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FOREWORD 

An attempt is maae in the present report to give a rigorous theoretical 

presentation of the processes that take place in wet-steam turbines and from 

this to derive the outlines of a general theory.   The work was prepared at the 

Institute for Thermal Turbomachine   of the Swiss Federal Institute of Techno- 

logy (ETH). 

I have a particular debt to Professor Dr. W   Traupel, who suggested 

this project to me and made it possible for me to carry it out at his Institute. 

His comprehensive knowledge, unfailing interest and his many valuable 

suggestions rendered me considerable assistance during the course of the 

work. 

I am further grateful to Dr. C    Seipnel, director of the Brown, Boveri 

& Company, Ltd., Baden, Switzerland, for permitting to complete the pre- 

parations prescribed for the promotion during my activity at Baden and for 

subsequently and most generously making it possible for me to follow some 

experimental activities performed by thai firm. 

I should like to extend sincere thanks to my colleagues, Dipl. Ing. 

U. La Roche and, above all, to Dipl. Ing. W. Riess for being always ready 

to discuss problems connected with my work.   I profited much by these dis- 

cussions.   I am also indebted to Mr. W.  Riess for his meticulour language 
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editing of the text. 

The Swiss Council on Schools approved a contribution toward the 

printing costs of the presentation copies, for which I should like to express 

my gratitude here. 

Finally, I owe a debt of gratitude and admiration to Miss O. Pallavicini, 

who managed to complete the manuscript with great care in an incredibly 

short time. 
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NOTATION 

The numeration of equations,   tables and figures begins a new se- 

ries In each Section.  Equations,   tables and figures of other sections 

are referred to as  "Eq.  2.3(12),"   "Pig.  2.3.1," etc., meaning, respec- 

tively,  Eq.   (12) and Pig.   1 of Section 2.3. 

With a few exceptions that are explicitly noted,   the WCS system 

of units  Is assumed In all formulas. Here we cite briefly the most Im- 

portant conversion formulas  (where kg* = "kilogram-force"): 1 m = 

= 39-37 In;  1 kg = 0.102 kg*sec2/m = 2.205 lb;  1 N H 1 kg m/sec2 = 

= 0.102 kg* = 0.225 Ib.wt.;   1 bar = 105 N/m2 = 1.02 atm abs = 14.51 

psl;   1 kJ 3  103J = 103 kg-m2/sec2 = 0.239 kcal = 0.948 BTU. 

The large number of physical quantities dealt with made It Inev- 

itable that a given letter symbol would have to be used for more than 

one quantity.   In these cases,   the distinction Is made by means of sub- 

scripts,  which will understandably be rather long on frequent occasions. 

Below we enumerate the most Important symbols.   I.e.,  those that 

appear In several Sections,  together with all subscripts that can Im- 

part specific significance to  the various letter symbols. 

SYMBOLS 

Speed of sound 

Surface area 

Subtangent In AT construction;  cf. 

Sec.   2.6b 

Eroded width;   cf.   Sec.   2.8.2 

Braking force 

- 3 - 
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D 

D_ m 

E. n 

CD      "r 

P 

g 

G 

h 

1 

m/sec 

j/kgK 

j/kgK 

ra 

m 

N/m3 

j/kg 

J/kg 

J/I<g 

J/kg 

Absolute velocity 

Resistance  coefficient of sphere 

Friction coefficient of wall boundary- 

layer 

Specific heat of steam at constant 

pressure 

Specific heat of water at constant 

pressure 

Diameter of bucket ring 

Diameter at bucket midsection 

Function indicating reduction in num- 

ber of fog  drops,  cf.   Eq.   2.6(24) 

Factors accounting for  influence  of Kn 

on cD and c^,   cf.   Eqs.   2.2(27),   (28) 

Field  strength 

Functions  of  quantities G 

Dlmensionless quantities that deter- 

mine the behavior of droplets;   specif- 

ically,   according to subscript,   for: 

Deposition on profile nose   (N)  or on 

concave   side  of profile   (H)   or on large 

drops   (g);   bursting  (B);   in periodic- 

ally varying   (P)  and  In turbulent  (T) 

steam flow 

(specific)  Total enthalpy 

(specific)   Enthalpy 

inthaipy value at zero "Normal enthalpy"; se« 
[20], page 5 
(called  10  there) 

Effective  loss due  to Aq,  cf.   Eq.   3.1(7) 

- 4 - 
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J 

k 

k 

K 

Kn 

n 

N 

Nu 

P 

Pa 

P 

Pr 

Aq 

-3        -1 m J sec 

J/K 

T m 

^x' iachfl m 

L j/kg 

^ kg 

mf kg/m-sec 
• 

mk' % 
kg/m -sec 

M — 

M kg/sec 

K . ̂ oVifl kg/sec 

kg 
-l 

kg 
-i 

N/m£ 

-1 m 

-1 sec 

J/kg 

.1 . 

Nucleatlon rate 

Boltzmann's constant (= I.38O lO"2^) 

Scale factor of model (Sec. 3.8b) 

Conversion factor,   supersaturatlon to 

supercooling  (Deflnea, Eq.   2.3(6)) 

Knudsen number for sphere.  Def. Eq. 

2.2(5) 

Mean free path of steam molecule 

cf.  Fig.   2.1.4 

Heat of vaporization 

Mass of droplet 

Water flow rate  in moving fiin 

Condensation rate # or Impact rate of fog droplets 

Mach number 

Mass throughput  In turbine  (with sub- 

script:  part-throughput;  cf.  Eq.   2.9(1)) 

Mass condensing per second on one 

bucket 

No. of Drops per kg of wet steam (with- 

out subscript:  number of fog drops), 

except for Section 2.8a 

Number of molecules  in a kilogram of 

H20 (= 3.35*1025) 

Nusselt number 

Pressure 

Logarithmic axial pressure gradient 

Expansion rate. Defined: Eq. 2.1(4) 

Prandtl number 

Moisture-loss  per     stage  (with sub- 

- 5 - 
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Re 
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SH'  SR 

s Sehne 

S 

St 

t 

t Schfl 

At abk 

At brems 

AT 

AT* 

j/sec 

m 

m 

m 

m 

j/kgK 

m 

J/kgK 

m 

m 

m 

sec 

m 

sec 

sec 

K 

K 

K 

K 

script: partial loss.,   cf.   Eq.  3.7(1)) 

T-feat conduction rate from o droplet 

Droplet radius 

Average radius of a given droplet 

species  (subscripts as per Sec.   2.9a) 

Critical drop radius 

Radius of largest nonburstlng droplet 

Gas constant of water vapor (H pv,/Td) 

Radius  of curvature  of profile nose 

Reynolds number 

(specific)  Entropy- 

Prof lie contour  lengths,   cf.   Pig.   2.1.4 

Profile chord length,   cf.   Fig.  2.1.4 

Linear deflection,  cf.   Pig.   2.1.4 

Stanton number 

Time 

Bucket spacing In mldsectlon circle, 

cf.   Pig,  2.1.4 

"Cooling time" of droplet.   Def.  Eq. 

2.2(37) 

"Deceleration time" of droplet.  Def. 

Eq.   2.2(33) 

Temperature 

"Capillary saturation  temperature" (cf. 

Eq.   2.3(11)), used for the surface tem- 

perature of a drop' 

Undercooling of steam.   Def.   Eq.  2.3(4) 

Maximum undercooling In spontaneous 

condensation; as AT*(40),   it signifies 
a 

- 6 - 
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AT eff 

AT GS 

AT 

AT. m 

AT 

Ay 

K 

K 

K 

K 

K 

u m/sec 

U m/sec 

Ur m/sec 

V m3/kg 

w m/sec 

W N 

X kg/kg 

y kg/kg 

kg/kg 

the "Wilson undercooling" understood 

in the sense of Section 2.5e 

Temperature  difference between a sur- 

face and the surrounding steam,  as gov- 
v 

ernlng removal of I at 

Adiabatlc boundary layer heating 

("temperature head*1) 

Locus curve of horizontal tangent In 

Pig. 2.6.5 

Average AT in a bucket ring,  determin- 

ing undercooling losses 

"Capillary undercooling." Def.  Eq. 

2.3(10) 

Circumferential velocity;   in Sec.   2.7, 

velocity of water in flowing film 

velocity of steam outside boundary 

layer 

Relative velocity of a droplet with 

respect to the steam 

Specific volume 

Relative velocity with respect to bucket 

Prlctional   drag on one drop in steam 

Specific steam content ("»team quality**) 

Specific water content (wetness friction); 
with subscript 
(cf.   Sec.   2.9a), wetness friction in a par- 

ticular form 

Specific moisture deficiency.   Def.  Eq. 

2.3(16) 

- 7 - 
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z 

Z 

Zn   tO   Z 8 

a 

ö 

e 

N/m3 

various 

j/ra    secK 

m 

m 

X j/msecK 

A - 

V kg/msec 

V m /sec 

v(5e) kg-1 

5 m 

S m 

«e m 

^V AV'a m 

Number of buckets 

Centrifugal field strength 

Various material quantity groups,  cf. 

Diagrams III and IV In Appendix.   For 

definitions see   [45] 

Heat-transfer coefficient 

Baumann Moisture-loss coefficient,  cf. 

Sec.  3-1 

Filjn     thickness  (except  6.   in Sec.   2.5d) 

Transferrert mass friction per blade row; for 

subscripts see Sec. 2.9a 

Moisture-loss number 

Coordinate 

Internal efficiency of a turbine 

Polytropic efficiency of an expansion 

Ratio of specific heats of steam;  used 

concurrently as  Isotropie exponent 

Thermal conductivity 

Logarithmic supersaturation (= In p/p_) 
s 

Dynamic  viscosity 

Kinematic viscosity 

Drop-number distribution function;  cf. 

Eq.   2.5(13) 

Coordinate 

Axial coordinate in turbine (£ = 0 at 
a 

entry) 

Cf. Sec. 2.5b 

Cf. Sec. 2.1.4. Also A40 = A?'  + A4" 

Supersaturation (= p/pa) 
a 

s 
- 8 - 
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P 

a 

a 

i 

X 

GO 

Q 

a 

ad 

A 

b 

d 

E 

f 

g 

gg 

gr 

GS 

h 

h,  drin 

H 

K 

M 

n 

- 
m 

kg/nr 

N/m 

m 

N/i m 

rad/sec 

2 m 

"Capillary super satur at Ion, " cf. Eq. 

2.3(9) 

Density- 

Surface tension 

Streamline ordlnate   'Sees.   2.6a and 3.3) 

Shear  stress at wall 

Reduced logarithmic supersaturatlon, 

cf.   Eq.   2.5(32) 

Angular velocity of shaft 

Flow cross section normal to axis 

SUBSCRIPTS,   ETC. 

Axial component 

Adiabatlc 

Value at turbine inlet 

At reference point 

Vapor phase 

Value at turbine outlet 

"Flowing1 (cf.  Section 2.9a) 

Large droplet (cf.   Section 2.9a) 

Recoiling large droplet   (cf.  Section 2.9a) 

Coarse water forms  (collective for  „ and . ) 
f»  g*  gg h' 

Boundary layer 

Centrlfuged out  (cf.   Sec.   2.9a)j Exception:  ATh 

Centrlfuged out but not   drained away (cf. 3ec. 2.9a) 

Koiiow    side of profile  (pressure side) 

Condenser 

Model 

Fog droplet (cf.  Section 2.9a) 

- 9 - 
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nn 

nach 

o 

r 

R 

s 

t 

tr 

u 

vor 

w 

0 

1 

2 

it 

* 

Second-generation fog droplet  (cf.  Sec.  2.9a) 

Immediately after a condensation shock 

For continuum flow 

Of a drop 

Rear side of profile (aurticn side) 

At saturation (as p ,  T_, T  ) s       s       s 
Tangential components 

"Dry,"  I.e.,  corresponding to  the homogeneous ideal case, 
cf. Sec, 3.1. 
Circumferential components 

Directly before condensation shock 

Of the water phase 

Before guide wheel of stage 

Between guide wheel and runner  of stage 

After runner of stage 

At thermodynamlc equilibrium  (assuming equal 1   and s); 

exception:  U 

For saturated water or for the stator wheel 

For saturated steam or  for the rotor wheel 

At the  locus of the Wilson point 

At  the point where the  sudden condensation can be re- 

garded as complete 

In the  ideal homogeneous  case 

Corresponding to actual expansion line 

Averaged value 

- 10  - 
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Part One*) 

BRIEF  SUMMARY OP RESULTS 

Pollowlng a critical survey of the literature on the subject In 

Section 1.1,  Sections 1.2 and 1.3 give a brief presentation of the In- 

formation derived on the basis of Parts Two and Three of this study. 

The reader who Is Interested only In the calculation process for 

determining the distribution of the moisture between its particular 

forms and the moisture -loss      in a turbine, without wishing to 

gain a more profound Insight into the process,  should restrict his at- 

tention,  after perusing Sections 1.2 and 1.3,  to Sections 2.1, 2.9a, 

3.7a and 3.8a. 

1.1.     THE DEVELOPMENT OF KNOWLEDGE CONCERNING WET-STEAM TURBINES 

In spite of a great deal of effort devoted to it over the last 

five decades,  our understanding of the wet-steam turbine remains Imper- 

fect.  Although much practical experience has been accumulated and many 

important problems cleared up satisfactorily, we still lack a self- 

contained interpretation of the processes.  The principal reason for 

this is the fact that the problem of the very greatest importance - 

the mode of the condensation — had for the most part eluded investiga- 

tion for a long time. 

In the meantime (and, specifically, as long ago as the late 

•Thirties), great progress-was made in the study of condensation,  in 

both the theoretical and experimental aspects.  These advances were, 

however,  hailed only in meteorology and wind-tunnel design, but not in 
K) [Su P«racripta refer to the footnotea listed on pp. 27-29], 

- 11 - 
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steam-turbine engineering.   An attempt will be made in the present study 

to apply them profitably to steam turbines as well.   Here, it will be 

shown that it is possible, starting out from the laws governing condensation, 

to obtain an over-all theoretical picture of the physical processes into which 

empirical observations dovetail nicely, without' being forced to resort to arbi- 

trary and unsubstantiated assumptions just at the points of fundamental importance. 

The. overall picture that can be built upon the basis of individual pro- 

cesses is sketched in Section 1.2, and Section 1.3 draws practical conclusions 

from it.   For the present, however, we shall address ourselves critically to the 

most important previous studies in this field. 

Baumann established on the basis of steam-consumption measurements 

made on condensation turbines as early as 1910 (the best reference here is (1)) 

that penetration of expansion into the wet-steam region involves a deterioration 

of efficiency.    (His rule reads as follows:   an end moisture content yr kg/kg 

results in a deterioration of efficiency in the wet-steam section by a factor of 

1 - y£/2).   This was followed shortly by a theory proposed by Martin (2), in which 

with support from experiments with nozzles - it was assumed that the expansion 

in the turbine does not take place at thermodynamic equilibrium, but with con- 

sistent severe supercooling.   This author succeeded in reproducing the 

Baumann loss values rather closely, although with recourse to the assump- 

tion, not otherwise justified, that only one fifth of the current theoretical moisture 

is precipitated in all cases.   In his book (3) published in 1922, Stodola presents 

a penetrating treatment of the behavior of water droplets in steam which is of abiding 

validity and also devotes a great deal of attention to supercooling problems 1).   His 

nozzle experiments provide the first proof of abrupt condensation in flowing 

- 12 - 
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\ steam.   However, since he had no theory at his disposal that was capable 

of describing spontaneous drop formation in steam, he could not arrive at a 

self-contained theoretical interpretation of the processes.   In 1927, v. Freuden- 

reich (4) presented a moisture-loss formula on the basis of the aspumption that 

the water phase moves slower than the steam but possesses :he same type of 

velocity triangles as the latter.   He also made the first efficiency measurements 

on a steam turbine with marked variation of final moisture content and arrives 

at a deterioration of efficiency somewhat sharper than that of Baumann.   He uses 

these results to infer the amount by which the water-phase velocity is lower- a 

procedure that is just as, arbitrary as Martin's inference as to the rate of moisture 

precipitation.   On the other hand, his exemplary investigations into the size and 

motion of the water drops detached from the stator trailing edges have withstood 

the test of time.   In 1928, Zerkowitz (5) formulated the fruitful concept of 

"inhomogeneous expansion," in which no kinetic motion at all is imparted to 

the water phase, and drew from this inferences concerning the moisture-loss.   In 

his book on steam turbines (6), Flügel sums up the state of knowledge at the 

beginning of the 'Thirties.   He mentions the initial supercooling after a saturation 

line has been crossed and the subsequent sudden transition to thermodynamic equili- 

brium (Xilson line), but stresses that the principal cause of moisture losses 

must be sought in the braking effect due to the large drops.    He assumes with- 

out justification that most of the water is present in the form of such large drops 

even at 3% moisture2).   This view was widely held and also served as a basis for 

the air-turbine experiments of Flatt (8), in which relatively large drops (   ICT^rn) were 

artificially injected into the flow and their effect on efficiency measured. 

Let it be stated here with regard to both Freudenreich's investigations con- 

-13- 
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cerning the aetachej drops and Flatt's air-turbine experiments- 

that while  they provide an extremely valuable   Insight Into the 

braking    effect of the large drops and will be referred to by the present 

author for this purpose.   It Is not admissible   lo drav; conclusions  from 
3) 

them concerning the over-all effect of the steam moisture content . 

Most of the numerous publications that appeared during the second 

half of the   'Thirties were concerned with erosion damage and proposals 
L) for  its elimination    .   The frequent cases of catastrophic bucket dam- 

age  obviously strengthened the  conviction that  the water forms predom- 

inantly large drops.   While  Senger   [11] warns against  this   "erroneous 

interpretation" of v.  Preudenrelch's results,   the emphasis of his 

papers Is also placed on the behavior of the  large-form water,  to 

which he devotes a  comprehensive  survey. 

After the Second World War,   It became increasingly fashionable  to 

speak of    drainage       devices of extreme efficiency.   Nevertheless,  one 

cannot suppress  the  suspicion that these statements have,   on some    oc- 

casions,  been prompted by wishful  thinking and  sales psychology rather 

than by sound measurements. 

Very recently,  meticulous and highly elaborate measurements  have 

been undertaken on condensation turbines  ([12],   [13]).  An Important 

result was attained  In  very short  order:   namely,   the  efficiency of  the 

low-pressure  stages can be raised considerably by Improved shaping of 

the     blacks.     The result   is  that  we now assume   the moisture-losses   to 

be  somewhat  smaller  than previously (at most,   half to  *wo-thirds  of 

the   value  Indicated by Baumann).   It was established by perlscopic  ob- 

seivations   [14]  that permitted viewing the  interior of a wet-steam tur- 

bine  that visibility within the   turbine was severely affected by a 

thick fog in cases where  the moisture  content was considerable.   Gigan- 

tic  water drops could be  observed  in   separation regions existing 
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in the flow. 

It is to be hoped that new experimental information on these problems, 

obtained with the aid of suitably designated experimental turbines and measuring 

instruments of high accuracy, will be performed in the future and published.   Also 

the theoretical statements made in the present study deserve to be checked empiri- 

cally through experiments on turbines. 

A survey of papers devoted to spontaneous condensation in flowing steam, 

which are of decisive significance for the wet-steam turbine, will be given in 

Section 2.5. 

1.2.    THE PHYSICAL PICTURE OF THE WET-STEAM TURBINE 

In this section, we shall give a condensed presentation of the most important 

physical processes unfolding in a wet-steam turbine.   Here we shall use as our point 

of departure the investigations described in Parts Two and Three of this report and, 

for the sake of completeness, particularly as concerns the coarse-form water, reiterate 

conclusions already stated in earlier studies of wet-steam turbines '.   Proofs and 

other deta: Is will be found in the corresponding sections of Parts Two and Three, which 

are referred to on occasion in the footnotes. 

In practice, a wet-steam turbine can be produced in either of two ways: 

either a turbine is fed at the very entry with saturated or even wet steam (for example, 

in nuclear power plants), or the initially superheated steam becomes wet in the course 

of expansion (condensation turbines); in the latter case, we imply by the term "wet- 

steam turbine" the part of the turbine beginning with the stage in which the steam 

reaches saturation.   For the sake of simplicity, we shall restrict our dis- 

cussion to the case in which the steam at the entry into the wet-steam 

turbine does not entrain any water drops.      Further, we shall have 
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in mind in all calculations the low-piessure wet-steam turbines, i.e. , turbines 

^n which the saturation line is crossed at a pressure lower than about 3 bars (44 psia) 

At the outset, we must discuss those phenomena that arise immediately after 

the saturation line has been crossed.    It is evident from the i,s-table that immediate 

condensation would be expected here.   Nevertheless, the i,s-tYole, as usually 

plotted, is valid only for the so-called "thermodynamic equilibrium," i.e. , for the 

condition to which a mixture of steam ard water adjusts itself after a sufficiently 

long time.     In the steam turbine, expansion runs its course in a very short time 

(only a few milliseconds pass before the steam, beginning at saturation, arrives at a 

state in which, for examp'e,  15% of water ought to be present!), and we cannot 

state a priori that thermodynamic equilibrium can be established during this time. 

Yet another difficulty is encountered at the beginning of condensation:   condensate 

can be deposited only on a surface that is not too sharply curved - a surface that 

must, moreover, be cooled to prevent it from being heated so severely by the liber- 

ated heat of condensation that no further condensation can take place.   Now It is 

found on closer examination^) that the blades, walls, dust particles present in the 

steam, any water drops that may be detached trom the blades, etc. , present too 

small and poorly cooled a surface to permit full-scale condensation on them.    The 

amount of water that is actually deposited on these surfaces is at most a few 

thousandths of the amount that would be deposited at thermodynamic equilibrium. 

Thus the conditions fall far short of thermodynamic equilibrium:   the steam becomes 

supersaturated or, in other words, supercooled7'. 

Initially, supersaturation increases practically unhindered since 

the above     mentioned macroscopic condensation (on the blades. 

-16- 
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etc) is extremely weak and since the tendency of the steam molecules to combine 

into microscopic water "clusters" consisting of a few molecules each - a 

tendency that makes its appearance immediately after saturation - is initially 

ineffective.   That is to say, the tiny aggregates of molecules are unstable in 

8) only slightly supercooled steam     and vaporize soon after formation. 

However, the greater the supersaturation becomes as expansion progresses, 

the smaller will be the "critical" drop size that a drop must possess in order to per- 

sist.   If this critical drop size has become, let us say, so small that even drops 

containing only 30 to 100 molecules are stable, ropid formation of such stable drop- 

lets (nuclei) sets in in the steam.   Namely, the smaller the size of the nucleus, the 

higher is the probability that it will accidentally form^'.   These nuclei present 

a surface of which heavy condensation of the steam can begin1^), So that the nuclei 

grow very rapidly to become relatively large drops. (The nuclei radius is originally 

about 6.10"10 to 8-10"10m, and most of them reach final sizes of 10"8 to 10-6 m). 

This process, the so-called spontaneous condensation, takes place, in rapid expan- 

sions, in a very short time, and has as a result conversion of the dry steam 

into a fog1 ', so that thermodynamic equilibrium is established - at least approximately. 

The point at which spontaneous condensation occurs (or, more precisely, 

the point at which the supersaturation passes its maximum) will be called the Wilson 

Point and the line joining various Wilson Points (corresponding to a given rate of 

expansion) in the l,s-chart will be called the Wilson Line Z'.   The following state- 

ments can be made in regard to the spontaneous condensation of the steam^': 

1)   The position of the Wilson Point, the rapidity of spontaneous 

condensation and the nature of the fog depend primarily on the local 
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rate of decrease of the pressure ("expansion rate": P = (-l/p)dp/dt). 

2) Depending on the magnitude of P, a 3- to 6-fold supersaturation 

is attained as the peak value (which means a maximum supercooling of abou* 

25 to SS^), so that the Wilson Line lies between the lines representing 2% to 

.14) 
4% theoretical moisture (cf. the i.s-diagram in the Appendix) 

3) When fog formation has been terminated, all fog droplets have 

approximately the same size. 

4) The number of fog droplets per unit mass of steam depends very heavily 

on the expansion rate P, so that their average size also becomes heavily depen- 

dent on this quantity15'. 

It is found that this sensitivity of the spontaneous condensation process to 

the rapidity of expansion is a decisive factor for the wet-steam turbine.   Namely, 

the expansion does not take place at constant rate in the stages of the turbine: 

rapid expansion rates usually occur with the blade wheels (Pmax
=10^ to KP see-1-), 

while in the gaps between the wheels, on the other hand, the pressure may remain 

constant for a while (P = 0) or may even rise slightly in certain regions (negative P). 

Thus the turbines also offer the possibility of producing fine fog droplets as well as 

coarse ones, and all arbitrary intermediate cases are conceivable.   (For the finest 

fog encountered in turbines, we may compute the average fog-droplet radius as 

about 2-10~8, while the coarsest would have about 5- 10"7m).   Even when the layout 

of a turbine is known, it is not possible to state once and for all what kind of 

fog droplets will form in it, since the Wilson point can be reached at various values 

of P, depending on the operating conditions16'.    If the position of the Wilson Point in 

the turbine had no influence on the composition of the fog, or if the fog had no influ- 
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ence on subsequent processef., this would still be without practical significance. 

However, it is found on closer investigation that the behavior of the section of the 

turbine through, which the fog flows is determined first and foremost by the composi- 

tion of this fog.   How large or how small the proportion of the moisture will be that 

forms harmful drops (erosion!), how widely the state of the steam deviates from ther- 

modynamic equilibrium, and how large or how small the moisture losses are will all 

depend on it.    The finer the fog droplets formed, the better will be the behavior of 

the fog in the turbine and its consequences. 

During the short time spent in the turbine, the fog droplets have virtually 

no opportunity to coagulate,  so that formation of large drops by direct fusion of 

several fog droplets does not take place17'.   On the contrary, immediately after 

formation of the fog, another mechanism intervenes to convert the water from the 

fog-droo form to the large-drop form.   This mechanism consists in the blades' 

catching a part of the through-flowing fog in each blade ring and releasing them 

only in the form of much larger drops.   For the most part, the fog drops impinge on 

the leading edce of the blades - in the neighborhood of the stagnation point - and 

18) on the hollow side where a severe diversior of the steam flow is effected    '.    In 

the case of small fog droplets and high steam densities, only a small fraction of 

the passing drops impinge on the blades in each ring; on the other hand, in the 

case of coarse fog droplets and low steam densities, this happens to a consi- 

derably larger fraction since large drops are less able to keep up with the 

motion of the steam.   Only in rare cases, however, can a ring catch more 

than 10% of the fog—drop current, and the captured proportion usually 

ranges from 1 to 5%.        The consequence of this is that even at the exit 

of the wet-steam turbine, where the fog has already passed through sev- 
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eral blade rings, most of the -team moisture is present in fog-droplet form 

and only a relatively small portion (5 to 30%) has made the transition to the 

coarser forms. 

The water caught by the blades forms thin liquid sheets (which oftan 

contract to form individual water streaks) and flows in a definite direction 

under the influence of friction vvith the steam or the centrifugal force19'. 

On the stator blades the water is driven only by steam friction, so that 

it fxows in the direction of the steam current.    For the most part,  it comes to 

a halt only in the «.ind-shadow region of the trailing edge and collects there. 

The result is formation of large water drops that hang on the trailing edge and 

are kept in constant vibration by the steam flow.    From time to time, some 

of these drops are torn away     These detached drops may still be rather 

large during the first few instants (say,   1 mm), but are very soon shattered 

into numerous small pieces by the steam current^0'.   The average size of the 

drops that are ultimately formed generally runs to r = 10"^ to 10*"^ m (depending 

on steam density and velocity)   so thjt they are several orders of magnitude 

larger than the fog drops that form spontaneously in the steam.    For this reason, 

they will be referred to as "large drops. "   They are practically totally incapable 

of following tht motion of the steam and impinge upon the backs of the next 

21) runner blades just behind the leading edge at high velocity      ; in doing so, 

they may give rise to the familiar bucket-pitting effect. 

Very many original publications and extremely good summaries are 

available concerning the erosion phenomena.   However, the actual mech- 

anism that causes the pitting is still largely a mystery to this day. 

It Is not our intention to go into this complex of problems in the 

present study   -    the moie so because erosion does not belong to the core 
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of the wet-steam problem,  but represents a  concomitant phenomenon. 

The large drops  that  Impinge on a bucket either   adhere to it 

or rebound  (perhaps  in the form of several  smaller drops)   to be picked 

up by the steam again.   In doing so,   they are  suddenly  awept        into re- 

gions where the pressure  is lower;  the result may be - particularly 

for the larger individuals among them — that their interior tempera- 

ture does not drop fast enough,  so that they boil and break up into 

fragments  ("bursting")    '. In no event, however, will the large drops 

be reduced back to fog-droplet size;  the difference between the  large 

drops and the fog drops  is distinctly maintained throughout. 

The water that  strikes the     rotor blades        flows almost radially 

outward,  since the centrifugal-force effect is generally much stronger 
23) than that of steam friction      .The water then sprays away from the tip 

of the bucket or from the shroud and either strikes the   casing   or is 

carried out of the flow channel through the    drainage       slits.   Should 

the drainage      of the water slung off the runner blades be accomplished 

only partially or not at all,  some of it will adhere to the   casing  to 

be  driven downstream on this casing     by steam friction,  while part  of it 

will reenter the steam flow, with the result that a zone particularly 

rich in large drops forms in the vicinity of the   casing    increasing locally 

the danger of erosion and causing major losses. 

The large drops swirling in the flow space presumably swallow up 

all fog drops that they encounter.   In low-pressure turbines, however, 

the number of fog drops that go over tr> ^rhe large-drop form in this 

manner is very small as compared to the nu^vsr trapped by the    blades. 

This is because      there are still no large drcps or only very few pres- 

ent in the first stages of the wet-steam section,   and in the Later stages, 

where they become numerous, the density of the steam and, consequently, the number density 

of fog drops, has already become low and the probability of encounter is reduced. 
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On the other hand,   this process  Is probably Im- 

portant In nlgh-pressure wet-steam turbines and might, for example, 

make  it poanible for a considerable portion of the water present  In 

fog-drop form to be  separated     from the steam by means of a 

water separator. 

The second phenomenon that Is most Intimately related to the com- 

position of the fog Is the deviation of the steam's state from thermo- 

dynamic equilibrium,  or,   in other words,  the extent of the  supercooling 

at various places in the  turbine.  We have already noted that after the 

saturation line has been passed,  supercooling of the steam at first 

increases   without hindrance,  until spontaneous  condensation Intervenes, 

and that it then collapses very rapidly as a result of fogging.   If, 

however,   this fog expands fur-ther adiabatically,  as is mostly    the case 

in turbines,  it can never arrive at perfect thermodynamic equilibrium, 

since new water must be deposited out continuously in the course of 

expansion.   Practically the only surface available for condensation is 

that of the fog drops.   Thus,  heat must be taken away    continuously from 

the fog drops, and this  is possible only when the steam surrounding 

the fog drops is cooler than the fog-drop surface,   i.e., when   super- 

cooling obtains.  The finer the fog,  the larger will be the total sur- 

face that the drops present and the more 'favorable will the heat- 

transfer coefficients become.   In this case,  therefore,  the    supercool- 

ing need not be stroi^.   If,  on the contrary,   the fog has coarse drops, 

strong   supercooling     fs required to permit continuous withdrawal of the 

liberated heat by the fog drops. 

Supercooling    has two kinds of practical consequences.  Firstly, 

the  Interior heat exchange that takes place  in the fog with finite tem- 

perature differences gives rise to a loss manifested in a drop in the 

machine's effciency;   secondly,   the specific  volume of   a supercooled 
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fog is smaller at a given pressure than that of a fog at thermodynamic equilibrium: 

thus supercooling reduces the volume flow.   This effect should be taken into 

account right when a machine is being designed. 

Under certain conditions, large-drop fogs may allow the supercooling to 

become so large again as to trigger vigorous spontaneous condensation.   This 

means that a second family of fog drops will form in the fog and intermingle with 

the primary droplets.   The second-generation fog drops may naturally have 

different sizes than the first generation; they are usually much smal.'er than 

the latter24^. 

I.i low-pressure turbines, the supercooling amounts to 1    to 4 C for an 

extremely fine fog; if the fog has large drops, it generally ranges between 10 

and 25°,  but may reach 3U0C and even higher, in which event another spontane- 

ous condensation may occur.   In all cases, thermodynamic equilibrium is reached 

very rapidly after exit from the last stage. 

On the basis of these insights into the processes of the wet-steam tur- 

bine, we can compute those losses that originate from the properties of the wet 

steam^S).   it is found that the moisturerlosses are of many kinds.   There are 

three processes that result in particularly heavy losses:   the impingement of 

drops - fog drops and large drops - on the buckets ("braking-losses"), the 

entrainment, acceleration, etc. of drops by the steam as a result of friction 

("entrainment-losses") and the previously noted thermodynamic losses, which 

depend on the extent of supercooling.   Apart from these three pincipal losses, 

several other less significant losses arise"' (centrifugation, con- 

version of the kinetic energy of the trapped water drops into heat, 

disturbance of the profile boundary layers by water drops, etc.), 

which, taken together, come out about the same as one of the three 
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principal losses     Usually, there is an exit-loss recovery at the end of the 

turbine, since the volume of the supercooled steam is somewhat smaller and, 

consequently, its exit velocity somewhat lower than in the ideal (not supercooled) 

case, 

.27) As regards the magnitude of the moisture-loss, we find    ' that the sum 

of the individually calculated moisture-losses agrees fairly well with the over-all 

moisture-loss observed in practice.   Further, it is found that only a quite small 

difference can be detected between a reaction-type turbine and an impulse-type 

turbine effecting the same expansion, but that a Jnrger amount of water will be 

present in harmful forms in the reaction-type turbine.    In no case may • j set the 

moisture loss in one stage proportional to the average wetness.   Depending on 

conditions, the distribution of the losses among the stages may take highly 

different forms.   A further observation is that the moisture-losses depend very 

heavily on the composition of the fog:   they are not even half as large for extremely 

fine fogs es for the extremely coarse ones. 

For the loss in efficiency per 1% average wetness, carrying the calculations 

through for the turbines used as an example (13% final wetness, 0.035 bar (0.5 psia) 

final pressure) gives values of 0.4 to 0.65% for the reaction-type model and 0.4 

to 0.6% for the impulse-type version'-^).   The very low value of 0.3% can be 

reached with extremely r   e fogs; with extremely coarse fogs and no drainage 

at all, the approximate values 0.9% (reaction-type) and 0.7% (impulse-type) 

29) 
will prevail      .   These last values can be pushed down to about 0.6% and 0.5%, 

respectively, with the aid of the best conceivable drainage devices, but they 

will still be almost twice as large as those obtained with a fine fog without 

benefit of any drainage. 
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The two hypothetical turbines used in the examples are described in 

Section 2.1 and shown in Figs.  2,1.2 and 2.1,3; their expansion lines are shown 

in Fig. 2.1,1.   The supercooling plot obtained by calculation and the distribution 

of the water among the various drop forms, etc. , are presented in Figs. 2,9.4 to 

2,9.11 (three extreme cases were investigated for each design type, cl. page 183) 

The moisture-losses in the individual stages are, for the same cases, represented 

as surfaces in Figs. 3.7.1 and 3.7.2.   Finally, Fig, 3.1.1 shows the shape 

of the expansion line taking moisture-losses into account. 

In the following section, we shall attempt to secure certain practical 

aspects on the basis of this over-all physical picture. 

1. 3   PRACTICAL CONCLUSIONS 

The steam remains practically dry for some time after the saturation line 

has bean passed.   Only from the Wilson Point on, i.e., from a point where 

about 2.5 to 3.5% of wetness should theoretically be present, does the first 

major quantity of water condense out, doing so in the form of very small fog 

droplets that can easily follow the flow of the steam. 

Even at the end of the turbine, the major portion of the moisture is still 

present in fog-drop form. Consequently, we may consistently assume that the 

moisture has almost the same velocity as the steam. 

The undesirable large drops that do not follow the motion of the steam 

and may therefore be deposited incorporate only a smaller fraction of the steam 

moisture.   Thus only a small part of the total moisture can be removed from the 

flow channel, even with the most effective drainage arrangements. 

Thermodynamic equilibrium is not established in the steam as it 

is expanded in the turbine.   Due to supercooling, the steam has a smaller 

specific volume, which leads to a change in the volume-flow conditions 
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and consequently, must be taken into account during the design of a wet- 

steam turbine. 

There Is no general rule concerning the extent of the moisture-loss in 

a stage.   Apart from the properties of the stage,  it depends particularly on the 

distribution of the water among the various forms which it can assume and may 

show quite large charges from one set of operating conditions to another. 

Both the quantity of water that enters the detrimental forms and the 

extent of supercooling and moisture-losses depend very heavily on the size 

of the droplets in the fog formed in the turbine.   Since a fine fog behaves much 

better in all respects than a coarse fog, the principal goal of our efforts must be 

to configurate the wet-steam turbine in such a way that a fine-droplet fog will 

form.   The means to this end is to have the Wilson Point in a region in which 

the pressure drops sharply. 

Securing formation of a fine fog is the most effective measure that can 

be taken to reduce the danger of erosion and, above all, to reduce moisture-losses, 

The blade pitch in the part of the turbine through which the fog flows 

should be preferably larger rather than too small in order to minimize the number 

of fog droplets trapped by the blades. 

Broad gaps between the wheels behind the runners are pointless as far 

as reducing the erosion s  sceptibility is concerned; they would be better placed 

behind the nozzles, since it is only from these that large drops are detached. 

The erosion danger and moisture-loss can be reduced somewhat with 

the aid of the effective drainage devices, i.e. , devices that remove all 

coarse-form water (indeed, the remainder cannot be removed anyway!), 

•26- 



■"     '     ■ '•'  •'"   '•  '       !»■ s Mi 

- ' 

i 

although the moisture losses cannot be cut to a really incisive degree. 

Model experiments are quite feasible on wet-steam turbines, particu- 

larly when the average fog-drop diar   ler is approximately the same as 

the mean free path of the steam molecules    '. 

In summary, therefore, we can state that a wet-steam turbine will 

be the better as regards erosion danger and moisture-losses the more 

perfect its drainage devices and the smaller ( •) the amount of water drawn 

off by these devices.   That is to say that the moisture remains for the most 

part in the fog-drop form, which presents no hazard.    (Unfortunately, however, 

an apparently identical result, i.e., a low level of water extraction can also 

be achieved with a coarse fog and inferior dewatering.. .). 

No. 

1 

3 

4 

5 

6 

(Footnotes to Part One) 

Here, though, he bases his reasoning on the assumption that 
during an expansion, the steam remains at all times in (cap- 
illary) equilibrium with the uniformly large fog drops present 
in it, i.e., that the supercooling /^T at the moment agrees 
with the capillary supercooling  /^T   (cf. our Section 2.3) and, 
consequently, is uniquely determined by the fog-drop size. 
Since, however, such an equilibrium is unstable and, moreover, 
the droplet size is not uniform in reality, this assumption is 
completely out of line with actual conditions. 

The same non-sequitur is also clearly evident, for example, 
with Goodenough (7). 

Cf. Goerke (9). 

A comprehensive bibliography on this topic can be found in 
Preiskorn (10).   On the whole, his work presents an excellent 
survey of the erosion problem and contains numerous sound 
recommendations for control of this effect. 

We shall not go into source citations in this Section, 

Cf. Section 2.4. 
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8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

See Section 2.3a. 

Cf. Section 2.3c. 

Cf. Section 2.5a. 

Besides their large number they also possess extraordinarily 
heat-transfer coefficients. 

In our terminology, "fog" = steam + fog droplets, where the 
"fog droplets" are water droplets with radii between 10"8 
and 10~6 m, distributed practically uniformly in the flow 
channel. 

See Section 2.3b and the i,s-diagram (Appendix). 

Cf. Sections 2.5c and d. 

Since the publication of the Swiss original of this report in 1962, 
the effect of P on the condensation of steam has been studied 
experimentally (47).   These measurements confirmed the influence 
of P inferred from theory.   However, they indicated slightly higher 
supersaturations than expected on the basis of theoretical calcul- 
ations.   Based on the experiments, the range of peak values occurr- 
ing in turbines are 4- to 9-fold supersaturation and 30° to 440C 
supercooling.   These deviations between theory and experiment can 
be explained by a difference of some 13% between the surface tension 
of a nucleus and that of a plain water surface.   The fog droplet 
sizes calculated in the present report have been found to agree well 
with the measured drop sizes.   Therefore, the bulk of the conclusions 
reached in this report are not affected by these corrections. 

A tenfold increase in the expansion rate P increases the number of 
fog droplets by a factor of 200 to 300 and reduces the average fog- 
droplets si^e accordingly by a factor of 6, cf. Fig. 2.5.14. 

Cf.  Section 2.5e. 

Cf. Sectic   2.6a. 

Cf. again Section 2.6a. 

The thickness of this water film or streaks is generally only a 
small multiple of 10"6 m, ui. Section 2.7. 

Cf. Section 2.8a. 

Cf. Section 2.8b. 
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22 

23 

24 

25 

26 

27 

28 

29 

30 

Cf. Section 2.8d. 

Cf   Section 2   7. 

Cf. Section 2.9. 

Cf. Sections 3. 1 to 3.6 

Celled "miscellaneous losses" in this report. 

Cf. Section 3.7. 

Cf. Section 3.7b. 

Let it be noted here that the smaller losses in the impulse-type 
turbine are not directly related to the low reaction, but to the 
lower number of stages.   This latter, however, is related to the 
amount of reaction by the fact that stages of low reaction usually 
can convert more heat drop. 

Cf. Section 3.8b. 
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Part Two *) 

i ■ I 

THE FORMATION OF STEAM WETNESS AND THE FORMS 
ASSUMED BY WATER IN THE TURBINE 

2.1,   LAYOUT OF TWO TURBINES AS A BASIS FOR APPLICATIONAL EXAMPLES 

The objective of the present study is to investigate the behavior 

of steam in low-pressure condensation turbines.   This behavior may be of 

different nature depending on the design of the turbine.   To be able to 

Judge the influence exerted by design on the processes of the turbine, 

two turbines were designed on paper to be used as applicational exampley, 

one as a reaction-type and the other as an impulse-type turbine.     Both 

turbines have the same expansion line; it lies almost entirely in the wet- 

steam region.    The reaction-type turbine has twice as many stages as the 

impulse-type turbine.   Both turbines represent extremes of their types.   The 

reaction-type turbine shows an exaggerated axial structural length, with the 

blade pitch values tending to be larger and the deflections smaller than usual. 

The impulse-type turbine, on the other hand, is extraordinarily short; its 

(runner) blades are quite close together and produce large deflections.   The 

exaggerations were intentional so that the differences in behavior between the 

two turbine designs woi ' ' be more distinct. 

Below we give the data for the two turbines that will be necessary for 

subsequent calculations, followed by a discussion of how we can use them 

to determine the plots of certain quantities knowledge of v.hich is presupposed 

in subsequent Sections. 

The turbines were laid out on the basis of the i,s-diagram for 

♦Superscripts refer to the footnotes listed on pp.  198a and 198b. 
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t he rmo dynamic equilibrium,  and no moisture-losses were  taken into ac- 

count in the efficiency figure adopted.  Thus the data can be regarded 

only as a first approximation of reality.  How the expansion actually 

takes place can be determined only at the end of this s^-udy,  on the 

basis of the investigations that have been carried through. 

For the  sake  of simplicity, we shall restrict our considerations 

to the conditions at the blade mean diameter. 

The      basic data       for the two turbines are as follows: 

Mass throughput  (no bleeding!   ) M = 40 kg/sec(89 Ib/aec) 

Speed 3000 rpm or w = 314.2 rad/sec 

Initial state of steam p.  = 1.4 bar (19.6 psia) 

iA = 2700 kj/kg (1160 OTU/lb) 

(Initial superheating:  about 4.50C   (^F) 

Final pressure (condenser 

pressure) pK = O.035 bar     (0.5 p»i*) 

Final wetness yE ~ 13^ 

Percentage reaction, 
31) 

reaction    turbine 50^ (40^) 

Percentage reaction, 

impulse turbine31^ 5^ (30^) 

The expansion line  is shown in Fig.   1.   Figures 2 and 3 show merid- 

ional sections and   blade    shapes for the two turbines,  as well as cer- 

tain characteristic velocity triangles. 

More explicit data are collected In Table 2.1.1 for the 

reaction turbine and in Table 2.1.2 for the impulse turbine. 

The significance of the various     symbols       will be evident from Fig.  4. 

The following must be noted regarding the quantities t and TQ: The 

flow time t was determined from the axial-velocity curve, according to 

the expression 
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Fig.   2.1.1.  Expansion line of 
turbines used as example  (with- 
out taking moisture losses 
Into account), a) Saturation 
line; b)  stages of constant- 
pressure   turbine;   c)   stages of 
high-pressure turbine. 

-«. 

i «A' (D 

(we shall return  bel»w   to the matter of determining the c -curve).  T c ' a a 

Is the average value of the  logarithmic axial pressure gradient 

(2) 

in a blade wheel     and,  for example.  In the case of a stator  wheel is cal- 

■ P Of, d|p 

culated as 

* (3) 

To conduct an exact analysis of the flow process in turbines, we 

must know the plots      of certain quantities along the axial coordinate 
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Fig.   2.1.2.  Bucket 
complement and veloc- 
ity triangles for the 
high-pressure turbine 
(cf.  also Table 2.1.2), 
A) Diameter; B)  stage. 

Fig.  2.1.3. Bucket com- 
plement and velocity tri- 
angles for the constant- 
pressure turbine  (cf. 
also Table 2.1.2).  A)  Di- 
ameter; B)  stage. 

particularly those of p,  P    and c  .  Below we shall discuss ways in 

which these functions can be determined from known design data given 

for ths stations between the    blade    rings. 

Within a stage,  the pressure diminishes not approximately linearly, 

but stepwise.   It remains approximately constant in the unbladed inter- 

mediate gap, but compensates for this by dropping off the more rapidly 

at places where  the flow experiences the sharpest accelerations.  The 

pressure curve for the bucket surfaces — for which the literature con- 

tains numerous measurements - depends heavily on profile shape and is 

sensitive to changes in the direction of onflow.   In the middle of the 

channel,  on the  other hand,   it should be possible to Indicate the na- 

ture of the pressure drop in a fairly generally valid form,   cf. Fig. 

5a.  We might arrive at this wavy curve by plocting the pressure on a 
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logarithmic scale and superimposing a sine curve over the connecting 

straight lines between the two intermediate pressures before and after 

the ring in this mode of presentation (Fig.   5b),  in such a way that 

the resultant curve has a horizontal tangent in the Intermediate  spaces, 

-U 

Fig.  2.1.4.  Notation for 
Tables 2.1.1 and 2.1.2.   1) 
Dtlp'  2)  D] 
Schord;  5^ t 

hub'  3^   ^bucket;     ' 
bucket* 

Fig.   2.1.5.   Sine-wave 
approximation for the 
pressure curve and for 
the logarithmic axial 
pressure gradient in a 
bucket ring (plotted 
for a guide wheel). 

The curve of the   logarithmic axial pressure gradient  PQ  can eas- a 

lly be determined on the basis of this curve for In p(^Q), as has been 

done in Fig. 5c. P„ follows a cosine curve, reverts to zero in all in- 

termedlate spaces,  and has a maximum of height 2P    between them  (PQ   Is 
3 3 

computed from Eq.   (oS). 

The axial velocity curve c  (^„)  can also be ostimated in a  slm- a a 

liar manner. The values of c In the Intermediate spaces are known 

from the layout of the turbine. Between them, c would have a uniform 

curve (line k in Fig. 6) provided that the blades were infinitesimally 

thin. Since, however, the blades  block off part of the flow section, 

c must rise In the ring. This can be estimated approximately by rals- 
3 

ing the velocity value that would correspond to the uniform curve in 
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TABLE  2.1.1 

( Pr-action-typ-?      Turbine) 

1 State: 1 2 3 

2 Schaufelkranz: vor r 1' zw.l'.l 1" zw.l"^' 2' zw. 2", 2"      2" zv.2",3' 3' zw. 3', 3" 3" zw. 3", 4' 4' 

la 0 0,05 0,10 0,15 0,20 0,26 0,32 

»               W/kg 2700 2675 2650 2314, 5 2578, 5 2538,5 2497 

p               bar 1,40 1,20 1,01 0,790 0,612 0,454 0,330 

»               in3Ag 1.25 1.41 1,635 2,05 2,60 3,36 4,40 

y«,        ke^« - 0,003 0,011 0,022 0,033 0,045 0,057 
i 

c               m/iec 

e               m/sec 

81,8 

R?.,S  - 

81,0 

 •»   241,2 

83,8 

89,1 - 

94,5 

 •- 281,3 

103,5 

103,6- 

114,7 

 •- 301,0 

129,4 

130,0- 

w               m/sec - 86.4   - -   243,6 94,6  ♦  289,0 115,1 - -♦ 314,2 

u               m/sec 254,5 256.9 259,3 261,7 265,2 269,4 274,1 

DSpitte6   ^ 1,7400 1,7706 1,6012 1,6318 1,8784 1,9344 1,9904 

1,8200 1,6353 1,6506 1,6659 1,6892 1,7172 1,7452 

DN.b. 7   "j 1,5000 

0,611 

1,5000 

0.697 

1,5000 

0,781 

1,5000 

0,869 

1,5000 

1,004 

1,5000 

1,172 

1,5000 

1,344 

•schnS   ■ 0,128 0,142 0,157 0,177 0,202 0,232 0,262 
t 121 117 121 130 106 108 108 

»schnS    ■ 0,042 0,044 0,043 0,040 0,050 0,050 0,053 

«Sehn, 9   " 0,054 

0,0025 

0.054 

0.0025 

0,054 

0,0025 

0,054 

0,002! 

0,067 

0,0030 

0,067 

0,0030 
0,067 

0,0OM 

'« 0,038 0,038 0,038 0,039 0,047 0,049 0,052 
i              m 0,038 0,024 0,024 0,037 0,049 0,048 0,047 

M.         - 0,050 0,050 0,050 0,050 0,060 0,060 0,070 

•H 0,057 0,057 0,057 0,057 0,069 0,069 0,06» 

•» 0,068 0,066 0.086 0,066 0,096 0,096 0,096 

1               sec 

••             m'\ 
*               sec"1 

mu        ••* 

0 

3,1 

5, 4 • 10*4 

3.5 

lO.S-lO"4 

4.» 

15,9-10"4 

5,1 

2U,4.1U"4 

5,2 

25,0   10'4 

5,0 

29,3-10'4 

4.8 
820 730 1070 1270 1530 1580 1690 

1)  Stage;  2)   blade;    ring;   3) before;  4)  between;   5) after;  6)  tip;   7) 
hub;   8)   blade    ;   9)   chord. 

proportion to the  cross-sectional    redu'-tion        (see  figure). 

The  curves  obtained   In this way for  P  (^   )   and c   (£   )  are pre- a    a a    a 
sented  In Fig.   7 for  the   specified    reaction-type      turbine and  in  Fig. 

for  the       Impulse-type turbine.   These  c0-curves were  used  to  calc a 

late the flow times t from Eq.   (l) for both Tables 1 and 2. 

An additional quantity knowledge of which Is presupposed In the 
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3 4 5 6 

«     3'     zv.3',3" 3" 
1 

z».3",4' 4' zw.4',4"       4" zw. 4", 5' 5' zw^1^" 5" zw.S"^' 6' zw. 6', 6"    6" 

?.   ... ! 

f                  0,26 0,32 0,38 0,46 0,56 0,64 0,75 0.64 

\ 
2538,5 2497 2452, S 2407,5 2460 2320 2267 im 
0,454 0,330 0,236 0,168 0,111 0,0785 0,0485 :.o« 
3,36 4,40 6,00 8,30 11,8 16.2 25.5 34.3 
0,045 0,057 0,069 0.082 0,095 0,106 0.121 ?,?30 

114,7 129,4 155,6 188,3 200 222 252 312 
 •■ 301,0 130,0- 188,3 - 2 ti 395 32. 

115 1 — 
• 961 

155,7    i "••■ 343,5 200  — 254 -      ■ ■      « • 390 
269,4 274,1 279,1 284,3 298 310 325 338 

1,9344 1, 9904 2,0556 2.1210 2,3000 2,444 2.642 2.804 
1,7172 1,7452 1,7778 1,8105 1,9000 1.973 2.071 2.152 
1,5U00 1,5000 1,5000 1.5000 1,5000 1,500 1.500 l.SOO 
1,172 1,344 1,542 1.765 2,39 2.93 3.72 4.41 

02 0,232 0,262 0,1« 0,3M 0,434 0.520 0,608 1 
1 

108 10t IM 71 94 62 70 
50 0,050 0,052 0,0)4 0,080 0,064 0.100 0.093 
87 0,067 0,067 0,046 0,100 0,074 0,109 0,078 
D30 0,0030 0,0030 0,0030 0,0035 0,0030 0,0035 0,0030 
47 0,049 0,052 0.054 0,071 0,060 0,088 0,069 

49 0,048 0,047 0.040 0,064 -0,044 0.052 -0.03» 

30 0,060 0,070 0,070 0,100 0,080 0.110 0.090 

59 0,069 0,069 0.0M 0,103 0,078 0.110 0,07» 

36 0,096 0,096 0,012 0,128 0,092 

lo-4 

0,127 0.088 
|              . 

25,0  10'4 29, 3-10 ■* 33,7-10'4 37,4 • 10'4 v2,l-10H 15.6. 49.7.10-4          U*  »»'* 

-- 5,0 4,8 4.« 4.» 4.3 4,3 3.7 
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following Sections and which Is closely re- 

lated to the logarithmic axial pressure grad- 

ient is the "expansion rat«" 

v ■ 
P dt   » » 

(4) 

Fig. 2.x.6. Esti- 
mated axial-velocity 
curve for a bucket 
r:r^. A:B is to be 

i     a equal to C:D. 

For the most part, we shall approximate the 

variation of this quantity within the bucket 

ring by means of a cosine curve that begins 

and ends at zero (cf., for example, in Pig. 

2.9.3). Its amplitude value is 

*_..-(».€.)„«.    "(5) 

The  P_„v was determined from the P„ and c„ max a a 
curves for each ring of the turbines in ques- 

tion and enterea in the tables. 

Fig. 2.1.7. Curves of PQ(4Q) and-cQUQ) in 
a   a a   a 

the reaction-type  turbine. A) Stage. 

2.2.    DHAG  FORCE AND HEAT-TRANSFER BETWEEN DROPLETS AND STEAM 

In the present study, we shall always tacitly assume that the 

water droplets are spherical unless the contrary is expressly noted. 

This assumption Is notably valid for the most important droplet sizes 

(diameters <1 |i). That is to .jay, such small drops can follow the mo- 

tion of the steam closely, so  that the peripheral pressure-force varla- 
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Fig.   2.1.8.   Curves of P'U  and c  (§   ) a ^   a a    a 
In the      impulae-typ. 
Stage. 

turbxne. A) 

tlon that gives rise to distortion remains within narrow limits, helng 

conditioned by the velocity of the droplets relative to the steam; 

tnus the surface tension is in a position to maintain the spherical 

shape. With larger drops, higher relative velocities arise and the dis- 

torting forces can, under certain conditions, become so large that 

they not only set the droplets Into distorting vibration but even shat- 

ter them. We ahall discuss these problems in greater detail in Section 

2.8. 

We define the -irag coefficient cD and the heat-transfer 

coefficient 

and 

«r for a sphere In the usual manner, as 

(1) 

Q . xr{«r«)(Tr-Tr>Bd) . (2) 

respectively. Here W is the  drag   force exerted by the steam on the 

droplets at a relative velocity U . Q is the quantity of heat trans- 

ferred from the droplet each second. The "adlabatic drop temperature" 

Tr ad exceed3 the temperature T^ of the surrounding steam by the bound- 
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ary-layer heating ATp„: 

Tr.ad - Td * ^CS (3) 

ATPQ becomes noticeable only at large relative  velocities.   (In the LGS 
case of steam. It reaches 10C at about U = 60 m/sec.) Frequently, a 

Is also expressed In terms of the Nusselt number, which Is defined as 

Nu. 
(''■) 

Thus the entire problem of drag   force and condensation is re- 

duced to the determination of cD, a and ATGg. However, before we in- 

dicate formulas for their calculation, we must present certain basic 

arguments concerning flows in general. 

The Navler-Stokes equations, which serve as a basis for the usual 

discusalon of flows, presuppose a continuous medium. If this assumption 

agrees closely with reality, we speak of a continuum flow. If, however, 

as a result of a very low density of the medium or of very small dimen- 

sions of the bodies past which the flow is moving, the free path of the 

molecules acquires orders of magnitude comparable with the dimensions 

of the bodies, deviations from continuum flow make their appearance. 

The Knudsen number Kn, which Indicates the ratio of the mean free 

path to the principal dimension of the body in question (in our case, 

to the droplet diameter 2r), is used as a measure of these deviations: 

T (5) 

For calculation of the mean free path, we have at our disposal the fol- 

lowing formula derived from the kinetic theory of gases: 

(6) 

where vd and a, are the kinematic and dynamic viscosities of the steam, 

respectively, and a, represents the speed of sound in the steam. The 

quantity (1.5 M-^v^d) is plotted in Diagram III (Appendix) as a func- 
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tlon of the steam pressure, while Diagram I shows the mean free path 

T in saturated steam as a function of pressure. We see that, for ex- 

ample, in saturated steam with p = 1 bar = ICr N/m (T, = T = 99.6°), 
Q     S 

o 
the mean free path is about T = S'lO- m. Using Eq. (6), we can also 

express Kn in terms of the Reynolds number 

Re. . 2rUr .ÜVÜL (7) 

and the Mach number 

as follows: 

ii • — (8) 

Kn 1.5 - 1.5«-=^ 
Re. 

(9) 2r   edVRTd 

If the deviations from continuum flow are not particularly strong. 

It is possible to set up a theory that gives results in good agreement 

with experience by retaining the Navler-Stokes equations as valid but 

dropping the wall-adhesion condition and postulating instead a finite 

velocity at the wall -- the so-called slip velocity. For this reason, 

such flows are known as slip flows. In a similar manner !n the case of 

temperature, a discontinuity is also assumed between the wall tempera- 

ture and the average stream temperature at the wall. 

At the very larpe Knudsen numbers, when the dimensions of the 

body are small as compared to the free path of the molecules, the proc- 

esses can be calculated or the basis of the kinetic gas theory, since 

here we can regard the "flow medium" as a multitude of individual and 

Independent particles. In sucn cases, we speak of free molecular flow. 

A region that has hitherto been inaccessible to theoretical treat- 

ment bridges the gap between slip- flows and free molecular flows - the 

so-called transition flow region. The values of cD and a used for this 
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region are determined,   for want of a better basis, by extrapolation 

from the  two neighboring regions. 

There are no sharp boundaries between these flow forms.   Neverthe- 

less,  we can break up  the range approximately as follows: 

Kn < 0.01  :   Continuum flow 

0.01 < Kn < 0.18  :   Slip  flow 

0.18 < Kn < 4.5     :   Transition  flow 

Kn > 4.5     :   Free molecular flow. 

An excellent survey of all these problems  can be found In   [15]. 

For the continuum flows, It follows from the theory of analogy 

that cD and Nu depend on Reynolds number. (The subscript 0 will be 

used to denote values applying for continuum flows.) Thus,  we write 

CD " 'Do " W^P • (10) 
Nu,  - Nu^ - Nl^OUp  . (11) 

The form of the dependence has been determined empirically;  In this 

connection,  see the representations In  [16] and  [17],  respectively. 

Strictly speaking, we should also have  In Eq.   (11) a dependence on the 

Prandtl number 

however,  the variation of Pr Is so Insignificant under our conditions 

that the effect can be disregarded. 

For very small Reynolds numbers,  the relationships can also be 

derived analytically: 

•i)© " ir " —^- <"stoke•  iaw"> 

NU    -i or        «    . _1 ro ro       r 

(13) 
►for Rer < 1. 

(14) 

For a somewhat higher range of Reynolds numbers, a range important 
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primarily for the droplets detached from the bucket edges, we have on 

the basis of experiment (cf.   [16] or  [17]) 

(15) 

(16) 

^' 

Nu 
*"d 

ro 
••0,66/5,   ör ot^, *. O.SSlSi^-p- 

■for 20 < Rer < 800. 

For the boundary-layer heating we have for (laminar)   continuum flows 

(see,  for example,   [16]) 

(17) 

For slip flows we have (cf. [15]) 

«D " cDo 
(1 ♦ IS Kn)(l ♦ 4 Kn) ♦ ^ KD*  
-' '   " I 

(1 * IS Kn)(l ♦ 6 Kn) ^ Kn2 (4 4 18 Kn) 

r     "ro U- 
1*3 «—ZL-Hu 

IUt Pr   0 

> ec ro        VttNuo 
1 ♦ =—Kn 

l.SWPr 

ATGS * ATG8o 

(18) 

(19) 

(20) 

Here c^ and a n are to be substituted In accordance with the Reynolds 'DO *r0 
number. 

For free molecular flows, we find c^ and a values that are inde- 

pendent of drop size. They are given in exact form in [15]. Here we 

shall write them only for the small Mach numbers of interest to us, 

which simplifies the expressions greatly. We further assume that the 

recoil of molecules from the droplet surface takes place by reemlsslon. 

This m;ans that the nergy distribution of the rebounded molecules is 

determined by the Maxwell distribution corresponding to the surface 

temperature, regardless of the energies that they possessed before Im- 

pingement, and that the flight directions of the rebounded molecules 

follow a three-dimensional cosine distribution irrespective of the 

flight directions before 1/npingemant. It has been found through exper- 

iment that about 90^ of the molecules rebound in this way for various 
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gas-metal combinations;  for droplets and steam, where the  sxorface and 

the medium consist of Identical molecules, we should expect this as- 

sumption to be  Justified to an even much greater degree.  We shall as- 

sume that It Is valid for all molecules.  Thus, we obtain  the formulas 

D      ^?VM       35    KTdK        0r 

•S ■ ^ <l   ^Cp^d-^V^-' (22) 

^GS-2.e5?77T ^M;-
0

-
7
" c;- (23) 

where we have used K ~ 1.32 and Tr ~ T,.   Applying  (7),   (9),   (12),   (13), 

(14)  and  (17),   these equations can be brought to the  form 

1.5^5.50/24 OJM 
D * cDo fc^      *CDo Kn 

1.5ff.0,805P>/» 0^1» 
r     ro Kn ro    KB 

(24) 
■foiiur*i, 

(25) 

^GS^TC8o-   *£f   7^   -^CSo- ^ • (26) 

Larger Reynolds nvunbers occur only for larger droplets, and for these 

the deviations from the continuum flow are negligible anyway. 

Although we do not have any formulas at the present time for the 

transition flows, extrapolation from either adjacent region Is made 

the more possible by the fact that the solutions Indicated for slip 

flows merge rather smoothly with those for free-molecular flows at 

large Knudsen nuir.bers. 

When we compare Formulas (10), (18) and (24) with (11), (19) and 

(25), refipectively, we are struck with the Idea of representing the 

resistance coefficient and the heat-transfer coefficient (for small 

Reynolds numbers) each in a single formula that embraces all flow types. 

These would read 

c, D ■ «Do-V*»). (27) 

«ro•V
,Ü,, ' (28) 
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where  c^ and ar0 am glv'en by Eqs.   (13)  and  (14),  respectively.   The 

functions f„    and f      I^ave unit value for continuum flows and are 
'D otr 

otherwise given by the factors in Eqs. (18) and (24) or (19) and (25) 

Figure 1 shows their curves. In the material to follow, we shall al- 

ways imply the following expressions by f  and f 
CD ar 

cO       1 ♦ 2,53 Kn   ' 

1 

(29) 

(30) 
*r      1 ♦ S, 18 Kn 

As will be seen from Fig.   1,   they permit simple and sufficiently exact 

reproduction of conditions  over  the entire range   of Kn.   In the calcu- 

lations presented here,   the  Influence of  the  low steam densities will 

always be taken Into account by means of these  formulas. 

»• 

KonHnaumiUr. 

0.001 — 

Schlupf tlr       Ubtrpinmslr        frumoltk.-ttr. 

Kn 

001 a» mo 

Fig.   2.2.1.   The functions  f 
CD 

= cr/cD0 and fa    = ar/arO used   ln 

acccanting  for the  influence  of low 
steam densities on the resistance  co- 
efficient and heat-transfer coeffi- 
cient of a  sphere.   1)  Continuum flow; 
2)   slip flow;  3)   transition flow;   4' 
free molecular flow;   5)  Equation;  6i 
from. 

For small Reynolds numbers  (Re    < 1),   therefore,  we  calculate with 

Cr»    " 
24 

D       R*r  l*2,53Kn ' 
(31) 
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'        r     1 + 3,1« In ^   ' 

respectively.   For large Reynolds numbers,  the density effect is gen- 

erally slight when water droplets are  present  In the  turbine  (since 

the Knudsen numbers are small),   so that we can simply employ Eqs.   (15) 

and (16), 

In concluslon,w<?  must make reference to yet another effect.  All 

of the formulas   Just presented apply for the case  in which the flow 

medium is moving past the sphere.   Due  to condensation at  the drop sur- 

face,  however,   a radial sink flow  is  superimposed on  this  circumferen- 

tial flow.   A thorough investigation was made to determine whether this 

disturbance due to condensation would be capable,  under our conditions, 

of producing noteworthy changes  in the cD and a    values.   The result 

was again found to be negative for the case of small droplets,  at 

which condensation is most vigorous;   the influence of condensation 

never gives a change larger than 1 to 2%.  This becomes understandable 

at once when we consider that the effect can arise only where a    (and 

cD) have already become considerable in magnitude. 

We shall now introduce two quantities as a measure for the inertia 

of a droplet. 

The mechanical inertia of the droplet can be  characterized by a 
I 

"deceleration time" At. „ . This is defined as brems 

Atbr.». ' -T;- (33) 
[ 

where U = c — c is the relative velocity of the droplet with respect 

to the steam and c is its instantaneous absolute acceleration. When 

the flow velocity c of the steam is constant, then c  is equal to the 

relative acceleration U and, consequently, At,    gives the time in 

which the droplet would reach the velocity of the steam (U = 0) if 
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its acceleration were to maintain this  constant value.  Newton's  law 

for the droplet states that mc    = -W,   where W Is given by Eq.   (1) and 

the drop mass ni, can also be expressed  In terms of the radius.  Thus we 

have from Eq.   (33) 

*U'vv, ' (34) 
At, bremt 

For small Reynolds numbers,  cD Is given by Eq.   (31),  which yields 

Hn-ems 

1.271 

-*— r» (for Re,, < 1) 
1« 

(35) 

Equation (15) applies for our other Important Reynolds-number range. 

I.e.,  for detached  "large" droplets,  and,  accordingly, 

"br.«. ■ ^4r\ dr (for 20 < Rer < 8o0^    (36^ (V2«^   VRer 

where,  of course,  we have not taken the  Influence of Knudsen number 

Into account.  The material quantities  will be found In Diagram III of 

the Appendix. 

The thermal inertia of the drop can be characterized In a quite 

similar manner by a  "cooling time" At ,. .  We obtain a definition for 

it by replacing the relative velocity by the excess temperature am1. 

the acceleration by the heating rate  in Eq.   (33).  Thus we write 

Al.bk " - 

Tr-Td (37) 

Newton's law is suppxanted by the cooling formula c m T = Q, where 

the dissipated heat Q is given by Eq. (2). In analogy to Eq. (3^)* it 

follows from this that 

A« abk 
<wcwr 

3ot. 
(38) 

For small Reynolds numbers, it assumes, with Eq. (32), the form 
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and for somewhat larger Reynolds number, with Eq.   (16),  the form 

At. (for 20 < Reri  < 800),       (40) 
**       <3V<wcw>   S.8V5ir 

where  the  Influence of the Knudsen number has again been disregarded. 

For the material quantities,  see Diagram III in the Appendix. 

As an example,  let us calculate the deceleration and cooling times 

from Eqs.   (35)  and (39),  respectively,  for certain droplet sizes in 

setn.rated steam at p = 0.12 bar.  The values apply for drops that, for 

all practical purposes,  flow with the steam (1^ » 0).  For compar.son, 

we list in parentheses the corresponding values  for U   = 200 m/sec,   in 

case this assumption has resulted in Reynolds numbers within ehe range 

of validity of Eqs.   (36)  or   (40). 

TABLE 2.2.1 

!     r              m 10"8            10'7            10"6            10"*            w'4 

Atbrei.    •" 
'l .    2 

i,4-w'7  i.sio'8    s.iio"8    a,o.io"8   0,190 
(0,7   10 Ä)   (0.0M) 

6,2-W7   M-W8     1,S-10*4     7,8-10*2     0,69       i 
(sio-w8) «•:»)  | 

1) Deceleration;   2)  cooling. 

Inertlal effects may be expected for drops whose Inertia  oines 

are comparable with the flow times.  The steam requires about 5*10 

second to flow through a bucket ring;   in rough approximation,  there- 

fore,   we can state that the  inertia effects become significant only at 

r ^ 10"    m.   It will be seen from the data that the thermal Inertia of 

a droplet is somewhat larger than its mechanical  inertia. 

2.3.   THE  PHYSICAL BEHAVIOR   OF THE STEAM IN THE  WET-STEAM REGION 

a)  Supersaturation and Supercooling 

Left  to itself,  a system containing two phases of the same sub- 
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stance will tend toward a state of equilibrium. A constant temperature 

("saturation temperature") and a constant pressure ("saturation pres- 

sure") will prevail everywhere in the system at this so-called thermo- 

dynamlc equilibrium. A fixed relationship obtains between these two 

quantities, although it does differ from substance to substance ("vapor- 

pressure curve"). This can be indicated in the form 

T§ «Tg(p) or p, -p,^), (l) 

according to whether we imagine the pressure or the temperature to be 

given. 

In the case of condensation, the heat of condensation that is con- 

tinuously liberated at those surfaces on which the steam is deposited 

must also be continuously withdrawn. If that were not the case, heating 

of the surfaces would occur, so that further condensation would be im- 

peded. If dissipation of the heat to the outside is not possible, it 

must be taken up by the steam phase, for which purpose the latter must 

be cooler than the condensation surfaces. The rate of condensation is 

determined by the efficiency of the heat-transfer process. 

If initially superheated steam reaches the saturated state during 

expansion, say in a turbine or a nozzle, the only surfaces then remain- 

ing for condensation are those presented by the fixed linings and any 

dust particles that may be suspended in the steam. As will be shown in 

Section 2.4, however, the condensation accomplished here is so slight 

that no noticeable quantities of water are deposited. In practice, the 

steam expands further as though no water at all were being condensed 

and thus enters an unstable state. These unstable states are character- 

ized by failure of the pressure and temperature to follow the fixed 

relationship given in Eq. (l) even though the saturation point has al- 

ready been passed. Instead, the steam pressure p is higher than the 

saturation pressure P<,(Td) corresponding to the steam temperature T, 
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or,  expressed in terms of temperatures,   the 

steam temperature  is  lower than the saturation 

temperature T (p)  corresponding to the steam s 
pressure;   cf.  Fig.   1. 

As a measure of the deviation of such an 

unstable state from thermodynamic equilibrium, 

we use the so-called supersaturatlon n, which 

indicates the ratio of the steam pressure to the saturation pressure 

corresponding to the steam temperature: 

Pig. 2.3.1. illus- 
trating definition 
of superjaturation 
and supercooling, l) 
Saturation line. 

TT 
P.<V 

(2) 

We shall also frequently have recourse to its  logarithm,   the  "logarith- 

mic  supersaturation" A: 

p 
A ■   In  Tl -   ID 

P.<V 
(3) 

However, we might Just as well characterize such a state by the super- 

cooling. This Is defined as the difference between the saturation tem- 

perature and the actual steam temperature: 

AT ^ TB(p)-Td . (4) 

The following simple relationship obtains between supersaturatlon 

and supercooling.  Let us write the Taylor expansion of the pressure 

curve given by Eq.   (l) for the pressure p = p^: 

dT. 
T,(P) - rs{Pj ♦ 

d In p 

d2T. 
X + 

2   (dlnp)2 
»«. (5) 

where 

X-   in-  • 

T (p^)  and the other coefficients are material quantities.   If we now 

select the reference pressure such that p,   = Pg(Td),   then X = A,  so 

that 
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dT. 
T.<P) = T. ♦ 

d In p 
A+i 

d2T 

•VV 
2    (dlnpr 

A2 
A   + 

Ps<Td) 

Prom this, using the abbreviated notation 

.,2 
1    /   dTs                 1 d   Ts 

K = K(Td, A) s  —      -\           * l2 T7T: 
Td   ldInpt(Tj (d,np) 

S     u 

A* (6) 
Ps(Td) 

we obtain the relationship that we seek: 

AT    =   KTdA   =    KTd In TT (7) 

This relationship will be used often In the calculations to follow. 

The function K is plotted in Diagram II (see Appendix). 

By selecting p,   = p, we arrive in a  quite similar manner at the 

conversion factor K(p, A), which is represented in Dlagrair I.   Then it 

is preferable to calculate AT from the formula 
K A 

AT    ^    T (p)       , (Q) 
8      1 ♦ KA \UJ 

which is obtained by elimination of T, from Eq.   (7) by application of 

Eq.   (4). 

Whether we use Eq.   (7)  or Eq.   (8)  will depend on whether T, or JD 

is given. 

b) IjS-Diagram for Fully Supercooled Steam 

The attached i,s-table (see Appendix) represents a supplement to 

the familiar diagram of Dzung and Rohrbach (see [18]) for the case in 

which the steam acquires a dry-supercooled state in a certain zone b- 

low the saturation l-ne. 

Normally,  that boundary in an l,s-diagram at which supercooling 

collapses as a result of spontaneous condensation of the steam is 

known as the  "Wilson line," and drawn approximately parallel to the 

x = const lines.   It has, however,  been widely recognized (cf.,   for ex- 

ample,   [19],   [20],   [3])  that we are not dealing here with a fixed 

boundary and that the condensation may take p]ace sooner or later, de- 

- 50 - 

_ • -^-^•tJ-'-t'",J"--' '■ 
■ S 



■■■y '  --■---■-:■----■-- 

'■    I 

pending on conditions.  Here the rapidity of the pressure drop at the 

point where condensation Intervenes is the governing factor.  The method 

developed In [45]  (cf.  also Section 2.5d In this connection)  offers a 

means of taking this effect Into account mathematically. 

The position of the Wilson point was determined mathematically 

for several parallel-displaced expansion lines as a function of the 

expansion rate P.  The Wilson lines sought are then obtained by Joining 

the Wilson points corresponding to the same P.  For Wilson chambers and 

the like, we have In approximation P = 10,  for turbine stages  P = 500 

to 5000,  and for short Laval nozzles 1000 to 10,000 and even higher. 

The course taken by the lines is in very good agreement with the re- 

sults of the carefully conducted measurements of Blnnle and Woods   [21J. 

Although the thermodynaralc equilibrium produced beyond the Wilson 

point In the expanded steam Is not perfect,  there  Is nevertheless an 

approximate equilibrium.  For this reason,  the conditions applying for 

thermodynamic equilibrium In that part of the diagram that lies below 

the Wilson lines are presented In exactly the same way as Is done or- 

dinarily.  The two families of curves overlap In the region of the vari- 

ous Wilson lines, since, after all,  transition from one to the other 

takes place at different positions for expansions that occur with dif- 

ferent speeds. 

c) Behavior of Small Water Droplets In Steam 

Thermodynamically,  there la an essential difference between a 

curved water surface, as presented by the surface of a droplet,  and a 

flat surface,  such as may be formed on the linings and larger foreign 

objects.  The difference stems from the fact that the sharper the curva- 

ture of the surface,  the weaker will be the resultant Intramolecular 

attractive force that holds a molecule in the surface layer. The prac- 

tical consequence of this is that a droplet can persist only in an at- 
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mosphere of supersaturated steam and, the smaller the droplet, the 

greater must be the extent of this supersaturatlon. 

The magnitude of this supersaturatlon necessary for stability of 

a droplet of radius r, 11, Is given by the so-called Thomson formula: .32) 

laTT. to      1 
^•RT *  r (9) 

Here,  a Is the surface tension and p1   Is the density of the water; R 

Is the specific gas constant of the steam. An everywhere uniform tem- 

perature T was assumed In this derivation.  The quantity 2a/p,RI Is 

plotted In Diagram II  (Appendix) as a function of temperature. 

If we substitute numerical values, we see that this supersatura- 

tlon becomes pronounced only for very small droplets.   For example,  the 

table below applies for T = 30oC. 

TABLE 2., 3.1 

r (Me\er) CO W3 w-4 
io-5 IO'6 io*7 IO*8 IO"» 

"r 
ATr 

0C 

1 

0 

1,00000 

0,000 

1,00001 

0,000 

1,00010 

0,002 

1,00100 

0,017 

1.01005 

0,17 

1,105 

1.7 

2.72 

17 

A) Meters. 

It Is assumed in deriving the Thomson formula that Ihe surface tension 

has the same value for quite small water droplets consisting of a few 

molecules as for a flat water surface.  Although this assumption is 

definitely unjustified, we do not to this day have any definite in- 

formation conierning the variation of a with r. There is not even agree 

ment as to whether the value of a to be inserted in Eq.   (9)  Is smaller 

or larger for small drops than the value that can be established for 

flat surfaces.   In the present study we shall circumvent this problem - 

for want of a we 11-based theory - in the following manner.   Spontaneous 

droplet formation in supercooled steam has been traced carefully by TATL- 

ous authors,  usually by means of nozzle experiments  (see Section 2,5). 
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Within the framework of the present study,  certain experiments of this 

type were recalculated assuming various a(r) relationships,  keeping 

for subsequent calculations    that function a(r)  that resulted  in 

the best agreement between calculation and experiment.  The assumption 

of radius-Independent  surface  tension  turned out the best. In all cases to 

follow,   therefore,  we  shall assume that 

a = independent of r = a(T/. 

The  dependence on  temperature  Is weak;   see Diagram II In the Appendix. 

We may draw two  important conclusions  from Eq.   (9).   Instead of be- 

ginning with the temperature and inquiring after supersaturatlon,  we 

can proceed from the pressure  In the   surroundings and inquire as  to 

the maximum temperature T    that a droplet of radius r can acquire and 

still Just be able  to exist.  This must lie below the saturation tem- 

perature.  The magnitude of the deviation,  which we should like to call 

the  "capillary supercooling" AT ,  follows from Eq.   (9) and Eq.   (7)»^) 

ATr   •   T.(p)-Tr.   CTr.(-l|-)| (10) 

Certain values of AT    are entered in Table  1.   We shall incur no major 

error if we substitute  the numerical values for both K and 2a/p,B.T    at 

T  (p)  instead of those at T .  These can be read from Diagram I at  the 

pressure p. 

The  temperature 

Tr   '   V - "r (^)?   - V*> ■ ".(i^) F (11) 

has  the same      tparöng       for a droplet as the  saturation temperature T 

has for a flat water surface.  A flat water surface In contact with a 

steam (vapor)  atmosphere at pressure p always tends to the temperature 
T

0(p)> by either .condensation or evaporation.   In the same manner,   a 

droplet tends  to hold  its surface temperature at T .   If this tempera- 

ture has been reached,   further mass exchange between the droplet and 
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the vapor,   such as condensation on the droplet,   can take place only- 

provided  that the condensation heat liberated is withdrawn from the 

droplet.   If that were not the  case,  the temperature  of the droplet 

would rise above T ;  then,  however,  it  Is no longer  capable of exist- 

ence in the vapor atmosphere concerned,  begins   ".o evaporate,  and loses 

mass until  it has been cooled back to T    by the evaporation heat that 

has  been withdrawn.  For this purpose,  however,  exactly as much must 

evaporate as had been   rouo'ensed in ^ycess, i.e.,  the rate of oonclensa- 

tion is dictated by the heat-transfer. 

Consequently,   in continuous  condensation on the droplet,   the  vapor 

must have a  temperature lower  than that of the droplet,  so that the 

temperature distribution represented in Fig.   2 prevails.  Here,   the ef- 

fective supercooling 

AT eff 
Tr-Td (12) 

is decisive for heat transfer and,  consequently,  for the vigor of the 
34 

condensation. Thus the total supercooling of the steam AT is 

AT ATr * AT«B ' (13) 

as will be seen from Fig. 2. 

If in denotes the quantity of vapor that condenses on a droplet 

per second, then in L is the heat of condensation liberated each second, 

and the latter must be equal to the heat Q that can be taken away by 
■ 

heat transfer.  From this it follows,  If we use Eq.   2.2(2)  for Q,  that 

^ . S . -^''^•V  . (14) 

The heat-transfer  coeff.    a^  is given by Eq.   2.2(32).   Equation (14)  has 

two omissions:  the adiabatic boundary-layer temperature has been re- 

placed by the vapor temperature T,, and it was tacitly assumed that 

the entire heat of condensation L is liberated even when the vapor con- 

denses not on a flat surface,  but on a small droplet.   The former is al- 
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ways admissible  for small droplets,   since their 

velocities relative to the steam iiever become 

too high.   As  for the latter omission,   a somewhat 

smaller amount of heat is liberated  in actuality, 

since the enlargement of the droplet surface by 

the newly acquired water appropriates part of 

the heat of condensation for its own work against 

surface tension.   However,  this correction is van- 

ishingly small for all drop sizes with which we 

shall have to deal. 

The second conclusion from Eq.   (9)  leads us 

to the concept of critical droplet radius.   If a supersaturated vapor 

atmosphere is assigned, we can use the Thomson formula, Eq.   (9),  to in- 

Fig.  2.3.2.  Tem- 
perature condi- 
tions  in heat 
transfer from a 
water droplet to 
the surrounding 
supercooled steam 
(the pressure £ 
prevails in the 
vapor space).   1) 
Droplet;  2)  vapor. 

dicate that droplet size which is Just stable in the vapor: 

rkrtt 
a« 

W, (15) 

The adjective  "critical" stems from the fact that larger droplets are 

inclined to grow further, while smaller droplets tend to vanish, since 

their surfaces acquire temperatures higher or lower than T, and they 

can therefore give up heat to the vapor rontinuously or absorb heat 

from it continuously.  The fact that droplets of subcritlcal sizes can 

also form ephemerally in the vapor, and some of them even reach super- 

critical size,   is to be attributed solely to the disordered thermal 

motion of the molecules, which leads to accidental formation of such 

stuck-together molecule groups or droplets.  We shall pursue  this fur- 

ther in Section 2.5. 

d) Steam with Fog Droplets 

Once supercooling has collapsed,   small water droplets,  distributed 

uniformly everywhere and owing their existence to spontaneous condensa- 
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tion, remain suspended In the steam.  They are not all of the same size, 

but have sizes scattered between such narrow limits that it is permis- 

sible to regard them as droplets of uniform size.   In general,  their 

diameters lie heavily concentrated below 1 |i = 10"    m.  We shall refer 

to them as fog droplets,  in contrast to the considerably larger drops 

that may form by, for example,  shattering of collected water masses. 

This usage reflects both the mode of formation and the external appear- 

ance of these steam-water mixtures. 

Even though the fog droplets Incorporate only a small part (say, 

2 to 4j6) of the total original quantity of steam,  they do present a 

considerable surface.  This  is compounded by the fact that the heat- 

transfer coefficients for such small drops are extraordinarily high. 

For the most part,  therefore,  the fog is usually capable, without re- 

quiring large temperature        differences        between the droplets and the 

steam,  to condense onto itself the amount of water that is continuously 

becoming due for precipitation during the course of further expansion 

in the turbine or nozzle.  The following example can be cited as an il- 

lustration. 

Let y = 0.04 = 4^ of the steam be in the form of fog droplets with 
_7 

a radius r = 0.2 ^ = 2-10      m.  Let us assume the values p = 0.2 bar = 

= 2*10    N[Newtons]/mt and T, = 60 C for the pressure and steam tempera- 

ture.  The number of droplets in a total quantity of 1 kg is then, with 

p' - 103 kg/m3, n = SyA^p1 = I^.O-IO1^ kg"1 and their total surface 

area A = n^Trr   = 600 m /kg.  The heat-transfer coefficient can be de- 

termined on the basis provided in Section 2.2.   Let us read the mean 

free path T » ^„(p) from Diagram I and use it to determine the Knudsen s 
number Kh = T/2r ~ 0.87; then we shall see that we are concerned with 

a so-called transition flow past the droplet, OL, is computed from Eq. 

2.2(32)  (while the relative velocity is very small between such small 
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drops and tt.ü steam): ar = ^ä/r(l  -f 318 En) = 27,000 j/m  K-sec. Let 

us assume fxoi'ther that the expansion proceeds with such rapidity that 

y = 20 kg/kgsßec of new water condenses each second, which will be ap- 

proximately in accordance with conditions in turbines. Thus we obtain 

the value AT ff =• yL/'a A = 2.9 C for the effective temperature differ- 

ence that is necessary to permit surrender of condensation heat by the 

droplets to the steam. With a supercooling of this magnitude, it is 

still permissible to treat the steam as though it were at thermodynamic 

equilibrium. (At most, we could still verify whether the capillary ef- 

fect causes no essential increase in the required supercooling. Accord- 

ing to Eq. (10), with X - O.O65, we get ATr = (2a/RTrp • )KTd/r ~ 0.09
oC; 

thus the more exact supercooling value is AT = AT f., + AT » 3.0oC.) 

If, in addition to the fog droplets, the expanding steam also con- 

tains other bodies that offer condensation surfaces (such as larger 

water drops, wall linings, etc.), part of the condensation will take 

place at these surfaces. The product aA is, however, decisive for the 

effectiveness of a surface of area A; the secondary condensation sur- 

faces in turbines and the like can at most reach the same order of mag- 

nitude as the surface area of the fog droplets. Their heat-transfer 

coefficients are, however, all of 50 to 100 times smaller than those 

of the fog droplets. For this reason, we may disregard their share in 

the condensation, provided that fog droplets are also present in suf- 

ficient numbers. 

Below we must further discuss how it is possible to treat steam 

whose supercooling is small but not small enough to be disregarded 

(i.e., lies between, say, 3 and 150C) on the basis of an i,s-table for 

thermodynamic equilibrium. 

The deviations of the supercooled steam from the saturated steam 

at thermodynamic equilibrium arise in part from the fact that less 
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water is condensed from the former and in part from the fact that the 

steam has a lower temperature (deviations of the water temperature 

from the saturation value can be disregarded, since the practically- 

most Important droplets always have about the same saturation tempera- 

ture). Both effects are easily taken Into account, but It Is first 

necessary to be able to compute the deficient moisture quantity from 

the supercooling or supersaturatlon. This Is done as follows: 

Suppose that we are given an enthalpy 1  and an entropy s that de- 

termine a point in the l,s-dlagram that lies in the wet-steam region. 

From the diagram, we can read a moisture value y^ = 1 - x , but this 

will be valid only when both the steam and the water are at the satura- 

tion temperature. If, on the other hand, the steam is supercooled by 

AT0C, then a different moisture content y < y will correspond to the 

point of the i,s-dlagram given by i and s. To determine the specific 

moisture deficiency 

A» m y^-y (16) 

• l# 

let us assume that the pressure  lines  in the  i,s-dlagram for super- 

cooled steam and in the corresponding diagram for steam at equilibrium 

,*• coincide, which will be a good approximation 

for moderate supercooling values AT. Then 

the supercooled mixture in Fig. 3 is com- 

posed of x = 1 - y kg of steam in state 1 

and ^ kg of water in state 2 (saturated). 

In the case of thermodynamic equilibrium, 

the mixture consists of x    = 1 - y    kg of 
00 ^ 00       ^ 

state 3 steam (saturated) and of y kg of 

state 2 watsr. Both lead us to the same 1 (and, within the framework 

of the approximation, to the same s as well). Thus we may write 

U-yHa + y»* - i ■ d -y«,)»" ♦ y«,»' • (17) 
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Now,  however, 

,d-1"-cpAT' (18) 

so that 

t" - y»" - (1 - y) c AT * fi' * l'-fmi' *JnV. 

Using Eq.   (16)  and 1" - I1  = L,   this results in the moisture deficiency 

Ay-ix-AT. (19) 

where we set x » x    for full supercooling x = 1 and supercooled wet 
00 

4 
steam. For pressures below 10 bars, we can take c /L ~  const = Ö'IO 

K" . Thus, we can determine how much less moisture there is in the 

supercooled steam than is indicated by the value x = 1 — y taken 

from the conventional i,s-diagram. If, for example, x = 0.90, AT = 20 

and the steam Is wet, we obtain Ay = 0.014; instead of 10^, only 8.6^ 

of moisture is present. (An exact derivation of Ay, which would also 

take into account the difference between the isobars, would result in 

a formula similar to (19)* but the only thing new would be a correction 

factor that tends to unity for small AT. Nevertheless, the exact value 

of Ay, even for AT = 20oC, is larger only by a factor of 1.05 to 1.07 

than that calculated from Eq. (19) — 1.05 applying at about 0.2 bar 

and 1.07 at about 20 bars —, so that the accuracy of Eq. (19) is quite 

sufficient for our purposes.) 

We are now in a position to Indicate the specific volume of the 

steam-water mixture characterized by 1,8 and AT. If the pressure p 
00 

and the specific volume v correspond to the state l,s In the case of 

thermodynamic equilibrium, the following will apply for the volume v 

at a supercooling AT: 
r, 

T -«r(|*yT'(p)*xvd»(«0) + ay)r« ^ . ^^ 

If we apply Eq. (19) and set ^ = Ts - AT and v_ ~ x_v", we get 
00       00 
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The expression In parentheses Is presented as a function of pressure 

In Diagram I; AT,   1 and s Is  [sic] assumed given and v    Is read from 

the  IjS-table.  At low pressures and AT = 200C,   the correction comes  to 

about 5^. 

However, even the pressure p    will require a correction on closer 

examination. The true pressure £ corresponding to the state described 

by 1,  s and-AT la gmaller by an amount Ap than the pressure p    read 

from the l,s-dlagram for equilibrium: 

P = Pw - Ap, 

and we have for Ap 

AR . 
ra> ipniT [wl 

(22) 

(23) 

This correction rests on the fact that pressure lines other than those 

entered in the equilibrium diagram apply for supercooled steam. For 

this reason Formula (23) cannot be derived in the same simple manner 

as Eq. (19), but only on the basis of more exact assumptions. We shall 

omit this derivation, the more so because Ap/p is small as compared 

to the other corrections (it comes to about 0.9^ with p =0.2 bar and 

AT = 20oC). 

Summing up:  Eqs.   (19),   (21) and (23) enable us to compute the 

moisture content,  vcTume and pressure of the supercooled steam-water 

mixture whose supercooling AT is known, working from its enthalpy 1 

and entropy s as given in a conventional i,s-diagram. 

2.4.   THE FIRST APPEARANCE OF WATER IN THE TURBINE:   CONDENSATION ON THE 
BLADES 

It is known from experiments with Laval nozzles that if the state 

of expanded pure steam crosses the saturation line,  it is at first 

supercooled, and that as soon as its supercooling has reached a certain 
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level (30 to 40oc), It collapses suddenly, since the steam condenses 

spontaneously In the form of fog droplets. In nozzles, no condensation 

occurs before the point at which this fog forms, since the boundary 

layer is superheated everywhere on the nozzle walls. The situation is 

somewhat different In turbines, since the boundary-layer temperature 

of the successive blade  rows becomes progressively lower. It was 

recognized by Traupel [22] that this makes it possible for water to 

condense on the surface of turbine buckets beicre spontaneous condensa- 

tion sets in in the steam itself. The dust particles present In the 

flowing steam lead to a similar phenomenon. 

We shall refer to this water precipitation that arises prior to 

fogging as "precondensation" and concern ourselves in this Section 

with the question as to the surfaces on which it takes place and its 

intensity. In part, the material to follow is a more explicit repeti- 

tion of the calculations described in [22], but it does reach the con- 

clusion that precondensation has no noticeable influence on the proc- 

esses in a wet-steam turbine. 

a) Where Can Precondensation Take Place? 

As we know, condensation intervenes on all solid surfaces in con- 

tact with the steam as soon as the steam's state has crossed the sat- 

uration line. To this statement, we must, however, append two important 

remark»: first, the curvature of these surfaces may not be so sharp 

that they give rise to a noticeable capillary effect. For this, their 

radius of curvature must, according to Table 2.3.1, be larger than 

about 10 m - 0,1 \i.;  this condition is satisfied both for the design 

elements of the machine and for most of the dust particles that may, 

under certain circumstances, be present in the steam. Secondly, these 

surfaces must not be so severely heated that their temperature even 

without condensation is equal to or higher than the saturation tempera- 
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tiire corresponding to the pressure of the surrounding steam. Heating 

such as this is also presented by boundary-layer friction, by which, 

as we know, all bodies in stream are heated to an adiabatic boundary- 

layer temperature TQS higher than the static temperature of the medium 

flowing past them. 

Precondensation is conceivable on two types of foreign surfaces: 

the surfaces bounding the flow (blades, casing linings) and on the sur- 

faces of the dust and salt particles present in the steam. We shall 

concern ourselves first with the latter. 

As concerns the dust particles, it has been shown by Oswatitsch 

for the case in which the flow medium is atmospheric air (wind tunnels) 

that the dust particles do not represent a factor in condensation of 

the atmospheric humidity. We are still further Justified in disregard- 

ing them in our discussions of steam turbines, firstly because the 

steam in modern steam installations is much cleaner than the atmospheric 

air and, secondly, because the amount of condensation occurring per 

unit volume in the case of pure steam is much greater than for a lean 

steam-air mixture. 

There is somewhat more to be said concerning the salt dust that 

today probably represents the only significant impurity encountered in 

steam installations. In modern installations, the salt content of the 

steam totals about 1 to 3 mg/kg. At high pressures and temperatures 

(live steam.'), the solubility of the salts in steam is a multiple of 

this value (the solubility of NaCl in saturated or superheated steam 

at 150 bars is about 40 mg/kg). We can therefore expect that all salt 

entering the steam in the boiler - for the most part, in the form of a 

fine dust - will be completely dissolved on the path to the turbine 

(in this connection, compare Hömlg [23], page 143). Although this salt- 

steam solution can become supersaturated during subsequent expansion 
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in the turbine, since Its solubility is dropping, the concentration of 

the salt molecules is nevertheless so infinitesimally small (one salt 

molecule to 10 steam molecules) that formation of salt crystals con- 

taining numerous molecules is completely inconceivable. Thus the salt 

is not at all in a position to present a surface for condensation of 

the steam. At any rate, the part of the salt precipitated on the  bucket 

surfaces will be small, as is seen on inspection of the salt crust on 

the buckets of the low-pressure section. The major part of the salt 

remains in dissolved form all the way to the condenser, where it enters 

the condensate. 

It follows from the above considerations that apart from the sur- 

faces bounding the flow, there is practically no surface available for 

precondensation. As concerns the effectiveness of the bounding surfaces, 

this depends on how rapidly they are capable of yielding the liberated 

heat of condensation. Let us first investigate whether the transfer of 

heat to the supercooled steam flowing by or heat conduction through 

the metal to the exterior is more important. 

The products of heat-transfer coefficient by temperature differ- 

ence are decisive for the quantities of heat conducted away from a 

given surface in various directions. The heat-transfer coefficient 

"inward '■"innen-' valld for heat transfer to the flowing steam can be 

estimated by reference to Eq. (3) and Fig. 5. With the low values St = 

- 0.002 and (c PdU) - 1-10
5 j/m2Ksec, we get alnward « 200 j/ra

2K8ec; 

further, ^Teff - T -- TGS may amount to about 15
0K, Thus the product 

comes at a minimum to (a AT f.r) ~ 3000 j/m sec. The heat-transfer Inward  eff 

rate outward is primarily determined by what the outer casing surface 

Is in contact with - i.e., it depends on the design of the turbine. If 

the steam rinsing the outer surface of the channel wall is at a tem- 

perature higher than that of the inner-surface boundary layer, or if 
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approximately the same temperature  prevails outside  (steam from the 

next tapping point), practically no heat at all will be conducted out- 

ward, and some heat may even flow In.   If,  on the other hand,  the chan- 

nel liner is in contact with waste steam or - a rarer case - with the 

external air, we have a temperature gradient worthy of note.   In this 

case, however,   the heat-transfer conditions are very poor on the out- 

side,  since the density is low in the former case and the flow veloc- 

ity (free convection.')  in the latter.   The following may serve as an 

estimate:   outside temperature of the waste steam or air 30oC, with 

ATtotal = 90 - 30 = 60oCj  outward heat transfer coefficient* 

aoutward  ^aaussen^ ~ 10 J^m K sec  (~9 kcal/m -hour c); wal1 thickness 

6 = 5 cm = 0.05 m, heat-transfer coefficient ^afceel  f^stahl-' := -^ 

j/mKsec,  from which we may calculate  the resultant heat-passage coef- 

ficient ot      .  We have I/CL,«« = l/a«,,^,.,,^ + VX.t-^T  = 0.101 and a^,^    » res res outward       '   steel res 

~ 10.  Thus the determining product will be (areg,ATtotal^ = 10*^c = 

= 600 j/m2sec. 

Thus we find that at least five times as much heat goes over to 

the steam as flows outward through the wall.  For the buckets,   there is 

an additional throttling down of the heat flow in the neck of the 

bucket, and in the case of the runner buckets,   there  l-a no heat con- 

duction outward anyway.  Thus we shall  incur no major error if we re- 

gard the walls of low-pressure turbines as impervious to heat and com- 

pute the rate of condensation from the heat transfer to the steam alone. 

The adiabatic boundary-layer temperature of a bucket  (for example, 

of a runner bucket)  is 

(1) 

for detachment-free flow. (For a guide bucket, (T,) is to be replaced 

accordingly by (Td)0 and w, by CQ. ) Figures 1 and 2 present the steam 
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states that arise  in the bucket boundary layers of the  Individual rings 

of  the two turbines laid out in Section 2.1 — in much the same way as 

was done in the cited work of. Traupel - and we shall refer to these in 

our subsequent discussion of conditions. 

Pig.   2.4.1.   States of 
the steam In various 
bucket boundary layers 
of our    reaction-type     tur- 
bine.   A) Saturation linej B) 
expansion line. 

Pig.   2.4.2.   States of steam 
in various bucket boundary 
layers of our      in-pulse- 

type      turbine.  A) Satura- 
tion line;  B) expansion line. 

Let us first discuss the high-pressure turbine with reference to 

Pig.   1.  No condensation occurs in the guide wheel of the first stage 

(1
!
)J  since the entire boundary layer is superheated.   In the subsequent 

runner wheel (1"),  some condensation can occur only in the vicinity of 

the profile leading edge; otherwise,  the boundary layer is superheated 

here as well.   In wheels 2' and 2",  condensation takes place all along 

the length of the bucket contour.   It is heavier in 2" than in 21,  since 

the supercooling of the steam is sharper here.   In turbines,  the  spon- 

taneous condensation mentioned earlier - the factor causing the  super- 

cooling to collapse — occurs approximately where the expansion line 

reaches the line y    =2.556 of theoretical wetness.   In the majority of 

cases (concerning this,  see also Sections 2.5 and 2.9),  the steam is 

almost saturated from here on,  so that the  state of the steam component 

follows the saturation line rather closely.   Plgure 1 shows the  state 

curve of the steam in bucket ring 3'  for the  ideal case;  the state of 
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all fog In the boundary layer Is indicated by the broken line. Prac- 

tically no steam condenses on the buckets from this point on; the en- 

tire precipitated quantity of water is taken up by the fog drops,- as 

has already been demonstrated in Section 2.3d. 

In our constant-pressure turbine (cf. Pig. 2),  nothing condenses 

in the first runner (I1) because of boundary-layer heating. Nor is 

there any condensation on the profiles in the following runner 1" or 

thereafter, but this time because the supercooling has already col- 

lapsed as a result of spontaneous steam condensation. (In this case, 

of course, wide variations of the load on the turbine may change the 

pressure curve in such a way that spontaneous condensation takes place 

only farther downstream. Then pre condensation may yet take place in 

ring 1" or perhaps even in 2'.) 

To permit accounting for the condensation on a bucket not onlj in 

toto, but also in accordance with its local Intensity, let ua next 

carry out the boundary-layer calculations. At the same time, these 

will afford us an Insight into the magnitude of the shearing stress 

that will also be helpful in investigating the motion of the water on 

the buckets (Section 2.7). 

b) Boundary-Layer Calculations 

The pressure or velocity curve over the entire profile contour 

must always be given for boundary-layer calculations. For each profile 

shape (and for each onflow angle), therefore, we should first determine 

the pressure curve, by measurement or, for example, with the aid of 

potential theory, to enable us to begin with calculation of the bound- 

ary-layer properties. Since, however, we are not interested here in 

the general nature of the boundary layers or in the behavior of a cer- 

tain blad« arrangenent  in a certain operating mode of a certain tur- 

bine, we can spare ourselves the first part of the calculation by ac- 
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ceptlng a pressure curve as near as possible to typical for use as an 

example. Here we can find a basis in various theoretical (such as [24]) 

and experimental (such as  [25],   [26])  studies.  The pressure curve that 

we have selected for the following calcu- 

lations Is represented In Fig.  3«   Its 

choice was based approximately on the 

profile shape In the second stage of the 

high-pressure turbine specified earlier. 

The object of these boundary-layer 

calculations  Is to determine  the curves 

of the wall shear stress T and the heat- 

transfer coefficient a along the profile 

contour.  As usual, we reduce these  to 

dlmenslonless quantities on the basis of 

the formulas 

Tw - vo.jtd,*; (2) 

Pig. 2.4.3. Pressure 
curve over blade  con- 
tour, taken as a basis 
for the boundary-layer 
calculations (cf. also 
Fig. 2.5.13a). The broken 
line Indicates the cor- 
responding velocity curve. 
A) Back; B) trough; C) 
hypothetical transition 
point. 

and 

«(I) - «(D-Cp*«*! (3) 

i.e.,  to the coefficient of friction cp and the Stanton number St,  for 

which the literature  indicates various determination procedures.   (Equa- 

tions (2) and (3)  are to be taken simultaneously as those defining Cp 

and St, respectively.   For a stator profile,  p,,   is to be replaced by 

pd0 and w1 by c0. ) 

The calculation of cF and St proceeds differently for laminar and 

turbulent boundary layers, and for this reason the nature of the bound- 

ary layer at the turbine bucket profiles must be made clear even before 

the calculation begins.   If the flow onto the bucket wheel is only 

slightly turbulent (grid experiment.1),   the transition of the initially 
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Flg.   2.4.4.   Coefficient  of 
friction in profile boundary- 
layer (calculated for the pres- 
sure curve of .?lg.   3)"   A)  Back, 
case of transition as early as 
4R =0.05 cm; B)   Dack;   C) 
trough;   D)  transition point. 

Fig.   2.4.5.   Stanton number  in 
profile boundary layer   (calcu- 
lated for the pressure curve 
of Fig.   3).   A) Back;  B)   trough; 
C)   transition. 

laminar boundary layer into a turbulent one would take place only Just 

prior to the point at which the pressure begins to rise again. (Such a 

case was  investigated,   for example, by Bammert  in   [27].)  In turbo- 
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machines,   however,   the flow is  so severely turbulent  that  the boundary- 

layer has a tendency to make the transition far upstream and premature 

transition can be avoided only by means of a continuous  sharp pressure 

drop.  Figure 3 shows that this   is the case on the back (suction side) 

of the buckets,  but not on the  trough (pressure)  side;  consequently, 

we must  assume that the boundary layer on the  trough  is  turbulent prac- 

tically from the outset.   As for the convex side, we assume that the 

turbulence of the flow Is not capable of pushing the  transition point 

far upstream;  nevertheless, we  shall carry through a  calculation for 

the case  In which the transition point lies upstream,   since this situ- 

ation could still come to pat;? as a result of a brutal disturbance ef- 

fect (such as continuous impingement and rebounding of vagrant water 

droplets  in bucket rings lying deeper inside the wet-steam region,  cf. 

Section 2.8). 

For  the laminar part,  the  calculation procedure  of Cohen and 

Reshotko   [28] was followed.  In the turbulent part,  the cF curve was 

computed by the method of Truclcenbrodt (cf.   [16], page 470ff) and the 

a-curve from cp and the Reynolds analogy (cf.  v.  Karmin,   [29]),   The 

results of the calculations are presented in Figs,  h and 5. Here,  it 

was assumed that 

"•8C«, • -1<;;W - a.5-io» (4) 

and 

Fr,    . m '■'        '5> 
a condition well satisfied in stage 2 of our    reaction-type    turbine. 

The St values obtained are somewhat higher than those produced from 

grid experiments.  The reason for  this  is probably that stronger turbu- 

lence was assumed here.  While we  shall not go into a more detailed in- 

terpretation of the shape of these curves,  we should like to note that 
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both cp and St also Incorporate the direct influence of flow velocity 

U (cf. Fig. 3, velocity curves), since. Indeed, the T and a in Eqs. (2) 

and (3), respectively, were referred to the entry quantities. 

c) Rate of Condensation on the BUdfis 

Prom the equality of the amount of heat liberated and the amount 

withdrawn, we obtain the following equation for the amount of steam 

condensed per unit of area per unit of time on a bla<i>-: 

ri,k(o = i&i(Tschn. Tcs), (6) 

where L Is the heat of evaporation, Ts j^,   [Tblade     ]  Is the actual tem- 

perature of the     blade   (or that of the water film encasing it) and TG„ 

Is the temperature that the blades would have In the absence of con- 

densation. 

The blade temperature adjusts everywhere to the local saturation 

temperature, i.e., TSchfl = Ts(4). Thus, applying Eq. (3), Eq. (6) as- 

sumes the form 

ri,k(o . -^;^S,(O(T6(O-TGS] (7) 

where T    can be computed from the pressure curve and Tos from Eq.   (1). 

Prom this local condensation rate ra.   we obtain Mk qchfi>  the entire 

amount of steam condensing on a    blade     ^y integration for both sides 

of the   blade: 

MkiS. hfl    '   's. hfl 

FR 

|    "W^l*  f    %^K)d«K (8) 

Here  it has been assumed that the heat-transfer conditions are uniform 

over the entire length of the blade, an assumption,  however,  that would 

probably be met adequately for noncylindrical  blades     as well. 

ht us now compute a  "mass-exchange coefficient" that indicates 

what part of the steam quantity Md entering a given    blade   ring con- 
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denses on the    blades    of this ring.   Evidently,   this mass-exchange coef- 

ficient 

z-M k, Snlifl 
d-( M^ 

(9) 

will differ sharply from ring to ring, primarily because the tempera- 

ture Jump evident In Eq. (7) may have widely different values. (The* 

subscript to e Indicates that we are dealing with a transition from 

the vapor form to liquid water;) The smaller e, f is found to be for 

turbines, the less significant will be the precondensation on the 

blades  and, consequently, the more accurate will be the statement 

that the supercooling of the steam is not affected by precondensation. 

Now, on the basis of Pig. 5 and Eqs. (7), (8) and (9), we can 

quickly carry through a rough calculation. We shall proceed from aver- 

age values whose assumption we qualify with the note that the trailing 

part of the profile is more Important for heat transfer. The tempera- 

ture Jump can be determined in a simple manner from Flg. 1; it is only 

necessary to read the temperature difference between the boundary-layer 

state and the saturation line. The average value of St follows from 

Fig. 5. We find for 

Ring r-.  Tg - TCS « 6uc ,   siH« 0,005  ,   stR »0,0045; 

Ring   2":   TV~fJ,s »20oC   ,    StjJ«»0,<K)5   ,    St^ «0,0045 . 

With c /L = S« 10  K"1 and Table 2.1.1, we obtain (since pdl « l/v^ 

CP «di wi r 0,044 kg/m2 Ksec    ( f Or  Ring   2 ' ) 

037kg/m2
KSCC   (for Ring 2"), 

from which It follows from Eq.   (7)  for 

Ring 21: 

Ring  2": 

^VH r 0.0*<0.005-8ft l,3  10'3kg/m28ec 

(ink)K = 0,044 •0,0045« a» 1,2-10'3 kg/m2 »ec 

(mk)H = 0,037-0,005-20 «3,7-10"3 kg/m2 »ec 

(^R = 0,037-0,0045-20 «• 3,3-10'3 kg/m2 »ec   . 
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The Integrals In Eq. (8) can now be calculated as m. times the contour 

length B,  so that Eqs. (8) and (9) are simplified to the form 

*      • 
The steam throughput is M, = M = 40 kg/sec for Ring 2», since every- 

thing is still in vapor form here; for Ring 2", we shall be able to 

determine it only after we find the reduction of the steam throughput 

as a result of condensation at Ring 2;. With Table 2.1.1, we obtain 

for the two rings of the reaction turbine, where precondensation oc- 

curs, i.e., for Ring 2": 

121-0,157 [ 1,3-0,057 ♦ 1, 2-0,066]-lO"3 

d-( 40 
=    0,000073 

and for Ring 2": 
130-0,177 [3, 7-0,057  f 3,3-0,0661 • 10"3 

£"d(    = 5 i     .   0.000 247 

(ID 

(12) (1 -0,000073) • 40 

These masa-oxchange coefficients are very small,  so that only a 

vanishingly small part of the steam flowing through settles on the 

biAdta. This result can also be expressed by means of the steam con- 

tent or water content ^ and compared with the ideal water content y , 

that which would have to be present at perfect thermodynamic equilib- 

rium (according to Table 2.1.1): 

after Ring 1" 

x . 1 , y -0 ; 

after Ring 2' 

x . (1 - 0,000073) - 0.9999*7, Jf - 0,000073; 

after Ring 2" 

x • 0,999927 (1 - 0,000247) • 0,999680,    y - 0,000330; 

According to the above,   the amount of water ^ that actually condenses 

on  the     b aies   behind  the  second stage of the    reaction-type     turbine 

never amounts to more  than 1$ of the  "expectation" y '. 
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This water forms thin water veils or water filaments on the 

bl4d«3,   and these are  set  in motion by friction with the steam and, 

on runner buckets, by centrifugal force.   It will be shown in Section 

2.7 that the flowing water  is driven to the trailing edges of stator 

[guide]   blades     and strayed off these edges in the form of larger drop- 

lets,  while on the runner buckets  it moves almost entirely to the tip 

of the bucket and strays off from this point outward.   Thus the water 

condensed on runner buckets is not capable of exerting further influ- 

ence on condensation processes  in the middle of the steam current.  The 

droplets flung off the stator   blades,     however, remain in the steam 

flow,  and further condensation can take place on their surfaces.  Their 

average size  is given by Eq.  2.8(6), which,  applied to conditions in 

Stage 2,  would read 

9a »•62-10* 
M   1,5.10"» B  . (16) 

<dlel 0,4». 281,8« 

To be able to calculate the extent of condensation on these drop- 

lets,  we must know three things:   their total surface area,  the heat- 

transfer coefficient between them and the steam,  and their time of 

residence  in the steam.  For every 1 kilogram of flowing steam, y = 

= 7.3-10"^ kg of water  is torn from Ring 2'  according to Eq.   (14).  The 

surface area of the detached droplets formed from this water is 

rA      '» 
»   4T   ' ?J       «   P, 

0146: (17) 

As regards  the heat-transfer coefficient a      ,  it  is to be noted that 

the conditions of continuum flow prevail for the droplets (cf.  Section 

2.1),  since Kn = 1.0-10"V2-1.5* 10"5 - 0.0033-  With a relative velocity 

U     = 220 m/sec between th    droplets and the  steam,  we  obtain Re    = 270 

(with |i,d ^ 12'10") kg/m'sec),   so  that Eq.   2.2(16)   applies and gives us 

with Xd = 0.021 j/m-Ksec 
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ocr , -0.33^   ^1   .7600J/ro2K^ (18) 

The time of residence of a droplet in the steam up to the point at 

which It strikes a bucket of th^ next ring can likewise be estimated 

on the basis of Section 2.8. Figure 2.8.3 serves for estimation of the 

flight velocity, but first we must compute the value of the Inertia 

parameter for the droplet In question. The "deceleration time" of the 

drops Is found from Eq. 2.2(36) with (9M.d/2pw) = 6.0-10  m
2/sec as 

Atbrems ^deceleration] = ^6'10" sec, so that the Inertia parameter 

has the value (iur
At

bremg) = 0-050 m. It will be seen from Fig. 2.8.3 

that such droplets are accelerated very rapidly. If they travel a dis- 

tance i = 3  cm = 0.03 m before striking, they will be accelerated to 

about 0.5 c, » 140 m/sec. With 70 m/sec as the average velocity In 

flight, we obtain for the flight time 

(19) 

[Plug = flight].   If we still assume  that the temperature difference 

between the droplet surface and the steam Is AT = 250C during this 

time, but that of this AT^ _ = v/T7?-2202/2-2'l03 « 130C Is needed to 

withdraw the heat of friction from the boundary layer,  so that only 

AT «»».• 
AT- ATjjg c«»ia0C (20) 

Is left for withdrawal of the heat of condensation, then we have all 

data necessary for determining the condensation of the droplets torn 

from Ring 2«. 

We wish to obtain the result In the form of a mass-exchange coef- 

ficient e,      (subscript:  "from steam (d)  to large (g)  drops"),  which 

will Indicate the fraction of the steam precipitated on these flying 

droplets.   Obviously this will be 

«, - A- AT ~ . At_1„-/L 
td.,   -   ^.i   «     f*     ""F     . (21) 
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where  the numerator  Is the  amount of steam condensed per kilogram of 

mixture and the numerator  Is the entire  quantity of steam prior to 

this  condensation.   Equations  (14)  and  (17)  to  (20) give 

7600 • 0,01« • 12 • 4,1 • 10"4/2,28 • 10* 
'd-( -   2,5.10"'« y,.,. (22) 

0, 999 927 

so that.   In summary, we arrive at the unequivocal conclusion that no 

noteworthy portion of the  steam goes over Into the liquid state either 

as a result of condensation on the     blades   or as a result of condensa- 

tion on the droplets sprayed off behind the   blades. 

For the      Impulse-type turbine being used as an example,   this 

conclusion Is at least Just as valid; referring to Pig.  2, we have 

even concluded that no pre condensation at all takes place there under 

the proper conditions. 

The absence of any precondensatlon worthy of the name has as a 

consequence that the supercooling of the expanding steam can proceed 

without restriction, and will soon lead to spontaneous condensation of 

the steam (fogging).  We shall place this process under the magnifying 

glass  In the next Section. 

2.5.   SPONTANEOUS CONDENSATION OF THE STEAM AND THE STATE OP THE POO 
PRODUCED 

To the best of our knowledge,  the abrupt  condensation of the steam 

that  takes place In turbines has never been directly observed.  The 

presence of a dense fog In the last stages of condensation turbines  Is 

nevertheless an established fact [14].  That fogging must proceed In 

turbines In the same way as  It does In a single Laval nozzle follows 

from the fact that the steam being expanded experiences the same fate 

In either case:  saturation Is followed by super saturation and this in- 

creases rapidly,  since virtually no condensation  is possible. 

Numerous experiments have been carried out — cf.   [19],   [21],   [30] 
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and  [31] — to investigate the sudden condensation In supersonic noz- 

zles (the so-called "condensation shocks").   It was recognized long ago 

that the sudden condensation is to be attributed to spontaneous forma- 

tion of nuclei in the vapor  [steam]  Itself.  Later,  it became possible 

to apprehend this nucleation mathematically by thermodynamic-statistlcal 

techniques;  the clearest presentation of this theory Is due to Prenkel 

[32].  A decisive step - one that brought the theory into agreement with 

experiments — was taken by Oswatltsch [33],  In that he combined the 

theoretically derived formulas for the frequency of nuclei formation 

with the conventional flow equations and a growth law for the result- 

ing droplets,   forming a complete system of equations that put him in a 

position to determine the pressure  curve In a nozzle with spontaneous 

condensation by stepwlse calculation.   The agreement between the calcu- 

lated pressure  curve and the experimental curve was quite good.  A very 

good summary of the entire circle of problems Is to be found In Stever 

[3^]; he provides an excellent survey of both theory and experiment. 

It is absolutely necessary to know the properties of the fog In 

order to Investigate the processes  that unfold in the rear part of a 

wet-steam turbine as the fog flows through it.  Thus this  Section forms 

the pivot point for those that follow.  We shall first concern ourselves 

briefly with    nucleation, so that, like Oswatltsch, we shall be able In 

Section b)  to write an equation system permitting us to compute the 

expansion processes with condensation (in both nozzles and turbines). 

Proper functioning of the equation system will be checked through sim- 

ulation of  various   nozzle experiments.  Then we shall calculate the ex- 

pansion in a low-pressure turbine to obtain certain essential features 

of the process.   These insights will assist us toward a simpler analyt- 

ical method of calculation for the condensation process — a method 

that will be sketched out in Section d) and will finally permit us to 
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draw Important conclusions In Section e). 

a)   Wucleation 

By the word small we imply a droplet that Is Just big enough to 

grow In a supersaturated atmosphere of steam surrounding it.  Making 

are of the concept of critical drop size  Intrüduced in Section 2.3c, 

we shall use the term      nucleua to denote a drop infiniteslmally 

larger (say, by one molecule)  than the critical size.  We see from Eq. 

2.3(13}  that the  nucleus sise is large at a snail supersaturation A but 

small at large supersaturations.   In practical cases, rapid nucleatlon sets 

in when the critical droplet size has gone down to about 30 to  100 

molecules. 

But how is it at all possible for such water droplets to form in 

steam? The answer is  to be sought in the fact that continuous density 

fluctuations arise in a vapor - as they do in an ideal gas — as a re- 

sult of the thermal motion of the molecules.  If the steam becomes al- 

most saturated or even supersaturated in the course of expansion,  it 

occurs *ore and more often that   some        molecules stick together for a 

certain time after colliding.  This microscopic liquefaction amounts to 

the same thing as an extremely wide density fluctuation.  That it does 

Indeed occur frequently is due - in a thermodynamic sense — to  the 

fact that the liquid form of the substance  is approximately equally as 

"probable" as the vapor form in the neighborhood of the saturated state. 

Now, using the Boltzmann law S = k In W, we can calculate for a 

certain number of steam molecules the relative probability W/W0 for 

finding all of them balled up into a single water drop.  We need to 

know only the amount by which the entropy increases if the drop forms 

purely from steam molecules.   In a large vapor space,  containing 

many molecules,  the value of this relative probability will simultane- 

ously indicate the fraction of all molecules present at any time in 
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the form of such drops. Thus, for example, we can determine how many 

critical droplets will be found simultaneously in a certain amount of 

steam. We can calculate further how many critical droplets acquire an 

additional molecule during one second: this will then give the nuclea- 

tion rate     that we seek.  The formula reads (see   [32] or  [34]) 

4Wr; 

J - 
VieAN 

tarti 

<' (kl/ (1) 

[krit = critical]. J is the number of nuclei formed in 1 nr of steam 

each second and N Is the number of molecules in one kilogram of steam. 

If we substitute the rja,lt from Eq. 2.3(15) in this equation and note 

that Nk = R, we obtain the following form, which is suitable for prac- 

tical calculations: 

/ieT*3N   \    i zj 

-»■I s-hP   t ■l„pa«        , (2) 

here,   the logarithmic supersatiu'atlon is defined according to Eq. 

2.3(3)  as 

A »In 
W (3) 

The two quantities denoted by Z0 and Z,  depend only on the temperature 

of the  steam and are presented in Diagram IV (see Appendix). 

On the basis of various experiments - all of which show sudden 

condensation, we should expect the   mici««tion rate to increase very 

sharply with Increasing supersaturation.   If we substitute typical val- 

ues for  the quantities  in Eq.   (2),  it might acquire the following form: 

J - iou.(o,iioi) • t        •lo33.lo•ao/A, • 

It is readily seen that J depends extraordinarily heavily on A. That 

is to say, if the supersaturation p/p increases from twofold (corres- 
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ponds to A ~ 0.7) to fourfold (A ~ 1.^),  then J will increase from 

10" to 10+ -^ nucl. /m^-sec. Thus, doubling of the supersaturatlon may- 

result In an Increase In  nucleation   rate by more than thirty powers 

of ten'. 

b) Flow Equations for Condensing Steam 

The equations of the system that describes the expansion of the 

steam In a nozzle or turbine may — as In the case of any^ other medium — 

be classified into two groups. One group, comprising the continuity 

equation, the energy equation and the equation of motion, expresses 

general physical laws and also contains data on particulars of the ex- 

pansion, for example, channel shape, friction, and the like. The other 

equations contain only the properties of the flow medium and consist, 

for example, in the simplest case of the ideal gas, of the thermal 

equation of state pv - RT and the caloric equation of state di = c dT. 

For condensing steam, this second group of equations becomes much more 

complicated, but this has no fundamental effect on the state of affairs. 

With regard to our flow medium, we shall make twc important as- 

sumptions, assumptions that are also extensively the case in reality: 

firstly, that the steam can condense only through nuclei/fornation and 

subsequent condensation on these nuclei^ and cannot condense on linings, 

foreign particladand the like; secondly, that the droplets formed move 

everywhere with the same velocity as the steam itself. 

We shall assume the expansion to be adiabatic but with friction. 

In cases where a turbine is involved, we shall imagine it to be re- 

placed by a iccdel that effects the same expansion in a more readily 

represented fashion: this model turbine would consist of an infinite 

number of stages with infinitesimal pressure ratios, stages capable of 

extracting the work continuously from the flow medium, i.e., of reduc- 

ing its total enthalpy continuously (in accordance with any prescribed 
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law).   In the equation of motion,  this conception would manifest  Itself 

as a field strength directed In opposition to the flow   against which work 

has to b« done by the medium.  Thus the essential aspect of the 

expansion In this context - namely,  the time sequence of that which is 

experienced by a flowing steam particle - is extensively retained;  on 

the other hand,  the two-dimensional nature of the   cascade/flow, which is 

loss Important here,  is dispensed with entirely.  That is to say, we are 

fully Justified in treating the flow in a turbine, which is complicated 

In Itself, one-dlmenslonally with application of a suitable field 

strength.  Just as in the case of a nozzle.   We need only concern our- 

selves with the axial velocity cQ  and the  annulus cross sectionJl. a 

normal to the axis. Thus the data by means of which we must spec- 

ify a turbine or nozzle are the curve of the axis-normal cross section 

along the axial coordinate n_(^_), that 0^  "t*16 total enthalpy h(C,J a a a 

and a statement concerning the generation of friction heat (in which 

all possible losses are conceived of as combined and uniformly dis- 

tributed over the entire flow cross section), as with the aid of the 

polytropic efficiency n . Thus the following are to be assigned: 

h = h(4Q) (for nozzle: constant),    (5) 

r\   = n (^Q) (approximately constant).   (6) p   p a 

Further necessary data are the mass throughput M In kg/sec and the in- 

itial state of the steam, p. and 1.. It Is assumed that the steam 

contains no droplets at entry. 

The continuity equation is written 

(7) 

and the energy equation 
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The quantities v and 1 refer to the mass unit of the entire flow 

medium. Irrespective of whether It Is pure steam or fog. 

In the equation of motion, the fact that the flow medium yields 

work to the outside is taken Into account by means of a field-strength 

term F (force/unit of volume), whose magnitude we shall again refer 

back to the prescribed total enthalpy curve h(£ )• Even the friction 

can be taken into consideration in a similar manner by means of a de • 

celerating force B. If we refer all terms to the volume unit, the equa- 

tion of motion will be written 

c. dc.   dp 
»  a  F-B 

«*.   ** 
(9) 

Now P can be related to h(|Q) and B with TI (^o):  the field 

strength vF acts on the mass unit of the flow medium.  The work done 

against the field strength during subsequent flow over the distance 

d4Q is equal to the reduction in the medium's total enthalpy,  i.e., 
a 

vrdi,        ^^. 

from which 

" ''   d^ ' (10) 

The frictlonal force B must be so large as always to dissipate as much 

work as corresponds to the local polytropic efficiency.  During tra- 

versal of d(L, the frictlonal force per unit of mass cornea to vB dCQ 

and must be equal to -(1 — Tlr))dla = -(1 - TiWdp,  from which 

If we Insert F and B in Eq.   (9),  the equation of motion assumes the 

form 
dc dp        dh 

e*w*'****;**; (i2) 

Below we shall apply ourselves to the properties of the flow 
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medium. We have to deal either with pure steam or with fog. I.e., with 

a mixture of steam and entrained small droplets. These fog droplets 

are "of different sizes depending on whether they formed earlier or 

later, since the older ones have had more time to grow. In the follow- 

ing discussion, we shall characterize each droplet by the place £ at 
37) 

which It formed as a   nucleus. Ali. quantities that have reference to      In- 

dividual droplets are thus not only functions of the position £  . but 
a, 

also of the drops to which they refer.  I.e., of the place of origin |  . 

We shall therefore speak of the droplet radius r(£  ,  £  ),  the droplet 

mass nL,(4e,  O,  the droplet  temperature Tr{?  ,   |   ),  etc.  Droplets 

that are smaller than the   nucleus size will not be taken into account at 

all as part of the water content,  since their mass and energy contribu- 

tions are vanishlngly small.   In other words, we shall be assuming that 

the steam suddenly produces  "ripe" nuclei.   The nucleation rate is known 

from Eq.   (2),  so that we can calculate the number v{i0)di. of those 

droplets that form per kilogram of flow medium between positions £L 

and ie + die: 

v«,)«       yvat). *i. 

:.«.) 

(the volume taken in is thus v(£ ) and the residence time of the medium 

between the two placea is d| /ca). It follows from this that the dis- e    a 
tributlon function of the droplets by place of origin £    is 

(13) 

The steam is assumed to be an ideal vapor (cf. Traupel [20]); 

thus it follows the equations of state 

and Vd T.. - «„ * ». . (15) 
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where /c and 1# can be assumed constant within wide limits and 

(/c - l)A-cp = R. 

Let the water be Incompressible with a known temperature curve of 

density: 

«w • «w^ • (16) 

and with a known enthalpy-vs-temperature relationship 

»w " W- (17) 

The droplets are so small that we may, without incurring any 

noticeable error,  set their internal temperature T    equal to the sur- 

face temperature T .  Thus we have 

Tw - Tr' (18) 

with which,  however,  it must be remembered that T    is always smaller 

than the local saturation temperature, and,  specifically,  by an amount 

that may vary with drop size according to Eq.  2.3(11): 

3« IT. 
tr^'V   '   V1* (19) 

(For the factor K, see Eq. 2.3(6).) 

The direct influence of surface tension on the enthalpy of the drop1 

through the surface enthalpy (5/3)c'47Tr can be disregarded. 

The relationship 

(20) •»,«..»,)■ "T «w^v-^V 

obtains between droplet radius and droplet mass. 

The specific water content ^ of the flow medium at position i 

can be calculated by taking together the masses of all droplets that 

have formed between passage across the saturation line (£    = ia) and 

the position £    currently of l^cerest: 

y fl-x •    f mr(^e.^).v(^)ille (21) 
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The specific volume of the entire flow medium follows from 

S* XV . (22) 

(since, indeed, the volume occupied by the water Is negligible as com- 

pared to the steam volume), and Its specific enthalpy from 

(23) 

(i    is different for each drop size as a consequence of Eqs.   (17) 

through (19).) 

Finally, we must still concern ourselves with the mass transfer 

between the two phases.   This  is governed by nucleation and by rondensa- 

tion on drops that are already present.  For the former, we have the 

formula of Eq.   (2); according to Eq.  2.3(14),   the subsequent growth of 

a droplet as a result of continuous condensation on it amounts to 

"r   * 
*r(4Tr*)(Tr-Td) 

(24) 

The heat-transfer coefficient ar is given by Eq.  2.2(32).   If we sum 

these ni, for all droplets present and add it to the amount that goes 

over  into the liquid form as a result of   nucleation, we obtain over- 

all local Increase in water content.  Thus this  is 

ä. " If'lf^rtl^ f"r^vU.me.     (25) 

[krit ~ critical] since, indeed, dt = d| /c and the seed size is given 
3 a 

by the critical radius, which, according to Eq. 2.3(15), is 

'krlt (26) 

Together with the equations (13), (14), (15), (16), (17), (18), 
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(19), (20), (21 or 25), (22), (23), (24), (2), (3), (26) describing 

the behavior of the flow medium, Eqs. (7), (8) and (12) present a sys- 

tem of differential equations from which the curve of expansion can be 

determined by stepwlse solution. It goes without saying that the calcu- 

lation is exceedingly time-consuming and suitable only for automatic 

computers. 

In the following Section, we shall report certain applications of 

this system of equations to expansions and in the next one after that 

we shall show that the essential conclusions can also be obtained from 

the equation system quickly and with sufficient accuracy. 

c) Application of the Flow Equations to Expansions with Condensation 

In setting up the system of equations for expansion, we have been 

pursuing the goal of calculating the course of expansion in a turbine. 

Before doing this, however, it would appear necessary first to apply 

the system of equations to expansions whose courses are exactly known 

from experiments. Here we would decide not only the question as to 

whether the equations describe the processes only qualitatively, but 

we should also be able to find out whether the place of condensation 

onset can be determined correctly. 

Among the nozzle experiments described in the literature, those 

of Binnie and Woods [21] appear best suited for testing the equation 

system, since the measurements were taken with great care and the ex- 

poriments described with explicit numerical material. Among the numer- 

ous measurements, in which the Intake pressure was always held con- 

stant, while the entry temperature (superheating) was varied - four 

were selected for recalculation; In one of them, the onset of condensa- 

tion occurred Immediately behind the narrowest point, in another near 

the end of the nozzle, and in between in the two others. The cross- 

section curve was known from the dimensions of the nozzle; the curve 
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of polytroplc efficiency was determined by trial and error so that the 

pressure curve without condensation would agree with the measured 

curve. The material quantities were always regarded as constant. 

The calculation was carried out on the ERMETH,^8 a digital computer 

capable of about 60 elementary operations per second.  The program was 

constructed In such a way that the step, of the solution could be ad- 

Justed manually and that free choice was available between two 

solution procedures of different accuracy (Euler-Cauchy,  Runge-Kutta). 

This offered an opportunity of checking the mathematical accuracy of 

the calculation, running certain cases through with two different step 

widths or with two different solution methods.  On the average,   the so- 

lution time required for one case - with condensation - was 1^ hours. 

'♦   2 

•   kit trtt» uWrMlt _5 

a   THMMI : "*•**€ IN« SOI 
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Pig.   2.5.1.   Illustrating test of 
computing process: measured and re- 
calculated pressure curves in the 
nozzle of Blnnle and Woods   [21]. 
1) bars; 2) boiler; 3)  superheated 
to the end; 4)  calculated;  5) 
throat; 6)        pressure    taps. 

The pressure curves obtained are compared in Fig.  1 with those 

measured.  The measured pressure shows, at certain places, pronounced 

wavlness, which Is to be attributed to two-dimensional effects and was 
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consequently not reproduced In the calculation. Apart from this side 

effect, the agreement between the calculation and the experiment Is 

quite good. Both the place of condensation and the pressure rise were 

reproduced correctly. Only in Test No. 99 Is there a marked discrep- 

ancy. On closer examination of the data furnished by Blnnie and Woods, 

however, it was found that Measurement No. 99 is not coherent with 

other measurements taken with adjacent initial states, and must there- 

fore have been burdened by some sort of error. 

ATI i       1 2 

Fig.  2.3.2.   Calculated supercooling 
curve, moisture content and fog- 
droplet size in a continuous-exoan- 
sion turbine.   1) nucleation tone} 2) 
condensation zone; 3) nucleij  4) mass 
distribution; 5) rcrlticalJ  6) V11' 
son point. 

When these calculations had shown that the equation system appre- 

hends the condensation process correctly, a turbine expansion was run 

through the computer. 

For this purpose, we replaced the       reaction-type turbine described 

In Section 2.1 by a continuous-expansion model turbine, such as was 
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referred to in Section b). 

For the efficiency, we put n = const = 0.87. The assigned QQ and P. a 
h curves are shown In Pig.  3.  The stepwlse calculation was carried 

through twice with the same step length but with different solution 

processes.  The agreement between the two calculations was good.  In the 

range 0 < ia < 0.15 m*  the step length was a uniform 1 cm;  In the zone 

of marked   nucleation and rapid droplet growth (0.15 < |_ < 0.225 m, cf. 

Pig.  2), we went over to 1 mm. Prom £a = 0.225 on,  the calculation was 

carried to the end with a step of 5 mm.    Nucleation was taken into account 

only where J >• 10      (its maximum value came to more than 10    .').  The 

droplets were distributed in as many groups as there were computation 

steps in the range with J > 10      (31 groups). 

The results of the calculation are presented in Pigs.  2, 3 and 4. 

The top part of Pig.  2 shows that the supercooling AT = T   - T, first 

increases undisturbed;  the steam expands as though it were still super- 

heated.  Only at a     supercooling    AT of about 270C does   nucleation reach a 

notable intensity.  Condensation sets In at this point and continues 

with subsequent growth of the droplets.  The growth of the droplets is 

seen in the lower part of Pig.  2.  Shortly after their formation, the 

droplets grow exceedingly rapidly;   this rapid growth is braked only by 

the disappearance of  supercooling       The curve of the specific water con- 

tent y shows that almost perfect thermodynamic equilibrium (y « y )  is 

reached within a  very short time after   nucleation has become noticeable. 

The formation of the water and the disappearance of supercooling     go 

hand in hand. 

According to Eq.   (13)*  the number of drops is related to the in- 

tensity of  nucl»aticn at the position at which these droplets have formed. 

Later-born droplets are more numerous  than the ear Her-born ones; nev- 

ertheless,  they grow only to a smaller size.  Prom this we obtain a dis- 
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tribution of the mass among the individual droplet groups as shown in Fig.  2. 

The spectrum of the droplets is rather narrow; this fact will be exploited 

extensively in the following, since it offers the possibility of regarding the 

fog droplets as equally large in various subsequent investigations.   The 

nuclei forming in the immediate vicinity of maximum supersaturation (super- 

cooling) or even later cannot grow, since they remain below the critical droplet 

size, vvhich is increasing steadily from here on.   Their size diminishes until 

they have been completely evaporated (magnified area of Fig. 2).   Thus the 

point of maximum supercooling can be understood as the boundary between two 

zones:   in front of it, droplet formation occurs, but no noticeable quantity of 

water is condensed ("nucleation zone"); behind it, no further stable droplets 

form, but it is here that the actual deposition of water takes place, namely 

through growth of the droplets already present ("condensation zone"). 

Fig. 2.5.3.   Curves of total enthalpy h and axis-normal flow cross section Sla 

taken as the basis for the continuous-expansion turbine, together with computed 
curves for pressure and axial velocity.   A) Assigned;   B)   calculated. 
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Figure 3 shows  that  the  flow velocity 

Increases sharply in the condensation zone. 

In Section d), we shall show that this is 

the case with subsonic flows  (since the spe- 

cific volume diminishes suddenly), and that 

exactly the opposite is the case in super- 

sonic flows. We note no Jump on the pres- 

1 ü*| sure curves; this is to be ascribed to the 

* fact that the flow velocity is relatively 

low,  so that the impulse change that arises 

on sudden acceleration also remains modest. 

Figure 4 shows the expansion line.   (It 

was determined in such a way as to add addi- 

tional equations to the equation system to 

permit continuous determination of the entropy.)  It will be seen that 

the condensation is associated with an Increase in entropy. This was 

found to be As = 9.7 j/kgK.   In Section d), we shall also make general 

statements concerning the magnitude of As.  The Wilson point (in our 

terminology,  the point of maximum supersaturation or supercooling)  lies 

at about 2.6^ of theoretical wetness. The state curve of the vapor 

phase applies itself quickly to the saturation line after condensation 

has set in. 

In the after parts of the  turbine, we note that the supercooling 

rises again and ^ accordingly lags noticeably behind y ,  cf.  Pig.  2. 

This problem involves the deterioration of heat transfer to the fog 

droplets at low steam densities and will be treated in detail in Sec- 

tion 2.6. 

•• \.- 

Pig. 2.5.4. Expansion 
line calculated for 
the continuous-expan- 
sion turbine. A) Sat- 
uration; B) Wilson 
point; C) state of 
steam [vapor] phase. 
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d) Analytical Determination of Onset of Condensation and the Properties 
of the Fog Formed 

Calculation of spontaneous fogging on the basis of the equation 

system written in Section b), as was done in the examples of Section 

c), requires a very large outlay of machine time. A question pressi s 

Itself upon us: is there no simpler way to get a sufficiently exact 

answer to the essential questions? A closed analytical method — even 

if only approximate — would also have the great advantage of permit- 

ting easy recognition of the importance of individual factors (expan- 

sion rapidity. Mach number, etc.)- The following questions should be 

answered here: Where does spontaneous condensation set In (Wilson 

point)? What does the bend In the expansion line look like? How large 

are the fog droplets formed? 

The examples calculated in the previous section led to recognition 

of the fact that we can regard the progress of spontaneous condensation 

as divided into two stages (this thought was first voiced by Oswatltsch 

[33])! the first step ("nucleation •on»'*) sees formation of the nuclei 

from whj'.ch fog drops will grow, but they are at first still so small 

that only very little water is contained in them, see Pig. 5. (The 

droplet count n increases, but ^ still « y ). In the second step ("con- 

densation zone"), no new nuclei form,^' 

i.e., n remains constant: the amount of 

water precipitated is taken up solely by 

growth of the droplets already present. 

Droplet growth ceases only when practic- 

ally the entire quantity of water y due 
00 

to precipitate according to thermodynamlc 

equilibrium has actually been precipi- 

tated,  i.e.,  when the state y = y   has 
00 

1 
untirkiiMI I        J ."«'»»" «»««» 

2 Kiiinkil«|itwS«      ^K*ntf*nMi>*Attww   4 

Fig. 2.5.5.   Illustrating 
course of spontaneous con- 
densation in time,   l)  Su- 
percooled;     '?)   nucleation 
zone; 3) almost saturated; 
4) condensation zone. 
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practically been reached.   So much for the physical picture. 

Due to this subdivision,  simplifications become possible without 

which analytical calculation would not be feasible:   in the first step 

of the computation, we  calculate nuclaation and growth, disregarding the effect 

of condensation on the   vapor state:     as a result, we obtain the locus 

of the Wilson point and the number of droplets formed.   In the second 

step, we do not concern ourselves any longer with the condensation 

mechanism, but seek to find what sort of effect precipitation of the 

theoretical wetness has on the flow;  the state at completion of con- 

densation i£ obtained from this treatment.   Finally,  the average size 

of the full-grown fog droplets follows from the results of the two 

steps,  so that all of the questions posed at the outset have been ans- 

wered.   Lot us now discuss these calculation steps one at a tine. 

Nucleation Zone 
m i 

The following discussion is based on a computation process derived 

in   [45] under more general assumptions (two-component atmosphere, 

higher pressure) and tested on numerous sets of experimental results. 

Here we shall point out only the basic thought behind the process,   to- 

gether with the results and their uses.  Here we shall restrict our- 

selves to pure water vapor  [steam] and to the boundary case of low 

pressures, where droplet growth is governed by molecular laws for the 

tiny droplets coming under discussion. 

We conceive of the physical process unfolding in a vapor element 

traversing the nucleation »one as   follows.   New droplets form continuously 

in all parts of the vapor element and have the critical size at birth 

in each case (the size corresponding to the  instantaneouj supersatura- 

tion).  The frequency of formation of such nuclei in a unit volume  in- 

creases steadily in the course of time,  since  the supersaturation is 

at  first increasing steadily.  Further condensation starts Immediately 
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on the nuclei so that growth of the old droplets runs concurrently with the 

birth of new ones.   The growth of a droplet is governed by heat-transfer laws, and 

is therefore primarily a function of droplet radius and the extent of supersaturation 

(more precisely, of supercooling).    If it is now possible to predi". the time 

behavior of all quantities in the nucleation zone that affect nucleation and droplet 

growth, then 1) the nucleation rate J will become a known function of time and, 

with it,  the number of droplets that have been born up to a certain arbitrary point 

in time will be known; 2) the curve of droplet growth, i.e. , the function r(t), 

will be determined uniquely fcr each one of these droplets.    (Even then, of 

course, the latter must be determined for each droplet through solution of a 

differential equation.)   Having J(t) and all r(t), we could then write the intensity of 

condensation dy/dt as a function of time: 

df '  nWJ'   ♦      ^      5,41rr25fx     (number of droplets in group) 
(in question ) 

for all 
droplet groups (28) 

Here the first term signifies the condensation due to nucleation in accordance 

with the condition that the droplets formed are counted as part of the condensed 

phase only from the point at which they have exceeded the critical size.   The 

second term is the condensatit n as a result of growth (dr/dt) of the supercritical 

droplets, which we may regard as characterized, for example,  by their birthdays 

and grouped accordingly. 

But how can we predict the curves of the state quantities in the 

nucleation zone without previous knowledge concerning the condensation? 

This follows from the previously mentioned finding (cf. Fig.  5) that 

throughout nucleation zone, the amount of moisture precipitated is so 

small that the state change corresponds practically to dry supersatura- 
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tlon.   That Is to say,  extrapolation of the dry expansion curve  Is per- 

missible.   Further,   It was  found  In Section c)   that the  nucleation zone is 
40 

very narrow,    so that most quantities vary only by extremely small per- 

centages.  This suggests the further simplification of setting constant 

all  of the  quantities that have only a  secondary Influence on nucleation 

(pressure,  flow velocity,   temperature, material  quantities, etc.)«  For 

the logarithmic supersaturatlon A, which is what really decides nucleation 

rate, we shall assume a linear Increase with time.   (The AT curve in 

Fig.   2,  which, with a scale distortion,  can also be  Interpreted as the 

A curve,   indicates that this is quite permissible.   Otherwise, as shown 

In [45],   this assumption is practically equivalent to the assumption 

of constant expansion rate P.) 

On the basis of these assumptions,  we  first derive a formula  for 

J = J(t),   and then,  solving  the  differential equation  (24),  we  can de- 

termine  the function r(t)   for the droplets  that have  formed at various 

times.   It  Is found that these functions,  which are,   in themselves,   com- 

plicfited,   can be reproduced with sufficient exactness by straight lines 

that begin their rise from zero only after a certain lapse of time fol- 

lowing generation of the  droplet as a nucleus.   (For droplets with differ- 

ent birthdays,  these r(t)   lines run parallel,  but are  shifted in time, 

like  the exact r-curves in Pig.   2.)  If these r(t)  are  inserted  in Eq. 

(28)  and the number of droplets  determined from  the  value of   nuclea- 

tion rate     at the point  in time at which the   nuclei are born, we can sum 

(or  Integrate)  over the droplets.   Thus we have now obtained dy/dt as 

an analytically assigned function of t. 

It  is  quickly seen that  the Wilson point (= supersaturatlon max- 

imum)   lies very nearly where 

*Z  - Üüffi 12Q) 
dt       dt      ' ^  y' 
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cf.   Fig.   5,   since  then (y    - y),   the  amount of water  lacking for ther- 

modynamic equilibrium,  no longer  Increases,   i.e.,   the  supersaturation 

also ceases   to rise.  The quantity dy /dt is naturally given by the 

rapidity of expansion and can be regarded as constant within the   nuclea- 

tlon zone. 

If we  insert the analytical expression obtained from Eq.   (28)  as 

a substitute  for  dy/dt  in Eq.   (29),  we  obtain an algebraic  equation of 

the form 

f(t)  = const, (30) 

wnose root t*  indicates the flow time ascribed to the Wilson point. 

Prom the latter we can then determine  the other quantities  of state at 

the Wilson point  (A*, p*,  etc.)  quite easily. 

Once the Wilson point has been established,  we can finally also 

determine the number n** of fog droplets per kilogram of fog by in- 

tegrating the function J-v up to the Wilson point. 

The considerations presented above  lead us to the following com- 

putation program:  we select as the reference point a point on the ex- 

pansion line slightly in front of the  locus of the hypothetical Wilson 

point - in slower  (turbine)  expansions,  at about 2.5 to 3^ of theoret- 

ical wetness,  and,   in fast (nozzle) expansions,  at about 3 to 3.5^. 

Prom an i,s-table  (see Appendix)  compiled for supercooled steam, we 

read the pressure p,   and the steam temperature T, .   at  this point. 

Then we determine  the polytropic efficiency TV   .   from the slope of the 

expansion line and calculate the local value of expansion rapidity P. 

from the design data (cf.,  for example.  Section 2.1).  Then from T. b, 

we obtain the corresponding values of supersaturatlon,  using Diagrams 

II and  IV (Appendix): 

Ab   -   in "b 
(31) 
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and those of the quantities Z-,, Z2, ..., Z,-, which represent various 

combinations of material quantities, and, with T, , and A. , the con- 

version factor K as well. 

It is expedient to introduce the  "reduced log supersaturatlon" 

„.       A 

whose value at the reference point  Is found to be 

(32) 

Then we calculate the dimenslonless parameters 

(33) 

(34) 
H 

and 

«k.i$. (35) 

These two parameters appear In the  final form of Eq.   (30) and thus 

alone determine the position of the Wilson point. We can present the 

roots of Eq.   (30)  in a generally applicable form as a function of these 

parameters,  see Pig.   6,  where we have plotted the value of the reduced 

log supersaturatlon at the Wilson point, x**   instead of the meaning- 

less t*. When we read x* from Fig.  6, we have obtained our first in- 

dication as to the Wilson point. 

At this point, we can at the same time check whether the choice 

of the reference point was correct. This Is the case If, with the x* 

obtained,  the relationship 

O.M*^ <O.M (36) 

is  satisfied;  then the reference point lies  in  the middle of the nuclea- 

tion son«.    Otherwise we must assume a more favorable reference state 

and determine x* a11 over again. 
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Fig.  2.5.6.  Diagram for determining reduced 
log supersaturation at Wilson point. 

Fig.   2.5.7.   Diagram for comput- 
ing number of droplets. 

If x* has definitely been determined,  then the log super saturation 

A* and the super saturation n* at  the Wilson point follow: 

A»   -  inn»   -  (Z^X» , (37) 

and the supercooling at the Wilson point Is obtained as 

AT*  "  Viy* • (38) 

The pressure p* corresponding to  the Wilson point Is determined from 

the  expression 
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Finally, we obtain n**,  the number of droplets per unit mass of wet 

steam that result  In stable fog droplets and thus permit  Inferences as 

to the average droplet size,  from 

"" ' «Vb^-S. (40) 

where H Is an abbreviated integral expression and can be stated as a 

function of x* and the quantity 7b
ö
b formed from the parameters.   Its 

value can be read from Fig.  7.  This concludes the calculation for the 

first step  (nucle«tion zone). 

M 
X 
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Fig.  2.5.8.   Magnitude  of Wilson-point 
suoercoo11ng for various expansion 
rates and various pressures, with expan- 
sion isentropic. 

The  importance  of the expansion rate is easily appreciated from 

Fig.  6 and Fig.   7.   For example,   if in an expansion the same steam states 

are run through ten times faster than in another,  6,   remains approxi- 
4 

mately constant, while -y.   becomes larger by a factor of 10  .   As a re- 

sult, we obtain a x*  that is larger by about  15^ and a  S about  10    times 

as large, which ultimately leads to a thousandfold increase  in  the num- 

ber of drops.' 

For the rest,   the equations also  indicate that a diminution of 
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the pressure has an effect  similar to that of an  Increase  In P. 

It follows from the above that different Wilson lines   apply for 

different eypanaion rates:     these are calculated assuming 

isentroplc expansion (rj    = l) Tor steam and entered In our enthalpy- 

entropy diagram (Appendix).     The supercooUng peaks   ^T* that occur have 

also been calculated (again with T\   = 1)  and plotted as a function of 

expansion rapidity and pressure in Pig.   8.   (For the sake of simplicity, 

we have referred P and p to the Wilson point,  since Pb « P* and p^ « p* 

anyway  if the reference point has been correctly chosen.) 

Condensation zone 

In this second step of the calculation,  we  shall concern ourselves 

with the variation of the quantities of state and the flow velocity in 

the  condensation zone.   In order again to avoid a  stepwise numerical so- 

lution of the system of differential equations written in Section b), 

we shall make use of the assumption that the transition of the steam 

from the completely supercoolad     state to thermodynamic equilibrium oc- 

curs  Jumpwise ("condensation shock").  Since the condensation zone has a 

finite width in actuality,   it  is best to assume that the Jump occurs 

not  immediately at the Wilson point, but somewhat farther back, cf.   the 

representation in Fig.  9 in this context.  Then we have as the state be- 

fore  the jump a hypothetical state that can be obtained by extrapola- 

tion of the supercooled      expansion curve.   Prom the  laws of the condensa- 

tion Jump, we can obtain from this a likewise hypothetical state behind 

the  Jump,  from which it will be possible to extend the expansion curve 

assuming thermodynamic equilibrium.  Within the condensation zone this 

extension has no physical validity, and only beginning at its end (p**) 

does  it present a valid approximation for the actual expansion curve. 

Actually, we can place the point of the Jump arbitrarily within 

the  condensation zone.  We  shall place it where half of the water y* due 
00 
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Flg.  2.5.9.   Pressure 
curve and expansion 
line In spontaneous 
condensation (solid 
1 Ine:  c orre a pondIng 
to solution of dif- 
ferential equation 
system; broken line: 
assuming a condensa- 
tion Jump).  The case 
shown arises In 
supersonic flows.  1) 

'■; 3) After; 2) before 
flow path;  4)  satu- 
ration. 

at the Wilson point has actually condensed. 

This point  can be determined with the aid of 

the droplet-growth curve that was applied to 

the seeding zone.  According to  [45], we get 

3 p* 
P      op* 

Z6A« 

3*i 

'vor -A**  ^H- 

«*>•!»• 

rvor 
P» 

(40) 

(41) 

[vor = before] which uniquely defines  the 

state before the Jump.  We can use an l,s-table 

to obtain y*, since we already know the Wil- 

son point from the preceding calculation.  The 

material quantities Z,,  Z^,  and Zg are to be 

taken from Diagram IV (see Appendix) for the 

steam temperature at the Wilson point.   In all 

practical cases, p* - Pvor will amount to 

only a few percent of p*. 

In general,  the condensation shock Is 

calculated In much the same way as a normal compression shock In a 

streaming gas:  we write the three basic equations (continuity equation, 

energy equation and equation of motion)  in one-dimensional form for 

the place of the shock and solve them.  No difficulty is encountered in 

this solution,   since all of the equations are algebraic.   Stever  [34] 

refers to certain similar studies.   These are concerned with a sudden 

Influx of heat of known intensity to a streaming ideal gas.   It is 

found that two dimensionless parameters are decisive for  the proper- 

ties of the shock: tlLor,  the Mach number before the shock,  and 

^zu^vor^   '■zu = lnfluxJ»  the amount of heat flowing into  the streaming 

medium per unit of mass, referred to its total enthalpy before the shock. 
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The question Is posed somewhat differently In the case of pure 

steam, primarily because we cannot Indicate  In advance the amount of 

heat that will be  liberated.   (At high Mach numbers,  for example,   there 

Is even a possibility of compression shocks so severe that the  state 

of the steam goes suddenly Into the superheated region,  so that  in the 

end nothing condenses at all.) Further,   a change in the isentroplc ex- 

ponent K arises in the case of steam,  and part of the volume-occupying 

mass also vanishes  (since the specific volume of the water is,  after 

all, negligibly small).  Taking these peculiarities into account,  the 

author has carried through calculations for condensation shocks  in 

water vapor:   see   [46].   The assigned amount  of heat has been replaced 

by an indication of the supercooling before the shock (referred to a 

temperature of the vapor) and the condition that thermodynamlc equilib- 

rium prevails behind the shock. 

Fig.   2.5.10.   Pressure and velocity 
variations due to a condensation 
shock as functions of the Mach num- 
ber before the shock,  for various 
initial lupercoolinga       (concerning 
the parameter of the curves,  see text) 
1)  After; 2) before. 
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Accordingly,  the two dimenslonless parameters that determine the 

properties of the shock In pure steam are M^or and {AT/Td^vor*  ^'e cal" 

culatlons were carried out for a number of Initial pressures and em- 

braced the Mach number range up to about M        = 2 and individual val- 

ues of  (^T/T^vor 1yinS between 0 and 0.15;  see Figs.   10 and 11.   It 

was found that the shock diagrams corresponding  to the various initial 

pressures Pvor are not exactly identical - a result that may be as- 

cribed to the peculiar properties of water vapor  (shape of vapor-pres- 

sure curve,  variation of heat of evaporation).   Nevertheless,  the shapes 

of the curves remain similar and the change  in the initial pressure 

has about the same effect as a certain change in the curve parameter 

(ATZT,),. .   It follows from this fact that the deviations as a result x   d'vor 

of changes in Pvor can be taken into account rather exactly by cor- 

recting the (AT/Td)   value. The numerical change in the evaporation 

heat L is found to be the most suitable correction. These representa- 

tions result in the following rule: the curves shown in Figs. 10 and 

11, which apply originally for p   =0.5 bar and with (^T/VJ   as 

the curve parameter, can also be used for other initial pressures 

(0.05 < P,/riT, < 5 bars at least), provided that vor 

in Fig. 10 the quantity 

in PJg. 11 the quantity 

I Td (or     MO, 5 tu 

*Td Aror 

tatr) 

MO, 5 b*r) 

Lfrvor> 

is used as the curve parameter. 

It will be seen from Fig.   10 that the influence exerted by con- 

densation on the flow depends very heavily not only on the extent of 

the  Initial undercooling,  but also on the stream Mach number.  Accord- 

ing to Fig.   10,  the condensation is associated with a drop in pressure 

and a rise in velocity at places where subsonic flow prevails and with 
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Fig. 2.5.11. Enthalpy- and entropy- 
Jump due to a condensation shock 
as a function of Mach number before 
the shock, with various initial 
undercoolings (concerning the 
curve parameter, see the text). 1) 
After; 2) before. 

a pressure rise and velocity drop where the flow is supersonic. For 

M   = 0, the process is isobarlc; the velocity ratio, which is simul- 

taneously the volume ratio, is greater than unity, while the condensa- 

tion effects an increase in volume with £ remaining the same. For 

M  -♦ 00, the process will unfold with volume constant. 

The most striking feature of Fig. 10 is the absence of condensa- 

tion shocks in the vicinity of Vi^ov =  1. The system of equations given 

has no solution in this region. What this signifies can be made clear 

somewhat as follows: the present investigation of the condensation 

shock was prefaced by two apparently self-evident assumptions: namely, 

that the shock can be produced at any arbitrary Mach number by appro- 

priate design of a nozzle (for example, by selection of the total pres- 

sure), and that the flow behaves stationary. Each steady state must, 
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however, be Introduced by a nonsteady prelude process that merges with 

It asymptotically. Now it Is quite conceivable that under certaljn con- 

ditions, the desired asymptotic transition cannot come to pass at all. 

In our case, this would be when the condensation shock tended to pene- 

trate Into the forbidden Mach number region during the prelude process. 

If this penetration should occur In the subsonic region, we have a 

back effect on the state before the nozzle; If a certain pressure Is 

forced here, the mass throughput must become t;inallerj If the mass 

throughput Is forced, the pressure must pile up; In any event, the set 

of conditions specified cannot be satisfied and Is replaced by another. 

In the other case, when the prelude process unfolds In such a way that 

the condensation shock reaches the boundary of the forbidden super- 

sonic Mach-number region, a back effect on the upstream conditions Is 

excluded and the Initial conditions thus remain unaffected. Since, on 

the other hand, according to our equations, such a stationary state is 

not possible, no asymptotic transition into such a state can take 

place either. To Investigate the processes that unfold in such a case, 

we should substitute equations of nonstatlonary behavior for the sta- 

tionary equations. The solutions of these equations for the state fol- 

lowing the prelude process would then be periodic in nature. I.e., the 

flow state would perform oscillations of some sort. For the rest, these 

would have to be of relatively high frequency so that the nonstatlonary 

acceleration terms would really be considerable as compared to the sta- 

tionary terms. Thus we would have to deal with a more or less Intensely 

oscillating flow. These conclusions are supported by the sporadic ob- 

servation of bucket failure in wet-steam turbines under conditions 

such that it could not be attributed to any of the known causes. This 

breakage could be eliminated only by changing the cross sections with 

the concomitant fundamental changes in other flow conditions. 
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The two boundary Mach numbers at which a condensation shock Is 

still Just possible are the farther from unity the stronger th^ con- 

densation, i.e., the greater the undercooling prevailing before the 

shock (note the increasing removal of the Inflection point of the 

curves from i,Lor  = 1 for Increasing parameter values). 

Fig. 2.5.12. Locus curve of 
steam states after the shock 
In the i,s-diagram, calculated 
for Pvor =0.5 bar and 

(AT/Td)vor =0.12. The Jump 

that occurs is decermined by 
the magnitudes of the Mach num- 
ber M _. 1) State before the vor 
shock; 2) before; 3) saturation. 

Theoretically, two solutions are possible in the neighborhood of 

the inflection point for a given M^or. The solid curves ?pply to the 

"weak" case, in which only the absolutely necessary consequence^ of a 

condensation arise, while the broken-line curves have reference to the 

so-called "strong" condensation shock, which, according to Oswatltsch 

[35]* can be interpreted as the simultaneous occurrence of a (weak) 

condensation shock and an ordinary normal compression or rarefaction 

shock. We may conclude on the basis of experience that weak shocks 

arioe in practical cases, since the absolute abruptness of condensa- 

tion that would be necessary for a strong shock is not at all guaran- 
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teed In reality. We shall return again to the end point1: of the broken- 

line curve branches. 

Figure 11 presents a plot of the enthalpy and entropy Jumps pro- 

duced by the shock. The entropy increase was multiplied here by a tem- 

perature value so that it would provide a direct point of reference 

for the work loss due to the shock. Knowing the sizes of the two shocks 

places us in a position to determine that point of the i,s-LUagram be- 

ginning at which the expansion continues behind the shock in cases 

where the point before the shock is known. For example, we obtain for 

p   =0.5 bar, (^T/Td)Vor 
= 0*12 and various Mach numbers the state 

points behind the shock as shown in Fig. 12. 

Referring to Fig. 12,  we shall be in a better position to discuss 

the curves of Fig. 11 as well. In the case of a vapor at rest (M   = 

=0), there is no change in enthalpy; the entropy increase has exactly 

the value necessary for the transition from the curved (undercooling) 

Isobar to the straight (equilibrium) Isobar. According to Fig. 11, the 

entropy increase will be the greater the greater the supercooling. 

(And, indeed, almost in a square-law relationship.') For subsonic flows, 

the Jump Is downward. I.e., th2 enthalpy diminishes (after all, accel- 

eration.1). With rising Mach number, the entropy increase becomes some- 

what larger and reaches its maximum at the highest subsonic Mach num- 

ber at which a condensation shock is still possible. Cases correspond- 

ing to the broken branch of the curve, which, though they do not occur 

in practice, are still theoretically possible, lead to much smaller 

increases in entropy, since they are connected with an expansion shock. 

In the boundary case of constant entropy, the theoretical possibility 

of the existence of such shocks also falls by the wayside, and this is 

the reason why Fig. 10 limits the lengths of the broken-line subsonic 

curve branches. 
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In the supersonic region, a rather strong positive enthalpy Jump 

arises at the  lowesfc Mach number at which a shock Is still at all pos- 

sible.  For larger Mach numbers,  the  Jump becomes increasingly indis- 

tinct in the real case (unbroken curve), but is connected with a no- 

ticeable enthalpy Increase even for M       = <».  The entropy increase al- 

ways remains somewha'; smaller than in the subsonic case and is minimal 

at the bonndary Mach number.  The  "strong"  shock (broken-line branch) 

le^ds to sharp Increases in enthalpy, which,  in the extreme case, re- 

sv'li In or;/--saturated states.  This  is what establishes the strongest 

theoret:-J31-ly possible condensation shock. 

In actuality,  the Jump is less pronounced,  since development of 

the h?at   of condensation extends over a finite period of time.   In Fig. 

9,       .  aharp-cornered expansion curve computed with the aid of the 

shcclc conception is compared with the  "exact" curve, which would be 

obtained by stepwlse solution of the system of equations set forth in 

Section b.   Just as the forward salient point (the Wilson point)  occurs 

at a pressure p* > Pvori  the rear salient point also lies not at Pnachi 

but at a lower pressure p**, whose magnitude can be estimated from the 

time required for condensation.   If we define Pvor by Eq.   (40), we can 

with sufficient accuracy take 

(42) 

(p  , - p**) will therefore be greater than (p* - Pvor)» since the 

condensation proceeds more slowly toward the end because the supercool- 

ing has already receded. 

We can now summarize the course of  3 calculation for the conden- 

sation zone. Strictly speaking, the calculation applies only for nar- 

row one-dimensional channels in which the condensation shocks are 

perpendicular to thef'ow.     We shall return at the conclusion to the 

case of turbine cascades in which extensively two-dimensional flow pre- 
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vails.  After we have found the Wilson point   (I.e.,  p* and A* have be- 

come known), we calculate pvor and Avor from Eqs.   (40) and (4l),  re- 

spectively,  thus locating the Jump.  The governing parameters of the 

Jump are obtained from 

»or •fefef'-l (^3) 

and 

^        '   K<Pvor'Avor)Af (44) lTdJU.r 

Here, Ptot Is the total pressure of the flow. The coefficient K - In- 

troduced In Section 2.3a — Is presen^.d In Diagram I (see Appendix). 

If we skip the calculation of the seeding zone and wish to determine 

the Wilson point on the basis of the Wilson lines drawn into the l,s- 

table. It will also be simplest to read AT also from the table or from 

Fig. 8 and connect It with T,, whereupon Eq. (44) becomes superfluous. 

Then, on the basis of Mvor, (AT/Td)vor and pvor, applying Figs. 

10 and 11, we determine the properties of the condensation shock. I.e., 

the quantities 

■Wh . K pyor   •      'n»ch 'vor1'  »"ntch 'rot J'     <•„ 

[nach = after; vor = before]. Using them, we can determine the pressure 

Pnach and that point of the i,s-diagram beginning at which the expan- 

sion continues. The expansion lines are drawn out from this point with 

about the same efficiency as before, cf. Fig. 9. 

Finally, p**, the pressure actually attained at the end of the 

condensation zone, can be determined from Eqs. (42) and (40), so that 

an approximation of the real expansion curve is obtained (solid line 

in Fig. 9). At the pressure p**, we read from the expansion line the 

y**, which indicates the quantity of suddenly precipitated water and 
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thus represents an Important basis for determination of the average 

droplet size. This completes our second calculation step. 

However, before proceeding farther to our goal, the droplet size, 

let us first consider briefly the influence exerted on the appearance 

of condensation shocks by the two-dimensional nature of the turbine- 

cascade flow. The reason for the deviations that will be found in 

turbine cascade   as compared to narrow straight nozzles is the fact 

that in the cascades, the condensation does not set in simultaneously 

on all streamlines, so that there is a distortion of the streamline 

pattern as compared to the condensation-free case. To determine the 

disposition of the condensation shock in a      cascade, let us pur- 

sue the following line of reasoning. 

If the condensation had no disturbing effect on flow conditions 

(i.e., if no shock arose), the streamline and isobar pattern in the 

cascade would be exactly the same as without condensation, see 

Fig. 13a. We would only have to concern ourselves with a fog behind 

the isobar p# (p* is the Wilson pressure, at which condensation inter- 

venes )• In actuality, however, spontaneous condensation is associated 

with a shock. Let us now imagine that we have replaced the drawn 

streamlines with thin rigid sheet walls, cf. Fig. b. As a result, the 

flow has been divided into four separate flow filaments, each of which 

is so narrow that it may be regarded as one-dimensional. Then normal 

shocks arise in these channels, staggered in a manner corresponding to 

the course of the p» line. If we now take the sheet walls out, the 

flow field between the two bucket profiles will again be continuous 

and must naturally be spanned continuously by the shock. Obviously, 

however, this shock line will not run vertically onto the streamlines. 

Such a case - that of the so-called "oblique condensation shock," can 

easily be understood on the basis of the normal shocks by decomposing 
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the flow velocity Into a component perpendicular to the shock and a 

component parallel to It (Pig. c). The normal component Is subject to 

the shock laws, while the parallel component remains unaffected by the 

shock. This then results in a knee in the streamline - assuming the 

shape shown for subsonic flow - since the normal component is, after 

all, increased by the shock in this case. (The determining Mach number 

M   is to be formed with the normal component.') On the basis of this 

fact, we can conceive of the actual streamline pattern as shown in 

Fig. d. A result of the knee shape is that the filament right next to 

the back of the bucket must become somewhat broader before the shock 

as compared with Fig. a or b. According to Bernoulli, nowever, the 

pressure would then diminish more slowly, so that the Wilson pressure 

p* is reached somewhat later and thus the shock is displaced a bit 

downstream. The opposite effect arises in the filament on the concave 

side of the bucket, so that the shock ultimately has a form deviating 

less from the perpendicular, such as the line originally assumed for 

p* in Fig. a. The shock must be normal in the neighborhood of the pro- 

file, since, indeed, no knee can be formed in the streamlines because 

of the solid wall presented here. Thus we have ascertained the sought 

shape of the condensation shock in a bucket cascade. 

Naturally, the Wilson pressure may üccaslcnally be reached far- 

ther forward or farther back in the cascade. If, for example, we mod- 

ify the state before the cascade in such a way that the pressure p* is 

reached farther back in each successive case, the shock will also be 

shifted in the manner shown in Fig. e. If here the end point of the 

shock has already reached the exit edge on the concave side of the pro- 

file and the entry state is modified still further, the ahock line 

will not separate at all from the exit edge and end in free space, but 

will remain attached: that is to say, a Jet-deflection-like flow will 
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Fig.  2.5.13.   Illustrating position of condensation 
shock in a bucket  cascade. 

move past the exit edge and result in a local acceleration,   i.e., a 

local pressure drop, one that  levels out in exactly such a way that 

the pressure p* is reached at the edge.   If the pressure level before 

the cascade rises further,  the  Jet deflection will become steadily 

more pronounced,  until the other end of the shock line has also drifted 

to the exit edge.  Only by a  still further increase in the pressure 

level can the shock line be  separated from the cascade.   In the case of 

a turbine,  the shock then migrates out into the  intermediate axial 

space or even into the next bucket ring. 

Finally, a word on the three-dimensional effects.   In turbines, 

the pressure in the intermediate space  in front of a cascade  is gener- 

ally not constant along all radii.  Accordingly,  different shock lines 

among those drawn in Fig.   13e apply for different radii,  i.e.,  the 

shock surface Is somewhat canted between the    blades. 
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The stronger the variation of the pressure In the Intermediate 

space as a function of radius, the greater will be the deviation of 

the shock surface from the cylindrical. Nevertheless, this effect of 

pressure will generally be partly offset by the variation of the per- 

centage reaction, which determines the extent of the pressure drop in 

the oascade itself and, through it, likewise influences the shape of 

the 3hock surface. Nevertheless, it is conceivable, for example, that 

the shock surface lies under certain circumstances between rotor 

buckets at the hub, crosses the intermediate space at the mldsection 

circle, and squeezes in between the next following stator buckets near 

the casing liner. In Section e, we shall briefly discuss the question 

as to whether these three-dimensional effects can have substantial con- 

sequences for the behavior of a turbine. 

Size of fog droplets and renanent »upercoollng 

In the first step of the calculation ( nucleation zone), we have, in 

addition to the locus of the Wilson point, determined the number of 

fog droplets n** that have formed. The second step of the calculation 

(condensation zone) resulted in the water content y** at the end of 

the condensation zone at thermodynamic equilibrium, taking the proper- 

ties of the flow into account. If the specific amount of water y**  is n 
present in the fog droplets at the end of the condensation zone,  these 

have the average radius 

where ^Trp'/S ~ ^100 kg/nr* at moderate pressures.   (If almost perfect 

thermodynamic equilibrium has been established and no water is present 

other than that  in the fog drops, we may set y** » y**.) 

On the basis of Eq.   (45), using the calculation methods for the 

seeding and condensation zones, we can determine the Influence exerted 
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by rapidity of expansion, pressure and Mach number on the average fog- 

droplet size.   The result Is Fig.  14,  from which the overwhelming sig- 

nificance of expansion rate f        will be soen at once.  The reason for 

this strong influence  is the fact that greater supercoollngs are 

reached in rapid expansions — cf.  Pig.   8.' — so that the nucl««tion fre- 

quency assumes very high values and, even In a very short time,  this 

is manifested in a very large number of droplets.  Since,  on the other 

hand, the amount of water precipitated does not change appreciably, 

the result is a sharp reduction in droplet size. 

Fig.   2.5.14.  Average droplet size in 
fog for various expansion rapidities 
and pressures prevailing at the Wil- 
son point and for various Mach num- 
bers,  under the assumption that the 
entire  theoretical wetness  condenses 
(y** = y**).   vor = before. n oo 

With this, we have acquired answers to all questions posed at the 

beginning of this Section d) and now come to the subject of the super-. 

coollng AT** remaining at the end of the condensation zone.  This oc- 

curs only because the  steam is expanded further and new water must be 

condensed steadily during this process.   The water condenses on the aur- 

faces of the fog droplets and its heat of condensation is given up to 
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the steam (which is cooler by AT**). The heat balance would be written 

L—£        - n" • (41 r***) »•• AT»» , (46) at   |(** n r 

where the heat transfer coefficient a** refers  to droplets of size r** r ^ n 
at a pressure p** and is given by Eq.  2.2(32).   By transformation and 

Introduction of the expansion rapidity, we obtain 

AT*» - Z8(p»») 
p»»r? n 

'oo 

.» 
1 ♦ 

l,5»TCp»») 

rV 
(47) 

Here,  Zo Incorporates the material quantities; 

^'V  "    J^ d(-lnp)    * (48) 

Zo has somewnat different values for different polytropic efficiencies; 

these are plotted In Diagram III (see Appendix).   We may calculate T 

from Eq.  2.2(6) or read it from Diagram I.   In nozzles,  AT** is usually 

1 to 3 C;   for turbines,   in which the expansion rapidity varies greatly, 

no general statement can be made,  since the magnitude of AT** depends 

very heavily on precisely how large the local expansion rapidity P** 

is.   The  further progress of supercooling     will be  treated in Section 

2.6b. 

e)  Certain Conclusions for Wet-Steam Turbines 

The Investigation of the spontaneous condensation process given 

in Section d) applies for expansions in which the expansion rapidity P 

is not subject to sharp changes.   Unfortunately, expansion in turbines 

does not present such a simple case,  since the rapidity of expansion 

shows extraordinarily sharp fluctuations.   (It is high within the   blade 

rings and drops      practically to  zero In the  intermediate  spaces.)  Thus 

the assumption that supersaturatlon increases linearly with time is no 

longer Justified and the applicability of the methods described in Sec- 

tion d) for determining the Wilson point (where,   indeed,   this as.^ump- 

- 114 - 



mm mm mmm 

:L 

tion was one of  the basic premises.')  must be questioned.   It  can,  how- 

ever,  be shown that  the methods also give  correct results  for expan- 

sions with P variable  in time  (or,  what   is  the same  thing,   locally), 

provided that we determine  the   ^ factive     value of P in a  suitable man- 

ner. 

Specifically,   It  is found that  for all expansions with constant  P 

[45],  only those droplets formed  in  the pressure range 

1,02 ?•>?>?• (49) 

participate heavily In the precipitation of water up to the Wilson 

point.   This gives us a clue  to the width of the nuclsation sone.   Suoh an 

expansion is represented in the upper part of Fig.   15.   The  only thing 

of importance for the position of the Wilson point and for  the number 

tn p      \      KiimbUdungsiont 

Fig.   2.5.15.   Illus- 
trating determlna - 
tion of P» In a  tur- 
bine.   Top:   condi- 
tions at P = const; 
bottom:  approxima- 
tion of a turbine 
expansion through 
expansion segments 
with P = const.   1) 
nucleation zone; 2) 

Wilson pojnti  3; 
Z.wr = Intermediate 
spaces. 

of droplets Is how rapidly the expansion un- 

folds in this zone. What has happened previ- 

ously makes no difference, since the droplets 

formed there are not a factor In view of 

their relatively small number. Thus the con- 

densation process would remain practically 

unchanged If the expansion were to proceed 

not along the straight pressure line, but In- 

stead along the dashed pressure curve. 

Thus we are given the key to calculation 

of turbine expansions. We must replace the 

stepwlse pressure variation of which a sec- 

tion Is shown at the bottom of Fig. 15 by seg- 

ments with P = const, but In such a way that 

these approximations always embrace a region 

with a pressure change of at least 2<g, see 

the figure. The slopes of these lines In the (In ?), t-diagram every- 
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where  Indicate the value of P governing nuclei formation.    Thus we may 

not set P = 0 In the Intermediate spaces, although this may be the 

case locally, but must set Instead 

0,02 0,02 • C 

mtn At Zwr AVzwr 
(50) 

where the significance of At-, is evident from Pig.   15 and A£    „       is 

the axial width of the  intermediate space.  With A^    „      = 2 cm and 

c    = 100 m/sec, we obtain,  for example,  P in ~ 100 sec -1 

Now if we wish to find the Wilson point in a turbine, we draw the 

curve of P on the basis of this rule for those blade  rings in the re- 

gion where we estimate that condensation will set in, cf. Fig. 16, top. 

(The local values of P are indicated by dashed curves; it is seen that 

the averaging results in substantial deviations only in the axial in- 

termediate spaces.) We then determine the curve of the "Wilson super- 

43 
cooling" AT*(0, cf. Fig. 16, bottom, from the P(0 curve with the a a 

aid of Pig. 8. This curve tells us how great the supercooling  at each 

point £ must become for sudden condensation to set in. For the rest, 
a 

we can determine the extent of the undercooling AT = T (p) - T,  in  the 

intermediate spaces on the basis of the design data  (for example,   us- 

ing an i,s-dlagram for supercooled steam) and plot it In the diagram 

set up for AT*.   If we connect these points with a wavy ascending line 

(see Pig.   16),  then we have the curve of undercooling within the bucket 

rings with sufficient accuracy.  Now the Wilson point will be situated 

where the AT(£  )  line first reaches the AT*(^0)  curve.  We read from 

this point the value of the expansion rapidity P = P* and the pressure 

p = p* and thus obtain the two items of data  from which the losses, 

drop size, etc.  follow in the manner described earlier. 

At this point we should like to make reference  to something that 

provides an explanation for the often inexplicable differences observed 
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Flg. 2.5.16. Illus- 
trating determination 
of the Wilson point In 
a turbine, l) Wilson 
point. 

in ehe behavior of even quite similarly con- 

figurated wet-steam turbines. If the satura- 

tion line in the turbine for which Pig. 16 

was drawn were to be crossed slightly ear- 

lier or later, as might easily occur, for 

example, as a result of a slightly different 

intermediate-pressure pattern or even as a 

result of an operational state deviating 

from design, the entire AT(?a) curve would 

be shifted somewhat higher or lower, respec- 

tively, as shown in Fig. 17 for certain ex- 

amples. (The AT* curve remains praotically 

unchanged, since its shape depends primarily on P and the latter is 

Independent of the absolute pressure value.) If, however, the shape of 

AT changes, the Wilson point will also have a different position: if 

the saturation line is crossed at, for example, B instead of at S, the 

Wilson point may" easily slide forward, but will srill remain in the 

region where P has a high value. Only when saturation Intervenes still 

farther forward (at A) will the condensation be -criggered in the inter- 

mediate space in front of the ring. Conversely, when the saturation 

line is reached only later (C), the Wilson point will slide farther 

back into the ring, until finally (D) it comes out into the intermedi- 

ate space, thus creating a situation analogous to A, I.e., spontaneous 

condensation at low P. 

Thus we find that fogging in a turbine may occur at either .large 

P or small P, depending on how the state of the steam happens to vary 

from ring to ring. The consequences that this has for the composition 

of the fog can be seen from Fig. 14: for P* = 4000 sec"1, which corres- 

ponds approximately to the Wilson point on the heavy curve in Pig. 17, 
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Pig. 2.5.17. Displacement of 
the Wilson point in a turbine 
when the pressure curve Is 
changed. (Heavy line: design 
state). 
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we read a fog-droplet radius r** « 3*10      m;  for P* « 1.50 sec"  ,  on 

the other hand,   this  corresponding approximately to curves A and D, we 

read a radius r«* « 3.5-10"' m.1   (See crosses In Fig.   14.) Thus when 

condensation sets  in  in an Intermediate space,  the fog droplets are 

about ten times  (.')   larger than when condensation intervenes during 

the sharp pressure drop within a ring.  The  significance of this find- 

ing will come to light in the sections to follow, where it will be 

shown that fine fog droplets cause smaller moisture losses and present 

a lesser erosion danger than coarse ones. 

Up to this point,  we have ignored the fact that not all of the 

steam particles flowing through a ring experience the same pressure 

drop. The differences stem on the one hand from the unique nature of 

cascade flows and,  on the other,  from the  fact that the percentage 

reaction is not,   in general,  constant along the turbine buckets.   If, 

however,   the condensation takes place under different conditions in 

parts of the steam that pass through a ring at different points, we 

can no longer speak of a uniform fog-droplet size in the entire flow 

space,  since different drop sizes will occur in different regions.  The 

Influence of the cascade flow can be  Judged by determining the expan- 
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sion cxirve and the Wilson point also,   for example,   on the two stream- 

lines  in the  immediate vicinity of the   blade/   profile  (pressure and 

suction  sides)   in addition  to those at the middle streamline  (for 

which Fig.   16,  etc,  have been drawn).   The pressure curves drawn in 

Fig.   2.^.3 may,  for example,   be used for this purpose.  Nevertheless, 

it will be found -  in spite  of the great differences between the pres- 

sure curves - that in most cases, condensation takes place under almost 

identical conditions (with almost identical local P)  In the entire 

bucket channel,  i.e.,  that the uniform droplet size is not severely 

"smeared out" by these effects.  The points at which the Wilson points 

are located are generally in agreement with the condensation-shock 

lines of Pig.   13e.   As concerns the influence of the change in the 

streamline relationships in the radial direction,  this can, under cer- 

tain circumstances, result  in gross differences,   in that,  for example, 

coarse  fog droplets form in the zone around the rotor and fine ones  in 

the vicinity of the casing liner (or even vice versa), depending on 

where condensation Intervenes at small and large values of P.  The 

smaller  loChfi/Dni tSchfl =    blade],  the more uniform will be the fog 

droplets throughout the flow space. 

Prom the insights gained from Fig.   17, we may draw two practical 

conclusions.  First,  there is a possibility of checking these theoreti- 

cal statements experimentally:  If, using suitable means, we shift the 

Wilson point in a wet-steam turbine,  the related variation of fog- 

droplet size would necessarily produce,  for example, a variation in 

the moisture loss — one that could be ascertained by efficiency meas- 

urement.  As we pull the Wilson point through one stage, the moisture- 

loss variations should run through a period. 

Secondly, a basic commandment for the design of wet-steam turbines 

follows from the above:  pains should be taken to have the spontaneous 
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condensation result In the  finest droplets possible.   A means to this 

end Is to draw the appropriate pressure curve and hold the stretches 

with slow pressure drop (intermediate spaces.')  short so that,  if pos- 

sible,  the Wilson point will always  lie within a bucket ring with a 

steep pressure drop. 

2.6.   FLOW AND EXPANSION OF THE FOG 

Forward in time from the collapse of super^aturation,  the flow 

medium is no longer a pure vapor,  but instead a fog,   i.e., a mixture 

of steam and myriad tiny water droplets.   (Note that in our usage,  the 

term "fog" also embraces the steam.   Only larger water droplets are ex- 

cluded from it.)  If we were to leave this fog at rest,   V. would come 

rapidly to thermodynamic equilibrium, with the droplet and steam tera- 

peratures approximating one another.   If, on the other hand,  the fog is 

subjected to further expansion, more and more water will keep coming 

due for precipitation, and this must - since otherwise  sufficiently 

large areas would not be available — condense on the fog droplets. 

This  is possible only if the steam is somewhat cooler than the drops. 

The extent of the "remanent «upercoolingM      resulting from this depends 

on various factors (total surface area of the droplets,  heat of con- 

densation to be withdrawn per unit of time, effectiveness of heat 

transfer) and may vary quite considerably during the course of the 

subsequent expansion.  Since any deviation from thermodynamic equilib- 

rium means a loss, we shall go into greater detail in the second part 

of this section concerning determination of the remanent supercooling. 

For the rest,  the fog contains a considerable quantity of water, 

latent in which are an erosion danger and various possibilities for 

additional losses. The fog droplets are indeed so small  (r   = 0.2 x 

X 10"'   to 6" 10"'  m) that they can follow the motion of the steam al- 

most perfectly in spite of its continual changes, but nevertheless 
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some of them skid onto  the blade      surfaces  of each blade  , ring,   with 

the result that water collects and coarse water droplets detach.   It 

might also be hazarded that fog droplets collide with one another and 

ball up Into larger droplets.  Further,  fog droplets may strike slower- 

moving larger water droplets and be swallowed up by them.  Below we 

shall first go Into the processes  that tend to reduce the number of 

fog droplets. 

a) Fluld-Qynamlc Behavior of the Fog 

Let us seek answers to the following questions:  Do the fog drop- 

lets remain distinct during the expansion or do they ball together to 

form larger droplets? How large is the fraction of the fog droplets 

precipitated onto the blade«      during flow through the subsequent  blade 

rings? How large is the fraction swallowed up by large water drops? 

In order to form some conception of the droplet distribution in 

the fog,  let us compute the average distance cf separating two fog drop- 

lets from one another.   Let us Imagine the steam space to be broken up 

into small cubes of edge length "3, each containing Just one drop.  Then 

let us compute the "3 in a fog that has Just formed,  i.e., a fog  in the 

state characterized by **: we have "3** = (v**/n**)        = 

= (^7rpur**3v»«/3y**)1//3, or "a**^** = (Trp^v*»/^**)1/3.   in a typical 

case with y** = 0.03,   v*» = 2.5 m3/kg,  a    = 1000 kg/m3 we get 

cl*V2r** = 35, which alone indicates that collisions between two fog 

droplets will tend to be Infrequent occurrences.  Since, however,   the 

specific steam volume v will still increase sharply to the end of the 

turbine, the average droplet distance will become still larger and we 

can therefore figure  in general on 3/2r    = 30 to 70. 

A second quantity that can provide an Insight into the conditions 

in the fog la the deceleration time of the  fog droplets, which Illus- 

trates the ratio of the inertia and friction forces acting on them. 
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The deceleration time has been calculated for various droplet sizes at 

the end of Section 2.2 (Table 2.2.1). The fog-droplet radius is of the 
-7 order of 10     m, so that their deceleration times are at most a few 

times 10"    second, which represents a very small value. We can there- 

fore state that the fog droplets are, so to speak,   "nailed down" by 

friction in the steam. 

We obtain an insight into the migration of the fog droplet  in the 

steam from another angle if we regard the fog droplets as large mole- 

cules that form a "drop gas" mixed with pure steam.   We may,  in approx- 

imation,  assume thermodynamic equilibrium between the  two "gases." 

Then the equipartltion law will apply and the kinetic gas theory gives 

for the mean thermal velocity of the droplets (see,   for example,   [36]) 

"therm ■II?-1^ (1) 

With the data of the above example, we obtain about cth       = 2 cm/sec 

(while the steam molecules possess an average speed above 600 m/sec.1). 

We may use "cth   m to obtain an estimate of the time that a fog droplet 

requires on the average in order to collide with another. We shall r^- 

fer to this time as the mean lifetime of a droplet,   since there is a 

high probability that on collision,  the two droplets will combine to 

form a larger drop.  Now on the average, a collision will occur when 

the droplet, flying hither and thither at ctherm and with a frontal 

aiea 7r(2r  )    has swept the volume v/n ascribed to one droplet.  The 

reason for calculating the  "frontal area" with twice  the droplet radius 

is that a collision occurs even when the centers of the two droplets 
— —    2— are separated by a distance 2r  .  Accordingly, 7r(2r )  c+.       •'V;, Leben 

= v/n - v^Pw
rn/3yn*  from which 

At Leben 
•wyf

B 

S 'n cth«rm 
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[Leben = lifetime].   If we assume the above numerical values,  v = 2.5 

nrvlcg and yn = 5/^ wetness, we obtain ^tj^     = 0.17 sec   - a very large 

value when we consider that the steam requires only (2 to 4)'10   . sec 

to flow through the entire low-pressure part of a steam turbine.' 

Thus we have cast light on the coagulation of the fog droplets 

from two aspects.   Our first train of reasoning showed that the fric- 

tion in the surrounding medium is large as compared to the  inertia of 

the drops.  This excludes the possibility of rapid coagulation as a re- 

sult of centrifuging, turbulence, etc.  The second path of reasoning 

showed that even gas-kinetic considerations indicate no noteworthy 

balling together of droplets during such a short tine.   If we consider 

further that the fusion of two droplets of radius r    produces a drop- 

let of radius v/2'r   = 1.26r ,  i.e.,  one that differs only very slightly 

in size from the original droplets, we may well regard It as having 

been demonstrated that the properties of the fog are not Influenced by 

coagulation as it flows through the turbine.  This gives us the answer 

to our first question. 

Let us next consider how we shall answer the second question - 

that as to the causes that might effect precipitation of the fog drop- 

lets.  First to come under consideration as such a factor is the fact 

that the buckets force the passing steam to follow sharply curved 

streamlines.  The entrained droplets follow these changes in direction 

only with a certain - if small - delay, and some of them strike the 

wall in the process. This effect arises in the vicinity of the stagna- 

tion point and at the concave  (pressure) side of the profile.  An addi- 

tional factor might be found in the Brownian motion of the fog drop- 

lets;  if a droplet accidentally touches the wall,  it remains stuck to 

It.  This gives rise to diffusion of the fog droplets against the wall. 

This tendency might be further intensified by any electrical forces of 
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attraction that operate.   Below we shall Investlßate the phenomena cited 

one by one. 

In front of the profile nose,  i-he flow pattern is extensively sim- 

ilar to the flow about a circular cylinder.   Thus we may reproduce the 

motion of the fog droplets in front of the profile nose with suffi- 

cient accuracy by computing the droplet orbits  in the flow field about 

the cylinder (which we know from the complex represen      -on),  cf.   Fig. 

1.  We obtain the differential equations of the problem from ehe New- 

tonian law of motion.  The system formed by these two equations cannot 

Trepftnbahncn 

*r§Mgg 

Pig.   2.6.1.  Illustrating depo- 
sition of fog droplets on pro- 
file nose.  1) Drop orbits;  2) 
equivalent cylinder; 3) pro- 
file. 

be solved analytically, but it can be solved stepwise without any 

trouble. Wie problem was programmed for the ERMETH* on the assumption 

that the droplets are brought into the flow at a distance of one cylin- 

der diameter in front of the stagnation point but anywhere outside the 

axis of symmetry and have been endowed with the local flow velocity 

prevailing there.  Prom the orbit curves obtained in this way, we 

quickly conclude the case that the droplets are brought into the flow 

at an infinite distance in front of the cylinder. For various droplet 

sizes or, more correctly,  for various values of the governing dlmen- 

sionless parameter 

ü«,Albr« 
(3) 

m*,m 
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we computed a number of orbit lines and, from these, picked out the 

ones that Just made contact with the cylinder. There are two such 

lines, lying symmetrically. All droplets moving between these two 

lines strike the cylinder, while the others avoid it, see Pig. 1. The 

original distance of the two tangent orbit lines noN gives the width 

of the incident pencil of orbit lines. The following relationship was 

established: 

'»„„•»'WV- (4) 

The function gN has the curve shown in Pig.  2.  The case gN = 1 (I.e., 

GM small,  say because the drops are1 very large)  signifies that all 

droplets whose velocities were directed at the cylinder at infinity 

strike the cylinder, while gN = 0 corresponds to total avoidance. 

9N'9H 

1000 

Fig.  2.6.2.   Influence of the parameters 
0   and 0H on deposition   'f fog droplets, 

cf. Eqs.   (4) and (17), respectively. 

For finer droplets (r    « 2'10~7 m), 0N is of the order of 10. 

Only very few of such droplets will therefore be deposited at the lead- 

ing edges of the buckets.   If,  on the other hand, the fog droplets are 

coarser (for example, rn = 6-10"7 ra, Atbrems^n = 1.5*10"5 sec),  then 

GN is about unity and we have TION » RN, which is already enough to slg. 

nify appreciable fog-droplet precipitation. 

As concerns the droplets that spin out of the flow against the 

concave sides of the buckets, the result can be derived by a simple 

analytical path. The simple assumption that the concave side of the 
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profile and, with It, the Svreamllnes a(^) of the steam In its vicin- 

ity are parabolic in shape permits clcse reproduction of reality. Then, 

with the notation of Pig. 3, the equation of the streamlines will be 

written 

*(*) - const ♦ti^Ta^ • (5) 

where 

8-8, 

u ax 

(6b) 

Let us assume further that the axial component c^ Q of the droplet r,a 

velocity is always the same as the axial velocity of the steam and 

that both are constant: 

c« „ = c« = const. r,a   a (7) 

Thus we need write the equation of motion of the droplets only for the 

tangential direction. It is nrc t = W. , where the frictional resist- 

ance is given by Eqs. 2.2(1) and (31). After transposition, the equa- 

tion of motion assumes the form 

(8) 

where c*. "" cr t has keen put for the tangential component of the rela- 

tive velocity between droplets and steam. 

To be able to decide which drops will strike the   bladia     and which 

will not, we must know the trajectori«« of th« droplcts.lf we represent 

these as the functions TJ = TI(£), we may write 

'i-^-¥- (9) 
since, after all, the velocity of the droplet always traces its orbit 

in the tangential direction. An analogous relationship obtains between 

c./c. and the shape of the streamlines: 

** . . et (10) 
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Pig. 2.6.3. Illustrating 
deposition of fog drop- 
lets on the concave side 
of a bucket profile. 1) 
Streamline; 2)  droplet 
orbits; 3) equivalent 
parabola. 

where we have used the parabolic stream- 

line shape reproduced in Eq. (5)« 

Since, in general, the fog droplets 

are capable of following the motion of 

the steam quite closely, it would appear 

convenient to presuppose identical drop- 

let and steam velocities at the entry 

into the bucket (^ = 0) as an initial 

condition. The significance of this for 

the orbit line is that its tangent at 

4=0 must agree with that of the streamlines, as illustrated in Fig. 3J 

5rU"5rL>"
,'x * (11) 

Prom the equation of motion (8), applying Eqs. (9) and (10) and 

bearing in mind the relationship dt = d4/c_, we can derive the follow- 

ing differential equation for the orbit line: 

«S    <»V2«w>   \ 
dl1 - <ri * W - ~ > (12) 

It is linear and of the second order,  so that its solution presents no 

difficulty. Before writing the. solution, however, we must formulate a 

second boundary condition,  which,  together with Eq.   (11), will dictate 

the solution. 

As in the case of the profile nose, we are also interested here 

primarily in that orbit line that separates the impinging droplets 

from those that do not impinge.  This line is characterized by the fact 

that it passes through the exit edge.   It thus satisfies the equation 

^OJ - »1. (13) 

v/ith which the sought second boundary condition has been found. 

The solution of Eq.   (12) with the boundary conditions (11) and 
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(13) will read 
GH*\ 

n«) - ri^r,*8*^.K-^^e "-. 
,   H 

(14) 
ax 

where,  in analogy to Eq.   (3), we have set 

M 

1* 1,53 to      carj        ^At,^,, (15) 

(The deceleration tljne ^tbrems n was plugged in from Eq.  2.2(35).) 

The value of this function at | = 0 is governing for the width of 

the Impinging pencil of orbit lines, and we shall denote it by T]OH, cf. 

Pig. 3«  We obtain from Eq.   (14) 

^oH   " 
»Tat 
«I 

(Gg^t «H 1) (16) 

or, after substitution of 72 from Eq.   (6b), 

(17) 

Thus the tangential width of the pencil impinging on the concave  side 

of the profile,  r\ „, referred to the "linear deflection" S (see figure), 

depends only on the dimensionless parameter Q„, which incorporates the 

physical quantities.  The function gH is represented In Pig.  2. 
_ .7 

As a numerical example,  let us again take r    = 2*10     m as the 

droplet radius and a profile with 1 ,, = 0.05 m,  cQ = 130 m/sec.   Depend- "—ax 3 
ing on the magnitude of the Knudsen number  (i.e.,  depending on the 

pressure), we then get G„ = 200 to 100.   (Gu is smaller for low pres- 'H H 
sur^s.) We read gy from Pig.  2 and obtain with It TIOH « (0.01-0.02)3. 

If the S agrees approximately with the bucket spacing (which is very 

often the case),  this signifies that about 1 to 2^ of the fog droplets 

flowing through each ring glance off the buckets.  This is.  In Itself, 

a very small amount; nevertheless, this effect is quite substantial for 

-   XcO 

wmm 
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turbines, since once It has gotten onto the buckets, the water gets 

back Into the flow only In the form of large drops. 

The fraction of the fog droplets deposited on the bucket profiles 

during flow through the ring, according to Eqs. (17) and (4) with 

^Schfl denot:I-nS the bucket spacing. Is 

'n-f 
8 31L. 

'Schfl •H'^H' »ScMl 
(18) 

The subscript n-f Indicates that the water passes here from fog-droplet 

form to the running-water form. 

A second mechanism that can transport droplets to the turbine cas- 

ing is diffusion. The bucket plates act as sinks that swallow up the 

fog droplets that reach them. In this process, the diffusion constant 

plays the same role as the thermal conductivity in heat flow through a 

body. It can be calculated for a certain droplet size. Its value for 

fog droplets is very small, since these droplets are enormously large 

as compared to the steam molecule. Further, the partial differential 

equation obtained from the law of diffusion for the distribution of 

the droplets In the space can be solved for the flow through a (geo- 

metrically simplified) cascade and we can determine from it how many 

fog droplets diffuse against the turbine casing per second. We find 

that fewer than one one-hundred-thousandth of all of the fog droplets 

flowing through are Involved. For this reason, we shall dispense with 

reiteration of the calculation here and simply record the result - 

that diffusion is not In a position to bring an appreciable fraction 

of the fog droplets to the buckets. 

Charging of the shaft with static electricity has frequently been 

noted in steam turbines. Since this observation has been made only on 

condensation turbines, it has been hazarded that the cause of the 

charging should be sought in the presence of the water droplets. Valu- 
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able Ideas in this regard may be found in a paper by Gruber and Hansen 

[37] and in the appended discussion by R.  Beach.  Strictly speaking, we 

can hardly make more than qualitative statements concerning such static 

charging effects.   Nevertheless,  it appears that while,  on the one hand. 

Impingement of statically charged fog droplets might give an explana- 

tion for the shaft voltage,  on the other hand the electrical forces 

are much too small to exert any Influence on the moulon of the droplets. 

Finally, we must speak of yet another phenomenon that can, under 

certain circumstances, also convert noteworthy quantities of water 

from the fog-droplet form to large drops.  The  large drops torn from 

the buckets or rebounding from them require a relatively long time be- 

fore they have more or less reached the velocity of the steam.   During 

this time, they have a relative velocity — first very high and then 

diminishing - with respect to the steam.  The question arises as to 

whether the fog droplets flowing with the steam can avoid the large 

drops or whether they collide with them and are thus swallowed up. 

The results that we have obtained for the profile nose can be in- 

voked to clear up this situation. That is to say,  if in Eq.   (3) we re- 

place the profile-nose radius RN by r ,   the radius of the large drop 

in question, we obtain with the calculated 0N from Pig. 2 that frac- 

tion of the onflowing fog droplets trapped by a cylinder having the 

same diameter as our large drop.  The difference between a cylinder and 

a sphere would hardly be so great that the result could not be used 

for estimation purposes. We therefore now compute the parameter 

.  (^</a<w>      r. 'j 

•        i* 2.53 to     ür^       «r&Srem.... (19) 

where r is the radius of the fog drop, r is that of the large drop 

and U is the relative velocity of the large drop with respect to the 

fog. The numerator in the first factor can be read from Diagram III, 
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or  At,      (for the fog drops.1) can be taken from Table 2.2.1. 

If we take r    = 5*10 ^ m, r = 2-10"' m and u   = 100 m/sec as 

typical values, we obtain for low-pressure turbines the order of mag- 

nitude G   ~ 0.05.   If the function gN is read from Pig. 2 for this 

value of GN, we see that for all practical purposes g« = 1,  i.e.,  that 

practically all fog droplets moving at a large drop strike it (and are 

most probably swallowed up as a result). 

The large drops that can digest fog droplets in this manner are 

divided into two groups in accordance with whether they have Just been 

torn from the trailing edge of a (stator) bucket or have rebounded 

from the flat of a bucket.  The drops of the first group (subscript g) 

are always accelerated from a standstill, while those of the second 

group (subscript gg) begin their flight with an initial velocity that 

is often quite high and may be directed at random either upstream or 

downstream. 

Let us first investigate the freshly detached lar^e drops and as- 

sume for the purpose that all of them are of approximately the same 

size,* i.e., that all have the radius r .  If such a drop traverses a 
O 

relative path s .. with respect to the flowing fog before its next im- 

pingement, it will sweep a volume Vrel = "^»s 1 and will. In its 

progress, swallow all of the fog droplets present in that volume. If 

we denote by y the mass present in these freshly detached drops, re- 
O 

ferred to the mass unit of the entire amount of wet steam flowing 

through, we have n = 3yK/^Pwr^ for the number of drops. The ratio 

Vrelnß/V indicates that fraction of the steam volume whose fog droplets 

arc swallowed by these drops. It can be assumed in approximation that 

the detached droplets are accelerated to one-fourth of the steam veloc- 

ity c1 by the time they strike the rotor buckets. Then their relative 

path with respect to the steam will be about s ^., « 0.25c,At^ rei 1   brems,g' 
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so that the fraction of the fog droplets swallowed up under these as- 

sumptions will be 

rrtl 
'"-f 

!L « J_ ^iHssaLt !iy (20) 

A quite analogous train of reasoning can be applied to the re- 

bounding large drops« except that here s , does not have a common 

value for all drops, but depends on the size of the Individual drops 

and the direction of their initial velocity. It can be shown, however, 

that the average value of the relative paths of all dropt, agrees ex- 

actly with the relative path of the drops accelerated from a stand- 

still If as many drops are sprayed off upstream as downstream. This Is 

probably secure, since most of the drops strike the backs of the 

buckets almost perpendicularly, cf., for example. Pig. 2.8.2. We can 

therefore appropriate Eq. (20) In a corresponding sense; only the In- 

fluence of drop motion across the steam streamlines must still be 

taken Into account, at least roughly. For this purpose, we attach a 

factorv/? to Eq. (20) and thus obtain for the fraction of fog droplets 

swallowed by the rebounding large drops In a ring 

-n-a« (21) 

where y  represents the specific mass contained In the ricocheting 

large drops. This process also unfolds in stator rings, where wVv, is 

to be replaced by CQ/V0. The average sizes of the two species of large 

drops, r and r * will be accessible on the basis of Section 2.8. 

If, for example, the wetness of the steam is y = 0.05 and lOJ^ of 

this is contained in the large drops bounding back and forth between 

the buckets, i.e., y  = 0.10*0.05 = 0.005, and the radius of these 

drops measures out at r  = 10"-3 m, then we find with Eq. 2.2(36) and 

w, = 200 ra/sec, v, = 10 nr/kg, the value en ,_- ~  0.005. The number of 
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fog drops swallowed up by slower-moving large drops from ring to ring 

Is thus roughly comparable to the number caught by the buckets. 

In summary, we may state the following:   the number of fog droplets 

present in the flowing steam is reduced during passage through the tur- 

bine.  This reduction can be traced back for the most part to three ef- 

fects:  centrifuging against the concave side of the bucket plates,  de- 

position on the leading edges, and,  to a lesser degree, on the tendency 

of the slower-moving large drops to aggrandize.  The first two effects 

are in evidence in all rings;  the third can become noticeable only 

where a sufficiently large amount of water la already present In the 

form of larger (detached) drops. The coefficient that Indicates the 

reduction of fog-droplet count in the steam on passage through a single 

ring may be written as 

tB   -   tn-f* t-f* *«-« (22) 

Using the e factors for -he individual rings, we can calculate 

the change in the number of fog droplets. At the point £♦*, where fog- 

ging had Just been completed, tl.is number was n«* per unit mass of 

steam and it dropped to 

■Whk " "•* » * Qi » - «nW   -(»- t«^ (23) 

behind the kth ring  [nach = after].  The subscript 1 refers to the first 

ring coming after the point £♦*. 

Since the various e    lie between 0.005 and 0.10, depending on the 

shape of the buckets and the composition of the wet steam,  i.e., are 

rather small,  the major part of the water content (about 60-9OJO will 

still be present at the end of the turbine in the form of fine- 

distributed fog droplets.  This statement  is confirmed by observations 

made on condensation turbines.  That is to say, visibility into the in- 

terior of the turbine  is severely Impaired by the dense fog. 
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b) Thermodynamlc behavior of the fog 

The properties of the fog that forms on collapse of supercooling 

can be determined with sufficient accuracy on the basis of Section 

2.5d.  Among other things, we now know the total mass of all fog drop- 

lets per kg of steam, y**,  the average fog-droplet radius r** and the 

state point in the i,s-diagram from which the expansion continues - 

all for the point 4?**  i.e.,   immediately after the collapse of super- 

cooling.  The line of subsequent expansion to be expected is known from 

the design of the turbine and from it we can take the polytropic effi- 

ciency r\. Further, we know the curve of axial velocity ca(4a) and the 

pressure curve p(4a). Prom the latter we can calculate the curve of 

the axial logarithmic pressure gradient ?aiiQ), as was shown in Sec- 
a      a 

tion 2,1.  These data are sufficient for unique physical definition of 

the subsequent expansion. Here we assume that there is no water present 

in the steam apart from the fog droplets. 

We shall make two simplifying assumptions for our further calcu- 

lations:  firstly,  that all fog droplets are of the same size  (we de- 

note their radius by r ) and,  secondly,  that the number n of fog drop- 

lets in 1 kg of fog - cf. Eq.   (23) - is known at least as an estimate 

and given, for example,  in graphical form, as a function of the axial 

coordinate: 

"(I.)  -••••W . (24) 

Let us further assume that the fog droplets have the same tempera- 

ture in their interior as on their surface and that the capillary ef- 

fect is negligible. Then 

%   -   Tr   -   T,^    • 

For the considerations to follow, we may disregard the relative veloc- 

ity between fog droplets and steam. - These simplifications are admis- 

sible in all practical cases that arise in low-pressure expansions. 
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To formulate the problem mathematically, let ua consider, with 

reference to Fig. 4, a certain quantity m of fog containing a droplet 

of mass nL, and the quantity of sveam m, that accrues to the former. 

Obviously, 

m - ■>„♦", (25) 

or, expressed in terms of the specific fog-droplet content and steam 

content, 

— -V       ■? ml-\ ' * ' (26) 
IB ™ 

We can now write the first principal theorem (in the conventional form 

dQ = dl - Vdp); for the steam we shall have 

(Imri--Qilt - ddBjlO-^f-ap . (27) 

and for the droplets 

4« - dm, t" ♦ »*,„« - ««a'd* * "dV*       (28) 

letnmtmaMt m    J.*''—"*x». 
>x      4   \ 

2 ^^ Dampf   \ 
Vtrdrängungt- -^   3 md»'d       \ 

« Tropiftn • arbtit dtt 
Dampft» v i"   iiir,i' 

Rtibungswirmt .-^ 

5. 

Op*** 

6 
T»mp«ratur 

3 

.dm.i I 

H 
Fig. 2.6.4. Illustrating composition of the balance equations for the 
fog. 1) Total mass m; 2) work of compression of the steam; 3) droplet; 
4) steam; 5) heat oT friction; 6) temperature. 

• 
here, CL,^ is the amount of frictional heat evolved in 1 kg of fog per 

unit time and can be expressed as 

«rb ■ -a-V^* •        ^29^ 

This expression immediately becomes plausible when we consider that 

the "friction" embraces the entire loss stemming from the polytropic 

- 135 - 

. -  . _. .i. 
■s^mmamm- mttm».- 



n«^-— 

l^r 

^.J      .'      ' ■ ' ' ' ■' '^■■IMHl^'-■■~—"^~~~" 

' - 

V 

—^—«J—i >y.rtj—  ^—-v 

■WMMniniiiUNiiiwM t-,.™,..-, 

efficiency TI   and that  I dig I =-vdp. 

The heat given up by the droplet to the steam is 

Q   -   4T fj «^(T, - Td) , 

where, from Eq.  2.2(32), 

"r   "   T" 
*d » 
rB   i ♦ a, w KB 

For the Khudsen number see Eq, 2.2(5) or (9). 

Let us further remember that 

(30) 

(31) 

■>_ ■ (32) 

and assume that all material properties are known, say as functions of 

JD,  then we have a complete system of equations describing the expansion 

of the fog. 

We are Interested in the curve of the supercooling AT = T   - Td 

and the specific fog-droplet content yn in the fog while the latter is 

flowing through the turbine (or through a certain group of stages). 

For practical reasons,  the axial coordinate £_  is used as the inde- 

pendent variable (dt = d40/c0). &       Si 

Equations (24) to (33) can be modified in such a way as to leave 

two simultaneous differential equations for AT and y . Equation (27) 

results in 

**t   cp "»P   « dinp   ■   fc, v**t%      (us,ie 

and Eq.   (28)  in 

— AT-ä-^I (34) 

8*     •..V>1VJ        _1/J 

"•£;77'•■'••&'.'.•   05) 

Here we have set 1" - 1' = L, id = 1" - c AT and pv = xpvd = xRT... The 

Khudsen number of the droplet can be expressed In the following manner 

with the aid of yn and the droplet-count diminution function E (^  ): 
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(36) 
^ '   T (   %    j   * 

because, after all, r/rj» - (y^y** En^3- 

The last terms of both Eqs. (34) and (35) are substantially nailer than 

all the others. The error that would be incurred if we dropped then is only as 

large as the errors that we have already incurred anyway be disregarding the capil- 

lary effect and the internal overteicperature of the droplets. Further, it can be 

shown that ... 

»r-^D1^ 
t'»- "*„ ■2 g(p. v 

SXd ^ 4     dlnp   3»dd(-Uip) 

- cf. Eq. 2.5(48) - so that we nay finally write for Eq. (34) 

dOT  3X 

and for Eq, (35) 

...a/s -a/3 ,1/S 

Z. P.—=-7 ..2 'rc» (1 ♦ 3. IB KB)Z 
6T 

(37) 

(38^ 

(39) 

This is a system of two nonlinear differential equations of the first order. The 

coefficients are all dependent on pressure or, what amount« to the earns thing, on 

t a. A solution in analytical form is out of the question and even a pownr- 

series theorem is found to be fruitless. We shall therefore develop a graphical 

method that will allow us to determine ^ T(£ a) even for a sharply variable axial 

logarithmic pressure gradient Pa. A graphical process appears the more appropri- 

ate because, after all, p{ia),  Pa(ea), ca($a), En(*a) are also available 

in graphical form. 

We have a first approximation for the solution x(^ a); this is the 
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steam content In the case of thermodynamlc equilibrium, x^ ), which 

we read fron the l,s-dlagram along the expansion line and can plot 

versus the axial coordinate. In the case of supercooling, the values 

of x will always be greater than the corresponding values In the Ideal 

case. The latter could. In principle, also be obtained from Eqs. (38) 

and (39) by setting AT = 0, o^ = X. = «> and ^j'AT = nonzero, but read- 

ing directly from the diagram Is much simpler. 

If, however, we are In possession of a first approximation for 

x = 1 - y , then we can for the time being dispense with more exact 

solution Of Eq. (39) and seek a first approximation for AT(|_) by In- a 
sorting yn = 1 - xjea) = yJKa) In Eq.   (38): 

d AT     »A( 

^ 

,• „vs-a/sx _l/3 
I ^n n     I  12  AT (40) 

In this equation,  all factors are either constants or known functions 

of the pressure or of £a.   (y    Is also to be replaced by y^ In Eq.   (36) 

for the Knudsen number - a circumstance Indicated here by means of a 

subscript.) The material quantities can be read from Diagram III (see 

Appendix) for each Individual pressure. 

Prom Eq.   (40), we can define a direction field, calculating the 

tangents dAT/d^-  for various pairs of values ia, AT.  The result Is 

represented schematically In Pig.  5.  As will be seen,  the field Is so 

conscltuted that all solutions running from left to right (I.e.,   In 

the direction of declining pressure) must converge In a bundle. 

The locus of those points at which the tangents are horizontal Is 

calculated particularly simply In this field. Let us denote this curve 

by ^Th(5a).  Then with AT = ATh,  the left side of Eq.   (40) must be zero: 

AT,. (41) 

from which 
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or.  If we transpose and use Eq.   (36) together 

with Eq.  2.1(4), 

Fig.  2.6.5. Direc- 
tion field of Eq. 
(40). 

"'■'•i? fer^ef. (43) 

The factor Zg and the quantity (1.59 1) depend only on pressure.  Their 

magnitudes can be determined for each ia with the aid of Diagrams III 

and I (Appendix), respectively, since the pressure  is, after all, 

known for each | . y** and r** are given Initial properties of the fog; 

the factor (P/En)-(r**2/y**)  is primarily decisive for the depth of 

supercooling.  The expression in square brackets, which is plotted in 

Pig.  6,  is of essential Importance only at low pressures.  It actually 

reflects the Influence of the Increase in total droplet surface and 

the deterioration of heat transfer at low steam densities. 

Thus we can determine the course taken by ATh. Below we shall 

show that a quick graphical determination of the sought undercooling 

curve AT(^_) can be made on this basis. 

Let us subtract Eq.   (41)  from Eq.  (40). This gives 

__. «.I 1 a  (AT.-AT) 

or, modifying in much the same way as with Eq. (43), 

«AT AT • AT^ 

(44) 

imM^^i) (45) 

If we now lay off the distance 
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Flg. 2.6.6. Values of the expression In square 
brackets In Eqs. (43) end  (45). 

b« ^•&)rfi(^r^&n--' 
which has the dimensions of length, horizontally from the point (ATh, 

4a)  (cf. Pig. 5), we arrive at a point B possessing the property — as 

will be seen Immediately from Pig.  5 with reference to Eq.   (45) - that 

the tangents at all points corresponding to the £_  In question but to a 

different supercoollngs are directed toward It. 

The fact that knowledge of the two quantities AT.   and b Is enough 

to eaable ra to determine the current tangent of the AT(|_) line Is 

the basis of the graphical method to be described below as a means of 

determining AT(0,   Let us at once summarize the course of the entire 

calculation. 

Let us determine the course cf supercooling In a turbine with fog 

flowing through it.   At the outset (£   = i**),  the properties of the 

fog (characteristic droplet radius r*#,  specific moisture content y**) 

and the state point in the i,s-diagram are known. Per the expansion 
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Pig.  2.6.7.   Illustrating graphical determination of the supercooling 
curve AT(4Q).  Curve B arises as a result of displacement of the points 
of the curve ATh(4a) by the corresponding length b to the right; for 
further explanation,  see text.   1) Curve; 2) step. 

that follows, we have the poly tropic efficiency r\    and the functions 

P(?a),  ca^a^ p^a^ En^a^  (Pressure* ax1*1 velocity, rapidity of 

expansion,  diminution of number of fog droplets).  Prom these, we first 

use Eqs.   (43) and (46) together with the diagrams in the appendix to 

determine the course of the two quantities ATh and b and plot ATh over 

£_ in a diagram: see Pig.  7. Prom each point of this curve, we lay off 

the corresponding value b(£0)  in the direction of flow as a horizontal 

line segment. Thus we obtain a different,  displaced curve B, with 

which we determine the direction of the tangents in the sense of Fig.  5» 

If now we have somewhere an initial value given for the supercool- 

ing, e.g.,  the value AT** corresponding to 4**, we can proceed from it 

to determine the course of the AT-curve graphically,  step by step (see 

Pig.  7):  if, for example, we have gotten the point P,0 of the sought 

AT(^a)  curve In the 10th step, we seek the corresponding point ky^ on 

the AT^ curve and with it the point B^Q on the B curve. We Join P,Q 

with B10 and this gives us the direction in which we must extend the 

^T-curve to get to the point P.,. The step lengths can be chosen quite 

arbitrarily; shorter steps are to be recommended at points where the 

AT line shows sharp curvatures. 

Thus we have obtained a supercooling curve based on substitution 
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of the value x    corresponding to thermodynamlc equilibrium for the un- 

known steam content x In Eq.   (38)«  Thus the AT that we have obtained 

Is not an exact solution of the system of equations (38) and (39), but 

only a first approximation for It.  The fact that we can nevertheless 

dispense with further refinements proceeds alone fron the fact  [cf. 
EQ«  (^3) and Pig.  6] that the moisture-content mu've exerts only a 

secondary Influence on the supercooling curve. 

For itself, however,  the difference between y„ and y    can become 

quite considerable. For this reason,  the AT obtained should be plugged 

into jiq.   (38)  and the curve of y_ = y_(4Q) = 1 - x determined from it. 

This would be the consistent approach,  but It Is superfluous,  since 

the moisture deficiency Ay can be calculated directly from Eq.  2.3(19) 

from the supercooling. Accordingly, 

»n«m)-*a,-^"»a,-^«a,AT- (47) 

Thus far,  everything applies only to the case assumed — namely, 

that the entire water content of the steam Is present in the fog drop- 

lets,  i.e., that y = y .  In turbines, however,  significant quantities 

of water may occur in other forms (large drops, etc.) tinder certain 

conditions. This water is of no significance for the condensation of 

the steam, since it offers only a small total condensation area and 

since the boundary-layer heating is generally high on the components 

of this area.  However, its contribution to the water content must be 

taken into account,  so that Instead of Eq.   (47) we must write 

y^-Ay-V^'V (48) 

The same reasoning also applies for the first approximation for y , 

which has been necessary in the course of the calculation to permit 

determination of the changes In AT.   and b from Eqs.   (43) and (46), re- 

spectively; for the time being, however, we have said y   = y^; however, 
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to take other water forms into account, y    should be replaced every- 
00 

where In Eqs.   (43) and (46) by 

&..)« - '•• Vw*^ (^9) 
The quantity in parentheses, which signifies the content of water 

present In other forms, must be known from other calculations and can 

therefore be regarded as a given function of S . More detail concern- 

ing this will be found under Heading 2.9, 

If now we wish to compute the throughput volume correctly. I.e., 

taking supercooling into account, we must determine the specific vol- 

ume of the wet steam.  For thermodynamlc equilibrium, this is 

'„■(i-yjT'W. (50) 

since, after all, we can disregard the volume of the water at lower 

pressures.  If, however,  the steam is undercooled, its specific volume 

will be smaller, and according to Eq.  2.3(21) 

'■'.[-"£■$1 (51> 

The quantity (l/T   - G
r/^) is plotted versus pressure in Diagram I. 

The graphical method described here can also be applied to a seg- 

ment of the turbine section through which the fog flows, say to the 

last stage.  In this case, everything in the calculation remains the 

same except that the Initial undercooling value from which we deter- 

mine AT(0 graphically will be different. This is best chosen by 

trial and error in such a way as best to correspond to the periodic 

undercooling curve. 

2.7.  MOTION OP THE WATER ON THE BLADES    AND CASINO WALLS 

On the basis of the considerations set forth under the previous 

headings, water can find its way onto the walls in considerable quan- 

tities in either of two ways: by condensation of the steam flowing 

through and by Impingement of droplets. The former route predominates 
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before the point at which fogging intervenes and the latter afterward. 

As regards the impinging droplets, we must distinguish between fog 

droplets, which do not rebound,  since they are very unall and, more- 

over.  Impinge at an extremely acute angle, and large drops, which can 

be seen approximately as being torn off the trailing edges of the pre- 

ceding bucket ring and striking the bucket wall at almost right angles. 

We should expect some of these drops to rebound, and even to take part 

of the water   film   on the wall with them,  so that only a small fraction 

remains clinging to it. 

Forces exerted on the water on a wall tend to set it in motion. 

Friction with the steam and the pressure gradient tend to drive it in 

the direction of the flow near the wall. The motion of the water is 

retarded by its viscosity. The surface forces,  supported by the inevi- 

table nonuniforraitles of the wall (grooves, etc.),  tend to split the 

cohering   ftl» of water up into individual currents that seek their own 

routes through the salt crust or even in the metal and erode them away 

continuously.  On the runner buckets,  the centrifugal force also comes 

into play and, as can easily be shown, makes itself the dominant fac- 

tor.  If detachment regions arise on stator   blades      the water will 

come to rest there and have time to collect into large drops, which 

will then — provided that they are large enough - spray off and be at^ 

omized by the flow. The trailing edge of a stator  blade      which is 

generally from 0.5 to more than 2 ram wide, represents such a detach- 

ment region in all cases. 

Let us next investigate the conditions in a very thin water fil« 

in laminar flow. The reasoning will also apply with sufficient accuracy 

to Individual current filaments,   since their extent in width is gen- 

erally far greater than their thickness.  In such cases,  one-dimensional 

flow conditions prevail extensively; that is to say,  the velocity com- 
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ponent perpendicular to the wall is negligible by virtue of the small 

film   thickness and the transverse velocity because we assume — for 

the time being arbitrarily - that the forces capable of initiating 

such motion can be disregarded as small compared to the forces operat- 

ing in the longitudinal direction.   (On stationary walls,  the governing 

forces are the pressure gradient and steam friction, while centrifugal 

force predominates on runner-bucket walls.) Let us denote the flow 

velocity by U(T),   £) and the field strength acting on a unit volume of 

the water in the layer by P (assuming it parallel to u) and set up the 

coordinate system as shown in Pig.  1.  Most terms of the NSvier-Stokes 

equation can be disregarded under the assumptions that we have made 

(cf., for example,   [16]), so that the flow equation will be 

^A'-'-'W (1) 

If 6(1) is the nia  thickness and mf is the mass throughput In the 

film per unit of width, which is assumed to be given in advance, the 

continuity equation assumes the form 

o 

Here we have indicated that P and mf need not be constants, but may 

vary with 4«  We prescribe as boundary conditions that the velocity 

vanishes at the wall, 

»(M) - o , (3) 

and that the shear stress at the surface of the  fila    has the value 

T(4) due to the external flow and given in advance.  I.e.,  that 

-T(V w 

Determining the 6 and u that satisfy Eqs.   (l) to (4)  presents no dif- 

ficulty.  Por the   film    thickness 6(4), we obtain the equation 
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Pig.  2.7.1. 
Forces and ve- 
locities In a 
water  tUm, 

[?&(*) ♦i]W - ^S (5) 

and,  for the velocity profile,  a parabola 

«(^)--^-^*[X.Z_.iW].,.    (6) 

We obtain the average velocity in the   fila»   from 

let us now apply these equations to the water flow 

on turbine    blades   and casing walls. 

Bilges 

No centrifugal force arises in the case of 

stator blades. The layer is driven forward by the 

steam friction T ., by the momentum current T 

transferred by the impinging fog droplets and by 

the pressure gradient dp/d^.   Let us lay the ?-axis 

in the direction of the current, cf. Pig.  2.  We have 

T^-V^T^-c^cJ^Ü   . (8) 

where T. has been substituted from Eq.  2.4(2)   (there denoted by T) and 

the "shear stress" T    produced by the fog droplets calculated as the 

mass m    arising per unit of time and surface area multiplied by its 

velocity at Impingement U.  The field force originates from the pressure 

drop, but can be disregarded, at least in first approximation, for 

thin layers such as occur on the buckets: 

Pig. 2.7.2. 
Water film on 
a stator blade 
(shown only in 
part for clar- 
ity). 

4\ 

We are interested primarily in the layer thickness.   It is found from 

Eq.   (3) as 

i/i 

(stator blades). (10) .„„A—a» 
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We shall give a numerical example  only later, when we will be able to 

compare stator and rotor tuclcets simultaneously. 

On a runner bl»d»t     the centrifugal force predominates by far 

(proof follows later), so we lay the coordinate system In such a way 

that i points radially outward, of.  Pig. 3*. The field force P is to be» 

set identical to the centrifugal force Z: 

P = Z « const = P^m" /2i (11) 

where D    is the diameter of the bucket midpoint circle.  Since the steam 

flows almost axially, there is no shear stress acting radially on the 

layer,  so that 
T«)   -   0    . 

(12) 

Equation (5)  gives for the layer thickness 

«(*)■ - pw.-_3^—) (runner buckets). (13) 
Uw    tar0-«1/ 

Let us now compare, as an example, the runner 

and stator buckets of the next-to-last stage of the 

tfefcfl    reaction turbine described under heading 2.1 (see 

Table 2.1.1).  We insert the following values: \JL. ■» 

= 5.5*10      kg/msec, pw = 10^ kg/m^,  pd0 = 0.12 kg/m^, 
Dm = 1•^0 D1' c0 = 1^*3 m/sec; w = 31^ sec    . We cal- 

Pig. 2.7.3- 
Water fi^ 
on a runner 
bucket 
(shown only 
in part for 
the sake of 
clarity); 
steam fric- 
tion disre- 
garded. 

culate the layer thicknesses on the concave sides of 

both buckets Just in front of the trailing edge 

(where, by estimation, ü = 360 m/sec,  c- m 0.035) or 

Just before the point of the bucket, as appropriate. 

The fog-droplet content in the flowing steam is as- 

sumed to be yn = 8^, of which en_ f = 2^ is deposited 

on the buckets of a ring. 

Since the total amount flowing  through is M = 40 kg/sec, the mass 
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throughput In all concave-side layers of a ring comes to Mf = e  _ f x 

x y M « 0.064 kg/sec.  All trailing edges of the stator ring present to 

the layers a total width z'i'schfl fSchfl = bucket] « 26 m and all 

concave-side profile contours of the runner ring offer a total width 

of z"'8ll
H « 7.3 m. Accordingly, m^ = 0.064/26 = 2.5'10"3 kg/msec and 

nr 0.064/7.3 = 9*10"^ kg/msec.  If we assume that the incident fog- 

droplet flow is distributed uniformly over the entire concave side, 

then m   becomes — with a total Impingement area of A'    .-, „ = 

= z's'ijl'^hfj = 2.6 m2 - rt^ = 0.064/2.6 = 2.5'10"2 kg/m2sec.  Thus the 

layer thicknesses and water velocities near the trailing edges of the 

stator buckets according to Eq.   (10) and (7), respectively, become 

W* 
i'-fl.I-lO^itiJSl!)   .0.57.10-»«.     ff'-O.-MnvW (14) 

and those on the runner buckets in the vicinity of the bucket tips, 

according to Eqs.   (13) and (7), respectively. 

1/3 

UM-IO*  --I     -0,M- 
\ 8,4.10'   / 

10*' m,      B" ■ 1,7 m/iec . (15) 

Now if the water layers do not cohere to fill out the entire 

width available to them, but contract to form current filaments that 

cover a total of, for example, only 5^ of the width, then mf increases 

by a factor of twenty in either case and we obtain 

4' ■ \/äÖ-0,57-«r5 «• a,$-HrSm.   u'^l.Om/MC , 

4" . ^äÖ-0,54-Mr5 » 1,5-W5in.   0-« 12 m/MC • 
(16) 
(17) 

Thus we see that the thickness of the water layer or water streaks can- 

not amount to more than a few hundredths of a millimeter. 

We still owe a proof that the effect of steam friction can be dis- 

regarded in the presence of a centrifugal force. This is the case when 

the velocity imparted to a given layer by the centrifugal force far 

exceeds the yelocity produced by friction alone. On the basis of Eq. 
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(7), this would require that Zö/3 » T/2. If, for example, we take 6 = 

= 1.5'10~^ m, leaving other data the same as above, we obtain Zö/3 « 

» 470 and T/2 « 42 kg/m*sec ; thus the simplification was In fact Jus- 

tified. Only for very thin layers would two-dimensional treatment of 

the problem become necessary. 

An Inference can be drawn as to the direction of flow on the rotor 

buckets from the ratio of the centrifugal and friction forces. We ob- 

tain a rough approximation by stating that the axial component of the 

flow velocity In the layer is as large as though no centrifugal force 

were in operation and that the radial component is as It would be in 

the absence of friction. From this we obtain the following estimate 

for the angle <p indicating the deviation of the flow direction from 

the radius: 

tt f (18) 

Using the above data, we obtain for a layer of 6 = 1.0« 10"^ m the angle 

9 = 7.3°; for a "thick" layer (or current streak) with 6 = 2*10"^ m, 

we get approximately <p = 3» 8°. In the last runner-bucket rings, there- 

fore, we should expect approximately radial flow. This result is in 

fact in agreement with the erosion tracks (cf. [8]) observed in prac- 

tice. It follows from this nearly radial flow that only a small part 

of all the water caught by a runner bucket reaches the trailing edge. 

Further, some of this water, acted upon by the centrifugal force field, 

might find its way to the tip of the bucket between the minute nonuni- 

formitles on the trailing-edge spine, with the result that only a small 

residue, which we may disregard with a clear conscience, sprays off 

the trailing edge. In practice, this result is confirmed by the ob- 

servation of little or no erosion traces on the leading edges of stator 

blades (which would, after all, be struck directly by such drops), 
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while damage of this type can always be detected on the runner buckets. 

Casing walls 

Conditions on the casing wall are similar to those on the stator 

buckets, with the following differences. Firstly, more water must, in 

general, flow through here per unit of width, so that mf Is larger. 

Secondly, the motive friction forces are smaller, since practically no 

fog droplets strike the casing wall, for which reason T IS dropped 

from Eq. (8), and also because the friction coefficient cp Is smaller 

than on the buckets due to the larger boundary-layer thicknesses. The 

secondary flows favor swelling of the water layer In the vicinity of 

the blade suction sides. Due to the greater layer thicknesses, the In- 

fluence of the pressure gradient may not be disregarded. With T = o 

(I.e., T = T,) and P = -dp/d|, assuming that | points In the flow di- 

rection of the layer, Eq. (5) becomes 

H 1 dp »dOcJ iiX)*   ' *-*- mt , GchXuM (19) 

[Oehäuse = casing] from which we may calculate the layer thickness. 

As an example, let us calculate the layer thickness on the wall 

between two stator buckets. We may assume cp Qguäviae = 0.01 and, fur- 

ther, that Mf rtehäuse = ^^ lcs/sec of water flows cjrcumferentlally 

on the wall (this corresponds to 1$ of the total mass throughput, and 

Is thus an exaggeratedly high assumption, as will be shown under head- 

ing 2.9). The width available to this flow Is of the same order as the 

casing circumference. I.e., about 2.20*77 «7 m. It would be better, 

however, to assume that due to rivulet formation and collection of 

water In the corner at the suction side, only part of chls width, let 

us say only about 2 m. Is used by the flow. Then mf Gehäuse = ^Z2 - 

= 0.2 kg/m'sec. We use the same values as previously for |x , p , pd0 

and c0. The pressure gradient can be estimated from Table 2.1.1. The 
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average axial pressure gradient In ring 51 Is (dP/dOmittl * 

» -Pmlttl^ ^ P/^a)mlttl = "Pmlttl^a Ä -0-^105^.l « -O.Ö-loS 

N/m^ [mlttl == average]; the pressure gradient along the streamlines of 

the water layer Is, on the one hand, somewhat larger than this« since 

the steam flow Is sharply accelerated In the ring, and, on the other 

hand, somewhat smaller because %  Is not axial. For this reason, we as- 

sume dp/d^ =-l'lCr N/rar. Then Eq. (19) reads 

[o,S8.105- 6+io,t].4
a-t,i-io'T , (20) 

from which 

»crt*«-0.»-»'4-. Bcehfa..-"f'f'hIW *«.»»/«*.   (21) 

[Gehäuse = casing]. Thug, while the layer thickness of the rivulets 

flowing along the casing wall may be considerably larger than the layer 

thicknesses on the buckets. It Is nevertheless hardly greater than a 

tenth of a millimeter.' 

nie water running around the casing wall la continuously being 

driven Into regions where the pressure Is lower. It Is conceivable 

that the water layer might boll up In this process. In much the same 

way as the water bolls In a pressure cooker when the pressure in the 

cooker is suddenly reduced. This danger of boiling is the greater the 

more rapid the decline In the pressure to which a flowing water par- 

ticle is subject. (High flow velocity, steep pressure gradient.) The 

layer has two possibilities for reducing its temperature without boil- 

ing. It can give up heat at its surface, in which case evaporation 

arises there, and it can yield heat to the casing wall, since this is 

frequently somewhat cooler. The thinner the layer is, the more effec- 

tive will these two processes become. 

Now it can be calculated that, with the layer thicknesses and ve- 

locities somewhat as they appear in Eq. (21), the excess temperature 
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that must arise In the interior of the water layer for continuous COJI- 

Ing of the layer to take place by heat conduction In both direct'ons 

amounts only to a few tenths of a degree Centigrade. Since the tempera- 

ture of the steam-side surface of the water layer Is about the same as 

the local saturation temperature at all times as a result of suitably 

vigorous vaporization, this Implies that the Interior of the layer Is 

overheated by a few tenths of a degree. Now, however, a liquid gen- 

erally requires several degrees of excess temperature If It Is to boll 

Internally. (In much the same way as steam requires about 30oC or more of 

supercooling for spontaneous condensation.} Otherwise the most that 

could happen Is formation of steam bubbles on the wall side of the 

layer. — In any event. It can be established that vigorous bumping of 

the water layer, with the associated slinging of water back Into the 

steam flow In the form of more or less coarse drops is hardly to be 

expected in turbines. 

2.8. FORMATION, EFFECT AND PATE OP LARGE DROPS 

Water that has somehow gotten onto the buckets and collected at 

the trailing edges or in detachment regions is torn away from these 

places from time to time by the steam current. These spraying clumps 

of water may Initially be of the same order of size as raindrops (diam- 

eters of 1 mm or even more); however, due to the high velocity of the 

steam, they are instantly broken up into many fragments. These small 

droplets are, however, still very large as compared to the fog drop- 

lets that have formed in the steam. As will be calculated below, their 

s-5 v-4 radii lie between 10 ^ and 10      m.  We shall always refer to them as 

the "large drops" and provide quantities referring to them with the 

subscript £.  If projections and the like are present on the casing 

wall,  the water flow moving by them may be sprayed off to form another 

contribution to the formation of such large drops. 
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The  fact that the behavior of these  "large drops" will differ 

quite grossly from that of the fog droplets can be seen alone from the 

fact that their radii are about a hundred times larger and their masses 

consequently about a million  (.') times larger than the mass of the fog 

| droplets.   It is these large drops that cause erosion. 

a) Atomizatlon of Detached Drops 

First we must know the size of the drops formed on fragmentation 

of a detached clump of water.   This problem has been treated in detail 

by v.  Freudenreich [4]. He conducted drop-fall experiments in which 

large drops of water were blown apart by a vertical current of air. 

Similar experiments had already been designed earlier for other objec- 

tives,  compare Lenard [38] and Hochschwender  [39]• 

As a dimensionless stability criterion for a drop, we obtain 

Xs  ■ ^-_I     , (1) 

which expresses the ratio of the deforming pressure forces (which are 

proportional to ipdU ) to the cohesive surface-tension forces (the lat- 

ter being proportional to 2o/r). The value of this criterion for the 

largest drop? that are still stable, Kz x* can be determined by ex- 

periment. Lenard found Kz   = 6, Hochschwender got 9 to 16, and v. 

Freudenreich about 20. (Concerning Lenard's experiments, we should 

note that in this case, the drops were kept hovering in the air cur- 

rent, so that much time was available for blowing the individual drops 

apart.) For our calculations we shall use the value 

Kzmax = V' W 
which gives the expression 

is  d 

for the radius of the largest still stable drop." Drop-size criteria 

applying for other forms of liquid disintegration,  e.g.,  for atomlza- 
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tion, are not useful here, since they are extensively based on the in- 

fluence of the Internal turbulence in the Jet of liquid - something 

that does not exist at all in our case. 

The upper limit of drop size is imposed by Eq. (3). There is no 

corresponding fixed lower limit, and quite small droplets can also 

form accidentally. On the basis of experience, however, very small 

droplets occur relatively seldom. Various authors have determined the 

size distribution of the drops by means of drop counting. An elegant 

theoretical derivation of the distribution curves can be found in 

Troesch [40]. Prom statistical considerations, he obtains the formula 

dn 
»   r. • V   «  '  dr 

(4) 

for the distribution of the drop count over the various radii, and for 

the distribution of drop masses 

•    •       dr_ 
(fan 

•~P*(J*l(-B)  r 
(5) 

I, max 

(dn is the number and dm the mass of the drops per kilogram of total 

water quantity whose radii fall between r and r + dr ). 
Boo 

The parameter ß characterizes the type of atomization. Its magni- 

tude is obtained by comparing the distribution curves obtained through 

Eq. (5) with curves determined experimentally. Troesch establishes the 

order of magnitude ß « 0.35 for atomizatlons. For free-fall experiments, 

where, after all, a different mechanism provides fox1 the disintegration, 

the same value of ß need not apply. Enumeration curves pertaining to 

this can be found in Hochschwender; they are reproduce1 most closely 

by selecting ß = 2, cf. Fig. 1. 

Tlie Important thing that these distribution curves tell us is that 

the average drop size is only a little smaller than r    , or, in g, max 
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other words,  that the drop sizes have a narrow spectrum.  For this 

reason, we can consistently treat all large drops on the basis of a 

representative large-drop radius r , whose magnitude we select in such 
O 

a way as to provide the best possible approximation for all drops.   If 

we take r   = 0.8r ,  then more than 80^ of the total mass is present g g,max ^ 
in the droplets whose radii differ    by no more than +2556 from r .        On 

O 

the basis of Eq.   (3) we then obtain 

'.■,"—"^ 
(6) 

dm 
dr. 

dn \ MatMff 
mttilufif 

2 
TrepftnsaM- 
wrttMluitf 

rf     'f.mai 

Pig.   2.8.1.  Distribution 
of drop number and mass 
for blown-apart drops, as 
calculated from Eqs.   (4) 
and (5), respectively, 
with ß = 2.  Circles indi- 
cate experimental values 
from [39].  1) Mass dis- 
tribution; 2) drop-number 
distribution; 3) about 80Jg 
of the mass. 

In the case of drops torn from the 

trailing edge of a stator blade,  the 

governing flow velocity U    to be in- 

serted here would be equal to the exit 

velocity from the blading (c1)  If the 

steam were blown at full speed against 

the initially still stationary drops. 

Since, however,  a lower steam velocity 

prevails in the boundary layer and in 

the wake, we estimate 

lür|-Mei (7) 

for substitution,  thus finally obtain- 

ing the formula 

.   "   . *!2L  (8) 
tdi«!       Pit« 

for the representative size of the large drops spraying off the stator- 

bucket trailing edges, where we may set (9aRTd) ■» const = 8.7* 10 

kg-m/sec for pressures below 10 bars. 

With 0 = O.O67 N/m, we obtain, for example, with a steam density 

pdl = 0.08 kg/nr at the exit from the stator ring (which corresponds 
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to a pressure of about 0.12 bar) and c, = 360 m/sec, a drop radius 

r  - 7«10'
8
BI (9) 

which means a drop diameter of about a tenth of a millimeter.  Thus 

these "large" drops are In fact enormous compared to the fog droplets. 

b) Motion of Detached Drops 

Olven knowledge of the drop size, we can Judge of the motion of 

the drops on the basis of heading 2.2.  Let us denote by i the path 

Fig.  2.8.2.  Illustrating motion of drops 
torn from trailing edge of stator blade. 

that has been covered by a drop since It was torn away (cf.  Pig. 2) 

and set Its Initial velocity equal to zero: 

crm - 0 . (10) 

The motion of the drop can be calculated on the basis of Newton's law. 

Inserting the steam friction W from Eq. 2.2(1) as the accelerating 

force. Such a solution of the equation of motion has been carried out, 

for example. In [4]. 

Now, however, the major part of the detached drops strikes the 

next row of runner buckets, as will soon be shown, so that It Is suf- 

ficient for our purposes to know their motion on a shcrt Initial path 

(4 < 5 cm). A simple estimate of their motion can be made If we assume 

that the force of friction working on a drop does not diminish notice- 

ably on this Initial path. This assumption Is Justified as long as the 
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relative velocity has not become essentially smaller than It was at 

the beginning.  Then c  ,  the acceleration of the drop, will also remain 

constant: 

<r*  «,W   . (11) 

and, according to an elementary formula of mechanics, the drop velocity 

after the path has been traversed will be 

cr«) - ^er(0). \  . (12) 

The calculation of c (0) can be made with the aid of the deceleration 

time defined by Eq. 2.2(33), which represents a measure of the friction 

force. It follows from Eq. 2.2(36) on substitution of r = r in that 

equation and use of U = 0.8c, in the Reynolds number. With introduc- 

tion of the deceleration time, Eq. (12) assumes the form 

cr(0 . A 'v'm     . ,.        (13) 

[brems = deceleration].  Since the drops start from a state of rest, 

U (0) = -c. We shall again assume the steam velocity c to be constant 

and set c « 0.8c,,  since, after all,  it appears that the majority of 

these drops will remain in the downstream depression. Below we shall 

not concern ourselves any further with the negative sign of U , but 

use that quantity to imply the absolute magnitude of the relative ve- 

locity between steam and drops.  After transposition, Eq.   (13) gives 

*J»   ,\p^Z,ot.\L     j .        (14) 

Thus the curve of drop velocity is a function of the parameter 

(^l^At^g ). Some curves of this type are shown in Pig. 3. 

The inertia parameter is calculated on the basis of Eq. 2.2(36): 

The material quantity in parentheses varies only slightly with pres- 
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Pig. 2.8.3. Approximate curve of absolute velocity c of a detached 

drop, calculated from Eq. (14). A) Steam velocity outside the down- 
stream depression; B) in the downstream depression; C) used In calcu- 
lations; D) values of (i^p^brems^ß-O ln meters* 

sure; for low-pressure turbines, we can set the value for this quantity 

7 — ? 
at 1.6*10 , provided that we Insert r , c-, and p. In m, m/sec and N/m , 

respectively. As an ei ^mple, let us calculate the values of the Inertia 

parameter for various droplet sizes for ^ = 360 m/sec and p, = 0.15 

bar: 

TABLE 2.8.1 

F. 
ID-5 2 10"5 5.10*5 10-4 

<JüraiJL.)^   » 0,08 o,aa 0.M a.» 

A) brems = deceleration. 

These parameter values can easily be extended to other values of pres- 

sure and steam velocity by the use of Eq.   (15). 

A further correction would be necessary due to the devlaMon of 

the drops from the spherical shape.  For distorted drops,  the resistance 

coefficients are greater than for perfectly round ones,  so that their 

deceleratio)   +.lmes become shorter.  Prom Lenard's experiments, we may 

conclude  that the distortion is not perceptible for drops smaller than 

0.3 r „.  At 0.8 r   ^0„, which we shall use as the characteristic g,raax g,max' 
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drop size r , we find the resistance coefficient to be larger by a fac- 

tor of about 1.9 than the value that would correspond to a spherical 

shape. This sharp increase in the resistance applies, of course, only 

for a short instant; with diminishing relative velocity, the drop 

again assumes the spherical shape. Since the drops therefore experience 

an increased acceleration for a time as a result of their distortion, 

the error that we have introduced into our calculation through the as- 

sumption of Eq. (11) is partly compensated. Thus we can readily dis- 

pense with the curves of Fig. 3» which we only intended to use for 

rough estimates anyway. 

The typical indicated values p = 0.15 bar, c, = 360 m/sec, r = 

= 7-10"5 m give (i'ur^
t'brems)c=Q ~  1-5 m (by interpolation In Table 1). 

A glance at Pig. 3 shows that Jiese drops are accelerated only slug- 

gishly. For example, after a flight path ^ = 3 cm has been traversed, 

their velocity cr is only about lOJ^ of c1, i.e., 0.10*360 = 36 m/sec! 

The result of this is that the forcibly detached drops strite the 

next runner buckets from quite the wrong direction and with a high 

relative velocity (see the velocity triangles in Fig. 2). This fact 

was long ago recognized as the principal cause of erosion. However, it 

was always assumed here that the entire wetness content of the steam 

forms large destructive drops of this type. 

Since, on the contrary, it develops quite decisively In the pres- 

ent study (cf. under heading 2.9) that only a minor part of the total 

wetness is involved in this phenomer.cn — a statement that appears by 

no means impossible even in the light r-f practical observations - we 

present briefly below certain conslaeratlons regarding the destructive- 

ness of large water drops. 

c) Concerning the Eroding Effect of Detached Drops 

Very little can be said concerning the erosion of turbine buckets, 
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etc.   on the basis of theory.   It Is probably the result of a complicated 

collaboration between mechanlcal-metallurglcal-chemlcal and perhaps 

even electrical effects.  In studying It, we have recourse only to ex- 

periment. However,   It  is difficult to simulate conditions  in a wet- 

steam turbine by means of a simple experimental setup.  Frequently it 

is necessary to work exclusively with large drops or even with a stream 

of water. Nfevertheless,  such experiments permit only a qualitative in- 

sight Into the processes and perhaps comparisons between different ma- 

terials (even thi& is quite questionable in the water-Jet experiment). 

We shall now carry through two short calculations by way of il- 

lustrating the impact of a drop. First,  let us evaluate the local pres- 

sure that arises when a drop strikes the bucket.   With respect to the 

rotor,  the kinetic energy of the drop on impact  is ^.w    (see Fig.  2). 

Let us assume that the drop strikes the bucket surface vertically and 

that while it is being brought to a stop its center of gravity moves 

forward by one radius.   Then we can compute the force necessary for de- 

celeration:  ^niw /r, and this force, divided by the frontal area of 

the drop, gives a point of reference for the instantaneous local pres- 

sure rise: 

An_ ?mrwr   „ 2.2 (16) 

[Tropfenschlag = drop impact]. This quantity is thus independent of 

drop size and, for example,  at w   = 250 m/sec is about 420 bars or, 
p 

expressed in technical units, 4.2 kgVmm .  Thus we see that the pres- 

sure arising is rather small from the standpoint of strength. 

The second question that we would like to clear up is as follows: 

how often, on the average,  does a point of the target region of the 

bucket experience such Impacts? Suppose that the width of the eroded 

band (see Pig. 2)  is be = 4 mm = 4* 10"^ m.   Let the total wetness con- 
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tent be y = 10$,  of which only l/20 goes into the impinging large 

drops.  With a total throughput of M = 40 kg/sec,  a laass of M   = 40 x 
O 

x 0.10/20 = 0.20 kg/sec will then strike all buckets, or, with a drop 

radius of r_ = 7*10"5 m, Z^/h-npJr^, == 1.4« 108 drops/sec.   If now all 

bucket leading edges of the ring :.n question present the total length 
z"1"    hfl = 40 m, the entire impacted bucket area will be z'^'schfl^e = 

= 0.16 m .   If we were to cover this surface with close-packed spheres 

of the same size as a water drop, we would need z"1,lochfit>e/7rra = 

= 0.16/15« 10"    = 1.1« 10' balls.  The ratio of the number of drops strik- 

ing each second to this number Indicates how often a drop strikes one 
8 7 and the pame point on the surface.  We find that 1.4« 10 /l. 1*10' = 13 

drop impacts occur in each second on each point of the Impacted flat 

strip.  During a 5000-hour turbine operating life,  therefore, each 

point on the entry zone of the rotor buckets receives about 5000*3600 x 
Q 

x 13 = 2.3.IO small Impacts. 

While the loads Imposed by the Impacts remain far below the yield 

point, they affect only a region about the size of a crystal granule. 

The question arises as to whether such loading of the surface, so often 

repeated, might not be capable of breaking down the crystalline struc- 

ture of the metal. However, further pursuit of this question is not 

the purpose of the present study. 

On the basis of the old conception In which all of the water pres- 

ent in the turbine flies around in the form of large drops. It might 

appear incredible to us at first that in actuality only a small frac- 

tion of the water Is responsible for the erosion. Where, however, is 

the difference between the two conceptions? If we were to return to 

the old system, only the frequency of the impacts would rise (by a fac- 

tor of twenty in the above example; we should have 4.6« 10^ Impacts in 
Q 

5000 hours Instead of 2.3*10 );  their intensity would, however, remain 
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the same. Thus It would be Just as difficult to explain the erosion 

damage, since, after all« the main problem lies not in the number of 

Impacts necessary, but the manner In which they have their effect. 

d) Ricocheting Drops 

For lack of observations with a bearing on the matter,  we can 

Judge only with uncertainty what the fate of the detached drops will 

be after the!*' first collision with a bucket.  Part of the water that 

they contain probably bounces off the blade surface Immediately, while 

another part remains clinging to it.  The general view Is that clinging 

is favored by the roughening of the leading edges.  Under the Influence 

of centrifugal force,  this water then begins to move radially outward 

along the buckets, but probably with part of it spraying off the rough 

spots and reentering the steam flow.   (Spraying back might be inhibited 

by grooves milled radially in the buckets.) The average size of the 

returning drops — whether they return by rebounding or are sprayed off 

later - is obviously somewhat smaller than that of the original im- 

pinging drops. 

The returned drops are caught by the steam flow and blown through 

between the buckets.   In regions of sharp pressure drop,  this may give 

rise to a phenomenon that we shall refer to as "bursting"  (   or 

"flashing"),  consisting in the water boiling in the interior of the 

drop and exploding it into fragments.  Wood made reference to this phe- 

nomenon in turbines  [41]. 

Since the water boils by Itself,   it must have a certain excess 

temperature (according to experiments made in this connection,  of the 

order of about 50C).  This over temperature arises in turbines as a re- 

sult of the pressure in the vicinity of the drop falling off suddenly, 

so that the saturation temperature also declines.  The outer surface of 

the drop can adapt very quickly to the new saturation temperature by 
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evaporation; the interior, on the other hand, can be cooled only by- 

heat conduction, so that an excess temperature arises In the drop. 

I.e., It becomes superheated. Since the highest temperature occurs In 

the middle of the drop, we may write the condition for bursting In the 

form 

Ti»tt.-T. • »'c (17) 

[Mitte = center]. Large drops are more susceptible to bursting than 

small ones, since they have greater thermal inertia. Below we shall 

derive a formula for the size of the largest drops still Just capable 

of surviving the pressure drop in the buclcet ring, using as a basis 

the criterion of Eq. (17). 

The manner in which the saturation temperature drops within a 

bucket ring (for example, a stator) is linearized as shown in Fig. 4. 

If we use point P as the origiu of time reckon- 

ing, we obtain the simple law 

VO-x.. .(£)..    (18) 

for the time variation of saturation temperatxxre 

for a drop moving at constant speed; here, apply- 

ing Eq. 2.1(2), 

1 
Wirklich)«;! 

Pig.  2.8.4.  Curve 
of saturation 
temperature in a 
bucket ring.   1) 
Actuality. 

V   * dtop \ d^ / dt '(dlnp j ' * •"er.»     (19) 

Here c_ „ is the axial component of the drop's 

velocity. 

The influence of the capillary effect can 

be disregarded for the drop sizes coming under consideration here 

(about lO"-3 m;  cf.  Table 2.3.1),  so that T ,  the surface temperature 

of the drop,  is about the  same as the current saturation temperature: 

Tr = Ts(t). (20) 
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The temperature curve for the Interior of a sphere whose surface 

temperature varies  linearly in time can be determined by solution of 

the heat-conduct ion equation concerned (cf.   [42], page 235).   Here  it 

is assumed that the drop has the temperature Ts0 throughout its in- 

terior at time zero  (point P in Fig.  4),  which Is probably a very good 

approximation for both the detached and the rebounded drops.   We obtain 

as a solution 

'MUto 

a> 
12     ^M)' 

i*__. Z _ , konatVt (21) 

Here Eq.   (20) has also been taken into account. The abbreviation 

"konst" [const] in the exponent represents  (TT X^r pwcw) and r is the 

drop radius. 

The greatest rise in temperature occurs - provided the drop has 

not already burst - at point Q,  for which t = bVa/2or a-  Thus,   insert- 

ing this value for t and applying Eq. 

(19), we  obtain from Eq.   (21) 

^TMitte ~ Ts'Q "^ 

Fig.  2.8.5.  The function 

(22) 

where the  quantity 

'B 

appears as the thermal-inertia parameter for bursting. (For a rotor, 

we would replace A^' by A|"0.) The first factor Is a material quantity a a 
(thermal diffuslvity) and has the approximately constant value of 1.6 x 

x 10"^ m2/sec for water.  The expression  in curly brackets in Eq.   (22) 

is a function of 0B alone and is denoted by gB(GB).  Its value  can be 
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read from Pig. 5. For the quantity (dT /d In p) we may use about 20oC 

for low pressures. 

Now we can connect Eq. (22) vi'^h  the bursting criterion, Eq. (17). 

We find that those drops for which 

remain Insured against bursting. I.e., that 

Pa^;gB(oB)<o.i5 (24) 

Prom this criterion^ we can calculate the radius rn mov of the ' B,inax 

largest nonburstlng drops.  We determine gg from 

(25) 
0,25 

and then read CL, from Pig. 5. (If we find that gB > 1, then no drops 

at all burst In the ring, since the pressure drop Is not sufficient to 

trigger boiling.) With this GL,, r« „av then follows from a      D,inax 

rB, max 
(26) 

As an example,  let us calculate rB In rotor 5" of the high- 

pressure turbine laid out under heading 2.1, Here we have AS"a = 0,64 - 

- 0,56 = 0,08 m, Tg = 4,3-m"1, so that we get gg = 0.25/4.3'0,08 = 0.73 

and,  from Pig. 5, G^ = O.lB.  The axial velocity c_ ft of the drops (and 'B r,a 
here we Imply an average value at which they move between points P and 

Q In Pig.  4) must next be estimated; Pig.  3 gives us a point of depar- 

ture for this: about 3 cm past the point of detachment, the drops In 

question have about reached the velocity c   = (0.3 to 0.3)'On,  I.e., 

roughly speaking, cr a « (0,3 to 0.5),cal.  If we take cr a = 80 m/sec. 

then 

\|        ., o,oi    T" 
rBl««-?1'el0 T^T^ **• 110 (27) 

The upper limit Imposed on the drop size by bursting Is thus somewhat 
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smaller In this exanple than the r resulting from mechanical dl- 

visionj compare Eqs.  (6) and (9)« 

In conclusion,  let us summarize the Impression thus formed of the 

fate of the large drops.  The drops torn away from the trailing edge of 

the stator buckets (see a In Fig.   6), which. 1     | 
Dampf ' 

//////// 
In general, show sizes of r = (2 to 10) x 

o 

Fig. 2.8.6.  Illus- 
trating fate of 
large drops In a 
bucket ring (drawn 
for a rotor).  1) 
Steam. 

X 10"^ m - cf.  Eq.   (6) -,  strike the buckets 

of the next rotor at b.   Part of the mass flow 

that they represent remains clinging here and, 

under the Influence of centrifugal force, 

flows radially outward over the surface of 

the bucket.  The rest gets back Into the steam 

flow (either by ricocheting or by subsequently 

being slung off at rough spots on the surface). 

The smaller of these drops are gradually accelerated by the steam cur- 

rent and leave out the back of the ring with their size unchanged (c). 

On the other hand,  those that are accidentally somewhat larger (d) 

cannot survive the sudden pressure drop in the ring and burst (e). 

Only a superficial estimate can be made for the size of the rebounded 

large drops (subscript gg) coming out the back of a bucket ring:  they 

are probably smaller than before their original impingement and at any 

rate smaller than the r« „ov for the ring in question.  We can submit i3,max 

the rough estimate 

(29) 

for their average size.  In practical cases, we find approximately 

r     » 1*10 ^ m, which is therefore still much larger than the size of 
gg 

the fog droplets.  Even these drops can follow the motion of the steam 

only very poorly. 
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2.9.   THE FORMS   THE MOISTURE APPEARS IN, ITS DISTRIBUTION 
DEVIATION OP THE STEAM STATE PROM THERMODYNAMIC EQUILIBRIUM 

Under headings 2.4 to 2.8, we have made a detailed Investigation 

of the processes that figure In connection with turbine wetness.  On 

the basis of the formulas thus obtained, we can now build up a general 

calculation process by means of which we can Investigate the over-all 

pattern of the physical processes in a wet-steam turbine. 

We shall pursue two goals:  first, we should like to calculate how 

much water actually is present and how it is distributed among the 

various drop sizes;  secondly, we should like to know how sharply the 

state of the steam deviates from thermodynamlc equilibrium,  i.e.,  how 

great the supercooling is.   On the basis of the results, we shall be In 

a position to draw Inferences as to the possible effectiveness of de- 

waterlng and - in the third part of the study — as to the extent of 

moisture losses.  Pirst let us sketch out the path by which we come to 

the results and then discuss the results with reference to the two 

turbines described under heading 2.1, 

a)  Calculation Procedure 

It has been shown that the water assumes various phenomenal forms 

in turbines (such as,  for example, fog droplets, various large drops, 

flowing water, etc.), and that its behavior varies in accordance with 

these forms. Por this reason, we subdivide the entire throughput quan- 

tlty M of the turbine into part throughputs: 

ii . »<,♦ vv v *«♦**♦*- • (!) 
The subscripts have the tollowJ g significance: 

d  -   steam 

n   -   fog droplets 

f   -   water streaming over the blades 

g   -   large drops. Just torn away 
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gg     —        large drops, rebounded 

h       —       water centrlfuged out 

nn      —        fog droplets from a   Meondary fogging. 

The behavior of the Individual forms can be characterized briefly as 

follows on the basis of earlier results (cf.  Pig.   1):   "n" follows,  on 

the whole,  the flow of the steam;   "f" flows to the trailing edge on 

stator buckets and Is there torn away In the form of "g;" on rotor 

buckets,  "f" flows almost radially outward 

and contributes to "h;" after Its forcible 

detachment,  "g" covers a short flight path 

and Impinges upon the next row of rotor 

buckets;   "gg" bounces back and forth be- 

tween the buckets;  "h" can either be with- 

drawn from the flow by trap devices or 

move In the vicinity of the casing wall 

(partly as large drops and partly as water 

flowing on the wall);   "nn" will be formed only In special cases (namely, 

when a coarse-drop "n" Is accidentally formed In the first fogging in 

a turbine  In which very rapid pressure drops occur) and generally con- 

sists of droplets much finer than those of "n. " For the arguments to 

follow, we shall assume that no second fogging arises  (M^ = 0) and 

also that no steam Is withdrawn from the flow.  We shall return later 

to the allowance to be made for  "nn." 

During the flow through the turbine, there Is constant transition 

from one phenomenal form to another.  Of the many conceivable conver- 

sions, however, only a few are of Importance,  since most of them do 

not - "cur at all or do so only to extremely minor degrees.  Figure 2 

indicatea  the more Important transitions by means of arrows and re- 

quires the following explanation: 
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by condensation on the    blades;     this occurs only in 

those rings In which the   supercooling     is not compensated 

by boundary-layer heating (i.e., where AT > about 20°C), 

and is hardly perceptible even then; 

by fog-droplet formation and subsequent condensation on 

these droplets; 

by slinging of fog droplets against the leading edges 

and concave sides of the buckets; 

as a result of fog droplets being swallowed up by large 
drops; 

by tearing away from the trailing edge (in stator rings); 

by spraying off the bucket tips or shroud (In rotor 

rings); 

by ricocheting after impingement on   bladeaj 

by clinging after impingement on bUdMj 

as with g -•• gg; 

as with g -► f. 

1 Leitrad: 2 Laufrad: 

nr-Jf     h 

9    99 9-». 99 

—^ • wichtif   3 
—♦ ■iwtitr«nti|4 
 > m Vork«ndtnMti*ft 3 

Fig.  2.9.2. Transitions of mass from 
one phenomenal form into another. 1) 
Stator; 2) rotor; 3)  important; 4) IM« 
ivportapt;    5) pre condensation. 

The rates of these transitions can be expressed quite clearly by 

means of "mas« exchange coefficients" e.  These indicate what part jf a 

certain mass-flow subdivision entering a ring has gone over Into some 
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other form by the time it comes out of the ring. Below we present a 

few guidelines: 

'd-n 

"n-f 

'n-g 

'n-gg 

'f-h 

bg-f 

'gg-f 

'g-gg 
Sgg-gg 

cf.  Eq.   2.4(10); 

not Introduced, since fogging and growth of the fog 

drops are calculated directly from headings 2.5 and 

2.6b; 

cf. Eq. 2.6(18) 

] 

cf. Eq. 2.6(20) 

cf. Eq. 2.6(21) 

1 (only for stator rings 

1 (only for rotor rings I) J 
cf.  under heading 2.7; 

lie between zero and unity (smaller for smooth bucket 
surfaces and larger for roughened ones), so that we are 
forced to fall back on arbitrary assumptions; 

1 - e    p   / since practically no large drops get 

1 - e£Ä_f J through a ring without striking It. 

Not all of the phenomenal forms arise simultaneously In the tur- 

bine.  For example,  large drops appear only after water has first been 

torn away from the stator-blade    trailing edges;  for this purpose, 

however,  this water must have gotten onto the   blades    somehow, and so 

forth.   It happens that certain transitions are still lacking primarily 

In the first stages of the wet-steam section of a turbine, so that the 

calculation Is simplified for such stages. 

Below we shall Illustrate the calculation procedure for a multi- 

stage wet-steam turbine. The calculation advances from blade ring to 

blade ring. It begins with that ring In which the saturation line Is 

passed. It Is assumed that the design data of the turbine - In the 

sense of heading 2.1 - are known and that all necessary material quan- 

tities are also known (see Diagrams). The subscripts 0, 1 and 2 refer 

to the Intermediate spaces In and behind a stage,  and ' and " refer to 
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quantities  that apply for  (or within)  the rings.   (If quantities that 

change In a ring are provided with the  ' or the  ",  this  Indicates 

their arithmetic mean values In the ring;  thus,  for example, p1 s 

= (P0 + T?!)/^, 1" = {\ + lg)/2'   etc-) 

»The   blade    rings before the Wilson point 

The first task Is to determine the position of the Wilson point 

In the turbine. The method of solution was described under heading 

2.5e.  The Wilson point occurs either Inside a    blade   ring or In an 

axial Intermediate space. Below we devote more detailed discussion to 

the ring In which or immediately behind which It lies. 

In cases where extremely steep gradients occur In a ring (ln- 

pulse-type turbine).  It Is conceivable that the Wilson point Is 

reached In the same ring In which the saturation line  Is exceeded; 

compare,  for example. Pig.  8.   If this Is not the case, we have one or 

more rings  In which undercooled steam Is flowing.   (In Fig. 4, for ex- 

ample,  the saturation line Is crossed In ring 1', the steam Is In- 

creasingly undercooled In 1" and 2', until finally the Wilson point Is 

reached in ring 2".) in the rings through which undercooled steam Is 

flowing,  pre condensation may occur on the   blades    under certain cir- 

cumstances;       in steaa turbines, however,  this Is so slight that It 

may be disregarded altogether. We may thus assume that no water at all 

Is present In front of the ring with the Wilson point.  I.e., that ;jr 

remains = 0.  The theoretical wetness y   Increases In parallel with the 

supercooling;   It Is equal to the moisture deficiency Ay,  which can be 

determined from Eq.  2.3(19). 

Moisture  losses have not yet occurred In these rings,  since super- 

cooling produces a loss only when   it is coupled with condensation, i. •., 

with exchange of heat. 
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The   bUd«   ring with the Wilson point 

The ring In which (or in the intermediate space behind which) 

fogging takes place merits more detailed discussion, 

point has already been determined, we know the corresponding values of 

the pressure,  the rapidity of expansion and the supercooling      (p*,  P*, 

AT*). Prom this, we might determine the exact state of the steam at 

the end of the condensation zone on the basis of heading 2.3d.   In gen- 

eral, however, we shall satisfy ourselves with a cursory determination 

of r** and y**,  the more so since even p*,   P* and AT* carry uncertain- 

ties. We then proceed as follows: on the basis of p* we decide approx- 

imately at which point of the bucket complement the condensation sets 

in (cf. Pig.  2.5.13e),  so that we shall be able to estimate the Mach 

number M^    [vor = before].  (In the majority of cases. My     will be 

considerably smaller than unity.) With V^OT» P* and ?*, we can then 

read r**, the average fog-droplet radius at the end of the condensation 

zone, from Pig.  2.5.14.  Roughly speaking,   there is as much water pres- 

ent in the fog droplets as there was lacking with reference to thermo- 

dynamlc equilibrium at the Wilson point,  so that we have 

y« mty*   -   {I-y»)-jf  AT«  , (2) 

where Ay* has been denoted by AT* in accordance with Eq.  2.3(19).  in 

case we are dealing with the first fogging event in the turbine, y* = 

= 0 due to the negligible extent of the pre condensation. 'Zhe composi- 

tion of the fog is sufficiently described by r** and y**. These data 

form the point of departure for determination of the subsequent state 

changes in the turbine. 

The course of the   supercooling     \n the stages through which the 

fog flows is determined by the graphical method set forth under head- 

ing 2.6b.  The locus £*♦ at which fogging can be regarded as concluded 
a 
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and AT**, the supercooling value at this point, should be known exactly 

as a point of departure for this construction. In turbines, however, 

there Is frequently no sharp boundary to be discerned between the 

"formation" of the fog droplets and the subsequent condensation on 

them, since supercooling does not collapse suddenly at all under cer- 

tain circumstances. (In particular, this occurs when the Wilson point 

lies at a small P, I.e., when coarse fog drops form. In such a case, 

the supercooling falls off only much slower than It would If the fog 

droplets were fine, cf., for example, the dashed-curve segments In 

Fig. 5 or 6.) Happily, exact knowledge of |** and AT** Is not abso- 

lutely necessary for our purposes, since the error Incurred by start- 

ing construction of the supercooling curve from an arbitrarily selected 

point has vanished practically completely as soon as the next follow- 

ing stage Is reached. For example, the dashed-llne segments In Pigs. 5 

and 9 show the undercooling approximately as It varies In reality be- 

hind the Wilson point for these cases. The unbroken curve, on the 

other hand, was determined with an arbitrarily selected Initial point, 

using the graphical method. It is seen that the deviations are re- 

stricted to about one-and-a-half ring widths. Otherwise, even a large 

error in A7. has no serious consequences: we shall still be able to 

calculate the undercooling loss correctly (heading 3^)* and AT has 

only a minor influence on the local fog-droplet size (assuming a super- 

cooling approximately 50C too small results in calculation of a fog- 

droplet radius large by about 6^). 

Thus we shall dispense with exact determination of the state 

curve in the condensation zone and perform the calculation as though 

fogging in the same ring (or in the same axial intermediate space) in 

which it has begun were excluded, regardless of whether this is the 

48) case in reality.  At the exit from this ring       we «SSUM an ••i.4jnt«d 
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value AT, for the supercooling as the point of departure for graphical 

determination of the supercooling curve (between 0 and 10C if the fog 

droplets are fine and larger if they are large). In the tables, these 

assumed supercooling values have been keyed by vmderscoring and are 

readily identified in Pigs. 4 to 6 and 8 to 10 as the initial points 

of the solid AT line. 

If AT^ has been determined in this manner, the other still lacking 

quantities can be calculated for the ring exit. The moisture deficiency 

Ay, is determined from Eq. 2.3(19), and then the total precipitated 

unit amount of water y, follows from 

h-'an-t'i- (3) 

Since no large drops have been produced up to this point - apart from 

precondensation — we have y , = y-j-n = yhl = 0 and, consequently, 

ynl = yr (4) 

The number of fog droplets has as yet suffered practically no reduction 

in the ring, i.e., E , = 1, and the size of the fog droplets at the 

exit from the ring is obtained from 

a/» 
Fnl ■ Fr ('#)• 

Calculation of an arbitrarily selected wet-steam stage 

Suppose that yn0, ygg0, yh0,  En0,  AT0 and rn0 have become known 

from the calculation of the preceding ring (y_o Is zero,  since, after 

all,  the preceding ring is a rotor ring from which practically no drops 

are torn), and suppose that assumptions have already been arrived at 

for e„ -.,  £„„ p,  e„ „ - and e„„ „„.  We proceed with calculation of the 
g-f*    gg-f      g-gg gg-gg ^ 

processes in the 

SUtor 

and determine as the first order of business the quantity of fog de- 

posited on the buckets.  According to Eq.  0.6(15), 
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and, according to Eq. 2.6(3), 

tyJUJ        »^ 
,ta,        crt^O 

where 

(6) 

(7) 

(8) 

Figure 2.6.2 gives us g'^ and g'j,, and these.  In turn, give the frac- 

tion of the fog drops captured: 

r aiu. 

'Sehn l8cWI 
(9) 

In addition to the fog droplets, some of the Impinging large drops can 

also remain stuck to the buckets, so that the water content y'-, repre- 

sented by the water film on the stator buckets can be determined from 

the formula 

n ■ t;.!^*1«-!-^ (io) 

We shall set the number of forcibly detached drops at the exit 

from the stator, y ,, equal to y'^. Increased by the amount by which 

the torn-off drops continue to grow by swallowing up fog droplets dur- 

ing their time of acceleration. This aggrandizement will be described 

by Eq.   2.6(20): 

1   0'»^Sr.«^ ei.    ••asf\ri'] n 

[brems =» deceleration] where we use Eq.  2.2(36), Eq. 2.8(8) for the 

size of the torn-off drops.  I.e., 

(ttfRT^j 

Pi«? 
(12) 

and set vdl « v-,. (For low-pressure turbines, we obtain for Eq. (11) 

e'-« ~  12.5 y'fX/c^» where c1 Is to be Inserted in m/sec.) Thus 
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In a perfectly similar manner, we also Increase the mass of water 

rebounding from the stator buckets C6'«£_£,;«*^0.0) by aSgrandlzeraent 

with fog droplets. Prom Eq.  2.6(21), we have 

t-'ii—*'***"*™.^' ■n-n 
»0   *-* 

w 
or, with the assumption r      « *a/2> whlcl1 is sufficiently accurate for 

these purposes,  md transposing In the same way as with Eq.   (11): 

^ (^) 

Thus we obtain for the mass of the large drops that have rebounded 

from the stator, as taken at the exit from the stator, 
7aimt'tt-tt'*>*l'n.a'* (15) 

No water is centrifuged out in the stator,  so that 

y>,i = yv,n (l6) 

remains in force. 
'hi 'hO 

•tT-S.    ATK um b(|«) 
\    nach rtcMt 

«trtchaktn 

Fig. 2.9.3. Cosine approxima- 
tion for ATh in a bucket ring. 

1) ATh displaced to the right 

by bUa). 
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The loss In number of fog droplets per kilogram of flow medium is 

described,  in accordance with Eq.   2.6(24) - compare also Eqs.  2.6(22) 

and (23) - by 

«ni-»-£;-f-      ^-rW1.* (i7) 

We must take the following course to determine the total mass of the 

fog droplets. The iOg-droplet content y , is obviously that part of 

the total actual condensed water content y-,, left after subtraction of 

■T?!' y--! and yhl. Since y1 is smaller by the moisture deficiency Z^y1 

than the y , known from the specification and Ay, can only be calcu- 

lated from the undercooling, we must first determine the undercooling 

curve in the stator ring. The graphical method developed under heading 

-?.6b will serve for this purpose; it requires drawing the function AT 

and displacing it by the local sum b, compare Eqs. 2.6(43) and (46). 

Here we can permit ourselves the simplification of setting all quanti- 

cies constant except for P in Eq. 2.6(43) (for example, x^ = 1 - y^, 

1 ="1', etc.) and assuming a cosine approximation for P, as Indicated 

in Pig. 3* so that the AT. curve also becomes cosine-shaped and (after 

determination of the value of AT „_„ from P„QV) can easily be plotted. n,max max' 
Again in Eq. 2.6(46) It is sufficient to regard only c as a variable, 

for which cf. Figs. 2.1.7 and 8. For the quantities (Vn^i/^oo^ aPPear- 

ing in these equations, we make the estimate 

(Injnt   Cl (18) 

in the sense of Eq. 2.6(49). From the AT^ curve and its sister curve, 

which is displaced by b, we use stepwisc construction, departing from 

AT0 (see Pigs. 2.6.5 and 7), to determine the shape of tho undercooling 

AT within the ring. For the control plane behind the ring we finally 

obtain a value AT-^ from which we nay use Eq. 2.3(19) to get the mois- 

ture deficiency 

- 177 - 



_ 
^-. 

■ 

V-^ - 

It i        
J 

^i-^»-WATi 

and from this, by the expression 

(19) 

(20) 

the moisture effectively present. Finally, we can calculate the fog- 

droplet content 

'•.l'*!-^*»«!^^ (21) 

together with the average size of the fog droplets behind the stator: 

Thus we have obtained the ent - set ynl, y ,, ^a^\*  ^1* Enl* AT1 and 

r , and are In a position to take the 

Rotor 

next In order. Apart from centrlfugatlon, the processes In the rotor 

are basically the same as those In the stator, so that the calculation 

procedure remains Identical. We shall restrict ourselves to a bare 

enumeration of the formulas and append explanations only where there 

Is a basic departure from the calculations for the stator. 

We have 

Kn1 

*;.» 

(VN»)"       », XX 

1.1.53«.-      c^ 

<V2«»w>" «Ä 
1 « >, S3 Kn* V* 

il - ^»"d^" 
».1 

'Ichfl (8cbfl 

(23) 

(24) 

(25) 

(26) 

[Schfl = bucket].   Since  (unlike y 0) y ,   Is not equal to zero, we get 

y? " «n-f'm ♦ «i-r'n* *ä-f y«i • (27) 

and since, due to the centrlfugatlon, practically no drops are torn 
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off from the rotor bucket trailing edges,  the quantities  e"        and r p 

become meaningless and 

yg2 = 0. (28) 

Both freshly detached large drops and large drops that have already 

been bouncing back and forth strike the rotor buckets,  and part of 

each class will rebound,   so that 

E"« "• IT (^1 ^' ulu V *t«-« ^ (29) 

where (0.25/^/5) •-N/
ö/ljLri * 12'5 mVsec* for low-pressure turbines. 

Thus the following water content is present behind the rotor in 

the form of large drops that have rebounded again: 

r«i • ^-n V * t« «»ai * 'n-a»«i (30) 

All water that has clung to the rotor buckets is centrifuged out, 

so that 

'M • hi**t • (31) 

Further, 

■nffl-^-r':.«)-»Bi • (32) 

which is followed by the graphical determination of ATg, setting,  for 

one thing. 

m (33) 
'«Dl'V*'«»*^ 

Finally, we have yet to calculate 

A'a " if <» - W ATi • (34) 
'frt'O't' (35) 

"na-'i-öraa^hi) (36) 

and 

r--f"(Ä)   " (37) 

Thus we have obtained the quantities y g» deters* yh2* En2* AT2'*rn2' 
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vhlch provide the Initial data for calculation of the following stage. 

Remarks 

Equations (14) and (29) are based on a rough assumption for the 

size of the rebounded large drops  (namely, r    ^ =^0:0:2 =*frl/2}* which 

simplifies the calculation appreciably and gives an approximation suf- 

ficiently good for these purposes,  since, after all,  the processes 

represented by e'        and e"        (swallowing up of fog droplets)  is only 

a subordinate factor as compared to the other mass transfers.  Neverthe- 

less, more exact knowledge of r      may be necessary - specifically, for 

calculation of the moiature losses — and for this reason it also be- 

comes necessary to calculate r« max*  the upper limit imposed on drop 

size by bursting. For a stator ring, we obtain from Eq.   2.8(26) with 

» 0.4 c. 'r,a 'ar 

^-iWcJa.o.^  aj,   ' (38) 

where G'g is determined with the aid of Pig. 2.8.5 from 

<B 

0,18 
(39) 

(The procedure for rotor rings is the same, except that we may have 

g" > 1 with small percentage reactions, which shows that no bursting 

at all takes place in the rotor.) 

Now the only rebounded drops that will emerge whole from a stator 

ring are those smaller than r1« __„; larger ones burst, i.e., disin- 
J3j 1118A 

tegrate into smaller fragments. For the resultant average size of the 

rebounded drops at the exit from the stator, therefore, we can take as 

a rough approximation 

F «, B,«» but in any event *'«0        (40) 

Behind the rotor, "gg" is composed in part of drops that belonged to 
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y -,  before the rotor and in part from drops that belonged to yeel (but 

the first component will generally predominate heavily).  Incidentally, 

it is not at all certain that r1'    „„„ exists at all and is sufficiently 
Bjinax 

small. Again as a rough approximation, we set 

rK2,*!k»5S bUt in any event 4I1L. (41) 

The uncertainty of the r    -values calculated from Eqs.   (40) and (4l) 

is,  in Itself, very large - perhaps a factor of 2 or 3 -» however,  it 

can be accepted without misgiving,  since the values are used only to 

estimate certain unimportant losses. 

A second remark applies to the case in which repeated fogging oc- 

curs ("nn"). This will most likely take place in    i^pulM-type 

turbines, but only when a coarse-droplet fog has formed in the first 

fogging. That is to say.   In this case the undercooling may Increase to 

such an extent in spite of the presence of fog droplets (usually in 

the first stator ring following fogging) that prolific naclaation is 

again triggered. The point at which this second Wilson point is situ- 

ated can likewise be determined from the undercooling curve that we 

have arrived at graphically, using the same method as for the first 

Wilson point (see Pig.  2.5.16).   It is usually J-nBlde a stator ring, 

i.e.,  P* is large,  so that the second group of fog droplets consists 

of fine drops.  The case in which also the second fogging produces eoarao droplets 

and is  followed, under certain circumstances, by yet a third fogging, 

is not excluded, but it remains highly Improbable. We shall not discuss 

this case. 

After these tiny second-edition fog droplets have appeared,  they 

bring down the lion's share of the condensation upon themselves,  since, 

taken together,  they possess a much larger surface area and even higher 

heat-transfer coefficients than the "first-born" drops, which will per- 
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haps be ten of twenty times as large. We can therefore determine the 

subsequent course of undercooling solely by reference to the "nn" fog 

droplets and assume that the "n" fog droplets do not grow any more at 

all. For the rest« the behavior of the "nn" fog droplets corresponds 

In principle with that of "n," so that the same formulas will apply, 

nutatls mutandis, for the mass-transfer coefficients Involved here, 

b) Examples 

Let us now discuss the results that have been obtained from ap- 

plication of the calculation procedure proposed here to the two tur- 

bines laid out under Heading 2.1. For reasons to be brought out beloWj 

we shall carry out the calculations for several variants of each tur- 

bine. 

Prom Section 2.5* we drew the Important conclusion that the size 

of the fog droplets produced on spontaneous condensation in a turbine 

is extensively determined by an accident: namely, by whether nudeation 

took place in a region of rapid pressure drop or in a jpace between 

two bucket rings, where the presiure remains almost constant for a 

certain period of time. It was noted that it is generally possible, by 

varying the pressure curve, to bring both cases about in a given tur- 

bine: for this reason, two variants were investigated for each turbine 

derign — one with the finest possible fog droplets and the other with 

the coarsest possible droplets. ' 

If coarse fog droplets form, a relatively large number of them 

are caught by the blades.  Whether the water caught is centrifuged out 

arid drained or remains in the flow in the form of large drops and bounces 

back and forth between the buckets would probably have considerable in- 

fluence on the losses. For this reason, two extreme cases were inves- 

tigated for the variants with coarse fog: one without drainage, in 

which "h" remains in the flow channel, and the other with the most ef- 
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flclent dewaterlng devices conceivable, which result in the largest 

possible  "h"      aaount    and withdraw it from the flow. 

If the fog has fine droplets,  the amount of wacer trapped by the 

buckets is so small that the difference between no    dndMfe      at all 

and effective     drainage      is hardly perceptible. For this reason, we 

omitted th« latter variant for the ease of a fog consisting of floe droplets. 

The three cases for which the calculation was completed carry the 

following designations (Ub =    reaction-type   turbine;  01 =   impulse- 

type      turbine specifications see in Seat. 2.1): 

"Ub 1,"  "01 1"     :       with  nucleation in the niddle   of a ring  (i. !., with 

fine-droplet fog); 

"Ub 2,"  "01 2"     :      with  nucleation in an intermediate axial space 

(= coarse-droplet fog), without dnainage; 

"Ub 3,"  "01 3"    :       same, with the best  drainage conceivable. 

If the state curve has been fixed for a turbine — and this has 

been done for the two turbines of our example; by the specification un- 

der Heading 2.1 - then the Wilson point, fog-droplet size,  etc. neces- 

sarily follow from this curve. To produce the extreme cases with fine- 

droplet and coarse-droplet fogs, we have in each case modified the 

pressure curve in our examples in such a way as to place the Wilson 

point at the desired position.  These modifications, which are,  in them- 

selves, arbitrary,  are restricted for the sake of simplicity to the 

blade     rings up to and including the Wilson point, and the quantities 

based on this modified state curve have been enclosed in parentheses 

in the tables.   Only in case "01 1" was  it possible to retain the orig- 

inal specification. 

The fine-droplet variants represent nearly absolute extreme cases, 

since expansion rates higher than those at which fogging occurs in 
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Pig.  2.9.4.   Supercooling    curve and 
distribution of water In iho rojtctlon- 

typo turbine (variant 1).  l) Pine- 
droplet fog. 

^>-*5®i  £.' 

these variants are hsrdly to be expected In actual turbines.  As for 

the coarse-droplet variants, on the other hand.  It Is conceivable that 

In certain turbine models  (broad axial intermediate spaces,  etc.),   it 

might be possible under certain circumstances for a fog with even 

coarser droplets to form,  since the expansion    rat«, which governs 

nucloation, My »Ink   considerably lower than the value assumed here - 

P* = 150 sec"1. 

It was stated under Heading a) that the precondensation can be 

disregarded without incurring any noticeable error as a result.   In the 

present calculations, however, it was nevertheless taken into account 

in all cases in which it occurs according to Section 2.4 (rings 2' and 

2" of the   roAction-typo     turbine),   to demonstrate the correctness of 

this statement   for «UMI turblnos. 

The' results of the calculations are reproduced in Tables 1 to 6 

(see pages 193ff) and in Pigs. 4 to 11. The assigned quantities were 

y    and the other data assembled in Tables 2.1.1 or 2.1.2. 

The    suporcoollng   curve - the upper parts of Pigs. 4, 5 and 6 and 
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8,  9 and 10 — were determined graphically behind the Wilson point;  the 

control-plane values.  AT.  and maxima in the bucket ringSy AT. figuring 

in the  tables were read from the curves.  The water distribution - lower 

parts of the  same figures - is obtained from the calculated control- 

plane values of Ay to y.   by connecting the points with continuous Unss. 

'^ i aUi     \ .Ub2' 

Fig.  2.9.5.    Supercooling     cxirve and 
distribution of water in ths resctipn 
type tvirbine  (variant 2).  1)  Coarse- 

droplet fog;  2)    secondary nucleetion. 
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Fig.  2.9.6.   Supercooling     curve and 
distribution of water in the reaction 
typ«    tubine  (variant 3).   l)  Coarse. 
droplec fog. 

Further j E   is the numerical proportion of tae fog droplets that 
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Fig. 2.9.7. Mass distribution of water over droplet radius before the 
last rotor ring of the rwwtion-type turbine (the encloMd area is pro- 
portlonai to the mass content;  the arrows denote the calculated aver- 
age radii). 

has remained in the flowing steam,  i.e., has been able to avoid the 

bLMtet;     E      is the corresponding proportion for the second-generation 

fog droplets If any such generation is formed. Through the trapping 

action of the  blade»,      more and more water goes over into the coarsest 

forms;  the total    «»ount     of water in the intermediate spaces, referred 

to the theoretical water   «■ount        is given by the quantity (yg 
+ ygg + 

+ y^J/y^j the next line below indicates, again as a percentage,  the 

aaount    of water centrifuged out, which simultaneously indicates the 

upper limit on the amount of water that can be    separAted by drainage 

devices. 

At the very bottom of the tables we list the average sizes (radii) 

of the various drop species; in the line Just above that, the radius 

of the largest drop that still does not burst, rB max, is indicated 

for each ring. It is seen that bursting acquires significance only at 

- 186 - 



■ 

^m 

^*' Mr 

t  r' r   r 

Pig.   2.9.8.  Supercooling 
curve and distribution 
of water in the    th« 1B- 
pulse-type turbine  (vari- 
ant 1).  1) Fine-droplet 
fog. 
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Pig.   2.9.9.   SttP^rcoolin« 
curve and distribution 
of water in th« lnwlao- 

typ*        turbine fvari- 
ant 2).   l)«ocondAry     fog- 
ging (fine droplets): 2) 
coarse-droplet fog. 

Pig.  2.9.10.  Super- 
cooling and distribu- 
tion of water in   th« 
impulse-type turbine 
(variant 3).   1)    ■•c- 

ondery fogging (fine 
droplets); 2) coarse- 
droplet fog. 

low pressures, since with higher steam den- 

sities the mechanical size-reduction re- 

sults from the outset in sufficiently small 

droplets. The distribution of mass among 

droplets of various sizes in front of the 

last rotor ring has been presented in Figs. 

7 and 11. 

Now these general remarks will be fol- 

lowed by the discussion of results. 

We are struck in all cases by the fact 

that a rather small quantity of mass falls 

to the lot of the coarse water forms (harm- 

ful drops, water centrifuged out).  If the fogging produces fine drop- 

lets ("Ub 1," "Ql 1"),  then the course-form water amounts to only 8.6j< 

and 3.8^, respectively,  of the water theoretically present, even at 

the end of the turbine;   if a coarse-droplet fog forms,  these figures 
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rise to about 29J6 and 13^. The fact that about twice as much coarse- 

form water Is produced In the     re*ction-type    turbine than In the cor- 

iBpulaa-type turbine Is to be attributed 

primarily to the fact that here the fog 

must flow through twice as many   blad« 

rings  (deposition!), and not for example, 

to the differing percentage reactions. 

The fog-droplet count in the steam 

diminishes only slightly;  even   in the 

worst possible case  there are     still 

more than 50^ of the fog droplets pres- 

ent in the steam at the end of the tur- 

bine, as indicated by the E -values. n 
With a fine fog,  of course, E   will 

naturally diminish much more slowly;   In 

the "01 1" case,  it sinks from unity 

only to 0.9469. 

For the     drained amount, this 

means that even with turbine designs 

capable of centrifuging out all of the 

coarse-form water and draining It, only a small fraction of the total 

theoretical water can be deposited ("Ub 3": 28.6^, "Gl 3": 13.1^). If 

measurements on turbines indicate deposition of more water than this, 

either an error of measurement or a catastrophically unfavorable fog- 

ging should be looked for. 

According to the figures,  the    supercooling    AT is rather large, 

primarily in the last rings (high vacuums, poor heat transfer between 

fog droplets and steam1.).   The size of the fog droplets formed is of 

prime significance for the   supercooling    curve. 
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Pig.  2.9.11.  Mass distri- 
bution of water among drop 
radii in front of last 
rotor ring in   the IBK 
pulse-type turbine   (enclosed 
area is proportional to 
mass content;  the arrows 
indicate the calculated 
average radii). 
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As for the  reaction-type turbine, we find for "Ub 1" a  smjercool-- 

ing curve similar to that found under Heading 2.5c for the simplified 

turbine model (cf. Fig. 2.5.2):  supercooling collapses suddenly after 

the Wilson point and then remains quite small, regaining levels of 6 

to 70C only toward the end of the turbine. If, on the other hand, a 

coarse-droplet fog forms ("Ub 2," "Ub 3"), then AT will not vanish 

completely behind the Wilson point, but will fluctuate around the 10oC 

level and reach peak values in the last ring that even exceed 25 C. 

Such a great remanent supercooling causes,    on the one hand, a con- 

siderable thermodynamic loss (see under Heading 3.^) and, on the other 

hand, produces a significant wetness deficiency Ay amounting sometimes 

to more than 1/10% of the theoretical moisture in the examples. For the 

last rings, in which the supercooling  becomes considerable, we have 

plotted the course of the Wilson supercooling AT* (see Fig. 5) so that 

it will be possible to establish whether a repeated heavy fogging is 

triggered here. As is seen, we fall Just short of this in the "Ub 2" 

example (and likewise in "Ub 3" as well). It should be noted in pass- 

ing that nucleation can become perceptible even after the last stage, 

since no further expansion is taking place here (P « 0), so that the 

supercooling AT* necessary for nucleation drops off sharply. Such nucleation 

is, however, of no further significance for the processes in the tur- 

bine. 

Still higher expansion rates occur in the iaspulse-type     tur- 

bine, and for this reason the differences due to fog-droplet size 

press even more boldly into the foreground. In the event that extremely 

fine fog droplets form ("Gl 1," Pig. 8), the undercooling remains 

small from the Wilson point on; in the rotor rings, where the pressure 

maintains a practically constant value, it vanishes almost completely, 

while in the stator rings it always increases temporarily, since 

- 189 - 



. i      ji. wp m iwji.j*up^-..i. i - BB^w^^nr—* 

■^ 

rather,       sharp expansions are taking place here.  If fogging takes 

place In an Intermediate space  ("Gl 2,"  "Gl 3") and produces coarse 

fog droplets that present only a relatively limited area for condensa- 

tion, a totally different picture takes shape:   In the rotor wheel be- 

hind the Wilson point (1"),  the supercooling      drops only to about 5 to 

70C and shoots up again in the next stator ring as soon as the  sharp 

expansion Intervenes there. Here the eunr» of the Wilson supercooling,AT*, 

is soon attained for a second tias and another heavy nucleation takes place 

in the steam apace, and the new-born fog droplets cause another col- 

lapse of undercooling.  These second-generation fog droplets are much 

finer than the first ones (formation at high P), so that from this 

point on we have essentially the same undercooling picture as in vari- 

ant "Gl 1." The second flock of fog droplets possesses a much greater 

surface and far superior heat-transfer coefficients than the first 

flock, which is still mixed with it,  so that practically all of the 

condensation devolves upon the second group:   the quantity of water 

present In It  (ynn)  steadily increases, while the mass of the first 

fog-droplet group (y )  diminishes considerably,  since Its droplets 

show practically no growth, but on the other hand are trapped preferen- 

tially by the     blades   due to their relatively high inertia. 

It will be seen from Pigs.  7 and 11,  which plot the  "droplet 

spectra" in the  intermediate space between the last stator ring for 

both turbines,  that water drops of widely varying sizes occur  in the 

turbine, but that droplet species of different origins differ clearly 

from one another as regards size.   (The breadth of the frequency curves 

for y    and ynn is based on Section 2.5c,   and that for y    on Section 

2.8a.   It was assumed arbitrarily for y__. ) 

It is further seen from Fig.  7,  if,   for example,  we compare  the 

droplet spectra of "Ub 1" and "Ub 2," that the difference between 
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"fine" and "coarse" fog droplets Is never particularly large  (orders 

of magnitude smaller than the difference between fog droplets and de- 

tached dropsl),  but that this  slight change of fog-droplet size 

produces a sharp  Increase in  the mass devolving upon "g,"  "gg" and "h. " 

In CAM of absolutely nonar«fleeting bucket» ("Ub f), one obserte» eapeelallf an in- 

ereaae of the «aount yh at the expenee of the large drops bouncing back and forth 

("gg"), which do not occur at all in this ease. 

The fog droplets forming in the case of "01 l" (see Pig.  11) are 

about one-third as large as  those of "Ub 1." This on the one hand, and, 

on the other,  the smaller number of stages in the        lapulse-type 

turbine are the reasons why such a vanishingly small amount of water 

goes over into the coarse forms here.   In cases  "01 2" and "01 3," the 

lion's share of the water quantity is divided between the two fog- 

droplet species, whose average sizes differ by a factor of more than 10. 

In summarizing, we can state that in cases with favorable fogging 

("Ub 1,"  "01 1"), both turbine designs produce very little water in 

the coarse forms.   If,  on the other hand,  the fog formed has coarse 

droplets,  the iapulse-typo      turbine clearly performs better than 

the     reaction-type   turbine, at  least as regards water distribution; 

this is primarily because,  in addition to the coarse drops,  fine fog 

droplets are also subsequently produced.  The result is that not only 

is undercooling kept low, but  the transition of too much water into 

the coarser forms  is impeded.   Also to be recognized from Pigs.  7 and 

11 is the fact that a more favorable distribution of the water present 

in the coarsest forms is also achieved in the      iapulse-type tur- 

bine,   namely,   most of it can be centrifuged out.   This is to be attrib- 

uted to the fact that the fog droplets are mostly trapped by rotor 

buckets  (compare the yf values  in the tahleaj), 
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It must be noted here, however,   that examples  "Gl 2" and "Gl 3" 

do not reproduce  the leaet favorable  case that can occur at all In 

i«pul»e-type turbines nearly as well as  "Ub 2" and "Ub 3" do this 

for the    rwwtion-type    tiarbine.  That  Is to say,  there  Is a much greater 

possibility that still much coarser fog droplets may form in an .1»- 

pfulsA-tjpe turbine - due to the  small pressure drop in the rotor 

rings - than was assumed here.  Unfavorable Intermediate cases are also 

conceivable, for example,  the case in which the first-born fog droplets 

are only Just coarse enough to produce a large supercooling but not 

big enough to cause a repeated  h«avy mclMtion; or - in extremely rare 

cases - even the second-generation fog droplets may be coarse,  so that 

yet a third fogging occurs. 

Further comparison of these examples will be possible only with 

reference to the moisture losses,  in Section 3*7. 

- 392 - 

ra; •K» a£: 



TABLE 2.9.1 
Example  "Ub 1":       Reaction-type Turbine, 
Poor Dewatering Devices 

Assuming Pine-Droplet Fog and 

A Strf.:               |                                                 1 2 

B Scharfelkru«:        |                            l«                              1"                           2'                                2"                      \ 

y«       "«Ag 
A,            kKAg 
y         kg/kg :" 

(0,00160) 
(0,00160) 

0 

(0,00960) 
(0,009 60) 

0 

(0,01850) 
(0,01843) 
0,00007 

0,03300 
0,00016 
0,03284 

y.        kgAg 

yf         kgAg 
yg         kg/*« 
y„       kg/k. 
yfc         kgAg 

- 
- - 

0,7   10"4                        2,5-10"4 

'—*-    0,7-10'4      1 

0,032 53 

0,7-10' 
2,5.10-' 

• 
• - 0.4% 

1 

1,0% 
0.8% 

_ C                            Der Oamitf 
•«merkiag!                M noch 

überhiut 
llnl«          E 
wird über- 
•chrittn 

pspontane 
Kond.  io 
Kranz bei 
f>*««»noo 

«ec-1 

4T-« :c 

AT            0C e.. 2° e«.«0 
AT'« 29° 

e«. 23° ill* 
rB.««      •      | - 4,0- 10'5 

!g 

• 

- - 1.4. IO'» 

0,9-10-' 

0,7-10'' 

A) Stage; B)    blade    ring;  C) remark;  D)   the steam Is still superheated 
E) saturation line   creased       p) spontaneous condensation within ring, «t 
P» « 1100 sec -1 
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3 
4 5 

_      __       • 
3,                                3"                             4'                                4"                                    5»                                  5"                                    0' 

0,04500 

0,00024 

0,044 76 

0,05700 

0,00024 

0,056 76 

0,06900 

0,00024 

0,098 70 

0,08200 

0,00040 

0,08160 

0,095 00 

0,00032 

0,00468 

0,10600 

0,00080 

0,10520 

0,131 a« 

0,00118 

0,11924 

0,04432 

(   :    10"*                      2,4-10"* 

—•-  1,2-10"*   —-J 

0,7-10"*           S^, 

2,5-10"*          ^-^ 

0,05601 

2,0-10"* 

4.1.10-« 

O.0C7M 

U-lO"*                    7,5.1«-* 

^-» 4,3 •' lO-« -»J 

2,0-lO"«          ^-^ 

4,8-lO"4        Vk-*- 

0,01973 

6,5 • lO"« 

13,8. 10'* 

0,09290 

11,1.10'*                       3i,5-10** 
^—^    11,8. 10-«   -s 

C,7.10-ä          ^-^ 

12,3-10**         ^-^ 

0,090 00 

19,3.10*« 

33,8.10'* 

■ T5 

e.nios 

S0,8'10'*                     88,1 

*—-   23,1-l«'«  -J 
2«,l. 10*« 

83,8.10*« 

0,9963 

1.0% 

0,6% 

0,9909 

1.3% 
0.8% 

9,9m 

0.1% 

0.973« 

1.3% 

1.»% 

0.8979 

3,3% 

1,»% 

0.924S 

3.2% 

«,9030 

6.8« 

2.8% 

ft                                       ».1° 

0.3° 0|3O 
l.«P                           1.1° 

0,«° 0.5° 

>.»•                                «.8° 
0.«° I.«»0 

7.2a                             1 

2.2Ä 

,     'O*5                     2,6   lO** M-10*9                  2.1.10"* S,«'!«'1                       2.6.10*5 
1.1- lO*8                      1,8 

1,0-10"7 

2,1 -10*8 

0,7-10"5 

1,1 • lO'7 

1.0- 10** 

1,1-10-7 

M'io"' 

i.o-10-* 

1.3 • lO-7 

1,0 .lO*' 

Liio-7 

8.0- lO*1 

i.o- ir1 

1.4-10'' 

1,0-xo-1 

1.8  10*7 

11,8 «lO*1 

0,8 • I«*1 

1 ' 
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1 ' 4 6                                                    | 

[                         4"                                     9«                                 S"                                   6'                                     6"                         | 

[ 0.040 00 
r 0,00014 

0,04470 

1 0,04100 
0,00040 
0,00140 

0,04S00 
0,00032 
0,09444 

0,10600 
0,00080 
0,105 20 

0,12100 
0,00176 
0,11924                       * 

0,13000 
0,00312 
0,12688     j 

| 0,04741 

l4,l-l«r* -^1 
1 a,o-10-«     p^ 

J.07»7J 

«,S-W* 

0,09210 

11,1.10**                     21,5-10'* 
V-»   11,4-10r<   ^1 

4,7.10'*         p—» 
12,3-10"*         ^-» 

0,099 90 

19,2-10** 
33,4- 19"* 

0,11165 

20,4-10"*                        38.1-10'* 
*--♦   22,1 • 10'*   —I 

20,1 • 10'*         l^^ 
33,8-10"*         ^-» 

0,115 74     | 

44,5-IO'4 

66,9-IO"4 

[•.MM 0,0720 

1,5% 

0,9S7S 

S,2% 
1.3% 

0.924S 

5.0% 

J.a% 

0,9030 

0.3% 
2.8% 

0,8744     1 

5,1% 

0.J» 0.lo 
8.7°                               «.0° 

0.4° 1.0° 
7.1°                                  7,3° 

3,»° 3,9° 

1           «,»• »o*1 2,0.10'$                       2,0-IO*5 1,7-IO'5                        1,4-IO*5 

|I,I-IO-' 

[M-io'* 
1,0-10-» 

1,» • IO-' 

•                1 
1,0-IO'* 

1.J.10-' 

4,o-ur8 

1,0« io-» 

1,4-IO*7 

1,0.10*» 

1.5-IO'7 

11,5.10"* 
0,9.10"» 

1,5- 10*7| 

0,9- IO*5 

(^ 
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TABLE 2.9.2 
Example   "Ub 2":       Reaction-tjpe Turbine,   Assuming Coarse-Droplet Fog and 
Poor Dewaterlng Devices 

A Slu,*: 

B Schaufelkran« 

y 

r 

kg/m 
kgAe 
kg/k« 

y,       *iAt 

yh       */*• 

s« S" 

(0,003 20) 
(0,00320) 

c 
•wBtrk«^: 

AT 
AT 

B,mu 

DtrOaa* 
Ut noch 
über-^ 
hlUt D 

»mxgmf- 
u*ic       E 
wird Obm- 
sehrittM 

(0,01120) 
(0,01120) 

0 

(0,02080) 
0,00320 

(0,01760) 

1 

(0,01753) 

«-4 0,7-10*' 4,4- 10_ 

^—•-   0,7-10*4 

cm. 4« C1.14 iO 

1 

0.4% 

0,03300 
0,00480 
0,02820 

0.02789 

0,7-10"4 

4,4'10"4 

p Spool. Kood. 
r im Zw. -räum 

.,  b.i 

AT** 26° «.5e 

4,0-10' 

(8,3-IO"7) 

1,4-10" 

0,8748 

1.»% 
1,3% 

0,04500 
0,00650 
0.03650 

0,03716 

8,1.10" 14,8 •W4 

8,310-4 -x 
0,7.10*4 s^-.. 
4.4'10"4 ^—^ 

6.0« 

,-7 3,0-10 

0,7- 10"8 

0,9457 

8.0% 
».0% 

11,6* 11,9° 

MC 

2,6-IO'8 2.6-W -5 

4,8. W7 

2,1. IO"5 

0.7. IO*8 

A)  Stage; B)   blad*     ring;  C) remark; D)   the steam Is still superheated; 

E)  saturation line  Is «■«•••«li       P)  spontaneous condensation In  Inter- 
_l 

mediate space^ at P* » 150 sec    . 
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V 

—        11.,,,        -'     • I -""    '  '   ' u    m 

4 9 6 

3«                                4, 4"                             5» 5" 6' 6" 

0,13000 
0,02000 
0,11000 

JO 

0 

0 

0,06700 
0,00660 
0,05020 

•,06» 06 
0.00660 
0,06210 

0.06200 
0,00670 
0,07320 

0,09500 
0,00660 
0,08920 

0,10600 
0,01200 
0,09400 

0,12100 
0,01700 
0,10400 

6 

-4 ^1 

0,0472» 

•.l-IO"4 

»^•lO*4 

2St0-10"4 

•,09« 62 

29,4-JO "^ 
26. ••10-*^ 
9,2.lO-<        ,s-*» 

16,2. iH       ^—» 

0,06283 

26,1-10"4 

S6,6-10-4 

»1,2-10"4 

0,07026 

53,4-10-* 
37,2.10-4 

58,6.10-* 

61,0'10-* 

0,07067 

93,7-lO"4 

139,6-10-4 

55.9.10'* 

0,073 48 

73,0.10'* 
68,8.10'*-^! 
»6,8-10'*         ^-^ 

139,6-30"*        ^—*■ 

0,07157 

171,710"* 
212,610** 

7 0,9MT 

2.4% 

0,M«T 

2.6« 

0,767» 

11,6% 

1.1% 

0,7269 

e.2% 

0.6421 

22.0% 
13,2% 

0,5767 

25.2% 
11,5% 

0.5145 

29,6% 
16,4% 

n.»0 

1.»° 
11. T» 

•.2° 11,7° 
ny 

13.9° 
19,6« 

16.6° 
28,1° 30,9° 

24,10 28,6° 

M-W8 I^-IO*1 2, MO"1 2,0-10"* 2>10'8 1,7-10'5 i.e-io"5 

,-7 

-5 

4,M0-'' 

1,0'10-» 

»,1-I0'T 

»^•IO-1 

J,5.10-7 

_ 

1,0-ID"8 

5,6.10-7 

6,0•10", 

1,0.10-» 

6, MO"7 

1,0-10'8 

6,4.10'7 

11,5-10'5 

0,9. lO"5 

6,6-10'7 

O,9.10*5 

ß 
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TABLE  2.0.3 

Example  "Ub 3":      Re»ction-type Turbine, Assuming Coarse-Droplet Fog and 
Ideal Dewaterlng Devices 

I     A  St«*«:           | 1 i 3 

B Schattfclkrans: V                             1" 2' 2"                             3*                             3" 4' 

y«    "«A« 
Af       kc/kc 
y         kc/kg 

- 
(0,00320) 
(0,00320) 

0 

(0,01120) 
(0,01120) 

0 

(0,02080) 
0,003 20 
(0,01760) 

0,03300 
0,00480 
0,02820 

0,045 00 
0,00«SO 
0,03850 

y,      k«A« 

y,      kc/kc 
y_      kcAc 
y„    kcAc 
y"    "«A« 

• 

- 

• 

(0,01753) 

0,7-10'4 

^ »-  0,710"4    — 
5, MO"4 

0,0276» 

5, MO"4 

0,03716 

8,M0'4                  23,M0*4 

,—♦ B^-IO-*-^ 

5, MO"4           ^*- 

25,0*10' 

• - 

1 

0,4% 

0,9748 

1,5% 
1,5% 

0,0457 

S.0% 
1.1% 

c 
BcBMrkuiic: 

Der Dampf 
ist noch 
übtr- 
hltslD 

Sllttlfuiift- 
Itni«          E 
wird Ober- 
schritten 

„ Spont.Kond. 
^ Im Zw. -raun 

.     b«l 
P*»150«ec * 

AT         0C ma«  ^w 

AT         "t . c..40 ct. 14° 
AT •26° 8.5° 

«.0° 
11,6°                         11,9° 

«.1° 

12,7° 

'B.mi«    m - - 4,0-10"5 2,6-10"5                    2,6'10'5 2.SW 

- - - 

(3,3-10-7) 

1,4-10*5 

3, MO*7 4,3-10"7 

2. MO'5 

* 
■ 

A)  Stage;  B)     blade   ring;  C)  remark;  D)   the  steam Is  still superheated; 
E) saturation line Is   crossed;      F)  spontaneous condensation In inter- 
mediate space^at P* « 150 sec"1. 
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■   mm** *xK..   . 

n 

rt.MO"4 

11.9° 

2,«'10'8 

0,06900 
0,00690 
0,06210 

0,05670 

25,0'10' 65, J»10" 
25 

28 

.»•io-*->   I 

,2-10-4 V^. 

0,08200 

0,008 70 

0,07330 

0,06396 

0,8595 

7,8% 

4,1% 

12,7° 

•.2° 

• 10-5 2,8-10 

5, MO"7 

3,5-10"S 

14,6° 

2,W0 • 10"5 

93,4'10" 

0,7997 

11,5% 
11.5% 

0,095 00 
0,00080 
0,085 20 

0.07051 

51,3-10 -4 134,8-10" 
53. 

93. 

,5-10*4->     I 

,4-10'4 ^-» 

0,10600 
0,01190 
0,09410 

0,07128 

0,12100 
0,01680 
0,104 20 

0,07445 

66,4-10 -4 143,3'10" 

11,7° 

5,5-10-7 

0,7328 

15,5% 
9.8% 

17.8° 18,6U 

13,4° 

2,0-10-5 2,0-10 -5 

5,8-10"' 

e.o-io*5 

228,2-10' 

0,6484 

21.5% 
21.5% 

89,3-10-4  —'     | 

328,2-10"4 ^* 

0,5853 

24,6% 
18,9% 

0,13000 
0,019 50 
0,11050 

0,073 35 

371,5-10' 

16,7° 
27,7° 30,2° 

6,1-10" 

23.8° 

1,7-10" 1,8-10 -5 

6,4-10 

11,5-10"5 

.7 

0,5271 

28,6% 
28,6% 

27,9C 

6,6-10 -7 

s 
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[Footnotes to Part Two] 

31 The percentage reaction of the last stage at the blade, means 
diameter is given    In parentheses. 

32 It Is also frequently known as the Helmholtz or Kelvln-Helra- 
holtz formula. 

33 Here It  is tacitly assumed that the steam, which 
tucrounds the droplets, possesses the temperature 

T .  This  condition is automatically satisfied in cases in 
which the steam can be regarded as a continuum,  since a 
thermal boundary layer (see Pig.  2) whose interior zone actu- 
ally does have the temperature T , forms around the droplets. 
With long free paths in the steam, however,  "colder" steam 
molecules  can also reach the droplets, which is contrary to 
our assumption. Nevertheless,   it follows from the investiga- 
tions of Stodola ([3],  page S62) that Eq.   (10)  is also valid 
in close approximation in this case. 

34 If the droplet were moving with a non-negligible velocity 
(U   > 50ra/sec) relative to the steam, then T. would have to 

be replaced by T      . and the quantity ATQO would necessarily 
appear as a third term in Eq.   (13);  compare Section 2.2.  With 
small droplets  (r < 10"fc m),  however,  this effect does not 
become noticeable. 

35 Compare,   for example,   "Hütte." 

36 Properly speaking, this equilibrium distribution of the drop- 
lets never occurs in reality.  Determination of a quasistation- 
ary droplet distribution that corresponds more closely to 
reality was the most difficult point of the theory. 

37 Strictly speaking, the notation ?_   . would be the consistent 
one; for the sake of simplicity, however, we have dropped the 
subscript a. 

38 • Elektronische Rechenmaschine   [Electronic Computer]  of the 
ETH  [ Swiss Federal Institute of Technology]. 

39 More precisely: no new nuclei that subsequently grow and pro- 
duce stable droplets. 
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40 In principle,  nucleation has already begun iiranedlately on 
passage over the saturation line.  At the outset,  however,   it 
is so weak that for all practical purposes,  only a narrow 
region Immectiately before the Wilson point comes  into consid- 
eration as a "nucleation zone." 

41 

42 

43 

44 

45 

46 

47 

48 

49 

A lOJ^ deterioration of n   has approximately the same effect 
as a I* smaller by about 15^.   (According to Diagram IV,  Z^  is 
reduced by half and   *WI»O,M,        which gives the above con- 
clusion on the basis of Eq.   (34).) 

Strictly speaking,  p* is not the same for all streamlines, 
but also depends  on the local rate of expansion.  We shall 
disregard this dependence here — it has only a minor influence 
on the shape of the shocks — but will discuss it explicitly 
in another context  in Section e. 

Since Pig.  8 was detemined for the  ideal case TI    = l,  a 
correction must be introduced when it  is applied to real 
expansions.  For T\    < 1,  somewhat smaller AT*-values prevail 
throughout,    and     a 10% efficiency deterioration amounts,   as 
we have already noted, to about the same thing as though n 
had remained equal to 1 but P* had become smaller by about 
15^ as a result. 

Electronic Computer of the Swiss Federal Institute of Technology. 

It is proven in Section 2.8a that this ascumption is suffi- 
ciently well satisfied. 

Such size dlffarences are not sufficient to produce 
essential changes  in the behavior of the droplets. 

With the subscripts, we assume that we happen to be 
dealing with a stator. 

See footnote   47 

In operational turbines,,  fogging does not take place under 
the same circumstances on all radii,   since the state   history 
is not the same everywhere  (variation of the percentage 
reaction along the buckets).   Consequently,  these extreme 
cases never occur in full purity in practice. 
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Part Three*' 

MOISTURE-LOSSES 

3.1. GENERAL REMARKS 

In making the calculations for a wet-steam turbine, It Is assumed 

at first that even the wet steam represents a homogeneous flow medium, 

as does the superheated steam, and that the water phase and steam 

phase are at all times In thermodynamlc equilibrium. For this "homo- 

geneous Ideal case," the losses In the turbine would be no different 

from those for superheated steam, and the calculation could be carried 

out simply, for example, with reference to a conventional l,s-table. 

The two turbines of Section 2.1 that serve as our example were laid 

out on this basis. 

In reality, however, these assumptions are far from being the 

case. The wet steam results In additional losses stemming from its de- 

viation from the beharior corresponding to hoaogenelty «nd •quilibrium. 

These losses are known as moisture-losses. They are the object of in- 

vestigation in the sections that follow. 

The Baumann rule ([3], page 501), which brings the efficiency de- 

terioration of the wet-steam part of a turbine globally into a simple 

proportional relationship to the theoretical terminal wetness y^g, has 

taken root among engineers as a basis for calculating wetness losses: 

50 Here,  cu    is the proportionality factor introduced by Baumann,    T^ is 

the internal efficiency of the wet-steam section and TK   .     is the "dry" 
*) superscripts refer to footnotes, listed on pp. 258-259. 
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Internal efficiency,  i.e.,  the efficiency 

In the homogeneous Ideal case. Their defini- 

tions are 

Ah At 

't" TT and ,,«.»'"    " A*. 
(2) 

Fig. 3.1.1.  Expansion 
lines for a wet-steam 
turbine.  Solid lines: 
the "homogeneous Ideal 
case;" broken line: 
actuality 
tlon line 
dry. 

\l] 
Satura- 
exlt; 3) 

respectively;  compare Pig.   1.   Point A de- 

notes the state of the steam at the begin- 

ning of the wet-steam portion.  I.e.,  before 

the stage In which the saturation line Is 

crossed, and point E or E the final state. 

I.e.,  the state at the exit from the  last 

stage.   For a~    we then have 

Ah», - A*       « 

A14r        ya>l 

As will be seen from Fig. 1, the difference (Ahtr - Ah) Is composed of 

two parts: the difference between the static enthalpies and the dif- 

ference between the kinetic energies. The former is equal to Alv t t, 

the sum of all wetness losses, and the latter Is denoted by ÄiAua and 

Investigated In greater detail under Heading 3«6. Thus we havs the 

following relationship between the moisture losses and 0-: 

Bin 
Ahlr 

drop 

(*) 
fwK 

here. Ah. , the total enthalpy 

the homogeneous Ideal case. Is given by 

of the wet-steam section In 

Ahtr " »A 
«A 4 
I      E      » 

(5) 

and can be calculated on the basis of the specifications  (compare Sec- 

tion 2.1).  For our two turbines, we get 
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f«X7,8u/k« ( ^»cUon-type     turbine), 

«OI.I •      ( lB(pul»t-type turbine). 

Opinions are sharply divergent regarding the numerical value of 

a-.  On the basis of observation of numerous operating condensation 

turbines. Baumann indicated at the time an average value of about 1.0. 

Later,   von Freudenreich  [4] found the value  1.18 from experiments made 

on a condensation turbine.  Air-turbine experiments of Platt  [8], where, 

of course, the worlc was done not with natural fogging, but by artifi- 

cial water Injection, gave about 1.4.   In recent years, practice has 

begun to adopt the position that the correct value of a_    is consider- 

ably smaller than unity - probably O.bout 0.5 to 0.7 - and that the 

high values hazarded earlier can be attributed only to the unfavorable 

hydromechanleal configuration of the low-presaure stages.  These views 

are supported by experimental results  [12],   [13],  in which considerable 

Improvement of the low-pressure stages was managed by exclusively hy- 

dromechanlcal measures.  Accordingly, the losses that must actually be 

attributed to the peculiarities of the wet steam would be considerably 

smaller than had been assumed earlier. 

A local loss dq,  occurring somewhere in the course of expansion, 

will obviously be partially recovered as expansion continues.  Ttie re- 

maining loss,  i.e., that which ultimately manifests Itself in the de- 

terloratlon of the over-all expansion, will be obtained (compare  [20], 

page 19) by multiplying the local loss by a factor [1 - (1 - Tj^/T) X 

x T|    hint^ f*lint; ^ behind].   Here, T is the temperature at the point 

where the loss arises, TK = T (pK) is the temperature in the condenser 

and TJ    hint i8 the isentroPlc efficiency of that part of the expansion 

behind the point of origin of the loss.   In the calculations to follow, 

it will always be the loss in a definite stage (Aq)  that will occur as 

a local loss, so that the actual work loss due to it can be calculated 
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from 

A«. ^•[»-(i-^-V^j (7) 

(Tg Is the temperature at the end of the stage  in question).  We modify 

Eq.   (7) somewhat further and, for the sake of simplicity,  substitute 

the prespeclfled Internal efficiency TK   .     for n    hlnt* by which we 

Incur no appreciable error.  Thus we obtain 

^-^[^♦a-n^Hi-^J (8) 

Since both Tjj/Tg and T). .  are close to unity, the second term in the 

brackets la always much smaller than the first. 

The Individual stage losses Aq can be computed on the basis of 

Sections 3-2 to 3-5'  Then Eq. (4) must be used to calculate Alv, the 

reduced stage loss, and the sum of these Alv plus the undercooling 

loss ^untk2611 [stutzen = exhaust-pipe; Untk = undercooling] (compare 

Section 3.4) gives the unknown rise In the static exit enthalpy: 

Al T,tOt -   H Al„ ♦Al 
Stufen 

StuU«a 
Untk (9) 

[Stufen = stages]. 

A proposal made on numerous occasions has been to write a formula 

similar to Eq.   (l) also for the efficiency deterioration of a single 

wet-steam stage.  This would then read somewhat as follows: 

^-vtr(i-«B».«!22r2!) (10) 

where TISU and TI  tr = (IQ - ^/^a 
are the "isentroplc efficiencies 

of the stage at the circumference" and cig st Is the Baumann factor 

applying for the stage. If the over-all wetness loss Aq In the stage 

Is known, we can determine ou „.   from the formula 

A«      I 
«s«.« • 

- 202 - 

(11) 



m^mmmmmmmi 

■  ■    ■ ■ 

™ 
*■ j 

• 

which Is similar to Eq.   (4).   It should be noted here that the ou    „. 

of the  Individual stages may show very great differences. 

For the wetness-loss number ^ defined by Traupel  [20]  (who re- 

ferred to  It as the     "braking-loss number ^B),  we write 

«•VtrrV* (12) 

There are several physical processes that are responsible for 
i 

moisture losses.  Under subsequent headings, we shall discuss their 

contribution to the total wetness loss in a stage  (Aq)  Individually. 

Here we shall everywhere satisfy ourselves with approximation formulas, 

since the accuracy to be expected from the data calculated on the 
i 

j basis of Section 2.9 and used as c point of departure for the loss de- 

termination will not be any too high to begin with. In the last sec- 

tion, we shall determine the losses for the examples calculated under 

Heading 2.9b and obtain the theoretical values for a^ for both tur- 

bine types from them. 

3.2. BRAKING-LOSSES 

The heterogeneous nature of the wet steam, noted at the outset of 

the previous Section, is manifested, for one thing, in the fact that 

it's various components (steam, various sizes of droplets, fllM of 
■ 

water, etc.) have differing velocities. Further, all of these velocl- 
I 

ties deviate from the common velocity that they would all share in the 

homogeneous ideal case. 

We shall use the term "braking-losses"      to designate those 

losses that can be stated on the basis of the actual velocity condi- 

tions as compared to the homogeneous ideal case, by purely kinematic 

means. For a long time. It was thought possible to account for the 

entire wetness loss in this manner (v. Freudenreich [4]), and it was, 

of course, always assumed that all of the moisture was present in the 
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form of large drops Incapable of following the motion of the steam and 

therefore Impinging upon the   blades    In each    casoad«     ring.  In the 

light of Part Two of this work and of Section 2.9 in particular,  this 

assumption is untenable.  Only a small part of the entire water content 

devolves upon such destructive drops,  so that only a relatively minor 

significance is to be ascribed to the braking-losses. 

It would be possible to conduct an exact determination of the 

braking -losses in a stage by determining the velocity triangles for 

each  fam the moisture appears in, determining from these  (knowing 

the respective masses)  the work that they yield in the rotor, and sum- 

ming over the results.  The difference from the work yield of the homo- 

geneous ideal case would then give the      braking-loss In itself, 

this method would be the exact one;  it is,  however, highly circumstan- 

tial,  since the actual velocity vectors would have to be determined 

individually for each single phenomenal form and also for the steam. 

It will be found that a good approximation for the   braking-losses 

can be arrived at very simply. For this purpose, we carry the follow- 

ing reasoning through which is based on        Zerkovitz [5]. 

Fig. 3.2.1.  Velocity triangles of a stage a)   in the homogeneous  ideal 
case and b) for its physical approximation by steam and fog droplets 
(Light   lines represent the homogeneous ideal case tsolid lines: steam; 
dashed lines: fog droplets). 
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In the homogeneous Ideal case, the steam and water have practi- 

cally equal velocities. The velocity triangles of a stage are drawn in 

Fig. la. This case is approximated very closely in actuality when the 

water is distributed in the form of fine fog droplets (Pig. lb), since 

then the droplet velocities (subscript n) will deviate only slightly 

from the steam velocities (subscript d). 

As the antithesis to the hypothetical homogeneous ideal case, we 

may define a likewise hypothetical "heterogeneous ideal case," which 

would be characterized by the water phase always having the absolute 

velocity zero, or, in other words, the heat drop in each ring being 

used exclusively to elevate the kinetic energy of the staam phase. 

Here it is assumed that no additional losses arise and again that 

thermodynamic equilibrium is maintained. Then, however, the heat drop 

remains the same everywhere and, roughly speaking, the steam will flow 

faster by a factor l//x.  (see Pig. 2a). Such a case might be brought to 

reality in a turbine by removing the water from the steam and allowing 

it to flow slowly along a wall outside the blading (Pig. 2b). 

If we write the turbine equations for the homogeneous and hetero- 

geneous ideal cases (compare Traupel, [20], page 328) and compare them, 

we see that the works I* and L done in the rotors in the two cases 

differ only by the amount 

L   -1° 
: a 

0 

(1) 

which,  due to the relationship c, « c/y/x   which is satisfied approxi- 

mately everywhere, becomes almost exactly zero.  Thus we find that no 

hraklng-loL s occur: in the h^teroganeous ideal case. 

If a real case can be arrived at from these two extreme cases 

(for which purpose we imagine that a suitably large part of the 

mass flov: belongs to one extreme case and the rest to 
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Pig.  3.2.2.  Velocity triangles of a stage a)  in the heterogeneous 
Ideal case and b)  for Its physical approximation by steam and slow- 
moving water. (Light   lines represent the homogeneous ideal casej ?olid lines: 

steam; dashed lines: 
^oampi ,   J    h.ft«obitibtt«4t water.) 

W,1 

Fig.  3.2.3«   Illustrating motion of large drops and depositing fog drop- 
lets  in a rotor.   1)  Large drops; 2)  steam; 3) clinging fog droplets. 

other)j,  this composite case will again not develop any       braking- 

loss.   The composlteness condition Is almost satisfied in the cases 

represented In Pigs,   lb and 2b,  so that we may state that because of 

the fog droplets remaining in the steam and because of the water that 

has been taken out of the steam and,  say,  is flowing along the casing 
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wall,  no braking-       loss occurs.  That  is  to  say,  the smaller  (or non- 

existent) work done by the water phase is made good by the Increase  in 

the work done by the steam phase.   (The fact that the thermal contact 

between the two phases  Is never perfect either,  since the water is not 

distributed with infinitesimal fineness, prevents any such sharp  in- 

crease in the work done  by the steam in real cases; however,  this  loss 

Is not governed by the kinematic heterogeneity of the steam and is 

therefore not covered here.  The same applies for the friction losses 

between the drops and the steam.   They are due  to be dealt with only in 

later Sections.) 

Now let us turn to those cases in which such "composing" is not 

possible even in approximation and which,  as a result,   lead to large 

braking-   losses.  Here we are concerned with those water drops  that 

impinge upon the rotor buckets:   in part,  these are fog droplets that 

are flung against the concave sides of the buckets and remain stuck 

there (indices      ),  and in part  they are large drops striking the 

rotor buckets with an oblique relative velocity w ,.   Part of their 

mass may ricochet on impingement  (indices Z®),  while the rest remains 
O 

clinging to the surface of the bucket (Indices      ). The relationships 
O 

are represented graphically in Pig. 3. Here, for the sake of ready 

comprehension, only the large drops torn off the back of the preceding 

stator ("g") have been taken Into account, and those rebounding from 

the stator ring ("gg") have been left out of consideration. For these 

latter drops, we have qualitatively exactly the same considerations as 

for "g," but their velocities are somewhat more axial and higher at 

entry into the rotor. 

All clinging drops have the absolute exit velocity u^, and even 

the rebounding drops leave the rotor - due to their relatively small 

and not particularly oblique relative velocity wzS - at an absolute 
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Fig. 3.2.4. Illustrating calculation of braking-losses:      a) due to 
clinging fog dropietsj b) due to clinging large drops; c) due to the 
rebounding part of the impinging large drops. 1) In actuality (after 
Fig. 3); 2) for comparison: cases without    braking- loss (after 
Figs. 1 and 2). 

velocity c^§ whose circumferential component differs only slightly 

from u2. Now it follows from our earlier statements that there ought 

to be no  braking-   losses only provided that these drops also had 

the exit velocities c g and c 2* respectively, represented in Figs, lb 

and 2b. Since their actual exit velocities always possess circumferen- 

tial components larger than these (compare Fig. 4), a braking 

loss must occur. Due to the monantmn law,      their magnitudes - in 

each case referred to the unit mass of the drops involved - will be 

AI\.,. ■(c
B,ua-

cn,«a,''i • (2) 
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for the clinging fog droplets, 

<«-^-««.^-1 (3) 

for the clinging portion of the large drops, and 

for the rebounding portion of the latter.  The three quantities in 

parentheses are represented in Pigs.  4a, 4b and 4c.  Jince in the cases 

without      braking-       losses, the exit velocity has only a very small 

circumferential component, and the actual exit velocity,  on the other 

hand.  Is either identical to or very close to the circumferential ve- 

locity Ug, we can adopt the approximation (^^-«„^•»feJI^-c^j) 

Ä (cfcua■cg,ua,■, ui * which leads ua to the very simple formula 

^B-<f-
AJ?."5 (5) 

In most practical cases, this gives a value high by about 10 to 20^ 

for the   braking work. 

Since the losses are always referred to the   unit nass   of the en- 

tire flow medium, we must multiply the works AL. by the     Baas   of 

drops concerned in    unit mass    of wet steam. Thus we obtain for the 

braking-   losses caused by clinging fog droplets, per stage per kilo- 

gram of flow medium, 

^Br^.-^-fM^.-'i-lVl (6) 

[Brems = braking]^ and for the braking-      loss due to large 

drops 

Since we again find a velocity triangle about the same as that drawn 

in Fig. 3 for "g, " for the large drops that have already rebounded 

once ("gg") and for the portion of the centrifuged-out water that re- 
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mains in the flow channel ("hjdrln"), the   braking-  losses due to 

(' 3  latter can be calculated in the same way as Acu „  : ^ ^Brems,g 

A*B*»mB.ttmfui'Ui' (8) 

A4BreBiii,li  -ylil,drto",I * ^9) 

The total  braking-   loss in this stage, referred to the mass 

unit of the wet steam, thus becomes 

A<Br«n. " ^Br.«... * A,,Brem..g * AqBrems,« * A,1Bremi,h • ( 10) 

where the individual terms can be calculated from Eqs.   (6)  through (9). 

By way of an example,  let us consider the next-to-last stage of 

the      r«action-type turbine designed in Section 2.1.  Here, according to 

Table 2.2.1, Up = 310 m/sec and the specific masses can be read from 

Tables 2.9.1, 2 and 3* respectively, for the three cases for which the 

calculation was carried through under Heading 2.9.  We obtain for the 

three cases 

TO, 21 * 0, h * 0, M * 0,13 - 0, SO U/kf ("Üb 1")    , 
44 BlWBM 

(0, 21 * 0,11 + 0, M * 0,13 - 0, 50 U/kf ("Ub 1")    , 
O,78.fO,M^0,36*O,5«-a.21    ■      CÖbJ")    , (ll) 
0,.A) 0,1^*0     *0      -1,10   ■      fih»4")    . 

Since,  according to Table SM.l^'the stage  heat drop   in this example, 

without taking the moisture-losses into account,  is 2407.5 - 2320 = 

= 87.5 kj/kg,  the braking-  losses reduce the stage outputs by 0.6^, 

2.5^ and 1.5^ for the respective cases.   If we wished to express the 

braking-     losses in terms of a Baumann factor for the stage,  this 

factor would have the values 0.06, 0.27 and 0.16,  respectively,  on the 

basis of Eq. 3»1(11).  The losses that can be accounted for by the 

braking      effect alone thus remain far below the total moisture-loss 

to be expected on the basis of experience. 

3.3.   ENTRAINMENT-LOSSES 

Entrainment of water drops takes place through the frlctional 

forces operating between the water drops and the steam.  Since the fric- 
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tlonal forces can be produced only by a relative motion between the 

drops and the  steam,  the  steam   keeps dissipating a certain amount 

of work on      the drops,  so that part of the kinetic energy of the   flow 

Is converted Into heat.  These losses are referred to for the sake of 

brevity as  "entralnment-losses." They express the fact that even the 

production of the imperfect (nonhomogeneous)  flow state Involves losses. 

The entralnment-losses can be calculated only by analysis of the 

droplet motions.   It is recommended that the motion of the fog droplets 

and that of the large drops be handled in quite different ways, since 

they exhibit gross differences:   the fog droplets are capable of follow- 

ing the motion of the steam rather closely (compare Section 2.6), 

while the large drops, on the other hand, are quite sluggish and keep 

bumping into the buckets (compare Section 2.8), requiring new accelera- 

tion in each ring. 

a) Entrainment«-Losses on the Fog Droplets — 

Resulting from the velocity field imposed by the blading 

The motion of the steam and the fog droplets through a stage is 

represented in Pig.  la.   It can be described in a particularly simple 

fashion if we select for the purpose a coordinate system that revolves 

fast enough so that the line connecting the entry and exit points of a 

^N> <vA 

1 
Dampf I w AI; 

^K~  

$ 
-T v^ V^ 

M; 

V 

Pig.  3'3.1«  Motion of the steam and the fog droplets in a stage: a) as 
seen by a stationary observer;  b) as seen by an observer revolving at 
an appropriate speed.  1)  Steam;  2)  fog droplets. 
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streamline - i.e.,  points A and B in Fig.   la - becomes parallel to the 

axis for a revolving observer, compare Pig.   lb (for example,   in the 

case of identical geometries on the stator and rotor buckets,   the co- 

ordinate system would have to revolve at half the rpm of the machine). 

The entire investigation to follow presupposes such a coordinate sys- 

tem. 

Figure lb suggests approximating the streamline shape a(^)  of the 

steam in the above coordinate system by a simple sine curve having a 

period 
*<.-**;♦*<: (1) 

whose equation would be written 

(2) tf. JI .i^JLL.^) . 

Here, £ is the axial coordinate (with £ = 0 for the control plane in 

front of the stage), and the amplitude S1/^ corresponds to the reversal 

in the stator, as will be realized at once. 

As a further simplification, we put for the axial velocity of the 

steam 

cQ = constant = c„. a a (3) 

Thus we obtain the following formula for  the tangential component of 

the steam velocity: 

These last two equations fully define our model for the steam flow. 

Let us now investigate the motion of the fog droplets in such a 

flow.  Here again, as under Heading 2.6a,   let us assume for the  sake of 

simplicity that c       .   the axial component of the droplet velocity,  is r, a 
always the same as cQ: 

e      ■ c   ■ P (5) 

Then the axial component of the relative  velocity between the droplets 
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and steam, which is defined by- 

Is Identically zero: 

ür   -   cr-c 

D        -   0 

(6) 

(7) 

Under Heading 2.6a, we have already derived the equation of motion un- 

der these assumptions;  compare Eq,  2,6(8).   If,   for the sake of brevity, 

we simultaneously Introduce At, from Eq.   2.2(35),  It will be 

written 

"r.t (8) 

Since, in contrast to Section 2.6, our first Interest here lies not in 

the absolute motion of the fog droplets, but in the magnitude of the 

relative velocity U , let us pass from c_ . to 

0M • er.t * «t • (9) 

Further,  since d^ = dt/c_,   i may be introduced as an independent varl- 

able and the equation reduced to dlraensionless form with the aid of 

the quantity AiQ: 
a 

d«/At 
.f^]..-^L_fÜLll_!_fM        (lo ) 

The last term is given as a function of £ by Eq.   (4),  so that there Is 

no further obstacle to the determination of (U    ^./cL). 

Let us now seek the purely periodic solution of Eq.  (10),  I.e., 

that droplet motion that would be arrived at In reality after passage 

through a large number of sine-wave periods.  This case could probably 

be approximated closely in a turbine,  since several more or less sim- 

ilar stages occur one after the other and the Initial incidence phe- 

nomena decay quite quickly.   This last assertion Is Justified on the 

one hand by the fact that the deviations from the asymptotic curve are 

small from the very outset  (Indeed, the fog droplet! have the same 
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velocity as the steam when they are born), and,  on the other hand, by 

the fact J:hat the deceleration times for the fog droplets (see Tab3e 

2.2.1) are generally much shorter than the time required to pass 

through a stage. 

Prom a simple sine-wave formula, we find for the purely periodic 

solution of Eq.   (10) 

4* r       If Hi ar\] 
O-. ■ f,•    .■    ■      ■ ■JBini  -  arctg —I   , (11) '•' • V4T' + GJ a^,  [ [Hi     n     * G9j\'       

K     ' 

where we have introduced the abbreviation 

Ma Gp   • 
£.Atbr, em«, a 

(12) 

for the dlmenslonless group characterizing the behavior of the fog 

droplets in such a periodic steam flow. 

As for the liberation of frlctional heat,  the work of friction 

done on a fog droplet during the time dt is WU dt,  where W is the en- 

tralnment force.  The work of friction AI. b done on all fog droplets in 

a kilogram of wet steam during the time required to flow through a 

stage  Is 

AL. rb -   a ]   WUrdt . (13) 

if n is the number of droplets. Using the Newtonian law and Eq.  2.2(33), 

we  can write W = ~m
r.cT = mrUr/^tbrems n; "V ls the rnass of a fog droP- 

let,   i.e., n-ni     = y .   Since,  fiorthermore,  dt = d^/c  , we get 

^TTT— / ü?d»-r7r— eaAlbrtin.,a    ^ Ca Mbr«iDa(B 

AL 
Ala Ma 

(14) 

This formula can be evaluated in first approximation on the basis 

of the simplified flow model given above.  For  the first integral, we 

obtain from Eq.   (11) 
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and the second vanishes by virtue of Eq. (7). Thus we find for the 

work of friction In such a case (In which only tangential variations 

of the velocity are taken Into account): 

"'M ■"' J£% (■%:]< ■ *-fö;k "'v •   (l6) 
The function 

ip " fpWp) 
4ta0 

(17) 

expresses the Influence of fog-droplet Inertia and has been represented 

in Pig.  2.   Its shape Indicates that the work of friction done on the 

fog droplets depends very heavily on the size of the droplets, all 

other conditions the same, and that It has a maximum for a certain 

0,2       4»      1        > »2» tO     M »0     100 

Fig. 3.3-2. The function gp(Gp). 

drop size. The point of Inflection of gp occurs at Gp = 27r, which, 

with the typical value of (A^ • + A4"Q)/cQ = 8« 10' sec corresponds to 

a deceleration time of t^rems n ~  1*3*10 
-4 sec. According to Table 

2.2.1,  this deceleration time corresponds at a pressure of p = 0.12 
-6 

bar to the drop si zu r = 2.5-10 m. The size of the fog droplets 

that actually occur in turbines (cf. Section 2.9) Is thus substantially 
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smaller than this most undesirable drop size. 

If the model used thus far fully defined the flow In a  turbine 

bladlng system, Eq.   (16) would give an exact expression for the en- 
Gltter 

tralnment losses ^QcchlD n t8itter ~ ca^oade    Schlp = entralnment] gov- 

erned by the  cascade flow.   In reality,  however,   the axial velocity of 

the steam is also subject to wide variations;   see,  for example.   Fig. 

2.1.7 or 8.   As a result,  U    „  Is also nonzero.   Since c„(0  is essen- r,a a 

tially periodic in nature, U   will also vary periodically and there- r,a 

fore could be investigated in much the same way as 11   ^  For the  sake r ,u 
of brevity, we shall restrict ourselves  to quick estimation of the 

second integral in Eq.   (14). 

The tangential fluctuations of the steam velocity — compare Eq. 

(4) - had the amplitude Sa'c^/Al., which,  as regards order of magni- 

tude,  is about (0.5 - 0.7)*co  (N.B.   Tables 2.1.1 and 2).   The  fluctua- 

tions in axial velocity are smaller; according to Pigs.   2.1.7 and 8, 

their amplitude is only about  (0.2 ~ 0.3)-c,   i.e., about half that of 

ct.   On the other hand,   c    has twice  the  frequency,  since a full varia- 

tion unfolds in each ring.  The fog droplets are somewhat harder put to 

follow such a fluctuation, and this is manifested in the fact that Gp, 

whose numerator actually contains the period length of the fluctua- 

tions, becomes smaller,  and,  specifically,  half as large as previously. 

— Since Gp » ^TT at all times for practical cases, we see from Eq.   (11) 

that the fluctuation amplitude of the relative velocity is proportional 

to the fluctuation amplitude of the  steam velocity divided by Gp.   In 

the case of axial fluctuations,  these two quantities will be about 

half as large,  so that  the amplitude of U    _ must be approximately the r,a 

same as that of U ,. A consequence of this is that the second in- r, t 

tegral in Eq.   (14)   is of about the same magnitude as the  first. 

Thus the entrainment-losses caused in reality by    cascade flow ef- 
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fects are about twice as large as the figure calculated in Eq.   (16) 

w^.f-H ^'SplCs)'    (l8) 

52) 

•   Gitter    ^^ «A. 

Gp Is calculated from Eq.   (12) and gp can be read from Fig.  2.   It  is 

best  to substitute y ,   for y  . 

Let us again take as an example the next-to-last stage of our 

reaction-type    turbine.   According to Table 2.1.1,   A|Q = 0.180 m,  S'  = 
a 

= 0.064 m; further,  c0 = 220 m/sec (by estimation from Fig.  2.1.7). 
ft 

The water-distribution calculation made under Heading 2.9 gave for the 

variant  "Üb 1" ynl = O.09290 and r , = 1.3« 10"'  m and for the variants 

"Üb 2" and "Üb 3" ynl = 0.07028 and 0.07051 and rnl = 5-8-10~7 m.  From 

Eq.   2.2(35), we find for these drop sizes Atbr        n = 10     and 1.44 x 

x 10~5 sec, respectively, giving for "Üb 1" Gp = 373 and for  "Üb 2" 

and  "Üb 3" Gp = 57.   Prom this  (compare Fig.  2), we calculate gp » 

~ 47T2/373 = 0.106 and gp ~ h-n2/51 = O.69, respectively. Finally, we 

substitute everything into Eq.   (18) and get 

'JA, 
Aq, 

Gitter 
8cMp,n 

f O,25108. ("üb I"), l«w. 

(»üb 2", "ÜbS") 
(19) 

Thus the entrainment-losses due to  cascade flow are of about the same 

magnitude  in this stage as the braking-      losses,   compare Eq.   3.2(11). 

Resulting from turbulence 

Small high-frequency fluctuations due to turbulence are superim- 

posed on the steam-velocity fluctuations caused by cascade effects. 

Here we must keep one thing in view:  if we measure the time variation 

of the velocity fluctuations  in a  turbine with a fast response probe, 

we will indeed obtain a certain amount of information on the turbu- 

lence,  but not the information that is decisive for the entrained 

drops.    Rather, one ought to perform a measurement  in which the probe 

moves with the steam and registers on.'"- the velocity fluctuations ex- 
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perlenced by one and the same steam particle.  Lacking such devices, we 

satisfy ourselves with a plausible assumption that at least allows us 

to obtain some general Idea as to the entrainment losses resulting 

from turbulence. 

We assume that the velocity of a steam particle In a stage passes 

through ten fluctuation periods.  The fluctuations are to affect all 

spatial components, and their amplitudes will be assumed to amount to, 

for example,   1$ of the average axial velocity cQ  In all directions. 

The assumption (" ten fluctuation periods per stage corresponds approx- 
4       -1 Imately to a fluctuation frequency of 10    sec    ,  since with,  for exam- 

ple,  c^ = 150 ra/aec, A4'    + A^"    = 0.15 m,  the time to flow through a ass 
stage Is 0.15/150 = 1«10"^ sec,  so that the duration of a fluctuation 

10 = 10~   sec.  Turbulence measurements on flow machines becomes l'10"v. 

have shown [43] that the frequency of 10    sec"    Is at the upper limit 

of the range In which the fluctuations have appreciable Intensity.  If, 

however, we assume a frequency that tends to be high,  we shall obtain 
53) excessively high loss values,    so that the results obtained from them 

should be viewed as upper limits.  Concerning the choice of the ampli- 

tude.  It should be noted that the high turbulence levels  (10 to 15^) 

measured with stationary probes cannot be transferred to the relative 

motion between drops and steam for the reasons noted above. 

With these assumptions for the turbulent fluctuations of the 

steam velocity, we can calculate the entrainment losses for each one 

of the three fluctuation directions  In basically the same way as was 

done earlier for the tangential fluctuations. The behavior of the fog 

droplets In the turbulence will be characterized by the parameter 

(20) 
(Af  /10) 

a- 1  s  

which Is analogous to Qp. For the over-a 11 entrainment loss due to 
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tiirbulence In a stage we find (after summation for the three direc- 

tions In space) 

^S.n-h.0.012^-»«^     • (21) 

[Schlp = entralnment] where the function gT(GT) is formed entirely by 

the analogy to gp(Gp) and can therefore likewise be read from Pig.  2. 

For our example,   the next-to-last stage of the    reaction-type     tur- 

bine, the data already mentioned and G™ = Gp/lO = 373/10 = 37.3  ("Üb 

1") and 57/10 = 5-7 ("Üb 2" and "Üb 3") can be used to get the follow- 

ing entralnment losses resulting from turbulence: 

,007U/kg CÜb I«) , 

,01«   ■ ("üb a», ■Ubj») . 

{7J/kg-0,( 

16 -     .0,( 
(22) 

The entralnment losses on fog droplets due to turbulence are therefore 

vanlshlngly small compared to those caused by cascade flow.  We shall 

therefore Ignore them completely and compute the total entralnment 

losses on the fog droplets simply as 

^schip.» *Ä«J. " 4y»(-^-] ^«V • (23) 

Gp can be calculated from Eq.  (12) and gp can be read from Pig.  2.  y , 

should be substituted for y . For the stage In which the fog droplets 

form,  the loss Is only a part of the value calculated from Eq.   (23), 

depending on where In the stage the fog forms. 

In our Illustrative stage, we obtain for the over-all entralnment 

losses on fog droplets 

MA« ("Ob 1') 

("Üb 1", "Obi") 

Yet another type of entralnment loss should be noted In connection 

with the fog droplets — that which occurs when the fog droplets sud- 

denly enter a space m which a much lower steam velocity prevails and 
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are decelerated by friction (profile boundary layer,   downstream trough, 

detachment regions).  However,   this would affect only a minor part of 

Ihe fog;-droplet flow,  so that we can probably disregard this loss. 

b) Entralnment-Losses on Large Drops 

Bie acceleration of the large drops by the steam flow,  such as 

occurs after each tearing-away or rebounding event,   costs friction 

losses whose magnitude can be calculated very simply after Traupel 

[20].  For a steam flow of constant velocity c,, he demonstrates that 

the work loss occurring in acceleration of a drop is  independent of 

the type of resistance law to which the drop is subject and is a func- 

tion only of the final velocity cr reached by the drop.  The loss re- 

ferred to the mass of the accelerated drop is 

^r   •   cdcr- (25) 

In a stage, such dropiL would Include the drops torn away from the 

trailing edges of the stator blades {7Rl),  the drops rebounding from 

both rows of buckets (yggl and Vg^' and the part of the w^61, cen- 

trifuged out that remains in the blading space  (yhl drln and yh2  ,   .   ). 

For the decisive steam velocity cd, we can set c, = 0.8 c, for the 

torn-away drops ("g"), as was also done under Heading 2.6. The rebound- 

ing drops ("gg") generally Incorporate a smaller total amount of water 

than the torn-off drops.  They are also smaller than the latter and 

travel longer distances  in the  steam, since, after all,  they enter the 

flow quite far upstream,  in the  vicinity of the entry edges of the 

buckets  (see Fig.  2.8.6).  For this reason,  their ultimate velocity, 

that with which they strike the next row of buckets,  will certainly be 

considerably higher than that of the drops torn off the trailing edges. 

For them, we shall satisfy ourselves with a rough estimate of the los- 

ses.  Let us assume that the steam velocity has remained the same dur- 
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Ing the entire acceleration as It Is at the exit from the bladlng 

screen  (I.e.,   c-,  and Wp, respectively), and that the drops have reached 

half of this velocity - assumptions that should not be too far off.  We 

shall treat the mass proportion "h"  In much the same way as  "gg. " 

On the basis of Eq.   (25),  therefore, we may write for the entraln- 

ment losses resulting from the acceleration of the various large drops 

In the stage,  referred to the mass unit of the wet steam. 

c? c? 
A,>Schlp,gr-V0'aClC

({-f
,*(yggi*yhl.<«rln>0'757   * 

TV2^h2.drln>0'757 (26) 

The only quantity not known here  is c ,  the velocity of the large 

drops torn off the trailing edges when they strike the stator buckets. 

If, however, we know the drop size r    (compare, for example.  Section 
6 

2.9) and the path that these drops traverse from the trailing edge to 

Impingement on the next row of rotor buckets, it can be determined in 

a simple fashion by reference to Fig.   2.8.3. 

Let us again use the next-to-last stage of our reaction-typ« tur- 

bine as an example; here, c-, = 361 m/sec and Wp = 358 m/sec. According 

to Table 2.9.1,  r , = 6.0.10"5 m,  for which we get    tbre = 7.6 x 

x lO"^ sec,  so that the curve parameter in Fig. 2.8.3 becomes 

^urAtbrems^ = 0 = iO-ö-Söl-T.ö.lO'3 = l.l m. The total path comes to 

about 4 cm (to be taken from the bladlng drawing ),  so that we read 

cg = 0.16 c1              ,. ..,       _g 

2.8.3.  With the specific mass allcün^nts calculated in Section 2.9, we 

0.l6*36l = 58 m/sec for the final velocity c^ from Fig. 

specific 1 

then obtain from Eq.   (26) 

A,ScMp.er 

0,02 ♦ 0,09 ♦ 0, 26 ' 0, 37 W/k« filr 'Üb !•, 
0,08*0,-47 ♦ 1,12 • I, «7 " • "Üb 2'. 
0,08*0      *0       -0,08   "       •   "Üb 3". 

(27) 

These large differences are due to the fact that the quantity of 
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coarse-form water present In the flow canal  is  quite different for 

each of the three cases.   In general,   ttie entrainment losses on the 

large drops are comparable to those on the fog droplets;  compare Eq. 

(24). 

In summary, we obtain for all entrainment losses in the stage 

A,»Schlp   -    A,,Schlp,n *  ^Schlp.gr    • (28) 

where the first term can be calculated from Eq.   (23)  and the second 

from Eq.   (26). 

For our example,   the next-to-last stage of the    reaction-type     tur- 

bine, we find the numerical values 

Aq Schlp 

i 0,25+ 0,37 • 0,82 WAg für-Ubl" 
1,25* 1,6T - 2,92   •       "   -(Jb 2« (29) 
1,25*0,08 - 1,33    ■       ■   "Üb 3*    , 

which correspond to about 0.8 to 3.6^ of the stage  heat drop  (calculated 

without wetness losses)  and are somewhat larger than the       braking- 

losses calculated in Section 3.2. 

3.4.   THERMODYNAMIC LOSSES 

Thermodynamic losses arise in the course of heat exchange proc- 

esse3 between the two phases,  since these are not exactly at the same 

temperature.  Internal heat exchange is an inevitable concomitant phe- 

nomenon to any condensation process unless the heat of evaporation be- 

ing liberated is somehow withdrawn at once to the outside. 

No loss occurs  if either the state change occurs at thermodynamic 

equilibrium (no temperature  jump between steam phase and water phase) 

or if,   in spite of   supercooling       no condensation takes place ("perfect 

supercooling"    ). 

The magnitude of the loss can be obtained from the following 

reasoning.  Let a quantity of steam dm condense on the surfaces of drops 

having a temperature Tr,   so that the heat of evaporation L'dm liberated 

in the process is transferred to the surrounding steam, whose tempera- 
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ture T, Is  lower than T .  This   Is an Irreversible process;  It could be 

made reversible by allowing a Carnot machine to work between the tem- 

peratures T    and T, and produce a work L'dm'Cl - Td/T ).   This work 

gives  the  loss that occurs during the actual process.   If we refer its 

magnitude  to 1 kg of wet steam,   then dm is to be replaced by dy and 

the resultant dcj will be 

(1) 

Pig.  S-^.l»   Purely thermodynamic  loss in spontaneous  condensation of 
steam as a function of     peak      undercooling for various pressures, 
für = for. 

With the thermodynamic losses in the course of an expansion,  it 

is convenient to treat those losses that arise on the sudden collapse of 

supercooling     (fogging) separately from those that occur during subse- 

quent condensation on fog droplets as a result of continuing    super- 

cooling.  Strictly speaking,  there Is no physical difference between 

the two, but the thermodynamic loss that takes place during a sudden 

condensation is always connected with an aerodynamically governed pos- 

itive or negative additional loss, which increases or decreases it fur- 

ther.   (The purely thermodynamic loss would take place at the Mach num- 
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ber zero.) The resultant loss in the condensation shock has already 

been calculated under Heading 2.5 and represented in Pig. 2.5.11. We 

shall use this consistently as our source for its value in loss calcu- 

lations; thus we set 

[nach = after; vor = before] and consistently burden that stage with 

it in which (or in the axial intermediate space immediately following 

which) the Wilson point lies. - For Aqs  t, we may always insert the 

loss read from Fig. 2.5.11 for the Mach number M   = 0, except in the 

case in which the Wilson point is reached at a point at which the flow 

through closely spaced buckets is bounded rigidly on both sides and a 

rather high Mach number (> 0.6) prevails simultaneously. Since the 

reading from Fig. 2.5.11 is not accurate enough, the loss values aris- 

ing at Mv,or = 0 are plotted in Fig. 1 for various pressures as func- 

tions of the undercooling at the Wilson point (AT*). (Strictly speak- 

ing, it would be more correct to write AT   instead of AT*, and to 

denote the curve parameter by Vvor  Instead of p*, but we incur no 

major error with this simplification In the cases that occur in prac- 

tice. ) In those cases in which the influence of Mach number cannot be 

disregarded., it is advantageous first to read the total loss for 

MyQj, = 0 from Pig. 1 and then use Fig. 2.5.11 simply for correction. 

On the other hand, those losses that occur due to continuing un- 

dercooling are determined on the basis of Eq. (1). We determine their 

extent In a stage by integrating Eq. (1) for the stage: 

<a 

A* Onlk • L = 1 4^ (3) 

Since  the capillary effect is no longer an appreciable factor for 

grown-up fog droplets, we have T„ - T, = T   - T, = AT; moreover, T   = r Q s Q r 
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= T    varies only slightly and can be taken out of the Integrand as TL s s 
("average saturation temperature In the stage").  Then we get 

If the curves of AT(^)  and y(|0) are known for the stage in question — a a 
as they have been plotted for the examples calculated in Figs.  2.9.4, 

etc.  - then Aqy ,.   can,   in principle,  be determined Immediately from 

Eq.   (4) by graphical integration. However,  the curve of y(*L)  that we 

have at our disposal is highly inaccurate,  since  the calculation by 

Section 2.9 gives the values of ^ only for the axial intermediate 

space.  A curve of dy/d^_ obtained from this y(£Q) would become the 
3. Si 

more Inaccurate. It is therefore indicated that Formula (4) should be 

replaced at the outset by an approximation, which then also becomes 

much simpler to calculate. We set 

L 
fT 

and thus shift all uncertainties into the determination of suitable 

^üntk "   "T fal * "«»J AT« * &1 - *l> ATi ] (5) 

values for the decisive   supercooling    AT.   Since dy/d|Q is approximately 
in 3 

proportional to dy/dt and the latter is,   in turn,  about proportional 

to AT (heat-transfer law.'),  we obtain the following approximation for 

AT  : m 

AT. 
4T 

(6) 

where AT and AT are defined by 

i  ^ 
 — f AT"«!^ (»-I,») AT" ■ — f AT"« (a-i.a)     (7) 

and can easily be determined,  at least in approximation,  from the 

AT(^a)   curve available  in graphic form on the basis of Section 2.9.   If 
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AT has a wave-form variation in a ring,  the formula 

(AT        - AT      )J 

AT     - AT +   - !5aJL   "Vin' 
8 AT (8) 

gives a very good approximate value for the unknown AT .  AT        and m        max 
AT ^ denote the extreme values that occur in the ring.   (The formula 

would apply rigorously if  the AT curve had the  form of a sine wave 

elevated by AT.) 

An additional thermodynamic  loss  takes place in the exhaust-mani- 

fold,     since  the steam is  frequently still considerably   supercooled     at 

the exit from the last stage.  The magnitude of the loss is unaffected 

by whether the   supercooling     is made to vanish solely by condensation 

on fog droplets already present or whether yet another fresh nucleation 

occurs, as may be the case with large   suF«rcoolings     at the exit.   The 

specific quantity of the   supercooled     steam is   (1 - y^),  so that the 
54) loss  can be calculated       from 

E' 

A^«.(i-yE)^8po«t (9) 

with ^qgDOn4- determined from Pig.   1.  Here we must set p* = pK and 

AT* = ATg.   (ATE is the supercooling      at  the exit from the last stage.) 

Since nothing more can be recovered from this  loss in low-pressure 

turbines anyway,  it has been denoted by Ai and not by Aq. 

As a numerical example,  let us consider a rather long expansion. 

In which the  specific water     content   y A - y„   *,„ = 0.10  [anfg = inl- end      •'anfg 
tial]  is deposited on the  fog droplets,    while      the supercooling      al- 

ways remains constant in the process.   (For example,   let AT = 1°,  5° 

and 200C, respectively.)  Thus (since ATT = AT    and AT = AT)  AT   = AT 

and,  with L = 2.3*103 kj/kg and T   = 3500K,  this gives the following 

loss: 
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A<,UnOc = ^ 0' * •   1  = 0'66 WA«   ,ür &T ' l0c • 

Hjntk-ir0'1* 5"3'3 "    " AT-50c' 
2300, 

^Vn**^0'1-*   -".2    " "  AT • arc 

(10) 

The  Isentropic   heat drop In this expansion Is about 330 kj/kg,  so that 

the losses correspond to an efficiency deterioration of about 0.2$,  1$ 

or 4$. 

As a  different example,   let us take the next-to-last stage of the 

reaction-type   turbine  specified  In Section 2.1.   At p = 0.11 bar,  we 

have L = 2.39-103 kj/kg, f0 = 480c = 3210K, and we get the following 
a 

amounts of condensation for the three variants under  Investigation 

(compare Tables 2.9.1 to 3)  from the calculation carried through in 

Section 2.9: 

for "ü>>!"•• yi - To " 0.01308 and Ja-yl* o.oios: Wk«, 
" "übJ":      •      -0,01190       ■      "       -0.00680   ■      , 
"  "Üb3":       "       -0,01190        ■       «       -0,00890   • 

On the basis of the graphical   supercooling     variation  (Pigs.  2.9.4 to 

6), we get 

f or-üb l": AT^ -   2.2CC, AT^-   I.80C# 
• -06 2": *T'm " H20C, ATi-16,l0C. 
• "Üb 3«: AT«    - 14,10C , AT"   - 18,00C , 

so that the following supercooling     losses result from Eq.   (5): 

(11) AQ, Untk 

0,21 4 0,22-0,43 UAf 
1,25 f 1,06-2,21     ■ 
1,24^1.06-2,30     • 

("üb I"), 
("üb 2"), 
("Üb 2"). 

Thus the   supercooling     losses in a stage are of approximately the same 

order of magnitude as the       braking-       or entrainraent-losses. 
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3.5. OTHER MOISTURE-LOSSES IN A STAGE 

In addition to the three main types of moisture loss treated in 

Sections S^2 to 3.^ there are still numerous less consequential 

sources of loss, which we should now like to Investigate one after the 

other. In our search for further losses, we must always be on guard 

against "discovering" something that has already been taken into ac- 

count once in some other manner. 

Centrifugation losses on the rotor buckets: The water that remains 

clinging to the rotor buckets is centrifuged out, i.e., it flows radi- 

ally outward on the surfaces of the buckets and then sprays off the 

tip of the bucket (or from the shroud). During their displacement 

toward the blade tips, the water particles acquire increasingly high 

circumferential velocities, i.e., the rotor must expend a pumping work 

on them. This work qualifies as a loss, since the kinetic energy of the 

water being sprayed off Is all converted back into heat on impingement 

on the housing wall, etc. If we again refer everything to the unit 

mass of the wet steam flowing through the turbine, then the amount of 

water that has clung to the rotor buckets will be given by y"f and, 

according to the Euler moment equation the loss will be 

*%, - »f «"ispuw"-J • (1) 

[Zfg = centrifugation;  Spitze = tip].  Here  the use of Up corresponds 

to the concept in which all of the water at the     pitch circle gets 

onto the buckets.  This  is a plausible assumption; more than that,   it 

is the only tolerable  assumption,   since,   after all,   the        braking- 

lossss were calculated in Section 2.2 under the assumption that  the 

water clinging to the rotor is endowed with the circumferential veloc- 

ity u2. 

In the next-to-laat stage of our   reaction-type     turbine,  u2 = 310 

m/sec,  u2 Spltze = 384 m/sec and y"f = 21.5.10'4 ("Üb 1"),  81.0-10"4 
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("Üb 2") and 134.8-lO"21 ("Üb 3"),  respectively.  From this we obtain 

(2) Aq Zf( 

111 J/kg - 0,11 U/k«  ("Ob I") , 

^ 430 ■  - 0,42 •    ("Ob 8") , 

•96 ■  - 0,70 ■    ("üb S»), 

which represents less than about one-tenth of the sum of the three 

main loss sources; cf. Eqs. 3.2(11), 3-3(29) and 3.4(11). 

Centrlfugatlon losses on fog droplets: If c  , the circumferen- 

tial component of the absolute fog-droplet velocity is different from 

zero, a centrifugal force Z is exerted on each individual droplet and 

displaces it radially outward. Its magnitude in the line of bucket cen- 

ters (diameter Dm) is given by Z^ = Sine „/D . If Z„ remains constant, m tfrrn,um    r 

we arrive at a radially outward-directed, constant relative droplet 

velocity Ur with respect to the steam that is Just large enough so 

that the frictlonal resistance W exactly offsets the centrifugal force 

Zr. Since W = "^U /At^- _   (compare Section 2.2), the formula 

u -a 
Harem«, n * (3) 

follows  from the condition W --= Z    for the relative  velocity.  With the 
2 2 

estimate c
n u ~ uii  we shall certainly be above the average value of 

2 
cn u in a stage.  Thus,  for example, we obtain for the next-to-last 

stage of the    reaction-type     turbine 

T 1,900 orem», 
J 0,19 m/i ••c (»üb 1"), 

»ec ("Üb 2", »üb 8«), 
(4) 

[brems = deceleration], (The deceleration times have already been cal- 

culated for the example of Eq. 3.3(19).) The velocity with which the 

fog droplets travel radially outward is thus very low. This is tht 

reason why fog droplets are not simply centrifüged out.  In fact, A^ , 

the radial displacement of the drops relative to the steam within this 

stage Is (since the resiaence time   in the stage according to Table 

2.1.1 is approximately t2 - t0 = (45.6 - 37.4).10'
i+ = 8.2-10^  sec) only 
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("Übl"), 

(•Üb 8", "Üb 3"), (5) 

I.e.,  at most a millimeter.1  The frlctlonal loss is equal to the work 

done by the friction forces on all n fog droplets in the mass unit of 

the wet steam,  or 
2, 3uf f 1.4 J/te ("Üb IM 

"r D»I     ^     I'.«   "     ("ÜbJ-, -übS-).        (b ) 

Compared with the other losses,  these  losses are vanishingly small,  so 

that we shall disregard them altogether. 

Frictional  losses in the flowing water films:  The layers or veins 

of water are kept  in motion by friction against the steam and (on rotor 

buckets) by the  field of centrifugal forces.   The  Internal friction 

losses that arise  in a water layer driven by steam friction do not 

constitute an additional loss,  since  the losses in the steam boundary 

layer may be considered correspondingly reduced.   (That is  to say,  the 

steam flow is bounded not by a  stationary wall but by a moving surface.) 

On the other hand,  not even the frictional losses that arise when the 

water layer is driven by centrifugal force may be regarded as addi- 

tional losses,   since they actually represent part of the pumping work 

necessary for centrifugation,  and the  latter has already been regarded 

lii toto as a loss.   (The remainder of the pumping work is expended to 

overcome an - insignificant - radial pressure gradient and,   first and 

foremost,   to raise the kinetic energy of the water.   In the absolute 

system,  the circumferential components of the water's velocity at the 

ends of the buckets must be Up  qDltzej   ^ut the magnitude  of  the radial 

component  is free and can adjust itself to conform to the friction. ) 

Inc. jase in steam friction on the buckets:  An increase  in the pro- 

file losses as a  direct result of Increased surface roughness of the 

buckets will hardly be a matter for consideration, at least  in a tur- 
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bine where the erosion remains  tolerable,   since roughening of the 

buckets always remains  restricted to narrow strips.  The appearance of 

unevenness  in excess  of  the fabrication roughness of  the bucket  sur- 

faces as a result of waviness on the  surface  of the water films   Is  ex- 

cluded at  the outset,   since  the water veils are very thin  {~10~') m).' 

The boundary layer on the suction side   (back side)  of the bucket 

profile is normally laminar in  the first half  (compare Fig.   2.4.4 and 

[20],  page 277),   and becomes turbulent only toward the middle.   But now 

the  erosion roughening  of the  leading-edge  zone may be capable  Ir. some 

cases of effecting this  transition of the boundary layer prematurely, 

and  thus raise  the profile  losses directly.   (The conclusion that  the 

roughening common in wet-steam turbines  is  sufficient  to produce   this 

transition,  even when  it  is only minor in extent,     is based on        [44].) 

The  transition to the  turbulent  is probably favored by the disturbing 

effect implicit in heavy bombardment of the  leading edges by the  large 

drops.   On stator blades,   where the clinging water is driven in the  di- 

rection of the steam flow,  sudden boiling of the water film may occur 

at  that point on the profile contour where  the pressure drops sharply 

(compare Fig.  2.4.3),   likewise manifesting as a disturbance of the 

boundary layer and promoting premature laminar-to-turbulent transition. 

For this reason  it  is .'.'•ecommended that the amount by which the profile 

losses increase be regarded as a moisture-loss  in the event that  the 

suction-side boundary layer is also turbulent practically from the out- 

set. 

A rough estimate of these additional losses, but one that will be 

adequate to our purposes,   is possible on the basis of experimental pro- 

file-loss data  (compare   [20], page 287) and the boundary-layer calcu- 

lations made  in Section 2.4b for both variants, making the rather ob- 

vious assumption that the profile losses increase in the same propor- 
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tlon as  the  shear stress  Integrated over the entire profile contour. 

The shear-stress  increase can be  determined with  the aid of the  fric- 

tion coefficient cp defined  in Eq.   2.■4(2),  whose variation is shown  In 

Pig.  2.4.4 for the profile used  there.  By Integration we  find that the 

Integrated shear stress.   I.e.,   the c^ integrated over   the entire  con- 

tour,   increases by about 1656,  even  if the boundary layer  is turbulent 

over its entire length on the back side. 

Since  the profile  losses due  to boundary-layer  friction alone  in 

turbine grids represent about 3  to 4^ losses  (compare   [20], page 287), 

the premature transition  to turbulence is accompanied by an Increase 

in losses by about 0.16(3 to 4^)^ = (0.48 to 0.64)^.   if a great deal 

of coarse-form water is present,   the premature transition takes place 

in both bucket rings, while when the quantity of coarse water is small, 

this occurs only in the rotor.   For this reason, we shall use the for- 

mula 

[GS = boundary layer] for estimation of the losses  in the stage to be 

attributed to the increase in boundary-layer friction;  here,  the 

smaller values of the coefficients would tend to apply for cases in 

which relatively little coarse water strikes the stator blades  (small 

yo-o-)*  an^ the larger values for cases in which y      tends to be rela- sg gg 
tively larger.  For the next-to-last stage of our reaction-type      turbine, 

this means a  loss of 
0,003-87,5 - 0,MkJ/kf ("Üb I"), 

AqQg   -   <   0,006-87,5-0,5     • ("Üb »•), 
[ 0,004-87,5 - 0,3     ■ ("üb 3") , 

(8) 

where It has been taken into account that much coarse-form water is 

present  in  the bladed space only  in case  "Üb 2." 

Capture  losses:  Wherever rapidly moving water particles strike 

walls,  a  loss, similar     to the exit  loss,  arises as a result of the 
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fact tl- at the kinetic energy of these particles is transformed Into 

heat. Naturally, we need regard only the kinetic energy of the fog 

droplets striking buckets as a loss of this type, since the other sim- 

ilar losses have already been taken into account elsewhere (decelera- 

tion losses, centrlfugation loss) or are negligibly small. The amounts 

of water in the fog droplets caught by the two rings per kilogram of 

wet steam are e1  fyno 
and e"n fyni 

s0 that the capture loss is about 

^'Auflg ■ ^-f^nO 
ba0 

•n-f 'al T-i — (9) 

[Auffg = capture].   For example, we obtain for the next-to-last stage 

of the    reaction-type     turbine 

A« 'AuHf 
f 0,06 

I   0.16 

U/k«      CÜbl"), 

(•üb l", "Üb 61. 
(10) 

Summary:  The less important losses  in the stage are grouped to- 

gether under the heading "miscellaneous moisture-losses" ^QQ0na4-: 

A<
>fioMt " A<»ZI» ♦ L\* * A<AulI6 • (11) 

[Sonst = miscellaneous;  Zfg = centrlfugation; GS = boundary layer; 

Auffg = capture].  The individual terras can be calculated from Eqs.  (1), 

(7) and (9), respectively.  For our example,  the next-to-last stage of 

the raactlon-typ«      turbine,  they come to 

M Son«! 

(0,11 * 0,26 * 0,06 -0,43 
0,42 ♦ 0.50 ♦ 0,26 - 1,17 
0,70 ♦ 0,30 ♦ 0,26 - 1,26 

("Üb 1") , 
("Üb 2-), 
("Üb3«), 

(12) 

or about the same as one of the three principal losses. 

3.6.   CHANGE OF THE EXIT LOSS 

The kinetic energy that the steam still possesses after leaving 

the last stage is generally transformed practically to completion into 

heat as a result of  friction    In the homogeneous  ideal case,   this exit 

loss,  referred to a unit mass of the steam,   is cE/2,  where c- denotes 

the (absolute) exit velocity from the last rotor,  i.e.,   is  Identical 
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with the Cg for the last stage as presented In Table 2.1.1 or 2.1.2. 

In real cases,  the exit loss Is something else,  since, as will be 

shown below,  the exit velocity is not the same and since, moreover, 

part of the mass flow is led out of the last stage or diverted even 

earlier with only a lov; velocity. 

Let us now calculate the amount Al.       [Aus = exit] by which the 

real exit loss exceeds the exit loss in the homogeneous ideal case, 

making two simplifying assumptions for the purpose.   First,   let us as- 

sume that the flow direction of the steam is nearly axial,  so that its 

kinetic energy Is practically equal to c/2j  secondly,  let us equate 

the velocity of the fog droplets to that of the steam.  The two errors 

that we shall incur with this cancel one another to some degree.   If we 

take into account further that the part of the mass contained in the 

coarse water forms ("gg,"  "h")  at the end of the  turbine possesses 

practically no axial velocity,  we may write for the  increase in exit 

losses 

Al, «• (1 - v    - » »   .   ** _   *■ 

The subscript E refers  to conditions at the end of the turbine,   i.e., 

at the exit from the last stage.  The quantities embellished with the ' 

refer to the real conditions,  which deviate from those of the homo- 

geneous  ideal case. 

If we write the continuity equation for the exit cross section 

naE,   it will read MvE = ^aEcaE or MvE = ^aEcaE,  so that (necessarily) 

caE/caE = vE/vE and,  consequently, Eq.   (1) will assume the form 

"'Au« j 1-,|-y
W-V.dL (2) 

The only unknown In this formula Is vE/vE, the ratio of the specific 

steam volume In actuality to that In the homogeneous ideal case. The 
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difference between vE and vE stems from two causes.   Firstly,  from the 

fact that the terminal point of the expansion Is different for the two 

cases  (see points E and E In Pig.  3.1'l)* and secondly from the fact 

that thermodynamlc equilibrium does not prevail In the real case 

(ATE J^ 0).   If we denote by v« the specific volume that the steam would 

have at point E  (Fig.  3'1«1) at thermodynamlc equilibrium, we should 

have - since,  after all,  the volume of the water phase can be disre- 

garded — 

The heat of vaporization L Is equal to the enthalpy difference between 

the points corresponding to x   = 1 and x^ = 0,  and Alv t t is the en- 

thalpy difference between points E and E. Accordingly,   (x^ - x^):! = 

= Alv t0+.:L*  and Eq.   (3) reads 

-!2« . w^XJsL . (4) 

The difference between v „ and vE can, for Its part, be calculated from 

the prevailing supercooling ATE with the aid of Eq. 2.3(21): 

^...(i..^.«,. (5) 

If we substitute Eqs. (4) and (5) in Eq. (2), transpose, and drop 

products of two or more small quantities, we finally obtain the formula 

AlA«. £k*--^f''(^l44  (6) 
from which we can calculate the change  in the exit loss.  The material 

quantities can be read from Diagram I (see Appendix), 

If,  for example,  caE = 330 m/sec,   (ygg + yh)E = 0.020 kg/kg, 

Alv tot = 20 kJ/kg, x^ = 0.87 kg/kg,  ATE = 20oC and pE = 0.035 bar, 

we get 
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A4Au. ^-H 5-lO3 [0.020-0,019 ♦0,103)   =   - 5,67 • 103 JA« . 

Ai.       is also negative,  or.   In other words,  part of the moisture  loss 

Aiv ,   .   is regained  through the change  in exit  loss.1  How much   is re- 

gained depends primarily on the magnitude  of ATE,  the supercooling at 

the end of the turbine.   In the example given above,  Ai.      represents 

29^ of Aiv .   .;   if,   however, AT™ had been only 10C, we should have re- 

gained only 1.5^ of the moisture losses. 

3-7.   CALCULATION OP MOISTURE LOSSES AND  INFERENCES 

Under Heading 3-2 to 3^6, we have presented formulas that  indicate 

the magnitudes of moisture losses of various origins.   Now these can be 

used to calculate the total moisture loss  in a stage and,  from this, 

the efficiency deterioration of the entire  turbine.  Under Heading a) 

below, we shall present a brief treatment of the calculating procedure, 

while Section b) will present and discuss  the results for the  examples 

handled under Heading 2.9. 

a)  Summary of the Calculating Procedure 

The total moisture loss in a stage,  Aq,   is composed of 

[      braking- entrainment,   spontaneous,       supercooling    miscellaneous] 

where the individual terms can be calculated from Eqs.  3.2(10),  3.3(28), 

3.4(2), 3-4(5) and 3-5(11), respectively.   The third term has a nonzero 

value only in that stage in which spontaneous fogging occurs.   Apart 

from the design specifications of the turbine  (velocities, material 

quantities, etc.),  calculation of the individual part-losses will nat- 

urally require the data to be determined on the basis of Section 2.9a 

(for example,  quantities of water in the  individual phenomenal forms, 

undercooling,  drop sizes,  etc.).  With the aid of the Aq obtained from 

Eq.   (1), we can then determine the Baumann factor or the moisture-loss 

number of the stage  in question from Eq.   3.1(11)  or (12). 
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We  take the following approach to the determination of the mojg- 

ture  losses in the over-all  turbine.  After we have determined Aq for 

each wet-steam stage, we use Eq.  3.1(8)  to calculate the indlviduax 

My,   i.e.,   that part of the  stage loss that can no longer be recovered 

during the subsequent expansion ("reduced stage-loss").   If we suiu these 

Aiv for all stages and add  to them the Aly^zen  [Stutzen = manifold] 

obtained from Eq.  3.^(9) *  we obtain Aiv t  .  - compare Eq.  3.1(9) -, 

which indicates the increase in static enthalpy due to the moisture 

loss at the exit from the last rotor.  Thereupon,  we can determine the 

(usually negative) change  in the exit loss,  AIAV.«*  from Eq.  3.6(6). 

The sum Alv .   .   + Ai.      signifies the total reduction of the total- 

enthalpy      drop      in the turbine due to the moisture losses,  i.e., 

plainly the over-all moisture loss.   Thereafter, we use Eq. 3.1(^) 

to determine ou , the Baumann factor for the entire turbine, which 

provides an over-all Judgment as to the losses and thus permits com- 

parison with the empirical observations. Thus the loss calculation is 

complete. 

The losses can be calculated rather rapidly once the data obtained 

from Section 2.9 are at hand.   The formulas for the losses are generally 

very simple;  only for the entralnment losses Is a preparatory calcula- 

tion necessary (for determination of gp, which differs for different 

stages and fog-droplet sizes,  and that of c , which has a different 

value  in each stage).  Even If a second fogging takes place, AQQDon*- 

also has a value other than zero in a second stage.  The losses due to 

the second generation of fog droplets ("nn") can be treated with the 

same formulas as those resulting from "n." 

b) Examples 

Tables 3.7.1 to 6 summarize the moisture losses obtained for the 

examples investigated in Section 2.9.  The numerical values have been 
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graphed for the   reaction-type      turbine  In Fig.   1 and for the     Impulse- 

type      turbine In Pig.  2. 

Let us first discuss the     reaction-type turbine.      We remind the 

reader that "Üb 1" represents that extreme case  In which fine fog drop- 

lets form In the entire flow cross section on spontaneous condensation. 

(It was shown In Section 2.9 that this results  in a '    ;11 remanent 

supercooling   on th' one hand and,  on the other,   car.sc'S most of the 

water to remain in the fog-droplet form.) The other two cases "Üb 2" 

and "Üb 3/1 on the other hand, presuppose that the fog droplets are 

coarse and differ from one another only in the quality of the    drain- 

age devices.   (In "Üb 2" no water at all is removed, and even y.   re- 

mains in the flow channel;   in "Üb 3" all wf.ter that has gotten onto 

the buckats is removed.)  In both of these cases,  we established a 

large   remanent        supercooling, and it was found that a relatively 

large amount of water goes over into the large-drop form. 

Let us regard Pig.   1.   Instead of the axial widths of the stages, 

the axis of abscisLas carries the corresponding (IQ - i2),   the stage 

heat drop calculated for the homogeneous ideal case,  since this permits 

a similar but more rational representation of the results,   The mois- 

ture losses have been drawn as areas above these stage gradients,  and 

the contribution of the individual partial losses indicated by shading. 

The height of the loss rectangle has the significance c/Tlau tr» and is 

therefore equal to the moisture-loss number  ^ divided by the isentropic 

efficiency at the circumference for the stage in question without  tak- 

ing moisture losses into account (dry).  For this  latter, we have,   in 

approximation, assumed the value 0.88 in our calculations (Section 2.1). 

As for the extent of the moisture losses, we are struck primarily 

by the fact that they differ very sharply among the three cases.   Never- 

theless,  certain fundamental similarities can be discerned:   in the 
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first stage,   there Is no moisture  loss (since, after all, no water is 

present); approximately equal thermodynamlc losses occur in the second 

stage In all cases (as a result of passage beyond the Wilson point); 

from the third stage or,  the  losses Increase rapidly from stage to 

stage,  an observation to be attributed on the one hand to the Increase 

in    reaanent supercooling and,  on the other,   to the  (almost exponen- 

tial.1}   increase in the amount of coarse-form water. — In the case of 

üb JL. "   ; he     remanent supercooling is much smaller than in "Üb 2" or 

"Üb '," as  is clearly manifested in the magnitude of the stage-S ther- 

modynianlc losses; even the deposition of fog droplets on the   blades 

r- ^Jns within modest limits  in the case of "Üb 1":  this Is why the 

making-        ani entrainment-losses are so small.   On the other hand, 

the relatively small    supercooling    at the exit results  in an insignifi- 

cant saving as regards exit losses. - In case "Üb 3*" the coarse-form 

water is removed from the flow channel   this results  in a  sharp drop in 

the    braking- and entrainmentr losses as compared to case "Üb 2," 

but,  on the other hand,  in an — admittedly small — increase in the 

"miscellaneous losses" as a result of the enhanced centrlfugation.   In 

both cases,  we have much larger thermodynamlc and fluid-<|jna«ic    losses 

from stage 3  on than In case  "Üb 1." 

For the first three cases, we obtain the values 0.31, 0.91 and 

0.57 for the  over-all Baumann factor of the turbine.   In order to ar- 

rive at the actual conditions in turbines ^rom these values, obtained 

as they have been under extreme assumptions, we must first remember 

that in practice, drainage will neither be zero, as was assumed in the 

case "Ub 2," nor as perfect as was supposed for "Üb 3." Reality will 

be more  likely to lie somewhere  in between,  so that we may take in ap- 

proximation ctg^ = (0.91 + 0.57)/2 = 0.74 as a guideline value for the 

extreme case with coarse-drop fog.   Thus we come to the  oonclusion that 
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a-    will have a value between O.31 and 0.74  In our    reaction-type    tur- 

bine, depending on how fine or how coarse the fog droplets generated 

are.  Since the size of the fog droplets may be changed very sharply on 

a change in the   flow history   in the turbine,  we must expect wide scat- 

tering of the wetness  losses for various operational states. 

O    $8 H-m»«,!,   C    '////. mm*. E 

^    5^ fc.««.^«^ HIIII A«*»"« 

Pig.  3.7.1.   Distribution ofmoisture     losses among the stages  in the 
reaction-type  turbine;   loss = area. -•—•   according to Baumann's rule, 

with cu    st = const = 1.0.  A) manifold; B)   stage; c)  thermodynamic;   D) 
braking-, and entrainment;  E) miscellaneous; F) exit.  Üb =   reac- 

tion-type. 

In operational turbines,  the state   history of the steam at the rotor 

is not the same as at the blade tips;  thus the fog formed will not be 
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uniform over the entire flow cross section:   in the vicinity of the rotor, for 

example, it will have coarser droplets, while near the casing the droplets 

will be finer or vice versa, and a continuous transition will occur between the 

two extremes.   Thus, the extreme cases do not appear at all in their pure forms, 

and the range of variation of C(n\/ 

TABLE 3.7.1 

Moisture Losses in Reaction-Type Turbine in Case "Ub 1" 

A Stule 1 2 S 4 5 6 

^Br?«.,.  ^ - 18 60 206 378 

'.  "'Brem«,! 
S 9 34 U2 252    ; 

A'Brems, K 
- 6 17 65 230 

*qBremi,h - 18 39 118 386 
1 

A««Br.m.    "^ 0,01 0,05 0,15 0.50 1,25   i 

^cSp.«     'Af - IS 52 253 k32 

A%cMp,fr 12 40 117 366 967 
1 

^chlp      "^ 0,01 0,06 0.17 0,62 1,60 

'^pä           " 2.46 - - - • 

*ü*k - 0,21 0,30 0,43 0.76 

AqP              JAf - 4 5 22 111 263 

- - - 270 260 260 

^üo. - - 3 12 63 156 

*%fc»t    M^ - 0,00 0,01 0,30 0,43 0,68 

A« 0 2,48 0,33 0,92 ».98 4,29 

"Bm.Rt 0 1,58 0,09 0,15 0,24 0,41 

Aly             UAc 0 2.15 0,29 0.86 1,91 4.29 

EA 'v  J « 9,50kJ/ *€ 

4 .Stutzen 
'Untkg .0,04    " 

A llV,tot • 9,54    " 

A a ■ -1,19   " 

<AIV.tol* A1Au.) •  1,35    • 

1 «'B» • 0,31 

A) Stage; B) braking; C) entrainment; D) spontaneous; E) supercooling; F) centri- 
fugation; G) boundary-layer; H) capture; I) miscellaneous; J) manifold; K) exit. 
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is to scone degree restricted.    If we bear this in mind, we can make the 

following sumnarising statement: on the basis of our calculations, we 

may conclude for the reaction-tyre turbine used as an example that ^rJ^ 

will have a value between 0.^ and 0.65. depending on the operating reglpe. 

TABLE 3.7.2. 
n 

Moiature-Iiosses in the Reaction Type Turbine in Case "üb 2ü 
A stuft 

A,Brem»,g 
A,Brem»,|t 
AqBr*m«,h 

A«B renii Ufa 

A%cChlp..     '^ 
A^Bchlp.fr 

A^chlp       "^ 

A^Bpoot 

^üL 

A«k»G 
H 

»Ac 

M Airfff 

A«%Lt       *"* 

aq 

tu 

i.St 
"A« 

o 

0 

31 

s 

0.04 

3 

17 

0,02 

1,81 

0,42 

0,01 

2,30 

1,46 

1,M 

111 

82 

5 

33 

0,2: 

103 

106 

0.21 

».»2 

33 

250 

14 

0,30 

a.04 

0.56 

1.63 

31S 

206 

75 

155 

0.76 

333 

538 

0,87 

1.76 

U8 

500 

69 

0,69 

4.08 

0,65 

3,79 

779 

513 

358 

563 

2,21 

1250 

1670 

2,92 

2.31 

420 

500 

253 

1.17 

8,61 

1.05 

834 

786 

1106 

1595 

4,32 

2324 

3623 

5.95 

3,02 

581 

500 

394 

1.48 

'.4,77 

1,42 

»4.7* 

Xaty    ,    - so.67 uAi 
..StlltSM ,   .•       , 

ASr,w     - 8,•" 
A'A«. K   " '** 

A) Stage; B) braking: C) eiitrainnsnt; D) spontaneous; E) supercooling; 
F) centrifUgation; G) boundary-layer; H) capture; I) miscellaneous; 
J) manifold; K) exit. 
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Although these numerical values apply only for these particular 

turbines, it Is easy to Judge the consequences that would have resulted 

from a somewhat different turbine design. If, for sample, the turbine 

had effected the sans expansion with a larger number of stages» more 

fog droplets would have been caught on the blades; in the last stages, 

TABLE 3.7.3 n 

Moisture Losses in Reaction-Type Turbine ii^ Case "Ub 3" 
^Strf« 

rents, n    ^ 

''Brems, ( 
a "Brems, jg 
AqBrems,h 

&«B rems UA« 

&,%chlp,»r 

'At 

Hehlp      "^ 

^Bpoot 

*£* 
JAf 

A«%£ UA« 

"Bm.St 
aiy uAs 

31 

s 

0,04 

0,01 

1,81 

0,42 

0.01 

1,45 

l.M 

HI 

oa 

0,17 

103 

ai 

o,ia 

i.3a 

sa 

350 

14 

o.sa 

1,03 

0,58 

1,'4 

31» 

aoc 

0,53 

333 

45 

0.38 

1.76 

105 

300 

•B 

0,5« 

8,33 

o.sa 

s.oo 

783 

514 

».30 

1350 

•1 

1.33 

3.30 

694 

300 

354 

1.35 

6.18 

0.75 

5.05 

845    I 

793 

1,64 

2360 

50 

3.41 

3.04 

1140 

300 

399 

1.64 

8.93 

0,66 

6.93 

laiy 

at' 

at 

StutSM 
UnUE 

V.tot 

km K 
(AIV,tot* A1Au.> 

21,60 UAC 

3.33   " 

83,93   ■ 

-t,49   • 

19.44   " 

*B.        "    0'87 

A) Stage; B) braking: C) entrainmsnt; D) spontaneous: E) supercooling; 
F) centrifugation; G) boundary-layer; H) capture; I) miscellaneous; 
J) manifold; K) exit. 
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therefore, we should have had more water in the coarse phenomenal forms. 

This would have resulted in an increase in the moisture losses, since the 

same quantity of water does more damage when it forms large drops than when 

it remains in fog-droplet form. - As another example, let us conceive of 

an expansion line that does not penetrate as deep into the wet-steam region, 

e.g., by dropping the last stage of our turbine.   The  OL ^ obtained for 

the shortened turbine would certainly be smaller than that of the original tur- 

bine, since the last stage is burdened with a disproportionately large wetness 

loss.   At any rate, G( BM cannot ^ reduced indefinitely in this manner, since 

if the expansion line is made too short, the thermodynamic loss taking place on 

fogging would become a major load for the entire turbine. 

Next in order, let us now take our impulse-type turbine, cf. Tables 4 

to 5 and, first and foremost, Figure 2 (which has the same structure as Figure 1) 

In case "Gl 1" (very fine fog), we have a large thermodynamic loss in 

the first stage, since fogging takes place here (and at a high peak value 

of supercooling, ^ T* = 33°!)55^.   In stages 2 and 3, the losses are relatively 

small, particularly when we remember that a rather large quantity of water 

is already present here.   The increase in the losses from the second to 

the third stoge is to be attributed to the increase in the braking and 

entrdinment losses, as with the reaction-type turbine (increasing mass 

in coarse drops).   - Another spontaneous condensation occurs in the second 

stage in cases "Gl - 2" and "Gl - 3", and is manifested in the form of large 

thermodynamic losses.   Only in the last stage is the thermodynamic loss 

lower, because here the second-generation, fine-droplet fog component 

-244- 



( 

secures a small undercooling.   The braking and entrainment losses are 

about twice as large in case "Gl i." as in "Gl 3", but in both cases they are 

Figure 3.7.2.   Distribution of 
moisture-losses among stages 
in impulse-type turbine (for 
legend see Fig. 3.7.1).   A) 
manifold; B) stage; C) thermo- 
dynamic; D) braking and en- 
trainment; E) miscellaneous; 
F) Exit; Gl = impulse type. 

t « 

^   ■'•M-.SeMtW-IHill    AMthtl F 

considerably larger than in "Gl 1", and rise sharply toward the end of the 

turbine.   The large thermodynamic loss in the second stage is to be held 

responsible for the largest loss occurring in this stage in case "Gl 3." 

Since the supercooling at the exit is very small in all three cases, no 

loss reduction is achieved in the nozzle. 
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For the Baumann factor of the entire turbine, we find the values 0.33, 

0.72, and 0.53, respectively.   Since in practical cases the quality of drainage 

will probably lie about midway between the two extreme cases in an impulse- 

type turbine as well, we can assume the tentative value ^OJJI - 0.72 + 0.53/ 

2 ■= 0.63 for the case with coarse droplet fog.   -  As concerns those cases 

which were not investigated here and represent a transition between the cases 

with extremely fine and extremely coarse fog droplets, it must be noted that 

many of these intermediate cases are likely to be unfavorable in an impulse- 

type turbine, since as soon as the fog droplets have become somewhat larger 

than they are in the fine-drop extreme case, large supercooling peaks arise 

in the nozzle rings, resulting in major thermodynamic losses.   (The fog 

droplets need not become very large at all even to trigger a second spontaneous 

condensation.)   For this reason, we may conclude for the conditions actually to 

be expected in the impulse-type turbine that ^B^I will be between 0.4 and 0.6, 

depending on operating regime^'. 

Thus we find that the moisture-losses in the two turbines used as 

examples are of about the same size.   This statement can probably be applied 

to reaction-type turbines and impulse-type turbines quite in general, since 

in specifying our turbines (Section 2.1), we took pains to bring the differ- 

ences between the two types of design as strongly as possible into evidence. 

Even though no substantial difference has been found between the reac- 

tion-type and impulse-type turbines as regards magnitude of the losses, a 

certain difference between the origins of the losses can nevertheless be 

discerned.   The fluid-dynamic losses (braking, entrainment and "miscellan- 

eous") clearly predominate in the reaction-type turbine, while fluid-dynamic 
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and thermodynamic losses are approximately in balance in the impulse-type 

turbine.   This is on the one hand related to the large number of large 

drops in the reaction-type turbine, which tend to increase the braking and 

entrainment losses, and on the other hand, to the shorter flow time in the 

impulse-type turbine, which requires a greater supercooling for a given 

precipitation of water. 

TABLE 3.7.4.   Moisture Losses in the Impulse-Type Turbine in Case "Gl 1." 

ABti*« 1 8 8 

A,Brem«,| 
A<,Brema,gf 
A,«Br»m..h     " 

8 100 

4 

• 

258 

40 

4 

134 

A*Br.«.     *"* 
0,01 0,11 0,48 

A^BcMp,»r 

10 

s 

189 

10« 

1008 

898 

^chlp       U^ 
0,01 0,88 1,80 

^&.           " l,M - - 

^A      ' 0.00 1,11 1,87 

1  Aq^            JAf 8 

1 

88 

800 

40 

801 

800 

188 

A^oI»t      "^ 0,00 0,88 0.88 

A« 

Aly                       MA« 

8,97 

1,88 

8.8T 

8,08 

0,81 

I,* 

4.88 

0,88 

4.» 

(Al 

A|8tUt(M    , 
A,UiittE 
A»v.u>t    • 

AIAg^     " 

8,89 MAf 

0,00   - 

•.M   " 

40,00   ■ 

8,88   ■ 

«*-   ■ 0.88 

A) Stage- B) Braking; C) Entrainment; D) Spontaneous; E) Supercooling; 
F) Centrifugation; G) Boundary-layer; H) Capture; I) Miscellaneous; J) Manifold; 

K) Exit. 
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TABLE 3-7.5 
Moisture- Losses In    the inqpulse-type 
bine In Case "Gl 2" 

Tur- 

A StuJe 1 2 3 

A^.»...   *** 98 4»4 381 

'BreiM, on - 27 79 

^'Br.«.',     " 
- <9 177 

^Brcms.ft - - 112 

A,»Br.üU.li     " 
- M 770 

A<«Br.B.     "Al 0,10 0,70 1,52 

A-wSap.«   'Ai 140 1028 2470 

^chlp.»      " - 40 390 

A,%chlp.cr 
St 819 2S8S 

A^hlp       "^ o.ii 1.» 8.4» 

A*| 1.« 3,20 

^^            " 0.S8 0.68 1.13 

A«^f            JAf so 188 383 

A\»G - 1000 1000 

A««Ai,            ' IS 244 2SS 

&-%3«    "^ 0.04 I,« 1 82 

A« S.U 7,90 9.72 

**■,•» l.M 0.80 0.52 

Aly               kJAf 1.17 
1 

7,39 9.72 

lAly • 19.24 k}/k> 

AJtutMa -   0.00   " 

A,V.tot - 19,24   " 

AtA«.K - -0.00  • 

Uly .tOl+AtAM> - 19,24   " 

s. -   0.72 

bMüclng C) entrainment;  D) spontaneous; E) 
i pVcentrli'v-gation;  G) boundary-layer; H)  capture;  I) 
>  JJaanifold;    K)  exit. 

super- 
miscel. 

out and hence precipitable water calculated in Section 2.9 (see yh in 

Figs.  2.9.7 and 11) shows that the wetness losses are far from mini- 

mized when the maximum of water can be drained from the turbine.  It is 

though   true that the losses can be reduced by efficient drainage top 

a given fog-droplet size ("Üb 3" versus "Üb 2," "Gl 3" versus "Gl 2"), 
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TABLE 3-7.6 
Moisture- Losses in  the Iipuise-type 
Turbine in Case "Gl 3" 

A»trf« I t i 
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"iBBI.tt 
AJy                       kj/fc» 1.14 
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0.«      i 
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^« - 
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"A- K ■ 
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14.1 

-0.0 
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4 • 

1   * 

i 

•hm 0.» 

A)  Stage; B)        breking C) entrainraent;  D)  spontaneous; E) si 
coolin«; F)  centrifugation;  G) boundary-layer; H)  capture; I) m; 

) manifold; K) exit. 

iper- 
miscel- 

laneousj 

but the decisive point for the losses is the size of the fog droplets. 

To produce the finest possible fog droplets over a broad range of op- 

erational regimes - this is the goal that must be aimed at in designing 

wet-steam turbines. Then   it will be possible to withdraw only a rela- 

tively small amount of water froni the turbine, bui this is only a con- 
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sequence of the fact that only a very small amount of water collects 

on the blades in the first place, going over as a result into the harm- 

ful forms.  If it is possible to produce a uniform fine-droplet fogging, 

it also becomes possible to raise the allowable exit wetness without 

increasing the «rosion danger.  A development of wet-steam turbines in 

this direction would have its prime economic significance if it were 

made possible as a result to dispense with re-heating. 

3.8.  CONCLUDING REMARKS 

a) Design 

Having determined,  on the basis of the provisional design (Sec- 

tion 2.1),  the state curve of the steam (from Section 2.9) and,  from 

Section 3.7,  the extent of the moisture losses in the individual stages, 

we can carry out the final design of a turbine. 

In the provisional designs, we always presuppose the  "homogeneous 

ideal case," i.e.,   that the wet steam behaves in a manner correspond- 

ing to therraodynamic equilibrium,   that its  two phases are inseparable 

and that,  consequently,   the losses are exactly as large as though the 

turbine had superheated steam flowing through it. 

Now this design must be corrected to take moisture losses and su- 

percooling      into account.  Here,  in addition to the other losses, we 

also subtract the appropriate moisture loss Aq from the isentropic    stage 

heat drop;     this changes  the expansion line,   the velocity triangles,  etc. 

The new expansion line will have approximately the form Indicated by 

the broken lines in Fig.  3.1.1.  If we retain the original intermediate 

pressures,  the state points will be shifted in the manner indicated by 

points Q and Q in the intermediate-space control-planes.   In calculating 

the axial flow cross section (i.e.,   the blade lengths),     we must take 

into account that the specific volume (v )  read at point Q from the 

i,s-diagram requires, as a result of   supercooling,     a correction whose 
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magnitude  can be calculated from Eg.   2.3(21). 

The only fundamental difficulty in this correction consists in 

the fact that we do not know in advance what loss and supercooling 

values to use as a basis:   those calculated for fine fogs or for coarse 

fogs.   As  long as the statements of the present work can be supported 

only by purely theoretical considerations, a certain amount of healthy 

mistrust is in order anyway;   for this reason, we shall not wrack our 

brains excessively,  but shall assume values for Aq and AT about midway 

between those of the  investigated extreme cases.   Two essential aspects 

will nevertheless be retained:   that we are,  after all,   considering a 

supercooling,     and that we do not simply assume the moisture losses to 

increase  in proportion to the average wetness in the stages. 

If we had once obtained an experimental confirmation of our the- 

oretical conclusions,  it would immediately be appropriate to devote 

attention to realization of optimum fogging, and then the design would 

also be directed toward this case: that is to say,  smaller wetness 

losses and smaller supercooling        would be used. 

Once this second design of the turbine had been carried through, 

it would, in principle, be possible to perform another iteration, re- 

determining the loss values and the supercooling curve and using them 

as a basis for further correction of the turbine design. However, our 

loss formulas, etc. are too inexact from the outset to make such an 

iteration rational. 

b) Modeling Laws for the Wet-Steam Turbine 

In conclusion,  let us seek an answer to the following question: 

is it possible for wet-steam turbines to draw inferences as to the be- 

havior of the   füll-sise turbine from measurements made on a scaled- 

down model? 

Let us consider a model that has been scaled down by a factor of 
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k from the prototype.  By raising the rpm of the model by the factor k, 

we can achieve velocity triangles  identical to those of the prototype, 

so that the stage heat drop  and (apart from a change in the losses) the 

expansion line also remain unchanged.   For our considerations,, we wish 

to separate those factors that occur in all turbines  (and not only in 

wet-steam turbines) from those that originate only from the properties 

of the wet steam and from the wetness losses, and restrict our train 

of reasoning to the latter. 

First and foremost, we shall expect the model experiments to de- 

liver information on the optimum fluid-dynamic configuration of the 

turbine and on the efficiency that can be achieved with it. 

As regards the configuration of the turbine, we shall be able to 

draw exact conclusions on the basis of the model only provided that 

the flow medium behaves in exactly the same manner in the model as in 

the prototype.  However,  it can by no means be stated a priori that 

this will be the case, since - in spite of the equal   heat drops and 

equal pressures — other throughput volumes may occur simply because 

the   supercooling     curve is not the same in the model. — As for the sec- 

ond question,  that of the efficiency, we must know the differences be- 

tween the moisture losses, which requires,  in addition to the   super- 

cooling,  the distribution of the water among the individual phenomenal 

forms as it occurs in the model. 

Our daydream represents the case in which neither the   supercooling 

curve nor the water distribution differ between the model and the pro- 

totype,  so that exactly corresponding throughput volumes and moisture 

losses will occur everywhere. 

Since both the    supercooling   and the deposition of fog droplets on 

the buckets are determined primarily by the size of the fog droplets, 

the key to solution of the problem lies  in the answer to the question 
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as to how the fog-droplet size behaves In the model as compared to 

that In the prototype.   Naturally,  the fog-droplet size is not the same 

in all operating states,  but depends, as was shown in Section 2.5e,  on 

the position at which the Wilson point is reached. Thus we must formu- 

late the problem as follows: what is the ratio between the fog-droplet 

sizes in the model and the prototype in the case in which the Wilson 

point occurs at positions that are in exact geometric correspondence? 

However,  this question can be answered very simply on the basis 

of Fig. 2.5.14.   Namely,   the pressure at the Wilson point and the cor- 

responding Mach number agree for the model and the prototype (assuming 

Identical operating states); only the expansion rapidity P* is differ- 

ent,  being determined for the model (subscript M) by 

P^- k*« (1) 

since, after all,  the same expansion takes place here in a span of 

time shorter by a factor of k. Prom Pig.  2.5.14 (at constant pressure 

and Mach number), we may read the relationship 

-o.« 
F" wkonrt-(P*) (2) 

* 2 for the range of P* that occurs in turbines  (between about 10    and 3 x 

x 10J sec" ).  We may then write for the average fog-droplet size  In 

the model 

V-.£'.-(£) ■'.-»-•''.• (3) 

This gives us the point of departure for the subsequent investigations. 

Let us first consider the sense in which e    *,, the proportion of 

fog droplets that sticks to the buckets in the given ring,  changes.   It 

is given by Eq.  2.6(18);  here the quantities S/tSchfl and 2R
N/tSchfl 

remain unchanged and,  for the conditions that occur in practice, we 

may always set for gH (and similarly for gN,  too) gH » l/GH = 

- 253 - 

I 

T       .     ■  .»n«,-, ■  •   -  . - ^^ i-Ja—i**immt**mmtm^m*lm 



»Pf^SWfSW T 
. 

= «a^breamV^x- Slnce' according to Eq. 2.2(35), ^rems.n ls P1"0" 

portlonal to rn at small Khudsen numbers (Kh = 1/2v < 0.01) and pro- 

portional to r for large Knudsen numbers (> 5) - see Eq. 2.2(35) and 

Fig.  2.2.1 -, we find 

*5y!..      V* 4V €ii-«,II*-f=*cn-f 
Athr. 
 ua—• Cg.i»!-* -kt, n-P 

I.e., 

«n-f.«! **   '  ^''»e.., (4) 

Here the first coefficient applies for small and the second for large 

Kn.  Since the fog-droplet precipitation always takes place at very low 

pressures In a low-pressure turbine. In a region where the Knudsen num- 

bers are rather large even for coarse fog droplets (in any event 

greater than 0.5), we shall not go too far astray If we figure with 

the exponent zero,  i.e.,  if we take 

Vf.M -Vf (5) 

From this we may conclude for low-pressure turbines that fog-droplet 

precipitation and, consequently,  the distribution of the water among 

the individual phenomenal forms is approximately the same in the model 

as in the prototype. 

Let us first concern ourselves with the extent of the supercooling 

AT.   According to Section 2.6b,   the    supercooling    curve  is obtained from 

the curve of the quantities AT.   and b.  Due to Eqs.   2.6(43) and (46) 

and the above, we get 

AT h.*' 

»» . 

since the quantities c , E , y**, x^, etc. remain practically unaf- 
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fected.  The first coefficients given apply for small Knudsen numbers 

and the last ones for large ones.  With Eqs.   (2) and (3), we obtain 

and 

(S) 

The quantity b has the significance of a length characterizing the 

rapidity with which the fog droplets are in a position to bring about 

thermal equilibrium in the fog.  The ratio b/A^Q, where A?_   is some 
ä et 

length dimension,  e.g.,  the axial width of the stage in question,  is 

of importance for the    supercooling    curve.   We find for it 

(8) 

At those points  in the turbine where the Knudsen number of the fog 

droplets is approximately the same as the mean free path of the steam 

molecules,  the exponent zero^applles for Formulas (6) and (8),  so 

that we shall have ATh M « ATh and (h/A4a)M « ^/^a«   ** w111 ^ real- 

ized on the basis of Eqs.  2.6(45) and (46) that in this case the   super- 

cooling assumes the same values at corresponding points in the model 

and the prototype.   For Knudsen numbers deviating considerably from 

unity (> 3 or < 0.3)* a marked difference arises between the undercool- 

ing curves of the model and the prototype, and not only in the abso- 

lute   supercooling     values, but also in the shape of the curves,   i.e., 

in the ratio of the largest to the smallest supercooling in the indi- 

vidual stages.  However,  these deviations will be substantial only in 

extreme cases,  so that we may regard the formula 

as a guideline also for the extent of the actual   supercooling,     with 
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the exponent zero for Kn = ^/2^n ~ ^ with -0.6 for very small Kh 

(< 0.01) and with +0.2 for large Kn (> 5). 

It should be noted here that the smallest value found to occur 

for Kn in the turbines for which we have made our calculations was 

Kn = 0.16 (in the case of coarse fog droplets and at a point at which 

the pressure is relatively high, p = 0.7 bar);  for this case, we have 

approximately the relationship ATM ~ k    '-"^AT.   As the largest value 

occurring, we found Kn = 25 (in the case of very small fog droplets 
0  2 and at a minimum pressure,  p = 0.035 bar),  for which ATM « k      AT. 

Thus we find that the extent of the  suparcooling . will not differ too 

greatly between the model and the prototype,  even in extreme cases. 

(With k = 3, the     suparcooling  in the model will always be greater than 

2/3 of the value that it would have in the corresponding case in the 

prototype even in the case of coarse fog droplets and high pressure, 

and no more than 5A of that value even in the case of the finest fog 

droplets and lowest pressures.   In a broad region of operating states 

where fog droplets of average size form, we shall have approximately 

equal    supercooling,       i.e.,  we may expect the flow-through behavior to 

be simulated with perfect fidelity.) 

Finally, as regards  the wetness losses  In the model, we may state 

the following.  The      braking- losses remain approximately the same, 

since they depend only on the circumferential velocity and the water 

distribution.  For the entrainment losses on the fog drops, we find (in 

much the  same way as for e    f)  the formula 

A'8chlpfn.ll*<k"0'e'*k0,,)4'>Schlp.B • (10) 

where the same remarks apply for the exponent as  in the case of Eq. 

(9)«   The entrainment losses on the large drops remain roughly the same, 

since the water distribution is practically the same.  Since, as was 
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shown with Eq.   (9),  the factor  In Eq.   (10) never deviates sharply from 

unity and since,  furthermore,  AqochiD n ls usuaJ-1y only half of the 

total entrainment losses,   the entrainment losses will also remain al- 

most equal. 

The      superccoling-losses     are related to the decisive   supercooling 

value,  so that,  due to Eq.   (9)*  we get 

In the turbine model,  therefore,  we shall obtain somewhat smaller su- 

percooling     losses in the cases  in which coarse fog forms and somewhat 

larger losses when the fog has fine droplets.  The loss on spontaneous 

condensation will be a bit larger in the model,  since somewhat higher 

peak   supercooling»     AT* are reached as a result of the higher expan- 

sion rate. The miscellaneous  losses are small and we shall there- 

fore disregard their changes.  The exit-loss recovery depends primarily 

on the   supercooling      so that we may write 

AtA«.*<k"M-k0,,>'AtA«. (12) 

Since Al.       is almost always negative,  its change will work counter to 

the change in the other losses. 

On the basis of this reasoning, we may state that the total mols- 

I ture-looses in corresponding stages differ only very slightly. With 

coarse fog droplets,  i.e.,  in cases where large losses actually occur, 

the model shows losses that are somewhat on the low side,  and, con- 

versely,  the model losses are somewhat high in the case of fine fog 
i 

droplets.  The result of this is that the model only gives somewhat 

narrower scattering of the CL    values than the prototype.  The average 

value of ct~ , however, remains about the same,  since  the moisture los- 

ses are transferable for average-sired fog droplets  (Kn « 1). 

In summary, we can state that modeJ experiments on low-pressure 
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wet-steam turbines are quite feasible, due to a fortunate interplay between 

the factors that affect the behavior of the fog.   The water distribution, the 

volume flow rate, and the moisture losses deviate only slightly from those 

in the prototype.   The agreement between model and prototype is particularly 

good in those cases in which the Knudsen number is approximately unity for 

the fog droplets, especially in the last stages of the turbine. 

No. 

(Footnotes to Part Three) 

50 It is referred to frequently as "Baumann's coefficient" or "braking- 
loss coefficient." 

51 In the specialized literature, they are also frequently known as "direct 
braking—4osses," following Traupel (20), to distinguish them from 
"Indirect braking losses,"   The latter have been termed "entrainment- 
losses" in the present work (Section 3.3). 

52 Due to spacial flow effects, a radial velocity fluctuation also 
occurs in turbine stages.   However, it produces no essential 
rise In the entrainment losses, since its amplitude is small compared 
to its period. 

53 This statement applies for the case G-p > 2, which is always 
satisfied in practical instances. For GT > 10, the loss even 
increases quadratically with increasing frequency. 

54 The influence of Mach number can be disregarded at the outset, 
since here there is generally no longer any fixed boundary on 
the flow. 

55 In the light of experiments - cf. Footnote 14 on p. 28 - 
the value is cited too low. 

56 Here, of course, the basic question arises as to whether the high 
Mach numbers commonly encountered with the stators of impulse- 
type turbines permit the formation of a fine-droplet fog at all. 
That is to say, between M = 0.7 and 1.2, no condensation shock 
is possible, at least in a confined, rectilinear flow (compare 
Section 2.5d), and since the rapid pressure drops are generally 
paired with high Mach numbers, the suspicion arises that conden- 
sation may perhaps not be able to occur at all at really high 
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expansion rates.   Thus the fine tog assumed here would never be 
formed in impulse-type turbines (even in the second fogging), 
and a situation might arise in which fresh, coarse fog droplets 
are formed again and again behind each stator, with the corres- 
pondingly high losses. 

57 This can be shown on the basis of Fig. 2.2.1, 
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POSTSCRIPT 

To conclude,   let us take a critical standpoint with regard to cer- 

tain aspects of the present theory.  The crucial point of our arguments 

has been the size of the fog droplets;  It has been calculated on the 

basis of spontaneous condensation theory. As regards prediction of the 

Wilson point, this theory is well substantiated experimentally, but it 

is not as regards the calculated fog-droplet sizes.   If there were also 

exact experimental confirmation for the latter, we could place a rather 

high degree of confidence in the subsequent conclusions - water dis- 

tribution,  losses, etc. —,  since these are almost without exception 

based on experimentally verified foundations (for example,  the fric- 

tion and heat-transfer conditions on a sphere,  sizes of the slung-off 

drops, etc.)  or in agreement with observations made on operating tur- 

bines (erosion and flow tracks, etc.) 

In reality, however, we have no reliable experimental clue con- 
58 

cernlng the size of the fog droplets.  Although measurements of drop 

size previously carried out by diffraction of light (for example,   [19]) 

have given drop sizes similar to those that we have calculated, this 

measurement technique was not   accurate.  Unfortunately also, the conven- 

tional trapping methods are no longer useful for very small drops 

(< 10"   m).  Until it is possible to find a measurement technique that 

permits sufficiently accurate determination of the fog-droplet size, 

the fog-droplet sizes determined mathematically on the basis of the 

spontaneous condensation process must be followed by a question mark. 

The great unknown in these calculations is the dependence of the 
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surface tension a  on drop radius. Since no Information at all has as 

yet oeen acquired on this subject, there appears to be no other ap- 

proach available than to "calibrate" the nucleatlon theory on the basis 

of nozzle experiments, as was done In Section 2.5b. For lack of more 

suitable measurements, those of Binnle and Woods were used here, al- 

though they are not In full agreement, for example, with the measure- 

ments of Yellot and Holland. (These latter authors determined the spon- 

taneous condensation at somewhat higher theoretical wetnesses, and the 

difference cannot be completely explained away solely on the basis of 

the somewhat higher expansion rate under the latter conditions.) It 

would therefore be urgently necessary to conduct exact nozzle experi- 

ments and devote greater attention to the Influence of expansion rate. 

If strong Influence of the latter on the position of the Wilson 

line were Indicated, one of the most Important conclusions of our the- 

59 ory would be confirmed.   Further,  such measurements would provide a 

basis for recalibration of certain formulas,   i.e.,  it would be pos- 

sible,  for example,   to find a more suitable  surface-tension value. 

Here, under certain circumstances, a marked shift of the Wilson lines 

might occur, but the new a value would affect the size of the fog drop- 

lets only slightly.   We do not,  of course, mean to imply that thi.i 

would constitute any direct proof of the correctness of this fog- 

droplet size. 

For practical purposes,  however,   it is not the fog-droplet size 

Itself that is important, but only its consequences for the turbine; 

these, however,  can be  Investigated directly with an experimental tur- 

bine.   In addition to the absolute magnitude of the moisture loss,   these 

experiments would also be concerned with its variation on displacement 

of the state curve.  The turbine most suitable for  this purpose would 

be one in which the fogging proceeds under uniform conditions through- 
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out the entire flow cross section. 

[Footnotes to Postscript] 

58 Since the publishing of the origiml of this translation, this point has 
been verified experinentally, see Footnote 14, on p. 28 and Reference [47]* 

59 This confirmation has been brought about by the experiments described in 
[47]. 
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Diagram I.  Nass = wet. 
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SUMMARY 

A satisfactory analysis of the phenomena caused In low-pressure 

steam turbines by the presence of wetness and by the nonequlllbrlum 

behavior of w?t steam Is possible only If the arbitrary assumptions on 

droplet size, a common characteristic of most earlier publications on 

this topic,  are replaced by more reliable Information.   In the present 

work an attempt Is made to derive an Initial average droplet size by 

analyzing the nucleatlon process,  and to use this for a theoretical 

analysis of the processes the moisture is involved in while passing 

through the stages of the turbine. 

Concerning the onset of moisture formation,  there is only an ut- 

terly insignificant condensation on the surface of the blades and the 

walls after passing the saturation line. As a matter of fact, super- 

saturation increases rapidly and brings about spontaneous nucleatlon 

of the steam ("Wilson line").  The exact position of the Wilson line 

and particularly the size of the  "fog" droplets produced depend strongly 

on the expansion rate that prevails in the region where the nucleatlon 

takes place.   If the nucleatlon zone is within a blade row where a con- 

siderable expansion takes place,   the average fog-droplet diameter is 

of the order of 2r** = 5-10*8 m = 0.05 ^ (see Pig.  2.5.14); if, how- 

ever, nucleatlon happens to take place in a region where the pressure 

is almost constant, relatively large fog droplets (2r** « 10     m = 1 n) 

are produced.  A fraction of these fog droplets impinges on and is cap- 

tured by the blades in the following stages (other types of coagulation 

turn out to be unimportant),  thus giving rise to water films or brook- 
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lets which flow toward the trailing edge  (on stator blades)  or toward 

the blade tip (on rotor blades) and spray off as relatively large, 

erosive drops.   (Drop sizes of the order of 2r    = 10     m = 100 p..) 

Droplet sizes and the distribution of moisture mass among the 

various droplet classes along the stages of the turbine have been cal- 

culated for several representative examples  (Chapter 2.9).  Depending 

on the initial fog-droplet size, and the number of stages the fog has 

to pass through,  the mass of water transferred to the  "dangerous" 

(erosive) forms amounts to 5^ to 30^ of the total wetness present at 

the end of the turbine.  The rest prevails in the form of a finely dis- 

tributed fog (see y-charts in Pigs.  2.9.4,  etc.). The amount of under- 

cooling necessary to keep condensation going on at the surface of the 

droplets is largely dependent on the fog-droplet size  (see AT-charts 

In Pigs*  2.9.4, etc.). 

The various efficiency losses resulting from the presence of wet- 

ness and from nonequllibrium states of the steam have been calculated. 

One finds, rather independently of the kind of turbine, a worsening of 

the total efficiency of the wet stages by 0.3^ referred to Ifi average 

wetness for extremely small and by 0.7^ for extremely large  Initial 

fog-droplet sizes.  Meanwhile,  the loss in the individual stages  is 

shown to be far from proportional to the average wetness of the stage; 

see Pigs.  3.7.1 and 3.7.2. 

On the basis of these results several conclusions of practical 

interest can be drawn, e.g.: A high degree of drainage indicates that 

the turbine is running under unfavorable conditions (large fog droplets 

are being produced).   Since only the ''dangerous" drops can be removed 

from the steam, no really high degree of drainage can ever be expected. 

The most promising way to Improve the efficiency and to reduce the 

danger of erosion consists in assuring a fine fog quality.  I.e.,   in 
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keeping the nucleation zone within a region where the pressure Is sink- 

ing rapidly. 
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