FTD-TT-63-785

FOREIGN TECHNOLOGY DIVISION

FOUNDATIONS OF A THECRY OF THE WET-STEAM TURBINE

By

Georg Gyarmathy

DISTRIBUTION OF THIS
DOCUMENT IS UNLIMITED




FID-TT-63-785/1+2+3+4

EDITED TRANSLATION

L

FOUNDATIONS OF A THECRY OF THE WET-STEAM TURBINE

BY: Georg Gyarmathy

English Pages: 274

Revised Edition of Translation Originally Published

30 April 1964

THIS TRANSLATION IS A RENDITION OPF THE ORIGH
NAL FORERIGN TEXT WMITHOUT ARY ANALYTICAL OR
EDITORIAL COMMENT. STATEMENTS OR TMEORIRS
ADVOCATRD OR IMPLIED ARE THOSE OF THE SOURCE
AND DO NOT NECESSARILY REFLECT THE POSITION

OR OPINION OF THE FOREIGN TECHNOLOGY Di-
VISION.

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP-AFL, OHIO.

FTD-TT- ¢3-785/1+2+3+4

AFLC-WPAFB-SEP 66 102

Date 4 aug. 1966

S




R R T T e g R e i
. - g -

CRUNDLAGEN EINER THEORIE DER NASSDAMPFTURBINE

Mitteilung Nr. 6 aus dem Institut fur Thermische

. Turbomaschinen an de Eidgen. Technischen Hoch-
ischule in Zurich (Report Nr. 6 from the Insti-
tute of Thermal Turbomachines of the Swiss Fed.
Institute of Technology, Zurich, Switzerland),

' Juris-Verlag, Zurich, 1662,




commaatis  Aeliito wie e b oo pORNRRRT. R BIRER HE L

SRR

i
J

In Memory of Gyorgy Jendrassik, my uncle, '
and .

to my dear parents
who sacrificed so much for their children's sake




TABLE OF CONTENTS

Foreword | | . . . . . . . . ... e
Notation s R S i AN BN R A B A s
PART ONE: BRIEF SUMMARY OF RESULTS . . ... ... ...
1.1. . The Development of Knowledge Concerning
Wet-Steam Turbines . . . . ... ... ...
1.2. The Physical Picture of the Wet-Steam
Turbine . .. ..

1.3. Practical Conclusions S0 Sl SR

PART TWO: THE FORMATION OF STEAM WETNESS AND THE FORMS
ASSUMED BY WATER IN THE TURBINE . .. .. ...

2.1. Layout of Two Turbines as a Basis for Applica-
I tional Examples . . .« ¢ & ¢ ¢ v v v e b e e .
2.2. Drz2q Force and Heat-Transfer Between Droplets
and Steam . . . . . 0 4 e . . 3
2.3. The Physical Behavior of the Steam 1n the Wet~
Steam Region . .. .. ...
| 2.4, The First Appearance of Water in the Turbine:
Condensation onthe Blades . . . . . . . .
2.5. Spontaneous Condensation of the Steam and
the State of the Fog Produced . .. ... ...

e o

a) Nucleation . . . . . . . .. ¢

b) Flow Equations for Condensing Steam

c) Application of the Flow Equations to
Expansions with Condensation. . . . . . .

d) Analytical Determination of Onset of Con~
densation and the Properties of the Fog
Formed ... .. ..

FTD-TT-63-785/1+2+43+4 i

11

11

15
25

30

30

37

47

60

75

77
79

85

91

T

|




——

TN
y= EERAL LY E 1
I
i
e) Certain Conclusions for Wet-Steam
Turbines . . . . . . . .. ¢ v oo 114
2.6. Flow and Expansionof the Fog ... . ... 120
a) Fluid-Dynamic Behavior of the Fog . . . 121 :
b) Thermodynamic Behavior of the Fog . . . 134
2.7. Motion of the Water on the Blades and Casing )
MASTES L0 e Bl e o L 143
2.8. Formation, Effect and Fate of Large Drops . . 152
a) Atomization of Detached Drops . . . . . . 153
b) Motion of Detached Drops . . . . . . 156
c) Concerning the Eroding Effect of Detached
DROPSE & "M ket Bk S s PR R R 159
d) RicochetingDrops . . . . « « v v v v « 162

2.9. The Forms the Moisture Appears In, Its Dis-
tribution and the Deviation of the Steam State

from Thermodynamic Equilibrium . . . . . . . 167
a) Calculation Procedure . . . . . . . PP 167
b) Examples . . . v v v v v vt e e e e e 182
PART THREE: MOISTURE~-LOSSES .. ... . .. . . ... RO & 199
3.1, General Remarks . . . . ¢ v « v ¢ v v v v 4 199
3.2, Braking-LosSses . . . ¢« ¢ v ¢ v v o e 0 v 203
3.3. Entrainment-Losses ... .. .. e e e e 210 1
a) Entrainment-Losses Due to Fog Droplets . 211
b) Entrainment-Losses Due to Large Drops . 220
3.4, Thermodyanmic LOSSES . » v v o o o o o . . 222
3.5. Other Moisture-Losses ina Stage . . . ., .. 228
3.6. Change of the Exit=Loss . . . . .. . . LI 233
3.7. Calculation of Moisture-Losses and Infer-
ENCEIS . v o e - B & & d olcld o B bl o & ¢ S I 236
a) Summary of the Calculating Procedure. . 236
b) Examples. . . . .. .. e e 237
3.8. Concluding Remarks. . . . . . . . T 250
FTD-TT-63-785/1+2+3+4 i
F
“f u:‘ S AR Sy S s .







FOREWORD

An attempt is maae in the przasent report to give a rigorous theoratical
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logy (ETH).
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& Company, Ltd., Baden, Switzerland, for permitting to complete the pre-~
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experimental activities performed by that firm.
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to discuss problems connected with my work. 1 profited much by these dis-
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NOTATION

The numeration of ecquations, tables and figures begins a new se-
ries in each Section. Equations, tables and figures of other sectlions
are referred to as "Eq. 2.3(12)," "Fig. 2.3.1," etc., meaning, respec-
tively, Eq. (12) and Fig. 1 of Section 2.3.

With a few exceptlions that are explicltly noted, the MKS system
of units is assumed in all formulas. Here we cite briefly the most im-
portant conversion formulas (where kg* = "kilogram-force"): 1 m =
= 39.37 in; 1 kg = 0.102 lg*seco/m = 2.205 1b; 1 N = 1 kg m/sec® =
- 0.102 kg* = 0.225 1b.wt.; 1 bar = 10° N/m° = 1.02 atm abs = 14.51
psi; 1 kJ = 1037 = 103 kg-m°/sec® = 0.239 keal = 0.948 BTU.

The large number of physical quantities dealt with made it lnev-
1table that a given letter symbol would have to be used for more than
one quantity. In these cases, the distinctlion 1s made by means of sub-
scripts, which will understandably be rather long on frequent occasions.

Below we enumerate the most important symbols, 1.e., those that
appear in several Sections, together with all subscripts that can im-

part specific significance to the various letter symbols.

SYMBOLS

a m/sec Speed of sound

A m2 Surface area

b m Subtangent in AT construction; cf.
Sec. 2.6b

b, m Eroded width; cf. Sec. 2.8.2

B N/m3 Braking force

-3 4




Absolute velocity

Resistance coefficient of sphere
Friction coefficleat of wall boundary
layer

Specific heat of steam at constant
pressure

Specific heat of water at constant
pressure

Diameter of bucket ring

Diameter at bucket midsection
Function 1ndicating reduction in num-
ber of fog drops, cf. Eq. 2.6(24)
Factors accounting for influence of Kn

on ¢y and a,, cf. Egs. 2.2(27), (28)

D
Field strength
Functions of quantities G

Dimensionless quantities that deter-

mine the behavior of droplets; specif-
ically, according to subscript, for:
Deposition on profile nose (N) or on
concave slde of profile (H) or on large
drops (g); bursting (B); in periodic-
ally varying (P) and in turbulent (T)
steam flow

(specific) Total enthalpy

(specific) Enthalpy

inthalpy value at zero "Normal enthalpy"; ses
[20], page 5

(called i,
Effective loss due to Aq, cf. Eq. 3.1(7)

= Wl -
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n

Aq

J/kg

kg/m-sec
kg/me-sec

kg/sec

kg/sec

-1

-1

Nucleation rate

Boltzmann's constant (= 1.380-10723)
Scale factor of model (Sec. 3.8b)
Conversion factor, supersaturation to
supercooling (Definea, Eq. 2.3(6))
Knudsen number for sphere. Def. Eq.
2.2(5)

Mean free path of steam molecule

cf. Fig. 2.1.4

Heat of vaporization

Mass of droplet

Water flow rate in moving film
Condensation rate, or impact rate of fog droplets
Mach number

Mass throughput in turbine (with sub-
seript: part-throughput; cf. Eq. 2.9(1))
Mass condensing per second on one

bucket

No. of Crops per kg of wet steam (with-
out cubscript: number of fog drops),
except for Section 2.8a

Number of molecules 1n a kilogram of
Hy0 (= 3.3510°°)

Nusselt number

Pressure

Logarithmic axial pressure gradient
Expansion rate. Defined: Eq. 2.1(4)
Prandtl number

Moisture ~loss per stage (with sub-
-5 -
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Atabk

Atbrems

AT
OT*

J/sec

sec

sSec

sec

script: partial loss, c¢f. Eq. 3.7(1))
Jeat conduction rate from « droplet

Droplet radilus

Average radius of a given droplet

species (subscripts as per Sec. 2.9a)
Critical drop radius

Radius of largest nontursting droplet
Gas constant of water vapor (= pvd/Td)
Radius of curvature of profile nose
Reynolds number

(specific) Entropy

Profile contour lengths, cf. Fig. 2.1.4
Profile chord length, ef. Fig. 2.1.4
Linear deflection, cf. Fig. 2.1.4
Stanton number

Time

Bucket spacing in midsectlon clrcle,
cf. Fig. 2.1.4

"Cooling time" of droplet. Def. Eq.
2.2(37)

"Deceleration time'" of droplet. Def.
Eq. 2.2(33)

Temperature

"Capillary saturation temperature" (cf.
Eq. 2.3(11)), used for the surface tem-
perature of a drop

Undercooling of steam. Def. Eq. 2.3(4)

Maximum undercooling in spontaneous

condensation; as AT*(&a), it signifies
-6 -
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ATeff

AT

GS

AT

AT

AT

m/sec
m/sec
m/sec

m3/ke
m/sec

ke/kg

ke/ke

T R b S TR (Y,

e

the "Wilson undercooling" understood
in the sense of Section 2.5e
Temperature difference between a sur-
face and the surrounding steam, as gov-
erning removal of | ‘a:t

Adiabatic boundary layer heating
("temperature head")

Locus curve of horlzontal tangent in
Fig. 2.6.5
Average AT 1n a bucket ring, determin-
ing undercooling losses
"Capillary undercooling." Def. Eq.
2.3(10)
Circumferential velocity; in Sec. 2.7,
velocity of water in flowing film
voloclity of steam outside boundary
layer
Relative velocity of a droplet with
respect to the steam
Specific volume
Relative velocity with respect to bucket
Frictional drag on one drop in steam

Specific steam content("steam quality")
Specific water content (wetness friction);
with subscript.

(ef. Sec. 2.9a), wetness friction in a par-
ticular form
Specific molsture dericiency. Def. Eq.
2.3(16)

.
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- Ny )
z - Number of buckets
Z N/m> Centrifugal field st.ength
ZO to Z8 various Various material quantity groups, cf.
Dlagrams III and IV in Appendix. For
definitions see [45]
a J/u° seckK Heat-transfer coefficient
%Bm - Baumann Moisture-loss coefficient, cf.
See. 3.1
5 m Film thickness (except 6, in Sec. 2.54)
€ - Transferred mass friction per blade row; for
subscripts see Sec. 2.9a
C - Moisture-loss number
n m Coordinate
i Ny = Internal efficlency of a turbine
Ty, - Polytropic efficiency of an expansion
i K - Ratlo of specific heats of steam; used
concurrently as isotropic exponent
A J/msecK Thermal conductivity
A - Logarithmic supersaturation (= 1n p/ps)
n kg/msec Dynamic viscosity
v m2/sec Kinematic viscosity
v(ée) kg'l Prop-number distribution function; cf.
Eq. 2.5(13)

Coordinate

Axlal coordinate 1n turbine (€a =0 at
entry)

Cf. Sec. 2.5b

Cf. Sec. 2.,1.4, Also Aéa = Aﬁ'a + A&"a

Supersaturation (= p/ps)
- 8.
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"Capillary supersaturation," cf. Eq.

2.3(9)
ke/m> Density
N/m Surface tension
m Streamline ordinate 'Secs. 2.6a and 3.3)
N/m2 Shear stress at wall

— Reduced logarithmic supersaturation,
cf. Eq. 2.5(2)
rad/sec Angular velocity of shaft

m2 Flow cross section normal to axis

SUBSCRIPTS, ETC.

Axial component

Adiabatic

Value at turbine inlet

Av reference point

Vapor phase

Value at turbine outlet

"Flowing (cf. Section 2.9a)

Large droplet (cf. Section 2.9a)
Recoiling large droplet (cf. Section 2.9a)

Coarse water forms (collective for and

25 S5 B h)

Boundary layer
Centrifuged out (cf. Sec. 2.9a); Exception: ATy,
Centrifuged out but not drained away (cf. Sec. 2.9a)
Leilow gide of profile (pressure side)

Condenser

Model

Fog droplet (ef. Section 2.9a)

-9 -
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Second-generation fog droplet (cf. Sec. 2.9a)

Immediately after a condensatilon shock

For continuum flow

Of a drop

Rear side of profile (sucticn side) .
At saturation (as Pgs Tgs IS)

Tang=ntial components

"Dry," i.e., corresponding to the hcmogeneous ideal case,
cf. Sec. 3.1.

Circumferential components

Directly before condensation shock

Of the water phase

Before guide wheel of stage

Between gulde wheel and runner of stage

After runner of stage

At thermodynamic equilibrium (assuming equal i and s);
exception: U‘J0

For saturated water or for the stator wheel

For saturated steam or for the rotor wheel

At the locus of the Wilson point

At the point where the sudden condensation can be re-
garded as complete

In the 1deal homogeneous case

Corresponding to actual expansion line

Averaged value

=] LONS




R e I s Bl 00 o b SNl i g u At . ey =S, PRI e
- | 4

Part One*)

BRIEF SUMMARY OF RESULTS

Following a critical survey of the literature on the subject in 1
Section 1.1, Sections 1.2 and 1.3 gilve a brief presentation of the in- i
formation derived on the basis of Parts Two and Three of this study.

The reader who 1s interested only in the calculation process for (;
determining the distribution of the molsture between its particular

forms and the moisture =loss in a turbine, without wishing to

! gain a more profound insight into the process, should restrict hils at- .
tention, after perusing Sections 1.2 and 1.3, to Sections 2.1, 2.9a,
. 3.7a and 3.8a.

1.1. THE DEVELOPMENT OF KNOWLEDGE CONCERNING WET-STEAM TURBINES

In splite of a great deal of effort devoted to it over the last
five decades, our understanding of the wet-steam turbine remains imper-
fect. Although much practical experien?e has been accumulated and many
important problems cleared up satisfactorily, we still lack a self-

contained interpretation of the processes. The principal reason for

this 1s the fact that the problem of the very greatest importance —

ISP

the mode of the condensation — had for the most part eluded investiga-

tion for a long time.

In the meantime (and, specifically, as long ago as the late

S
—

'Thirties), great progress was made in the study of condensation, in

S both the theoretical and experimental aspects. These advances were,

s S eT—

however, hailed only in meteorology and wind-tunnel design, but not in

*)
[S“P"‘acripts refsr to the footnotes listed on pp. 27-29]. i
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steam-turbine engineering. An attempt will be made in the present study
to apply them profitably to steam turbines as well., Here, it will be
shown that it is possible, starting out from the laws governing condensation,
to obtain an over-all theoretical picture of the physical processes into wiiich
empirical observations dovetail nicely, without being forced to resort to arbi-
trary and unsubstantiated assumptions just at the points of fundamental importance. .
The overall picture that can be built upon the basis of individual pro-
cesses is sketched in Section 1.2, and Section 1.3 draws practical conclusions
from it. For the present, however, we shall address ourselves critically to the
most important previous studies in this field.
Baumann established on the basis of steam-consumption measurements

made on condensation turbines as early as 1910 (the best reference here is (1))

that penetration of expansion into the wet-steam region involves a deterioration

of efficlency. (His rule reads as follows: an end moisture content g kg/kg
results in a deterioration of efficiency in the wet-steam section by a factor of

1- yE/Z). This was followed shortly by a theory proposed by Martin (2), in which
with support from experiments with nozzles - it was assumed that the expansion

in the turbine does not take place at thermodynamic equilibrium, but with con-

i sistent severe supercooling. This author succeeded in reproducing the

Baumann loss values rather closely, although with recourse to the assump-

tion, not otherwise justified, that only one fifth of the current theoretical moisture
is precipitated in all cases. In his book (3) published in 1922, Stodola presents

a penetrating treatment of the behavior of water droplets in steam which is of abiding
validity and also devotes a great deal of attention to supercooling problemsl). His

nozzle experiments provide the first proof of abrupt condensation in flowing

-12 -
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steam. However, since he had no theory at his disposal that was capable

of describing spontaneous drop formation in steam, he could not arrive at a
self-contained theoretical interpretation pf the processes. In 1927, v, Freuden-
reich (4) presented a moisture-loss formula on the basis of the ascsumption that
thé water phése moves slower than the steam but possesses the same type of
velocity triangles as the latter. He also made the first efficiency measurements
on a steam turbine with marked variation of final moisture content and arrives

at a deterioration of efficiency somewhat sharper than that of Baumann. He uses
these results to infer the amount by which the water-phase velocity is lower- a
procedure that is just as arbitrary as Martin's inference as to the rate of moisture
precipitation. On the othier hand, his exemplary investigations into the size and
motion of the water drops detached from the stator trailing edges have withstood
the test of time. In 1928, Zerkowitz (5) formulated the fruitful concept of
"inhomogeneous exparsion, " in which no kinetic motion at all is imparted to

the water phase, and drew from this inferences concerning the moisture-loss. In

his book on steam turbines (6), Flﬁgel sums up the state of knowledge at the

beginning of the 'Thirties. He mentions the initial supercooling after a saturation

line has been crossed and the subsequent sudden transition to thermodynamic equili-

brium (Wilson line), but stresses that the principal cause of moisture losses
must be sought in the braking effect due to the large drops. He assumes with-
out justification that most of the water is present in the form of such large drops

even at 3% moisture?). This view was widely held and alsc served as a basis for

the air-turbine experiments of Flatt (8), in which relatively large drops ( 10-6m) were

artificially injected into the flow and their effect on efficiency measured.

Let it be stated here with regard to both Freudenreich's investigations con-

-13-
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cerning the detache. drops and Flatt's air-turbine experiments.

that while they provide an extremely valuable insight into the

braking effect of the large drops and will be referred to by the present
author for this purpose, it is not admissible to draw conclusions from
them concerning the over-all effect of the steam moisture conten%).

Most of the numerous publications that appeared during the second
half of the 'Thirties were concerned with erosion damage and proposais
for its eliminationh). The frequent cases of catastrophic bucket dam-
age obviously strengthened the conviction that the water forms predom-
inantly large drops. While Senger (11] warns against this "erroneous
interpretation" of v. Freudenreich's results, the emphasis of his
papers is also placed on the behavior of the large-form water, to
which he devotes a comprehensive survey.

After the Second World War, 1t became 1ncreasingly fashionable to
speak of drainage devices of extreme efficiency. Nevertheless, one
cannot suppress the suspicion that these statements have, on some oc¢-
casions, been prompted by wichful thinking and sales psychelogy rather
than by sound measurements.

Very recently, meticulous and highly elaborate measurements have
been undertaken on condensation turbines ({12], [13]). An important
result was attained in very short orcder: namely, the efficlency of the
low-pressure stages can be raised considerably by improved shaping of
the Dblad*s. The result is that we now assume the moisture-losses to
be somewhat smalier than previously (at most, half to ‘wo-thirds of
the value indicated by Baumann). It was established by periscopic ob-
servations [14] that permitted viewing the interior of a wet-steam tur-
bine that visibility within the turblne was severely affected by a
thick fog in cases where the molsture content was considerable. Glgan-

tic water drops could be observed in separation regions existing

- 24 -
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in the flow.

It is to be hoped that new experimental information on these problems,
obtained with the aid of suitably designated experimental turbines and measuring
instruments of high accuracy, will be performed in the future and puklished. Also
the theoretical statements made in the present study deserve to be checked empiri-
cally through experiments on turbines.

A survey of papers devoted to spontaneous condensation in flowing steam,
which are of decisive significance for the wet-steam turbine, will be given in
Section 2.5.

1.2. THE PHYSICAL PICTURE OF THE WET-STEAM TURBINE

In this section, we shall give a condensed presentation of the most important
physical processes unfolding in a wet-steam turbine. Here we shall use as our point
of departure the investigations described in Parts Two and Three of this report and,
for the sake of completeness, particularly as concerns the coarse-form water, reiterate
conclusions already stated in earlier studies of wet-steam turbiness). Proofs and
other deta:ls will be found in the corre«ponding sections of Parts Two and Three, which
are referred to on occasion in the footnotes.

In practice, a wet-steam turbine can be produced in either of two ways:
either a turbine is fed at the very entry with saturated or even wet steam (for example,
in nuclear power plants), or the initially superheated steam becomes wet in the course
of expansion (condensation turbines); in the latter case, we imply by the term "wet-
steam turbine" the part of the turbine beginning with the stage in which the steam
reaches saturation. For the sake of simplicity, we shall restrict our dis~-

cussion to the case in which the steam at the entry into the wet-steam

turbine does not entrain any water drops. Further, we shall have

-15-
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in mind in all calculations the low-piessure wet-steam turbines, i.e., turbines
in which the saturatioh line is crossed at a pressure lower than about 3 bars (44 psia).
At the outset, we must discuss those phenomena that arise immediately after
the saturation line has been crossed. It is evident from the i, s-table that immediate
condensation would be expected here. Nevertheless, the i,s-tible, as usually
plotted, is valid only for the so-called "thermodynamic equilibrium, " i.e., for the
condition to which a mixture of steam ard water adjusts itself after a sufficiently
long time. In the steam turbine, expansion runs its course in a very short time
(only a few milliseconds pass before the steam, beginning at saturation, arrives at a
state in which, for examn'e, 15% of water ought to be present!), and we cannot
state a priori that thermodynamic equilibrium can be established during this time.
Yet another difficulty is encountered at the beginning of condensation: condensate
can be deposited only on a surface that is not too sharply curved - a surface that
must, moreover, be cooled to prevent it from being heated so severely by the liber-
ated heat of condensation that no further condensation can take place. Now it is
found on closer examination®) that the blades, walls, dust particles present in the
steam, any water drops that may be detacheu tromthe blades, etc., present too
small and poorly cocled a surface to permit full-scale condensation on them. The
amount of water that is actually deposited on these surfaces is at most a few
thousandths of the amount that would be deposited at thermodynamic equilibrium,
Thus the conditions fall far short of thermcdynamic equilibrium: the steam becomes

supersaturated or, in other words, sugercooled7) .

Initially, supersaturation increases practically unhindered since

the above —— mentioned macroscopic condensation (on the blades,

-16-
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etc) is extremely weak and since the tendency of the steam molecules to combine
into microscopic water "clusters" consisting of a few molecules each - a
tendency that makes its appearance immediately after saturation - is initially
ineffective. That is to say, the tiny aggregates of molecules are unstable in

8)

only slightly supercooled steam ° and vaporize soon after formation.

However, the greater the supersaturation becomes as expansion progresses,
the smaller will be the "critical" drop size that a drop must possess in order tc per-
sist. If this critical drop size has become, let us say, so small that even drops
containing only 30 to 100 molecules are stable, rapid formation of such stable drop-
lets (nuclei) sets in in the steam. Namely, the smaller the size of the nucleus, the
higher is the probability that it will accidentally form9). These nuclet present
a surface of which heavy condensation of the steam can beginlo) , so that the nuclel
grow very rapidly to become relatively large drops. (The nuclel radius is originally

about 6. 10'10 to 8- 10‘1°m, and most of them reach final sizes of 1078 to 10=6 m).

This process, the so-called spontaneous condensation, takes place, in rapid expan-

sions, in a very short time, and has as a result conversion of the dry steam

11) , SO that thermodynamic equilibrium is established - at least approximately.

into a fog
The point at which spontaneous condensation occurs (or, more precisely,

the point at which the supersaturation passes its maximum) will be called the Wilson

Point and the line joining various Wilson Points (corresponding to a given rate of

expansion) in the 1, s-chart will be called the Wilson Linelz) . The following state-

ments can be made in regard to the spontaneous condensation of the steamm):

1) The position of the Wilson Point, the rapidity of spontaneous

condensation and the nature of the fog depend primarily on the local

-17-
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rate of decrease of the pressure ("expansion rate": P = (-1/p)dp/dt).

2) Depending on the magnitude of P, a 3~ to 6-fold supersaturation
is attained as the peak value (which means a maximum supercooling of about
25 to 35°C), so that the Wilson Line lies between the lines representing 2% to
4% theoretical moisture (cf. the i, s-diagram in the Appendix)M) .

3) When fog formation has been terminated, all fog droplets have
approximately the same size.

4) The number of fog droplets per unit mass of steam depends very heavily
on the expansion rate P, so that their average size also becomes heavily depen-
dent on this quanntyls) .

It is found that this sensitivity of the spontaneous condensation process to
the rapidity of expansion is a decisive factor for the wet-steam turbine. Namely,
the expansion does not take place at constant rate in the stages of the turbine:

rapid expansion rates usually occur with the blade wheels (P =103 to 104 sec™1),

max
while in the gaps between the wheels, on the other hand, the pressure may remain
constant for a while (P = 0) or may even rise slightly in certain regions (negative P).
Thus the turbines also offer the possibility of producing fine fog droplets as well as
coarse ones, and all arbitrary intermediate cases are conceivable, (For the finest
fog encountered in turbines, we may compute the average fog-droplet radius as
about 2. 10"8, while the coarsest would have about 5- 10'7m). Even when the layout
of a turbine is known, it is not possible to state once and for all what kind of

fog droplets wiil form in it, since the Wilson point can be reached at various values

of P, depending on the operating conditionsls). If the position of the Wilson Point in

the turbine had no influence on the composition of the fog, or if the fog had no influ-
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ence on subsequent processes, this would still be withnut practical significance.

However, it is found on closer investigation that the behavior of tic section of the
turbine through, which the fog flows is deicrmined first and foremost by the composi-
tion of tris fog. How large or how small the proportion of the moisture will be that
forms harmful drops (erosion!), how widely the stiate of the steam deviates from ther-
modynamic equilibrium, and how large or how small the moisture losses are will all
depend on it. The finer the fog droplets formed, the better will be the behavior of
the fog in the turbine and its consequences.

During the short time spent in the turbine, the fog droplets have virtually
no opportunity to coagulate, so that formation of large drops by direct fusion of
several fog droplets does not take place17). On the contrary, immediately after
formation of the fog, another mechanism intervenes to convert the water from the
fog—-dron form to the large~drop form. This mechanism consists in the blades'
catching a part of the through-flowing fog in each blade ring and releasing them
only in the form of much larger drops. For the most part, the fog drops impinge on
the leading ecdce of the blades - in the neighborhood of the stagnation point -~ and

18). In

on the hollow side where a severe diversior of the steam flow is effected
the case of small fog droplets and high steam densities, only a small fraction of
the passing drops impinge on the biades in each ring; on the other hand, in the
case of coarse fog droplets and low steam densities, this happens to a consi-
derably larger fraction since large drops are less able to keep up with the
motion of the steam. Only in rare cases, however, can a ring catch more

than 10% of the fog--drop current, and the captured proportion usually

ranges from 1 to 5%. The consequence of this is that even at the exit

of the wet-steam turbine, where the fog has already passed through sev-
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eral blade rings, most of the .team moisture is present in fog-droplet form

and only a relatively small portion (5 ta 30%) has made the transition to the
coarser forms.

The water caught by the blades forms thin liquid sheets (which oftan
contract tc form individual water streaks) and flows in a definite direction
under the influence of friction with the steam or the centrifugal forcelg).

On the stator blades the water is driven only by steam friction, so that
it f.ows in the direction of the steam current. For the most part, it comes to
a halt only in the ..ind-shadow region of the trailing edge and collects there.
The result is formation of large water drops that hang on the trailing edge and
are kept in constant vibration by the steam flow. From time to time, some
of these drops are torn away These detached drops may still be rather
large during the first few instants (say, 1 mm), but are very soon shattered

into numerous small pleces by the steam currentzo).

The average size of the
drops that are ultimately formed generally runs tor = 1004 to 10°5 m depending
on steam density and velocity) so that they are several orders of magnitude
larger than the fog drops that form spontaneously in the steam. For this reason,
they will be referred to as "large drops." They are practically totally incapable
of following the motion of the steam and impinge upon the backs of the next
runner blades just behind the leading edge at high velocityzn: in doing so,
they may give rise to the familiar bucket=-pitting effect.

Very many original publications and extremely good summaries are
available concerning the erosion phenomena. However, the actual mech-

anism that causes the pitting is stili largely a mystery to this day.

It is not our intention to go into this complex of problems in the

present study the mole so because erosion does not belong to the core
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of the wet-steam problem, but represents a concomitant phenomenon.

The large drops that impinge on a bucket elther adhere to it
or rebound (perhaps in the form of several smaller drops) to be picked
up by the steam again. In doing so, they are suddenly swept into re-
gions where the pressure is lower; the result may be — particularly
for the larger individuals among them — that their interior tempera-
ture does not drop fast enough, so that they boll and break up into
fragments ("bursting")zz). In no event, however, will the large drops
be reduced back to fog-droplet size; the difference between the large
drops and the fog drops 1s distinctly malntained throughout.

The water that strikes the rotor blades flows almost radially
outward, since the centrifvgal-force effect 1s generally much stronger
than that of steam friction 23).The water then sprays away from the tip
of the bucket or from the shroud and elther strikes the casing or 1s
carried out of the flow channel through the drainage slits. Should
the drainage of the water slung off the runner blades be accomplished
only partially or not at all, some of it willl adhere to the casing to
be driven downstream on this casing ULy steam friction, while part of it

will reenter the steam flow, with the result that a zone particularly

rich 1n large drops forms in the vicinity of the casing increasinglocally

the danger of erosion and causing major losses.

The large drops swirling in the flow space presumably swallow up
all fog drops that they encounter. In low-pressure turbines, however,
the number of fog drops that go over t~ the large-drop form in this
manner 1s very small as compared to the nw:h:r trapped by the blades.
This is because there are still no large drcps or only very few pres-

ent in the first stages of the wet-steam section, and in the later stages,

where they become numerous, the density of the steam and, consequently, the number density

of fog drops, has already become low and the probability of encounter is reduced.

- 21 -
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On the other hand, thils process is probably im-
portant 1n nigh-pressure wet-steam turbines and might, for example,
make it possible for a conslderable portion of the water present in
fog-drop form to be separated from the steam by means of a
water separator. ) 7

The second phenomenon that 1s most intimately related to the com-

poslition of the fog 1s the deviation of the steam's state from thermo-

dynamic equilibrium, or, in other words, the extent of the supercooling

at varlous places in the turbine. We have already noted that after the
saturation line has been passed, supercooling of the steam at first
increases without hindrance, until spontaneous condensatlon intervenes,

and that 1t then collapses very rapidly as a result of fogging. If,

however, this fog expands further adlabatically, as is mostly the case
in turbines, it can never arrive at perfect thermodynamic equilibrium,
since new water must be deposited out continuously in the course of
expansion. Practically the only surface available for condensation 1s
that of the fog drops. Thus, heat must be taken gway continuously from
the fog drops, and this 1s possible only when the steam surrounding
the fog drops 1s cooler than the fog-drop surface, 1l.e., when super-
cooling obtains. The finer the fog, the larger will be the total sur-
face that the drops present and the more favorable will the heat-

transfer coefficients become. In this case, therefore, the supercool-

Ing need not be gtrovnz. If, on the contrary, the fog has coarse drops,
strong supercooling I3 required to permit continuous 'withdrawal of the
liberated heat by the fog drops.

Supercooling has two kinds of practical consequences. Firstly,
the interlor heat exchange that takes place in the fog with finlte tem-
perature differences gives rise to a loss manifested irn a drop in the
machine's ef " eclency; secondly, the specific volume of a supercooled
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fog is smaller at a given pressure than that of a fog at thermodynamic equilibrium:

thus supercooling reduces the volume flow. This effect should be taken into
account right when a machine is being designed.

Under certain conditions, large-drop fogs may allow the supercooling to
become so large again as to trigger vigorous spontaneous condensation. This
means that a second family of fog drops will form in the fog and intermingle with
the primary droplets. The second-generation fog drops may naturally have
different sizes than the first generation; they are usually much smaller than
the latter24).

Ia low-pressure turbines, the supercooling amounts to lo to 4°C for an

extremely fine fog; if the fog has large drops, it generally ranges between 10°

and 25°, but may reach 3V°C and even higher, in which event another spontane-

ous condensation may occur. 1n all cases, thermodynamic equilibrium is reached

very rapidly after exit from the last stage.

On the basis of these insights into the processes of the wet-steam tur-

[ ]

bine, we can compute those losses that originate from the properties of the wet

steam25). It is found that the moisture‘-losses are of many kinds. There are
three processes that result in particularly heavy losses: the ilmpingement of
drops - fog drops and large drops - on the buckets ("braking-losses"), the

entrainment, acceleration, etc. of drops by the steam as a result of friction

("entrainment-losses") and the previously noted thermodynamic losses, which

depend on the extent of supercooling. Apart from these three pincipal losses,
several other less significant losses arise26) (centrifugation, con-

version of the kinetic energy of the trapped water dror:s into heat,
disturbance of the profile boundary layers by water drops, etc.),

which, taken together, come out about the same as one of the three
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principal losses Usually, there is an axit-loss recovery at the ena of the

turbine, since the volume of the supercooled steam is somewhat smaller and,
consequently, its exit velocity somewhat lower than in the ideal (not supercooled)
case.

As regards the magnitude of the moisture~loss, we find27) that the sum

of the individually calculated moisture-losses agrees fairly well with the over-all ¥

moisture-loss observed in practice. Further, it is found that only a quite small
difference can be detected between a reaction-type turbine and an impulse-type
turbine effecting the same expansion, but that a Jarger amount of water will be
present in harmful .forms in the reaction-type turbine. In no case may' 2 set the
moisture loss in one stage proportional to the average wetness. Depending on
conditions, the distribution of the losses among the stages may take highly
different forms. A further observation is that the moisture-losses depend very
heavily on the composition of the fog: they are not even half as large for extremely
fine fogs as for the extremely coarse ones,

For the loss in efficiency per 1% average wetness, carrying the calculations
through for the turbines used as an example (13% final wetness, 0.035 bar (0.5 psia)
final pressure) gives values of 0.4 to 0.65% for the reaction-type modell and 0.4
to 0.6% for the impulse-type varsion?8) . The very low value of 0.3% can be
reached with extremely 1) e fogs; with extremely coarse fogs and no drainage
at all, the approximate velues 0.9% (reaction-type) and 0.7% (impulse-type)
will prevailzg). These last values can be pushed down to about 0.6% and 0.5%,
respectively, with the aid of the best conceivable drainage devices, but they

will still be almost twice as large as those obtained with a fine fog without

benefit of any drainage.
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The two hypothetical turbines used in the examples are described in
Section 2.1 and shown in Figs. 2.1.2 and 2.1.3; their expansion lines are shown
in Fig. 2.1.1. The supercooling plot obtained by calculation and the distribution

of the water among the various drcp forms, etc., are presented in Figs. 2.9.4 to

2.9.11 (three extreme cases were investigated for each design type, ¢l. page 183).

The moisture-losses in the individual stages are, for the same cases, represented
as surfaces in Figs. 3.7.1 and 3.7.2. Finally, Fig. 3.1, shows the shape
of the exparnsion line taking moisture-loss¢s into account.

In the following section, we shall attempt to secure certain practical
aspects on the basis of this over=-all ghysical picture.

1.3 PRACTICAL CONCLUSIONS

The steam remains practically dry for some time after the saturation line
has bean passed. Only from the Wilson Point on, i.e., from a point where
about 2.5 to 3.5% of wetness should theoretically be present, does the first
major quantity of water condense out, doing so in the form of very small fog
droplets that can easily follow the flow of the steam.

Even at the end of the turbine, the major portion of the moisture is still
present in fog~-drop form. Consequently, we may consistently assume that the
moisture has almost the same velocity as the steam.

The undesirable large drops that do nct follow the motion of the steam
and may therefore be deposited incorporate only a smaller fraction of the steam
moisture. Thus only a small part of the total moisture can be removed from the
flow channel, even with the most effective drainage arrangements.

Thermodynamic equilibrium is not established in the steam as it
is expanded in the turbine. Due to supercooling, the stcam has a smaller
specific voluine, which ieads to a change in the volume~flow conditions
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and consequently, must be taken intc account during the design of a wet-
steam turbine.

There is no general rule concerning the extent of the moisture-loss in
a stage. Apart from the properties of the stage, it depends particularly on the
distribution of the water among the various forms which it can assume and may
show quite large charges from one set of operating conditions to another.

Both the quantity of water that enters the detrimental forms and the
extent of supercooling and moisture-losses depend very heavily on the size
of the droplets in the fog formed in the turbine. Since a fine fog behaves much
better in all respects than a coarse fog, the principal goal of our efforts must be
to configurate the wet-steam turbine in such a way that a fine-droplet fog will
form. The means to this end is to have the Wilson Point in a region in which
the pressure drops sharply.

Securing formation of a fine fog is the most effective measure that can
be iaken to reduce the danger of erosion and, above all, to reduce moisture-losses.

The blade pitch in the part of the turbine through which the fog flows
should be preferably larger rather than too small in order to minimize the number
of fog droplets trapped by the blades.

Broad gaps between the wheels behind the runners are pointless as far
ac reducing the erosion s sceptibility is concerned; they would be better placed
behind the nozzles, since it is only from these that large drops are detached.

The erosion danger and moisture-loss can be reduced som.what with
the aid of the effective drainage devices, i.e., devices that remove all

coarse-form water (indeed, the remainder cannot be removed anyway!),

-26-
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although the moisture losses cannot be cut to a really incisive degree.

Model experiments are quite feasible on wet~steam turbines, particu-
larly when the average fog-drop diar “.er is approximately the same as
the mean free path of the steam molecules30).

In summary, therefore, we can state that a wet-steam turbine will
be the better as regards erosion danger and moisture-losses the more

perfect its drainage devices and the smaller ( ') the amount of water drawn

off by these devices. That is to say that the moisture remains for the most

part in the fog-drop form, which presents no hazard. (Unfortunately, however,

an apparentiy ldenticai result, i.e., a low level of water extraction can also

be achieved with a coarse fog and inferior dewatering...).

(Footnotes to Part One)
No.

1 Here, though, he bases his reasoning on the assumption that
during an expansion, the steam remains at all times in (cap-
illary) equilibrium with the uniformly large fog drops present
in it, i.e., that the supercooling AT at the moment agrees
with the capillary supercooling A Tr (cf. our Section 2.3) and,
consequently, is uniquely determined by the fog-drop size.
Since, however, such an equilibrium is unstable and, moreover,
the droplet size is not uniform in reality, this assumption is
completely out of line with actual conditions.

2 The same non-sequitur is also clearly evident, for example,
with Goodenough (7).

3 Cf. Goerke (9).

4 A comprehensive bibliography on this topic can be found in
Preiskorn (10). On the whole, his work presents an excellent
survey of the erosion problem and contains numerous sound
recommendations for control of this effect.

5 We shall not go into source citations in this Section.

6 Cf. Section 2.4.
-27-
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See Section 2.3a.
Cf. Section 2.3c.
Cf. Section 2.5a.

Besides their large number they also possess extraordinarily
heat-transfer coefficients.

In our terminology, "fog" = steam + fog droplets, where the
"fog droplets" are water droplets with radii between 108
and 106 m, distributed practically uniformly in the flow
channel.

See Section 2.3b and the i, s-diagram (Appendix).
Cf. Sections 2.5c and d.

Since the publication of the Swiss original of this report in 1962,

the effect of P on the condensation of steam has been studied
experimentally (47). These measurements confirmed the influence

of P inferred from theory. However, they indicated slightly higher
supersaturations than expected on tha basis of theoretical calcul-
ations. Based on the experiments, the range of peak values occurr-
ing in turbines are 4- to 9-fold supersaturation and 30° to 44°C
supercooling. These deviations lretween theory and experiment can
be explained by a difference of some 13% between the surface tension
of a nucleus and that of a plain water surface. The fog droplet

sizes calculated in the present report have been found to agree well
with the measured drop sizes. Therefore, the bulk of the conclusicns
reached in this report are not affected by these corrections.

A tenfold increase in the expansion rate P increases the number of
fog droplets by a factor of 200 to 300 and reduces the average fcg-
droplets size accordingly by a factor of 6, cf. Fig. 2.5.14.

Cf. Section 2, 5e.

Cf. Sectio 2.6a.

Cf. again Saction 2.6a.

The thickness of this water film or streaks is generally only a
small multiple of 106 m, ¢f. Section 2.7,

Cf. Section 2.8a.
Cf. Section 2.8b.
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26

27

28

29

30

Cf.

Ct

Ct.

Cf.

Section 2. 8d.

Section 2 7.

Section 2.9.

Sections 3.1 t0 3.6

Cc lled "miscellaneous losses" in this report.

(€735

Cf.

Section 3.7.

Section 3. 7b.

Let it be noted here that the smaller losses in the impulse~type
turbine are not directly related to the low reaction, but to the
lower number of stages. This latter, however, is related to the
amount of reaction by the fact that stages of low reaction usually
can convert more heat drop.

Cf.

Section 3.8b.
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Part 'I‘wo*)

THE FORMATION OF STEAM WETNESS AND THE FORMS
ASSUMED BY WATER IN THE TURBINE
2.1. LAYOUT OF TWO TURBINES AS A BASIS FOR APPLICATIONAL EXAMPLES
The objective of the present study is to investigate the behavior
of steam in low-pressure condensation turbines. This behavior may be of
different nature depending on the design of the turbine. To be able to
judge the influence exerted by design on the processes of the turbine,
two turbines were designed on paper to be used as applicational examples,
one as a reaction-type and the other as an impulse-type turbine. Both
turbines have the same expansion line; it lies almost entirely in the wet-
steam region. The reaction-type turbine has twice as many stages as the
impulse-type _turbine. Both turbines represent extremes of their types. The
reaction-type turbine shows an exaggerated axial structural length, with the
plade pitch values tending to be larger and the deflections smaller than usual.
The impulse-type turbine, on the other hand, is extraordinarily short; its
(runner) blades are quite close together and produce large deflections. The
exaggerations were intentional so that the differences in behavior between the
two turbine designs wot ' ! be more distinct.
Below we give the data for the two turbines that will be necessary for
subsequent calculations, followed by a discussion of how we can use them
to determine the plots of certain quantities knowledge of v-hich is presupposed

in subsequent Sections.

Tha turbines werz laid out on the basis cf the i, s-diagram for

*Superscripts refer to the footnotes listed on pp. 198a and 198b.
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thermodynamic equilibrium, and no mcisture.losses were taken into ac-

count in the efficiency figure adopted. Thus the data can be regarded
only as a first approximation of reality. How the expansion actually
takes place can be determined only at the end of thls s*udy, on the
basis of the investigations that have been carried through.

For the sake of simplicity, we shall restrict our considerations
to the conditions at the blade mean diameter,

The basic data for the two turbines are as follows:

Mass throughput (no bleeding! ) M = 40 kg/sec(89 1b/sec)

Speed 3000 rpm or w = 314,2 rad/sec
Initial state of steam Py = 1.4 bar (19.6 psia)
1, = 2700 kJ/kg (1160 BTU/1b)

(Initial superheating: about 4.5°C (g°F)

Final pressure (condenser

pressure) Pg = 0.035 bar (0.5 psia)
Final wetness Yg = 13%
Percentage reaction,

reaction turbinen) 50% (40%)

Percentage reaction,
impulse turbine3Y) 5% (308%)
The expansion line 1s shown in Flg. 1. Figures 2 and 3 show merid-
ional sections and blade shapes for the two turbines, as well as cer-
taln characteristic veloclty trlangles.
More explicit data are collected in Table 2.1.1 for the
reaction turbine and 1n Table 2.1.2 for the impulse turbine.
The significance of the various symbols will be evident from Fig. 4.
The following must be noted regarding the quantities t and Pa: The
flow time t was determlned from the axlal-velocity curve, according to

the expression
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Flg. 2.1.1. Expansion line of
turbines used as example (with-
out taklng moisture losses

into account). a) Saturation
line; b) stages of constant-
pressure turbine; c¢) stages of
high-pressure turbine.

(&) (1)

(we shall return pelew b0 the matter of determining the ca-curve), ‘Pa

1s the average value of the logarithmic axial pressure gradient

1 4 d
LR E S (2)
in a blade wheel and, for example, in the case of a stator wheel 18 cal-

culated as

gy - Bpy
P« 231 .
oty 5

To conduct an exact analysls of the flow process in turbines, we

must know the plots of certain quantities along the axlal coordinate —
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Fig. 2.1.2. Bucket Fig. 2.1.3. Bucket com-
complement and veloc- plement and velocity tri-
ity triangles for the - angles for the constant-
high-pressure turbine pressure turbine (cf.
(cf. also Table 2.1.2). also Table 2.1.2). A) Di-
A) Diameter; B) stage. ameter; B) stage.

particularly those of p, P‘,:1 and Cye Below we shall discuss ways in
which these functions can be determlned from known design data given
for the stations between the blade rirgs.

Within a stage, the pressure diminishes not approximately linearly,
but stepwise. It remains approximately constant in the unbladed inter-
mediate gap, but compensates for this by dropping off the more rapidly
at places where the flow experiences the sharpest accelerations. The
pressure curve for the bucket surfaces — for which the literature con-
tains numerous measurements — depends heavily on profile shape and is
sensitlive to changes in the direction of onflow. In the middle of the
channel, on the other hand, it should be possible to indicate the na-
ture of the pressure drop in a fairly generally valld form, cf. Fig.

Sa. We might arrive at this wavy curve by plocting the pressure on a
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logarithmic scale and superlmposing a sine curve over the connecting
straight lines between the twc intermedliate pressures before and after
the ring in this mode of presentation (Fig. 5b), in such a way that

the resultant curve has a horizontal tangent in the intermediate spaces.

P
TN
T"‘"Nh: W

|
I
|
th | | |
| | c
.+_ b .1
Bl /5 U
..,__ﬂ_!;_.._- B
Fig. 2.1.4. Notation for Fig. 2.1.5. Sine-wave
Tables ).1.1 and)2.1.2. 1) 5 approximation for the
D ; 2) D 5 3) 4 5 pressure curve and for
Stip . S)hgb BRCke S the logarithmic axial
chord’ bucket’ pressure gradient 1in a

bucket ring (plotted
for a guilde wheel).

The curve of the logarithmic axial pressure gradient Pa can eas-
ily be determined on the basis of this curve for 1n p(ﬁa), as has been
done 1in Fig. b5c. Pa follows a cosine curve, reverts to zero 1n all in-
termed.iate spaces, and has a maximum of height Q?a between them (?a is
computed from Eq. (?V).

The axial velocity curve ca(ﬁa) can algo be egtimated in a sim-
ilar manner. The values of Cy in the intermediate gpaces are known
from the layout of the turbine. Between them, c, would have a uniform

curve (line k in Fig. 6) provided that the blades were infinitesimally

thin. Since, however, the blades block off part of the flow sectilon,

Cq must rise in the ring. This can be estimated approximately by rais-

ing the velocity value that would correspond to the uniform curve in
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TABLE 2.1.1
( Fraction-typs Turbine)

T ] Stufe: 1 2 3

2 schaufelkranz: vor 1' 1’ zw.1', 1" 1" | zw.1",2' 2' zw.2',2" 2" zw, 2", 37 3 zw, 33" 3" w.3" ¢
5, m 0 0,05 0,10 0,15 0,20 0,26 0,32
i Ki/kg [ 2700 2675 2650 2514, 5 2578, 5 2538, 5 2497
P bar 1,40 1,20 1,01 0, 790 0,612 0, 454 0,330
v m3/kg || 1,25 1,41 1,635 2,05 2,60 3,36 4,40
Yo kg/xg - 0,003 0,011 0,022 0,033 0,045 0,057
L m/sec § 81,8 81,0 83,8 94,5 103,5 114,17 129, 4
¢ m/sec || 21,3 +———o 241,2 89,1 ————= 281,3 103,6 +———== 301,0 130, 0
w m/sec - 86,4 —t= 243,8 94,6 e 289,0 115,1 —————+4—= 314,2
u m/sec || 254,5 256, 9 _ 259, 3 261,7 265, 2 269, 4 274,1

- Dspitzel @ 1, 7400 1, 7706 1,6012 1,8318 1,8784 1,9344 1, 9904

D, m 1, 6200 1,6353 1, 6508 1,6659 1, 6892 1,172 1, 7452
Dyabe 7 mz 1, 5000 1, 5000 1, 5000 1, 5000 1, 5000 1, 5000 1, 5000
an ™ 0,611 0,697 0,781 0,869 1,004 1,172 1,344
w8 ™ 0,126 0,142 0,157 0,177 0, 202 0, 232
s - 121 117 121 130 106 108
tsennS ™ 0,042 0,044 0, 043 0,040 0, 050 0,050
ene 9 T 0,054 0,054 0,054 0,054 0,087 0,067
L m 0, 0025 0,0025 0, 0025 0, 0029 0, 0030 0,0030
lx m 0,038 0,038 0,038 0,039 0,047 0,049
s m 0,039 0,024 0,024 0,037 0,049 0,048
ay, m 0,050 0,050 0, 050 0,050 0, 060 0,060
'] m 0,057 0,057 0,057 0,057 0,069 0,069
] ] 0,068 0,066 0,066 0,068 0, 096 0,096

— -
t sec 0 5,4.1074 10,8-10"4 15,9-1074 20,4.1074 25,0-1074 29,3-10°4
k, n’! 3,1 3,5 4,9 5,1 5,2 5,0
Prax  sec’! 620 730 1070 1270 1530 1580

s | ]

1) Stage; 2) blade; ring; 3) before; 4) between; 5) after; 6) tip; 7)
hub; 8) blade ; 9) chord.
proportion to the cross-sectional reduction (see figure).

The curves obtalned in this way for Pa(t';a) and ca(ﬁa) are pre-
sented In Fig. 7 for the specified reaction-type turbine and in Fig. 8
for the  impulse-type turbine. These c,-curves were used to calcu-
late the flow times t from Eq. (1) for both Tables 1 and 2.

An additlonal quantilty knowledge of which 1s presupposed in the

- 35 .

R — —
:
c
. g
u



. —l
3 4 5 [ ] j
-—
3'ozw. 33 Bt w34 4 zw.4n4" 4| zw.am 5] 5 zw.5,5" 5" | zw.57,8'| €'  zw.6',6" 6"} nich 6" :
R i
0,26 0,32 0,39 0, 46 0,56 0,64 0,75 0,84 J
1
2538, 5 2497 2452, 5 2407, 5 2460 2320 2267 732 |
0, 454 0, 330 0, 236 0, 168 0,111 0, 0785 0,0485 2,088
3,36 4, 40 6,00 8,30 11,8 16,2 25,5 34.3
0,045 0,057 0,069 0, 082 0,095 0, 106 0,121 2,130
114,7 129, 4 155, 6 188,3 200 222 252 12
—w= 301,0 130,0 +——e 324,38 188,3 4——— 361 224 —— 395 3.
115,1 1= 314,2 155,7 ——t = 343,5 200 o~ 358 254 ————= 390
269, 4 274,1 27,1 284, 3 298 310 325 338
1,9344 1, 9904 2,0556 2, 1210 2, 3000 2, 444 2,642 2,804
1,172 1,7452 1,7778 1, 8105 1, 9000 1,972 2,0m 2,152
1, 5000 1, 5000 1, 5000 1, 5000 1, 5000 1, 500 1, 500 1, 500
1,172 1,344 1,542 1,765 2,39 2,93 3,72 4,4
02 0,232 0, 262 0,12 0, 358 0,434 0,520 0, 608
108 108 104 n 9 62 0
50 0,050 0,052 0,054 0,080 0,064 0,100 0,93
67 0,087 0,067 0,036 0,100 * 0,074 0,109 ' 0,078
030 0,0030 { 0,003 0,0030 0,0085 0,003 0,0035 g, 003
47 0,049 0,052 0,054 0,071 0,060 0,088 0, 069
49 0,048 0,047 0,040 0,084 ~0,044 0,053 =0;085
P 0,060 0,070 0,070 0,100 0,080 0,110 0,000
69 0,069 0,069 0,068 0,103 0,078 0,110 0,019
96 0,098 0,096 0,082 0,128 0,092 0,17 0,088 )
; 3 - -4 s-107
25,0107 2,310 33,7-107¢ 37,4107 11074 s, 61074 4,7-10 . b
- 5,0 4,8 48 41 43 43 :-‘”
.0 1580 1690 1990 1920 2150 2500
R—
ip; 7)
pre-
Fig. 8
calcu-
n the
oy 2 g e T A I T s o~




3 4 4 4 S PRIOH O A m il |
(g fany (L <dra (9 fas3je (G fuasmiaq (7 f@ax0Jaq (€ f3uta weperq (2 fe8e3s (1 _
| R |
082¥ OE¥L 0201 oo¥ot 095 oves {28 nm,
: { £'s 9's £1 9°L1 18 L'st -® H 7
€ o [ o L] . [} 3 [} . [}
y-010°8% y-01°-5 ST y-0L 00t 0178 y-01-€°S y-01-€°¢ 0 e ) |
zot‘o £s2‘0 ¥90°‘0 L60°0 sso’‘o 960°0 - L
£80°0 Loz ‘o »o'‘o »80°‘0 ov0 ‘0 »L0°0 ] H, M
f 060 ‘0 oLt ‘o 050 ‘0 oLo‘0 ov0°0 050°0 w bt 1 !
890G 8s1 ‘0 0se‘o s50°0 0€0 ‘0- 8s0°‘0 w s _
SL0 ‘D 1’0 8€0‘0 £50°‘0 geo'o 0%0°0 w e, _
SE00 ‘U 0500 ‘0 9100°0 $200°0 £100°‘0 0200 ‘0 . ] Ny
. 8L0 ‘0 €61 ‘0 6£0‘0 180°0 1 30] oLo‘o w 6 W%,
¥90°0 660°0 0c0‘0 050°0 1200 0500 w QRS
06 ¥ 8Lt 801 41 g0t - 1
85 ‘0 sz¥ o ¥sz'0 00z ‘0 oo o1t o m QW%
(4: M + Zr'e Wy 'L 62Tt 992’0 199 0u: ‘0 = U
092 ‘1 008 ‘1 oTr ‘T oLt LLSS ‘T 1525 ‘1 ¥909 ‘T w [%®Ng
006 ‘1 o8t 0oL ‘T ooL ‘1 000L ‘T 000L ‘T 000L ‘% @ “a !
oS ‘2 08g ‘'z 086 ‘T 0s6°‘t £298°t 6¥28°‘1 9ceL 't w QRS %J
862 682 L9z L92 L92 Loz L9T | des/m n 0
Ly 4———— ¥EC ¥8¢ ~w—— 2Z9¢ TLT ~f——— 252 - e/m a
6se WS -—— 122 ¥85 »—1— £21 16¥ <«———3—0°'001 || o9s/m )
 §
8¢ £82 144 1 21 oet 05t 0‘00t || des/m 2
@
(14 &) 14 1) T80°0 6L0‘0 £80°c 180°0 - /3 &
8 12z oc's 8L 09°C 05°T szt | /g s
sco0‘o $950°0 891°0 6L1 ‘0 zig'‘o ‘o 1 20 ¢ anq d
1 {x4 1 £ 44 S ‘Love atve S ‘8LS2 S ‘v8S2 00LZ N/ '
o 980 1T 9T ‘0 60°‘c so‘0 [ 1 « *a
! “ 4 L] 4 4 [ u m
uf Yoeu 4 af W€z £ £ wl'Az %4 wl WT°AZ %4 1S wl'Az ul al W l°a 1 »1 304 [ ;TURINIIJOEYOS 2
L
. r £ z t g T
H v
( sutqen] adfy-esTnduT )

21 2 TIdvl




following Sections and which is closely re-
adlr® lated to the logarithmic axial pressure grad-

lent 1s the "expansion rate”

ial-%gf-l'.c‘. (4)

!

| H S For the most part, we shall approximate the
‘u-f""[ k| .

| Iro : variation of this quantity within the bucket
] ["1 |
EI | | fa ring by means of a cosine curve that begins
J '3 ]
L____'_E_ﬁﬁ"_"' ; and ends at zero (cf., for example, in Fig.

2.9.3). Tts amplitude value is
Fig. 2...6. Esti-

mated axial-velccity Prax = Py Codmax (5)
curve for a bucket o
r.rz. A:B 1s to be The Pmax was determined from the Pa and ca

i .70 equal to C:D.
curves for each ring of the turbines 1n ques-

tion and entereu in the tables.

Cahm/nec

mi ¥
[

AN

J‘Ilﬂ 'l L —
[
I
I

100 i T + 4

A

Stufs

Fig. 2.1.7. Curves of Pa(F,a) and-ca(ga) in

the reaction-type turbine. A) Stage.
2.2, DRAG FORCE AND HEAP TRANSFER BETWEEN DROPLETS AND STEAM

In the present study, we shall alway. tacitly assume that the

water droplets are spherical unless the contrary 1s expressly noted.
This assumption 1s notably valid for the most important droplet slizes
(diameters <1 u). That is to .ay, such small drops can follow the mo-
tlon of the steam closely, so that the peripheral pressure-force varia-
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a ~{ (& o
Fig. 2.1.8. Curves = Pa\;a) and ca(ﬁa)

in the  impulse-tyy. turbine. A)
Stage.

tion that gives rise to distortion remains within narrow limits, heing
conditioned by the veloclty of the droplets relative to the steam;
thus the surface tensilon 1s in a position to maintain the spherical
shape. With larger drops, higher relative velociltles arise and the dis-
torting forces can, under certain conditions, become so large that
they not only set the droplets into distorting vibration but even shat-
ter them. We thall discuss these problems in greater detall in Section
2.8.

We deflne the irag coefficient ¢ and the heat-transfer

D
coefficient a, for a sphere 1n the usual manner, as

W - eprriid e UD (1)
and

Q = a U, -, L) (2)
respectively. Here W 1s the drag force exerted by the steam on the

droplets at a relative velocity Ur' Q 1s the quantity of heat trans-
ferred from the droplet each second. The "adlabatic drop temperature"

o s exceeds the temperatwre Td of the surrounding steam by the bound-
2
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ary-layer heating ATGS:

Tr,ld'rd‘ATGl . . (3)
ATGS becomes noticeable only at large relative velocities. (In the
case of steam, it reaches 1°¢c at about Ur = 60 m/sec.) Frequently, a,

1s also expressed in terms of the Nusselt number, which 1s defined as

r-o
NIIr L ld Ls (L‘)
Thus the entire problem of drag force and condensation 1is re-

duced to the determination of Cps G, and ATGS. However, before we in-
dicate formulas for their calculation, we must present certain basic
arguments concerning flows 1n general.

The Navier-Stokes equations, which serve as a basis for the usual
discusslon of flows, presuppose a continuous medium. If this assumption

agrees closely with reailty, we speak of a continuum flow. If, however,

as a result of a very low density of the medium or of very small dimen-
sions of the bodies past which the flow is moving, the free path of the
molecules acquires orders of magnitude comparable with the dimensions
of the bodles, deviations from continuum flow make thelir appearance.
The Knudsen number Kn, which indicates the ratio of the mean free
path to the principal dimension of the body in question (in our case,

to the droplet diameter 2r), 1is used as a measure of these deviations:

K ¢ {} . (5)
For calculation of the mean free path, we have at our disposal the fol-

lowing formula derived from the kinetic theory of gases:

5 pg VRT
Py ‘zusa: d o

= 1,51’&:—: =15

where V4 and hq are the kinematic and dynamic viscosities of the steam,
respectively, and a4 represents the speed of sound iIn the steam. The
quantity (1.5 py4/RT4) 1s plotted in Diagram III (Appendix) as a func-
-39 -
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tion of the steam pressure, while Diagram I shows the mean free path

TS in saturated steam as a functlon of pressure. We see that, for ex-

ample, in saturated steam with p = 1 bar
8

= 105 N/Il’l2 (Td = TS = 99060)9
the mean free path is about T = 8:107" m. Using Eq. (6), we can also
express Kn in terms of the Reynolds number

.U, 2reU

Rer! \’dr Pd 4 (7)

and the Mach number

M, vt (8)
as follows:
M
FAR A S PR - B (9)
rr  Q,VRT, Re, :

If the deviations from continuum flow are not particularly strong,
it 1s possible to set up a theory that gives results in good agreement
with experlence by retaining the Navler-Stokes equations as valid but
dropping the wall-adhesion condltion and postulating instead a finite
veloclity at the wall -- the so-called slip velocity. For this reason,
such flows are known as slip flows. In a simllar manner !n the case of
temperature, a discontinulty is also assumed between the wall tempera-
ture and the average stream temperature at the wall.

At the very large Knudsen numbers, when the dimensions of the
body are small as comnpared to the free path of the molecules, the proc-
esses can be calculated orr the basls of the kinetlic gas theory, since
here we can regard the "flow medium" as a multitude of individual and

independent particles. In such cases, we speak of free molecular flow.

A region that has hitherto been 1lnaccessible to theoretical treat-
ment bridges the gap between slip flows and free molecular flows — the

go-called transitlon flow reglion. The values of ¢, and , used for this

D
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region are determined, for want of a better basis, by extrapolation

from the two nelighboring regions.
There are no sharp boundaries between these flow forms. Neverthe-
less, we can break up the range approximately as follows:
Kn < 0.01 : Continuum flow
0.01 < Kn < G.18 : Slip flow
0.18 < Kn < 4.5 : Transition flow
Kn > 4.5 : Free molecular flow.
An excellent survey of all these problems can be found in [15].

For the continuum flows, it follows from the theory of analogy

that cp and N'ur depend on Reynolds number. (The subscript O will be
used to denote values applying for continuum flows.) Thus, we write
p * ‘Do " polRey . (10)
Nu, = Nu_ = Num(lhr) 5 (11)

The form of the dependence has been determined empirically; 1n this
connectlon, see the representations in {16] and (17], respectively.
Strictly speaking, we should alsc have in Eq. (11) a dependerice on the

Prandtl number

Pr--f;— (12)

however, the varlation of Pr 1s so insignificant under our conditions
that the effect can be disregarded.
For very small Reynolds numbers, the relationships can also be

derived analytically:

13, .
Do * o = 4 (rgiokes iiw') (13)
Lfor Re, < 1.

Nu s 2 or oC B — ( lu)
For a somewhat higher range of Reynolds numbers, a range important
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primarily for the droplets detached from the bucket edges, we have on
the basis of experiment (cf. [16] or [17])

Do ™ {o- (15)
4 ag [£OF 20 < Re,, < 800.
Nu ~0,68VRe, Or o ~ 0,33¥Re - 52

(16)

For the boundary-layer heating we have for (laminar) continuum flows
b (see, for example, [16])

: o .

' aTgg, = VPr ,—:; . (17)

For slip flows we have (cf. [15])

(1+15Kn)(1 + 4 Kn) ¢ B Ka?

p * ‘po . (18)
(1 + 15 Ka)(1 + 6 Kn) ¢3¢ Ka® (4 + 18 Ka)
1 1
o = o s ot —_——
T Pl SRV o N, (19)
Re, Pr ° 1,5Vapr
ATgg ™ 8Tgg, - (20)
\ Here °po and a,q are to be substituted 1n accordance with the Reynolds

number.

For free molecular flows, we find ¢, and a, values that are inde-

D
pendent of drop size. They are given in exact form in [15]. Here we
shall write them only {or the small Mach numbers of Interest to us,

i which simplifies the expressions greatly. We further assume that the
recoil of molecules from the droplet surface takes place by reemission.
Thls m2ans that the nergy distribution of the rebounded molecules is
determined by the Maxwell distribution corresponding to the surface

temperature, regardless of the energles that they possessed before im-

| pingement, and that the fiight directions of the rebounded molecules

e o e g

follow a three-dimensional cosine distribution irrespective of the
1 flight directions before impingement. It has been found through expcr-

imen* that about 90% of the molecules rebound in this way for varilous

; 1 | - 42 .
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gas-metal combinations; for droplets and steam, where the surface and

the medium consist of identical molecules, we should expect this as-
sumption to be justified to an even much greater degree. We shall as-

sume that 1t is valid for all molecules. Thus, we obtain the formulas

T 5,508
N av U Trla 70 51
D s VX (hss V;:)ur v, (21)
' 1
“r = -‘—lﬁ f:: '; cpqd.dﬂo.wscp*d.‘ ’ (22) i
u r-1 U: j
BTgg™2,65 % S5 TyM; m 0,784 5 (23) ,j

where we have used « = 1.32 and T, ~ Ty. Applying (7), (9), (12), (13),
(14) and (17), these equations can be brought to the form

1,56’s, 50/24 0, 395
ep ™ Cpy wep, ST (24) '
f 4 .
« e l's'ﬁi:'m Pr/2 ., o,‘s:s (25)
. 2.65% 1 1,51
ATas®™0Teso” 3ot Ty ™ OTose fE - (26)

Larger Reynolds numbers occur only for larger droplets, and for thege

the deviations from the continuum flow are negliglible anyway.
Although we do not have any formulas at the present time for the

transition flows, extrapolation from elither adlacent region 1is made

the more possible by the fact that the solutions indicated for slip

flows merge rather smoothly with those for free-molecular flows at

large Knudsen nunbers.

When we compare Formulas (10), (18) and (24) with (11), (19) and
(25), respectively, we are struck with the idea of representing the
resistance coefficlent and the heat-transfer coefficient (for small
Reynolds numbers) each in a single formula that embraces all flow types.
These would read

cD = cDo"cD(‘") ’ (27)
(28)

“l' = “ro' '“"(‘n) ]

A gt
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where cp, and a,, are given by Egs. (13) and (14), respectively. The
functions ch and £ l.ave unit value for continuum flows and are
otherwise given by the factors in Egs. (18) and (24) or (19) and (25).
Figure 1 shows their curves. In the material to follow, we shall al-

ways 1lmply the following expressions by fc and fa .

D r
1
by " Teaovmm * (29)
.1 . (30)

t
€r 143,18 Kn

As will be seen from Fig. 1, they permit simple and sufficlently exact
reproduction of conditions over the entire range of Kn. In the calcu-
lations presented here, the influence of the low steam densities will

always be taken into account by means of these formulas.

&
fey oun GLE28Y
£, ous Gii3od

=
baurar/
(ALY

~
2%
%

M'II'"

T T LN

b
Kontinuumsstr. | Schluplstr  Uberpangsstr _ Frvmolek -str. %
i I L
) aor ar 1 0 100
Fig. 2.2.1. The functions fc =
D
= CD/CDO and £ = ar/aro used 1in

T
acccunting for the Influence of low
steam densitles on the resisvance co-
efficlent and heat-transfer coeffi-
cient of a sphere. 1) Continuum flow;
2) slip flow; 3) transition flow; 4;
free molecular flow; 5) Equation; 6
from.

For small Reynolds numbers (Rer < 1), therefore, we calculate with

‘D mruz,saxn' (31)

- 44 -




and

Aq 1
“r " 1+3,18Kn (32)

respectively. For large Reynolds numbers, the denslty effect is gen-
erally slight when water droplets are present in the turbine (since
the Knudsen numbers are small), so that we can simply employ Egs. (15)
and (16).

In concluslon,ws must make reference to yet another effect. All
of the formulas Just presented apply for the case in which the flow
medium 1s moving past the sphere. Due to condensatlion at the drop sur-
face, however, a radial sink flow 1s superimposed on this circumferen-
tial flow. A thorough investigation was made to determine whether this
disturbance due to condensation would be capable, under our conditlons,
of producing noteworthy changes in the cp and ., values. The result
was again found to be negative for the case of small droplets, at
which condensation 1s most vigorous; the influence of condensation
never glves a change larger than 1 to 2%. This becomes understandable
at once when we consider that the effect can arlise only where a, (and

c have already become considerable in magnitude.

D)
We shall now introduce two quantities as a measure for the 1inertia

of a droplet.
The mechanical Ilnertia of the droplet can be characterized by a

. This 1s defined as

" A "
deceleration time Atbrems

U

Btyems ¥ - T (33)

r

where Ur =c,— ¢ is the relative velocity of the droplet with respect
to the steam and ér Is its Instantaneous absolute acceleration. When

the flow velocity ¢ of the steam 1s constant, then . is equal to the

relatlre acceleration Ur and, cohsequently, At glves the time 1n

brems
which the droplet would reach the velocity of the steam (Ur = 0) 1if

- 45 -
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1ts acceleration were to maintaln thls constant value. Newton's law
for the droplet states that m.c, = -W, where W is given by Eq. (1) and
the drop mass m, can also be expressed In terms of the radius. Thus we

have from Eq. (33)

Qg r
At 8 e
brems  3¢4<pYs (34)

For small Reynolds numbers, ¢ is given by Eq. (31), which yilelds

1e 1,271

At rems - m’z (for Rer < 1) (35)

Equation (15) applies for our other important Reynolds-number range,
i.e., for detached "large" droplets, and, accordingly,

r’ 2 -
AY o " (91',,/'*’::) ﬁ:; (for 20 < Re,, < 800), (36)

where, of course, we have not taken the influence of Knudsen number

into account. The materlal quantitles will be found in Diagram III of
the Appendix.

The therwal 1lnertla of the drop can be characterized in a quite
similar manner by a "cooling time" Ot e We obtain a definition for
i1t by replacing the relative velocity by the excess temperature and
the acceleration by the heating rate in Eq. (33). Thus we write

sty T'.i: Ta (37)

g -
r

Newton's law is suppianted by the coollng formula cwmrér = é, where
the dissipated heat Q is given by Eq. (2). In analogy to Eq. (34), it
follows from this that

Atn& . :_'“E . (38)
r

For small Reynolds numbers, it assumes, with Eq. (32), the form

- 46 -




1, L59T
Malt e —
(SAd/Q'c‘)

and for somewhat larger Reynolds number, with Eq. (16), the form

2 (for Re, $ 1) (39)

P ) S
Aty ey nivE, (for 20 < Re,, < 800), (4o)

where the influence of the Knudsen number has again been disregarded.
For the material quantities, see Diagram III in the Appendix.

As an example, let us calculate the deceleration and cooling times
from Egs. (35) and (39), respectively, for certain droplet sizes in
setvrated steam at p = 0.12 bar. The values apply for drops that, for
all practical purposes, flow with the steam (Ur ~ 0). For compar._son,
we 1list In parentheses the corresponding values for Ur = 200 m/sec, in
case this assumption has resulted in Reynolds numbers within che range

of valldity of Egs. (36) or (40).

TABLE 2.2.1
r m 1078 1077 1078 1078 1074
o 107 1,5.10% s,2.10% 3,0-20% 0,19
Mbreml sec 1,4 1,5 5 (0.7.10_’,) (0:032)
2 - -6 -4 -3
At sec 6,2-10°7 ¢,8-20% 1,3.20¢ 7,5.1023 0,60
abk ¢5,9-107Y) © 1)

1) Deceleration; 2) cooling.
Inertial effects may be expected for drops whose inertia times
are comparable with the flow times. The steam requires about 5-10'4
second to flow through a bucket ring; in rough approximation, there-
fore, we can state that the inertia effects beccme significant only at

r 10"6

m. It will be seen from the data that the thermal inertia of
a droplet 1s somewhat larger than its mechanical inertia.
2.3. THE PHYSICAL BEHAVIOR OF THE STEAM IN THE WET-STEAM REGION

a) Supersaturation and Supercooling

Left to itself, a system containing two phases of the same sub-
- 47 -




stance will tend toward a state of equilibrium. A constant temperature
("saturation temperature") and a constant pressure ("saturation pres-
sure") will prevail everywhere in the system at this so-called thermo-

dynamic equillibrium. A fixed relationship obtains between these two

quantities, although i1t does differ from substance to substance ("vapor-
pressure curve"). This can be indicated in the form

Tg = T,®) OT py = py(T), (1)
according to whether we 1lmagine the pressure or the temperature to be
given. '

In the cese of condensation, the heat of condensation that is con-
tinuously liberated at those surfaces on which the steam is deposited
must also be continuously withdrawn. If that were not the case, heating
of the surfaces would occur, so that further condensation would be im-
peded. If dissipation of the heat to the outside is not possible, it
must be taken up by the steam phase, for which purpoas the latter must
be cooler than the condensation surfaces. The rate of condensation 1is
determined by the efficiéncy of the heat-transfer process.

If Initially superheated steam reaches the saturated state during
expansion, say in a turbine or a nozzle, the only surfaces then remain-
ing for condensation are those presented by the fixed linings and any
dust particles that may be suspended in the steam. As willl be shown 1n
Section 2.4, however, the condensation accomplished here is so slight
that no noticeable quantitiles of water are deposited. In practice, the
steam expands further as though no water at all were belng condensed
and thus enters an unstable state. These unstable states are character-
ized by failure of the pressure and temperature to follow the fixed
relationship given in Eq. (1) even though the saturation point has al-

ready been passed. Instead, the steam pressure p 1s higher than the

saturation pressure ps(Td) corresponding to the steam -temperature Td
- 48 -




s A o SR S Y L. = A

or, expressed in terms of temperatures, the
steam temperature is lower than the saturation

temperature Ts(p) corresponding to the steam

pressure; cf. Fig. 1.

Fig. 2.3.1. Illus- As a measure of the deviation of such an
trating definitlion

of supersaturation unstable state from thermodynamic equilibrium,
and supercooling. 1)

Saturation 1line. we use tre so-called supersaturation II, which

indicates the ratio of the steam pressure to the saturation pressure ’

corresponding to the steam temperature: ;4
(2)

Ne 5
Py(Ty

We shall also frequently have recourse to its logarithm, the "logarith-

mic supersaturation" A:

Ae 1 W (3)

Pg(Ty)
However, we might just as well characterize such a state by the super-
cooling. This 1s defined as the difference between the saturation tem-
perature and the actual steam temperature:
AT = T, -T, . (4)

The following simple relationship obtalns between supersaturation

haaen oo

and supercooling. Let us write the Téylor expansion of the pressure

curve given by Eq. (1) for the pressure p = p,:

| )
dT
Ty(p) = Tylpy) + sl Al 2Tedf,2, (5)
dlnp 2 (41np)?
Py Py
where
AR ln—L-

P _
Ts(pb) and the other coefficlents are material quantitiles. If we now '
select the reference pressure such that Pp = ps(Td), then A = A, s0

that
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=y

ctig 3
Sk P W, P

2
daT d Ts

. Az PO
pg(Ty)

A+l
i (@ 1n p)?

T‘(P) z Td +

dln P ps(Td)

From this, using the abbreviated notation
2

) 1 ( drsL d“ T,
K=K(TdrA 2 — *'2' 2
T dlnp (d 1n p)

- 'd ST

A) (6)
ps('rd)

we obtaln the relationshlp that we seek:
AT = KT,A = KT lnTI. (7)
This relationship willl be used often in the calculations to follow.
The function K i1s plotted in Diagram II (see Appendix).
By selecting P, = D, we arrive in a quite similar manner at the
conversion factor K(p, A), which is represented in Diagram I. Then it

is preferable to calculate AT from the formula
KA

1+KA (8)
which 1s obtalned by elimination of Td from Eq. (7) by application of
Eq. (4).

Whether we use Eq. (7) or Eq. (8) will depend on whether Tq Or P

AT = T

is given.

b) 1,s-Diagram for Fully Supercooled Steam

The attached 1,s-table (see Appendix) represents a supplement to
the familiar diagram of Dzung and Rohrbach (see [18]) for the case in
which the steam acquires a dry-supercooled state 1n a certaln zone b:
low the saturation l.ne.

Normally, that boundary in an 1,s-dlagram at which supercooling
collapses as a result of spontaneous condensation of the steam 1is
known as the "Wilson line," and drawn approximately parallel to the
X = const lines. It has, however, been widely recognized (cf., for ex-
ample, [19], [20], [3]) that we are not dealing here with a fixed

boundary and that the condensation may take place sooner or later, de-
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pending on conditions. Here the rapidity of the pressure drop at the
point where condensat;on intervenes 1s the governing factor. The method
developed in [45] (cf. also Section 2.5d in this connection) offers a
means of taking this effect into account mathemat ically.

The position of the Wilson point was determined mathematically
for several parallel-displaced expansion lines as a function of the
expanslon rate f. The Wilson lines sought are then obtalned by Jjoining
the Wilson points corresponding to the same f. For Willson chambers and
the like, we have 1n approximation f = 10, for turbine stages b = 500
to 5000, and for short Laval nozzles 1000 to 10,000 and even higher.
The course taken by the lines 1s 1in very good agreement with the re-
sults of the carefully conducted measurements of Binnle and Woods [21].

Although the thermodynamic equilibrium produced beyond the Wilson
point 1in the expanded steam 1s not perfect, there 1s nevertheless an
approximate equilibrium. For this reason, the conditions applying for
thermodynamic equilibrium in that part of the diagram that lies below
the Wilson lines are presented in exactly the same way as is done or-
dinarily. The two families of curves overlap in the region of the vari-
ous Wilson llnes, since, after all, transition from one to the other
takes place at different positions for expansions that occur with 4if-
ferent speeds.

¢) Behavior of Small Water Droplets in Steam

Thermodynamically, there 1s an essential difference between a
curved water surface, as presented by the surface of a droplet, and a
flat surface, such as may be formed on the linings and larger foreign
objects. The difference stems from the fact that the sharper the curva-
ture of the surface, the weaker will be the resultant intramolecular
attractlve force that holds a molecule in the gurface layer. The prac-
tical consequence of this is that a droplet can persist only in an at-
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mosphere of supersaturated steam and, the sr_naller the droplet, the
greater must be the extent of thls supersaturation.

The magnitude of thils supersaturation necessary for stability of
32)

a droplet of radius r, Ilr, is given by the so-called Thomson formula:

R LA :—':r' -:- . (9)
Here, o 1is the surface tension and p' is the density of the water; R
is the specific gas congstant of the steam. An everywhere uniform tem-
perature T was assumed in this derivatlon. The quantity 20/p'RT is
plotted in Diagram II (Appendix) as a function of temperature.

If we substitute numerical values, we see that this supersatura-

tion becomes pronounced only for very small droplets. For example, the

table below applies for T = 30°C.

TABLE 2.3.1
e Méter) Jo| 10 [ 10% [ 105 |10 [107 [10® [ 20®
n 1 {1,00000 |1,00001 |1,00010 | 1,00100 |1,01005 [1,105 | 2,72

r

aT, °c ] 00,000 0,000 0,002 0,017 | 0,17 1,1 17

A) Meters.
It 1s assumed 1in deriving the Thomson formula that the surface tension
has the same value for quite small water droplets consisting of a few
molecules as for a flat water surface. Although this assumption is
definitely unjustified, we 4o not to thils day have any definite in-
formation con:erning the variation of o with r. There 1s not even agree .
ment as to whether the value of o to be inserted in Eq. (9) 1s smaller
or larger for small drops than the value that can be established for
flat surfaces. In the present study we shall circumvent this problem —
for want of a well-based theory — 1in the following manner. Spontaneous
droplet formation in supercooled steam has been traced carefully by vari-
ous authors, usually by means of nozzle experiments (see Section 2.5).
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Within the framework of the present study, certain experiments of this
type were recalculated assuming various o(r) relstionships, keeping
for subsequent calculations that function o(r) that resulted in
the best agreement between calculation and experiment. The assumption
of radius-independent surface tension turned out the best.In all cases to
follow, therefore, we shall assume that
0 = independent of r = o(T,.

The dependence on temperature 1s weak; see Dlagram II in the Appendix.

We may draw two important conclusions from Eq. (9). Instead of be-
ginning with the temperature and inquiring after supersaturatlion, we
can proceed from the pressure in the surrcundings and inquire as to
the maximum temperature T} that a droplet cof radius r can acquire and
still just be able to exist. This must lie below the saturation tem-
perature. The magnitude of the deviation, which we should like to call

the "capillary supercooling" AT,, follows from Eq. (9) and Eq. (7)33)
2¢ \1
or, x 10T () (20)
Certain values of ATr are entered in Table 1. We shall incur no major
error 1f we substitute the numerical values for both K and Eo/p'RTr at
Ts(p) instead of those at Tr' These can be read from Diagram I at the

pressure p.

The temperature

T, = T, - KT, (Tz"%’-.)% ~ T,(p) - rr,(a?w—‘,’..-)% (11)
has the same rearing for a droplet as the saturation temperature Ts
has for a flat water surface. A flat water surface in contact wilth a
steam (vapor) atmosphere at pressure p always tends to the temperature
Ts(p), by either condensation or evaporation. In the same manner, a

droplet tends teo hold 1ts surface temperature at Tr‘ If this tempera-

ture has been reached, further mass exchange between the droplet and
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the vapor, such as condensation on the droplet, can take place only
provided that the condensation heat liberated is withdrawn {rom the
droplet. If that were not the case, the temperature of the droplet
would rise above Tr; then, however, it is no Longer capable of exist-
ence in the vapor atmosphere concerned, begins 5o evaporate, and loses y
magss until it has been cooled back to Tr by the evaporation heat that
has been withdrawn. For this purpose, however, exactly as much must
evaporate as had been roudensed in avcess, i.e., the rate cf condensa-
tion is dictated by the heat-transfer.
Consequently, in continuous condensation on the droplet, the vapor

must have a temperature lower than that of the droplet, so that the
temperature digstribution represented in Fig. 2 prevalls. Here, the ef-
fective supercooling

8Ty = T,- T4 (12) -
is decisive for heat transfer and, consequently, for the vigor of the i
condensation?a Thus the total supercooling of the steam AT is

AT = AT + AT, (13)
as will be seen from Fig. 2.
If &r denotes the quantity of vapor that condenses on a droplet

per second, then ﬁrL is the heat of condensatlon liberated each second,
and the latter must be equal to the heat é that can be taken away by

heat transfer. From this it follows, if we use Eq. 2.2(2) for Q, that

4. « WY, - T
r L L

.
m

(14)

The heat-transfer coeff. a, is given by Eq. 2.2{32). Equation (14) has
two omissions: the adlabatic boundary-layer temperature has been re-

placed by the vapor temperature T ., and it was tacltly assumed that

d)
the entlre heat of condensation L 1s liberated even when the vapor con-

denses not on a flat surface, but on a small droplet. The former 1s al-
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T ways admissible for small droplets, since their

velocities relative to the steam :.2ver become

too high. As for the latter omlssion, a somewhat

smaller amount of ‘heat is llberated in actuality,

since the enlargement of the drouplet surface by

Fig. 2.3.2. Tem- the newly acquired water appropriates part of
perature condi-

tions in heat the heat of condensation for its own work against
transfer from a

water droplet to surface tension. However, thils correction 1s van-
the surrounding

supercooled steam ishingly small for all drop sizes with which we
(the pressure p

prevails in the shall have to deal.

vapor space). 1)

Droplet; 2) vapor. The second conclusion from Eq. (9) leads us

to the concept of critical droplet radius. If a supersaturated vapor

atmosphere is assigned, we can use the Thomson formula, Eq. (9), to in-

dicate that droplet size which 1s Just stable in the vapor:

- 381
Trrit Q'R‘rd A ( 15 )

The adJective "critical" stems from the fact that larger droplets are
inclined to grow further, while smaller droplets tend to vanish, since
thelr surfaces acquire temperatures higher or lower than Td and they
can therefore glve up heat to the vapor continuously or absorb heat
from it continuously. The fact that droplets of subcritical sizes can
also form ephemerally in the vapor, and some of them even reach super-
critical size, 1s to be attributed solely to the disordered thermal
motion of the molecules, which leads to accldental formation of such
stuck-together molecule groups or droplets. We shall pursue this fur-
ther in Section 2.5.

d) Steam with Fog Droplets

Once supercooling has collapsed, small water droplets, distributed

uniformly everyw-2re and owing their existence to spontaneous condensa-
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tion, remain suspended in the steam. They are not all of the same size,
but have sizes scattered vecween such narrow limits that it 1s permis-
sible to regard them as droplets of uniform size. In general, their
dlameters lie heavily concentrated belcw 1 p = 10'6 m. We shall refer
to them as fog droplets, in contrast to the considerably larger drops
that may form by, for example, shattering of collected water masses.
This usage reflects both the mode of formation and the external appear-
ance of these steam-water mixtures.

Even though the fog droplets incorporate only a small part (say,
2 to U4%) of the total original quantity of steam, they do present a
conslderable surface. This 1s compounded by the fact that the heat-
transfer coefficients for such small drops are extraordinarily high.
For the most part, therefore, the fog is usually capable, without re-
quiring large temperature ¢ifferences between the droplets and the
steam, to condense onto ltaelf the amount of water that is continuously
becoming due for precipltation during the course of rurther expansion
in the turbine or nozzle. The following example can be cited as an 11l1-
lustration.

let y = 0104 = 4% of the steam be 1n the form of fog droplets with
a radius r = 0.2 p = 2.10°7 m. Let us assume the values p = 0.2 bar =
= 2'10u N[Néwtons]/mz and Td = 60°C for the pressure and steam tempera-
ture. The number of drOpleté in a total quantity of 1 kg 1s then, with

ot = 103 ke/m3, n = 3y/bmr3pt = 12.0-10% Kg~?

and their total surface
area A = n-lhrr2 = 600 mg/kg. The heat-transfer coefflcient can be de-
termined on the basis provided in Section 2.2. Let us read the mean
free path 1 = Is(p) from Diagram I and use it to determine the Knudsen
number Kn = I1/2r = 0.87; then we shall see that we are concerned with
a so-called transition flow past the droplet. ., 1s computed from Eq.

2.2(32) (while the relative velocity is very small vetween such small




drops and i steam): a = Ay/r(1 4 3.18 En) = 27,000 J/m° °K-sec. Iet
us assume further that the expansion proceeds with such rapidity that
& = 20 kg/keg+wsec of new water condenses each second, which will be ap-
proximately in accordance with conditions in turbines. Thus we obtain

the value ATe £ =-yI/arA = 2.9°C for the effective temperature differ-

f
ence that 1s necessary to permit surrender of condensation heat by the
droplets to the steam. With a superccoling of this magaltude, it 1s
still rermissible to treat the steam as though 1t were at thermodynamic
equilibrium. (At most, we could still verify whether the capillary ef-
fect causes no essential increase in the required supercooling. Accord-
ing to Eq. (10), with X = 0.065, we get AT, = (20/RT.p')KT,/r = 0.09%;
thus the more exact supercooling valuve s AT = AT pp + AT, = 3.0%¢.)

If, in addition to the fog droplets, the expanding steam also zon-
tains other bodies that offer condensation surfaces (such as larger
water drops, wall linings, etc.), part of the condensation will take
place at these surfaces. The product aA is, however, decisive for the
effectiveness of a surface of area A; the secondary condernsation sur-
faces in turbines and the like can at most reach the same order of mag-
nltude as the surface area of the fog droplets. Thelr heat-transfer
coefficients are, however, all of 50 to 100 times smaller than those
of the fog droplets. For this reason, we may disregard thelr share in
the condensatlon, provided that fog droplets are also present in suf-
ficient numbers.

Below we must further discuss how it 1s possible to treat steam
whose supercooling 1s smail but not small enough to be disregarded
(i.e., lies between, say, 3 and 15°C) on the basis of an 1i,s-table for
thermodynamic equilibrium.

The devlations of the supercooled steam from the saturated steam

at thermodynamic equilibrium arise in part from the fact that less
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water 1s condensed from the former and in part from the fact that the
éteam has a lower temperature (deviations of the water temperature
from the saturation veélue can be disregarded, since the practically
most important droplets always have about the same saturation tempera-
ture). Both effects are easily taken into account, but it is first
necessary to be able to compute the deficlent moisture quantity from
the supeircooling or supersaturation. Thils is done as follows:

Suppose that we are given an enthalpy 1 and an entropy s that de-
termine a point in the i,s-dlagram that lies in the wet-steam region.
From the dlagram, we can read a moisture value Y, = i- X but this
willl be valild only when both the steam and the water are at the satura-
tion temperature. If, on the other hand, the steam 1s supercooled by

ATOC, then a different molsture content y < Y will correspond to the

point of the 1,s-diagram given by 1 and s. To determine the specific

moisture deficliency

Ay ¥ y_ -y (16)
let us assume that the pressure lines in the 1,s-dlagram for super-
cooled steam and in the corresponding diagram for steam at equilibrium

o coincide, which will be a good approximation

\
r=

for moderate supercooling values AT. Then
L the supercooled mixture in Filg. 3 is com-

posed of x = 1 — y kg of steam 1in state 1

and y kg of water in state 2 (saturated).

Fig. 2.3.3. Illustrat- In the case of thermodynamlc equilibrium,
ing derivation of riis-
“ure dafi~iency, . A) the mixture consists of x_=1-y_ kg of

Saturation line.
state 3 steam (saturated) and of y, kg of

state 2 watzsr. Both lead us to the same 1 (and, within the framework

of the approximation, to the same s as well). Thus we may write
(l-y)tdoyi'-1-(l-ym)t'¢y01'. (17)
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Now, however,

g = 1" - c 8T , (18)
so that
" - yit - (l-y)cpA'r+yi'-l"-yml'oyml'.

Using Eq. (16) and 1" — 1! = L, this results in the moisture deficiency
Ay-;‘!x-A'l', (19)

where we set X = X, for full supercooling x = 1 and supercooled wet

steam. For pressures below 10 bars, we can take cp/L = const = 8'10'4

K'l. Thus, we can determine how much less molsture there 1s in the
supercooled steam than is indicated by the vaiue X, = 1l - Vs taken
from the conventional i,s;diagram. If, for example, x = 0.90, AT = 20°
and the steam is wet, we obtain Ay = 0.014; instead of 10%, only 8.6%
of moisture 1s present. (An exact derivation of Ay, which would also
take into account the difference between the isobars, would result in
a formula similar to (19), but the only thing new would be a correction
factor that tends to unity for small AT. Nevertheless, the exact value
of Ly, even for AT = 20°C, 1is larger only by a factor of 1.05 to 1.07
than that calculated from Eq. (19) — 1.05 applying at about 0.2 bar
and 1.07 at about 20 bars —, so that the accuracy of Eq. (19) 1is quite
sufficient for our purposes.)

We are now in a position to indicate the specific volume of the
steam-water mixture characterized by i,s and AT. If the pressure P,
and the specific volume v, correspond to the state 1,s in the case of
thermodynamic equilibrium, the following will apply for the volume v
at a supercooling AT:
Tq

vEIv, + y-v'(p)-xvd w(x, + ay)v" ?; . (20)

If we apply Eq. (19) and set Ty = Tg — AT and v =~ x V"', we get

S
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v-vm[hu(,rl' - :)] (21)

The expression in parentheses 1s presented as a function of pressure
in Diagram I; AT, 1 and s 1is [sic] assumed given and v_ 1s read from
the 1i,s-table. At low pressures and AT = 20°C, the correction comes to
about 5%.

However, even the pressure P, will require a correction on closer
examination. The true pressure p corresponding to the state described
by 1, 8 and AT 1g gmailer by an amount Ap than the pressure pg read

from the 1,s-dlagram for equilibrium:

P =p,_ — Op, (22)
and we have for 4p
]
Ap . _n AT
Py  20-1) [Tjgj] : (23)

This correction rests on the fact that pressure lines other than those
entered in the equilibrium diagram apply for supercooled steam. For
thls reason Forﬁula (23) cannot be derived in the same simple manner
as Eq. (19), but only on the basis of more exact assumptions. We shall
omlt this derivation, the more so because Ap/p°° is small as compared
to the other corrections (1t comes to about 0.9% with P, = 0.2 bar and
AT = 20°¢).

Summing up: Eqs. (19), (21) and (23) enable us to compute the
moisture content, velume and pressure of the supercooled steam-water
mixture whose supercooling AT 1s known, working from its enthalpy 1
and entropy s as glven 1in a conventional 1i,s-diagram.

2.4. THE FIRST APPEARANCE OF WATER IN THE TURBINE: CONDENSATION ON THE
BLADES

It is known from experiments with Laval nozzles that 1f the state
of expanded pure steam crosses the saturation line, it is at first

supercooled, and that as soon as 1its supefcooling has reached a certain

- 60 -




level (30 to 40°C), it collapses suddenly, since the steam condenses
spontaneously in the form of fog droplets. In nozzles, no condensation
occurs before the point at which this fog forms, since the boundary
layer 1is superheated everywhere on the nozzle walls. The situation 1s
somewhat aifferent 1n turbines, since the boundary-layer temperature
of the successive blade rows becomes progressively lower. It was

recognized by Traupel [22] that thils makes it possible for water to

condense on the surface of turbine buckets beicre spontaneous condensa-~

tion sets 1n in the steam itself. The dust particles present in the
flowing steam lead to a similar phenomenon.

We shall refer to thls water preciplitation that arises prilor to
fogging as "pirecondensation" and concern ourselves in this Section
with the question as te the surfaces on which it takes place and 1its
intensity, In part, the materlal to follow i1s a more explicit repeti-
tion of the calculations described in [22], but 1t does reach the con-
clusion that precondensation has no noticeable influence on the proc-
esses 1n a wet-steam turbine.

a) Where Can Precondensatlon Take Place?

As we know, condensation intervenes on all solid surfaces in con-
tact with the steam as soon as the steam's state has crossed the sat-
uration line. To this statemen! we must, however, append two important
remarks: first, the curvature of these surfaces may not be so sharp
that they give rise to a noticeable capillary effect. For this, their
radlus of curvature must, according to Table 2.3.1, be larger than
about 10'7 m = 0.1 p; thls condition is satisfied both for the design
elementé of the machine and for most of the dust particles that may,
under certain circumstances, be present in the steam. Secondly, these

surfaces must not be so severely heated that their temperature even

without condensation is equal to or hilgher than the saturation tempera-
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ture corresponding to the pressure of the surrounding steam. Heating
such as this is also presented by boundary-layer friction, by which,
as we know, all bodles 1n stream are heated to an adiabatic boundary-
layer temperature TGS higher than the static temperature of the medium
flowing past them.

Precondensation 1s concelvable on two types of forelgn surfaces:

the surfaces bounding the flow (blades, casing liuings) and on the sur-

faces of the dust and salt particles present in the steam. We shall
concern ourselves first with the latter.

As concerns the dust particles, 1t has been shown by Oswatitsch
for the case in which the flow medium 1s atmospheric air (wind tunnels)
that the dust particles do not represent a factor in condensation of
the atmospheric humidity. We are still further Jjustified in disregard-
ing them in our discussions of steam turbines, firstly because the
steam in modern steam installations 1s much cleaner than the atmospheric
air and, secondly, because the amount of condensatlon occurring per
unit volume in the case of pure steam 1s much greater than for a lean

steam-air mixture.

There 1s somewhat more to be gald concerning the salt dust that
today probably represents the only significant impurity encountered in
steam installations. In modern installations, the salt content of the
steam totals about 1 to 3 mg/kg. At high pressures and temperatures
(1ive steam!), the solubility of the salts in steam 1s a multiple of
this value (the solubility of NaCl in saturated or superheated steam
at 150 bars is about 40 mg/kg). We can therefore expect that all salt
entering the steam in the boller — for the mos’ part, in the form of a
fine dust — wlll be completely dissolved on the path to the turbine
(in this connection, compare H8mig [23], page 143). Although this salt-
steam solutlon can become supersaturated durilng subsequent expansion
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in the turbine, since 1ts solubility is dropping, the concentration of
the salt molecules is nevertheless so infinitesimally small (one s3alt
molecule to 106 steam molecules) that formation of salt crystals con-
taining numerous molecules 1s cbmpletely inconceivable. Thus the salt
is not at all in a position to present a surface for condensation of
the steam. At any rate, the part of the salt precipitated on -“he bucket
surfaces will be small, as 1s seen on Inspection of the salt c¢rust on
the buckets of the low-pressure secticn. The major part of the salt
remains 1in dissolved form all the way to the condenser, where it enters
the condensate.

It follows from the above considerations that apart from the sur-
faces bounding the flow, there 1s rractically no surface available for
precondensation. As concerns the effectiveness of the bounding surfaces,
this depends on how rapidly they are capable of yielding the liberated
heat of condensation. Let us first investigate whether the transfer of
heat to the supercooled steam flowing by or heat conduction through
the metal to the exterior is more important.

The products of heat-transfer coefficlent by temperature differ-
ence are decisive for the quantities of heat conducted away from a
given surface in various directions. The heat-transfer coefficient
A pward [ainnen] valid for heat transfer to the flowing steam can be

estimated by reference to Eq. (3) and Fig. 5. With the low values St =

= 0.002 and (cpde) = 1.10° J/mQKsec, we get a =~ 200 J/m2Ksec;

inward
further, ATeff = Ts - TGS may amount to about 15°K~ Thus the product

comes at a minimum to "AT pp) = 3000 J/m°sec. The heat-transfer

(9 pwara
rate outward is primarily determined by what the outer casing surface
is in contact with — 1.e., 1t depends on the design of the turbine. If
the steam rinsing the outer surface of the channel wall is at a tem-
perature higher than that of the inner-surface boundary layer, or if
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approximately the same temperature prevalls outside (steam from the
next tapping point), practicaily no heat at all will he conducted out-
ward, and some heat may even flow in. If, on tﬁe other hand, the chan-
nel liner 1s in contact with waste steam or — a rarer case — with the
external air, we have a temperature gradlent worthy of note. In this
case, however, the heat-transfgr gondipions are very poor on the out-
slde, since the density is lowafﬁhthe former case and the flow veloc-
ity (free convection!) in the latter. The following may serve as an
estimate: outside temperature of the waste steam or air 30°C, with
OT¢otqy = 90 — 30 = 60°C; outward heat transfer coefficlent*

] = 10 J/m2K sec (=9 kcal/me-houroc); wall thickness

Goutward (Paussen

=5cm = 0,05 m, heat-transfer coefficient Asteel [xstahl] = 50

J/mKsec, from which we may calculate the resultant heat-passage coef-
ficlent a, .. We have l/ares = l/aoutward + 5/)‘steel = 0.101 and a,

8
10. Thus the determining product will be (a

es
AT

2!

res. tota

600 J/mzsec.

Thus we find that at least five times as much heat goes over to
the steam as flows outward through the wall. For the buckets, there is
an additional throttling down of the heat flow in the neck of the
bucket, and in the case of the runner buckets, there I3 no heat con-
ductlon outward anyway. Thus we shall incur no major error 1f we re-
gard the walls of low-pressure turblnes as Impervious to heat and com-
pute the rate of condensation from the heat transfer to the steam alcn

The adiabatilc boundary-layer temperature of a bucket (for example
of a runner bucket) 1s
2

3
Tog = (g, + Vﬁ%. (1)

for detachment-free flow. (For a guide bucket, (Td)1 is to be replaced

accordingly by (Td)O and W, by co.) Figures 1 and 2 present the steam
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states that arilse 1n the bucket boundary layers of the individual rings
of the two turbines laid out in Section 2.1 — in much the same way as
was done in the cited work of Traupel — and we shall refer to these in

our subsequent discussion of conditions.

L]
b Wy
'* Wk
o~ v A%y

Focin
Fig. 2.4.1. States of Fig. 2.4.,2. States of steam
the steam in various in various bucket boundary
bucket boundary layers layers of our inpulse-
of our reaction-type tur- type turbilne. A) Satura-

bine. A) Saturation lins; B) tion line; B) expansion line.
expansion line.

Let us first discuss the high-pressure turbilne with reference to
Fig. 1. No condensation occurs in the guide wheel of the first stage
(1'), since the entire boundary layer 1s superheated. In the subsequent
runner wheel (1"), some condensation can occur only in the vicinity of
the profile leading edge; otherwlise, the boundary layer 1s superheated
here as well. In wheels 2' and 2", condensation takes place all along
the length of the bucket contour. It is heavier in 2" than in 2', since
the supercooling cf the steam 1s sharper here. In turbines, the spon-
taneous condensation mentioned earlier — the factor causing the super-
cooling to collapse — occurs approximately where the expansion line
reaches the line y = 2.5% of theoretical wetness. In the majority of
cases (concerning this, see also Sections 2.5 and 2.9), the steam is
almost saturated from here on, so that the state of the steam component
follows the saturation line rather closely. Figure 1 shows the state
curve of the steam in bucket ring 3' for the ideal case; the state of
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all fog in the boundary layer 1s indicated by the broken line. Prac-
éically no steam condenses on the buckets from this point on; the en- i
tire precipitated quantity of water 1s taken up by the fog drops, as
has already been demonstrated in Section 2.3d.

In our constant-pressure turbine (c¢f. Fig. 2), nothing condenses
in the first runner (1') because of boundary-layer heating. Nor is
there any condensation on the profiles in the following funner 1" or
thereafter, but this.time because the supercooling has already col-
lapsed as a result of spontaneous steam condensation. (In this case,
of course, wide variations of the load on the turbline may change the
pressure curve in such a way that spontaneous condensation takes place
only farther downstream. Then precondensatlon may yet take place in

ring 1" or perhaps even in 2'.)

To permit accounting for the condensation on a bucket not only 1n
toto, but also 1n accordance wilth 1ts local intensity, let us next
carry out the boundary-layer calculations. At the same time, these
will afford us an insight into the magn;tude of the shearing stress
that will also be helpful in Investigating the motion of the water on
the buckets (Section 2.7).

b) Boundary-Layer Calculations

The pressure or veloclty curve over the entlre profile contour
must always be glven for boundary-layer calculations. For each profile
shape (and for each onflow angle), therefore, we should first determine
the pressure curve, by measurement or, for example, with the aid of
potential theory, to enable us to begin with calculation of the bound-

ary-layer properties. Since, however, we are not interested here in

the general nature of the boundary layers or in the behavior of a cer-
tain blade arrangement in a certain operating mode of a certain tur-

bine, we can spare ourselves the first part of the calculation by ac-
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cepting a pressure curve as near as possible to typical for use as an
example. Here we can find a basis in various theoretical (such as [24])
and experimental (such as [25], [26]) studies. The pressure curve that

we have selected for the followlng calcu-

lations 1s represented in Fig. 3. Its

cholice was based approximately on the

' .

L] :i-ll

, ! proflle shape in the second stage of the
E: i high-pressure turbine specified earlier.
: E The obJject of these boundary-layer
: : calculations is to determine the curves
- of the wall shear stress T and the heat-
- transfer coefficlent a along the profile
Fig. 2.4.3. Pressure contour. As usual, we reduce these to
curve over blade con-

tour, taken as a basis dimensionless quantlities on the basgis of
for the boundary-layer

calculations (ef. also the formulas

Fig. 2.5.13a). The broken

line indicates the cor-
responding velocity curve.

A) Back; B) trough; C)
hypothetlcal transition and
point.

T - - Jeg vt (2)

“@) = B(V-c, 05V (3)

i.e., to the coefficlent or friction Cp and the Stanton number St, for
which the literature indicates various determination procedures. (Equa-
tions (2) and (3) are to be taken simultaneously as those defining Cq
and St, respectively. For a stator profile, P41 is to be replaced by
Pgo and Wy by ci.)

The calculation of Cp and St proceeds differently for laminar and
turbulent boundary layers, and for this reason the nature of the bound-
ary layer at the turbine bucket profiles must be made clear even before

the calculation begins. If the flow onto the bucket wheel 18 only

slightly turbulent (grid experiment!), the transition of the initilally
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Fig. 2.4.5. Stanton number in
profile boundary layer (calcu-
lated for the pressure curve
of Fig. 3). A) Back; B) trough;
C) transition.

laminar boundary layer into a turbulent one would take place only Jjust

prior to the point at which the pressure begins to rise again. (Such a

case was investigated, for example, by Bammert in [27].) In turbo-
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machines, however, the flow 1s so severely turbulent that the boundary
layer has a tendency to make the transition far upstream and premature
transition can be avolded only by means of a continuous sharp pressure
drop. Figure 3 shows that this 1s the case on the buck (suction side)
of the buekets, but not on the trough (pressure) side; consequently,
we must assume that the boundary layer en the trough 1s turbulent prac-
tically from the outset. As for the convex slide, we assume that the
turbulence of the flow is not qapable of pushing the transition point
far upstream; nevertheless, we shall carry through a calculation for
the case 1in which the transition point lies upstream, since thls gitu-
ation could still come to pa:t:; as a result of a brutal disturbance ef-
fect (such as continuous impingement and rebounding of vagrant water
droplets 1n bucket rings lying deeper 1inside the wet-steam region, cf.
Section 2.8).

For the laminar part, the calculation proccedure of Cohen and
Reshotko [28] was followed. In the turbulent part, the Cp Curve was
computed by the method of Truckenbrodt (cf. [16], page U4TOff) and the
a-curve from cp and the Reynolds analogy (ef. v. KArmdn, [29]). The
results of the calculations are presented in Figs. 4 and 5. Here, it
was assumed that

Regun ® h%’!‘ﬁ =« 2,5.10% (4)

and

Pry '(%:’)l' 1,2 (%)
a condition well satisfied 1n stage 2 of our reaction-type turbine.
The St values obtained are somewhat higher than those produced from
grid experiments. The reason for this 1s probably that stronger turbu-
lence was assumed here, While we shall not go into a more detailed in-
terpretation of the shape of these curves, we should like to note that
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both ¢, and St also incorporate the direct influence of flow velocity

F
U (cf. Fig. 3, velocity curves), since, indeed, the 7 and a in Egs. (2)
and (3), respectively, were referred to the entry quantities.

c) Rate of Condensation on the Blades

From the equality of the amount of heat liberated and the amount
withdrawn, we obtain the following equation for the amount of steam

condensed per unit of area per unit of time on a hlad-:

. | =
m (8) = —Lﬁ‘—) (Tgenn = Tgs) (6)

where L 1s the heat of evaporation, Tq , »y [T 1ade ] 1is the actual tem-
perature of the blade (or that of the water film encasing it) and TGS
is the temperature that the blades would have in the absence of con-
densation.

The blade temperature adjusts everywhere to the local saturation
temperature, i.e., Tg. o = TS(Q). Thus, applying Eq. (3), Eq. (6) as-

sumes the form

. c w
R L LI LRGRE (7)

where T8 can be computed from the pressure curve and T,, from Eq. (1).

Gs
From this local condensation rate m,_ we obtain Mk,Schfl’ the entire
amount of steam condensing on a ypjlade Dby integration for both sides
of the blade:

& 13

H R

M sontt 7 sty I iy (& ) a8y ‘I (&) a8y |- (8)
(4 0

Here 1t has been assumed that the heat-transfer conditions are uniform
over the entire length of the blade, an assumption, however, that would
probably be met adequately for noncylindrical blades ag well.

L't us now compute a "mass-exchange coefficlent" that indicates

what part of the steam quantity Md entering a given blade ring con-
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(fdyy = 0,044.0,005-6 = 1,3.10™> kg/m? sec
i Ring 2': — -3 2
(my )y = 0,044-0,0045-6 %1,2-10 kg/m* sec
(ThJH = 0,037-0,005-20 %3,7-10"3 kg/m? sec
Ring 2=:
(g = 0,037-0,0045-20 3,3-10" kg/m? sec .
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denses on the blades of this ring. Evidently, this mass-exchange coef-

ficient

e o= 2 Mgsan (9)

d-f M, '

will differ sharply from ring to ring, primarily because the tempera-
ture jump evident in Eq. (7) may have widely different values. (The
subscript to € indicates that we are dealing with a transition from
the vapor form to liquid water:) The smaller Eq-f is found to be for
turbines, the less significant willl be the precondensation on the
blades and, consequently, the more accurate will be the statement
that the supercooling of the steam 1s not affected by precondensation.

Now, on the basis of Fig. 5 and Egs. (7), (8) and (9), we can
quickly carry through a rough calculation. We shall proceed from aver-
age values whose assumptlion we qualify with the note that the trailing
part of the profile 1s more important for heat transfer. The tempera-
ture Jump can be determined in a simple manner from Filg. 1; it is only
necessary to read the temperature difference between the boundary-layer
state and the saturation line. The average value of St follows from
Flg. 5. We find for

Ring 2': T, -Tgg= 6°c , Bty=m0,005 , St;=0,0045;

Ring 2m: T -Tgq=20°C , Sy =0,005 , Sty 60,0045 .

G
With cp/L ~ 8.10°% k™! ana Table 2:1.1, we obtain (since p;y, = l/vl)

pla ™y |

{o,o« kg/m? ksec (fOr Ring 2')
L

0,037 kg/m? ksee (fOr Ring 2"),
from which it follows from Eq. (7) for

IR RN
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The integrals in Eq. (8) can now be calculated as m, times the contour
length s, so that Eqs. (8) and (9) are simplified to the form |

2 lsennt [(ﬁ'k)ﬂ sy + (g g | (10)
My

€41 =
The steam throughput 1is fﬁd = M = 40 kg/sec for Ring 2', since every-
thing 1s still in vapor form here; for Ring 2", we shall be able to
determine it only after we find the reduction of the steam throughput
as a result of condensation at Ring 2'. With Table 2.1.1, we obtain
for the two rings of the reaction turbine, where precondensation oc-

curs, 1l.e., for Ring 2':

121.0,157 [ 1,30,057 + 1,2-0,066 ] -10"3
Balonl= = 0,000073 (11)
")

and for Ring 2":

130-0,177(3,7-0,057 +3,3-0,066 ] - 1073
" - 0000241,  (1p)
(1 - 0,000073) - 40

£" 4.1

These mass-exchange coefficlents are very small, so that only a H
vanishingly small part of the steam flowing through settles on the
hiades. This result can also be expressed by means of the steam con-

tent or water content y and compared with the ideal water content y_,

that which would have to be present at perfect thermodynamic equilib-
rium (according to Table 2.1.1):
after Ring 1"
x=1, ye0; Yo =001 (13)
after Ring 2!
- x = (1-0,000073) = 0,999927, y = 0,000073; Yo = 0.022.  (14)

after Ring 2"

x = 0,999927 (1 - 0,000247) = 0,999680, y = 0,000320; Yo = 0,08, (15)

According to the above, the amount of water y that actually condenses

f ‘on the b ajes behind the second stage of the reaction-type turbine

never amounts to more than 1% of the "expectation" vt

= e =




This water forms thin water vells or water filaments on the

c-ad3, and these are set in motion by friction with the steam and,
on runner buckets. by centrifugal force. It will be shown in Section
2.7_that the flowing water 1s driven to the tralling edges of stator
[guide] Yiades and strayed off these edges in the form of larger drop-
lets, while on the runner buckets it moves almost entirely to the tip
of the bucket and strays off from this point outward. Thus the water
condensed on runner buckets 1s not capable of exerting further influ-
en~e on condensation processes 1n the middle of the steam current. The
droplets flung off the stator blades, however, remain in the steam
flow, and further condensation can take place on thelr surfaces. Their
average size 1s given by Eq. 2.8(6), which, applied to conditions in

Stage 2, would read

ve 9.62.10°3
fg o= . 1,5-107%m . 16
£ g oeama ™ " (16)

To be able to calculate the extent of condensation on these drop-
lets, we must know three things: their total surface area, the heat-
transfer coefficient between them and the steam, and their time of
residence in the steam. For every 1 kllogram of flowing steam, y =
~ 7.3°107° kg of water is torn from Ring 2' according to Eq. (14). The

surface area of the detached droplets formed from thils water 1s

=2 Yy e 2
Ag SUETY TR -.,—"—-o,omm ) (17)
As regards the heat-transfer coefficient ., g’ it is to be noted that
?

the conditions of continuum flow prevail for the droplets (cf. Section
2.1), since Kn = 1.0-1071/2-1,5-102 = 0.0033. With a relative velocity
Ur = 220 m/sec between th droplets and the steam, we obtain Rer = 270
(with by = 12-10'6 kg/m-sec), so that Eq. 2.2(16) applies and gives us

with A4 = 0.021 J/m-Ksec

T e i e e
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The time of residence of a droplet in the steam up to the point at
which it strikes a bucket of the next ring can likewise be estimated
on the basis of Section 2.8. Figure 2.8.3 serves for estimation of the
flight velocity, but first we must compute the value of the inertia

parameter for the droplet in question. The "deceleration time" of the

8

drops is found from Eq. 2.2(36) with (9ud/2pw) = 6.0°10" m2/sec as

At [at = 4.6'10'4 sec, 80 that the ilnertia parameter

brems deceleration

1
has the value (2UrAtbrems

that such droplets are accelerated very rapidly. If they travel a dis-

) = 0.050 m. It will be seen from Fig. 2.8.3

tance £ = 3 ¢m = 0.03 m before striking, they will be accelerated to
about 0.5 ¢; = 140 m/sec. With 70 m/sec as the average velocity in
flight, we obtain for the flight time

0,03 10”4
A‘Flul~-‘_70 n4,3:10 " sec. (19)

(Flug = flight]. If we still assume that the temperature difference
between the droplet surface and the steam is AT = 25°C during this
time, but that of this ATys —J/I.2-220°/2:2:103 ~ 13°%C 1s needed to
wilthdraw the heat of friction from the boundary layer, so that only
ATy e * Ar-arcs"-xfc (20)

1s left for withdrawal of the heat.of condensation, then we have all
data necessary for determining the condenéation of the droplets torn
from Ring 2°'.

We wish to obtain the result in the form of a mass-exchange coef-
ficlent Edeg (subscript: "from steam (d) to large (g) drops"), which
will indicate the fraction of the steam precipitated on these flying

droplets. Obviously this will be

A_ AT At L
. X g g Pt g rm( . (21)

Caeg =

o
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where the numerator is the amount of steam condensed per kilogram of
mixture and the numerator is the entire quantity of steam prior to
this condensation. Equations (14) and (17) to (20) give

7600 -0,0146 - 12-4,3-10"%/2, 28.10% o
. = 2,507 & ¥y, (22)
0, 999927

€.

so that, in summary, we arrive at the unequlvocal conclusion that no
noteworthy portion of the steam goes over into the liquid state eilther
as a result of condensation on the blades or as a result of condensa-
tion on the droplets sprayed off behind the blades.

For the  impulse-type turbine being used as an example, this
conclusion is at least Just as valid; referring to Fig. 2, we have
even concluded that no precondensation at all takes place there under
the proper conditions.

The absence of any precondensation worthy of the name has as a
consequence that the supercooling of the expanding steam can proceed
without restriction, and will soon lead to spontaneous condensation of
the steam (fogging). We shall place this process under the magnifying
glass 1n the next Section.

2.5. SPONTANEOUS CONDENSATION OF THE STEAM AND THE STATE OF THE FOG
PRODUCED

To the best of our knowledge, the abrupi condensation of the steam
that takes place in turbines has never been directly observed. The
presence of a dense fog in the last stages of condensation turbines is
nevertheless an established fact [14]. That fogging must proceed in
turbines in the same way as it does in a singsle Laval nozzle follows
from the fact that the steam belng expanded experlences the same fate
in either case: saturation is followed by supersaturation and this in-

creases rapidly, since virtually no condensation 1s possible.

Numerous experiments have been carried out — cf. [19], [21], [30]
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and [31] — to investigate the sudden condensation in supersonic noz-

zles (the so-called "condensatlion shocks"). It was recognized long ago
that the sudden condensation is to be attributed to spontaneous forma-
tion of nuclel in the vapor [steam] 1tself. lLater, it became possible
to apprehend this mucleation mathematically by thermodynamic-statistical
techniques; the clearest presentation of this theory 1s due to Frenkel
[32]. A decisive step — one that brought the theory into agreement with
experiments — was taken by Oswatitsch [33], in that he combined the
theoretically derived formulas for the frequency of nuclei formation

with the conventilonal flow equations and a growth law for the result-
ing droplets, forming a complete system of equations that put him in a

position to determine the pressure curve in a nozzle with spontaneous

condensation by stepwise calculation. The agreement between the calcu-
lated pressure curve and the experimental curve waé quite good. A very
good summary of the entire clrcle of problems 1s to be found in Stever
[34]; he provides an excellent survey of both theory and experiment.
It 1s absolutely necessary to know the properties of the fog in
order to investigate the processes that unfold in the rear part of a
wet-steam turbine as the fog flows through it. Thus this Sectlion forms
the pivot rolnt for those that follow. We shall first concern ourselves
briefly with mucleation, so that, like Oswatitsch, we shall be able in
Section b) to write an equaticn system permitting us to cumpute the
expansion processes with condensation (in both nozzles and turbines).
Proper functioning of the equation system will be checked through sim-
ulation of various nozzle experiments. Then we shall calculate the ex-

pansion in a low-pressure turpine to obtain certain essential features

of the process. These insights will assist us toward a simpler analyt-

ical method of calculation for the condensation process — a method
that will be sketched out in Section d) and will finally permit us to
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draw important conclusions in Section e).
a) Nucleation

By the word small we imply a droplet that 1s just big enough to
grow in a supersaturated atmosphere of steam surrounding it. Making
ase of the concept of critical drop size intreduced in Section 2.3c,
we shall use the term  pucleus to denote a drop infinitesimally
larger (say, by one molecule) than the critical size. We see from Eq.
2.3(15) that the nucleus sige is large at a small supersaturation A but
small at large supersaturations. In practical cases, rapid nucleation sets
in when the critical droplet size has gone down to about 30 to 100
molecules.

But how 1s it at all possible for such water droplets to form in
steam? The answer 1s to be sought in the fact that contlnuous density
fluctuatilons arise in a vapor — as they do in 2n ideal gas — as a re-
sult of the thermal motion o' the molecules. If the steam becomes al-
most saturated or even supersaturated in the course of expansion, it
occurs vore and more often that some molecules stick together for a
certain time after colliding. This microscopic liquefaction amounts to
the same thing as an ex‘gremely wide density fluctuation. That 1t does
indeed occur frequently 1s due — in a thermodynamic sense — to the
fact that the liquid form of the substance 1s approximately equally as
"probable" as the vapor form in the neighborhood of the saturated state.

Now, using the Boltzmann law S = k 1ln W, we can calculate for a
certain number of steam molecules the relat've probability w/wo for
finding all of them balled up into a single water drop. We need to
know only the amount by which the entropy 1ncreases if the drop forms
purely from steam molecules. In a large vapor space, contalning
many molecules, the value of this relative probability will simultane-
ously indlcate the fraction of all molecules present at any time in
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the form of such drops.” Thus, for example, we can determine how many

critical droplets will be found simultaneously in a certain amount of

steam. We can calculate further how many critical droplets acquire an

addltional molecule during one second: this will then give the nuclea-

tion rate that we seek. The formula reads (see [32] or [34])

41"!':’“
; YZeAn p* Ty
= - @ .
Q' & T (1)

[krit = critical]. J is the number ofnuclei formed in 1 m3 of steam

each second and N is the number of molecules in one kilogram of steam.
If we substitute the Tirit from Eq. 2.3(15) in this equation and note
that Nk = R, we obtain the following form, which 1s suitable for prac-

tical calculations:

(utc’u ) 1 22

Veendar| , \3edmmy? a7 ; a2 5

Jd = QTR’r_)r pe lzop [ ] 3 ( )
d

here, the logarithmic supersaturation is defined according to Eq.
2.3(3) as

At

P
p,(Ty (3)
The two quantities denoted by ZO and Zl depend only on the temperature
of the steam and are presented in Diagram IV (see Appendix).

On the basls of various experiments — all of which show sudden
condensation, we should expect the nucieation rate to increase very
sharply with increasing supersaturation. If we substitute typical val-
ues for the quantities in Eq. (2), it might acquire the following form:

2
2 -a5/A 2
J «10%4.00,3.10% . ¢ A 1033.10-20/A° .

It 1s readily seen that J depends extraordinarily heavily on A. That

1s to say, 1f the supersaturation p/pS increases from twofold (corres-
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ponds to A = 0.7) to fourfold (A = 1.%4), then J will increase from

10" to 1023 nuel. /m3-sec. Thus, doubling of the supersaturation may
result in an increase in nucleation rate by more than thirty powers
of ten!

b) Flow Equations for Condensing Steam

The equations of the system that describes the expansion of the
steam 1n a nozzle or turbine may —vas.in the case of any other medium -
be clagssified into two groups. One group, comprising the continulty
equation, the energy equation and the equation of motion, expresses
general physical laws and also contains data on particulars of the ex-
pansion, for example, channel shape, friction, and the like. The other
equations contain only the properties of the flow medium and consist,
for example, in the simplest case of the ideal gas, of the thermal
equation of state pv = RT and the caloric equation of state di = cpdT.
For condensing steam, this second group of equations becomes much more
complicated, but this has no fundamental effect on the state of affalrs.

With regard to our flow medium, we shall make twc lmportant as-
sunptions, assumptions that are also extensively the case in reality:
firstly, that the steam can condense only through nuclei/formation and
subsequent condensation on these nuclei, and cannot condense on linings,
foreign particlu‘and the like; secondly, that the droplets formed move
everywhere with the same velocity as the steam itself.

We shall assume the expansion to be adlabatic but with friction.
In cases where a turbine 1s involved, we shall imagine it to be re-
placed by a .ncdel that effects the same expansion in a more readily
represented fachion: this model turbine would consist of an infinite
number of stages with infinitesimal pressure ratios, stages capable of
extracting the work continuously from the flow medium, i.e., of reduc-

ing its total enthalpy continuously (in accordance with any prescribed
- 79 -
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law). In the equation of motion, this conception would manifest itself
as a fleld strength directed in opposition to the flow against which werk
has to be done by the medium. Thus the essentlal aspect of the
expansion in this context — namely, the time sequence of that which is
experlenced by aAflowing steam particle — 1s extenslvely retained; on
the other hand, the two-dimensional nature of the cascads/flow, which is
less important here, is dispensed with entirely. That 1s to say, we are
fully Justified in treating the flow In a turbine, which 1s complicated
in itself, one-dimensionally with application of a suitable fileld
strength, just as 1n the case of a nozzle. We need only concern our-
selves with the axial velocity ¢, and the annulus cross sectiondl,

hormal to the axls. Thus the data by meansg of which we must spec-
ify a turbine or nozzle are the curve of the axls-normal cross section
along the axial coordinate Qa(&a), that of the total enthalpy h(ia)
and a statement concerning the generation of friction heat (in which
all possible liosgses are conceived of as combhlned and uniformly dis-
tributed over the entire flow cross section), as with the aid of the
polytropic efficlency np. Thus the following are to be assligned:

0, = 0,(¢,), (1)

h (for nozzle: constant), (5)

Il
o
~~
(1827
L —

Ny = T‘p("a) (approximately constant). (6)
Further necessary data are the mass throughput M in kg/sec and the in-
itial state of the steam, Py and iA. It 1s assumed that the steam
contains no droplets at entry.

The continuity equation is written

Mv
" M.’ (7)
and the energy equation
3
1+ T. «h. (8)
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The quantities v and 1 refer to the mass unit of the entire flow
medium, Irrespective of whether 1t is pure steam cr fog.

In the equation of motion, the fact that the flow medlum ylelds
work to the outside 1s taken into account by means of a fleld-strength
term F (force/unit of volume), whose magnitude we shall again refer
back to the prescribed total enthalpy curve h(&a). Even the friction

can be taken into consideration in a similiar manner by means of a de .

celerating force B. If we refer all terms to the volume unit, the equa-

tion of motion will be written

2. 2ores. (9)
v dy, @,

Now F can be related to h(&a) and B with np(ea): the field
strength VvF acts on the mass unlt of the flow medium. The work done
agalnst the fileld strength during subsequent flow oveir the distance
d&a 1s equal to the reduction in the medium's total enthalpy, i.e.,

vFag, - -T"‘Ldt..
a
from which
1 dn
rl"'- -ﬂt—.. (10)

The frictlional force B must be so0 large as always to dissipate as much
work as corresponds to the local polytropic efficiency. During tra-
versal of d&a, the frictional force per unit of mass comes to vB d€a

and must be equal to —(1 — qp)dis =-(1- np)vdp, from which

B--(l-np)ﬁ:. (11)

If we insert F and B in Eq. (9), the equation of motion assumes the

form
de, dp dh
LT PR A e (12)
Below we shall apply ourselves to the properties of the flow
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medium. We have to deal either with pure steam or with fog, i.e., with
a mixture of steam and entrained small droplets. These fog droplets
are of different sizes depending on whether they formed earlier or
later, since the older ones have had more time to grow. In the follow-
ing discussion, we shall characterize each droplet by the place €e at
which it formed as a nucleua.37) Al: quantities that have reference to in-
dividual droplets are thus not only functions of the position &a, but
also of the drops to which they refer, i.e., of the place of origin ﬁe.
We shall therefore speak of the droplet radius r(&e, ﬁa), the droplet
mass mr(ﬁe, &a), the droplet temperature Tr(ﬁe, ea), etc. Droplets

that are smaller than the nucleus size will not be taken into account at

all as part of the water content, since thelr mass and energy contribu-
tions are vanishingly small. In other words, we shall be assuming that
the steam suddenly produces "ripe" nuclei. The nucleation rate is known

from Eq. (2), so that we can calculate the number v(&e)dee of those
droplets that form per kilogram of flow medium between positions ie

and ﬁe + d&e:

dx,
AL

v(E,) at oYy

(the volume taken in is thus v(&e) and the residence time of the medium
between the two places 1is d&e/ca). It follows from this that the dis-

tribution function of the droplets by place of origin ge is

v
v(g,) = i(:.ia:)—l-')' . (13)

The steam is assumed to be an ideal vapor (cf. Traupel {20]);

thus it follows the equations of state

g = B 0410 (14)
and cp'l" L] “ LA " (15)
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where « and i, can be assumed constant within wide limits and

(k = 1)//c'cp = R.

Iet the water be incompressible with a known temperature curve of

density:

ey = CuiTy ° (16)
and with a known enthalpy-vs-temperature relationship

o= (T - (17)

The droplets are so small that we may, without incurring any
noticeable error, set their internal temperature Tw equal to the sur-
face temperature Tr‘ Thus we have

T, = Tps (18)
with which, however, it must be remembered that Tr 1s always smaller
than the local saturation temperature, and, specifically, by an amount

that may vary with drop size according to Eq. 2.3(11):

3¢ KT,

QRT, r(k,t)

TR ) = T,0) - (19)

(For the factor K, see Eq. 2.3(6).)
The direct influence of surface tension on the enthalpy of the drop’
through the surface enthalpy (5/3)0-4ﬂr2 can be disregarded.

The relatlonship
) = AT ¢ ) r, ) . (20)

obtains between droplet radius and droplet mass.

The specific water content y of the flow medium at position ﬁa
can be calculated by taking together the masses of all droplets that
have formed between passage across the saturation line (&a = ﬁs) and

the position &a currently of iincerest:
LT
yE1-x= j m (. §,)-v(E,) 4L, .
4

(21)
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The épecific volume of the entire flow medium follows from
[}

a
v:xvdoi’! Jr(ge,!.)s-\,(;e)dl.esxvd (22)
ts

(since, indeed, the volume occupled by the water is negligible as com-

pared to the steam volume), and its specific enthalpy from

tl
taxiye I'i,(!e. §) m (3, B)-v(R,)dk, . (23)
%

(1,, is different for each drop size as a consequence of Egs. (17)
through {19).)

Finally, we must stl1lll concern ourselves with the mass transfer
between the two phases. This 18 governed by nucleation and by ~orndensa-
tion on drops that are already present. For the former, we have the
formula of Eq. (2); according to Eq. 2.3(14), the subsequent growth of

a droplet as a result of continuous condensation on it amounts to

2 .
. o (4Tr°XT_-T))
g - SN TP (24)

The heat-transfer coefficlent a, i1s given by Eq. 2.2(32). If we sum
thege mr for all droplets present and add it to the amount that goes
over into the liquid form as a result of nucleation, we obtain over-
all local increase in water content. Thus this 1s
tl
ﬁ’. - :—:"‘T"w’:m’cl."l m, (8, 8) v(R) L, (25)
s

[krit == critical] since, indeed, dt = dﬁa/ca and the seed size 1s given
by the critical radius, which, according to Eq. 2.3(15), is

2g 1
Q'RT‘ A

Tkeit ® (26)
Together with the equatlons (1i3), (14), (15), (16), (17), (18),
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(19), (20), (21 or 25), (22), (23), (24), (2), (3), (26) describing
the behavior of the flow medium, Egs. (7), (8) and (12) present a sys-
tem of differential equations from which the curve of expansion can be
determined by stepwise solution. It goes without saying that the calcu-
lation is exceedingly time-consumlng and suitable only for automatic
computers.

In the following Section, we shall report certain applications of
this system of equations to expansions and in the next one after that
we shall show that the essentlal conclusions can also be obtained from
the equation system quickly and with sufficient accuracy.

c) Application of the Flow Equations to Expansions with Condensation

In setting up the system of equations for expansion, we have been
pursuing the goal of calculating the course of expansion in a turbine.
Before doing thils, however, it would appear necessary first to apply
the system of equations to expansions whose courses are exactly known
from experiments. Here we would decide not only the question as to
whether the equations describe the processes only qualitatively, but
we should also be able to find out whether the place of condensation
onset can be determined correctly.

Among the nozzle experiments described in the literature, those
of Binnie and Woods [21] appear best suilted for testing the equation
system, since the measurements were taken with great care and the ex-
periments described with explicit numerical material. Among the numer-
ous measurements, in which the intake pressure was always held con-
stant, while the entry temperature (superheating) was varied — four
were selected for recalculation; in one of them, the onset of condensa-
tion occurred ilmmediately behind the narrowest point, 1in another near
the end of the nozzle, and in between 1n the two others. The cross-

section curve was known from the dimensions of the nozzle; the curve
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of polytropic efficiency was determined by trial and error so that the
pressure curve without condensation would agree with the measured
curve. The material quantities were always.regarded as constant.

The calculation was carried out on the ERME'I'H,38 a digital computer
capable of about 60 elementary operations per second. The program was
constructed in such a way that the step of the solutlon could be ad-
Justed manually and that free cholce was avallable between two
solution procedures of different accuracy (Euler-Cauchy, Runge-Kutta).
This offered an opportunity of checking the mathematical accuracy of
the calculation, running certain cases through with two different step
widths or with two different solution methods. On the average, the so-

lution time required for one case — with condensation — was 1% hours.

[
0 ’A%_nl 2145 bov
sse e his Ende iberhitat 3
] '5'.“ 2 113.4°C (Ne 301
‘ s 00 1 2 HO0,0°C(7)(Ne 99}
= 159.6°C (Ne 56)

~ 1 T T
&, \ | 2 132,8°C (e 89)
w

o
Hahs bahs yngan ﬁ

Fig. 2.5.1. Illustrating test of
computing process: measured and re-
calculated pressure curves in the
nozzle of Binnie and Wobds [21].

1) bars; 2) boiler; 3) superheated
to the end; 4) calculated; 5)
throat; 6) pressure taps.

The pressure curves obtained are compared in Fig. 1 with those

measured. The measured pressure shows, at certain places, pronounced

waviness, which 1s to be attrilbuted to two-dimenslonal effects and was
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consequently not reproduced in the calculation. Apart from this side

effect, the agreement between the calculation and the experiment 1s

quite good. Both the place of condensatlion and the pressure rise were

reproduced correctly. Only in Test No. 99 1s there a marked digcrep- q
ancy. Cn closer examination of the data furnished by Binnle and Woods,
however, it was found that Measurement No. 99 1s not coherent with

other measurements taken with adjacent initial states, and must there-

fore have been burdened by some sort of error. |

=

Fig. 2.5.2. Calculated supercooling
curve, moisture content and fog-
3 droplet size 1n a continuous-exvan-
sion turbine. 1) mucleation sone; 2)
.} condensation zone; 3) nuclei; 4) mass
_ distribution; 5) roritical’

son point.

When these calculations had shown that the equation system appre-
hends the condensation process correctly, a turbine -expansion was run
through the computer.

For this purpose, we replaced the reaction-type turbine described
In Section 2.1 by a continuous-expansion model turbine, such as was
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referred to in Section D).

For the efficiency, we put p = consf = 0.87. The assigned Q, and
h curves are shown in Fig. 3. The stepwise calculation was carried ‘
through twice with the séme step length but with different solution
processes. The agreement between the two calculations was éood. In the .
range 0 < &a < 0.15 m, the step length was a uniform 1 cm; in the 2zone |
of marked nucleation and rapid Qroplet growth (0.15 < ga < 0.225 m, cf. i
Fig. 2), we went over to 1 mm. From &a = 0,225 on, the calculation was
carried to the end with a step of 5 mm. NMNucleation was taken into account

0 (1ts maximum value came to more than 1019.'). The

only where J >-10
droplets were distributed in as many groups as there were computation
steps in the range with J > Tom (31 groups).

The results of the calculation are presented in Figs. 2, 3 and 4.

The top part of Fig. 2 shows that the supercooling AT = 'I's - Td first

increases undisturbed; the steam expands as though 1t were still super-

heated. Only at a supercooling AT of about 27°C does nucleation reach a
notable intensity. Condensation sets 1n at this point and continues
with subsequent growth of the dropiets. The growth of the droplets is
seen in the lower part of Fig. 2. Shortly afterv their formation, the
droplets grow exceedingly rapidly; this rapld growth 1s braked only by
the disappearance of supercooling The curve of the speciflc water con-
tent y shows that almost perfect thermodynamic equilibrium (y = ym) is
reached withln a very sﬁort time after nucleation has become noticeable.

{ The formation of the water and the disappearance of supercooling g0
hand in hand. |

According to Eq. (13), the number of drops is related to the in-

tensity of nucleaticn at the position at which these droplets have formed.
Later-born droplets are more numerous than the earlier-born ones; nev-

ertheless, they grow only to a smaller size. From this we obtain a dis-
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size, which is increasing steadily from here on.

tribution of the mass among the individual droplet groups as shoWn in Fig.
The spectrum of the dro.plets is rather narrow; this fact will be exploited
extensively in the following, since it offers the possibility of regarding the
fog droplets as equally large in various subsequent investigations.
nuclei forming in the immediate vicinity of maximum supersaturation (super-
cooling) or even later cannot grow, since they remain below the critical droplet
Their size diminishes until
they have been completely evaporated (magnified area of Fig. 2).- Thus the
point of maximum 'sxlxpercooling can be understood as the boundary between two
in front of it, droplet formation occurs, but no noticeable quantity of
water is condensed ( "nucleation zone"); behind it, no further stable droplets
form, but it is here that the actual deposition of water takes plage, namely

through growth of the droplets already present ("condensation zone").

s §

N

i

h

-

e

Fig. 2.5.3. Curves of total enthalpy h and axis-normal flow cross section ‘Q'a
taken as the basis for the continuous-expansion turbine, together with computed
curves for pressure and axial velocity. A) Assigned; B) calculated.
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Figure 3 shows that the flow velocity
increases sharply in the condensation zone.

In Section d), we shall show that this is

the case with subsonic flows (since the spe-

cific volume diminishes suddenly), and that
exactly the opposite 1s the case 1n super-
sonlc flows. We note no jump on the pres-

sure curves; this is to be ascribed to the

fact that the flow veloclty 1is relatively

- \“ #

low, so that the impulse change that arises

Fig. 2.5.4. Expansion on sudden acceleration also remains modest.

line calculated for

the continuous-expan- Figure 4 shows the expansion line. (It
sion turbine. A) Sat-

uration; B) Wilson was determined in such a way as to add addi-
point; C) state of

steam [vapor] phase. tional equations to the equation system to

permit continuous determination of the entropy.) It will be seen that
the condensation is assoclated with an increase 1n entropy. This was
found to be As = 9.7 J/kgK. In Section d), we shall also make general
statements concerning the magnitude of As. The Wilson point (in our
terminology, the point of maximum supersaturation or supercooling) lies
at about 2.6% of theoretical wetness. The state curve of the vapor
phase applles 1itself quickly to the saturation line after condensation
has set 1n.

In the after parts of the turbine, we note that the supercooling
rises again and y accordingly lags noticeably behind vy, cf. Flg. 2.
This problem involves the deterloration of heat transfer to the fog

I

' droplets at low steam densities and will be treated in detall in Sec-
’ tion 2.6. |
¥

- 90 -




d) Analytical Determination of Onset of Condensation and the Properties
of the Fog Formed

Calculation of spontaneous fogging on the basis of the equation
system written in Section b), as was done in the examples of Section
c), requires a very large outlay of machine time. A question press:s
itself upon us: 1s there no simpler way to get a sufficlently exact
answer to the essentlal questions? A closed analytical method — even
if only approximate — would also have the great advantage of permit-
ting easy recognition of the !mportance of individual factors (expan-
sion rapidity, Mach number, etc.). The following questions should be
answered here: Where does spontaneous condensation set in (Wilson
point)? What does the bend in the expansion line look like? How large
are the fog droplets formed?

The examples calculated 'n the previous secticn led to recognition
of the fact that we can regard the progress of spontanzous condensation
as divided into two stages (this thought was first voiced by Oswatitsch
[33]): the first step ("nucleation sone") sees formation of the mclei
from which fog drops will grow, but they are at first still so small
that only very little water 1s contained in them, see Fig. 5. (The
droplet count n increases, but y still << y_). In the second step ("con-
densation zone"), no new nuclei form,39)
i.e., n remains constant: the amount of
water precipitated is taken up solely by
growth of the droplets already present.

Droplet growth ceases only when practic-

unterhbt 8t
2 Keimbitéga Kendensationsrone L} ally the entire quantity of water y_ due
Fig. 2.5.5. Illustrating to preclipitate according to thermodynamic
course of spontaneous con-

densation in time. 1) Su- equillbrium has actually been precipi-
percooled; 2) nucleation

zone; 3) almost saturated; tated, 1.e., when the state y = y_ has
) condensation zone. =

-91 -




e s mme DR T

practically been reached. So much for the physical picture.

Due to this subdivision, simplifications h<come possible without
which analytical calculation would not be feasible: in the first step
of the computation, we calculate micleation and growth, disregarding the effect
of condensation on the vapor state: as a result, we obtain the locus
of the Wilson point and the number of droplets formed. In the second
step, we do not concern oursélves any longer with the condensation
mechanism, but seek to find what sort of effect precipitation of the
theoretical wetness has on the flow; the state at completion of con-
densation is obtalned from this treatment. Finally, the average size
of the full-grown fog droplets follows from the results of the two
steps, so that all of the questlons posed at the outset have been ans-
wered. Let us now discuss these calculation steps one at a tine.

Nucleation Zone

The followlng dilscusslion 18 based on a computation process derived
in [45] under more general assumptions (two-component atmosphere,
higher pressure) and tested on numerous sets of experimental results.
Here we shall point out only the basic thought behind the process, to-
gether with the results and their uses. Here we shall restrict our-
selves to pure water vapor [steam] and to the boundary case of low
pressures, where droplet growth 1s governed by molecular laws for the
tiny droplets coming under discussion.

We concelve of the prhysical process unfolding in a vapor element
traversing the nucleation sone as follows. New droplets form continuously
in all parts of the vapor element and have the critical size at birth
in each case (the size corresponding to the instantaneous supersatura-
tion). The frequency of formation of such nuclei in a unit volume in-
creases steadlly in the course of time, since the supersaturation is

at first increasing steadlily. Further condensatlion starts immediately
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on the nuclei so that growth of the old droplets runs concurrently with the

birth of new ones. The growth of a droplet is gaverned by heat-transfer laws, and
is therefore primarily a function of droplet radius and the extent of supersaturation
(more precisely, of supercooling). If it is now possible to predi~. the time
behavior of all quantities in the nucleation zone that affect nucleation and droplet
growth, then 1) the nucleation rate J will become a known function of time and,
with it, the number of droplets that have been born up to a certain arbitrary point
in time will be know); 2) the curve of droplet growth, i.e., the function r(t),

will be determined uniquely fcr each one of these droplets. (Even then, of

course, the latter must be determined for each droplet through <olution of a

differential equation.) Having J(t) and all r(t), we could then write the intensity of

condensation dy/dt as a function of time:

5? = mgdr o+ X Q 4vr? :—:l (number of droplets in group)
(in question )
for all
droplet groups (28)
Here the first term signifies the condensation due to nucleation in accordance
with the condition that the droplets formed are counted as part of the condensed
phase only from the point at which they have exceeded the critical size. The
second term is the condensaticn as a result of growth (dr/dt) of the supercritical
droplets, which we may regard as characterized, for example, by their birthdays
and grouped accordingly.
But how can we predict the curves of the state quantities in the

nucleation zone without previous knowledge concerning the condensation?
This follows from the previously mentioned finding (cf. Fig. 5) that
throughout nucleation zone, the amount of moisture precipitated is so

small that the state change corresponds practically to dry supersatura-
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tlon. That is to say, extrapolation of the dry expansion curve 1s per-

mizsible. Further, it was found in Section c¢) that the nucleation zone is
very narrow,l‘oso that most quantities vary only by extremely small per-
centages. This suggests the further simplification of setting constant
all ol the quantlties that have only a secondary influence on nucleation
(pressure, flow veloclty, temperature, material quantities, etc.). For
the logarithmic supersaturation A, which 1s what really decides nucleation

rate, we shall assume a linear increase with time. (The AT curve in

Flg. 2, which, with a scale distortion, can also be interpreted as the
A curve, 1ndicates that thls 1s quite permissible. Otherwise, as shown
in [45], this assumption 1s practically equivalent to the assumption

of constant expansion rate P.)

On the basis of these assumptions, we first derive a formula for
J = J(t), and then, solving the differential equation (24), we can de-
termine the function r(t) for the droplets that have formed at various
times. It 1s found that these functions, which are, 1n themselves, com-
plicsted, can be reproduced with sufficient exactness by straight lines
tiiat begin thelr rise from zero only after a certain lapse of time fol-
lowing generation of the droplet as a nucleus. (For droplets with differ-
ent birthdays, these r(t) lines run parallel, but are shifted in time,
like the exact r-curves in Fig. 2.) If these r(t) are inserted in Eq.
(28) and the number of droplets determined from the value of nuclea-
tion rate gt the point in time at which the nuclei are born, we can sum
(or integrate) over the droplets. Thus we have now obtained dy/dt as
an analytically assigned function of t.

It 1is quickly seen that the Wilson point (= supersaturation max-

imum) lies very nearly where

¥, (29)



cf. Fig. 5, since then (y°° — y), the amount of water lacking for ther-
modynamic equilibrium, no longer increases, i.e., the supersaturation
also ceases to rise. The quantity dyw/dt 1s naturally given by the
rapidity of expansion and can be regarded as constant within the nuclea-
tion zone,

If we insert the analytical expression obtained from Eq. (28) as
a substitute for dy/dt in Eq. (29), we obtain an algebraic equation of
the form

f(t) = const, (30)
whogse root t¥* indicates the flow time ascribed to the Wilson point.
From the latter we can then determine the other quantitles of state at
the Wilson point (A*, p*, etc.) quite easily.

Once the Wilson point has been established, we can finally also
determine the numher n*#* of fog droplets per kilogram of fog by 1n-
tegrating the function J.v up to the Wilson point.

The conslderations presented above lead us to the following com-

putation program: we select as the reference point a point on the ex-

pansion line slightly in front of the locus of the hypothetical Wilson
point — in slower (turbine) expansions, at about 2.5 to 3% of theoret-
ical wetness, and, in fast (nozzle) expansions, at about 3 to 3.5%.
From an i,s-table (see Appendix) compiled for supercooled steam, we

read the pressure Py and the steam temperature T at this point.

d,b
Then we determine the polytroplc efficilency np b from the slope of the
’

expanslion line and calculate the local value of expansion rapidity Pb

from the design data (c¢f., for example, Section 2.1). Then from Ty b’
’

we obtaln the corresponding values of supersaturation, using Diagrams

II and IV (Appendix):

(31)
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and those of the quantities 2 22, o o § Z5, which represent various

l)
combinations of material quantities, and, with Td b and Ab’ the con-
k]
verslion factor K as well.
It 1s expedient to introduce the '"reduced log supersaturation"

X o (32)

whose value at the reference point is found to be

A
-
% o (33)
Then we calculate the dimenslonless parameters
-4
v, s Zh P (34)
A3 4
b
and
(2,),
‘b & 7\5‘ . (35)
b

These two parameters appear in the finzl form of Eq. (30) and thus
alone determine the position of the Wilson point. We can present the
roots of Eq. (30) in a generally applicable form as a function of these
parameters, see Fig. 6, where we have plotted the value of the reduced
log supersaturation at the Wilson point, x*, 1lnstead of the meaning-
less t*. When we read x* from Fig. 6, we have obtained our first in-
dication as to the Wilson point.

At this point, we can at the same time check whether the choice
of the reference polnt was correct. This 1s the case 1f, with the y*

obtained, the relationship

0.926% 60,08 (36)
1s satisfied; then the reference point lies in the middle of the muclea-
tion sone. Otherwlse we must assume a more favorable reference state

and determine x* all over again.
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Fig. 2.5.6. Diagram for determining reduced
log supersaturation at Wilson point.
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Fig. 2.5.7. Diagram for comput-
ing number of droplets.

If x* has definitely been determined, then the log supersaturation
A* and the supersaturation II¥ at the Wilson polnt follow:
A* = Wl = (2%, (37)
and the supercooling at the Wilson point 1s obtained as
aT* = KTy A - (38)

The pressure p¥* corresponding to the Wilson point 1s determined from s

the expressilon

SROIRS (1l




= mpl1-Z9, -] - (39)

Finally, we obta_in n*%*, the number of droplets per unit mass of wet
steam that result 1in stable fog droplets and thus permit inferences as

to the average droplet size, from

g T (40)

—

where Z 1s an abbreviated integral expression and can be stated as a
function of x* and the cuantity 'ybég formed from the parameters. Its
value can be read from Fig. 7. Thls concludes the calculation for the

first step (nucleation gzone).
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Fig. 2.5.8. Magnitude of Wilson-poini

suvercoo!ing for various expansion

rates and various pressures, with expan-

sion isentropic.
The Importance of the expansion rate 1s easily appreciated from
Fig. 6 and Fig. 7. For example, if in an expansion the same steam states
are run through ten times faster than in another, 6b remains approxi-
mately constant, while Yo becomes larger by a factor of 104. As a re-
sult, we obtain a x* that 1s larger by about 15% and a = about lO4 times
as large, which ultimately leads to a thousandf2ld increase in the num-
ber of dropys!

For the rest, the equations also indicate that a diminution of
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the pressure hags an effect similar to that of an 1ncrease in P.

It follows from the above that different Wilson lines apply for fzi

different expansion rates: these are calculated assuming

oy = l)h%br steam and entered in our enthalpy- é

entropy diagram (Appendix). The supercooiing peaks & T#* that occur have

isentropic expansion (

also been calculated (again with np = 1) and plotted as a function of

expanslon rapidity and pressure in Fig. 8. (For the sake of simplicity, ’

we have referred P and p to the Wilson point, since Pb =~ P* and Pp = e* [} 4
anyway 1if the reference point has been correctly chosen.)

Condensation zone

In this second step of the calculation, we shall concern ourselves
with the variation of the quantitiles of state and the flow veloclty 1in
the condensation zone. In order again to avoid a stepwise numerical so-
lution of the system of differential equations written in Section b),
we shall make use of the assumption that the transition of the steam
from the completely supercooled gstate to thermodynamic equilibrium oc-
curs jumpwise ("condensation shock"). Since the condensation zone has a

finite width 1n actuality, 1t is best to assume that the Jjump occurs

Bl e

not immediately at the Wilson point, but somewhat farther back, cf. the

representation in Fig. 9 in this context. Then we have as the state be-

fore the Jjump a hypothetical state that can be obtained by extrapola-
tion of the supercooled expansion curve. From the laws of the condensa-
tion Jjump, we can obtain from this a likewise hypothetical state behind
the Jjump, from which it will be possible to extend the expansion curve
assuming thermodynamic equilibrium. Within the condensation zone this
extension has no physical validity, and only beginning at its end (p*#*)
does it present a valid approximation for the actual expansion curve.

Actually, we can place the point of the Jump arbitrarily within

the condensatlion zone. We shall place it where half of the water y: due
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at the Wilson point has actually condensed.
This point can be determined with the aid of

the droplet-growth curve that was applied to

the seeding zone. According to [45], we get

Pyor ™ P* - P -av Yo (40)
g Zg-A® 8X¢'n*

[vor = before] which uniquely defines the

state before the jump. We can use an 1,s-table
Fig. 2.5.9. Pressure

curve and expansion to obtain y;, since we already know the Wil-
line 1in spontaneous

condensation (solid son polnt from the preceding calculation. The
line: corresponding

to solution of dif- material quantities Zl’ Zu and Z6 are to be
ferential equation

system; broken line: taken from Diagram IV (see Appendix) for the
assuming a condensa-

tion Jump). The case steam temperature at the Wilson polnt. In all
shown arises 1in

supersonic flows. 1 practical cases, p*¥ — p wlll amount to
After; 2) before; 3; oL

flow path; 4) satu- only a few percent of p*,

ration.

In general, the condensatlion shock 1s
calculated in much the same way as a normal compression shock in a
streaming gas: we write the three basic equations (continuity equation,
energy equation and equation of motion) in one-dimensional form for
the place of the shock and solve them. No difficulty 1s encountered in
this solution, since all of the equations are algebraic. Stever [34]
refers to certaln similar studles. These are concerned with a sudden
influx of heat of known intensity to a streaming 1deal gas. It is
found that two dimensionless parameters are declsive for the proper-
ties of the shock: Mvor’ the Mach number before the shock, and
(Qzu/hvor) [zu = influx], the amount of heat flowing into the streaming

medium per unit of mass, referred to its total enthalpy before the shock.
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The question 1is posed somewhat differently in the case of puwre
steam, primarily because we cannot indicate 1n advance the amount of
heat that will be liberated. (At high Mach numbers, for example, there
is even a possibllity of compression shocks so severe that the state
of the steam goes suddenly into the superheated region, so that 1in the
end nothing condenses at all.) Further, a change in the isentropic ex-
ponent « arises 1n the case of steam, and part of the volume-occupying
mass also vanishes (since the specific volume of the water i1s, after
all, negligibly small). Taking these peculiarities into account, the
author has carried through calculations for condensation shocks in
water vapor: see [46]. The assigned amount of heat has been replaced
by an indication of the supercooling before the shock (referred to a

temperature of the vapor) and the condition that thermodynamic equilib-

rium prevails behind the shock.
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Fig. 2.5.10. Pressure and velocity
variations due to a condensation
shock as functions of the Mach num-
ber before the shock, for various
initial wupercoolings (concerning
the parameter of the curves, see text).
1) After; 2) before.
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Accordingly, the two dimensionless parameters that determine the

properties of the shock in pure steam are Mvor and (AT/T Tte cal-

d)vor'
culations were carried out for a number of initial pressures and em-

braced the Mach number range up to about Mvor = 2 and 1ndividual val-

ues of (AT/Td) lying between O and 0.15; see Figs. 10 and 11. It

vor
was found that the shock diagrams corresponding to the various initial

pressures p are not exactly identical - a result that may be as-

vor
cribed to the peculiar properties of water vapor (shape of vapor-pres-

sure curve, variation of heat of evaporation). Nevertheless, the shapes
of the curves remain similar and the change 1n the 1nitlal pressure
has about the same effect as a certain change 1n the curve parameter

(aT/T It follows from this fact that the deviations as a result

d)vor'

of changes in p can be taken into account rather exactly by cor-

vor

recting the (AT/Td) value. The numerical change in the evaporation

vor
heat L is found to be the most suitable correction. These representa-

tions result in the following rule: the curves shown in Figs. 10 and

11, which apply originally for p = 0.5 bar and with (AT/T as

d)vor
the curve parameter, can also be used for other 1inltial pressures

(0,05 < p

vor

vor < 5 bars at least), provided that

in Fig. 10 the quantity (ﬁ LWy
Tq hor L(O, 5 bar)

in Fig. 11 the quantity [(“l 10,5 mr) ]
or

T L"VOP’ -

a
is used as the curve parameter.

It will be seen from Fig. 10 that the influence exerted by con-
densation on the flow depends very heavlly not only on the extent of
the 1nitial undercooling, but also on the stream Mach number. Accord-
ing to Fig. 10, the condensatlion 1s assocliated with a drop in pressure

and a rise 1n velocity at places where subsonic flow prevalls and with
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Fig. 2.5.11. Enthalpy- and entropy

Jump due to a condensation shock

as a function of Mach number before

the shock, with various initilal

undercoolings (concerning the

curve parameter, see the text). 1)

After; 2) before.
a pressure rise and velocity drop where the flow 1s supersonic. For
Mvor = 0, the process is 1sobaric; the velocity ratio, which is simul-
taneously the volume ratio, 1s greater than unity, whlle the condensa-
tion effects an 1ncrease in volume with p remaining the same. For
Mvor'" o, the process will unfold with volume constant.

The most striking feature of Fig. 10 is the absence of condensa-
tion shocks in the vicinity of MVor = 1. The system of equations given
has no solutlion in this region. What this signifies can be made clear
somewhat as follows: the present investigation of the condensation
shock was prefaced by two apparently self-evident assumptions: namely,
that the shock can be produced at any arbitrary Mach number by appro-
priate design of a nozzle (for example, by selection of the total pres-
sure), and that the flow hehaves stationary. Each steady state must,
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however, be introcduced by a nonsteady prelude process that merges with
it asymptotically. Now 1t is quite conceivable that under certain con-
ditlions, the desired asymptotic transition cannot come to pass at all.
In owr case, this would be when the condensation shock tended to pene-
trate into the forbidden Mach number region during the prelude process.
If this penetration should occur in the subsonlc region, we have a
back effect on the state before the nozzle; if a certaln pressure is
forced here, the mass throughput must become gwinaller; if the mass
throughput 1s forced, the pressure must pile up; in any event, the set
of conditions specified cannot be satisfied and 1s replaced by another.
In the other case, when the prelude process unfolds in such a way that
the condensation shock reaches the boundary of the forbidden super-
sonic Mach-number region, a back effect on the upstream conditions is
excluded and the initial conditions thus remain unaffected. Since, on
the other hand, according to our equations, such a statlonary state is
not possible, no asymptotic transition into such a state can take

place elther. To investigate the processes that unfold in such a case,
we should substitute equations of nonstatlonary behavior for the sta-
tionary equations. The sclutions of these equations for the state fol-
lowing the prelude process would then be periodic in nature, 1.e., the
flow state would perform oscillations of some sort. For the rest, these
would have to be of relatively high frequency so that the nonstationary
acceleration terms would really be considerable as compared to the sta-
tionary terms. Thus we would have to deal with a more or less intensely
oscillating flow. These concluslons are supported by the sporadic ob-
servation of bucket fallure in wet-steam turbines under conditions

such that 1t could not be attributed to any of the known causes. This
breakage could be eliminated only by changing the cross sections with
the concomitant fundamental changes in cther flow conditions.
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The two boundary Mach numbers at which a condensation shock 1is
still just possible are the farther from unity the stronger tre con-
densation, i.e., the greater the undercooling prevalling before the
shock (note the increasing removal of the inflection point of the

curves from Mvor = 1 for increasing parameter values).

Fig. 2.5.12. Locus curve of
steam states after the shock
in the 1,s-dlagram, calculated
for Ryor = 0.5 bar and

(AT/Td)vor = 0.12. The Jump

that occurs 1s decermined by
the magnitudes of the Mach num-
ver M .. 1) State before the

shock; 2) before; 3) saturation.

Theoretically, two solutions are possible in the neighborhood of
the inflection point for a given Mvor' The solld curves e»ply to the
"weak" case, in which only the absolutely necessary consequences of a
condensatlon arise, whille the broken-line curves have reference to the
strong" condensation shock, which, according to Oswatitsch
[35], can be interpreted as the simultaneous occurrence of a (weak)
condenisation shock and an ordinary normal compression or rarefaction
shock. We may conclude on the basis of experience that weak shocks
arise 1in practlcal cases, since the absolute abruptness of condensa-

tion that would be necessary for a strong shock i1s not at all guaran-
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teed 1n reality. We shall return agaln to the end pointc of the broken-
line curve branches.

Figure 11 presents a plot of the enthalpy and entropy Jjumps pro-
duced by the shock. The entropy increase was multiplied here by a tem-
perature value so that 1t would provide a direct point of reference
for the work loss due to the shock. Knowing the sizes of the two shocks
places us 1n a position to determine that point of the 1,s-dlagram be-
ginning at which the expansion continues behind the shock in cases
where the polnt Lefore the shock 1s known. For example, we obtain for
Pyor = 0.5 bar, (AT/Td)vor = 0.12 and various Mach numbers the state
points behind the shock as shown in Fig. 12.

Referring to Filg. 12, we shall be In a better position to discuss
‘the curves of Fig. 11 as well. In the case of a vapor at rest (Mvor =
= 0), there 1is no change in enthalpy; the entropy increase has exactly
the value necessary for the transition from the curved (undercooling)
isobar to the straight (equilibrium) isobar. According to Fig. 11, the
entropy 1ncrease willl be the greater the greater the supercooling.
(And, indeed, almost in a square-law relationship!) For subsonic flows,
the jump 1s downward, 1.e., thz enthalpy diminishes (after all, accel-
eration!). With rising Mach number, the entropy increase becomes some-
what larger and reaches its maximum at the highest subsonic Mach num-
ver at which a condensation shock is still possible. Cases correspond-
ing to the broken branch of the curve, which, though they do not occur
in practice, are still theoretically possible, lead to much smaller
increases in entropy, since they are connzcted with an expansion shock.
In the boundary case of constant entropy, the theoretical possibility
of the existence of such shocks also falls by the wayside, and this is
the reason why Fig. 10 limits the lengths of the broken-line subsonic
curve branches.
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In the supersonic reglon, a rather strong positive enthalpy Jump

arises at the lowest Mach number at which a shock 1s still at all pos-
slble. For larger Mach numbers, the Jump becomes increasingly indis-
tinct in the real case (unbroken curve), but 1s connected with a no-
ticeable enthalpy increase even for Mvor = o, The entropy increase al-
ways remains somewha‘. smaller than in the subsonlc case and 1s minimal
at the boindary Mach number. The "strong" shock (broken-line branch)
lezds to sharp increases in enthalpy, which, in the extreme case, re-
svlt in ary-saturated states. This 1s what establishes the strongest
theoret: cally possible condensation shock.

In =zctuality, the Jjump 1s less pronounced, since development of
the hout of condensation extends over a finite period of time. In Fig.
9, 2 sharp-cornered expansion curve computed with the ald of the
shcek conception is compared with the "exact" curve, which would be
obtained by stepwise solution of the system of equations set forth in
Section b. Just as the forward salient point (thc Wilson point) occurs

at a pressure p* > p the rear salient point also lies not at p

vor’ nach’

but at a lower pressure p**, whose magnitude can be egtimated from the
time required for condensation. If we define Pyor by £q. (40), we can
with sufflcient accuracy take

P** = Pucy - 30% -0, (42)

(pnach = p**) will therefore be greater than (p* - since the

pvor)’
condensation proceeds more slowly toward the end because the supercool-
ing has already receded.

We can now summarize the course of 2 calculation for the conden-
sation zone. Strictly speaking, the calculation applies only for nar-
row one-dimensional channels in which the condensation shoc:s are
perpendicular to the f aw, We shall return at the conclusion to the

case of turbine cascades in which extensively two-dimensional flow pre-
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valls. After we have found the Wilson point (i.e., p* and A* have be-
come known), we calculate Pop @nd A .. from Egs. (40) and (41), re-
spectively, thus locating the jump. The governing parameters of the

Jump are obtained from

JV, . Vp!%l
M = Yz [(P:r - 1] (43)
and

(3o = ®ror Avod" Aoy - (44)

Here, Piot is the total pressure of the flow. The coefficient K — in-

troduced in Section 2.3a — 1s presen..d in Diagram I (see Appendix).

If we skip the calculation of the seeding zone and wish to determine

the Willson point on the basis of the Wilson lines drawn into the 1,s-

table, it will glso be simplest to read AT alsn from the table or from

Fig. 8 and connect it with T4» Whereupon Eq. (44) vecomes superfluous.
Then, on the basis of M, (AT/Td)Vor and p, ., applying Figs.

10 and 11, we determine the properties of the condensation shock, 1.e.,

the quantitiles

Prach
Pyor

v Opaentyorr  Gpgen ™ Syor

(nach = after; vor = before]. Using them, we can determine the pressure

p and that point of the 1,s-diagram beginning at which the expan-

nach
sion continues. The expansion lines are drawn out from thlis point wilth

about the same efficiency as before, cf. Fig. 9.

Finally, p**, the pressure actually attained at the end of the
condensation zone, can be determined from Eqs. (42) and (40), so that
an approxlmation of the real expansion curve is obtained (solid line
in Fig. 9). At the pressure p**, we read from the expansion line the

v**, which Indicates the quantity of suddenly precipltated water and
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thus represents an important basis for determination of the average

droplet size. This completes our second calculation step.

However, before proceeding farther to our goal, the droplet size,
let us first consider briefly the influence exerted on the appearance
of condensatlon shocks by the two-dimensional nature of the turbine-
cascade flow. The reason for the deviations that will be found in
turbine cascade as compared to narrow straight nozzles 1s the fact
that in the cascades, the condensatlon does not set in simultaneously
on all streamlines, so that there is a distortion of the streamline
pattern as compared to the condensation-free case. To determine the
disposition of the condensation shock in a’ 'cascade, let us pur-
sue the following line of reasoning.

If the condensation had no disturbing effect on flow conditions
(i.e., if no shock arose), the streamline and isobar pattern in the
< cascade would be exactly the same as without condensation, see
Fig. 13a. We would only have to concern ourselves with a fog behind
the isobar p* (p* is the Wilson pressure, at which condensation inter-
veneshz)-In actuality, however, spontaneous condensation 1s associated
with a shock. Let us now imagine that we have replaced the drawn
streamlines with thin rigid sheet wallsg, ¢f. Fig. b. As a result, the
flow has been divided into four separate flow filaments, each of which
1s so narrow that it may be regarded as one-dimensional. Then normal
shocks arilse 1n these channels, staggered in a mannar corresponding to
the course of the p* line. If we now take the sheet walls out, the
flow field between the two bucket profiles will again be continuous
and must naturally be spanned continuously by the shock. Obviously,
however, this shock llne will not run vertically onto the streamlines.
Such a case — that of the so-called "oblique condensation shock," can
easlly be understood on the basis of the normal shocks by decomposing
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the flow velocity into a component perpendicular to the shock and a
component parallel to it (Fig. c). The normal component is subject to
the shock laws, whille the parallel component remains unaffected by the
shock. This then results in a knee in the streamline — assuming the
shape shown for subsonic flow — since the normal component is, after
all, increased by the shock in this case. (The determining Mach number
Mvor is to be formed with the normal component!) On the basis of this
fact, we can concelve of the actual streamline pattern as shown in
Fig. 4. A result of the knee shape 1s that the fllament right next to
the back of the bucket must become somewhat broader before the shock
as compared with Fig. a or b. According to Bernoulll, nowever, the
pressure would then diminish more slowly, so that the Wililson pressure
p* 1s reached somewhat later and thus the shock 1s dlsplaced a bit
downstream. The opposite effect arises in the filament on the concave
side of the bucket, so that the shock ultimately has a form deviating
less from the perpendicular, such as the lilne originally assumed for
p* in Fig. a. The shock must be normal in the neighborhood of the pro-
file, since, indeed, no knee can be formed in the streamlines because
of the s0lid wall presented here. Thus we have ascertalined the sought
shape of the condensation shock in a bucket cascade.

Naturally, the Wilson pressure may occaslionally be reached far-
ther forward or farther back iIn the cascade. If, for example, we mod-
ify the state before the cascade in such a way that the pressure p* is
reached farther back in each successlve case, the shock will also be
shifted in the manner shown in Flg. e. If here the end point of the
shock has already reaclied the exlt edge on the concave side of the pro-
file and the entry state 1is modified still further, the shock line
willl not separate at all from the exit edge and end in free space, but
will remain attached: that is to say, a jet-derlectlion-like flow will
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Fig. 2.5.13. Illustrating position of condensation
shock 1in a bucket cascade.

move past the exit edge and result in a local acceleration, i.e., a
local pressure drop, one that levels out in exactly such a way that
the pressure p* is reached at the edge. If' the pressure level before
the cascade rises further, the jet deflection will become steadily
more pronounced, until the other end of the shock line has also drifted
to the exit edge. Only by a still further increase in the pressure
level can the shock line be separated from the cascade. In the case of
a turblne, the shock then migrates out into the intermediate axial
space or even into the next bucket ring.

Finally, a word on the three-dimensional effects. In turbines,
the pressure in the intermediate space 1n front of a cascade 1s gener-
ally not constant along all radil. Accordingly, different shock lines
among those drawn in Fig. 13e apply for different radii, i.e., the
shock surface 1s somewhat canted between the bvlades.
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The stronger the variation of the pressure in the intermediate
space as a function of radius, the greater will be the deviation of
the shock surface from the cylindrical. Nevertheless, this effect of
pressure will generally be partly offset by the variation of the per-
centage reaction, which determines the extent of the pressure drop in
the cascade 1itself and, through it, likewise influences the shape of
the 3hock surface. Nevertheless, it 1s conceivabl:z, for example, that
the shock surface lies under certain circumstances between rotor
buckets at the hub, crosses the Intermediate space at “he midsection
circle, and squeezes in between the next following stator buckets near
the casing liner. In Section e, we shall briefly discuss the question
as to whether these three-dimensional effects can have substantlial con-
sequences for the behavior of a turbine.

Size of fog droplets and remanent supercooling

| In the first step of the calculation ( nucleation zone), we have, in
addition to the locus of the Wllson point, determined the number of

fog droplets n¥** that have formed. The second step of the calculation
(condensation zone) resulted in the water cor.tent y;* at the end of

the condensation zone at thermodynamic equilibrium, taking the proper- .
ties of the flow into account. If the specific amount of water y;* is

present 1n the fog droplets at the end of the condensatlon zone, these

3
g
A 5

where 4mp'/3 = 4100 kg/m3 at moderate pressures. (If almost perfect

have the average radius

thermodynamic equilibrium has been established and no water 1s present

other than that in the fog drops, we may set yX** = Vi)

On the basis of Eq. (45), using the calculation methods for the
seeding and condensation zones, we can determine the influence exerted
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by rapidity of expanslon, pressure and Mach number on the average fog-
droplet size. The result is Fig. 14, from which the overwhelming sig-
nificance of expansion rate p will be scen at once. The reason for
this strong influence 1s the fact that greater supercoolings are
reached 1n rapld expansions — cf. Fig. 8! — so that the nucleation fre-
quency assumes very high values and, even 1n a very short time, this
1s manifested in a very large number of droplets. Since, on the other
hand, the amount of water precipitated does not change appreciably,

the result 1s a sharp reduction in droplet size.

'l'l s g3 J.‘“:" 'I.‘l: Pos g

Fig. 2.5.14. Average droplet size in
fog for various expansion rapidities
and pressures prevailing at the Wil-
son point and for various Mach num-
bers, under the assumption that the
entire theoretical wetness condenses
(y;* = y;*). vor = before.

With this, we have acquired answers to all questions posed at the
beginning of this Section d) and now come to the subject of the super-.
coolling AT** remaining at the end of the condensation zone. This oc-
curs only because the steam is expanded further and new water must be
condensed steadily during this process. The water condenses on the sur-
faces of the fog droplets and its heat of condensation is given up to
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the steam (which is cooler by AT**). The heat balance would be written

"m e see . (1] >
o MR S L (46)

where the heat transfer coefficlent o** refers to droplets of slze F;*

at a pressure p** and is given by Eq. 2.2(32). By transformation and

introduction of the expansion rapidity, we obtain

pee r;oz 1,59 T(p*e)
AT*s = Z4(p**) Loy —e=— |- (47)
o 4
Here, 28 incorporates the material quantities:
Q'L Yo
20 % * 53, wwmp (48)

Z8 has somewnat different values for different polytropic efficienciles;
these are plotted in Diagram III (see Appendix). We may calculate 1
from Eq. 2.2(6) or read it from Diagram I. In nozzles, AT** is usually
1l to 3°C; for turbines, in which the expansion rapidity varies greatly,
no general statement can be made, since the magnitude of AT** depends
very heavily on precisely how large the local expansion rapidity f**
i1s. The further progress of supercooling will be treated in Section
2.6b.

e) Certain Conclusions for Wet-Steam Turbines

The 1rivestigation of the spontaneous condensation process given
in Section d) applies for expansions in which the expansion rapidity é
1s not subject to sharp changes. Unfortunately, expansion in turbines
does not present such a simple case, since the rapidity of expansion
shows extraordinarily sharp fluctuations. (It is high within the blade
rings and drops practlically to zero in the intermedlate spaces.) Thus
the assumption that supersaturation increases linearly with time 1s no
longer Justifiec and the applicability of the methods described 1n Sec-

tion d) for determining the Wilson point (where, indeed, this assump-
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tion was one of the baslic premises!) must be questioned. It can, how-
ever, be shown that the methods also give correct results for expan-
sions with f variable in time (or, what is the same thing. locally),
provided that we determine the ¢ffective vyalue of P in a suitable man-
ner,

Specifically, 1t 1s found that for all expansions with constant f
(45], only those droplets formed in the pressure range

1,02 p* >p>p* (49)

participate heavily 1n the precipitation of water up to the Wilson
point. This gives us a clue to the width of the nucleation zone. Such an
expanslon 1s represented 1n the upper part of Fig. 15. The only thing

of importance for the position of the Wilson point and for the number

L Y
n

thp . Keimbildungszone of droplets is how rapidly the expanslon un-
1
folds in this zone. What has happened previ-

ously makes no difference, since the droplets
E Wilson=Fynk

nﬂfi'“' formed there are not a factor in view of
tnp
] thelr relatively small number. Thus the con-
. ﬁ“j' densatlion process would remain practically
aor
unchanged if the expansion were to proceed
t
— not along the straight pressure line, but in-
Fig. 2.5.15. Illus- stead along the dashed pressure curve.
trating determina -
tion of P* in a tur- Thus we are glven the key to calculation
bine. Top; condi-
tions at P = const; of turbine expansions. We must replace the
bottom: approxlima-
tion of a turbine stepwlse pressure varlation of which a sec-
expansion through
expanslon segments tion is shown at the bottom of Fig. 15 by seg-
with P = const. 1) .
nucleation zone; 2) ments with P = const, but in such a way that
Wilson puint; 3)
Zwr = Intevmediate these approximations always embrace a region
spaces.

with a pressure change of at least 2%, see
the figure. The slopes of these lines in tke (1ln ), t-dlagram every-
=N SI5 N
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where indicate the value of P governing nuclei formation. Thus we may
not set P = O in the intermediate spaces, although this may be the

case locally, but must set instead

0,02 0,02 ¢,

min ©

(50)

o 4 ’
MZVr & ‘l, Zwr

1s

where the significance of At N 1s evident from Fig. 15 and A§

VA
the axlal width of the lntermediate space. With Af

a,Zwr
= 2
a,zZwr cm and

1

¢. = 100 m/sec, we obtain, for example, P =~ 100 sec™ .

a min

Now 1if we wish to find the Wilson point in a turbine, we draw the
curve of f on the basis of this rule for those blade 1rings in the re-
gion where we estimate that condensation will set in, c¢f. Fig. 16, top.
(The local values of f are indicated by dashed curves; 1t 1s seen that
the averaging results in substantial deviations only in the axial in-
termediate spaces.) We then determine the curve of the "Wilson super-
cooling" AT*(ﬁa), cf. Fig. 16, bottomI:3 from the f(&a) curve with the
ald of Fig. 8. This curve tells us how great the supercooling at each
point &a must become for sudden condensation to set in. For the rest,
we can determine the extent of the undercooling AT = Ts(p) - 'I'd in the
intermediate spaces on the basls of the design data (for example, us-
ing an 1,s-dlagram for supercooled steam) and plot 1t in the dlagram
set up for AT*., If we connect these points with a wavy ascending line
(see Fig. 16), then we have the curve of undercooling within the bucket
rings with sufficlient accuracy. Now the Wilson point will be situated
where the AT(ﬁa) line first reaches the AT*(ﬁa) curve. We read from
this point the value of the expansion rapidity ? = b* and the pressure
p = p* and thus obtaln the two items of data from which the losses,
drop slize, etc. follow in the manner descrlibed earlier.

At this point we should like to make reference to something that
provides an explanation for the often inexpllicable differences observed
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b in the behavior of even quite similarly con-

|
T Qﬂ?’ Eﬂ’f figurated wet-steam turbines. If the satura-
i o tion line in the turbine for which Fig. 16
w! o ’
w J Y \, was drawn were to be crossed slightly ear-
& l lier or later, as might easlly occur, for
- i example, as a result of a slightly different
S I o
,r\/yﬂ\‘:é;ij"!/_s\' intermediate-pressure pattern or even as a
b LI S, { s =
= éﬁyﬂilwmmummv result of an operational state deviating
—.t. ! A g
. from design, the entire AT(&a) curve would
Fig. 2.5.16. Illus- be shifted somewhat higher or lower, respec-
trating determination \
of the Wilson point in tively, as shown in Fig. 17 for certain ex-
a turbine. 1) Wilson
point. amples. (The AT* curve remains practically

unchanged, since 1ts shape depends primarily on f ané the latter is
independent of the absolute pressure value.) If, however, the shape of
AT changes, the Wilson point will also have a different position: 1if
the saturation line 1is crossed at, for exarnple, B instead of at S, the
Wilson point may easily slide forwamd, but will si111 remain in the
region where f has a high value. Only when saturation intervenes still
farther forward (at A) will the condensatlon be triggered in the Inter-
mediate space in front of the ring. Conversely, when the saturaticn
line is reached oniy later (C), the Wilson point will slide farther
back into the ring, until finally (D) it comes out into the intermed:.-
ate space, thus creating a situation analogous to A, 1l.e., spontaneous
condensation at low f.

Thus we find that fogging in a turbine may occur at elither large
é or small f, depending on how the state ¢f the steam happens to vary
from ring to ring. The consequences that this has for the compnsition
of the fog can be seen from Fig. 14: for b* = 4000 sec'l, which corres-
pcnds approximately to the Wilson point on the heavy curve in Fig. Al 5
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Fig. 2.5.17. Displacement of
the Wilson point in a turbine
when the pressure curve is
changed. (Heavy line: design
state).

8 1

we read & fog-droplet radius ?ﬁ* = 3°10"° m; for P* =~ 150 sec™ ", on
the other hand, thls corresponding approximately to curves A and D, we
read a radius ?g* o 3.5-10'7 m! (See crosses in Fig. 1l4.) Thus when
condensation sets in 1n an lntermediate space, the fog droplets are
about ten times (!) larger than when condensation intervenes during
the sharp pressure drop within a ring. The significance of this find-
ing will come to light in the sections to follow, where it will be
shown that fine fog droplets cause smaller moisture losses and present
a lesser erosion danger than coarse ones.

Up to this point, we have ignored the fact that not all of the
steam partlcles flowing through a ring experience the same pressure
drop. The differences stem on the one hand from the unique nature of
cascade flows and, on the other, from the fact that the percentage
reaction 1is not, in general, constant along the turbine buckets. If,
however, the condensation takes place under different conditions in
parts of the steam that pass through a ring at different points, we
can no longer speak of a uniform fog-droplet size in the entire flow
space, since different drop sizes will occur in different regions. The
Influence of the cascade flow can be Jjudged by determining the expan-
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5 sion curve and the Wilson point also, for example, on the two stream-

[‘ lines in the immediate vicinity of the blade/ profile (pressure and

suction sides) in addition to those at the middle streamline (for

which Fig. 16, etc., have been drawn). The pressure curves drawn in 1
Fig. 2.4.3 may, for example, be used for this purpose. Nevertheless,
it will be found — in spite of the great differences between the pres-

sure curves — that in most cases, condensation takes place under almost

identical conditions (with almost identical local P) in the entire ,i;;
£3
bucket channel, i.e., that the uniform droplet size 1s not severely ,é

h BE
]

"smeared out" by these effects. The points at which the Wilson points

are located are generally 1in agreement with the condensation-shock

lines of Fig. 13e. As concerns the influence of the change in the 'h'

streamline relationships in the radial direction, this can, under cer-

tain circumstances, result in gross differences, in that, for example,
coarse fog droplets form in the zone around the rotor and fine ones in
the vicinity of the casing liner (or even vice versa), depending on
where condensation intervenes at small and large values of ﬁ. The
smaller 1y ../D [Schfl = blade.], the more uniform will be the fog
droplets thrcughout the flow space.

From the insights galned from Fig. 17, we may draw two practical
conclusions. First, there 1s a possibility of checking these theoretil-

cal statements experimentally: 1f, using sultable means, we shift the

i

Wilson point in a wet-steam turbine, the related variation of fog-

droplet size would necessarily produce, for example, a variation in @5
the molsture loss — one that could be ascertained by efficiency meas- -3$A

urement. As we pull the Wilson point through one stage, the molisture-

loss variations should run through a perilod. éé

Secondly, a basic commandment for the design of wet-steam turbines

follows from the above: pains should be taken to have the spontaneous ; &

- 119 -




condensation result ir the finest droplets possible. A means to this
end 1s to draw the appropriate pressure curve and hold the stretches
with slow pressure drop (intermediate spaces!) short so that, if pos-
sible, the Wilson point will always 1lie within a bucket ring with a
steep pressure drop.
2.6. FLOW AND EXPANSION OF THE FOG

Forward in time from the collapse of supersaturation, the flow
medium is no longer a pure vapor, but instead a fog, i.e., a mixture
of steam and myriad tiny water droplets. (Note that in our usage, the
term "fog" also embraces the steam. Only larger water droplets are ex-

cluded from it.) If we were to leave this fog at rest, i* would come

rapidly to thermodynamic equilibrium, with the droplet and steam tem-
peratures approximating one another. If, on the other hand, the fog is
subJected to further expansion, more and more water will keep coming
due for precipitation, and this must - since otherwise sufficiently
large areas would not be available — condense on the fog droplets.
This 1s possible only if the steam 1s somewhat cooler than the drops.
The extent of the "remanent supercooling"  resulting from this depends
on various factors (total surface area of the droplets, heat of con-
densation to be withdrawn per unit of time, effectiveness of heat
transfer) and may vary quite considerably during the course of the

subsequent expansion. Since any deviation from thermodynamic equilib-

rium means a loss, we shall go into greater detall in the second part
of this section concerning determination of the remanent supercooling.
For the rest, the fog contains a considerable quantity of water,

latent in which are an erosion danger ard various possibilities for

additional losses. The fog droplets are indeed so small (Fn = 0.2 X
x 10~1 to 6-10~7 m) that they can follow the motion of the steam al-
most perfectly 1in spite of 1its continual changes, but nevertheless
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some of them skid onto the blade surfaces of each blade . ring, with
the result that water collects and coarse water droplets detach. It
might also be hazarded that fog droplets collide with one another and
ball up into larger droplets. Further, fog droplets may strike slower-
moving larger water droplets and be swallowed up by them. Below we
shall first go into the processes that tend to reduce the number of

fog droplets.
a) Fluid-Dynamic Behavior of the_Fog

Let us seek answers to the following questions: Do the fog drop-
lets remain distinct during the expansion or do they ball together to
form larger droplets? How large is the fraction of the fog droplets
precipitated onto the blades during flow through the subsequent blade
rings? How large is the fraction swallowed up by large water drops?

In order to form some conception of the droplet distribution in
the fog, let us compute the average distance d separating two fog drop-
lets from one another. let us imagine the steam space to be broken up
into small cubes of edge length d, each containing just one drop. Then
let us compute the d in a fog that has Jjust formed, i.e., a fog in the
state characterized by **: we have d** = (v**/n**)l/3 =
- (unpwig*3v**/3y;;*)l/ 3, or aes/2Fxs = (npwv**/6y;*)1/ 3. In a typlcal
case with y** = 0,03, v** = 2.5 m3/kg, P, = 1000 kg/m> we get
3**/2?;* = 35, which alone indicates that collisions between two fog
droplets will tend to be infrequent occurrences. Since, however, the
specific steam volume v will still increase sharply to the end of the
turbine, the average droplet distance will become still larger and we
can therefore figure 1in general on H/2Fn = 30 to T0.

A second quantity that can provide an insight into the conditions
in the fog is the deceleration time of the fog droplets, which 1llus-
trates the ratio of the inertia and friction forces acting on them.
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The deceleratlon time has been calculated for various droplet sizes at
the end of Section 2.2 (Table 2.2.1). The fog-droplet radius is of the
order of lO'7 m, 8o that their deceleration times are at most a few
times 10'6 second, which represents a very small value. We can there-
fore state that the fog droplets are, so to speak, '"nailed down" by
friction in the steam.

We obtain an inslght into the migration of the fog droplet in the
steam from another angle 1f we regard the fog droplets as large mole-
cules that form a "drop gas" mixed with pure steam. We may, in approx-
imation, assume thermodynamic equilibrium between the two '"gases."

Then the equipartition law will apply and the kinetic gas theory gives

for the mean thermal velocity of the droplets (see, for example, [36])

.“!l! . ||-SXT
e’meru'n m '3Q';= (1)

With the data of the above example, we obtain about ¢ = 2 cm/sec

therm
(while the steam molecules possess an average speed above 600 m/sec!).

We may use ¢ to obtain an estimate of the time that a fog droplet

therm
requires on the average in order to coilide with another. We shall rr-

fer to this time as the mean lifetime of a droplet, since there is a
high probability that on collision, the two droplets will combine to
form a larger drop. Now on the average, a collision will occur when

the droplet, flying hither and thither at ¢ and with a frontal

therm
alrea n(QFn)2 has swept the volume v/n ascribed to one droplet. The

reason for calculating the "frontal area" with twice the droplet radius
is that a collision occurs even when the centers of the two droplets

are separated by a distance 2?5. Accordingly, ﬂ(2?n)23 L)

therm” >“Leben =

= v/n = vhﬂpw?g/3yn, from which

QY fn
At =
Leben - 2
S Yn Ctherm ( )
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[leben = lifetime]. If we assume the above numerical values, vV = 2.5
m3/kg and y = 5% wetness, we obtain Aty pen = 0.17 sec - a very large
value when we consider that the steam requires only (2 to 4)'10'3, sec
to flow through the entire low-pressure part of a steam turbine!

Thus we have cast light on the coagulation of the fog droplets
from two aspects. Our first train of reasoning showed that the fric-
tion in the surrounding medium is large as compared to the inertla of
the drops. This excludes the possibility of rapid coagulation as a re-
sult of centrifuging, turbulence, etc. The second path of reasoning
showed that even gas-kinetic considerations indicate no noteworthy
balling together of droplets during such a short time. If we consider
further that the fusion of t{wo droplets of radius r, produces a 4drop-
let of radius :\S/ETn = l.26rn, i.e., one that differs only very slightly
in size from the original droplets, we may well regard 1t as having
been demonstrated that the properties of the fog are not influenced by
coagulation as 1t flows through the turbine. This gives us the answer
to our first question.

Let us next consider how we shall answer the second question —
that as to the causes that might effect precipitation of the fog drop-
lets. First to come under consideration as such a facto. is the fact
that the buckets force the passing steam to follow sharply curved
streamlines. The entrained droplets follow these changes in direction
only with a certailn — if small - delay, and some of them strike the
wall in the process. This effect arises in the vicinity of the stagna-
tion pcint and at the concave (pressure) side of the profile. An addi-
tional factor might be found in the Brownian motion of the fog drop-
lets; 1f a droplet accldentally touches the wall, it remains stuck to
it. Thls gives rise to diffusion of the fog droplets against the wall.
Thils tendency might be further intensifled by any electrical forces of
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attraction that operate. Below we shall investigate the phenomena cited
one by one.

In front of the profile nose, the flow pattern is extensively sim-
1lar to the flow about a circular cylinder. Thus we may reproduce the
motion of the fog droplets in front of the profile nose with suffi-
cient accuracy by computing the droplet orbits in the flow field about
the cylinder (which we know from the complex represen :on), cf. Fig.
1. We obtain the differential equations of the problem from the New-

tonian law of motion. The system formed by these two equations cannot

I Pretit

2

Ersaln-
Iylindur

Fig. 2.6.1. Illustrating depo-

sition of fog droplets on pro-

file nose. 1) Drop orbits; 2)

equivalent cylinder; 3) pro-

file.
be solved analytically, but it can be solved stepwise without any
trcuble. The problem was programmed for the ERMETH* on the assumption
that the droplets are brought into the flow at a distance of one cylin-
der diameter in front of the stagnation point but anywhere outside the
axis of symmetry and have been endowed with the local flow velocity
prevailing there. From the orbit curves obtained in this way, we

quickly conclude the case that the droplets are brought into the flow

at an infinite distance in front of the cylinder. For various droplet

sizes or, more correctly, for various values of the governing dimen-

sionless parameter

LD My M (3)

e 14 3,83Kn Umfz "m“bnml.l
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we computed a number of orbit lines and, from these, picked out the
ones that Jjust made contact with the cylinder. There are two such
lines, lying symmetrically. All droplets moving between these two
1ines strike the cylinder, while the others avold 1t, see Fig. 1. The
original distance of the fwo tangent orbit lines MoN glilves the width
of the incident pencil of orbit lines. The followilng relationship was
established:

non = 2 RSO (4)
The function gy has the curve shown in Fig. 2. The case gy =1 (L.e.,

G,, small, say because the drops are'very large) signifies that all

N
drcplets whose velocities were directed at the cylinder at infinity

strike the cylinder, while gy = O corresponds to total avoldance.

v
1 I 02
¥ ]

~ oy Bk L1 T
b AN » 0.
02 \ . ks L.
i [ Gu.Gu
[T]] T s B0 g 100 woo

Fig. 2.6.2. Influence of the parameters
GN and GH on deposition f fog droplets,

cf. Eqs. (4) and (17), respectively.

For finer droplets (T, = 2.10°7 m), Gy 1s of the order of 10.

OCnly very few of such droplets will therefore be deposited at the lead-
ing edges of the buckets. If, on the other hand, the fog droplets are
coarser (for example, Fn - 6-10"7 m, Atbrems,n = 1.5'10'5 sec), then
GN is about unity and we have ToN = RN’ which 1s already enough to sig-
nify appreciable fog-droplet precipitation.

As concerns the droplets that spin out of the flow agalnst the
concave sides of the buckets, the result can be derived by a simple
analytical path. The simple assumption that the concave side of the
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profile and, with it, the s:reamlines o/£) of the steam in its vicin-
ity are parabolic in shape permits clcse reproduction of reclity. Then,
with the notation of Filg. 3, thé equation of the streamlines will be
written

g®) - const +y, by}, (5)

where
s-s
0 — (e, r,-i:— : (6b)

Let us assume further that the axial component ¢ a of the droplet
b
velocity 1s always the same as the axlal velocity of the steam and

that both are constant:

Cp a = Cg = const. (7)
Thus we need write the equation of motlion of the droplets only for the
tangential direction. It is mrér,t = wt, where the frictional resist-
ance is given by Eqs. 2.2(1) and (31). After transposition, the equa-
tion of motion assumes the form

dc Ondlq'f’

T:‘A * ML Gt (8)
where s — cr,t has been put for the tangential component of the rela-
tive velocity between droplets and steam.
To be able to decide which drops will strike the blades and which
will not, we must know the trajectories of the droplets If we represent

these as the functions n = n(€), we may write

dy f_nl ¢ :
W (9)

since, after all, the velocity of the droplet always traces 1ts orbit
in the tangential directlon. An analogous relationship obtainas between

°t/°a and the shape of the streamlines:

«
‘—"'Tx”h"?:‘ g (10)
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' n e i where we have used the parabolic stream- i

7 ;
: Ty r.a ]j ,!
” . uij‘#‘ﬁ{// line shape reproduced in Eq. (5). "

i = Since, 1n general, the fog droplets
i . ¢
iz B are capable of tollowing the motion of
i ! 4
i é;u-#, — the steam quite closely, 1t would appear
Parubeal ] 3
i far convenient to presuppess ldentical drop-
Flg. 2.6.3. Illustrating let and steam velocities at the entry
deposition of fog drop-
lets on the concave side into the bucket (€ = 0) as an initial
of a bucket profile. 1)
Streamline; 2) droplet condition. The significance of this for
orbits; 3) equivalent
i parabola. the orbit line 1s that 1ts tangent at

€ = O must agree with that of the streamlines, as 1llustrated in Fig. 3:

%L'%L'h' (11)

From the equation of motion (8), applying Eqs. (9) and (10) and ;

e e

bearing ir mind the relationship dt = dE/ca, we can derive the foliow-
ing differentlal equation for the orbit line:

"'l Opy/2e,) 1, 49
5 Ik - — ) .
ayT " Toinm on (r; + 30t m ) (22)

It is linear and of the second order, so that 1its solution presents no
difficulty. Before writing the. solution, however, we must formulate a
second boundary condition, which, together with Eq. (11), will dictate
the solution.

As in the case of the profile nose, we are also interested here
primarily in that orbit line that separates the impinging droplets
from those that do not impinge. This line 1s characterized by the fact
that 1t passes through the exit edge. It thus satisfies the equation

noY - 8, (13)
with which the sought second boundary condition has been fownd.

The solution of Eq. (12) with the boundary conditions (11) and
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(13) will read

Gyt
2 W0 A
W = prer e Sg, - se —e = (1))
Gy lax
where, in analogy to Eq. (3), we have set
Bny/2e,) !
Gﬂ:l;: ln c P’ - c = (15)
8 a’'n a 8%eems,n

(The deceleration time At was plugged in from Eq. 2.2(35).)

brems,n
The value of this function at € = O is governing for the width of
the impinging pencil of orbit lines, and we shall dznote 1t by MoH? cl.

Fig. 3. We obtain from Eq. (14)

2 o
ﬂ’i‘-(cnncn-x). (16)

3
Gy

Tom

or, after substitution of y, from Eq. (6b),

Yo -lz(—o';;l— * 5.g,(0,) . (17)
Tr.us the tangential width of the pencil impinging on the concave side
of the profile, n,,, referred to the "linear deflection" S (see figure),
depends only on the dimensionless parameter GH, which 1ncorporates the
pnysical quantities. The function 8y is represented in Fig. 2.

As a numerical example, let us again take ?n = 2-10'7 m as the
droplet radius and a profile with lax = 0.05 m, Cy = 130 m/sec. Depend-
ing on the magnitude of the Knudsen number (i.e., depending on the
pressure), we then get GH = 200 to 100. (GH is smaller for low pres-
sur2s.) We read gy from Fig. 2 and obtain with it n, = (0.01-0.02)s.
If the S agrees approximately with the bucket spacing (which is very
often the case), this signifies that about 1 to 2% of the fog droplets
flowing through each ring glance off the buckets. This 1s, in 1tself,

a very small amount; nevertheless, this effect 1s quite substantial for




turbines, since once it has gotten onto the buckets, the water gets
back into the flow only in the form of large drops.

The fraction of the fog droplets deposited on the bucket profiles
during flow through the ring, according to Eqs. (17) and (4) with

tSchfl denoting the bucket spacilng, 1is

(18)

2
e4(Gy) + %:; () -

€o-t * G
The subscript n-f indicates that the water passes here from fog-droplet
form to the running-water form.

A second mechanism that can transport droplets to the turbine cas-
ing is diffusion. The bucket plates act as sinks that swallow up the
fog droplets that reach them. In this process, the diffuslon constant
plays the same role as the thermal conductivity in heat flow through a
body. It can be calculated for a certain droplet size. Its value for
fog droplets 1is very small, since these droplets are enormously large
as compared to the steam molecule. Further, the partial differential
equation obtained from the law of diffusion for the distribution of
the droplets in the space can be solved for the flow through a (geo-
metrically simplified) cascade and we can determine from it how many
fog droplets diffuse agalnst the turbline casing per second. We find
that fewer than one one-hundred-thousandth of all of the fog droplets
flowing through are involved. For this reason, we shall dispense with
reiteration of the calculation here and simply record the result -
that diffusion is not in a position to bring an appreciable fraction
of the fog droplets to the buckets.

Caarging of the shaft with static electricity has frequently been
noted in steam turbines. Since this observation has been made only on
condensation turbtines, it has been hazarded that the cause of the
charging should be sought in the presence of the water droplets. Valu-
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1B . able ideas in this regard may be found in a paper by Gruber and Hansen
[37]) and in the appended discussion by R. Beach. Strictly speaking, we

can hardly make more than qualitative statements concerning such static

charging effects. Nevertheless, it appears that while, on the one hand,

\! impingement of statically charged fog droplets might give an explana-

tion for the shaft voltage, on the other hand the electrical forces

P are much too small to exert any influence on the moiion of the droplets.

Finally, we must speak of yet another phenomenon that can, under

* certain circumstances, also convert noteworthy quantitles of water

| from the fog-droplet form to large drops. The large drops torn from
the buckets or rebounding from them require a relatively long time be-

fore they have more or less reached the velocity of the steam. During
this time, they have a relative velocity — first very high and then
diminishing — with respect to the steam. The question arises as to
whether the fog droplets flowing with the steam can avold the large

8

drops or whether they collide with them and are thus swallowed up.

The results that we have obtalned for the profile nose can be 1n-

voked to clear up this situation. That 1s to say, if in Eq. (3) we re-
place the profile-nose radius RN by rg, the radius of the large drop
in question, we obtain with the calculated GN from Flg. 2 that frac-
tion of the onflowing fog droplets trapped by a cylinder having the
same diamet r as our large drop. The difference between a cylinder and
a sphere would hardly be so great that the result could not be used

for estimation purposes. We therefore now compute the parameter

py/2ey) & . &
. " 142,89k U B U Ay, ' (19)

i where r is the radius of the fog drop, rg

’ - and Ur is the relative velocity of the large drop with respect to the

is that of the large drop

fog. The numerator 1in the first factor can be read from Diagram III,
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or At (for the fog drops!) can be taken from Table 2.2.1.

brems,n
If we take T, = 5:107° m, T, = 2:10~" m and U, = 100 m/sec as

typlcal values, we obtain for low-pressure turbines the order of mag-
nitude Gg = 0,05, If the function 8N is read from Fig. 2 for this
value of GN, we see that for all practical purposes 8y = l, 1.e., that
practically all fog droplets moving at a large drop strike it (and are
most probably swallowed up as a result).

The large drops that can digest fog droplets in this manner are
divided into two groups 1in accordance with whether they have Jjust been
torn from the trailing edge of a (stator) bucket or have rebounded
from the flat of a bucket. The drops of the first group (subscript 5)

are always accelerated from a standstill, while those of the second

group (subscript gg) begin their flight with an initial velocity that

is often quite high and may be directed at random either upstream or

downstream.
let us first investigate the freshly detached large drops and as-
sume for the purpose that all of them are of approximately the same

size,* i.e,, that all have the radius r_. If such a drop traverses a

g
relative path 861 with respect to the flowing fog before its next im-

=2
pingement, it will sweep a volume erl = ﬂrgsrel and will, in its

progress, swallow all of the fog droplets present in that volume. If

we denote by yg the mass present in these freshly detached drops, re- o
Hi
ferred to the mass unit of the entire amount of wet steam flowing (

through, we have n8 = 3yg/uﬂpﬁfg for the number of drops. The ratio
erlng/v indicates that fractlon of the steam volume whose fog droplets 'é'

arc swallowed by these drops. It can be assumed in approximation that | N

the detached droplets are accelerated to one-fourth of the steam veloc-

s, RE
(L Ny

ity ¢y by ghe time they strike the rotor buckets. Then their relative

path with respect to the steam will be about 8ol ™ o‘esclAtbrems,g’ FE;
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80 that the fraction of the fog droplets swallowed up under these as-
sumptions will be

VB -3 0,35 At, . c
« TOL K me, g 1
£, = ”~ . " = Y (20)

A quite analogous train of reasoning can be applied to the re-
bounding large drops, except that here BSpel does not have a common
value for all drops, but depends on the size of the individual drops
and the diréction of their initial velocity. It can be shown, however,
that the average value of the relative paths of all drops agrees ex-
actly with the relative path of the drops accelerated from a stand-
atill if as many drops are sprayed off upstream as downstream. This is
probably secure, since most of the drops strike the backs of the
buckets almost perpendicularly, cf., for example, Fig. 2.8.2. We can
therefore appropriate Eq. (20) in a corresponding sense; only the in-
fluence of drop motion across the steam streamlines must still be
taken into account, at least roughly. For this purpose, we attach a
factor /2 to Eq. (20) and thus obtain for the fraction of fog droplets
swallowed by the rebounding large drops in a ring

3 o254 w
V: C 'bums,‘ it B :
Cn-gm ™ ’“ v 'a (21)
where ygg represents the specific mass contained in the ricocheting

large drops. This process also unfolds in stator rings, where wl/v1 is
to be replaced by co/vo. The average sizes of the two specles of large

drops, ?é and Fgg, will be accessible on the basis of Section 2.8.

If, for example, the wetness of the steam 1s y = 0.05 and 10% of
this 1s contained in the large drops bounding back and forth between

the buckets, i.e., y_.. = 0.10:0.05 = 0,005, and the radius of these

&g

drops measures out at Fgg = 1072 m, then we find with Eq. 2.2(36) and

LI 200 m/sec, vy = 10 m3/kg, the value en-gg = 0,005, Th2 number of
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fog drops swallowed up by slower-moving large drops from ring to ring
i1s thus roughly comparable to the number caught by the buckets.

In summary, we may state the following: the number of fog droplets
present in the flowlng steam 1is reduced during passage through the tur-
bine. This reduction can be traced back for the most pairt to three ef-
fects: centrifuging against the concave side of the bucket plates, de-
position on the leading edges, and, to a lesser degree, on the tendency
of the slower-moving large drops to aggrandize. The first two effects
are in evidence in all rings; the third can become noticeable only
where a sufficlently large amount of water 1s already present in the
form of larger (detached) drops. The coefficient that indicates the
reduction of fog-droplet count in the steam on passage through a single
ring may be written as

b " Lt Ghgt gy (22)

Using the €n factors for the individual rings, we can calculate
the change in the number of fog droplets. At the point &g*, where fog-
ging had just been completed, t..is number was n** per unit mass of
steam and 1t dropped to

Paachk "M% (- &) (M=) . -6 ) (23)
behind the kth ring [nach = after]. The subscript 1 refers to the first
ring coming after the point ﬁg*.

Since the various €n lie between 0.005 and 0.10, depending on the
shape of the huckets and the composition of the wet steam, 1.e., are
rather small, the major part of the water content (about 60-90%) will
still be present at the end of the turbine in the form of fine-
distributed fog droplets. This statement is confirmed by observations
made on condensation turbines. That 1s to say, visibility into the in-

terlor of the turbine is severely impaired by the dense fog.
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fﬂ b) Thermodynamic behavior of the fog

i
1
i
1
{
4

o - The properties of the fog that forms on collapse of supercooling
can be determined with sufficient accuracy on the basis of Section
2.5d. Among other things, we now know the total mass of all fog drop-
_ lets per kg of steam, y&*, the average fog-droplet radius Fg* and the
48 state point in the 1,s-dlagram from which the expansion continues -

4 all for the point &;*, i.e., immediately after the collapse of super-
cooling. The line of subsequent expansion to be expected 1s known from

the design of the turbine and from it we can take the polytropic effl-

clency np. Further, we know the curve of axial velocilty ca(ga) and the

pressure curve p(&a). From the latter we can calculate the curve of

the axial logarithmic pressure gradient Pa(ﬁa), as was shown 1n Sec-

tion 2.1. These data are sufficlent for unique physical definition of

the subsequent expansion. Here we assume that there 1s no water present -

in the steam apart from the fog droplets.

-

We shall make two simplifying assumptions for our further calcu-
lations: firstly, that all fog droplets are of the same size (we de-
note their radius by Fn) and, secondly, that the number n of fog drop-
lets in 1 kg of fog — c¢f. Eq. (23) — 1s known ai least as an estimate

and given, for example, in graphical form, as a function of the axial
coordinate:
n®,) =a.E @) . (24)
Iet us further assume that the fog droplets have the same tempera-

ture in their interior as on their surface and that the capillary ef-

fect 18 negligible. Then

3 Ty * Tr - T.(’)

For the considerations to follow, we may disregard the relative veloc-

ity between fog droplets and steam. — These simplifications are admis-

sible in all practical cases that arise in low-pressure expansions.
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To formulate the problem mathematically, let us consider, with
reference to Fig. 4, a certain quantity m of fog containing a droplet
of mass m, and the quantity of sieam my that acerues to the former.
Obviously,

m = mytWy (25)
or, expressed in terms of the specific fog-droplet content and steam

content,

= ST (26)

]
We can now write the first principal theorem (in the conventional form

dQ = dI — Vdp); for the steam we shall have

»
dm_1* - Qat = dngﬂ-?ﬁb- (27)
and for the droplets |
Qo - dm 1" s &t = dlmgly) - Mg (28)
ichmmuo m ,/"):\\
v%" s m”’\
erdrangungs - .
uboit. "d’u” ”Trop?on o \
Dampfes \ ] m.i =8t :
wwdn..l\.. e dm,i® \
R?ibungswirmc )\' ['
meedt o —?
Temperatur A"
ar
T .

Fig. 2.6.4. Illustrat composition of the balance equations for the
fog. 1) Total mass m; 2) work of compression of the steam; 3) droplet;
4) steam; 5) heat of friction; 6) temperature.
here, arb is the amount of frictional heat evolved in 1 kg of fog per
unit time and can be expressed as

&rb - -(l-q.)vdp/ﬁ. (29)
This expression immedlately becomes plausible when we consider that

the "friction" embraces the entire loss stemming from the polytropic
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1 efficlency n, and that Idisl = —vdp.

| B The heat given up by the droplet to the steam is

Q - TR, -T), (30)

1 where, from Eq. 2.2(32),

| B Y 1+3,18Kn (31)

| a
For the Knudsen number see Eq. 2.2(5) or (9).
let us further remember that

1 m --"!'Q'!’, (32)

! r a

and assume that all material properties are known, say as functions of

P, then we have a complete system of equations describing the expansion
of the fog.

We are interested in the curve of the supercooling AT = Ts - Td _
’ and the ppecific fog-droplet content Yn in the fog while the latter is ¥
P flowing through the turbine (or through a certain group of stages).
i' For practical reasons, the axial coordinate ga 18 used as the inde-
! pendent variable (dt = d&a/ca).

Equations (24) to (33) can be modified in such a way as to leave
two simultaneous differential equations for AT and y,. Equation (27)

results in
0ed/322/3 1/3

m-l—( n-ip-ﬁ’l ‘l Tn .4x AT

a, e, P dnp s e, BTc,  (esmmam @y, x (34)
and Eq. (28) 1in

2/3 .2/3 1/3
M, y*rV"p Y .
x4 n s .-l ¥ oy P,
W T, deanm | Lamp 2T (35)
| Here we have set 1" — 1' = L, 13 = 1" - cpAT and pv = xpvy = XRT4. The

Knudsen number of the droplet can be expressed in the following manner

with the aid of y, and the droplet-count diminution function En( &a):
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because, after all, ;n/-x'g* = (y, /vy En)]‘/B.

The last terms of both Eqs. (34) and (35) are substantially smaller than
al). the others. The error that would be incurred if we dropped them is only as
large as the errors that we have already incurred anyway be disregarding the capil-

lary effect and the internal overtenmperature of the droplets. Further, it can be

shown that . & L o
—— RT, » ;) B e o 27z (P,

xn‘ (p * amp) 32 4 d-n p) s Yy (37)

- cf. Eq. 2.5(48) - so that we may finally write for Eq. (34)
T, <'c, -%l Eede, (143,18 Kax
and for Eq. (35)
« s (v:."’: -.."‘) 1w o P -
a, L\ FEdec 1+8,18Kn Ldlnp

This is a system of two ncnlinear differential equations of the first order. The
coefficients are all dependent on pressure or, what amounts to the same thing, on
E.. A solution in analytical form is out of the question and even a powor-
series theorsm is found to be fruitless. We shall therefore develep a graphical
method that will allow us to determine A T(Z ,) even for a sharply variable axial
logarithmic pressure gradient P,. A grephical process appears the more appropri-
ate because, after all, p(ﬁa), Pa(ea), ca(ﬁa), En(ﬁa) are also available

in graphical form.

We have a first approximation for the solution x(f, ‘) ; this 1s the
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steam content in the case of thermodynamic equilibrium, x_( &a), which
we read from the 1i,s-diagram along the expansion line and can plot
versus the axial coordinate. In the case of supercooling, the values
of x will always be greater than the corresponding values in the 1ideal
case. The latter could, in principle, also be obtained from Egs. (38)
and (39) by setting AT = 0, a, = Ay = @ and X4+AT = nonzero, but read-
ing directly from the diagram is much simpler.

If, however, we are in possession of a first approximation for
X=1- Yns then we can for the time being dispense with more exact
solution of Eq. (39) and seek a first approximation for AT(&a) by in-
serting y, =1 - x (€,) =y,(8;) in Eq. (38):

* eed/S
aar sayf .(,n’/ n:”) yl/s
(

e 3
B e

-ATJ . (40)

a”, @, 1+3,18Kn ) x
In this equation, all factors are elther constants or known functions
of the pressure or of &a. (yn 1s also to be replaced by y_ in Eq. (36)
for the Knudsen number — a circumstance indicated here by means of a

subscript.) The material quantities can be read from Diagram III (see

Appendix) for each individual pressure.

From Eq. (40), we can define a direction field, calculating the
tangents dA’I‘/d&a for various pairs of values §a, AT. The result is
represented schematically in Fig. 5. As will be seen, the field 1is so '
consctituted that all solutions running from left to right (i.e., in
the direction of declining pressure) must converge in a bundle.

The locus of those points at which the tangents are horizontal is
calculated particularly simply 1n this field. Let us denote this curve
by ATh(ga). Then with AT = AT, the left side of Eq. (40) must be zeroc:

L 0ed/3 g2/3 1/3
0.« e [”.(’ )] e
f;‘ R (1+3,18 lnm) zo

from which
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or, if we transpose and use Eq. (36) together

with Eq. 2.1(4),

Fig. 2.6.5. Direc-
tion fleld of Eq.

(40). F feod |foe /3 1 /yse
ATy = Z4 %' ,;. %f)l l:: - ‘) ] (43)

The factor Zg and the quantity (1.59 T) depend only on pressure. Their

magnitudes can be determined for each &a with the aid of Diagrams IIT
and I (Appendix), respectivel;, since the pressure 1is, after all,
known for each E,a. yg* and F?x* are given initial properties of the fog;
the factor ( b/En)-(?;;*z/yg*) is primarily decisive for the depth of
supercooling. The expresslon in square brackets, which 1s plotted in
Fig. 6, 18 of essential importance only at low pressures. It actually
reflects the influence of the increase in total droplet surface and

the deterioration of heat transfer at low steam densities.

Thus we can determine the course taken by ATh. Below we shall
show that a quick graphical determination of the sought undercooling
curve AT(&a) can be made on this basis.

Let us subtract Eq. (41) from Eq. (40). This gives

@, e'¢ Bed o 1+3,88n )k

(4T, -AT) (44)

or, modifying in much the same way as with Eq. (43),

:_4: . AT - AT,
«Q, (ﬁ)ru’ -’[(5._,—“‘/" h—”—l(ﬂy.]l ' (45)
A I N Yo R\’ @

If we now lay off the distance
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..u”. e' r;: [(yu; ';;i (’;;'"Ys]_,m, o

which has the dimensions of length, horizontally from the point ( ATh,

ﬁa) (c¢f. Pig. 5), we arrive at a point B possessing the property — as

will be seen immediately from Fig. 5 with reference to Eq. (45) — that
the tangents at all points corresponding to the ga In question but to

different supercoolings are directed toward it.

The fact that knowledge of the two quantilties ATh and b is enough
to euaable v3a to determine the current tangent of the AT(E,a) line is
the basis of the graphical method to be described below as a means of
d>termining AT( ﬁa). Iet us at once sumarize the course of the entire
calculation.

Let us determine the course c¢f supercooling in a turbine with fog
flowing through it. At the outset ( Ea = E,g*), the properties of the
fog (characteristic droplet radius F;*, specific moisture content y;*)
and the state point in the 1,s-dlagram are known. For the expansion
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Fig. 2.6.7. Illustrating graphical determination of the supercooling
curve AT(&a). Curve B arises as a result of displacement of the points .

of the curve ATh(ﬁa) by the corresponding length b to the right; for
further explanation, see text. 1) Curve; 2) step.

that follows, we have the polytropic efficlency np and the functions
p(&a), ca(ﬁa), é(&a), En(ﬁa) (pressure, axial velocity, rapidity of
expansion, diminution of number of fog droplets). From these, we first
use Eqs. (43) and (46) together with the diagrams in the appendix to
determine the course of the two quantities AT, and b and plot AT, over
ia in a diagram: see Fig. 7. From each point of %this curve, we lay off
the corresponding value b(&a) in the direction of flow as a horizontal
line segment. Thus we obtaln a different, displaced curve B, with
which we determine the direction of the tangents in the sense of Fig. 5.
If now we have somewhere an initial value given for the supercool-
ing, e.g., the value AT*#* corresponding to eg*, we can proceed from it
to determine the course of the AT-curve graphically, step by step (see
Fig. 7): if, for example, we have gotten the point P10 of the sought
AT(ﬁa) curve 1in the 10th step, we seek the corresponding point Alo on
the ATh curve and with it the point B10 on the B curve. We join P10
with Blo and this gives us the direction in which we must extend the
AT-curve to get to the point Pll' The step lengths can be chosen quite
arbltrarily; shorter steps are to be recommended at points where the

AT line shows sharp curvatures.

Thus we have obtained a supercooling curve based on substitution
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of the value X, corresponding to thermodynamic equilibrium for the un-

known steam content x in Eq. (38). Thus the AT that we have obtained
is not an exact solution of the system of equations (38) and (39), but
only a first approximation for it. The fact that we can nevertheless
dispense with further refinements proceeds alone from the fact [cf.

Eq. (43) and Fig. 6] that the moisture-content cu~ve exerts only a
secondary influence on the supercooling curve.

For itself, however, the difference between Yn and y_ can become
quite considerable. For this reason, the AT obtained should be plugged
into 2q. (38) and the curve of Yy = yn(ea) = 1 — x determined from 1it.
This would be the conslstent approach, but it 1s superfluous, since
the moisture deficiency Ay can be calculated directly from Eq. 2.3(19)
from the supercooling. Accordingly,

Y.@) =V -8y =y, - %’-xmﬂ . (47)

Thus far, everything applies only to the case assumed — namely,
that the entire water content of the steam is present in the fog drop-
i lets, 1.e., that y = yn. In turbines, however, significant quantities
| of water may occur in other forms (large drops, etc.) under cectain

conditions. This water is of no significance for the condensation of

j the steam, since 1t offers only a small total condensation area and

since the boundary-layer heating is generally high on the components
of this area. However, its contribution to the water content must be
taken into account, so that instead of Eq. (47) we must write

T (48)

The same reasoning also applies for the first approximation for Yo

b ’Q'A,-b‘oy

which has been necessary in the course of the calculation to permit:

determination of the changes in AT, and b from Egs. (43) and (46), re-

spectively; for the time being, however, we have sald Y = Vo however,
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to take other water forms into account, v, should be replaced every-
where 1in Eqs. (43) and (46) by

O * Yoo~ Og*Veg* W (49)
The quantity in parentheses, which signifies the content of water
present in other forms, must be known from other calculations and can
therefore be regarded as a given function of &a. More detall concern-
ing this will be found under Heading 2.9.

If now we wish to compute the throughput volume correctly, 1i.e.,
taking supercooling into account, we must determine the specific vol-
lume of the wet steam. For thermodynamic equilibrium, this 1is

Yo " 1-7) "0 , (50)
since, after all, we can disregard the volume of the water at lower
pressures. If, however, the steam is undercooled, its specific volume

will be smaller, and according to Eq. 2.3(21)

...,[x.u (L- .:.)] (51)

T.

The quantity (l/Ts - cp/L) is plotted versus pressure in Diagram I.

The graphical method described here can also be applied to a seg-
ment of the turbine section through which the fog flows, say to the
last stage. In this case, everything in the calculation remains the
same except that the initial undercooling value from which we deter-
mine AT( F,a) graphically will be different. This is best chosen by
trial and error in such a way as best to correspond to the periodic
undercooling curve.
2.7. MOTION OF THE WATER ON THE BLADES AND CASING WALLS

On the basis of the considerations set forth under the previous
headings, water can find its way onto the walls in considerable quan-
tities in elther of two ways: by condensation of the steam flowing

through and by impingement of droplets. The former route predominates
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before the point at which fogging intervenes and the latter afterward.
As regards the impinging droplets, we must distinguish between fog
droplets, which do not rebound, since they are very imall and, more-
over, impinge at an extremely acute angle, and large drops, which can
be seen approximately as being torn off the tralling edges of the pre-
ceding bucket ring and striking the bucket wall at almost right angles.
We should expect some of these drops to rebound, and even to take part
of the water film on the wall with them, so that only a small fraction
remains clinging to it.

Forces exerted on the water on a wall tend to set 1t in motion.
Friction with the steam and the presswe gradient tend to drive it in
the direction of the flow near the wall. The motion of the water is
retarded by 1its viscosity. The surface forces, supported by the inevi-
table nonuniformities of the wall (grooves, etc.), tend to split the
cohering film of water up into individual currents that seek their own
routes through the salt crust or even in the metal and erode them away
continuously. On the runner buckets, the centrifugal force also comes
into play and, as can easily be shown, makes itself the dominant fac-
tor. If detachment regions arise on stator blades the water will
come to rest there and have time to collect into large drops, which
will then — provided that they are large enough — spray off and be at;//
omized by the flow. The tralling edge of a stator blade which is
generally from 0.5 to more than 2 mm wide, represents such a detach-
ment region in all cases.

Let us next investigate the conditions in a very thin water film
in laminar flow. The reasoning will also apply with sufficient accuracy
to individual current filaments, slnce their extent in width is gen-
erally far greater than their thickness. In such cases, one-dimensional

flow conditions prevall extensively; that is to say, the velocity com-
- 144 o
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ponent perpendicular to the wall 1s negligible by virtue of the small
film thickness and the transverse velocity because we assume — for
the time beilng arbitrarily - that the forces capable of initiating
such motion can be disregarded as small compared to the forces operat-
ing in the longitudinal direction. (On stationary walls, the governing
forces are the pressure gradlent and steam frictilon, while centrifugal
force predominates on runner-bucket walls.) Let us denote the flow
velocity by u(n, €) and the field strength acting on a unit volume of
the water in the layer by F (assuming it parallel to g) and set up the
coordinate system as shown in Fig. 1. Most terms of the Navier-Stokes
equation can be disregarded under the assumptions that we have made

(cf., for example, [16]), so that the flow equation will be

3
TR LR ) (1) g
G | it
If 6(¢) 1s the film thickness and me is the mass throughput in the | g8

film per unit of width, which 1s assumed to be given in advance, the

continuity equation assumes the form

s e
R (2)

° |

Here we have indicated that F and 1;11. need not be constants, but may

vary with €. We prescribe as boundary conditions that the velocity

vanishes at the wall,

wo,g) = 0 , (3) ;
and that the shear stress at the surface of the film has the value

___& .

1(€) due to the external flow and given in advance, 1.e., that

8

Pw [ T®) . (4)

Determining the 6 and u that satisfy Egqs. (1) to (4) presents no dif-
ficulty. For the film thickness 6(€), we obtain the equation




[%-ut,)»%]-m)’ - ql:_.;,' (5)

=
§ = and, for the velocity profile, a parabola

Forces and ve-
locities in a

Figo 2.7.1. u(q.‘)-..}%.%ﬁ,[&,,rx. 8(‘)]-"‘ (6)

water fiim, We obtaln the average veloclty in the film from
i s@) [ T ]
f‘.":=’.1| a@) s Q'—“ﬂ - —"-('n- ['5 . 8K) + 3l (7)

let us now apply these equations to the water flow

on turbine blades and casing walls.

u
Blades
No centrifugal force arises in the case of
s;%érz'fzif' on stator blades. The layer 1s driven forward by the

a stator blade
(shown only in

n
gg t)" for clar- transferred by the impinging fog droplets and by

steam friction Tq by the momentum current <

the pressure gradient dp/dé. Let us lay the €-axis
in the direction of the current, cf. Flg. 2. We have

: (8)

q bas been substituted from Eq. 2.4(2) (there dencted by 1) and

MURRFURE NUTESE P PEN"
where T

the "shear stress" T,, broduced by the fog droplets calculated as the

mass m_ avising per unit of time and surface area multiplied by its
velocity at impingement U. The fleld force originates from the pressure
drop, but can be disregarded, at least in first approximation, for

thin layers such as occur on the buckets:

.{ F(}) = -%uo . (9)
” We are interested primarily in the layer thickness. It 1s found from
| Eq. (5) as
| [ty oV
L G i L ) (stator blades). (10)
cl’i Qaeoon-ll
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We shall give a numerical example only later, when we will be able to
compare stator and rotor tuckets simultaneously.

On a runner blade, the centrifugal force predominates by far

(proof follows later), so we lay the coordinate system in such a way
that € points radially outward, cf. Fig. 3. The field force F is to be
set identical to the centrifugal force Z:

F =2~ const = pDu/2, (11)
where Dm 1s the diameter of the bucket midpoint circle. Since the steam
flows almost axially, there is no shear stress acting radially on the
layer, so that
T™® = o0 .
(12)

Equation (5) gives for the layer thickness

Sw ;’QVD- o

1/3
s Y
SR> - ( Bu YRR ) (runner buckets). (13)
Iet us now compare, as an example, the rimner
and stator buckets of the next-to-last stage of the

reaction turbine described under heading 2.1 (see

Table 2.1.1). We insert the following values: By =
- 5.5°10"% kg/msec, py = 10° ka/m>, pyo = 0.12 ke/m,

D,=1.90m ¢y = 188.3 m/sec; w = 314 sec™l, we cal-
Fig. 2.7.3. culate the layer thicknesses on the concave sides of
Water fg
on a runner both buckets just in front of the trailing edge
bucket
(shown only (where, by estimation, U = 360 m/sec, cp = 0.035) or
in part for
"the sakt; of Just before the point of the bucket, as appropriate.
clarity);
steam fric- The fog-droplet content in the flowing steam is as-
tion disre-~
garded. sumed to be y, = 8%, of which €n_p = 2% 1s deposited

on the buckets of a ring.

Since the total amount flowing through 1s M = 40 kg/sec, the mass
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throughput in all concave-side layers of a ring comes to f'lf = €n ¢ X
X ynl.d = 0.064 kg/sec. All trailing edges of the stator ring present to
the layers a total width z'l'g, ., [Sehfl = bucket] ~ 26 m and all
concave-gside profile contours of the runner ring offer a total width
of z".g"; = 7.3 m. Accordingly, m', = 0.064/26 = 2.5:10~3 kg/msec and
m", = 0.064/7.3 = 9-10~3 kg/msec. If we assume that the incident fog-
droplet flow i1s distributed uniformly over the entire concave side,
then ﬁxn becomes — with a total impingement area of A! Schfl,H =
= 2'8'l oy = 2.6 m° — m = 0.064/2.6 = 2.5-107° kg/m°sec. Thus the
layer thicknesses and water velocities near the trailing edges of the

stator buckets according to Eq. (10) and (7), respectively, become

-3
6. (l.l-l°'° -’-,ﬁ-;‘%—) «0,57.10%m, T = 0,44 m/sec (14)
and those on the runner buckets in the vicinity of the bucket tips,

according to Egs. (13) and (7), respectively,

1/3
9.107%

8" = (1,05~1o" W) =0,54103m, " x1,7m/sec. (15)

Now if the water layers do not cohere to fi1ll out the entire
width available to them, but contract to form current filaments that
cover a total of, for example, only 5% of the width, then x;lf increases
by a factor of twenty 1in either case and we obtailn

8= V20-0,57-10°% w 2,5:10% m,  d'w1,0 m/sec , (16)
6 = V30-0,54-10% %1,5:105m,  U" %12 m/sec . (17)
Thus we see that the thickness of the water layer or water streaks can-

not amount to more than a few hundredths of a millimeter.

We still owe a proof that the effect of steam friction can be dis-
regarded in the presence of a centrifugal force. This 1is the case when

the velocity imparted to a given layer by the centrifugal force far

exceeds the_...,velocity produced by friction alone. On the basis of Eq.

‘% - 148 -
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(7), this would require that Zé/3 >> /2. If, for example, we take & =
= 1.5-107° m, leaving other data the same as above, we obtain Z6/3 =

=~ 470 and 1/2 = 42 kg/m-sec2; thus the simplification was in fact jus-
tified. Only for very thin layers would two-dimensional treatment of
the problem become necessary.

An inference can be drawn as to the direction of flow on the rotor
buckets from the ratio of the centrifugal and friction forces. We ob-
tain a rough approximation by stating that the axlal component of the
flow velocity in the layer 1s as large as though no centrifugal force
were 1in operation and that the radial component is as it would be in
the absence of friction. From this we obtain the following estimate
for the angle ¢ indicating the deviation of the flow direction from

the radius:
09  26/3

Using the above data, we obtain for a layer of &6 = 1.0-10'5 m the angle
¢ = 7.5°; for a "thick" layer (or current streak) with 6 = 2-10™° m,

we get approximately ¢ = 3.8°. In the last runner-bucket rings, there-
fore, we should expect approximately radial flow. This result 1is in
fact in agreement with the erosion tracks (cf. (8]) observed in prac-
tice. It follows from this nearly radial flow that only a small part

of all the water caught by a runner bucket reaches the trailing edge.
Further, some of this water, acted upon by the centrifugal force fleld,
might find its way to the tip of the bucket between the minute nonuni-
formitlies on the trailing-edge spine, with the result that only a small
residue, which we may disregard with a clear consclence, sprays off

the trailing edge. In practice, thils result 1s confirmed by the ob-

servation of little or no erosion traces on the leading edges of stator

blades (which would, after all, be struck directly by such drops),
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while damage of thils type can always be detected on the runner buckets.
Casing walls

Conditions on the casing wall are simllar to those on the stator
| § buckets, with the following differences. Firstly, more water must, in
‘ general, flow through here per unit of width, so that ﬁf is larger.
¢ Secondly, the motive friction forces are smalier, since practically no
fog droplets strike the casing wall, for which reason T 1s dropped

| from Eq. (8), and also because the friction coefficient c, is smaller

F
] than on the buckets due to the larger boundary-layer thicknesses. The
secondary flows favor swelling of the water layer in the vicinity of
the blade suction sldes. Due to the greater layer thickmesses, the in-
fluence of the pressure gradient may not be disregarded. With Ty = 0
(i.e., T =174) and F = ~dp/d¢, assuming that £ points in the flow di-

rection of the layer, Eq. (5) becomes

1 dp % ¢:z % P .
[— z K . R)+ c!‘,cchlnu_‘_o]' (k)" = ;"" ¢, Gehiiuse * (19)

[GehHuse = casing] from which we may calculate the layer thickmess.

between two stator buckets. We may assume ¢ = 0.01 and, fur-

. F, GehHuse
ther, that Mf, Gehduse = 0.4 kg/sec of water flows civcumferentially
on the wall (this corresponds to 1% of the total mass throughput, and
is thus an exaggeratedly high assumption, as will be shown under head-
ing 2.9). The width available to this flow 1s of the same order as the
casing circumference, i.e., about 2.20 71 = 7 m. It would be better,
however, to assume that due to rivulet formation and collection of

water in the corner at the suction side, only part of chis width, let

us say only about 2 m, 1s used by the flow. Then m = 0.4/2 =

f, Gehfuse

= 0.2 kg/m-sec. We use the same values as previously for Hwr Py Pgo

2 and oe The pressure gradient can be estimated from Table 2.1.1. The
- 150 -
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average axlal pressure gradient in ring 5' is (dp/d&a)mittl =
= =Py ppq(~d 10 D/AE,) ipey = Ppygen Py = —O-14-107-4.1 = —0.6-10°
N/m3 [mittl = average]; the pressure gradient along the streamlines of
the water layer 1s, on the one hand, somewhat larger than this, since
the steam flow is sharply accelerated in the ring, and, on the other
hand, somewhat smaller because £ is not axial. For this reason, we as-
sume dp/d¢ = -1.10° N/ms. Then Eq. (19) reads

[o,as-m"" §+10,7)-43.1,1-107 (20)

from which

m
o Dt Gehtuse

e Soutune 2,2 m/sec. (21)

-4
SGentuse ™ %90 m, Tgog,,,

[Geh8use = casing]. Thus, while the layer thickness of the rivulets
flowing along the casing wall may be considerably larger than the layer
thicknesges on the buckets, it 1s nevertheless hardly greater than a
tenth of a millimeter: .

The water running around the casing wall 13 continuously being
driven into regions where the pressure i1s lower. It is conceivable
that the water layer might boll up in this process, in much the same
way as the water boils in a pressure cooker when the pressure in the
cooker is suddenly reduced. This danger of bolling 1s the greater the
more rapid the decline in the pressure to which a flowing water par-
ticle is subject. (High flow velocity, steep pressure gradient.) The
layer has two possibilitiles for reducing its temperature without boil-
ing. It can give up heat at its surface, in which case evaporation
arigses there, and it can yleld heat to the casing wall, since this is
frequently somewhat cooler. The thinner the layer is, the more effec-
tive will these two processes become.

Now it can be calculated that, with the layer thicknesses and ve-
locities somewhat as they appear in Eq. (21), the excess temperature
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that must arise in the interilor of the water layer for continuous co.l-
ing of the layer to take place by heat conduction in both direct’ons
amounts only to a few tenths of a degree Centigrade. Since the tempera-
ture of the steam-side surface of the water layer 1is about the same as
the local saturation temperature at all times as a result of suitably
vigorous vaporization, this implies that the interior of the layer is
overheated by a few tenths of a degree. Now, however, a liquid gen-
erally requires several degrees of excess temperature if 1t is to boll
internally. (In much the same way as steam requires about 30°C or more of
supercooling for spontaneous condensation.) Otherwise the most that
could happen is formation of steam bubbles on the wall side of the
layer. — In any event, 1t can be established that vigorous bumping of
the water layer, with the assoclated slinging of water back into the
steam flow in the form of more or less coarse drops 1s hardly to be
expected 1n turbines.
2.8. FORMATION, EFFECT AND FATE OF LARGE DROPS

Water that has somehow gotten onto the buckets and collected at
the tralling edges or in detachment regions 1is torn away from these
places from time to time by the steam current. These spraylng clumps
of water may initially be of the same order of size as raindrops (diam-
eters of 1 mm or even more); however, due to the high velocity of the
steam, they are instantly broken up into many fragments. These small
droplets are, however, still very large as compared to the fog drop-
lets that have formed 1n the steam. As will be calculated below, their
radil lie between 10™° and 10'“ m. We shall always refer to them as
the "large drops" and provide quantities referring to them with the
subscript g. If projections and the like are present on the casing
wall, the water flow moving by them may be sprayed off to form another
contribution to the formation of such large drops.
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The fact that the behavior of these "large drops" will differ
quite grossly from that of the fog droplets can be seen alone from the

fact that their radii are about a hundred times larger and thelr masses

R P e .

consequently about a million (!) times larger than the mass of the fog Wﬁ
droplets. It 1s these large drops that cause erosion. ‘

a) Atomization of Detached Drops

! First we must know the size of the drops formed on fragmentation

of a detached clump of water. This problem has been treated in detaill

by v. Freudenreich [4]). He conducted drop-fall experiments in which

large drops of water were blown apart by a vertical current of air.
Similar experiments had already been designed earlier for other objec-
tives, compare Lenard [38] and Hcclischwender [39].

As a dimensionless stability criterion for a drop, we obtain

U (1)

Kz s ! ’

which expresses the ratio of the deforming pressure forces (which are j,

proportional to %dei) to the cohesive surface-tension forces (the lat-
ter being prcportional to 2d/r). The value of this criterion for the

largest drope that are still stable, Kz x* can be determined by ex-

ma
periment. Lenard found szax = 6, Hochschwender got 9 to 16, and v.

Freudenreich about 20. (Concerning Lenard's experiments, we should

note that 1in this case, the drops were kept hovering in the air cur-
rent, so that much time was avallable for blowing the individual drops

apart.) For our calculations we shall use the value ' 3

Kz .. = 15, (2)
which gives the expression
- 15 ¢ g
r  —— (3 3
L g, max 3 qdug )
for the radius of the largest stlll stable drop. Drop-size criteria ~¢ﬁ

applying for other forms of 1liquid disintegration, e.g., for atomiza-
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tion, are not useful here, since they are extensively based on the 1in-
fluence of the internal turbulence in the Jjet of liquid — something
that does not exist at all in our case.

The upper limit of drop size 1is imposed by Eq. (3). There is no
corresponding fixed lower limit, and quite small droplets can also
form accidentally. On the basis of experlence, however, very small
droplets occur relatively seldom. Various authors have determined the
size distribution of the drops by means of drop counting. An elegant
theoretical derivation of the distribution curves can be found in

Troesch [40]). From statistical considerations, he obtains the formula

-3 '(ﬂ—t‘}ﬂ)
4
dn = ‘: .ri_p. . drj (4)
Qw ¢ P+ B-EI(-P) r

for the distribution of the drop count over the various radii, and for

the distribution of drop masses

.(prlr,'mlx)
¢m = .,, 0 er . (5)
Pl N f-Ei(-B) Ty, max

(dn 1s the number and dm the mass of the drops per kilogram of total

5 water quantity whose radii fall between rg and rg + drg).

The parameter P characterizes the type of atomization. Its magni-

tude is obtained by comparing the distribution curves obtalned through
Eq. (5) with curves determined experimentally. Troesch establishes the

order of magnitude B = 0.35 for atomizations. For free-fall experiments,
where, after all, a different mechanism provides for the disintegration,
the same value Af £ need not apply. Enumeration curves pertaining to
this can be found in Hochschwender; they are reproduc:J most closely
by selecting £ = 2, cf. Fig. 1.

Tiie important thing that these distribution curves tell us 1s that
the average drop size 18 only a little smaller than r
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other words, that the drop sizes have a narrow spectrum. For this
reason, we can conslistently treat all large drops on the basis of a
representative large-drop radius Fg, whose magnitude we select in such

a way as to provide the best possible approximation for all drops. If

we take ?g = O.8rg max’ then more than 80% of the total mass 1s present
]
- L6
In the droplets whose radii differ by no more than i25% from rgﬁ') Cn

the basis of Eq. (3) we then obtain

d

.qo.‘ug . (6)

?‘ =08 Tg, max

In the case of drops torn from the
dm §dn 1 Massen-
9 drg verteilung

trailing edge of a stator blade, the
governing flow velocity Ui to be in-

Tropfenzahl-

' serted here would be equal to the exit
verteilung

velocity from the blading (cl) if the

& steam were blown at full speed against
[ ]
E the initially still stationary drops.
fy s.mar Since, however, a lower steam velocity
Fig. 2.8.1. Distribution prevalils in the boundary layer and in
of drop number and mass
for blown-apart drops, as the wake, we estimate
calculated from Egs. z
and (5), respectively, | |~ 08¢ (7)
with g = 2. Circles indi-
cate experimental values for substitution, thus finally obtain-

from [39]. 1; Mass dis-

tribution; 2) drop-number ing the formula
distribution; 3) about 80%

of the mass.

or L . (“R‘l'.).. 8
f‘ Qa‘f . "?l— ( )

for the representative size of the large drops spraying off the stator-
bucket trailing edges, where we may set (90RTd) = const = 8.7‘10u
kg-m/sec for pressures below 10 bars.

With o = 0.067 N/m, we obtain, for example, with a steam density

Pl = 0.08 kg/m3 at the exit from the stator ring (which corresponds
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to a pressure of about 0.12 bar) and c; = 360 m/sec, a drop radius
Fpoe 110%m (9)

which means a drop diameter of about a tenth of a millimeter. Thus

these "large" drops are in fact enormous compared to the fog droplets.

b) Motion of Detached Drops

Given knowledge of the drop size, we can Jjudge of the motion of
the drops on the basis of heading 2.2, Let us denote by € the path

— i — — —

——————— i ——

Fig. 2.8.2. Illustrating motion of drops
torn from tralling edge of stator blade.

that has been covered by a drop since it was torn away (cf. Fig. 2)
and set its initlal velocity equal to zero:

c 0 =0 . (10)
The motion of the drop can be calculated on the basis of Newton's law,
inserting the steam friction W from Eq. 2.2(1) as the accelerating
force. Such a solution of the equation of motion has been carried out,
for example, in [4].

Now, however, the major part of the detached drops strikes the
next row of runner buckets, as will soon be shown, so that it 1s suf-
ficient for our purposes to know their motion on a sh.rt initial path
(6 <5 cm). A simple estimate of their motion can be made if we assume
that the force of friction working on a drop does not diminish notice-

abiy on this initial path. This assumption is Justified as long as the
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relative velocity has not become essentially smaller than it was at
the beginning. Then ér’ the acceleration of the drop, will also remain

constant:

e m &), (11)

and, according to an elementary formula of mechanics, the drop velocity

after the path has been traversed will be

) - Beom- vy . (12)

The calculation of ér(o) can be made with the aid of the deceleration

time defined by Eq. 2.2(33), which represents a measure of the friction

force. It follows from Eq. 2.2(36) on substitution of r = Fg in that

equation and use of Ur = 0‘8°1 in the Reynolds number. With introduc-

tion of the deceleration time, Eq. (12) assumes the form

) = vz o0 5 - (13)
Ot rems®

[brems = deceleration]. Since the drops start from a state of rest,
Ur(O) = —c. We shall again assume the steam velocity ¢ to be constant
and set ¢ = 0.8c1, since, after all, it appears that the majority of
these drops will remain in the downstream depression. Below we shall
not concern ourselves any further with the negative sign of Ur’ but
use that quantity to imply the absolute magnitude of the relative ve-
locity between steam and drops. After transposition, Eq. (13) gives

@) [ 208 _o.v 3

°g € Stprema® [ U, Bty

Thus tae curve of drop velocity is a function of the parameter

(14)

(%UrAtbrems)' Some curves oIl this type are shown in Fig. 3.

The inertia parameter is calculated on the basis of Eq. 2.2(36):

e v (0) (0,14 g VRT
s et e S
Org/1¢,) VRe,0) ( Ve )

r

V2
B (s
"

1
(i v, Mbreml)!.-o

The material quantity in parentheses variles only slightly with pres-
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Fig. 2.8.3. Approximate curve of absolute velocity c. of a detached

drop, calculated from Eq. (14). A) Steam velocity outside the down-
stream depression; B) in the downstream depression; C) used in calcu-
lations; D) values of (%UrAtbrems)§=0 in meters.

sure; for low-pressure turbines, we can set the value for this quantity
at 1.6'107, provided that we insert Fg, ¢, and p; in m, m/sec and N/m2,
respectively. As an e: ample, let us calculate the values of the inertia

parameter for various droplet slzes for ¢, = 360 m/sec and Py = 0.15

bar:
TABLE 2.8.1
r m 100 2.100% s.100% 1074
(-;- v, Atmﬁm)g < ™ 008 032 0,88 2,5

A) brems = deceleration.

These parameter values can easlly be extended to other values of pres-
sure and steam velocity by the use of Eq. (15).

A further correction would be necessary due to the deviaiion of
the drops from the spherical shape. For distorted drops, the resistance
coefficients are greater than for perfectly round ones, so that their
deceleratior *1imes become shorter. From Lenard's experiments, we may
conclude that the distortion is not perceptible for drops smaller than

0.3 r At 0.8 Te,max’ which we shall use as the characteristic

g,max’
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drop slze ?g, we find the resistance coefficient to be larger by a fac-

tor of about 1.9 than the value that would correspond to a spherical
shape. This sharp 1increase in the rasistance applies, of course, only
for a short instant; with diminishling relative veloclity, the drop
agaln assumes the spherical shape. Since the drops therefore experience
an increased acceleration for a time as a result of their distortion,
the error that we have introduced into our calculation through the as-
sumption of Eq. (11) is partly compensated. Thus we can readily dis-
pense with the curves of Fig. 3, which we only intended to use for
rough estimates anyway.

The typical tndicated values p = 0.15 bar, c¢; = 360 m/sec, T_ =

g

= 7-107 m give (3U At ~ 1.5 m (by interpolation in Table 1).

brems)ﬁ =0
A glance at Fig. 3 shows that .hese drops are accelerated only slug-
gishly. For example, after a flight path € = 3 cm has been traversed,

their velocity c, 1s only about 10% of c,, i.e., 0.10°360 = 36 m/sec!

r
The result of this is that the forcibly detached drops strike the

next runner buckets from quite the wrong direction and with a high
relative velocity (see the velocity triangles in Fig. 2). This fact
was long ago recognized as the principal cause of erosion. However, 1t
was always assumed here that the entire wetness content of the steam
forms large destructive drops of this type.

Since, on the contrary, it develops quite decisively in the pres-
ent study (cf. under heading 2.9) that only a minor part of the total
wetness 18 1nvolved 1in this phencmer.cn — a statement that appears by

no means impossible even in the light - practical observations - we

present briefly below certain considerations regarding the destructive-

ness of large water drops.

¢) Concerning the Eroding Effect of Detached Drops

Very little can be sald concerning the erosion of turbine buckets,
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etc. on the basis of theory. It 1s probably the result of a complicated
collaboration between mechanical-metallurgical-chemical and perhaps
even electrical effects. In studying i1t, we have recourse only to ex-
periment. However, 1t 1is difficult to simulate conditions in a wet-
steam turbine by means of a simple experimental setup. Frequently it
1s necessary to work exclusively with large drops or even with a stream
of water. Nevertheless, such experiments permit only a qualitative in-
sight into the processes and perhaps comparisons between different ma-
terials (even this is quite questionable in the water-Jjet experiment).
We shall now carry through two short calculations by way of 1l1-
lustrating the impact of a drop. First, let us evaluate the local pres-
sure that arises when a drop strikes the bucket. Wlth respect to the
rotor, the kinetic energy of the drop on impact 1is %mrwi (see Fig. 2).
Let us assume that the drop strikes the bucket surface vertically and
that while it 1s being brought to a stop 1ts center of gravity moves
forward by one radius. Then we can compute the force necessary for de-
celeration: %mrwi/r, and this force, divided by the frontal area of
the arop, gives a point of reference for the lnstantaneous local pres-

sure rise:

§° v; 2 2
Ap’rroptenschlq ~ ri L. 5." Y - (16)

r)r

[Tropfenschlag = drop impact]. This quantity 1s thus independent of
drop size and, for example, at W, = 250 m/sec is about 420 bars or,
expressed in technical units, 4.2 kg*/mme. Thus we see that the pres-
sure arising is rather small from the standpoint of strength.

The second question that we would 1like to clear up i1s as follows:
how often, on the average, does a point of the target region of the

bucket experlence such impacts? Suppose that the width of the eroded

band (see Fig. 2) 1s b, = 4 mm = 4-10"3 m. Let the total wetness con-
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tent be y = 10%, of which only 1/20 goes into the impinging large
drops. With a total throughput of M = 40 kg/sec, a mass of ﬁg = 40 x
X 0,10/20 = 0.20 kg/sec will then strike all buckets, or, with a drop
radius of ?é = 7-107° m, 3ﬁg/uwpﬁFg - 1.4.108 drops/sec. If now all
bucket leading edges of the ring :n question present the total length

nyn _ fan _
z"1 1= 40 m, the entire impacted bucket area will be z"l Senf1Pe =

Schf

= 0.16 m2. If we were to cover this surface with close-packed spheres
TERL =2 _

of the same size as a water drop, we would need z"1 SOhflbe/1rrg =

-8 = 1.1-107 balls. The ratio of the number of drops strik-

= 0.16/15-10
ing each second to this number indicates how often a drop strikes one
and the sgame point on the surface. We find that 1.4-108/1.1-107 = 13
drop impacts occur in each second on each point of the impacted flat
strip. During a 5000-hour turbine operating life, therefore, each

point on the entry zone of the rotor buckets receives about 5000.3600 X

X 13 = 2.3-108

small impacts.

While the loads imposed by the impacts remain far below the yleld
point, they affect only a region about the size of a crystal granule.
The questioh arises as to whether such loading of the surface, so often
repeated, might not be capable of breaking down the crystalline struc-
ture of the metal. However, further pursuit of this question is not
the purpose of the present study.

On the basis of the o0ld conception in which all of the water pres-
ent in the turbine flies around in the form of large drops, it might
appear incredible to us at first that in actuality only a small frac-
tion of the water 1s responsible for the erosion. Where, however, is
the difference between the two conceptions? If we were to return to

the old system, only the frequency of the impacts would rise (by a fac-
tor of twenty in the above example; we should have 4.6~109 impacts in

5000 hours instead of 2.3-108); their intensity would, however, remain
- 161 -




the same. Thus it would be Jjust as difficult to explain the erosion
damage, since, after all, the main problem lies not in the number of
impacts necessafy, but the mﬁnner in which they have theilr effect.
d) Ricocheting Drops

For lack of observations with a bearing on the matter, we can
Judge only with uncertainty what the fate of the detached drops will
be after thel., first collision with a bucket. Part of the water that
they contain probably bounces off the blade surface lmmedlately, while
another part remains clinging to it. The general view is that clinging
1s favored by the roughening of the leading edges. Under the influence
of centrifugal force, this water then begins to move racdially outward
along the buckets, but probably with part of 1t spraying off the rough
spots and reentering the steam flow. (Spraying back might be inhibited
by grooves milled radially in the buckets.) The average size of the
returning drops — whether they return by rebounding or are sprayed off
later — 1is obviously somewhat smaller than that of the original im-
pinging drops.

The returned drops are caught by the steam flow and biown through
between the buckets. In reglons of sharp pressure drop, this may give
rise to a phenomenon that we shall refer to as "bursting" ( or
"flashing"), consisting in the water boiling in the interior of the
drop and exploding it into fragments. Wood made reference to this phe-
nomenon in turbines [41].

Since the water bolls by itself, 1t must have a certain excess
temperature (according to experiments made in this connection, of the
order of about 5°C). This overtemperature arises in turbines as a re-
sult of the pressure in the vicinity of the drop falling off suddenly,
s0 that the saturation temperature also declines. The outer surface of

the drop can adapt very quickly to the new saturation temperature by
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evaporation; the interior, on the other hand, can be cooled only by
heat conduction, so that an excess temperature arlises in the drop,
l.e., 1t becomes superheated. Since the highest temperature occurs in
the middle of the drop, we may write the condition for bursting in the
form
Toaue - T, = 5°C (17)

[Mitte = center]. Large drops are more susceptible to bursting than
small ones, since they have greater thermzl inertia. Below we shall
derive a formula for the slze of the largest drops still just capable
of surviving the pressure drop in the bucket ring, using as a basis
the criterion of Eq. (17).

The manner in which the saturation temperature drops within a
bucket ring (for example, a stator) is linearized as shown in Fig. 4.

If we use point P as the origii of time reckon-

1l
T;n“ p Wirklichke.! ing, we obtain the simple law
aT
\ T,0 = T, o(;—')a . (18)
@"“ s for the time variation of saturation temperature
& for a drop moving at constant speed; here, apply-
ing Eq. 2.1(2),
]
a
?_.’. -&(ﬂ ﬁ! = -(2..)0” e
Fig. 2.8.4. Curve o dip \ @}, | & dinp v ne (29)
§§m§2§:€3;i°?n e Here Cr a is the axial component of the drop's
2

bucket ring. 1)
Actuality. velocity.

The influence of the capillary effect can
be disregarded for the drop sizes coming under consideration here
(about 107 m; cf. Table 2.3.1), so that T,, the surface temperature
of the drop, is about the same as the current saturation temperature:

T, = T (t). (20)
-~ 163 -
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The temperature curve for the interior of a sphere whose surface
temperature varies linearly in time can be determined by solution of
the heat-conduction equation concerned (cf. [42], page 235). Here 1t
is assumed that the drop has the temperature TSO throughout its in-
terior at time zero (point P in Fig. 4), which 1is probably a very good

approximation for both the detached and the rebounded drops. We obtain

as a solution

®
2 Kk
4T\ Qy Sy ¥ 12 ) e ]
Taitte " Ta ° (?)’;_.! T[”?’ kz.,‘—.T vtk (21)

Here Eq. (20) has also been taken into account. The abbreviation
"konst" [const] in the exponent represents (ﬂexw/rzpwcw) and r 1s the

drop radius.

The greatest rise in temperature occurs — provided the drop has
not already burst — at point @, for which t = A&'a/ecr g4+ Thus, insert-
b

ing this vaiue for t and applying Eq.

1 ——

E;l x\{zjﬁ (19), we obtain from Eq. (21)
[ L3,
(Ty =Tl ) Sl
. N Mitte 8’'Q
l & .

L il ] _ (“) s { e [. Byt .-ﬁ*o,,”.

dinp B '3 k=1 K3
Fi%. 2.8.5. The function
gp(Gg).

(22) #
where the quantity 1
A, \ a4 1
% * (chv) a"r,l ;’ (23)

appears as the thermal-inertia parameter for bursting. (For a rotor,
we would replace Ae'a by Ae"a.) The first factor 1s a material quantity
(thermal diffusivity) and has the approximately constant value of 1.6 X

x 10~ ma/sec for water. The expression in curly brackets in Eq. (22)
is a function of GB alone and 1s denoted by gB(GB). Its value can be
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read from Fig. 5. For the quantity (de/d ln p) we may use about 20°¢
for low pressures.
Now we can connect Eq. (22) vith the bursting criterion, Eq. (17).
We find that those drops for which
(Typiee = Tolg = 20° P, 88 65(Gp) < 8° ,
remain insured against bursting, l.e., that
P, A gh(Gp) < 0,25 (24)

From this criterion; we can calculate the radius s max of the
?

largest nonbursting drops. We determine 8p from
0,25

¢ * F.AI,; (25)

and then read GB from Fig. 5. (If we find that €g > 1, then no drops
at all burst in the ring, since the pressure drop is not sufficient to

trigger boiling.) With this GB’ s max then follows from
3’
- o\ e ) A% (26)
By Qw w ’cr,t Gp

As an example, let us calculate r in rotor 5" of the high-

B,max
pressure turbine laid out under heading,2.1. Here we have Aﬁ"a = 0.64 —
-~ 0.56 = 0.08 m, 'Pa = 4.3-m'1, so that we get g = 0.25/4.3:0.08 = 0.73
and, from Fig. 5, Gy = 0.18. The axial velocity Cr . a of the drops (and
here we imply an average value at which they move between points P and
Q in Fig. 4) must next be estimated; Fig. 3 gives us a point of depar-
ture for this: about 5 cm past the point of detachment, the drops in

question have about reached the velocity c, = (0.3 to 0.5)-c1, i.e.,

roughly spesaking, ¢ = (0.3 to 0.5)-031. If we take c, , = 80 m/sec,
?

then

«\1,6-120°7. dafm & ~2110%m . (27)

r ——
B, max 280 0,18

The upper limit imposed on the drop size by bursting 1s thus somewhat
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g, max resulting from mechanical di-
vision; compare Eqs. (6) and (9).

In conclusion, let us summarize the impression thus formed of the
fate of the large drops. The drops torn away from the trailing edge of
the stator buckets (see a in Fig. 6), which,
in general, show sizes of Fg = (2 to 10) X
X 10~ m — cf. Eq. (6) —, strike the bucketé
of the next rotor at b. Part of the mass flow

1

|

|

|

! smaller in this example than the r
I

|

{

|

|

{

I that they represent remains clinging here and,
1

under the influence of centrifugal fdrce,

Fig. 2.8.6. Illus- flows radially outward over the surface of
trating fate of

large drops in a the bucket. The rest gets back into the steam
bucket ring (drawn

for a rotor). 1) flow (either by ricocheting or by subsequently
Steam.

being slung off at rough spots on the surface).
b - The smaller of these drops afe gradually accelerated by the steam cur-
l rent and leave out the back of the ring with their size unchanged (c).
On the other hand, those that are accidentally somewhat larger (4)
cannot survive the sudden pressure drop in the ring and burst (e).

Only a superficial estimate can be made for the size of the rebounded

. large drops (subscript gg) coming out the back of a bucket ring: they
are probably smaller than before thelr original impingement and at any

rate smaller than the r for the ring in question. We can submit

B,max
the rough estimate

Few r—'-;‘é‘-s-:l (29)

for thelr average size. In practical cases, we find approximately

r = 1-10'5 m, which 1s therefore still much larger than the size of

only very poorly.
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2.9. THE FORMS THE MOISTURE APPEARS IN, ITS DISTRIBUTION AND
DEVIATION OF THE STEAM STATE FROM THERMODYNAMIC EQUILIBRIUM

Under headings 2.4 to 2.8, we have made a detailed investigation
of the processes that figure in connection with turbine wetness. On
the basis of the formulas thus obtalned, we can now bulld up a general
calculation process by means of which we can investigate the over-all
pattern of the physical processes in a wet-gsteam turbine.

We shall pursue two goals: first, we should like to calculate how
much water actually 1s present and how it is distributed among the
various drop sizes; secondly, we should like to know how sharply the
state of the steam deviates from thermodynamic equilibrium, 1i.e., how
great the supercooling is. On the basls of the results, we shall be 1in
a position to draw inferences as to the possible effectiveness of de-
watering and — in the third part of the study — as to the extent of

molsture losses. First let us sketch out the path by which we come to
| the results and then discuss the results with reference to the two
turbines described under heading 2.1.

a) Calculation Procedure

It has been shown that the water assumes various phenomenal forms
in turbines (such as, for example, fog droplets, various large drops,
flowing water, etc.), and that its behavior varies in accordance with
these forms. For thls reason, we subdivide the entire throughput quan-
tity M of the turbine into part throughputs:

Moo M, e M oo N Hol ¢l‘¢)l . (1)

The subscripts have the tollow’' g significance:

d - steam

n - fog droplets

b - water streaming over the blades
g - large drops, Just torn away
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gg - large drops, rebounded

h - water centrifuged out

nn - fog droplets from a secondary fogging.
The behavior of the individual forms can be characterized briefly as
follows on the basis of earlier results (cf. Fig. 1): "n" follows, on
the whole, the flow of the steam; "f" flows to the trailing edge on
stator buckets and is there torn away in the form of "g;" on rotor
buckets, "f" flows almost radially outward
and contributes to "h;" after its forcible
detachment, "g" covers a short flight path
and impinges upon the next row of rotor

buckets; "gg" bounces back and forth be-

tween the buckets; "h'" can either be with-

drawn from the flow by trap devices or -

Fig. 2.9.1. The forms

of appearance of the move in the vicinity of the casing wall
water. 1) n and pos-
sibly nn. (partly as large drops and partly as water

flowing on the wall); "nn" will be formed only in special cases (namely,
when a coarse-drop "n" is accidentally formed in the first fogging in

a turbine 1in which very rapid pressure drops occur) and generally con-
sists of droplets much finer than those of "n." For the arguments to
follow, we shall assume that no second fogging arises (Mn.n = 0) and
also that no steam is withdrawn from the flow. We shall return later

to the allowance to be made for "nn."

During the flow through the turbine, there 1s constant transition
from one phenomenal form to another. Of the many conceivable conver-
sions, however, only a few are of Ilmportance, since most of them do
not - cur at all or do so only to extremezly minor degrees. Figure 2

indicates the more important transitions by means of arrows and re-

quires the following explanation:
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n-—=g
n - gg
f—g
f=-h

g —8gg
g—Tf

gg = g8
gg =t

[ 2]

‘by condensation on the blades; this occurs only in
those rings in which the supercooling 1s not compensated
by boundary-layer heating (i.e., where AT > about 20°C),
and 1is hardly perceptiblé even then;

by fog-droplet formation and subsequent condensation on
these droplets;

by slinging of fog droplets agalnst the leading edges
and concave sides of the buckets;

as a result of fog droplets being swallowed up by large
drops;

by tearing away from the trailing edge (1in stator rings);
by spraying off the bucket tips or shroud (in rotor
rings);

by ricocheting after impingement on blades;

by clinging after impingement on blades;

as with g —gg;

as with g = f.

1 Leitrad: 2 Laufrad:
oot e 0 att —oh
—>n—>
\\ LY
e NG
9 99 $—99

— = wichtig 3
-—— -:mi(nnigu
..... » = Vorkendensation 5

Fig. 2.9.2. Transitions of mass from
one phenomenal form into another, 1)
Stator; 2) rotor; 3) important; 4) less
importart; 5) precondensation.

The rates of these transitions can be expressed quite clearly by

means of "mass exchange coefficlents" e. These indicate what part uf a

certain mass-flow subdivision entering a ring has gone over into some
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other form by the time 1t comes out of the ring. Below we present a
few guidelines:

€gur : cef. Eq. 2.4(10);
€3-n H not introduced, since fogging and growth of the fog
drops are calculated directly from headings 2.5 and i

2,6b; ]
: €naf : cf. Eq. 2.6(18);
" €neg : cf. Eq. 2.6(20);
j Enegg : cf. Eq. 2.6(21);
B Ep = 1 (only for stator rings!)
, -€ cf. under heading 2.7;
i €p_h = 1 (only for rotor rings!)
l €t H lie between zero and unity (smaller for smooth bucket
l~ g- surfaces and larger for roughened ones), so that we are

egg_f $ forced to fall back on arbitrary assumptions;
f
( = = acti 1l 1
i eg-gg 1l Sg-f since practically no large drops get
' egg-gg = 1~ egg_f through a ring without striking it.

Not all of the phenomenal forms arise simultaneously in the tur-

bine. For example, large drops appear only after water has first been

torn away from the stator- blade tralling edges; for this purpose,

however, this water must have gotten onto the blades somehow, and so
‘ forth. It happens that certain transitions are still lacking primarily

in the first stages of the wet-steam sectlon of a turblne, so that the
calculation 1s simplified for such stages.

Below we shall illustrate the calculation procedure for a multi-

stage wet-steam turbine. The calculation advances from blade ring to
i blade 1ring. It begins with that ring in which the saturation line is

passed. It 1s assumed that the design data of the turbine — in the

sense of heading 2.1 — are known and that all necessary material quan-

tities are also known (see Diagrams). The subscripts O, 1 and 2 refer
to the intermediate spaces in and behind a stage, and ' and " refer to
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quantities that apply for (or within) the rings. (If quantities that
change in a ring are provided with the ' or the ", this indicates
their arithmetic mean values in the ring; thus, for example, p!' =

= (po + pl)/2’ 1" = (Il + -12)/2: etc.)

The blade rings before the Wilson point

The first task is to determine the position of the Wilson point
in the turbine. The method of solutlon was described under heading
2.5e. The Wilson point occurs elther inside a blade ring or in an
axial intermediate space. Below we devote more detalled discussion to
the ring in which or immediately behind which 1t lies.

In cases where extremely steep gradients occur in a ring (im-
pulse-type turbine), it is conceivable that the Wilson point is
reached in the same ring in which the saturation line 1s exceeded;
compare, for example, Fig. 8. If this is not the case, we have one or
more rings in which undercooled steam is flowing. (In Fig. 4, for ex-
ample, the saturation line 1s crossed in ring 1!, the steam is in-
creasingly undercooled in 1" and 2', until finally the Wilson point is
reached in ring 2".) In the rings through which undercooled steam is
flowing, precondensation may occur on the blades under certain cir-
cumstances; in steam turbines, however, this is so slight that it
may be disregarded altogether. We may thus assume that no water at all
1s present in front of the ring with the Wilson point, i.e., that y
remains = O. The theoretical wetness Y, increases 1n parallel with the
supercooling; 1t 1s equal to the moisture deficlency Ay, which can be
determined from Eq. 2.3(19).

Moisture losses have not yet occurred in these rings, since super-
cooling produces a loss only when it is coupled with condensation, 1. e.,
with exchange of heat.
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The blade ring with the Wilson point

The ring in which (or in the intermediate space behind which)
fogging takes place merits more detalled discussion.

point has already been determined, we know the corresponding values of
the pressure, the rapidity of expansion and the supercooling (p*, i’*,
AT*). From this, we might determine the exact state of the steam at
the end of the condensation zone on the basis of heading 2.5d. In gen-
eral, however, we shall satisfy ourselves with a cursory determination
of ?g* and yg*, the more so since even p¥*, f* and AT* carry uncertain-
ties. We then proceed as follows: on the basis of p* we declde approx-
imacely at which point of the bucket complement the condensation sets
in (ef. Fig. 2.5.13e), so that we shall be able to estimate the Mach
number M. [vor = before]. (In the majority of cases, M,,, W1ll be
considerably smaller than unity.) With M :

vor’
read'?;*, the average fog-droplet radius at the end of the condensation

p* and P*¥, we can then

zone, from Fig. 2.5.14. Roughly speaking, there is as much water pres-
ent in the fog droplets as there was lacking with reference to thermo-

dynamic equilibrium at the Wilson point, so that we have
AT ERE (2)

where Ay* has been denoted by AT* in accordance with Eq. 2.3(19). In
case we are dealing with the first fogging event in the turbine, y* =
= 0 due to the negligible extent of the precondensation. ‘"he composi-
tion of the fog 18 sufficlently described by ?;* and y;*. These data
form the point of departure for determination of the subsequent state

changes in the turbine.

The course of the supercooling 1n the stages through which the

fog flows 1s determined by the graphical method set fcrth under head-
ing 2.6b. The locus 6;* at which fogging can be regarded as concluded
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and AT**, the supercooling value at this point, should be known exactly

as a point of departure for this construction. In turbines, however,
there 1is frequently no sharp boundary to be discerned between the
"formation" of the fog droplets and the subsequent condensation on
them, since supercooling does not collapse suddenly at all under cer-
tain circumstances. (In particular, this occurs when the Wilson point
lies at a small ﬁ, i.e., when coarse fog drops form. In such a case,
the supercooling falls off only much slower than it would i1f the fog
droplets were fine, cf., for example, the dashed-curve segments in
Fig. 5 or 6.) Happlly, exact knowledge of E4* and AT** 1s not abso-
lutely necessary for our purposes, since the error incurred by start-
ing construction of the supercooling curve from an arbitrarily selected
point has vanished practically completely as soon as the next follow-
ing stage 1s reached. For example, the dashed-line segments in Figs. 5
and 9 show the undercooling approximately as it variles in reality be-
hind the Wilson point for these cases. The unbroken curve, on the
other hand, was determined with an arbitrarily selected initial point,
using the graphical method. It i1s seen that the deviations are re-
stricted to about one-and-a-half ring widths. Otherwise, even a large
error in AT has no serious consequences: we shall still be able to
calculate the undercooling loss correctly (heading 3.4), and AT has
only a minor influence on the local fog-droplet size (assuming a super-
cooling approximately 5°C too small results in calculation of a fog-
droplet radius large by about 6%).

Thus we shall dispense with exact determination of the state
curve 1n the condensation zone and perform the calculation as though
fogging in the same ring (or in the same axial intermedlate space) in
which 1t has begun were excluded, regardless of whether this is the

case 1in reality. At the exit from this ringw) we assume an estimated
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value ATl for the supercooling as the point of departure for graphical
determination of the supercooling curve (between O and 1°C if the fog
droplets are fine and larger if they are large). In the tables, these |
assumed supercooling values have been keyed by underscoring and are
readily identified in Figs. 4 to 6 and 8 to 10 as the initial points

of the solid AT 1line.

If ATl has been determined in this manner, the other still lacking
quantities can be calculated for the ring exit. The moisture deficilency
Ay, 1is determined from Eq. 2.3(19), and then the total precipitated
unit amount of water VA follows from

Yy * Yo - 8, - (3)
Since no large drops have been produced up to this point — apart from
precondensation — we have ygl =Yy

g
Ynl = yl' (L")

gl = Yn1 = 0 and, consequently,

The number of fog droplets has as yet suffered practically no reduction
in the ring, 1i.e., Enl = 1, and the size of the fog droplets at the
exit from the ring 1s obtained from

m = T (;%)‘/‘ . (5)

Calculation of an arbitrarily selected wet-steam stage

Suppose that y ., Yggo’ Yno E o» ATy and 'fno have become known

from the calculation of the preceding ring (yg

all, the preceding ring is a rotor ring from which practically no drops

0 is zero, since, after

are torn), and suppose that assumptions have already been arrived at

. We proceed with calculation of the

for e -2g’ and €

g-f* fgg-r’ g 28-88

processes 1in the

Stator_
and determine as the first order of business the quantity of fog de-
posited on the buckets. According to Eq. ".6(15),
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i * TramE °.o‘;.’.o , (6)
and, according to Eq. 2.6(3),
Ory/2e0)"  _Ru
142,89k o fd (7)
where
, “u “'5"4@'
S el

Figure 2.6.2 gives us g'H and g'N, and these, in twn, give the frac-
tion of the fog drops captured:

Sk W"“' Genn

In addition to the fog droplets, some of the impinging large drops can

¢ PR B (9)

also remain stuck to the buckets, so that the water content y'f repre-
sented by the water film on the stator buckets can be determined from
the formula
%= EatTno* Logt Yoo (10)
We shall set the number of forcibly detached drops at the exit
from the stator, y

g
the torn-off drops continue to grow by swallowing up fog droplets dur-

1? equal to y! £ increased by the amount by which
ing their time of acceleration. This aggrandizement will be described

— 3 .O,QSM.b“m. c_ '“0,38 ]
"u-l 4" l“ e v: 7 T(v:),ﬁ' ! (11)

[brems = deceleration] where we use Eq. 2.2(36), Eq. 2.8(8) for the

by Eq. 2.6(20):

silze of the torn-off drops, 1i.e.,

('CRT‘),

F
. 41 ‘f

and set vy, = v;. (For low-pressure turbines, we obtain for Eq. (11)

(12)

e'n-g = 12,5 y'f,(/cl, where ¢, 1s to be inserted in m/sec.) Thus
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In a perfectly similar manner, we also increase the mass of water

rebounding from the stator buckets (¢! o) by aggrandizement

g2-88 88
with fog droplets. From Eq. 2.6(21), we have
3 0,354
:‘-“ ~ r ;brcmll g . (C' “o)
' [ 4 o
or, with the assumption r rg/2 which s sufficiently accurate for

these purposes, and transposing in the same way as with Eq. (11):

ozs(” W

Ga™ T Ll ’"”'F Voo/1 gy v (14)

Thus we obtain for the mass of the large drops that have rebounded
from the stator, as taken at the exit from the stator,
Test " Eog-ss Vg0 * Enegg 0 (15)
No water is centrifuged out in the stator, so that
i Yn1 = o (16)
remains 1in force.

%_

1
aTy, um b(i2)
nach rechts
h verschebon

r———————

Fig. 2.9.3. Cosine approxima-
tion for ATh in a bucket ring.

1) AT, displsced to the right
by b(E,).
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The loss in number of fog droplets per kilogram of flow medium 1is
described, in accordance with Eq. 2.6(24) — compare also Eqs. 2.6(22)
and (23) - by

Boy = (-6 - ta-g” Ga-gf " Eno (17)

We must take the following course to determine the total mass of the
fog droplets. The rog-droplet content Yn1 is obviously that part of
tiie total actual condensed water content ¥io left after subtraction of
ygl, yggl ané Ypa Since yi 1s smaller by the molsture deficlency Ayl
tiaen the Y known from the specification and Ayl can only be calcu-
lated from the undercooling, we must first determine the undercooling
curve in the stator ring. The graphical method developed under heading
2.6b will serve for this purpose; 1t requires drawing the function ATh
and displacirg it by the local sum b, compare Eqs. 2.6(43) and (46).
Here we can permit ourselves the simplification of setting all quanti-
vles constant except for P in Eq. 2.6(43) (for example, X, =1~ Y0
T =T, etc.) and assuming a cosine approximation for b, as indicated
in Filg. 3, so that the ATh curve also becomes cosine-shaped and (after

determination of the value of AT from bmax) can easily be plotted.

h,max
Again in Eq. 2.6(46) 1t is sufficlent to regard only c, 25 a variable,
for which cf. Figs. 2.1.7 and 8. For the quantities (y;*En/ym) appear-

ing in these equations, we make the estimate

yee £\ yo* B
(n,mn]’-'ya-(;a::l?;) (18)
in the sense of Eq. 2.6(49). From the AT, curve and 1ts sister curve,
which 1s displaced by b, we use stepwise construction, departing from
AT, (see Figs. 2.6.5 and 7), to determine the shape of thz undercooling
AT within the ring. For the control plane behind the ring we finally
obtain a value AT, from which we may use Eg. 2.3(19) to get the mois-
ture deficlency
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and from this, by the expreasion
1°Y%1° 6’1

droplet content
"0 - ("1 * Vet

together with the average

Rotor
next in order. Apart from centrifugation

are basically the same as those 1in the s

procedure remains 1identical. We shall re

We have

A’l L ? Q- ’ml) A'l'l

i)

."’7"'“
WA Ry
3 e

i

(19)

(20)

the moisture effectively present. Finally, we can calculate the fog-

) (21)

size of the fog droplets behind the stator:

1/3
Tm1 (22)
(2
Ta ‘nl
Thus we have obtained the en.: . set Yn1° ygl’ yggl, Yp1° Enl’ AT1 and
?nl and are in a position to take the

s the processes in the rotor
tator, so that the calculation

strict ourselves to a bare

enumeration ¢f the formulas and append explanations only where there

is a basic departure from ti.e calculations for the stator.

[Schfl = bucket]. Since (unlike ygo) Vg1

i =
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. . By
“ 13,5 Ka" ‘u‘:u ’ (23)
. _OSe) Ry
N 143,53 Kn" w B ' (24)
I a,5p, VRT )
Kn® « —0u o 74 "o
*, e, ' (25)
s* wmy
‘;. = “_. ¢ =2 _ g
{ Soq M S (26)
is not equal to zero, we get )

(27)

and since, due to the centrifugation, practically no drops are torn




e rr———

v
:

off from the rotor bucket trailing edges, the quantities E"n-g and i"ge
become meaningless and

Both freshly detached large drops and large drops that have already
been bouncing back and forth strike the rotor buckets, and part of

each class will rebound, so that

0,25
fha N (V“ad_) T g-geTa1 * €gg-gg Vet (29)

where (0.254/2) «/o/p; = 12.5 m%/sec2 for low-pressure turbines.
d

Thus the following water content is present behind the roter in

the form of large drops that have rebounded again:

-e.

’ s-u st

o3 * Cog-anTegt * En-ggVm1 - (30)

All water that has clung to the rotor buckets is centrifuged out,

so that
T " Tm*Y% - (31)
Further,

By -8 - Gogd B - (32)
which is followed by the graphical determination of A'I‘Q, gsetting, for
one thing,

| R b | : (33)

Yo Yot ~ U1 * Ygq1 * Tad)

Finally, we have yet to calculate
Ay,-ffu-ym)u, . (34)
a2 ',3‘0“3”.’) (36)
and
v W3
F o =7 Y S
82 a (’;. 'u) . (37)

Thus we have obtaired the quantities Yho! ygg2’ Ynoo En2’ ATQ,'rn2,
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which provide the initial data for calculation of the following stage.

Remarks

Equations (14) and (29) are based on a rough assumption for the

size of the rebounded large drops (namely, Fggl = rg
simplifies the calculation appreciably and gives an approximation suf-

g2 = ?81/2), which

ficlently good for these purposes, since, after all, the processes

represented by ¢! and e"n_g (swallowing up of fog droplets) is only

n-g
a subordinate factor as compared to the other mass transfers. Neverthe-

less, more‘exact knowledge of Fgg may be necessary — specifically, for

calculation of the moisture losses — arnd for this reason it also be-

comeg necessary to calculate ry the upper limit imposed on drop
»

max’
size by bursting. For a stator ring, we obtain from Eq. 2.8(26) with

c ~ 0.4 Cq1s

r,a
\ A, \ oag 1t
'S, max 'V(.' cy )z.o,u.1 °_i; - (38)
where G'; 1is determined with the aid of Fig. 2.8.5 from
0,35
€ = —— (39)
Y

(The procedure for rotor rings is the same, except that we may have
g"B > 1 with small percentage reactions, which shows that no bursting
at all takes place in the rotor.)

Now the only rebounded drops that willl emerge whole from a stator

ring are those smaller than r! ; larger ones burst, i.e., disin-

B,max
tegrate into smaller fragments. For the resultant average size of the
rebounded drops at the exit from the stator, therefore, we can take as

a rough approximation

rm-.'_"a;ﬂ_“ but 1n any event &« ¥, (40)
Behind the rotor, "gg" 1s composed in part of drops that belonged to
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ygl before the rotor and in part from drops that beionged to yggl (but

the first component willl generally predominate heavily). Incidentally,

it 1s not at all certain that r"B _— exists at all and is sufficiently
?

small. Again as a rough approximation, we set
Teg2 ~2’4’—“’-‘—'- but in any event ‘E‘l, (41)
2

The uncertainty of the Fgg-values calculated from Eqs. (40) and (41)
is, in 1itself, very large — perhaps a factor of 2 or 3 =; however, it
can be accepted without misgiving, since the values are used only to
estimate certain unimportant losses.

A second remark applles to the case in which repeated fogging oc-
curs ("nn"). This will most likely take place in - impulse-type
turbines, but only when a coarse-droplet fog nhas formed in the first
fogging. That 1s to say, in thils case the undercooling may increase to
such an extent in splte of the presence of fog droplets (usually in
the first stator ring following fogging) that prolific nueleation is
agalin triggered. The point at which this second Wilson point 1is situ-
ated can likewise be determined from the undercooling curve that wé
have arrived at graphically, using the same method as lfor the first
Wilson point (see Fig. 2.5.16). It is usually jingide a stator ring,
l.e., P* is large, so that the second group of fog droplets consists
of fine drops. The case 1in which also the second fogging produces coarse droplets
and is followed, under certain circumstances, by yet a third fogging,
is not excluded, but it remains highly improbable. We shall not discuss
this case.

After these tiny second-edition fog droplets have appeared, they
bring down the lion's share of the condensation upon themselves, since,
taken together, they possess a much larger surface area and even higher

heat-transfer coefficients than the "first-born" drops, which will per-

»
<N L
-
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haps be ten of twenty times as large. We can therefore determine the
subsequent course of undercooling solely by reference to the "nn" fog
droplets and assume that the "n" fog droplets do not grow any more at
all. For the rest, the behavior of the "nn" fog droplets corresponds
in principle with that of "n," so that the same formulas will apply,

mitatis mutandis, for the mass-transfer coefficients involved here.

b) Examples

Let us now discuss the results that have been obtalned from ap-
plication of the calculation procedure proposed here to the two tur-
bines laid out under Heading 2.1. For reasons to be brought out below,
we shall carry out the calculatlons for several variants of each tur-
bine.

From Section 2.5, we drew the important conclusion that the slze
of the fog droplets produced on spontaneous condensation in a turbine
is extensively determined by an acclident: namely, by whether nucleation
took place 1n a region of rapid pressure drop or 1n a space between
two bucket rings, where the pressure remains almost constant for a
certain period of time. It was noted that it 1s generally possible, by
varying the pressure curve, to bring both cases about in a given tur-
bine: for this reason, two varlants were investligated for each turbine
derign — one with the finest possilble fog droplets and the other with
the c¢oarsest possible droplets.A9)

If coarse fog droplets form, a relatively large number of them
are caught by the blades. Whether the water caught 1s centrifuged out
and drained or remains in the flow in the form of large drops and bounces
back and forth between the buckets would probably have considerable in-
fluence on the losses. For thls reason, two extreme cases were inves-
tigated for the variants with coarse fog: one without drainage, in |
which "h" remains in the flow channel, and the other with the most ef-
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ficient dewatering devices conceivable, which result in the largest
possible "h" amount and withdraw it from the flow.

If the fog has {ine droplets, the amount of wacer trapped by the
buckets is so small that the difference between no drainage at all
and effective drainage = 1s hardly perceptible. For this reason, we
omitted the latter variant for the case of a8 fog consisting of fine droplets.

The three cases for which the calculation was completed carry the
following designations (Ub = reaction-type turbine; Gl = impulse-
type turbing specifications see in Seet. 2.1):
"Ub 1," "Gl 1" : with nucleation in the middle of a ring (1i.:., with
fine-drcplet fog);
"Ub 2," "Gl 2" : with mucleation in an intermediate axial space
(= coarse-droplet fog), without deainage;
"Ub 3," "Gl 3" same, with the best drainage conceivable.

If the state curve has been fixed for a turbine — and this has
been done for the two turbines of our example,by the speciflication un-
der Heading 2.1 — then the Wilson point, fog-droplet size, etc. neces-
sarily follow from this curve. To produce the extreme cases with fine-
droplet and ccarse-droplet fogs, we have in each case modifled the
pressure curve in our examples in such a way as to place the Wilson
point at the desired position. These modifications, which are, in them-
selves,' arbitrary, are restricted for the sake of simplicity to the
blade rings up to and including the Wilson point, and the quantities
based on this modified state curve have been enclosed 1in parentheses
in the tables. Only in case "Gl 1" was it possible to retain the orig-
inal specification.

The flne-droplet varlants represent nearly absolute extreme cases,
since expanslon rates higher than those at which fogging occurs in
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Pig. 2.9.4. Supercooling curve and

distribution of water in the reaction-

type turbine (variant 1). 1) Fine-

droplet fog.
these varlantes are hardly LC be expected in actual turbines. As for
the coarse-droplet variants, on the other hand, it is conceivable that
in certain turbine models (broad axial intermedlate spaces, etec. ) ot
might be possible under certain circumstances for a fog with even
coarser droplets to form, since the expansion rate, which governs

nucleation, mey sink conslderably lower than the value assumed here —

i’* = 150 sec'l.

It was stated under Heading a) that the precondensation can be
disregarded without incurring any noticeable error as a result. In the
present calculations, however, it was nevertheless taken into account
in all cases in which 1t occurs according to Section 2.4 (rings 2' and
2" of the reaction-type turbine), to demonstrate the correctness of
this statement for steam turbines.

The results of the calculations are reproduced in Tables 1 to 6

(see pages 193ff) and in Figs. 4 to 11. The assigned quantities were

¥y, and the other data assembled in Tables 2.1.1 or 2.1.2.

The supercooling curve — the upper parts of Figs. 4, 5 and 6 and
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8, 9 and 10 — were determined graphically behind the Wilson point; the
control-plane valuesl ATJ and maxima in the bucket rings, .ATmax’ figuring
in the tables were read from the curves. The water distribution — lower
parts of the same figures — is obtailned from the calculated control.

plane valuesofdy to Y by connecting the points with continuous lines.

Fig. 2.9.5. Supercooling curve and
distribution of water in the reaction
type turbine (variant 2). 1) Coarse-
droplet fog; 2) secondary nucleation.
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Fig. 2.9.6. Supercooling curve and
distribution of water in reaction
typs - tiurbine (variant 3). 1) Coarse-
droplec fog.

Further, En is the numerical proportion of tie fog droplets that
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Fig. 2.9.7. Mass distribution of water over droplet radius before the
last rotor ring of the reaction-type turbine (the enclosed area i1s pro-
portionai to the mass content; the arrows denote the calculated aver-
age radii).
has remained in the flowing steam, i.e., has been able to avoild the
blades; Enn is the corresponding proportion for: the second-generation
fog droplets if any such generation 1s formed. Through the trapping
action of the blades, more and more water goes over into the coarsest
forms; the total amount of water in the intermedlate spaces, referred
to the theoretical water amount is given by the quantity (yg + ygg +
+ yh)/yw; the next line below indicates, agaln as a percentage, the

amount - of water centrifuged out, which simultaneously lndicates the
upper limit on the amount of water that can be separated by drainage
devices.

At the very bottom of the tables we list the average slzes (radii)

of the various drop species; in the line Jjust above that, the radius

of the largest drop that still does not burst, r is 1ndicated

B,max’
for each ring. It is seen that bursting acquires significance only at
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Fig. 2.9.8. Supercooling Fig. 2.9.9. Supercooling
curve and distribution curve and distribution
of water in the the im- of water in the
pulse-type turbine (vari- type turbine (vari-
ant 1). 1) Fine-droplet ant 22. 1)secondary fog-
fog. ging (fine droplets); 2)

7T et

AT ok
Fig. 2.9.10. Super-
cooling and distribu-
tion of water in the

impulse-type turbine
(variant 3). 1) sec-

ondary fogging (fine
droplets); 2) coarse-
droplet fog.

coarse-droplet fog.

low pressures, since with higher steam den-
sities the mechanical size-reduction re-
sults from the outset in sufficiently small
droplets. The distribution of mass among
droplets of various sizes in front of the
last rotor ring has been presented in Figs.
7 and 11.

Now these general remarks will be fol-
lowed by the discussion of results.

We are struck in all cases by the fact
that a rather smail quantity of mass falls

to the lot of the coarse water forms (harm-

ful drops, water centrifuged out). If the fogging produces fine drop-

lets ("Ub 1," "Gl 1"), then the coarse-form water amounts to only 8.6%

and 3.8%, respectively, of the water theoretically rresent, even at

the end of the turbine; if a coarse-droplet fog forms, these figures
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rise to about 29% and 13%. The fact that about twice as much coarse-

form water is produced 1in the

reaction-type turbilne than in the cor-

responding'case for the impulse-type turbline 1s to be attrilbuted

o

¥

w u’ o

Fig. 2.9.11l. Mass distri-
' bution of water among drop
radll in front of last
rotor ring in the im-
pulse-type turbine (enclosed
area 1s proportional to
mass content; the arrows
Indicate the calculated
average radii).

primarily to the fact that here the fog
must flow through twice as many blade
rings (deposition!), and not for example,
to the differing percentage reactions.

The fog-droplet count in the steam
diminishes only slightly; even 1in the
worst posslble case there are stlll
more than 50% of the fog droplets pres-
ent in the steam at the end of the tur-
bine, as indicated by the En-values.
With a fine fog, of course, En will
naturally diminish much more slowly; in
the "Gl 1" case, it sinks from unity
only to 0.9469.

For the drained amount, this
means that even with turbine designs

capable of centrifuging out all of the

coarse-form water and draining it, only a small fraction of the total

theoretical water can be deposited ("Ub 3": 28.6%, "Gl 3": 13.1%). If

measurements on turbines indicate deposition of more water than this,

‘ elther an error of measurement or a catastrophically unfavorable fog-

ging should be looked for.

According to the figures, the supercooling AT is rather large,
primarily in the last rings (high vacuums, poor heat transfer between

fog droplets and steam!). The size of the fog droplets formed is of

prime significance for the supercooling curve.
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As for the reaction-type turbine, we find for "Ub 1" a supercool-‘
ing curve gimilar to that found under Heading 2.5c¢ for the simplifiled
turbine model (cf. Fig. 2.5.2): supercooling collapses suddenly after
the Wilson point and then remains quite small, regaining levels of 6
to 7°C only toward the end of the turbine. If, oa the other hand, a
coarse-droplet fog forms ("Ub 2," "Ub 3"), then AT will not vanish
completely behind the Wilson polnt, but will fluctuate around the 10°¢
level and reach peak values in the last ring that even exceed 25°C.
Such a great remanent supercooling causes, on the one hand, a con-
siderable thermodynamic loss (see under Heading 3.)4) and, on the other
hand, produces a significant wetness deficiency Ay amounting sometimes
to more than 1/10% of the theoretical moisture in the exanples. For the
last rings, 1n which the supercooling becomes consliderable, we have
plotted the course of the Wilson supercooling AT* (see Fig. 5) so that
it will be possible to establish whether a repeated heavy fogging is
triggered here. As 1s seen, we fall Jjust short of this in the "Ub 2"
_example (and likewise in "Ub 3" as well). It should be noted in pass-
ing that nucleation can become perceptible even after the last stage,
since no further expansion 1is taking place here (i’ = 0), so that the

supercooling AT* necessary for nucleation drops off sharply. Such nucleation
is, however, of no further significance for the processes in the tur-
bine.

Still higher expansion rates occur in the impulse-type tur-
bine, and for this reason the differences due to fog-droplet size
press even more boldly into the foreground. In the event that extremely
fine fog droplets form ("Gl 1," Fig. 8), the undercooling remains
small from the Wilson point on; 1n the rotor rings, where the pressure
maintains a practically constant value, 1t vanishes almost completely,
while in the stator rings it always 1lncreases temporarily, since
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rather, sharp expanslions are taking place here. If fogging takes
place in an intermediate space ("Gl 2," "Gl 3") and produces coarse
fog droplets that present only a relatively limited area for condensa-
tion, a totally different picture takes shape: in the rotor wheel be-
hind the Wilson point (1"), the supercooling drops only to about 5 to
7°C and shoots up again in the next stator ring as soon as the sharp
expansion intervenes there. Here the curve of the Wilson supercooling, ATH,
is soon attained for a second time and another heavy nucleation takes place
in the steam apace, and the new-born fog droplets cause another col-
' lapse of undercooling. These second-generation fog droplets are much
finer than the first ones (formation at high P), so that from this
point on we have essentially the same undercooling picture as in vari-
ant "Gl 1." The second flock of fog droplets possesses a much greater
surface and far superlor heat-transfer coefficients than the first
flock, which 1s still mixed with 1t, so that practically all of the
condensation devolves upon the gsecond group: the quantity of water
present in 1it (ynn) steadlly increases, while the mass of the first
fog-droplet group (yn) diminishes considerably, since 1ts droplets
show practically no growth, but on the other hand are trapped preferen-
tially by the blades due to thelr relatively high inertia.

It will be seen from Figs. 7 and 11, which plot the "droplet
spectra" in the Intermediate space between the last stator ring for
both turbines, that water drops of widely varying sizes occur in the

turbine, but that droplet species of different origins differ clearly

from one another as regards size. (The breadth of the frequency curves

for Vo and e is based on Section 2.5¢, and that for yg on Section

88')
It is further seen from Fig. 7, if, for example, we compare the

2.8a. It was assumed arbitrarily for y

droplet spectra of "Ub 1" and "Ub 2," that the difference between
s 190 =




"fine" and "coarse" fog déroplets is never particularly large (orders

of magnitude smaller than the difference between fog droplets and de-

tached drops!), but that this slight change of fog-droplet size
produces a sharp increase 1n the mass devolving upon "g," "gg" and "h."

In case of absolutely nonreflecting buckets ("Ub 7), one observes especially an in-

crease of the amount y, at the expenss of the large drops bouncing beck and forth

("z8"), which do not occur at 81l in this case, !

The fog droplets forming in the case of "Gl 1" (see Fig. 1l1) are
about one-third as large as those of "Ub l1l." This on the one hand, and,
on the other, the smaller number of stages in the impulse-type
turbine are the reasons why such a vanishingly small amount of water
goes over into the coarse forms here. In cases "Gl 2" and "Gl 3," the
lion's share of the water quantity is divided between the two fog- |
droplet specles, whose average sizes differ by a factor of more than 10.

In summarizing, we can state that in cases with favorable fogging
("Ub 1," "Gl 1"), both turbine designs produce very little water in
the coarse forms. If, on the other hand, the fog formed has coarse r
droplets, the impulse-type  turbine clearly performs better than
the reaction-type turbine, at least as regards water distribution;

this is primarily because, in addition to the coarse drops, fine fog

droplets are also subsequently produced. The result is that not only
is undercooling kept low, but the transition of too much water into
the coarser forms is impeded. Alsv to be recognized from Figs. 7 and
11 is the fact that a more favorable distribution of the water present
in the coarsest forms 1s also achleved in the  impulse-type tur-
bine, namely, most of it can be centrifuged out. This is to be attrib-
uted to the fact that the fog droplets are mostly trapped by rotor
buckets (compare the y. values in the tables)),
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It must be noted here, however, that examples "Gl 2" and "Gl 3"
do not reproduce the least favorable case that can occur at all in
impulse-type turbines near.y as well as "Ub 2" and "Ub 3" do this
for the reaction-type turbine. That 1s to say, there 1s a much greater
possibility that still much coarser fog droplets may form in an im-
pulse-type turbine — due to the small pressure drop in the rotor
rings — than was assumed here. Unfavorable intermediate cases are also
conceivable, for example, the case in which the first-born fog droplets
are only Just coarse enough to produce a large supercooling but not
big enough to cause a repeated heavy mucleation; or —~ in extremely rare
cases - even the second-generation fog droplets may be coarse, so that
yet a third fogging occurs.
Rurther comparison of these examples will be possible only with

reference to the moisture losses, in Section 3.7.
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TABIE 2.
Example "Ub 1":

9.1

Poor Dewatering Devices

Reaction-type Turbine,

Assuming Filne-Droplet Fog and

—
A Stufe:

1 2
B Schaufelkrang: 1 1 2 gn
Yo kg/xg - (0, 001 60) (0, 009 60) (0,01850) 0, 03300
&y kg/kg - (0, 001 60) (0, 009 60) (0,01843) ¢,00016 3
y kg/kg - 0 ()} 0, 00007 0,03284 3
Yn kg/kg - - - - 0,032 53
-4 -4
Y kg/xg e - 0,7-10 2,5-10
e w/vg - - - e 0,7.107 -
Yeg kg/ng - = 2 = 0,7-10
8 kg/xg = c - - 2,5-10"
5, - - - - 1
0‘017*15)/!o - - - 0,4% 1.:% I
WV¥’e - = - - 0,8%
D i ['Spontane
Der Dampl f;‘mm"E Kond. im
bercmg: | st |loie Kfuns b
fierhitt schritten :e'cl.lfo
o . o
:;mn °§ 0 0 23° E Kl 0.2°
s ca. 2 ca. 12 ca. 0,2
. 10-%
'I.Illl L] bt = = "0 lo
fa = . . - . 0,9-10°"
S - - = - 1,4-10°% =
Tee » - - - - 0,7°10

A) Stage; B) blade

E) saturation line crossed

P* = 1100 gec”

1

ring; C) remark; D) the steam i1s still superheatad

F) spontaneous condensation within ring, a
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e bl iy - v ”'j %
% PUAEE ot e v e ""’v-r"s;-rvfm-‘«\-r-'
I
p 4 s 3
30 3 4" 4" (3 5o 'y
0, 04500 0, 05700 0,069 00 0, 082 06 0, 095 00 0,106 00 0,131 .
0. 00024 0,0002¢ 0,0002¢ 0,000 40 0,00032 0,00080 0,001 % L
0, 04476 0,056 76 0,088 76 0,081 60 0,094 68 9,10520 0,11934 §
0, 04432 0,056 08 0,08705 0,07973 0,09290 0,099 90 011168 S
. . . . . . . 5
1074 2,4-1074 48 - 207 7,8.107 11,1. 1074 2,5-107¢ 20,8-10"¢ 32,488
e 1,2-107¢ - e ¢,3:107¢ ~ - . 11,6- 1074 - - 233-107 ;;
0,7-10° 2,0-3074 2,0-10°4 ¢35-10"¢ €,7-10-¢ 19,2- 104 01.100¢
2,5-107 60.107¢ 4,0-10"4 129- 1074 12,9-10°4 33,8-107¢ 18100 O
0, 9963 0,9909 0,891 0,9720 0,051 0,9243 9,000
= r‘l“ ¥
1,0% 1,7% 1,68 2,3% 3.1% 5,0% .18
0. '% o’ 8‘ °! n ll ss 1, " ,o zi ‘1 .‘ ,‘-
.:1’
2,1° 3,4° 30 3,7 .,0° ?,2° ;.
0,3° 0,9° 0,3° 0,5° 0,¢° 1,0° 3,2° :
105 2,6-107% 3. 1078 2,1-10"% 2,0-10°% 2,0-10°% 1,7-10°% 1.4
1,0-1077 18-10°" 1.2-10°7 1,3-10"7 1,3-10°7 1,4-10°7 1,5-10"7
2,1-10% . 33108 - 60-10"% . ns-10%
0,7-1073 1,0. 1078 1,0-10-% 1,0-10°% 1,0-10°% 1,0-10-% 09100
"
\
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;] 4 s [
] ‘" 5' 5" . 8' cu
!o.ouoo 0, 08200 0,095 00 0,106 00 0,121 00 0,13000
, 0,00024 0,000 40 0,00082 0, 000 80 0,001 76 0,00312
0,088 0,081 60 0,09468 0,108 20 0,1192¢ ¥10,12688
b— »
 0,00768 2,07973 0,09290 0,099 90 0,111 65 0,1157
11,1.10°¢ 21,5-10°4 20,8- 1074 33,1-10°4
- 11,8-10°4 - e 22,1-107¢ -
¢5-10"¢ 6,7.10°4 19,2-10°4 20,1-10°4 44,5-10°4
12,3- 1074 12,3-1074 3381074 33,0.10°4 66,9-107
0,9720 0,9575 0, 9245 9, 9030 0, 8744
2,3% 3,2% S,0% 6,3% 3,6%
1,5% 1,%% 3,2% 2,0% 5,1%
]
I 31° 37 4,0° a® Ts°
0,3 0,8° 0,4° 1,0° 2,2° 3,9°
ﬁ » ’ 1]
31-10"? 2,0-10°% 2,0-10°5 1,7-10° 1.8-10°8
1,3-10°7 1,2-10°7 1,3:-10°7 1,4-10°7 1,5-10°7 151077
95108 = 6,0-10"% . 1,5-10°% 3
1,0-10°% 1,0-10°% 1,0-10°% 1,0-10°3 0,9-10°5 0.9-10°%
-




TABLE 2.9.2
Example "Ub 2":

Poor Dewatering Devices

Reaction~type Turbine, As.uming Coarse-Droplet Fog and

—
A Swde: 1 4 3
e
B schaufelkrene: 1 1 2’ 2 s s
Yo kg/kg - (0, 003 20) (0,011 20) (0, 020 80) 0,03300 0,045 00
ay kg/xg - (0, 003 20) {5,011 20) 0, 00320 0,004 80 0,008 50
y sz/%s - ) 0 (0,017 60) 0,02820 0,038 50
; A kg/xg - - - (0,01753) 0,02769 0,03716¢
g % ke/kg - = 0,7-1074 4,4- 1074 8,1-1¢7 14,8-10°¢
A - - e 0,7.104 - e 8,310
v W] - - . : - 0,7 1074 0,7-1074
Ly, wk)] - - - - 4,410 4,407
I: 5, . - - 1 0,9748 0,9457
lv‘oy“:y,)/yc = - < 0,4% 1,5% 5,0%
! W ' = 0 - 1,3% 1,0%
C Der Dampf |8 ittigunge- Spont. Kond.
- ist noch |liate E Fim Zw.-raum
Bemerkung: iber- wird tber- .o el ’
hitst D |schrittes P* 150 sec’?
at . % - - AT ~ 26° 8,5° 11,6° 11,9°
AT % . ca. 4° ca. 14° 4° s,0° s,1°
’pmax ® - - = 4,0-10°5 2,6 105 2,6-10
i - - . 5 (8,3:10°%) s,9-107" 4,3.10°7
s m C : . 1,4-10° . 2,1-10°8
= m - : p - 0,7- 1078 6,7.10°5

A) Stage; B) blade

E) saturation line is croseed;
mediate space,at P* = 150 sec”

ring; C) remark; D) the steam is still superheated;
F) spontaneous condensation in inter-

1
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ey .‘\I rs

- p.gg_};f‘i?;@? . e b o

. s .
’" ‘0 ‘" s' s" " en

» 0,08700 0,06900 0, 68200 0,095 00 0,10600 0,121 00 0,13000
0 0,008 80 0,006 90 0, 008 70 0,009 80 0, 01200 0,01700 0,02000
0 0,05020 0,00310 0,07330 0,085 20 0, 09400 0,10400 0,11000
s 0,04737 0,05863 0,083 83 0,07020 0,07067 0,073 48 0,07157

18204 | 28,0-104 30,410 s1,2-10°¢ 81,0-10~¢ 5,9.10°4 73,0- 1074
-4 S e 25,820¢ - 53,4-10°¢ - o 6881074
-4 9,1-10°¢ 9,3-10-4 ~|38,1-107¢ $7,2-10°4 99,7.10 96,8-1074 1m,7-10°4
-4 19,2-10°4 19,2-10~¢ /--Iu,o- 1074 58,6-10°4 139,6-10- 139,6.10°4 212,6-10°4
7 0, 9087 0,8507 Wo,vm 0,7298 0,8421 0,5767 0,5145

5,0% 1,9% 11,0% 15,7% 22,0% 25,2% 29,6%
i 3,4% 2,0% 1,1% 6,2% 13,2% 11,5% 16,4%
n,9° 13,7 14,0° 17,0° 19,8° 28,1° 30,9°
X o (% 1,7° 13,5° 16,8° 24,1°

2,0.10° 3,8-10°% 2,110° 2,0-10°8 2.0-10° 1,7.10° 1,8-10"5
-7 411077 $,1-10°7 5,5-10°7 5,8.10°7 6,1-1077 6,4-10°7
-8 2 3,8-10° .- 6,010 - 11,5-10°
b 1,0-10°8 1,0-10° 1,0-10°% 1,0.10°% 1,0-1075 0,0-10-5
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TABLE 2.9.3

Example "Ub 3":  Reaction-type Turbine, Assuming Coarse-Droplet Fog and
Ideal Dewatering Devices

A Stue: ] 1 2 3
B Schaufelkrans: 1 1" 2 2" 3 3 4
Yo /g = (0,003 20) (0,011 20) (0,02080) 0,03300 0, 045 00
4y /g = (0,003 20) (0,011 20) 0,003 20 0, 004 80 0, 00659
y g/kg L 0 0 (0,01760) 0, 02820 0, 03850
, wea| - — . (0,01753) 0,02789 0,03716
y /s - 5 0,7-10°4 5,1-107 8,1-10"¢ 23,1-1074 [25,0-10
v, whel - & . e o,710¢ 7 - e 5,310 7
g ‘| - - - . - -
o e . . . - 5,1.10"4 5,1-3074
'- - - - 1 0, 9748 0, 9457
O Vg * WV . = - 0,4% 1,5% 3,0%
" . . = - 1,5% 1,19
C r Dampf I8iittigungs- F Spont. Kond.
Bemerkung: ist noch [linte E im Zv.-raum
) iber= wird {ber- . bel
hitstD  |schritten P* »150sec”!

AT, .. % - - AT % 26° 8,5° 1,6° 1,0° |17 |
aT % - ca.4° ca. 14° &£ 6,0° s1°
"B,max ® - - - 4,0:10° 2,6-107° 2,6:10°8 | 2310
P o - . = @3,310°7) 3,9-10°7 4,3-1077
e = . - : 1,410°° - 2,110
l'u . m =i - - - - -

A) Stage; B) blade ring; C) remark; D) the steam 1s still superheated;
E) saturation line 1s crossed; F) spontaneous condensation in inter-
medlate space,at P* = 150 sec'l.
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i iy S b i e e LA o - E By o sl & B e e
k4 3
4 ~
3
‘ 5 8
3" 4 4" 5 5 6 6"
0, 069 00 0,08200 0,095 00 0,106 00 0,121 00 0,13000
0,006 90 0,008 70 0,009 80 0,011 90 0,016 80 0,01950
0,06210 0,07330 0,085 20 0,09410 0,104.20 0,11050
- 0,056 70 0, 063 96 0,07051 0,07128 0,07445 0,07335
B 510007t [25,0-007 65,2-1074 51,3-10"¢ 134,8:1074 66,4-1074 143,3°1074
A L L 2581047 - e 53,5104 — - — 69,3104 5
v 28,2:10-4 93,4107 93,4-1074 228,2-10"4 228,2-10°4 an,5-10"4
0, 8595 0,7997 0, 7328 0, 6484 0,5853 0,5271
7,8% 11,5% 15,5% 21,5% 24,6% 28,6%
4,1% 11,5% 9,8% 21,5% 18,9% 28,6%
i
1,0 | 1.7° 14,6° 17, 8° 19,6° 21,7° 30, 2°
9,2° 1,7 13,4° 16,7° 23,8° 27,9°
2,6-10°5 | 2320°8 2,1-10°% 2,0.10°% 2,0-107% 1,1.10°% 1,8:10°
5,1010"7 5,5-10-7 5,8-1077 6,1.10°" 86,4107 6,6°1077
- 3,5-10°% . 6,0-10°5 . 11,5108 5
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[Footnotes to Part Two]

The percentage reaction of the last stage at the blade, means
diameter is given in parentheses.

It is also frequently known as the Helmholtz or Kelvin-Helm-
holtz formula.

Here 1t 1s taclitly assumed that the steam, which
swrrounds the droplets, possesses the temperature

Tr' Thls condition 1s automatically satisfled in cases in

which the steam can be regarded as a continuum, since a
thermal boundary layer (see Fig. 2) whose interior zone actu-
ally does have the temperature T_, forms around the droplets.
With long free paths in the steah, however, "colder" steam
molecules can also reach the droplets, which 18 contrary to
our assumption. Nevertheless 2 it follows from the investiga-
tions of Stodola ([3], page $62) that Eq. (10) is also valid
in close approximation in this case.

If the droplet were moving with a non-negligible velocity
(Ur > 50m/sec) relative to the steam, then T4 would have to

be replaced by T and the quantity AT., would necescarily
r,ad GS

appear as a third term__én Eq. (13); compare Section 2.2. With
small droplets (r < 10°° m), however, this effect does not
become noticeable.

Compare, for example, "Hiitte."

Properly speaking, this equilibrium distribution of the drop-
lets never occurs 1n reality. Determination of a quasistation-
ary droplet distribution that corresponds more closely to
reality was the most difficult point of the theory.

Strictly speaking, the notation ea s would be the consistent
3’

one; for the sake of simplicity, however, we have dropped the

subscript a.

Elektronische Rechemmaschine [Electrqnic Computer] of the
ETH [ Swiss Federal Institute of Tochnolog%

More precisely: no new nuclei that subsequently grow and pro-
duce stable droplets.
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In principle, nucleation has already begun immediately on
passage over the saturation line. At the outset, however, it
1s so weak that for all practical purposes, only a narrow
reglon immediately before the Wilson point comes into consid-
eration as a "nucleation zone."
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