calculated at program loading time by system software or at execution time by

index or indirect address mechanisms. Operand addresses are developed by search du ing the

execution of a program or by the use of an associative or content addressable memory.

The purpose of an associative memory may be viewed as the identification of an

address (to be used in a subsequent retrieval) of a desired operand or of some point in known

relationship to the desired operand, or as the determination of the existence of a desired

Amdahl, G.M., et. al., "Architecture of the IBM System/360" IBM Journal of Research
& Development, Volume 8 i, April, 1964.

Brooks, F.P., Jr., et. al., "Processing Data in Bits & Pieces" IRE Trans. on Elect.
Computers, June, 1959.

Bleaning, G. A., "Indexing & Control-Word Techniques", IBM Journal, July, 1959.
Brooks, F. P., Jr., "Reccnt Developments in Computer Organization" Advances in

Electronics 18 45-64 (1963).
Conway, M. "A Multiproceusor System Design", Proc. FJCC Vol. 24,

November, 1963.

2-3

I

operand. The ability to perform searches and identify operands in times of the same-order

or magnitude as normal memory accessing operations appears to have a value in many appli-

cations for digital computers. This report in fact is designed to evaluate this value in the j
processing of large files.

The preceding discussion may be summarized bw setting down some desired char-

acteristics of an associative memory. These characteristics are:

(1) The ability to identify those memory locations which
satisfy certain criteria.

(2) The ability to determine how many memory locations satisfy
a given criteria.

(3) The ability to perform the foregoing operations in times of
the order of magnitude of a memory access time of a computer
rather than by prourammed search.

(4) To employ useful criteria in items (1) and (2) above.

The succeeding paragraphs of this section are organized wiih the view that an

associative memory should identify and allow accessing of those memory words which satisfy

given search criteria.

2.3.2 An Implementation of Associative Memory

This paragraph describes enough of the basic Goodear Aerospace Corporation

technology, as embodied in the Goodyear Associative Processor, to provide continuity for this

report. Full details on the Goodyear Associative Processor and the technology on which it is

based can be found in the Goodyear documentation. *

In the following discussions each major logical element of an associative memory

is identified so that the configurations studied may be understood.

Goodyear Aerospace Corporation, Propsed 2048 - Word Associative Memory Equipment,i~il RADCPR 64-844, GAP-2649, 8 Jtw e1b4;

Goodear Aerospace Corporation, Prel lProgmmina Manual for the RADC 2048
Word Memory1 Appendix A of Gooayear Aerospace Uorpora ton fAP-Il2286.

cipFti-ons -orf Additions to Contract AF30(602) -354901, n. 2.

2-4

I

The basic elements of a magnetic core memory (whether coincident current or

S.. linear select) are shown in Figure 2-1. This part of the basic memory is an array of ferrite

devices. It is convenient to consider a square matrix of devices m x n. This matrix may be

further organized into n worda of n bits each. The memory address register (MAR), which

is a register of log base 2n bits, serves to select which of the n memory words will be read

or written in access operation. The memory buffer register (MBR), which is a register of n

bits, is used to receive the information remd from memory and to hold the information to be

written into memory.

Two other logical elements are needed for a basic memory, the control and timing

section and the interface section. Control and timing logic satisfies the detailed physical and

logical needs of the particular memory implementation eivployed. The interface logic couples

the memory system iW using equipment. The operating sequences for such a basic simple

memory are well-known and will r.,,t be belabored here. Such a memory array forms a basis

on which an associative memory can be cons~tructed using the Goodyear Aerospace Corpora-

tion's technology.

The logical elements which are added to a memory system to provide an associative

memory are shown in Figure 2-2. These elements are :

(1) The associative control which provides the necessary
sequencing, decision making, and control for implementation
of the search algorithms and Interfacing functions of asso-
ciative memory.

(2) A comparand register which will hoid the argument for a search.

(3) A mask register which indicates which positions of the com-
parand register are to be considered during a search.

(4) A logic network which contains one stage for each word to
Le searched in parallel; this network directly implements the
greatest part of the search algorithms and contains identical
sections fvr each word.

(5) The S register or response vector register which will contain,
at the end of the search, the result of that search. Thiq
register has one bit for each word which may be searched in
parallel.

(6) The resolver which resolves from the S or response vector
register the address number of the responding words in memory.
The number of bits of storage involved in each of the elements
in Figure 2-2 is noted on the elements.

2-5

)s

3Jk

MemorySArrayJ
SMAR m x n

n

I MBR

F Control
and

Timing

L-.... Interface

* Using Equipment

Figure 2-1. Basic Elements of a Memory in Words of n Bits

2-6

Mask (m) Associative

Control

11
Comparand (n)3

A Array MXN 0

RG
I(in) _______

C MBR (n) ,M

Resolver

Figure 2-2' Associative Fiements Added to a Basic Nemory

2-7

I

The logical elements shown in Figure 2-2 satisfy the requirements established in

the previous paragraphs. Using the algorithms, given in the Goodyear documentation and

[others listed in sutsequent paragraphs of this report, provides an associative capability. The

response vector or S regii~ter at the end of the search indicates which of the words searched

satisfy the search criteria. The resolver serves to translate this vector notation into address

numbers for accessing of memory. Thus, through the response vector and the resolver,

all memory words satisfying the search criteria may be read or written on the basis of the

search.

In the Goodyear technology, searches are implemented by a bit-serial word parallel

'icun of the memory array. The most important facet of the Goodyear technology is the speed

with which this scan may be accomplished. A column of bits may be interrogated in one-tenth

of a microseccud. Thus, a 50-bit word may be searched in five microseconds using one

interrogation per bit per search. The impiementation of complicated search algorithms

frequently requires more than one interrogation per column or it may require supplen-entary

operauuus between each column interrogation. These times, therefore, are greater than

the five-microsecond basic search time of the Goodyear technology.

To implement a 2,000 word associative memory with the Goodyear Aerospace

Corporation technology, it is necessary to physically treat each 1,000 words of memory

separately. This is indicated in Figure 2-3, which shows the basics of the Goodyear Asso-

ciative xOrocessor implementation. As shown in Figure 2-3, two half-arrays are employed,

each of 1,000 words of 50-bits each. The 50 bits are used as follows: 48 bits for 1604-B

data, one bit for parity, and one bit as a "busy bit." One thousand stages of search logic

and 1,000 stages of response vector or S register are employed. Half a memory .. searched

at a time developing a 1,000-bit response vector. To search the second half of memory it

is necessary to save the 1,000-bit response vector -reviously developed. The D and E

re•isters of 1,000 bits each are provided for this purpose. Using this organization the

Goodyear Associative Processor may perform a simple search of 2,000 words in 10 microseconds.

The column-by-column interrogation of the GAP enables the contents of a given memory column

(in this castý 1,024 bits) to be read out to the lugic circuits. This readout is not destructive.

At the logic circuits, the contents of the memory bits may be compared with the search re-

quirements a specified by the search command, the comparand register, and the mask

register. As logic '" performed an the available information, a response is developed and

stored in the response vector or S register. Information from the S register may be trans-

ferred to and from the D and E registers in the GAP implementation. The transfers may

have certain logical cornectors applied with the previous contents of these registers.

2-8

N!
i .

c One-Half Array

MARI1102 xBR50)S

II

One-Half Array
(1024 x 50) (04

Resolver
(11)

Mask (48)

Coinparand (48)j

Figure 2-3. GAP Associative Implementation

2-9

The important points to note are that search algorithms are implemented by a

serial-by-bit scan of the memory words, the interrogation of a memory column is non-

destructive and requires one tenth of a microsecond, 1, 000 words may be interrogated in

parallel, and that it is, in RADC's estimation, economically feasible to provide 1,000 stages

of search logic and up to 3,000 stages of response storage with associated logical gating.

Since the primary purpose of this study has been the evaluation of existing tech-

nology, not the design and development of associative memory technologies, the Goodyear

Aerospace Corporation techniques and, in general, their search algorithms have been

accepted. Where different algorithms or techniques seemed beneficial and could clearly be

implemented with the existing technology, they have been adopted.

Figure 2-4 summarizes the important elements of Goodyear Aerospace Corpora-

tion technology which contribute to the associative memory capability empi.yed throughout

this report.

2.4. HYBRID CONFIGURATION PARAMETERS AND POSSIBILITIES

This paragraph discusses the possible variations in logical organization and system

configuration made possible by the basic Goodyear Aerospace Corporation associative memory

technology. The logical organization of the associative memory and the system configuration

parameters are discussed in separate paragraphs. A summary paragraph illustrates the

possible system designs that could be achieved using the Goodyear technology and the Control

Data 1604-B computer.

2.4. 1 Assouiatlve Memory Parameters

Figure 2-2 shows the associative elements added to a basic memory to yield an

associative memory. Of the elements added, the mask register and comparand register re-

quire relatively little hardware. The bulk of associative memory capability is achieved

through the very large collections of logic elements associated with the search logic, S or

response vector register, and the response resolver and associated control. So far as

AUERBACH has been able to determine, the response resolver is already an efficient design

for its required task. Since this task must be performed in any associative memory, there is

little to be gained from changing the resolver. The remaining blocks, search logic, response

vector, and associative control, offer a fruitful area in which changes may be investigated.

The b earch logic and response vector' s storage registers in the Goodyear Associative Proc-

essor count for approximately 45 percent of the production cost of the GAP (set Paragraph 2. 7.).

2-10

43t

0 NON-DESTRUCTIVE INTERROGATIOs" OF 1024 BITS

* 100 NANOSECOND INTERROGATION TIME

* INEXPENSIVE LOGIC (1024 SEARCH LOGIC STAGES, 3072 REGISTER
STAGES, AND GATING ARE ECONOMICAL FOR 2048 WORDS OF

S~MEMORY)

0 FAST RESPONSE RESOLUTION THROUGH LARGE LOGIC NETWORK

"* SUPERIMPOSED NORMAL MEMORY ACCESSING FUNCTIONS

.4

Figure 2-4. Elements of Associative Technology

2-11

2-1I1,

It is clear that large reductions can be made in the amount of hardware associated with the

response store. Since it was one of the objectives of this study to evaluate the sophisticated

associative memory features, cost reductions have been made in the configurations studied.

Figure 2-5 shows the parameters of variance in a study of associative memory

logic. The items marked with an asterisk are those which have a potential for relatively

great dollar savings in design. Each of these parameters is discussed in the following para-

graphs.

2.4. 1.1 Number of Different Searches. The searches for which algorithms have been speci-

fied by Goodyear Aerospace Corporation are shown in Figure 2-6. Each search listed has

been implemented in the Goodyear Associative Processor and accounts for some portion of

the search logic in the GAP. However, all searches are not logically necessary; for ex-

ample, the NOT EQUAL search can be obtained by complementing the response vector of an

EQUAL search; the GREATER THAN EQUAL and LESS THAN EQUAL searches are combina-

tions of the appropriate magnitude search with an EQUAL search; the BETWEEN LIMITS

search is a combination of the magnitude searches; and the NEXT GREATER and NEXT LISS

searches are combinations of the maximum-minimum and magnitude searches. If these func-

tions were not provided, the programmer would have to arrange a sequence of search opera-

tions and arrange for the logical processing of the resulting response vectors to attain the

same result. The inclusion of a full set of general-purpose searches certainly enhances tie

capability of an associative memory; however, their inclusion also increases the cost. Thus,

the value of a given search category should be detc. .nined from an analysis of applications,

and the number and kinds of searches included in an associative memory are a parameter of

this study.

2.4. 1.2 Number of Search Instructions. For a given set of searches Implemented in asso-

ciative memory, the number of possible ways that a using programmer can specify a search

is a parameter of the design. The set-up procedures required for institution of a search are

also involved here. For example, searches may automatically imply the reloading of com-

parand and mask registers, or they mnoy imply the shifting of comparand and/or mask re-

gisters, or a sear'-h instruction may simply start a search algorithm with the responsibility

for the proper setting of all aucdliary registers and functions being left to other program In-

structioni. Thus, the number of search instructions that are implemented in a given design

will affect the convenicnce of use; and, depending upon the application, the efficacy of the

design and the number of search instructions are parameters of associative memory design.

2-12

- NUMBER OF DIFFERENT SEARCHES

0 NUMBER OF SEARCH INSTRUCTIONS

0 AMOUNT OF RESPONSE STORAGE AND LOGIC

• AMOUNT OF DIRECT PARALLEL HARDWARE

0 NUMBER OF AUXILLARY AND HOUSEKEEPING INSTRUCTIONS

Figure 2--5. Associative Memory Parameters

C
2-13

ymbol Description

EQUAL
NOT EQUAL

N GREATER
> GREATER THAN EQUAL

< LESS
<- LESS THAN EQUAL

< Y < BETWEEN LIMITS

MAX MAXIMUM
MIN MINIMUM

&Di NEXT GREATER
MAX NEXT LESS

frigure 2 4 ussible Searches

2-14

2.4. 1.3 Amount of Response Storage and Logic. This parameter involves the number of bits

of response storage provided for each word in the associative memory. Due to the technology

employed by Goodyear, temporary storage required for shifting and gating functions in the

response store must be included here. Because of the physical organization of the Goodyear

associative memory, it is possible to have as little as one-half bit of storage per word,

whereas the GAP employs well over three bits per word. Associated with the simple storage

of response vectors is the logical manipulation. There are 16 logical combinations of two

binary vectors, and of these 16, some are trivial, some are almost mandatory, and some are

mere frosting. The usefulness of any particular logical function which may be performed

between two response vectors is something that must be determined by an analysis of the

application or application classes. It is important to remember here that only half response

vectors are considered because of the splitting of the 2,000 word memory into two 1,000-

word blocks.

2.4.1.4 Amount of Direct Parallel Hardware. The most general and sensible implementa-

tion of the response store and its logic is directly in fully parallel hardware. Such parallelism

involves from 1,000 to 3,000 stages of highly complex logic. It is also possible to arrange

for the use of extremely high-speed, thin-fiim (or other) memories to provide thc storage

for response vectors. This extremely high-speed logic is readily available in today's tech-

nology. As an example, several thousand bits of response store could be implemented in

-many hundreds of words of high-speed memory, each word containing on the order of 100 bits.

Such an arrangement would imply that the processing of response vectors was performed 100

or so bits at a time requiring considerably less logic than the full parallel processing. The

value of the logic saved mrtst be weighed against the possible decrease in effective speed for

particular applications.

2.4. 1.5 Number of Auxiliary and Housekeeping Instructions. The designer is free within

the specification limits of the 1604-B computer to provide many or few convenience and house-

keeping instructions for the use of the programmer in manipulating associative memory capabilities

An effective set of auxiliary and housekeeping instructions will raise the relative efficiency for

given applications by requiring less instructions to be written by the using programmer.

2.4. 1. 6 Summary. By suitably choosing values for the parameters discussed in the pre-

ceding paragraphs, AUERBACH has identified four classes of possible associative memoly

logic mechanization possibilities. Figure 2-7 shows these classes and indicates that they are

2+!9

• .c.PAGE WAS EWS, 1W S I T D

pertinent to AM cha. ,. .ristcs. Because the parameters discussed above are not corn-

pletely independent, it is necessary when choosing the values for the parameters to consider

the overall mechanization of the associative memory. Thus, the characteristics chosen for

each of the associative memory design parameters in each class reflect an attempt to produce

a balanced associative memory design. As shown in Figure 2-7, the four classes of asso-

ciative memory logic mechanization possibilities are:

(1) Minimum hardware

(2) Minimum parallel hardware

(3) Full hardware implementation

(4) Response store and film memory

The minimum hardware mechanization is chosen to provide a minimum of associa-

tive memory capability; other parameters are chosen to be in balance with this basic goal.

Mechanization provides minumum convenience, power, and flexibility for the programmer,

but still a basic minimum of associative memory capabilities. The full hardware im-

plementation is included first because of the grcund rules given previously, and second

to determine the effect of the greater speed and flexibility provided. The film memory

mechanization is designed to test the power of extremely large response stores with the

ability to specify complicated processing of response vectors.

2.4.2 Connection and Configuration Parameters

There are bask.I11y four conflgurations for connecting an assoclitive memory to

the 1604-B computer. These are:

(1) A peripheral device.

(2) A multiprocessor.

(3) Integration into the structure of the 1604-B.

(4) A special controller or device.

As a peripheral device, the associative memory may be connected to the buffer

channel, the transfer channel, or to a spertal direct memory access channel as has been

done with the GAP. All four classes c,. associative memory logic mechanization are feasible

with a peripheral device connection.

S 21

2-17

) ~tW~r

As a multiprocessor, the associative memory may be made to function more

or less autonomously with the 1604-B. In true multiprocessor configurations the AM

would have access to 1604-r memory as well as the 1604 having access to associative

memory.

All AM logic mechaniitioiTr6xa hardware mechanization

are reasonable in multiprocessor configurations.

In integrated configurations the associative memory becomes part of the

1604-B memory. Of course, the part of 1604-B memory that is associative memory

has full associative capabilities. Again, all AM logic mechanizations arc reasonable

except the minimum hardware mechanization.

Special configurations are also possible in wt.ich the associative memory

becomes an integral part of a disc file controller or a peripheral search device. The

efficacy of such configurations is greatly dependent upon how well the detailed design

matches the characteristics of the application.

Figure 2-8 displays the pcsAibilities for connection and configurations of the

associative memory 1604-B computer.

The associative memory seems attractive as a special input-output con-

troller and search device. This paragraph will set down the basic ideas for these uses.

In the processing of large files the major problem is the efficiency of the mass storage

media employed to hold the file data. The various mechanical and electromechanical

storage media provided by equipment designers go a long way toward providing ready

access to any physically located segment of data. However, in most random file

processing problems, the critical function is determining where in the physical file

the desired data is stored. Various indexing schemes and search algorithms have

been developed over the years to aid in rapidly locating a given segment of data. Since

the basic problem is the identification of what data is stored where on the physical

storage medium, it seems that an associative memory should be ab. to provide

improved efficiency in the use of mas3 storage devices.

AUERBACH envisions using an associative memory as an inwgral part of a

mass storage cop.trol unit. In the case of disc file storage or other locating: storage

2-18

D

0 PERIPHERAL DEVICE

- Buffer Channel

- Transfer Channel

- Special Channel

* MULTIPROCESSOR

* INTEGRATED

* AS SPECIAL ID CONTROLLER AND SEARCH DEVICF

Figure 2-8. Connection and Configuration Parameters

C 2-19

media, descriptors and continuation instructions received from the file could be-, _

processed against search criteria contained in the associative mem,'ry to minimize

the latency required in the chaining of accesses. In effect, such an operation reverses

the role of the associative memory from that normally considered. This meaus that

the associative memory would hold search criteria rather than data to be searchbd.

As material is accessed from the dL file, decisions could be made in real time on

the desirability of further processing of material coming from the file. The design

of such a configuration would be highly dependent upon the pacticular file organizption

developed for a particular application. It is well within the realm of modern computer

technology to assemble special-purpose equipment of this kind as needed. Exampleb of

such operations would include the Harvest System and tIe National Security Agency and

the Fixed Mlus Variable Structure Computer developed by G. Zstrin.*

2.4.3 Sunmary

F.jure 2-9 illustrates in -atrix form the AM mechanization possibilities in

whic& 'omplete configurations of an b•sociative memory and 1604-B cc .nputer can be

assembled. Indicated in the figure by the practical (P), not practical (NP) notation,

are those final configurations which, in AUERBACH's judgment, are reasonably

bal-nced and worthwhile systems. Also indicated are the system designations of the

configurations which have been s~adied in depth. These configuratioas are the Goodyear

Associative Prouersor, the Al configuration, the A2 configura-Lion, and Ohe A3 con-

figuration. Indicated by an asterisk in Figure 2-9 are thnse configurations which are

considered to be of special promise and interest but have not be-n investigated fully.

The configuradons that have ~een covered in depth were chos to be, first, representative

of the possibilities available, and, second, achievable in the time available for the study.

AUERBACH Corporation strongly recommends that RADC pursuc further studies in the

areas indicated by asterisks in Figure 2-9.

2.5 DESCRIPIOti AND LOGIC OF THE CONFIOGUATIONQL STDIED

This paragrrph describes the equipment)nfiguratlons which have been btudied

in detrk!J for this report. Emphasis is placed on thc ,ss"Icative memory and its integration

inio the 1604-B equJpment complex.

* Estrin, G., "Urgauization of Computer Systems - The Vlxed Plus VW:iable Structure

Ccmputer." Proc. WJCC, Ma", 1960.

2-20

V(

Connection and Minimum Minimum Full Response Store
Configuration Hardware Parallel Parallel in Thin Film
Possibilities Hardware Hardware

Buffer
Channel P NP NP NP

Peripheral Transfer
Device Channel P (Al) P (A2) P P

Special IMA
Channel NP P P (GAP) P

Multiprocessor NP NP P* P*

Integrated NP I P (A3) P*

Specia± I/O or Search
Controller NP NP P* P*

N'P: Not a practical system (unbalanced).

P: A practical system worthy of study.

() : The notations in () are the designations of the configuration
studied in depth.

* •Indicates a configuration of especial promise and interest.

Figure 2-9. AM Logic Mechanization Possibilities

AkA

2-21l

• 'C.

The basic equipment complex used with the 1604-B is shown in Figure 2-10.

The equipment used in this system has been specified by RADC and includes the

relatively low-capacity, low speed CDC 818 Disc File System, eight CDC 606 tape

transports (operating through two 1607 tape controls) a CDC card reader, a CDC card

punch, and a CDC line printer. The channel assignments for this equipment are

indicated in Figure 2-10. The configuration of Figure 2-10 is the starting point for

the addition of associative memory capability to form a hybrid configuration.

Figure 2-11 shows the equipment organization for the Al and A2 hybrid

configurations. The associative memory system is connected to the 1604-B on the

high-speed direct transfer channel (channel 7). This configuration requires no

modifications to the CDC 1604-B.

The organization of the Goodyear Associative Processor configuratioa is

shown in Figure 2-12. In this configuration, a special direct memory access and

transfer channel (channel 0) is added to the 1604-B; GAP is connected to this channel.

This channel contains its own storage registers to hold memory addresses for accessing,

does its own counting, and assumes control of the 1604-B during I/O transfer cycles.

It is,in effect, an automatic half duplex transfer channel compatibly fitted into the

1604-B I/O structure. GAP contains the logic for most of the required channel control

with appropriate control lines made available from the mWxdified 1604-B.

Figure 2-Ij shows the overall configuration of the integrated A3 associative

memory 1604-B system. The overall block diagram is shown in Figure 2-13(a). As

indicated in this figure, the associative memory is an integral part of the 1604-B

computer, rather than an external device. Figure ?-13(b) shows the place of associative

memory in the internal structure of the 1604-B. As indicated in Figure 2-13(b), the

associative memory becomes part of the 1604-B memory. The rest of the 1604-B

computer functions normally and, in fact, may use the associative memory as normal

memory. Additional control is also provided to implement the associative algorithms

of the associativf. memory. Figure 2-14 shows how the associative memory fits into

the detailed memory and logic structuie of the 1604-B.

2-22

Q 0

-- 4

00

C.P.
cq 0

00

-0 -4 C

-4-

og

2-23)

Console CardsPrinter

Channels 1, 2

Dis Chnnes a 1604-B Chann els 3, 4 QTp• "5, 6 Computer

Channel
7

/Associative
MemorySystem D

Figure 2-11. Associative Memory s a Peripheral Unit in the
Al al d A2 Configuration.

2-24b

Console Cards
r, inter

Channels 1, 2

c h aels5, 6 1 e
Computer

7

Special
Channel 0

Associative
Memory
System

Figure 2-12. Associative Mcrnory in the GAP Peripheral Device Configuration
via a Direct Access Special Channel

2-25

Console Cards
Printer

rChannels 1, 2

I IAssociative[

Disc Tp

I 1604-B

Computer

17

(a) Overall Bleck Diagram

1604-B Associative
Memory Memory

Chaanels

Control -I 5,6
Control

Arithmetic
Unit

(b) Place of Associative Memory in Internal
Configuration of 1604-B

Figure 2-13. Astociative Memory Integrated into 1604-B as High Order
2048 Words-Controlled by 77 and 00.

2-26

I
1604-B f Associative Memory

S Even Core S2 Odd Core M Iuray Reapona

z2 I

input
1

0
2
4 Outpot

ITo 6
7

NOTE: All registers except AMAR and AdBR are normal 1604-B registers

Figure 2-14. Detail of Integrated Associative Memory Configuration

2-27

.t .,. .

2.5.2 Goodyear Associative Processor

2.5.2.1 Introduction. The internal organization, construction, and function of the

Goodyear Associative Processor (GAP) are described in the Goodyear Aerospace

Corporation's proposal to RADC. * The functional use of the GAP is described in

Appendix A and in other Goodyear literature. ** Appendix A provides all the available

information on t1,e functioning of the Goodyear Associative Processor.

In order to accommodate the AM, the following two significant changes have

been made in the 1604-B:

(1) A new i/O channel has been added which is similar
to the seven existing 1604-B I/O channels and can
effectively operate in either a buffer or burst mode.

(2) Through this channel, the AM directly accesses the
computer memory, thas elin'inating a buffer control
word access and related steps in the 1604-B I/O
control. The 1604-B location to be accessed is
determined by GAP logic, and the address supplied
to the 1604-B by GAP.

2.5.2.2 General - GAP Operations. In order to operate GAP, the 1604-B memory

must contain the following:

(1) A data are" to be operated on by the GAP, if it is
to be loadec.

(2) A set of GAP instructions (see Appendix A) that will
control AM operation once it is started.

(3) A reserved 8et of 1604-B memory locations to which
are sent GAP responses from the search operations.

(4) The address of the first instruction (item (2' above)
In the last 1604-B memory localion (777778).

Once the above reouirements have been satisfied, the 1604-B EXF instruc-

tions are used to start the operation of the GAP. Once started, the AM will fetch its

Goodyear Aerospace Corpora',on, Proposed 2048 - Word Associative Memory
Equipment, RADC PR 64-844, GAP-2549, 8 June 1964.

"•* "Descriptions of Additions to ,'.ontract AF30(602)-3549," n. 2.

2-28

4,.

instructions and data from the 1604-B memory, operate on the data as Instructed,

and store the required search responses into the reserved 1604-B memory locations.

2.5 . 2.3 Direct Access Channel (Channel 0). GAP is connected to a special input

and a special output channel that communicate directly with the 1604-B Input-Output

section as shown in Figure 2-15. Input and output transmission over these channels

will not occur simultaneously. These channels are referred to as ýhe direct access

channels since the GAP can specify to the 1604-B the address to be accessed (via

1604-B register C2 and GAP data and instruction address register).

2.5.2.4 1604-B External Function (EXF) Codes. GAP recognizes EXF codes assigned

to it as do other peripheral devices. These EXF instructions activate the GAP, sense

for specified conditions, and select operations. EXF codes assigned to GAP are in

the form (octal) shown below:

(0or7)
74 - 0 XXXX

0 = Select Equipment Selection Code and Function Code

7 = Sense Channel
0

(1) Select EXF Codes. The following select codes have
been assigned to GAP.

(a) Force. GAP will resume or start operation.
The GAP program counter is forced to all
ones (777778). This Is the next instruction
address; i.e., this will be the first 1604-B
memory location that will be accessed by the
GAP. The location, 777778, will be accessed
for an instruction fetch.

(b) Resume. GAP will resume operation. The
next instruction address (i.e., 1604-B address)
is located In the GAP program counter prior to
this operation.

(c) Clear. GAP will halt (go inactive). All indicators
that can be sensed will be reset. All registers
will be left in their present state.

2-29

:3 1604-B
ago] INPUT/OUTPUT

Cl Upper CI Lower C2 SECTION

Current___Address__ Final__Address__ Currentannel

Input Channels Channel 7

I - Output Channels

I - Channel 0

ResponseInstruction
Register

49-Bit Output Register M Ge ate

50BeioAms 1604 DNbt ddress 1604 ructlon-

DOITV WEMOD

FiueM-5 Bok Dr grr 2I GAP Co10netedxto02he 1604-Bpomns te

Address c 0 r 12-0 Sne0 Soe

(2) Sense EXF Coues. The following sense codes have
been assigned to GAP.

(a) Sense-Activity. GAP will detect a aense
activity operation. If GAP is active (in
operation), the sense response line will be
raised; if GAP is not active, the sense
response line will remain down.

(b) Sense-Parity. GAP will detect a sense parity
operation. If there has been a parity error
detected since the previous clew: operation,
the sense response line will hc raised; other-
wise, the line will remain down. Parity is
checked each time GAP location is read.

(c) Sense-Overflow. GAP will detect a sense
overflow operation. If any load operation
has caused an overflow indication to occur,
the sense response line will be raised; other-
wise, the line will remain down. Overflow
occurs when more words axe to be loaded into
GAP than there are available locations.

2.5.2.5 Buffer Burst Mode. GAP has the capability of operating in eiaher the buffer

or burst mode. To the GAP, the only difference between the burst and buffer modes

is that GAP receives data sooner after requesting it in the burst rnci, than in the buffer

mode. GAP will request the 1604-B for the burst mode under block transfer conditions

not yet specified by Goodyear, but the 1604-B program will determine whether or not to

allow it. (Presumably there is an EXF select code that will inhibit GAP from entering

the burst mode, but this has not been specified.) The buffer mode does not stop the main

program from running, but the burst mode does, in addition to inhibiting all other I/O

operations as well.

When the programmer determines that a burst operation is allowable, he sets

a time delay of X* millisec,..,ids (another EXF code must be aefined). GAP then has

X milliseconds to operate in the burst mode, and at the end of this time data exchange

will continue in the buffer moat.. If the da'ýa transfer 1b co. ipleted in less time, the

GAP will take the 1604-B out of the , trst mode.

* The limits of the burst time duration are stll undefined.

2-31

4i

2.5.3 The Al Configuiation

2.5.3. 1 Introduction. This paragraph discusses in some detail the design of the

smallest associative memory configuration considered in this study. The character-

istics of the small AM serve as a basis for initial performance analyses. The detail

provided in this paragraph will serve as a basis for the subsequent descriptions of the

1~roand",-. more complex configurations.

The Al configuration is described from three viewpoints:

(1) Method of integration with 1604-B computer,

(2) Description of AM including its organization,

(3) The AM instruction set.

The Al configuration is not the absolute minimum (in terms of hardware) that

can be devised, bu, rather it is as small as s.uvms "reasonable. " The "r'easonableness"

is, of course, subjective but since the goal is to define a small AM for comparison with

several others, it is fe't to be justified. As an exa)mple, the AND or Olt connect

capability is excluded since it requires an additional temnporar. storage of one bit per

word. If this storage were obtained using flip-flops, the memory cost would be increased

by the loaded cost of 20 -C-, if it were obtained using additional bits in tl~c core array, a

memory read feature would have 0 be included which ii .,lso costly. On the other hand,

three basic search instructions, rather than a single "equality" iearch, have been in-

cluded because the performance is significantly improved at a relatively small cost.

In other cases, aspects of Al organization (i.e. , Load Preset, Load One Word,

etc.), frills will be added where increased hardware costs are trivial and where prograu.i-

ming advantages seem to result. Paragraph 2.5.3..4 indicates which instructions of each

feature must be evaluated on the basis of such factors as frequency of use, relative

execution time as performed in the 1604--B, and Al cost of inclusion, etc.

Some supporting detail is also given along with thu description of Al below

no that the rtiader may better understand why some of the choices were. made.

Throughout this paragraph Falkoff's notation is used. *

"A. D. Falkoff, "Algorithms for Parallel Search Memories," JACM, Vol,. 9
No. 4, pp. 488-511. Oct. 62.

2-32

2.5.3.2 Integration with the 1604-B

(1) Connections. Al Ik desigrcu to be used on the Lransfer
channel (channel 7) of the 1604-B because none of the
AM execution time-ý take more than a few microseconds.
There is no advantage in using the buffered I/O channels
and, in fact, the programming overhead will be less
using the transfer channel. Control of the AM is through
the 1604-B EXF instruction. Data transfer is accom-
plished by INT and OUT instructions.

There are 69 signals between the 1604-B and Al
distributed as follows:

48 for data

3 for Al and other peripheral equipment identification

9 for control with EXF instructions

9 for 3ynchronizing.

The 48 data signals are used for four purpose3:

(a) Loading the associative array (48 bits).

(b) Transferring comparand (X*) or mask (m*) 0l8
bith).

(c) Specifying the starting address (a) and number of
words (n) for loading the associative ariay (11
plus 11 bits).

(d) Reaoing addresses of responders from the AM
(11 bits of AM address plus 4 bits foom preset
register). (See Load Preset instruction.)

The nine control signals or external function signals are

used for two purposes:

(a) Transferring Al instructions to Al.

(b) Specifying sense conditions to the Al.

The purposes of these signals are explained in more
detail in Paragraph 2.5.3.4.

The nine synchronizing signals are not of particular
importance here except to note that since the AM is to
be used on the transfer channel and since data or control
signal transfer only takes place in one direction at a
time, four of the synchronizing signals provided on the
1604-B buffered channels are not used.

2-33

(2) Timing of Transfers. All transfers are ',tnpletely
dependent on the 1604-B timing, and various averagi-
times have to be used depending on other I/O
operations, location of INT and OUT instructions
in upper or lower instruction slots, and 1604-B
memo:-y locations referenced.

2.5.3.3 Description of Al

(1) Organization. The organization of Al is explained with
reference to Figure 2-16, which shows the main com-
ponents of the Al and the more important data trans-
mission paths.

Instructions sent to Al by EXF signals are synchronized
by the SYNC circuits and interpreted by the control
section. The associative array is loaded by transferring
48-bit words into the data circuits, then transferring them
to the X register which, along with the M register, con-
trols the data entry into the core array through the bit
circuits. The data word is loaded into a specific array
location specified by the A register, even though the
instruction being executed may be "load the data words
into those locations responding to the last search." In
this case the A register would have been loaded sequentially
fromthe S registi:r scanner. The connections for this
transfer are omitted from Figure 2-16.

During execution of a search instruction, the results of
each interrogation are sensed by the sense logic and
stored In the S register. To reduce the amount of logic
hrdware required per word, the array is divided into
two 1, 024 word parts; only 1,024 sense amplifiers and
1,024Sfllp-flopsareused. This means that searches
can only he carriod nn In ono-h'.lf of the m--onorv at a
time, the upper or lower addresoes. The separaLi.-i
is by the most significant bit of the 11-bit address.

Forty-nine bits are used for data storage. The 49th
bit is used by the memory itself as a tag bit (busy-bit)
to mark those locations currently storing data. The
tag bit is set to a "1I" or a "0" when data is stored in
that location under program control.

Readout of the Al is by means of the scanner and output
register. Addresses of responders to searches are
successivcly detrmined by the scanner, and placed into
the output register to be read by the 16'4-B Input channel.

2-34

0

- U2
SI j

I -E11---I-

'H-----
.W g

' I'

Figure 2-16. Logic Block Diagram for Small AM

2-35

The scanner consists of ai - hbit counter :tnd st of
gates which c:n se(qucnti;ally scan the :- rgi stt r fli -
flops (s'e Ylaragrqph 2.5.6). Its "1):1sc, psi tinl is
the count 1023 which is the. address ol the n-ijg'hst s
S flip-flop. If an instrLwction referenc(,s the upper
half of the A, an . Ith bit in the scanner is set so thajt
the scanner appeai s to be looking at the S flip-flops
corresponding to addresses 2047 to 1024. The scanner
cowiter counts downward only.

In the LPS instruction, a "block load on S" instruction,
the scanner first looks at address 2047 if hivlicr
addresses are referenced, or address 1023 it lower
addresses are referenced. If S2047, for example,
is in the state required by the instruction, the address
20417 is transferred into the A register and the data
word is loaded. If S2047 is not in the desired state,
the scanner is decremented by 1 and S2 0 4 6 is examined,
and so on. When the scanner counter reaches 1024 (or
0000), it stops. If the 1604-B attempts to load another
word, the "load overflow" flip-flop will be et and an
interrupt generated. The scanner counter may ,he

nsed for the 0000 (1024) state by a sense instruction.

Actual data words cannot be read from the Al.

- he preset register is used to specify the most significant
four bits of the 15 bits read from Al into the 1(604-13.
This feature is included to provide flexible miapping of
Al addresses into 1604-9 addresses without the necessity
of having to modify each Al address after it is loa ed into
the 1604-B.

(2) Rlesponse Store. A one-bit cross section of the 102-I-bit
comparison logic (in Fi ure 2-16 this was included in the
Sense Logic block) and the 1024-bit S register is shown in
Figure 2-17. This configuration was selected after
comparison with the logical configurati)ns shown in
Figure 2-18. The p'aragraph,)eJow discus, the I)erformance

and cost of thes(e four possible configurations and t'ive the
reasons for selecting the one shoki in Figure 2- 17.

The configurations shown in Figure 2-1h provided for eight simple search

criteria. The search criteria are:

(1) less than (<)

(2) less than or equal (CS

(3) equal (:-)

(4) unequal

-36

x/ 0- 0 --o
Mk 0

FFM~k

Mi k
To

)-tcn~ne r

V W

Gates

Figure 2-17. Logic Cross Section

2-37

x.

k Rjk

v w

xj NS

Mki

Figure~~~~~~ 2-8 lent ogcCniuain

2-38

(5) greater than or equal (Ž)

(6) greater than (>)

(7) equal, and S

(8) unequal, or S

The first, (a), uses a relative., large number of input gates (8) to sense for various

input conditions.

Oily four of the criteria are sensed directly by the input gates as shown by

the symbols associated with the gates in the figure. These are 1, 3, 4, and 6.

Criteria (2) and (5) are obtained by using different initial conditions, then using the

"less than" or "greater than" gates. Similarly, (7) and (8) are obtained by using

different initial conditions, then using the "equal" or "unequal" gate. This configuration

(Figure 2-18(a)) could also be used for other searches (maximum, for example) by

"additional equipment.

The most obvious way to initialize the S flip-flops is to use preset inputs on

each of the two input OR gates. However, these are not used (except in one special

case) in the configurations discussed because the presetting function is provided by

forcing all X inputs to a "1" and gating the resulting signal into the set or reset side

vf the S flip-flop as desired. The V and W inputs to the output gate are simply to

allow two dimensional addrebbi,,, of the S register for readout by the scanner.

All of the input gates shown in Figure 2-18(a) are not necessary, since three

of the search criteria are complements of the other three. The configuration of Figure 2-18(b)

makes use of this fact to eliminate three of the input gates. Complements are formed by

selecting the appropriate side of the flip-flop for readout.

One of the output gates of Figure 2-18(b) is unnecessary since complements

are not required of each individual S ilip-flup but only of the S register as a whole.

The S register is to be read (or sensed) serially so that a single pair of gates can be

used in the scanner to invert each of the flip-flops Ls they are scanned. This is done

for the configuration shown in Figure 2-17.

2-39

Since a low-cost Al is being defined, the configuration sh'jwn in Figure 2-18(c)

was also considered. The further reduction in the number of gates as shown is obtained

by eliminating the "search for greater than" function.

If the four configurations are compared, the fir4t three are fourad to provide

essentially the same capability - to directly sense for three conditions and allow

these conditions or their complements to be sensed by the 1604-B. Thcsc can be

considered as allowing six search instructions as compared with two instructions

obtained from the configuration in Figure 2-18(c). To help decide whether the con-

figuration in Figure 2-17 or the configuration in Figure 2-18(c) would be a better choice

for an initial definition, Table 2-1 was constructed. Two measures of complexity (or

cost) are shown in Table 2-1:

(1) The number of gates used.

(2) The total number of gate inputs used in each
configuration.

Both are included because it is not known exactly how one would choose to build

the circuits, and costs might be more accurately estimated by one or the other depending

on the technology used. For example, if diode logic were used, the number of gate inputs

is more nearly proportional to the number of diodes used and, therefore, is a better

measure of cost than the number of gates. On the other hand, if integrated circuits

were used in which the number of encapsulations (number of c:.-s), rather than the

number of leads, was more important, then the number of gates would proavide a better

Each of these complexity measures is divided by the number of instructions

that each gate allows to generate two "figures of merit" -

(1) the number of gates per instruction, and

(2) the number of gate inputs per instruction.

Since both show that the configuration shown in Figure 2-17 has the lowest "cost" per

instruction, It was chosen as a basis for Al.

2-40

TABLE 2-'1. COMPARISON OF RESPONSE STORE CONFIGURATIONS

FNO.OF NO. OF No. OF GATES/ GA TE INPI
GATES N O GAIL INSTRUCTIONS iNSTRUCTION ThISTRUCT.2GATES_ INPU•Th ____________

Figure 2-18(a) 12 27 8 1.50 3.37

Figure 2-18(b) 10 22 , ; 1.25 2.75

-e 2-17 8 17 8 1.00 2.13

-18(c) 5 1- 4 2.50 2.75

"2-41

(3) Search Algorithms Used. The algorithms shown
in Figure 2-19 indicate generally the approach taken
for each search but are not complete in the sense
that all hardware actions are included Note that the
EQUAL, AND search is the same as the EQUAL
search, except that the S register is initialized to the
results of the previous search rather than all "V"s.
Similarly, the GREATER THAN or EQUAL search is
the same as GREATER THAN search except that the
S register is initialized to all "I"s rather than all "01s.
The GREATER THAN or EQUAL search, and the EQUAL,
AND search, then, cost almost nothing since no per-
word hardware is added. The only additions are a couple
of control flip-flops and decoding gates.

2.5.3.4 Instruction Set. instructions have been chosen on the basis of the response

store characteristics, anticipated programming techniques, and consistency with other

1604-B I/O devices. This paragraph describes those instructions by first describing

the instruction structure and then describing what each instruction does.

(1) Structure. All instructions are sent to Al by means of
the 1604-B EXF Select (74 0 XXXXX) or EXF Sense
(7,1 7 XXXXX) instructions in the same manner as other
I/O d,?vices. As can bt! seen from Table 2-2, the select
instruction will be used to give operating instrucLions and
define conditions; and the sense instruction will be used
to sense various conditions within Al. The first octal
charr.cter, X, will be used to specify that channel 7 is to
be used, and the second will specify the sub-channel which
the AM is using. This teaves three octal characters or nine
bits for select irstructions and nine bits for sense instru'-
tions. Since there are 20 Relect type AM instructions, five
of the nine bits arc used for operation codes. Each of the
a , . and e fields show'n in Table 2-2 requires one bit,
so a total of eight bits is required, and there is sufficient
room in ý.he 1604-B EXF format for the AM instructions.
The a field is used to specify whether the S register is to
be associated with higher or lower addresses. In otner than
search instructions, 0 is used to specify whether "l"s or
"0"s are to be sensed in the S register and y is use-d to
specify whether the tag bit is t0 be set to "I" or "0".

All but one instruction takes less than eight microseconds
to execute; therefore, Al operations will be finished before
tOe EXF execution is completed within the 1604-B. The
exception is the RCS instruction which requires 8 0. 1n
microseconds, wh 're (n) ib the number of R ,ntries to be
counted.

• See the discussion of timing of the scanner in Paragraph 2. i. ti.

2-42

EQUAL GREATER

X - X* X4r- X*

xm<- M* 4- x*
1fl- m* mE-- m*

9 *.- 7'(r) s <- T(r)

j -0 j -0

J :48 j :48

j-j+1 j+ <Ej +1

m: 0 m: 0

6- Sj<4-SjI'(X,AMj~) X, SI J0

s --- 0

i, Ml• : 0

s 4--- 1

EQUAL, AND GREATER THAN EQUAL

X 4- X* x 4-- X*

m+-fl* 1m4- M*

a +- p(r) s -- 7(r)

j 4-0 j 4-0

3:48 3Z.-* j : 48

, 4--J +1 j 4--J +1

m: 0 M : 0

i4--I ~v(X- Amp.- : 0

a 4- 0
NOTE:

The notation used is that of Falkoff 3, Mj . 0

except that p(r) represents the vector k
resulting from a previous searc-, S o-0

Figure 2-19. Search Algorithmsj 2-43

TABLE 2-2. Al TNSTRUCTION SET

EXF SELECT CODES

Mnemonic Instruction Fields

LSL Load Specific Location 'y
LPS LoadPer5 s~ v' '
LOS Load One Word Per s a 3
LDA Load a, n Registers
LDX Load x
LDM Load m
LDP Load Prefix

SOE Search on Equality aCe~
SAE Search on Equality, AND a / y
SOG Search on Greater a y
SGE Search on Greater or Equal El -Y

RCS Read Count of Responders /
RSS Read Short Count /
RAS Read Address of Responders /
RNS Read Next Address /

JOE In~terrupt on Any Frror
HTE Inhibit All Interrupts

CHC Channel Clear
CAM Clear AM
CIO Clear Interrupt Only

EXF SENSE CODES

TRA Alive a
TRY Ready a
TIA Interrupt Active a
TLO Load Overflow a
TUO Unload Overflow 0a
TLU Load Underfmow a
TUU Unload Underfiow
TFS Scanner at 0000, 1024 a
TES +/Rad = I
TIJ +/8 < Iac
TCS +/8 l >

2-44

Load instructions are performed through a mask so that
only those positions of the comparand, (x), corresponding
to "l"s in the mask (m) will be loaded. All other bits
will be forced to "0". This unfortunate situation of forcing
all masked bits to zero is brought about because the
physical arrangement of the memory array requires that
a whole word be written at once, and there is no data
reading facility to find and hold temporarily the contents
of the word being written into.

(2) Description of Instiuctions

LSL - Load Specific Location, Y

This block load instruction conditions Al to load one or
more 48-bit words from the 1604-B into contiguous
locations in the AM array under control of a 1604-B OUT
instruction. Thus, the ne;.t 1604-B instruction which
refers to the transfer channel following the EXF 0 7 LSL v
would have to be OUT b m (1604-B notation). Words will
be loaded into numerically decreasing AM addresses until
one of three situations occurs:

(a) The transfer is sensed to be complete by the (n)
counter. If the 1604-B attempts to continue loading
the AM, an error condition exists and the AM over-
flow flip-flop will be set and an interrupt generated,
if conditioned. Al will continue to acknowledge words
transferred, but the lata will not be stor-d.

(b) The Al address counter reaches address 0000. If
the 1604-B attempts to continue loading the AM, and
an error condition exists, it is treated as in (a) above.

(c) Anether EXF Select instruction is received by Al.
This would occur, for example, if the (n) counter
were presently too high for the .oimber of words to
be transferred, or the 1604-B pro, ram choae to
alort the loading for some other operation. If this
happens, an error condition exists and the underflow
flip-flop will be set and an interrupt generated, if
conditioned. The next EXF Select instruction referred
to above cancels the incompleted LSL.

The y field is used to indicate whether the tag bit is to be set
to I1' or "0".

The first data word in all block load instructions (LSL. LPS)
in assumed to be a mask word which is automatically loaded
into the (m) register. All data is loaded through this mask.

2-45

LPS - Load Per S. a13

This block load instruction conditions Al to load
one or more 48-bit 1604-B words into certain
locations of the AM array under control of the
1604-B OUT instruction. The locations to be
loaded are specified by the contents of the S
register. The 1604-B instruction sequence is the
same as that for the LSL load. Words will be
loaded into successive locations, whose correspond-
ing S register bits are the same as 13 , in order of
decreasing addresses starting at the highest location
1023 or 2047 as selected by a o The tag bit asso-
ciated with each word stored will be set to the same
state as y . The a field specified whether the S
register is to be considered to correspond to the
upper or lower half of the AM. Loading continues
until one of the three same conditions as described
under LSL occurs. For a specifying higher addresses
condition, (b) will terminate at (a) = 1024.

LOS - Load One Word Per S

This instruction is intended to allow a single 48-bit
word to be loaded into the AM array without resetting
the response store scanner. This, along with the RNS
instruction, will permit loops in the 1604-d which will
process one response at a time rather than by blocks.
The instruction is otherwise the same as the LPS and
is termlnatd by conditions (b) or (c), but not (a) since
the (n) counter is not used.

LDA - Load a. n Registers

This instruction conditions the AM to load one word into
the (a) and (n) registers. Since both the (a) and (n)
registers are only 11 bits for a total of 22, the remain-
ing 26 bits in the 48-bit 1604-B word are ignored. The
(a) register is loaded from the least significant 11 bite
of the upper half of the 1604-B word and the (n) register
from the least significant 11 bits of the lower half. The
instruction sequence in the 1604-B would rw the same as
that for the LSL Instruction. Since only one word can be
transferred, it terminates after that word.

LDX - Load x Register

This is the same as lDA except that the comparand
register is loaded lastoad of the (a) and (n) registers.
Note that since the comparand regadthr is also used
as a transfier register, its con1cnts are destroyed by
any other load instruction.

2-46

LDM - Load M Register

This is the same as LDA except that the mask register
is loaded instead of the (a) and (n) registers which is
48 bits rather than a total of 22 bits.

LDP - Load Prefix

This is similar to LDA except that only four bits are
loaded into the Prefix register.

SOE - Search on Equalityv.

Execution of this instruction causes a comparison of
the comparand and certain memory words in the bit
positions specified by the mask register. If those words
are identical in every bit position compared, the corre-
sponding bit of the S register will be set to a "1". Since
only one half of the memory can be searched at a time,
the field is used to specify the half. The /3 and y fields
are used to specify what words are to be searched. If
Y is a "0" the tag bit is ignored and all words are searched.
If 7 is a "1", the words are searched whose tag bits equal a

SAE - Search on Equality, AND, a I -y

This is the same as SOE except that the results of the
search are ANDed with the previous contents of the S
register. This is equivalent to saying that only those
locations are searched whose corresponding S register
bit equaled "1" previous to SAE execution.

SOG - Search on Greater, a a y

This is the same as SOE except that the search condition
is "greater than" instead of "equals".

SGE - Search on (rester or Equal, a y

This Is the same as SOE except that the search condition
is "greater than or vquals" instead of simply "equals".

4RCS - Read Count of Ilespnders, i

This instruction conditions the AM to read one word from
the AM into the 1604-11 uider control of a 1604-B INT
instruction. The sequence is similar to that of the LPS
except that RCS initiates the scanner which may take as
long as 16 microseconds to complete its counting (see
Paragraph 2.5.6). If no word is actually transferred
because the INT instruction is never executed, the

2-47

I

instruction is terminated by the next EXF directed
to AM. The underftow flip-flop is not set. The word
read consists of an 11-bit code in the least significant
part of a 1601 -B word which is the count of the number
of (3 Is in the S register; the prefix is suppressed.

RSS - Read Short Count

This is the same as RCS except that the count is
terminated when +/S > 1 is realized.

RAS - Rp~d Addresses of Resnnndp-z:_ 8

This instruction steps the scanner to the next response
(downward) which conditions the AM to read one or
more words from the AM into 1604-B under control of
a 1604-B INT instruction. The sequence is similar to
that for the LSL instruction including the conditions for
termination. Note that this would mean that the (n)
register would have to be loaded from the 1604-B to
avoid setting the underflow or overflow flip-flop and
generating an in arrupt. A 15-bit address word is read
.vith the four m,.it significant bits coming from the prefix
register, and d o 11 least significant bits from the scanner.

RNS - Read Next Address.,3

This instruction conditions the AM to read one word from
the AM into the 1604-B under control of a 1604-B INT
instruction. It Is similar to the LOS instruction in that
the response store scanner is not reset after each execution.
Otherwise, it is similar to the RAS instruction.

IOE - Interrupt on Any Error

This instruction conditions the AM so that any error con-
dition which sets an error flip-flop will also cause an
interrupt to the 160'-B.

HE - Inhibit Interrupts

This cancels the effect of IOE.

CHC -. Channel Clear

This instruction is included for consistency with other
1604-B peripheral devices. It clears all interrupts, re-
sets all sense flip-flops, terminates any outstanding in-
strurtion, and sets the response store scanner to address
2048.

2-48

Si

CAM - Clear AM

"This is the same as the CHC instruction, but
the instruction can be addressed only to the AM
in contrast with the CHC which is broadcast to
all peripheral devices.

CIO - Clear Interrupt Only

This instruction resets the interrupt flip-flop and
sense flip-flops.

SENSE INSTRUC TIONS

These instructions are shown in Table 2-2 and are
considered self explanatory except that the a field
is to be specified with each AM sense instruction to
specify whether a "1" or "0" state is to cause an
affirmative reply.

2.5.4 The A2 Configuration

2.5.4.1 Introduction. This paragraph describes the programming and functional

details of the A2 configuration. The descriptions in the following paragraphs depend

heavily on the foundation established in the preceding paragraphs of the Al configuration.

In addition, an understanding of the 1604-B programming is assumed; particularly the

I/O system and the EXF, INT, and OUT instructions.

The A2 configuration is basically an elaboration of the Al; the response logic

used is similar. While the associative and search functions of A2 are not much more

powerful than those in Al, the design of A2 attempts to make the use and programming

of the associative memory as flexible and easy as possible. Such a design will enable

Identification of the real value of the search functions in sea surveiilance without the

masking effects due to cumbersome set-up and control procedures. The A2 configuration

is much more flexible and capabdle than Al in the areas of control and the processing of

successive responses. As with Al, A2 is attached to the 1604-B via channel 7. The

following paragraphs give a general description of A2 and its modes of operation.

t 2-49

a
4,L

2.5.4.2 General Description of A2

(1) Registers and Data Flow. A r•egister block diagram
of A2 is shown in Figure 2-20. The figure also shows
the possible data paths among the registers; number of
bit positions in each register are shown in parentheses
on each register. The registers are:

(a) The memory address (or address) register (MAR),
which specifies the memory word to be read or
written.

(b) The instruction (I) register, which may be loaded
from the 1604-13 and then uaed as a source of
instructions for A2 operations.

(c) The memory buffer register (MBR), which serves
as temporary storage for data read or written
from A2.

(d) The prefix register (PR), which may be con-
catenated as the four high-order bits of an
address from A2.

(e) The tag register (TR), which can be used in search
or load instructions to specify tag operations.

(f) The tag mask register (TM). which masks the tag
register in search and load operations.

(g) The X register or comparand register, used to
specify search arguments.

(h) The mask register (M), which masks the X
register during searches, and also masks all
data loaded into or read from A2.

(i) The S or sense response register, which con-
tains the result of all search or logic operations
at the end of such operation.

(j) The ST (S Temp) register, which is used in
processing logic operations on S.

NOTE: MBR and ST are not directly available to the
1604-B.

2-50

Mar(1 Memory t(0

T1(48) (48)

PR (4) TM (8) M (48)

TrnfrBus'

160O4-B Transfer Channel

0 < k c2047

0< j <56

FIgure 2-20. Roo~ster Block Diagram - Model A2

2-61

(2) Memory Array. The memory array is arr .ed
into 2,048 words of 57 bits each vnd uses th, Goodyear
technology. Each word has 48 data bits, N tug bJi,_
and 1 parity bit. Search capability exists for 1, 021
words at a time, either tne upper memory (locations
000010) or the lower memory (locations 102,410 through
204710). All data ,,'tag bits may be read or written
under 1604-B control and searched. Tag bits are treated
differently from data bits as explained in the following
paragraphs.

(3) S Register. The S register is a 1,024-bit register which
normally receives the result vector of a search. When
referring to a search resultthe vector will uc denoted
simply by S. Response logic is associated with S. The
logic is based upon the Al machine, and the discussion
of Paragraphs 2.5.3 also applies here. In addition to the
logic of Al, the A2 machine adds the capability to form
any Boolean function of S and a set cf 1, 1)24 tag bits in
memory; or of S and 1,024 bits supplied oy the 1604-B:
or of S and the result of i search. In addidion, S m:'v he
shifted up or down. A cross section of the 3 logic is

shown in Figure 2-21.

To form a Boolean logic function between S arid one of Lhe
other arguments just mentioned, S is treated as thirty-two
32-bit registers. The fulction is formed, in 32 steps,
by reading a segment of S into ST and performing the
necessary logical and shifting operations in ST, ST is then
gated back to S. The second argument for these operations
is obtained by a readout of tag bits from the memory or by
search (both results appear in S) ;or by the transfer of 32
sets of 32 bits frum the 1604-B. In all cases, the result
is formed in ST and transferred into S.

Referring to Figure 2-21, the gatk inputs marked ',

">2", and "=" are enabled in groups of :32 to permit

selective loading of S. The gate inputs marked ,A "and
B permit the transfer of information bt6ween S and ST.

(4) T.A Facilities. The memory array pr- des eight bits
per word in addition to the usual 48 d& 'Ats which are
tag bits. These bits are used for Ioa(, under control
of the 1604-B and may be searched. I. iddition, S may
be stored in a set (column) of tag bits.

The tag and tag mask registers may be used in load and
in search operations. When loading data into the associative
memory, the 1604-B program may specify that either the
tag bits remain unchanged, the TR be copied through TM
into the tag bit positions, or a specific tag bit be set or
reset.

2-52

4>

xi

> 2 to S] andM iResolver

p Scanner(S Control

Parts Count

Number of Gates - 8
Number of Lines - 17
Number of Instructions - 8
Gates/Instruction = 1
Lines/Instruction = 2.12

Figure 2-21. S Register Logic, One Stage

2-53

In like manner, a search may specify that the bit
configuration in TR, masked by TM, be match.,.d,
a specific tag bit be set or reset, or the tag bits be
ignored. Tag bit control is fully explained in
Paragraph 2.5.4.4.

(5) Logic Abilities

(a) Logic with the 1604-B. The contents of the S
register may be read into the 1604-B. In reading
the contents of S, the 1604-B accepts 32 words,
each word 32 bits. Using ST, any logical function
of two variables may be generated in S, on a bit-
by-bit basis, between the contents of S and a 32-
word block of data supplied by the 1604-B. The
function is actually generated in ST in 32 steps,
with the partial results placed in S at each step.
The functions axe given in Table 2-3. In the table,
R denotes the bit supplied by the i•C4-B and the S
bit in S at the start of the operation. Note that this
logic capability allows the setting of S from the
1604-B (F3). The time required is a function of /
the logic operation specified. For trivial operations
(FO, F5, F10, F15), essentially no A2 time is needed; *

if an output is generated by the 1604-B, the 32 words
require [4.0 + (4.8 x 32)] = 158 microseconds for
transfer. All non-trivial logic oncrations are com-
pleted during the output of data so 158 microseconds
is the maximum time.

(b) Logic on Search Operations. By using the SLS (Search
Logic Specification) instruction,the programmer may
form, in S, any logical function of two searches.
Note that a given searcl. may only involve the tag bits, if
desir-•d, or the short instruction fornms (eight bit
instructions) may be used for tag bit logic. Search
opertaLons which require logical maniptlatioa of S
(other than a simple complement such as FI) are
performed as follows. (Remember that S may be
%onsidered as thirty-two, 32-hit registers.) Each
search is performed 32 times, each time on a difft•nt
-egment of S by using the inhibit and select ability added
tu th, A2 S logic. Using ST as a temporary store aud
logic register, the full S vector is developed in 32 steps:
thus, search time for a search modified by SLS is
32 x 5 microsecondt 160 microseconds.

4V4.

TABLE 2-3, FUNCTIONS FOR LOGICAL OPERATIONS

n Algebraic Function Name or Comment

0 0 ZERO - S
1 RS AND2 RS'
3 R Simple Search, No connective
4 R'S
5 8
6 R Ot) S = R'S+RS' Exclusive OR
7 R+S OR
8 R 4, S = R'S' = (R+S)' Peirce Stroke, NOR
9 (RI)S)' = R'S' + RS

10 S'

11 R+S'
12 R'
13 R'+S = R --) S Implication
14 R S = R + S'= (RS)' Sheffer Stroke, NAND
15 1 ONE --* S

NOTE: 1. R = The value derived from an interrogation or search of
remory, or the value supplied by the 1604-B.

2. The binary value of the dsigated algebraic function
appear. in the S register at the end of all logical operations.

I2-6

2-55

2.5.4.3 Principles of Control

(1) Instructions. A2 instructions are 12 or 8 bits in length,
and may be produced as EXF codes on channel 7 or as
bit fields in the I register. Many instructions specify
what action the A2 machine is to take with the data
supplied by a subsequent OUT or INT instruction executed
in the 1604-B. In these cases the conditions established
will obtain until the action is taken or the conditions changed
by additional instructions to A2. For example, if a LSL
(load specific location) instruction is given to A2, the
next OUT instruction in the 1604-B will cause the loading
of the block of data supplied, unless some other A2 instruc-
tion changes the set-up. In this example, a LLR (load long
register) would change the effect of the next OUT but a
RSL (read specific location) or an SOE (search on equal)
would not.

(2) Instruction Formats. This description assumes the
existence of a suitable assembly language for the 1604-B
A2 configuration. Thus, instructions are give:, as
mnemonic operations with modification fields, and the
assembler must produce correct bit encoding of the in-
structions.

(3) Instruction Fields. A number of specification fields
are used in the A2 instructions. The field symbol, the
list of valid entries, and the interpretation are given in
Table 2-4.

2.5.4.4 Description o4 Instructions. This paragraph describes all A2 instructions.
"The fields employed are described in Table 2-4. The heading line of each instruction
gives its mnemonic, the fields that must be specified, and the instruction name.

Instructions may be presented to A2 as 12-bit EXF codes on channel 7 or
as a 12 or 8-bit field in the I register. Control is transferred to I by the XIS or XIL
instructions. When transferred, Instructions in I are executed in order, left to right.
While executing i,., mructions in I, A2 ignores EXF code instructions.

(1) Load Instructions (12-bit format)

41 X.M.A.I Load Long Regjltyrs

"Loads the designated registers in tiie order X, M, Al.
If thu OUT sends too many or too few wordsan overflow
or underflow condition is established. The OUT should
transmit one word for each designated register with the
data right justified.

Note that LLR does not load the registers; this in accomplished by an OUT instruction
(see Paragraph 2.5.4.3, item (1)).

2-56

'] 1,i

j= _

* •TABLE 2-4. INSTRUCTION FIELDS

Field Valid
Symbol Entries Interpretation

X X The X register is designated by the instruction.
The X register is not designated by the instruction.

M M The M (mask) register is designated by the instruction.
The M omask) register is not designated by the instruction.

A A The A (address) register is designated by the instruction.
The A (address) register is not designated by the instruction.

I I The I instruction) register is designated by the instruction.
The I (instruction) register is not designated by the instruction.

PR PR The PR (prefix) register is designated by the instruction.
The PR (prefix) register Is not designated by the instruction.

TR TR The TR (tag) register is designated by the instruction.
The TR (tag) register is not designated by the instruction.

TM TM The TM (tag mask) register is designated by the instruction.
The TM (tag mask) register is not designated by the instruction.

TH IT Ignore tag bits in searching/Retain present tag bits in ,oading.
(Tag TR Use tag register when searching/Load tag register when loading.
Handling) 8Z When searching, search the tag bit designated by Y for ZERO/

When writing, set the tag bit designated by Y to ZERO,
so When searching, search the tag bit designated by Y for ONE!

When writing, set the tag bit designated by Y to ONE.
Same as IT.

Y0

2
3• 4•Designate@ oneoftagbits %-7 0for use with the TH fleld).

- iSame as

NOTE The "-" denotes absense of an entry.

2-67

4

ITABLE 2-4. INSTRUCTION FIELDS (Cont.})

Field ValM InterpretationI~~~ . .. toL • ii

M II -A, AS.- Iil i t•b~.v I -- •I -i =
UL U Seiesttthoertc staply to the upper halfof Memm(locations oooo10 throtn~h_ 101).

L Specififs that the operation is to apply to the lower half of
memory (locations 102410 through 204710).

TF T Specifies the TRUE state ot S for use in the operation (ONES).
F Specifies the FALSE state of Si for use in the operation (ZERMS.

Same as T.

PT T Causes an interrupt at the end of the operation.

M• Does not cause an interrupt at the end of the operation.

Same as M.

STEP a Causes the scanner to step to the next response after the
STEP operation.

No effect.

P / P Causes the contents of the prefix register to be appended
/ to the address read by the operation.

No effect.

BA B Causes the shift of 8 specified by the SHIFT field to occur
before the operation.

A Causes the shift of S specified by the SHIFT field to occur
after the operation.

Logic OP r¢
F1

Specifies a logical algebraic function as specified by Table 2-3.

F15

Same as F3 in Table 2-3.

an" -3
-2 Specifies the number of pla•e and direction of shifting for-1 a (a negative shift is utp h to low).
1
2
3
4

Saun as 0

2-5-

?)

(1) Load Instructions (Cont.)

LSR PR. TR. TM Load Short Registers

Identical to LLR, except for registers designated.

LTR [8-Bit Field] Load Tag Register

The 8-bit field in the instruction is copied into the tag
register.

LTM [8-Bit Field] Load Tag Mask Register

The 8-bit field in the instruction is copied into the
tag mask register.

LPR 14-Bit Fieldi Loax Prefix Register

The 4-bit field in the instzuction is copied into the
prefix regiSter.

LSI TH, -Y Load Specific Locations

The data supplied by an OUT will be loaded into consecutively
decreasing memory locations starting with the present contents
of the address register. The T'H and Y field specify the loading
of tag bits. Location 204710 follows location 000010 for this
instruction.

LPS TH. Y.UL.TF.IPT Load Words per S

The data supplied by an OUT will be loaded into decreasing
memory locations in the upper or lower (selected by UL)
memory half which satisfy the S condition selected by TF.
The first word is added to the highest address which satisfies
TF ia UL. The TH and Y fields specify the loading of tag bits.
If interrupt is selected by the IPT field, it will be generated
when the OUT attempts to load more words than S can accept
and when the OUT does not exhaust S.

LQ-. TH, Y.UL.TF,.STEP Load One Word perS

The data supplied by an OUT will be loaded into the present
(or first) memory location in U or L selected by TF and S
just as in the LPS instruction. If more than one word is
transferred by an OUT, an overflow error is generated.
If STEP is selected, the scanner steps to the next selected
(TF) S position.

NOTE: In LSL, LPS, and LOS instructions all data bits are loaded

through a mask contained in the mask register while the
tag bis, if TR is selected, are loaded through the tag mask

2-59.

i 2-59

(2) Read Instructions (12-bit format) 4

RLR X, M. A. I Read LonR Registers

Reads the designated registers in the order X, M, A, I.
If the INT calls for too many or too few words, an overflow
or underflow co-idition is established. The rNT should call
for one word for each designated register;, the data will
be right justified.

RSR PR. TR. TM Read Short Registers

Identical to RLR except for registers designated.

RSL Read Specific Locations

The data called for by an INT instruction will be taken from
consecutively decreasing memory locations starting with
the contents of A. Location 204710 follows location 000010
for this instruction. Data is read through the mask register.

RAS P, UL, TF. IPT Read Addresses per S

An INT reads 15-bit right justified address corresponding
to positions in S selected by TF. Addresses are read in
decreasing order. The 10 low-order bits are de,'ved from
S, the eleventh bit corresponds to the UL selection, the four
high-order bits are supplied by the prefix register, if selected,
or else ZEROs are filled in. If IPT is selected, an interrupt
is generated when the last valid address in S has been trans-
ferred.

RNA P.UL.TF.STEP.IPT Read Next Address

The same as RAS except: (1) the INT reads the current
(or first) address selected by TF and S. (2) If STEP is
selected, the scanner steps to the next S position after
the address is read. (3) If IPT is selected and there are
no more positions in S to satisfy TF, an interrupt will be
generated after A2 supplies a dummy address of 000010.
If the INT calls for more than one word or an unavailable
woi•d, all words after the first will be all ZEROs and an
overflow condition will be established.

RPS UL. TFI IPT Read Words Der S

An INT reads words from decreasing memory locations
which satisfy the conditions of UL, TF. and S. If IPT
is selected, an interrupt is generated after the last word
is transferred. If the INT calls for more words than are
available, an overflow condition is established and words of
all ZEROs are transferred to satisfy the INT. Data is
read through the mask register.

2-60

ROS UL, TF, STh•P, IPT Read One Word Mer S

An INT reads the current (or first) word which satisfies
UL, TF, and S through the mask register. If STEP is
selected, the scanner steps to the next (decreasing)
memory position which satisfies the conditions after
the operation. If IPT is selected, an interrupt is generated
after transfer of an all ZERO word after the last valid word
has been transferred. If the INT calls for more than one
word or for an unavailable word, all words after the first
are ZERO and an overflow condition is established.

RCS TF, IPT Read Count of S

A count is taken of the positions of S which satisfy TF.
If IPT is selected, an interrupt is generated after the
count is developed. An INT will read the count, right
justified.

RS. TF. IFT Read Short Count of S

A count is started of the positions of S which satisfy TF.
The count is terminated if it reaches two, otherwise
the same as RCS.

Read S Register

An INT of 32 words reads the S register in thirty-two
32-bit segments; each segment is right justified. The
first word read contains bits 0-31 of S with bit 31 in the right-
most position. The last word read has bit 1023 of S in the
right-most position.

Read Tags Specific

An INT reads the aight tag bits of successively decreasing
memory locations starting with the location addressed by
A through the tag mask register. Location 204 7 10 follows
location 000010. The bits are left justified.

(3) Search IMhtrt~ctions (12-bit format)

TH. Y, UL Search on Equal

The S register is set to ONE in all positions for which the
unmasked parts of the word in UL exactly match the X
register as masked by M and the requirements of TH and Y
are satisfied; all other positions are set to ZERO.

8AE TH.,Y. 8earch on AND E"aal

The S register will have a ONE in all positions which
satisfy the SOE search and which were already set to
ONE as a previous result.

2-61

SOG TH. Y, UL Search on Greater

The S register Is set to ONE for each position in UL in
which the unmasked bits of the word are greater than
the corresponding bits of X. The unmasked bits are
treated as a concatenated diminished radix complement
(ONE's complement) field. Only those words whose tag
bits satisfy TH and Y are set; all other positions of S are
set to ZERO.

SGE TH, Y.UL Search on Greater or Eaua-

Similar to SOG except the condition is greater or equal.

SLS Logic OP. BA, .HIFT, IPT Search Logic Specificatlns

When this instruction immediately precedes one of the search
instructions, it modifies the execution of the instruction and
provides logical and shifting capabilities between searches.
The effect of the SLS is:

(a) If the logic OP selected is not trivial (such as FO, F5,
etc.) the search is performed In 32 steps (in 160 oo,
employing the sT register to hold temporary results.
The search forms in S the algebraic function of the
specified search and the previous contents of S,
see Table 2-3. (R denotes the results of the current
search in the table.)

(b) If a SHIFT Is specified, it occurs before or after the
search operation is selected by the BA field. A
positive shift is down, bits of S shifted off the end
of S are lost, bits are filled with ZERO at the beginning.

(c) If IPT is selectedan interrupt will be generated at the

conclusion of the operation.

(4) Execute and Logic Instructions

XLI [8-bit Field) Execate Lo"ic Immediate

This instruction causes the execution of the eight-bit
instruction contained in the field.

SLozic OP. I Execute Logic with Com outer

The Logic OP specified Is formed in S between an S (like)
vector supplied by the 1604-B (32 words of 32 bits) and the
contents of S. If IPT is selected, an interrupt is generated
at the end of the operation.

2-62

XIS Execute Instructions Short

This instruction transfers control of A2 to the I register
which must contain a string of eight-bit instructions. The
instructions are performed In order from left to right.

XIL Execute Instructions Loni

Same as XIS, except 12-bit Instructions are in I.

() Eight-Bit Instruction

These instructions can be executed from the I register or as a
result of the XU instruction.

LO, Logic OP. Y Loxical Operation

The specified Logical OP is performed between the tags
specified by Y In U or L, as last specified by some
instruction. The result appears In S.

so SHIFT, Y Shift Ope ration

S is shifted as specified by SHIFT and stored in the tag
bits specified by Y and the last specified UL.

CL Logic OP Computer Logicai uperations

The same as XLC, except for INT.

CSSHIFT Computer Store

The same as RSR, except the specified shift of S is taken

before the store operation.

SHIFTShift S

The S register is shifted as specified.

Itzcrrupt the 1604-

Interrupts the 1604 -B.

No OperPtion

I; A pass instruction.

2-63

(6) Miscellaneous Control Instructions

IOV Interrupt on overflow

IUV Interrupt on underflow

IER Interrupt on error

CAM Clear AM

CIN Clear all interrupt conditions

CLE Clear all error and over or under flows

CLR Clear all AM registers

CIS Clear interrupt selections

(7) Sense Operations

TRA Sense alive

TRY Sense ready

TRE Sense error

TRO Sense overflow

TRV Sense underflow

TES Sense +/S = 1

TLS Sense +/S < 1

TGS Sense +/S > 1

TSE Sense scanner at end.

TIP Sense interrupt

2.5.5 The A3 Configuration

2.5.5.1 Introduction. The following paragraphs describe the A3 configuration utilizing

the previous descriptions of the GAP, Al. and A2 configurations.

A3 is a fully integrated configuration In which the AM becomes an integral

part of the 1604-B organization - replacing, and acting as, the highest numbered

2,048 words of 1604-B memory. The 1604-B may be programmed normally if desired,

since the integration of the AM retains all normal 1604-B operations.

The elaborate and complex GAP-DMA configuration suffers from its

architecturally ambiguous position as a semi-multiprocessor peripheral device. That

is, the overhead in the 1604-B necessary to set up, control, coordinate, and synchronize

the GAP (operating on the DMA channel) is very high. A3 eliminates most of this overhead

2-64

H

g by allowing direct manipulation of the associative features of the AM by new 1604-B

instructions, and by allowing direct 1/O between the AM and the peripheral devices.

A3 has also generalized the equipment of the GAP to allow more flexible ana powerful

programmingi. The AM itWelf is based upon the GAP and is very similar to it.

2.5.5.2 Configuration and Organization of A3. The 1604-B memory is composed of

two banks of 16,384 words each. One bank contains all even addresses and the (,.her

all odd addresses. In A3 a third bank ft, added, the AM itself, which contains all addresst

"greater than 30,719. To the user of 1604-B instructions and 7/0 channels there is no

change in 1604-B operation. Of course, the last 2, 040 memory locations have considerabi

extra capability since they are an AM. The logic associated with the associative functionis
,. of the AM and with the A3 configuration is shown in Figure 2-22. AM organization is a

generalization of the associative features of the GAP as explain-d in the following naragra4

Referring to Figure 2-22, the following registers and logic networks arc shown:

S1, S2 1604-B memory address registers (A4 bits) for the odd
and even banks of 1604-B core.

Z 1, Z2 1604-B memory buffer registers (48 bits) for the odd and

even banks of 1604-B core.

X, A, Q 1604-B general and arithmetic registers (48 bits) of the
1604-B.

AMAR Memory address register (11 bits) for the AM.

AMBR Memory buffer register (50 bits) for the AM.

CR Comparand register (49 bits) holds a search argument
(including busy bit).

MR Mask register (49 bits) used to specify the bits of memorx
to search or to control masking of words passing through
AMBR when required.

SR A storage register and counter combination (7 bits each)
which control the shifting of words pzssing through AMBR
or of the contents of CR when required.

8 A 1, 024-bit register which receives the result of all searches,
sometimes called a vector.

1j, E 1,02 4-bit registers which may hold a response vector.

'I6

o)

II

040

<
0

(y10 -a

u Cd

z

Figure 2-22. A3 1604-3 Associative Memory Integrated Corligurations

2-6

Resolver A counter and 1,,.-ic structure which can generate a count
of the number of "ONES" or "ZEROS" in S, D, or E or

which can develop a 15-bit binary number whose low order
10 bits correspond to a position of S, D, or E as selected
by instruction.

2.5. 5.3 Input-Oxtput. In tnie 1004-B buffered I/O is controlled by control words

held in memory. The format oL a control word is:

Bit: 47 37 24 14 00

Start & Current Terminal
Address AddressA

t -unused

In the context of the 1604-B, the terminal address must be greater than the

starting address .and less than or equal to 32,768 (actually zero). That is, the I/O

operation must not wrap around from the highest memory location to the lowest. This

is because the 1b04-B uses memory locations 0 through 7 for special control functions.

All normally legal 1604-B I/O operations operate unchanged in A3.

If the high order four bits of the starting addr(ess designate the AM (i.e.,

- 11112) and the terminal address is valid (i.e., in the range 1111000000000012 through

0000000000000002 MOD2 15), operations are normal. However, if the terminal address

is invalid for normal 1604-B operation, it will designate special associaave i/O functions

as defined in the following paragraphs.

The facilities provided in the A3 I/O system allow:

(1) Normal 1604-B operation.

(2) Block loading of AM with busy bit control.

(3) Unloading or loading of a -et of words which are
defined by one of the response vectors, i.e.,
associative transiers.

2

" ~2-67

i

!I
The I/O control logic In the A3 configuration will examnle bits 14 and 11 of

the control word when bits 37 and 34 are all I'l"l to determine the kind of operation to

perform. There are three classe. of operation: normal I/O In which the busy bit in

AM in left unchanged, block associative I/O which provides control over the busy bit

during a block load operation, and vector or full associative I/O. The classes are

selected by bits 14 and 11 as follows:

14 Bits11 Operation

S0 0 Normal
-0 1 Vector
1 0 Block
1 1 Normal

If vector or block operation has been selected, bits 13 and 12 control the busy

bit on writing to memory as follows:

Bits
13 12 Operation

0 0 Do not change BB
0 1 Invert BB
1 0 Write BB as ONE
1 1 Write BB as ZERO

In block associative operations when bits 10 through 0 of Lhe control word

define the terminal addresq in the AM section of core, then tu- operation is simiiar to

normc-I 1604-B I/O. In vector operations bits 10 through 0 are used internally for special

control. The words to be transferred are defined by the combination of a response vector,

the true or false positions of the vector, and the upper or lower addresses of AM as selected

by bits 33 through 30. The bit configurations are:

Bits
33 32 31 Vector Memory Block

0 0 0 E
o 0 1 E U
0 1 1 D L
o 1 0 D U
1 1 0 DE LU
1 1 1 DE UL
1 0 1 ED UL
1 0 0 ED LU

4 .2-68

I~t

t U #.

rill

The notation DE or UL denotes the concatenation of the vectors or address

blocks indicated in the order written. Thus, the code 101 causes E to map the upper

memory and D to map the lower memory. Bit 30 selects the TRUE state of the vector

if 1, the FALSE state if 0. Upper memory addresses are 30,720 through 31,743;

lower addresses are 31,744 through 32,767

2.5.5.4 In hstructions

(1) Normal 1604-B Instructions. All 1604-B instructions
operate as defined in the 1604-B programming manual,
except the two illegal instructions 77a and 008. Instead
of unconditional halts these instructions are used to con-
trol the associative features of A3.

(2) 1604-B-Like Instructio. The 778 operation code in A3
provides for the use of all operand-type normal 16CG4-B
instructions using associatively-defined operands. In-
structions may be executed from the upper or lower 11alf-
word. The format of these instructions (shown in the
upper half-word) is:

Bit:
47 42 41 39 38 33 32 29 28 27 96 25 24

77b Opcode I M S B

The fields of the instruction are:

Bits . Usg.i

47-42 778 1604-B Cooode daisting thk instruction class.

41-39 Index-Indirect field, operates on an asec >iatively-defined (by T-field)
15 bit number, y, as in the normal 1604-B.

38-33 Sub-opcode - selects the instruction. See Table 2-5.

32-29 T-field causes the development of a 15-bit number from a combination of
the 8, D, and E vectors, the TRUE or FALSE state, and the upper or lower
halve of the AM. This number Is used just as the y (base execution
address) is used in normal 1604-B operation.

2-69

TABLE 2-5. OPCODES FOR 778 INSTRUCTIONS

04 ENQ Enter Q
10 ENA Enter A
11 INA Increase A
12 LDA Load A
13 LAC Load A Complement
14 ADD Add
15 SUB Subtract
16 LDQ Load Q
17 LQC Load Q Complement
20 STA Store A, copy bit 24 into BB
01 STA Store A, invert BB if bit 24 = 1, retain BB if bit 24 = 0
21 STQ Store Q, copy bit 24 into BB
02 STQ Store Q, invert BB if bit 24 = 1, retain BB if bit 24 = 0
22 AJP A Jump
23 QJP Q Jump
24 MUI Multiply Integer
25 DVI Divide J-teger
26 MUF Multiply Fractional
27 DVF Divide Fractional
30 FAD Floating Add
31 FSB Floating Subtract
32 FMU Floating Multiply
33 FDV Floating Divide
36 SSK Storage Skip
37 SSH Storage Shift
40 SST Selective Set
41 SCL Selective Clear
42 SCM Selective Complement
43 SSU Selective Substitute
44 LDL Lead Logical
45 ADL Add Logical
46 SBL Subtract Logical
47 STL Store Logical, copy bit 24 into BB
03 STL Store Logical, invert BB if bit 9,4 1, retain BB if bit 24 0
50 ENI Enter Index
51 INI Increase Index
52 UIU Load Index, U
53 LIL Load Index, L
55 lIP Index Jump
56 SIU Store Index, U
57 SIL Store Index, L

1 60 SAU Substitute Address, U
61 SAL Substitute Address, L
64 EQS Equality Search
6 THS Threshold Search

MEQ Masked Equality
67 MTH Masked Threshold.
70 RAD Replace Add
71 RSB Replace Subtract
72 RAO Replace Add One
73 RSO Replace Subtract One
75 SLJ Selective Jump
76 SLS Selective Stop
77 NOP No Operation, however t!e Step and T fields are effective

2-70

40

Bits Use

28 Step - cause the resolver to step to the next or first response before
developing the base execution address, y.

27 Interrupt - causes a program interrupt if there is no next or first
response as defined by T wvhen called for by Step.

26 Mask - causes the word passing through AMBR to be masked by MR.

25 fift - causes the word passing through AMBR to be right circular shifted
the number of places held in SR before any masking.

24 Busy Bit - control is applied only to the 77 class instruction codes 208,
218, and C-8. See the discussior. in Table 2-5.

The T field (and the b field) control the development of
an operand address. Assume that as the -dsult of some
search sequence, a response vector is established and is
stored in the S, D, or E registers. The vector in fact is
a mapping of the U or L part of AM', and either the TRUE
or FALSE state of the bits of the vector may give the correct
mapping. When an associatively-defined operand is required,
a 15-bit number, y (the base etxecution address), must be
developed. The high-orcer four bits of y are 1111 since the
base execution address is in the AM; the low-order 10 bits
are the result of resolving the S, D, or E vector in the T
or F state as selected by the T field. The missing bit (210)
is selected by the T field to match the U or L designation.
The combinations of S, D, E; T, F; and U, L selected by the
T field are:

T Vector T, F U, L

Bits 32 - 39

0000 S F U
0001 D F U
0010 E F U
0100 S F L
0101 D F L
0110 E F L
1000 S T U
1001 D 'T U
1010 E T U
1100 S T L
1101 D T L
1110 E T L

2-71

| 4

Using this set of instructions, the programmer may 4W

directly access associatively-defined operands. He 4

may index them or use them a.4 ludirect address by
proper coding of the b, or index, field.

When operating with a set of associative operands, the

selected vector is resolved from the S register. The
transfer of this vector to the S register for resolution
is handled automatically by the A3 logic without destroying
any response vector (S, D, or E). The resolver may be

thought of as a counter which steps down the vector until
the proper condition (T or F) is found. Storage is pro-
vided in the resolver to allow the I/O system to resolve

a vector when transfer is needed without losing its place
in normal operations. Between I/O transfers,the position
of the I/O vector resolution is stored in bits 10-0 of the
I/O control word. In using the 1604-B instruction in the
associative mode, the programmer must not change
vectors unless he is willing to lose his place in the old

vector. The A3 logic will step properly through one
vector. If the programmer desire. to change vectors,
he should store, and later reset, the resolver, using the
instructions described in Paragraph 2.5.5.4, item (4).

(3) Search Instructions. A3 provides the 10 search instruc-
tions of the GAP, * plus extensive detail control over the
inter-search logic and vector manipulation.

In addition to the GAP search instruction, variations of
MAX, MIN, NHC, and NLC are provided which do not
require the use of two response registers. In the GAP,
the D and E registers are associated with the upper and
lower halves of memory; in A3 they are more general.
This generality is provided through the detail control of
a search available in A3.

All searches place a result in the S register; however,
S may be exchanged with D or E both before and after the

search to allow (effectively) the placing of results directly
into D, E, or S.

The format of an A3 search instruction is shown below in

the upper half word:

Bit: 47 42 38 37 6 35 34 33 32 31 30 29 28 27 24

U S S D E I A S M B

008 !OP L D E S S N D H A B LOGIC
I V S

T K

*See Appendix A.

2.72

The fields of instruction are:

Bits Use

47-42 008 - 1604-B Opcode designating this instruction set.

41-38 Sub-Opcode - see Table 2-6.

37 UL - Selects a search eon upper or lower part of AM.

36 SD - Exchange S & D before the operation.

35 SE - Exchange S & E before the operation.

34 DS - Exchange D & S after the operation.

33 ES - Exchange E & S after the operation.

32 INIT - Initialize S before the search.

31 ADV - Advance S before the search.

30 SH - Shift the comparand right circular (on SR) before the search.

29 MASK - Use the MR to mask CR.

28 RB - Ignore the BB in this search.

27-24 LOGIC - Perform the logical operation specified by Table 2-7 after all
other operations in the search.

(4) Control Instructions. A set of control instructions
is provided in A3 to manipulate the additional facilities.
These instructions have three formats as follows (shown
in upper half word).

47 42 38 37 36 35 30 29 2b 27 26 25 24

F1 008 158 0 0 W T B B

H AD

47 42 38 37 36 35 30 29 26 25 24

LF2 ~ s 110 WO

47 42 38 37 36 35 26 25 24

(F 008 158 1 OP.

2-73

TABLE 2-6. SEARCH INSTRUCTIONS

EMC Exact Match
MMC Mismatch
GEC Greater than or Equal
GTC Greater than
LEC Less than or Equal
LTC Less than
MXF Maximum Fast - the register selected by bits 35, 36,or the S register

is destroyed by the operation; the other register contains
the result.

MXS Maximum Slow - no register is destroyed (except the result, of course).
MNF Minimum rast - the register selected by bits 35, 36,or the S register is

destroyed by the operation; the other register contains
the result.

MNS Minimum Slow - no register is destroyed (except the result, of course)
NHF Next Higher Fast - see MXF.
NHS Next Higher Slow - see MXS.
NLF Next Lower Fast - see MXF.
NLS Next Lower Slow -- see MXS.
NOP No search, all other controls are active.
EXT Extend - this opcode defines the control instructions.

TABLE 2-7. LOGIC FOR SEARCH OPERATIONS

.Logic Field Operation

0 S+ D--S

1 S+ E - S
2 S+ D + E - S
3 0 -1 S
4 1 -*)S
5 S - D ---- D

6 S + E ---+ E
7 SD-- D
8 SE -- E
9 S- D

10 S-- E
11 0- D
12 0 ----- E
13 1 D
14 1 --- E
15 No Op

2-74

The fields of the instruction are:

Field Use

Bits 47-36 Designate the control instructions and the subclass

OP Opcode for the subclass; note subclass 00 has only one instruction

W A field which defines a combination if T, F: S, D, E: and U, L to
designate a set of words in memory. See Table 2-8.

BB Busy bit control when writing to memory or loading MR or CR,
see Table 2-9.

S1l
MASKADVAN As in other instructions.

INT

The F1 instruction is:

WCR - Write Constant into responders. All
control fields are operative.

The F2 instructions are:

RCA - Read Count of responders to A

RCQ - Read Count of responders to Q

The F3 instructions with BB effective are:

LMA - Load MR from A

LMQ - Load MR from Q
LA'M - Load A from MR
LQM - Load Q from MR
LCA - Load CR from A
LCQ - Load CR from Q

LAC - Load A from CR

LQC - Load Q from CR

The F3 instructions without BB effective are:

LSA - Load SR from A

LSQ - Load SR from Q

LAS - Load A from SR

2

S~2-75

)i -

LQS - LoadQfromSR

LRA - Load Resolver from A

LRQ - Load Resolver from Q

LAR - Load A from Resolver

LQR - Load Q from Resolver

i(5) Miscellaneous 1604-B Instructions. Additional 1604-B
instructions have been defined for A3. These instructions
are "interna" EXF sense and select codes to allow testing
and setting of conditions in the AM hardware. They are:

SIP Select Interrupt on Parity Error
CPI Clear Parity Interrupt
CPS Clear Parity Interrupt Selection

TCZ Skip if count equal zero
TCO Skip if count equal one
TCM Skip if count greater than one and complementary
TMB Skip if memory busy conditions
TMI Skip if memory interrupt

i

Im
i2-7

TABLE 2-8. W-FIELD CONTROL

Id

1. W is a six-bit field: W5 , W4 , W3 , W2 , W1, WO

2. W5 conditions the TRUE FALSE selection on the vectors.

3. W4 and W3 condition the U, L selection as:

W4 W3 Selection

0 0 U
0 1 L
1 1 LU
1 n UL

4. W2, W1 and W0 condition the vector selection as follows:

W2 W1 W0 Selection

0 0 0 S
0 0 0 D
0 1 1 E
"0 1 0 SE
1 1 0 SD
1 1 1 DE
1 0 1 ED

TABLE 2-9. BB CONTROL

BB Effect

00 Write Zero
01 Write One
11 Invert
10 Retain

2-77

I

2.6 TIMING OF ASSOCIATIVE MEMORY CONFIGURATION

2.6.1 Introduction

This paragraph discusses and develops the elements involved in instruction

timing for the GAP, Al, A2, and A3 configurations. Timing information used in the

evaluaticn of these configurations is also presented. The initial subparagraphs of this

paragraph are concerned with the basic elements which comprise the overall timings,

their interactions, and some of the problems of deriving or developing an overall set

cf timings for evaluation purposes.

The greatest timing problems are presented by the Multiple Pass Searches

(maximum, minimum, next higher than, next lower than) present in the GAP and A3

configurations. The complexity of timing multiple pass searches is due to the search

algorithms: that is, the search time is a function of the actual data search and may vary

widely for different sets of data. GAP timing is complicated because of the configura-

tion of the GAP 1604-B system. In this system, GAP is used as a peripheral device,

executing its own program from 1C34-B memory. In use, GAP must be synchronized

with the 1604-B io that the 1604-B program may obtain and use the results of searches

performed in the GAP. However, GAP and 1604-B are timed independently and run in-

dependently, thereby resulting in complicated timing situations involving both the load on

the 1604-B and Lie elapsed time for GAP to complete a given L)eration sequence.

ir, the Al, A2, and A3 configurations, timing is much more straightforward.

A3 timing is basically the &.rae as 1604-B timing because the associative memory is

fully Lni'egrated into the 1604-B. The major additional problem presented by A3 is the

timing of the multiple task search operations. In Al and A2. most instruction- are exe-

cuted within the EXF time of the 1604-B. Thus, for Al and A2, the EXF, INT, and OUT

instructions cuntroi the timing of both the 1604-I. and the associative memories. Timing

for these oierations is found in the programming manual for the 160-1--B. ' The logic

cap.ibility of the A2 configuration presents one minor complexitt that is tr., ted 'ir sub-

sequent paragraphs.

The following paragraphs develop the elements which comprise overall timing numbers

for the configurations studied.

"-Control _Data 1_._604 Computer Programming Manual. CDC Publication No. 167T, Rev.
August, 1962.

2-78

2.6.2 Basic Timing Elements

In the use of the GAP, Al, A2, and A3 configirations, there are three baa~dc

elements whicl contribute to "he execution time of instructions:

(1) Memory accessing

(2) Resolution of responses

(3) Instruction algorithms

2. 6. 2. 1 Memory Accessing. 1he 1604-B employs two independent (and independently

timed) banks of memory. Each bank has a read access tie of 2. 2 microseconds and a

full cycle time of 6.4 microseconds. CDC claims an effective memory time of 4. 8 micro-

seconds, but includes in this time the effective overlap obtained by the two instructions

per word format of the 1604-B. Within the 1604-B, several mechanisms compete for

memory access. These mechanisms are the program, the I/O system, and certain in-

ternal machine features (real-time clock, interrupt system, etc.). Each 1/0 channel

(including the DMA channel of the GAP*) is polled, in a fixed sequence, by an I/0 scanner

to determine when memory access must be granted to the I/O system and which channel

will obtain access.

Two separate times are needed to describe the effect of I/0 operation on

system timing. The first time repre.ents the amount of available 1604-B memory time

consumed by the I/O transfer; the second time represents the iapsed time required to

satisfy the I/O request for memory access.

(1) Load on t'ip 1604-B. The 1604-B time consumed by 1/O
operation is a function of how much memory overlap is
obtained in the overall sequence of memory a,:esses by -ll
using niechanism:- With perfect overlap, the effective
memory rate is 4. 8 microseconds per access; with no
overlap, the memory rate is 6. 4 microseconds per access.
In the present circumstances it is reasonable to split the
difference and, by exercising engineering judgment,
adopt an I/O load on the 1604-B of 5. 5 microseconds per
access. Using this loading number means that, for timing
and load analysis purposes, each word transferred in or
out via the 1604-B I/O system (which includes the I)MA
channel) requires 11 microseconds of 1604-B time for
normal I/O and 5. 5 microseconds of 1604-B time for I/O
on the DMA channel (in buffer mode',..

The DMA (rnel in burst mode is a special case, treated separately.
* Each IO transfer in the 1604-B requires one memory access for the I/O control

word and one access for the word transferred, except the DMA channel which
does not require the control word access.

9-79

In the A3 configuration, the AM is logically a part of
the 1604-B memory structure. In this configuration
the 1604-B has a third bank of memory, independent
and independently timed with a 4-microsecond full
cycle time.

In normal operation, this third logical and physical
memory bank has no effect. But, because the AM is
composed of contiguously numbered memory locations
(the last 2,048 words), the kinds of accessing overlaps
obtained are more easily analyzed when they involve
the AM. The benefits gained should be obvious. For
the present purposes, they may be ignored except for
the case of I/O transfers to or from AM. In this case,
each I/O word transferred requires only 4 microseconds
of 1604-B time so long as a program is not being executed
from the AM. For other cases, including 1604-B in-
struction timing, it is assumed that the AM cycle is the
same as the 1604-B cycle. These assumptions introduce
additional timing complexity only when there are clear,
significant, and easy-to-evaluate benefits.

(2) Elapsed Time. The elapsed time for the AM operations is
widely variable and extremely complex to evaluate, it is
composed of several parts, each of which is variable, and
their combined effects are difficult to evaluate. The prob-
lems involved are most difficult in the case of GAP; for Al,
A2, and A3, timing is much more straightforward and
simple. A general sequence of the events which are involved
Mn instruction execution is shown in Figure 2-23.

fr the preceding paragraphs the vdue 5. 5-microseconds has
been assigned to access operations (such as tl-t 2 and t3-t 4)
to 1604-B memory. The times represented by the intervals
t0 -t 1 , t2 -t 3 , etc. , are a function of both the level of I/O
activity of the 1604-B and of the instruction sequence being
executed by the 1604-B. The access delay interval may be
any value from 0.0 to 77 microseconds in the 1604-B system.
The first value (0. 0) could occur under any circumstances,
but most likely when no 1/0 or interrupt activihy is present.
ThL second value (77) can only occur when all I/O channels
are active.

"Ihe major complexities arise in the GAP configuration be-
cause the 1604-B and the GAP are running independently and
must frequently be resynchronized. The GAP is competing
with the 1604-B program (and 1/O) for access to memory.
In Al, A?, and A3 there is no such competition, except in
very special cases which are treated separately. Our major
concern here is to develop values for the elapsed time for
each GAP instruction. The elapsed time of a sequence or
1604-B instructions* is easily derived from a consideration

* In the sense uped here the 1604-B instructions subsume the associative features
of A3. Elapsed time of a sequence Is the sum of instruction times plus 11 micro-
seconds per word transferred during the execution of the sequence. For Al and A2,
elapsed time is simply instruction time on the transfer channel.

2-80

I!I

Time in gqec.1to request access for instructionS1.6 or 175
(77 max))

7) 1 instruction access granted

5.5 { c c ess instruction

2 request access for first operand
1. 6 or 15

S1(77 max) 7 a)t3 operand access granted

5.5 { access operand

St4 request access for next operand

I etc. all operand accesses are 7ompleted
t5 ma~n m

execute instruction algorithm

Ct6 end of instruction - request access for next
instruction.

Figure 2-23. Instruction Execution Sequence

S~2-81

t

of the instruction times and the I/O (including DMA)
load at the time of execution of the sequence.

Before the GAP can gain access to 1604-B memory, its
request must be recognized by the I/O scanner. The
delay till access is granted due to two factors: (1) the
time required for the scanner to recognize the request,
and (2) the time required for the request to fit into the
current interlace pattern in 1604-B memory. Provision
for the latter factor has been made in the assumption of a
5. 5-microsecond access rate to 1604-B memory. The
scanner time is a function of I/O activity. The scanner
inspects all I/O channels in 3. 2 microseconds if none are
requesting service. * Thus,for the case of no I/O opera-
tion, 1.6 microseconds may be used as an average access
delay. In the worst case a 77-microsecond delay could be
obtained with all I/O channels active. For evaluation
purposes., 15 microseconds has been selected as a repre-
sentative delay value for moderate I/O activity. ** The
two values, 1. 6 microseconds and 15 microseconds, will
be used in timing evaluations to represent the memory
access delay per word experienced by the GAP. Remember
that this delay could be as high as 77 microseconds per word.

The final element of elapsed time is the time required by
the AM algorithms to execute the instructions after all oper-
ands are fetched from 1604-B memory. These times are
developed in the following paragraphs.

2. 6.2. 2 Response Resolution. Because the resolution and/or counting of responders is

involved in the mechanization of many of the GAP and A3 (to a lesser extent in Al and A2)

instructions, the response resolver (RR) will be described before discussing the instruc-

tions. We have very little direct information on the implementation of the RR. However,

based upon certain clues and claims in the Goodyear literature which has been made

available to us, we have postulated a proba'ble 1:- ýie,-+, lion. Our e,.cL-.:-

cor aitn •:,u ver, the requirement placed on the RR

by the Goodyear claims, and good engineering practice within the milieu of the GAP design.

(1) Resolver Logic. The response resolver's task is to find
the next, or first, bit in the S register which is a ONE.
It is also used to count the number of ONEs in the S regis-
ter. We assume a logical structure as shown in Figure 2-24.

* See CDC publication #/60110100, July 1964,.1/0 Specification for the CDC 1604-B
Computer.

* Moderate I/O activity implies one high-speed device and one low-speed device
in operation.

2-82

I
4- " 4

-� X (n=o) (m=i) £ (iw'jl (m=4� £ (rr31) (m�i)

� I (m�32)

EI�fl

�n-n
decoders

I
I
t

FIgure 2-24. �eleton of Resrxnise ResolverC
1 2-83

I
e9

The RR network is developed by considering the 1,024 '*0
bits of S to be arranged into a 32x32 matrix. The matrix
position of a bit of S is then given, uniquely, by a pair
of five-bit(or base 32) subscripts, m and n. In Figure
2-24 the matrix is shown with m rows and n columns and
the subscripts are shown on the representative bits of S.

The resolution procedure is to scan the rows of the matrix
to determine if there is a ONE in a given row. If a row is
found to contain a ONE, the columns of that row are scan-
ned to determine the exact position of the ONE. The
subscripts of the S position in the matrix then yield a 10-
bit number which is the index of the ONE that has been
located. Because of the one-to-one mapping of AN words
into the bits of S, the index on S is also the low order 10
bits of the address of the word. Thus, a two-dimensional
scanning scheme to resolve responses is employed.

The implementation of this scheme is indicated in Figure
2-24. The gates marked A serve to OR together the
ONEs of each row of S. They are 32-input gates and there
are 32 of them. The outputs of the 32 gates are scanned
by the m counter and its decoder. The gates marked
are identical to the (A gates, except that they OR together
the gated columns. The (gates are enabled by the m decoder
to allow the selected row po appear at the @ gates. The®
outputs are then scanned by the n counter and its decoder.
When a ONE is found, the m and n counters contain the 10-oit
index of the position in S of the ONE. Once a scan of a row
has been started, it must be completed before stepping to
the next row to ensure that all the ONEs in the rowv are
resolved.

(2) Resolver Timing. Goodyear Aerospace Corporation claims
ta tthc worst case resolution time is one microsecond. In
this implementation the worst case would be a single responder
at S(31) (31) and it would require 64 scan steps to locate it.
Thus, each scan step must take about 16 nanoseconds.

The worst case to count the number of ONEs in S would be to
have a ONE in each row of S, thus requiring 1, .24 scan steps
or about 16 mi croseconds.

A much more difficult problem is to decide the resolution time
for representative cases of responders. Clearly, this is a
complicated function of the data pattern in memory. Appendix
B attempts to develop resolution time as a function of the
probability of a given bit of S being ONF, with the result shown
in Figure 2-25.

l 4

II

10
9 -
8
7
6 -

5

4

3

2

9.8
7.
6 -

5

4

30

20

10
9
8
7
6 h

4

3

2

1 II II l I I I I I I I I I l I I I I I I I

2 3 4 5 6 7 89.01 .02 .03 .04 .05 .07 .09 .2 .3 .4 .5 .6 .7.8.9 1
.06 .08 .1

Figure 2-25. Resolution Steps vs. Probability of ONE in Given Position of S

2-85

2. 6. 2.3 Instruction Algorithms. The timings presented in this paragraph are based

on our knowledge of the actual GAP implementation, the response resolver described

above, and our engineering judgment. Many assumptions have been made to develop

these times, most are unimportant. The critical assumptions are:

(1) In AM search operations only those columns are inter-
rogated whose mask bit is ONE. All other columns are
skipped. An interrogation requires 0. 1 microsecond;
a skip requires 0. 05 microsecond.

(2) Search operations are terminated as soon as it is known
that a result has been developed.

(3) The response resolver, and its timing, is as previously
described.

(4) Timings are developed for searching 1,024 words,
either the upper or lower half of AM. The results are
directly extendable to searches of the full memory.

This paragraph is concerned only with the search instructions; the other AM

instructions are standard in any computer. No description of the AM algorithms beyond

the point necessary to develop their timing is given since thfis material can be obtained

by a study of the literature.

Of the 11 GAP search operations, six (EMC, MIMC, LTC, LEC, GTC, GEC)

are accomplished in a single pass* through the memorv, a seventh (BLC) requires two

passes, and the remaining four a variable ntumber of variable length passes.

(1) Single Pass Searches. The timing of the single-pass searches
is a function of the number of bit positions searched. If K is
the number of positions whose mask bit is ONE, a pass through
memory requires T, 0.1IK + 0. 05 (48-K) i 0. 2 microseconds
for the GAP,' T -0.* 1K +- 0. 05 (49-K) *0. 1 microseconds for
Al and A3 and 410.1K + 0. 05 (57- K) 0. 2 microseconds for
A2. The maximum search is thus 5 microserýonds. If it is
assumed that a representative sear~ch would inspect 24 of 48
bits, a representative search time of 3. 8 microseconds per
single pass search per half memory (1,024 words) can be- used.

A pass implies the ordered interrogation of each bit columin of the AMI.

2-86

iI

Th(. 'search (BLC) is simply two single-pass
sea ý,Je.. -xi cuted in series. Thus, the maximum time
is :,' `- ,seconds and a representative time is 7. 6
mifroseconds.

(2) Multiple-Pass Searches. The multiple-pass searches are
MAX, MIN, NLC, and NHC. The latter two are simply
the former two preceded by a single-pass search (LEC
or GEC). Some of the searches .n A3 are the same as in
the GAP as shown below.

MXF = MAX
MNF = MIN
NHF = NHC
NLF = NLC

Execution of these searches requires the use of the S
register and one other (or "buffert") register (for each half
of memory searched). The MAX and MIN searches require
the counting of S (at least up to a count of 2) after each
interrogation of a column. Thus, a MAX or MIN search
would require:

T2 = 0.1K + 0.05 (48-K) + 0.2 + 0. 016 (49-K)

L K 2
34 + (m, +: m n2)jsec.

In this expression, m 2 and n2 are the subscripts of the S
position of the second responder in S at the completion of
each interrogation. A worst case of MAX or MIN would thus
require:
T 2= 0. x 48 + 0.2+ 0.016 (49) [34+ 64] sec.

= 4. 8 + 0. 2 + 76.8 Asec.

- 81.8 Asec.

A worst case of NHC and NLC is simply a worst case MAX
or MIN plus 5 microseconds or 86. 8 microseconds. (See
Appendix B for detailed timing equations.)

(3) A3 Slow Searches. In the MAX and MIN GAP searches, the second
1, 024-bit register required is used to hold intermediate results
because a column interrogation could produce all ZEROs in S. On
the slow A3 equivalent searches, when all ZEROs appear in S,
the column causing the ZERO result is masked so that it may be
skipped in the future and the entire procedure is restarted. While
in the worst case this takes much longer than the GAP searches,
the disparity between the for representative data is not so
great. The A3 searchei 2, not destroy the contents of another
1,024-bit register as do the GAP searches. Appendix B develops
the worst case and representative case times for the A3 slow
searches.

2-87

1 '

2.6.3 Instruction Times

Using the elemental instruction step timing development in the preceding para-

graphs, this paragraph combines the neeclid elements for each instruction of the GAP,
Al, A2, and A3 configurations to give summary tables of instruction times.

2.6.3.1 GAP Instruction Times. Table 2-10 shows the times necessary to develop

running time estimates for the GAP configuration. Appendix A lists the GAP instructions.

The first column of the table shows the average 1604-B memory time consumed

by each GAP instruction. The second column shows the elapsed times to be expected

under the conditions of no I/O activity and moderate I/O activity associated with the 1604-B.

Under conditions of heavy I/O activity these times could be much larger. The last column

shows the representative, or fixed, AM operation time and the maximum AM time which

might be required. The average elapsed time figures employ the representative times

from column 3. Again, the elapsed times could be much larger if the macimum AM times

are used.

A certain amount of overlap of 1604-B and GAP operation has been allowed in

developing the elapsed time numbers. Using the information presented, timing numbers

can be developed for any critical 1604-B or AM operations which do not fit the environ-

ment presented here. It is suggested that in most cases the numbers presented are suf-

ficient. Times for arithmetic operations in the GAP have been assumed.

Once a burst mode operation is started in the GAP, each word transferred

requires 4. 8 microseconds of elapsed and 1604-B time. Note, however, that the burst

mode is as yet undefined by Goodyear.

2.6.3.2 Al Instruction Times. Al instruction times are much simpler tu determine

than the GAP instruction times. Two kinds of operations are performed with th Al.

First, EXF codes are sent from the 1604-B to the Al to specify what instruction is to be

performed. In all cases, Al responds within the 6 to8-microsecond EXF time of the 1604-3.

Thus, all EXF codes and the corresponding actions in Al are accomplished in 1604 time.

Second, Al responds to INT and OUT Instructions from the 1604-B. Again, any Al action

required is completed in the transfer time of the 1604-B. (This time is found in the 1604-B

manual.)

2-88

Z2TABLE 2-10. GAP INSTRUCTION TIMES
S(for 1024 words searched

Average Average Elapsed Time AM Operation Time
1604-B (microseconds) (microseconds)
Time Used
(micro- MODER- Representa-

Instruction seconds) NO 1/O ATE I/ O tive Average Maximum

RESUME 6-8 6-8
FORCE 6-8 6-8
SENSE 6-8 6-8

CLEAR 6-8 6-8

BLC 22.0 43.1 89. G 7.6 10.1,
CPX 16.5 note 1 note 1 uote 1 note I
DEL 5.5 10.1 23.5 3
EAR 5.5 7.1+4. 1/wd 20.5+4. 1/wd 4. 1/wd
EFR r. 5 9.6 24.6 4.1
EMC 16.5 32.2 64.3 3.8 5.0
EMY 5.5 27.1 40.5 2.0
END note 1 note 1 note 1 note 1 note 1
GEC 16.5 32.2 64.3 3.8 5.0
GTC 16.5 32.2 64.3 3.8 5.0
HLT 5.5 7.1 20.5 NilICI 5.5 10.1 23.5 3
JIH 5.5 10.1 23.5 3%
JIL 5.5 10.1 23.5 3

JNR 5.5 7.1 20.5 Nil 1.0
JUC 5.5 7.1 20.5 Nil
LDI 11-16.5 14.2-28.4 41-60.5 Nil

note 2 note 2 note 2
LDR 5.5 8.1 21.5 1
LEC 16.5 32.2 64.3 3.8 5.0
LTC 16.5 32.2 64.3 3.8 5.0
MAX 11.0 20.3 47.1 6.1 81.8
MIN 11.0 20.3 47.1 6.1 81.._i
MMC 16.5 32.2 64.3 3.8 5.0
NHC 16.5 39.5 71.6 11.1 86.8
NLC 16.5 39.5 71.6 11.1 86.8
NOP 5.5 7.1 20.5 Nil
RAF 11.0 15.3 42.1 1.1 2
RBE 5.5 7.1+4/wd 20.5+4/wd 4/wd
RBL note 3 11+5. 5/wd 14. 2+7. 1/wd 41+20.5/wd 4/wd
RBU note 3 5.5+5.5/wd 7. 147. 1/ wd 20.5+20.5/wd 4/wd
RCF 11.0 18.3 45.1 4.1 5.0
RCR 1• 0 15.2 42.0 1.0 16.0
RDA note 3 5.5+ 5.5/wd 7.1+7.1/wd 20.5+20.5/wd 1/wd 1/wd
RDC note 3 5.515. 5/wd IL 1+7. I/wd 24. 5+ W. 5/wd 4/wd 5/wd

2-89

TABLE 2-10. GAP INSTRUCTION TIMES (Cont.)

Average Average Elapsed Time AM Operation Time
1604-B (microseconds) (microseconds)
Time-Used

(micro- MODER- Representa-
Instructions seconds) NO I/0 ATE I/O tive Average Maximum

RUM note 3 5. 5+5. 5/wd 11. 1+7. I/wd 24. 5+20. 5/wd 4/wd
SCF note I note 1 note 1 note 1 note I
SIX 11-16.5 14.2-28.4 41-60.5

note 2 note 2 note 2 Nil
SPJ 11-16.5 14.2-28.4 41-60.5

note 2 note 2 note 2 Nil
WCR 16.5 28. 4,-4/wd 60.5+4/wd 4/wd
WFA note 3 11+5.5/wd 14. 2+7. I/wd 41+20. 5/wd . 1+4/wd

WIR note 3 l-+5.5/wd 14. 2+7. 1/wd 41+ 20. 5/wd 4/wd

Notes:

1. The complex search must be evaluated in terms of
the individual parts of the search sequence.

2. Numb)er pair depends on the ude of indirect addressing.

3. In buffer mode.

2-90

4

A single exception exists for Al (. e., the counting of responders). As

discussed previously, the maximum time to count responders is 16 microseconds. Thus,

the 1604-B IMT instruction following an RCS instruction to Al may be delayed up to 16

microseconds.

2.6.3.3 A2 Instruction Times. A2 responds to 4'xee kinds of commands:

(1) Instructions delivered as EXF codes.

(2) Instructions executed from the I register.

(3) I/O transfer operations on Channel 7.

All A2 instructions delivered as EXF codes are completed by A2 within the

1604-B EXF time of 6-8 microseconds (depending on the location, upper or lower, of the

1604-B EX1' instruction). In any event the 1604-B is free to execute instructions, but

A2 will ignore instructions to it if it is still ocupied with a previous operation. The TRY

or .uterrupt facilities may be used to determine when A2 is ready to accept a new oper-

ation. All I/O operations with A2 proceed at the maximum 1604-B speed as listed in the

1604-B manual.

The times listed in Table 2-11 are the times A2 will require to complete operations

in cores in which the operation times are greater than the 6-8 microsecond EXF time.

TABLE 2-11. A2 TIMINGS

Instruction Time ,@sec.) Notes

RCS 6-102 average 50
RCS 6-9.6

Xi1 6-8 min. 2 plus time for the 8 bit
instruction

LO 6-8 or 160 6-8 for FO, F3, F5, F1O, F12.

F15; 180 all other
8o 4096

2.6.3.4 A3 Instruction Times. Timing the M3 onfiguration is considerably simpler

than timing the GAP configuration. Operations in A3 are performed as in any normal

general-purpose computer. There is no competition between AM and .604-14 programs

2-91

for memory access since they are one and the same thing. The only time the AM rums

independently of the 1604-B is duiring a WOR instruction. Thus, subject to AM timing

variatiovs and effective memory overlap of instructions and data in 1604-B memory, the

A3 instruction times are directly useable in timing of programming sequences.

There are five classes of instructions in A3 as listed below:

(1) Normal 1604-B Instructions
(2) 1604-B-Like Instructions
(3) Search Instructions
(4) Control Instructions
(5) Miscellaneous Instructions

The timing of each class of instructions is treated separately in the following paragraphs.

(1) Normal 1604-B Instructions. The timinS~ of normal 1604-B
instructions is exactly as specified in the 1604-B mawial.

-2) 1604-B-Like Instructions. The execution times for the entire
set of 1604-B3-like instructions are the same as the corresponding
1604-B instructions plus the time needed to resolve an operand.
For cases in which there are a reasonably large number of ONEs
in the register being resolved, resolution time is so small that
it may be assumed to be absorbed by the faster cycle of AM
memory as compared with 1604-B memoi-v. In the worst case,
the resolution time is one miciosecond. For timing purposes,
the 1604-B-like instructions require the same time as their
normal 1604-B counterparts.

(3) Search Instructions. The timing of the A3 search instructions
is given by Table 2-12. The entries in the table give the average
and maximum times for the instructions including all memory
accesses for the in~struction and any necessary data.

TABLE 2-12. A3 SEARCH INSTRUCTICN TlIMING

INSTRCTIONTime in Microseconds
ISRCINAVERAGE MAXIM UM

EMC 6.2 7.4
MMC 6.2 7.4
GEC 6.2 7.4
GTC 6, 2 7.4
LEC 6.2 74. 4
LTC G. 2 7.4
MXF 8.5 84.2
MXS 10.9 982.4
MNF 8. 5 84. 2

2-92

TABLE 2-12. A3 SEARCIh INSTRUCTION TIMING (Cont.,

- - Time in Microseconds
INSTRUCTION AVERAGE MAXIMUM

MNS 10.9 982.4
NHF 13.5 89.2
NHS 31.4 1102.4
NLF 13.5 89.2
NLS 31.4 1102.4
NOP 3.0 3.0
EXT 3.0 3.0

The timing of these operations, or more exactly the
associative part of them, was developed in the preceding
paragraphs. An'instruction fetch time of 2.4 microseconds
was used. (This is the tame as the time CDC uses in their
instruction timing.)

(4) Control Instructions. The timing of the control instructions
is given in Table 2-13. The times include all necessary
instructions and operand accesses.

TABLE 2-13. A3 CONTROL INSTRUCTION TIMING

INSTRUCTION TIMING

WCR 3.0 Note 1
RCA 3.1 Note 2
RCQ 3.1 Note 2
LMA 3.0
LMQ 3.0
LAM 3.0
LQM 3.0
LCA 3.0
LCQ 3.0
LAC 3.0
LQC 3.0
LSA 3.6
LSC 3.0
LAS 3.0
LQS 3.0
LRA 3.0
LRQ 3.0
LAR 3.0
LQR 3.0

Note: 1. After the 2 microseconds the 1604-B continues to
execute instructions, but the AM is busy for 4
microseconds per word.

2-93

Note: (contd.)

2. Assumes a resolver counting time of 0. 1 micro-
second. The maximum time is 16 microseconds
so that maximum instruction time is 19 microseconds.

(5) Miscellaneous Instructions. The A3 miscellaneous instruc-
tions are all EXF instructions and require 6 to 8 micro-
seconds.

2.7 COST

2.7.1 Introduction

The cost figures for the four hybrid associative memory configurations were developed

as a basis for cost performance comparisons. The memories are: Goodyear's as defined

by their Proposal GAP-2549 and their programming manual, and AUERBACH's Al, A2,

and A3. Since the cost figures are developed as a basis for comparison rather than as

price projections for budget or other purposes, their relative values are more significant

and probably more accurate than their absolute values.

The fundamental assumption made in the design of the configurations considered

here was that they each must use present -'•M t imology. This is further interpreted to

meanthatthe2,048-word Goodyear BILOC array would be used for the two memories de-

signed by AUERBACH as wel. as fo, 'he Goodyear version because:

(1) Its cost appcared , ue smilar to that of other similar
constructions sticn is UNIVAC's BICORE, Raytheon's
BIAX, andothers. This does not mean that the BILOC
represents the lowest cost either now or in the future,
particularly when compared with other approaches
which use a ditierent AJM organization such as delay.
lines, or perhaps thin films.

(2) Use of the identical array shows clearly the relative
cost of the remaihrng parts of the memory and conse-
quently the effects of adding or removing particular
features.

(3) Since 1RADC has ordered a BILOC memory, the results
of our study mray be directly applied to the RADC situa-
tion.

(4) Ground rule requires it (see Paragraph 2. 2).

2-94

mN

Since a -nemory is actuv.ly being built, it is tssume& that R&D costs will

not be borne curectly by future mdeis, Accordingly, t'tchnique development costs are

excludei frcn the cost figures below. Design costs and .- emory development cost are

-tso excluded becatise the per-unit dewlzcrt.ost will vary depending on production

)iume. The resultin- ý,jta tigurcs then are indicative of hardware production, •sts

:nc.-u_•ing ovc,-head and prcf.t.

" -- 2 Ce, of the ., ar Associative Memo•y

Tb' zost cstimate of the (,'odyear memory is divided into the following four

ý.ategories-

(1)]cRpoube store
(S) Memory arra. ahd associated electronics
(3) Data registers, control, and cther electronics
k 40 Memory design and aevelopment

Each of t1ese is discussed in the follow-ing paragraphs.

2. 7. 2. 1 The Response Store. Tine response sture cost was estimated by first designing

one which is thought to be close to that usd by Goodyear. Next, the number of circuit

elements necessary to implement that design was estimated. And last, the cost of the

elements and the various costs of assembling them into a response store were estimated.

The design of the response store is shown in Figure 2-26; the dotted lines enclose circuit

elements of a Fairchild Semiconductor family of industrial integrated circuits.

The numbers within the dotted areas refer to the first three digits of the

Fairchild catalog number. Table 2-14 shows how the parts list was converted into an

overall response ,itore cost per stage. When the per stage cost is multiplied by the

1,024 stages, the resulting response store cost is about $152,300.

2.7. 2. 2 Memory Array. The cost of the BILOC array and associated electronics was

estimated by ir.,dividually estimating costs of the component parts and totaling them. The

parts as listed in Tfable 2-15 were taken from the Goodyear Skctch, SK 333N000-001, dated

3-31-65. Table 2-15 also .Now%,q the estimated cost inclucing overhead and profit of as-

sembling the array and associated electronics - the total is $144, d10. Note tnat this

cost will be invariant amorig tho three memories.

2-95

0 7F

I I , I I
I ='I j

I -- 1I I

II c I rL4
- VTI I---

__! 1 7 I

S__ J • t _ ._,___ -__ -- I "-l I.

A V

Figure 2-26. Estimated Goodyear Response Store Configuration

2-96

' 'i

TABLE 2-15. ESTIMATED COSTS OF ARRAY AND ASSOCIATED ELECTRONICS

Estimated
item Number Cost

Memory Array 1 $20,000

Non-Destructive Sense Amps(@ $90 amp) 1024 92,160

Write Switches 100 5,000

Read Amplifiers 50 5,000

Address Decoding Matrix 1 3,000

Read/Write Drivers 65 4,000

Busy Bit Reset Driver 1 500

1/3 Write Drivers 50 4,500

Interrogate Drivers 98 10,000

L TOTAL $144,160

TABLE 2-16. COST ESTIMATE FOR REGISTERS AND O"THER CIRCUITS

Estimated
Category Cost

F egisters $10,120

Counte r q 5 ,000

Other

/ Liae Terminations 200
P•trity Generator S00
""iec•lo Gates 300
lane Drivers 500
Response Resolver 5,000
Test Flip-Flop 100
Instruction Decoder 1,000
Index Adder 3,000

"Sub-Total 10,600

control

TOTAL $40,000

2-98

2.7.2.3 Data Registers, Control, and Other Electronics. The cost of these items was

determined by dividing them into the four categories:

(1) Registers
(2) Counters
(3) Other Circuits
(4) Control

From the Goodyear Sketch, SK 330N000-001, one can see that there are about

250 register stag•, about 50 counter stages, and other circuits as listed in Table 2-16.

Costs for each of the four categories are shown in the ta)e along with an estimate for

control citcuitry such that the total for the category is about $40,000.

TABLE 2-14. GOODYEAR RESPONSE STORE ESTIMATE

Calculation of Integrated Circuit Cost

Number of Qaantity
ICs per Price
stage T Description Per Unit Total

2 905 flip-flop $4.35 $ 8.70
3 902 flip-flop 5.50 16.50
9-1/2 914 gates 2.65 25.38
1 903 gate 2.55 2.55

TOTAL $53.13

Calulation of Total Cost

Item Cost

Integrated Circuitt $ 53.13

Etched Circuit Card and Connector 12.00

Card Assembly 5.00

Rack Assembly 20.00

Sub Total $ 90. 13

Overhead Factor (xl. 5) Yields 135. 20

Profit (+10% 13J52

TOTAL $148.72 per sa

2-97

iI

2.7.2.4 Memory Design and Development. A total of $170,000 is estimated to repre-
sent several man-years at various skill levels. This brings the total estimated cost of
the present Goodyear memory (without the M1218 interface) to $506,500 as shown in
Table 2-17. The table also presents the partial total of $336,500 by excluding the devel-
opment costs. This figure will be used for comparison with the other memories. The
percentage costs are also given to show more clearly how the costs are divided.

TABLE 2-17. ESTIMATED COSTS FOR GAP
(including integration circuits but not

including cost to modify the 1604-B)

Subsequent Percentage of Cost
Present Copies for SubsequentMemory Copies

Response Store 152.3 152.3 45

Array and Associated Electronics 144.2 144.2 43

Registers and Logic 40.0 40 12

Logic Design S0.0

Production Design 90.0

Sub-Total 506.5 336.5 100
(Assume profit included)

2.7.3 Cost of AL

The cost of the Al model is different from the cost of GAP in two respects.
First, the much simpler response store shown in Figure 2-27 has been assumed. Second,
fewer registers and control circuits are used thereby reducing the design costs as well as
the cost of the logic circuitry. The array is assumed the same as in the Goodyear and

therefore costs the same.--

Tle cost of the Al response store is estimated from the fact that one type 902
flip-flop, three type 914 gates, and one type 903 gate modules are needed per stage. Table
2-18 shows the calculation of circuit cost and the conversion of this number into a total

cost of $44.05 per stage.

2-99

7i

0- S

II

FF

Mik To

Scanner

vw
Gates

Figure 2-27. Al Response Store

2-100

TABLE 2-18. Al Reaponse Store Costs

Circuit Costs for Al Response Store

Number Fairchild Quantity Price
Required DM Description Per Unit Total

1 902 flip-flop $5.50 $ 5.50

3 914 gate 2.65 7.95

1 903 gate 2.55 2.55

TOTAL $16.00

Total Response Store Cost Pe'r Stage

Cost Element Cost

Integrated Circuits $16.00
Card and Connector 4.00
Card Assembly 1.70
Rack Assembly 5.00

Sub-Total $26.70
Overhead Factor (1. 5) Yields 40.05
Profit (10%) 4.00

Total 4.05 per stage

2.7.4 Cost of A2

The difference between Al and A2 is primarily in part of the instiuction set

and in the addition of a 32-bit supplement to the response store as indicated by Figure 2-!

It is estimated that each of these two changes would add approximately $5,000 so that its

total cost would be $214,000.

2.7.5 Cost of A3

The difference betwef. the cost of A3 and GAP is prim..rily in that part of tht

system which interfaces with the 1604. Bevause the A3 configuration has the associative

memory integrated into the 1604-B, the cost of interfacing circuits and buffer registers

which are included in the GAP is not present. On the other hand, slightly more extensive

modifications to the 1604-B conr circuitry are requir4d than in the case of t.e GAP.

Overall, these two effects balance so that the cost of the A3 configuration is the same as

the cost of the GAP configuration or, $336,500 for production copies.

2-101

i k0S

0- Ii
> 2 0-- --

k To
Gate o -- Scanner

From S1 F L---

v

Figure 2-28. A2 Response Slore

2-2102

P Multiplying the coat per stage by the u,,,nb-r of stages gives a total response

store cost of about $45, 107.

The cost of the remaining circuits is estimated to be about $15,000. These

figures and their total are shown in Table 2-19.

TABLE 2-19. SUMMARY OF Al COSTS

Al Component Cost

Memory Array $144K

Response Store 4'K

Registers, Gates,and Control 15K

TOTAL $204K

2.7.6 Cost Comparitsons

The cost of each of the four configurations is shown in Table 2-20. Note that

the total Al and A2 costs are about 61 percunt and 64 percent of the Goodyear and A3

models, respectively.

TABLE 2-20. COST COMPARISON OF AMs

Goodyear A2 A3
(costs shown in thousands)

Memory Array $144 $144 $144 $144
and Associated
Electronics

Response Siore 152 45 50 152
I 4

Roegster, Gates, 40 15 20 40
and Co- trol .

Total $336 $204 j $214 $336

Note: A3 Does Not Use: - A3 Requires:

" Instruction Regit;!br • Decoding Matrix

* Buffer Register 1/0 • Translator

* Address Register * Sequence Control

2-103

2.8 COMPARISON OF CONFIGURATIONS

This report has developed and studied four associative mernory, 1G'04-B hybrid

configurations. The four configurations represent three basically dissimilar approaches

to the design of hybrid associative memory configurations. The three approaches are

represented by the A] and A2 configurations (which are basically similar), the GAP config-

uration, and the A3 configuration. It is difficult, if not impossible, to illustrate the differ-

ences in approach, implementation, and capability resulting v-a a simple side-by-side

comparison charL Rather, fa full understandh•g of the design, intention, and functioning

of these configurations is necessary to appreciate their different capabilities. For example,

consider the A:; configuration. As described above, the A3 configuration and the 1604-B

do not provide a core-to-core block transfer or move instructio'l. Yetthis study has shown

that because of the small size of the associative memory, such an instruction would be

invaluable in the processing involved in sea surveillance. Such a relatively small difference

in configurations, i.e. , the presence or absence of a move instruction, cannot be demon-

strate(i adequately by comparison tables, but can i--ake a world of difference Fn the overall

efficacy of a given applicatioo. See Table 2-21 for transfer rate of the 1604-B - A3 move

instruction.

Because the A2, A3, and GAP configurations each represent a different organ-

izational approach to the employment of identical technology, and because they have greatlyN

different inherent capabilities and their costs are radically different, each should lie

evaluated separately against different applications. Ouiiy in the light of a given application

can on- be c-llcd bcttcr or worsc than anct.hr. Ev:du:ti-- agairmt :!inlir-tdions also dis-

covers minor shortcomings (such as the move instruction for A3) whose removal would

greatly enhance a given configuration in a given application.

Some gross physical and organizational differences in the foir configurations

are displayed in Table 2-22. Tne followving paragraphs elaborate on the entries in Table 2-212.

(1) Number of general-purpose response vector registers.
The number of 1,024-bit registers which can receive the result-
of a search and in which processing of resrinse vectors can be
performed. Therc are three such registers In A3 while the
other configurations have one ,ach.

2-104

TA rTTE 2-21. TrRANSFER RATE FOR 1604-13-A3 MO~VE INSTRUCTION

Starting Address of starting Address of Micrc seconds/word'
So!,rce Sin

1604-B Even Core 1604-B Even Core 12.8
I6.

" H HAM Core 4.8
16Q'i-B Odd Core 1604-B Even Core 6.4

1 of iit Odd "12.8

it i Am ore4.8
AM Core 1604-B Even Core 4.8

it f f 1dd 4.8
AM Core 8.0

(2) Total number of response vector registers IThe total
amount of storage in units of 1,024 bits provided for
re.3ponse vectors. GAP and A3 provide three such
registers, A2 provides one register plus a 1/32 of a
regif:ter which is used internally to accomplish proc-
essing ol response vectors, albeit slowly, and provides
for the storage of eighit response vectors in the tag bits
of A2; Al has a sing'.e response vector register.

(3) Flip-1flops per memor word in the response store.
Serves as a measure of complexity of the response

"A '3 an~d GAP have two and one-half flip-flops
per word, A2 a Attle more than one-half of a Oiip-flop
per word, and Al cn.Ž half of a flip-flop per word.

(4) Hesponse vector shift. Indicates whether or not a response
vector can be shifted to allow the processing of fields and
".djacent words in ai logical manner. A]. does not shift, A2
sh.1fts up or down but slowly, A3 and GAP both shift down
at high speed.

(5) Logic on response vectors. Indicates which of the 16 possi-
ble functions of two binary variables con be applied on a
bit-hbv-bit basis ~Ietween a present search and previous
results or in some cqses between stored response vectors.
AlI provides no logic per , but does pL'OVide for 'landing" an
equal search with previou" results; A2 provides for Wl logic
functions to be processed in 32 steps, however, slowly; A3
provides a generai AND/ ORcapability among tbethree response
vectors plus adiditional setting and resetting capabilities; GAP
provides a restricted AND!/OR function between results of at
current search and prevloua. results.

2-105

(Use of response store. Indic('atCes hat USe the programmer
may make of the results ol a search or SC1411Cre Of Seafch
stores in a responise vertor. In Al the response sitore only,
condition~s 15-b1it addIresses for retrieval from Al; in A2 the
response store conditions the retrieval of addresses or words
stored in the associative memnory; in A3 the rcsponsc store
serves to define a 15-bit base exceution address which m-ray be
used in any manner available to the 1604-B (including the im -
int~diatc retrieval of addresses or data, indexing, or indir-
ect addressing); in GAI? the response store marks words
for retrieval or (because no prefix register is employed)
positions numbers in associative memory for retrievai.

(7) Step-by-step processing of respondlers. Indicates whether or
not the]604-B3 can process i-sponders individually and in order
from the associative memory or whether it must retrieve a
block of responders and perform its own program loops. Al,
A2, and A3 allow step-by-step processing, while the GAP~
does not.

(8) Number of hardware sea'-ohes. Indicates the number of
different searchcs for which the hardware and sequenming
are provtded in associative memory. Al and A2 implement
tour different searches; A3 implements the ten basic searches
of the GAP plus four slow variations of max, min, next higher
than, and next lower than: the GAP~ implements the 10 b~asic
searches plus the between limiitb search.

(9) ýNumiber ot search instructions. Indicates the number of instruc-
tions which directly cause or control searching of associative
memory. Each c~onfig'uration provides one basic instruction for
each search plu3, modifier fields. The mo0r "ier field control
is most exte~nsive ard poýz'I:ruf in A~j.

(10) Number of dire cLt dt manipulatin) ins truc tions. A somewhat
subjective count of the number of instructions available in the
configu ration (excluding 1604-13 instructions) which directly
mn~~ipulate useful results as opposed to loading or unloading of
blocks of &at:1. or results. Al provides four such instructions;
A2,13 such Instructions; A,) provides Zi6 such ins~ructions plus
numerous modifier fields (minny of thiese instructions are the
result of incorp' raiting the full set of operand type 160-1-13 in-
structions in ...,sociative mode): GAP provides five such in-
structions plus modifier fields.

(11) Number of housekeeping and load/unload instructions. The
numbe-r of instructions provided to manipulate the special
requirements of the associative memory or to load or unload
blocks of data to it. Al provides 22 such instructions: A2, 34:
A3, 24 plus modifier field.s: and GAP. 297 plus modifier fields.

2-106

(12) Number of tag býits. The tag bits are provided in addition
to thc 48 data bitb of 1604-8 word size~and conditions may
be specified upon them for searching. Alland A3 generalize
the busy bit of the GAP to produce true tag bits. The A2
machine has eight tag bits with some powerful processing
provided for them.

(13) Tag control on load/search. Indicates whether or not the
coafiguration provides for a selective setting of the tag bits
when loading and for selective searching of them. The Al,
A2, and A3 configurations provide full tag control while the
GAP configuration employs a busy hit which must be present
for a search to be satji;fied.

(14) Source/sink for load/unload. lndicatc-s the place from or to
which data may be loaded or unin-ded to the associative
memory. All configurations, except A3, load and unload
only to 1604-B core. The A3 configuration, because the
associative memory beconus part of the 1604-B core memory,
may load or unload to any peripheral device or transfer data
to other sections of 1604-B core.

(15) 1/0 load (1604-B3 cyclesp/worci transferic-d _(in blocks. or singly).
The load imposed on the 1604-B for each word transferre d to
or from associative memory in block transfer operitions or in
single word transfers.

(16) AM instructions per 1604-B word. The number of commands for
associative memory which can be contained in a 4ý-bit 1604-B
word. The Al and A2 configurations vach are controlled by EXF
codes which are stored two to a word or bY ANT or OUT instruc-
tions which are also stored two per word. The A3 configuaration
uses a very powerful coi~imand code which packs two commands
per word. The GA1P c, ifigur,,tion uses a one command per word
form at.

(17) Comparand and datat shifti. Can the comparand be eircidar
shifted before a comparison and its masking, and can data
transferred to or from associative mnemory he shifted in a

like manner? Al and A2 provide r,) shifting; A3 and GAP provide
shifting.

(18) Mask control on transfer1"s~a'e~aich. May transfers an4 searches
be masked under programmer option or is the mask a 18
active? In Al, A2, and GAP, the mask is always active j
in A:) a control bit in each perinent instruction provides for
suppression of masking.

2-107

(19) Shift clintrol on transfer/search. Can the shifting of9
cornparands, and data. be controlled or is it always present as
mask cjntrol? As in mask control, Al, A2, and GAP provide
no control; A,' however, provides this feature.

(20) Resolver resettable. Its the response resolver resettable during
a sequence of responder processing tio that different vectors
may be processed as needed? Only A3 provides this feature
and it also provides for automatic handling of resolver settings
when processing vectors for 1/O operations.

(21) Configuration. Al, A2, and GAP alre peripheral. devices, with GAP
featuring independent programming sequences via a special direct
memory access channel. The A3 is a fully integrated configuration.

(22) Cost relative to GAP. See Table 2-22 for the configuration
com~parisons.

2.9 COMMENTS ON THE 1604-B

2.9.1 Introduction

This paragraph serves to document some reservations AUERBACH Corporation
has -tbout the validity of data processing applications on the 1604-B3 computer. Our basic
reservation is very simple: the 1604-B, although a fine computer of excellent design, has
no, been designed for data processing applications and is not representative uf 11e best
available in today's market. The Control Data 1604 is basically a scAntific computer; it

is in fact almost the last of the large-scale machines designed specifically for business
or sinentific application. It is necessary, therefore, to enter a caveat. This report
attempts to evaluate the very latest available in technology, an associative memory, in a

hybrid configuration with a somewhat outdated and ill-suited computer. The results obtained
must be reviewed in this lightaor clearly the use of a more modern data process intt-o rented
machine would have a significant effect on the goodness of a solution for the fet surveillance

problem.

The following paragraphs discuts bufor pi/O which iea d W iosUERbAtk.'d basic

reservations on the 1604-b.

2.9.2 Input-Output

The 1604-B input-output system is, by today's standard, both inefficient and

cumbersome, specifically:

(1) The 1604-B requires two memory cycles for each word
transferred in or out via the I/0 system. True, this is

2-108

better than the three cycles required by the 1604, but
not ntirlv so good as the one cycle required by the 1604.-A
or machines like the iBM 7090.

(2) The input-output organization of the 1604-B is designed to
handle I/O blocks of perspectihe size. Reading and
writing variable length records is difficult and cumbersome.

(3) No scatter-gather facility and therefore no data skipping or
suppression facility is provided ii, the 1604-B I/O system.
Scatter-gather 1/0 systems are invahlable when processing
large data bases of variable length files.

2.9.3 Interrupt

The 1604-B has at best a rudimentary interrupt system. By modern standards

it is totally inadeouate. It provides no separate masking or priority facilities for interrupts

from peripheral devices: such facilities are invaluable when trying to maintain maximum

access rates to devices such as files. The 1604 interrupt system requires a cumbersome

program to determine xha•t ha. caused an interrupt (and in some cases it is impossible to

determine what has caused an interrupt). In other cases, at least in the 1604, it is possible

to miss interrupting conditions (i. e., not have the interrupt hardware recognize that the

condition has occurred). Although this has been corrected in the 1604-A, its status in the

1604-B is unknown.

2.9.4 Instructions

The instruction ,c" ,f the 1604-B is not specifically suited to data processing

and data manipulation operations. Specifically, ".,re -r"- lit handling instructions, no

character handling instructions, no block transfer instructions, no variable length char-

acter string instructions, no translate instruction, and no facility for decimal-to-binary

"oonversion and vice versa.

2.9.5 Peripheral Equipment

The disc file employed in the configurations studied here was chosen by RADC

to be the CDC 818 disc file system. This system is an older design and cannot compete

favorably with such systems as the IBM 1302 which is available today. Since a large dta

manipulation file processing problem is highly dependent upon the space available and the

speedy access to data contained in mass storage, the use of the CDC disc f-lc surely

biases the results of this study.

2-109

-4~~D c' C,.-
Qf 02 Q

C.1-

00 44
EI 4) 0~) ul

ell-- 4-4 1- ____*____

-4 - 00$-

1-4

M. >

o S.o

Li) -f

> U 0. 0.0.

-4ý

W
40.

0 _ _ I~I ~ ~ 4? U

'-4G
6_-~-

4? f-- .- -

;.Ch

.8 [44
N IC'o

2-110

I Q)

cq a) 0) m

;4

0 I0
V0

a) a 0 Cd

a44

-4-

0 0

0 N r -fi- X 0 0 0

OD I

> $ r-4 M 4)s-

~W

0 0~

-41

fo

(n~ 'li 0

z

.1~
0o4
P

-V.--

.. tr.

cl -4

2-112

SECTION III. THE SEA SURVEILLANCE PROBLEM

3.1 INTRODUCTION

The purpose of a sea surveillance system is to keep a close watch or maintain

a close supervision (a dynamic surveillance) of all ships within a geographical area. The

objectives of such a system include the following:

* Cognizance of all ships entering the area.

I ldentification of unknown ships within the area.

It is desired to achieve these objectives to:

0 Strengthen national security.

* Enable rescue operations and issue warnings in times of

national emergency and acts of God.

A sea surveillance system is in part, a system under the cognizance of national

set',rity agencies and is therefore classified both on a need to know basis and on a security

classification. For this reason, a .:omprehensive problem statement was not obtainable

from outside sources. Consequently, the sea surveillance problem given in this section is

perhaps different from t ie actual working problem.

The very nature of the objectives and tne motivation for these objectives admits

many variable situations in a real life sea surveillance system. Part of the problem then

is to define the problem. It wa-, not the attempt of this study to "solve" the sea surveillance

problem and design an associative memory system for the determined solution. Rather. it

waz desired to formulate "a solution" for "one" sea surveillance problem and to assess the

associative memory as an aid in effecting this solution.

The prime source of information used in defining this "one" sea surveillance

problem is the document "Sea Surveillance Data Base Representation as Test Vehicle". *

This document does not define, ; -oblem: however, it describes an unclassified sea sur-

veillance data base. presents input messages. and lists a set of questions concerning the

stored data. One way the problem may be defined is to view of some of the processing

Sea Sirveillance Data Base Reeresentation as Test Vehicle - Prepared by IBM for the

S.~fice o Naval Research, Washington. D.C., Contract NONR 4420(00). June 30,1964.

3-1

functions. These are:

(1) Admit and store in the data base a message about an item.

(2) Maintain the data base as a result of the input message.

(3) Retrieve that information to s..tisfy the questions given in

the source document.

Thus, for all practicable purposes. tne problem defined in a macroscopic sense, is a

data storage and retrieval problem.

As in several other intelligence studies, there exist an abundance of available

functional tasks that may be effected depending upon the scope of the problem defined. It
is probably easier, as an initial cut, to enumerate certain problem areas that may be

solved by other sea surveillance systems, but will not be considered in this study.

These are:

(1) Multi-leveled information classed on:

(a) Security

(b) Need to know

(c) Quallty

(d) Veracity

(e) P rio rity

(2) Formation of intelligence information by deduction and induction by
probabilistic and./or graph theoretic methods.

(3) Historical data.

Thus, the system considered in this report will concern Aself with input liifo~rmatlon of a

uniform quality with no security, priority, or need to know classifications. The system will

not maintain obsolete data and will not be concerned with the formation of intelligence data.

3.2 DATA BASE CONTENTS

The data base contains descriptive information about -items of interest. An item

is defined to be a ship, a personality. or a port. The descriptive information is termed

3-2

descriptors. A descriptor may be thought of as a value of one of the items' attributes.
For example, a ship has such attributes as speed of advance, crew complement, weight,

etc. For each attribute, an input message may describe the ship by specifying some of

these attributes. Additionally, an item may be a descriptor for another item. For example,

a personality aboard a ship may be considered as one of the ship's descriptors. A full

description of all items and attributes and their relationships is contained in Paragraph

4.3,5. The information stored in the data is current.

3.3 INPUT MESSAGE PROCESSING

One method of defining a problem is to give its scope. This approach will be

used in this and subsequent paragraphs. Every input message is construed to be a mess-

age about an item or items which is described hy a set of descriptors. If the message

concerns more than one item. it is assumed that this message may be the genesis for a

set of messages, each about one and only one item. Certain assLnptions are made

regarding certain items and descriptors. These are:

(1) Every message about a ship contains the ship's latitude-
ologitude positional descriptors. This holds even if the

"name" of the ship is not known.

(2) Every message about a person, lity is related to a ship
or a port.

In addition to these assumptions. certain assumptions affecting the system design must

be stated. Theso are:

(1) The data base, that is, the set of items and attributes, is
not constant. Therefore. it must be possible to:

(a) Add and/or delete items.

(b) Add and/or delet attributes.

(2) Th6 data base is of sufficient bulk that it must be stored 'n
an auxiliary storage device. The data stored will be required
randomly; therefore, a disc file will be assumed rather than
a tape file. This disc file assumed in the CDC 818 and the
associated CDC controller.

An input message must be incorporated into the data base. Several situations

arise. The following ad hoc rules are followed:

(1) If the message concerns a known ship (the descriptor for its
name is given) and

3-3

£

(a) a record does not exist about this ship in the data base:
then a record is created from the message and entered
into the data base. The ship is construed to be entering
the area of surveillance.

(b) a record exists (i. e., the ship already exists in the area
of surveillance) then the following may occur:

1) A descriptor is given for a new attribute previously
not valued. This descriptor is entered into thke
existing record as an added piece of information.

2) A descriptor is given which confirms (is identical
to) an existing descriptor.

3) A descriptor is given for an attribute which differs
from a previously given descriptor for the same
attribute. In this case, the "class" of the attribute
is examined. If the attribute is one which can not
change; e.g., the ship's propulsion or cargo
or armament characteristics, an error is noted.
However, if the attribute is one which may admit
descriptor changes, position, speed of advance,
etc.. the change is inserted.

(2) If the message concerns an unknown ship (the descriptor for its
name is not given) the system will advise the user who may use
the query subsystem to aid in determining the merging "unknown"
ship records. Otherwise, the message is treated as a "new" ship
entering the system.

(3) If the message concerns a personality, a ship must be associated
with the personality in the record. If the personality is not
currently represented in the data base. a record is created for
him. This record is "linked" to the ship's reord (anti conversely)
if the ship exists. If the ship does not exist, a new ship's record
is created.

(4) If the message concerns a port, it is processed similarly to the
processing used for a message about a ship.

3.4 MAINTENANCE OPERATIONS

The complexity of maintenance operations is depencdnt upon the physical organi-
zation of the data base. Indeed, these operations usually dictate the physical organization.
(It may be consideree that the logical data base organization is biased toward the retrieval
operations). However, the scope (not the complexity) of the maintenance operations is
determined by the rules governing the disposition of input messages. In addition, certain

3-4

$j

iq

maintenance operations result from assumptions regarding the addition and deletion of

data. Then from the preceding paragraphs, the following maintenance operations are

to be effected:

(1) Create a new record which may require more than one disc block.

(2) Insert a new attribute-descriptor pair into an existing record.

(3) Delete a complete record.

(4) Delete attribute-descriptors from an existing record.

(5) Maintain correct cross-references when required between data
records.

(6) Maintain file (a collection of homogeneous records) integrity.

(7) Maintain directories and dictionaries when data is added and/or
deleted.

3.5 QUERY OPERATIONS

One of the major objectives of a sea surveillance system is to retrieve and

present stored information and/or values of a function with stored information arguments.

The commands to retrieve and present this information are termed queries. The queries

considered explicitly in this study are:

(1) How many ships are within "r" miles of point "p"'?

(2) Are any U.S. submarines in area __

(3) How soon can DD-789 reach Bermuda under normal speed of advance 9

(4) Where is Admiral now ?

(5) Are any ships scheduled to be in the projected vicinity of
Typhoon Dottie the next few days ?

(6) Nearest (in time) ship/aircraft with doctor aboard to point x, y?

(7) What ships with long-range radar could be in area
by 2400 tomorrow ?

(8) Ship sinking at Which ships can be there first?

(9) Nearest ocean-going Wug to sinking ship ?

3-5

k

Note that these queries do not require all 108 attributes found in the data base.

This does not mean that attributes not required should be eliminated; rather, it implies

that the queries are typical and representative of a complete set wihich may require the

entire data base. In like manner, the data base given may be considered as representing

the required data base for some time interval during its development and use. Thus,

neither the data base nor the set of quer.es should '- considered in final form.

The queries given have descriptor values inserted for attributes. Perhaps it

would be more meaningful to have listed these queries on an item-attribute level. For

example:

What ships (by type and/or country of registration and/or weight
and/or ...) are in an area x ?

* How soon in time can a ship _ reach the port (or
point x, y) under normal)r maximum) speed of advance ?

* Where is personality now ?

There are several methods to admit query processing. At one extreme the

processing required for each query may be completely encoded in machine code, stored

on the system's tape, and retrieved by a call. This call (perhaps the query's name or

number) may be cozisidered as a query language. Since neither the data base nor the

queries may be considered complete at any one time, it is impossible, or at least time-

cost prohibitive to follow this possible method of effecting queries. Examination of the

given queries to determine some general features shows that each query requests statistics

about or descriptors of a set of attributes o," one or more items. The set of attributec, and/or

items are assumed to satisfy some conditionil stitement. If is felt that the technique

needed to directly supply answers to each query is not explicitly kniown at this time.

The user of the system must be relied upon to state the query in a permissable way to

retrieve the pertinent data and then interpret the results.

A user's query language is one which nttempts to provide a strong linguistic

capability together with convenience of use. Such languages are either translated into

machine code or command list for processing by a compiler-type pre-processor. Such

languages may be regarded as parameters controlling processing as by an interpreter.

3-6

4 In this study we have elected to translate (Paragraph 7. 2), a uiser's query language into an

internal language in Polish prefix form. This internal form is then "compiled" as object

code by a pre-processor (Paragraph 7.3), into a command list form. A Run Routine

(Paragraph 7.4) then "performs" each element of this command list in an interpretive

fashion. The Run RL atme is controlled by an executive level routine which interleaves

input-output (Paragraph 7.6) requirements with portions of the Run Routine. The executive

level system is called the Controller (Paragraph 7. 5).

It is beyond the scope of this study to iomU.ua user's query language which
is amenable to associative memory processing. Also, it is deemed inappropriate to

consider translation of an existing user's que:y language by use of an associative memory

since the existing language was formulated to be translated by non-associative memory

processing. The only restriction placed on the user's language is that it can be processed

into Polish prefix form. The language shall not be specified further; however, not

all current query languages meet this restriction.

The functions of the (Wuery Language Translator include:

(1) Resolve all synonyms into one term.

(2) Eliminate redundant and "noise" words.

(3) Resolve functions aind operations into Polish prefix canonical form.

The pre-processor performs the following:

(1) Converts the Polish prefix form into a command list form.

(2) Equates operationsl outputs to subsequent operations as input
variables.

(3) Determines operations' ranges to order operations in an, optimum
processing order.

(4) Determines data used by more than one operation to avoid dupilicate
input operations.

(5) Assigns unique tags to all inputs and outputs to minimize data
transfers.

The function of the Controller is to:

(1) Interleave processing control between the Run Routine and the Input

Routine.

3-7

Ilii

(2) Assign and allocate 1604-B core memory to variables in the
command list.

The purpose of the Run Routine is to:

(1) Perform certain operations set by the Controller in an interpretive
fashion.

The function of the Input Routine is to:

(1) Reorder a list of disc addresses into an order which results in

the minimal disc access times.

3.6 SYSTEM CONSTRAINTS

Several assumption.s regarding data sizes have been made. These ar

(1) There is no requirement for a study involving dynamic memory
allocation .

(2) There will always exist sufficient 1604-B core memory to:

(a) Read a complete input message.

(b) Read a complete data or directory record and form a new
record.

(c) Hold both variables in entirety for one query operation.

The last assumption does not impose a restriction on data size regarding the

associative memory. The system allows for the fact that there may be more data than

can be stored and processed in the associative memory at one time. A routine. called

the AM Dispatcher, functions to partition associative memory input lists into proper size

segments. This dispatcher then controls the data flow between the two memories and

the processing flow between the input-output operations and the functional routine. The

AM Dispatcher assumes that such ordered segment processing yields the same results

Pas it the segmenting did not occur. The definition of "ordered processing" depends upon

the functional operation. Suppose that the two lists being operated upon were LIand L 2
partitioned into L j(1< j I J) and L,,(I< i < 1). Then ordering may be such that l and j

are varied simultaneously or that one subscript is varied for a fixed value of the other.

The first ordering is used if it is desired to form a list showing distances betweeil. points

given in LIand L 2. The second ordering is used if it desired to find the intersection

of L and L1 2'
3-8

/I

3.7 STATISTICS

Throughout this study, it was necessary at certain times to make estimates

of record sizes, number of computer words per descriptor, number of responders per

associative memory load, etc. These estimates or statistics are then used to determine

such things as processing times, number of responders, size of data (number of words)

transferred, etc., which are used in turn to evaluate the associative memory configuration

and/or differences in system design. These statistics are not too meaningful when

divorced from the content in which they are given. Therefore, such statistics are deferred

in this section.

3.8 EVALUATION

Throughout this study, criteria were used tc c-aluate dilferent associative

memories. These evaluators may be dichotomized as quantitative or qualitative measures.

For example, a quantitative measure is the time required for each associative memory

instruction,and a qualitative measure indicates the difficulty in flow-charting a problem

whose solution uses an associative memory. The quantitative evaluators may be con-

sidered to be objective measures, whereas the qualitative evaluators are less objective.

Evaluators used at any -ne time are dependent upon the particular application tu which

they are applied. For example, some evaluators used in a hardware oriented analysis

would not be applicable in a software analysis.

3.8.1 Quantitative Evaluators

This class of evaluators may be divided into three classes '"-pending on whether

the quantity measured is time. costs. or neither time nor costs. it is also possible to

combine two or more of these evaluators to see the overall result. For example,time may

be considered as an independent variable with costs as a dependent variable.

3.8.1.1 Time Evaluators

(1) Time for each associative Jaiunuy instructin.

(2) Time for subroutines.

(3) Time required for 1604-B to set up associative memory
processing (data transfers, etc.).

3-9

3.8.1.2 Cost Evaluators. A complete method of developing and evaluating hardware =
costs is presented in Section II.

3.8.1.3 Other Quantities (Neither Time nor Costs).

(1) Number of associative memory and 1604-B instructions used
(and not used) and frequency of each instruction.

(2) Amount of data that is read into and out of the associative
memory and frequency of transfers (data transmitted
between 1604-Band associative memory).

(3) Number of associative memory searches required to complete
each associative memory instruction and macro instruction.

(4) Ratio of total data read into the associative memory and the
number of responders.

These quantities are dependent ulon the particular application. Indeed, for

certain phases of an application, these quanti*ies may differ appreciably.

3.8.2 Qualitative Evaluations

The qualitative evaluators are more properly qualitative evaluations of the

hybrid configuration with respect to certain topics. Each of the evaluations to be pre-
sented is worthy of a more thorough investigation than it will be possible to achieve in
this study. In other words, each evaluation will be made in view,,' ,hc results obtained

in this inv'estigation rather than attempting to complete a definitive evaluation. Rather
than create a specific section, evaluations are interspersed throughout the report.

3.8.2. 1 Configuration. A hyt~rid configuration consists of a particular associative memory,

a general-purpose computer, and mass storage devices - both sequential and parallel. This

evaluation would attempt to show where general-purpose computer featurei not found in the

1604-B and mass storage device features not found in the CDC 1619 control unit and 818 disc

file, result in more or less "better" systems. In short, the objective of this evaluation is to

determine the best general-purpose computer and mass storage device features, where "best"

is defined with respect to the particular associative memory.

3.8.2.2 Data Ortanization and Formats. This evaluation will! ittempt to indicate the impact

of an as,,ociative memory upon data organi zation and data formats. In a general-purpose

system, data organization is dependent on (among other thlngi) how the required functional

3-10

operations are effecieu mud on the data storage sy*-vr... Since the method of achieving

a functional operatior may change in a hybrid associative memory system, it follows thf

the data organization and format previously assumed may also change.

3.8.2.3 Problem Analysis Techniques. Current techniques in this -, ea include the
actual encoding languages and such devices as flow charts and algorithms. This particu

evaluation will consider the effect of an associative memory on flow charts and algorithr
For example, current flow charts indicate decision boxes, operation boxes, and informat

and control flow. It seems feasible, at this time, that the associative memory may pen

the marriage of certain operation and decision boxes, as well as eliminate the need for

flow charting some functions (such as list searching) to the level formerly required.

I1

3-i

4!

SECTION IV. DATA BAF

4.1 INTRODUCTION

The purpose of this section is to piovide a detailed description of the data

base and file organization utilized as a model in the system. The data base was ob-

tained from the Office of Naval Research (ONR) document. * The logical structure

of the file organization and the physical structure of the data base mapped onto the

disc were designed by AUERBACH. The choice of the machine organization consisting

of discs, associative memory, and general-pu•pose computer was selected by AUER-

BACH. Specific hardware components (e.g., the CDC 818 and 1604 computer) were

specified by RADC.

The rationale behind the specific choice of the file structure is first de-

ve.oped in Paragraph 4. 2. The specific data contained within the system is developed

in Paragraphs 4.3 and 4.4, which present the detailed statistics associated with the

sea sui-veillance problem. Paragraph 4.4 presents conclusions relevant to the role

that an associative memory plays in a computer system for a comprehensive data

storage and retrieval system such as the sea surveillance problem.

4.2 FPLE STRUCTURES AND FILE DESIGN CONSIDERATIONS

4.2. 1 Criteria for Fiie Organization

The data base of the sea surveillance problem consists of data concerning

ships, parts, -And equipments used in the U. S. •'avv. This information is to be acces-

sible to isers through direct hard-copy reports requested by means of a query lansuage.

Teiles are designed so that the report information can ?)e used in a systematic, efficient

•way. An v a specific kind of data Is put to more than one use (and sometimes the po-

teitial use is partiil)y unpredictaide), t-e file dc.•ign is always a compromise between

thnso dees.gns that are aptimum for competing uses. This compromise is, of course,

* Sea Surveillpnce Datr Doo Representation as Test Vehicle prepared by IBM for
the Office of Naval Research, Washtngtou, D. C., Co.ntract NONR 4420(00),
June 30, :964.

4-1

weighted by the importance of responsiveness requirements of the using programs. For

example, there are the (sometimes complementary) requirements for data maintenance

(or file updating) and for data retrieval in response to a random query. It is not unusual

that a file structured to favor responding to one type of query is poorly suited to respond

to another type of query or is inefficient to update.

An optimal file design is one for which the necessary processing can be per-

formed in the shortest time. The processing of large files (too large to exist in core

or in a small as-ociative memory) is generally access limited; that is, data movement

is the dominating factor in p-ocessing time. Stating it another way, an optimal design

groups data according to processing needs so that each access to secondary storage

yields a large amount of data actually needed for processing, thereby minimizing the

number of accesses. *

Notwithstanding the random access capability of disc storage, data is most

efficiently handled in relatively large sequential segments. This is, it is economic to

dedicate a large buffer area in core and, once a disc arm is positioned, to transfer

as large a segment from that position as can be accommodated.

As far as the above discustion has gone, this is not unlike conventional

tape usage. There can be a great deal of similarity in the use of the two media. The

above principle is applied in a very straightforward mar -- in the sequential search

strategy necessarily employed in a tape-based system. However, for those tasks that

will ultimately require only a small part of the file, the addressing capabilities of a

disc system (through the use of a more complex access strategy) make it possible to

reduce processing time considerably. This is a regenerative factor since - as a

general principle, where fast response is available - users (and processors) will take

advantage of it and the system will process smaller chunks of information on a basis

that is closer to real time (non-hatched). There is another compromise (tradeoff)

that is possible here; as already pointed out, the tots.l processing efficiency (through-

put) is highest when data is transferred in large segments with a high yield of needed

data in each access (hencea batched service operation),

*Mlnker, J. 1961. Implementation of LUrge Information Retrieval Problems. National
Science Foundation.

4-2

*•w mmm •i

To take advantage of this trade-off possibility (i. e., to have the system function

both ways, to furnish quick response with random-access files and to provide high through-

put of batched servicing when the service load demands it and the deadlines permit it)

is the real challenge of the design of files and their processors.

4.2.2 Strategy of File Organization

Of the two basic types of file processing, updating and query reply, updating

usually presents the more consistent and predictable requirements for file organiza-

tion, often because the input data (transaction records) are obtained from known

sources and contain standard data whose format can be controlled. Queries, on the

other hand, are by nature unpredictable and make varying demands in terms of search

criteria, data to be tabulated, sorting keys, etc. A basic method of utilizing addres-

sable storage for files subjected to these varied processing demands is to organize

the file on a primary basis for efficient updating (a relatively difficult task) and to

provide a mechanism for linking those records that share an important characteristic

from a query standpoint. For non-addressatle portions of memory, such as records

in a tape file, a standard approach has been to store information in more than one

organization, if necessary, so that important types of queries, with short reply dead-

line requirements, can be accommodated. This may mean, for example, maintaining

more than one file with the same basic information, usually sorted accordit ' to different

keys. Rather than duplicate data, which compounds the updating problem, the use of

addressable storage permits non-redundant files with the required organizations pro-

vided logically by means of links, lists, or directories, rather than by physical dupli-

cation as performed in tape operations.

1,e to the physical nature of tape units and tape reels, the updating of tape

files is usually done on a batched basis. That is, since the reel is rewritten at the

time of update and the amount of time needed to update the tape is almost independent

of the number of records modified during the pass, modifications to a file are usually

saved (batched) on a transaction tape until it is necessary (or economic) to update the

file. The addressing capability of the disc unit, however, makes it possible to update

the file as modifications are received without an extreme penalty over batched opera-

tion.

4-3

A technique called "address randomizing" is sometimes used in random
accees memories. This technique can usually eliminate the disc access needed for

directory retrieval by substituting an address calculation based or, a unique record

key such as part number. However, since part numbers may be mapped into the

same address (or 'bucket"), there is a level of storage utilization (usually around

80 percent) at which this technique involves a greater number of disc accesses than

a directory approach, due to the fact that Lae first "bucket" is full and an overflow

link to a second is given. (As the number of records approaches the memory capacity,

the "chain" of bucket links will increase to large values for some entries.)

In discussing file organization (especially for addressable storage), it is
useful to distinguish between the physical and logical organization to define precisely

the physical and logical data elements of interest.

A physical element is a hardware recognizable unit of data; for example, a

word in core, a tape reel, a segment on tape between tape marks (between "load

point" and "end-of-reel" markers on a particular tape unit), a block between gaps on

tape or an addressable block on disc, etc. A logical element is a symbolic unit of data

such as a string of symbols that is program recognizable due to its position, length, or

the control symbols used as punctuation. A logical element may consist of a part of

a physical element, several adjacent physical elements, or physical elements that are

not adjacent but are address linked in some way. The basic physical (addressable)

element on disc will be called a block (other physical units are track and disc).

Logical elements will be called fields records, and files. Just as physical elements

are nestled hierarchically (e. g., blocks In a track), so are logical elements as field

in a record, and records in a file.

A field is defined as any logical element having a specified format and recog-

nizer. A file is a field that is composed of an arbitrary number of repetitions of a sub-

field called a record. A record in turn contains fields some of which may be files,
etc. A field which is interpreted as an address is called a link. Some addressable

records, called items, will refer to external objects that are partially identifiable

by formalized (and perhaps coded) index terms called descriptors, which may exist as

fields in the record. A descriptor may usually be interpreted as a value of a particular

attribute whose range is well-defined. For example, ship name, commanding officer,

4-4

aB

and port may bc attributes of records in a sea surveillance file. The descriptors

f-haracterizing a particular record may be shipname: Reuben S. Gomez; commanding

officer: Capt. John J(oies; and port: Norfolk, Virginia. The term Al front of the

colon is the altl ribute and the term after the colon is the attribute vwue.

4. 2.3 Midli- Iist Organization

T''he sea surveillance problem must be able to store daia concerning many

ships and ports and to answer requests for data of various ships in specified areas or

with specialized equipment or capability. The variability of the file entry key and the

random nature of the service requests make it impractical to use address calculktion

(or "address randomizing") or sequential processing as the sole means of record re-

trieval. A basic technique that can be employed is to select several index terms for

each record and maintain lists of records that are characterized by each index term.

This technique allows many entry points for rapid retrieval compared to the single

possibility in address calculations or the slow sequential search approach. (It is

possible, and sometimes desirable, to combine more than one approach in a single

system.) In a multi-list organization, each index term is a descriptor whose coding

may express hierarchic relationships to other descriptors.

With each difforent descriptor is associated a list in the memory on which

is placed every data item having that descriptor in its description part. Since the item

may, and usually does, have more than one descriptor, it may be placed on more than

one list. The item will, however, be located in only onephysical location in memory.

The lists on which a particular item is placed are said to "Intersect" at that item.

Storage of the item is accomplished by placing it on all lists associated with its de-

scriptors- and also entering it into the data file.

It is clear that a list of records (in addressable memory) that have a de-

scriptor in common can be designed in two ways. One way is to have a table of de-

scriptors and, with each descriptor, a table of links to records that have that de-

scriptor. Another way is to have, with each descriptor, a link to the first record with

that descriptor, and have that record, in turn, contain a field linking tc its successor

having that descriptor, etc. These two approaches Are discussed in the following
paragraph.

4-5

I

In any implementation of the multi-list organization, it is necessary to have

a table which translates the descriptor terms (Fngllsh terms for attribute and value) to

the internal code that is used and which may express hierarchic relationships anon-

the descriptors. It is also necessary to implement in some way a search strategy for

finding the first record when starting with a given descriptor. One metL~d for accom-

plishing this is a conventional table lookup. Another has been described as the

balanced tree approach. * The desirn of this system involves a conventional table

look-up approach, since the effectiveness of the balanced tree approach depends on a

uniform probability of descriptor bele-'tion.

4.2.4 Implementation of Multi-List Organization

Records (data Items) in a multi-list organized file consist of two parts:

a description part and a data part. When implemented, using the record linkage

approach, the description part contains the descriptors describing the time, and

associated with each descriptor is a link to another record with the same descriptor.

The data part of the record contains other information about the item not necessarily

linked to other records. Both parts and their components are shown in the illustration.

Description Part Data Part

Ship Name: Link to Next Personality: Link to Next Tonnage = X

Reuben S. Gomez Ship Name Sancho Panza Personality
A A~ AA

Descriptor Link Descriptor Link
Code Address Code Address

With this implementation of the multi-list organization on disc, the search

of a list of several hundred items is inefficient due to the many accesses required,

and may thus negate the advantages of this memory organization scheme. Also, the

storage of description and data portions of the item in contiguous locations may become

available and must be used. This will result in the need for linking addresses within

the item itself which will require an additional memory access which will significantly

increase the retrieval time. This latter problem may be relieved by vaiUs house-

keeping programs incorporated into the storage and retrieval programs.

0 Landauer, W. L. 1962. The Tree as Stratagem for Automatic Information Handling.
University of Pennsylvania. Moore School Report 63-15.

4-6

Another method of implementing the logical structure of the multi-list

organized memory is by sorting the item (consisting of descriptors and date) in one

location in memory and the descriptor tables and links in another portion called a

"directory." The search for the item is by descriptor, with the search method differing

due to thc, essential characteristics of Lhe lists.

In the directory approach, the item is stored in a data file and the address of

the item is stored in the record index for each of its descriptors. The retrieval of an

item can be accomplished by finding those addresses that are common to the record

indexes of the desired descriptors. A generalized retrieval strategy which permits

the determination of the exact records required, with a minimum number of accesses

to disc, makes this approach more efficient than the linked multi-list structure approach.

If part of the directory is stored in high-speed memory, the number of accesses

to disc for retrieval or storage will be at most the number of descriptors by which the

item is stored plus one access for the item. Tf core space is available, access time

may be further reduced by storingoften-used record indexes in core to reduce the

number of accesses to disc.

4.2.5 Associative Memory Considerations in File Design

An associative memory (AM) played no role in the previous discussions. The

reason for this lies in the fact that the sea surveillance problem is such that

(1) the entire data base significantly exceeds the capacity
of the AM, and

(2) the entire data base need not be compared to a set of
data which permanently resides in the AM.

Indeed, thib was a reason for selecting the sea surveillance problem for the

study. Thus, in considering the organization of the data base, a major question had

to be answered: How can an AM be utilized if only a small amount of data can be

placed in it at any one time, and the main data store is on disc? In this type of a

situation, the time to transfer data from disc to core to AM on ;nput,&and from AM to

core to disc on outputbecomes significant particularly when the data being manipu-

lated in the AM does not reside there for any great length of time. A major reason, for

developing the A3 configuration wa" to attempt to eliminate the data transfer time be-

tweun AM and core.

4-7

5-

Since the data base must be stored on disc, it is necessary to be able to focus

in on the desired d:0a rapidly without requiring a search through the entire data base.

This is necessary whether or not an AM exists within the system. Since it is uneconomi-

cal to store the entire data base to retrieve or maintain a set of data records, an indexing

scheme has been developed and is described below. As noted in Paragraph 4.2.4, the

indexing scheme is a multi-list file structure in which the linkage to records is ex-

tracted from data records and placed in directories. From a retrieval basis, this

organization allows data to be retrieved faster than that of a multi-list file structure with

linkages in data records. This retrieval speed pertains whether or not an AM is

utilized. Thus, the overall organization of the file structure utilized to access data

when the AM is in the system has not changed.

An AM ean aid in freez!ng t*e foinmat of data containcd either within a block

of data that can be loaded entirely within the AM, or the format of data in a record.

Because of the ability of the AM to search on the name of the item, its specific lo-

cation within the AM is unimportant provided that the data can be identified. A major

reason for a fixed field type of record is that one can go directly to the data required

without having to scan the entire record. On the other hand, when significant gaps of

information exist within a majority of the data records, this type of an organization

indicates that a large amount of excessive storage is wasted.

The realization that intelligence data records could not be equally "rich" in

data field values, because of the fragmentary nature of intelligence data, led to two

major decisions. In order to conserve disc storage space and therefore decrease

disc read time, the records were to be stored in as packed a form as would lead to

a reasonable system. Because intelligence records would not always have a data field

* reported, space could be saved by using storage space only for reported fields. Hence,

the attribute-descriptor form of presenting data was'selected for representing data

fields, and only reported fields were included in the record. One further result of the

fragmentary nature of intelligence data and the effort to conserve space was the de-

cision to permit individual fields to be of variable length in the data records themselves.

j This decision introckoes some interesting aspects to the file maintenance subsystem,

although it undoubtedly corresponds to the manner in which intelligence data is pre-

sented to the system.

4-8

/I

Had a fixed field format been selected, extra disc storage would be required.

__ On the othei hand, a fixed field record obviates the need for an associative memory

since one can pick up the data directly. Thus, although the AM does not play a major

role in the accessing of data from disc, It plays a role in the formatting of data within

records and eases the requirement for rigid formats and for sequencing data in records.

4.3 MULTI-LIST FILE STRUCTURE FOR SEA SURVEILLANCE PROBLEM

4.3.1 General Considerations

This paragraph is concerned with the specific file structure that is utilized

for the design of file structures described in Paragraph 4.2. The basic problem is to

design first a file structure which will take advantage of the random access capability

represented by disc storage and, second, to structure the retrieved data so as to manipulate

it in an associative memory. If, for every query, it were necessary to retrieve every

record from disc and then determine whether or not the record satisfied the query, it

would be more efficient to utilize tapes. * On the other hand, if for every query one

descriptor (say Federal Stock Number) was specified, it would be more efficient to

develop a routine which mapped Federal Stock Numbers into a disc address in which

the appropriate record would be stored. It is clear that for sea surveillance ;nforma-

tion, neither of these two conditions applies.

To effectively utilize disc systems, it is necessary to design a system to

assure that whenever information is retrieved from disc, a minimal number of accesses

to disc is required. That Is, it is desirable to focus-in on the information set that is

required rather than to have to scan the file by going into the disc to determine if the

appropriate information has been obtained and, if not, to retr-eve another disc address.

The file structure which is outlined satisfies the focusing-in process. It .s a multi-

list file structure In which the links have been separated from the data.

4.3.2 Multi-Ust File Structure

The multi-list file structure consists of the following two major structures:

(1) The directory

(2) The data base

*Mirker, J. Implementation of Large Information Retrieval Problems.

4-9

IC
I/

i I

The directory serves the purpose of focusing-in on the appropriate records

in the data base. The directory is made up of a file location directory (D = Directory)

and a file directory. The data oase is the collection of all data in the system. The

organization of the files is shown in Figvxe 4-1.

4.3.3 Definitions

Before specifying the details associated with the multi--list file structure,

some definitions should be presented. The actual sea surveillance data is organized

into a set of groups termed files. A file consists of a set of homogeneous records.

By homogeneous is meant that the data within the record pertains to a set of defined

terms called descriptors. The subject that the record is describing is called an

item. Thus, a record in a file contains a list of descriptors relative to a particular

item. For example, the PORT file contains records about ports. The item of a

port record is the logical name. The descriptors in the port record include the

specific port name code, port name, and port position, to mention several eligible

descriptors for the record. A descriptor relates a value to an attribute. Some

attributes in the port record are port name code and port name. Associated with each

record is a logical name. The logical name is a unique tag which identifies the record.

Every record contains a logical name. The logical name of the record is identical to

the item.

4.3.4 Data Files

The following constitute the totality of data files within t~e sea surveillance

system covered in t6,q study.

(1) Port
(2) Personality
(3) Ship (Static)
(4) Cargo Characteristics
(5) Operating Characteristics
(6) Propulsion Characteristics
(7) Weapons Characteristics
(8) Ship (Dynamic) -

4.3.5 Data File Records and Attributes -

A record in each of these files consists of a list of descriptors (i. e.,

values for certain attributes). For each file, the following attributes may be

4-10

*

File Location Dictionary
Directory (Attribute)

File Location of Location of Attribute Attribute F
Name Start-of-File End-of-File Name Identifier

(6 char.)
Port Cargo weight
Port
Directory Registry/Ship $4

Serial

static Year built

Dictionary

D-Directory -

aeD-Directory

Space (Descriptor)Available

SDescriptor Logical
Dames Name
Name (Lehar)

Space Available

File •__

"Number of Bit Norfolk
Position Blocks Configuraton Port
Referenced Available Indicating

San Diego
Block status(available or
unavailablo)

S...icS-U.S.S. NorfolkStatic Si -_•

: • • •S. Gomez

/
-T-

*i

Dictionary Static Ship
(Attribute) Data File

Of Attribute Attribute File in Logical name
File Name Identifier Which RSG Port Country

(6 cha':) Located Record Code .

Cargo weightFlgCd

Registry/Ship
Serial

Year built

D-Directory Static Ship
(Descriptor) File Directory

Logical
SLogical Link to Logical Disc fa- Nam e of

Ne Name File Name D of Related
N(Lehar) Directory Recor

Pot Norfolk

San Diego ow ARSG di e . .dn port

U. S.S. Norfolk

" ...2
Figure 4-1. File Organization for tlb

Surveillance Problem
4- 12

g

spaeiledIn a record:

(1) Port Record

Port Name Code (logical name of record)
Port Name

_-- Port Position

Port Country Code I
hlInimum Approach Depth
Oceanographic Index Number

(2) Personality Record

Name (logical name of record)

(3) Ship (Stati)

Registry/Stip Serial Number (logical name)
Port Country Code
Flag Code
Preferred Name
ilRCS
Ship Type Codes
Pendant Number
Upright Sequence
Adminstrative Control
Country Code (owner)
Country Code (lessee)
Country Code (builder)
Year Built
Data Last Major Overhaul
Home Port Code
Name.Shipping Line

(4) Cargo Characteristics

Gross Weight
Dead Weight
Cargo Weight
Refrigeration Capacity
Bale Cubic Capacity
Measurement Tons
Number of Hatches
Length largest Hatch
Width Largest Hatch
Number of Booms
Maximum Boom Capacity

1. 4-13I _

Liquid Capacity

Number of Transfer Stations
Transfer Rate Under Way
Discharge Rate in Port

(5) QOerating Characteristics

Function Code
Activity Code
Doctor on Board
Refuel at Seý Capability
Speciai Signal Facilities
Meteorological Facilities
Strengthened for Ice
Salvage Cnpability
Washdown Capability
Special Radio Equipment
Operator Watch Period
Navigational Radar
Special Navigational Aides
Length in Feet
Beam in Feet
Passengers Normally
Passengers Emergency
Passengers No Choice
Draft (Maximum)
Communications:

Operator Period
Broadcast Guard
DTG of Shift

(6) Propulsion Characteristics

Propulsion Units
Type of Propulsion
Fuel
Bunker Capacity
Fuel Consumption
Endurance
Maximiun Speed
Maximum Shaft RPM
Normail Cruising Speed
Normal Shaft RPM
Blank
Reduction Gearing
Nunmber of Screws
Number Blades Screw
Registered Gross Tonrige
Maritime Administration
Short Description

4-14

Ii

(7) Wepons Characteristics

ECM Capabilities
"Helicopter Capabilities
ASW Sensors
ASROC Capability I
Major Gun System
Missle System
Torpedo System
Target Designation/Fire Control

(8) Ship

Latitude- Longitude Coor-hnates (logical name)
SOA at this time
Bearing
Wind Velocity
Wind Direction
Barometric Pressure
Relative Change
Weather
Reference Fix Position
Fix-to-Ship Bearing
Visibility

Air Temperature
Ship Movement
Task Designation
Chop DTG
Next Task Designation
Operational Commander
National Number
SIOP Unit Designation
Readiness and Status

4.3.6 Directories

Part of the actual data is implicit in the additional data used to manipulate

the data files. The set of additional data is given in what will be termed directories.

Directories exist on file, format, record, and data levels.

4.3.6.1 File Location Director. The file location directory is utilized to find
the storage location of all files and directories within the system. The File Location

Directory consists I as r,, qy entries as there are files. Each entry consists of elements

to indicate the disc locations for the data files (Paragraph 4.3.4), file directories
(Paragraph 4.3.6.4), and the D-directory (Paragraph 4.3.6.3). The location of the

directory is also contained in the file location directory.

4-15'C"
):

4.3.6.2 Dictio The dictionary indicates the list of attributes for each record

for each file type. Each entry in the dictionary consists of two elements. The first
element, consisting of six characters, Indicates the attribute's Identifier. The first

character is an item identifier. If the descriptor is an item (a logical name), this

character indicates this fact -ind conversely. Included in the attribute identifier is a
code which specifies the class (alphiameric, numeric, binary, etc.) of the descriptor.

Additionally, if the attribute is contained within one descriptor word (along
with other descriptors), the last two characters indicate whether the descriptor is a

character or bit, as well as giving the character or bit position. The second element
of each entry indicates the file that the particular attribute is found in. There exist

as many entries in the dictionary as there are attributes in the system. If it is desired
to know a record's content for a particular file, the dictionary is searched for all
entries whose second element equals the desired file's identifier. The first element
of these entries lists the set of attributes found in a record of the particular file. An

important and valid assumption Is that all records of a data file are identical with
respect to possible content (homogeneous file), and that an attribute occurs in one and
only one file.

4.3.6., 1 -Directory. The D-directory functions in several ways:

(1) It converts inpuit form descriptors which function as logical
names into one-word (48-bit) entries.

(2) For each such logical name, it lists the total number of data
records related to the particular record identified by that
logical name. The number of data records referenced is
used in the process of retrieval.

(3) It gives the file directory's, address to find the list of related
Sne.logical name

Because many ships might be reported to the system whose names are not
known, even though reliable information is available, provision must be made for

ships for which no meaningful normal D-directory entry can be made. In the cases of

such "unknown" ships, D-directory entries indicating an external name of " ZZZZZZZZ"

a"e entered for each such ship. In these cases, the routines must be programmed to pro-
"vide for the situaion where the one extended name has many internal log rd-l names

assocatedwith it. In all other cases, the relationship between extended a internal

names in one to one.

4-16

j|

4.3.6.4 File Directories. The file directories are the major data type used in

manipulating the actual sea surveillance data. A file directory exists for every data

file, and consists of a set of logical names. These logical names may be divided into

homogeneous subsets or logical name records. Each logical name record corresponds

to one data record of the data file. The logical names of both the data record and the

logical name record are the same. The other logical names contained in the logical

name record relate the associated records in other data. As!-ýiated with the logical

name for the particular file is the physical address of the associated record. For

example:

rhysical record locations on disc

SA record 1; Al, logical name of record followed by @ i) 1' Le
\A set of descrfptors.

d2 A-2 record 2; X 2, logical name of record followed by descriptors: @A) 2

PORT
FILE

Xl, d1 logical name record for Al1 found in disc position di

X3 - A 3 and A4 are logical names of related records.

A4 - logical name record for A2 found on physical disc
A2, d2 position d 2 .

PORT FILE DIRECTORY

A3, 17 13 and •,4 are ship's logical names

X 5 d3, d 4 are the physical location of the ship's records

4, d 4 A5, A-6, and A7 are logical names of records relited to the indicated

A$ ship's records,
A?

STATIC SHIP
FILE DIRECTORY

4-17

I i

Cross references between data records from any file are accomplished on

the directory level. The physical location for any data record from a particular file

is given only in that record of logical names of the particular file directory where

the logical names are identical. Thus, data is retrieved only through the file di-

rectory related to that data.

Some records from one file may or may not reference records from another

file. In this respect, the file directories contain these logical names in the indicated

record format.

(1) Static Shp File Director

Registry/Ship Serial Number (logical name)
Disc Location of Data Record*
Logical Names of Related Records:

(a) Port - if in port or Dynamic Ship,
if not in port

(b) Personalities
(c) Weapons Characteristics
(d) Cargo Characteristics
(e) Propulsion Characteristics
(f) Operating Characteristics

(2) SDynamic Ship File Directory

Latitude- Longitude (logical name)
Disc Location of Data Record*
Logical Names of Related Records:

(a) Registry/hip Serial Number

(3) Port File Directory

Port Name Code (logical namie)
Disc Location of Data Records*
Logical Names of All Related Records.

(a) Registry/Srip Serial Numbers

(4) Personality File Directory

Name (logical name of record)
Disc Location of Data Record**
Logical Names of All Related Records:

(a) Registry/Ship Serial Numbers

oAs many addresses as needed, listed contiguoscly.
Actually, none required.

4-18

__

(5) Weapons, Cargo, Operational, and Propulsion Characteristics,
File Directories %...

Logical Name*
Disc Location of Data Record**
Logical Name of All Related Records:

(a) Registry/Ship Serial Numbers

4.3.6. 5 Discussion. Each of the eight*** data files consists of a set of homogeneous

records. A particular record in a data file is "named" by its logical name and contains

a list of descriptors which describe the item identified by the logical name. Every

descriptor in the record is given as two elements. The first element identifies the

attribute (and denotes those attributes which are Items) and the second element is the

actual descriptor. Every attribute label as given in the dictionary is one 48-bit word.

Every descriptor is given in its basic input form. As many 48-bit words as required

are allocated to the descriptor. Every logical name requires one and only one 48-bit

word.

The particular descriptors of a particular record may be given in any order

with these exceptions:

(1) The first entry in the record must be the logical name.

(2) All descriptors between two logical names must be associated
with the first logical name.

(3) A second occurrence (within a record) of a descriptor will
be interpreted as historical data.

The file directories require a logical name for each record in the data files.

On the premise that many ships have the same characteristics (cargo, propulsion,

etc.) it was decided to create records about these characteristics. Thus, the size of

the static ship's data file Is considerably reduced. But a new problem arises: What

is the logical name of these characteristics' records ? The procedures used in the

data file In grouping attributes into one attribute and the corresponding descriptors into

one descriptor word will be used to generate a logical name.

S* May be generated as given subsequently.
** As many addresses as neeced, listed contiguously.
*** Really, only seven are required since the personality file is implicit in the

directories.

4-19

Moak

4.3. 6. 6 Space Available File. In addition to the data files and directories, a file

termed the Space Available file is needed for bookkeeping purposes. When a file is

either maintained or loaded, it is necessary to know where available space exists on

disc. The file location directory assists in this process, but is not in itself ade-

quate. The file location directory indicates the range of addresses on disc of a

particular file or directory. in the case of data records, which can be stored at

random anywhere within the range allocated to the file, it is important to know

precisely where the records are stored and if sufficient contiguous space exists for

the record. It Is desirable to store a data record in contiguous disc locations to

speed up the storage and the retrieval of data. As noted in the following paragraphs,
which describe the physical file description, an AM will be exceedingly useful to

manipulate the space available file.

4.4 PHYSICAL RECORD LAYOUT

A data record in any of the files contains the logical name of the record and

a list of attribute-descriptor pairs. The logical name uniquely identifies the record

within the file. It is one computer word in length (48 bits), and is always the first

word of a record. By virtue of the convention that no more than one record can occur

in a physical disc record, it is also the first word in the physical record; when a record

is continued over several disc locations, the logical name is repeated in continuation

records. An attribute-descriptor pair contains an attribute identifier and a descriptor.

4.4.1 Attribute-Descriptor Pair

An attribute -descriptor pair contains an attribute identifier and a. descriptor.

Attribute identifiers are one computer word in length and contain a unique identification

of the attribute, together with other information about the attribute and descriptor. The

attribute identifier is presented analytically in Table 4-1.

Some descriptors are of standard form and fixed length. An example of such

a descriptor is a part country code. Other descriptors are inherently of variable length,

and are likely to be presented in different forms to the file. An example of such a

descriptor Is the short description of propulsion characteristics. In order that the

sea surveillance data base provide a reasonable representation of intelligence data

bases, a provision has been made in designing the data base for a preponderance of

variable length descriptors, even though most descriptors could be standardized in a

fixed form.

4-20

msI

IU

TABLE 4-1. AITRUBTE 13DENTIFIR

Field Description. Number of Bits Bit Location

Attrlibute Fa 1 b3

This flag is set to 1ito indicate that

2. Code Indicator 5 b 42 b146
This field indicates the code in
which the descriptor is presently
stored, e. g., Gray, Hollerith,

3. ItemFlW 1 b

This flag indicates whether or not the
attribute is an item (and hence, whether
it is indexed In the corresponding di-
rectory).

4. File IM

This field identifies the file to which 8 b 3 - b4
the attribute belongs.

5. v~aviiM 12 13l - b2
This field uniquely identifies the
attribute.

6. Related ile Indicator 8b - b42

This field indicates which file may
also be affected by a maintenance
operation performed on the descriptor
of this attribute-descriptor pair. For
exa~mplet If a maintenance operation'
indicates that a ship has entered
port by an operation on the attribute-
descriptor pair, the related le in-
dicator wi reference the dynamic
ship file since the dynamic ship file
record for the same ship should no
longer reflect a bearing or speed
and since the "hip s now in port.

7. Deslrietor Cnacterization r b - b
8 1.2S. Number of Characters for the De- 8ripor

4-21

of tis atrlbte-escrptorpa/r Fo
examleff ams/tenace peraionIn/ae htasi a nee

4.4.1.1 Attribute Identifier. The major data needed to characterize a data descriptor

is:

(1) Code form of descriptor (e. g., Hollerith, binary).

(2) Whether the descriptor is an item.

(3) What file contains the attribute-descriptor pair.

(4) What file contains related data.

(5) Descriptor length.

This data is carried in the attribute identifier. Other data about the descriptor

is also carried in the attribute identifier, rather than in internal tables, simply because

the space is available:

(1) Data Class: Is the descriptor numeric or alphanumeric?

(2) Data Usage: Is the descriptor primarily used for compu-
tational or display purposes ?

(3) Format: If the data is numeric, is the field in fixed
point or floating point form?

(4) Length Convention: Is the descriptor fixed or variable length?

(5) Justification: Is the field left or right justified?

This data is contained in the descriptor characterization field of the attribute

identifier (Field 7, Table 4-1). This five-bit field has the following interpretation:

li ABCDE

where A = 1 if the descriptor is class numeric, and
0 if the descriptor is alphanumeric.

B = I if the descriptor contains data whose usage is computational, and
0 if the usage is display.

C = I f the data is fixed poit, and
0 if the data Is floating point.

D = if the descrlptor is a fixed length field, and
0 if the descriptor is a variable length field.

E = i ff the descriptor is left Justified, and
o0 U the descrip4or is right Justfied.

4-22

I I

S 4.4.1.2 Attribute Classification. The attributes of the various data files can be

classified according to the information contained in the attribute identifier fields

presented in Table 4-1. This classification willfufficlently define the formal nature

of the descriptors contained in the attribute-descriptor pairs. The classification of

attributes of the sea surveillance data base is presented in Paragraph 4.3.5.

4.4.2 Descriptor Conventions

Alphanumeric and numeric display descriptors will be left justified and there-

fore begin a word. Since the next entry after a descriptor in a data record must be an

attribute identifier, such a descriptor will always occupy an integral number of computer

words. Descriptors containing numeric computational data will occupy at most one

word in either standard fixed or floating point format. Filler for alphanumeric and

numeric dF3play fields will be binary zeros.

4.4.3 Disc Record Storage Conventions

Detailed disc record conventions are given in Paragraph 4.5. For the purpose

of this discussion, however, it must be noted that every data record begins a new disc

record, and that the first word of each such record is always a logical name.

Because destruction of a directory entry could result in the loss of indexing

to trailer records of a data record, each trailer record begins with a logical name,

making it theoretically ptesible to recover trailer records in the event that the corres-

ponding directory entry is destroyed. Hence, trailer records have the same format

and the same disc storage conventions that apply to the initial data record.

4.4.4 Dictionary Conventions

The first word of the dictionary will be called the dictionary "NENT" word.

It will contain, in the upper portion, the number of disc data records currently storing

the dictionary. In the lower portion it will contain the currently correct total number

of attributes In the system.

The attribute identifier, an defined in Table 4-1, will always contain binary

"oams" in bit positions 0 through 12. The purpose of thin convention is to allow differ-

entlation of this attribute identifier from the other element of the, dictionary, the

C aftribute nume.

4-23

I

.The attribute name is the external representation of the attribute. The external r4

presentation, the attribute name, can stand in a many-one relationship with the attrbuite

identifier.

Essentially, the dictionary is a list of attrihb.e-name attribute-identifier pairs.

Because the file containing the attribute is identified by a part of the attribute identifier, it k

sometimes convenient to think of the dictionary as a list of triplets: attribute name, attribui

identifier, file identifier. In this dispussion, the attribute-name attribute-identifier pair re

p- :sentation will be employed.

Withiln each attribute-name attribute-identifier pair, the attribute name appears

first, left justified, with filler of binary zeros, if required. Attribute names can be of vary-

ing length, and are followed by their corresponding attribute identifier. Since there can be

many different attribute names for the same attribute identifier, this implies that the same

attribute identifier can occur many times within different attribute-name/attribute-identifier

pairs.

4.4.5 Directory Conventions

There are three different classes of directories, each of which is treated separa-

tely. The file directories compose one such class; the D-directory and the file location di-

rectory are sufficiently different to deserve treatment as separate classes.

4.4.5.1 File Location Directory. The file location directory consists of a unit of file name

file address pairs, preceded by a NENT word. The NENT word contains, in the upper porti

the number of disc data records currently storing the file location directory; in the lower po:

tlon the current total number of files is stated. It should be noted that, for the present sea

surveillance system, the file location directory does not require more than one disc data re-

cord for storage, and is, in tact, stored In core during the processing of parts of the system

such as file maintenace, which must frequently refer to it.

The file name-file address pairs are packed in one word items, with the following

format

File ID bits 24-47

Address Coatrol Word bits 0-23

j 4-24

if

The address control word is in the format of the CDC 1619 Magnedc Disc

File Controller Reference Manual, pages 3-14, and constitutes the actual disc address

of the first record in the file.

It should be noted that, for %urposes of the file location directory, all

directories, the dictionary, and the data files are construed as files, and are therefore

referenced by the file locstion directory.

4.4.5.2 The D-Directory. The D-directory is basically a list of four-tuples containing

the following-

(1) The external-logical name.

(2) The logical name of a record.

(3) The directory address for the corresponding logical name.

(4) The number of data records to which the logical name is related.

The first word in the D-directory is the NENT wor,, containing the number

of disc records currently containing the D-directory in the upper halt, and the total

nu.nbei of D-directory entrl(in the lower helf. All subsequentwords consist of

four-tuples of the stated kind.

The external logical name is a name by which the data is known, and input to

the system. It can exceed one computer word in length (unlike the logical name), ar"

&.erefnre must be converted to the logical name. Further, an item, such as a ship, can

1., kno-vn by several names. "S.S. Reben S. Gomez" and "TS#0417" can both be meaning-

f d names of the "me object. Hence, there is a many-one relationship between external

logical ý_! awF and logical names. As ir the case of the dictionary, separate four-tuples

are created for eh external name. The external logical nr .ne !s left justified and zero

filled, since it is always either alphanumeric or numeric display.

The logical name is a one-word entry, defined in detail in Partgraph 4. 4.6. The

directory address is given in the 1619 Disc Controller format.

The number of data recorde to which the logical name is related is computed

as the count (tally) of all dWsc records required, initial records plus trailer records,

for each record presenting Information on the named objec.. This number Is also

4-25

&"

called the norm, and is primarily of value in loading data for the query system. In this

system it serves the purpose of optimizing core assignment and disc scheduling.

4.4. 5.3 File Directories. File directories are adequately described in Paragraph 4. 3.6.4,

as long as the following physical restrictions are kept in mind.

(1) The logical names are one-word entries, as defined in Paragraph
4.4.6.

(2) Disc locations are given in the 1619 Controller format.

(3) The first word of each directory is a NENT word, containing the
number of entries.

(4) Gaps may occur in the directories as a result of maintenance, in
which case '.e gaps are binary zeroes.

(5) Logical name sequence is maintained except within physical disc
records. Hence, if a given physical record does not contain logical
name X, but contains X I lower in collating sequence than A, and AV
hghrr in collating sequence, the logical name A is not in the Directory.

(6) Data re3pecting one logical name does not overlap physical records

without repeating the loical name.

4.4.6 Logical Name Conventions

Logical names occupy one computer word (48 bits) and must uniquely identify

a record within the sysitem. The most convenient assigned logical names are arbitrarily

assigned sequentially ascending numbers. In this system, logical names are so generated,

with the additional requirement that 47 equalizers and bits 30 through 46 are always Minary

ones.

A special case exists for the logical name of records of the dynamic ship

file. The logical name of these records Is the coordinates oi the ship in question. These

coordinates are expressed according to the following schema, where each capitat letter

represents an octal digit-

37777 LAAAAATBBBBB

wher, L = I if the longitude is East
0 if the longitude is West

14
AAAAA longitude, in radians, scaled2

4-26

a

3 T =111f the latitude is North4
0 if the latitude is South

BBBB = latitude, in radians, scaled 214

4.4. 7 Space Available File

Experience in assessing the required maintenance operation has indicated that

when a file is maintainedthe available space within the disc file made available must be

noted. Since L.'e file locator exists, it is not complicated to know the pertinent position

range for a particular file or directory. Therefore, the space available file is on a

disc file level. This information is maintained in the first position of the first disc.

Each disc position of the 16 discs (1 024 positions) is represented by four contiguous

48-bit words. (4i + 1); (a< i< 7) is (8k + i - 7) /64 = D - P/64, where D is the disc

addressed, P is the position,and P/64 < 1. The first word of the four-word element

associated with a position indicates the number of available blocks at the position

(< 128). The next three words are construed as one word of 144 bits where the ith

bit is equal to 1 if, and only if, the ith block contains data. Each word has an identifier:

1, 2, 3, or 4.

4.5 INFLUENCE Of ASSOCIATIVE MEMORIES ON DATA BASE ORGANIZATION

4.5. 1 Introduction

In considering the organization of data for an associative memory, one must

consider the time to transfer the data from core to associative memory (as in the case

of GAP), and the various aspects of processing:, interrogations of the data base, maintenance

orders to change the data base, and new data inputs to be stored in the data base. All of

these factors affect the overall system and are considered separately in the sections of

this volume which discuss these subjects (Sections V, VI, and Vn). It is Important to

discuss the logical considerations relevant to the structuring of the data which are in-

fluenced by the characteristics of an associative memory. This paragraph only describes

the logical considerations, does not take a total system view, and does not provide timing

information.

4.5.2 Data OrganLzatton Considerations

As noted previously, the indexing scheme utilized In this study is a multi.-,-.

3 list file structure in which the linkage to records Is extracted from data records and

4-27

m4
mA

placed in descriptor lists. From a timing consideration this organization of data

achieves a faster time to retrieve data records than that of a multi-list file structure

with linkages in data records. Maintenance of data records is equally cumbersome in

both systems. This pertains whether or not an AM is utilized. The system is input-

output bound and the AM has no effect upon this. However, the logical organization of

data within the individual files has changed significantly as noted in the following para-

graphs.

4. 5.2. 1 Data Record Organization. As described in Paragraph 4.4, a particular

data record consists of a logical name of the record, and a list of attribute-descriptor pairs.

No sequencing of attributes has been defined; with an AM, no sequencing is required.

If no AM were available, the above organization would require that each

attribute be scanned until the proper one was found. By imposing an ordering on the data

(say alphanumeric), the average time to find the attribute could be decreased.

Because of the logical capability of an AM, the ordering of attributes does not

enter since the time to retrieve the descriptor in an AM is independent bf its relative

location with respect to other attributes. Not having to be concerned with sequencing of

attributes is thus due to the logic of the AM. For a variable size record with variable

size fields, as is the sea surveillance data base studied in this report, this is particularly

important. Howev :, in processing a single fixed field size with fixed record size format,

an AM is logical', no more powerful than core. As is the normal case with such records,

a data descripti n exists so that one can go directly to the desired descriptor once the

starting location of the record is known. Since all data records considered for the sea

surveillance problem are smaller in size than the AM considered (2,048 data words), the

entire data record and, indeed, several records may be stored and processed simultaneously

in an AM thereby enhancing the AM over core. The ability to process data records in

parallel whether fixed field, fixed size, or variable field makes the AM a powerful proces-

sing tool. This advantage is achieved in the A3 because,in many cases, no data transfer

time is required. However, in GAP it is advantageous only if a sufficient number of

searches is applied to the data records. For example, note that in the case of the

REL subrouune, which retrieves logical names of records given an attribute-descriptor

pair on which one desires to retrieve, it takes 7. 1 milliseconds utilizing GAP and con-

sidering data transfer time, and 5. 9 milliseconds without an AM.

4-28

4. 2 2)ire't•,ry Orgknization. The discussion in Paragraph 4. 5. 2. 1 also applies to

the directories In particuiqr, the influence of the AM on the dictionary, on the directory

for an attribute, and on die D-d-rectory is discussed. Similar considerations apply to

the other L..eLories

(1) Dic~innaly. 'e ,J-•t'•na.-, hlists for each file all attributes, their machine

representation, and the de•, or yption of the data. Storing the dictionary in the AM when

t.t is required has -.he same utity a, a data record.

(2) D-Directory. The D-d' rectory contains a list of logical names of records. A D-

directory record contains the number of data records containing the descriptor and the address of

the list of addresses of the data records containing the des criptor. As noted previously, theDI-

directory is divided into K segments where any segment may be placed entirely within the AM.

Within segments, there is no orderig of directory records. However, between the Ith and i + 1th

segment, the directory records in the Ith segment precede tl 3se in the 1 + 1th segment. (For ex-

ample, in the SHIP ID D-directory, all ship IDe listed in the ith segment are alphanumericallylth

less than all ship types listid in the I + 1 segment.

If no AM existed, the items in the Ith segment would be sequenced according

to some criterion. If die list of descriptors is largethe necessity for sequencing arises

so that one does not have to sequence through the D- directory to get at the descriptor.

Rather, oce can go to a small directory in the D-directory, find the segment in which the

descriptor appears,and go to the arpropriate segment directory. Thus, the AM did not

change this concept, but mei ely simplified maintenance within segments and the process

of i-etrieving the appropriate directory record from amongst the set of directory records

in the segment. Maintenance of the D-directory is vastly simplified because of the AM

and could hspve a substantial amount of coding. Provided that one ignores transfer time

to the AM (which is not necessary for memory A3, but is necessary for the GAP,

Al and A2 memories), maintenance time for segments arnd retriev' I time for descriptors

ir segments are faster in the AM than in nore.

(3) Directory. The dii ectory consists, essentially, of the list of logical names

ot records which contair the descriptor. If processing were accomplished in core, for

efficiency tLe list of logical names of records would be ordered. However, if the directory

record is to be processed in AM, the logical names need not be ordered.

4-29

N>!

II:

4.5.3 Disc Allocation

An essential element of the data organization is the requirement for the

available space on disc where data can be stored. If no AM exists, then several

possibilities exist-

(1) A directory can exist which contains the names of those disc
positions which have a specified number of available blocks.
Within two disc accesses one can determine a position which
has the specified number of available blocks. Finding avail-
able space is not time consuming, but maintaining the directory
is tme consuming when one has to take a position off one list and
place it on another list. Problems also arise when several
positions must be utilized to find the appropriate amount of space.

(2) Instead of w• tntaining a directory, a word in a position could be
reserved to specify the amount of available space in the position
and could give a link to the next position with the same available
space. This solution is equivalent to (1).

The method proposed in this study is logically more powerful than either of

the above approaches. By loading into AM a map of the available and unavailable disc

locations allocated to a record for the particular file desired to be stored, and the number

of blocks available in each position, the determination of where available disc space is

is simplified. If necessary, one can determine those positions which have a specified

number of contiguous available blocks in a disc position. Thus, greater flexibility is

achieved.

Logically, in maintenance one knows the position and block that have become

available. Hence, if the disc map is in core one can go there directly rather than utilize

the AM for this function. However, maintenance is simplified substantially because it

is not necessary to change the list on which the maintenance position belongs.

Although it appears that the AM has an advantage in this lnbtance, it is only

illusory. It is not practical in this problem to have the space available file reside

permanently in the AM. Transferring the file back and forth between core and AM will

be more time consuming than performing core operations. This applies equally to A3

and to GAP. In maintenance operations, the space available file will be required

permanently in non-AM core and transfer time to either GAP or A3 would be too costly

in time. An advantage would accrue, however, if the space available file and other

tables required by an Executive Control Program were to reside permanently in an AM.

tI 4-30

- 4.6 IMPACT OF DISC FILE ON ASSOCIATWE MEMORIES

The main objective of this study is to assess associative memories used in an

operating system whose configuration includes a disc file. In all configurations con-

sidered, except that one which includes the A3 memory, data is read into (or from) the

associative memories from (or' into) 1604-B core memory. Thus, in these configurations,

the topology of data stored on a disc file is independent of the associative memory. In

like manner, the minimum number of words read into 1604-B core memory from a disc

file (I. e., a block) is independent of the AM since another data transfer operation is

required to place the data in the AM. The number of words transferred by the second

data transfer operation may be independent of the block size.

It is possible in the A3 memory configuration, to transfer data directly from

the disc into the associative memory, and conversely. In this case, it is important

that the A3 available memory be at least equal to a block size.

The preceding paragraph points out the fact that there is no direct impact of

the disc file on the associative memories; however, there may be an indirect time de-

penrdsnt impact. Perhaps this point is illustrated by the fact that the average access time

for disc data is 225 milliseconds followed by an average word read rate of 90 microseconds.

If one block is "randomly" read from the disc file, an average time requirement is

(225 ms + 32 x 90 microseconds) =227.88 milliseconds. In this time itis possible totransfer

the equivalent of one 32K 1604-B core memory to the associative memory.

In much of the processing that is to be accomplished in the sea surveillance

problem, the data disc addresses that must be retrieved for subsequent processing aie

often known, a priori. In this case, it is impossible, depending on available memory

space and processing order of the data, to order these disc addresses such

that the disc access times are minimized. The objective of this reordering is to minimize

the impact (or bias) of the disc file upon the results of this study. The routines that per-

form this optimal reordering and read disc data into available 1604-B core memory arc

the query preprocessor and the controller.

Whenever timing is considered with respect to an associative memory, the

dependence between disc input-output operations and performing associative memory

4-31

&i
N

-..-|i!!.

transfers becomes ý%f Interest. Whenever associative memory operations are performed
in the "burst" mode, disc operations are interlocked. However, if the "buffer" mode is

used, it is possible to saturate the 1604-B with a resulting loss of data. This saturation

must be prevented by software techniques.

4-32

!F

SECTION V. INPUT MESSAGE PROCESSING

5.1 INTRODUCTION

The sea surveillance data base is a collection of pertinent information about

the current situation regarding all ships, ports, and personalities within the surveillance

area. Since the real life situation is dynamic, the representing data base is also dynamic.

If a "snapshot" is taken of the real world and the result considered as an initial data base,

then this data base is altered in a dynamic sense by: internal projections (e.g., advancing

all ships), maintenance orders (e.g., delete duplicate records), and input messages

(e.g., ship X has left port Y).

The task of the input message processing subsystem can be deicribed as one

of translating messages about the world into various elementary instructions to the file

maintenance subsystem. This section of the report is concerned with input messages.

R describes and gives examples of such messages, outlines the required processing,

and describes the role of the associative memory configuration in such processing.

5.1.1 Availability and Formats

In actual implementation, a flexible, English-like language would be provided

for input messages. This would probably be an extended form of query language. In

such a system, the first step of processing a message would be its reduction to a more

"machineable" form. Since that kind of process is examined in some depth in other

sections (Section VI) it Is not developed as part of the input message processor.

Rather, input messages are assumed to be in the form of the available test data, that

is, 80-character fixed field card images as described in the IBM report entitled Sea

Surtnllance ,Dta Base ,Hwesentation as Test Vehicle.

For purposes of this study, the scope of the input messages will be sufficient

to

(1) Change Commanding Officer of Ship Serial AM 3572
to CAPT R OWENS.

6-i

I./

(2) Position of Ship Serial AM 3572 is 42.40 No '0675° W,

Speed Advance is 30, course is 266.

(3) Ship Serial AM 0458, Task Designation XXXXX.' Operational

Commander is Y - Y (16 characters) Readiness and Status

ZZZZ.

(4) Ship Serial AM 3133 ha3 been assigned to the Valley Forge,

Type CVS Hull #45, Max. Speed 33.0, Normal Speed 15.8,

4 Screws, Function SUACCAR.

(5) Ship Serial L10386 has a doctor aboard.

(6) Ship Serial AM 3572 is in Boston, Mass.

(7) Unknown Ship at 273N, 0723W; Speed of Advance 20,

Course is 133.

The input message processor will handle these examples, and has been

designed and programmed in such a general manner as to accommodate an even greater

variety of input message forms. The major criterion for whether an input message

about the real world can be processed by the subsystem is whether the message can

be reduced to a format called the "input string." The input string consists of a

beginning message code, an action code, a set of attribute descriptor pairs, and an

end of message code. In general, this citerlon can btý satisfied if a system routine

can exist which will translate input message codes (both explicit and implicit) into

action codes and attribute descriptor pairs. bince such routines are easily defined

for conventional input messages, their existence is assumed. Hence, the routine

developed in this section will show the processing required to break apart general

Input strings into substrings concerning single items, and the analysis and disposition

of each type of substring.

5-2

Ni

I!

3 5.2 INPUT MESSAGE - PROCEDURAL LOGIC

5.2.1 Types of Messages

Messages entering the system are concerned with ship movements, ship

characteristics, port characteristics, and personalities. The input message processor

has as its main objective the association of the input message with the proper family of

records contained in the data base. Messages may affect data records and directories

(or neither). The disposition of each type of message, in general, uses the following

rules.

5.?. 1.1 Confirmations. If the message contains a descriptor that matches the

associated descriptor, it is a confirmation and no action occurs.

5.2.1.2 Contradictions. If the message contains a descriptor that contradicts the

associated descriptor ,the following occurs:

(1) If the file is the dynamic file, enter the new value and

correct affected di. -ctories.

(2) If the file is the static file, flag for management action.

If the change is desired, re-enter with a maintenance

order.

(3) If the file is the port file, follow (2).

(4) If the file is one of the characteristics files, follow (2).

(5) If the file is the personality file, follow (1).

5.2.1.3 Additions. If the message contains information about a new item, generate

a maintenance order to file the item record az..d associated directories. If the logical

name of the new item is not known, assign a temporary logical name until its true

logical name becomes available. If the message gives additional descriptors for items

already in the system, proceed as in Pagrraph 5.2.1.2.

5-3

j3k

5.2.2 Input Message Processor Organization

The general approach for handling input messages is essentially a two-

phase process. The first phase, performed by the input processor, is basinally a"

interpretation phase. Its %i!--ction is to examine the input message, and generate a

set of instructions to the file maintenance system. The second phase performed by

the file maintenance system enters the data base revisions called for in the list of

file maintenance orders presented to it.

The process of identifying items involved in a message, and distributing the

information contained therein appropriately may require considerable manipulation.

The approach used by the system is to save all intermediate information developed

during the message analysis, and pass it down in the form of maintenmce order

trailers.

Once the input string is available for processing, the input message processor

subjects it to three separate routines:

(1) The Attribute Split Routine creates a rectangular array

of attributes and descriptors affected by the string, called

the message instruction table.

(2) The Sub-String Processor examines the rectangular array,

determines what actions may be called for, and reads in

needed data from disc.

(3) The Maintenance Order Generator translates the results

of prior routines into file maintenance orders for processing

by the file maintenance routine.

The organization of these routines is presented in Figure 5-1. Each routine is

described in subsequent paragr-aphs.

5.3 ATTRIBUTE SPLIT ROUTINE

Each message string relates to, at most, one ship. The information

carried in an input string may relate to many data base items. For example, the

message "ship X is in port Y'1 relates to a ship item and a port item. In order to

5-4

I

Enter

input
String

tutribute
Spat
Routine

Message
Distribution
Table

Sub- String
Processor

Auý,,mented
Message
Distribution
Table

Maintenance
Order
Geiw-atar

Exit

Figure 5- 1. Input Mes"ge Processor Organization

5-5

process such messages, a table structure is utilized by a routine called the attribute

split routine. The table structure is used to contain the data relevant to different

items. This table, called the message distribution table (MDT), may be explicit or
implicit. That is, attribute-descriptor values may be entered into It, or lists of

attribute-descriptors may be labeled with table positions. Which of the two forms

is chosen depends on the availability of an associative memory, and on details of
file and record organization. In this system the attribute-descriptor representation

of data within the record and the availability of an associative memory make it convenient
to describe an input message processor emphasizing an explicit message distribution

tabie.

5.3.1 Message Distribution Table (MDT)

The MDT is a rectangular array of attribute-descriptor pairs. Each cell
is labeled Elj, where I varies with the file type and j varies with the attribute. The

value j = 0 is reserved for logical names of items. The message distribution table
is presented schematically in Figure 5-2.

5.3.2 MDT Processing

The Attribute Split Routine clears the MDT, finds all attributes that are
logical names (via the D- . enters them for J = 0, i = value appropriate

to file (e.g., I = 0 implies ship static file, i =1 implies ship dynamic file, etc.).

For other attributes that are not items, the Attribute Split Routine scans the dictionary
to find whether or not they are in the system, and if they are, in which file they are to
be found. Each attribute-descriptor pair is then entered in the appropriate column

(or labeled with the appropriate i, J value), until the complete message string is exhausted.
The MDT is now "loaded" and ready for analysis bý ýhe sub-string processor.

5-6

a.

5.3.3 Outline of Processing

The associative memory proves very convenient for processing the input

string. The processing performed by the Attribute Split Routine can be described as

follows, when aGAP-like associative memory is available:

* (1) Clear the associative memory.

* (2) load the message string into the associative memory.

* (3) Set up mask and comparator for attributes.

* (4) Set responders for all attributes.

* (5) Read addresses of all responders into the list L1 . (If there.

are no responders, exit, reporting an error condition.)

* () Perform a compare for items, and "and" the response

store. This step turns on a final response store for logical

names. (If there are no responders, exit, reporting an

error condition.)

"OAl steps marked with an asterisk (*) are steps performed by an associative memory.
"Step (8) reqUires both associative and conventional processing.

5-7

mN.

0 2

Ships static Ships Dynamic Port Characteristic

0 Ship Code/XXXXK not given Port/YYYY

1 velocity/O

2

4 E1 , J

Figure 5-2. Example of Message Distribution Table

Hi5

ii0

I I

3 (7) Advarce buffers one position. Readout responders into the

list *2.

(mixed) (8) Set up control for the AM dispatcher, and use the dispatcher

to load the D- directory in segments Into unused parts of the

AM. Compare each segment av ,inst L2 for equalities; all

D-directory entries that get responders on this comparison

are read into the list L3.

(9) Store the list L3 for processing by the file maintenance

subsystem. This list is a part of the "trailer" described

in Section VI.

(10) Determine the current length of the list L2 ; call this length

M.

(I1) Set j = 1.

(12) Compare the jth element of L2 with the jth element of L3 .

(Ia) If a match is determined, a logical name has been found.

Enter it in the MDT; otherwise, go to step (8).

(14) Set j equal to j + 1.

(15) If j does not equal M, go to step (12); otherwise, go

to step (16).

(16) Set flag 'IfV in the MDT, and enter a logical name.

(17) Step K by 1.

* (18) Clear D-directury portion of the AM.

* (19) Load dictionary into available AM space.

* (20) Read attributes from dictionary into core and set up

comparator register.

C
?;5-9

* (21) Perform a selected compare for equality on the dictionary,

if there is no match, an error has occirred; otherwise

continup

* .22) Get/ he file index from ihe dictionary. This is the i value

of Elj.

* (23) Random block unload data to next attribute location. Store

attribute in MDT at Elj, where j = j + N for that i.

(24) Repeat steps (20) to (23) until the list Lj is exhausted.

These steps are flowcharted in Figure 5-3.

The following comments are likely to be helpful in understanding the algor'ithm

and flowchart:

(1) The Attilbute Split Routine records the locations of all

attributes in the message on list L 1. It then finds those

items which are logical names, reading their contents

into list 12-

(2) Next it loads in the fl-directory using the AM dispatcher.

Any responders cause the entire fl-directory entry to be

loaded into L3.

(3) I. is necessary for the ordor of ½ 2 to be maintained in L3

because the next operation is performed in core.

(4) The lists L2 and L3 are compared to each other to match

logical names. In the event that a tame cited in the input

message is not in the D-directary, flag f is set when the

name is entered in the MDT. When-t',e D-directory is no

longer needed, the dictionary is loaded into the AM.

5-10

V Enter

Clear AM

S- I

Load Message
String into
AM I

Set up mask
and comparators
for attributes

i
Set responders
Read addresses
into Li.

Yes,

Compare for
items (logical
names) and
"IANDY' reap.

"Figure 5-3. Attribute Split Routine (Sheet 1 of 4)

5-I

*

Advance buffers

Read responders

ASR-

Set up AM
D1-spatcher.

Figur 5-3.Attriute Slit Loadn (-Deet 2of 4

ANDipachr nt uusd ar

ofAMcmpr

V 2

ore L3 as
FMNO Trailer

Mi4- length of1
Linwords

jj

K 4-0

Fi u e5 - AtrbA S it R utn Rt f4

Cj(-)11j(3
41-M13)

Ene V&

3 A

ISet flag "I'Set fky$rian Got file index
in Mt nad I from dictionary
ente logical This is "a"name I8i

""

Ptandom unload
K+-- K+ I N a no. of

location to next

attribute.

Clear IStore in MDT.D-Directory at Eij.
portion of j = j + N
AM I

load Dictionary
ninto AM

Reead unttets

of AM location
in LF

Load comparator
register if not
logcal name

Selected equal
compare on

blocks

Match rr

Figure 5-3. Attribute Split Routine (Shaeet 4 of 4)

5-14

Before drawing conclusions about the applicability of the associtive memory-

for the Attribute Split Routine, it is necessary to state the following assumptions:

(1) It is assumed that the data base is given as in Section N.

Data base designs of a different orientation could invalidate

the conclusions. For example, if the attribute descriptor

form of representation had not been selected, the routine

could be far more complex in the AM.

(2) Certain routines must be programmable for the associative

configuration, especially a routine or routines to subset the

memory (SPO of Paragraph 5.3.4), and the AM dispatcher

(see Paragraph 7.4).

With these reservations in mind, the following general conclusions can be

stated.

(1) Programming the Attribute Split Routine is easier using an

AM than it would be a conventional memory. Housekeeping

steps are kept to a minimum.

(2) The ability to shift and "and" buffers is vital to the stated

version of the Attribute Split Routine.

(3) The Attribute Split Routine can be expected to be at least

as efficient as a conventional memory version of the same

routine. For cases typified by the examples of Paragraph 5. 1. .,

it is more efficient to use the AM.

The following specific comments are appropriate.

In the analytical phases of the input processor, the AM is convenient fox-

searchlng directories. In particular, sinc the input message string occupies a

relatively small space, it may be held in AM for the entire Attribute Split Routine,

while the remainder of the AM can be loaded with directory data for searches. During

q455

S~5-15

this routine, therefore, much use would be made of the SPO (see Paragraph 5.3.4) so

that separate searches are applicable to different segments of AM. In addition, the

AM dispatcher is called upon to handle the list segmentation where, for example,

D- directory information exceeds available AM storage.

A provision that would be convenient in this connection would be the ability

to load the contents of a responder into the comparator register without the need to go

through a core write and read.

5.3.4 Operations Assumed in the Attribute Split Routine

There are two programming tasks which are assumed in the preceding

diecaaslon of the Attribute Split Routine. These tasks are:

(1) Subset the associative memor, so that an operation will be

performed on only a portion of the data contained in the

AM, rather than on all data.

(2) Obtain the nxt prior or next succeeding responders in

the AM (read newt responder).

A programmer can, of course, find many ways to perforl ýese tasks,

some of which will be more efficient for a particular problem than rs. Throughout

the entire sea surveillance system, with exceptions made for only .w functions in

query processing, standardized macros are employed for these fun ons with GAP.

This paragraph presents these macros, reviews the reasons whey t:.ey are used,

and draws sevetal conclusions about the GAP hybrid configuration.

5.3.4.1 Seleoted Perform Operation (SPO). SPO is a macro which performs an operatic
on apecified subsets of AM locations. The subsets can be defined by stating either addresi

bounds (beginning GAP address and ending GAP address), or by the contents of response

store (subset on responders). SPO therefore has two options called "search responders"

and "search- between-addresses", respectively.

5 11

(Note: It is possible that set.ing the LDR before search instructions would eliminate

the need for "search between addresses". Although it is stated in the programming

manual that an LDR must precede all search instructions, except for MAX and MIN,

the exact function of the LDR is not stated under the detailed descriptions of the search

instructions. However, from a programming viewpoint, using the SPO routine would

be easier since setting up the LDR is quite cumbersome. From a time consideration

though, using the LDR would be more t4ficient.)

Input parameters for search responders option are a specification of the

operation(s) to be performed and a value 1 fcr the parameter n, indicating the search

responders operation. For the search-between-addresses option, n is set to 2 and the

beginning (01) and ending (02) addresses of the subportion must be specified, as must

the operation(s) to be performed.

For the search responders option, SPO proceeds as follows:

(1) Complement buffer, yielding ali active non-responders.

(2) Erase responders (sets busy bits = 0 for all non-responders).

(3) Perform the operation(s) specified in input parameters.

(4) (;et the results of the operation(s) and hold.

(5) Complement buffer.

(6) Write inc r lxponders, using a mask of all zeroes, in

order to turn busy bits back on.

For the search-between-addresses option, the tollowing steps are performed:

(1) Perform random block erase, with R 0, N - 01.

(2) Perform random block erase, with R 02, N r 2048 - 02.

(3) Perform specified operation(s).

(4) Get results of opeiation(s) and hold.

(5) Activate, R - 0, N = 01.

(6) Activate, R - 02, N - 2048 - 02.

5-17

5.3.4.2 Read Next Responders (IINR). RNR reads out data associated with -i manch

!Xey where variable formats are used. For example, RNR r(,•,as out th, Jogic: I name of

a record chosen by a match on another field. The routine has two options: the "read

prior responder" and the "read next 'ifter" option. In the " read prior responder" option,

the parameter n equals 0. in• the "read next after" option, the parameter n equals 1.

The parameter A specifies an AM location, normally the location of a responder

obtained either by a RFR or by RN-R itself. A parameter r is set to 1 if the contents

of the AM are to be restored; r equals 0 if the contents need to be restored.

For the "read next after"option, the following steps are performed:

(1) Random block erase, R 7 0, N = the parametur A.

(2) Read contents of first responder.

(3) If r 0, exit.

(4) If r 1, activate; R :- 0, N = the parameter A, and exit.

For the"read prior responder" option, the following steps are performed:

(1) Hold response store in buffers.

(2) Random block erase; I H the parameter A, N 204-1 - the

parameter A.

(3) Read count of responders. Call this "C".

(41 .,Lcase first responder. Perform C - I times.

(5) Read contents of responder. This is the desired field.

(6) If r 0. exit.

(7) Load buffer into response store.

(8) Write into responders with a mask of zero.

(9) Activate, I the par.anmeter A, N 20-18 - the p arameter A.

5-15

5.3.4.3 Comments on SPO and RYR. SPO and RNR are f equen'lv used and indicate,

by their complexity, the relative difficulty of performing the two operations in GAP.

Becautse of the frequeiicy with which the macros are used, it is str,,ngly recommended

that a study be performed for augmenting GAP and GAP-like configurations, with haidware

features simplifying such tasks. Such a study will probably reveal numerous alternative

hardware solutions.

Throughout all remaining discussion of input message processing and file

maintenance, SPO and RNR are assumed. Attention is called to them only where

their use is especially worthy of note.

5.3.4.4 "Tag Memory" Version of SPO. While not strictly applicable to the input

message processor, owing to the neccessity of using both halves of the 2048-word

memory for storing data, a version of SPO exists which is preferabe whenever only

one half of mcmory is used as a "tag" memory for the other half.

The procedure applicable to SPO in this approach is as follows. Segment

the memory into upper and lower portions, where the lower porticn is used only as a

"tag" memory containing field search criteria (and/or field search results). Allow

10 bits to contain the address ol' the words in memory. The object is to use the lower

portion of the AM for subsetting the upper portion of AM. An example of the approach

shows the ease of Lsing this technique. SPO, for subsetting between addresses, is now

much simplified.

(1) Perform a BLC on the 10-bit address portion of the

data in the lower memory. This step sets bit response

store for all data between the addresses ivl ,i'cstion.

(2) Copy response store into the E buffer.

(3) Perform the search required on the upper half of mer.iory,

and "and" the -esults with the contents of the buffer.

(4) Read out responders; they are the desired results.

5-19

Variations of thla approach exist for other subsetting problems; and wherever

half of the full GAP storagc is required, they can be en.2Ioyed. The tag memory concept

is explored in greater detail in Paragraph 7,9.

5.4 SUB-STRING3 PROCESSOR

This routine exairines the message distribution table to determine what

actions must be taken. '>"ring this process, if it proves necessary to retrieve data

records or directories, the pertinent data is held as a "trailer" to the resulting file

maintenance orders. (See Paragraph 6.3.7,)

The Sub-String Processor scans the MDT column-by-column, each column

relating to a file in the system. Depending upon what is present and what is absent in

each column and what action code was given by the input message, the Sub-String

Processor generates a set of file mainten.'nce orders. If both the logical name and

attribute/descriptor data are in a column, then an Al or C1 (add data to record O.

change data in record) will result froia that column. If there is only a logical name

and no other data, that logical name will in most cases be required for finding the

logical name of another column which has attribute/descriptor data. In that event,

the Sab-String Processor will pull in the appropriate directory and find the required

logical name.

When all family links have been assembled on the MDT, the contents are

examined to determine what file maintenance is required. Then, a set of file maintenance

orders is generated and contro! transferred to the file maintenance routine.

5.4.1 Flags Used

in scanning the MDT, the Sub-String Processor looks for certain markers

or flags that bear upon the subsequent actions that will be required. One of these

the 'Pt flag which is entered by the Attribute Split Routine when a logical name is cited

in a message, but unknown to the system. A second is the "I'D" fl: , which is written

into each list of the MDT if data other than an item name is given. The most important

indicators, however, are the GOBACK indicators and the SUBSEQ flag.

5_-2 f

5.4.2 GOBACK Indicator

During the processing of the MDT, if a logical name is missing from a

column that will residt in an Al or Cl FMO, any directory entries previously pulled

in are examine~l to see if the link is given. If not, a pushdown staek called GOBACK

is generated, with one entry for each column bypassed because of a missing Ogical

name. After all columns have been attempted, the GOBACK stack is processed one

entry at a time. If all prior directory lookups have failed to provide a logical nr,me,

the system will create one, generate and refer ED FMO, store it in the TviDT, and

re-enter to process that column in the usual way.

5.4.3 SUBSEQ Flag

For the special case when a position of a given ship is reported, a change in

the dynamic file is required. Since 1at/long is the logical name of a record, the

following procedure will be used to handle this ci., .umstance:

(1) The old lat/long record will have changes made if any

are required in the data (e.g., speed of advance course).

(2) The logical name of the record will be changed fronm

oid lat/long to new lat/long.

Since the order of maintenance is critical here, a SUBSF , flag is turned on

before the FMO "Reassign logical name" is entered in the list of FMOs. while the

C1 is entered in its ordinary place. At the end of the routine, SUBSEQ flag, if on,

causes the RA FMO to be appended tG the list of FMOs.

5.4.4 Comments on the Sub-Striiig Processor

Quite etticient means exist for performing the tasks of the Sub-String

Processor without utilizing an associqf ,e memory. The Sub-String Processor is

presented in flowchart form in Figurc 5-4. No conclusions are relevant other than

that no advantage can be seen in using the GAP configuration for the task. However,

of the other associative processors, A3 ýs preferred, owing to its ability to function

entirely as a conventional processor.

5-21

9:b

60 0
U- z

-: r'

ESO

00

II

F yure 5-4. Sub-String Processor (Sheet 1 of 4)

5-22

z Q

ChC

CC

r.) ryI

eq CO

00 zz

C44e

Figure 5-4. Sub-String Processor (Sheet 2 of 4)

5-23

z

+ -,

Go=

-j

ot r-

Figure 5-4. Sub-.String Processor (ShveL' 3 of ~

5 -24

Z

M C

o

tt

C)

515

i::i

5.).3 MAINTEINANCE (1I)ELR IGINERATORlS

The Maintenance Order Generator is essentiailNy a progranim to franslath

the wgmented MDT into file maintenance orders and the filc mainten nný: order

trail r(s) reqrLired. It is a straightforward program which establishs the, linkage

with the file maintenance subsystem through:

(1) File Maintenance Orders.

(2) File Maintenance Order Trailers.

(3) File Maintenance Parameter Block.

5.5.1 File Maintenance Orders

The input processor prepares a list of file maintenance orders in the

format described in Paragraphs 6.3 to 6.5. This list is located in 1604 core at the

time of transfer of control from the input processor to the file maintenance system.

5.5.2 Trailers

In the process of interpreting input messages into file mnaintenance orders,

the input proc,.,ssor performs certain lookups on directories. In order to 1revent

duplicate lookups by the file maintenance system , pertinent sections of data are

held, and cast into the form of maintenance order trailers.

5.5.3 Filc Maintenance Parameter Block

Because of ti;c unpredict:ble space requirement for file nantenancc orders

and trailers resulting from input messages, a parameter block is prepared by the input

processor, consisting of the followving

Starting at location FMCB

Loc 1 :Beginning location of file maintenance orders

NI: Number of words in file maintenance orders

L)c2: i3eginning location of trailer information

N2: Numnber of words in trailer.

5.5.4 Examples

Examples of the file maintenance orders created by the input message

processor are given in Figurt, 5-5.

5-26•

C00

hobOS

o ~ ~ 1 z A 5.~0.
A4 05.44

z ~0 bo m ~ Z

k .4 N 0 b
S 0 ;; z

0 0

o.. c'J -4 -c.dC' ~ 'e
4

-

5..' 0

2 b.4 u.4 2 .. U 1=

1*0 .ý k .2 .n 4-- z

.4~~~ Ln 134~ 4 c~ 4 C

CU

0.0
M

cn~

o cd cN

__ 5 , __

-4%

tSECTION VI. FILE MAINTENANCE

6.1 INTRODUCTION

The data base developed for the sea surveillance system, together with

peculiarities of the several hybrid associative systems considered, results in a file

maintenance system that appears, initially, to be more complex than is usual. The

data base, described in Section lV, is one that frequently requires maintaining more

than one data entry as a result of a simple maintenance operation. For example, adding

a ship to the file requires, in the worst case, changing seven files, seven file directories,

the D-directory, and the available storage file. In reality, however, relatively straight-

forward means exist for coping with this problem. This section defines the file main-

tenance problem for the sea surveillance system, presents a general solution to the

problem, and develups measures of the utility and efficiency of several hybrid

configurations and the 1604 in applying this solution.

File maintenance operations required by the sea surveillance system fall

into three classes:

(1) Elementary maintenance operations such as:

"* add, delete, or change items in existing records

"* add, delete, or change language terms

"* update data records with respect to time

(2) Conditional and enumerative applications of maintenance
operations such as:

S* change an item in all records satisfying a certain
Boolean condition

* apply one mainten ;. e rule to a!l items in a list

(3) File and directory overhaul operations such as:

• create files for the data base

S• restructure an existing file

6-1

* transfer attributes from one file to another

* reassign logical names

File maintenance operations can be caused by input messages to the system

or by file mainten, .ce orders. For convenience, any input message which requires

file maintenance is considered as generating a file maintenance order.

For the purpose of this study it is neither necessary nor desirable to explore

every file riaintenanLe order in the same level of detail. Some file maintenance

operations can be adequately studied in terms of other parts of the system. For example,

all file maintenance orders which require conditional or enumerative application of

maintenance operations reduces to the application of elementary maintenance opera-

tions to outputs from the query subsystem. Since means are at hand for evaluating the

query subsystem, evalvation of maintenance operations of this class can take place

once the elementary maintenance operations have been evaluated. Hence, these opera-

tions are not explored to the level of detail that would be required to actually imple-

ment the system.
Many of the file maintenance operations which are classed as file and director)

overhaul operations need not be explored in great detail for another reason. Although

important components of a completely goneral sea surveillance system, only one of the

tasks mentioned has day-to-day operational significance: reassigning logical names.

The tasks of file creation and file restructuring are "once-in ý:while" tasks, and

evaluating them in detail can therefore be regarded as a very low-priority item for a

study of this kind.

File maintenance in an operational sea surveillance system can, and probably

does, require considerable data control. In any actual environment, exhaustive logic

checks of file maintenance orders, checks for reasonableness ol reports (e.g., can a

ship possibly reach a newly reported location in the time el:hpsed from the last report?).

and carefully constructed "histories" to make possible rapid recovery from an

erroneous change can be expected. Such data controls are isot empioyed in this study

for two reasons: all the controls are not known that must be applied; second, such

controls are bound to be formally very much like other operations which are required

by the input message processing and query subsystems. For the purpose of this study,

it is assumed that file maintenance orders are formal, temporary, and, with resptct

to content, correct.

6-2

LI

The elementary operation "update with respect to time" consists of the
4

performance of a routine, or series of routines, which would, among other things,

apply dead reckoning. Obviously, dead reckoning would be applied to only those

records for which more reliable data is not available. The application of such

routine(s) can be studied by analogy with the various function calculating routines

discussed elsewhere; a detailed study of this function of file maintenance need not,

therefore, be performed.

The preceding consideratorons justify limiting the detailed investigation of

file maintenance operations to those elementary operations which add, delete, or change

items in existing records; add new records; add, delete, or rhange language terms;

and reassign logical names. Once each of these file maintenance operations has been

explored in detail, inferences, based on results of the query and input message

processing subsystems,will be employed to evaluate, in general,file maintenance

operations. Evaluation of file creation and file restructuring operations is not made

because of the low priority and expected low return of such a study.

6.2 FILE MAINTENANCE PROBLEMS PECULIAR TO THIS SYSTEM

An input message which states that a ship has entered port will generate

a maintenance order affecting the port file directory. In the present system, however,

it is important to note that there are often other files that must also be maintained as

a result of the order. For example, when the ship is in port, the dynamic ship file

must not assign a speed and direction to the ship since it is at rest, and the system

must assure that the latitude and longitude of the ship correspond to that of the port.

It should also be noted that the static ship directory muv,•, reflect a reference to the

appropriate port entry.

It must be recognized that the directories in this system are not only means

to obtain data quickly, but they contain data, and must be treated as files (or sub-files).

Hence, an input message calling for an add, delete, or change of a data record (or an

item within the record) will very often generate an add, delete, or change for the

corresponding directory. Because the static ship directory provides links for all files

having data about a particular ship, a change of the static ship director:, must often be

generated.

6
,•i 6-3

6.3 DESCRIPTION OF THE FILE MAINTENANCE ORDER

The file maintenance order always contains the following components:

(1) A transaction type identifier indicating the kind of
maintenance operations required (e. g., add a record,
delete an item).

(2) A record selector component which, for the purpose
of detailed study, can be regarded as a name, although
in the general case records can also be selected by
enumerator clauses and Boolean conditions. Note that
the selector component must also be able to select a
directory entry.

(3) An operand component consisting of a list - usually
a list of pairs - of information to be operated upon.
For example, when the transaction type is an "add
data to record," the operand component is the attribute-
descriptor pair(s) to be added.

In the course of interpreting an input message and preparing a file maintenance

order, the input message processing subsystem frequently niust consult directories,

dictionaries, and even data records. Each of these operations requires a disc access

by the input message processor. To minimize the duplication of these accesses, the

input meesage subsystem saves referenced data in what is called the trailer portion of

the ftle maintenance order.

The trailer portion of the file rnaintennce order is in the following form:

(1) The first word of each subrecord identifies the file or
directory from which the data comes, and contains a
"tag field" indicating that the word begins a section
of stored data.

(2) The second word contains the physical location from
which the data was obtained.

(3) The third and subsequent words contain the data.

The trailer portion of the file maintenance order consists of a series of

records, each having the above frmat.

For convenience of file maintenance, the smallest amount of data saved is

always at least one disc block in length, and is an integral multiple of disc block length.

6-4

t.

_ 6.4 FILE MAINTENANCE ORDER FAMILIES

A single output message to the sea surveillance system may require action

on several files. One reason for this has already been noted; a second reason is that

an input message reporting on a ship can contain several attribute-descriptor pairs,

where the attributes are to be found in different files. To speed up processing by file

maintenance, all file maintenance orders recognized by input processing as applying

to one ship are passed on as members of one family.

The family (which in the degenerate case can have only one member) is the

unit processed by the file maintenance system.

6. • TRANSACTION CODES

This paragraph lists those transaction codes which were studied in detail

in the evaluation. The list is known to be incomplete, for reasons stated in Paragraph 6. 1.

The selection of codes and their mnemonics is arbitrary.

Code Meaning

Al Add data to record

AD Add datn to directory

DI Delete data from a record

DD Delete data from a directory

CI Change data of a record

CD Change data of a directory

AR Add a record

DR Delete a record

CR Change a record (replace entire record)

RA Reassign a logical name

ED Enter a term into the D-directory

DX Delete a term from the D-directory

Transaction codes fall into three groups:

Group I AL: DI. CI; AD: DD; CD

Group 1 AR; DR: CR

Group III RA; ED: DX

6-5

File maintenance processing varies significantly by group, and less significantly

within group.

6.6 FILE MAINTENANCE PROCESSING

File maintenance processing for this system ,avolves four basic steps:

(1) Assemble all records and directory entries that
can be affected by file maintenance order.

(2) Execute the basic file maintenance operation called
for.

(3) Execute any file maintenance operations on other
files or directories required by the file maintenance
order.

(4) Iterate through all file maintenance orders within the
family and write out the results when the entire family
has been processed.

Depending on whether an associative memory is available, there are slight

but significant variations in the manner in which these steps are performed.

The following basic routines are required:

(1) The Assembler which gathers together all the record
and directory entries required for executing the file
maintenance order into the trailer, based on the
indicator bits contained in the dictionary entry for
the appropriate attribute(s); constructs an action table,
which is a table of relative locations of the entries in
the trailer; and performs certain minor housekeeping
functions.

(2) The Router which interprets the file maintenance
order and calls the appropriate executing routine.

(3) The Exegulng Routines of which there are three,
one for each group of transaction codes, ERI, ER2,
and ER3:

(a) ER1 performs the functions appropriate to
transaction codes of Group I: add ,data, delete
data, change data; add , delete. , or change
entries in the directories (except for the D-
directory).

6 -S'

\

(b) ER performs the\functions appropriate toBtransaction codes of.. Group 11: add, delpt.e,
or change (substitute), records.

(c) ER3 performs the functions appropriate to
transaction codes of Group III: reassign
logical names, enter terms in the D-Directory,
delete terms from the D-Directory.

(4) The Related Transaction Routine which examines the
file maintenance order and, using a table of possible
related file maintenance requirements, determines
what other file maintenance may be required as a
result of the file maintenance order. It then tests
conditions and, if conditions hold that require an
additional maintenance order, it generates a file
maintenance order atid calls ýie Router. The Router
in turn calls the appropriate routine to execute the
order, after which control is returned to the Related
Transaction Routine.

(5) The Family Control Routine which serves the function
of assuring that all file maintenance orders of the
same family have been executed. J not, it obtains
the next file maintenance order for the family and
transfers control to the Assembler. If all orders of
the same family have been executed, the Family
Control Routine exits to the Executive.

The Executive is not discussed in this section. It is assumed thzt,, . .1n

file maintenance order family requires attention, the Executive transfers control to

the file maintenance subsystem. When the family has been processed, control is

returned to the Executive.

Processing flow is presented in Figurv 6-1.

6.7 ASSEMBLER

Input to the Assembler consists of the file maintenance order (FMO) and its

trailer. From this input, the Assembler creates :n action table and inserts into the

trailer any other entries that may be required to comple,'e the FMO.

The action table is a list of entries defining the data contained in the complete

trailer, its relative location in memory, and whether the data In question has been

6-7

F11e

j MEn ntanance

Assemble all
records and

Assembler directory g

Router GroI Determine Group iI

IRelatedt

Rooutine

actons'

Ej:

Determin

Figure 6-1. File Ma possiblePrvsngFw(eer)

ac-8n

f

changed by the file maintenance subsystem. It is composed of entries of the following

form

f, AD F F LL L L

where each letter identifies a character position, and

A = 1 if the entry in question has been changed by the
file maintenance subsystem

0 if the entry in question has not been changed.

D = 1 if the entry in question is a file directory entry

2 if the entry in question is a D- directory entry

3 if the entry in question is a dictionary entry

0 If the entry in question is a data file record.

F = the file code to identify the data file from which the
entry was obtained, or, if the entry is a file directory
entry, which file it is a directory entry for.

L = the absolute machine address of the entry if the entry
is in the 1604, and 777777778 if the entry is in the
associative memory (GAP).

The variable "A" superficially defines whether the corresponding entr3 hLs been changed

by the file maintenance subsystem. Its primary purpose, however, is to minimize disc

writes. The file maintenance subsystem will not write out any data unless the data has

actually been changed by processing. In writing out data, the action table is consi..d

and the records are written only if A = 1; hence, no more records are written than are

actually required. The variables D, F, and L are self explanatory.

One important use of the action table deserves notice. The file maintenance

subsystem processes FMOs within families. The action table is built up, therefore,

for all entries required for the entire family. The routine that creates it first consults

the existing action table, if any, in order to determine whether an entry needed for one

FMO of a family is already available, owing to the results of processing some prior

FMO of the same f.amlly. If such an entry has been made, the record or file directory

entry does not need to be read in from disc. Hence, the action table also minimizes

disc reads. In the case of the dictionary and/or D-directory entries required by an

6-9

FMO, the case is somewhat more complex. Simply because a dictionary or D-directory

entry has been made, there is no as.durance that the corresponding entry is the one

required for this particular FMO. After determining that a dictionary or D-directory

entry has been made, the Assembler must determine if the corresponding trailer entry

Is satisfactory for processing the FMO In question. In such a system, of course,

there can be many D-directory and dictionary entries for a family, and the Ussembler

must step through all such entries before concluding that a disc read is required.

The FMO contains the transaction type identifier, a record selector component,

and an operand component (see Paragraph 6.3. 1). The transaction type identifier is the

first word in the FMO, and the FMO is the first block of data received by the file

maintenance subsystem.

The transaction type identifier contains two hexabit noded characters in the

low-ordered position (bits 0 through 11) of a word otherwise fillhd with zeros. These

two characters are selected from the codes listed in Paragraph 6. 5. 1, and are inter-

preted by the system as transaction codes.

The second word in +e FMO contains the record selector component.

Depending upon the transaction code, the record selector component is given a different

interpretation. The rules for interpreting the record selector comnonent are given in

Table 6-1.

6-10

3 -l

e.L

TABLE 6-1. RULES FOR INTERPRETING RECORD SELECTOR

If the transaction code is Interpret the record selector as

Al Logical name of a record
DI
CI

AR Logical name of a record
DR
CR

AD File directory code or
DD
CD attribute identifier

RA Logical name of a record

ED Character count of D-directory
DX entry

A file directory code is an eight-bit code in the standard file identification

convention appearing in the low-order position of a word. The remainder of the word

is zeros; hence, a file directory code can be distinguished from an attribute identifier.

A character count of a D-directory entry is simply the count, in binary, of the number

of characters in the subsequ-nt D-directory entry.

The third and last component of the FMO is the operand component. The

interpretation of the operand component varies according to the transaction code and

record selector.

If the transaction code is Al or DI, the operand component is always one

attribute-descriptor pair. In this event, the operand component contains the attribute-

descriptor pair to be added to or deleted from the record identified by the record

selector component. If the transaction code is CI, the operand component consists of

two attribute-descriptor pairs; the first identifies the attribute-descriptor pair before

,he change* and the second identifies the attribute-descriptor pair after the change.

£ the event that this is not known, the field will be filled with blanks.

,i 6-I 1

If the transaction code is AR, DR, or CR, the operand component consists of

an entire data record.

if the transactiou code is AD or DD and the record selector component is a

file directory code, the operand component of the FMO is an attribute name. The

FMO i6 interpreted to mean that this attribute name is to be added to, or deleted from,

the stated directory. If the transaction code is CD and, the record selector component

is a file directory, two attribute names are given, ano the command is interpreted to

mean that the first attribute name is to be changed to the second attribute name.

If the transaction code is AD, DD, or CD and the record selector component

is an attribute identifier, the FMO orders that a revision of the dictionary be made.

Such an FMO is generated internally by the system in light of an FMO of transaction

code AD, DD, CD, RA, ED, or DX. In each case, the operand component is either a

dictionary entry, a pair of dictionary entries, or an action table entry followed by a

dictionary entry. Rules governing this situation will become clear after processing has

been defined further.

If te transaction code is ED, DX, or RA, the operand component is a logical

name in external iorm, followed by one word of zeros, followed by a logical name in

internal format.

The trailer to the FMO consists of a list of entries of the following kind:

"" Data File Records

"• Dictionary Entries

* Data File Directory Entries

• D-Directory Entries

The entries consist of separate disc records (in their entirety) preceded by

a disc address. The disc address is, in turn, preceded 1-y a flag word of all "ones"

(minus zero). It follows that -mntries, together with their addresses and flags, occupy

34-word modules.

6-12

The logic of the Assembler is presented in Figure 6-2. Briefly, the Assembler
4M involves five distinct steps.

(1) Determine whether the current FMO is the first FMO
of a new family. If it is, clear the old action table,
and set an indicator variable, FAMIND, to one.
FAMIND is set to zero when the family control roudine
determines that an entire family has been processed.

(2) An Initial action table is created. Bring all FMO
trailers into one trailer, and stack the FMOs into one
list.

(3) Determine, fr-m the relevant file indicators, whether
all data records and data file directory entries have
been read into the trailer. This test consists of forming
the logical "or" of all relevant file indicators, and
determining from the action table that both a file and
file directory entry are present for each bit whose value
is one.

(4) Assure that every attribute in the FMO has a corresponding
dictionary entry in the trailer. In this test, it is necessary
to use both the action table and the actual contents of the
trailer. In the event that no such entry exists in the trailer,
the dictionary ik read until the appropriate entry is found,
and then this entry is stored in the trailer. A corresponding
action table entry is cre-ated.

(5) Step three is repeated for D-directory entries for all
logical names.

6.8 ROUTER

The Router examines the transaction codes contained in the transaction type

identifier and calls either ER1, ER2, or ER3, as appropriate. The processing of the

Router -- essentially a series of tests - is presented in Fii•ure 6-3.

6.9 EXECUTING ROUTINES

There are three Executing Routines, ERI, ER2, -and ER3. Each routine

handles a group of transactions based upon the transaction code of the current FMO.

Eact. Executing Routine has the same general format. The routines begin by

performing a series of tests upon the transaction code and upon the record selector

portions of the FMO. Based upon these tests, a subroutine of ERI, ER2, or ER3 is

6-13

&i

4

Enter

the !mly?

into one
trailer.

Clear action
table to zeroes.
Set FAMIND to
one.

&sid action
table fnore

F~~gurer a-l. Asem ledr(Seet 1ofi2)

and I

•Are all attributes N !

YES[of the FMO represented•
Sin the Dictionary] .
Spart of the trailer ?

N 1O
Read into
trailer those
not found

Build action
table entry
for each one
loaded

•Are all logical nam~es•
v-- of the FMO represented
" " i• n D-Directory entriesed

NO

Read intoj
trailer those
not found

Construct action

table entries

r: Figure 6-2. Assembler (Sheet 2 of 2)

lift,

Enter

Consider second
character of
transaction
code.

. YES Is U "p, ?•

YES Isi "t

Is it"O YES

Call ll n
CaIll R

Figure 6-3. Router

•-16

'4"

S called upon. These subroutines correspond to transaction codes or, in several cases,

transactions code-selector component pairs. Some of the subroutines, such as tht

change item routine, in turn, consist of calls to other routines. The change item

routine consists, essentially, of a call on ýhe delete item routine, followed by a c.ill

to the add item routine. The overall logic of 7R1, ER2, and ER3 is presented in

Figures 6-4, 6-5, and 6-6, respectively.

There are significant differences in the manner in which Executing Routines

handle , task, depending on whether or not an associative memory is available. These

differences are studied in this paragraph.

6.9.1 ERI

ER] consists of an ER1 router and the following subroutines:

(1) Add data (ERAl)

(2) Delete data (ERDI)

(3) Change data (ERCI)

(4) Add record (ERAR)

(5) Delete r-ecord (ERDR)

(6) Change record (ERCR)

6.9.1.1 ERAL. A selected rerform operation (SPO) is a macro operation utilized

in input message processing and file maintenance. Input parameters to SPO specify

the operation to be performed, whether to perform the operation on re-,j"onders or

on data between two addresses, and, if between addresses, what the beginning and

ending addresses are. Briefly, SPO permits the programmer to treat some subset of the

AM as if it were the entire AM. SPO can be utilized to produce a version of ERDI that

is almost competitive with that described in Paragraph 6.9.1.2. SPO is vital to ERI,

ER2, and ER3 in other operations. As employed in the remainder of this discussion,

SPO can be regarded as subsetting the AM.

In adding data using the 1604-B,the action table is consulted to find the first

available space in either the record or the last continuation record. If no space is

available, a continuation record is written and the data inserted. This operation is

'C.

6-17

.4.J

"4

4

i 6-18

.4

I

6-19

RA Tra• om

•ED

SCLN ED I

Figure 6-6. ER3 Routine

6-20

4

ji

S harder to program than one might believe at first glance. Note that a directory entry

for the continuation record, and a D-directory entry, must be created.

In the AM, SPO is used to subset the AM to the record and its continuation

record. A search for n consecutive words of zeros, where n is the number of words

in the data to be added, is performed. After the search is completed, the program

exits from SPO. If a space is found available, data is then written into that location.

If no available space is found, the flag word and logical name followed by the data are

written, again using WFA, when the first available space in the AM is found.

Again, the dictionary and D-directory must be updated.

Where the 1604-B programmer must step down the records to find available

space, the AM programmer can find it, if it exists, in essentially one step. * If it does

not exist, the WFA instruction greatly simplifies h!.o task of writing a new continuation
4

record. Hence, he has an easier programming task. Further, while it is extremely

difficult to give a time estimate for ERAI, because timing will vary with the number of

words in the data, the number of words in the trailer, the distribution and number of

words in the affected record, and the relative locations of the affected records, it is

still reasonable to say that the CAP version of ERAI is sufficiently good from the

efficiency point of view to be preferred to the 1604-B only versibn.

The utility of SPO in this operation should not go unrecognized. Because

adding and changing data are large parts of any intelligence file maintenance operation,

and because ERAI is essential to adding and changing (see Paragraph 6.9.1.1), there

is some reaison to believe that it will be very frequently used in any such operational

system. SPO was actually developed to overcome certain limitations in GAP for input

message processing. It is recommended that SPO be considered for inclusion in an

AM, as hardware, or, if this is not possible, instructions should be included to make

SPO easy for the programmer to use. Note that the A2 memory would obviate the need

for SPO.

* This assumes a SPO that permits n consecutive search-shifts, which is easily obtained.
Otherwise, n steps are required.

6-21

6.9.1.2 ERDI. Deleting data from a record Is a more complex programming task in

a conventional memory than in an associative configuration such as GAP. Surprisingly,

it is less efficient when done in the GAP. This will become evident after the tasks

that must be done in ERDI for the 1604-B have been stated (see Figure 6-7).

When ERDI is executed in the 1604-B, the action table is used to find the

appropriate record. A search is then performed to find the beginning and ending

memory locations of the attribute-descripwr pair. All remaining parts of the record

are then moved up in memory to write over the attribute-descriptor pair to be deleted.

If the record has a continuation- record, data from the continuation record is then moved

up (if possible). In the event that such a move from a continuation record to its predecessor

results in a continuation record lacking data (i.e., containing only a logical name),

ERDR is called in to assure that the corresponding record is deleted from the data base.

In the Goodyear Associative Processor the programming is simpler. The

attribute-descriptor pair to be deleted is located and erased. The continuation record(s),

if any, is located. Its flag word and logical name are erased, and the original record

and continuation record(s) are read out of the AM into the 1604-B, using the RUM instruc-

tion. The records in toto, are erased from the AM, and the 1604-B records are fed into

the AM in 32 word units, prec'-ded by the flag word and logical name, using WIA on non-

zero words in the 1604-B.

Although the AM procedure above is, at least from one point of view, con-

ceptually simpler in handling the problems created by continuation records, it is more

time consuming than a 1604-B algorithm. Because A3 does not require that data be passed

to and from disc through 1604-B memory,use of the A3 rather than GAP will result in a

more efficient algorithm competitive with the 1604-B. With reservations to be explained

in the following paragraph, the following results can be stated.
'"4.

(1) From the point of view of certain "housekeeping"
problems. ERDI is easier to program in an
associative processor.

(2) A GAP version of ERDI will be more time con-
suming, and hence less efficient, than a conventional
memory version.

(3) An A3 version of ERDI will be less time consunming
than either GAP or a conventional memory version
since transfer times from disc to AM and AM to
disc are eliminated.

6-22

Use action
table, find
record

Find begirnming
and end of
A-2 pair

S Figu remainder

Set up • trailer with right
moVe si • zed a-2 pair ? ,

INO
NOHas a blank record•"

.•,. ,,,, bo w l. engeera~tel_?

1YES

Generate DR
transaction

SSetA in
: actio n
i table

•,, Figure 6-7. ERDI Routine

r

The following resei ations must be kept in mind in reviewing these

conclusions:

(1) It is possible to design a system in which all
delete data transactions are performed at one
time (i.e., a list of DI transactions is to be
executed, rather than one DI at a time). In
such a system, the GAP would approach the
1604-B is efficiency.

(2) With certain added instructions, or modifications
to existing instructions, GAP would be even
easier to program for ERDI, and would be more
efficient. For example, if RUM had an option to
read out only live data, rather than read out
zeroes for non-live data, the routine would be
easier to write and more efficient. Adding an
instruction with such power would be equally
good.

6.9 1.3 ERCI. Figure 6-8 shows that to change data one performs ERDI followed

by ERAI; hence, this routine is not discussed further. It should be understood,

however, that the discussion on ERA! and ERDI also applies to ERCI.

6.9.1.4 ERAR. The addition of a record is far simpler and far less time consuming

in the GAP aiud A3 than in the 1604-B only conftguratio.. The reason for this is the

availability of the WFA instruction which finds the first available space in the trailer

and wri's the record. The housekeeping steps provided for continuation records are

the same, or similar, as are steps involved in the D-directory and file directory

maintenance operations. Hence, by virtue of the WFA instruction alone, the addition

of a record is beat accomplis.,ed in the associative memory.

6.9,1.5 ERDR. Deletion of a record in the AM, a" in the 1604-B requires that zeroes

be written in the disc record positions. In the AM, mn erase instruction is used, and,

at the end of the family control routine, the AM records, under control of the action

table, are read out using RUM. In A3, these records can, essentially, be written

dirctly to disc. In GAP, these records must be read into the 1604-B. and then into disc.

Because of the load-unload times of GAP, it is therefore notably less efficient thun

either A3 or the 1604-B.

6-2

' 'I

rI

Si

Enter

Generate FMO to
Delete old data.

ERDI

Generate FMO
to ADD new
chta.

CERAI

Figure 6-8. ERCI

6-25

I

6.9.1.6 ERCR. A change (substitute) record operation is simply a delete record

followed by an add record. It need only be noted, therefore, that the discussion in

Paragraphs 6.9.1.4 and 6.9.1.5 apply.

6.9.2 ER2

ER2 adds directory entries or changes or deletes existing entries. Many

of the FMOs executed by ER2 are generated by routines within ER1. For example,

the deletion of a record ur the addition of a record causes the deletion or addition of

the corresponding directory entry.

Depending on wheiher the record; selector component is a file directory co_.

or an attribute identifier, the addition, deletion, or change is performed on either the

file directory entry or the dictionary. For the purpose of understanding the relative

value of the AM, only those operations that affect the file directnry need to be con-

sidered here. The reason for this is as follows: While the deletion of an attribute

or the changing of an attribute in the dictionary involves a dictiona - maintenance

operation, it also generates FMOs affecting every occurrence of tk. ittribute in a

file dizectory or in a data record. Hence, the actual maintenance of ti,• rictionary

is the least important part of carrying out such an operation, and constitutes perhaps

1/100th of the time required to carry out an operation of this kind in a full sea

surveillance system. *

One important comment must be made about thest -jutines. In order to

procc.se deletions oc" changes to a dictionary entry, it is necessary to provide for the

possibility that the trailer will exceed the capacity of the AM. For this reason, these

routines must run under control of the AM dispatcher, just as portions of the query

system must. It would, of course, be possible to argue that this indicates that the

2,000-word AM is too small for these tasks. Such an argument should not be made

In the context of this isolated routine, but in the context of an entire set of system

processing functions. In such a context, this routir, is a relatively minor consideration,

since it is likely to be required only occasionally. In the remainder of this subsystem,

only those routines identified an ADI, DDI, and CDl will be diatussed.

* This assumes that an attribute appears in roughly one-third of all records of the
corresponding file. In the case of some attributes, distribution throughout the file
is likely to be greater while for others it will be less. The figure "1/100" is
therefore intended to be an estimated average.

6-28

1

The addition, deletion, or change of a directory entry is exactly the same as

S the addition, deletion, or change of data, with these exceptions: there can be --rore than

one file directory entry in the trailer and the action table does ao, tell which entry is the

one to be affected by the FMO; further, it is possible, in the case of the addition of an

entry to the directory, that one must transfer a block of data in the directory to some

other place in the directory in order to make room for the inserted entry. Deleting

and changing directory entries, ae opposed to deleting or changing data file entries, is

a simple procedure of looping through the action time until all file directory entries

have been checked. For this reason, these functions of ER2 are not discussed further.

The comments of Paragraphs 6. 9. 1. 1 and 6. 9. 1. 2 can be seen to apply directly.

In adding data to a file directory, it may actually be necessary to read more

data from disc in order that the trailer will eventually contain all directory entries that

must be dealt with by ADI.

Without an actual system, it is very difficult to estimate the amount of data

that must be read from disc to execute ADI. It is assumed that approximately 10 disc

records will be required on the average, although this is perhaps a low estimate. In

the event that 10 or more disc records must be read, GAP becomes relatively inefficient.

The reason for this is that GAP must get data read from disc via the 1604-B memory.

It is therefore evident that A3 is superior to GAP in efficiency for ADI, and, from

Paragraph 6. 9. 1. 3, it can be inferred that it is therefore superior to the 1604-B only

version of ADl.

6.9.3 E

The tasks performed by ER3 are concerned, primarily, with operations

affecting logical names. Conceptually, these tasks appear to be relatively complex

since Logical names are the means whereby the entire data base is linked and referenced.

Hence, the operations of ER3 affect more than one file directory, the D-dlrectory, and,

often, data records themselves. Despite the relative complexity of these operations, the

sea surveillance ER3 routines function almost exclusively as "traffic cops," transferring

program control to various components of ERI and ER2. The only unique maintenance

operation performed is with respect to adding, deleting, or changing entries in the

D-directory. AJI other maintenance operations are perormed using ERI and ER2

components to effect changes in the corresponding directory and data record elements.

C 62
i~~i, 6 - 27 •

I

The subroutines of ER3 that perform operations on the D- directory have the

prefix DDX in their name and are:

(1) DDXC - change D- directory entry

(2) DDAA - add entry to D-directory

(3) DDXD - delete entry from D-directory

As in other ER routines, DDXC, the "change" is interpreted as a dei(te

(DDXD) followed by an add (DDXA). Hence, it Is not necessary to study DDXr in any

great detail.

6.9.3.1 DDXD. Thib routine which deletes an entry from the D- directory, proceeds

exactly the same as DD2 (see Paragraph L. 9. 2), except that the location of the entry

to be deleted must be accomplished through the use of VLLU (see Paagc'aph 7.2. 1. 1).

This is because the external name is a variable length field. Howevet, the use of VLLU

does not change comments made about deletion in Paragraphs 6.9.1 and 6.9.2.

6.9.3.2 DDXA. The addition of an entry to the D-directory is precisely parallel to

the addition of an entry to any file directory, except that the D-directory tq affected.

Hence, DDXA is not ever flowcharted for the system.

6.9.3.3 Combination of Components into CLN. ED, and DX. This paragraph describes

the way in which CLN, ED, and DX are constructed from DDXD, DDXA, and DDXC.

CLN, which chnnges (or renssigns) logical names, proceeds as follows:

(1) Change logical name in data record, using the
action table to locate the logical name. Set
A = I for this record.

(2) Change the logical name in the file directory,
using CD1 of ER2.

(3) If the logical name ,, s-s not belong to the :t3tic
ship file, change the static ship directory entry,
using CDl of EM2 and skip to step (3). Otherwise,
go to step (4).

6-28

S6-281

C -

4..

(4) If the entry is a static ship file entry, use CD1
of ER2 to change every file directory entry,
including the static ship entry.

(5) Use DDXC to change the D-directory.

ED, which enters a term into the D-directory, is simply an application of

DDXA. No directories or records are affected by ED except the D-directory. This

reflects a decision to permit the D-directory to contain synonyms (i.e., two different

external names referring, via the D-directory, to one internal logical name).

DX, which deletes a logical name from the system,proceeds as follows:

(1) Use ERDR to delete the named record.

(2) Use DD1 to delete the file directory entry,
and skip to step (4) unless the logical name
is the name of a static ship file entry.

(3) If the entry is the name of a static ship file
entry, use CD1 to delete all links to the static
ship directory (seven additional uses of CDI).

(4) Use DDXD to delete the D-directory entry.

6.10 RELATED TRANSACTION ROUTINE

Basically, the Related Transaction Routine is a table driven routine. It

determines what FMOs might be required to be generated as the result of applying

one FMO. The tables would be user generated and would reflect, essentially, decisions

the user made about the data interrelatednpqs and the procedures he would employ in

file maintenance. It should be understood that the Related Transaction Routine is not

actually needed in theory, but is likely to be used in practice. For example, in theory,

a group of FMOs can be written to adjust the dynamic ship file whenever a ship has

entered port. In such an event, however, the user is forced to attend to all problems

of file relatedness, most of which couid be automatically handled.

The logic of the Related Transaction Routine is presented in Figure 6-1. The

routine first determines what actions may be required as a result of executing an FMO.

For example, it determines that when an FMO has instru(.ted the system to put a ship

into port, that ship cannot have a non-zero 90A. The routine next checks to see if the

ship's SOA is zero. If not zero, it issues an FMO to change the SOA to zero. If zero,

it moves on to any other related transactions it must consider.

j 6-29

Despite the fact that the Related Transaction Routine is table driven, little

use can be made of an associative memory unless many related transactions are

stipulated by a user. For the file maintenance system assumes that after the Assembler

has been executed, the entire augmented trailer is in associative memory if space is

available. Inserting a related transaction table therefore runs the risk of destroying

AM store and causing it to be reloaded for execution of the next FMO. For this reason,

the Related Transaction Routine need not be studied further.

6.11 FAMILY CONTROL AND WRITE

The Family Control Routine simply checks the stack of FMOs until all FMOs

of the family have been performed. Once they have, it consults the actior, table and for

all entries whose A value is 1, it writes them onto disc. The only comment relevant

to the associative memory system is that A3, by virtue of not having to transfer data

into the 1604 prior to writing onto disc, will perform more efficiently than either A2

or GAP. A2 and GAP must transfer data to the 1604, and pay a penalty of an additional

7. 1 microseconds per data word transferred. In addition, core storage must be provided

for the disc write routine.

6-30

I

SECTION VII. QUERY PROCESSING

7.1 INTRODUCTION

The main purpose of a sea surveillance system is to retrieve and present

stored information and/or values of a function with stored information arguments. The

commands to retrieve and present this information are termed queries. The queries

considered in this study (Paragraph 3. 5) do not require all 108 attributes found in the

data base (Paragraph 4. 5. 3). This does not mean that attributes not required should

be eliminated; rather, it implies that the queries are typical and representative of a

complete set which may require the entire data base. In like manner, the data base

given may be considered as representing the required data base for some time interval

during its development and use. Thus, the data basc should not be considered in final

form.

7.2 USER'S QUERY LANGUAGE

There exist several methods to admit query processing. At one extreme,

the processing required for each query may be completely encoded in machine code,

stored on the system's tape, and retrieved by a call. This call (perhaps the query's

name or number) may be considered as a query language. Since neither the data base

nor the queries may be considered complete at any one time, it is impossible, or at

least time-cost prohibitive, to follow this possible method of effecting queries. Examina-

tion of the given queries to determine some general features shows that each query re-

quests statistics aboutor descriptors ofa set of attributes of one or more items. The

set of attributes and/or Items are assumed to satisfy some conditional statement. It

is felt that the techniques needed to directly supply answers to each query are not ex-

plicitly known at this time. The user of the system must be relied upon to state the

query in a permissible way to retrieve the pertinent data and then interpret the results.

A user's query language is one which attempts to provide a strong linguistic

capability together with convenience of use. Such languages are either translated into

machine code or a command list for processing by a compiler type pre-processor.

Additionally, such languages may be regarded as parameters controlling processing

as by an "iterpreter. In this study it was decided to translate a user's query language

7-1

into an internal language in Polish prefix form. This internal form is then "compiled"

as obj ent code by a pre-processor (Paragraph 7.3) into a command list form. A Run

Routine (Paragraph 7.4) then "performs" each element of this command list in an in-

terpretive fashion. TheRun Routine is controlled by an executive level routine which

interleaves input-output (Paragraph 7. 6) requirements with portions of the Run Routine.

The executive level system is called the Controller(Paragraph 7. 5).

It is beyond the scope of this study to formulate a user's query language which

is amenable to associative memory processing. Also, it is deemed inappropriate to

consider translation of an existing user's query language by use of an associative memory

since the existing language was formulated to be translated by non-associative memory

processing. The only restriction placed on the user's language is that it can be processed

into Polish prefix form.

7. 2.1 User's Query Language Translator

Some of the tasks that the translator must perform are:

(1) Resolve all synonyms into one term.

(2) Eliminate redundant and "noise" words.

(3) Resolve functions and operations into canonical form.

It seems that one pass of the input expression in user's query language is

sufficient to accomplish these (and perhaps other) tasks as follows:

(1) An input name (an operation to be performed, an attribute, A
descriptor, etc.) is looked up in the dictionary. Unadmissible
operations, attributes (and the associated descriptors), comments,
etc., are eliminated as redundant or "noise" words.

(2) All resulting attribute and descriptor pairs are compared with the
D-directory. (If a descriptor is not specified for an attribute,
it implies that all descriptors for that attribute are referenced.)
All descriptor synonyms are resolved into one word. If the de-
scriptor is an item's name, it is resolved into a logical name.

(3) The resulting resolved and "clean" expression is then translated
into Polish prefix form.

7.2. 1. 1 Equating Synonyms and Logical Names. As may be expected, the associative

memory proves useful for synonym equating, item descriptor to logical name replace-

7-2

p _ ...

* ment, and, to a lesser degree, for translating operations and relations into canonical

* form. The heart of both operations in the associative memory is the variable length

field look-up routine VLLU (see Appendix C). This routine (or macro operation) con-

siders as input a set of words,W1, containing the name or expression to be looked up

either in the D-directory or the dictionary, a set oi words, W2, containing masks

to be applied to W1, and of course, either the dictionary or the D-directory.

Note that the AM sequence relies heavily on the ability to shift buffers and

"ANIYD results at step (5) of VLLU, and that an AM index register is used to control

stepping down data arrays W1 and W2. In almost all our experimenting to date these

features of the AM have been useful. Further, the "micro operations" provide important

initialization in this case, and, surprisingly, they tend to take important roles in other

routines as well.

Of several methods for developing VLLU, two are especially worthy of notice.

Both method 1 and method 2 employ one sequence of AM programming to look up a variable

length field for a particular arrangement of W1 and W2.

Versions 1 and 2 differ in the way in which shifting is performed. Specifically,

the shiftings of W1 and W2 are performed after each performance of sequence S, ill version

1, while the shifting is performed before entering sequence 8, in order to generate all

cases for version 2.

The important difference between version 1 and version 2 is that version 1

employs a subroutine (shifter) to generate the appropriate arrangement of W1 and W2.

This subroutine is effectively performed by 1604-B coding, and, hence, version 1 mixes

1604 and AM coding. Version 2 employs 1604-B coding, if at all, only to set up the full

range of permutations of W1 and W2 before entering AM coding and does not leave AM

coding for 1604-B processinguntil (ifatall) it is through with AM processing.

If it is assumed that one is interested in items whose length can be expressed

in characters, version 1 halts AM processing eight times and initiates AM processing

eight times. Version 2, on the other hand, initiates AM processing once and halts it

at most once. It can be expected, therefore, that version 2 is the faster of the two,

although it requires more 1604-B storage for execution. In surprisingly many cases this

situation will exist, and the programmer interested in minimizing speed will select a

program which segments responsibility between the AM and 1604 in a manner similar

to that of version 2.

.- -7-3 1
• [i)

7. 2. 1. 2 Polish Prefix (Polisher). At this time, no advantages have been found for any

Polish prefix routine (Polisher) to functions using the AM exclusively. In soryie respects

this is surprising. The AM has a meaningful potential for efficiently discovering and

flagging parentheses, in parallel. This is one way of manually polishing an expressioa.

A subexpression is defined as of order 0 if there are no parentheses within

the parentheses marking ite beginning and end in fully parenthesized form. Thus, (pvq)

and (a+b) are of order 0. An expression is of order n+1, within its delimiting

parentheses, the highest ordered expression is of order n, and the expression itself

is not of order n.

A manual procedure for polishing a fully parenthesized, well-formed expression

is as follows:

(1) Set order of test expressions = 0.

(2) Find all expressions of order of test.

(3) Polish all such expressions.

(4) If there are any parentheses remaining, continue, otherwise the
expression is polished.

(5) Step order of test +1, and go to (2).

For example, given

((a %!(bAc)) 4 (-(&)))
Iteration 1 =: ((aV 4bc) 4 (-a))
Iteation 2 -: (V A bc ka)
Iteration3-: 3-VaAbc - a

or, in more conventional Polish notation,

Iteration 3: AU aAbcNa

The routine to accomplish this polishing may be broken into two parts. The

associative memory In the Goodyear Associative processor 1604-B configuration may be
used to advantage in the second step; that is, finding parenthesis pairs for successive
orders (0, 1, 2, ...). The third step, "Polish all such expressions," is more readily

7-4

accomplished in the 1604-B. The ideal configuration of associative memory, general

S purpose computer for this technique is the A3 1694-B configuration. It is well-known

that Polish prefix processing may be accourplished by a general-purpose computer.

7.2.1.3 DeMorgan's Law and Double Negation Law

(1) Introduction. In many retrieval systems, a Boolean criterion for
retrieval of data, such as "p V(q Ar)" is applied to successive ele-
ments of tLe data base. In the sea surveillance syvstem settheoretical
operations are performed, whenever possible, on directories. In
the example given, three lists are generated, one containing those
directory elements that are in the class p and the others containing
those which are q and r. The intersection of the q and r lists is
formed, and the union of this intersection with p is then generated.
The resulting list is a directory for those items that will respond
to the query "p V (q A r)."

It should be noted that it is not always possible to resnond to a
Boolean query in this way. For example, it is not advisable to
generate directories that can respond to certain relational tests,
such as "within x miles of y" or "closest in distance to z." On the
other hand, those Boolean operations that can be performed will
often reduce the number of times one must go to the data itself in
order to perform the required calculations.

One Boolean operator, nevertheless, causes some trouble." Not
x" is to be interpreted as "the class of all objects except those
which are x". To minimize the number of directories that must
be examined, and to minimize references to actual data, Boolean
laws applying to "not" are employed to optimize processing. The
two laws of greatest importance are De Morgan's Law and the Law
of Double Negation.

(2) Conventional Memory Algorithm DMDN. An algorithm for con-
ventiolal memory processing of an expri ssion applying both laws,
is given to illustrate procedures. This algorithm is based on thfA
equivalence: (NNp p) for the Double Negation Law and the defini-
tion of an "elementary expression" for De Morgan's Law.

An "elementary expression" depends upon the Boolean operators
available in the query language. The algorithm is designed for a
language containing these operations: N, negation; A, inclusive
alternation; and K, conjunction. (It will work for a language con-
taining other operators.) In some user's query language, however,
an extended definition of DeMorgan'p theorem can lead to a different
concept of an elementary expression. De Morgan's theorem em-
ploys the following equivalences

(p qJ~

,7-5

*! I
An extended list of equivalence can include a selection of the
following:

With appropriate selection from the Polish operators,

C (conditional)

E (biconditional)

R (exclusive or, non equivalence)

X (converse non-conditional or converse non-implication)

noting that C and X are dual, as are E and R, De Morgan's theorem
can be generalized by defining the appropriate operators and expa ing
step (3) of the DMDN algorithm which substitutes the dual opera-
tor.

The algorithm assumes that the in,. t is a well-formed expression in
Polish prefix form stored in a list storage area, L. The output is
also in Polish prefix form and also stored in list storage area, L.
The DMDN algorithm follows:

(a) The input expression is scanned termwise until a
negation operator "N" is encountered.

(b) When an "N" is encountered, the successor of the "N"
Is examined.

(I) If it is an elementary expresnion, the scan con-
tint-s searching for an "m" (step (a).

(li) If it is an "N", both "N"s are deleted (Double
Negation Law) and the latter parts of the expression
are all poqped up two places in the list. The scan
resumes searching for an "N" at the place where
the flrrt "N" was encountered (step (a).

(iHi) OtAaerwlse, go to step Ic).

(c) Sujasttute the dual of the operator for the N preceding
the operator (De Morgan's Law).

7-6

(d) Substitute N tor the operator.

(e) Scan forward for the second term of the operator just
dualized. Push that term and all subsequent portions
of the list down one place (Figure 7-1); write an "N"
in the opening created.

(f) Resume scanning at (a), except that the scanning of the
expression is already complete up to and including the
dualized operator, so that only the parts of the expres-
sion after it need be examined.

(g) Terminating Condition. The procedure terminates once
a complete scan of the expression has been made.

- The subroutine which searches for the pushdown point (step (e) in
this algorithm e.%ploits the following features of the Boolean ex-
pressions in r'olsh prefix form.

(a) N can be ignored in favor of counting expressions, since
when "Nx" is any expression, determining the end of
"Nx" is equivalent to determining the end of "x."

(b) Operators U, A, C. E, R, and X have two variables.
The pushdown point is immediately following the first
variable when the governing operator is one of these.

(c) The operators U,A, C, E, R, and X, when nested, signal
the beginning of expressions within expressions. If,
during a scan we encounter one of them, we can incre-
ment a counter of the number of expression we have
begun. Every time we end an expression, we can de-
crement that counter. Such a counter can then signal
the end of a nested expression. ')ur pushdown point is
therefore detected.

The method is flowcharted (Figure 7-1) as a scan for the pushdown
point. K is an address and K + 1 and all other addresses in L after
K must be pushed down one place to make way for the insertion of the
N. (K) E •Ejis a statement that the content cf K is a member of
the set of elementary expressions. Branching is done depending on
the truth or falsity of that statement. The addrcss of the element
being scanned,A, is the only parameter, other than the list itself,
required by the subroutine.

(3) Double Negation Algorithms. It can 'I* seen from the DMDN algo-
rithm that the Law of Double Negation can be performed by the
Goodyear associative memory 1604-B in several ways. However.
two algorithms will be given, called DNI and DN2, respectively.
The actual encoding and flowcharts for these algorithms are also

87-74

prM= PAW WAS Dws:, TS0OFM WOs IM FrIME

Ent
Initialize

Yes Is (a (W))
: ' ~Elemenetarzy ?•

PUoh&qw the L refers to th, list representation of the e~reuslon.

term and The topmost list element is the leftmost expreusson

•11 itsuccessorss of

delement, and so fortht

[Iylp•c.,, , refers to the .ddress of the elcment bemrig scanned. I
fo) rerers to the cottents of x, wher x iis an addres.,

dow n the L .fx refers to the successor of x. Where x ,s .n address,111) place.

D(x) refers to the dual of x. where x is an operator.

/

0 -,

+ 2K-I K

do. litmEe}oepr.-a:

ft L ---

(K) :s N

C: 0

* ~ ~ ~ ~ ~ 0 isET thean~d~e

last term

Ulma of the expression, TWO of Dualsthe leftmon expression
The ~A~l Of is

Olem,,m being[scamed, A K

where x is a~n address, K A

•.Where x to &an vi&•"o . £ R

R E
x, I a an operator. .

Figure 7-1. Scan for Pushdown Point Flow
Chart

7-9/10O

•_I

given (Figur',7-2 and 7-.'P). Of the two algorithms, the second,
vw>rih mo~ t m nearly takes advantage of the parallelism of the3+ 8 associative ir,.mory, is most efficient.

Algorithm, DN 1 (Figurc 7-2) assumes as input, a well-formed
Polih-, prcfix forro. IL follows:

(a) The sy-abolg ar ,adpl scquentially, into the AM.

(b) The E"•,i -tstruLk, A, bo r''-oonse store for all "nots"
in the exnres,-r, and the buffers are shifted down one
locati 3n.

(c) An EMC instruction sets response store for all "nots" in
the expression, ant4 the "eqults are "AND"-ed into the
buffer.

(d) If there are no responders the routine exits; otherwise, it

continues.

(e) The contents of the first responder are read.

(f) The portion of the responder is used to set up a transfer
thatwill transfer a 1604-B token substring from A + 1 into AM
locationA - 1 through the end of the string.

(g) The transfer is accomplished, and control is given to step (2)

of the algorithm.

There are three interesting features of the DN1 algorithm:

(a) It is, from the point of view of the AM, an inefficient
algorithm. The two EMC steps can set multiple, responders,
but the algorithm processes only one responder at a time.
A natural suggestion for improving the algorithm would be
the use oZ an RCR instruction at A - 8 instead of the RCF.
An algorithm exploring this idea has been coded, but shows
less improvement over the method than that of version 2.

(b) The sequence of steps, 11, 12, 13, i.e.,

LDI
DEI
SIX

it required to obtain the value of R for the LDR inst ;V ton,
and it brings home forcefully the limitation of the A'.
repertoire or instructions for elementary control arithmetic.
It might be asked why a 1604 -B instruction, such as an RSO,
was not used to obtain a value of R equal to A -1. The answer
is to minimize total time. In order to employ the 1604-B in-
struction a HLT is required, followed hy a few set-up steps

i

Load AM
with token
list

- LI,

Set response store
for all 11nCote"t
and shift buffer
1 place

Set response store
for all nots and
"and" into buffer

No An

Exit R~espodr

Read contents of
first responder
Address - Ar

Load list of Xr + 1 -
Ndof list into
Ar -1 in AM

I--
Figure 7-2. Double Negation DN1 - AM Form

7-12

I,\

IV

iFi

tvt

Figure 7-3. Procedure for Double Negation, DN2

1 7-13

and a "Force or Resume." Getting out of and into the AM
coding sequence is clearly more costly than the slight in-
efficiency resulting from the selected code.

(c) The shifting of the buffers, followed by "AND"ing, proves
helpful.

(The second algorithm for double negation, DN2 (Figure 7-3) uses
the "busy bit" stored with each word in the AM as a means of
erasing data, in this case, "nots." When the results of DN2 are
required, they can be read out with a "random unload monitor
(RUM)."

The Lawof Double Negation would be easj to apply in GAP if
the D and E buffers could be shifted in both directions. Assume that
the AM contains the expression to which DN is to be applied. Then
the following DN3 algorithm mxvuld do the job (useful in the AZ):

(1) Set response for all "nots."

(2) Shift response down (up) one place.

(3) Set response for all "nots" and "AND" the results.

(4) Erase all responders.

(5) Shift response up (down) one place.

(6) Erase all responders.

The DN3 algorithm shows a truly parallel symbol manipulation oper-
ation, and is one reason that we believe the AM s symbol manipula-
tion capability should be explored.

This "double shift" algorithm, or more properly, the A2 algorithm
for double negation points up one criticism of the Goodyear associative
memory; that is, its inability to shift the D and E buffers in both
directions. Another criticism resulting from looking at DN2 is that
the R field of the LDR instruction is very hard to set as a function
•f the r-7ults of the XIM p.. ugrar,

(4) De Morgan's Law. This section has presented an algorithm, DMDN,
designed to simultaneously apply Douhle Negation and De Morgan's
Law. This algorithm was given for a conventional memory processor,
or general-purpose computer, to show procedures. Two algorithms
(DN1 and DN2) and their coding were given for the Goodyear Associative
Memory 1604-B configuration for double negation. Additionally, a
third algorithm, DN3)was given for double negation in the A2 1604-B
configuration. At this point, it remains to specify an algorithm for
applying De Morgan's Law in an associative memory processor.

7-14

! i• i

This algorithm, DM, assumes an input statement in Polish prefix
form as follows:

(a) Flag all non-"not" operators preceded by "not." If there are
none, exit.

(b) Dualize all flagged operators.

(c) Interchange the relative position of the flagged operators
with the "nots" preceding them.

(d) Search out all breakpoints.

(e) Make an opening at the breakpoints and write a "not" in each.

(f) Return to step (a).

Step (a) requires five AM instructions:

LDR Set up for EMC
EMC Set responders for "not," shift after.
LDR Set for EMC
EMC Flag all non-not operators and "AND" the results
JNR Exit if no responders.

Step (b) can be performed in the AM very easily.

Step (c) can be performed in the AM, but once again the capability
to shift buffers in both directions would be helpful.

Step (d) can be competitively performed in the AM. The more
breakpoints that one must find, the more competitive it becomes.

Step (e) is time consuming in the AM while step (f) is trivial.

7.2.2 General Comments

The AM can be expected to be more helpfQ- in evaluating queries, as opposed

to manipulating them. In fact, the interpretation of Boolean expressions with an AM is

extremely natural. The searches, EMC, LTC, GTC, etc., generate subsets of a set.

The response store gives us a Boolean array of members of the set, the "read address

of responderv` Instruction can be used to give absolute location in the AM or, more

helpful in some cases, relative locations in the 1604. The "read responders" give us

the capability to get the entire subset. In dictionary and directory lookups, "masked

read of contents of responders" can be employed to extract "pointers" from the directories

or dictionaries.

7-15

i!4)

Whethei .. ull potentialof the AM for interpreting the internal query language

will be realized by the user is still an open question, since the problem may prove to

be "input-output bound,?? and the potential of the AM may not result in any user benefit.

7.3 QUERY PRE-PROCESSOR

7.3. 1 Introduction

The query pre-processor accepts as input a query given in Polish prefix

form (ppff) which has been processed by the translator;

"* all synonyms have been resolved,

all redundant and "noise" names have been eliminated, and

the ppff input statement is in canonical form.

The purpose of the pre-processor is to form a command list ,as its output.

If desired, an analogy may be drawn between source code that is pre-processed into

object code by compilation techniques. The pre-processor may be thought of as a com-

piler operating upon an input statement in ppff (bource code) to produce a command list

(object code). The command list cannot be performed directly; it is performed inter-

pretively by a Run Routine (Paragraph 7. 4) under control of the Controller (Paragraph 7. 5).

7.3.2 Input Polish Prefix Form

Polish prefix form may be defined as a sequential list of elements where each

element consists of an operation 0 and a certain number of variables. Each operation

requires a certain number of input variables. Call this number the rank of the operation

and denote it by 4 (m). For example, if the operation, 0 corresponded to "Distance,"

two variables are required. Thus~the rank for this operation is 2. Again, if the opera-

tion were "maximum," the rank would be one, since only one list is required as input

(even though the list may contain many entries). The format of ppff may explicitly or

implicitly give the variables for an operation. If implicit, the last variable stored as

a pushdown (last in,first out) list is the variable to be used for an operation where an

insufficient number of variables Is explictlv expressed to satisfy the order of the opera-

tion. If K represents the conjunction 1 and") operation, A the inclusive disjunction

("or'), and N complementation, while lower case alphabetics denote variables, then two

7-16

4k

3• examples of ppff are UAaNbUbNa and UAabUNaNb. The ranks of U and A are 2 and N

is 1.

If a variable is implicit for an operation, that is, it is stored and must be

retrieved, the operation is said to range over the operation which generated the required

variable. For example, the last V (left-most) operation performed in the example

ranges over all preceding operations. Thus, the range of an operation gives an indi-

cation of storage requirements. Let the number of operations, k, that a particu!ar I
operation ranges over be noted as 0 (k).

It is anticipated that the variables of the operation in a query statement will

be lists of logical names. The a priori operations may be .Žxamined along with the inputs

(variable lists) and some decision made as to the maximum length of the output list.

Let the length of each list be known as the norm of the variable. The output can take on

one of four values: (N1 + N2), min (N1, N2), max (N1, N2)and (N1 - N2), where N1

and N2 are the norms of the variables. Indeed if the resulting norm is zero, a

great deal of processing time is saved (since the no? computed, a priori, is a maximum

valued norm). Thus, it is possible to compute the norm c the results of every operation.

Since this output may function as an input variable for a successive operation, it is possible

to compute the norm for the entire query, If, as suggested, the norm of th2, query were

zero, the query would be satisfied, a priori; that is, no data exists in the data base to

answer the norm. Thus, a great deal of Run Routine time is saved.

Certain assumptions regarding the contents of the input ppff list may be made:

in other words, the specifications of some of the contents follow:

(1) Each element is identifiable as an operation or a variable.

(2) Since each element was processed through the D-directory by
the Translator, the following information is included:

(a) An operation,

* , (item (2), Paragraph 7.3.3.3)

0 (m), the rank of the operation.

(b) A variable,

(. r, (item (3), Paragraph 7.3. 3. 3)

7-17

.• - .

I

* N, (item (3) (f), Paragraph 7.3.3.3)

* L, (item (3) (d), Paragraph 7.3.3.3)

(3) An operation is given after (right to left) its variables.

7.3.5 Output Command List

7.3.3. 1 Variable Specification. Every Mlement x i of the command list is associated

with one and only one operator 0 i given in the input list which is ppff. Associated with

'each operator are one, two, . . . variables, depending upon the rank of the operator.

To speak of processing a ppff canonical form statement, it is necessary to determine

an ordering of variables and operators. Properly, such a statement is "read" from

right to left; then, an element to the left of another element is said to succeed it. It is

clear that some operations use as input variables (implicit variables discussed earlier)

the output of a preceding operation. It is necessary in forming the command list to

explicitly associate with each operation the set (the number is given by the order of the

operation) of variables that it ranks over. This is one of the tasks that the pre-processor

accomplishes. Simply, the rule applied is this: "Whenever an operation is found in the

input list which has a rank equal to the number of variables preceding iL, such operation

is said to be "rank satisfied." If such is not the case (the rank then must be greater than

the number of preceding variables or else canonical form does not hold), a sufficient

number of preceding variables is associated with the operation until it is "rank satisifed."

The added variables are "implicit variables,"

7 3.3.2 Order of Perforr[n.g Operations. From the preceding example, it should be

clear that the operation involving implicit variables (that is, the output of preceding opera-

tions) mustbeperformed after the operations which form the implicit variables.

The input list implies an order of performing operations. This fact combined

with the observation in the preceding paragraph yields this rule:

"An operation of range k may not be performed until all preceding

operations of lesser range have been performed."

This rule suggests that the operations in the command list could be sirted on

their range. But this does not take into account the word "preceding." Suppose that all

7-18

II

operations were ordered on range and further suppose that when an operation was per-

formed, its output was stored in the "input location" of the proper succeeding operation.

If all variables of the succeeding operation were formed, a priori, it could be perfor--ed

before others that are not in its range, but with a lower range number. This particular

aspect of operation orderin- is detailed further in the Controller (Paragraph 7. 5).

Another observation of the input list is that all operations of the same range

may be performed in an arbit-ary order. This will be somewhat changed to order those AP

variables requiring the fewer files (directories) first and those requiring the data files last.

The situation is similar to a CPM (c, itical path method) chart. There exists

at any one time a series of operations which may be performed simultaneously (provided

that multiprocessing capabilities -xisted). In serial processing, this amounts to the state-

ment that the processing order for this set of operations is arbitrary. Then, the switches

(o, 0, -y) in Figure 7-4 ;•ill order these operations such that those with a (€) (iterr

(3)(b) in Paragraph 7. 3. 3. 3) are performed at their "latest start time" and those without

a (ý) at their "earliest otart time." Thus, operations with (€) variables are delayed as

long as possible. The purpose of this procedure is to retrieve as little data from the

data records (or read as few data records) as possible by "narrowing" in on the required

set, a pEiori, as much as possible.

7.3. 3. 3 Elements of the Command List. Every elementk i (l._ i < L) has this form

(which is called A canonical); B, 0, V: where:

(1) B ca, the operation may be performed, data ready.

the operation may not be performed, data not ready.

-y , the opwration has been performed.

(2) 0 ib the machine code transfer instruction (or some similar device)

to the beginning instruction to effect the desired operzition, followed by:

(a) # (0), the ,orm of the operation; that is, the maximum output size.

(b) WSt, the beginn.jig address to store the output.

(3) V may be one or two Amilar elements; that is, A BOV or BRVV
depending upon the rank of the op -ation 0. Each V consists of
V, A, W, L, M, N, where:

(i) V is either an attribute identifier or logical name.

(b) A =(A), the D-directory address of the set of file directory
addresses if V is a logical name, or

- '•, if the data must be obtained from the data files.

-0, if the desired data is already in memory.

(c) W = WSt, the beginning address where the data is:

(i) stored, if A = 0. or

(ii) to be stored, if A= (Av) or€.

(d) L L L1 or L2 to specify 0 input.

(e) M = +, if the data in WSt must be saved for a future 0 or
i*, f the data in WSt need not be saved for a future 0.

(f) N = # (v), the norm of the variable. A norm of n implies
32n words must be set aside for storage.

Contrasting an element of thisA with the contents of the input ppff statement,

thq elements that must be provided by the pre-orocesgor may be developed.

7.3.4 Query Pre-Processor

7. 3.4. 1 Required Outputs. From the input and output forms the following elements

must be generated or developed by the pre-processor.

(1) Explicit variables for implicit variables.

(2) Assigning indexes to storage areas such that they cross
reference as required.

(3) Indication of disposition (item (3)(c), Paragraph 7. 3. 3. 3) of inputs
for an operation.

(4) Norms of operations.

(5) Rank of operation.

(6) Canonical form of the command list.

7.3.4.2 Pre-Processor Algorithm. Two methods of documenting a:1 effecting the

pre-processor will be presented. The first method, presented in this section is an

7 -20(

mp
* algorithm tailored expressly for the Goodyear Associative Processor 1604-B configura-

tion. The second method is a flowchart tailored for a conventional (non-associative

memory) general-purpose computer. Since an algorithm and a flowchart are both a

method of problem analysis, it is hoped in this approach to obtain some indication of

the impact of an associative memory on problem analysis.

Assume that the entire ppff input query is stored in the associative memory

(as output from the translator) such that the statement is read from left to right as

memory addresses increase. Further, assume that each operation and variable have

those elements associatedwith them as gihen in Paragraph7. 3.2 (contents of the input

list) in a fixed field format with one element per associative memory word, Let there

be R operations and a total of Q entries - operations, variables, and their associated

elements in the list.

It was shown earlier that processing time is decreased by proportionately

decreasing interleaved 1604-B and AM processing. In other words, accomplish the

maximum amount of processing on the input while it is in one memory device before

transferring it to the other memory for additional processing. The algorithm will attempt

to follow this observation.

Assume that the entire query statement is in the associative memory. The

scheme is to generate canonical form and to change implicit variables to explicit variables

by reading from the associative memory into the 1604-B core memory and then back into

AM with no 1604-B operations. The algorithm follows.

(1) Reset and searc-h for operations in AM (V--O).

(2) Jump to step (14) on no responders.

(3) Read address (R) of first responder.

(4) Random block unload three (N) words from R into 1604-B address
h + q2, initially q2 = 1.

(5) Increment index of previous instruction by 2 6 times the rank of
the operation (if 3 +]J. Effectively. k ien step (4) is performed
again, a proper number oi spaces is a'atlable, explicitly for the
proper number of variables - that is A canonic,:I form being generated.

(6) Erase first respcnder.

L" 7-21

(7) Perform subroutine SPO with inputs

M = Search variables (V = 0).

N = 2 (between addresses).

9 = Beginning address of query list.

0 = R of instruction 3.

(8) Jump to step 1 on no responders.

(9) Read address (K) of first responder.

(10) Random block unload six (N) words from K into 1604-B address
h +q), initially ql = 3.

(11) Increment q by 6.

(12) Erase first responder.

(13) Jump unconditionally to step (8).

(14) The entire query is now in the 1604-B. At is "close" to canonical
form. No data has been added to the list; only "room' has been
made for it. Let the beginning 1604-B address of the list be B
and the ending address be E. Form (B-E+1) and set equal to
N.

(15) Erase all responders.

(16) Random block load into associative memory locations b to E'.

At this point, the range of each operation will be determined.
Each operation that has an implicit variable ranges over at least
one other (Tjeration. If the variable indicators in the associative
memory could be examined at this time, •mly explicit variables
would be found. (Room was made for tht implicit variables in step
(5) of the algorithmn, but no variable indicator was inserted since this
would be a 1604-B operation at that time.) A variable indicator is
required for those variables before proceeding. Relative to the
locat. on (L. of each operation, this indicator occurs for r nk .= 1 i i
location (L+ 4) and for ranks greater than I in location IL + 4 * 6 (r-1))
(What a convenience a buffer advance of n places as a micro operation
would be if incorporated with the NO operation.)

In like manner, it is knowu that if 1 is the address of the succeeding
operation, then these variables occur in position (L-6) constantly
unless the address of the preceding operation is greater. These
addresses provide a method for marking these variables. Let a
mask M be formed wvi"- zeros only in bit positions which indicate a
variable.

7-22

(17) Search for operations.

(18) Read address (K) of first responder into H.

(19) Load H into register k.

(20) Increment register k by 4 (for the first variable).

(21) Random block load one variable word indicator with mask M into
location (0 + register k).

(22) Increment register k by 6.

(23) Erase first responder.

(24) Jump to step (28) on no responder.

(25) Read address (K) of first responder into H.

(26) Jump to step (19) on index high (H < register k).

(27) Jump to step (21).

(28) To insert 1. itions corresponding to operations, write into re-
sponders through a mask of zeros.

Pri.r to step (17), the range of an operation was starting to be computed. Con-

sider in this regar., a Polish prefix statement. If it is canonical, then there exists one

and only one output list. Since every operation generates a list, such lists must be used

as input variables for subsequent operations. The canonical form states in essence that

if an operation requires an input list, it is the output list of the immediate predecessor

operation. Then, as a programming tool, consider a pushdown list, where the elements

entered are operation outputs (lists), such that the last element in is the first element

out. The rule for using this list is:

"If the variables of an operation are specified (sec item (3)(b), Paragraph
7. 3. 3. 3), then the range of the operation is one. Enter the operation
(with its range) into the pushdown list (PDL). If an operation requires
variables; that is, it contains implicit variables, retrieve as many opera-
tion outputs - variables - from PDL as required. The range of such an
operation Is greater by one than the maximur of the ranges given with the
PDL retrieved operations. Enter this last into PDL and continue."

The range accumulators @ (k) occur after the operation code. Initially, all

accumulators will be set to contain a one In the rightmost bit with all other bits zero.

To increase the range, left shift the given range by one position. Since the range of a

7- 23

particular operation is equal to the maximum range plus onw of all operations that the

particular operation ranges over, the desired range may be formed by writing through a

mask of zeros with a left shift of one into the range accumulator. The highest ordered

bit is the desirn.i range. Since relative rznge relationships are of interest, this processing

is acceptable.

It is also required to indicate the input-output relationships between variables

and operstions. A tag may be formed corresponding to the AM address of each opera-

tion. 'this tag identifies the output. * Then, this tag (the AM address of the operation)

is plactýa in the address portion, WSt (item (3)(c), Paragraph 7. 3. 3. 3), of the variable

sectib'. u the operation which ranges over it. Several initial values used later must

be set. It iF Less meaningful to indicate their initiai settings until they are Introduced.

However, the ne't step will be construed to be the initialization of all subsequent

values:

(29) Initialize.

(30) Search for operation'.

(31) Advance buffers and write cunstant z** into all responders. This
sets range of all operations to zero; some of the ranges are correct.

(32) Reset and search for operations (to retard buffer).

(33) Read addresses into a list beginnhig at 1604-B address P. Then
read count of responders as N and write into responders through
a mask to save the AM addresses of the operations.
This will be used in tagging.

(34) Search for variables, all explicit and implicit.

(35) Read addresses into a list beginning at 1604-B address V.

(36) Using previous step, search for implicit variables only.

(31) Jump to step (55) on no responders.

If the same operation with the same input variables sia to be performed more than
cace, this assignment prevents substituting the computed results for subsequent opera-
tions.

• Initial values:
z = 000. .. 001, one and only one bit in the rightmost position.
qv = V, the beginning address of the list V.

7-24

I I
(38) Read address k of first responder into 1604-B address H.

(39) Set index qk = (H) = k, the address of the implicit variable.

(40) Jump to step (49) on index high Lq,> (0+q.)J. This step tests
the address of the next implicit vai-able wi~h the address of the
next variable, implicit or explicit.

(41) An implicit variable has not been found yet. Increment index qv
by 1.

(42) Transfer index qv to qk (LDI, qk, q2 = qv, h = 0).

(43) Jump to step (45) on index high rq,> (0+qj) . ** This step tests
"the address of the next (implicit o? expliclit variable against the
address of the next operation.

(44) The next variable then belongs to the current operation. Jump
unconditionally to step (39).

(45) The current operation has been completed. Random unload into
table PDL two words: the address of the operation and the rank
accumulator. These are found beginning in the AM address given
in 1604-B core position (qp - 1).

(46) Increment the PDL index by two (initially set to zero).

(47) Increment index % by one to adjust the current and next operation.

(48) Jump unconditionally to step (39).

(49) An implicit variable has been found. Random load the next to
last element placed into table PDL into the AM location defined by
the address q +- 4. The element placed into this location is the
AM address oI the operation which generates the input. This is the
WSt index.

(50) Random load the last element placed in PDL, shifted one position
to the left into the AM position defined by ,he contents of the 1604- B
address q0 - 1 plus one. (If the address is cand (a) 5, then the
desired address is 6.) This is the rank accumulatiun,

(51) Decrement the PDL index by two.

(52) Perform 3tep (45) and step (46)

(53) Erase the first responder.

*Inttial values:
Z - 000 ... 001, one and only one bit in the rightmost position.
qv a v, the begir-ning address of the list V.

"**InOtially, qP is set to (P + 1) where P is the starting address of table P.

7-25

S! .

(54) Jump unconditionally to step (37).

(55) Continue.

At this time, the command list has been "ranged" and implicit variables

have been assigned their generating operation. The following remains to be done:

* Cross reference explicit inputs (items (3) (c) and (3) (e), Paragraph
7.3.3.3).

* Compute norms.

* Sort list into the best processing order. The first task follows:

(56) Reset and search variables.

(57) Advance buffer and search for A values that are neither (ý) nor (zeros).

(58) Read out responders into a list VA, with elements VA. (1 < i < I),
elminating duplications. Read out the count of responhers as-I.

(59) Set i = 1 as an index.

(60) Search for equality on comparand VA1.

(61) Write the same unique tag in AM positions, three places after the
responders.

(62) Advance buffers. Write a plus (+) in all responders except the
last. Write an (*) in this responder.

(63) Using jump on index i and limit I, go to step (60); otherwise,
continue.

The norms of the operations require numeric calculation; therefore, some

1604-B processing is in order. There are four types of norm operations: maximum,

minimum, sum of, and difference between the variable norms. The variable norms

are stored in the second position after the variable indicator. The operation norm is

stored in the secornd position after the operation indicator. The first variable occurs four

positions after the operation codc and every subsequent variable of the operation begins

six positions after the preceding variable.

For the first time 1604-B processing ib required. These operations are noted

with an asterisk (*)on the numbered step. A relationship between the two lists, one in

AM and the other in 1604-1Bexlsts by using the 1604-B beginning address to be modified

by an index register which is loaded from a memory cell in which the address of a re-

sponder is stored.

7-26

(64) Set j =1.

(65) Read out jth operation and all elements into 1604-B. Let the AM
address be A.

(66) Using norm of the variables, compute operation norm.

(67) Search for equality on A.

(68) Write the norm two places after the first responder and two places
before every following responder.

(69) V j < R, the total number of operations, transfer to Step (65);
otherwise, continue

This completes the pre-processor algorithm.

The ordering of the operations will be considered in the Run Routine by sorting

on (€) within range. This delays retrieving these variables from the data.

7.3.4. 3 Pre-Processor Flowchart. The given flowcharts (Figure 7-4) assume less

than the preceding algorithm and show some of the translator's functions.

(1) Query Pre-Processor Flowchart (Figure 7-4, Sheet 1). The ppff
is scanned initially right to left, the natural processing order. The
following is accomplished in this scan.

ka) The norm of all variables which are items (appear in the D-
Directory) are determined and the address of the logical name
list in the directory. This implies that some variables do
not appear in ppff. These are:

(i) An attribute with no descriptor implies that all records
which have that attribute may be queried. Then, the
address set is the universe for that variable and
the norm is the corresponding number of records.

(ii) A descr'ptor exists but is not a iogical name (ship's
supersti ucture). Then, the list of logical names required
is that list of all records which contain the descriptor.
The descriptor is marked with (v). (J6). The norm will
be assumed to be the total number of records existing for
the type containing that descriptor.

7-27

im

PXM ~ TUO WAS MAN)?M A o FUMED
""i -" > P NO I Pi a Y S +I C

o s k 0l-- 1 ria ? ')+ °f i I• c
-- I

YES NO

Compute

7 3

0 W 0I2 P2

not

Al P1

5

/
/ O ange0

C

4/

01g 0201 P2

Sew 0 (m) of
Set 0 (m) to Preceding

3 0m) +1 Of(Rawge* -C)

0 of C D 0C K

/A

"ai the first Retrijeve #(v) +
Yime t1~dJao NO Av from list

_01 C (If ndlpui t already1
eoudeterminrd

YES

doe an

Set A2 P)2 3cE

Scan Pl~leb prefix right to left.

Ausun10 range of reach operaton kwomu.

"dVe a variable
0•(v) + Av d ,rmsotvaadS mamberof

ehiujmt in variable or remalt of operation
1pt, each oleent of a qery (1<i_< P),

It to L order

d(. a mark on v to indicate data rsiatred horn data base
Av,,adree of inde list Aor v

Sca Polisho pef riges tof le co

~~~~~~~.~~Asm rag of eaci he uoperaeiof aknreorn. oapaiclrarae
Assum attirebute.4ory ~ rm

Ln - orderot operati e-*(m)

a couLnorer

a mark to indicate De a ormfad-
M , with ............ V..K.IA. are uiforYV, and of KazdA areosop.

G H K L M

Figure 7-4. Query Pre-Processor

(Sheet 1 of 3)

7-29/30'

4!



3 i1 NO YES Elma

YES NOFormýYES N Null V.

YE

YES meES

S US

I7
/0

II



G H I J K L M

No data 3 to•

sattisfy Ei

query 9cx'

Eliminate e and
-Associated Variables
Replace in Variable
Form as 0, the a j v

Null V. - 10

/

> P NO P 

0 
YES

YES NO

I •(m fr ll 8Q ... rdenow i fom4= where notl lurml orfronm (lta mle. so

Orde& t prrm 0, od t - vartbl lotan eiol

N()0otes alos

na E Ssnd right t or wleeftg

NO Query n~~owrd fomwered normh totdt euredefrom g (idetat hon

0 to 1.rsoords retrieved last - all *with no
recults reawwed - all oerstions
oompatationally indepolet ordered with
epqal Preodbme.

Figure 7-4. Query Pre-Pro(essor

(Sheet 2 of 3)

S7 - 3 1 / 3 2



Si [I
r'is~ I I, m -1 1 Que (IfrN St:,Ler'lnt

-1 0 7,

NO YFS
i>n i

F, Input List X (A Reordered Qlery List - Scan L to It)

rE 1 -P 12 "

E2 9 -:

13

4 Input List X,, Reordered with variables marked () or (*)
Memory Assignment

t -- , 1 NO YES Min #(v)

1 4--4 i >L z, WS-V L2

CYEIS NO MX1

3Eiinate 9

Notes:

Scan right to left.
L4 working storage be L1 and 14 (se 123 -TN-2).
Let temporary storage be W~t (I ci t T; ZW l i total
storage available, but computed to be tfl t. required.
*Indicates v will no bIer be required In Q~uery when once used.
*ineicates v will be requircei :t a later time.

CIA C F I.-/.-



i

v;i r:thievs of * (rwri'

NO be jooo)

9kYES Is this first YES Mark
Pi time v appeared ?

(may be include ])
NO

NO

V, +~ 12l-+

2 2 15 Y . wx

4& ... XI(,

S(Sh1t t T2 t 1I

I)all , vl In G

UIf I4K 1.M N

Fig7-*rc 7-4. (Žuviy P~rr:.Prrwcssor

(,-hi.Ct :1 of iS7 -;3/ :.;



() "'he norm of cach oi ration is , )mtrjatli andI th(' rang, (,f th(
oper'ation (hcekt,(! andt thc order computedi.

(c, operations that ru:uce the storage requirements, if ti.ev are
":De Morganec," are so inarke,, (o.

(2) Qu.:'y Pre-Proccssor Flo vchart (Fisui 7-4 sheets 2 and 3).

(a) All operations which yield no result are eliminated if tmnr

norms are equal to zero. If all operations are eliminated, then
no data exists to satisfy the query and the pre-procesor is
complete - as is the query.

(b) De Morgan is applied to ppff and the operations are oidered
such that operations requiring datv about variables from data
records will not be performed until as late as possible.

The rule for doing this operation is: For all operations with a
range of m (initially set to 1), increase the range of thee- oper--
ations with at least one or more variables marked with (0) and
provided that there exists at least one operation without a ( e )
variable l•e- a range of m. If such is the case, increase m and
repeat the rule; if sý,,h r_- not the case exit without increasing
the range of any operation further.

(c) Now it is possible to sort the operations in the query ppff into
a command list, and list each variable explicitly. For this rea-
son the operations (which result in variables for subsequent op-
erations) are assumed to be numbered. All nperations, with
range ( G (m) ) initially equal to 1 are placed in list A. ( If a
variable has a (0) marked, its range has been increased: there-
fore, it won' t initially , pear. ) The range is increased until
all operations are in the A list. This list is examined for fur-
ther refinement.

(d) Each variable, including operation results, is examined to see
whether or nrt it is required for further computation. Thus, if
a particular operation is being performed and requires two vari-
ables, one of which is marked A ith a (*) and the other with a (k),
it will be known that the area ust d for storage of the (*) marked
variable is now free: whereas, tie (+) marked variable mustbe
saved for further computation. This variable marking is ac-
complished.

(e) It is now known when each variablh is required, when it is no
longer required, and the approxin. te size or storage require-
ments. There are two types of storage areas: working storage
and tcmporary storage. Working storage has been defined in
TN-2 as lists L, and 1.2. Then, for each operation, the working
storage assignment is made.

(f) The temporary storage assignment is made. This assignment is a
list of "names" tor each variable. The number of "names" is equal
to the norm of the variable. Each "name" corresponds to one 32-
word section of the 1604-B memory. The names for one variable
increase by unity and iply contiguity. If a variable
is require'( in more than one operation, the same

7-35



list of names will be given. The total number
Of nsmes or numbers (each associated with one 32-word
segment), is equal to the sumi of the norms of all ti~ique
variables. These names (or numbers) are not assigned
memory space. (They could be if infinite memory space
were available.) This name assignment is accomplished.

7. 3. 5 General Commeaits

After developing the associative memory algorithm and the flowchart for the

conventional computer (both for the query pre-processor), it is possible to make sonmc

observations on each technique regarding such things ns coTiputational time, storage

space requirements, ease of programming, etc. It is thercLý7 possible to compare

both methods of problem analysis.

Processing time is a function of many factors. Among these are the number

of operations (steps (1), (17), (30), etc. , of the algorithm, and location,- G7, F7; etc.,

of the flowchart); variables (steps G7, F7, etc. , of the flowchart); variables (steps (21),

(34), etc , and locations F7; G5; etc.); highest ranged operation; etc. It is therefore

most difficult to determine an actual processing time without making many assumptions.

On t1 -" -'thcr 1-a.d, it Is ...3t necessary to determine these times explicitly since the

purpose of this paragraph is to compare the twvo techniques. What is required are the

relative time differences between them. This may he developed by considering tho,,e functions

performed In the associative memory algorithm which arp niot perform. I in the conventional

memory flowchart and conversely.

Prograniring difficulty or' ease may be compared in the two solution methods

by corsidering how similar functions are performed in both methods. This also gives.

some timing data.

In Cie Goodyear associative memo- y, additional computation time is required

to transfer data between the associative memory and the central p~rocessor of the 1604-B3

(of course, this additional time requirement may no*, be imp~ortant if subsequent associative

memory processing time is .4ppreciably less than conventional processing time frI the

same function). In the presented algorithm, the entire query in canonical ppff is trans-

ferred from the associative memory (step (4) of the algorithm) into the 1604-B and then

back into the associative memory In A canonical form (step (16)). All subsequent operations

a1re performed in the associative memory with thc exception of computing, norms. In

7-36



this case, the entire query (an operation at a time) is transferred from the associative

memory to the core memory (step (65), Additional data (responder's contcnts, addiesses,

etc. ) is transferred out of and/or into the associative memory throughout the algorithm,

but this time requirement is of the same magnitude as the time required to form the

same lists in the conventional memory solution, if such lists ar, required.

The majority of the operations performed by the query pre-processor are

data-dependent operations; that is, the processing performed at a particular step is

dependent upon some condition of data determined in a previous step. Some of these

conditions are:

(1) If an operation exists.

(2) If the next variable is an implicit variable.

(3) An operation's address (or contents) which precedes (or succeeds)
a particular responder.

(4) The class of the next variabi, (implicit or explicit).

(5) The value of the rank.

The as•,neintiv,'. memory inruzc::,ic"z u ýc.2 f_,, 2_a& ;nining such uoi uiLLUii

are the search instructions coupled with I/O instructions. However, a condition usually

implies that one of several available processing paths will be subsequently chosen. Then,

it is imperative that the ability to determine such conditions exist. This abimity exists

in the Goodyear associative memory, but is more unwicidly to use in some cases. For

example, it is possible todetermine whether A is greater :han byi use ofa search iistruction

followed by a responder test, btut such search instre -tion destroys previous buffer settings.

In other words, the associative memocy cannot providc fc "neste(i" condition:i s without

destroying results of the immediately preceding condit ionl I on a word i xisis. Tias nested

conditional capability dues exist on less than a word bxasis 1, use of the complex search

instruction. In this casc, the intermediate results of a c, iiplex" search are lost but may

be easily formed with a new test. In both the word search schemes and the complex word

search instruction, a conditional test must always start at the beginning of the sequence

to be tested. This weakness and the resulting piogran ;ng difficulty can be removed

if intermediate buffers can be stored :is in the A2 associative memory (Note the implied

decreabe in time as well.)

7-37



The only way to alter a processing path based on a conditional relationship

between A and B is to jump on : o responders and jump on index high (or low). The

pr'ccding paragraph discussed to some extent how the first of these instructions is

used. By definition, it is clear how the second set may be used. But how does one

retain the current results of a conditional test and proceed to effect another conditional ?

For example, jump to location C, if the first responder A is greater than the second

responder B (while maintaining all responders). The jump on index instruction may be

used if A and B are less than 15 bits long; otherwise, it is impossible to perfom the

desired function. If the data can be related to the addresses then the jump on index

instructions may be used. But to use this instruction requires transfer of addresses

to the 1604-B, load index, and test instructions. (Consider steps (40), (43), etc.)

The difficulties found in programming which give an increase in computation

time are:

(1) It is impossible to load an associative memory register or
word from another associative memory register or word.

(2) It is impossihle to test the contrnts of two associative memory
words without destroying previous results; thus, conditional
testings must be effected in a serial fashion and epeaLtd for
each condition.

In using the associative memory for an application, analysis on conditional

statements must be performed to reduce nested "If" statements to serial "If" state-

ments whene'er possible. If this cannot be accomplished, since intermediate results

can not be sk red, the entire sequence of nested tests must be performed repeatedly.

Sto.'age comparisons are not too meaningful since the addition of the associative

memory increases that hybrid system by some factor. However, instruction storage

space is Increased in serial processing because of the LDR instruction and the lack of

intra-associative memory communication.

Since the A2 (and the A3) car, tore results of past conditional tests, it appears

that the A2 is somewhat "better" (as far ais programming ease is concerned) than the

Goodyear associative memory. Additionally, since the A3 possesses intra-associative

memory communication, it is also better (in the same sense) than the Goodyear Associative

Processor.

7-38



7(4 RUN ROUTINE

The Run Routine requires a5 irput the command Hist, A (P:'ragraph 7. 3. 3. 3)

which may be thought of as a sequence of sou ee coding or instructions t-, be performed.

However, as noted in Paragraph 7. 2, each element A . of the ,command list is "performed"

by the Run Rout;ne in an interpretive fashion. The Run Routine is controlled by an ex-

ecutive type routine called Controller (Paragraph 7. 5), The main function of the Con-

troller is to control input-output operations relative to query processing. The Controller

will examine all elements of the command list to determine what operations (depending

,,non the operation's ranges) may be performed and will control the input of the required

data into core memory. The Controller then sets those data elements (B of Paragraph

7. 3. 3. 3) of all such command list entries to A indicating that the operation may be per-

formed; that is, all inputs required by the operation 0. are in core memory. Processing

control is then transferred to the Run Routine.

The Run Routine then1 performs only those elements of the command list which

have been set by the Controller (B - a, Paragraph 7. 3. 3. 3). The particular operation

to be performed may be considered as a routine, where 0 . is the beginning address ofI

a scquence of instructions required to effect the operation. Other entries in the related

element of the command list contain necessa;v input parameters such as:

(1) Where the input data is stored.

(:) 'WVhcr to store the output.

(3) If the variable function i. I,1 or 1 2': ii, x.ý related routine.

Then, an algorithm for the run routinc follows:

(1) Set i l.

(2) If Bi = o,, transfer A i to a standard location, otherwisego to step (4).

(3) Transfer cur.'rol with a return (to step (-.))jump to the related sub-
routine.

(4) If '- 1, the total number of operations, increase i by 1 and jump
to step (2): otherwise,exit to the output routine.

* L1 and L2 are assumed to be two inputs. If @j is an operation, then it is sometimes

"important that a variable be correctly labeled since Oi (LI, L2) is not necessarily the
same as ti (L 2 , L1).

7-39



Thus, the Run Routine may be considered to be nothing but a sequence of

return jumps to rela'ed subroutines, For this reason, the Run Routine need not be

considered further.

7.4.1 Subroutine ind Operations

Implicit in the preceding discussion of the Run Routine is the tenet that every

operation is representable by a subroutine; or as aa equivalent, every query may be

represented as the final output of a series of subroutines.

Every query is a request for information about one oi" more items. The re-

quested information may require a "yes - no" answer, a count of the items satisfying

the request, a set of descriptors of the requested it( -i(s), or some function such as

distance, which uses descriptors of the requested item(s). Additionally, every query

contains some conditional statement that must be met for all responding items. This

conditional statement involves attributes of the item that must satisfy he given conditions

which may also include some function which uses descriptors as arguments. An examina-

tion of the queries (Paragraph 3. 5) given earlier results in a set of functional operations

and a set oi conditional operations. The functional operations are:

(1) "Yes or No" depending whether or not one (or more) items

satisfy the condition (responds).

(2) "Count" the number of items which respond (responders).

(3) "List" the requested descriptors of the responders.

(4) i~i~g -pCifX2:- I (, ither constant and/or those given by the responders)
descriptors, form the following functional operations:

(a) distance between points,

(b) time to traverse the distance where speed is specified.

(c) course to (beaaring from) a specified location.

(d) distrilxbtion,

and list the results with the responders.

The conditional part of a query involves r, lationships between descriptors;

for example, "List all ship.- with an aircraft and a doctor aboard" involves the con-

junctionof the descriptors air-raft :ind do('tor. Then, the conditional operations aro:

7-40



(1) Using specified (either explietly given d! olr/ those;,,i, ,n I1) r.e-
sponders) descriptors for the following Iunctional ouvr:itiomn.:

(a) Distance between points.

(b) Time to traverse the distance where speed is speciried.

(c) Course to (bearing from) a sp" -:ified location.

(d) Relationshin bxetween specified descriptors:

(i) Equality

(ii) Clonjunction

(iii) Disjunction

(iv) Greater thin

(v) Less than

(vi) (i-:,ater th~in or equal

(vii) Less than or equal

(viii) Next greater

(ix) Next lesser

(x) Minimum

(xi) Maximum.

(e) Between two specified descriptors

(f) Course change

(g) Course cxtension

Each of these operations given may be considered to require a subroutine.

The input to each subrouwAne is, therefore, a list (or lists) of descriptors: the output is

either a list (or lists) of descriptors or a list (or lists) which show some functional

combination of the input descriptors. The listed opcrationF arc the genesis for the

following routine.,:

RED - To select logical nanmes of reco' d.• which satisfy a
•, requested attr ibutc-cdh scriptor 1ltai r.

4-,



AND - To find the conjunction of two lists of logical names.

OR - To find the logical disjunctiop of two lists of logical name•.

MAX - To find the maximum value of an attribute.

MIN - To find the minimum value of an attribute.

* NGT - To find the value of a descriptor next greater than a
given value.

NLT - To find the value of a descriptor ne%,: less than a given value.

EQU - To select related logical names of particular logical names
from a data file directory.

0 DIST - To compute the nautical distance between two points given
in latitude-longitude coordinates.

"0 TIME - To compute the time required Lu traverse the distance
between tw, points, given the speed of advance.

A description and the coding for each of these routines are given in Appendix C.

Each of these routines assumes that the input data is contained in core memory

and that the parameters required have been specified by the entry in the command list.

Additionally, each routine is written such that it leaves its output in core memory. Thus,

input-output operations are performed, as in most systems, by an executive routine.

Then, before timing considerations can bc made, input and output functions must be made.

In addition, each routine assumes that its input (and output) lists may fit inLo the associative

memory. However, such may not be the case: th,,t is, an input list may be greater in

length thin the associative memory stoL'age area. In this case, the associative memory

dispatcher (which is controlled by the controller) is used.

7. 4. 1. 1 Associative Memory Disiatcher: The purpose of the dispatcher is to handle the
following problems:

(1) If the operation is performed on two lists, which list
should be loaded into the associative memory?

(2) If the list de at i n• d for the associative memory exceeds available
storage, what segmentation procedure should be followed to con-
trol d:ota transfers and guarar'fee results?

7-42



B The context in which these problems are reviewed is as follows. After the

Run Routine has determined that the data required for a particular process is in core,
it transfers control to a functional subroutine. This subroutine may or may not use the

associative memory. If it does use the associative memory, there arise certain house-

keeping functions that must be done. The associative memory dispatcher is provided

to examine the availability of associative memory storage and make decisions as to
which list should be loaded into it, how to segment it if it exceeds the memory capacity,

and how to control output lists appropriately. The general nature of this routine will be

described in the following paragraphs. (It is assumed that the actual loading of AM from

1694-B corc will be controlled by the functional routine, which will be given data to guide

this process).

The inputs required by the associative memory dispatcher are:

(1) The data furnished by the Run Routine.

(2) A list controller word (LCW).

The data furnished by the Run Routine is:

(1) The 1604-F core addresses and lengths of input lists, L1 and L2.
(2) Tie 1604-13 core address of the input.

(3) The 1604-B core address of the LCu.

(4) The number of available cells in the associative memory.

The LCW is to be associated with a routine. This word wi!l permit the

associative memory dispatcher to observe rules of correspondence and linkage required

by a particular functional routine. At the time that a routine is specified, the designer

or prograinmmer will consider the factors coded into the LCW, and form the LCW vector

for that particular routine. When a functional routine is called by the Run Routine,

its LCW is made available to the associative memory dispatcher. An example of an

LUW control word follows:

7-43



Bit Position Value Meaning

0 1 Single list operation

1 1 Uniform sequence, L1 , L2 (one-to-one)

2 1 All L against all L. 2

3 1 Simple concatenation of output

4 1 Single element output

5 1 Recursion of output (Lt--* Ld

6 1 Notify functional routine if segmenting

7 1 Override AM dispatcher decision

8 Put L into AM inspite of length

9 1 Put L2 into AM in spite of length
2i

10 1 Get segment max. from functional
routine

Reserved for further definition

After computation, the Associative Memory dispatcher provides the following

data to the functional routine. (Control is then transferred to the functional routine. )

(1) Identify (LI or L2 ), core address, and lengti, of input and output
lists.

(2) Indication that the current run of the 8.netional routine is (or is not)
the last run; that is, more data sublists exist.

After each pass of the functional routine, control is transferred back to the

dispatcher (if indicated) or to the next functional subroutine. If control is transferred

back to the dispatcher, the purpose is to retrieve more data: that is, more sublists

exist to be processed. Then, the functional routine furnishes another LCW. This

transfer of control between the functional routine and the dispatcher will result (after a

finite number of runs of the functional routine) in the desired final output.

7-44



The philosophy of the dispatcher is Wised on the assumption thail comipuI~ation.;

on successive segments of a list wilil yield the same results ais computations performed

on the complete list,

This specification of an associative memory dispatcher and Hs outerlacl(ipg

logic shows the simplicity with which segmnentation can be treated as a syý,stcrm function.

The internal logic of the dispatcher may be develope.d inIto) as sophisticated ai decision

model as the system requires. By fixing the interface logic it an early system design

stage, different allocation policies can bec evaluated by manipulating the dispatcher.

The internal logic of the dispatcher is based upon thie tollowing rules:

(1) If the operation involves only' a qinglc list, and it is an AM
operation, 1'-ad that list into the AM.

(2) If the operation involves two lists and

(a) L I is greater than L,) and

(1)) L fits into the AMT w.ithout segmej~nntal ion,

load LIinto the AM.

(3) If the operation involves tw%%o lists ana

(a) L1 is grealter than L'~, and

(b) L1 does not, fit into the AM, andl

() L)does fit without segmentation, load L., into thu AMI.

(4) If the operation involvyes two lists andl

(a) Neither 1I nor 1" f. fi I: without sctgmentation

() L]1 is greater than L",, load segments ()IL into the :\VV

(5) If LC"? contains an overriole bit ofl, Igfloic all the above logic anrd
follow directions of UI.CW

This associative memory dispatcher will not he consijervd further. It is docui-

mented in thiF paragraph to illustrate its need and to indicate an ipproach to meet this

need. For the purposes of this stiud.-% it is sufficient to assume that the cotiplvltc inputt

lists of all functional subroutines may 1w' stored in its entiretY vithin thc associated

memory.

7-15



mI

7.5 CONTROLLER

As indicated in previous paragraphs, the function of the controller is to:

(1) Assign 1t0n4-R nore memory locations to input data lists.

(2) Coordinate intermediate outputs (of operations) with sue -eeding
operations (as inputs).

(3) Determine whether data currently in core Is needed for further
computations.

(4) Coordinate the Run Routine and the input-output functions.

The Controller, in reality, is the first level routine in the query processing.

It determines the processing flow within and between queries. After a query has been

pre-processed, it is stored in the associative memory in thex canonical form. The

Controller then assumes processing control.

7.5. 1 Inputs and Outputs

The main purpose of the Controller is to control the temporary (1604-B)

core storage and to interleave the Run Routine and the input functions. In this respect,

it has two inputs and one output. The inputs are the command list A and a map, M,

of the core storage. The output is a list called Q whose elements have two entries

each: the desired disc address and tLe allocated core memory location. This Q

list is the input to the Input Routine which reorders the elements of Q such that the

sequential disc addresses result in a minimal disc running time. When the Q list is

exhausted by the Input Routine, control is transferred back to the Controller and then

to the Run Routine. This procedure is repeated until all operations of the command list

have been perfoi med (all Bi - y ).

7. 5. 1. 1 The Input Map, M. The input map contains M elements, where each element

contains three entries (Xm, Ym' Zm), and each entry is associatedwithone 32-word block

of core memory. Thus, the total storage space controlled by the controller is 32M

1604-B core words. F~r a particular element m of the map M,

X ;, if the associjtcd storage area (1604-B core memory) is freem
+, if the area is not free

7-46



- ~if the area will be free after the Run Routine has been performed.

iy

YM =WSV, the tag assigned by the pre-processor (steps (48) and (61) of the
pre-processor algorithm, Paragraph 7. 3. 4. 2)

Z m = the beginning 1604-B core address of the associated block.

7. 5.2 Processing Functions of the Controller

The functions of the Controller are:

(1) Makes available working storage areas no longer required and adjusts
the command l ist A.

(2) Forms the new Q list if additional operations in A must be performed.

WVith respect to storage in the associative memory, assume the command list

is in the associative memory in A canonical form (as output from the pre-processor).

Also assume that the map, M, is the associative memory. Let the beginning and ending

associative memory addresses of the command list and the map be B (A ) and E (XA) and

B (M) and E(M), respectively.

The two functions of the Controller are performed as described in the subse-

quent paragraphs.

7. 5. 2. 1 Free Areas and Adjust Command List. When the Controller is called upon,
twvo situations may exist: Either no routine has been performed (All B.iýý B.i for all

command list entries), or some routines in the command list have been performed

(Some B, = y or a). For those operations whose B. = a(the associated operation was

I I

just performed in the last pass of the Run Routine), the corresponding temporary storage

areas must be freed, if possibleprovided that the vuriable is marked with an asterisk in

the command list.

(1) For those operations in the command list marked with B -a with
variables marked with an asterisk, M -- , between B(A) and E(A),
from thc list of elements WS, (1 <. t < T).

(2) For each WS between locations B(M) and E(M) (in location Yi),
replace X. lth a semicolonr

7-47

m|I



The associative memory operations for these two steps are not easy to do

because they both involve searching between address sets and then checking for contents

of an address which is a computable number f places after the responder. F'or this

reason, these operations have been replaced by:

(1) For those operations in the command list marked with B - '
between locations B( A) ana E( X), set B ý- y.

(2) For those Xm in M (between B(M) and E(M))equal to an asterisk
(*), set Xm equal to a semicolon (;).

7. 5.2. 2 Form the Q Input List. Now, it is desired to form a list of addresses for the

Input Routine and adjust the command list for the next iteration of the Run Routine. The

pre-processor determined the range of each operation, but did not reorder the elements

of the command list on the range. This reordering may be done implicitly by having the

programming assign sequential tag- to each successive operation to be performed. Let

this tag be incorporated in the B el ment of the command list: that is, B ai, t, where

t = 1,2, ... implies that the tth operation to be performed on the next iteration of the

Run Routine is that operation with B = aet. The ordering rules are (Paragraph 7. 3. 3. 2):

(1) For those operations which have not been performed (B - ý)
perform that operation with the lowest range. If all B 'y, exit.

(2) If more than one operation results from step (1), perform those
operations which do not require datai base (only directory) inp
This fact is known if A is not equal to (ý) (Paragraph 7. 3.3.3)

(3) IC more than one operation results from step (2), p~erform the
operations in a fiz st come, first serve order. In this case, ignocc
those operations %% i th A - ý

(4) If all operations in step (2) have A ~,perform these operations in
a first come, first serve order.

The algorithm to accomplish this ordering (adjusting the command list for the

next Run Routine iteration) and preparation AM the Q list follows:

(1) Determine those operations which have a B1: 1) . If no responders
exist., the query is comp~lete. Exit to pick up the next query.

(2) For those olperations with B ~,determini, the set with the same
minimum range.

7-48



.3) Delete those operations which have a variable which rui-cires data
file material; that is, A - €. If the resulting set is emllpty, go to
stcp (9); otherwise, continue.

(4) For each successive operation of the resulting set, dlet(,rmine for

all variables of that operation:

(a) If A 0, (the daL.A ib already in the miemlory) do nothing.

(b) If A %4A) , 0/ o, / ¢), e,,ntinu,,.

(5) Place WSt of the variable defined by step (4) in those Ym whose
associated elements of the map, M, are free (Xm :) and arc
eontiguuu, for N - # "'2 variables norm). In other words,
"write" WSt of the variable in those Ym whe're:

(a) X - andm

(b) (Z M) 32 - (Z 4 1) for N elements.

Place (A,) and {Zm) defined in the Q list. It it is impolssible to determine

a sufficient number of contiguous spaces for all variables in the ol),er'aion. go to stcp

(8); otherwise continue.

(6) Now for each such variable of the current (mcration, search the
command list for similar variables ( A -Av) ) and set these

A equal to zero to indicate that the data is already in the memory.

(7) For the current operation, (all A 0) examin, the M value. If M
is an asterisk ("), place this asterisk in all X1 \1hi'h hat I'lm , WSt.

(8) If more operations of the same range existgo to stc, (,1). If not,
increase the range hy one and go to step (2), pr'ovided that more un-
assimgned working storages exist (there exist elVments in M Wi'lh
Xm ). If not, exit the Input Routine with Q.

Notice that the addition of step (7) albov se.rv\ets no 1n'-po!4 in lregal d ", the

task at hand; however, this step permits the simplhr prov'essing giv'n in the pri'(e(ing

paragraph.

7.5.3 A Goodyear Associative l'r,'ess,.ir Algjorithm

The algorithms given In th1 two prec'cding para.graphs mayv Ix" translated into

either a conventional memory or an associative memory, oriented algorithm. This eon-

version is oriented to the Goodyear Associative Plrocssor.

7 -19
. 4.



\ Because there exist two lists, the command list,and the map (M) in the

associatite memory, it is important to point out that each search is relative to a specific
I

section oftthe memory. Then, the subroutine SPO (Appendix C) which has the following

two options will be used extensively.

(1) Search responders.

(2) Search between addresses.

l'he first part of theCor+roller (Paragraph 7. 5. 2. 1 is accomplished as

follows:

(1) Between 1_ (A') ,aid E ( be •carch for opý..•&uiis.

(2) Advance buffer and search for equality with a in the comparand
register.

(3) If no responders, jump to step (12).

(4) Write (y) into responders.

(5) Between B (M) and E (M), search for Xm.

(6) For responders, search for equality with an asterisk (*) in the
comparand.

(7) Jump to step (9) on no responders.

(8) Write a semicolon (.) into responders to free the associated working
storage space.

(9) Between B (A ) atid E (A), search for operations.

(10) Advance buffer and search for in,'quality with (-y) in the comparand.

(11) If no responders, Jump to final exit since the query has been processed:
otherwi St C ont in ue.

(12) The second p.,rt of the Controller operates on the command list and
the map. Its output is a list Q. This list will be formed in the 1604-B
core memory. Set Ra minimum range counterequal to one. Search
for operations. M.

(13) Advance buffer and emuality search for (0 ). The responders indi-
cate those operations which have not been performed.

(14) For the responders, advance the buffer to locate the range of thL
operation and equality search for R. The responders are those
"•perations which have a minimum value.

7-50

U,



(15) Now, these responding operations may require as input one or
more variables. If any one of an operation's variables requires
data file material (A =: ), remove that operation from the list of
responders, provided that the resulting list contains at least one
operation. This testing is more difficult to do.

Advance all responders a sufficient number of places to determine A of the

first variable. Search for equality on ý. Erase these responders. Advance the re-

maining responders of those operations which have a norm of at least two, a sufficient

number of places to determine A of the second variable. Search for equality on •.

Erase these responders. Continue this procedure for all values of the operations'

norms. (In this application, the highest valued norm is two). The responders, or

rather the operations related to the responders, must be assimoed tm-po-%rary working

PiLorage.

(16) Jump to step (32) on no responders resulting from the operations cf
step (15).

(17) An operation will only be performed if working storage is available
for all variables of the operation.

For the first variable responder, retrieve the norm of the variabie, the

working storage tag, and the address set ILA) for the variables where A 4 0. These

elements are given in the command list as 0 (v), WSt, and A, respectively.

(18) Jump on no responders (all variables of the operation have been
assigned to storage) to step (25).

(19) For the first "responding" vari-ble of step (17), search the map, NI,
between B(M) and E(M) for equality with a semicolon in the comparand
to identify working storage areas that are free.

(20) Determine whether there exist P (%') contigious storage spacesas follows:

(a) Read out k(klress of first responder H.

(b) Read out vuunt of rtcsporders between associative memory
address if and i!i i ') -(V .

(c) Using jump on index instruction between count obtained in
step (b) and # (v), (determine whether spaces exist. If so,
jump to step (21): otherwise, continue.

(d) Erase first responder.

(e) Jump on no rsisponder to step (24).

7-51



(f) Jump unconditionally to step (a) a e.

(21) For the responding set of step (20) (a subset of the responding set
"of step (19), 'orm a temporary list of responding addresses
Hi II<i<# (v)] and a temporary list of Zm. Pair each Zm with
an a dress of (A}.

(22) Erase first variable responder from the command list and responder
Xm of step (19).

(23) Jump to step (26) on no variable responders for the current operation;
otherwise, jump unconditionally to step (16) to process the "next"
variable.

(24) At ihis point, it is impossible to process the current operation; that
is, to assign the required storage for at least one variab!e in the
operation. Since some assignments may have been made (on a tem-
porary basis), reset the responder Xm erased in step (19) for this
current operation. In addition, delete all Zm and (A) from temporary
storage of step (20).

(25) Erase the first operation responder.

(26) Jump to step (27) on no responders: otherwise, jump unconditionally
to step (16) to process the next operation.

(27) The current operation may be performed by the command list.
Move tYh temporary storage of st,;p (20) into permanent storage as
part of list Q. Jump unconditionally to step (24) to process the next
operation.

(28) The assignment for this operational range value is complete. Search
map, M, betx. cen B(M) and E(M) for equality with -t semicolon in
the comparand. The unerased responders were not .;ssigned storage.
(It will be assumed thal some elements were assigned storage).

(29) Jump to step (31) on no responders.

(30) Increase R by one.

(31) If a range of It exists in the command list (operation search, advance
buffer two positions, equality starch with 11), jump to step (14)-
otherwise, cont inue.

(32) The Controller has assigned all possitble working storage spaces,
jump to tý.e Input Routine with the Q list.

7-52

mm p



. 7.5.4 General Comments

Again, as in the pre-processor, the required data manipulation is very data

dependent (consider step (15) of the algorithm). The processing requires determining

the status of elements related to an operation. At times, the status of one elem•nt (a

variable) of an operation depends upon the status of subelements (norm, value of A, etc.).I

The general comments regarding "nested" conditionals given in Paragraph 7.3. 5 are also

applicable. In addition, note that the testing of these sub-elements (and elements) is

accomplished by particular responders when in reality the status desired is for the

related higher ordered responder, a variable or an operation. This observation and the

difficulties encountered in both the pre-processor and the Controller regarding data

dependent processing are greatly alleviated by a technique termed "Tag Memory"

described in Paragraph 7.9.

7.6 INPUT ROUTINE

The Input Routine is an executive level routine (and may be considered part

of the Controller) with the objective of bringing in data from the disc file in the most

expeditious manner. The disc addresses of the data desired and the 1604-B core

addresses where such data is to be stored are given in the input list Q. This input

Q list, the output of the Controller is reordered by the Input Routine in an order which

will result in the minimum disc access times. To understand this ordering, it is

essential that the CDC 1619 Magnetic Disc File Controller and the CDC 818 Disc File

System be understood. The pertinent items of these units are given in the following

paragraph.

7.6.1 CDC 1619 Controller and CDC 818 Disc File*

From the given reference, the pertinent times to accomplioh specific disc

tasks are:

(1) Switch betwcen files (4 milliseconds)

(2) Switch between discs (23 milliseconds)

* Reference Manual Control Data 1619 Magnetic Disc File Controller, Publication

No. 60044900, February. 1564, Control Data CorpoliOnf.

7-53



(3) Position (Stroke) in milliseconds

* Maximum: (3P + 40)

* Minimum: (2.42P + 22.6)

* Average: (2. 66P + 32. 33), where P is the number of
positions moved (P 63).

(4) Confirm position (41 milliseconds)

(5) Latency

"* Maximum (52 milliseconds)

* Average (28 milliseconds'

(6) Switch heads (100 microse.vtds)

From the above times, it can be seen that one may read from a pre-set

position of a new disc in less time on the average (may be equal) than one may read

from an adjacent (P=1) position of the same disc. Thus, to minimize times, the strokes

should be minimal and the disc should be switcned v'ithout switching the position. This

is nearly impossible in a practical sense.

The physical constraints deal with such things as the number of positions,

etc. This may :e illustrated by a disc address:

(1) Bits 0-6 specify one of 12810 blocks of data which use the ad(,-esses
000 through 1778.

(2) Bits 12-17 apecify one of 6410 possible positions of the position
arm using positions 00 through 778.

(3) Bits 18>-21 sp-ecify one of 1610 possible discs using disc numbers
00 through 178.

(4) Bits 22 and ',3 specify one of four files. Since the assumed sy-'em
has only one file, these bits will be, ignored.

An address speciftes -me disc out of 16 and one position out of 64 and one block

out of 128.

Ea.ch disc has eight read-write heads on one arm. Four heads are allocated

to the in..er track and four heads a.e allocated to the outer track, There are 20 blocks

on an outer track and 12 blocks on an in:-er track. The addressen of these blocks relative

to their tracks are given below:

7-54

4



C14 -4

0o tO v4 -4

CI LM e t- .

C1 0 a 4 4 .
- ~E N C) 0

7 a- 
45

m to



Notice that the inner block addresses are modulo 12 and the outer modulo 20.

From one disc revolution with one position, it is possible to read blocks from

the inner and outer zone (by head switching). For example, the following blocks may

be retrieved in one disc revolution (057, 060, 015, 110, 033, 070, . . . ). A maximum

of 20 blocks may be read in one revolution.

7. 6. 1. 1 Data Base Allocation on Disc. Incidental to the main discussion on the Input

Routine, it is possible to make some observations regarding the storage of data base

information on the disc file. To do this, certain statistics are required.

(1) Data Base Statistics. The assumed data base statistics are:

Seven ships for each port and on the average 65 percent
of the ships are not in port.

Every ship may carry cargo and possess weapons. However,
10 to 15 percent of the total number of ships possess different
characteristics. Thus, if there are 1, 000 ships, there
exist 100 to 150 different cargo characteristics among these
1, 000 ships.

There are five personalities for each ship.

* There are a total of 108 descriptors divided in the data files
as indicated.

On the average, 33 percent of all possible attributes are specified
in data records.

These statistics generate the following data base size characteristics:

Dictionary requires 10 blocks (absolute)

File locator requires five blocks (absolute)

File directories (relative)

(a) Static 10 records/ 10 words/ record

(b) Dynamic 6 " 8 " "

(c) Port 2 ' 10 "t

(d) Personality 50 " 3

7-56



(e) Weapons 1 record/ 12 words/ record

(f) Operational 2 " 12

(g) Cargo 1 " 12 " "

(h) Propulsion 2 " 12

(2) Data Base Allocation on Disc. From Paragraph 7.6. 1, the following
conclusions regarding the storage of data may be made:
(a) Sequentially required data from a file should be stored on as

few discs as possible.

(b) Randomly required data may be stored anywhere on the disc.

(c) If data is required from a file always starting at the same
physical location, such a file should be on one disc if
possible and the disc's read-write positioner should be re-
turned to the initial position.

These conclusions and the statistics of the preceding paragraph along with the

following disc allocations are feasible:

Disc Positions Contents

1 2-64 Static Ships File (Data)

2 all "

3 all

4 all

5 all

6 all Dynamic Ships File (Data)

7 all

8 all

9 all Operational Characteristic File

10 all Propulsion Characteristic File

I I all D-Directory

12 all Personality File Directory

13 1-45 Static File Directory

13 46-64 Personality File Directory (continued)

14 1-20 Dynamic File Directory

7
7-57

A



Disc Positions Contents

14 21-64 Cargo Characteristic File

15 1-10 Port File Directory

15 11-64 "i

16 1-5 Weapons Characteristic Directory

16 6-15 Operational Characteristic Directory

16 16-23 Cargo Characteristic Directory

16 24-35 Propulsion Characteristic D.rectory

16 36-64 Weapons Characteristic File

1 1 Space Available File

7.6.2 Rules for Reordering the Input List Q

Paragraph 7. 6. 1 detailed sufficient disc file constraints to permi' 'he deriva-

tion of the following ordering rules (and assumptions):

(1) It is timewlse equivalent to reposition on a new disc as it is on
the same disc.

(2) If only one address is given in Q for a particular disc, this address
is placed into a list 11.

(3) If more addresses remain in Q, there must exist more than one
address required from each disc referenced. fhen, if aD is thc
Dth element of a list which stores the last referenced position of
the Dth disc, Jll addresses referencing the Dth disc are sorted
into increasing or decreasing order depending on the current position
(aD). The rule usel assures the minimal travel of the positioner
arm.

(4) If for a particular disc, there exists a set of ordered addresses and
unique position values (one block required for any one position), this
set, along with similar sets for all such discs, is placed in the list

(5) If Q is not empty, the only thing that remains is the ordering of block
addresses/position. The table in Paragraph 7.6. 1 indicates the head
(1-8) which ieads the specified block. This table also indicates
relative block positions. The characteristics of the eight read-write
heads are such that one may switch betweea hcds in 100 microseconds.
This is ample time to identify adjacent* blocks. Thus, the rmaximum
tiare to read any number of blocks/position is 8 revolutions ( 52 ms
416 ms.

""iDer zone. block k is adjacent Lo bock r if k - k1 (mod 12) and r - (kl + 1)
(mod 12). In the outer zone, block k is adjacent to block r if k - k1 (mod 20) and r
(kl + 1) (mod 20). Between the two zones, an ordering system is needed.

7-58

J



"(6) For blocks with the same position for the same disc, the
4,ordering is accomplished by this algorithm:

For all addresses with the same disc and position, but with differcit
block addresses, determine all (mod 20) addruJses. From the
table in Paragraph 7. 6. 1 it is seen that these may hc divided into
four equal subsections composed of five consecutive mod 20 addresses.
In like mannec, divide the rod 12 addresses.

Im illIf:

(1) All of the first two mod 20 addresses are absent, one of the first
mod 12 addresses is placed in Iz.

(2) All of the second, third, and fourth mod 20 addresses are absent,
one of the second (mod 12) addresses is placed in Iz.

(3) All of the fourth and fifth addresses (mod 20) are absent, one of
the third (mod 12) addresses is placed in Iz.

(4) However, if any one of the (mod 20) addresses is present, it is
placed in Iz and the corresponding rule or rules regarding the
(mod 12) addresses are not considered.

(5) This procedure is repeated for all four subsections.

(6) Whenever an address is placed in Iz, it is eliminated from Q, but
there may exist four addresses equal to any value mod 12 or mo6 20.
Thus, at most, eight decision paths are required.

When all discs have been examined (Q is empty), the complete list Iz is formed.

The reordered list Q is a juxtaposition of the lists I1 I2, and I. The complete

reordered list (11 12 13) may be considered as the output, or each individual list may be

considered as output and executed (that is, read the disc address data into the core memory)
address while the next IPst is being generated.

7.6.3 An Associative Memory Algorithm for the Input Routine

Assume the input list Q is in the associative memory in such a form that the

disc addresses are listed in the lower memory and the core memory addresses are listed

in the upper memory. Let there be mapping (mod 1024) so thatthedtsc address in memory

cell m is related to the core address in memory cell (m + 1024).

7-59



The contents of a comparand register, when searching disc addresses, may

be considered to consist of fields:

Bits ',-6, block address (1ýB tl128)

Bits 12-17 P, a position address (1A-P4:.64)

Bits 18-2 1 D, a disc address (1:tD -1-16)

Form 1I1*

(1) Set D =1, and mask out Band P. Set q k=0.

(2) Search for equality with D in the comparand.

(3) Jump to step (5) on one and only one responder.

(4) Increase D by one if D < 16, and jump unconditionally to step (2).
If D ?.l6, jump unconditionally to step (9).

(5) There is one and only one address which uses disc D; read out
the contents of the responder as the address. Erase the responder.

(6) Increase the output index q by one.

(7) Read out the contents of the upper half of the memory as the 1604-B
address.

(8) Increase q by one, and jump to step (4).

(9) The Is t I has been formed. Either execute I~ or store it. If 1I1
is executtcd se =o.

(10) Assume the table containing aD exists. Set D 1, and mask out B
and P.

(11) Search for equality with D in the comparand.

(12) Jump to step (33) on no responders.

(13) Mask out B and D and search for minimum, saving previous buffer.
(RS goes to E.)

(14) Read out contents of responder into 1604-B memory cell, 'nin p.

(15) Reset D register. Search far maximum, saving previous buffer.

(16) Read out contents of responder into 1605-B memory cell, max p.

Reset D register.

7-60



(17) In 1604-B pt.:form:

(a) If a•D min p, jump to step (f).

(b) If 0 D Ž- max p, jump to step (e).

(c) Then min p <a D < max p. Compute:

(i) A = (aD - min p)

(ii) B = (max p- cD)

J (d) If A < B, jump to step (f).

(e) The addresses are to be ordered in increasing order. Set
storage cell K to min p and set NHC (Next Higher than Comparand)
instruction into step (31). Jump to step (18).

(f) The addresses are to be ordered in decreasing order. Set
storage cell K to max p and set NLC - (Next Lower than
Comparand) instruction into step (31). Continue.

(18) The buffer has been retained in step (15). It exists in the E s.,fer;
therefore, it may be reset when desired. Set D register from E
register.

(19) Jump to step (25) on no responders.

(20) Load the first responder into the comparand register. Mask out
B and D.

(21) Erase first responder.

(22) Equality search.

(23) Jump to step (19) on no responders.

(24) If there is a responder, then there are at least two addresses which
reference the same position of the same disc. Therefore, re-
ordering is required on a block level for this disc. Jump to step
(34).

(25) Every disc address for the current disc requires a unique position;
therefore, eset busy bits, write through a mask of zeros in all
responders after D is reset.

(26) Load storage cell K into the comparand.

(27) Search for equality.

00

7-61



(28) Read out the contents of the responder and the contents of the
address of the responder in the upper half into 12. Increase outpui
index.

(29) Erase the responder. Reset the D register (from E).

(30) Jump to step (33) on no responders.

(31) Perform either NHC or NLC on responders with P masked.

(32) Load the responder into the comparand register and jump to
step (28).

(33) The current disc has been processed. Increase D by one provided
that D < 16. Set the mask to mask out B and P and Jump unconditionally
to step (11). If D = 16, both lists 12 and 13 are complete. If I1
was executed, then execute 12 and 13 juxtaposed; otherwise juxta-
pose I1, 12, and 13 and execute the combined lists.

(34).: The current disc has addresses that require block ordering. Some
addresses may not require block ordering, owly positional ordering.
Return jump, performing steps (25), (26), and (27).

(35) Read count of responders into memory cell H.

(36) Load H into index register q1 .

(37) Jump on index high if q1 (the number of responders) is greater
than or equal to g = 2 to step (40): other-wise, continue.

(38) There exists only one responder, return jump, performing steps
(28), (29), (30), (31),

(39) Jump unconditionally to step (35).

(40) The current position has more than one block address. These
positions are indicated by the current s-tus of the D register.
The instruction BLC, Between Limiting Comparands, will be
used with the limiting comparands of A and B. Let a table exist
in the 1604-B core memory of these comparands. The contents of
this table are 7012, 000, 027, 013, 043, 030, 057, 044, 103, V60,
127, 104, 153, 130, 177 and 154.. .J. Let this table be T with
elements ti, (1 < I < 16). A difference F is also needed. This
difference 121 for I < 8 and (057 and 201) fqr i > 8. In like manner,
an Index qp is needed. For I > 8, qp is equalto the address of the
last element of Q; for i >9, qp is equal to twice this-address. Then
all mod 12 addresseb are stored between qp and 2q., and all mod
20 addresses are stored between 2qp and 3qp.

$11) Perform BIC.; A ti, B = ti + 1

7-62

*



(42) Jump to step (48) on no responders.

(43) Read out first responder contents.

(44) Subtract (a 1604-B operation) F from the block position.

(45) Reed out the first responders, address = H.

(46) Write the results of step (44) back into the associative memory
into an address (H plus qp = the address of the last element of
the list Q).

(47) Erase the first responder and jump to step (42).

(48) Reset the D register. Increase i by 2 if i < 16 and jump to step (41).
If i = 15, continue.

(49) At this time, a comparable disc address exists - modified modulo,.
12 or modulo 20 which is stored in an associative memory cell
qp or 2qp cells higher than the responders of step (40). Set B = 000
and B' = 000. Set masks for D and P.

(50) Load B into comparand. Set qp = 2q.. Reset D register.

(51) Search for equality between addresses 2qp and 3qp.

(52) Jump to step (57) on no responders.

(53) Read out the address H of the first responder

(54) Erase the iurst responder.

(55) Read out the contents of location H - qp from the upper and lower
memories into I. Advance the index qp by two.

(56) Set step (62) to step (67).

(57) Increase B by one and load B into comparand. Reset D register.

(58) Search for equality between addresses 2qp and 3qp.

(59) Jump to step (62) on no responder.

(60) Perform steps 54, 55, and 56.

(61) Set step (76) to step (81).

(62) (Initially no operation).

(63) Load B' into the comparand. Set qp and reset the D register.

C 7-63

i*



(64) Equality search.

(65) Jump to step (67) on no responders.

(66) ?Perfoerm steps (54) and (55).

(67) Increase B by two 1nd load B into comparand. Reset D register.
Set qp = 2qp.

(68) Equality search.

(69) Jump to step (7 1) on no responders.

(70) Perform steps (54), (55), and (61).

(71) Increase B by three and load B into comparand. Reset D register.

(72) Equality search.

(73) Jump to step (76) on no responders.

(74) Perform step (70).

(751 Set step (85) to step (90).

(76) (Initially, no operation.)

(77) Increase BI by one and load BI into comparand. Set qp =qp.

(78) Equality search.

(79) Jump to step (81) on no responders.

(80) Perform steps (54) and (55).

(81) Increase B by four and load B into comparand. Set qD 2qri .

Set pp=2qp

(82) Eqtality search.

(83) Jump to step (85) on no responders.

(84) Perform steps (54), '(55) and (75).

(85) (Initially, no operation)

(86) Increase B' by two and load B' into comparand. Set qp qp. Set
D register.

(87) Equality search.

7-64

(7)Jm ose 76 nn epnes



(88) Jump to step (90) on no responders.

(89) Perform steps (54) and (55).

(90) Reset steps (62), (76), and (85).

(91) If B 4 14, jump unconditionally to step (50). Otherwise,contin

(92) Set D register. Jump to step (33) on no responders; otherwis&
jump unconditionally to step (49).

The input liEi Q has been completely reordered in the desired manner.

7.6. 3. 1 General Comments. The preceding algorithm requires the use of sever.

programming procedures not used explicitly in the other algorithms given in this

section. These follow:

(1) To avoid buffer shifts to read out data related to responders ir
the lower memory, this data was stored in the same relative
location in the upper memory. This device, while not necessa
for processing, was introduced at this time to illustrate the T,
Msmory described in Paragraph 7. 9.

(2) Loading of comparand with the actual data (v hich is not knok
a priori) determined as a result of other data conditions.

(3) The use of variable connectors, that is. data content determin
paths.

In addition, the difficulties encountered in previous algorithms twcause o

nested conditionals also occurred in this algorithm. To alleviate this difficulty to *

degree, the upper memory was not used for data examined to determine these .ondi

to permit saving the results of one conditional in the upper response store (D regist

while testing the data for another conditional.

A variable connector is defined as the initial junction point of ,everal sub

quent programming paths. The particular path to be taken is determined before the ti,,

point is reached. A variable connector differs from a branch point in that intermed

processing - after the determination of the desired processing path and before the

Junction point is reached - destroys or alters the data. For example.

(1) Set "No Operation" in variable connector 6

(2) if X = B, set "Jump to step 12 in 6"

7-65

i ,t.



(3) If X = C, set "Jump to step 19 in 6"

(4) If X = D, set "Jump to step 25 in 6"

(5) Set X =Y (intermediate processing)

(6) Variable connector.

(7) Processing if X j B, X 1 D.

(8)

(12) Processing if X was equal to B.

(13)

(19) Processing If X was equal to C.

(20)

(25) Processing if X were equal to D.

The concept of variable connectors is a most important programming tool;

hewever, it may be effected only in GAP by 1604-B instructions to perform the set

instructions. This requires the usual (or perhaps unusual) synchronization of the

1604-B nnd the GAP.

7.7 QUERIES

7.7. 1 Command List Form

The preceding paragraphs dealt with the required executive type and auxiliary

functions needed to prepare a query into processable form and to obtain its required

inputs. This form which in the command list is executed interpretively by the Run

Routine. The queries given in Paragraph 3. 5 are presented in a pre-processor command

list form in Table7-1.Thedatabase filesanddirectories requiredby each query for input are

S listed along with an indication of the output.

7-66



P I
t in 

nto

go " A eE

-i , on

w ra P4 &5ag ;(

0 ~0

raja

I.-

o0 0

7-ST

I•- r,, i ll,'i"iS

| ' ' • ' ' ,I ,,

e l f 
B 

,,-, •i ... p i°'' ° '" '' i
t i,, iilj

:• i !I ~i 4
S7.4!

SIil



II

I 6Fl

=~~~~ . SM !J!J''

W"40

w 04

4.0

ONN

N >4

7--48 
-

S-S

!I



NoI

Qm 0 0
C I"

oO.

o to

IL . :.

0)!

z 4)0.

p 04)

ow

04

I7-6



7. 7.2 Timing Considerations

One initial objective of this study was to compute the time requirements for

every hybrid configuration considered, and compare these times to those times (to be

obtained from another source) for a similar problem effected on a system which did not

include an associative memory. As the studY' progrressed, it became apparent tnat the

timing information from the outside source would not be available. It wvas then decided

to encode certain sections of our solution to develop these times. Tlic rctuired usage

of project time and manpowcr was at the expense of developing timin'g inlorrnation for

parts of our systems designed for the different c onfigu rations. In narticular, explicit

timing expressions for the translator, pre-processor, controller, and invipt routine

do not exist. On thle other hand, the algorithms given for Locse subsystems are of sufficient

detail that implicit timing statements may Wx madec. The timinm for n 1-ircular query

may be considered to be the time required to:

(1) Translate the query into Polish prefix form.

(2) Pre-process the querNy into command list form.

(3) Read in the required inputs.

(4) Perform the subroutines listed in the command list - the Run
Routine.

(5) Ouhvit the results.

7.7 .2. 1 Subroutine Timing. Thle timitig r'-quired for each subroutine given in Para-

graph 7.4.1 for the Goody( r AsSociative Processor, the 1604-B, and the A3 associative

processor is given in Table 71-2. The timing formulas for the Goodlyear Associative Pro-

cessor assume no input-outpuit operations andl use the average elapsed instruction times.

The formulas for the 1604-B assume average 16041-B instruction times, The timing re-

quirements given for the Goodyear Associative Processor are divided into two main

classes: processing with no other 1/0 operations and proccossing with moderatc (other)

1/0 operations. Additionally, the timing requirements for both the Goodyear and the

A3 associative processors are given as the sum of the tinics required to load tile as-

sociative memory and to (10 the processing. The Mov'e instrtiction referenced with the

A3 times refers to a multi-word 1604-B Move instruction which has been est'mated to

require 4.6 microseconds per word transferred as compared with 18.8 miicroseconds

per word without this instruction. The Move instruction Is one which can be imple-

7-7 0



cc O

-to 0

In c -4 C; C2 CO

'U1

00

10

z~ ~ (D C> O

o 0n t-- --
CI cq el m~~~

LO M- mf C13 Go at)

04 -4

x ,C

0 -

o ~ S 6_ _ __ _

N 0 4 C N

*l 14 1 -: t: t -

A 444 C

C7'7



mented in the 1604-B. From the timing presented in Table 7-2 it may be seen that it

enhances the A3 memory.

7.7.2.2 Query Timing. The queries given in Paragraph 3.5 were converted to command

list form as shown in Table 7-1. Then, the timing of each query was effected and is shown

in Table 7-3. The step numbers in the table refer to the steps given in the command

list (Table 7-1). To provide timing, it was necessary to assign values to the parameters

found in the timing formulas. The following assumptions were therefore made.

(1) There are 32 records in a data file.

(2) A data record contains on the average 32 words.

(3) The average number of responders per search is four.

(4) There are 200 records in a file directory.

(5) A file directory record contains on the average five words.

7.7.3 The Non-Acsociative Memory System

Comparison of the instruction repertoire and timing between the two systems

has highlighted several important observations. It is interesting to note that the execution

time of the query subroutines is faster when they are performed in the 1604-B than in the

hybrid system. This is because of load time. It takes 7. 1 microseconds per word to load the

AM from core, while a search performed in core takes on the average 3. 6 microseconds per

number of words searched. This also holds true in the A3 system where core-to-core transfer

time consumes 18.8 microseconds per word without the Move Instruction. Examination of the

timing of the representative questions further substantiates this observation. In almost all

steps, 1604-B execution time used less than the GAP and A3 time. It is interesting to note, how-

ever, that in step (3) of the query (in ,able 7- 1) "Nearest (in time) ship/aircraft with aircraft

aboard with doctor to point x, y?", the GAP time was faster. This was because it was not nec-

essary to reload the AM.

It should be mentioned that the file structure and data ordering assumed in the

non-associative memory system are that file structure and data ordering given for the hy-

brid configurations. If the former (non-AM) system were to be effected, the file structure

and ordering would be changed to a structure and ordering that is more amenable to non-

AM processing. indeed, the AM structure and ordering are perhaps the "worst case"

7-72



TABLE 7-3. TIMING OF REPRESENTATIVE QUESTIONS* (Milliseconds)

QUESTION STEP GAP 16C 1 -B A
--No- 1/0 Mod 1/0 With Without

M ove Move

How many ships are with (1) 352.0 352.0 352. 0 352. 0 352.0"r" miles of point "D"? (2) 9.3 25.0 5.9 6.7 21.3

TOTAL 361.3 377.0 357.9 358. 7 373.3

Are any U.S. submarines (1) 9.3 25.0 5.0 6.7 21.3
in area ? (2) 352.0 352.0 352.0 352.0 352.0

(3) 9.3 25.0 5.9 6.7 352.0
(4) 2.3 7.0 1.7 1.8 4.7

TOTAL 372.9 409. 0 365.5 367.2 399.3

How soon can DD-789 (1) 9.3 25.0 5.9 6.7 21.3
reach Bermuda under (2) 19.3 35.0 12.0 16. 7 26.6
normal SOA? TOTAL 28.6 60.0 17.9 23.4 47.9

Where is Admiral (1) 10.9 28.4 7.1 8.3 22.9
now? TOTAL 10.9 28.4 7.1 8.3 22.9

Are any ships scheduled (1) 352.0 352.0 352.0 1352.0 352.0
to be in the projected (2) 9.3 25.0 5.9 G. 7 21.3
vicinity of Typhoon Dottie TOTAL 361.3 377.0 357.9 358.7 373.3
the next few days?

Aircraft or ship, with (1) 9.3 25.0 5. 9 6.7 21.3
doctor aboard, nearest (2) 9.3 25.0 5.9 6.- 21.3
in time to point x, y ? (3) 3.6 7.4 7.1 3.6 3.6

(4) 2.3 7.0 1.7 1.8 4.7
(5) 10.9 28.4 7.1 8.3 22.9
(6) 9.3 25.0 5.19 6.7 21.3
(7) 55.3 62.7 51.0 52.7 67.3
(8) 7.8 22.1 5.7 5.2 24.3(9) 10.9 28.4 7.1 8.3 22.9TOTAL 118.7 231.0 97.4 100"0 209.6

What ships with long- (1) 9.3 25.0 5.9 6.7 21.3
range radar could be (2) 10.9 28.4 7.1 8.3 22.9
in area by (3) 10.9 28.4 7.1 8.3 22.0
2400 tomorrow? (4) 9.3 25.0 5.9 6.7 21.3

(5) 55.3 62.7 51.0 52.7 67.3
(6) 9.3 25.0 5.9 6.7 i 21.3

S(7) 10.9 28.4 7.1 8.3 i 22.0
TOTAL 1115.9 222.9 90.0 97.7 199.9

* Note: Timing does not include disc unload time. See Paragraph 7.6.2 for list of

7-73

Ii
I



structure and ordering for non-AM processing. In other words, the time requirements

given for non-AM processing may be improved. Thus, 1604-B executive times may be

decreased further. It is then apparent that the non-AM system is a better system if

time requirement is a prime measure.

7.7.4 Frequency and Instruction Count

Tables 7-4 and 7-5, comparing frequency and count of instructions,are some-

what indicative of the relative programming ease* found in the associative memory com-

pared with the non-associative memory. From this table (Table 7-4 for the 1604-B

and Table 7-5 for the Goodyear Associative Processor), it may be seen that it takes on

the average twice as many 1604-B instructions to perform a subroutine than the number

of instructions required in a hybrid system. This reduction in the number of instruc-

tions is chiefly attributed to the powerful search instructions of the asbociative mem-

ory. On the other hand, the structure and ordering of the data, which is biased to

associative memory processing, increase the 1604-B instruction count over what it

would be if this structure and ordering were oriented to non-AM processing

7. 7.5 Timing of the Input Routine

The timing requirements given in the preceding paragraphs do not include the

times required to input and output the results. The design of the query system was

motivated by the desire to remove much of the bias imposed by the disc system by

minimizing disc access times. This was accomplished by noting that the desired disc

addresses of '-put blocks were known, a priori, and could be ordered prior to accessing

such blocks. This fact is true in any system, hybrid or not. Indeed, the input times

for both systems would be identical if the same data base organization and the same disc

system were used. This follows because the physical organization of a data base is

more dependent upon the disc file than upon the processors (The ordering of data within

accessed blocks is more dependent upon processors than upon the disc file).

The data access time for the CDC 818 is equal to the sum of the positioning,

confirmation, and latency times (Paragraph 7.6. 1). The maximum is 354 milliseconds

(nominal, depending upon confirmation time); the average is 225 milliseconds. After

accessing the desired block, data transfer takes place. This transfer may be given on a word ratp

*See Paragraphs 7.3.5 and 7.6.3.1.

7-74

)



TABLE 7-4. 1604-B FREQUENCY AND NUMBER OF INSTRUCTIONS PER SUBROUTINE
S•SUBROUTINE NAME

Instruction REL AND OR MAX NGT EQU TOTAL

Data Transmission .

LDA 6 1 2 3 10 2 24
STA 2 3 3 1 3 2 14 11

ARS - 2 2 - - -4

ALS 1 1 1 - 1 1 5
LRS 1 - - - - -1

Address Modification

SAU 5 2 2 8 9 3 29
lIP 1 - - - - 1
1SK 1 1 1 1 3 1 8!
sIu - - 1 - - - 1

Arithmetic

SUB 1 1 1 1 2 1 7

No Addre3s

ENQ 3 3 2 2 3 3 16
ENA 5 3 3 6 9 6 32
INA 2 1 1 2 3 1 10
ENI 5 4 3 3 5 3 23
INI 3 1 2 2 5 1 14

AJP 1 1 1 1 1 - 5
Sli 5 2 4 3 11 4 29
QJP 2 - - - - - 2

IAoalh
LDL 2 2 2 2 2 - 10

ADL 1 1 1 - 1 1 5

Storane Barch

EQS 2 1 1 1 4 1 10
THS 1 - - - 2 - 3
MNQ ..... 2 2

RAO 1 - - - -2 3

TOTAL 51 30 33 36 74 34

7-75

I 91'A



U I U .. .. . . .. .
TABLE 7-5. GAP FREQUENCY AND NUMBER OF INSTRUCTIONS PER SUBROUTINE

SUBROUTINE NAME E _
Instruction REL AND OR MAX NGT EQU TOTAL

External Functions

RESUME 1 1 1 1 1 1 6
CLEAR 1 1 1 1 1 1 6

Load
LDR 2 2 2 4 5 2 17

RBL 1 1 1 3 3 1 10
RCR - - - 2 2 - 4
RDA 1 1 1 3 3 1 10

Erase

EMY 1 1 1 3 3 1 10

Index

Id 1 2 2 1 1 1 8
LDI - - 1 - -- 1
SIX - 1 1 1 1 4

Con~trol
JUC - - - 1 1 2
JNR 2 1 1 1 1 - 6
JIH 1 1 1 2 2 1 8

Search
EMC 1 1 1 1 1 7
MMC 1 - - - - - 1
LTC 1 - - - - - 1
GEC I - - - - - 1
LEd - - - - - 1
GTC 1 - - - - - 1
MAX - - - 1 - - 1

MN- - - 1--1
NLC - - - -1-1

NHC - - - -1-1

1604B

LDA 2 1 1 1 1 1 7
LDQ 1 - - - -1

MEQ 1I
ENA I

A1JP 1 11 --- 3
THS1 - 1 4
STA I 4
BUD - 2

TOTAL 2i0 1 _ 21 13

7-76l
A

'V . . . .... ; ,



as follows: 112 microseconds on the inner zone and 68 microseconds on the outer

that is, an average of 90 microseconds-

The ordering given by the Controller reduces the given access times. SL

reduction depends upon the classes of data retrieved; that is, how many blocks are
referenced from the same position of the same disc. '. rem Paragraph 7. 6. 1. 1, ite 12).

where the data allocation is given, it is seen that data from the same class is stored

the same disc. From this fact, assuming (as in Paragraph 7. 7. 2. 2) 200 directory Y rds

of five words each for every variable, and assuming there are about 15 blocks per r , ,

that must be retrieved for each variable, the access time requirements (Paragraph 1)

are greater than 1122 milliseconds. The data transfer times and access times then

about 1.2 seconds/variable oi. the average. Thus, the query "Nearest (in time) shiv

aircraft with aircraft aboard with doctor to point x, y." would have an additional 7. 2 )nds

added. This is 35 times greater than the processing time required. Thus,even with

sophistication given by the Controller and the Input Routine to minimize these times,

system is still input bound for every query.

In this respeV~then, a natural choice is to consider a different disc syste

for example, the IBM 1302. Pertinent characteristics regarding input rates follow.

7.7.6. IBM 1302 )isc Unit

The 1302 has two magnetic disc modules on a common vertical shaft with c

cities of 117, 000, 000 s4.x-bit, or 70,660.000 eight-bit characters per module. Each moc

consists of 25 metal discs coated on both sides with magnetic oxide. The discs are

"spaced to provide access for the read-write head aeceus mechanisms. A small magn

slug, mounted on the periphery of the format disc, 14 Wnsed by magnetic transducers

provide lqdex signals for timing reference.

Each module is addressed by two access mechanisms, each having 24 arms

"which move radially in the spaces provided between the discs. Two read-write heads

mounted on each arm. One of the heads services the bottom surtace of the disc above

the arm while the other head services the top surface of the disc below the arm. In tU

way, it is possible to read or write on either side of a disc.

7-77



An access mechanism, driven by a hydraulic system, is capable of assuming

250 distiuct radial positions. For each module, one access mechanism services the outer

250 positions; the other access mechanism services the inner 250 positions. For each of

the two access mechanisms any one of the 250 distinct radial positions assumed by a head

defines a data track. Thus, on one surface of a disc there ire 500 tracks. Thn 50 disc

surfaces in a module are used as follows: 40 for data storage; one for clock tracks;

one for format tracks; six alternate data surfaces; two (the top and bottom external

surfaces) are not used. At each of the 500 access positions then, there are 40 data

tracks available by merely switching heads. These 40 data tracks, aligned

vertically, define a cylinder. Each 1302 module contains 20, 000 data tracks (40 tracks

x 500 cylinders), 10, 000 serviced by one ac.,ss mechanism and 10, 000 serviced by the

other access mechanism. Neither access mechanism may service tracks of the other

access mechanism.

The discs rotate at a rate of 1,790 revolutions per minute or 34 milliseccids

per revolution. This J ields an average latency time of about 17 milliseconds. The

tirra required to change access mechanism position ranges from 50 milliseconds ' r

small changes to 180 milliseconds for large changes. Therefore, maximum access timn

is 214 milliseconds (180 + 34). The four access mechanisms in the 1302 are positioned

independently but usc a common hydraulic system.

Internal timing is provided to yield transfer rates of approximately 234, 000

six-bit chara.tt.rs per second or 181, 320 eight-bit characters per second. Assembly of

eight 6-bit characters per 48-bit 1604 word yields a transfer rate of 29, 200 words per

second. Space allotted for addresses and gaps on the data tracks reduces the el.,!ctive

transfer rates. A gap is the space provided to separate two data a. cas. An entire

cylinder of data (234, 000 6-biZ character:s) can be tra.nsferred in ap)proximately 1. 33

seconds.

Two internai control panels arc provided in the logic section oi the 1302. One

contains a grozi- of switches and indicators for the power on-off sequences. The other

provides controls and indicators for the off-line maintenance. Both of these panels will

normally be used only for maintenance. A format read-write key-lock switch for each

module is located beside the disc array. It is accessible only with the 1302 cabinet door

openi.

7-78

t

4I



Thus, the IBM 1302 compared with the 818 requires from 67 to 214 milli-

U seconds for each access, and with one access can transfer data at a word rate of 34

microseconds for a total of 234, 000 6-bit characters. The average access time and the

data transfer rates are less than 30 percent of the 818 requirements. Additionally, more

than seven times the volume of data may be retrieved with one access. The overall

effect is to reduce the time requirements for data input on approximately the same magni-

tude as the processing requirements (recall that data must be transferred to the associative

memory before it can be processed; that is, the disc cannot be read directly into the
hr

associative memory except, of course, the A3 memory).

Perhaps the biggest impact of the 1302 on a problem of the type would arise

from use of the format track. This is explained as follows:

Before the disc module can be used for reading or writing, a format track
must be writter. for each cylinder of the module. The format track per-
mits the programmer to designate, within certain limits, how the storage
space of the dati tracks of a cylinder is to be allocated, identified, and
used. Once established, the format track provides a fixed format and
control for the subsequent reading or writing of data for that cylinder.
All data tracks within a cylinder must have identical formats. The for-
mat for a cylinder may be altered at &ny time by re-writing the format
Lt ack.

Data used to write a format track must first be organized in memory as P

data record. An appropriate instruction is then issued to the 7631 and the
data is transferred to the addressed format track. Once written, the for-
mat track remains unchanged until re-written. The format track is used
in conjunction with variable length records on each data. Consider the
impact on maintenance, where record sizes were adjusted to a fixed
number of words.

7.8 OUTPUT FUNCTIONS

After all the elements in the command list have been processed, the Run Routine

transfers to an output subroutine which performs one or n~ore (the last element in thc.

command list contains this information) of the following output operations:

(1) "Yes and No" depending on whether or not one or more items satisfy

the condition (i. e., respond).

(2) "Count" the number of items which respond (number of responders).

(3) "List" the logical names of th2 responders or the record content of
the responders.

77



Each of these output operations may also be considered as an element of the

command list. In every associative memory considered in this study, the first two

functions (which must be representable by a subroutine) may be performed by the instruc-

tions "Jump on No Responders" and "Count Responders," respectively. The last function

may be performed by executing the first two (to obtain N for the output function) then

transferring control to a 1604-B output routine.

7.9 TAG MEMORY

Most of the processing required to translate and pre-process a query in Polish

prefix form into a canonical command list form is data dependent processing. In addition,

the processing required to control (Controller Routine) the Run Routine and the Input

Routine contain a significant amount of dat' dependent processing. Data dependent

processing may be explained by considering decision points Di (14i AK) in a program.

For each decision point, let there exist more than one path P i (l-t1j.*.L). Tie particular

path to be taken may be decided at the processing time the decision point is reached. This

implies that the origin of the path Pij are coincidental with the decision point Di. Additionally,

the beginning junction of the paths Pij may be "set" by Di at some processing time which

prec~des the time of following one .If the paths. In this case, the junction point is known

as a "variable connector" (Paragraph 7.6.3.1). Each path Pi may be defined to connect

two decision points Di, or one decision point and one variable connector, or two variable

connectors. For example:

END

TO
END

TO
START D 4P12

DP2

7-80



edecision points DD2, and D3 determine one of several

(in this case) processing paths to be followed. Notice that the decision point D which

2and D3) "sets" the path at the point D This is an

pexample of a variable connector.

SIf a prcessing path from start to end (P P P P P4)performs

decision points in a serial fashion, the conditionals or decision points are said to be serial.

Then, nested conditionals occur when decision points are repeated; for example, the

processing which results from repeatedly following the path P41"

It was pointed out in Paragraphs 7.3.5, 7.6.3.1, for example, that nested

conditionals and variable connectors were difficult to handle in the Goodyear Associative

Processor. In this respect, the main advantage of associative memories is the determina -

tion of the status of a large amount of data with one instr-ction in the "same" time

usualAy required to determine the status of one element of the data in a conventional

memory. The results of the Search instruction in the associative memory are stored

in a "response store." However, in the Goodyear associative memory, there exists

little direct utilization of this response store.

A need occurred frequently to retain a response store for future processing.

Since no provision existed directly to do this, the first approach (Paragraph 7. 6. 3) is to

store the data in one half of the associative memory and use these instructions to save

a response store (at the expense of 1,024 storage words);

MMC 1, 0, 0, 0 RESET D and RS

MMC 2, 0, 0, 0 RESET E " t

EMC 1,,0,00 SET D " "

4EMC 2,0,0,0 SET E it

EMC 1,0, 1,0 Copy RS into D

EMC 2,0, 1,0 " " " E

.MC 1,0.1,1 AND " t D

EMC2,0,1,1 " " " E

EMC 1, 0, 1, 2 OR " " D

EMC 2,0, 1,2 " " " E

MAX 1,0,0,1 Copy D " RS

MAX2,0,0,1 " E

( 7-81



The disadvantage here is that only past and one current response store may

be utilized and thot oie h-If of the memory is "lost." To remedy this situation, as

Fuggestea in Paragraph 7. C. 3, leL tkare exist an association between data words in the

lower half of t he r:.emory and tag wo ds h1, the upper half. This association depends upon

the structure of the datp vn the lower talt. One immediate (and constant) association is

given in that the addresses are hb'th rntl-- 024. If each data element is a member of

the same set, for example, g-Leal r mes. 4 1'en Ns address association may be sufficient.

But suppose that the data consists ot se-ei at different sub-elements all related to one

element and that there are man,. s•ca elcnmnts. 'or example, suppose the elements

designate variables and the sub--,JemenLs a-e sý,,'h things as the 1604-B storage location

of the variable, the norm of thc- variable, etc., aL 'n the command list, then implicit

address association previously noted is insufficient. The desired association is

accomplished as follows:

Let there be M classes of elements E (1 -%n_-fM) such that class E is a
m th

sub-element of class E . Let there exist N sub-elements in the mth class. Then them" m

elements are more correctly labelled as E mn; (1 -n;Nm; m = 1, 2, . . . , M). Assume

that these data elements are stored in the lower half of the associative memory. For

each such data word stored at address AL in the lower memory, there exists a tag word

in the upper memory at address Au - (AL + 1023). This addressing is implicit and ob-

tainable by use of P element in the associative memory instruction. Divide each tag

word in the upper half of the memory into two parts,A and T, of 10 and 38 bits, respectively.

The element in AL is some E mn. In the A portion of Au = (AL + 1023) place

the lower memory address of the element Eml* In the A portion of the tag word corres-

pondLig to Eml, place the lower memory address 1 the element Em,+ 1, 1. Thus, the

address tags of the elements E mn (2:. n :"Nm) and Er_1 are the lower addresses of

element Eml*

The element T of each tag word is used to reflect the status of the element

associated with it, not its leading class number. The programmer must decel. 1"

S•i what bit or bits are allocated to each status and what the setting of the •'s means.

Suppose, for example, that the first bit of T indicated the condition of implicit or ex-

plicit variables. The data in the lower memory is tested for this condition. The D

register is then transferred to the E register and a full word of ones (111. . 11) is

written into responders through a mask with one and only one bit h.i that position corres-

ponding to the first bit of T.

j7-82

iM



3 It is therefore feasible using this Tag memory to save at least 38 previous

conditional test results (response registers) by appropriate manipulation of the mask

register.

4 Since addresses of responders in the lower memory are stored in the upper
memory,it is possible to query the range of addresses for responses as well. This device

eliminates the need, or may be used to obviate the need, to shift buffers in processing

fixed field data.

This concept of Tag memory (which is very similar to the A2 associative

memory) removes the inability of the programmer to store, retrieve, manipulate,

combine, etc. previous response store buffers. This is felt to be a most important

concept in the use of the Goodyear Associative Processor.

7-8

iS.

I
11-



SECTION VIII. COMPARISON OF THE A2 AND GAP ASSOCIATIVE SYSTEMS

8.1 INTRODUCTION

This section dcscribes how GAP and A2 functions compare to one another.

This description is presented on a functional level; the comparison analysis is accom-

plished using GAP instructions.

The motivation behind the comparison of one memory system to another can

best be understood by noting that A2 is approximately 40 percent less costly than GAP,

and that in the given hybrid configuration, the timing of the sea surveillance system is

more nearly a function of disc processing time than of associative memory processing

time. In light of these two considerations, it is natural that the conjecture would arise
that an economical memory, on the order of A2 but lacking in some of the mcre sophis-

ticated features of GAP, might well prove more than competitive. This conjecture

proves to be basically true, provided that considerable attention is given to all the qualifi-

cations that must be made in conjunction with it.

As noted In Sections V and VII, the use of a Tag memory and the use of a

memory which permits ready use of response vector. by the programmer is preferable

for many programming tasks. A2 has ample response vector and tag bit capability.

The method of testing the stated conjecture, i. e., compat ing one memory to another in

terms of GAP instructions, tends to almost completely obscure this important aspect

of the A2 memory. For this reason, the method of comparison biases the results in

ifvor of GAP. In light of the time available for the study, the method was, nevertheless,

preferable because full utilization of the tag bit and response vector capability of

the A2 memory would have compelled a redesign of many system software components.

It must also be noted that the comparison of GAP to A2 cannot be completed

in a full sense because the memories are organized differently, they communicate with

the central processor differently, and they reflect different ideas about the use of associative

processors. These differences, detailed in Section II, compel us to employ the concept of

cor'paring the functions of the different instructions applicable to the memories.

The comparison is presented in two levels: general and detail. Loading and
unloading are treated in a general level of comparison because they are limited by their

respective memory configurations. Detailed comparisons are given for searches-,

P, T, V, and Z tags; and control operations.

8-1

4



The method of comparing some instructions is not necessarily optimized.

Efforts to obtain efficient code were limited to those instructions of the GAP that were

known to be used quite often. In the area of programming, It may be quite possible for

the comparison to be favorable to the A2.

It is important to note that the method of comparison selected for this section

ignores certain features of GAP that might be of considerable value in dealing with some

problem other than the sea surveillance problem. For example, the ability of GAP to

work in parallel with the 1604-B is ignored. This feature was found to be of little value

in tUi proLlem at hand, although it is possible that other problems might find it im-

portant.

8.2 REDUCTION OF GAP TO A2

8.2.1 Communla-ion of AM Conditions

GAP o:rivides for external functions to sense conditions prevailing in the

associa ive pr,,&ssor. A2 provides instructions to perform the same tasks in the same

manner. The -wiowing table therefore provides proof of comparison:

GAP f anction A2 Instruction

(Vi Sense-Activity TRA (Sense alive)

42) S•Lnse-Parity TRE (Sense error)

i3) Sen.e-nverflow TRO (Sense overflow)

('0 CLe;:" CAM (Clear AM)

Tbo .cwt that tni. parallelism exists simplifies the compar'ison Wut ignores

the fact diat, ••r tv:,ý. mportant conditions, overflow and error, the "t-,se" option is

far less preferahie t the & programmer than other options of the A2. In actual pro-

grammi,.g. the A t',nmn •r Is more likely to use the interrupt capahility of the

machine than th- ,qr-nso instru:,tions alone. Thus, for parity conditions, the programmer

is likely to haw\c i--H I. "IER" instruction to tell the AM to interrupt on an error. In

this event, he net-d not i:ok regular sensing sequiences, or entries to them, after per-

forming AM opera•a,ns. _nstoad, he could rely on the interrupt to transfer him to his

abnormal condition routulw when and only when the error occurs. Similarly, he would

use the "10"P" irtitrzction t( gn4-rate- an interrupt whenever an overflow condition arose.

8-2



I
Since overflow and error are the most important AM conditions for the

working programmer, the interrupt capability of the A2 will make the task of coding

C simpler. It should also be noted that the design of an AM executive is an easier task

for A2 than GAP. A2 is therefore more convenient to use for overflow and error.

With respect to the timing of operations to sense conditions, A2 and GAP

should take nearly the same time, since both are essentially 1604 external functions.

With respect to locating precisely what causes an error or overflow condition,the time

required in A2 should be significantly less than in GAP since the interrupt will signal

when the error occurs, while in GAP the programmer is likely to be testing (sensing)

conditions only after an entire AM coding sequence has been performed. No specific

measure of this time is possible, of course, without actually coding each specific case

and developing formulas for each.

8.2.2 Force and Resume

The two 1604 external functions which either force or resume AM processing

for GAP do not exist for A2. For this reason it is necessary to discuss the functions

performed by the force and resumie instructions in the problem at hand. The following

discussion ignores the parallel processing capability of GAP.

8.2.2. 1 Force. The external function to force the AM normally appears in a sequence

of 1604-B codingdesigned to cause theAMto begin the execution of GAP coding. The

"force" causes the AM to fetch an instruction from location 77777,, which will normally

contain a "JUC," or "jump unconditional" command. This command will transfer control

to a routine stored in the 1604-B for execution by GAP. The only other use contemplated

for the force in the problem at hand (sea surveillance) is to cause the AM to stop. In

this event, location 777778 contains a "HLT" or "halt all AM operations. " Each of

these cases is treated separately.

When the force is used to cause transfer of control, it •oppears embedded in

1604 coding, and is probably preceded by at least one sense instruction. Location

777778 contains a "JUC" to transfer control to the AM coding to be executed. The

following table therefore shows the sequence and timing involved:

Instruction Timing (h sjc)

SEN (to prepare for EXT) 7. 0 (avg)
EXT (to force the AM) 7. 0 (avg)
JUC (GAP coding to transfer

control) 20.5
Total 34.5

8-3I



e '2, this sequence can be replaced by at most,one instruction, and

usually w, q' ire no instruction at all.

In Lhe event that the programmer desired simply to perform steps in the A2

associative memory, no sequence is required other than the coding sequence to be per-

formed. In the event that the programmer desired to perform a subroutine stored

elsewhere in the 1604 memory, either a r'turn jump or a selective jump would suffice,

Thus, while either the force or resume will be required in the GAP system whenever

AM processing is desired, it is always possible to enter processing directly using A2.

This is true because all instructions in the A2 arc either EXT instruction codes or bit

codes transferred to the I register of A2 by EXT instructions. (Loading or unloading

data can also include INT or OUT instructions.)

In the second usage of the force, in which the force causes a halt, there is

nothing analogous in A2. The value of a halt in GAP has proved to be the value of

stopping the AM processing with the contents of registers and the instruction counter

intact. This will always be the case with A2. The halt also causes the "AM active"

line to be dropped. Since A2 functions as a peripheral device, the A2 is inactive at the

completion of every operation.

8. 2. 2. 2 Resume. Like the force, resume is used to initiate processing by GAP.

Resume differs from a force in that the present value of the instruction counter is

taken as the place to begin AM processing. rather than location 77777 A resume will

probably always be preceded by a sense instruction, or by several sense irstructions.

In any actual task in the problem under ds:;cu.4,•ion, homvcer, it is alhay,; possible to

replace a resume with either a selective jump or a return jump. In most cases, no

instruction will be required. Once again, the A2. because it is essentially a unit on a

transfer channel, does not require the special start-up instructions of the GAP. Of

course, it lacks the parallel processing capability as a result..

8.2. 2. 3 Conclusions on Force and Resume. IBecause of the way in which A2 works,

neither the force nor the resume are required. Consequently, in A2, the time required

for the force and resume operations is saved. Because a force or resume sequence is

required to initiate every entry into associative processing with GAP, this difference

Is a significant one. Where n is the numtwr of times that AM coding must be entered

from 1604-Bonly processing,and where E is the average time required to execute an

external function under the input-o,'o,,t load of the problem at hand, n(E-7.2) micro-

8-4I
tV



seconds is required for either force or resume operations in the cases most favorable
to GAP. * A more likely condition for the problem at hand is n(2E), since no provision

would be required for transfer of control using A2, and, as designed, it is very likely

that at least one sense instruction would, of necessity, be required prior to each force

or resume in a GAP software system.

8.2.3 Pt T, V. and Z Tags.

The P, T, V, and Z tags are control tags that exist in GAP instructions. There
is a rough correspondence between these tags and some of the fields of A2 instructions,

although in fine points there are significant differences that make comparison difficult.

Each is treated separately in subsequent paragraphs.

8. 2. 3. 1 The P Tag. The P tag corresponds to the UL field of A2 instructions whenever

it is used to specify that an operation is to be performed in one half of the memory only

and whenever no logical operations with buffers are involved. There are, therefore,

cases in which the UL fields will suffice for representing the data normally carried by

the P tag. These cases, however, will prove to be relatively few in the sea surveillance

system. Further, there is no simple mechanical procedure for the specification of

the cases for which UL is a proper substitt, for P. This situation arises because of

the availability of the D and E buffers in GAP. Because the D and E buffers exist in

GAP, GAP programmers can be carrying on one kind of processing in one half of the

memory and another in the other, storing at least one vector in the buffers without

confusion. In A2, if such flexibility is to be providedJ604-B memory must be used as

temporary storage analogous to the D and E buffers.

In subsequent discussions, therefore, the UL field of the A2 instructions will

not be used as a substitute for instruction data carried by the P tag. This decisiorn causes

some bias in favor of GAP, since there obviously are cases where the UL field would

suffice. Nonetheless, the bias is minor, owing to th, difficulty of identifying guneral

rules.

* "E" has a value somewhere between 6 and 8 microseconds, tending toward the upper
limit.

8-5



8.2.3.2 The T Tag. The A2 memory has the provision to shift the response store

in both directions, and to shift this store a variable number of places. With the con-

vention that buffers will be represented as blocks of 1604-B storage, and with the obvious

need of maintaining these blocks of data, the use of the SHIFT field of A2 instructions,

with SHIFT having the value of 1 whenever the T field requires a shift, will provide

the needed simulation of GAP. It should be noted, however, that the BA field must

always have the value B when a shift is required.

Simul!ai.tj of the T field in A2 emphasizes the relative superiority of A2 with

respect to shifting, since neither the BA field nor the SHIFT field can be used to fullest

advantage in such a simulation. Because of the case with which the T tag is simulated,

no further discussion of it is required.

8.2. 3. 3 The V Tag. Full simulation of the V tag feature of GAP is simple enough

once the convention to store vectors in the 1604 memory, as if they were buffers, is

employed. There are two options available to the programmer to simulate the effect

of the V tag: the tag bit option and the RS option. In the tag bit option, a particular

tag bit position of the A2 is selected to represent the prior contents of S. Operations

are then selected to use the tag bit in such a way that the final value of Swill corres-

pond to the final value :,i RS in GAP. This method is highly efficient for some operations

but is hard to generalize, since the setting and use of the tag bit depend largely on

the operation to be performed. In this comparison the RS option is employed.

In the RS option, a block of 32 words of 1604 memory is set aside to repre-

sent RS in GAP. Call this area RS1. The results of RS1 are "ORed" with the value of

S whenever the GAP routine would use the V bit to inhibit the initial manipulation of

response store. Only after RS1 and S are "ORed" are the buffer areas in the 1604 operat*

upon., depending on Z.

The V tag is clearly one more feature of added flexibility for GAP, as com.•ar.

with A2. It is necessary, in this comparison, to set aside another core storage area ir.

order to simulate this tag, in addition to the need to program the operations in que-stion.

It is interesting to note, however, that the V tag was little used in programming the sea

surveiliance system. Use of this tag in simulating certain tag memory operations in

GAP has, however, been noted in Section VII.

8-6



8.2.3.4 The Z Taa. TUr Z tag controls logical operations to be performed between

RS andtheD and E buffers. The choices available to the programmer through using Z

and the A2 instructions that correspond are:

Z Ta A2 Instruction

Replace buffer with RS RSR, reading S into 1604
"And" S and the buffer Execute logic with computer

"Or" S and the buffer

Leave results unaffected No coding required.

It should be noted that this table will require the performance of one A2

instruction for three of the four options, and that 158 microseconds are required for each

such instruction. In GAP these 158 microseconds are not required. In the problem studied,

logic was frequently required for which the Z tag sufficed. In almost all cases, the use

of the Z tag would require 158 microseconds pcir hal] memory in simulation using A2.

For each such instruction 316 microseconds are even more likely, since the full memory

option is most frequently specified. It can thus be seen that having the D and E buffers

is advantageous for some standard operations.

8.2. 3. 5 The Role of SIS and Some Couclusions on Tag Fields. The SLS is an A2

instruction which, when preceding a search instruction, causes many of the tag simulation

features of A.2 to be performed automatically. When SLS is used in simulating GAP with

the A2 memory, it becomes possible to simaulate the effect of the T, V, and Z tags quite

directly. The logic OP field of the SLS, for example, can be used to select in Fi

operation which will cause "ANDing," "ORing, " or direct transfer with the block storage

being used to simulate the D or E buffer. Shifting can be specified at the same time, and

the time required to execute the specified search will be at most on the order of 160 micro-

seconds per half memory. For this reason, in searches, the full machinery of the previous

(tiscussion of the tag fields need not be employed. Simulation of the P tag continues to

he difficult. In order to provide a convenient procechlre for simulatng the P tag, it

Is necessary to say that a sequence must, at the very least, be repeated twice when P
r,.qujirs that both halves of memory are acted upon.

Because of the simulation mode required for the tag fields of the GAP instructions,

an increase should he exxected in A2 processing over GAP proceQsing in time over the range
15X ;o :120 microseconds for each operation performed using the tag fields. Since, in the

H-7



sea surveillance problem, both halves of the memory have been used, the time

differential is most likely to be 320 microseconds. Almost always, as will become clear

later, this is the major time differential between GAP and A2 - considering software

of the kind under examination in this study.

The P, T, V, and Z tags, and Lheir usefulness, are one of the strongest

recommendations for the GAP systc-n of RS, D,and E, 'nd the ability to perform logic

on them.

Except when required for other reasons, the P, T, V, and Z tags will not

be included in the following paragraphs discussing the comparison process, since the

preceding paragraphs should provide an adequate guide for the programmer required

to initiate GAP in an A2.

8.2 4 Index Operations and Control

GAP, because it can perform its operations in parallel with 1604-B operations,

utilizes its own control, indexing, and indirect addressing. In using A2, which cannot

operate in parallel in the same sense, the need for instructions to handle special AM

indirect addressing, special AM indexing, and independent AM control do's not exist.

Consequently,existing 1604-B indexing, indirect addressing, and control fex,,tures can be

utilized by the programmer.

There are minor differences in the actual results of performing instructions

whose usage is exactly parallel in GAP and the A2. For example, SIL of the 1604-B

repertoire and SIX of the GAP instruction repertoire perform essentially the same task,

except that at the completion of SIX, all parts of the affected memory location in higher

order positions of the word are zero, while the SIL instruction portion of the word is

not affected. Such minor differences can, by and large, he ignored, and it can be stated

that GAP and certain 1604 -B instructions and instruction sequences are functionally the

"same.

Instructions that are functionally the same. togethor with the corcesponding

average elapsed time for GAP and the extcution times for the 1tiO4,ar(v:

GAP ;'ý.ec.1604 sf )pe

ICI 10. 1 INI 3.0
SIX 14.2 SIL 7. 2-

4l



LDI 14.2 LIL 7.2
DEI 10.1 INI* 3.0
JUC 7.1 SI2 7.2
JIH 10.1 ISK 5.6
SPJ 14.2 SLJ 7.2
NOP 7.1 NO 8.0
GKT 7.1 None needed

As can be seen, these operations can be performed more efficie7.tly in the

A2 1604-B than in GAP. Two GAP instructions require instruction sequences. These

are JIL and JNR. For JNR, the following sequence is required:

Code Comments Time (usec)

RCS Read count of S 50 (an.. v,,:age)
INT Put count in 1604 memory 8
LDA Load A 1. 2
AJP Jump if A = 0 7.2

72.4 (average)

JNR requires approximately 7. 1 microseconds for this operation, a ratio

of 10 to 1 in favor of GAP. For JIL, the following steps might be used:

Code Comments Time (psec)

SIL Store index in memory 7.2
LDA Load A 7.2
SUB Compare with g. and if

g'b. 7.2
AJP Continde, otherwise go to h 7.2

28.8

This compares with the 10. 1 microseconds required for GAP. Hence, the

GAP has almost a 3 to I superiority in this operation.

It can be concluded that (except for NOP, JIL, and JNRI control and index

operations are simulated In the 1604-B/A2 configuration faster than in GAP,and that in this

area the use of the peripheral device design of A2 appears sound.

s8.2.5 Search Instructions

"%Tree A2 search instructions appear to correspond exactly with GAP instructions:

8OE, SO, and SGE. This appearance is not completely correct. Handling of the GAP

3 *For DEI, use INI and a negative value; and for some DEL.... JIL, use UIP.

8-9

Ii,



AI

tag fields (P, T, V, and Z) can require an additional sequence of operations requiring

approximately 160 microse-onds per half memory for simple cases, and 310 microseconds

for more complex ones. In a completely general simulation of GAP by A2, these tag

fields must be handled by routines which result in the following comparison:

Estimated Maximum

GAP Operation GAP TIME (usec) Basic A2 Operation A2 Actual Operation
Time (tsec)

EMC 32.2 SOE 368
GTC 32.2 SOG 368
GEC 32.2 SGE :368

A smilar direct comparison is available for other GAP operations, noting

that in A2, one can use the TF field to specify interest in those things which do not re-

spond to a search. Hence, the following

Estimated Maximum
GAP Operation GAP Time (jsec) Basic A2 Operation A2 Actual Time (usec)

MMC 32.2 SOE, f* 31;6
LTC 32.2 SGE, f* 368
LEC 32.2 SOG, f* 368

The instructions directly representable as in these two tables are the bulk

of the GAP search instructions used in the sea surveillance problem. The times given

above for A2 are estimated maxii'um times per 1 024 words searched. The bulk of the

time included in this estimate is the time required to simulate the P, T, V, and Z tags.

Of the estimated maximum time for the searches in A2, 360 microseconds can

he directly attributed to the need to simulate the effect of the P, T, V, and Z tags of GAP.

In certain cases, it is possible to simulate the effect of these tags in a total maximum

A2 time of only 8 microseconds, while quite f:equently 166 microsconws n rc ik,,ir"d.

GAP requires a uniform average of 32.2 microseconds per search. The fhree A? ti,,,nwi

figures, 8, 166, and 360, represent three basic cases, of which only the 1(io and

360 micro econd cases are relevaint to the sea surveillance problem. It can therefore

be said that, for the GAP searches in question, GAP outperforms A2 in an order of

magnitude of between 5 and 10 to I on pure search operations. It should

The lower case "f" indicates that response store in GAP is represented :,s non-response

in A2.

I-10



be noted, however, that nothing can be inferred from this concerning the relative
efficiency of the memories to perform an actual processing operation involving a

search. In actual coding, macros designed to locate and process data meeting a given

search criterion utilize far more time performing other AM operations than they use

for searching. In these other operations, A2 has a distinct advantage.

The more complex searches of GAP include CPX and related instructions,

and the following:

Estimated Maximum
GAP Instruction GAP Time (usec) A2 Time (usec)

iMIN 20.3 528
MAX 20.3 528
BLC 43.1 400
NLC 39.5 400
NHC 39.5 400

The comparison of the instructions to A2 can be left to the reader.

The CPX, and its related instructions, SCF and END, cannot be timed except

in terms of the actual operations that make up any given case. As is understood, CPX

is simply a mearns to perform up to eight GAP searches within words using a different

way to load the coripar..J, mask, and instruction registers of GAP. With this under-

standing, CPX can be simulated by A2 instructions as discussed above.

8.2.6 LDR and I1O

There is no need for LDR in an A2 system. LDR loads the values S, N, and

R into the appropriate registers of GAP. In A2, shifting is done by the 1604-B and the

number of ENT or OUT instructions, together with other 1604 code, control the functions

normally controlled by N and R.

With respect to time saved by not requiring LDR, it is relevant to note that the

instruction has not been used in the sea surveillance problem to set up an "S" count.

On the average, shift simulation in the 1604 should reqrire 12.4 microseconds

as opposed to the 8. 1 microseconds required by LDR. The N and R parts of the LDR are

simulated indirectly and need not be considered.

8-11



-I
•, • All input and output to and from thi. AM1 are paralleled in A2 and GAP. A2,L

•u •- vwill have a sligb~t timing advantage over GAP in that thie LDR will not be required for the

operations, and both A2 and GAP will average 7. 1 microseconds per word transferred.
m The RCR of GAP is faster, however, than the similar operation ihk A2

j1-1

lmI



mS

APPENDIX A. PRELIMINARY PROGRAMMING MANUAL

FOR THE GOODYEAR ASSOCIATIVE PROCESSOR

I. BASIC HYBRID SYSTEM (HMB)

a. External Functions

(1) Introduction

Certain functions generated by the external function instruction (EXF) in the

1604B can cause either a select or sense condition within the associative

memory (AM). The EXF instruction contains a 12-bit operation code to he

sent to the AM. This instruction causes the EXF counter in the 10O4B to hold

the operation code on the line for a sufficient period (8 usec) to ensure its

proper sampling. When it receives its operation code, the AM can execute
its portion of the instruction in less than 1. 0 usec. The AM wtll respond to

16 different function codes. Each operation code generated by the 1604B and

responded to by the AM is described briefly below.

(2) Clear All External Functions

This code resets all the sense and select flip-flops in the AM into their reset
condition, and causes the AM to go inactive (HI-T).

(3) Force

This causes the AM to resume operation. Tie Ali forces its program counter

to all ones (7771 The program counter now will contain the next instz-uc-

tic'n address in the 1604B. This address should contain an instruction jumnp to

the main program. The active line will be raised.

(4) Resume

This causes the AM to resume operation. The next AM instruction is taken

from the address contained in the AM program counter. The. active line will

be raised.

A-1



(5) Interrupt on Parity Error

This operation code sets the parity interrupt flip-flop in the AM, and resets

the parity flip-flop. The next parity error sets the parity flip-flop and turns

on the interrupt line.

(6) Reset Parity Interrupt

This resets the parity interrupt and the parity flip-flop, and turns off the inter-

rupt line.

(7) Interrupt on Overflow

An overflow occurs when more words are read into th, .AM than thcr, are

space3 to store them. This operation code resets the overflow% interrupt flip-

flop in the AM and resets the overflow flip-flop. When ai, -ver'I. I ..... r h,

the overflow flip-flop is set and the interrupt line rai..d.

(8) Reset Overflow Interrupt

Thi.s operation code resets the overflow interrupt fiip-flop and the o', erlw,

hlip-flop, and lowers the interrupt line.

(Q) Interrupt on Abnormal Cmndition

..Nn abnormal condition can otcur \, hen an instru.tion (w t.xternal fun( tion that

is decoded by the AM is not a normal function. A nugative address, ar; address

greater than 2048, or when the AM is in an active conditi,,n and receivvs either

a force or resume function, .re examples of abnormal conditions. The inter-

rupt )n abnormal condition svts the abnormal interrupt flip-.flop in the \NI and

resets the abnormal flip-flop. The interrupt line is ra:,.ed \ hen the error oc-

curs.

(10) Reset Abnormal Interrupt

This code resets the abnormal interrupt flip-flop and the abnormal flip-flop,

and lovers the interrupt line.

(I) Interrupt on AM Inactive

For a master clear, a clear all external functions, or a programmed halt

A-2

I



II

(HLT), the AM will go inactive. If the interrupt inactive ir decoded before

the AM goes inactive, the inactive interrupt flip-flop is set and the inactive

flip-flop is reset. The interrupt line then is turned on when the AM goes

inactive.

(12) Reset Inactive Interrupt

This code resets the inactive interrupt flip-flop and the inactive flip-flop, and

lowers the interrupt line.

(13) Sense AM Active

This code causes the sense response line to be raised by the AM if it is ac-

tive. If the AM is not active, the line will remain down.

(14) Sense Parity

If there has been a parity error detected since the previous clear or select

operation, the AM will raise the sense response line. Otherwise, the line

will remain down. Parity is checked each time an AM location is read.

(15) Sense Overflow

If any load operation (since the previous clear or select operatiorn Alas caused

an overflow indication to occur, the sense response line will be raised by the

AM. Otherwise, the line will remain down. Overflow occurs when more

words are loaded into the AM than there are spaces available.

(16) Sense Abnormal Condition

If any external function or instruction is decoded as an abnormal condition

after the previous clear or silect operation has occurred, the sense response

line will be raised by the AM. Otherwise, the line will remain down.

(17) Sense No Responder

This external function causes the sense response line to be raised at any time

during the AM operation. Otherwise, the line will be down. This function is

reset (no responders) at the start of each search instruction.

A-3



b. Format Description

(1) Introduction

Figure II-I(A) shows the AM instruction format for both the LDR and all other

AM instructions, along with the number of bits decoded by the AM for each

instruction, tag, and address. A description of all of the tags except those

associated with LDR is given under (2) below. The LDR tags are described

under d, below.

A suggested symbolic programrnmig format (80 column) instruction card is

shown in Figure II-I(B).

(2) Instruction Tag Description

(a) P - Portion

The P-portiun tag allows the programmer to choose that half of the memory

on which the instruction will operate. Either half or both halves may be

chosen:

P = 0 Whole memory

= I Upper half of memory

- 2 Lower half of memory

= 3 No operation

(b) T - Transfer

This tag allows the programmer to advance the buffers before execution of the

operation. Since the buffers normally hold the previous results and since the

searches have a connective specified, this tag allows searches to be extended

over adjacent locations.

Normal operation of the AM uses a T field of zero. When it is desired to con-

nect a search of one part of a data word with another part of the same da a

word stored in the next higher AM location, the second search instruction

should contain a T field of one and a "connective" (see below) other than

COPY,

A-4



LO 7UPPER 42 45: SHIFT 31 5R: A M 21 3LOWER 1 17NOT 2111N: WORD 0
LR OP CODE COUNT ADDRESS OP CODE USED [ COUNT

47 42 4 1 40 39 38 24 23 16 17 16 15 140

ALL ...PPER K q 9: 16048 LOWER I q I h: 1604B
OTHER OP CODE ADDRESS OP ZODE 2 ADDRESS

JPPER LOWER

L..INDEX TAG UPPER LINDEX TAG LOWER

L MASK TRANSFER TAG L DIRECT ADDRESS TAG

(,V FORMAT FOR TWO TYPES OFINSTRUCTIONS

* 9 10 is 16 22 23 24 25 32 33 34 15 42 4 o5

t L

Us

LAOSL symIO P.T, V, K q *S I hoW N EMKS E

L in I I 1II

(8) 5VCGESTEO C4RD FORMA4T

Figu. LU-1 - Associative Memory Instruction Format

A-5

ii"i



A T I. tag causes the contents of the buffer to shift one position toward hig,

core before execution of the instruction. rh Iasi bit of the D bufier shifts

into the first bit of the E b,.fter The las-_t bit of thF F bufier is shifted into

the first bit ol D.

1* 0 No ad-ancf- of D and E buifers

I Advance D and E buifers one placeI
toward higher numbered location
before operation

(c) V -Initialize

In normal operation (1, 0), the response store is 4ini~alized in one of sex-

eral ways before commencing the execution of an instruction. For example,

EMC initi.l:izezs to all ONES MMC. to, all ZEROS, ard read and write oper -

ations involving the 'responders" initialize the response store by copying

first the D and then the E buiffers into it. With a V tag, this initializa-

tion is inhibited and whatever may have been left in the response store by a

prior operation is taken as th( initiil conditions This can result in ANDing

together successivc EMC scarclics without cltst~irbing 'he buffers or in ORii

together su(ccessivf MMC' s-arL hes ht is expfcted that a V - 1 will be used

only with operý.tiuns on half o! me-mcry at a time tP I or 2)

V 0 Initialize rt-spo-nse- store in norrrmal inaiiner

I Operate wýith precedrng responst. store

id) Z - Connective

This tag allowvs the programmer to ,hoosc the logical connective desired at

tht end of a search rhis connertivc is used to specify how the previous re-

s'alts in thc buffers %vi!l be affe' ted by tht new resk.lts in the response store

Normally, when a partittilar half of mtmory is searched the resultz, are

stored in the cor responding bui~er so that the next search, when it uses the

resýponse' stort , wkill not destroy these rei;lts Hawe~er. the retiults of the

last half -sear~h periorrmed are always found in thr. re~sponse store.

Given the V tag, it is possible to operate on the resuilts in the response -ýtbre

A-6



only and a tag of Z equal to 3 may be used to guard the buff,2rs. Note that ii

P = 0 the response store will end up with only the results of the scirch on

upper (1024 - 2047) memory. The results from searching iower memory will

be lost.

Z - 0 Copy response store into 1) and E buffers

= I AND connective of response store into buffers

= 2 OR connective of response store into buffers

:=3 No copy

(e) K - Mask Transfer

This tag allows the programmer to inhibit the fetch of ,, mask and thus use the

same mask for several successive searches, saving the mask transfer time.

K : 0 Specifies a mask transfer for the operation
I Inhibits a mask transfer for the operation

(that is, old mask is used if oper Ii() re-
quires a mask)

(f) I - Indirect Addressing

For certain instru.-tions (JIH, JIL, JNR, JUC, LIN, SIX, and SPJ). indirect

addressing can be specified by the "I" tag. An I = 0 specifies direct address-

ing; that is, H is used. An I = 1 implies "irndirect addressing" and ih.-. ror.-

tent% of H (low order 18 bits of H) are used. A new 1, q,, and h are contained III

these low-order 18 bits,; hence, with continued I - .1 an finitet level of in

direct addressing is pissible.

1 0 Dirett addressing (H is used as address)

= I Indirect addressing (H is used to specify
address)

(g) q, and q2 , Index Tags

These two tags allow the programmer to modify the effective addrrusses used

by the AM in the usual fashion,

A-7



q1 =0, G g

= 1, G g + (Index Register No. 1)

2, G - g + (Index Register No. 2)

3, G g + (Index Register No. 3)

NOTE

(A) is read "the contents of A. " (G is the

effective 1604B address.)

q2 = 0, H= h

= 1, H r h 4- (Index Register No. 1)

= 2, H = h + (Index Register No. 2)

= 3, H = h + (Index Register No. 3)

NOTE

H is the effective 1604B address.

c. Instruction List

(1) Introduction

Eacn in-truction used by the AM in the basic hybrid system is listed below

according to the function operations. Instructions that are prefixed by an

asterisk (*) use information from the previous LDR instruction. Those in-

structions that are underlined are a direct result of this hybrid study.

(2) Load Operatiorn

The load operation is:

LDR Load AM registers (S, R, N)

(3) Input Operations

The input operations are:

I. *WAL Write into availatle locations (P. K, q1 '
go q2 , h)

2. *WCO Write conventionally (K. ql, g' q%, h)

A-$



3. *WCR Write constant into responders (P, T, V,

4. *WIR Write into responders (P, T, V, K, ql,
g, q2 , h)

(4) Output Operations

The output operations are:

1. RAR Read addresses of responders (P, T, V,
q2, h)

Z. RAF Read address of first responder (P, T,.

3. *RCO Read conventionally (q2, h)

4. *RCM Read conventionally, monitored (q2,_.)

5. RCR R-.,ad count of responders (P, V, q2. h)

6. RCA Read count of responders, a'ccumulated(P, v. 2z, _h)

7. CRS Count responders (P, V)

8. CRA Count responders, accumulated (P, V)

9. *RDR Read from responders (P, T, V, q2, h)

10. *RDF Read first responders (P, T. V. q2. h

(5) Activate and Erase Operations

The activate and erase operations are:

I. *ACO Activate convent ionally

2. *ECO Erase conventionally

3. EMY Erase memory (P)

4. EAR Erase all responders (P, T, V)

5. EFR Erase first responder (Pj T. V)

A-9



(6) Index Operations

The index operations are:

1. DEI Decrement index (q,, g)

2. ICI Increment index (ql,'g

3. LDI Load index (ql, I, q2 , h4

4. SIX Store index I,

(7) Control Operations

The control operations are:

I. JUC Jump unconditionally (I, q2 , h)

2. JNR Jump on no response (I, h,)h.

3. JIH Jump on index high (ql P2 h)

4. JIL Jump on index love (ql i-tI.----) 2 h

5. SPJ Store program counter and jump (q,, Iz

6. NOP No operation

7. HLT Halt all AM operations

c .rc... ý.p, -'ions

The search operations are:

I. *EMC Exact match of comparand (P, T, V, Z,
K. qlP g. q2 ' h)

2. *MMC Mismatch of comparand (P, T, V. Z, K,
q1, go qz. h)

3. *LTC Less-than compararni. (P, T, Z, K, qI, go
q2 . h)

4. *GEC Greater-than or equal-to comparand (P. T.
Z, K, q1 § gs q 2, h)

A-10



5. 9'LEC Less-than or eq'ial-to comparand (P, T,
Z, K, q I, g, q 2 ' h)

6, *GTC Greater-than comparand (P, T, Z, K,
11. g, q2 , h)

7. *MIN Minimum value (P, T, Z, K, ql' ,J

8. *MAX Maximum value (P, T, Z, K, q1 . g)

9. *BLC Between limiting comparands (P, T, Z,
K, ql, g. q2 P h)

10. *NLC Next lower-than comparand (P, T, Z, K,
q g, q 2 h)

11. *NHC Next higher-than coi parand (P, T, Z, K,
q g' g' q 2 ' h)

le. *CPX Complex search (P, T, K, ql, g. q 2 ' h

13. *SCF Skip complex field

14. END Fnd complex search operation

15. COB Complement buffers (P)

d. Instruction Description

(1) Introduction

Each instruction used bv the AM hybrid system is described here and the tags

associated with each instruction are shown. How the tags alter the instruc-

tions is explained.

(4) Load AM Registers Operation

(a) LDR Load AM Registers (S, R, N)

This instruction loads the AM shift-count regi. ter with the S field. loads the

AM address register with the R field, and loads the AM word-count register

with the N field. The next instruction is then fetched. The bhift-cont regis-

ter is not changed by the silift execution; however, any following instruction

utilizing the AM address register and/or the word count register destroys the

contents of these registers.

A-11



Address modification does not apply to this instruction. All fields are con-

sidered as absolute numbers.

(b) S Field

The S field is bits 41 through 36 indicating the number of places the com-

parand register, CR, or output register, OR, will be shifted (shift is an end-

around shift-right operation). The largest shift ount permissible is 63

and the largest practical is 4810, which returns the comparand register to

its original state. A shift count of 4710 is equivalent to ar erd-around shift

left on one position.

(c) R Field

The R field is bits 35 through 24 and specifies an AM starting adress. An

R of 409510 is the lztrgest possible; an R of 204710 is th* largest usable with

the 204810 %,rd AM.

(d) N Field

The N field is bits I I through 0 and specifies the count to be supplied to the
< ' 05 nN->241

AM for certain input-output operations with 0 5 N -409510 An N 204810

will cause overflow on AM input operations.

(3) Input-Output Operations

(a) Introduction

Load (write) operations transfer data words from the 1604B memory to the

AM store. Unload (read) operations transfer data from the AM store to t0e

1604B memory. For all load operations, the busy bit is set to active status

for each word written into the AM. Unload operations do not change the busy

bit active status.

A mask word is required for load operations. The presence of a ZEf in the

mask word (masking) inhibits writing in that bit position of memory. Each

input-output instruction, except RAR and RCR, must be preceded by an LDR

(load AM registers).

A-12



Address modification can occur in input-output operations; that is, q, and

q2 tags apply. Indirect addressing does not apply for input-output.

The input and output data words are shifted as specified by S except for RAR

and RCR instructions. For load operations, the data word is transferred

from 1604B memory into the comparand register and then shifted prior to

writing into the AM store. For unload operations, the output register is

filled with the contents of an AM cell and then shifted prior to transfer to

1604B memory.

In the following instructions, if V = 0, the term "responders" will be taken

to meanthose items whose buffer flip-flops have been set by a prior search.

Should the V tag be ONE, then the last half of memory searched (see P tag

description) will have determined the setting of the response store flip-flops.

Items that correspond to those response store locations where the flip-flops

are SET will be the "re'sponders.

WAL - Write Into Available Locations (P, K, ql,.. , h). - The S and N

fields of the LDR instruction must have been specified, with the R field not

applicable. A search on busy bit locations for all inactive (available) AV!

locations is performed. The contents of 1604B address U are transferred to

the AM mask register (unless inhibited by K w 1). Then a blcck of % words

from sequential ascending 1604B memory loc',tOons, HI, H + 1, , .

H + N - 1 is loý. ed into nscekndi,, ... _v_ .41 i.eatjof.4 •n necessar41v

contiguous) starting with the first available (lowest numbered) location.

The AM will genirate an overflow interrupt if words still remain to be

transferred after all available X4 locations have been fillet'.

WCO - Write Conventionally (K, qlg.. 2 ,). - The S, R, and N fields of

the LDR instruction must have been specified. The contents of 1604B address

G are placed in the AM mask register MR (unless inhibited by K = 1). Then

a block of N words from sequential ascending 16C4B-memry locations, H,

H + 1. H + 2, .. , H + N - 1, is loaded into sequential ascending AM loca-

tions starting at the AM address specified by R. The AM will generate an

A-13



overflow interrupt if words still remain tobe transferred after AM location

204710 has been filled.

WOR - Write Constant Into Responders (P, T. ,q, h). - The

S field of the LDR instruction must have been specified, with R and N fields

not applicable. This instruction transfers the mask word from 1604B memory

location G (unless irhibited by K =I), and the constant from 1604B location

H is placed in the comparand register (CR) and then written into every re-

sponder.

WIR - Write Into Responders (P. T, V, K, I h. - The S and N fields

of the LDR instruction must have been specified, with the R field not applica-

ble. The contents of 1604B address G are placed in the AM mask register

(unless K 1- 1). Then a block of N words from sequential ascending 1604B-

memory locations, H, H + 1, H + 2, . . ., H + n - 1, is loaded into succes-

sive responders, starting at the lowest location and proceeding to the highest.

The AM will generate an overflow interrupt if words still remain to be trans-

ferred after all responders have been filled.

(c) Output Instructions

AAR - Read Addresses of Responders (P, 'T,Vq - - No LDR instruc.-

tion is required for this operation. Each responder will h've its address

written into successive 1604B memory addresses starting with the address

specified by H. For each responder, a 48-bit word is transferred to the

i604B, wi'- ' 1, 35 through 24 contaiing tne Il -bit AM address All other

bits are zero fillod.

RAF - Read Address of First Responder (P, T, V, q2, h). - This is tie same

as RAR above except that only the first (lowest address) responder has its

address written into 1604B location H.

RCO - Read Conventionally_ (.q 2 ._ hj. - 'The S. R. and N fields of the LDR in-

struction must have been specifitd. r'his operation unloads th• contents of a

block of N AM addresses, starting at the AM address specified by R, into se-

quential ascending 1604B memory locations starting at the 1604B address

A-14



specified by H. The response store and buffe'r !'re not altered by this oper-

ation. Busy bit status will be ignored during unload.

RCM - Read Conventionally, Monitored (q2, h). - This is identical to RCO

except that every AM cell within the specified block to be unloaded that has

a busy bit of ZERO (inactive), will have all ZEROS substituted as the output

register contents for transfer to the 1604B memory. The contents of these

AM cells that are inactive will not be altered within the AM itself.

RCR - Read Count of Responders (P, V. q2, h). - No LDR instruction is re-

quired before this operation. This operation uses the response resolver and

a resolver accumulator register to determine the number of responders. The

count is transferred to the output register in bits 14 through 0 of a 48-bit word

(all other bits ZERO filled) and transferred to 1604B memory at the address

specified by H. The resolver accumulator register is cleared to ZERO be-

fore the counting operation begins.

RCA - Read Count of Responders, Accumulated (P, V, q 2 ,h). - This is the

same as RCR except that the count of responses is added to the existing con-

tents of the accumulator register.

CRS - Count Responder (P, V). - The manner of operation is identical to RCR

except that the contents of the resolver accumulator register are not trans-

ferred to the 1604B.

C•A - Count Responders, Accumulated (P, V). - This is the same as RCA

except that the contents of the resolver accumulator register are not trans-

ferred to the 1604B

RDR - Read from Responders (P, T. V q2 , h. - The S field of the LDR in-

struction must have been specified, with R and N fields not applicable. The

contents of each responder are transmitted to successive 1604B locations

beginning at H.

RDF - Read First Responder (P, T. V, q2...W. - This is the same as RDR

3except that only the contents of the first (lowest address) ref ponder will be

transmitted to 1604B location H.

A-15



(d) Activate and Erase Instructions.

Activate and erase type instructions are provided to alter the status of the

busy bit of AM cells. Although not an input operation (in the sense that data

are physically transferred frjm 1604B to the AM), the effect on the busy bit

is that of loading (writing) a ZERO or ONE into that bit position of AM celP;.

The other 48 bits of an AM cell are not altered by act,_',"te or erase oper-

ations. All the write operations of the previous section set the busy bits of

the affected cells to ONE (active)

ACO - Activate Conventionally. - The R and N fields of the LDR instruction

nmust have been specified, with the S field not applicable. This operation sets

the busy bit of each AM cell to ONE (ative) for a contiguous block of N cells

(lower to higher), startirg at the AM address specified bý R. No other bits

of tne AM cell are altered.

ECO - Erase Conventionally. - This is identi al to ACO except that the busy bit

of each AM cell is s,'' to ZERO (inattive).

EMY - Erase Memory (P). - No LDR instruction is required before this oper-

ation. The selected portion of the AM store (P = 0. 1, 2) %kill have the busy

bit of every AM cell set to Z2'RO (inactive).

EAR - Erase Rcsponders (P, T, V - No LDR irnstru(tiun is required before
this operation. All AM cells containing respondents will ",ave their busy bits

set to ZERO (inactive).

EFR - Erase First Responder (P. T. V). - No LDR instruction is required be-

fore this operation. 'he cell tontaining the firbt (lowest address) responder
will have its busy bit set to ZERO (inactive).

(4) Index Operations

(aj Introduction

There are three real index registers (1, 2, and 3) in the AM. and one virtual
register (0) that contains all zero.s. For all instructions except LDR, there

are two address fields, rL and h, and an index tag field associated with each

A-16



address. For all instructiors, the'contents of the specified index register
(0, 1, 2, or 3) are added to the contents of the instruction addres'• field to ob-
"tain an "effective address" before a fetch from the 1604B is executed. The
mask for search operations is obtained from 1604B location G, where G =

g + (ql) if K = ZERO. Otherwise, the previous -rask will oe retained. When
a comparand is required. it is obtained fr6ra 1604B location H where H =

h + (q2 ). ql and q. may specify the same index register or they may be dif-

ferent.

Index registers are 15 bits long and operate with two', complement arithmetic,
similar to those of the 1604B.

(b) Index Instructions

DEI - Decr'ement Index (qlg. - The index register specified by q is decre-
mented by the amount shown in field g. If ql : 0 specifying the virtual regis-

ter, t,,is instruction becomes a pass.

ICI - Increment Indgx (g). - The index register specified by qI is incre-
mented by the amount shtn in fivid g. If ql = 0. specifying the virtual regis-
ter. this instruction becomes a pass.

LDI - Load Index (ql. 1 . . h). - The field q, specifies the index register to
be loaded. If I 0 0. thte number in the H field is entered into q If 1 7 1. the
contents, of the 18 right-ro~s bits of the l604S location H are loaded into the
instruction register and reinterpret.:d as a new 1. q, Ih. If ql = 0. this in-

struction becomes a pass.

SIX - Store Index (q, I. q2, h). - The contents -( the index register specified
by q ate stored in the IS right-most bits of 1604B loc~tion H when I = 0. If
I = I, the contents of 1604B locatitn H (18 right-most bits) are loaded into
the AN Instruction register and reinterpreted as a new I. q2, h. When q,
0, this instruction stores zeros in the specified ',cation.

(5) Gontrol Operations

(a) Introduction

In normal operati'-)n. the program counter contains the address of the location

A-17



in the 1604B at which the next AM instruction to be executed may be found.

Its contents are incremented after the fetch and before the execution of each

instruction. The operations discussed here can modify this normal sequence

of instructions.

(b) Control Instructions

JUG - Jump Unconditionally (I, q2 , h). - If I = 0, this instruction causes the

program counter tu be loaded with the number specified by H. This causes

a transfer of control to the sequence of AM instructions beginning at 1604B

location H. If I = 1, the contents of the 18 right-most bits of 1604B ±ocation

H are loaded into the instruction register and reinterpreted as I, q2 , h. This

is, in effect, an "indirect jump" with an infinite level of indirectness.

JNR - Jump on No Responders (. q 2 , h). - This instruction examines the

state of the report flip-flop (see section on searches). If this flip-flop is set,

indicating "no" responders, this instruction becomes an unconditional jump

to H or to the contents of the 18 right-most bits of H, depending on whether

I = 0 or 1, respectively (see JUC above). If the report flip-flop is reset, in-

dicating "some" responders, this instruction becomes a pass and the program

counter is not modified.

JU-I - Jump on Index High 1 ,2,_hI. - The contents of the index regis-

rter specified by ql are compared with the number in the g field of this instruc-

tion. If the contents of the index register are greater than &, this becomes a

jump to L or to the address specified by the 18 right-most bits of H, depend-

ing on the value of I (see JUC). If the contents of the index register are less

than or equal to IL this instruction becomes a pass and the next instruction in

sequence is executed.

JIL * Jump on Index Low (g 1 g, !, g 2 ,...._. - The t.ontents of the index regis-

ter specified by q, are compared with the number in the &field of this instruL-

tion. If the contents of the index register are less than or equal to 1, this be-

comes a jump to H or the contents of the 18 right-most bits of H. depending

on the value of I (see JUC). If the contents of the index register are greater

than J. this instruction becomes a pass.

A-IS



Jim

SP3 - Store ?rogram Counter and Jump (ql, gj, 1, 2 ,h). - The contents of

the program counter (the location of the next instruction in sequence) are 'S

stored in the 15 right-most bits of 1604B location G. The remainder of the

word at G is set to zero. The progrim counter is then loaded with H if I -

0. If I = 1, the contents of the 18 right-most bits of 1604B location H are

reinterpreted as I, qz, h.

NOP - No Operation. - This instruction does nothing and serves as a pass.

HLT - Halt All AM Operations. - This instruction terminates all operation

in the AM, and "drops" the "AM active" line. The program counter will con-

tain the address of the instruction immediately following this halt. If oper-

ation is reinitiated with a "resume" ext,;,mnal function code by the 1604B, exe-

cution of instructions recommences at this address. If, however, a "force"

external function code is given, the program counter is forced to all ONEs

and takes the next AM instruction from 1604B location 777778.

(6) Search Operations

(a) Introduction

For all searches, the contents of the shift-count register, as determined by

the last LDR instruction, will cause a right end-around shift of th, -

parand before the search is begun. The contents of the mask register are not

shifted, Each search .-peration executed will reset the report flip-flop if any

cells in the AM "respond" (that is. meet the search criterion). The report

flip-flop will be set preceding any searc( h.

The AM memory is divided into two halves: the lower, locations 0 through

1023. and the upper, locations 1024 through 2047. There is a bank of 1024

flip-flops called the D buffer associated with the lower and a similar bank

called the E buffer associated with the upper. All searches (except for MAX

and MIN) examine the lower half of memory and then the upper half. Tem-

porary results of each half-search are stored in a third bank of 1024 flip-

flops called the response store (RS). After each half-search is completed,

C1 the contents of the RS are gated into the appropriate buffer. There are four

A-19



different modes of executing this gating; the mode that is employed is deter-

mined by the Z tag of the instruction. The chosen mode will be the same for

boon halves if both are searched. Not all the connectives can be used with all

searches.

The results of the last half-search are left in the response store. In normal

operation, all search operations first clear the RS to either all zeros or all

ones depending on the algorithm employed. By writinig a V tag of one (V = 1)

with a search operation, this initial clear is inhibited and the "old" contents

of the RS are used as the initial conditions.

NOTES

1. For all search operatiohs any rells with a busy bit of

zero are not eligible as responders. That is, each

search operation includes an exact match operation on

busy bit equal to one.

2. By "unmasked comparand" is meant the contents of the

comparar.d register where bit positions for which the

mask register contains zeros are not considered and

the field defined by the ones in the mask is treated as

if it were contiguous.

3. When K tag - 0, a mask Ls transferred; when K - 1.

masK transfer is in)t ioited and old contents of mask

register are used.

(b) Search It.structions

EMC - Exact Match of Comparand (P, T, V. Z. Kq ,..~q 2 . h). - Those

cells in the AM containing words that match the comparetwi in every unmasked

bit position will have their RS flip-flops set. Those cells containing words

that mismatch the comparand in any unmasked position will have their RS flip-

flops reset. V --! 0 causes an initial set or the RS. V r I will AND the old

contents to this search. Allowable Z connectives are 0, 1. Z, and 3.

A-20



MMC -Mismatch of Comparand (P, T. V, Z, K, ql1  z . Those cells

in the AM containing words that mismatch the comparand in any unmasked po-

sition will hare their RS flip-flops set. Those cells containing words that

match the comparand in every unmasked position will have their RS flip-flops

reset. V = 0 causes an initial reset of the RS. V = I ORs the old contents

of the RS with this search. Allowable Z connectives are 0, 1, 2, and 3.

LTC - Less-Than Comparand (P, T, Z, K, q1 , g, _ 2 , h). - Those cells in

the AM containing words that are less than the unmasked comparand will have

their RS flip-flops set. Those cells containing words that are greater than or

equal to the unmasked comparand will have their RS flip-flops reset. Allow-

able Z connectives are 0, 1, 2, and 3.

GEC - Greater-Than or Equal-To Comparand (P, T,_ Z, K, ql,.Kt, h)-

Those cells in the AM containing words that are greater than or equal to the

unmasked comparand will have their RS flip-flops set. Those cells contain-

ing words that are less than the unmasked comparand will have their RS flip-

flops reset. Allowable Z connectives are 0, 1, 2, and 3.

LEC - Less-Than or Equal-To Comparand (P, T, Z. K, gfqit,_ q, h)-

Those cells in the AM contain:ng v ords that are less than or equal to the un-

masked comparand will have their RS flip-flops set. Those cells containing

words that are greater than the unmasked comparand will have their RS flip-

flops reset. Allowable Z connectives are 0, 1, 2, and 3.

GTC - Greater-Than Comparand (P, T, Z. K. Ql . - Those cells

in the AM containing words that are greater than the unmasked comparand

will have RS flip-flops set. Those c..wntaining words that are less than or

equal to the unmasked comparand will have their RS flip-flops reset. Allow-

aLble Z connectives are 0, 1, Z. and 3.

MIN - Minimum Value (P, T. Z. K. ljj. - The cell in the AM that con-

tains the word that is least within the unmasked field will have its RS flip-

flop set. All other RS flip-flops will be reset. The buffer is used for tem-

porary storage, prohibiting the use of the OR and the NOCOPY connectives.

No comparand is required. Allowable Z connectives are 0 and I

A-21

Y



MAX - Maximum Value (P. T, Z, Kql, g1 . - The cell in the AM that con-

tains the word that is greatest (within the "inasked field) will have its RS

flip-flop set. All other RS flip-flops will be reset. The buffer is used for

temporary storage, prohibiting the use of the OR and the NOCOPY connec-

tives. No comparand is required. Allowable Z connectives are 0 and I.

BLC - Between Limiting Comparands (P, T, Z. K. it R qz, h). - Those

cells containing words less than the unmasked comparand stored in 1604B

location H and greater than the unmasked comparand stored in 1604B loca-

iion H + 1 will have their RS flip-flops set. Cells containing words equal to

or outside these limits will have their RS flip-flops reset. This instruction

consists of an LTC search followed by a GTC search. The buffer is used for

storage of the results of the LTC search, prohibiting the use of the OR and

the NOCOPY connectives. The allowable Z connectives are 0 and 1.

NLC - Next Lower-Than Comparand (P. T, Z. K. q 1 -i' 92 ,--•" The cell

in the AM which contains the word that is greatest within the unmasked field

and still less than the unmasked comparand will have its RS flip-flop set.

All other RS flip-flops will be reset. This instruction consists of an LTC

search followed by a MAX search. The buffer is used for storage of the re.-

sults of the LTC search prohibiting the use of the OR and the NOCOPY con-

nectives. Allowable Z connectives are 0 and I.

NHC - Next Higher-Than Comparand (P. T, Z, K, q lg. 2 . h). - The cell

in the AM containing the wocd that is least within the unmasked field and still

greater than the unmasked comparand will have its RS flip-flop set. A1, Other

RS flip-flops will hN reset. This instruction consists of a GTC search fol-

lowed by a MIN search. The buffer is used to store the results of the GTC

search, prohibiting the use of the OR and the NO%-,OPY connectives. The

allowable Z connectives are 0 and I.

CPX - Complex Search (P, " T a h. - rhis instruction permits

the execution of up to eight connected searches on distinct, contiguous. non-

overlapping fields of a word. A mask is fetched from 1604B location G. A

"complex instruction" is fetched from 1604B location H. It consists of eight

A-22



6-bit fields, each of which specifies a se, rch and a connective. A word is

fetched from 1604B location H + 1 and is loaded into the field definition regis..

ter. Each ONE in the field definition register marks the left edge of a field.

Each field consists of the position marked by its initiating "ONE" and any

ZERO positions that precede the next ONE. The left-most search is exe-

cuted first on the first field, then the second search is executed on the sec-

ond field and so forth. A comoarand is fetched from 1604B location H + 2

and any other comparands required (by a BLC, for instance) come from H + 3,

H + 4, etc. The searches that may be executed include all those above and

the two additional codes that follow.

SCF - Skip Complex Field. - This code is used only within a complex instruc-

tion and indi ates that no search is to be executed on the corresponding field.

It serves as a NO-OP or pass.

END - End Complex Search. - This code is used within a complex instruc-

tion; it terminates the iastruction when there are less than eight operations

to be performed.

COB - Comlement Buffers (P..- This operation is used to complement the

D and/or E buffers, depending on P = 0, 1. or 2. The complement of a bu :r

is transferred into the response store, and a busy bit search is performed

with AND connective. The response store is then transferred back to the

buffer. With P = 0, both the D and thc E buffers are complemented.

e. Instruction Timing

The setup and transfer timing for each instruction was obtained from the surr-

mation of the microtimes listed in Table IV-4 in Appendix IV (Page 140). The

timing was analyted on the basis of the work effort being accomplished on the

actual hybrid associative memory hardware design. At the writing o(Ithis re-

port, however, this design is not complete. For this reason, some of imTr-.:-

tion time estimates will be less precise than others. For example, the vari-

ous read/write instructions range from simple ones to those involving bit

searching and resolving. The nominal times for these read/write instruc-

t.,. tions range from 4 to 5 usec per word. To simplify the timing analysis and

A-43



to include any final design variations in the nominal times, a conservative

6 usec per word has been chosen for all read/write instructions.

TABLE II-! - MAJOR SUBTIMES FOR ASSOCIATIVE
N

MEMORY INSTRUCTIONS.

Subtirne kscc)

Instruction Minimum "Maxi mum

Instruction fetch (IF) 7. 56 k10. 76

Decode instruction (DI) 0.04 •0. '4
(special cases)

Instruction housekeep (IH) 0.48 0 48
(norma, cases)

Mask fetch (MF) 7.56 10.76

Mask housekeep (MH) 0.44 0.44

Comparand fetch (CF) 7.56 10.76

Search housekeep (SH) 0.40 0.80

AM memory - Memory access 1604B 8.753 11.953

The instruction timing breakdown follows.

1. LDR - Load AM registers (SRN,"

Minimum Maximum

IF 7. 56 0, 76

DI 0,04 0.04

Gate to S. R, N registers 0.013 0,013

Set S, R. N r.ýgisters 0, 04 0.04

7.653 10.853

tmin -7. 65 use.

tmax 10. 85 usec

A-24

I

V|



2. WAL - Write into available locations (P, K, q1l g,

q2 0 h)

Minimum Maximum

IF 7.5 10.76

IH 0.48 0.48

K 1 8.04 11.24

MF if K = 0 7.56 10.76

MH 0.44 0 44

16.04 22.44

CF (N words) 7. 56N 10. 76N

Write AM (N words) 6. 00N 6. OON

13.56N 16.76N

K= I

t in = 8.04 + 13. 56N visec

t = 11.24* 16.76 N usec

K-0

t 16.04 * 13. SbN p.secmin

Smax 22.44 + 16.76N psec

3. •CO- Write conventionally (K. ql. g. q 2 . h)

7.56 10.76

IH 0.48 0.48

K 8.04 11.24

K: 0•F 7.56 10.76
MH 0.44 0.44

16.04 22.44

CF/Writ. AM words) 13.56N 16.76N

A-



K=1

tmin = 8.04 + 13. 56N Psec

tmax = 11. 24+ 16.76N psec

K=0

tmin = 16. 04 + 13. 56N psec

tmax = 22. 44 + 16. 76N psec

4. WCR - Write constant into responders (P, T, V, h, ql,

go q2 , h)

Minimumn Maximum
K- =l

IF + IH 8.04 11.24

CF 7.56 10.76

15.60 22.00

K-0

MF + M1 8.00 11.20

23.60 33,20

Write into AM (N re-
sponders) 6.OON 6.OON

K= I

tmin 15.6 +6N psec

t mx= 22.0 + 6Np•sec

K=0

tin 23.6 + 6Npsec

tmt 33.2 +6N psec

5. WIR- Write into responders (P, T, V, K. qj, g q2 , h)

A-26



Z7
Minimum Maximum r

IF + IH 8.04 11.24
K=0

MF + MH 8.00 11.20

16.04 22.44

CF/Write AM (N words) 13. 56N 16. 76N

K~l

tmin 8.04 + 13.56N Psec

t x 11. 2 4 + 16 .76N psec

K 0

tmin 6 . 0 4 + 0.56N psec

t m 22.44 7' ?6Npsecmax

6. RAR - Read address of responders (P, T, V, q2, h)

IF 7.56 10.76
DI 0.04 0.04

7.60 10.80
Decode address of respond-
ers where N is the number
of responders 0.013N 0.013N
AM address register set
(N responders set) 0, 04N 0. 04N
Output register met to
memory access 1604B
(N words) 8.74N 11 94N

8.793N I1. 993N

tmin 7.60 + 6.79Npsec

t 0. 8 0 + O1.19Npsecmax

j A-27

Ai



7. RAF - Read address of first responder (P, T, V, qZ, h)

Minimum Maximum

IF + DI 7.60 10.80
AM address register set
to memory access 1604B 8.78 11.98

16.38 22.78

Decode address of re-
sponders 0.013 0.013

tmi 16. 39 psec

t -- 22. 79 psec

8. RCO - Read conventionally (q2. h)

IF + DI 7.60 10.80

Read AM/access 1604B
(N words) 14.753N 17.953N

tmin = 7.60 + 14.753N psec

t max= 10 80 + 17 .953NFsec

9. RCM - read conventionally, monitored (q2 . h)

Same as RCO

trai = 7 60 + 14. 753N psec

tmax = 10.80+ 17.953Npsec

10. RCR - Read count of responder (P, V. q2. h)

IF + DI 7.60 10.80

Response count (single a a
responder) 0.832 0.832
Response counter set 0.04 0.04

1l0 psec aximum) for Z048 respondere.

A-28



Minimum Maximum

AM output register set to
memory access 1604B 8.74 11.94

17.212 23.612

t min =-- 17.21 psec

t max = 23.61 psec

1 1 RCA - Read count cf responders accumulated (P, V,

.Z' h)

RCR values 17.21 23.61

Gate to adders 0. 02 0. 02

Adder propagation 0. 14 0. 14

17.37 23. 77

t min = 17. 37 psec

t 23 .77 77sec

?. CRS - Count responders (P. V)

IF + DI 7.60 10.80

Response count (single
responder) 3.83Z 0.837a

Response counter set 0.04 0.04

8.472 11.672

a10 psec (maximum) for 2048 responders.

)I2



t = 8. 472 psec

t 11 .672psec•:, max

13. CRA - Count responders accumulated (P, V)

Minimum Maximum

CRS values 8.472 11.672

Gate to adders 0.02 0.02

Adder propagation 0.14 0.14

8.632 11.832

ti - 8. 53 psec
imin

• tmax 11.83 psec

14. RDR - Read from responders (P, T, V, q 2 ' h)

IF + DI - 7.60 10.80

Read AM/access 1604B
(N responders) 14. 753 17.953

tmin 7. 60 + 14. 7S3N psec

t max 10.80 + 17. 953N psec

15. RDF - Read first respondor (P, T, V, q2 , h)

IF + DI 7.60 10.80

Read AM/access 1604B 14.753 17.953

22. 353 28.753

t min -22. 353 psec

man
2A753psec-

A-SO

• mml •nl • m m P m • mm m l im u m • • m wutumm



16. ACO - Activate conventionally

Minimum Maximum

IF + DI 7.60 10.80

Set busy bit to zero (N
words RD/WRT cycle) 6. OON 6. 0ON

tmin = 7.60 + 6N psec

tmax = 10.80 + 6Npsec

17. ECO - Erase conventionally

Same as ACO

tmin = 7.60 + 6N psec

tmax = 10.80 + 6N psec

18. EMY - Erase memory (P,

IF + DI 7.60 10.80

P = 1 or 2, erase busy bit
on low or high memory 5.00 5. 00

12.60 15.80

P -- 0, erase busy bit on
both low and high memo-
ries 5.00 5.00

17.60 20. 80
P = I or 2

tmin = 12.60psec

tmax= 15. 80 psec

P=0
tmi = 17. 601usec

min

trnax = 20.80 psec

A-31



I

19. EAR - Erase responders (P, T, V)

Minimum Maximum

IF + DI 7.60 10.80

Set responders busy bit
to zero (N responders) 6. OON 6. OON

tmin = 7.60 +6N psec

tmax = 10.80 + 6Np sec

20. DE1 - Decrement Index (ql, g)

ql = 0, IF +DI ': 7.60 10.80

Sub propagation 0.14 0. 14

Select index register q, 0.013 0.013

Set index register q, 0. 04 0. 04

7.793 10.v"j

tmin = 7. 60 psec

pass or NOP
t a 0 . 80 Vto ecj

1q'l 1, 2, 3

tmi = 7. 79 psec

1 Ct 0. l,99 psec•: max

S Z1. ICI - Increment index (qjv g)

Same as DEI except sub propagation equal adder propa-
gation
q, Z 0 :

t min 7.60 IAsec
tpass or NOP

t 10.80 Posec

A-3



I
q 1, 2, 3

tmin 7.79 psec

tmax = 10.99 psec

22. LDI - Load index (q, I, qZv h)

Minimum Maximum

ql=0

IF + DI (pass or NOP
whenql = 0) 7.60 10.80

I = 0, ql = 1, 2, or 3

Gate to adders 0.02 0.02

Adder '?ropagation 0.14 0 14

Select index register q, 0.013 9, 013

Set index register q, 0.04 0.04

7.813 11.013

I=1

IF + DI 7.64 10.8

Execute LDI 7.81 11.0)

15.45 21.81

q, ;0

t 7.60 psec

t 1 10.80 psecr
max

I a 0, q, 1, 2, 3

tmin

t mi 7.861 Poo c

tmax = 11.01 Usec

A-33 e



I= 1

tmin = 15.45 psec

tmax = 21.81 psec

3 SIX -Store index (ql, I, q2, h)

Minimum Maximum
I= 0

Same as LDI for I = 0,
ql = 1, 2, or 3 7.813 11.013

Access 1604B memory 8.753 11.953

16. 566 22. 966I=0

ti = 16. 57 psec
min

= 22. 97 psectmax -

I= 1

Same as LDI for I I

tin = 5. 4 5 psmc

= 21.81 psec

24. JUC - Jump unconditionally (1I, q2 , h)

I =0
IF 7.56 10.76
IH 0.48 0.48

8.04 12.24I = 1.,

IF + IH 8.04 12.24
IF 7.60 10.76
Gate to program counter 0.013 0.013
Set program counter 0.040 0.04

15.693 23.053

A-3



SS

1=0

tmin 8.04 psec
: 12. 24 Pasec

max

I:

tMin = 15. 6 9 psec

tmax = 23.05 IPsec

25. JNR - Jump on no responders (I, q2 , h)

Minimum Maximum

Yes responders
IF 7.56 10.76

DI 0.04 0.04
7.60 10.80

No responders

I=0
IF 7.56 10.76.
IH 0.48 0.48

8.04 11.24

I= I
IF +IH 8.04 11.24
Fetch address (H) from
1604B 7.60 10.76
Gate (H) to program
counter 0.013 0.013

T rSet program counter in
AM 0.040 0.040

15.693 22.053
Yes responders

tmin 7 . 6 0 psec

t s 10. 80 usec

A-35



No responders (1 0)

t S. 804 psec
mm

tmax 11.2 4 psec I
No respondels (I 1

tm. 15. 69 psec

t 22. 05 jisec

26. JIH - Jump on index high (qlo go Is q2, h)

Minimum Maximum

Index register go 08
IF + DI 76 08

Test index 0. 20 0. 20

7.80 11.0
IR~ g

Same as JUC except add 0. 2 for test index

10

tmn= 8.24 psec

= 12. 44 jasecmax

tmi 15. 89 Psec

tma 23. 25 psec

IRSS

t 7.80 psec

1mx 1. 00Psec

A-;36



U

s\

27. JIL - Jump on index low (ql' go I, q2, h)

Same time as JIH

tmin 8.24 psec

tmax = 12.44 psec

I I IR< g

tmin = 15.89 psec

tmax = 23.25 psec

IR g

tran = 7. 80 puec

t = 11. 00 vsec
max

28. SPJ - Store program counter and jump (q, go Is 92P h)

Minimum Maximum

I=0

IF 7.56 10.76

11 0.48 0.48

AM acce s of 1604B ,8. 753 11.953

16.793 23.193

Same as I 0 16.793 23.193

rFetch address (H) from
1604B 7.600 10. 760

Gats (H) to prosram 3
counter 0.013 0.013
Set program counter in
AM 0.040 0.040

0 24.446 34. 006

A-37

I 4



I=0

tmin 16.79 Psec

tmax = 23.19 psec

I=1

t ri~n 24.45 Psec
t max 34.01 psec

29. NOP - No operation

Minimum Maximum

IF 7.56 10.76
Di 0.04 0.04

7.60 10.80

tmin = 7.60 psec

tmax z F - 1'sec

30. HLT - Halt all AM operations

IF 7.56 10.76

DI 0.04 0.04

Turn off "AM active" linedriver 0.05 0.05

Turn off "AM active" lineterminators 0.05 0.05

Reset "AM active" FT in16043 0 20 0.20

7.95 11.10
t 7 .9 5 pse

t 11 0 1*tmax zll.10A-c
.A"3



31. EMC - Exact match of cormpa "dnd (P. T, V, Z, K, q,

q2 . h)

Minimum Maximum

K 1, P I or 2

IF 7.56 10.76

IH 0.48 0.48

CF 7.60 10.76

Search 49 bits (100
nsec/bit) + SH 5. 30 5. 30

20.94 27.30

K 0

MF 7.56 10.76

Mll 0.44 0.44

28.94 38.60

P"0

Search .dditional
49 biis 5.3 5. 3

34. 24 43.90

!K 1, P :I or 2

t 20. 94 ise.min

K 0, P 1 or 2

t = 8.94rain .Al

tma 1 8.60 p~se¢ :

e ~A-3 9)



Vp

K =0, P 0

t = 34.24 usecrmin

t m 43.90 utec

P = 3, time is same as NOCP

32. MMC - Mismatch of comparand (P, T, V, Z, K, q

g, qz. h)

Time same as for EMC

K = 1, P = 1 or 2

tmi = 20.94 usec

t 27.30 usecmax

X = a, P = I or 2

t min 28 "4 usec

t w'38.60 usecmaxC

K 0, P 0

tmin: 34.24 usec

t ma 43.90 usec

P z 3, time is the same as NOP

33. LTC - Less-than comparand (P. T, V. Z, K. q. g.

qZ, h)

Same as for EMC

34. G0C - Greater than or equal to comparand (P. T. V.
Z. K, q. S. q?)

Same as for EMC

A~o I



V '
35. LEC - Le.ss-than or equal-to comparand (P, T, Z, K,

q# go 0,2, H)

Same as for EMC

36. GTC - Greater-than comparand (P, T, Z, K, ql# g,

q2 # h)

Same as for EMC

37. MIN - Minimum value (P, T, Z, K, ql, g)

Minimum Maximum

P = I or 2, K = 1

IF 7.56 10.76

IH 0.48 0.48

Search 49 bits at 300
nsec/bit + SH 0.40 14.80

8.44 26.04

K=0

MF + MH 8.00 11.2

16.44 37.24

P=O

49 bits are searched 0.3 14.70
at 600 nsec/bit until
half of the memory 16.74 51.94
is eliminated from
the search, then the
search continues at
300 neec/bit plus
100 nsec for hous~e-keeping

A.-41

i
• ill •.,•=,•,• ... ....



K- 1, P - I o' 2

tmin 8 . 4ja4ec

t = 26 .04 ps •-c

K = 0, P I 0o 2

tmin = 16.44 psec

t = 3 7 .24 psec
max

K=0, P- 0

tmin 16. 74 psec
t ma 5194 psec
marx

38. MAX - Maximum value (p, T, Z, k, ql' g)

Same as MIN
39. BLC - Between limiting comparands (P. T, Z, K, ql

g, q h)

K 1, P I or 2 Minimum Maximum
IF 

7.56 10.76
IH 

0.48 0.48
CF 

7.56 10.76

Search (49 bits) at100 nsec/bit + SH 5.30 5.30
CF 

7.56 10.76

Search (49 bits) at
100 nsec/bit + Sf 5.30 5.30

33.76 43.36

i~A'-42

K 

-

___ _



P. 0OSearch time +SH 10.6 10.6

44.44 53.96

X 0 OME+MH 8.00 11.2

52.44 65.16

K i, P 1 or 2

tmin = 33.84 psec

t a 43.36 paecmax

K 1i P 0

t i 44.44 lasec

ImI

zmx 53.96 psec

Ku 0, p :0

tmin 52.44 psec

tma 65. 16 peec

40. NLC Next lower-than comparand (P, T. Z. K, ql. h)

Minimum 'Maximum

-F 7. 10.76

IH 0.48 0.48

C- 7.56 10.76

LTC search
(49bits) 5.30 5.30

Andcouin=ctive 0.20 0.20

MAX search

(49 bits) 0.40 14.80

K 1 P I or 2 21.50 42.30

A-43

__ _ _ _ _ _ _ _
.=4444-ec. _ -



Minimum Maximum

K= 1, P z or 2 21.50 42.30

LTC and MAX search
(49 bits) s.6 20.00

K =1, P 0 27.10 62.30

K 0, P= 0

MF 7.56 10.76

MH 0.44 0.44

35.10 73.50

K 1, P I or 2

t min = 21. 5 psec

tmax = 42.3 psec

K = 1, P= 0

tmi = 27. 1 psec

t = 62.3 jisec

K K 0, P 0

'Min -- 35. 10 psec

t maz= 73.5 psec

41. NHC - Next higher-than comparand (P, T, Z9 K, ql'

gi, q2 , h)

Time is sarne as for NLC, but substitute GTC for LTC

and MIN for MAX

42. CPX - Complex search (P. T. K. ql, S, q2 , h)

A-"4



I!

Minimum Maximum

IF 7. 56 10.76

IF 7.56 10.76

IH 0.48 0.48

Field definition fetch 7.56 10.76

Field definition house -
keeping 0.44 0.44

Mask fetch 7.56 10.76

Mask housekeepi.lng 0.44 0.44

31.60 44.40

NOTE

(1) This instruction can execute up to eight connected

searches of any search combination. Thus, Lhe time

differs for each combination and depends on the search,

the field definition, and the comparand fetches. As an

example, for MIN or MAX there is no comparand fetch,

but for eight BLC there are 16 comparand fetches.

(2) The number of fields (F) must equal the number of in -

structions (1). If F < I, tnen only F number of instruc-

tions will be executed and the remainder will be treated

as an SCF (skip complex field).

43. SCF - Skip-complex field (used only with a complex

instruction)

Decode instruction 0.04

Search N1 bits for n~ext field, 13 nsec/bit 0.013N1

t u 0.04 + 0.013NI asec

A-45



|0

44. END - End complex search (used only with a complex

instruction)

Decode instruction 0.04

t = 0.04 psec

45. COB - Complement buffers (P)
t Minimum Maximum

IF 7.560 10.760

IH 0.480 0.480

Complement buffer 0. 100 0. 100

Transfer into re-

sponse store 0.013 0.013

Search busy bit 0.100 0.100

AND connective 0.200 0.200

Transfer into D or E
buffer 0.013 0.013

P 1 or 2 8.466 11.666

P 0 0.426 0.426

S8.892 12.092

P = I or 2

t 8 .47 Pasec

t max =1. 67 Psec

P=O

t min 8.89 Psec

t max 12.09 Psec

______________A-"



7,

2. HYBRID SYSTEM WITH HIGH-SPEED STORE

a. Introduction

Timing in this section has been calculated on basis of all the instruc-

tions listed in the basic hybrid machine (HB). Only a few of these

.nstructions are used in the "optimized hybrid systems." It is con-

ceivable that proble na of a nature other than those explored under

contract may use additional instructions; thus for completeness, all

instructions are timed out.

b. External Functions

The external functions used in the hybrid system with high-speed

store are the same as those for the basic hybrid system described

previously in this appendix.

c. Format Description

The instruction format used in the hybrid system with high-speed

store is the same as for the basic hybrid system previously de-

scribed in this appendix.

d. Instruction List

The instruction list used in the hybrid system with high-speed store

is the same as the one given in the basic hybrid system previously

described in this appendix with the exception oi one additional in-

struction. This new XMT (transmit) is an input-output instruction,

and must be preceded by an LDA instruction. All the instructions,

except XMT, have been described previously in this appendix.

For XMT (transmit) the S, R, and N fields of the LDR instruction

must have been specified. The content of the H address is placed

in the data address register (DAR) and the content of the G address

is placed in a second data address register (*DAR). If G and H are

greater than 4095, a block of N words is read from 1604B addresses

G. G + 1, G + Z, etc.. and written into 1604B addresses H. H + 1.

A-47

ii
!•:: r~r•:• • :.... ' .... 2 •



TABLE 11-2 - ASSOCIATIVE MEMORY INSTRUCTION TIME

USING A HIGH-SPEED STORE

Time (pisec)

Instruction Minimum Maximum

Instruction fetch (IF) 0.86 0.86

Decode instruction (DI) 0.04 0.04 (special c;tSeisb

Instruction housekeep
(IH) 0.48 0.48 (normal cases)

Mask fetch (MF) 0.86 0.86

Mask housekeeping
(MH) 0.44 0.44

Comparand fetch (CF) 7.56 10.76

Search housekeep (SH) 0.4 0.8

Write into memory AM 6.00 6.00

Read from memory AM 2. 54 6..00

AM to access 1604 B 8.7S 11.95

Write into HSS memory 1.00 1.00

Read from HSS memory 0.50 1. 00

H I + 2, etc. It G and H are less than 4096, a block ol N words is

read from the high-speed store addresses G, G - I. G. etc..

and written into the high-speed store addresses H. 11, I. Ii - 2.

etc. If G is greater than 4095 and H is less than 409b, a b•ock of

N words is read from 1604.3 addresses G, G * 1, G - 2. .tc.. and

written into the high-speed store aiddresses H. H + 1. I1 4 2. etc.

If G is less than 4096 and H is greater than 4095. a block v if N words

is read from the high-speed store addresses G. G + 1. G C 2. etc.,

and written into addresses H, H + 1. H + 2, etc.

0. Instruction Timing

Setup timi-'• for each instruction was obtained from the summation

A-48



of the microtimes listed in Tables IV-4 and IV-5 of Appendix IV of

RADC-TR-65-445. Minimum and maximum values (in mioroseconds) of

time are given for each instruction used by the AM. The major subtimes for

each instruction are given in Table 11-2.

The instruction timing follows.

1. LDR - Load AM registers

Minimum Maximum

IF 0.86

DI 0.04

Gate to S, R, N
registers 0. 013

Set S, R, N
registers -.04

0. 953

t = 0. 95 psec

2. XMT - Transmit

a. Read from 1604B, WRT into HSS

IF (see time HB) 7.56 10.76

IH 0.48 0.48

K a 1 8.04 11.24

MFifK = O(see
time HB 7.56 10.76

MH 0.44 0.44

16.04 22.44

CF N worcis (see
time HB 7. 56N 10. 76N

WRT HSS N words 1.00N 1.00N

8. 56N 11. 76N

A-49



KI

t 8.04 + 8. 56N psec
m in

tmat 11.24 + 11.76Nusec
I K=0f

X 0

ti = 16.04 + 8.S6N psec

t 22.44 + 1l.76N usec
max

b. Read from HSS; WRT into 1604B

Minimum Maximum

IF + ID (see time HB) 7.60 10.80

Read from HSS (N words) 0.50N 1.OON

HSS to 1604B memory N
words (see time HB) 8. 753N 11. 953N

9.253N 12.953N

t i= 7.6 t 9.Z53N usec

tm 10.8 + 1i.953N usec

3. WAL - Write in' available locations

IF 0.86

IH 0.48

K f 1 1.34

MFifK X 0 0.86

MH 0.44

2.64

A-W .- ,_______



" II

Minimum Maximum

CR (N words) 7.56N 10.76N

Write into AM (N
words) 6.OON 6. OON

13. 56N 16. 76N

K=l

Stmin :1 3 4 + 13.56Nusec

t . 3 4 +1 6.76N usec

K:0

tmin 2.64+ 13.56Nusec

t = 2. 64 + 16 .76N usec-t-x •

4. WCO - Write conventionally

IF 0.86

LH 0.48

K: 1.34

K 0MF 0.86

MI 0.44

2.64

CF/Write AM
(N words) 13.56N 16. 76N

0

A-Si



K=I

tmin = 1. 3 4+ 13.56Npsec

t = 1. 3 4 + 16.76N psec

K=0

tmin= 2.64 + 13.56N ps¢c

t = 2. 6 4+ 16.76Npsecmax

5. WCR - Write constant into responder

Minimum Maximum

K=I

IF + IH 1.34 1.34

CF 7.56 10.76

8.90 12.10
¶• K=0

MF + MH 1.30 1. 30

10.20 13.40
Write into AM 6N

KuI

t mina 8.9 + 6N pec

tax a lZ. 1 + 6N pec

K O

tmin = 1O.Z + 6 N psec

t a 13.4+ 6N lisec
tmax

A-U

4



6. WIR - Write into reoponders

Mini mum Maximum

K= 1

IF + H 1.34

K=0

MF+ MH 1.30

2.64

CF/Write AM
(N words) 13.56N lb. 76N

K= I

t = I.34 + 13.56N usecrain

t m 1.34 + 16. 76N usec

K=0

t m = 2. 64 + 13.56N

t = 2.64 + 16.76N

7. RAR - Read address of respor.lers

IF+ DI 0.9

Decode address of re-
sponders where N is
the number of respond-
or* 0. 013N

AC
A-53



IJ

AM address register set 0.04N 0.04N
(N responders set)

Output register access

1604B(N) 8.74N 11.94N

8.79N 11.99N

ti 0.9 + 8.79N usecrmin

t = 0.9 + 11.99N secmax

8. RAF - Read address of first responder same as RAR

with N = I

trnin = 9.69 psec

tax= 12. 89 psec

9. RCO - Read conventionally

Minimum Maximum

IF + DI 0.9

Read from AM (N words) 6. OON 6. OON

AM access 1604B
(N words) 8. 753N 1I. 953N

15. 653N 17.953N

tnin = 0.9 + IS. 653N psec -

t m 0.9 + 17.953N psec

10. RCM - Read conventionally monitored

(Same as RCO)

11, RCR - Read count of responders

A-54



Minimum Maximum

IF + DI 0.9 0.9

Response count
(single rebponder) 0. 832a 0 . 8 3 2a

Response counter set 0.04 0. 04

AM output register set

to access 1604B 8.74 11.94

10.512 13.712

tmin = 10.51 psec

t max 13. 71 psec

12. RCA - Read count of responders accumulated

RCR values 10.51 13.71

Gate to adders 0.02 0.02

Adder propagation 0. 14 0. 14

10.67 13.87

tmin = 10.67 pxsec

t max= 13.87 psec

13. CRS - Count responders

IF + DI 0.9

Response count
(single responder) 0.832

Response counter set 0.4

2. 132

t 2.131asec

c a1O psec maximum for 2048 responders.

A-56



14. CRA - Count responders accumulated

Minimum Maximum

CRS values 2. 132

Gate to adders 0.02

Adder propagation 0.14

2.292

t = 2.29 Plsec

15. RDR - Read from responders

IF + DI 0.9 0.9

Read from AM (N re-
sponders) 6.OON 6.OON

AM'to access 1604B

(N responders) 8.75N 11.95N

14.75N 17.95N

tmin = 0.9 + 14.75N usec

t = 0.9 + 17.95N usecmax

16. RDF - Read first responder

(Same as RDR with N = 1)

tmin -15.65 psec

t = 18.85 sPsecmax

17. ACO - Activate conventionally

Minimum Maximum

IF+ DI 0.9

S"9

A46

( , . .... ..... ... .... .... ..... ..



ViM i11Mum Maximum

Set busý bit te zer-, 6.ON

"t 0.9 + 6.0'. •:e

18. ECO - Erase con,

(Same as ACO)

19. EMY - Erase memory

IF + DI 0.9

Erase busy bit 5.0

P= or 2 5.9

Erase busy bit 5.0

P = 0 10.9

P = Ior 2

t 5.9 ".sec

P 0

t =10.9 usec

20. EAR - Erase responiers

IF - DI 0.')

Set responders busy bit
to zero (N responders) 6. ON

t 0.9 t b.ON Paoet

21. EFR - Era•ic first responders

(Same as EAR with N I)
:4

t 6.9 .sec

A-57

-- o



0!

22. DEI - Decrement index

Minimum Maximum

IF + DI 0. ý, 0

Subtract propagation 0. 14

Select index register ql 0.013

Set index register q- 0.04

1.093

£ q 1 :O

t 0.90 Psec

q= 1. 2, 3

t = 1.09 psec

23. ICI - Increment index

(Same as DEI except subtract propagation becumes adder propa-

gation)

* 24. LDI - Load index

IF + DI 0.90

iq 1. 2. 3

Gate to adders 0.

Adder prcgation 0. 14

Select index register
0.013

Sot index register q, 0.04

1.113 4

I A-6

I:r
b': "

S, I|I



Minimum Maximum

1.113

II

IF + DI 0.9
•• 2.013

t= 0.9 psec

ill. I = 0,

q, = 1. 2, or 3

SI-- I
I t =2.01 pisec

25. SIX -Store index
I Minimum Maximum :

I =0

Same as LDI with 
4

1 0

q, z 1, 2, or 3 1.113 1.113

Access 1604B memory 8.753 11.953 i
9.866 13.066

Same as LDI with I I

1 0 Z. 013

t min 9.87 pasec

A-59-4 __________________



t mx 13.07 psec

1= 1

t = 2.01 Psec

26. JUC - Jump unconditionally

Minimum Maximum

A 0

IF + IF 1.34

I=1 1.34

IF 0.86

Gate tv program counter 0.013

Set program cot~wkter in
AM 0.04

2.253

IzO

t = 34 V.wa

I=

t Z. 25 P"iec

ZV. JNR - Jump on no re..ponders

Yes responders

IF+ DI 0.9

No responders

I= 0

IF +UI 1.34

A-60



Minimum Maximum

No responders

IF + IH 1.34

Fetch address (H) 1. 3

Gate (H) to program
counter 0. 013

Set program
counter in AM 0. 04

2.693

Yes responders

t :0.9 usec

No responders
I--0

""1

t 1.34 usec

No responders

t : 2.69 usec

28. JIH - Jump on index high

IR< g

IF + DI 0.9

Test index 0.2

IM > g same as JUC except add 0.2 for test index

A41



IR >g

1-0

t = 1.54 psec

I=1

t 2.45 psec

IR 1 g

t = 1.10 psec

29. JIL - Jump on index low

Same as JIH

IR<g

1=0

t = 1.54 psec

I=1

t 2.45 psec

IR g

t = 1.10 jisec

30. SPJ - Store program counter and jump

Minimum Maximum

1=0

IF + IH 1.34 1.34

AM to Access 1604B 8.753 11.953

10.093 13.293

I --

Same as l 0 10.093 13.293

A-62

101



Minimum Maximum

Fetch address (H) 1.3 1.3

Gate (-I) to program counter 0.013 0.013

Set program counter inAM 0.040 0.040

11. 446 14.646

1 =0

tmin 10.09 Psec

t = 13.29 tisecmax

t 11.45 usec

t 14.65 usec

max

31. NOP - No operation

IF + DI q

t = 0.9 P.sec

32. HLT - Halt all AM operations

IF + DI 0.9

Turn off "AM Activel
line drivers 0.05

Turn off "AM Active"
line terminators 0.05

Reset AM active FF in
1604B 0.20

t l.Z usec

A-63



33. EMC - Exact match of comparand

Minimum Maximrnum

X= 1

P 1 or 2

IF + IH 1.34 1.34.

CF 7.56 10.76

Search 49 bits (100
nsec/bit) + SH 5.3 5.3

14.20 17.40
K=0

MF + MH 1.30 1.30

15.50 18.70

P=0

Search additional
49 bits + SH 5.3 5. 3

20.80 24.00

K 1, p = I or 2

t 14.2 pseae;

tmax 1 7 .4 psec

K = 1, P 0

trnin 19. 5 pec

tmax 22.7 iasec

K 0, P I or 2

A-"4



SiI
t 15.5 psec

t = 18.7 psectmax :

K 0, P= 0

tmin 20.8 psec

t = 24.0 ipsec

max

P=3

time is !..me as NOP

34. MMC - Mirmatch of comparand

(Time is same as EMC)

35. LTC - Less than comparand

(Time is same as EMC)

26. GEC - Greater 'han or equal to comparand

(Time as same as EMC)

37. LEC - Less than or equal to comparanci

(Time is same as EMC)

38. GTC - Greater than :omparand

(Time is same as EMC)

39. MIN - Minimum valu,

i. s Ior 2

K r I Minin-, ,m Maximnum

IF + IH 1.34 1.34

Search 49 bits at 300
nsec/bit + SH 0.4 14.8

1.74 16.14

A-65



Minimum Maximum

K:0

MF + MH 1.30 1.30

P - 0 3. 04 17.44

(49 bits are searched at 600 0. 3 14.7
nsec/bit until half of the 3 32 14
memory is eliminated from
the search, then the search
continues at 300 nsec/bit
plus 100 nsec for house-
keeping)

K 1, P 1 or 2

t min 1.74 usec

t = 16. 14 usec
nmax

K 0, P I or 2

t 3,U4 usec

4 .4 L is oL

K= . P u

.= ,34 osec
fill?)

32. 14 usec

40. MAX - Maximum \•.lue

(Time is same as for MIN)

41. BLC, - Between limiting comparands

K 1. P I or 2

A-66



Minimum M uXimum

IF+IH 1.34 1.34

CF 7.56 It 76

Search 49 bits at
100 nsec/bit + SH 5.3 5.3

CF 7.56 7.56

Search 49 bits at
100 nsec/bit + SH 5.3 5.3

27.06 30.26

P = 0Otwo 49-bit
searches + SH 10.6 10.6

37.66 40.86

K =0 (MF + MH) 1.30 1.30

38.96 42.16

K 1 i, P I 1 or 2

t 2 7 .0 6 psec
'K = 0 , P = 0

tm 30.26 psecmax tmin = 38 .96 tsec

t max 42. 16 psec

tmin 37.66 psec

tmax 40.86 psec

42. NLC - Next lower than comparand

IF + IH 1.34 1.34

CF 7.56 10,76

8.90 12.10

A-6?
: A-

j



Minimum Maximuran

LTC - Search (49 bits) 5.3 5.3

AND connective 0.2 0.2

MAX search (49 bits) 0.4 14.8

K = 1, P = I or 2 14.8 32.4

LTC and MAX search
(49 bits) 5.6 20.0

K = 1, P = 0 20.4 52.4

MF + MH 1.3 1.3

K 0, P = 0 21.7 53.7

K 1, P I or 2

t min = 14.8 psec

t =3Z.. Ipsec

K 1. P 0
tmn 0.4 •1Mec-

t =5.4 4se,

I11W X

K=0, P =0

t = 1,7

I 53.7 pse"

43. NHC - Next higher than comparand

rime is same as for NLC, bat GTC replaces L.TC and

MIN replaces MAX

44. CPX - Complex search

A-68

A'88)



k Minimum Maximum

IF +IH 1.34

IF 0.86

Field definition fetch 0.86

Field definition house-
keeping 0.44

Mask fetch 0. 86

Mask housekeeping 0. 44

4.80

Comparand fetch from
1604B 7.56 10.76

NOTE

Complete times for this instruction will differ depending

on the combination of searches to be performed and the

type of iield de'. nt,,..,s

43. SCF - Ship complex ifield /used only with a comriny in-

structior.)

Decode mnstr:iction 0. 04

Search N" biý,s for next
instruction fieid (13 n°,c,/-
bit) 0. 013N'

t = 0.04 + 0.013N Psec

46. END - End complex s.-arch (used only with a comlex

instruction)

Decode instruction 0.04

t 0. 04 psec

47. COB - Complement buffers

IF + IH 1.340

S-(

ii



Minr'inurn

Cornpler,,ent buffers C. 100

Transfer into response
store 0.013

Search busy bit 0. 100

AND connective 0.200

Transfer into r or E

' ffe r :, 0.013

P = I or Z 1.766

0. 4O.426

P = 0 Z. !92

P I or 2

t 1.77 usec

P = 0

t = 2. 19 usec

3. OPTIMIZED HYBRID SYSTEM WITH HSS (H 1 )

a. External Functions

The external iunctionsusedin I I are the sitme as those used in HB asdescribed

In paragraph 1, a of this appendix.

b. Fotrat.Description

The instruction iormrt used in H1 is the same as dencribed in HB. B' PK•a&ph 1,

b of this appiendix.

c. Instruction List

Each instruction used by H is listed below according to the function oper-

ation. Instructions that are prefixed by an asterisk (•) use information from

the previous LDR instruction.

A-70

I -



1I. Load Operation
SLDR Load AM Register (S, R, N)

I

2. Input Operations

*WAL Write into Available Locations

(P, K, q 1 , g, q2 , h)

*WCO Wr'*.z Conventionally (K, ql,
g' q2 , h)

*WCR Write Constant into Responders

(P, T, V, K, ql, g, q 2 , h)

*XMT Transmit (G > 4095, H < 4096)

3. Output Operations

*RDR Read from Responders (P, T,
V, q2, h)

*XYAT Transmit (G < 4096, H > 4096)

4. Erase Operations

*ECO Erase Conventionally

EMY Erase Memory (P)

t 5. Control Operations

JUC Jump Unconditionally (I, q2 , h)

JNR Jump on No Response (I, qZ' h)

NOP No Operation

HLT Halt all H, Operations

6. Search Operation

*EMC Exact Match of Comparand

(P. T. V. Z. K. q 1 g)

A-71

__________



d. Instruction Description

Description of all H instructions are given in paragraphs 1, d and 2, d of this appendix.

e. Instruction Timing

Times for all H instructions are given in paragraph 2, e of this appendix.

4. OPTIMIZED HYBRID SYSTEM WITH HSS (H.),1 )

a. External Functions

The external functions used in H are the same as those used in H Bdescribed21B
in paragraph 1, ~

b. Format Description

The instruction formnat is tile same as described in System H1B' Item ml,b.

c. Instruction List

Each instruction used in system H 1 is listed below according to the function

operation. Instructions that are prefixv-d by in aste risk (*) use in"Ormation

troi tile pre~iotis LDR instruction.

1. Load Operation

LDR Load AM registers (S, R. N)

2. Input Operations

*wCo Write Conventionally (K. cy.

g, cq2. h)

*XMT Transmit (G < 409S. H >4096)

I. Output Operations

RCR Read Count oi Respunders

(P. V. q ,. h)

RCA Read Count of Responders
Accumulated (P. V, q2 . h)

A-72



6!

*RDR Read From Responders (P,
T, V, q2 , h)

* *XMT Transmit (G < 4096, H > 4096)

4. Index Operation

LDI Load Index (qI, I, q2 , h)

5. Control Operations

JUC Jump Unconditionally (I, q2 , h)

SNOP No Operation

HLT Halt all H2 Operations

f. Search Operation

*EMC Exact Match of Comparand
(P. T, V, Z, K, q1 , g)

d. Instruction Description

Description of all Hl nstructions are given in paragraphs 1, dand 2, d.

e. Instruction Timing

Time for all Hzi instructions are given in paragraph 2, e.

5. OPTIMIZED HYBRID SYSTEM WITH HSS (Hzz)

a. External Functions

The external functions are described in paragraph 1, a.

b. Format Description

The instruction format is described inparagraph 1, b.

C. Instruction List

Each instruction used in system HZ2 is listed below according to the function

operation. Instructions that are prefixed by an asterisk (5) use information

from the previous LDR instruction.

A-73
$



1. Load Operation

LDR Load AM Registers (S, R, N)

2. Input Operations

*WCO Write Conventionally (K, ql,

g1 q 2 ' h)

*XMT Transmit (G > 4095, H < 4096)

3. Output Operations

RCR Read Count of Responders (P,
V, q2 , h)

*RDR Read From Responders (P,
T, V, q2 ' h)

*XMT Transmit (G <4096,. H > 4095)

4. Control Operations

JUC Jump Unconditionally (I, q2 . h)

NOP No Operation

HLT Halt all H2Z Operations

5. Search Operation

*EMC Exact Match of Comparand (P,
T, V. Z, K. q1 , g)

d. Instruction Description

Description of H2 2 instructions are given in, paragrapbs 1, dand 2. d.

e. Instruction Timing

Times for all H 2 instructions are given in paragraph 2, e.

6. OPTIMIZED HYBRID SYSTEM (H2 3 )

a. General

Only a few bask instructions are needed for the H2 3 optimized

A-74

SI



hybrid nmachine configuration. The decoding of these instructions by the

H2 3 causes the system to jump to a wired-in subprogram (H23 algorithm). I
For this reason, all instructions generated by the 1604B are treated as "ex

ternal functions."

b. External Function List

Each external function used by the H2 3 is listed below.

1. FORCE Load delta store register

2. LOAD Load AM

3. INT ZERO RSP Interrupt on zero response

4. INT MTO RSP Interrupt on more than one
response

5. INT AB ERR Interrupt on abnormal error

6. INT PA ERR Interrupt on parity error

7. SEN CHAN ACT Sense associative memory
active

8. SEN ZERO RSP Sense for zero responders

9. SEN PA ERR Sense foi! parity error

10. SEN MTO RSP Sense for more than one
responses

11. SEN AB ERR Sense for abnormal error

12. SCA-l Spelling corrector algorithm,
single precision

13. SCA-2 Spelling corrector algorithm,

double precision

c. External Function Description

(1) FORCE - Load Delta Store R.egister

The lower half of the 1604B address (77777)8 is stored in an address delta

register. When it receives a force, the H23 fetches the delta address from

j 4• the 1604B, stores it in the delta store register. and goes inactive.

A-75

a[
SI



(2) LOAD - Load AM

The contents of the 1604B address (77777)8 contains the starting address in

the 1604B and the H2 3 , and the number of words to be transferred from the

1604B to the H23. When the H23 receives a load, it fetches the contents of

the 1604B address (77777)8 and stores the 1604B starting address in the data

address register, the H23 starting address in the AM address register, and

the word count in the word count register. The H2 3 then is block-loaded until

the word co.it goes to zero, at which time it goes inactive.

(3) INT ZERO RSP - Interrupt on Zero Response

The interrupt on zero response sets the zero response interrupt flip-flop in

the AM and resets the zero response flip-flop. The interrupt line is raised

when there is no response to a search.

(4) INT MTO RSP - Interrupt on More than One Response

The interrupt on more than one response sets the MTO response interrupt

flip-flop in the AM and resets the MTO response flip-flop. The interrupt line

is raised when there is more than one response to a search.

(5) INT AB ERR - Interrupt on Abnormal Error

An abnormal condition occurs when a function that is not normal is decoded

by the H2 3. The interrupt on abnorm.al condition causes the abnormal inter-

rupt flip-flop to be set and the abnormal flip-flop to be reset. The interrupt

line is raised when an abnormal error occurs.

(6) INT PA ERR - Interrupt -n Parity Error

This operation sets the parity interrupt flip-flop and resets the parity flip-

flop. The next parity error sets the parity flip-flop and turns on the inter-

rupt line.

(7) SEN CHAN ACT - Sense Associative Memory Active

This code causes the sense response line to be raised by the AM if it is ac-

tive. If the AM is not active, then the line will remain down.

A-76

I



(8) SEN ZERO RSP - Sense for Zero Responders

If there is no response after a search operation, the AM will raise lhe sense

response line; otherwise, thJ line will remain down.

(9) SEN PA ERR - Sense for Parity Error

If there has been a parity error detected since the previous select operation,

the AM will raise the sense response line; otherwise. the line will remain

down.

(10) SEN MTOJQSP - Sense for More than One Responders

If there are more than one responders after a search operation, the AM will

raise the sense response line; otherwise, the line will remain down.

(11) SEN AB ERR - Sense for Abnormal Error

If any function is decoded as an abnormal condition (since the previous select

operation has occurred), the sense response line will be raised by the AM;

otherwise, the line will remain down.

(12) SCA-l - Single- Precision Spelling Correction Algorithm

When the SCA-1 instruction is decoded by the AM, the function ready line is

raised. This initiates the spelling corrector algorithm. The single-precision

algorithmn search uses an 8-character or 48-bit word. The word to be cor-

rected is loadod into the comparand register. This word can have no errors

or a single error, where adjacent transponse charact.rb are considered to be

a single error. A search is made to determine the correct word. If at the

end of the search there is no response, the interrupt zero response line is

raised and the AM gots inactive. If there is one response and it is a correct

word, the AM goes inactive. If there is one response and it is not the correct

word, the AM sends the correct word to the delta plus one address in the 1604B

and then goes inactive. If there is more than one response, the interrupt on

more than one response line is raised, the number of responses is sent to the

1604B delta address, and the corrected words are sent to the 1604B addresses

delta plus one, delta plus two, etc.

A-77



(13) SCA-Z - Double-Precision Spelling Corrector 4lgorithm

This instruction performs th-! same function as SCA-1; however, it can oper-
ate on a 16-character or 96-bit word. Thus it takes two 1604B words to equal

one word for this instruction.

d. External Function Timing

The AM can execute an external function irnstruction in less than 1.0 usec with
the exception of the tfhree functions timed out below (FORCE, LOAD, and SCA).

Minimnvm and maximum values (in microseconds of time are given for these

instruction along with the major subtimes.

Minimum Maximum

1. FORCE - Load delta
store register

Load delta 7.56 10.76

Go inactive 0. 10 0. 10

7.66 10.86

tmin = 7. 66 Visec

t = 10. 6 Visecmax

Z. LOAD - Load AM

Load AM registers 7. 56 10. 76

Load AM with N words 2l. IZN 27.52N

Go inactive 0. 1 0. 1

tmin 7.66 + ZI, !2N plsec

tmax 10.86 +27.SZN sec

3. SCA - Spelling corrector algorithm

This instruction is subdivided into two classo.-s: SCA-1,

spelling corrector algorithm single precision, and SCA-2,

double precision.

A-78



Minimum Maximum
Subfunction time

Load comparand 'iCA-J 7. 56 10. 76
Lsad comparand SCA-2 15. 12 21.52
EMC 2 - K < 16
(K = number of charac-ters) 

1.2 9.6
a, /3, y search 2 - K - 16 3.0 27.6
a, /3, y zero response 0. -i 0. 35
a, 13, y one rcspon!e 11.3 17.9
More than one response
(R = number of re-
sponders) 

11. 3R 17.9R
Transfer accumulator
count 

6.8 9.8
SCA-I for the corre-t word

Load comparand SCA-I 7.56 10.76
EMC2 K '" 8  1.20 4.8

8.76 15.56

tmin = 8. 76 Psec

tmax 15,56 psec

SCA-j more than one re-

sponse
SCA-1 correct word 8.76 15.56
0, se- . arch- ' 8 3.00 13.8
Transfer accumulator
Count 

._8 9.8
18.56 39.16More than one response 11. 3R 17 9R

tmin = 18.56 4 fi. 3R psec

t m 37.9b 17 9R psec

max

A-7q•



Minimum Maximum

SCA-1 zero response

SCA-1 correct word 8.76 15.56

a, f3, y search 2 ii K ; 8 3.00 13.8

a, 83, y zero response 0.35 0.35

12. 11 2-9.71

tmin = 12. 11 pasec

tmax = 28. 51 psec

SCA- 1 one response

SCA-l correct word 8.76 15.56

a, -y, search 2 6 K -6 8 3.00 13.80

a, . y one response 11. 3 17.9

2 3.06 47.26

t - 23.06 usecrain

t 47 26 u,,tc

SCA-2 correct word

Load comparand SCA-2 15 12 21. 52

EMC2 K 4 16 1.2 9.6

16. 32 31. 12

t min - 16. 32 usec

t ma 31. 12 usec

SCA-2 more than one word

SCA-2 correct word 16. 32 31. 12

a, 03. y search 2 A K , 16 3.0 27.6

Transfer accumulator
count 6.8 9.8

26. 12 68. 52

Mo,te than one response 11. 3R 17. 9R

A-80

4



Pt

tmin = 26. 12 + 1l. 3 R psec
t = 68.52 + 1 7 .9R psec
max

Minimum Maximum
SCA-2 zero response

SCA-Z corre-t word 16.32 31.12
a, 03, y search 2 - K - 16 3.0 27.6
a, /, y zero response 0.35 0. 35

19.67 59.07

t min = 19. 6 7 ipsec

tmax 07 1psec

SCA-2 one response
SCA-2 correct word 16.32 31. 12
a, /3, y search 2 - K'- 16 3.0 27
a /, y one response 11.3 17.9

30.62 76.62

tmin = 30.62 psec

tmax r 76.62 Psec

till1

A-8

Z *.::



API'ENDIiK B. DETAILED TIMING EQUATIONS

B. 1 RESOIVER TIMING OF RANDOM RESPONSES

The problem may be expressed as follows. There are 32 rows of 32 bits

each. The rows are examined one by one in fixed order until, for the firzt time. a row

is found which contains a ONE. The examination takes one unit of t'me in either event.

Having found such a row, the bits in it are examined, one at a time. until a ONE is found.

In all, how many steps are required, on the average ?

The answer depends, of course, on what kind of data may be lound in the regist(:

Two alternative reasonable assumptions are:

(1) There is a fixed, known probability, k, that any given
bit is a ONE.

(2) There is a fixed, known number. k, of ONEs, scattered
at random throughout the register.

For purposes of analysis. the fit t irs tmnftion is so-,'Nwhit simp.

is adopted here. It is likely that comparable estimates would result in the second case.

using p k/1024.

'The. CXpected or average num!,,r of step,; is the s urn I or ýt:I ,,, .,i,; 0! v ,J:i•1,

of the I'lr:0 (ir next0 ONE of the number ,)1 stej~s require(! to reach thu 01d4E multil)led hY

the pI0IJ0I11iiv IhII:I tithe first ONE appears in the selected position. Thts, if q 1--p. the

contrillt tii fro1m :a ONE in the first position of the first row is 21). The ic(ond positi,,on

in the first row contributes 3p'I; the third position adds 41x. etc.

The exact formula for E(n), the expected number of steps re',,ired, is

!"(n) 21) * 31xI 1 41Y!2 :21.. 32; 04j * 33 1

I 31q .4 321p(1l 4 331::1 4p(I

993S...... 341 . ()
CA p 102:1S•* 64pq

*B

'.



The first row of this formula has already been justified. The probability

that the first ONE is in the first position of the second row is the probability that no

ONE is in the first row (q32) times the probability that the first bit of the second row is

a ONE (p). In this case, however, only three steps are needed: check the first row,

check the second row, check the first bit position of the second row. Formula (1)

should now be evident. It can be condensed as follows:

E(n) = 2p + 3pq(I+q 3 1) + 4pq 2 (1 q 31 +q 6  +

"+ 33pq 31(1+q31 + ... +q961

"+ 34pq 32(q31 + ... + q961

"+ 35pq3 3 (q6 2 + ... + q96 1) (2)

+ ... + 64pq62 (q9 6 1)

The question is how to evaluate (2) for selected values of p. If q31 is much

less than 1, we may replace all factors (1 + q31 + ... ) by 1, with little error. In this

case, (2) becomes,

E(n) 2p + 3pq + 4pq+ ... + ý3pq

-- P (2( +3q+ 2 + ... +33q 32)
q

33
--P (-1 +&°qJ

q dq J -O
d(i1d34

e dq-q (3)

S( I-q) (-343, 34
-q (I -q); )

E (n) '2p (-I 1 + L -2- + I. .. . l

q (--q) q pq pq p

The last row also assumed 34q 35 is much less than 1. For these approximations

to be valid, it suffices that p be larher than 0. 13 (corresponding to about 133 ONEs in the

register). The following table gives some values.

B-2



p 0.9 0.8 0.7 0.6 0.5 4 0.4 0.3 0.2

E(n) 2.11 2.25 2.43 2.66 3.00 3.50 4.33 6.00

The meaning is evident - when you have plenty (more than 150) of ONEs expected, you

surely encounter the first in the first few positions in the first row.

Neglecting the last approximation for formula (3) would leave

___ 34E(n) -L k - 34q344

p

This approximation remains valid for q31 less than 1/10, corresponding to

p larger than 0.07. For p = 0.07, formula (4) gives E(n) = 12.4.

The value p = 0.07 corresponds to an expectation of about 72 ONEs in the

register. It has not been practical to work out a detailed approximation foif smaller

values of p, correspouding to fewer ONEs. Instead, consider the situation in which

it is known that there is exactly one ONE in the register. If all locations are equally

likely, the average number of steps needed is

E(D) = 1 (2+3 +... +33 +3+4 +... +34 +... +33
1024

+34+... +64

= 33

Assu-ning thbt the last estimate applies equally well to the situation in which

the probability that an arbitrary bit is a CNF iq 1/1024, there remains the question of

values of E(n) for p between C.001 and 0.07. It is evident that E(a) increases as p

decreases, and that the variation should be fairly smooth. Accordingly, the data estim:.-,,i

thus far are plotted on a log-log chart shown as Figure B-I. A smooth curve has been

sketched through them; it should suffice for estimation purposes. Note that the time

required to resolve a response is found as a function of p as (EF() x . 016) psec.

B. 1. 1 A Worst-Case Maximum Search

It is nbvious that one aspect of the :vorst case in a maximtun search is thrt

the largest numerical value being sought appears in two distinct words of the memory.

The next question is: which uamerical value gives the largest search time ? The

relatlonship between search time and the numerical value is most simply developed from

* an example.

B-3



9
8

7

6

5
4

30

9

8 -

6

5

4

20

10
9-
8 -
7 -
6

4

z 3 4 5 67 6..1 .02 .03 .o4.)5.06 .09 .2 .3 .4 .5 .6 .7.B.9 1
.07 .09

Figure B-I. Resolution Steps vs. Probability of ONE in Given Position of S

B-4



Let the maximum value, appearing at least twice in the memory, be 00101'

(The pattern of the bits omitted is irreleva.xt.) The starch procedure inspects bit 4'

(highest order), and the resilting vector in the S-.register is all ZERO's. Accordin.

thiL position 47 in the mask register is set to ZEIRO, indicating that for the remainde

thc maximum sea:ch, bit position 47 is to be .9kipped. The instruction now makes a

second pass at memory, with a similar result for bit 46. On the third pass, howe,'e

bit position 45 yields at least two CGE's. The instruction proceeds 't once to inspec

position 44. In this worst case, the p.'cedure continues until bit position 0 is inspe(

for the first time. The nature of the termin2tion of the instruction now depends on

this last position yields a unique maximum (in this example. it doesn't) but the timT,

involved for the termination ib assumed insignificant. The time of interest is the am

of time spent in inspections and in skipping positions.

The procedure is analyzed by using an illustration as shown bel.,. The nL

in the top row is the actual maximum of the numerical values in the mein. . Each

succeeding row shows the procedure for one pass at the memory. Each pass before t

last ends as soon as a ZERO is encountered in the maximum. In our exar~iple. the fi1

pass inspects positi,)n 47, and finds a ZERO. The inspection is indicatei by an "I" in

the first row below the number. The second pass skips position 47 ("S" begins the so

row), in:,p,,ts position 46, and finds a ZERO. The third pass skips v,,•tins 47 :,ti!

and IndI- (AE

I) 0 1 0 1 0 . . 0 0

1 I
S I I-S

S S I I 21, 2S
S S I S : 11S

S S I S I S ... I
S S I S I S - - - S (;-k)1kM

in position 45. The pass does not end here. it goes on to possition 4-1. here ;j 141(

ends it.

B -5

gI



The number of skips and inspections in each row is recorded at the right of

the illustration above. In order to identify the worst case, we note the following:

(1) Every bit position is inspected at least once, the first
time it is encountered.

(2) Bit position 0 is inspectedJ just onc. No mater what it
contains, it has no other effect on instruction timing.

(3) The number of passes required is k+1, where k is the
number of ZERO's in bit positions 47 through 1. The
number of skips in these passes are 0, 1, 2, .... , k.
Thus, the total number of skips ia thý' instruction are
1+2+...+k= Al.

(4) For each bit position containing a ONE, the number of
re-inspections is equal to the number of passes after the
first inspection, hence to the number of ZEROts in lower
order positions (other than pos,,on 0). Thus, for a
fixed value of k the largest .umber of re-inspections
occurs "1hen the 47-k ONE's occupy *he 47-k bit positions
of highest order. The total number of re-inspections is
then k (47-k).

(5) Combining the foregoing remarks gives the result that for
fixed k, the worst caee involves 48 + k (47-k) inspections
and (M= k (k- ) skips. If a skip takes 0.05 microsecond

2 2
and an inspection takes 1.6 microsecond (including resolution
time of 1.5 microsecond to detect the second responder),
this worst case takes -1. 575k 2 + 74.975k + 77 microseconds.
This expression, in turn, is a maximum for k = 24; its value is
about 980 microseconds.

B. 1.2 A Worst-Case Search for Next-Less-Than

All of the analysis for the worst-case maximum search apply, with the

following embellishments. Each pass is preceded by a less-than comparison of the

entire memory with the test word. The result of the comparlsouz is stored in the

S-register, where it provides basis for eligibili.'y. Each comparison requires approxi-

mately five microseconds. It has already been noted that k+1 passes are needed.

Therefore, in terms of k, the worst casc must involve

- 1. 575k 2 + 74. 975k + 77 + 5 (k i)psec.

"(-1. 575k 2 + 80k + 82) pe"'e.

B-6

I



The maximum would occur for k=25. Fork=25we get a maximum time of about 1100

microseconds.

B. 1.3 Representative Times for Maximum Search and for Next-Less-Than

The average time spent in executing the maximum-search instruction or the

next-less-than instruction depends stronbly on the kind of data which may be expected

in the memory. This fact is of primary importance in any estimation of the running

time of an actual program. In order to get some sort of representative value, it is

assumed here that ZERO and ONE are equally likely in any bit position in the memory.
A precise estimate of the instruction times, even in this case, has not been possible,

but a rough estimate has been derived.

For a maximum search, the probability of finishing immediately upon inspeýAing,

bit position 48 is the probability that exactly one word starts with a ONE, or 1000/2

10- This is negligible.

The probability that a selected word starts with ten consecutive ONE's is 1/210.

The probability that no word starts with ten consecutive ONE's is (1-1i210)1000 = 1/e •

0. 368. The probability that exactly one word starts with ten consecutive ONE's is

1000 ( 1 999 1

210 201

The probability that exactly two words start with ten consecutive ONE's Is

The probability that more than two words start with ten consecutive ONE's

Is approximately 1 - (1 + 1 + 1/2) / e " 0.08. This probability will be neglected.

Now, if exactly on., word starts with ten consecutive ONE's, the maximum

search will terminate after somewhere between one and ten inspections. A good estimate

of the instruction time In this case Is 3.0 microseconds. If exactly two words start

with ten consecutive ONE's, the search will ed as soon as they differ. The probability

C
B-?

Ik



that it happens in bit position 38 is 1/2. The probability that it happens in position 37

is 1/4, but in this case a ONE or a ZERO in position 38 is equally likely. The former

case involves, in all, 6.6 microseconds, while the latter involves 12.65 microseconds.

Still assuming that exactly two words started with ten consecutive ONE's, it is assumed

v hout further analysis, that the average effects of words which still match through bit

position 36 is negligible. For the cases al.-eady considered, the average instruction

time is

(1/2) (6. 0) + (1/8) (6.6) + (1/8) (12.65) =5.43 psec.

The net contribution to the estimated running time of the cases where one or

two words start with ten ONE's is

(1 x 3.0 + 1/2 x 5.43)/e -e5,77 psec.

The probability that one or two words start with ten ONE's is (1 + 1/2)/e 0! 0.55.

Now the probability that no word starts with either ten ONE's or with nine

ONE's and one ZERO is, as before

11 1000 -11
(1 - 210) = e which is very small. We conclude that in all significant

cases, at least nine of ýhe first ten bits of the maximum are ONE's. By analogy with the

case of ten ONE's, it is assumed, without formal analysis, that a unique maximum is the

predominant case when there are nine ONE's and one ZERO. The time for a maximum

search in this case is between 0.2 microsecond and 10.85 microseconds. We use 6.0

microseconds as representative. Thus, to the previous cases we add 6 x l 2.82e

microseconds, getting a little over 8.5 microseconds as the overall representative time

for a maximum search.

This time remains representative if the maximum search is masked provided

that at least twelve bit positions are not masked.

For a search for next-less-than, the average time also depends on the crite,.-ion

word. If this word is all ONE's, the estimate for a maximum search applies, except

Lhat if a ZERO Is encountered in a bit position in the memory another five microseconds

must be added. However, the probability of encountering a ZERO before finding the

maximum is small.

B-8

I I
K':



Ir

If the criterion word assumes an "average" value, it will eliminate about

; • half of the contenders in memory. In the scope of the present effort, it has proved

impossible to get a good estimate for the typical time for a next-less-than instruction

in this case. Accordingly, engineering judgment has been invoked.

It is judged that a representative situation will involve four passes through

the memory and require an average of about 29 microseconds. This estimate, again,

is relatively insensitive to masking.

iB-

SB-9j

-- I -



4Z.-

APPENDIX C. ROUTINES

In order to investigate various aspects of the AM system, such as comparative

timing and programming ease, several routines were chosen to be coded in detail, both

for GAP and for the 1604-B. Many of these routines were taken from the query subsystem

and thus provided a mechanism with which to estimate timing of the representative queries.

The routines and the function of each are listed below:

(1) AND - To find the conjunction of two lists.

(2) DIST - To compute the nautical distance between
two points given in latitude-longitude coordinates.

(3) DN - To eliminate double negatives in an expression
written in Polish prefix form.

(4) EQU - To select related logical names from a data
file directory.

(5) MAX(MIN) - To find the maximum (minimum) value ofs
descriptor.

(6) NGT(NLT) - To find the value of a descriptor next gratttr

than (next less than) a given value.

(7) OR - To find the logical disijunction of two lists.

(8) REL - To select logical names of records which satisfy
a requested attribute-descriptor relationship.

(9) R 'R - To read next responder.

(10) SPO - To perform search operations on specified
subsets of AM locations.

(11) TIME - To compute the time required to traverse a

distance.

(12) VLLU - To perform a variable length lookup.

Where pertinent, AM coding and non-AM coding are provided for each routine

along with a generalied timirng formula. Comments are also provided with the coding.

C: I



II

In the timing formula of the routines in GAP, the average elapsed time assuming no

I/O was used. For the 1604-B, the average execution time was used. In order to

compute representative timing, typical values were assigned to the parameters found

in the timing formulas.

The following assumptions were therefore made:

(1) There are 32 records in a data file.

(2) A data record contains on the average 32 words.

(3) The average number of responders per search is four.

(4) There are 200 records in a file directory.

(5) A file directory record contains on the average five words.

Preceding the coding of each routine is, where pertinent, a standard form

which consists of the following information.

" SUBROUTINE NAME

" PURPOSE
* MAJOR PERFORMANCE LOCATION

" INPUT DESCRIPTION

"* OUTPUT LIST

"* COMMAND LIST

" TIMING FORMULA (GAP and 1604-B)

REPRESENTATIVE TIMING (GAP and 1604-B)

C-2

t ..... . . ...... 1



SUBROUTINE NAME: AND

PURPOSE: To find the conajunction of two lists of logical names,

MAJOR PERFORMANCE
LOCATION: AhboctaLave Memory

LFr~UT DE9CRIPTION: Iwo iists of logical names

OUTPUT LIST: A list of logical names which are common to both input
lists; these lists are not sorted.

COMMAND LIST: (See Table 7-1, Volume 11, for a complete description of
command list.

6: Thie operation code is AND.

VV: Li contains the core address of where the sitarting
address of a list of logical names is stored.

L.v ontains the core address of where the starting
address of a second list of logical names is stored.

TIMING (GAP): Time (usec) =k [(49* + 7.1wj) +(55.8 +91.8w,,))

where-

k - no. of loads
wl=avg. no. of words in longer list/load

w2 -avg. no. of words In~ 'horter list/load

(W. First exprossion In parentheses is AM load time; second expression is
processuing time excluding AM load time.)

TIMING (1604-8): Time (uasec) - 124.8 + w2 (3.6w1 + 18.4) - 13.2r

where:

w, avg. no. of words in longer list searched
before finding a responder.

wsano. of words In shorter list.
r -no. of responders entered into output list.

REPRESENTATIVE TIMING GAP 1604-B
(mso:AM processing time. Total

load time excluding AM load
time

1.4 0.9 2.3 1.7

C-

I



SUBROUTINE NAME: AN4D

GAP

GENERAL PROCESSING PROCEDURE INSTRUCTION 
COMMENTS

(1) Determine !unger list, using LDA Load A-register with number ofvie oL iist information 
.wr'ds In list.stored in command list. SUB Subtract A from number of words

in second list.AJV Jump to instruction which inserts
address of longer list into LDR.(2) Transfer to AM operations. SENSE

LECT(3) Load longer list into the AM. ElfY Turn off busy bits.
LDR Set up S, R, N.RBL Load words into AM.(4) Load an element of shorter LDRlist into the comparand and EMCmatch against longer l1i.t.

(5) If no responders, go tostep (7). JNR
(6) Add address of responder to RDAoutput list. Increment count ICI

of responders.

(7) Increment count of words in ICI
short list.

(8) List completed. 
JZI Compare index with number of

words in list.
(9) Store total cotnt of responders SIXin commvd list.

(10) Halt AM. 
[HALT

(CLEAR

C-4

- A



SUBROUTINE NAME: AND

1604-B

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(1) Determine long and short ENI Set output list index.Hit addressing. ENQ Mask to isolate number of words.
LDL Isolate number of words.
ARS o-itifon nmber of ,-nrd•;.
SAU Save number of words.ENQ Mask to isolate j nber of words.
LDL Isolate number - words.
ARS Position ,'.mber of words.
STA Save nu.nber of words.
ENA Get number of words.
SUB Determine long and ,hort list.
AJP Set long list address.
ENI Set short list address.
ENI 'Number of words in long list.
ENI Address of short list.
ENA Number of words in short list.
INA Set tally for short list.
SAV
SLI

(2) Sarch long list for LDA Logical name from short list.responder. EQS Compnre against l'oig list.
SWa No responder.

(3) &tv responder address. ENA Address of responder into ',,tput
STA list.
INI Increment output list index check
ISK for fini.
SLJ Number of words in output list.ENA Position In A.
ALS Mask for number of words.
ENQ Total word -.- A.
ADL A -- , command list.
STA
SlAT

; CS6

V-



SUBROUTINE NAME: DIST

PURPOSE: To compute the nautical distance between two points
given in latitude-longitude coordinates.

MAJOR PERFORMANCE
LOCATION: Core

DATA INPUT: Dynamic ship file directory.

OUTPUT LIST: A pseudo data file which contains the fol'wfir; i.ormat.on
for eai. -cccu.rd

(1) Logical name - registry/ship serial number
(2) Attribute Identifier - DIST
(3i Descriptor - distance in nautical miles

COMMAND LIST: (See Table 7-1, Volume II, for complete description
of command list)

0: The operation code is DIST
VV; L1 contains the core address of where the coordinates

of a locatic,, .re stored.

TIMING (1604-B): An approximation to the distance formula is
11 milliseconds.

S~C-46



Si

SUBROUTINE NAME: DIST

1604-B

GENERAL PROCESSINC PROCEDURE:

An approximation to the problem of determining the distance between two

points, given their latitude and longitude, would be to consider the earth as a sphere.

Such an approach is taken solely for the purpose of estimating 1604 time in computing

distance. For more accurate distance calculations see Formulas and Tables for the

Computation of Geodetic Positions Special Publication No. 8, U.S. Department of

Commerce, Coast and Geodetic Survey, Washington, D.C.

In the spherical system, the distance between two points P and Q, given

their latitude and longitude, is:

DIST (P.Q) = DCO" I (R2 - L 1/2 / R

where:

D = diI-meter of the earth

R = radius of the earth

L = length of the chord connectine P and Q

The cho-:d length expressed in terms of latitude and longitude of the two points is:
L-R [(COS 02 COS_ 2 -COS 0COSo 1 )2 

4 (COSE 2 SIN0 2 -COSO1 sIN.O) 2

(SM 42 -SIN 0#)2 1/2

where;

01 - longitude of point P

" latitude of point P

02 - longitude•fpointQ
02 latitude of point Q

1R -f nusoftheeartb

C-7

I
1- /



SUBROUTINE NAME: DN

PURPOSE: To eliminate double negatives in an expression
written in Polish prefix form.

MAJOR PERFORMANCE
LOCATION: Associative memory

DATA INPUT: (1) An expression in Polish prefix notation
(2) The symbol used for "not"

OUTPUT UIST: The same expression in Polish prefix notation with
all double negatives eliminated.

CALLING SEQUENCE: *DN, 1, n, s

wheree;

I = starting 1604-B location where expression
in Polish prefix form is stored.

n = no. of words in expression
s = symbol used for negation

*Note- 'o- Version have beo ooded: DN2, which utilizes busy bits; DNI, which
do" not utilize Inksy bits.

C-8



SUBROUTINE NAME: DNI

GAP

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(1) Load symbols sequentially EMY Turn off busy bits
into AM. LD Set up S, R, N

RBL Load expression into AM

(2) Set response store for all LDR Set up S, R, N
"nots" in the expression. EMC

If) no responders, exit.- JNR

(4) Advance response store one LDR Set up S, R, N
location. Perform exact EMC Set T = 1, Z = 1
match and AND results.

(5) If no responders, exit. JNR

(C) Read c~ontet'ts of first LDR Set up S, R, N
responder.

(?) The A~ portion %i the responder 12)1 Set up Bi
is usel to set up a transfer that ICI Increment 131 by 1
will tr~irsfer a 1604 taken sub- 14)1 B2 received re~azive of responders.
string trom X +1 into AM DEl ISte B2 down I
location A -1 through the end of six Store irn.iex B2 in temp. location for
the string. "f" DR

LDR Zt vi for WFA
WI A Write 1604-B location of LDR instruction

to be modified into first available
AM address

LDR Set up for E.NC
E MC Do exact match on LDR
LDR1 Set up for WIll
WIll Write A,%M addres6 "ll" through mask

into responder.
LDH Set up for YICF

RCF Read oontents of first responder into
1604-D locat~on of LLAI lns&.ruction
to be modified.

LDII LDR to bo modified, sets up "W', S.
N, for RBL

RBL Load list of tokens for 1604
JmHI 1B-Box not MAX ,1. loop backto

f, step (2). otherwice, exit.

(91 Halt J6M CLEAR

Refers to th e. esb~s v'f th

-'L, wag being .caiwd.I



SUBROUTINE NAME: DN2

GAP

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(1) Load AM with token list, 1. EMY Turn off busy bits.
LDR SetupS, R, N.
RBL

(2) Set RS for all "nots". .DR SetupS , R, N.
EMC Do exact match on symbol S .

(3) Advance response store. LDR Set up S, R, N.
Perform exact match and AND EMC Set T = 1, Z = 1.
results.

(4) If no responders, exit. JNR

(5) Store count of responders. LDR
RCR

(e) Store address of responders LDR Set up S, R, N.
in 1604-B. RDA

(7) Modify R of LDR with address LDI Load B3 with address of a responder.
of responders, and resei ICI Increment B2 index tag for indicating
busy bits of responder and address of responder.
responder + 1. DEI Decrement B3, address of lst "not"

in a "DNW.
SIX Store AM address in B3 in a 1604-B

location (use B2 as the index tag
for storing).

LDR Set up WFA.
WFA Write 1604-8 locQtioa of LDR

"instruction to be modified into
first available AM address.

LDR Set up EMC.
EMC Do exact match on LDR Instruction

to be modified.
EKC Set up WIR.
WlR Write AM address through mask into

responder*.
LDR So up RCF.
RCF Read ooutents of first resprnder

Into 1604-B location of LDR
instruction to be modified.

SLDR LDR with R modifle and N - 2.
RBF Change busy bit status of [WI".
ICI thcremat ounter of number of DN Ia.
J1H If all DN's have not been processed.

reftur to beginning of step (7).

C- to.



SUBROUTINE NAME: DN2

GAP (Contd')
GENERAL PROCESSING PROCEDURE INSTRUCTION 

COMMENTS
(8) Store all active tokens in LDR Set. up S, R, N.1604-B, 

MMC Store all tokens in responders
(DN's will be ignored since their
busy bit status is 0).RDC Store desired responders.

(9) Halt AM. 
CLEAR

C-11

K!



SUBROUTINE NAME: EQU

PURPOSE: To select related logical names of particular logical
names from a data file directory.

MAJOR PERFORMANCE
LOCATION: Associative memory

INPUT DESCRIPTION: Data file directory as described in 1231-TN-11.

OUTPUT LIST: Logical names of related records

COMMAND LIST: (See Table 7-1, Volume I1, for a complete description
of command list.)

6: The operation code is EQU.
VV: L1 contains the core address of where the starting location

o2a list of logical names is stored.

TIMING (GAP): Time (•.sec) = k [(49.4 + 7.1w) + (14.0 + e (93.1 + 3.6nr))J

where:

w = avg. no. of words located into AM/load
e = avg. no. of logical names in L1 .

nr = avg. no. of records searched before findiag a
match on logical names per load.

(Note: First expression in parentheses is AM load time; second expression is processing
time excluding AM load time.)

TIMING (1604-B): Time (jsec) 44.2 + e (70.0 + 3.ow) + 51.4x

where:

e = avg. no. of logical names in L1
w avg. no of words searched before finding

a match on logical name.
x = no. of related logical names put into output

list.

REPRESENTATIVE GAP 1604-B
TIMING (msec): AM processing time, Total

load time excluding AM load
time

7.3 3.6 10.9 7.1

C-12



SUBROUTINE NAME: EQU

GAP
GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(1) Transfer to AM operations. RESUMEO E

(2) Load the particular data file EMY Turn off busy bitsdiretory Into AM. LDR Set up S, R, N
RBL Load words Into AM(3) Perform an exact match on LDR h contains starting location of

logical names. EMC L1 ; q2 Indexes sequential logica!, names.
(4) Store address of responder. BOA
(5) Increment q2. IC!
(6) List completed. 

JIB Compare Index with number of words
o-in list. If completed, go to step (7)Sotherwise, go to step (3).

(7) Halt AM. 
CLEAR

(8) Obtain address of logical name THSof related records through asearch on logical name address
table.

(9) Store !oginal names and count in LDAoutput list. 
STA

C1
4 C-13

S, ........ ,,



SUBROUTINE NAME: EQU

1604--B

GEN•ERAL PROCESSIN4G PROCEDURE INSTRUCTION COMMENTS

(1) Initial Housekeeping. ENA L1.
INA Number of words In logical name
SAU list.
ENI Set tally.
ENA Initialize responders Index.
SAU Initialize to Ll.

ENI Initialize address of logical
ENI name list.

Number of words in file directo--y,

(2) Li eq~ual to file directory LDA Logical name.
logical name. EQS Equal to L1.

Sli No.
RAO increment to related logical name.

(3) Update output list. LDA Move related logical name to
STA output list.
RAO Increment to next logical name.
INI Increment responders Index.

(4) Determine end• of related ENQ 1ogical name mask --* Q.
logica namtes. ENA Check for logical name.

MEJ

SWJ

(5) Saa for a"x logical name. ENA Beginning of file directory.
8AU End of file directory.
ENA Determine length of file
SUB directory.
ENI Laocal name flag.
ENA Local name mask.
EI• Searah for next logical name.

SLJ

(s) Cheek for and of Ll list. ISK Tal on Ll list.

S C1

C-14



SUBROUTINE NAME: EQU

1604-B (Contd.)

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(7) Number of respoaders into ENA Number of responders in output
the command list. ALS list.

ENQ Position A
ADL Mask for A
STA Command list plus number of
814 responders.

A into command list.
Exit.

C-15

SI

II

C,,-15



SUBROUTINE NAME: MAX(MIN)

PURPOSE: To find the maximum (minimum) value of a descriptor.

MAJOR PERFORMANCE
LOCATION: Associative memory.

INPUT DESCRIPTION: Data records as described in 1231-'IN-11.

OUTPUT LIST: Logical name of the record having the maximum (minimum)
attrlbute v-alue.

COMMAND LIST: (See Table 7-1. Volume 11, for a complete description of
command list)

0 The operation code is MAX(MIN) n, whert., indicates
the number of words in the descriptor.

V: L contaius the core address of where the attribute
id-mntifler is stored.

TIMING (GAP)- Time (usec)= k [(49.4 + 7. 1w) + (330 + 14.2r + 3.enr)]

where:

k = no. of loads
w = avg. no. of words loaded into AM/load
r - avg. no. of responders/load

nr - avg. no. of data records/load

(Note: First expression in parentheses is AM load time- second expression is
processing time, excluding AM load time.)

TLMING (1604-B): Time (Psec.) -[214.4 + 3.6w + nr (103.0 + 3.6w) + 13.2r]

where:

w - avg. no. of words in record searched
before finding match on attribute

nr - no. of data records
r - no. of potential re.ponders

REPRE•SMNATIVE
TIMING (mrew.): GAP 1604-B

AM processing time, Towa

load time excluding AM load
time

7.• .8 7.8 5.7

c-isiI



SUBROUTINE NAME: MAX(MJN)

GAP

GENERAL PROCESSING PROCEDURE INSTRUCTION 
. COMMENTS!I

(1) Transfer to AM operations. RESUME
(2) load the data records into the EMY Turn off busy bits.AM. 

LDR Set up S, R, N.
RBL Load words into AM.(3) .oad L1 into the comparand and LDR

perform an exact mazch. EMC

(4) If no responders, exit. JNR

S(5) Advance the response store one RDA T1I
position and store the address'
of responders in core.

(6) Countfnumber of responders. RCR Use count to determine number of
words to be loaded in step (7).

(7) Load the list of selected EMY Turn off busy bits.attribute values into AM. LDR Set up S, R, N.
RBL Load orly descriptors.

(8) Find max (min). MAX(Mnj)
(9) Count number of responders. RCR

(10) Store count of responders in Six
index register.

S(11) Test for count greater than 1. Jii If count greater than 1, thent. 
test for n greater than 1; other-

(1) Tt fwise,.go to step (16).(12) Test for all n prcess1ed. IC0 If n I, go to step (13); otherwiso-,
JH go to step (16).

(13, Advane the rapolase store one RDA T1
position Oad store the address
of respondera in (-ore.

(14) Load next word of n-word de- EMY Turn off busy bits.ucriptor reSPONs into AM. LDR Set up S, R, N.
SRBL Load only descriptors.
(' Jup to step(8). JUC

C-I?

•:' •I .- ..... , -. .......



SIUhJIOUTINE NAME: 3YAX(MqN

GAP (cont I
GENERAL PROCEMING PROCEDURE INSTRUCTION COMMENTSj
(16) Store addree of responder(s), RDA

(17) Halt AM. CLEAR
(18) Perform seawoh on logial THS

zLme addreu tabl for
reinpuider.

(19) Store logial am ins LnIDA

ouptIit T

I-1



V

SUBROUTINE NAME: MAX(MIN)

1604-B

GENERAL PROCERSSNG PROCEDURE INSTRUCTION 
COMMENTSS(1) InWtWa housekeeping. 

ENM Responders index.ENA Beginning address of LN list.INA Number of words iv LN list into tallySAU First logical home address into outputLDA list.
STA Address of first LN address
ENI n Mask b Q.
ENQ L (Q)n - A. A
LL Save n.SAU Set comparison address.ENA Operator code mask -• Q.SAAU L (Q) a -- A.ENQ MAX or MIN

LDL Set MAX or MIN addressing.
AJP
ENA
SAU
ENA
SAU
ENA
SAU
SW!(2) Find length of first LDA Small LN address.logical name record. INI Index to nex-t address.
SUB Greater address.
WNA Inclusive numbersSAU Save number of words.
EN((3) Get addres of attribute and LDA Attribute from command list -. l A.descriptors In first record. EQS Search record for attribute.
SL/ No attribute match.IN! Increase to descriptor.
ENA Save address.
SAU
Sb!(4) No attriue matc. ISUK Check for end of logical name
8UJ address list.ENM Clear number ol responders to %.

S0 81j/

~C.-19



SUBROUTINE NAME: MAK V

1604-B

GENERAL PROCES2I2G PROCEDURE INSTRUCTION COMMENT

(5) Find length o' i•ical name
record.

(6) Get address of attribute and
descriptor in record.

(7) Switch for MAX or MIN. SLY

(8) Determine descriptor IDA Descriptor of currerA responder.
relationships. EQS Descriptor from record.

SLY Not equal.

lIP All words of descriptor equal.
LDA Yes, add address to list.
STA Increase output index.
INI
SLY

INI Increase descriptor addressing.
RAO
"SLi

WDA Descriptor of current responders.
THS Descriptor from record.
SLJ Set for MAX or MIN.
SLW

ENI Clear output list index.
ENA Logical name address to output I•.
STA

ISK Check for end of logical name list.
SLY

(9) Number of words in output FNA Number of words in output list,
list -c command list. ALS Position in A.

ENQ Mask for number of words.
ADL Total words --* A.
STA A --o command list.
SLJ Exit.

C2



SUBROUTINE NAME: NGT(NLT)

PURPOSE: To find the value of a descriptor next gre.at, r fttian
-(next less than) a given value.

MAJORWPERFORMANCE
LOCATION: Associative memory.

DATA INPUT: Data records as described in 1231-TN-11

OUTPUT LIST: Logical name of the record having the next greater than
(next less Lan) attribute value.

COMMAND LIST: (See Table 7-1, Volume II, for complete description of• co~m~d list.)

- .f• *: The operation code is NGT(NLT), n where n indicates the
number of words in the descriptor.

VV: L1 contains the core address of where the attribute identifier
is stored.

Scontains the core address of where the starting address
orthe value to be compared is stored.

TIMING: (GAP): Time (asec) =k (49.4 + 7. 1w) + (357.3 + 14.2r 3.6nr)

where:

k no. of loaesI w avg. no. of words loaded into AM/load
r - avg. no. of responders/i'oad

fnr - avg. no. of data records/load

(Note: First expression In paentheaes is AM load time; second expression is processi•ln ,
time, excluding AM load time.)

raIXNG (1604-B): Time (seec) - 276.2 + nr (168.6 + 3.6w) + 37.6r

w - avg. no. of words in record searched
before finding match on attribute

nr - no. of data records
r - no. of potential responders

REPRFAINTATIVE GAP 1604-B
TIM•NO (mesa): AM processing time. Total

load time aecldlg AM loadtime i

7.3 .57.81

C-21

Ii



SUBROUTINE NAME: NGT(NLT)

GAP

GE1'•MAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(A) Transfer to AM operations. RZSUME

(2) Load the data records into EMY Turn off busy bits.
the AM. LDR Set up S, R, N.

RBL Load words intoý AM.

(3) Load L, into the comparand and LDR

perform an exact match. EMC

(4) TI no responders. exit. JNR

(5) Advanco the response store RDA T = 1
one position and store the
address of responders In core.

(6) Coumt number of responders. RCR Use count to deternine number
of words to be loaded in step (7).

(7) load the list of selected EMY Turn off busy bits.
attribute values into AM. WDE Set up S, R, N.

RBL Load only descriptors.

(8) Find the nat greater than LDR h contains 12.
(next lees than) valed de- NHC(NLC)
scriptor.

(9) Count numbor of responders. nCR

(10) 8ocre count of responders to Six
index regleter.

(11) Test for count greater than 1. JIH If count greter than 1. then
test for a greater than 1; otherwise,
g to atop (16).

(11) Test for anl a prooeseed. ICI If n > 1. go to stop (13); otherwise,
JIl go to step (16).

(1,) Advawoe the rpows n tre one RDA T- 1

po-d"0 ad store te aWdres
of repof drs In oore.

C-In

L /?I



SUBROUTINE NAME: NGT(NLT)
(cont'd)

GAP

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(14) load next word of n-word EMY Turn off busy bits.
descriptor response into AM. LDR Set up S, R, N.

RBL Load only descriptors.

(15) Jump to step (8). JUC

(16) Store address of responder(s. RDA

(17) Halt AM. CLEAR

(18) Perform search on logical THS
vnAme address table for A

responder.

(19) Store logical names in LDA
output list. 9TA

C -

A



SUBROUTINE NAME: NGT(NLT)

1604-B

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(1) !nltial housekeeping. ENI Responders index.
ENA logical home address table.
INA Number of words in LN table into
SAU tally.
ENM Address of first LN address.
ENQ n Mask -Q.
LDL L (Q)n -A.
SAU Save n.
ENA Set comparison.
SAU Address.
ENQ Operation mnsk-l Q.
LDL L (Q) opr --a A.
AJP NGT or NLT.
ENA Set addressing for NGT or NLT.
SAU
ENA
SAU
ENA
SAU
Slu

(2) Find length of first logical WDA Small LN address.
name record. INI Index to next LN address.

SUB Greater address.
INA Inclusive numbers.
SAU Save number of words in record.
ENI

(2) (t address of attribhte DA Attribute from ommnand list- A.
and descriptor in first EQS Search record for attribute.
record. B.J No attribute match.

INI Increase to descriptor.
ENA Save address.
SAU
SL.T

(4) No attribute m=tch. IK Chek for and of logical name
SLJ address list.SSIlJ

(6) DcrU mr have destred LDA Descriptors emqal.
relaashlp to istp. EQS

Slu
814
LOA
Tag

C-24



SUBROUTINE NAME: NGT(NLT)
(Cont'd)

1604-B

t GENERAL PROCESSING PROCEDURE INSTRUCTIOiD COMMENTS
(6) Update output list. ENA -r-ie address as descriptor.

p pSTA Logical name address to output list,,

LDA Increment responders index.
STA
INI

ISIK Check for end of logical name lists.

(7) Number of words In output ENA Number of words in output list.

list -,* command list. AIS Position in A.
ENQ Mask for number of words.
ADL Total words -a A.
STA A -- ' command list.
SLJ

(8) Find length of logical name
record.

(9) Get address of attribute and
descriptor.

S(10) Descriptors have desired
relationship to 'put.

(11) De..orlptors have det'red ENI Clear responders index.
relationship to current output. S8j

C-25

'rI



SUBROUTINE NAME: OR

PURPOSE: To find the logical disjunction of two lists of logical names.

MAJOR PERFORMANCE
LOCATION: Associative memory

INPUT DESCRIPTION: Two lists of logical names.

OUTPUT LIST: The union of both input lists.

COMMAND LIST: (See Table 7-1, Volume II, for complete description
of command list.)

0: The operation is OR

W: L contains the core address of where the starting address
oa list of logical names is stored.

L2 contains the core address of where the starting address
of a second list of logical names is stored.

TIMING (GAP): Time (psec) k ((49.4) + 7.1 wl) + (75.8 + 93.1 w2))

where:

k - no. of loads
wl - avg. no. of words in longer llst/load
w2 = avg. no. of words in shorter list/load

(Note: First expression in parentheses is AM load time; second expression is processing
time excluding AM load time.)

TIMING (3604-B): Time (usec) a 132.0 + w2 (3.6w1 + 24.0) + 24.6r

where:

w, - avg. no. of words in longer list searched
before finding a responder.

w, - no. of words In shorter i*st.
r - no. of times the longer list is searched

finding no responders.

REPRZSKTATWE GAP 1604-B
TIMING (mow .): AM procesing time, TOW

load time excluding AM load
time

1.4 .t 2.3 1.7

C-36



F7

(S

SUBROUTINE NAME: OR

GAP
GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS
(1) Determine longer list, using LDA Load A-register with number ofsize of list information stored SUB words in list. wn command list. AJP Subtract A from number words in

second list.
Jump to instruction which inserts
address of longer list into LDR.(2) Transfer to AM operations. RESUME

(3) Load longer list into the AM. EMY Turn off busy bits.
LDR Set up S, R, N.
RBL Load words into AM.

(4) Load index register with size LDI
of longer list.

(5) load an element of shorter list nDRinto the oompsrMnd and match EMC
against longer list.

(6) If no responders, add element to JNR Counter for number of elementslonger list and add one to RDA in shorter list.counter. 
ICI Counter for union of lists.
ICI

(7) List copleted. JIH Compare index with number of
words in list.

0) aOre total cOOnt of responders SiX
in command list.

(9) Halt AM. C LEAR

Ii

:i

-- ---- i



I

SUBROUTINE NAME: OR

1604-B

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS
(1) Determine long and short ENQ Mask to isolate number of words.list addressing, 

LDL Isolate number of words.
ARS Position number of words.SAU Save number of words.ENQ Mask to isolate number of words.
LDL Isolate number of words.ARS Position number of words.
STA Save number of words.ENA Get number of words.
SUB Determine long and short list.AJP Set short list address.ENI Number of words in long list.ENI Set long list address.
ENI Save beginning address.
SIU Get next output address.INI Short list address.ENA Number of words in short list.
INA Set tally for short list.
SAU
SW.

(2) Search long list for WDA Logical name from short list.responder. 
EQS Compare against long list.
SLW No respoader.

(3) Check for end-of-short list. ISK Tally on short list.
SqLJ Lo'op on short list.

(4) Move number of words In ENA Number of words in long list.long (output) tist-.* command A LS Position In A.list. 
EAQ Mask for number of words.
ALL Total words -- A.
STA A --* commandj list.
Sli Exit.

(8) Move element with no LDA LogVcal name from short listresponder - log (output) STA into long list.list. 
INi Increase long list index,.
S.4 Go tally on short list.

-C-N "



SUBROUTINE NAME: REL

PURPOSE: To select logical names of records which satisfy a
requested attribute-descriptor relationship.

MAJOR PERFORMANCE
LOCATION: Associative Memory

DATA INPUT: Data records as described in Paragraph 4.4, Volume II.

OUTPUT LIST: logical names of records satisfying selection criteria*

COMMAND LIST: (See Table 7-1, Volume II, for complete description
of command list.)

0 e: The operation code is RELI, n where I indicates the
particular relationship and n indicates the number of
words in the descriptor. The relationship (this list is
by no means exhaustive and can be expanded) and their
respective codes are:

1= equality
2 = inequality
3 = less than
4 = greater that
5 = less than or equal
6 = greater than or equal to

VW: L1 contains the core address of where an attribute
identifier is stored. *

L2 contains the core address of where the value of the
attribute, i.e., the descriptor, is stored.

TIMING (GAP): Time ( usec) 50 + k (113.6 nr) r + 25.5r + 7.1w + 52.4n ÷ 135))
k no. of loads

nr = avg. no. of data records/load
r = avg. no. of responders/loadSw =avg. no. of words loaded into AM/load
n m no. of words in descriptor

TIMING (1604-B): Time (ssec) - 86.2 + nr (3.6w + 120.6) + 17.4r

where:

w - avg. no. of words searched before finding
mntch on attribute.

nr - no. of data records.
r no. of responders.

O 1•i '-'€owians logical names. then the entire data record will be setlcted.
to



REPRESENTATIVE Am GAP 1604-B
TIMING (nieec.): load time exgcluding AMI Ved Totalexcudng M oad

time.

7.3 ' 2.0 9.3 65.9

C-30



SUBROUTINE NAME: REL

GAP

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(1) Modify the AM instruction to IDA Load A register with opeode, REUi.
perform the requested LDQ Load Q register with mask.
relationship. MEQ Determine i.

ENA Store i.
AJP Jump to instruction which inserts

requested AM instruction.

(2) Transfer to AM operations. RESUME

(3) Load the data records into EMY Turn off busy bits.
the AM. LDR Set up S, R, N.

RBL load words into AM.

(4) Do an equality search on LDR
attribute identifier. EMC

(5) If no responders, exit. JNR

(6) Advance respose store. for i=1 EMC Set T =1, 7 =1.
Perform particular descrip- = 2 MMC
tion relationship and AND = 3 LTC
results. = 4 GTC

= 5 LEC
= 6 GEC

(7) Perform step (4), n-i ICI Increment index and compare with
times. JIH n, number of descriptor words.

(8) If no responders, ext. JNR

(9) Store addres of responders. RDA

(10) B AM. CLEAR

(i1) Perform suareh on logal THS
name addres table for mobreepoder. !•

(12) Sore logical amnes in LDA
litc1. STA

C1-31

C-S



SUBROUTINE NAME: REL

1604-B
GENERAL PROCEWjG PROCEDURE INSTRUCTION 

COMMLWTS(1) Initil housekeeping. 
ENT Set logical name list ounter
ENQ i Mask -. O.
LDL L (Q) i -A.
SAL Save i.ENQ n mask --. Q.
LDL L (Q) n A.

SAC Save n.ENI Set logical name address table
ENI index.

ENA Initialize output table index.SAL Set comparison address.(2) Find length of logical LDA Small LN address.name ecord. 
INI Increment to next ¶ddress.
MA Smaller address -- A.sun Greater address.

INA Inclusive numbers.SAU Save number of worcd in record.
(3) Get addrcss of attribuoIt' 

e Attribute from c'2aetd list --, A.
and des.,riptor in record. rQb Search record k! i.t,!,bute.

RLJ No attribute nmtch.INI Increase to descriptor.
EIVA Address saved.SAU Number of words in descrptor.
E N1

(4) Determine oomma& desorip- WDA (2) -) A.tor relationship. 
EQS (L2) = Descriptor.
SlA No.lJP Yes - all of descriptor -ENA Yes- i --a. A.
INA A- I-4&A.AJP A - 10 select recorc
INA AA-4 -- aA.
AJP A = + select record.
SLY Not preferred.INM Increase descriptor address,RAO Increase descriptor address.S/LY Loop on descriptor.
ENA -4 A.

C-32



67

SUBROUTINE NAME: REL
(oont'd)

1604-B

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

;• I~DA (I,)•A.

THS (L2) < descriptor.
SL Check l.
QJP Q = (-) preferred.
SUj Not preferred.
QJP Q = (-) not preferred.

(5) Store Icgical name of IDA Logical name.
selected record into output list. STA To output area.

INI Iner rse output index.

(6) End of loop housekeping. ISK Check for end of )ogical name.
SL Address lBst - loop.

(7) Number of words in output ENA Number vf words in output list.
list --0 command list. ALS Position in A.

ENQ Mtsk for number of words.
ADL Total words -a- A.
STA A --a command list.
S5j Exit.

oC-33



MACRO NAME: R.NR - READ NEXT RESPONDER

PURPOSE: To read out data associated with a match key where
variable formats are used; e.g., to read out the
logical name of a record chosen by a match on
another f!eld.

MAJOR PERFORMANCE
LOCATION: Associative memory.

DATA INPUT: Data records as described in Paragraph 4.4, Volume II

OUTPUT LIST: Result of RNR operation

MACRO ARGUMENT: N - B = before AM location
- A = after AM location

A - XXXX AM location
R - 1 = restore

-0= do not restore

TIMING (sec) - GAP-

Before: 318.1 I, 7a + 7r
After: 197.8 + 4b

a = no. of "after" responders
b = no. of "before" responders
r - no. of responders

REPRESENTATIVE TIMING
(msec): Before: 0.4

After: 0.2

C-34
C44 j



SUBROUT1'" AKME: RNR

GAP

GrNLPAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(1) Isolate restore flag. ENQ Restore mask.
, LDL Isolate restore flag.

STA Save flag.

(2) Determine option. ENQ Option mask.
LDL Isolate option.
SUB
AJP

(3) Initialize for "after" SENSE Transfer to AM operations.
option. SELECT

RESUME

(4) Inhibit all "before" LDR Set R and N.
responders. RBE Eliminate "before" responders

(5) Read contents uf first LDR Set S.
responder. RCF

(6) Determine restore option. LDI Get flag.
J! H Determine option.

(7) Restore. LDR Set R, N.
ACT Activate.
JUC Jump to exit housekeeping.

(8) Initialize for "before" LDA Determine N for future RBE and

optiont SUB activate instructions.
SINA

STA

(9) Tran•fer to AM opeatlona. SENSE
SELECT
RESUME

(10) Eliminate "after" LDR Set R and N.
reepomsrs. RBE Random block erase.

C-35



i ~I

SUBROUTINE NAME: RNR
(cont'd)

GAP

GENERAL PROCESSING PROCEDURES INSTRUCTION COMMENTS

(11) Erase all but last responder. RCR Count of responderb equals C.
LDI V into index.
ICI Add 1 to index.
EFR Erase first responder.
JiH Jump if index equals C.
JUC ioop to increment index.

(12) Read contents ni the LDR
remaining responder. RCF

(1i) Determine restore option. LDI Get flag
JIH Determine option.

(14) load buffer into response LDR Use mask of zeroas,
store. WCR

(15) Activate. JLR
ACT

(16) Halt AM operations. CLEAR Exit.
SLY

C-39

)!



iI

MACRO NAME: SPO - .LECTED PERFORM OPERATIONS

PURPOSE: ro pe-'1n ..earch operations on specified subsets
of A!,. In,,tions,

hAOR PERFORMAN4 .
LOCATION: Associative memory.

DATA INPUT: Data records as described in Paragraph 4.4, Volume II

OUTPUT LIST: Results of search operation

MACRO ARGUMENTS: M m XXX operation to be performed
N = I - search responders

2 - search between addresses
91 = beginning address (AM)

02 = ending address (AM)

TIMING (Wsec) - GAP:

Search Responders: 288.9 + 15.2r

Search Between Addresses: 392.8 + 4NW + 7. Ir
NW = no. of words not searched

r = no. of responders

Search Responders: 0. 4 msec.

Search Between Addresses: 3.0 msec.

C-3,



Ii

SUBROUTINE NAME: SPO

/
GAP

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(1) Determine operation to be ENQ Operation mask.
performed. LDL Isolate operation.

ALS Position operation.
SAU Save operation.

(2) Determine search envIrc, nent. ENQ Search mask.
LDL Isolate search designator.
ARS Position search designator.
INA Subtract 1.
SAU Save results.
AJP

(3) Set up search operation ENA Get operation code.
code. ENQ Get operation mask.

ADL Set search instruction.
STA
SLJ

(4) Branch on search environment. ENA
AJP

(5) Initialize to search responders. SENSE Transfer to AM operations.
SELECT
RESUME

(6) Yield all active nonrespondera. CMB Complement buffers.

() Set to , busy bits of non- EAR Erase all responders.
responders. Advance buffer one position before

operation (T 1).

(8) -Perform search specified. LDR Set S, R, N.
saving buffer. Xxx Operation code set.

Save buffer (Z - 3).

(w G• results of search and bold. JNR Jump on no responders.
RCR Read count of responders.
RDA Read addresses of responders.

(10) Restore codtitlion. CMB Complement buffer.
LDR SetS, R, N.
WCR Write 0 into responders.
JUC Jump to exit housekeeping.

C-38

*7*1



mm0

SUBROUTINE NAME: SPO
(cont' d)

GAP

GENERAL PROC.ESSING PROCEDURE INSTRUCTION COMMENTS

(11) Initialize to search between LDA Compute number of words in AM block
addresses. SUB preceding search area.

INA Compute number of words in AM block
STA following search area.
IDA
SUB
INA
STA

(12) Transfer to AM operations. SENSE
SELECT
RESUME

(13) Set bits to for R Set R and N.
AM block preceding RBE Random block erase.

search area.

(14) Set busy bits to for RCR Place word count in N field and
AM block following search LDR set R and N.
area. RBE Random block erase.

(15) Perform search specified. LDR Set S, R, N.
,OOC Operation code set.

(16) Get results of search and hold. JNR Jump on no responders.
RCR Read count of responders.
RDA Read addresses of responders.

Set busy bits to I for AM RCR Place word count in N field irnd
block preceding search area. LDR set R and N.

ATV Activate.

(18) Set busy bits to I for AM RCR Place word count in N field and set.

block following march area. LDR R + N
ATV Activate.

(19) Halt AM. CLEAR Exit.
SIJ

C-39

19



SUBROUTINE NAME: TIME

PURPOSE: To compute the time required to traverse a distance.

MAJOR PERFORMANCE
LOCATION: Core

DATA INPUT: Dynamic ship file as described in 1231-TN-11

OUTPUT LIST: A pseudo data file which contains the following
information for each record:

(1) Logical name - latitude-longitude
(2) Attribute Identifier - TIME
(3) Descriptor - time to tenths of an hour

COMMAND L:F': (See Table 7-1, Volume II, for complete description
of command list)

4 The operation code is TIME.

V: L1 contains t0e core address of where the coordinates of a
location are stored.

I k [(49.4 7.1w) + 12000s]

where:

k - no. of loads
s = avg. no. of ships/load

,rame- ","rst expression in parentheses is AM load time; second expression
k. processing timeexcluding AM load time.)

71AZNG (1884-B): Time (usec) 56.8 - 3.6wl 4s (3.6w2 + 12200.)

where

wl no. of words in ille.
w2 - avg. no. of *vords in records.
s W no. of ships in file.

WPRWENTATIVE GAP 1604- B

TIMM (rnme.: AM proceasing time, Total
load time -xcluding AM load

time

7.3 12.0 19.3 15.0

SC-40



0OWN

SUBROUTINE NAME: TIME

GAP

GENERAL PROCESSING PROCEDURE INSTRUCTION COMMENTS

(1) Transfer to AM operations. RESUME

(2) Load dynamic ship file into EMY Turn off busy bits.
AM. LDR Set up S, R, N.

RBL Load wnr•_d into AM.

(3) Load SOA into the comparand LDR
and perform an exact match. EMC

(4) If no responders, exit. JNR

(5) Advance the response store RDA T = 1.
one position and store the

4 address of responders in
core (speed).

(6) Halt AM. CLEAR

(7) Call subroutine DIST.

(8) Divide each distance by its
corresponding SOA and create
pseudo data file as described
in output list.

IC
C-41



SUBROUTINE NAME: TIME

1604-BGENERAL PROCESSING PROCEDURE INSTRUCTION 
COMMENTS

(1) indtial housekeeping 
ENI Data file index.

ENA Set compare addressing.SAU

ENA

(2) Determine number of words EAE
in file. EIAEnd-of-file flag.ENQ M1ask for end-of-file.MEQ Search for end-of-file.

SLJ Error.ENA Determine number of words and save.
SUB
INA
SAU
ENI

(3) Initialize pseudo file. LDA Logical name to data file.
STA Increment file index.
/NI TIME to data file.
ENA Increment file index.
STA
INI

(4) Find logical name and determine ENA logical name flag.nurnber of words in record. Logical name mag.SENQ Logical name mask.

Search for logical name.Sid Determine number of words inENA record and save.
SUB
INA
ENI

(5) Search for match on attribtte. ENA

EQS
SLJ

(6) Determine distace. LDA Call subroutine DIST.
SLI
SAU

(7) Determin, tie A d plave ENA Dividend to A and Q.in pseudo data file. ENQ Distance/Speed.
DVI Result to data file.
STA Data file Index.

-SL4
C-42



SUBROUTINE NAME: VLLU

PURPOSE: To perform a variable length lookup.

MAJOR PERFORMANCE
WCATION: Associative memory.

DATA INPUT: (1) A variable length word along with its associated
mask.

(2) Data stored in the AM.

OUTPUT LIST: The 1604-B addresses which contain the word being

searched.

CALLING SEQUENCE: VLLU, n, w, m, a

where:

n = no. of computer words in the word
being searched.

w = the variable length word.
Sm - its associated mask.
a = where the output is to be stored.

-C-43



SUBROUTINE NAME: V

GAP

GENERAL PROCESSING PROCEDURE I4STRUCTION COMMENTS

(1) Initialization. LDI Clear index to 0
EMC Set D buffer to ali "1" s Micr
EMC Set Ebuffertoall "1" soper

(2) Do an exact match search, LDR Set up S, R, N.
AND results, shift D and EMC SetTfiI, Z1.
E buffers.

(3) If no responders, exit. JNR

(4) Perform steps (2) and ICI Increment index and compares n,
(3), n-i times. JIL number of words.

(5) Store address of responders. RDA Store addresses in 1604-B locat )s
starting with a.

(6) llalt AM. CLEAR

j I



SUnclaaaifis•
Secudty Classification

DOCUMENT CONTROL DATA- .41D
Meoawtit claeoffllatlen of title, boo of abe"ett and indexing annotation muota SO entered whesn the oveaidl s.l MPO toC11186ifto

Dt Uncl
Auerbach Corp .o -Philadelphia, Pa..

4. 0REPORT TET O P..

Analysis of Small Associative Memories for Data Storage and 6etrieval Systems

4a. OESCRIPTIVE NOTES (60ype o-3f5repo and InclusiOe dat&)

bFinal Report, Oc er 1964 to %Ptembqr 1965
5, AUTHOa(S) (L459 40me. &me nOaee. (nue l)

Green, Akobert S.,. Mr.

Minker, Jack, Dr.
andle, Warren, E, t Mrt4I. REIPORT DATE ?7e. TOTAL. 040. OFe PA;ES l7 .-NQ. Or amp's

July 1966 i614 (a124 + 490) 315
o4. CONTMACT OR OTANT N.o..F30(602) -3564 So., OOONATONS O R EPOI T NUMACTVS

SPROJECT NO. ý&.)94 1231-TI2

N/ Task 459402 Ai. Develao pmet C tT er• ( o t (.AIID )w, 6* seside

d. RADC-TR-65-397, (Vol 1, Vol TA)
10. AVVA Ie obecTY/LiefTAhOi eort4 a Thti doetment es subject to speci.s export controls

and each transmittal to foreign goverss ents Or ormed n natr onals may be made
onlo y vth prior approval of RAD(eCDLI),GCF Ba.Ya. t4he0.

n ~ ~11. iZuppý 9MENTAllY NOTES• 12. SPONIORIINO WILITAily AC~lh -TY

eosN/A Rome Air Development Center (asisID)
Grj•.ffiss AF&,N.Y. 13440

13 ARlSTlRAC

The objective of this effort wone to determine the e,',ect of associati-'e memories
which are realizable today to alL .-i processing formatted record problems. The eval-
uation consisted of % comparison between the CDC 1604B and the CDC 1604B-Associs-
tive Memory to process the same problem. The Goodyear Aerospate Corp associative

memory was used to establish state-of-the-art In associative memories, however, other
associative memory designs were Investigated.

DD " 1473 ,
uD, 173Sociutty Clasasiict.



Securigt Classification____ ___________

Is. KE ODILINK A LINK 8 LINK C
NOL6 INT ROLE WT RO1LEt WT

PAssociative Memories
Content - Addressable Memories
Comparison Evaluation

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard statements
of the contractor, subcontractor, grant**. Department of D.- such as:
fen"e activity or other organization (corporate author) issuing (1) "Qualified requesters may obtain copies of this
the report. report from DDQ'"
2a. REPORT SECURTY CLASOlFICATION: Eflter the over- (2) "Foteign anneuncement end dissemination of this
all security classification of the report. Indicate whether rpr yDCi o uhrzd
"Restricted Data" is includeaL Matking Is to be in accord- eotb D sntatoie.

ar~c@ with appropriate seewifty ragulations. (3) 11U. S. Governme.-A agencies may obtain copies of
2b. .af~AJ Auomatc dwiladig i speifid i Do D~this report directly from DDC. Other quailified DDC

rective 5209.10 sad Armed Forces Industrial Manua&. Enter reesthog
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author- (4) "U. S. military agencies may obtai, cpies of this

ized.report directly from DDC. Other qualified users
3. RMPORT TITLE: EVow the complete report title Wi all shall request through
capital letters. Title* in all cases shouald be umclassified.
If a meaeningfu! title cainot be selected without classifies-
ticon. show title classification in all capitals in parenthesis (S) "All distribution of tti~s rep,.rl t., :ontrol~oi Qual.
imatediately fallowing the title, flied DDC user, shall request through

4. DESCRIPTIVE NGI'E; U approtristo. enter the type of
report. 0.g.. interim. progress. summflary. annual. Wr final. If the report has been fwrfushert t.. 'he Office of Technic *1
Give the inclusive dates when.a specific reporting period is Services. Department of Comfort'_.. for *.!a t., thy publi, 1i.
covered. coke this faci end enrter the r 4CV. L if kiWi.,

S. AIJNr(OS)r Enter the saaae(s) of sauthow(s) aso shown on IL SUPPLEMENTARY NOTES. Use 1f.r s Wit. .rd,
or in t he raport. goats Iact nsokt, fist nt ame. middl inlt ial, tory antee
P military. show each eorw branch of searvice. The names of
tne proicipal a.*hor is as eaoiuee minimagum requirement. 12. SPONSORING MILITARY ACTIVI I 'i. Enter the name of

the departmental pioJect office or Isbo story sponsoring (poay'
.REPORT DATL Enter the date of the report as day, in* for) %-7. research and dev.rlopmeat. Include addb se.

month "r.ar or Month. yea,. If mat than one 'f... appears .sr~t5~i~ re ndL.ta
on the report. use eate of put-icatioa. 13ABSRC;Etre btatgvn rc n ala

summary of the 0i.coment indstative of the report. even though
7s, TOTAL NMBUIR OF PAGIM "'ho tat Jl Page count it may also appear elsewhere in the body of the technical ito
Shoulid follow mormel pagination Proc.1fes. La.. frnter the Pont IL additional space to required. a continuat or. *heet %hall
ewokae of peages containing i111bem11tiai%. be. attached.
7&. NUMW4 OF REFERENCES Enter the total numbtra oflt4 ihyderbota h 0011 fcasfe eot

refeence cied i th lopft.Ii nc lassified. "~ch paragraph of the abiettd ahall and with
as. CONTRACT ORt GRANT NUSSER: If appropriate. entler an indication of the niilitijri security classification of ihr in-
the epplico~,able u er of the 4-itanci or gram coder which foirmation in the, perat'riph. rapeerenied ak 'T4. ý$ rC. ."V)

the report Wetwesntlef There is no Itmitstion on the length of the abstfact Now
Sb. Or. h5d. PROJECT "U11112f Eiger the Wllroeriole ever, ob. ataggese9d len'gth is from I SO~ Iv- 223 worls.

em wistar t camber.a systsit fimb5e taskch umberoj. *if 14 KEY WORDS: Key words art technically meanaingful Forms
or short phrase* thot chla~rctetsir a itport caft way be used as

9s. ONMENA1OWS REPORT NUMERIS): ROMe the off. kn,;a ean*rie for csatstogsnft the report Key words %mest be
cial .dpt asslhr by wit"b the decumiac will he idea ified selected so thai no socuntit classification is requited leeti-

a"cesseelled by the ovigisoltan activity. This member mset lives. a -c.. 068 P-4APme"I model desipietion. rudae miew. military
be uatque te lhug raert Project code .A0a. $frowsphac location, may * "*,I'd as key

9* O~R EPOT NER(~: I th reorthasbaa words but wi1~ be follIowed by to indicatiin k tevelacist com.
assgnd ay the rpor ~rn(eEdber by th test 'Th- assignment of links unli.hd *rights is fptlittea

wr by ow apostweis4 also snter this skombov(s).
'.Io. AVAUL~rrT/LIWTAa1OX1$OTICES Enter any lim.

-ta-ito" a fortiet disseamiatiorn of the repoat, other thee t11,0041

Secutrity Classification


