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ABSTRACT

e

Flow induced noise generated by pressure fluctuations
in a turbulent boundary layer is studied here theoretically with
regard to its acoustic transmission through a dome to a trans-
ducer element or array. Particular attention is given to a uni-
layer dome in the form of a finite slab, described as a fluid
but serving as a prototype for a realizable solid slab. A
similar dome with a thin outer cover having nonvanishing im-
pedance is also considered. Likewise, attention is given to
acoustic modification of the flow noise on a flush element due
to mobility of the surrounding baffle.

To demonstrate clearly what properties of the boundary-
layer pressure fluctuations are essential, high- and low wavenumber
ranges are distinguished in the wavenumber spectrum of pressure at
given frequency, the former range corresponding to possible gener-
ation by a convected eddy field. By various approximations and
simplification of boundary conditions, the contributions of these
respective ranges to the frequency spectrum of average pressure on
a dome-shielded element are related to their respective contrib-
utions in the reference case of an element flush-mounted in a
rigid plate. The high-wavenumber component in the flush case varies
with element radiuszRo as R; , Wwhereas the low-wavenumber component
may vary more as R; . If the latter component predominates in
the spectrum at given frequency for a large flush element, it pre-
dominates still more for a shielded element. The high-wavenumber
component for a shielded element contains a part that is indepen-
dent of lateral dome size (face area) when this is large, but this
part is highly attenuated by the dome ifL >> U /w, where L is
dome thickness, w angular frequency, and U_ asymptotic flow velo-
city. The other part of this high-wavenumber component is reduced somewhat
as though the pressure were averaged over the face area of the
dome section. On assumption that the wavenumber spectrum changes
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little in the pertinent interval (in accord with area dependence as
R;Z for a flush element), the low-wavenumber component is reduced
rather as though averaged over an area of radius given roughly by
the smaller of one-third the sound wave length or three times the
dome thickness whenever this area is larger than the actual area
of the element. With reference to the noise-to-signal ratio for
an array of elements, though a thin unilayer dome can thus be very
effective against the high-wavenumber component of flow noise, it
can reduce the low-wavenumber component by no more than the array
factor, or by not as much if L‘S’D/S, where D is the element spac~

ing.
In the case of a dome with cover having impedance, the
effect of flexural resonances of the dome-fluid system is studied.
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PART 0
INTRODUCTION AND SUMMARY

0.1 Purpose and Context

The present report is concerned with the modification
of flow noise by acoustic means. The main instance treated is that
of transmission of flow noise to a transducer, or array of trans-
ducers, shielded from the flow by a dome. A secondary instance is
that of a transducer flush-mounted in a non-rigid plate bounding
the flow, where the pressure on the transducer is modified by the
acoustic field excited by plate vibrationm.

Two types of dome are considered. The first is a fluid
dome or sheath, i.e., a slab of fluid separated from the outside
flow by an impedanceless membrane. The fluid sheath is viewed as
a conceptual prototype for an elastic sheath covering an array of
flush-mounted tran ducers. The second type of dome is a covered
fluid dome, i.e. a fluid dome separated from the flow by a mem-
brane or plate ii2ving appreciable impedance.

In each case we are concerned with the frequency spectrum
of average pressure on the transducer generated by pressure fluc-
tuations in the turbulent boundary layer. This spectrum is to be
compared with that for a transducer flush-mounted in a rigid plate
bounding the flow (the referent).

We especially wish to demonstrate what properties of the
boundary-layer pressure fluctuations are essential to describe the
flow noise transmitted to a dome-shielded transducer. In this
conniection we distinguish low- and high-wavenumber components in the
excitation spectrum and show that the corresponding contributions
to the dome-shielded spectrum are related to the excitation com-

ponents and the dome parameters in distinct characteristic ways.

More explicitly,in some contrast to previous work in this
area, the following points are emphasized. First, the transmission
of flow-induced rcise by domes and modification of flow noise by

0-1
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plate vibration depend on the statistical properties of the boundary-
layer pressure fluctuations mainly via certain gross features of

the wavenumber spectrum at the frequency in question. They de-

pend especially on the spectral density of the exciting pressure in
the region k gﬁ(wz/c2 + L-Z)l/z, where L is the dome depth, and at
the wave numbers of any fairly unattenuated dome resonances, rela-
tive to the spectral density in the range k.Z.w/Um’ where the den-
sity is greatest. Second, information on these relative magni-
tudes is implied by the observed area dependence of pressure spectra
for flush-mounted transducers, but the obtservations leave apprec-
iable uncertainty, and a supporting theoretical account of the
region of low wave numbers does not exist. Assumption of any ex-
plicit form for the space-time correlation function or wavenumber
spectrum of boundary-layer pressure fluctuations in models for the
effects in question has no reliable basis and is unnecessary. Un-
less the pertinent gross features are settled, it is not possible

to conclude what flow-noise reduction by domes is theoretically
possible.

A great deal of this report pertains to contributions
from the high-wavenumber component of the excitation pressure.
The treatment of the nonresonant contribution from lcv wave num-
bers depends less on the explicit dome model, and this contrib-
ution 1is probably the more important one. The amount of attention
devoted to the former contribution resulted from a theoretical
prejudice that the other, low-wavenumber portion should be very
smail. In any case, the actua’ iorm of the wavenumber spectrum of
boundary-layer pressure fluctuations is uncertain, so that a treat-
ment of the contribution from high wavenumbers is not impertinent.

Considerable discussion of the properties of the boundary-
layer pressure fluctuations is given in the following.

The model dome employed here is cliosely similar to the
one introduced in Ref. 2. That reference is concerned with much

0-2




e m

iy

e

[ty B S0 B o~ R ===

e &
L 5

the same questions as this rzport. In the classified literature,

we note Ref. 13.* Similar models have been used to treat the prob-
lem of *~ansmission and radiation by plates representing a fuselage
and excited to vibration by pressure fluctuations of the turbulent
boundary layer. This application differs from the sonar application
mainly in that the bounding fluids are air which, being much less
dense than water, yields an acoustic impedance that may be treated
as small in certain respects in the coupled plate-fluid system

(see also Ref. 2).** The physical quantities ordinarily computed

or measured differ. Nevertheless, elements of the approach and some
results of the present work are applicable in this related area.

Among the pertinent references, including some experi-
mental work, Refs. 5-12 are mentioned as representative.

0.2 Summary Discussion with Conclusions

In this section we summarize remarks, results, and con-
clusions of this report. In the first subsection some of the sali-
ent points are stated. The principal relevant sections of the re-
port are noted in the heading for each configuration.

0.2.1 Salient Points in Summary
Fluid dome (no cover or cover with negligible impedance,
depth L, lateral radius a). (Sec 0.2.3, 2.6.1)

1. Measured average-pressure spectra Oo(w) on flush ele-
ments of radius Ro suggest an area dependence Oo°°Ro a range
wUm/w << Ro < Rm for some Rm. In a range where such dependence
holds, boundary-layer pressure components with wave numbers
k E’ZWRE} cont: ibute the major part of Qo(w) and also the major
part of the average-pressure spectrum

* Also Ref. 16, related to the present report.

** Likewise, for example, the regime where conditions (0-24) or
(0-32) below hold is outside that of intevrest. ( )

0-3
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Q(®,-L) on a dome-shielded element. This part of Q(w,-L), say
Q_(w,-L), and hence the total spectrum Q(w,-L) itself, has a magni-
tude roughly equal to the average-pressure spectrum for a flush
element of radius R defined by

2 _ (1/4) @/c? + 1Y, (0-1)

(or possibly a lower spectrum if Re’z_Rm), where the radius rj of
the shielded element satisfies ro LRee I r 2 Rgs Q_(w,-L) is
instead roughly the same as the average-pressure spectrum QOGD)

for a flush element of the same radius, r, The correlation area

of the pressure field at the shielded element is WR§.

la. If Q(w;L) is in fact <di.dnated by a part Q_ having these
properties, the spectrum of flow-noise pressure averaged over the

active area of a sheathed array of elements, and hence also the
noise-to-signal ratio for a fixed incident signal, are reduced

relative to the value for & flush array of the same active area
at least by the array factor [-(active ares)/étotal area) (<1)],
provided the sheath thickness satisfies

L > (1/5)p(1-10?/n%)"1/2, (0-1.1)

where A(=2m¢/w) is the sound wave length at the frequency in ques-

tion and D is the center spacing of array elements. The noise-to-
signal ratio is not appreciably reduced at all unless the less

stringent condition

L > 0.36r (1-m2%2/n2)"1/2 (0-1.2)
is met.

2. The bulk of the excitation spectrum presumably neverthe-
less lies in the convective range of high wave numbers, k 2 ®/U_.
This range contributes to the spectrum Q(w,-L) a residual part Q

that remains when the lateral dome size a becomes infinite but is
very small for 1. >> U, /w Also, however, it contributes to Q a

part Qp that varies as a - for large a and is of the order of
magnitude of the convective (high-wavenumber) contribution to the

A
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average-pressure spectrum on & flush element of radius equal to
that of the dome, a. This pressure field is coherent over a
shielded element of radius Rols‘c/w. Its contribution to the
spectrum of flow-noise pressure averaged over the active area of

a sheathed array of elements is small compared to its contribu-
tion for a flush array with equal active area at least when,
roughly, the lateral size a of each adjacent section of the sheath
is rather larger than the wave length, 27c/w, and is large compared
to the size of individual elements in both arrays.

Covered Dome (dome with cover of appreciable acoustic
impedance). (Section 0.2.4, 2.6.2)

3. The dome cover introduces resonant contributions to the
spectrum Q(w,-L) and alters the non-resonant contributions. For a
laterally large dome flexible enoﬁgh that the free flexural wave-
number in the loaded dome cover, kr(w),satisfies

k@) > (@e? + LB, (0-2)

the low-wavenumber part chm the non-resonant contribution differs from Q_
for the fluid dome by terms of relative order h/L, for h/L << 1,

where h is the depth of fluid having the same effective mass per
unit area as the dome cover (effective fluid-equivalent thickness).(Good
acoustic signal transmission requires h/L << 1).

4. Two types of resonant contributions may be distinguished,
one due to wavenumbers near resonance (k = kr) and the other to
convective wavenumbers (k > w/U ), where it is assumed that k.r,:;w/U°°
(i.e., the regime is not one of hydrodynamic coincidence). Both
types derive from nearly resonant response modes knf:'kr). In
consequence, if the structural damping is small, the frequency
spectrum cf average pressure Q(w,-L) may contain a series of rapidly
declining widely spaced resonance peaks. As the damping is made
larger, the peaks become lower and the half-widths borader, having
only the background contributions QP, Qg, and d:. For a

0-5




large dome, QE is nearly the same as for a fluid dome, and Q: is
similar but smaller than for a fluid dome (see point 2; regarding
QE, see point 3). In a given frequency range, the more completely
condition (0-2) is satisfied, i.e., the more mass-dominated is
the dome-cover impedance, the more attenuated are the resonant
waves in the dome interior.

Acoustic modification for flush element in nonrigid
EEG53E?iT'TSEEEIEH'UT2T5T'2TBT37"'“"""""‘JL"

5. 1In the acoustic modification to the average-pressure spec-
trum on a flush element due to boundary vibration, the same
contributions may be distinguished as in the case of an ele-
ment within a covered dome, except that the one analogous to Q:
is presumably negligible. From the evidence of peint 1, low
wavenumbers are expected to make the major contribution. For
example, in the special regime where w/c S R;1'<$ kr(w) , a non-
resonant part of this contribution can be distinguished and is
of the order of -1.7(R°/h')Q°0D) fpr h'/Ro >> 1, where h' is the
effective fluid-equivalent plate thickness. (Good acoustic sig-
nal preservation requires h'/Ro >> 1; in the opposite limit of
negligible plate impedance, with wR /c << 1, the element, as well
as the boundary, is a pressure-release surface.)

6. The convective nonresonant contribution to the acoustic
modification is similar to Qg in the case of a dome (point 2),
i.e., for large plate size it is of the order of the convective
contribution to the direct (nonacoustic) average-pressure spec-
trum on a flush element of radius equal to that of the whole
plate section.

7. The resonance contributions are similar to those for the
covered dome, but there is no attenuation of the resonance peaks
analogous to that which occurs in a dome interior when (0-2) 1is
satisfied.

Extended Summary

These points are elaborated in the following more ex-

tended discussion and summary. Some of the results are indepen-
dent of the dome model employed; others are not, though stated

in more general terms; before acceptance of the results

as applicable to an actual configuration, the degree of

0-6.




- B

S g s

S .

correspendence with the present model must be considered.

0.2.2 Excitation Pressure Due to the Turbulent Boundary Layer

We regard this pressure field as driving the nonrigid
boundary without being affected by the resulting vibration. Con-
sideration of its properties is needed to compute the desired acoustic
pressure spectrum transmitted to a dome-housed element, or ex-
erted on a flush element, and also to compare these spectra with
the spectrum of average pressure on a similar flush element in a
rigid boundary. The frequency-wavenumber spectrum Po(ﬁ,wo
(k = (k;,kq) ] of exciting pressure on a plane boundary presumably
increases rapidly with streamwise wave number kl just beyond
kl el’(‘l)/U'm, U, being the asymptotic flow velocity, and reaches a
maximum somewhat above this wave number. Wavenumber components
with kl > w/y, (=ud hence k = ri| > w/Uw) are termed convective,
in the sense that they can be generated by time-independent frozen-
in eddies convected downstrecam at speeds < U . Components with
low wave number, k << w/U_, are presumably of much smaller ampli-
tude.,but important, as indicated below.

We define a spectral density Io(k,w) integrated over

wavenumber direction 0:

Io(k,@) = [d8 P, (E,0). 0-3)

Let Qo(w) denote the frequency spectrum of pressure averaged over

a circular area ng and write

Q@) = Qu_(®) + Q (@), (0-4)
where Q__ derives from wave numbers k < /U and Qo+ {rom
k >0/U_,. 1In a reasonable approximation, we obtain in the case
uR /U, >> 7 (large area)
mR;1 )
Q. (@)= [ dkk[2J;(KR,) /KR ]I (k,w), (0-5)
o

0-7.
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Q,, @ = (4/1r)R;3w5U dik™21_(k,0), (0-6)

where m is regarded as a fixed number large compared to unity.*

The area dependence of Q, 1is thus as R;3. As for Q _,

assume that Io(k,w) varies moderately and smoothly in the interval
0<k< mR;I. In this event

1

Q. ¥ B2 (AR, W), (0-7)

where IO(AJR;I,w) denotes an appropriately weighted averag: over
the interval but is assumed nearly independent of R, If R is
sufficiently large, (0-7) indeed holds; in fact

Q. > &’:%1 (0,), (0-8)

since (except by neglect of compressibility, viscosity, and in-
homogeneity) we have I_(0,w) # 0. For the range of R, of usual
interest, however, the average I  of (0-7) is not necessarily
identifiable with I  of (0-8).

When ¢R /¢ £, m, witg*c the sound velocity, the validity
of (0-7) seems open to doubt. It appears possible, in fact, that
Io(k,w) has a peak where k ~ w/c, corresponding to the wavenumber
of sound; if so, a '"radiation" contribution to Q,- could be dis-
tinguished that would be independent of R, so long as wkolc L.

Based on (0-6) and acceptance of (0-7), but with allow-
ance for the tenuous possibility of the radiation contribution,
we would have an area dependence for the total Q of the form

Q@ = A@RZ + B(@) + C@)R . (0-9)

The lower limit in (0-6) (and in the definition of Q°+) may be

taken <w/U_, provided it remains larger than ngl for the range
of Ro'

Throughout, we limit consideration the regime of low Mach number,
U, << c.

*%

0-8 .
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Observed spectra for different transducer size,and measured narrow-
band spatial correlations, place experimental constraints on A, B,
and C. Observation has indicated that Q, varies more nearly as
R;Z than as R;3 (see Ref. 3). Hence the first term, in the range
of wROIU,7° in question, is apparently larger than the third, i.e.,
Q.2 Q,,+ Some observational justification for the approximation
(0-7) 1is thus also provided.

0.2.3 Flow-Induced Noise Transmitted by a Fluid Dome

We consider in this and the following section the fre-
quency spectrum Q(w,y) of average pressure on a circular area ng
&t depth -y(>0) in the dome interior at or near the inner surface
(y = -L) and laterally near its center (see Fig. 0-1). The dome
will be nominally regarded as circular with lateral radius a >> R,-
In the specific model assumed in the text, the dome cover is sup-
ported or constrained only along its periphery. Accordingly, the
wavenumber spacing of modes of dome~fluid structure is~7/a.

Inner and outer fluids are assumed to have equal density p and
sound velocity c.

We may divide Q( w,y), just as Qo(w) in (0-4), into con-
tributions 0_(w,y) and Q+(w,y) from k < k+ and k > k+, respectively,
with k+’=’ w/U_.

Impedanceless membrane

Flow Fac
~N ->-<- a_—)*
A
Fluid | psC i

FIGURE 0-1. FLUID DOME

*The possibility that the observed dependence is more nearly as

B + CR> than as AR]% may still bear examining. Plausible esti-
mates of QO+OD) can be made from crude convection models, but
Qo_(w) 1s more inaccessible theoretically.
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In the present section the interior fluid is regarded as
separated from the flow by a dome cover with no stiffness or
mass.

0.2.3.1 Contribution from Excitation at Low Wave Numbers

To obtain a rough estimate of Q_(w,y), we
assume that I, (k, w) does not change substantially in most of the
range 0 < k < (w /c + L7 ) 1/2 , an assumption similar to that at
(0~ 7).* For each excitation wave number k, Q_ derives mainly from
response modes of the dome having wave numbers nearly equal to k.
Assuming a rigid inner surface and

wafec >> T, | (0-9.1)
(@L/e)(@ale) /2 « 1, ‘ (0-10)

we find the contribution Q_ at this surface to be

-1y, (R. <R.) (0-11)

Q. (w,-L) = 2R 1(~R o SRe

where R, is an effective averaging radius defined by

- W e/)? + /723 W [ 1yal] -1

and IOG\;R;I,w) again denotes a suitable average but is assumed

nearly independent of R,- By comparison of (0-7) and (0-11), we
have as the relation between spectra for dome~-shielded and flush-

mounted elements of radius Ry
Q(®,-L) ~ HR,/R,) %Q (@) ®, <, R (0-13)

where H = IOQ\JR;I)/IOQ\JRSI). We presume that H~l; it may be
smalier, however, for R, >> R,» where R, refers to the largest

The possibility that I (k w) in the major part of this range is
much larger than I (0 need not be excluded.

0-10.
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radius for which Qo(w) is observed to vary as R;2. If Re LRys

we find in place of (0-13)

Q(@,L) ' q (). (0-14)

Thus for a dome-shielded element the average-pres-
sure spectrum due to the low-wavenumber contribution 1is
roughly the same as for a flush-mounted element of radius
Rq = Re(K,L) given by (0-12). By use of a dome then, one can
reduce this part of the flow-noise spectrum substantially below
that for a flush element of given radius R only for frequencies
corresponding to sound wave lengths rather larger than 4R, and

then only by a dome (sheath) of thic 'mess rather larger than R°/2.

According to (0-13) and (0-12), at frequencies low enough
that A >> 9L we have Q_(w,-L) varying with o, U_, and other flow
parameters exactly as Q- for a large flush element. At frequen-
cies bigh enough that A << 9L, on the other hand, Q_ contains an
additional factor wz. Accordingly, in the latter range Q_(w,L)
does not sccle with the boundary-layer parameters in the same way
as Q,_-

If there exists a peak in I_(k,w) at k Yw/c, as dis-
cussed preceding (0-9), there will be an additional contribution
to Q_(»,-L) that will be just the same, in the case of a large
dome (wa/c >> w), as the corresponding contribution to Qo(w) for
a flush element of the same size, i.e., that will not be reduced
by the dome for any A and L.

If an infinitely deep interior medium is assumed instead
of a rigid surface at y = -L, expressions (0-1l) and (0-13) for
Q_(w,-L) are reduced by a factor ~~ i/4.

0.2.3.2 Spectra Averaged Over an Array of Elements

i
We refer now to spectra of noise pressure averaged
over the entire active area of an array of elements,

0-11.
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confining consideration initially to the conbributions from low
wave numbers. These average spectra are of practical interest.

Consider first an array of N flush elements of radius

, where WR /U >>7 so that Q, « R;2. Let the center spacing

of elements be D, , and represent the active and the total area
of the array respectively by A [~N(WR )] and AT[=ND ]. The spec-

trum of pressure averaged over the active area, say (.0, is given
by

A

Q2 (@) ¥ Q_ (@) /N = 2T (Ao/A) 1AT11 ~rh, (0-15)
where the second form corresponds to (0-7). ;To the extent that
Io(f\:R;I,w) is independent of Ry, Qﬁf thus does not depend
specifically on the elemental area TR, (in the assumed range

R, >> TU,/w) but varies inversely as the total active area A  of

the array. |

Now consider an array of N' shielded elements of radius
r, and center spacing D yielding the same total area AT = N'Dz.* |
The correlation area, or area sgale, for the pressure field on
the elements (at depth L) is FR;. In two opposite limiting con-
ditions the spectrum of pressure averaged over the total active

area A[=N'(Wr§)], say Qe, is given by

1. Loosely patked arra.y',D2 >> WRi: 4 ;

@ (0,-1) ¥ q_(@,-L)/N'

(221 (vrCh) 02/ /8) (2D,
™ { if R, 2 T, (0-16) 1

A
21 (~ 23l (02 /ap)(a, /00, °

if Rergro

We still assume a rigid inner surface (including the surface
of the elements).

0-12.
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2. Tightly packed array, D” << WRi:

Ae,-L) ¥ maztt (vazlt/?) 2 aa /an o, (0-17)
where Hp = I (~v A.I.]'/Z)/IO(NR;]') .

Suppose that the total area of the array, whether
flush or shéathed, is fixed independently of flow-noise
considerations, and likewise the minimum element radius and
spacing in the shielded array. 1If incident signal pres-
sure is independent of active area, as is roughly true
even for an active array, the noise-to-signal ratio is propor-
tional to the spectrum of noise pressure averaged over the active
area. So far as determined by low excitation wave numbers, the
signal-to-noise ratio for a flush array is then maximized by
maximizing the array factor AO/AT. For a shielded array, with
assumption that Hp~v HAv 1, the signal-to-noise ratio is in-
creased relative to that for flush array by a factor AT/Ao at
frequencies below @ (=2mc/M), provided that the spacing
D <A/ 2 and that the sheath thickness satisfies Eq. (0-1.1)."
At higher frequencies, or with a thinner sheath or wider spac-
ing, such that (0-1.1) is not satisfied, the factor of increase
is smaller; it becomes roughly equal to the constant value A/Ao

at frequencies such that A 2y ro/W, or at frequencies and sheath

thicknesses such that condition (0-1.2) is violated.

*If Hy < 1, the factor of increase is greater.

G-13.
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0.2.3.3 Contribution from Excitation at High Wave Numbers

Two possibly significant contributions to Q (w,y) may
be distinguished according to the wavenumber range of the res-
ponse modes of the dome. For given excitation wave number k,
these correspond to response wave numbers k  that are nearly
(1) equal to k or (2) low enough that the corresponding waves in
the interior fluid are propagated into the interior or at least
are not attenuated to a negligible value at the interior surface
[i.e., k, & (w /c +L )1/2 . These contributions to Q (w,y)
will be denoted here respectively by Q (v,y) and Qp(w,y) and
termed the direct convective and the propagating overlap con-
tributions. (The contribution from low wave numbers considered
in the preceding section may similarly be termed the direct non-
convective contribution.) Since we are dealing here with a fluid
dome, we do not yet have to consider resonant contributions.*

The direct convective part, Q:(w,y), for each contribut-
ing excitation wave number k, is affected by area averaging over
the interiocr element in the same way as the excitation pressure,
and differs from it by the absolute square of the interior acous-
tic response coefficient, I'(k,w,y). In order of magnitude, in
the case of a rigid inner surface, Q: is related to the high-wave-
number part of the average-pressure spectrun Qo+[see Eq. (0-6)]
for a flush element of equal area by

¢ (@,y) A exp(-2L/nU,) ch?[w(y+L) /U, 1Q,, (@) (0-18)

where the factor n(<l), which defines an effective velocity nU_,
increases slowly with decreasing ® and increasing L but is re-
garded as being close to unityeven in the higher range of frequen-
cies. In anyv case the factor multiplying Qo+ is extremely small

*Resonances of the intertor acoustic field for certain relations be-
tween the depth L of the dome and the sound wave length do not occur,
or do not result in amplification of the driving pressure by a fac-
tor greater than unity, on account of damping by the radiation
field produced in the outside medium.

0-14.
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for |y| >> U,/w, and this depth U /w is rather small except at
very low frequency.

The propagating overlap part, ngw,y), though readily
computed numerically in the model employed in the text, is not
expressible in a transparent closed form except in restricted
parameter domains. In a certain limit based on the largeness of
wafc(=2"A/a), a simple form applies; more specifically the form
applies where conditions (0-9.1,) (0-10) and the condition

@L/c) L (wasc) /2 «< 1 (0-19)

are simultaneously s;tisfied. In order of magnitude in the case
of a rigid irner surface and with uR_/c 1, Qﬁ in this regime
is estimated, again in terms of Qo+ for an equal area, as

E@,y) ¥ (1/4) (eL/e) 2 (vale) (R J2) 0, (@), (0-20)

where f£(2) denotes a certain positive oscillatory function of the
argument z having period v, a peak value 3.4 and a value less than
half as large when averaged over z.* In the case of infinite depth
in place of a rigid inner surface, L2 in (0-20) is replaced by
(1/4)y2 (Oo+ still refers to flush mounting in a rigid surface).

Conditions (0-10) and (0-19) will not be satisfied in
much of the parameter domain of interest.** Still, estimate (0-20)
is perhaps not misleading.

* The forms of (0-20) and of (0-27), (0-33), and (0-34) below depend

! on the lateral boundary condition assumed in the explicit model.
The forms quoted correspond to the larger of the two limiting
t{pes of expression given in the text and therefore roughly apply
also, with reduced coefficients, to mixed conditions, which may
most closely simulate actual configurations.

o The Saradoxical increase of Qp with dome depth L according to
(0-20) occurs only in the limited range of L(if any) defined
by conditions (0-10) and (0-19).

0-15.
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In the iimit where it holds, the contributing modes are those
with lateral wave numbers near thet of sound in the inrer and
outer fluids, w/c, and hence with nearly vanishing wave numbers
normal to the outer surface of the dome, corresponding to in-
terior waves propagating parallel to this surface. Qp is inde-
pendent of R, in the regime considered (in (0-20), Q< R )
Crudely, in view of the factor (R, /a) multiplying Q°+ in (0-20),
Qp is similar to the direct pressure Q averaged not over the
area sz but instead over the entire area of the dome (Wa )

On account of the factor w f(wa/c), Qg as given by
(0-20) does not scale with the boundary-layer parameters in the
same way as Q, . In the case of Q:, estimated by (0-18), the
difference in scaling relative to Qo+ is inferred to be less pro-

nounced.

0.2.3.4 Comparison of Contributions; Possible Reduction by a

Flu Domn

The component Q: estimated at (0-18) represents a con-
tribution to the interior average-pressure spectrum that still
remains in the limit of a laterally infinite dome (a+»), as does
the direct component Q_ due to low excitation wave numbers esti-
mated in the preceding section. The overlap component Qg, on
the other hand, vanishes in this limit.

Suppose we accept the estimates (0-13), (0-18), and

(0-20) of the various contributions to the interior average-pres-
sure spectrum as roughly correct in their common domain of appli-
cation. By choosing L >> U_/w, which is still consistent with a
rather thin sheath, we can make Q small compared to Q°+, or even
compared to Q; for any realizable lateral size a. Further, if we
accept the observational indication stated after (0-9), we have
Q. 3 Q4+ From (0-13) and (0-20), again considering wL/c ~ 1
(or at least not large) and recalling that wa/c >> 1 for applic-
ability of (0-20), we then infer that

The factor wL/c in (0-20) is rcgarded as of order of magnitude
unity because of the assumed conditions (0-10) and (0-19).

0-16.
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Q.(®,-L) >> Q¥ (w,-L)

and likewise Q_(w,-L) >> Q+(w,-L)[= QE + Q:]. Hence, under the
present assumptions, the area dependence of the average-pressure
spectrum on a flush element indicated by experiment, namely as
R;2 (for wnb/u; >> 1), implies the predominance of the low-wave-
number contribution to the average-pressure spectrum on an element
shielded by a fluid dome or sheath. The earlier discussion of Egs.
(0-13) and (0-14) then applies also approximately to the total
spectrum for an interior element.

Thus, with regard to flush and shielded arrays, ac-
cording to the preceding discussion and Section 0.1.2.2 above,
a fluid sheath (or comparable elasztic-solid sheath) of thickness
L permits significant noise reduction over a substantial frequency
range only if L,a.ro, where r, is the radius of the shielded ele-
ments used. If instead the convective contribution from high ex-
citation wave numbers predominated, significant noise reduction
relative to a flush array could be achieved provided roughly only
that L >> U_/®w and that the lateral size a of the sheath (or each
section thereof) is rather larger than a wave length (27c/w) and
is large compared to the size of individual elements.

_ Present conclusions based on a treatment of a fluid
Sheath are believed to apply roughly to an elastic-solid sheath

~as well, provided that the transverse sound velocity ¢, is of the

order assumed with regard to ¢, notably that ¢, 2> U,.

0.2.4 Flow-Induced Noise Transmitted by a Covered Dome

, In distinction from the preceding section we consider
now a dome having a cover with significant impedance. We assume
that, except at frequencies below the range of concern, the free
flexural waves in the dome cover (coupled to the internal and

*If there should prove to be a spike in the wave number spectrum of
excitation at k"~ w/c, this contribution will not be reduced by a
sheath independently of L. It would be somewhat vreduced for both
flush and shielded arrays by tight packing to yield ?gherent can-
cellation (provided the effective size satisfies AT1 >> cfw).

0-17.




external fluids) have wave velocities greater than the asymptotic
flow velocity (U_), so that the waves of excitation pressure in
resonance with free waves are nonconvective (k; < ®/U,) and their
amplitudes therefore small, i.e., the regime of "hydrodynamic
coincidence" is avoided.

In the present instance, unlike that of the fluid dome,
resonances of the dome-fluid structure occur, such that at a
given frequency one or more modes may have acoustic response co-
efficients of magnitude greatly exceeding unity unless the struc-
ture is highly damped. [The resonant wave number, k (w), at any
frequency exceeds both the sound wavenumber in the fluid /e,
and the resonant wavenumber of the isolated plate, k GD) ] In
this case the previously defined low-wavenumber contribution
Q_{(w,y) to the interior hverage-pressure spectrum Q(w,y), deriv-
ing, at each excitation wave number k, mainly from modes with
kn = k, may have to be understood to include contributions from
k's (and Kn's) near the resonant wave number, even though contri-
butions from k's somewhat higher or lower are negligible. Like-
wise, the high-wavenumber contribution Q (w,y) whizn formerly
was composed of a direct convective part Q+, deriving mainly from
modes with L >k, and a propagatin§ overlap part, deriving mainly
from modes with k S (o /c2 + L ) , may have to be understood
to include a further part deriving from modes near resonance, i.e,
with k_ ¥k, which will be called the resonance overlap contribu-

tion and denoted by Q (w,y) .

A given lateral mode v of the structure resonates at some
frequency, @, and a corresponding half-width &, of the response
may be defined. Likewise, for any given frequency w, a resonant
wavenumber kr(w) and a wavenumber half-width 5k may be defined.

If the structural damping is small enough, we have

tka fg'fr; (0-21)

in this case, at a given frequency at most a single mode can be
near resonance, but the acoustic response at resonance can be

0-18.
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large. The parameter ©06ka increases with mode number. If the
dome cover is highly damped and the mode number large, on the
other hand, we have b6ka >> 7, so that at a given frequency many
modes lie almost equally near rescnance; the response for each,
however, is only moderately greater than for modes away from
resonance, and furthermore their effects tend to cancel so far
as their excitation by high wavenumbers is concerned.

The resonant modes are more rapidly attenuated in the
dome interior if the resonant wave length ZW/k (v) is small com-

pared to both the sound wave length and, say, six times the depth

L, roughly in accordance with a factor exp(- 2(k - /c )1/2L]
[see Eq. (0-23b) below].

0.2.4.1 Contribution from Excitation at Low Wave Numbers

We refer first to the contribution from excitation at
low wavenumbers (<w/U,) removed. from the resonant wavenumber,
analogous to Q_ for the fluid dome.

It is not possible to design the dome so that noise due
to excitation wavenumbers in most of the interval k < w/c is sup-

pressed without likewise suppressing an incident acoustic signal

at least from certain angles of incidence; that is, the dome-cover
impedance in this interval must be low for adequate signal trans-

missior.

In general, even under the assumptions of Sec. 0.1.2.1
it is not possible to estimate Q_(w,y) for a covered dome by a

simple closed expression analogous to (0-11). If (0-19) is satis-
fied, however, the resonant part of Q_, say Qf, can be clearly distin-

guished and is given in the neighborhood of a resonant frequency

@, corresponding to modal wave number kv, roughly by the single-

-mode form _
b2
QC(w,y) = (r/a)k L, (k,s®) @/, vl) Z +€z
9 {0-22)
oy (R,/8)k R Q. (©)
- Qbﬂ”v'l)z;ez o v o‘o-
0-19.
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for k R < 1, where the second form follows from (0-7) on assump-

v O~
tion that I_(k ,0)~ I (VR ' ,0). If kR, > 1, (0-22) requires an

additional area-averaging factor [2J1(kvR°)/kvR°]2. The resonance
parameters in (0-22) are given roughly, for a rigid immer surface,

by

oo, [142/K, 0172, (0-23a)
b, (k h) " F(1+2/k h) “Lexp (<K, Ly ch[K,, (y+L) 1, (0-23b)
¢, I o, (0-23c)

with K2v=(k3-w3/c2)1/2, where o _, is the resonant frequency of the
isolated dome cover for wavenumber k,, and h = o/p, with o the dome
cover mass per unit area. The fractional frequency half-width €,

. is of the order of a dimensionless damping coefficient for the motion

of the dome structure. In the model explicitly pursued in the text
this coefficient consists of a sum of terms for hysteretic and
viscous damping of the dome cover, but more generally includes also
damping at the joinings of the dome with the peripl.eral supporting
structure (which commonly is the more important contribution).

Since at fixed frequency kr(w) increases with decreasing
dome stiffness, so does the kv pertinent to a given frequency range
and hence also the exponential-attenuation coefficient Koy in Eq.
(0-23b) for b,. Thus bv and the amplitude of the resonance maximum
decreases as the stiffness decreases, on assumption that the rate
of increase of I (k,,®) is not precipitous so long as k, Lo/u,.

In actuality, resonance peaks of the character of (0-22)
or (0-27) below seem not to be ordinarily distinguishable in the
frequency spectra of noise for dome-shielded hydrophones.

For a dome of sufficiently low stiffness that

A -
R @3 @2 /2, the resonant modes with k™ k (o) (k)

0-20.




are well removed and distinguishable from the other contributing
range knr§,(w2/c2+L'2)1/2 of propagating or weakly attenuated
modes, whether or not condition (0-21) is satisfied. Furthermore,
the dome-cover impedence is mass-dominated throughout the latter
interval. In this instance in the regime where conditions (0-9.1),
(0-10) and the additional condition

(2] /o) (wa/e) M2 <« 1 (0-24)

are simultaneously satisfied, where z, represents the acoustic
impedance of the dome cover at a wavenumber ®/c, we can compute

a simple estimate for the nonresonant contribution, say QE, to Q_.
If the ratio h/L of the fluid-equivalent dome-cover thickness
(h=0/p) to the dcme depth is small compared to unity, as required
for good signal transmission, Qg(w,-L) differs from the corre-
sponding expression (0-11) for Q_{w,-L) in the case of a fluid
dome by terms of relative order h/L. :

0.2.4.2 Contribution From Excitation at High Wave Number

The direct convective contribution, as in the case of the
fluid dome, is estimated as

@™ [r@/nu,,e,v] %, @ (0-25)

(with a slightly larger ), but now the acoustic response coeffi-
cient I' takes account of the dowe-cover impedance. If the cover
is dynamically equivalent to a thin plate or membrane, for a rigid
inner surface and with ®/U, >> k_ (@), we have

r(@/nU,,»,y) %~ exp (- 20L/ nUm)ch2{0>(y+L) /U] (0-26)

x 4(eh/nU,) " 2[o/qu,k (@) 172, @)

[cE. (0-18)], where n=4 for a plate and n=2 for a membrane. 1In
the regime considered, 'F'z as given by (0-26) is even smaller
than for the fluid dome.

0-21.




The propagating overlap contribution, Qg(w,y), as for
the fluid dome, can be computed numerically for the model of the
text, but not generally expressed in a transparent form. Again,
however, in the regime where conditions (0-9.1), (0-10), (0-19),
and (0-24) are satisfied, the simple estimate (0-20) applies.

As for the resonance overlap contribution, if condi-
tion (0-21) for a single-mode approximation holds, for w/U, >> k,
aad kvR°‘$’1 we have, similarly to (0-22),

(r/2)b2
anﬂbv-ljzlez

E(@,y)~ k,a(R,/2)%q,, (v) (0-27)
Eqs. (0-22) and (0-27) relate Q_ and Q to quantities
Qo- and Qo+ pertinent to an imagined large flush element of radius
Q and Q+, for k R S 1, are themselves independent of the
radlus R, of the interior element. Eqs. (0-22) and {0-27) yield
as the order of magnitude of the ratio of direct-rescnance to
resonance-overlap contributions

QC/Q% ~ 2(a/Ry) (Q,./Q,,) - (0-28)

On acceptance of the observational evidence that Q- Qo+’ we
infer Q >> Q

1f the condition ©&ka >> 7 opposite to (0-21) holds, then
in contrast to (0-27) a number of modes lie within the resonance
peak. If certain additional conditions sre satisfied (as they are
for sufficiently large a and nonvanishing damping), contributions
from adjacent modes near resonance, as elsewhere (except those with
k, >~ w/c), nearly cancel one another. Q then vanishes relative
to Qp of (0-20)[or, pertinent to still larger a, relative to Q of

(0- 24)]

0-22.
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0.2.5 Acoustic Modification of Flow Noise on Flush Elements
e to a Non- oundary

We proceed to the question of the acoustic modification
of the spectrum of average pressure on a rigid circular plug
(trensducer) of radius R, flush with, but cut out from, a non-
rigid plate or membrane bounding & turbulent flow. The opposite
side of the plate is supposed to be effectively vacuous. The
effect of the vibrating plate on the excitation pressure is
neglected.

The acoustic increment in the average-pressure spectrum
Qw) which includes an interference between the direct and acous-
tic pressures, is denoted by d“ This is regarded, as usual as
composed of a sum of contributions from low wavenumbers, 6Q and
high, 6Q, .
0.2.5.1 Contribution From Excitation at Low Wave Numbers

No simple approximation can be written for the sum
representing this contribution in the general case. If (0-21) is
satisfied, however, as in the case of the covered dome the resonant
part of 66;, say Saf,can be distinguished and is given in the
neighborhood of a resonant frequency @, , for kVRO¢S 1, roughly
by the single-mode form

2

Ar blv 2
5 ~ kI (k ,w) 1-8k R /3
CE) S miadslgthet (w/w1v'1)2+€%v rflpafin

(0-29)

Wblv(l -8k R /3#)
~ Ro/2)k R Q. (@)
(0w, -1) +e1v

[cf. Eq. (0-22)], where the resonance parameters are given roughly
by

oy v @ (1 + 1/Ky h]7L/2, (0-30a)

by, (2k h) " H(LeL/k )T, (0-30b)

0-23 .
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with the fractional frequency half-width €1y again of the order of

.a damping coefficient for the motiom.

Unlike b, of (0-23b), b1v contains no ettenuating factor
governed by Ky, and is therefore less affected by the plate stiff-
ness.,

For a plate of sufficiently low stiffness that‘ao(w)Ro>>1,
whence also kr(w)Ro>> 1, which represents a regime excluding that
of (0-29), the resonant modes are well removed and distinguishable
from the other contributing range kn_g,mkgl of modes that are not
suppressed by area averaging. The plate impedance is then
mass-dominated in the latter interval.

In this instance, in the regime where conditions (0-9.1)
aud (0-24) hold, we can compute a simple crude estimate for the
nonresonant contribution, say 66?, to 66_. Let € = (l-qg)h/Ro,
where qg represents the ratio of the stiffness contribution tc
the mass contribution to plate impedance, evaluated at a wavenumber
knf\ngl, i.e., (l-qg)h is an effective flu%g-gquivalent plate
thickness for the pertinent interval; since koRo >> 1 by assumption,
we have qg <L 1.*'In the limit ofrzero plate impedance (¢ » 0), for
wRo/c <§ 1, we necessarily have bQB '=-’-Qo, i.e., :I.f',the boundary is
a pressure-release surface and the radiation impedance of the
blocked and rigid plug is negligible, then the plug face is like-
wise nearly a pressure-release surface. The noise may not thus
be cancelled without likewise cancelling an incident acoustic sig-
nal. In order that a signal not be substantially reduced by boun-
dary vibration, then**it is required in the frequency range of in-
terest that ¢ >> 1. For ¢ >>1 and WR /e << 1, we obtain the

crude estimate

The equivalent thickness h introduced in connection with the
contribution QP for the covered dome may similarly be construed

as reduced by a factor l-qi, where qi pertains to the stiffness
at a wavenumber knfvw/c.

* If resonating devices, effective in a narrow frequency range,
are employed for this purpose, they may be regarded as implying
an equivalent plate thickness having a resonance-type frequency
dependence.

*
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More generally, in the regime in question, for arbitrary ¢ but
with aR /c Sl Sap/Q depends substgntia].ly only on the para-
meter €. The simultanaous conditions k R, >> 1 and @R e L
assumed above define a very restricted parameter regime however .

0.2.5.2 Contribution from Excitation at High Wave. Numbers

The propagating overlap contributionfﬁg_ to 66+ can be
simply expressed in a special regime analogous to that where (G-20)
applies. The conditions for this type of approximation in this
instance are (0-9.1), (0-24), and in addition

!zw/pc +g @a/0)V/? « 1, (0-32)

where £ = zR/ pc(1rR(2,) with z; the radiation impedénce of a piston
of radius R, at frequency ® in the given nonrigid boundary. The
result is given roughly in terms of Qo+ for an equal area by

P @) (r/6) |z fpe + €|? £ele) @/, @),  (0-33)

where it supposed as in (0-20) that aR /c 1. Hence again, with
reference to high excitation wave numbers, the non-resonance acous-
tic &verage-pressure spectrum on the element is similar to the
direct pressure spectrum averaged over the entire plate area (wa )
demarked by the bounding structural members. The regime defined by
conditions (0-4) and (0-32) is rather limited.

The resonance overlap contribution 56‘; to 66+, if condi-
tion (0-21) for a sirgle-mode approximation holds, is given, fo-
/U, >> k, and kvRo‘ﬁil, similarly to (0-27) by

(r/2)b3 (1-8k R, /3m)*
5Q (@) o, D zi% kaR /a)° Q,(®) (0-34)
v v
0-25.




The acoustic direct convective contribution to average
pressure on the rigid plug, corresponding to modes of the sur-
rounding plate with kn ™k '3 o/U_ 1is reagonably neglected.
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PART 1
DOMES OF INFINITE EXTENT

Part 1 is concerned with the simple limiting casc where
the dome and its surface in contact with the exciting fiow may be
regarded as of infinite extent. (The conditions for this to be so
will appear in Part 2.) Properties of the exciting boundary-layer
pressure field and of the response of the coupled plate-fluid system,
pertinent also in Part 2 on finite dimes, are discussed here. The
former topic is considered further in Section 2.5. Except for Sec-
tion 1.1, Part 1 may be omitted and used merely as an uappendix to
Part 2.

1.1 Infinite~-Dome Model

This dome model is constructed as follows. A turbulent
boundary layer is generated by the flow of a semi-infinite fluid
along an infinite elastic plate or membrane. (See Figure 1-1.)
The boundary layer is regarded as having a finite thickness, how-
ever, such as would occur in a finite flow of interest. The plate
is planar in its undeformed state and is assumed to be thin, in
the usual sense, for all excitaticns encountered. On the oﬁposite
side of the plate is contained a second fluid at rest in the shape
of aa infinite slab bounded on its other face by an infinite sur-
face parallel to the plate. For the acoustic field at this inner
surface, a fixed impedance condition is assumed to be given for
each frequency and wavenumber component parallel to the surface.

The boundary layer pressure driving the plate is regarded
as the same as would exist if the boundary were rigid, i.e., the .
effect of the boundary motion on the turbulence is not considered.
Consideration will be restricted to the regime of low Mach numbers,
U, << ct.

*The driving pressure should, nevertheless, bz regarded as the
entire fluctuating pressure existing in the fluid (with rigid boundary),
including the effect of compressibility; at wave numbers k  w/c the
pressure components likely differ substantially from those for a
similar incompressible fluid.

1-1,
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FIGURE 1-1. MODEL DOME OF INFINITE LATERAL EXTENT

FIGURE 1-2. RELATION OF PERTINENT WAVE NUMBERS OF THE
DOME-FLOW SYSTEM
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This problem is regarded as a simplified and partigl model
for the transmission of flow noise to a dome-housed transducer via
mechanical excitation of dome vibration by the fluctuating pressure
on its surface and via the sound field within the dome generated by
this vibration. The plate and inner fluid represent the dome, and
the inner, parallel surface represents both the portion of the hull
enclosed by the dome and the surface of the transducer itself, unless
the latter, instead of being contiguous with the hull, is considered
to project in front of it without disturbing significantly the
acoustic field. .

Many observations will be drawn that do not depend on
assumption of a completely explicit form for the impedance z of the
dome cover.* 1In some part, however, we treat specifically a thin
plate or membrane subject to hysteretic and viscous damping, i.e.,

having impedance

z(k,®) = oo [1(q>-1) + q%¢ + /o], (1-1)

aokz/w (plate)
qQ = (1-2)
cok/w, (membrane)

where k denotes the wave number of an exciting pressure wave of angular
frequency w along the surface of the plate,

2 2 2, 2,607 b 71 _ AN
a,” = (E/p )h,“/12(1-0 ") = ctzho /6(1-0,), (1-3)

ho is the plate thickness, Po the mass density of the plate material,
E Young's modulus, o, Poisson's ratio, c. the infinite-medium shear-

wave velocity, 8 a viscous damping coefficient (with units of frequency),
£ a hysteretic damping coefficient (dimensionless), o the mass per unit
area (=poho in the case of the plate), and, with reference to the mem-

brane,

e, = (T/cr)l/2 (1-4)

*
In Part g, some consideration is given to the fluid dome, which
has z = 0.

1-3.




-y

with T the tension (force/length).* The quantity q of Eq. (2)
may also be written

(/k )% (plate)

1° k/ko (membrane) 2-3)
with
o . Jer2o'? rate ) L6
° élco. (membrane)

k, is the resonant wave number (neglecting damping) of the plate
or membrane in isolation, i.e., the wave number of free waves at

frequency w. The relation among wave numbers is illustrated in Fig.l-2.

These parameters fix the effective values of quantities
that have significance also in more realistic and complex situ-
ations. For example, a hull or dome cover will not ordinarily
be thin for much of the exciting spectrum of boundary-layer
pressure fluctuation (i.e., we will not have wh /U L 1, where
U, denotes ship speed). Neverthelass, the dynamic behavior will
not on this account differ essentially from that determined by
our model.

1.2 Response of the Infinite Dome to an Exciting Wave

We denote the impedance at the inner surface (y=-L) for
wave number k and frequency w by z; = zL(k W), The density and
speed for the outer fluid will be denoted by p ’ ¢t and for the
inner by p , € . Suppose an exciting pressure wave

PE,0) = p e ™ TR -k k), K= (x,2)) (1-7)

of definite frequency and wave number, e.g., a spectral component
of boundary-layer noise pressure.is applied to the outer surface
of the plate. The y components k;, k; of the wave vectors asso-
ciated with the acoustic fields in the outer and inner fluids,
respectively, are then given by

*co is the free wave velocity in the membrang in the absence of
damp ing.




e

N 2 -1/2 ~
ik [ﬁ} -RZJ , KE = wyct (1-7.1)
(vhere the sign is chosen on assumption that @ > 0). For use
vhen kz >(kﬁp ,corresponding to exponential dependence on y, we

define .
t -[k"- kﬂz]lﬂo (1-7.2)

The resulting pressure in the interior fluid in this laterally
mfin;tc case has the form

P (,t) = piE(ye X R0t (1-8)

where £(0) may be normalized to unity.
In Appendix 1 [see Eqs. (13)] the ratio

r'(k,m,5) = p (F,t)/p(,t) = poE(y) /p, (1-8.1)

of the acoustic pressure (8) to the driving pressure (7) is ob-
tained for arbjcrary dome-cover impedance z(k,#). The result may
be written

( cos [k; (y+L) +a]

cos6-1 sin6l (ke /iy ") +(zky /p ) ] (k < K (1-9)

r(kp“'Y) =

* ch[KE(y+L)+9]
A A == ot = p—_—
chg + sh8[(Kp /Kyp )+ 1(zKy/p o) ]

k > k‘:;) (1-10)

where

@ = kjL +a, 8§ = KL + f(=-10),

- . - - (1-11)
tan a = ip @/kyz;, th @ =- 1p w/K;z (8=-1ia).

(I1f the inner surface is rigid, we note,

uf < @ = 2= 0
With z given by (1), Eqs. (9) - (10) become

iFl_'olr the case where the inner surface approaches pressure release
(z,=0), a form more appropriate than (10) is given in Appendix 1,

and likewise where the inner medium is infinite.

1-5.
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. / cos[kE(y+L)+a] (1-12)
F'k,w, = — — = -
s, [cos® + kyh“sin@(q”-1) ]-ik;h s in6{ (kzh") ~*+Lq*+8/w]
ﬂ (k < kﬁp
ch(K; (y+L)+4]
Y S - - 2., (1-13)
\ch + sh8(K;h™/Kh") -Koh ™ (q°-1) 1+1K;h " sHB(Lq +8/w)
(k > KD
where h¥ is the effective thickness of the plate or membrane re-
ferred to the density of the outer (+) or inner (-) fluid:
ht = o/pt. (1-14)
(We note that h'/h+= p+/p'; also, in the case of the plate, ht -
(polpibho~)

In the factor q2-1 appearing in the denominators
of (12) and (13), the q~ corresponds to cover stiffness and
the -1 to cover mass. Assuming a pure imaginary z, (purely
reactive inner surface) and € > -REL, we see from (13) that both
fluids act to increase the mass loading on the plate. The only
imaginary (resistive) part of the denominator in this case, which
will be inversely related to the maximum of ' at a resonance, is
contributed by the plate damping effects. We see from (12), on
the other hand, that when k <Zw/ci (or more generally whean k < w/c+)
there is an added resistive contribution due to the radiation
impedance associated with an outgoing sound wave in the outer fluid.

We look apart momentarily from the dome problem to the
question of modification of flow-noise pressure on a bounding
flexible plate or membrane with no interior fluid, due to the ra-
diation impedance associated with the acoustic field produced in
the outer fluid by piate vibration. The ratio of acoustic to
exciting pressure, rl(k,o», for this simpler instance is given for

arbitrary z(k,w) [Appendix 1, Eq. (15)] by

(G /e 1Tk < kY

- (1-15)
-[1+1 (2K, /pw) ] o (k > k)

Pl(k,w) =

1-6.
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the superscript + being dropped without ambiguity in this case.

With z given by (1), thie becomes
(

-1
(1-16)
1+ kyh(Sa2+p/e) + tleph(a?-1)

, (1-17)
1 - Kph(a2-1) + 1K (Cq2+B/w)

1.3 ﬁggggﬁ' of Excitation end Acoustic Pressure Averag% over a
Circular Area Terms O e wWaven er Spectrum _of Exc tation

4 The actual exciting pressure due to flow noise consists

of a spectral distributi on in wave number and frequency of com-
ponents of the form (7) assumed above.

Let the ratio of some response pressure to the driving
pressure for a particular component be denoted generally by r'(k,s).
In particular, r'(k,w,y) [=r(k,»,y)] denotes this ratio where the
response in question is the pressure at depth -y within the dome,

J vhich was given at Eqs. (9)-(10), and T';(k,w) of Eq. (15) refers

T similarly to the acoustic pressure just outside the plate without
- interior fluid.

Now the spectral density of such a response pressure, say
= P(k,w), is related to that of the driving pressure, say P (k,»), by
L PE.2) = M(K,0) P, ,e) ; (1-18)

M(K,w) is related co the corresponding response ratio I'(k,w),
i. provided
> - % .
1 r,w) =r (-k,-v), (1-19)
- by
( M(E,0) =|r(k,of. (1-20)
/
]
1-7.
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Eq. (19) is in fact satisfied by the I' and I'; given in (12)-(17)"

With reference to either a dome-housed or flush-mounted
transducer of finite size, it is appropriate to consider the spec-
tral density in frequency of the average pressure over an area.
This spectral density, say Q(w), is given in terms of the spectral
density in wave number and frequency of the point pressure, P(k,d),
where k; and k, [k = (k, ,k3)] are conjugate to the two spatial
coordinates in the plane of integration, by

@ = 42 ox, x, fite Sy, (1-21)
A A

in which the first two integrations are taken over the finite area
Ayin question and the third is taken over the entire k plane. Sup-
pose this area is circular, of radius R,- Then

2R R 2vR k™13, (kR ) , (1-22)
A0
and hence
Qw) = f dick (23, (kR ) /KR ) 1(k,) (1-23)
(o]
where, by (18) and (20),
2T 2T
Ikwe) = [ d6P®,0) = | do|rck, e, k.0 (1-24)
(o] (o]

vith @ = tan"l(ks/k)). In the limit of R >0 (L.e., kR 0,
where P(k,®) is negligible at k > k) Eq. (23) becomes, as it must,

To verify this, one notes that, if the sign of the frequency is
reversed (® »- &), then the sign of the hysteretic damping coef-
ficient { must also be reversed in nrder that the plate strain
will still lag the stress just as before, i 18- » 4 18 an odd func-
tion of frequency. Likewise, the sign of kz must be reversed in

order that the acoustic wave in fluid <+ will be outgoing rather
than incoming; however, if (kz) < 0 as in the case of Eg. (13) or
(17), the sign ofK2 remains unchanged when @ +- @, since K2 will

tlien still correspond to attenuation with distance away from the
plate.

1-8.
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Q(w) > P(e), (1-25)

where P(») is the spectral density in frequency of the point pres- _
sure:

P(w) = f a2kP(E, ) . (1-26)

As R increases, the area averaging reduces Q(¢®) delow the limiting
value P(w).

‘ 1f the spectral density of averaging pressure Q(y,») on
an area of the immer surface (y =- L), computed from P(k,w,y)
[}'P(E}D,y‘ZPO(EJnﬂ via (23) and (24), is regarded as representing
the spectral density of force on a dome-housed transducer of this
area according to the present model, the present assumption of
impedance zL(k,wb over the entire inner surface implies the assump-
tion that the result is not seriously affected by extending the
condition over qhe transducer face as well as the area surrounding
it. Similarly if Ql(ub, the spectrum of &verage pressure on an area
of the flow-bounding side of a plate, is regarded as representing
the corresponding spectral density for a flush-mounted transducer
(with the inner fluid omitted as at Eqs (15)-(17)), the use of the
plate equation with impedance (1) unmodified for the separate
transducer insert implies the assumption that the result is not
seriously affected on this account. The assumption in the former
(dome) case appears reasonable. In the latter it probably is in-
valid near a resonance if R, 1s not small compared to the resonant
wave length; a more appropriate approximation will be introduced
later (Section 2.6.3).

I1f a response ratio I'(k,») reduces to a function I'(k,w),
i.e., is invariant to direction in the plane of the plate, as is
truve for all responses in the present model, Eqs. (23)(24) may be
written

Q(w) = f dkx [ZJl(kRO) /kRo]ZM(k,w) I,(k,9), (1-27)
(o]
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where

I (k) = f dePO(E,w). (1-28)
o
In (27) the driving pressure is characterized by the factor Io(k,ﬂa,

the system response by M(k,0), and the area-averaging process by
{23, (kR ) /kR_]°. Likewise, Eq. (26) may be written

Plw) = ]dkkM(k,w)Io(k,w). (1-29)

o

1.4 Approximate Forms for Response Spectra Based On the Character
6% the Excitation Spectrum and of the Response Functlion

We consider spectra of force and pressure at the inner

surface, designated by the subscript L. First we discuss briefly
and qualitatively the spectrum of driving pressure, Io(k,w), or
P, (k,w).

In an approximation common to a fairly general class
of calculational models of turbulent boundary-layer flow, some
convection hypothesis is assumed such that the spectral density
PO(E,w), expressed as an integral over distance (y) frcem the
bounding wall, derives a contribution only from that distance,
if any, such that the frequency w and streamwise wave number k1
are related by

k, = w/u(y),

where u(y) is the mean flow velocity at the distance y. In such
an approximation PO(E,w) vanishes unless

ky > ofU_. (1-30)

Clearly any model that assumes pure convection of velocity
fluctuations or eddies at a local mean flow velocity and therefore
yields & pressure spectrum PO(E,09 that vanishes for k < w/U°° is in
this respect only approximate. In actuality, there must be a ccm-
ponent, however rapidly decreasing, that extends on down to k = 0.
I1ts magnitude and dependence are not yet known and will not be

further considered here except for the following remarks, (see also
Section 2.5).

e e i e
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] Suppose there exists a wave number k) = kmcn) such that

f~ PO(E;w) is negligible for k < k ; e.g., if the convection hypothesis
of (30) vere accepted, one could take ky = ®/U,. Then for R, suf-
ficiently large that kao >> 1,Eq. (23) applied to the excitation
pressure (I=I ) reduces approximately to

Qy () < 4(2/m) Zn dide (KR ) “3c0s 2 (KR -37/4) T, (k,0)

[ ) | (1-31)
_g g = (T { dkk'zlo(k,w)
nm

_», ..

e R A (AR
ey -
L] »

wheie the asymptotic form of le

i is used in the first step and

R replaced in the second by its local average over a wave number
interval Ak large enough that Ak >> Ro"1 but small enough that
the change in Io(k,w) may be neglected. Under the present assump-
tion, the area scale of the pressure field, being proportional to
PO(E}w), vanishes.* Correspondingly, Eq. (31) shows that Qo(w)
decreases not as Ro'2 but as Ro'3. As noted earlier, however, ex-
perimental evidence on the area dependence of average-pressure

i g spectra due to a turbulent boundary layer indicates that this
dependence, where wRO/Uw >> 1, is more nearly as Ro'2 (e.g., see
Ref. 3). The implication of such dependence is considered in
Section 2.5.

It is a common approximation in treating boundary-layer
pressure fluctuations to set the boundary condition that the normal
| derivative OJp/dy vanishes at the wall (Ref.l). To the extent of

the validity of this approximation, it can be shown that Po(O,w)=0
{ without use of assumptions related to convection (Refs. 1,18).

i Again, however, this result will not hold exactly for the actual
flow. In any event, the actual Io(k,w) [see (28)] will have a

A vanishing area scale, does not refer to vanish-
ing correlation between points with nonvanishing spatial separa-
tion, but to a vanishing area integral of the correlation function.

** The vanishing of P_(0,») is removed also by compressibility (Ref.
14) and by inhomoggneity of the flow in the boundary plane.

l 1-11.
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maximum at k = w/nU_, say, where n is somewhat less than unity

ard depends on w. On the low-wavenumber side of the broad peak,

I, will decline precipitately near k = w/U_, and on the high side

will gradually become very small between k = w/6v,,the convective
value of k, at the edge of the viscous sublayer, and w/6v,+v,/6v, where
-6v/vy 1s roughly the thickness of the viscous sublayer and v, is the
usual friction velocity, which is of the order of the rms fluctuating
velocity (See Figure 1-3).

It is assumed here that the spectrum of turbulent pres-
sure remains substantially unaffected by the resulting vibration
of the bounding wall. If the damping of this wall is sufficiently
small, however, this approximation must fail; in particular, if
there is no damping, at those values of k, w for which the spectral
density of wall displacement per unit pressure becomes infinite on
account of a resonance, the actual spectral density of turbuleat
pressure as altered by the interaction must vanish.

With regard to the response function ‘F(k,w,-L) ML(k w)
of the present model, mentioned earlier and considered in detail
below, it possesses a resonant spike centered at some k = kr(w) and
with some half-width tk.* The height and sharpness of this resonance
decrease with increasing damping and decreasing plate thickness or
membrane tension. In thelimit, the plate or membrane louses its
dynamic properties and becomes merely an impervious separator of
inner and outer fluids. 1In this case the attenuation of pressure
by the dome fluid is not compromised by resonances that may produce
high response. The resonant wave number, as this limit is approached
at fixed w, increases without limit. With actual plates, this limit
could not be usefully approached, and it would be preferable to
choose plate parameters merely to place the resonant wave number kr
for the w of concern well on the lower side of the peak in the
excitation spectrum I (k w), i.e., at some k >> w/U_. On the other
hand, one would pieféf to have k. >wfe”, since otherwise the reso-
nant wave is not rapidly attenuated within the inner fluid.”

These considerations apply also when (0 >) y # -L, with a
suitable lower bound on |y|.

%7, -
1f k5 < w/e , the sound wave is actually propagated in the inner
fluid.
to plate damp

(If ky < w/ect, we recall, there is an added contribution
ing due to a radiated sound wave in the outer medium. )

1-12.
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In these considerations for real domes, however, the
finiteness of the dome is important, as seen in Part 2 to follow.
Specifically, the finite size effactively diffuses the wave number
spectrum Io(k,w) of noise excitation by coupling it for each k to
a modal response function, say'rnowﬂz, which corresponds to a wave
number k. ¢ k (Ref.6 ). It thereby shifts the effective mean wave
number (i.e., the mean wave number (f the excitation weighted by
the response function) to higher values, where the exciting spec-
trum is greater. Further consideration is deferred to Part 2.

1f resonance occurs at a k. < o/U_, i.e., below the
range of large and rapidly varying Io(k,ao, the freguency spectrum
of average pressure at the inner surface, QL(ub, given by (27),
may be approximated roughly, assuming a pronounced resonance in

M, (k,0), as

Q@) ® (@ +Q (), (1-32)
with
O Qf) ® I (ko) ] dice[ 23 (kR ) /kR 1224, (k69 (1-33a)

and QLQ&) the same as the original integral (27) for QL(d» but
with the interval of k near resonance omitted. The resonant con-
tribution (33a) can be further simplified if the resonance width
26k and the approximate width wRGl of a loop of le(ka) are highly

disparate. 1f ker > 1, we have

QL) @GRk (k,,0) f dig (k,0)  1f BKR, >> 1
o

. (1-33b)
'2 - 2
4R° krlle (krRo) I, '.r,w)fdkML(k,w) if BkR << 1,
o

where an approximation similar to that in (31) is used in the first
instance. If krRo << 1, we may write instead

Q@ k1o (k0 [ oy ko). (1-33¢)
0




v SR iming

) IR oo

————

The high- and low-wavenumber contributions to the non-
rescnant part QL of (32) can be estimated in order of magnitude
in terms of the high- and low-wavenumber parts of QOGD). We defer
consideration of the low-wavenumber contribution to Part 2, where
a lzterally finite dome is treated. As for the high-wavenumber
part, say Q ., defined as due to wavenumbers k > w/U_, let the
wave number at the peak of hosk,w), or of k'zlo(k,w) if an average
over the factor [2J;(kR )/kR,]“ is appropriate at the R, in ques-
tion, be denoted by w/qU_. Then, evaluating the factor M in the
integrand at this peak and extending the integration over all k,
we obtain a simple product with the corresponding part, say Q0+
due to wave numbers k > ®/U_ in the average-pressure spectrum
Qon) on a flush element of the same size:

Q@) % M (@/nU,,9)Q, () (1-34)

In epproximations (33b) or (33c) for the resonance con-
tribution, pertinent to the responsz functon M, we need only

I e (e,0),

which will be given below. With. reference to the excitation spectrum,
for the resonance contributions we need Io(kr,w), which, since
k. <®/U , we are presently at a loss to estimate reliably.

We note that it would not do, if one thinks the resonance
contribution may be significant, to assume for the space-time auto-
correlation function of the turbulent pressure some arbitrary,
grossly plausible form, as for example '

£(tyn Ll (1-35)

where (CI,CS) represents the vector separation of the correlated
points on the wall, 1 the time difference, and nU_ an effective
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convection velocity. For such an assumption yieids a definite
dependence of I (k,») on k in the region of importance, i.e., at
k = k. <<o/U_ in the tail of the spectrum, which has no rational
basis and probably gives too large a value (see also Appendix 5).

1.5 The Response Fur:tion and Its Resonance Properties

Near resonauce the form (13) is appropriate for r'(k,o,y),
or more generally Eq. {10) or Appendix 1, Eq. (13¢). From (1),
appropriate when the impedance at the inmner surface is not too low,
writing the dome-cover impedance as

z(k,w) = R + iX,

where by (1)
R = od(q2L+p/a), X = ow(q?-1), (1-36)
we have
Fin.3) = ch[Kj (y+L)+8] .

ch8 + sl (K5pT/K3/p7) - XK /p @) + 1hB (RK; /p )

If the dome damping is moderate and the depth 'yl not too great,
in the neighborhood of resonance I'(k,®,y) can be approximated by
the standard resonance form

F'(y,®,y) ’r]‘(‘:ﬁ"%{ﬁ' (1-38)

r

where b(®w) and the half width 5k(®w) may be regarded as roughly
independent of k. Then M, given by

|2¢-_._J bz

k,0, = k,®, ’
M(k,@,y) = | T(k,0,7) i T ?

attains a meximum roughly where kakr(w) . If the real part of the
denominator of (37) is denoted for a given @ by D(k) and evaluation
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of functions at k=kr is specified by a subscript r and differen-
tiation with respect to k by a prime, Eqs. (37) and (38) yield

ch[K;,. (y;l-l.)+’<‘x] shé (RK; /o~ @
b= - _k s bk = __r-.'i"‘%?mp__z' )
‘ b IE;’ r
and kr is givern by the equation D(kr)=0.

We now assume pt = o7, ¢t = ¢”. Eqs. (36)-(38) then
yield for kr the equation

A
a2 = 1+ 2/K, h(1-e" %), (1-38.1)

Z Ky L+ 9 > 1,
L o 4

If we suppose that at resonance we shall have ’e‘ n

r
(38.1) reduces approximately to
0.2 %1+ 2/Ryh (1-39)

and (37) to

)

2e” ch[Kz(y+1)+é]

Fk,0,5) * 3R, 7o) + T (RK, 7 7) * (1-40)
This approximation together with (38), when the dome cover is a
plate, yields also
b ¥ 2k04K2r(kr3h)-1(5K2r ¥ sz)-le'erch[xzr(yn.)m],
(1-41)
ok ® k4K, 2k "3 (5K, 2k, D) “Lq, 2eepl0),

where k 3 @/c. Eq. (39) is seen to imply that k. > k,, i.e., the
presence of the fluids bounding the plate decreases the resonant
wave length, as expected for higher mass loading.
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Up to moderately high frequency, we may assume kr2 > lgmz
in order to obtain from (41) the more transparent forms
_1 -1 -(K, L+8)
b of (2/5) (h+2kr 1) e xzr. ch[xzr(y+L)-la],
' 1 (1-42)
Bk o (1/5)k.[L+(BAv) (142/k h) ~7],
2., 2,1/2
in which the exact form x2r"(kr =ky ) is retained only in the
exponential functions. In the approximation of (42) it is further
found that the integral appearing in Eq. (33b) end (33c) is given by
| j (K ,0,-L)  (7/25) (142 2H 2 (he2k7l) =2
o (1-43)
X exp(-2K, L) (6%) L.
In the case where the 1\nner surface has low impedance and
Eq. (37) is replaced by the corresponding equation based on Eg.
(13c) of Appendix 1, in the approximation where KZrL + 4 2 1, ana-
logous to the epproximation of Eq. (40), kr and 8k are given by the
same equations as before, and b differs from that given by Eqs. (41)
or (42) only in having ﬁr[=1<2rr.+&] replaced by Ker+"y\ and
chR, . (y+1)+8] by shlK,_(y+L)+{1. ©(1-44)
To approximate kr’ suppose first that the dome parameters
and frequency have values such that
Kyeh << 1 and k.2 5> k2. (1-45)
then (39) becomes
qr2 o 2/krh.
In the case of the plate, by definitions (5), the desired resonant
wave number is thus given by
1/5 ,
kr o k°(2/k°h) > (1-46)

.
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The first of assumptions (45) is thus equivalent to

khoot 215 )4/ < 1or kb << 1 (1-47)
by Eq8 (6) and (3) we have

kb = (p,/p) (@b fcy) 216(1-0,) 11/, (1-48)

As a numerical example to indicate the magnitudes of the
quantities in (45) and (47), consider a steel plate of thickness

ho = 0.25 in. with water on each side. We find

a, = 8.5 n?/sec, ko = 0.86(w12v)1/2m'1, koﬁ = 0.042(UV2w)1/2,

k, = 0.00410m/2#)m71, with /27 in cps. At 3.5 kc, for example,*'
we have

k, =50.9 m™!, k, = 14.6 m"}, k h = 2.5,

so that condition (47) no longer holds at frequencies as high as
this.

In the case of the membrane, again assuming (45), Eq.
(39) yields

k. %2k (2/k )13, (1-49)

A perturbacion procedure may be used to obtain the maxi-
mum of M(k,w,y) more exactly than given by (39). The results are
of too little interest to be quoted here. If L is too large or {
or ph/w is insufficiently small, however, specifically if kL > 5/2¢
when 2C/krh 2 Efw or if kL > 5/ [krh(BIw)] when 2(/krh < B/®, then

has no resonance maximum at all; the resonant contributions ate
obliterated by exponential attenuation within the fluid, and contri-
bution from low wave numbers is no longer correctly described by
Bqs. (33a)-(33¢;: in this uituaticn, however, these contributions
tend to be unimportant.

;Thc relation (47) nevertheless holds in much of the limited re-
gime where the thin-plate treatment is strictly valid (kh, <<1) and

the earlier assumption k > kr holds, since kr > ke’ whence koh =
ko ho(po/P) << pgo/p-
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If the mass density of the plate (or membrane) is not
sufficiently low or its stiffness sufficiently high, the condition
(47), in view of (48), is not satisfied. From (39), in the opposite
limit, where

Koch > 1, (1-50)

we have simply

k, ok [1 i 2/(k°2-kw2)1/2h]l/n, (1-51)

(plate n=4, membrane n=2) or simply kr'“ ko’ i.e., the resonent

k is nearly that for an isolated plate. In view of the small
fractional power involved in Eq. (46) for the opposite limit, it
is clear that, except ac very low frequency, kr is larger than ko
by only a modest factor. For arbitrary koh, kris given implicitly

from (39) by

k, = k (Le2/R, )P, (1-52)

where n = 4 for a plate and n = 2 for a membrane.

It is pertinent to dome design for control of resonant
noise to consider the effect on the resonant wavenumber kr of
variation of the dome parameters. As the relative stiffness
parameter a of the plate is increased at fixed density Po?
either by increasing thickness ho or shear velocity ct(see Eq. (3)),
or as the tension in the membrane is increased at fixed area den-
sity ¢ (see Eq. (4)), for a given w we have k, ~ 0 and k >k
From (38.1) (assuming e 0), for k /k K1 we find, in fact

* 1/2
~ 2...-1
k.~ k[ +(kZhL) T (k /k) ™)

1f 4(L/h) (k /k,)" << 1, and

kY Ky [1+ 4 Ckh) 2k, Mk, 2122

r
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1f 4(L/h) (k /k )™ > 1; in the extreme limit of k_/k, > 0, the
former becomes

ke * Ky [1 +(2k,BL) "L (ko /"1, (1-53)

with n = 4 for a plate and n = 2 for a membrane. On the other
hand, for a plate, if the thickness h, > 0 at fixed density and
elastic properties, we have from (3) and (6) that k, « ho-l 2,
and, from (46),

-3/5 _
kr [/ ho »> o,

In this limit where hO -+ 0, the plate impedance vanishes. Thus,
as the limit of a fluia dome is approached, the resonant wave
number increases without limit. For a membrane, if the mass per
unit area ¢ » 0, from (49) we have

ke > @p?/ml3.

If T remains fixed in this limit, we have k, = w(o/T)l/2 > 0 and

k. > const # 0, but if T > 0 also, corresponding to a limit of
vanishing membrane impedance, we again have k., > = as a fluid
dome is approached. '

In addition to the resonance considered above, at which
the denominator of (13) vanishes except for the imaginary, intrinsic
dome-cover damping term and which occurs at a k=kr such that kr > k
and kr > kw’ another relative maximum in I' may occur at a k = k;,
say, such that k; < ko and k; < kw, at which the denominator of (12)
vanishes except for the imaginary part. 1In this case, however, the
imaginary part, in ¢ddition to intrinsic dome damping term, contains

o]

a term -sin@ corresvyonding to damping by radiation of energy into
the outer medium. The value k; is given from (12) by the equation

2
q." =1 - cos 8./k, h (1-53.1)
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{cf. (38.1)) where q' denotes q evaluated for knk' and likewise
for er and 9; Eq (53.1) can be satisfied only if

The corresponding maximum of 'Fl even for negligible dome damping

({=p=0), satisfies approximately

'
I-‘1.'

< 1/| sme;l .

Thus this value corresponds to a large amplification of the driving
pressure only if @ & (kw k' 1/2L + a << 1. Assuming a =~ 0, this
condition together with (53. 2) would imply

owh/e >> 1, i.e., wg/pc >> 1. (1-53.3)

Condition (53.3) is not satisfied for reasonable cover mass at
frequencies of concern, since in the present context p refers to
water (cf. air). Accordingly, we do not further consider this type
of resonance. :

It will be pertinent in Part 2 to consider also the reso-
nant behavior of I'(k,y,») as a function of frequency ® for a given
exciting wave number k. Analogously to (38), then, we write for w
in the neighborhood of resonance

L(k,®,y) '-‘-‘5_—&371% : (1-56)

*The maximum, of course, does not occur exactly where the real part
of the denominator vanishes. One may usefully plot the denominator
of I in the complex plane with k as a parameter.
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where B(k) and the half-width 6tw(k) are regarded as roughly in-
dependent of mr. The resonant frequency ®. is again given by Egq.
(39) wvhere a subscript r now denotea evaluation at @=®_ with the
given k. We let © (k) denote the resonant frequency for the iso-
lated plate or membrane at wave number k:

ak? (plate)

w = (1'55)
cok (membrane) .

Then from (39), similarly to (52), since now q.” = (v /02, o
is given implicitly by

w_ = _(142/K, h) "}2 (1-56)

Corresponding to the approximation (51) when KZrh >> 1, we have

1/2 {-1/2
o ®o |142 [ kz-(wo/c)z} h : (1-57)
On assumption that the k of concern is such that k >> k,, simple

expressions may be written for B and tw of (54) analogously to (42):

= (K, L+3)

B Yo (kh) “L(L+2/kh) e ch[K,, (y+L)+2],
(1-58)

o & (172w, [CH(p/o,) (L+2/kh) L),

In the case where the inner surface has low impedance, and again

KZrL#9;L], the quantities w. and &0 are still as given ahbove and

B differs by the replacement stated at (44).

*If the damping and hence also tw are sufficiently small, the mag-
nitude of the half-width 5w beccmes of less interest than a fre-
quency width defined as that fraction of w_ over which T' exceeds
its neighboring nonresonant level by a factor large enough that
the resonance contribution is significant.
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At wave numbers high above resonance such that k >> kr
(>k,) and KL >> 1, the response function for a high or low-impe-
dance inner surface, by Eq. (5) and (13) or Appendix 1, Eq. (l3c),
respectively, becomes approximately

ze"“*ch[k(y+1.)+9](kolk)“(kh‘) -t :
P(k,y) = p (1-39)
2e'kLsh[k(y+L)+7](ko/k)n(kh-)-l

where n = 4 for a plate and n = 2 for a membrane and, we recall,
h- = Olp-c
In the nonresonant contrikution Qs Eq. (34), the requisite

response function M evaluated at the wave number of peak excitation
w/nu, = k, is given, assuming k. << k,, by the former of Egs. (59) as

A 2

-2
My (k@) ¥ (1-e2%) " exp(-2k L) (k")

(k k) 2" (1-60)

(plate n = 4, membrane n = 2). For typical parameters, the value of
this response function is extremely small, but in the case of a
strictly finite dome its value will no longer determine the response
to excitation even at the high wave numbers (2w/U_) .

In the present infinite-dome case, the efficacy of in-
creasing the damping parameters { and £ to reduce the response
evidently depends, in view of Eq. (32)-(34) aad (44)-(52), on
whether the ''tail" value of the excitation spectrum, Io(kr,w), is
large enough that the resonant contribution predominates in the
transmitted pressure.

For reference in Part 2, we record the response co-
efficient I' for a few special cases. For a fluid dome we have

z(k,®) = 0 (1-61)

In this case I'(k,w,y) displays no resonance behavior at any k. In
the important special case of a fluid dome with equivalent interior
and exterior fludis, i.e., with p+ =p I pand cF=c e, we
have from (9) and (10)
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e cos[kz(y+!.)+o] (k<k,)
r(k,o,y) = (i-62)

e ch{X,(y+L)+8) (x> k)

or in case of a low-impedance inner surface, by Appendix i, Egs.
(13¢c) and (134d),

ik
-ie ¢ zuy)sin[kz(syﬂ.)ﬂ] (k <k,
r(k,o,y) = (1-63)
- (/L) A
e sh[l(2 (y+L)+v] (k>k)
in which ¥ or 9 now characterizes z, or in case of an infinite
inner fluid, by Appendix 1, Eqs. (13e) and (13f),
-k y
(1/2)e 2 (k< k)
I‘(k,(l),y) = sz (1'63 .1)
(1/2)e . (k>k,)

1.6 Average Pressure on a Non-Rigid Flow-Bounding Surface

The work of Section 1.5 for a dome-shielded area may be
carried through similarly with respect to an area in the outer
surface, on which the average pressure due to flow noise is al-
tered by the acoustic field produced outside by the flexible plate
or membrane.

In this case the net pressure on the plate is the sum
of the flow-noise pressure and the acoustic pressure just outside
the plate, whence the spectrel. density is given by

Pl(ﬁyw) = Ml(kvw)Po(ﬁaw) ’
My (ky@) = |Lry (09|

with I'y given by Eqs. (16)-(17). If the resonance contribution
to the spectrum of total average pressure is significant at all,
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ve must have irlf >> 1 at resonance. In such a case the average-
pressure spectrim Ql(u) may be approximated anslogously to QLQp)
for the inner surface of a dome as at Eqs. (32)~-(33) by replacing
M (kp) in (338)-(33c} by|r,(kp)f and replacing W (w/pU_m) in
(34) by fuor @/, 0f .

Analogously to (37), we may write ry by (13) as

-1
L1(k,9) = TXE e IR0 (1-64)

In the neighborhood of a resonance, we may write analogously to
(38)
b

I‘l(k,w) '-!k—_-rr-l—l'—rsfl-. (1-65)
and analogously to (54)
B
)69 * oo - | (1-66)

Comparison of (64) with (40) then shows that the quantities krl'
bkl, b1, D1 6&1, B1 cén be obtained from the expreasiona pre-
viously given for their counterparts k - 6k, b, By 6w, B by re-
placing p wherever it appears by p/2, lnd hence also h %y 2h, and
also replacing k by k rl [e.g., in expressions (42)], @, by ® 10
and setting LJ&-O In particular, the relation for k rl anllogous
to (39) is

q3 o1 + 1/K, ;h (1-67)
vhere q_, = q(k=k_,) and K, ; = K, (k=k ,). Similarly, analogously
to (43)

0 -2 /
[kl aft « 25y (h+k,;1) (k) ™t (1-68)
o .




As, wvas true for the pressure interior to a dome, a resonance
meximum oflr,j may occur at & kek} such that ¥, < k, for which
the dome damping is supplemented by damping due to radiation into
the outer wedium [8q. (16)]. It occurs, sccording to (16), roughly
at k;_,l Gfko and hence only if ké < k,. The value of't‘ll at this
maximum sharply exceeds neighboring nonresonsnt values if
(sz-koz)llzh >> 1, a condition that implies (53.3); even if this
condition is satisfied, however, stilllrﬂ <1 a: the maximum, We
do not further consider this type of resonance.

From Eq. (16),at wave numbers high above resonance
(k > krl) the responee function becomes, anslogously to (59),

ryGk,® o (kh) "k /io™ (1-69)
(plate n=4, membrane n=2).

1f the wave number of resonance lies well below that of

the peak excitation, i.e., k., << k (3w/1J_), the non-resonant mod-
{ficatien due to Pl in the factor|1+rl(w/quw,ﬂ%F is small since in

this case,by (69) -
Py (ks = (e "Lk k)™ << 1

[cE. (60)].
1.7 Focusing Effect

If the dome surface is not planar, as assumed in the
present model, but has pror.unced curvature, a focusing effect
can occur that will increase the pressure or force on an interior
area over the value for the planar case. For example, if the
dome surface over which the exciting flow passes is circular-
cylindrical and the inner surface shielded by the interior fluid
is also cylindrical and concentric, whether the flow passes paral-
lel or normal 10 the elements of the cylinder, the acoustic pres-
sure at the inner surface is amplified by the square root of the
ratio of cthe radii of the outer and inner cylinders.

*In the context of radiation in‘o air by a vibrating plate, such
resonances require and receive cunsideration.
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PART 2
DOMES OF FINITE EXTENT

2ol Introduction

In Part 1 a simplified model of a sonar dome with trens-
ducer (and of a flexible plate with flush-mounted transducer) was
studied with regard to the pressure fluctuations on the transducer
that originate from the turbulent boundary-layer flow and are
transmitted by excitation of dome vibration and generation of
sound in the interior (cr exterior) fluid. The dome (or plate) in
part 1 was considered to be of infinite lateral extent.

In the present part, the same basic simplified model is
assumed, but the dome and the interior fluid are taken to be finite,
being bounded by a cylindrical wall on which a fixed-impedance con-
dition is assumed tc apply (see Figure 2-1). Much of the pertinent
development is contained in Appendix 2, and results therefrom will
be taken without discussion.

In the case of the infinite dome, suppose the dome param-
eters (plate thickness, etc.) are so chosen that, for a fixed oper-
ating frequency w, the acoustic resonance of the plate fluid system
lies at a lateral (x,z) wave number kr substantially below the peak
of the wave number spectrum of lateral pressure fluctuations due tc
the turbulent boundary layer, {.e., k< w/U_ .- Then, as pointed
out. in Part 1, unless the damping at resonance is very small, the
pressure fluctuations transmitted through the dome and interior
fluid to the transducer are highly attenuated relative to the ex-
citing fluctuations on the outer surface.* In the case of the
finite dome, on the other hand, the excitation spectrum at wave
numbers near its peak is coupled (by "functional overlap') to the
response function at much lower modal wave numbers lying near res-
onance or corresponding to propagating waves. Hence the transmitted
pressure can be much larger than for an infinite dome, and can de-
pend differently on the properties and parameters of the dome and
the turbulent flow.

*It may be said that the wave number spectra of the excitation and
of the response are highly mismatched.
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2.2 General Relations Between Responce and Excitation-Pressure Spectrsa

Let A denote the cross-section of the cylindrical dome
(hot necessarily circular) and X the two-dimensional position vector
of a point in the cross section. Let {xn(k)) denote & complete set
of orthonormal eigenfunctions cf the two-dimensiongal  Helmholz
equation that satisfy the boundary condition prescriped on the bcund-
ary of A (i.e., on the lateral wall of the dome) :

7+ _2)x_(® = 0. (2-1)

Consider a random fluctuating pressure on the outer
(y=0) end of the cylinder (i.e., on the outer surface of the dome)
and assume it stationary in time and space with a spectral density
in wave number and frequency PG(E}Q)[EE(kl,k3)].

For any particular realization of the random pressure
field let the spatial dependence of the exciting pressure at a
given frequency be expanded in normal modes as

Po® = Z b X (®. (2-2)

Any response quantity of interest, say the pressure at a depth -y
within the dome, has a similar expansion:

pR,y) =~ Z 6.8, NX [®, (2-3)

in wvhich gn(y) is defined to satisfy the one-dimensional Helmholtz
equation

[dz/dy2 + (sz-knﬂ g, ()=0 (2-4)

and the boundary condition at y =- L, and is arbitrarily normalized
to gn(O) = 1; Eqs. (4)*and (1) ensure that p(R,y) as given by (3)
satisfies, as required, the threc-dimensional Helmholtz equation

(P4, 2yp (B,y)=0 . (2-5)

(The w-dependence of such quantities as gn(y) is here being sup-
pressed.) The coefficients B, in (3) are determined by the excita-
tion coefficients bn of (2) and the boundary condition for the

w;n equation referred tozby a n;mberfwithout hyphenzteg pregix is
ﬂ.t%-%ﬂer&%rt(l(-i)?r ) as the reference; e.g.,(4) here denotes
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acoustic field on the baffle surrounding the outer dome surface
and bounding with it the exterior fluid. The relation is & linear
one which we may write '

ﬁ=§‘7 b.. (2-6)

n ns s

The coefficients Vpg Will be considered subsequently for a sim-
plified form of the dynamic-acoustic model.

The cross-correlation of pressure at two points Kl and
R& at the same depth (-y) and time, per unit frequency range, is
found by straightforward use of Fourier transforms and the above
equations to be given by

P@,R,B,y) = 22X ()X (By)gg (7)8gs ()

(2-7)
X .z.}s:,vzs'yn' ijdZEa:(k) ag (k) Po(‘k,w) ,
where
o, ® - [ R EE®. (2-8)

A
Hence, the frequency spectrum of the average pressure on any plane
area A  at depth -y is given by

32 [ R, [ R0 F) Ky
A A

o (4}
2
2Rx (R 2-9
rzu{_!d Fxn(R)}Sn(Y)-E‘ynsas(R)l (2-9)
o

Q(w,y)

Angdzk P (k,0)

jdzTc' Q(k,®,y).

Both gn(y) and v, here depend on @, According to Eq. (9) the
resporse at lateral wave number kn to a driving pressure at ks’
reflected in 7nsgn(y), is coupled to the excitation spectrum at
wave number k, given by POCR¢5), by an overlap coefficient, as(k),
between wave numbers k and ks.
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2.2.1 Elements with Fluid Boots

We digress here from domes to note other results of
interest. If the averaging area is coexteusive with the cylinder
cross section (A =A) and the wall is rigid, then in Eq. (9, by
orthogonality of modes,

[ X ® =0 (A=A, nd0)
AO

for all modes except the piston mode xo(ﬁ)=A'1/2. In this in-
scance the average pressure at any y, formed by integrating Eq.
(3) over the cross section [cf. Eq. (9)], is due solely to this
piston mode. Likewise, the ratio of the average pressure (or
frequency spectrum thereof) at any depth (y < 0) to that, say,
just inside the outer surface at y=0 is independent of the source
or wavenumber distribution of the exciting pressure, since, by
use of Eq. (3), this ratio is simply go(y).

Hence, if a flush- mounted transducer incorporates a co-ex-
tensive boot over its face that is equivelent tec a fluid and has rig-
idly constrained sides, and if the transducer properly measures the
force (in a given frequency band) integrated over its active
face, the signal-to-noise ratio is expected to be independent
of the thickness of the boot.* This result does not strictly
apply to the limiting case of no boot, however, for the follow-
ing reason. The noted lack of dependence on excitation wave
number is displayed by the depth dependence of the averaged in-
terior pressure . The latter, just inside the outer face
(y=0_), 1is equal to the sum of the averaged exciting pressure
and exterior radiation pressure. For fixed excitation pressure,
i.e., fixed force on a bootless flush element, this radiation
pressure due to the outer acoustic field excited by surface
vibration of the fluid boot is wavenumber-dependent. Hence

*This independence of wave number noted for the area-averaged
interior pressure can be shown to apply similarly under certain
boundary conditions when the cylinder is an elastic solid in-
stead of a fiuid. Possible boundary conditions include those
where the sides are rigid but slippery and so also is the
inner face.
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the ratio of interior pressure to excitation pressure is also wave-
number dependent. But this ratic is just the ratio of the response
of & booted element to the response of a bootless element. Since
noise and signal have greatly different wavenumber spectra, the
signal-to-noise ratios for bootless and bouted elements may thus
differ somewhat.

1f the fluid cylinder has sides that are not rigid
but instead approach pressure release, the interior pressure
averaged over the cross-section is no longer due to a single
acoustic mode, and its depth dependence becomes wavenumber
dependent. In particular, the average pressure at greater
depths is relatively smaller for higher wave numbers, since
average-pressure-carrying modes excited by the higher wave
numbers are more weighted toward higher modes that damp out
more rapidly with depth. Hence in this instance the signal-
to-noise ratio for a booted element is expected to increase
with boot thickness.*

* . . . .
The decreasing impedance of such an element is unwelcome in
signal transmission, however.

ey




2.2.2 Circular Cylindrical Dome

we now consider specificaily & circular cylindricesl dome
of radius a. The eigenfunctions Xn(R) are then identified as

x (B = () Y2y 5 k)

in two-dimensional polar coordinates, where the eigenvalues kun
are to be fixed by the boundary condition at the wall =ud may be
written

kmn = xmn/a

with XN independent cof a. The normalizing coefficient Nmn is

given by
Nmﬁ - 207 sz * ) -1 Fn) I (xmn)]a1
= Za'z[sz(xmn) 1-(m/xmn)%}+ Jaz(xmnﬂbl. (2-10)
From (8) one finds
amn(k) = e-imﬁcmn(k)’ (k2=k12+k32) (2-10.1)
where
e (K) = (Zﬂ)llzimNmnaz kaJm(xmn)J&(;a)-anJm(ka)J&(xmn) 21

(ka)

xm-
and B = tan"l(ky/k)).

We wish to consider the spectrum of average pressure on
a finite area Ao’ representing a transducer in the dome interior,
and in particular at tie inner surface (y = -L). It will be
consonant with the rudimentary model under consideration to assume
that the ar : AO is circular of radius R, and concentric with the
dome cylinder (hence R, < a). In this case the spectral density
of average pressure (9) reduces to

-1/ 2

2 -1 S

Qe,y) = 2(TrRo ) j'dkho(k,wii kn Jn(knRo)Nngn(Y)g'Vnnan' ’ (2-12) 1
o
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where I, is the sngle integral of che driving spectrum Po(k,m)

(Eg. (1-28)], and the azimuthal modal number m is understood to

be zero and is dropped as an index here and hereafter whenever only
m~=0 enters (e.g., Cn = Cons etc,). The unspecified boundary con-
dition on the surface of the baffle 1s assumed not to depend on
azimath angle, sc that, for arbitrary azimuthal modal rumbers m,m',

we have «y =0 1if m#¢m' or, say, ' 6

m
23
mnym' n' Yon;m'n' "nn' "o’ *

2.2.3

Spectrum of Acousticelly Modified Pressure Outside Boundary

CZ iaterest also is the spectrum of average pressure on
an area AO in the outer surface of the deme, which is due to the
exciting turbulent pressure modified by the acoustic pressure in
the outer fluid at the boundary (y=0). As discussed in Part 1,
when the inner fluid is considered absent, this configuration
parclally simulates that of a flush-mounted transducer in a finite
flexible plate. Expression (9) again appl.es with the response
coefficient gn(y)vns becoming now rather

g1n'yne + 6ns’

where 81n is the function analogous to gn(y) but pertaining to the
outer medium at y=0 and the Kronecker delta takes account of the
direct driving presesure due to turbulence, In the case of the cir-
cular cylinder with the ares A, taken to be circular and concentric,
Eq. (12) similarly applies with gn(y)vnn. become 81nYnn' Yonn' *
where 81y DOW represents gy . and Yan' again represents Vgh' for
m=0 .,

The sum over n of the unity term in Eq. (9) or (12) (i.e.5 )

with gn(y)vns replaced by 81nVYns ons c8n be performed explicitly,
and indeed we know that 1f gln=0 we must obtain the force spectrum
due to the driving pressure glone. The sum is effected in the
general case of Eq. (9) by use of the following closure property
of the eigenfunctions Xn(F):

2 X EX,Ry) = 8(]-Ky).

2-8.
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One immediately obtains for the spectrum of average pressure on
the outer surface

2
-2 2= ik.R
Ql(don jdzl Po(t,u) ld R[e +§ 31n§ 7m's(k)] (2-13)
(o]
or in the specizl case of Eq. (12)
Q, (3-202,2 " [ awxz Gk, ez VL, (m )
© (2-14)

-1
L 2-'nkn Jl(knno) Nnglnﬁ' Yon' cn'l2 .

2.3 Sisplificsticn of Boundary Conditions

The dynamics of the model enter solely via the response
coeffients, e.g. gn(_m,y)‘ym. (@) in (12). The boundary conditions
for the ocuter fluid have been specified only on the dome surface,
eand those for the periphery of the dome cover have not
beer specified at all. In both cases approximate boundary
ccnditions can be introduced that drastically simplify the solution
to the acoustic-vibration probles.

With regard first to the cuver, consider a com-
plete set of orthornormal mcal functions v (K) that satisfy
prescribed boundary conditions at irs periphery. In general this
set of functions does rot coincide with the set of modal functions
x_m imtroduced earlier to describe the acoustic fizld in the
izmmer fluid for a prescribed boundary condition at its wall. For
eack wall boundary condition, however, there exists a correspond-
ing piate boundary condition, forming with it a conjugate psir,
sach that the two sets of functions do coirncide. The boundary
coaditices om pressure and velocity at the interface of the plate
and the isterior flmid can then be treated trivially just
2s iz the case cf i=finite lateral exteant.

The same simplificatior is achieved at the interface cof
cover and owler fiuid, and the whole problem rendered trivially
tractadle 3y iztroducing certain artificial, but not disruptive,

2-9.
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boundary conditions on the outer fluid. Specifically, it is as-
sumed that the effect of the outer radiated sound field on the
quantities of interest is substantially the same as if the outer
fluid were not laterally infinite, but were bounded by the (longi-
tudinally infinite) cylindrical surface formed by extending out-
ward the lateral wall bounding the inner fluid. The same boundary
condition then applies on this extended surface as on the lateral
wall itself (see Appendix 2, :'igure A2-1). This artificial con-
dition is probably without serious consequence at least if the dome
diameter is no less than a few wave lengths of sound in the outer
fluid and provided the quantities computed pertain to positions re-
moved by a similar distance from the lateral walls (not, for ex-
ample, the force integrated over an entire cross-section).

As for the conjugate pairs of boundary conditions, the
two extreme conditions of a rigid, immovable lateral wall and of
a free, pressure-release wall will be mentioned. The condition
on the dome cover conjugate to the conditons of a rigid wall is
that of perfectly free motion (normal to its plane) at the boundary.
If the cover is a plate rather than a membrane, we must include
the further condition of clamping to fix the slope at zero rela-
tive to the equilibrium plane (i.e., the condition of a sliding
clamp) . Inversely, the condition on the dome cover conjugate to
the condition of a free wall is that of a fixed boundary, with
free hinging at this boundary if the cover is a plate.*

Granted these assumptions, a response pressure in mode
n is excited only by an excitation pressure in the same mode, i.e.,
the matrix iyns} of Eqs. (9) or (12) is diagonal, and further-
more the pertinent diagonal response coefficient, e.g.,
gn(w,y)ynn(w), is identical with the corresponding coefficient,

*Inclusion of viscous and hysteretic damping of the plate (or
membrane) motion does not affect the stated conjugateness. Con-
jugate boundary conditions also exist that provide for damping
at the periphery of the dome cover and a related damping at the
lateral wall (see also Appendix 4).

2-10.




r(k,w,y), for the laterally infinite system of Part 1 evaluated
at the modal wave number k=kn, i;e., gn(w,y)ynn(w)=r(kn,w,y) and
similarly gln(w)ynn‘w)=r1(kn’w)‘ yhs 1 The response coefficients
I' and T; have bcen studied in Part 1. Eqs. (12) and (14) may now
be rewritten as

by 2
Q@,y) = 2R A7 J akkIo(k,0) & k,;lJl(knRo)cn(ka)r(kn.wmi (2-15)

Q@=2(RY)! | dkkr_ (k) [ Y ALy, o )
(o]

(2-16)
2

gkl (kR )C (ka)ry (ko)

whure the product Nncn(k) is denoted by Cn(ka).

2.4 Approximate Forms for Average-Pressure Spectra

Average-pressure spectra can be computed numerically from i

the basic Eqs. (15) and (16) for arbitrary values of the parameteréﬁ
Consistently with the rudimentary model, however, scne orienta-

tion and insight can be provided by considering various simplified 'y
approximate forms, based for the most part on various assumptions

of large dome radius a. The pertinent mathematical work is largely
done in Appendix 2.

Expressions for the power radiated by the dome cover in this
model are given in Appendix.3.

+ In general, the damping coefficients £ and { could depend on
mode number n.

Wé expect in a later report to treat numeiically the problem
where the actual coupling to the acoustic rieild in the infinite

outer half-space is retained, with assumption of a rigid baffle
surrounding the outer dome surface, in place of the present
artificial extension of the lateral boundary condition. From
the exact formulation, one can see that the off-diagonal co-
efficients Yon' in Eq.(12) do vanish relative to the diagonal

ones in the limit of a dome diameter large relative to the

sound wave length. It may be expected that the extended-wall
approximation 1s poorer if the impedance of the dome cover is

low and the dome is shallow.
2-11.
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For convenience we rewrite Eqs. (15) and (16) as

-1 )
) = 2R %) f ar, (i) By 2, (2-178)

- 20’} f dkkI (k)|(zn)1/2k' 3, (R )48, (W) 2, (2-170)

vhere

B(k,y) = = (-)"B,(x,y), By(K) ’ufo("n”h(k” (2-18)

By (k,y) = k313, (K R )C, (ka) F(k,,Y), (2-19a)

and Bln(k) is similarly related to rl(kn)’

2.4,1 Basic Expressions Appropriate to Rigid and Free Walls

Before proceeding, we give B, and Bin explicitly for
particular lateral boundary conditions corresponding to rigid or
o free (pressure-release) dome walls by introducing Eqs. (10) and
(21 for cn(ka)[Eann] with the eigenvalues knExn/a determined by

Jl(xn)=0 (rigid wall) (2-20)

Jo(xn)=° (free wall) (2-21)
We then have

ma M2y (ka)T,  (rigld)

| B_(k,y) = (2-22)
xr | ma /25 (ka)s_,  (free)

where

EE————

1/2, 1/2,,.2 -1
T (k’Y) L k Jl(k R )e / k / (k -k 2) F(kn’Y)’
-1 (2-22)

| 5. (k,y) =K1 R e M A 3 20kl T,y {|

2-12.
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Bln(k) is similarly related to Tln(k)’ sln‘k) and Tins S1p tO
I‘l(kn) - Here e, is the quantity introduced in the respective
cases after Eqs. (47) and (67) of Appendix 2 and defined as

e, = 207x 3, %(x )]t (2-23.1)
where 1=0 in the rigid case and i=1 in the free cdse and the sets

of X, differ for the two cases in accord with (20) end (21); in
both cases e, + 1 as n > =,

n
2.4.2 Factors Govern ontributions From Various Modal and
Excitation e rs

As & preliminary to introduction of simplifying approxi-
mations, it is uscful to discuss more generally the pertinent fac-

tors in Eq. (198) for B, and By, 8nd in Eqs. (17) for Q and Q-
Generally, with regard to the sum over n and the integral over k

in Eqs. (17)-(18), the size of the contribution to Q(y) or Q from
a particular pair kn and k (actually & triplet kn, kn" k, wvhere a
product of terms n, n' arises from the squaring of B or B,) depends
mainly on the size of the following factors: (1) the excitation
spectrum I (k), which,as previously noted, declines in a rapid but
uncertain fashion below k =c/u_; (2) |c (n)l , which mainly declines
with increasing |k-kn| 3) ll‘(k,y)l(orlxl('u)l) vhich mey have a

more or less sharp resonance peak at kh -k, and behaves otherwvise
as noted below. The altermation of signs of the terms in z is also
highly pertinent to determining the contribution from a gi.ven inter-
val in kn as discussed in Appendix 2.

Regarding l‘(kn,y) , pertinent to pressure in the interior
fluid, we recail that it declines spproximsately exponentially with
argunent (k 2~k 2/ zly[ for k > k [see Eq. (1-10)] excepr for
a possible increase near resonance (k ) 1if such occurs. Regarding
l‘l(kn), pertinent to pressure on the outer surface, we do not have
an exponential factor as in l‘(kn,y) that cuts off contributions
as kn incredses. Nevertheless, there is a fairly rapid decrease
with k sbove resonance (k, > k) due to the factor q>-1 in z(k,%)
{Eq. (1-1) ], which occurs in the denominator of ry (Eq. (1-15)];
specifically, «t roughly high enough that q (k ) >> 1 and
k zkwwehavel:t;l decteasingroughlyukn in the case of a
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plate or k;3 in the case of a membrane [Eq. (1-69)]. A similar
factor declining for kn > kr occurs in I‘(kn,y) in addition to

the factor declining exponentislly for k, > k,, and this factor,
rather than the exponential factor, may determine the effective
cutoff on kn if L is sufficiently small. Even if the expomential
factor virtually cuts off I‘(kn,y) at a kn <k » coantributions in
a limited range of higher kn near kr may nevertheless be apprecia-
ble 1if the resonance is sharp enough.

2.4.3 Progressive Approximations

We thus may distinguish regions of ku and k that will
contriburte much more to Q(y) and Q than others and may attune
our spproximation and neglect accordiogly.

We introduce first an approximation based on assumption
that coantributions to Q(y) (or Ql) from wvave number pairs (k,k n)
are negligible if both k < k_and k, >k_, because of the small-
i ness of I (k) and I‘(ku,y) [or l‘l(ku)] under these respective con-

ditions, and on further assumption that

! &, - k)afr >> 1. (2-25)

(Rough explicit conditions for this and subsequent approximations
will be given later for the several cases.) We also neglect contri-
butions from k not satisfying ka/¥ >> 1, independently of k . In
the region k > k , ku > k_, we also neglect the subregion A\ > k+,

k. <k, <k, and in the region k <k_, kn<k.veneglgctthe
subregion k_ <k < k+, kn < k_, since in these subregions (24)
implies (k-l%) afr >> 1, so that the factor cn(lu) in Eq. (19a),

as well as one or the other of the pertinent factors Io(k),E‘ (kn,y),
is small there (see Figure 2-2). Setting

BB +B,B *B_+8,B,= @Ml e,

‘1 Q=2Q +Q,Q Q. +0q,,

where B_ (and Bl-) derive from kn <k_, B, from kn >k, Q from
k <x_, and Q, from k > k+, we then obtain from Eqs. (17)-(18)

2-iA.
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qQ = 2ar 2! f "kt (0 f |
° (2-26)
Q, = 262 5t [ dkklo(k)h_+BJz
+
X
Q. - 2(7‘02) & I -wo(kho'ml-r
° (2-27)

q, = 202} -1{ "‘uo(")i’lo*"l-“u'z .

-+

thesipifictntngionofkn'ithregardtob+mdll+

is that where kn.‘k so that Cn(h) is relatively large (e.g.,
see Appendix 2). In the present approximation this region is
separated f:o-theregionkn<k.., and T, I‘lnryuoothly-ithk
over intervals >> v/a. Therefore we msy further restrict the
partial sums B, Bl 4+ o this region, with the smsll contribution
from the neighboring regions included spproximstely by use of

Bq. (17) of Appendix 2 with residusl terms omitted; thus

B +§ z (-)an-' s;no (-)nln- (1/2)B(sn °+1I2) +(1/2)B(s*n o+1[2) , (2-28)
u=n_ n-s-n°+1

and similarly for ’l+' where n_ and s are definel by

kn+ < l:i < %#l.l;_g k<kg 1 (2-29)

n, >> 1{but n, nct so large that s-2 < n_), and B(n) for non-
integral n is given by B, with use of the asymptotic expressions
for lsrge n,

k, * (e+1/6)v/a  (rigid)
(2-30)

k * (nt3/a3)v/a (free).

2-15.
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A further approximstion is based on negligible variation
nver the incerval s-n +1 { n ¢ sin  in Eq. (28) of all functions of
n in B, or Bln’ as given by (22) and (23) or more generally (19a),
except the factor (k-kn) '1. In this approximation, [see Appendix
2, kgs. (84) and (50)] we have

B,(c,y) =B (k,y) 2 20 % 0)r ey, (2-31)

and similarly for 31 4 with T replaced by ry- This approximation
to the partial sum B_ is just the result for the total sum B in
the case of a laterally infinite dome (a + », k, L, and R, fixed),
treated in Part 1 (see also Ref. 15).

The factor Jl(kl) (rigid case) or J o(lu) (free case)
contained by B, in Eq. (22) has disazgeared in forming the approxi-
mation (31) teo the partial sum B, on account of the related behavior
of the factors (kz-knz) -1 for the various n in the vicinity of
k, * k* The factor J (or 7)) in the partial sum B_ in Q, of Eq.
(26) , however,produces unccapensated oscillatory behavior, since
lk-knl >> w/a throughout the pertinent region of (k,kn) . Under
previous assusptions, and assuming reasonably that 1 o(k) varies
negligibly over an interval al in k, i.e.,

(d1 /dk)~/a < 1, (2-32)

for all pertinent k, we may replace the factor Joz(kl) {or le(ka)]
in the squared term ‘D_'z in Q, by its local average value 1/rka.
Likewise, since J o(kl) oscillates in k about a vanishing mean, we*
may, under the same circumstances, neglect the cross term 2Re(B_B.)
in the integral for Q.. We shall denote B. as modified by replac-
ing J_(ke) [or J (ka)] in (22) by (vka) /2 as § .

Turning to Q_, by Eq. (26) we have

k
2,-1{" I o

Q. = 2(+R °) dikI (k) = (-)“uniZ (2-33)
S 1

*See Appendix 2, Eq. (83.1).




and similarly for Q.. We insert B, explicitly from (22) and (23),
employ the asymptotic forms for J (ka) and J,(ka) (since ka >> 1
for most of the range of integration), and interchange the double
summation (znzn.) with the integration in (33). Assuming that Io(k)
varies smoothly in the range .0 < k < k_and, in particular, that
(32) holds there, we may approximate I.(k) by I_ ((1/2) (kn+kn.)) for
fixed n,n', and similarly-for powers of k, and extend the k inte-
gration from -« to +w. Since

r 2
i sin"z -
f G-or) z-n'7) " °mn'’

we thereby obtain for both rigid and free cases
n. 2
QO) = (r/a) 3 k(20 (kR MR 1 1o 0k dr ey, (2-34)

In the case of Ql-’ Eq. (27) produces three tynes of terms due to
the square of 810+Bl_. Proceeding as with Q_, we obtain a result
that may be written

2
Q. * (r/e) nté; k 123, (k R)/k R ] 10(kﬂ)|1+r1(kﬂ)[2 (2-35)

for both rigid and free cases, in which the direct (nonacoustic)
force spectrum due to that part of the excitation spectrum with
wave numbers k < k_ has been approximated for uniformity by

k ..
f- dkk[ZJl(kRo)/kRo}zlo(k)-“ (/8) Zg kol 23y (KR /KR IPT (k). (2-36)
o

As a > » at fixed k_(=n_wr/a), we note, expression (35) becomes
properly independent of a.

To summarize the results based on the rather modest
approximations introduced up to thie point, we have

QeQ_+ Q) + ¢ : (2-37)
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n
Q) % (n/) 27 ky[23) (k Ry) i R,1T (e fe eyl (2-38a)
QG = [ awatzs, (cep) i, 121, 00fr e, n)f (2-38b)
k,
n- 2
_ klnzo(-)“'rn[ (rigid)
Q. (y) = mo‘zizl dkkI_(k) x o 9 (2-38c)
N k"‘Lio (-)"s nI (free)
with T, S given by (23);
Ql ~Q1, + QT_’, + QI+5 (2'39)
F 2
Q°1"+ = [ dkk(2J, (kR ) /kRO]ZI o(k)|1+l"1(k)| , (2-40)

+

with Q,_ given by (35) and Qi+ by Q;(y) in (38¢c) with T, S_
replaced by Tln’ S]_n according to the remark following (23).

In a further approximation, employed below, if

a is sufficiently large that many moded n have real
wave numbers (0 < k, < ka) , wherci equi\_ralent inner and outer
fluids are now assumed so that ky =k, £ k,, then, as discussed
in Appendix 2, the modes that coatribute significantly to Q| or
QI + from the sum over 0 < n ¢ n_ separate into groups centered
about wave numbers kn il kn ad kr (resonance). This circumstance
is represented by writing the sums in (38c) schematically as

N=

RALE R (2-41)
where the two terms denote partial sums (again supplemented in
accord with Eq. (17) of Appendix 2) over 2n2 and an terms cen-
tered at k_ ® k, and kn o« k.» respectively:

2-18.




j"‘nz
s = °z (-)nTn-(1/2)T(j ~1,+1/2)+(1/2) T(3+n,+1/2) (2-42a)
@ n=j-n,+1

rin
3 = =T (9" -(1/2)T(r-n_+1/2)+(1/2) T(r+n_+1/2), (2-42b)
n=r-n_+1 n r r

except that tne sum for Zr is understood to be truncated appro-
priately if it overlaps %, and Z. is to be omitted for the
fluiddome (for which no resonance pesk occurs in I'(k,y)). In

Eqs. (42), we take n, >> 1 and n_ large enough to cover the reso-
nance peak of width 26k centered near n=r, i.e., ner'ﬁkn/v; j is
defined by

ky <Ky < Ky (2-42.1)

(Eqs. (42) apply also to the other cases related to (38c) with
T, replaced by S, Typs ©OF Sln.)

1f the mode spacing (™ r/a) is small enough to satisfy
certain further conditions, the variation of all factors of T,
in %, may be neglected relative to the factor r(kn,y) whose deriva-
tive becomes infinite at the value kn = k,, and the limiting re-
1 sults discussed in Appendix 2 then apply. These conditions are
satisfied for only a restricted range of realistic values of the
model parameters, b:t the results become transparent and easy to
discuss and are probably not misleading in order of magnitude.
Explicitly, we then have

2, % @225 (g fe JiB Pk B 013k,
; (2-43)
x ()31 [M(b) -1%(1-b) ]

with 8 = 1 for rigid walls and s = 2 for free walls, where

ﬁ(k,kz,y) represents I'(k,%) in a notation separating out k, ae

! an explicit argument and the subscript 0 on 3/3k, signifies

’ evaluation at k2a0 (and hence at k=k,); M(z) is a function de-

fined (for 0 < z < 1) in Appendix 2, Eq. (26), and shown in Fig. 2-3;
. argument b is the periodic (linear-saxtoothed) function of k a

\ with approximate period 7 defined by

e

T
Consistently with the nature of the approximation (43), we ma
replace x in (43.1) by its asymptotigpform for large i. so going

he range of b t < b <1, which is the gnly range
iﬁsﬁﬁigﬁsufbf is ugegulg gegiﬁéd. The function b=b?ﬁwa), we note,

1 differs accordingly to tﬁe particular boundary condition. 5e1s
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FIGURE 2-3.

0.2 0.4 0.6 0.8 1.0

PROXIMITY ODIFFERENCE b

FUNCTION M(b) AND y(b) RELATED TO PRESSURE WITHIN
DOME DUE TO HIGH EXCITATION WAVE NUMBERS AT VERY
LARGE wa/c. [See Appendix 1, Eq. (26), and Eq.
(2-91.1).] ¥(1-b) = y(b).

Vo)
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b=ka/r- xj/W (xj = kja) (2-43.1)

vhich describes the position of k, between the modal wave numbers

(bg/bkz)o = eiZa {;ye'iasina+i[L+(qbbw)sina cosa]} (2-44)

with z =z(k ), a=a(k ). In the case of a rigid inner surface (a=0),
(44) reduces to

(58/51(2)o = iL (rigid inner surface) (2-45)

independently of z and y; in the case of a pressure-release inner
surface it reduces to

(bglbkz)o = ~1(L+y); (free inner surface) (2-46)

in the case of an infinite inner medium,Appendix 1, Eq. (13e),
similarly yields

Q8/3k,) 5 = ~(1/4) (12y+2,/pc). (2-46.1)

In a similar approximation Eqs. (43) apply also to the
pressure outside a plate or membrane [i.e., to QI+], as well as
to the pressure within a dome [i.e., to Q:(y)], with g(k,kz,y) re-
placed by 31(k’k2) = Pl(k). In this case the required derivative
is given by

(981/9k,) , = z,/p%, (2-47)
where again z =z (kw) .

If the excitation spectrum Io(k,w) due to the turbulent
boundary layer declines sufficiently rapidly with decreasing k
for k < /U, that the contributions to the sum for Q_(y) (or Q;-)
in (38a) are negligible except possibly for those modes n near
resonance (ren, + 1 <n < r+nr),* then in the approximation of (43)
the only sums left to be performed explicitly in order to form the
average-pressure spectra are the resonance sums in (38a) and (41),

*The experimental result that the average-pressure spectrum due to
a turbulent boundary layer varies as R ¢, corresponding to a non-

vaanishing area scale, and not as R;3, we recall, casts doubt on
this inference.
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244 Conditions for Approximations

Conditions for previous approximations will be given
here mcre explicitly for the distinct cases of a fluid dome,
a covered dome, and a simple plate. Where a dome is in
question, we restrict consideration to force on an area of
the inner surface (y =- L).

244.1 Fluid Dome

On account of the attenuating factor exp[-(knz-hnz)I/ZL]
in P(kn,-L) in Eq. (1-62), the condition for the initial approxi-
mation that led to Eqs. (25)-{2f) may be expressed roughly as the
condition that Io(k) be negligible for k < k, with reference to the
contribution to Q(y) in Eq. (18a), except possibly for n such that
(k-kn)a,s nm, where

k, = k_+ Nz(v/a)

+=
' 1 (2-48)
k.= (/02 + Gp?t?
with N;, N, taken such that N, > 1, Ny >> 1 (recall (24)]. 1f
Io(k) is negligible for k‘s,a)/U°° (apart from the possible excep-
tion for (k-k )a < n ) and if U << c_ and ©vafU_>> 1, as in
cases of concern, this condition requires simply that
L>» U /o, (2-49)
which at reasonably high frequency is a very weak condition.
Conditions for approximation (31) are
Rb/a « 1,
@ -50)
e L« 1
(k% (k) 174 @
The condition for (41) is
ky,a >> . (2-51)
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Further conditions for (43), on assumption that k+‘z 253, are

vl/2
SDL(EDa) «1,

G a2 1 1g kR g1 @ -52)

®R A2 <1 afkp 31

2.4.4.2 Covered Dome

Two alternative sufficient conditions for Eqs. (25)-(28)
apply in this case. First, the condition given above for the
fhdd dome suffices if k_ is redefined to be the larger of the ex-
pression given in (48) and kr+bk, where 8k is still the r:sonance
half-width, thus insuring also that Io(k) is negligible in the
neighborhood of resonance. In view of Eq.(1-59), an alternative
condition is the previous one with k_ redefined as satisfying

4 1 - -1
k_/k £ - N7 2-53

with Ny taken such that N3 >» 1,
The conditions for (31) may be written as
Ro/a.gf 1
A’ (kL) , @-54)
-—-gg:f—';:<< 1.
[
The condition for (4}) once ﬁore is

ka_’ >> . ‘ (2'55)

The conditions for (43), generalizing conditions (52), may be
expressed as

%3, o _
RS
8 1/2 ' (2-56)
0 - )
I (k. ®) «1

-1/2
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where a subscript 0 denotes evaluation at k-kw (i.e., k2=0) and
k, = ‘”1 if kwkosl
R, 1f kR 2 1.
On assumption that k> 2k , these conditions reduce to the condi-

tions (52) together with a further condition on the dome-cover
impedance z at wave number w/c, where we set z(kew/c,0)Z 2

(fpfpe 02 < 1. @-57)
2.4.4.3 Nonrigid Boundary (Without Dome)

The condition for Eqs. (25)-(28) may be expressed as the
condition that Io(k) be negligible in contribution to Q, for k < k,
except possibly for (k-kn)a ST, where k+ is as specified at
(48) and k_ is defined, by reference to Eq. (1-69), as satisfying

(ki) : 2.5l (« . (2-58)
lkz_-.il:;ii; ln 21-10 Po

The conditions for (31) may be written as
Rola K« 1,
ar (k, ' @-59)
—15'— « 1.
The condition for (41) is again
kw. > .

For Eqs.(43), conditions (56) again roughly epply. In this in-
stance, these reduce to -

(k) 700) kT2 << 1, (2-60)

(pe/ |r,,])(k,,,a)'1/2 <1 1if KR <1 (2-61)
(puxolld)(kwa)'ll RZERTES R (2-62)
2-24.
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2.5 Average-Pressure Spectrum on a Rigid Boundary and Its Relation
to Eome Eigethvenessi §ca!!§§ ans

We return once more to the question of the driving spec-
trum Po(k,w)[or I,(k,®)] due to a turbulent boundary layer end the
corresponding frequency spectrum Q. (®) of average pressure on &
circular area TR,” of a rigid boundary, and relate this question to
the effectiveness of a dome.

2.5.1 Character of Contributions from High and Low Wave Numbers

Suppose 4R /U, >> 1. We recall that

Qp(@)={ dkk [23) (kR() /KR 1% T (k,) (2-63)
o

[Eq. (1-27) with M = 1]. Below its peak, which lies somewhat above
= w/U_ (see Figure 1-3), I o(k:w), for fixed w, presuzably de-
creases monotonically with decreasing k, while the envelop: of
the averaging factor [2J1(kR )/kR ] where k > wR 1 decreases mono-
tonically with increasing k. Hence, two intervals of k may be dis-
tinguished from which the contributions to the integral of (63)
together will greatly exceed those from the rest of the integra-
tion interval. In particular, setting

Q, = Q. + Q> (2-64)

where ¢, derives from k < ofyu_ and Q,, from k > w/U,, w2 have
approximately

-1

~ dick[ 23, (kR ) /kR 171 (k,0) , (2-65a)

O *—
B

Q. (@)

. o0 .
Q. (@ ¥ (/MR [ akk™%1 (k,w) (2-65b)
o+ w/Uw
[see Eq. (1-31)], where the minimum permissible m may be considered
fixed at a moderate multiple of unity. The point pressure spectrum

P, (®) may be written formally without approximation as

= -66
Py =Py + Py (2-66)

A local increase may occur again at the very low wave numbers
k ~ o/c, as noted below.
2-25 .
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/U,
Py = {a dkho(k,w), (2-67a)
Po+ = [ dkho(k,w) . (2-67b)
w/u .

In view of (65b), (67b), and the character of I,, we have roughly

Q @~ (@R /0,) 7P, (@), (2-68)

where nU, is an effective convection velocity that declines sl-wly
with increasing frequency but may be taken~~ 0.6U, in the high-fre-
quency range of main interest. Also, if Io(k,w) varies not too
rapidly in the interval 0 < k < nR;]‘, by extracting I from under
the integral in (6%b) we may usefully write

1

Q. @ 28T (VRS ), (2-69)

where Io(rVR;]‘,w) denotes the appropriately weighted average of I,
over the interval 0 < k < mR; .

As seen from (68) and (69), the average-pressure spectrum
onn a large area (wRO/Uw >> 1) is expeeted to vary with R, as R;3
if Q°+ >> Qo-’ i.e., roughly if

Po, (@) >> ( R,/nU,) [(a)/nUw)ZIo(va;l,a))] 3 (2-70)

it is expected to vary rather as RZZ if the inverse inequality holds.
The latter result as we have noted, accords better with measurement,
though the former perhaps accords better with our present understand-
ing of I (k,w) for k << w/U,. [Even if Q- R Qs it may well be true
that sz P,,» 80 that Po + may be identified with the total point
spectrum Po(w) in (68). and (70).]

*In Appendix 5 it is shown that if Io(k,w) varies substantially as
k™ up to some k > mR;1, then Q _(®) varies with R as R;(?'"'n) if
0 <n<1andasR if n > 1.

2-25.
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From the formal expression of I (k,») in terms of the
boundary-layer velocity field in the general case of compressible
flow, it appears, contrary to the assumption in (69), that some
anomalous behavior of I, perhaps a pronounced peak, occurs in the
neighborhood of k = w/c (see Appendix 5, Section AS.l1l, and Ref. 14).
If such a peak occurs, it will be reflected in an additional con=
tributicn to the average-pressure spectrum Q, (via Qo- in (65a))
that is independent of R, so long as R /c L1, L.e., R, less than
roughly a quarter wave length of sound. In this event the area
dependence of Q, for 7U_/w<< R, g c/w would be roughly of the form

Q@) = A@RZ + B(®) + C(ORS>, (2-70.1)

where the first and third terms correspond to (69) and (63). Ob-
served spectra for different transducer size, as well as measured
narrow-band spatial correlations, place experimental constraints

on A, B, and C. Hereafter we ordinarily ignore the pos:sible radia-
tion contribution B(w).*

In Appendix 5 the relation between Q _ and 0,, and other
quantities are examined under various assumptions. Also, two dif-
ferent explicit assumed forms for Io(k,w), cne of which has commonly
been used in dome analyses, are considered. This one accords with the
observed variation as R;Z and with the gross time decay of the spatial
pressure correlation in the appropriate convected frame, but probably
not with the frequency dependence of the area scale; reither form has
any theoretical basis.

The extent to which a dome is capable of reducing flow noise,
and in particular the possible success of a fluid sheath,is critically
dependent on this question of the relative contributions to oo(w) due
to wave number components with k > w/U_ and with k ﬁ;mRSl. This
dependence results because the former component in the transmitted
pressure spectrum Q(w,y) is strongly attenuated fcr dome size a not
too small (and U, << c’), whereas, except for relatively small Rg»
the latter is not. In the approximations of (37) - (38), the former,
attenuated contribution is contained in OZ(y) + O;(y) and the latter,

* A re-examination of observed data to set an upper limit on the
possible effect of the value of B in reducing the apparent ratio
A/C appears desirable.
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relatively unattenuated one in Q_(y). This point will be made more
explicitly in the course of drawing estimates aad conclusions for
the individual configurations.

2.5.2 Scaling with Boundary-Layer Parameters

We consider briefly also the probable scaling laws for
the direct boundary-layer pressure*. We shall refer to these later
in considering their modification by & dome or by a non-rigid
boundary. At high frequency, perhaps where wv/vifa 0.1, with ref-
erence to wave numbers k > w/U_ corresponding to the part of the
spectrum generated by convection, we have reason to expect the
pertinent length and velocity scales to be proportional, respectively,
to v/v, and v,, vhich are character.:tic of the portion of the bound-
ary layer just outside the viscous sublayer. In such case, the wave
number-frequency spectrum Po(k,w) of the point pressure has the form

Po(k,@) = p2vF, RV, oviv)),  (ko/U,) (2-71)

where F+ is some function of the indicated dimensionless variables

and p is the fluid density. Hence, after integration over the angle
of %, we have likewise

2

I, (k@) = p2v°G, (kvivy,ovvD),  (k20/U) (2-72)

where the function G+ (and similar functions introduced below) are

related to F,. Eq. (67b) then yields the form of P°+(a0:

P, (@ = p*wi H (ovvD). (2-73)

Eq. (65b) (with U_ more appropriately replaced by a multiple of Vy)
yields in turn the form

Q,, @ = @R /v 3p?wi L @vivd). (2-74)

*These points are discussed further in Ref. 16.
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In some other domain of frequency and wave number, the
pertinent length and velocity scales may well be those characteris-
tic of the boundary layer as a whole, namely 6, and U_, rather than
the '"inner" parameters v/v, and v*.* This presumpt. .on appears likely
to be valid at least in the domain k &6;]’. In such a domain the
wavenumber-frequency spectrum, contrary to (71), his the form

P_(K,0) = p252U3 _(R5,,06,/0,) (k < 63) (2-75)

vhence also

Io(e,0) = p263006_(kby,05,/0,) (2-76)

From (76), in the low-frequency regime where w6,/U_ < 1 we obtain the
conventional "outer" form

P(®) = p2o U H(wE, /U, ) @6,/U_< 1) (2-77)

and likewise, from (63), for nonvanishing radius

QL) = (@R /U,) 2o, UN(0, /R ,05,/0,) . (2-78)

1

If I,, given by (76), varies little for k < nil; , which may be so

for w8, /U < 1 only if R_ >> 6., Eq. (78) reduces to the simpler form

Q@) = 2(<1>R°/U(,,)'2 64U 3 _(@6,/0,) , (@6, /U, S, LR X 6,) (2-78.1)
where the function 6_ is identified as a suitable average over k of
the function G_(kb6,,06,/U) of Eq. (76).

In the higher-frequency regime (w6,/U__ 1, accepting (75),
we nevertheless cannot infer t:he form of P, _(w) without knowledge of

t:he form of Ip in the range 6* Lk< w/Uoo Hence, we remain

The difference between assumption of velocity scales proportional to
v, and to U  is relatively or, since v,/U_  varies only weakly with

Reynolds number, expecially where the latter is very high.
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uncertain whether P, _(@), like P Gn), scales for wrv/v2 2 0.1 as the
"inner" form (73) or as the outer" form (77), ox vwhether its form
essentially contains both inner and outer sets of parameters. Since
the relative importance of Po+ and P,. is also uncertain, it is un-
certain how their sum, the total point spectrum P(w), scales with
these parameters (see also Ref. 16).

Oon the other hand, for R, O Oy form (76) alone
permits inference of the form (78) for Q which, under the stated
assumptions, reduces to form (78.1). If wv/vi > 0.1 bolds in addition,
we infer from (74) for Q°+ and (78.1) for Qo_ a form for the total Qo.

Q@ = 2R /0,) 20?0, u8_ (05, /0,)

+ (@R [vyy 30 wﬁ (@v/vd) (wv/v*>0 1,R 28,) .
(2-79)

The assumption that form (76) holds for I, in some interval
of low k 1is probably inconsistent with the belief that I, in this inter-
val may be taken equal to its value at k = 0. In fact, we know that
for the pressure in a turbulent boundary layer, I, vanishes at k = 0
apart from effects of compressibility, viscosity, and inhomogeneity
in che direction of flow. The first of these three effects involves
an additional parameter, viz. the velocity of scund, and hence at
least if the value of I, at k = 0 is largely due to compressibility,

I, near k = 0 will not have the form (76). At the same time, the factor
(wR /u) 2 4n che result (79) accords fairly well with experiments
(e.g., see Ref. 3, but cf. Ref. 17) It is conjectured, therefore,
that Io(k) does not diffir greatly from its average value over most

of the range 0 < k < mR; , where 7U_/w <K R ¢/, but that this
average value is substantially larger than IO(O).

*The same factor R;Z would be obtained whatever the cause of a non-
vanishing I at k = 0, but the same scaling with w and U_,in
general, would not.

2-30.




L

2.6 Estimates for Various Configurations
2.6.1 Fluid Dome
2.6.1.1 Contribution from High Wave Numbers

Regarding first the contribution Q = Q + Q_ to Q(w,y),
it is useful to define the modification factor A(k,y) by which the
frequency-wave number spectrum of average pressure on the area
"Roz at depth.y differs from that due to the excitation pressure
(excluding the acoustic) on an infinitesimal area in the outer
surface, with reference only to excitation wave numbers k > k "

Q) = ! aikr_ (K, )  (2-80)
+

[cf. Eq. (26)]. This factor includes both the effects of area-
averaging over 1rR°2 and cushioning by the intervening medium. We
take k,_ = &)/Um.

As implied by the approximation and discussion in the
paragraph containing Eq. (32), /\(k,y) contains a part that oscil-
lates rapidly with a period in k that is short compared to any
interval of significant change in any other factor, including Io(k).
We may tlien replace /\(k,y) in 80) by its local wave-number average,
say /N\(k,y). In the approximations of Eqs. (38), then,

N,y) =A_ .y +A_x,y), (2-81)
where "
A .y) = Aol e,y (2-82)
.: n 2
{ 1<|nz'(-)“Tn | (rigid)
1 2
A.(k,y) = 8@ 2% x . ) (2-83)
-1, L
lk | ()%, (free)
n=o0
AjG) = 43 12 (kR)/ (ch,)2 . (2-84)




Here A (k,y) repreeents the limiting value of the modi-
fication factor K(k,y) (or A) for an infinite dome (a + = at
fixed k, R , L). Similarly ‘Ab(k) represents the value pertinent
to the same circular area TR, in & rigid surface exposed to the
exciting pressure fluctuations and merely refiects the area averag-
ing. !"or"”R.o/U°° >> 1, with assumption that I (k) for k > w/U_ is
substantially unchanged over an interval R;1 in k, as at Eq. (65b)
we may appropriately employ a local k-average also in place of
Ao in (84), say o}

A = G/m (ch,)'B. (@R /U, >> 1) (2-85)

o]

In the opposite case where ka << 1 for all significant k, or
roughly where wk /U << 1, we naturally have

7(0 ¥ (R /U, << 1) (2-86)
as at Eq. [6JD)

1f the additional condition (51) is satisfied, approxi-
mation (41) (with Z, = 0) may be employed in (83) as previously
in (38c), and if conditions (52) are satisfied, approximations (43)
may also be employed. Though the latter conditions can apply only
for a diaphragm radius & very large compared to the sound wave
length, especially if the thickness L is not a substantial fraction
of a wave length, this affords a suitably simple regime to examine.
As an inessential further simplification, we assume a rigid immer
surface, whence (45) applies. Then Eqs. (43) yield for the finite-
ness term /A in the modification factor of (81) at the inner
surface

A (k,y) 15”(1‘8)-B[Jl(kao)/kao]z(kJ)'L)2[1- ('km/k)?]'2

2. . 9 1 (rigid wall) (2-87)
x [M%(by+M%(1-D) Ix 3
(k,, /k) (free wall)

1f the inner surface is instead a pressure-release one, by (46)
we have only to replace L2 in the numerator by (y+L)2 and like-
wise in Eq. (91), below; similarly, if the inner medium is

2-32.




infinite, by (46.1) we have to replace L2 by (1/4)y2f Thus, the

contribution of A . to the average-pressure spectrum Q(w,y), in
the regime of (87), is independent of depth (-y) if the inner
surface is rigid, increases quadratically with distance from that
surface if it is pressure release, and increases quadratically
with distance from the outer surface if the inner medium is in-
finite.

Acccrding to (87),A\ - for che case of a free wall is
smaller than for that of a rigid wall by a factor‘ﬂd(kw/k)z,i.e.,
the square of the ratio of the wave length of excitation to that
of sound. If the boundary conditions were mixed, which perhaps
would best simulate actual configurations, a contribution of the
type of the rigid case presumably remains and is the dominant term,
though with a reduced numerical coefficient. The significance of
this strong dependence on the lateral boundary condition satisfied by
the fluid diaphragm in the envisaged application is subject to some
doubt, however, inasmuch as the boundary condition in the present
model was artifically extended outside the fluid diaphragm in-
definitely into the region of the outer fluid. For this same reason
the model itself may have doubtful quantitative applicability if
the thiikness L of the diaphragm is too small a fraction of a wave
length.

We proceed to obtain explicit estimates of the several
contributions to the interior average-pressure spectrum Q(w,y).
In the present case of a fluid sheath (z = 0) with rigid inmer
surface (# = 0), we recall from Eq. (1-62) that

Irx,») 2 = expr-20%-k2 )Y A1en? (2D Y2y 15 (2-88)

‘The contribution Q:(w,y) to Q(w,y), deriving from /\w in (81),
}is estimated very roughly as related to the high-k contribution
Qo+(w) to the spectrum of averaging driving pressure Qo(w) on an
equal area of the outer surface [Eq. (65b)] by

**[cf.(99.2)].

*These replacements are approximately correct even though the 1

surface of the element itself remains rigid, provided Ro‘g,k;

The case of the diaphragm will be treated more adequately in
a later report.
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@)~ [re/n0,,.0,9)] 20, @) (2-89)

(in which, however, n should be regarded as slightly larger than
it was in Eq. (68) on account of the weighting factorlr(k,w,yﬂ 2
in the integral over k In (80)).

'é By (1-€2),(1-63), and (1-63.1) we have approximately
' (for U_ << ¢)

-2ul./1U

Mo
! re/mu, o,y 22 e ch[w(y+L) /U] (2-90)
-
‘ %r for a rigid inner surface..
1‘ The contribution Q;(w,y), deriving from /\_ in (81), is
estimated from (80) and (87) for a rigid inner surface, with

! kwpo ﬁbl, as

Q@) ~ (L) X (kya)a™ £/u dick ™21 (K, @)

o0

(2-91)
l ¥ (/4) (o 1) *£ (e R/ 2Qp, (@), (rigid wall)
| where f(kwa) is the positive oscillating function with period =
{ defined by
£(k @) = 47 [M2(1-b)+M2(B) ] 2 ¥(b) (2-91.1)

. y{b) is shown in Figure 2-3; it has a peak value 3.44 and a value
somewhat less than half as large when averaged over k,a. In the
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case of free walls the estimate (91) is reduced by a factor of
the order of (qU, /c) o The second form in (91) relates Q+ to

R /U, >> 1.

: We give the expression corresponding to (91) outside
the regime where (87) applies, i.e., when conditions (52) are

1 n
Q;(w.'LW 2 Zo (-)nk}llzr(kn’w"l‘” 2 a-2

n=

o«

the high-wave number part Qo+ of the spectrum of driving pressure
over an area of radius R, where R, is understood to be such that

not satisfied, but where the condition w/U, > (L°2 + k) M2 sein1
holds (and, for simplicity, 1979/ <1). From (83) and (23) we obtain

x [ dk K21 (k,w) (rigid wall) (2-92)
w/Uw
¥ (1/2)a| (=) k0, - )} (&, /a)3,, (@)

by use of (65b).

2.6.1.2 Contribution from Low Wave Numbers

Unless I (k,®) is negligible for wave numbers k /U,

the contribution to Q(®,y) from Q_(w,y) of (38a) must also be
included. The sum may presumably be confined to k < mR
( for Ro > k ) where m is a fixed number exceeding unity by a

moderate factor, on account of attenuation by the area-averaging

factor [2J1(k R )/k Ro ] If wave numbersk < mRol actually
predominate in the wave-number spectrum of the driving average-
pressure spectrum Q. (w), as suggested by the measured R,-
dependence of the latter (see Section 5), we must have (w,y)
of the same order of magnitude as Oo(w) .nis conclusion hglds
unless R, << mk;)]' and 'n'y/Ro >> 1, since the factorll“( n,y)l
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L (38a) attenuates only for k_ such that k_ >k, and (k2 - kK)M2y2
The fluid dome, in such event, will be ineffective relatlve to
flush mounting [ see Eq. (94) below].
i- We know too little about the wavenumber spectrum
- I,(k,®) of turbulent pressure for k < ©/U, to be able to estimate
1{, Q_(®,y) reliably,even in terms of Q _(®),in the parameter regime
o where these differ appreciably. For indicative estimates, however,
! { we agsume that I (k w) varies only moderately throughout the per-

| tinent 1nterva1 0 <k S K.» (except possibly for a negligible sub-
‘i interval ), where the rough cutoff K. is defined by

-1 2 2
= lesser of mR °, (k, + lyl )1/2.

‘ l Provided conditions (51) and the first of (52) are
satisfied, the sum (38a) may be approximated by an integral:

Q(@,y) = [ dkK[2J) (KR ) /KR 121 (k@) |T(k,o,y)] 2 (2-93)
(o)

We assume & dome sufficiently large fthat this approximation may be
used. For definiteness, we consider a depth y = -L at a rigid
inner surface, except as later noted.

' First, if ok} <(kZ+ 176401 1/2, £rom (1-62) we have
‘ 1> |r|2 > e /% for k <ar_'; (93)and (658) then yield

|
° 2
Q(®,-L) = [  dkk[2J) (kR)/kR ]%T_(k,w)
T 0 (2-94)
= Q. . (R, >>(k2 + 1/641.2)71/2)

f This result does not deperd on assumption of slowly varying Io(k),
except as Eq. (38a) does, and holds,in particular, when R, exceeds
about a wave length.

¥ The possibility that I_(0,0)<< I_(k,w) for most k < K, thus need
not be excluded.
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Next, if kL z~>: 1, corresponding to a thickness greater
than about a sixth of a wave length, and k, uil.;l, we find

ko

Q(@,-1) % [ dkk[23 (kR) /%R 121 (ko)

~ 2T (N T(RR) (2-95)
~FT (kR )Q,_ (®)

by use of (69), where the function T is defined by

X 12
T(x) = 2 [ dzz J1(2), (2-95.1)
o
Io(kaw) denotes the suitably weighted coverage of Io(k) over the

interval 0 < k <k,, and F represents the ratio of Io(Nkm) to the
weighted average of I over the interval pertinent to Eq. (69):

F= LM /TR . (2-95.2)

If kao 5,1, we have

T(k,R) Y (1/8) (kR 2,

whence (95) yields

T

Q(©, "Ly (/)KL (k) ~ (1/6) (R R FFQ,_ (@) . (2-96)

In this regime the effect of the sheath is roughly equivalent to
averaging the pressure spectrum over an area of radius M/7(=2/k,)
in place of the actual (smaller) area of radius R,. If I, (k) in-
creases appreciably from k ~Vk, to k~R;1, so that 7 < 1,the
factor of reduction by the sheath, from (96), will be larger.
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If k,,3 ©R;', Eq. {95) with F & 1 again holds, T(kR )= 1, and
(95) reduces to (94).
If k, '<“R;1 and 1I'LIRo << 1, corresponding to a thin

sheath, by expansion in the parameter L/Ro and appropriate
approximation, assuming still a rigid inner surface, we estimate

Q_(w,-L) = zR;ZI o~ R;1) { 1-2rr'1(L/R°) [1n(R /L) -0.6]}
| (2-97)
’—".{1'-21r'1(L/R°){1n(R°/L) -0-6']} Q,. (@),

where I°(~R;1) denotes a suitably weighted average over 0< k<mR;1.
In the range in question, where TI’LIRO << 1, according to (97)
Q_(w,~L) is smaller than Qo_(w) by less them 107%.

Again, 1€ R, (k2 + L7272 4 e, roughly if the
diameter 2Ro is less than a quarter wave length and less than 1.4
times the thickness L, we have the estimate

k 00
Q(®,-L) ¥ fwdkklo(k,w) + l{u) diekT_ (ko) exp[ ~2(k2-k2) 12
o)

-2 -1
v 2RI (VR.) (2-98)

~HR /R %0, _(®)

. where R, is an effective radius defined by

R.2 = ek + /L) 2 w2 +@/ar?y; (2-99)

IO(N R;l) denotes the appropriate weighted average of Io(k),
determined, on account of the exponential factor in (98), mainly




by I (k) for 0 <k £ (k2 + L )1/2 and H, similarly to F in (95)
represents the ratio of 1 (va ) to the similar average I (4'R
of Eq. (69):

-

-1 -1
H= I (~R;)/I(~RSD) (2-99.1)

Where the approximation (98) holds at all we have R, > R,.

According to Eq. (98), the spectrum of average pressure
for a shielded element of radius R, 'SRe is independent of R, and
has a value corresponding to a flush element of averaging radius
R, if H<’1 (or smaller than this by a factor H, in general). For
example, if L < A/9, the contribution to Q_ in (98) from the
second term in (99) is the larger, and the effective averaging
radius is & 2.8L. If L > /9, on the other hand, the first term
is the larger, and the effect1ve radius is & A/T., For an element
with given radius R,» then, the sheath reduces the spectrum of
average pressure only to the extent that the relations

L >> Ro/2.8 and R KK N

are satisfied,

Though the domains of validity of approximations (94)
and (98) do not overlap, there being a transitian ' region between,
we may crudely regard (94) as applying if Ro,Z.Re and (98) if

ROISJRe.

The effect of the sheath is shown graphically in Figure
2-4 as a function of L at fixed A with R, as a parameter. The
form of dependence is shown for three values of R, say R01<R02<Ro3,
which are introduced as arguments in the respective spectra Q_(w,-L).
It is supposed that A >> Ro1 >> U,/w and R o {MT &, R g. For
Q_(w,Rq,-L) ,Eq. (98) then holds over the range L2 R01/2. In the
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range L > Laos where Lao is defined by Re(k,L=Le2)=R°2 with R,
given by (99), the Q_ spectra for R,y and Ry, coincide, since

the effective radius there is Ry for both. At L = 0, on the

other hand ’ ZQ- (w’ROZ’ 0) /Q_ (wakolno) E QO' (wnRoz) /QO" (wnRol)

= (Rollkoz) - The assumed condition on R, makes Ry3 > R, for

all L; hence R,3 18 the effective radius for all L, and Qoew,Ro3,-L)
is independent of L.

It has been assumed above that the exciting pressure
spectrum Ic(k,w) varies smoothly and moderately in the low-wave-
nrumber range in question. A3 noted in Section 2.5 and Appendix
5, however, I  may behave anomalously near k = k <= w/c. If it has
a significant peak there, but one that is broad relative to the
spacing of the modal wave numbers kn’ there will be an additional
contribution to Q_(w,-L) which by (93), since I'(k,,®) = 1, is just
the same as the corresponding contribution to the spectrum QOGD)
for an exposed area and, like the latter, is independent of R, for

ku)Ro ,S, 1’*

All the estimates of Q_(w,-L) above referred to a rigid
inner surface. With regard to dependence on the impedance assumed
at this surface, suppose the latter is transparent (infinite inner
medium) but the element is still regarded as rigid. Then for wave
number k, if kRo:fbl’ the corresponding average pressure on the
element is reduced relative to the rigid case by a factor

2 (1/2) (1465 (2-kD) M2 i, ) (2-99.2)

[with (ktf)-kz)ll2 > i(kzokﬁpllz when k >:km], where EF(WRgpc) denotes
the radiation impedance of the rigid element in free space and is

*If such a peak exists but is narrow relative to the spacing of the
kn3 this contribution to Q_(w,y) is identified rather as a term

(r/8) k,[27) (K R) /kuROJZIO(ku,w) in the sum (38a), where | denobes
the mode such that iies nearest k;. Such a contribution would
have a resonant character with peaks at frequencies wu = Cku’
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given for kR, < 0.5 by QF s €, - i€, = 0.25(k,R ) “- 10.614k R
[ef. Eq. (140) further on]. When R < Re/2, we then find in place
of (98)
3
H

f ) 2 2
Q(®,7L) = 21 (VR (1/4) {(1/4) [1+(4/3) E1+(1/2) (& 4 ) T

- -9 - 2-99.3)
+(1/8) [ 1426, (e, 1) "14+3/2) (63462 (1, 1) 21 2} ,

which reduces to Eq. (98) when kﬁﬁoeo. The ratio Q_/Qo may be
formed as in the second form of (98) by writing ZIOQMR; )= HRg Q,.-
It is more useful, however, to consider Q_/Qé_, where Q;_ denotes
the result for a flush element, not in a rigid baffle as Q,_, but
in a transparent baffle similar to the inner surface assumed in
deriving Q_ in (99.3); for this purpose, one would need to solve
the acoustic problem yielding Qé_.** For R, 2 Re/2, the value of
Q_(w,-L) complementing Eq. (99.3) is also not so trivially obtain-
able.

2.6.1.3 Summary Discussion

Consideration of (91) for Q; indicates that the effect of
a fluid sheath relative to flush mounting, so far as the excitation
from high wave numbers (k > w/U_ ) is concerned, is somewhat of the
nature of averaging the fluctuating pressure over the entire exposed
area of the sheath, instead of over the area of the transducer itself.

Similarly, if the inner surface igstead approaches pressyre
release, for wave numbers k < R the factor IT(k,w,L)} ¢ in

B. (93) is replaced by

(8o 03-kD M 2k lexp 10312 M 2| 2

( (kZ_k(%) 1/2->:L (kz_k(%) 1/2 when k > k, ], where &o(ngpc) denotes

the radiation imgedance of the element in a pressure-release
surface. A result analogous to (99.3) can again be derived.

For wave numbers k,S R;]' only, the contribution to Q(')_ is
modified relative to Q,_ by the factor (2-99.2) but with the
sign of Ep reversed.

X%
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There is the additional component Q: in the transmitted pressure
that is averaged only over the transducer area, but provided
aL/U_ >> 1, it will be smaller than Q, unless a is very large
and at any rate very small relative to Q_ ,. [see Eq. (89)].

On the other hand, the effect of the sheath so far as the excita-
tion from low wave numbers (k‘g'mkgl) is concerned is not sub-
stantial unless the sheath thickness is roughly at least half

the radius of the area (transducer) in question and this radius
is roughly at most a quarter of the sound wave length.

2.6.1.4 Spectra of Pressure Averaged Over the Active Area of
Arrays of Shielded and Flush Elements

in practical application, not only the average (noise)

pressure on an individual area beneszth the dome or sheath is of
concern, but still more the average piessure on an array of such
areas. Thus the effect of the sheath on the correlation of the
pressure between areas (elements) must also be unnsidered. There-
fore, imagine an array of elemerts of radius LI with center spacing
D(> 2r_) and suppose r, << R, [see Eq. (99)], corresponding to the
regime where the sheath apprec1ab1y reduces Q_(w,-L). The effec-
tive radius R, was seen to correspond to the largest area over which
the average-pressure spectrum is roughly independent of averaging
area; for much larger areas the pressure may be regarded as roughly
constant over each partial area ~~ WRZ, and the spectra of force
on these areas added powerwise to obta1n the spectrum of total
force, and thence average pressure, on the whole area in question.
Explicitly, the average-pressure spectrum on a large interior area
is ZWA-IIO(O) by Eq. (93)f since IF(O,-L)I2 = 1; but, by defini-
tion of the correlation area A, this spectrum is given by (Ae/A)QJ
where Q_ is the pressure spectrum at an interior point; the latter
by (98), is given by Q_ = 2R I («\aR 1) hence, on assumption that
I (~R1) ¥ 1_(0), we have A =~ ﬂ'Rz where R_ is still defined
by (99) (If we consider an area at y = =L in an infinite inner
medium instead of at a rigid inner surface, the spectrvum of average
pressure on a large interior area is smaller by a factor 4, since

lr(o -L)|2 = 1/4, but Q_ is smaller by the same factor, and the
correlation area naturally i. still A = vR )

*For a large area WRZ, if I, is constant for most k < mR™1 but
1 (ﬂvR'1)¥Io(O), the argument k=0 should be replaced by

1°
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Consider first, for comparison, an array of N flush
elements of redius R, where cnRo/U°° >> 7 so that Q__ C R;Z. We
represent the active area of the array as N("R))=A. The spectrum

of pressure averaged over the total active area, say Qg_, is given
for center spacing Do‘z b,, by

A = o _@/N w1 (R (2-100)

To the extent that Io(fVR;I) is independent of Ro, Qg thus does not
depend explicitly on the size of the elements (where R >> TU /)
but varies inversely as the total active area A.

Now consider an array of N' shielded elements of radius
r, and center spacing D suchzthat the gctive area ¢ = N'(vrg) is
the same. We define A, = T, Ae =2WRe. Two opposite limiting
conditions are distinguished: (a) D™ >> Ag (loosely packed array);
) p?<< A, (tightly packed array). In the case of lcose packing
contributions of the elements to the spectrum of total force on
the array are nearly statistically independent. The spectrum of

pressure averaged over the total active area, say Qé, then becomes
@ (w, -L) ¥ Q_ (o, -L)/N' (2-101)

-1 S NPT I NG i NV S
- 2mA "L (R, ) (r /Ry = H(x,/R)Q,_(w) for r K<R,

-1 -1y~ A
2rA Ioévro ) QO_(w) for r >R,

2 2
(D” >> 7RY)
e (2-101.1)
from (98) and (100). In the case of tight packing, the spectrum of
pressure averaged over the total active area differs little from
that averaged over the total (active plus dead) area AT = A(DZ/AO).
Hence, B

Aoy > amagl (vagl/?) = omalr (~vazl/2) (el p?)
Y (2-102)
* By (re2/09) QP (w)

2
(D” K ng << A,)
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by reference to Eq. (93) for a circulai*area AT z WR% (or its
equivalent for another shape), where*’
Hy = I(~Az D /1 RY). (2-102.1)

We recall, however, that (93) constitutes an adequate approxima-
tion to the corresponding sum over modes of (38a), and the latter
in turn an adequate approximation only where a range of excitation
wave numbers k that is equal to many modal spacings (i.e., >> 7/a)
is in question and where [2J1(kR°)/kR°] , in particular, varies
only moderately over an interval 7/a in k. This condition applied
to (102) requires that the array extent be smail relative to the
dome size, Ry << a. In application, we will have RTf~Ia; we may
hope the results will be still roughly applicable if RT.ﬁba-

If we consider an area at y = -L within an infinite
inner medium instead of at a rigid imnmer surface, Q_(w,-L) and
likewise Q*(®,-L), given previously by Eqs. (101)-(102), are
equal to 1/4 of their previous values.

We also want to consider arrays composed of ad-
joining ﬁsdependent domes housing arrays of the type considered
%k
above. In this case we may reasonably assume the spectra of

noise pressure on elements in separate dome sections are uncor-
related. Eqs (100)-(102) then remain valid for spectra of

pressure averaged over the active area of the elements in all

the sections taken together, provided A in (100) is now interpreted

* If Hy $$ 1, there can be a reduction in average pressure due

to a tight packing effect in the case of the flush array also,
requiring Eq. (100) to be modified, as discussed further on.

** In thti furthazi regime w'rier RZ & Ap we have Q‘_\(w,-L) = q_(w,-L)
Y 2R"“I_(~R_ ")~ (A/7R )Qi_(ws. Even for w = 0 the former con-
diti8n Ps safisfied onl§ i2°L o R./2.8.

= In such a configuration the present circular geometry assumed

for each section is clearly inappropriate, but the basic
relations and conclusions remain valid.
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as referring to this grand total active area (but with AT still
referring to a single section).

‘The probability that Io(k) is much smaller near k=0
than I (AR_") is sufficient to merit further attemntion. Suppose,

therefore, I (k) in the region of low wave numbers may be regarded
crudely as given by

r

1
I fork(kc

I(k) = { (2-103)
I" for k > kg

\
where I' and I" are constants with I'" > I'. The pertinent product
Io(k) lP(k,-L)l 2 of Eq. (93) then behaves similarly but cuts off
rather sharply where kA R;]' (see Figure 2-5).

1
I I
o |
= |
~ |
l“ I
X
L |
= |
5., I
N |
!-1
kg R k

FIGURE 2-5. EXCITATION-RESPONSE PRODUCT Io(k)|F(k,-L)l2 FOR

A HYPOTHETICAL STEP DEPENDENCE OF I »AND ' FOR
A FLUID DOME.
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Io(k) as given by (103) may be regarded as composed of a sum

I, =_11 + I, of a spectrum Iz(k) = I" for all k and a (negative)
spectrum I;(k) = -(I"-I') for k < kes i(k)-o for k > k,. Two
pertinent correlation scales, R, and k (_kw ) now enter. We
must then distinguishloose or tigbt packing relative to the
scale R, from that relative to the scale k'

We find in the several combinations of interest,
assuming A 2 > k Z

1) Loosely packed relative to both scales, element small
relative to both scales; D >> k;l, r, <L Ry:

Po,-L) = 2mal; 2[{ R-2. (1/4)k2}1"+(1/4)k21 ] (2-103.1)
2) Looéely packed relative to small scale, tightly rela-
' tige to large, element small relative to both;
kc >> D > Re’ r, << R.:
~ '1 2 " -2 "
?@,-L) ¥ Al 22 (11 ] (2-103.2)

'3) Tigh ..y packed relative to both scales: D << R,:

te,n ¥ ZWA'I(vrr;‘;/DZ) I' (2-103.3)

4) Loosely packed relative to both scales, element large
relative to small acale only; D >> k35, kil >> ry >> R_:

P o,-L) ¥ ma 1= (1/4) (kr ) 2(1-11) ] (2-103.4)
(o]

5) Loosely packed relative to small scale, tightly relative
to large, element large relative to small scale only;
K >> b 3> Ry, kPS> g O> Ry

1

Q*(w,~L) = 2ra 1" (re2 /D) (117 1. (2-103.5)
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If the constancy of 1 (k) for k > k is regarded as somewhat
relaxed, I" in cases 1) and 2) are to be regarded as 1 (va )
and in cases 4) and 5) as 1 (nwr 1)

From cases 4) and 5) the similarly generalized re-
sults for a flush array may be inferred by letting Re » 0. With
L replaced by R, and with I" = Io(«:R;I), these become

-1 -1,
4') DKL, Ry <<k

A @ ¥l ewrDh - (1/8) (kR )2 {xo(r\-ngl)-x'} ] (2-103.6)

' -1 -1,
5') D << kj', R <<k

A @ = ma 1 (v - RED?) {IO(NRSI)-I'} ] (2-103.7)

Once more, if we have a number of independent dome sec-
tions, Eqs. (103.1)-(103.7) still apply to the spectra of pressure
averaged over the total active area, with A interpreted as the
new total area.

The formulas above remain roughly correct when
the stated extreme inequality conditions are satisfied
only roughly as inequalities. Eq. (103.6) and (103.7) generalize
(1003, Eqs. (103.1) and (103.2) generalize (101), (103.5) general-
izes (101.1), and (103.3) generalizes (102). In order of magni-
tude, however, (100)-(102) remain correct provided the factors
H and H, are retained in general form. * We recall, in the case
of several dome sections, that I (NAT 1/2 ) in HT refers to an
area AT of the order of the area of a single section.

To compare dome-shielded and flush arrays, it
suffices to consider a single dome secticn. Let the center spacing
of the flush array now be D, and its active area be Ag» which may
differ from the spacing D and active area A of the shielded array.

We note, however, the substantial reduction possible, according
to 103 7& or (103 5), by tight packing, if I (k) should have the
dip hypot esized.




vas an

Suppose the total area AT of the flush and shielded arrays is fixed
independently of flaw-noise considerations, and so also the maximum
array factor vR /D of the flush array and the minimum element radius
r, and minimum spacing D in the shielded array. We then have
AT A (D, /wr o) = A(D/wro). In such case, since the active areas of
the flush and shielded arrays are not assumed equal, in place of

qs. (100)-(102), we rewrite the spectra of pressure averaged over
total active area for the flush and shielded arrays, for fixed

total area AT’ as

Ao «1,-1
<g@”ﬁwmqﬁl(n), (2-103.7a)
f
H(D/D,) 2 R2/RY) o
- 1A /W) 2RDQS, (r o< Ry
e, 1y ¥ A o/ ) 2R /x ) 2o ? @%>>mr2)
= (A /A)Qo_ , (r,>R,) )
HT(waglng)Qo? - Hpa /Al . iR

(2-103.7b)

Suppose alsc that, within the given restrictions, the
incident signal pressure, in active as well as passive operation,
is nearly independent of element radius or spacing. By this
supposition, the signal-to-noise ratio varies inversely as the
spectrum of noise pressure averaged over the active area of the
array.* According to (103.7a), so far as determinined by low

Thus, in the regime considered, the power transmitted by a cavita-
tion-limited active array is recognized as roughly independent of
active area, in consequence of the effect of mutual coupling.
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excitacion wave numbers, for a flush array the signal-to-noise

ratic is maximized by maximizing the array factor AO/AT. According

to (103.7b), for a shielded array the ratio is maximized for fixed

T, 30 far as the higher frequency range where sz < D2 is con-

cerned, by minimizing D. Figure 2-6 shows the factor by which the noise
; ( is reduced relative to that for a flush array of the same

total area (QAo) (vith element radius R, >> wU_/u) as a function of

| Re y L.e., of frequency on a certain nonlinear scale. It is as-

: sumed that HT-K-1. Dashed lines show the same factor for a larger

1 D, and again for a smaller r,e Figure 2-7 shows the ratio in

' question where it is assumed instead that Hp <K H when R, << A%/z
and H thus increases with R;z. '

' Returning to the assumption that Hp~ H~1, we see
that the reduction factor due to the fluid dome can be made
i only as low as the plateau value A /A, in Figure 2-6, i.e.,
equal to the array factor for the flush comparison array. Thus if a
100% array factor were achievable in a flush array, the low-

-

wavenumber noise would not be recduced at all by use of a fluid
sheath.

-
e g,
.

If o (_ZFc/K ) is the highest frequency of concern, the
same (maximum) noise reduction is attained for any D A /Tl/‘
provided the sheath thickness 1is taken to make Rechdgm),Z,Dlv
this condition yields

1/2

L3 (1/5)p(1-1?/nDy"1/2, (2-103.7¢)

a The requisite thickness is thus minimized by minimizing D. (At

fixed D the noise reduction is nearly independeat of r  at all

frequencies such that Reﬁe ro.)

The minimum spacing D is constrained by the economic
' limitation on the number of elements to bc employed. In an active
array it is further constrained by its relation to the minimum ele-

ment radius at which the elements radiate power with adequate

! l- efficiency.
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Figure 2-6.
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Ratio of spectrum of low-wavenumber flow-noise pressure

averaged over active area for a shielded lttlg to that
for a flush array as a function of [Re(R,L)]' . [See

Eq. (2-99).) The flush and shieclded arrays have same
total area AT and active areas A, and A, respectively.

Three curves (drawn with unrealistic square corners
for simplicity) are shown, corresponding to two differ-
ent radii r_and center spacing D for the shielded

elements. Ig (~k) is assumed roughly constant for the

pertinent low-wavenumber ranges.

HiAg/ANrS/RS)

T ro! n;!

Reduction factor defined as in Figure 2-6. It is now
assumed that the average I_(~ k) (and hence H) decreases
in some way as the effectife upper limit on the wave-
number range in question decreases, so that Hp << 1.
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Assuming, for example, a flush comparison array with
array factor < 25%, we may similarly compute the maximum frequency
w,, say, below which the reduction factor for the shielded array
corresponds to ar improvement of signal-to-noise ratio by at
least 6 db.* The result is shown as a function of L for two
values of r, in Figure 2-8. The value of ®, approached asymp-
totically at large L is c/ro; @, equals 0.86 of that value when
L= 1.4:0 or 0.71 of it when L = r,- Ifec has the value for
water, for example, at L= r, we have w>c/21f==13kc/2rO with the

diameter 2r° expressed in inches.

Still assuming Hpv H~/ 1, we compare a specific typical
array when shielded with the same array when flush mounted. Suppose
D=7.75in., r_ = 2.5 in., w/2m=2.4kec (A=24 in.). Then the array
factor is A/AT = 0.327. For any L > 1.9 in., we have vkz 2 DZ,
whence 0615'0.327 Qg_, i.e., the low-wavenumber noise is roughly
4.8 db below that for the same array if flush mounted. Now com-
pare a shielded array with the same AT but a 1007 array factor
- (A/AT=1). For any L (including L=0 if such an array without dome
- were structurally possible) this array averages the noise over
* A, and thus yields the same noise level as did the 32.77 array for

. T
L>1.9 in.™

We consider crudely the array aspect of the noise con-
tribution from high excitation wave numbers. As we saw, by taking
L >> U,/» (a modest requirement for most frequencies of interest)
we can substantially obliterate the direct convective part Q:

(gq. (88)), leaving the propagation overlap part QE. In a limited
regime, roughly for very large wa/c, we saw also that the interior

pressure spectrum is then conveyed mainly bv wave numbers kn'::w/c
(Eq. (87)].
We regard first an array of N flush elements of radius R,»
| where wRO/Uoo >> T, w%th cross-stream spacing 2> 6,, yielding an
active area A = N(WRO). For the high-wavenumber contribution to
the spectrum of pressure averaged over the active area we have
l roughly

*This reduction refers to the case of a rigid inner surface at y = -L.
] If L refers instead to depth in an effectively infinitely deep inner
medium, as noted before, there is an additional ~6-db reduction
relative to flush mounting in a rigid baffle.

*This result neglects the effect of ang difference in the impedance
properties of the inner surface for the 1007% and 32.77% arrays. oo
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dome of low-wevenumber flow-noise pressure averaged
over active area of an array. Element radius r,

dome thickness L, total active area fixed and less
than 1/4 of array area, inner dome surface rigid.
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Qﬁ+(w) ¥ Q@ /NF (nnf,) 12p 15wy, (2-103.8)
where s(®) is given from Eq. (65b) as

2,3/2

o« 1/2 % -2
0, (@) = b ({)/dekk I(k,®)  (2-103.9)

s(@) = (R

[cf£. (100)]. Regarding now the shielded array, we again distinguish
loose and tight packing. Considering the regime where Eqs. (87) and
(91) are indicative, the packing criterion pertains to the relative
magnitudes of the spacing D and g;l (= c/w = A/Zﬁ). With N' loosely
packed elements of radius r_,i.e., for D >> k;l, with r°<&;1, we
have a high wavenumber contribution to the spectrum of pressure
averaged over the active area given by

e, 1) TP, L/ = Te2a . (2-103.10)

C -1
(0 >> k")

Using the order-of-magnitude form

Qi(w.-L) rn (RO/a)aQw(w) | (2-103.11)

based on Eq. (91) together with (103.8), we then obtain the rela-

tion of Qﬁ(w,-L) to Qﬁ+(w) for a flush array of the same active
area

2)-3/2A-1

(@,-Ly~rrl(7a 5 (@)

(2-103.12)
~ (R /aHA (.

With tight packing, D << k31, ¢ will be still smaller
provided the total area AT >> k;l » Since the interior pressure
spectrum falls off for k < k , resulting in cancellation [cf. (102)
or (103.3)]. We consider crudely the average pressure for an area
Ap by replacing k R by ”-I/kaATI/Z as the argument of the area-
averaging facto{ £2J§(z)/z]2 in Eq. (87), and consider the resulting
factoras'v(szT )~3.
that

We may then suppose, in order of magnitude,
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A @, "Ly (k82 3¢ (0, -1y
; ) (2-103.13)
~s@afc) ™ (afa) (RE/AD YA (@)

-1
(D << k)

by use of (103.8) [cf.(103.12)]. (wa/c >> 1 where this result has
validity.)

The crude estimates (103.12) and (103.13) are based on
results [e.g. Eq. (87)] valid only if the averaging area is small
and far from the dome periphery; hence (103.12) and especially
(103.13) require AT << ra“, i.e., the total array area in each dome
section must be small relative to area of the section. This ccn-
dition is not well satisfied in cases of interest. Furthermore,
the results depend sensitively on the lateral boundary conditions.
Nevertheless, it is clear that Oﬁ(w,-L) for a shielded array can
be made much smaller than Q2+(w) for a flush array of the same
active area by taking the sheath area (waz) large relative to the
area of individual elements and somewhat larger than the sound

wave lengths of concern.

We may now consider the probable noise reduction achiev-
able by use of a fluid sheath of small thickness. The gonclusions
may be presumed applicable also to an actual elastic-solid sheath,
provided the transverse sound velocity in the latter greatly exceeds
U,, meeting the order-of-magnitude assumptions made here regarding
c. If the contribution Q_ frcm low excitation wave numbers in fact
predominates, as indicated by the observed area dependence on large
flush transducers, present analysis shows that a fluid dome permits
significant noise reduction only if L 2 r , where r  is the radius
of the shielded elements employed (Figure 2.8) .* If instead the

k. a8

If, however, the wave-number spectrum of excitation contains a
spike at k & d/c, as speculated before, this contribution
will not be reduced by the sheath independently of L.
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convective contriution from high excitatior wave numbers predom-
inated in the average-pressure spectrum on large flush elements,
significant noise raduection could be achieved, provided only that

L >> U_/o and that the lateral size of the sheath (or each section

thereof) is large compared to individual element size.

2.6.2 Covered Dome

When the dome has a cover (plate or membrane), & more
or less sharp resonance in F(k y) occurs if k., "’k + This
resonance may conceivably be sharp en.ough that even if I (k) is
relatively small for k < k+, nevertheless Q_(y) in (26) contains
a significant contribution from k™ k_; in the approximation of
(38a), the terms with kr -tk < kn < kr + bk, if no others, may
then need to be retained. (As we have seen, however, Q_(y) is
indicated by the observed area dependence of noise on flush:
mounted transducers to be the dominant contribution even in the
absence of resonances.) Likewise the kn in this interval make
a pronounced contribution to the sum in Q;(y) in (38c); thus,
in approximation (41), Zps wEich was set equal to zero for the
fiuid dome, now contritutes. The regions of the (k,kn)-plane

embraced in this approximation, including the non-resonant contri-

bution to Q_(y), are shown in Figure 2-9 (cf. Figure 2-2). The
relevant regions are crosshatched.

Consistently with Eqs. (37)-(38) and (41), representing Eq.
(23) by T, (k,y) = t (k)F(k ,Y) (and similarly for S ), we

may neglect t -t in 2 and write for use in (41) and
(38¢c)

Gy S €y [T (ksy) =T (kg )]

where the prime on the sum on n on the right denotes restriction
to even n only.

a0, ot ARG DN 0 -

ot e A, ey o

—




; Figure 2-9.

S

Regions of (k,kn) Plane Retained in a Specified

Approximation for Large wa/c.
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2.6.2.1 Comntribution from High Wave-Numbers

Referring to Q,(y) only, we mey again define a spectrum
modification factor A(k,y) by Eq. (80), and thence the local
averags /A (k,y), vhence Eqs. (81)-(84) again apply, provided che
requisite conditions of Section 2.4.3 for Eqs. (38b)-(38¢c) are
satisfied. If the conditions for (43) are also satisfied, a
suitably modified form of Eq. (87) applies with a contribution
from I, of (41) included. (The crosshatched strip centered at
kn = k, in Figure 2-9 then contracts to vanishing width.)

Further and alternativa approximations also merit wen- !f
tion. If the resonance is sufficiently broad (relative to T/a)
and damped that, in addition to (56) the appropriate one of the
following conditions is satiafied:

Kt 2ok~ 2a"3/ A g 18K,y 17t << 1 (rigid)
' (2-104)
122 (o) "2a73 B2, 1 OB RKy 17T << 1, (free)

where 3: = I'(k,,) and it is assumed that k > fk_, then in (41)
the partial sum Z., as estimated by use of Eq. (17), Appendix 2,
is small compared to X, as given in Eqs. (43), and the resonance
contribution in Q;(y) orA_(k,y) may be neglected.* In this ex-~
treme limit, which would apply for sufficiently large a, the
resonance behavior of g(kn, k2n.y) [lr(kn,y)] is entirely ir-
relevant to the part of the force spactrum deriving from k > k+,
in consequence of the alternation of signs in Ze and the assumed
close spacing of the kn such that contributions from neighboring

n cancel one another except where k ¥ k.

Similarly, if the resonance is sufficiently broad that

ska/T >> 1 (2-105)

¥ We recall that ﬁr may be considered roughly proportional to
(5k) "L [see Eq. (1-38)].
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and, in addition, roughly

1/2

2.2 .
kra/W >, erllkr-kw a<l (2-106)

(cf. 50)), the contribution of (33), if assumed to derive appreciably
only from kn and k both near kr as suggested in the paragraph fol-
lowing Eqs. (43), may be approximated alternatively to (34) by the
corresponding form for an infinite dome:

k +6k
QL)Y [ dkk[23) (R ) /KRy 1*1 (k) [Tk, )] 2 (2-107)
k -5k
r

When on the contrary, the spacing of the k is rather
broader than the resonance peak in i"(k,y), i.e. bka < T, it may
suffice to include only one pair of terms, or even one term, in
. in (41) and in (38a). When b6ka << 7 (but the other assumed
conditions for (37)-(38) still apply), no terms at all may con-
tribute appreciably, except that as the frequency @ and hence the
resonant wave number krGD) is varied, a succession cf single terms
n will contribute over the successive narrow frequency intervals
where their respective kn's sarisfy roughly

k (@) - 6k <k <k.(w) + ok. (2-108)

Let us consider the resonance properties in the vicinity
of the frequency, @, say, at which the v-th mode, of wave number
kv’ is in resonance [kv = (r/a)(v + s), where, in the present model,
= 1/4 for a rigid wall and s = 3/4 for a tree wall] Thus we have
W, = (k ), with w_ given by Eq (1-56) or equivalently k (w ) = k.,
with kr given by Eq (1-38.1) . We denote also other functions of k

* If we had k(@) g sT/a up to the highest frequency of interest,

there could be no mode v in resonance in this frequency range
Since, however, k «”)42 k (=w/c), independently of k o’ i.e.,

no matter how stiff the 1solated plate, this condition would imply
wa/c L sm, i.e., a lateral dome radius a small compared to a
sound wave length in the fluid.
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evaluated &t k = k, by & subscript v. Assuming that

kr~ko in accord with Eq. (1-52), by Eq. (1-4.1) the

frequency espacing M0 of resonances in the vicinity of the v-th
resonsnce is given crudely in terms c¢f the wave-number spacing
ok, *w/a by

aw o~ mr/kvaﬁ’;l./(ws) (2-108.1)

where it = 2 for a plate and 4 = 1 fer a membrane, I.e., the
logarithmic spacing is roughly inversely proportional tn mode
number v. As for the absolute spacings, we have

ZaO(w/a)Z(v + 8)

(plate)
ad ~

et S Al o

c o'rr/ a (membrane) .

To test whether resonance is broad enough in wave-
number that more than one k, can be near resonance at the same
w, we mist consider whether 6kva/w'a 1, where 6k, for a plate is
given by Eq. (1-42) evaluated at k >k and “w,, whence

6k, &/T ~ (1/5) (v+a)t+(8/w,) (1+2/k ) 1. (2-109)

At fixed damping, this dimensionless resonance breadth is thus
roughly proportional to mode number.

In the vicinity of the resonance at ® = 0, , we may
write r(k,,»,y) for use in Q_(w,y) by Eq. (1-54) as
r(k,,0,y) = oy (2-110)
v d) T ey =THE,
where by Eqs. (1-56), (1-58)
" - 2 1/2
wvﬁ'wov(“.g/xuh) 1/2: [Kyy ={kv'(‘°v/¢)2} / ] (2-111)

2-60.




b, = B(k,)/, ¥ (k) F (12 ) Lexp[ - (i, L421,

(2-112)
x ch[!(zv(y-i-L)-l-a] ’

¢, = (k) fo, ¥ (/DL +(plo) (1r2/k,p) ], (2-113)

and fov a low-impedance inner surface b, must be modified as
stated at (1-44). The peak value of T, namely I'(k,,®,,y) &b /e,
contains a factor (kvh)'lcc. (v+a)"1 that decreases with increasing

mode number v; in addition, however, the exponential factor decreases
to the extent of an increment = -W(L/a)(lcv/l(zv)in its argument per unit

increase in v.
To fix ideas, we consider again the example of a steel

plate of thickness 0.25 in. (and unstiffened by resomators) with
water loading both sides and assume a dome radius a = 0.5 meter.
We then have

a, = 8.5 m’/sec, h = 0.049 m,

For example, we consider the properties of resonances with fre-
quencies w  in the neighborhood of 3 ke. We take k, = (v + 1/4)n/a
(appropriate for rigid walls but nearly correct in any case when

v >> 1. From (112) we find by use of the approximation (1-57) that
the resonances of modes v = 8 and v = 9 fall at

wg/2T >’ 2700cps and @ /2w 2 3460 cps (2-114)

(For comparison, these modal frequencies for the unloaded plate
would be w8 = 3530 cps and Wog = 4570 cps.) The corresponding
resonant wave numbers kv are
kg = S1.8m"} -1
g = 5. and k9 = 58.1m °,
At the frequencies Wg and Dy the wave numbers of sound in the
water are

w8/c = 11.31:1'1 and wb/c = 14.5m'1.

In Eqs. (112)-113) the quantity kvh for v-.9 is given by k9h~2.85.
W.th reference to the exponential attentuation of the resonant mode
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with depth as given by (110) and (112), for v = 9 we have

Ky = So.ﬁnfl, whence the exponential factor in 'Plz at y = -L
(with 3 270) is only 0.01 for a depth as shallow as L = 4.6 cm.
For a thinner or less stiff dome cover the attenuation of the
modes resonant in the same frequency range would be still more
rapid.

2.6.2,2 Estimated Spectrum (Exclud Low Non-resonant Wave-
§§E§§rs$

As an example for estimation, consider the regime where
Eqs. (43) hold for 3, , but 2tka LT, 80 that z. and the resonant
part of Q_, asy Qf, may be approximated by retention of the single
n nearest resonance, say n = v (v thus changes with w). Collecting
previous equations, we then hav:

o nJ
W ¥aem +/ dkkI (k) /\ (k,3), (2-115)
+
Q(¥) = L+, (2-116)
e (T/e)k,[23;(k,R) /kvROJZIo(kv) lt‘(kv,y)l 2, (2-117)
~ n
AN (%,Y) = Ao + A (2-118)
N = [2J1(kR°)/kR°]2|r(k,y)| 2 (2-119)

Rigid-wall case:

1/2
L Jy(kR) kY 2
A Ver-2a 2k'(-)" e F"—kz P (k,,¥)+ Ew, ; (2-120)
v -
v
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A ori1/2 =172 J1(kRe) Ky 41 i
R R k—g(gé-)(ﬂ [M(b)-1¥(L-b) 1

(2-121)

Free-wall case:

3/2
T 2k1l() v J1(kR)) K
K 7
v k kv

5 T(k,,y) + 3, 2 (2-122)

2
1/2,-1/2 3 1 (kR Ky

Sy < (21) K T l&%

A
gﬁ;) (‘)j+1 [M(b) -iM(1-b) ].(2-123)

Consideration of the non-resonant part, QP(y), of Q_(y) will be
deferred to the following subsection.

Assuming once more that k+ T w/u_, we esti-
mate crudely the various contributions to Q(w,y). We denote
the contribution in (115) due to A in (118) by Q:(w,y),
calling it now the direct convective part; we denote the contribu-
tion in (115) due to the squared (pure) resonance term of A_ in
(120) [or (122)] by Qf_(w,y), calling it the resonance overlap part,
and that due to the pure non-resonance term 3 2 in (120) by
Qp(w,y), calling it the propagating overlap part; finally, we now
call the contribution Q (w,y) in (116) the direct resonance part.
We do not estimate explicitly the contribution due to the cross-
term of A_ in (120), since at most its magnitude will lie between
those of the two squared terms.

In connection with Eq. (119), we recall Egs. (85),
(86), and (65b). The estimate (89) once more applies to Q (w,y),
but [T|? is differsnt from what it vas for the fluid dome. For

a rigid inner surface, assuming ®/U, > k., we have from (1-59)
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.r(w/num ’wa)')l 2';’ A(w/quko) ) Zn(wh/num) -2

(2-124)
xexp (- 20L/nU, ) ch2[w(y+L) /nU,,]

in which n = 4 for a plate and n = 2 for a membrane and the ef-
fective n will be slightly larger (near unity) than that in
(90) .

The other non-resonance contribution QE in the present
approximation is again given by (91) in the case of rigid lateral
walls and a rigid inner surface and, as before, by (91) with
L2 replaced by (y + L)2 in the case of a pressure-release inner sur-
face. 1In the case of free lateral walls a factor (qu/c)2 must be
adjoined. For a mixed impedance condition at the inner surface or
an infinite inner wmedium, L2 is replaced by a factor containing
the dome impedance for k = k [Eqs. (44), (46.1)]. The correct-
ness of the approximation (91) in this instance requires, we recall,

that condition (57) as well as conditions (52) be satisfied.

The direct resonance contribution, for kvR01§:"’ is
estimated from (117) by insertion of Eq. (11l0) as

2
of (w,y) = (r/a)k I_(k_,w) b, —
L viorTy [(w/wv)-l] + €
2 (2-125)
~T [ (w/w )f1]2+ 2 (R,/a)k R.Q,_(®),
v

v

where the second form follows from Eq. (2-69) on asswption that
Io(kv,w)fv Io(vagl,w). (Qf is independent of R  in approximation
(125) notwithstanding the explicit introduction of R, in the

second expression.) As noted before, the magnitude of Qf depends on the
excitation spectrum in the obscure range of wave numbers

k << w/y_.
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The resonance overlap contribution, for kvRo.§L

and k<< w/U_, is similarly estimated from (115), (120), and
(110) in the case of rigid walls, as

2
b
Gen™ g [ (/o )21]2+e7 k"a(RO/a)3Qo+(m) (2-126)
v

(which is independent of R ) In the case of free walls, an
added factor (nk U /w) is required [cf. (87)].

We reiterate that for sufficiently large
bka many terms n must be retained in the resonance sum e in
A. (ratner than only n = v), and in the limit these contributions
cancel, leaving to lowest order in (120), 122) only the non-reso-
rant parts.

gs. (125) and (126) yield as the order of magnitude
of the ratio of direct resonance to resonance-overlap contribu-
tions

QZ/Q} ~2(a/RY(Q,_/Q,,) - (2-127)

In the case of free walls the ratio (127) contains the additional
factor (w/qukv)2 (> 1). On acceptance of the observational
evidence that Qo-aZ? Q°+ for wRO/Ug >> 1, we infer Qf >> Qi.

2.6.2.3 Contribution from Low Wave-Numbers

The contribution Q_(w,y) was considered in detail for
the case of the fluid dome in Section 2.6.1.2 on assumption that
Io(k) varies little with k for 0 < k(ng;]' with mﬂ)/ 21, and does
not become much larger until kr\>/ w/U,. In the present case, ap-
proximation of the sum (38a) by the integral (93) will ordinarily
fail for k near resonance unless the damping is high or the level
spacing (”'w/a) very small. If the interval of k where Ir‘(k,y)l2 >>1
near resonance is << m/a, however, at most a single kn will be
significantly nearly resonant at any given frequency. In such case
Q_(v,y) may be reasonably approximated as a sum of a single-mode
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resonant term n = v and an integral representing the remaining
modes and proper}y excluding some interval of k near k,. The
single-mode part was considered already in the preceding sub-
section. The crudity of our model does not justify a thorough
treatment of this separation. We must inquire, however, broadly
how the non-resonant contribution to Q_ differs from that for a
fluid dome and whether, in particular, it can be made much smaller
by proper chcice of dome-cover parameters.

Q_(®w,-L) can be made appreciably smaller than its value
for a fluid dome only by making the absolute value of the dome-cover
impedance large enough that F(k,-L)'2 <<'1 for most k < k,,, as
well as for k moderately larger than k . Obviously, however, to
do so will reduce signal transmission as surely as it will reduce
noise and thevefore affords no advantage. Specifically, if a
signal 1is incident from an angle © from the normal, it corresponds
to a wave-number component (w/c)sin® parallel to the dome face
and will be attenuated in accord with the value of Ir«w/c)51n9 142
Even if a "window" is arranged such that this value is not small
for some particular value of 6, making lr‘(k,-L)i2 << 1 for most
k <k, will imply poor transmission of the signal for some other
{ value of 6. We proceed to indicate hbw Q. is modified by the dome
) cover, though for the reason above one would not wish this modifica-
‘ tion to be great.

P
.

Lo ]
2

From Eq. (1-12) with p+ P s et = ¢ , negligible damp-
ing, and a rigid inner sur:ace (a = 0) assumed, we have

cos[(kw k2 (yay)
exp[ -1(x5-k?) Y L1+ (kZ-k?) T hsin( (k-kH) L) (a%-1)
(2-128)

r‘(k:Y) =

’

The value of II‘(k,y)l2 near a non-pressure-release inner surface
(y = L) is seen to be appreciably smaller than unity for most
k < k, unless
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[we recall that h = ofp = h (p,/p)].

We consider first a dome cover with low stiffness,
since this type yields a simpler asmalysis and has some advantage
for noise attenuation. For low stiffness, we have ky, > ks
i.e., free-wave length of the isolated cover small compared to
wave length of sound. Since the resonant wave length kr of the
loaded plate satisfies kr > ko’ the resonant contribution to Q_
is then strongly damped within the dome. Moreover,
since q << 1 for k < k,, the stiffness part (ecq ) of the denomina-
tor of |P|2 in (128) is small and may be neglected

Since the sharp resonance near k = $r is far removed
if k >> k,, we may, for reasonable dome siie,gemploy the in-
tegral approximation (93) . Omitting the resonant part, in any
event, we separate Q_ as

Q = Q" + %, (2-129)

where Q derives from k < k, (waves propagating into the interior)

and Q from k >k (waves attenuating) We assume that

&w+L 2)/kgml and at present, in order to neglect area averaging

as at (98), that R, ﬁ'Kel, where

K, = lesser of (kL™ )12 (1 2,8/n1)/2 (2-129.1)

For k > k,, we recall from (1-13), the form complementing (128) is

ch[ (k2-k2 1 2(y41) ]

exp[k*-k2) 1 2L y- (k%-k2) M “hsh( (k*-k5) L1 (q%-1)

r(k,y) = (2-130)

From this, assuming conditions (51), the first of (52), and (57)
for use of (93), we readily approximate Qf as




#samce

i

Q®(w,-L) Y [ dkk[23; (kR ) /KR ]%1_(K) e, -1 2
ky, (2-131)

AT (v (6L L (Len/4n) 72

a form that properly reduces when h = 0 to the corresponding fluid-
dome form given by the second term of (99) in (98). Here I (wKe)
refers to the appropriately weighted Interval above k = k, . From
(122) we may likewise express Q as

k

w
QE(®,L) = J dkk[23)(KR,) /KRy 171, () |F(k, 1) |2 |
° kL (2-132)
~ L1721 (~k )f dxx(l-Ax sin2x+ Azx sin x)
where A £ h/L (and(k -k )I/ZL = X is the variable of integration).
Io("’kw) refers to an interval below k = k . Combining (131) and

w
(132) , we may write

Q(»,-L)~ H' (R /S,) 0, (@), (2-133)
where
= (1/8)kE + (1/8)L7%(1+h/0L) "2, (2-133.1)
, bl |
k2 = 2L f dxx (1-Ax sin2x +A%x%sinx) L (2-134)
and
] '1 ’
H' = I_(vK) /I (AR (2-134.1)

with I (NK ) redefined to take account of the interval in (132)
as well as (131) and I (NR ) the quantity in (69). Approximate
evaluation of this integral for certain regimes yields
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f 2 2 -1
Ko+ (h/L) [-(1/2)kcos2k L + (1/2)k L™ tsin2k L
+ (1/6)L" % (cos2k L-1) ] if /L << 1

5 lasu/mYAT? g n/L 3 2.5 and kL <7 (2-133)

1/2 -2
[[2.8(L/h)* 4 2k, /hIL™ if h/L > 2.5 and kL > 7.

The first approximate form for ké properly yields tka first term
of (99) in (98) when h/L = 0. The lest form given, which is rough,
reflects the fact that, apart from the transmission window where
k‘Qka, additional w1ndows occur where ( 2 1/2L oY g7 for integer

s. The condition R (k +L° ) 1/2 [or alternatively R oKy +8/hL)'1/2],

we recall, has been assumed in deriving the form (133). Likewise,
the contribution from a mode or modes near resonance must he added
if appreciable.

In Eq. (133), Sa» unlike R, in (98), is not generally
interpretable as a rough correlation distance of the interior
pressure field, since it reflects not only an upper wave-number
cutoff on lr(k -L) but also the substantial variation in Flz
in the pertinent range of k. With reference to arrays of elements,
similarly to (101) we now have in the case of loose packing*

P @,-1) ¥ (@,-L)/N

~ Z‘H'A-]'IO(NKC) (rg/sé) >y (rg/Sg) Qg- (w)

-1 (2-136)
for r, <L Ke

(loose packing:D >> K;l)

“The fact that K, does not reduce exactly to R'1 in the limit

h=0, despi{e its role in Eqs. (134.1), (1)6), (137) similar to
that of RS in (98), (101), (102) results from our rather locse

use of the notation I (k) and the nonuniform ewpression of ex-
treme inequalities.
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Similarly to (102), we have in the case of tight packing, as-
suming a large total area (Asz? h/k,),

Po,-1) ¥ g rienagt )| 21 oyl

¥y (re2/n?) [ro,-1)| 2@ (2-137)
(tight packing: D << K;l),

with Hy as in (102) and |r(0‘)i 2 from (128) given by

-2

Ir(o,-L)| 2 = lexp(-ik L)~k sin kle

We mention briefly the opposite case of a stiff dome
cover such that k <Q(k In this case, the resonant k(—k ) lies
just above k , and is not rapidly damped in the dome interior
If the corresponding interval where |F|2 > 1 is smaller than the
modal spacing(e 7/a), the contributicn tc Q_ has a single-mode
character and becomes substantial periodically in frequency
as discussed earlier. In addition to the windows near
(Ki-kz)llzL = ST where lrlzt\ll (even if k h > 1 or qzkwhﬁz 1)
there is another where k = ko so that q” -1=0. The condition
ko <K<k, imp%ies relatively high signal attenuation for fixed
k,h, since q© >> 1 in (128) over much of the interval 0 < k < k.
The noise from k < k, is also somewhat more attenuated on this
account.

2.6.3 Flush Element, Nca-Rigid Boundary

The discussion of Section 2.5.2.1-2 on the covered
dome applies virtually without change where the average pressure
spectrum refers to an area on the outside of a flow-bounding
plate or membrane rather than one interior to a dome, with the
previous response coefficients I'(k,w,y) understood to be re-
placed appropriately in accord wich the differences between
corresponding terms of Eqs. (37) and (39).
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In practical application, however, we are interested
not in the average pressurrs on an imagined area of the non-rigid
boundary, but rather in the average pressure on an area of a plug
cut from the surrounding plate and representing a transducer.

The modification of the high-wavenumber component of response
pressure Q°{+ of Eqs. (39) and (40) by the term I;(k,w) in (40)
due to the finite impedance of the bounding surface, which was
derived under the former supposition of an intact baffle, has no
validity for the plug problem if R, is large compared to the
wave length 27k in question, that is, if kRo >> 1, as is so if

k >0/U_(i.e., k+CYGVU§) and wRo/Uoo >> 1. For this part of the
response is determined locally by the stiffness, and this is not
the same for the cut-out transducer element as it was for the
surrounding plate. Moreover, if k >> kfl’ the contribution due
to this term in (40) is quite small in any case (see Eq. (1-69)).
In modifying the results to apply to the cut-out situation, we
shall therefore merely neglect this countribution.

If,on the other hand, the wave numbers k _ of the
remaining appreciable contribution to 0. cf (34) and Q1+ of (38¢c)
are such that knRo ﬁ;l, (i.e., if krRo <.1, since no
kn much greater than the resonant wave-nuinber is important), these
contributions correspond to wave lengths at least somewhat larger

thkan the size of the area and, with certain modifications, represent

the desired result also for the cut-out situation. In particular,
the plate motion for given driving force will not be sub-
stantially altered even near the cut where the plug is inserted.
We assume that the alteration in the force on the plate due to
altered motion of the plug area, and the consequent alteration in
the acoustic force on the ﬁlug area due¢ to the plate, are also
ne;iigible; this is probably true for moderate kyRq Then on
neither account is the plate motion for knlg;R;l appreciably
altered by cutting and inserting the plug.

We assume that the inserted plug (transducer) is ef-
fectively inflexible and that it responds to
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the integrated net force over its outer face at the frequency
in question. Regarding the transducer as rigid (immobile) let
'@ denote the force exerted on it by the acoustic field due to
the baffle vibrations. By superposition of fields, this force
is given by the difference between the force fB that would be
exerted on the same area if it were part of the continuous
baffle partaking of its computed local veloc:ity, say Up, ead

the force on the transducer if it had the same velocity up with
the surrounding baffle not otherwise excited, i.e.,
A
f = fB - zgUps (2-138)

where Zp is the well known radiation impedance of a piston of
radiuvs R, in the actual baffle, writter. in terms of a dimen-
sionless funvtion **e =€(wR /c) as

= pe(mRbye (2-139)

The spectrum contribution Q. + Q1+ of Eq. (39) is identified as
the spectrum of (WR ) 1 B’ the desired average-pressure Specr sum
for the cut-out situation is rather the spectrum of (WR )

(fB R B), where the contribution to up from each mode can be ob-
tained immediately from the solution of the simple acoustic prob-
lem. This procedure, we repeat, is valid only for low-wave number
modes n such that kR, 1, for which the velocity contribution
Upn to ug is substantially constant over the area of the plug;

the effect of boundary non-rigidity on the average pressure comn-

veyed by high-wave number modes is simply neglected.

*
The transducer may still have a non-infinite “ernal impedance
2q- Since this will be true also when the b. 'ing baffle is

riﬁid the corresponding reduction factor for tue net force,
(zI+zR), with 2 the radiation impedance of the transducer

in the baffle, will apply in both cases and may be regarced as
compensated for in the calibration of the transducer; accordingly
this factor is ignored.

**as wRo/C*w, we have £-1 and as wRo/cao, we have €-0.
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For mode n the ratio of velocity to pressure in the
acoustic field just outside the surface is given by

2

TrRouBn/an = k2n/pw’ [kop = ( )1/2

]

whence

an-zRuBn = anOrﬁkzn/hm) (2-140)
[e.g. see Appendix 1, Eq. (8.2)]. Hence, for the lower group of
modes the intended modification is achieved by applying

to the response coefficient Fl(kn) in the definition of

Tln and Sln at Eq. (23) the additional factor

(1-£k, /k,)

in which k, is replaced by iK.%n WRen k, >w/c. Let Ty and

Sln so modified be denoted as n’ Sn'

Introducing the prescribed modification of I“l(k.,n)into the
approximate Eq. (39), omitting Fl(k) in Eq. (40), and identifying
the contributions from the unity part of 1 + ry in Egs. (35) and
(40) as representing the average-pressure spectrum Q% (w) for a

rigid boundary, we have for the approximate spectrum a(w) for the
non-rigid boundary

Q= q, + 6Q_ + o4, (2-141)
where
A ~o n. 2 K
5Q (@) = (7/8) 29 Ky [ 233 (kR ) Ik R 1PTo (k)
(2-142)
x [ 1+F1(kn)(l-€k2n/kw)!2-l]
2-73.
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With regard to the consequent modifications in the
ﬁurther approximations given in Eqs. (43) t&g previous
gI(k,kz,w)[g ry(k,w)] wust be replaced by g(k,kz,w)frl(k,w)
x(1- €ko/k ), whence the required derivative is given, instead
of by (47), by

A
(alg\/akz)o =(z,4Epc) /pw = k(:)l(€+zw/pc). (2-144)

Likewise, condition (61l) for use of (43) is replaced by

k%ypc)+ &l‘l(kwa)'l/2 «< 1 (2-145)
(condition (62) is now irrelevant since kao’S'l here by assumption);
condition (60) is unchanged. In these expressions z, is understood
to represent z(k,w) at k = k ; this value, for the thin plate
(n=4) or membrane (n=2), is given by

2(kys®) ¥ L00[ (ky/k )P1] + 0wl (ky/k ) ME45/0]
(2-146)

in + Rw.

2.6.3.1 Estimated Spectrum (Excluding Low Non-Resonant Wave

Numbers)

As an apt example for further consideration, analogous
to the covered-dome example of Eqs. (115,-(123), consider a
parameter regime where, with the modifications above, Eq. (43)
holds for Zyy but the resonance half width 6k1 sat:isfie’s\r
ﬁkla g&v so that S and the resonant part of 66:, say 5Q_ may be
approximated by retention of the single mode rearest resonance

at frequency w, say n = v. For validity of the modification for




plug cut-out, we must assume also that kvRo,S 1 (nevertheless,
we retain Jl(kvRo) without approximation). The acoustic in-
crement, by (141), is given by

w A
Q-Qo o Ldkklo(k)/\_(k), (2-147)

where,by collection of previous expressiomns,
A A N
5Q. = 5Q° + 5QF,

635':7(V/a)kv[2J1(kVR5)/kVRO]210(kV)[|1+r1(kv)(1-1eK2V/kw)|z-i]

(2-148)
Rigid-wall case:
1/2
A J.(kR) k A
= 2 ;
v

4

J, (kR 3
8, (anl/2a712 2180 (el 34y anicaony 1(2-150)

w k°-k
Free-wall case:
: 3/2 -
A - J;(kR) k A
~/ =2 -2, -1 v "1V v X g2
A_ %8R ek !-(-) T g Nik,) (118K, o)+ 3,
Vv
(2-151)

J,(k R.) k :
w -
w

(2-152)
’Q\p A
Consideration of the non-resonant part, 5Q. of 5Q_ will be deferred
to the following subsection.

As with the dome, we denotghthe contribution in (147)
due to the squared resonance term of/\_ in (149) [or (151)] by

56:(w), called the resonance overlap part, and that due to the

squared non-resonance term Fw;z in (149) by 66&(w), called the
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propagating overlap part, and call ©Q_ in (147) the direct low-
wavenumber part, omitting further reference to the interference

term in (149).

Again taking k+
contributions to Q-Qo. The non-resonance contribution, 66&, for
rigid walls, in approximation (150) is estimated roughly in terms
of the high-wavenumber ¢verage-pressure spectrum Q°+(w) for a
flush elewent of radius R°(>> U_/w), by use of (65b), as

"
< w/U_, we estimate crudely the various

56ﬁ(ao lz, /e + &%Zf(kwa)a'3£/u dkk"zlo(k,w)

o0

~ (n/@)lzw/pc+e|2f(kwa)(ao/a)3qo+(w) (rigid wall)
(2-153)
[c£.(91)]. In the case of free walls, estimate (153) is reduced

by a factor of the order of (qUw/c)z. The boundary-impedance
ratio z /pc, by (146), may be written in terms of h(Z o/p) as

Xo/pc = kB[ (ky/k)P-1], Ry/pe=kyh[ (k, /k ) e+ p/o].(2-153.01)

If the boundary may be approximated as rigid so far as the piston
radiation impedance is concerned, then, under the present assump-

tion that kR < 1, we may approximate the piston-iupedance func-

tions by

D oreix ¥ (1/2) (kR ) 2-1(8/3M)k R, (2-153.02)

122
]

If kw/ko <1, i.e., if at the wave length of sound the boundary im-
pedes as amass (the wave length of free waves in it being shorter),
and if the plate damping is mcderate, we have from (153.01) and

(153.02)
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‘Zw/p°+€!2 3’(w/C)2{(h+8Ro/3v)2+R§] (2-153.1)

for use in (153) or in the condition (145). The latter in such
case, however, is satisfied only for very large a. Similarly,
condition (60) becomes approximately (wlrx/c)(kwat)-l/2 <« 1.

On account of conditions (60) and (145), estimate (1i53) is justi-
fied only in a limited regime. In this regime, at least, the non-
resonance acoustic average pressure on the plug is similar to the
direct pressure averaged over the entire plate area Waz demarked
by the bounding structural members.

The direct resonance contribution 665 will be estimated
with neglect of the interference term in (148), which is linear in
I'ys om assumption tliat ’FI!Z >> 1 near resonance. In the vicinity
of resonance at w = ® , we may write Fl(kv,w) in accordance
with (1-66) as

(k. ,w) oLy (2-154)
P1VEyo w/wlv-l + ielv ’
where, as described in Section 1.5, by modification of (11l1)-
(113)
% -1/2 2 2.' 1/2
w), = @, (L41/K, h) [Ky = {ki-(@g,/¢) ] ] (2-155)
by, = (2kh) " H(iel/x ) L, (2-156)
e, T (L) [La(plog ) (L4l/k ) 1. (2-157)

A
Since (sz/kw)2 = (kv/kw)z-l, we may express one factor in 5Q_
from (148) by use of (155) as

2 N 2_.q1/272,.2 ‘2"]
Jl‘i&sz/kw 2 e {(k /) 213 7] e /) -1]
1f kw/'v €< 1 at 'the v pertinent to the interesting range of frequency
(as true if kw/ko << 1 as supposed at (155)) and if k R, < 1 (as

weakly assumed already), this becomes

2-717.




[ .

]

i

e

2 A, - 2
116k, /iy |2 ¥ (1-8k R 137) .
In this event we may estimate from (148)
2

b
lv p 2
1-8k R /37
[(w/wlv)-l]z_'_e%v\ v o/ )

6Q% (@) X (7/8k T (k, o)

2 2 (2-158)

bs. (1-8k R _/3T)
T LV v'0 2 i
[(w/‘”lv)‘llzﬂg (R,/2)k R Q (@),

~S

where the second form follows from (69) on assumption that
I (kNI ~RCY) [ef. (125)].

Similarly, the resonance overlap contribution, for
kv<<HD/Um, in the case of rigid walls is estimated from (149) as

2 2
be (1-8k_R_/3T)
Ly S o k.a®R/a)7, (@) (2-159)

yJ Y
[w/wlv) “11%+ ¢,

A
6Q] (W)~

[independent of R , cf(126) ). 1In the case of free walls, an
added factor (w/nU.k,)"2 is required.

As a numerical example for resonance properties, we con-
sider as in Section 2.5.2 a steel plate of thickness 0.25 in. (but
now with water loading one side only) and a dome radius a=0.5m.
With reference to the 3-kc region, the resonances v=8 and v=9 fall
at frequcucies

ws/zvr"-f 3060 cps and wy/2T ~ 3919 cps.

*
In the present case of flush mounting in a plate, as opposed to
a dome, it would have more practical utility to consider a

model with rectangular rather than circular boundary.
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[ef. (114)]. As before, the quantity kvh of (156)-(157) for
v=9 has the value k9h=2.85.

2.6.3.2 Contriﬁution from Low Wave Numbers

We refer now to the sum . (142) for 68;. The initial
discussion of Section 2.5.2.3 again applies. If the modal spacing
(~T7/a) is small enough, the contributions to 56; from modes re-
uoved from resonance may be approximated by an integral analogous
to (93). Near resonance this approximation will not ordinarily
suffice, depending also on the degree of damping. In the preced-
ing subsection the resonant contribution to 66_ was considered on
the simplifying assumption that at most one mode is near resonance
(k,~k_) at any given frequency. In any case, modes with k, sub-
stantially greater than kr contribute negligibly, since Pl(kn)
in that range is small, as noted earlier.

No single approximation can be written for the entire
sum (142) in the general case. Moreover, the form (142) was
itself a valid representation of 66L only when knR°‘§91 for all
n, i.e., kR < 1. In a certain opposite limit, however, it is
: possible to differentiate clearly between the contributing modes
at resonance and those removed from resonance, and to write a
rough explicit approximation to the partial sum contributed by
the latter. The limit envisaged is that where ko(w)-Ro >> 1,
whence also krRo >> 1, ko(w) here being the resonant wave-number
of the free plate. In this limit the contribution to average
pressure from modes as high as those near resonance is reduced

greatly by area averaging.

R We assume the modal spacing is sufficiently small that

66_ may be expressed as an integral over k (g k.) rather than a

sum over modes. The form (142) or the related integral, however,

k 1 is inapplicable when knR0r2 1, as will be so for some contributing

x n in the present limit. This inapplicability, we recall, arises

I from three distinguishable effects: (1) the velocity of the uncut
plate varies appreciably over the area where the rigid plug is
inserted in the cut plate, so that the changed radiation reaction
on this area when the plug is inserted cannot be expressed as




T . e

due to eliminating a rigid motion; (2) elimination of motion of
the plug-area of the intact plate by insertion of a stationary plug
elimirates the acoustic field due to this area and hence elim-
inates the corresponding pressure on the plate, thereby arfect-
ing its motion; (3) the response of the cut and p1u§ged plate to
a given excitation pressure (of wave number kn 2 Ry ) on its sur-
face, excluding the plug area, differs appreciably from the
response of the uncut plate to the same excitation, excluding the
plug area, and therefore the acoustic field and force on the plug
area due to vibration of the surrounding plate also differ from
the cut to the uncut case.

1f kao << 1, however, the effect (1) is negligible
since the radiation reaction on the plug area is then negligible.
Effect (2) also becomes negligible in this limit. If k R, >> 1,
the radiation reaction, though not computed here, is probably
small 1ndependent1y of kR, Effect (3) is negligible if
keRy << 1 and hll-q (k )| /R << 1, as implied by the preceding
footnote. In fact, in this limit the acoustic force just can-
cels the force due directly to boundary-layer pressure fluctua-
tions (66 = =Q, _), leaving the plug an area of pressure release.
In any case, those k. such that knRo‘Z'v make contributions that
decrease as kn 1ncreases on account of the area-averaging effect.
Hence, one may stjll use (142) (or the integrel form) for crude
estimates, with £ still referring to a rigid piston but with € set
to zero for, say, k, > vRSl. We make a crude estimate only for
the case where k R << 1 (but k (®)R >>1), i.e., the plug radius
times 27 lies between and well removed from the (long) sound wave
length (2r/k,) and the (short) free-wave length in the plate.
This is a very limited regime.

Assuming conditions (51) and (57) for use of the integ-
ral approximation and taking € = 0, we rewrite the non-resonant
part of (142) as

*The difference in plate response referred to under point (3)
vanishes, however, in the limit of vanishing plate impedance
(pressure-release boundary).
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mR
oQ (@) 2 / © dik([2J; (kR) /kR, 121 (k) [§1+r1(k)[2-1]. (2-160)

Neglecting damping, we rewrite Eqs. (1-16) and (1-17) for ry as

[-1/[1-1(k2 k%) Y (1.4 | (k < k)
-1/ 14+ (PkD Y (1-4D) ] (k > k)

By virtue of the assumption that ko(w)Ro >> 1, we have

q2 s (k/ko)n <K'1 for all k < mR;1. To approximate better when

q”~ does not well satisfy this condition, however, we do not neglect
q~, but regard it as set equal to a constant value, say

qg = qz(k-_-l?»;]')=(k°R°)'n approgriate for a value of k near the peak
of the factor k[ZJl(kRo)/kRo] in (160). To perform the integra-
tion in (160) crudely and simply, as usual neglecting variatio.

in Io(k), we replace Jl(kRo) by

NN

(1/2)kR° for 0 <kR, <1

1/2 for 1 < kR, < t = 2.88 (2-162)
/R )Y for ¢ <R,

the last of which yields correctly the asymptotic value of the
average of J%(kRo) over several periods. Here t is assigned that
value which yields from (160) in the case of a pressure-release

surface (Fi: ~-1) the desired result
mR-l
6Qf & -1 I ° dk[2J, (kR ) /kR 2 7%
Q. oy 1Yo o] "o "o’

obtained without approximation of Jl(kRo).*

*Explicitly, t satisfies (1/2) + Int + &4/Tt = 2.
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Approximating (160) by use of (1G2) and neglecting k,Rqs

we find

t56.’(“’) °"‘(1/2)Qo-(‘°) {€-2 [~31In(l+e)+e(3+2€) /(L+€) ]
] (2-163)
t=De __ _ Tlite 4 1

+ O+ (e~ E(Tre) +7 tZI+te)} J

where

= (h/R) (1-¢}) (2-164)

and the pertinent average I Q\JR ) has been presumed nearly equal
to 1 Q~JR ) of (69). By construction, this yields in the limit of
a massless plate

Q- + 507 = 0 (e=0)

as the net average-pressure spectrum. The result obtained from
(163) to first order in ¢ cannot be relied on, since only a con-
tribution from the range k > tR;1 fails to cancel, and this part
has been inadequately approximated. In the opposite limit of a
massive plate, (163) yields

6 Q. [l-¢ }(1.7-1.5¢"Mng] (¢ >> 1) (2-165)

to the given order in e-l. In this limit the high wave numbers
(k > tRSl) contributed little, so that the approximations entailed
are passably justified.

Under present assumptions, we note, the parameter ¢ that
measures the unyielding quality of the plate, i.e., the extent to
which it preserves the net driving force on the plug without cance¢l-
ing it by the acoustic force generated by its own motion in respeorse
to the boundary-layer pressure fluctuations, is the equivalent water
thickness of the plate (reduced by the factor l-q ) in units of the
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radius of the plug in question. In practice, the effective
equivalent thickness in the frequency range of operation mst
be large lest signals be canceled by plate vibration (as we com-
pute herefor the noise) especially near grazing incidence, at
which k = k , making r, = -1 in (161). 1If resonating devices,
which are effective in a limited frequency range, are used for
this purpose, they may be regarded as implying a frequency de-
pendent effective thickness h(l-qo) having a sharp resonance.
In some noise measurements, on the other hand, as opposed to
actual operations with a viable configuration, the parameter
¢ may not be large, and hence acousctic cancellation may affect
the apparent noise.

2.6.4 Effect of Dome and Non-Rigid Boundary on Scaling Law of
Average-pressure_Sgectrum due to Turpulent Flow

We consider how the scaling of the average-pressure
spectrum differs within a dome from the scaling for a similar
area exposed to the flow, and also how the scaling in the latter
instance is altered by the acoustic field generated if the boundary
is non-rigid. We are able to make the comparison only separately
between the respective contributions due to high (k > w/U_,) and
to low wave numbers. Which comparison is most pertinent then
depends on which contribution predominates for the regime
in question. As we have noted, however, judging by
the observed area dependence, low wave humbers apparently pre-
dominate for an exposed area such that G)RO/U°° >> 1 and, 1if so,
also for a dome-shielded area.

We examine only the dependence on flow velocity U, cor-
responding to given dependence on w, starting with the £luid dome.
The contribution Q:(w,-L) as estimated by (89) is related to
0,, by the form"

*The argumernt CD/U°° of the function fl is rendered dimensionless

by L. We consistently omit in the following any dependence other
than on U, and w.
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Q, L £/U)Q,,, (2-156)

If Q°+ has the form (74) (with v, :5 U,), we see that, in a range
of given dependence on w, Q, depends on U, slightly differently
from Q. Likewise, in the regime of (91), for rigid walls.Qg has
the form

@ o oPf(ea/e)q,, (2-167)

(where f is the specific function defined earlier). It thus differs
substantially from Qo+ in its U_-dependence for fixed w-dependence.
(Unlike Q,.s we recall, for wROIc‘§; 1 it is also independent of
Ro.) As for the contribution from low wave numbers, in the approx-
imation of (98) we have

o < (@)l /aL g,

Hence at frequencies low enough that A(=2Tc/w) >> 9L we have Q_
for the shielded area varying with ®,U_(and other flow parameters)
exactly as Q- for the exposed area. At frequencies high enough
that N << 9L, on the other hand, Q_ contains an alditional factor
wz; in regions of equivalent w dependence (which correspond to
different ranges of w) Q_ thus increases with U_ more rapidly

than Q,_ by a factor U,, on assumption that Q _ depends on w and
U, only via /U _ as in (78) or the first term in (79). If we com-
pare the O_ and Q,. spectea at equal w, we have the curve for
Q_(w,-L) below and parallel to that for Qo_(w) up to w v eMZL
and then approaching it (i.e., decreasing less rapidly than Qo_)

according to

dlogQ_/dlogw ’-ydlogooﬁlogw + 2 (2-169)

where w > ¢/N2L.
A
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We proceed to the case of a covered dome. According to
(124) we have

Q < Uﬁfz(w/Um) Q. (2-170)

At fixed w-dependence, Q: thus tends to increase more rapidly with
U, than Qo+' With regard to QE in a previously defined regime,
estimate (91) applies also for the covered dome and hence alsc (167)
above. The resonance contributions Qi and Qf bear little resemblance
to Q+o and Q_o in their dependence on w, though differing by a simple
resonance factor in the single-mode approximation of (125) ari (126).
To the extent that Q° and Qf are important and have the single-mode
form, Q_ will differTfrom the spectrum Qo in having bumps where
successive modal wave-numbers kv become resonant, the non-dimen-
sional frequencies at these resonances will differ for different
values of the boundary-layer parameters employed in defining the
non-dimensional frequency variable. As for the nonresonant contri-
bution ‘from low wave numbers, the behavior will be similar to that
discussed above in the case of the coverless dome, provided h/L << 1,
but some additional modulation dependent on the variable wL/c will

be introduced in accord with the first form of Eq. (135) in the
regime where this equation applies.

Statements similar to those above for the domed dome '
apply to the acoustic contribution to the average-pressure spectrum
for an area in an exposed non-rigid surface [see estimates (153)-
(165) J. With reference to the nonresonant contribution from low
wave numbers, however, in the regime of the approximation (165)
(for which, among other things, it is required that wRO/c §§ 1) i
the augmented. spectrum has roughly the same dependence on »,U_, |
and other flow parameters as Q,_.
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LIST OF NOTATION

lateral radjus of dome or plate (Fig. 2-1)

plate constant of Eq. (1-3)

overlap of s-thmodal function with plane wave, Eq. {2-8)
area of pressure averaging [é.g., Eq. (2-9ﬂ

dome cross-sectional area, Sec. 2.2; active area of
array, Sec.2.6.1.4.

coefficient in Eq. (2-70.1)

=vRe24;corre1ation area of pressure on face shielded by
fluid dome

total (active-plus-dead) area of array
maximum permissible value of AT
minimum permissible value of AT

number describing value of sound wave number in fluid
relative to adjacent modal wave-numbers, Eq. (2-43.1)

numerator in frequency-resonance form for interior acous-
tic-response coefficient, Eq. (1-54)

numerator in wave-number-resonance form for same, Eq. (1-38)

numerator in frequency-resonance form for acoustic-re-
sponse coefficient on outside of plate, Eq. (1-66)

aumerator in wave-number-resonance form for same, Eq.
(1-65)

modal expansion coefficient of driving pressure, Eq. (2-2)

(w suppressed) averaging-response function for pressure
spectrum at excitation wave-number k and depth y, Eq.
(2-17a)

same at outer face of plate, Eq. (2-17b)

modal contributions to B(k,y), Eq.(2-18)
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same to Bl(k)’ Eq. (2-18)

contribution to B(k,y) from modes with kn > k,, Eq. (2-25)

+’
same from modes with kn < k_, Eq. (2-25)
contribution to Bl(k) from modes with kn > k+, Eq. (2-25)
same from modes with kn < k_, Eq. (2-25)

defined at Eq. (2-25)

asymptoticdlly interpolated form of Bn(k,y) for non-
integer n

coefficient in Eq. (2-70.1)

=B(k,) /w,, Eq. (2-110)

sound speed in outer (inner) fluid

=t if ¢™ = ¢jor ¢ if inmer fluid is absent (p =0)
velocity of free waves in membrane, Eq. (1-4)

shear-wave speed in plate material

modal overlap coefficient in circular geometry, Eq. (2-10.1)
=Nncn(k)

coefficient in Eq. (2-70.1)

real part of denominator of I'(k,w,y) at Eq. (1-37)
center spacing of elements in-gquare-celled array
-—-(ATM/A)TrrZ;m = maximum permissible spacing

=(AT0/A)7rr§m = minimum permissible spacing

Young's modulus for plate material

= Z[Traniz(xn)] -l Eq. (2-22.1)

undetermined functions of dimensionless arguments 21,2,
[Eas. (2-71), (2-79)]

= 4w[M2(1-b)+M2(b)], a certain periodic function of k a,
Eq. (2-91.1)

defined at Eq. (2-95.1)
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f10 £
g,(y)

81n
£(k,k,,y)

©O8/3k,)
8, (k,k,)
6, (21,2,) .63

g
Bk,ky)

Teo”

h
H, (2) ,H(z2)

acoustic force on rigid element due to plate vibration
acoustic force on plate element of same area
same for plate vibration in mode n

certain functions of an indicated variable, Egs.
(2-166) , (2-170)

depth-dependence function of pressure field in mode
n, Eq. (2-4)

analogous coefficient for pressure on outer surface
of plate

(w suppressed) functional form representing I'(k,y)

F“' (2-43ﬂ

indicated partial derivative evaluated at k2=0
functional form representing Fl(k)

undetermined functions of dimensionless arguments
21, 29, z[Eqs. (2-72), (2-76), (2-78.1)]

= T'(k.,y) (o suppressed), conditions (2-104)
= Ty (k,0) (1-tky/k ) [Eq. (2-144)
plate thickness

+ A X . :
= ofp—, thickness of outer (inner) fluid having
same mass per unit area as the plate or membrane

=htifpt = p7, or hT ifp” =0

undetermined functions of dimensionless argument 2z
[Eas. (2-73),(2-77)

defined at Eq. (2-99.1)

defined at Eq. (2-102.1)

defined at Eq. (2-134.1)

wave-number-frequency spectrum of some pressure;
k is magnitude of two-dimensional wave vector
parallel to surface bounding flow
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Io(k,u))
1,7k )
Il

I"

&
ROWRE

N P

N

k_(e)

Bk (w)
KZr(uD

same for pressure due to a turbulent boundary layer
on a plane rigid wall [Eq. (1-28)

variously defined weighted average of Io(k,ab over

~ interval 0< ksk'

constant wavenumber-frequency spectrum for k<:kc
in sample computation &h, (2-103ﬂ

same for k> kC

mode with wave number next below tia: of sound in
fluid, defined by (2-42.1)

two-dimensional wave vector

free-wave number in isolated plate (ko must be
distinguished from k for n = 0)

+ . . .
= wf/c—, sound wave number in outer (inner) fluid

+ e 4+ - + . -
= ka ifc =c¢, or k if p =0

y-component of wave number of pressure wave in
outer (inner) fluid with (x,z)-compcnent k, where
k < o/ct Eq. (1-7.1)

+ +

=k ifc’ =c”, or ky if p7 = 0

magnitude of imaginary y-component of sound wave-

number of pressure wave in outer (inner) fluid with
(x,2) ~-component k, where k > w/ci, Eq. (1-7.2)

=K. if ¢ =c, or Ky if o7 = 0
hypothetical wave-number such that Io(k,w) is
negligible for k < k()

modal wave-number (defined with regard to (x,z)
plane)

surface wave number of resonance for coupled dome
system at frequency w (kr > w/e)

half width in wave number of a resonance

K2 evaluated at k=kr
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LS

i

k! («)

kér(u»
krl(u»

5k, (v)

K2r1(“»
kpp (@)

L

wave pumber of radiatively damped resonance for
coupled dome system at frequency o (k; < w/c)

[Ea.(1531)
kz evaluated at k=k;

wave number of resonance for coupled plate-fluid
system at w (fluid on one side only)

half width of this resonance at krl
K2 evaluated at k=kr1

wave number of radiatively damped resonance for
plate-fluid system at w

cutoff wave-numbers such that, on account of the
smallness of Io(k) for k < k+ and of I'(k,y) or
Fl(kn) for modes with kn > k_, wavenumber pairs
(k,kn) having k<k_ _ and k >k, (simultaneously) are
negligible

e i . e TR ) U WA e 58

wave nhumber of rapid increase in wave-number spectrum

'in sample computation Eq. (2-103)

= o/, [Eq. (1-50)

modal wave<number nearest resonance

K, evaluated at k=kv

inverse distance defined by Eq. (2-134) -
wave-number defined by Eq. {2-129.1) |
=F|(k,w)F, response function, Eq (1-18)

=I‘(k,w,-Lﬂ2, pressure response function at inner
dome surface

= Il + Fl(k,wﬂz, total pressure response function at
outer surface of plate

certain function Jefined for 0 < b < 1 by App. 2,
Eq. (26), and graphed in Figure 2-3

number large relative to unity (e.g., ~ 27), used
in mR;l, a wave-number cutoff for the area-averag-
ing factor [Eq.(2-65a)]
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P(w,R;,Ry,y)

q, (@)
9, (w)
q, (w)

q(k,w)

index for radial mode number; sometimes also
represents parameter with values n=4 for plate,
n=2 for membrane

normalizing coefficient for J_(k_R) [Jo(knR)]
integers >> 1 [Eqs. (2-28) , (2-42a), (Z-42b)]
mode nuinbers defined by Eq. (2-29)

numbers >5 1 [Eqs. (2-48) , (2-53)]

number 3 1 [Eq. (2-48)]

undetermined function of the dimensionless argu-
ments zy, 2, [Eq. (2-78)]

number of elements in flush array [Eq. (2-100)]
Same in shielded array [Eqs. (2-101),(2—101.1)]
excitation pressure wave, Eq. (1-7)

amplitude of p(R,t)

pressure wave in outer (inner) fluid
amplitude of pi(?,t)

wavenumber-frequency spectrum of some pressure;
k is wave vector parallel to surface bounding flow

same for pressure due to turbulent boundary layer
same for total pressure on outside of plate
frequency spectrum of some pressure

same for pressure due to turbulent boundary layer

cross-spectral density of pressure between points
X,» K, at depth -y within dome [Eq. (2-7)]

part of Po(w) due to weve numbers k = w/U, Eq. (2-63)
q(k,w) at k = kr(w)

q(k,w) at k = kl':(w)

q(k,w) at k =k, (w)

a(k,) at k ~ R7L [Eq. (2-164)

(k/E5)™/? (plate n=4, membrane n=2)[Eq.(1-2)].
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Q(w)

o, ()
Q(w,y)

Q (@)

Q (@)
Qg (@)

Gy (@)
Q. (@)
Qk,0,y) X

Q4 (@)
Q, (@, ()]

Q% (@, )Ry, ()]
Q;(w,yﬂ§i+(wﬂ
QL (@,y)
Q® (w,¥)
Q) (@,y)
QP (@,y)

Qt (w,y)

b

oy

frequency spectrum of some pressure averaged over
circular area of radius R [Eq. (1-27)]

same for pressure due to turbu.ent boundary layer

same for acoustic pressure induced by the turbulent
flow at depth -y within dome

same for total (turbulent plus acoustic) pressure
at outside of plate

= Q(w,-L) in case of laterally infinite dome
resonance part of QL(u» [Eq. (1-32ﬂ

nonresonance part of QL(w) [Eq. (1-32)]

part of Qi(u» from wave-numbers k > uJU; kn.(1-34ﬁ
contribution to Q(w,y) from wavenumber element d2k
part of Q_(w) due to wave numbers k z w/U_ [Eq. (2-64.)]

part of Q(w,y)[Q, («)] due to wave numbers k > k_,

k < k_, respectively [Eq. (2-25)]or, nearly
equivalently, to k Z w/U_(convective and noncon-
vective parts)

part of Q+(w,y)[Ql+(wﬂ due to modal wave numbers
kn > k. (direct convective part)[ﬁqs. (2-37, (2-39ﬂ
part of Q+(w,y)[Q1+(wﬂ due to kn <k_ (convective
overlap part)

resonance contribution to Q_(w,y) (direct resonance
part)

nonresonance contribution to Q_(w,y), when dis-

tinguishable from Qf (direct propagating part)

resonance contribution to Q+(w,y) (resonance overlap
part)

nonresonance contribution to Q (w,y) (propagating
overlap part)

part of Qg(w,y) from k < w/c (transmitted){Eq. (2-129ﬁ
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Q? (w,y)
§(w)

5Q_ (w)
6Q, (@)
6Q~ (@)

5QP ()

6Q (@)
8QF (v)

(o)

A, (@
QA (w,y)

Qﬁ(w,y)

la ]

R01’R02’R03

part of Qg(w,y) from k > w/c (attenuated)

frequency spectrum of total (turbulent plus acoustic)
pressure averaged over outer surface of rigid cir-
cular plug of radius R, severed from plate bounding
flow [Eq . (2-141 )]

acoustic part of 6(09 due to excitation wave numbers
k < k_

acoustic part of 6(&9 due to k > k+
resonance contribution to 66_(u0 &h, (2-148ﬂ

A
nonresonance contribution to 6Q_(w), when distin-
guishable from 6Qf (w)

resonance contribution to BQ+(w)

nonresonance contribution to 6a+(a9, when distin-
guishable from 6af_(w)

frequency spectium oI pressure due to turbulent
boundary layer from k < k_ averaged over active
area A of array of flush eiements of radius R,

same from k > k+

spectrum of acoustic pressure induced by turbulent
flow from k < k_ averaged over active area A of
array of shielded elements of radius r, at depth -y

same from k > k+

positioa vector (x,y,z) with x directed downstream
and y directed normally to the boundary. into the
region of flow

planar position vector (x,2z)

radii of circular averaging areas

effective averaging radius defined by Eq. (2-99)
linear dimension of array,n:Q;T/w)llz
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mn’xn

e

minimum permissible radius r, of shielded element

real part of z{k,w), Eq. (1-36)
real part of z(kw,w), Eq. (2-146)

(w suppressed) factor in Bn(k,y) in case of free lateral
wall, Eq. (2-23)

same in Bln(k)

81, (k) with added factor l-gkzn/kw [Eq. (2-140)]

mod2 with wave humber next below specified excitation
wave-number k, defined by Eq. (2-29)

defined by Eq. (2-103.9)

length defined by Eq. (2-133.1)

(v suppressed) factor in Bn(k,y) in case of rigid lateral
wall, Eq. (2-23)

sane in Bln(k)

T, (k) with added factor 1-tk, /ky [Eq. (2-140)]
tension in isotropic membrane [Eq. (1-4ﬂ

function defined by Eq. (2-95.1)

time

asymptotic mean flow velocity cver plane boundary
mean ficw velocity at distance y from boundary
local velocity (y direction) of plate [Eq. (2-138)
same for mode n

friction velocity for a turbulent boundary layer (~ 0.03U_
for typical Reynolds numbers)

imaginary part of z(k,w), Eq. (1-36)
imaginary part of z(kw,w), Eq. (2-146)

=kmna, kna, eigenvalues determined by lateral boundary
conditions, e.g. Eqs. (2-20), (2-21)
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z(k,w) acoustic impedance of dome cover for parallel wave- i
number k and frequency w f

z =z(kw,u0

zL(k,uQ acoustic impedance of surface (y=-L) beneath dome

zR(wD radiation impedance of piston of radius R, in given plate
[z4. (2-138)] |
a(k,w) phase angle of pressure wave interior to dome, determined

from zp by Eq. (1-11)

Q(k,w) magnitude of imaginary phase angle, determined from z;
by Eq. (1-11)

B frequency parameter expressing viscous damping of dome
cover [Eq. (1-1)]

Bn modal expansion coefficient for interior pressure, Eq. (2-3)

rck,y) (o suppressed) acoustic response coefficient for pressure

wave (k,w) at depth -y in dome, Eq. (1-8.1)

Fl(k) same for wave (k,w) at outer surface of plate

Y phase angle of pressure wave interior to dome, determined
from z by App. 1, Eq. (14.2)

2 magnitude of imaginary phase angle, determined from 2z
by App. 1, Eq. (14.1)

L

Yns coefficient expressing interior pressure response in mode :
n (normalized to y=0-) per unit exterior pressure excita- :
tion in mode s, Eq. {(2-6) |

€, half width in logarithmic frequency of resonance of v-th
mode, Eq. (2-113)

€ reciprocal acoustic-cancellation factor for plug in plate,
qu (2-164)

d dimensionless hysteretic damping coefficient for dome cover ,
or plate bounding flow [Eq. (1-1}] !

T =(C1, C3) planar separation vector in spatial correlation
functions
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A’

displacement (y direction) of vibrating dome cover or
plate at R at time ¢t

coefficient ylelding a variously defined effective mean
flow velocity as nU_

angle defined by Eq. (1-11)
magnitude of imaginary angle, defined by Eq. (1-11)
=0 (k.,0) [Ea. (1-53.1)]

(v suppressed) cushioning-area-averaging factor for depth-
y and excitation wave-number k > k,, defined by Eq. (2-80)

local wavenumber (k) average of A(k,y)

part of K due to k > k+ (direct convective part) [Eq. (2-81)]
part of K due to k < k_ (convective overlap part)

averaging factor for excitation wave, Eq. (2-84)

local wavenumber average of response-area-averaging fac-
tor for pressure on plug in plate from a k > k_, Eq. (2-147]

=2rc/w, wave length of sound in fluid(s)

mode nearest resonance

defined by Eq. (2-139)

mass density of plate

density of outer (inner) fluid

== 1f pT = p7, or pTif T =0

mass per unit area of dome cover or boundary plate
Poisson's ratio for plate material

partial sum £(-)"T or =(-)"s from n such that k =k,
when k a >> 7 [Eq. (2-41)

similar partial sum from n such that kn ¥ kr
as Z with Tn’ Sn replaced by ?n’ @n

time separation in temporal correlation functions
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X (R)

¥(b)

@, ()

Sw(k)
wrl(k)
Bw, (k)

o

eigenfunction of two-dimensional Helmholtz equation

[Eq. (2-1)

function defined by Eq. (2-91.1) and shown in Fig. 2-3

angular frequency

frequency of resonance of coupled dome system for planar

wave-number k [Eq. (1-54) ]

frequency half width of resonance

same as o (k) for coupled plate-fluid system
half width of this resonance at ®rq

frequency sucﬁ_ihat kr(wv) = kv
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APPENDIX 1

DERIVATION OF ACOUSTIC RESPONSE FUNCTIONS
FOR THE INFINITE DOME SYSTEM

The solution of the basic acoustic problem of the
text will be given here (see Fig.(1-I))The driving pressure p
assumed to be applied to the plate or membrane is given by

PR,0) = p e R (Re(x,2)], (0)

T =
Let ¢ (r,t) [T =(x,y,z)] be the velocity potentials for the

acoustic field in the outer (+) and inner (-) fluids and pt(F,t)
the corresponding acoustic pressures:

ot = - Fogt/oe. (1)

The equation of mo;iog of the membrane is

.e 2 D -

on-T(1-18)Vn 4 0B = (p7-p")y o Ps (2)
where T is the tension (force/length) on the membrane and ¢ its
mass per unit area. (Unspecified symbols are defined in the text

at Eq. (1-3).) If a thin plate replaces the membrane, the equation
becomes instead

on + oag(l-iC)Van + oBn = (p'-p+)y=o-p, (3)

with o = poho. The acoustic wave equations for outer and inner

media are

v2gt- (ct) " 2g% o, (4)

Al-1.
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'] The boundary conditions that apply to 7, g*, ¢~ are the following:

H = (a¢+/ay)y=o (contact of plate and outer fluid) (5)

L A = (8¢'/8y)y=o \(contact of plate and inner fluid) (6)

) p-[ﬂ-/(aﬂ-/ay)] y=-L= 2; (k,0) (specified impedance at  (7)
(M inner surface)

2,2 .2

¢+ contains no traveling or exponentially decreasing (8)
{ wave in the -y direction.

In view of Eq. (0) and condition (8) we may assume

1R,e) = el R €10
r ikjy + 1K.K - iot
r(E,t) = 0] e (8-2)
: . _ cos[k,(y+L)+a] o i
07 (T,t) = 0 - R 7 Bt )
cos(k2L+a)
i; where, to satisfy Eq. (4),

2
()2 = (ufct)2-K2,
and, to satisfy Eq. (7),

tana = iwp /kyz;.
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%

The remaining Eqs. (2) or (3), (5), and (6) reduce to linear equa-
tions for n0,¢; and ¢6, from which all desired quantities can be
formed. Eqs. (2) and (3) may then be written in the generalized
form

-iwzng = -iw(p By-p g)-py, (10)

where z denotes the impedance of the plate or membrane, namely

2(k,0) = oliwg?(l-1t)-1c8 ] (11)

with

.{aokzlw (plate)
q:

cok/w (membrane) .

Eq. (10) and the reduced Eqs. (5) and (6) may be written

- i -
-iwz i p+w -ifw —1 T | «po-l
-1 -1k} 0 gt =l o (12)
. . b i
-iw 0 ko tan(k2L+a) : ¢0 ] 0
- l. 4L _I

From (12) we find, in particular, for the ratio of the
interior to the drivingz pressure

F(k,w,y)= BSEat) - cos(ky (y+L)+a]

p(E,t)  cos(k,L+a)-isin(koL+a)( (kyp” /kgp ) +(zky/p w) ]

(13a)
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If k> wlct, the result is preferably written*

chlX; (y+L)+a]
U pp— —i . (13))
ch(KzL-lﬁ)-l»sh(KzL-ia)[(sz /Ky ) +1i(zKy/p w) ]
where
K§ = (k2= (efch 2112,
thfz\. = -lop”/Kyep  (i.e. 8= -ia) (1)

as obtained from (13a) by setting ik% = -Kg. If wp'/KEizﬂ > 1(with

z; pure imaginary), as for a pressure-release inner surface, the
definition (14) is inconvenient; one may instead define

A -, =
cth ™y = -iuwp /KZZL’
and obtain in place of (13b)

sh[KE(y+L)+?]
sh(K,L+a) +ch(KoL+y) [ (Kyp*/KEp ) +1(2K5/p ) ]

(k,w,y) =

Though not necessary, we may also define

cot Y = -ip-wlkizL

(13c)

* 1f c*#c-, there will be a range of k where k < w/c+ but k > wfc”

or vice-versa; the corresponding suitable form of I'(k,w,y) will
not be of sufficient use to be recorded here.
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and obtain in place of (13a)

sin[kg(y+L)+y]

r'(k,w,y) = — ~ — - — (134d)

o sin(k;L+y) +icos (kL+y) [ (kyp™ /kop ™) +(zky/p w) ]
Likewise, if the inner medium is infinitely thick, so that the
impedance at any chosen depth y=-L is

2y (k,0) = 0p”/ky,
we may write, in place of (13),
- _ _ . 71l -ikoy
L (gp* /kgp )+ (2l /o w)] e 2 (k < w/cH) (13e)
I'(k,w,y) = ¢

-1 Ky
- + - . -, -
[1+(sz+/sz )+i(zK,/p w)] exz S (k> wfch) (13f)
We may likewise find from (12) the ratio of the acoustic
to the driving pressure on the outer surface, i.e.,

. jowp et
y=0) _ X %o

p(
Fl(k,w) = D P

We write the result only for the case where there is no interior
fluid (p =0), dropping the index +:

-[1+(zky/pw) 171 (k < w/c)

ry(k,0) = | (15)
-[1+i(2K, /pw) 171 (x > o/c)
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APPENDIX 2

ACOU§TIC EXCITATION WITHIN BOUNDED FLUID
BODIES OF LARGE LATERAL DIMENSION

1. Introduction

We present here an asymtotic solution for a group
of acoustic boundary-value problems. The type of problem in question
is pertinent to the study of models of sonar domes and sheaths
(but not to boots on hydrophones where the area of the boot is not
large compared to the active transducer area and not large compared
to the wave length of sound in the outsidé medium). Some
of the results obtained in the following sections will be outlined
here first. Consider a semi-infinite circular cylinder of ideal fluid
of radius a having eitihc: rigid or pressure-release lateral walls and
terminated in a cross section (y = - L) of given impedance (see Fig.
A2-1), At another cross section (y = 0) there is an applied pressure
discontinruity of definite frequency w and wave number k parallel to the
cross section. Consider the resulting pressure transmitted acoustically
to a point y on the axis between the cross sections (0 > y> - L). 1In

an anvisaged application the pressure source is due to a turbulent flow

over the outside of the cross section y = 0. At the cross section y = O,

just inside the pressure source, there can be interposed a thin dynamic

sheet {flate or membrane), provided it satisfies certain special boundary

conditions at its periphery, r = a.
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1£ one lets the lateral size become infinite, i.e. a » ®, at

1 and k;l, vhere k= a/c is the sound wave number in the fluid

fixed k-
and k > ‘m’ then the acoustic pressure is conveyed by waves with the
same wave number k as the pressure source parallel to the planes

y = constant and is attenuated nearly exponentially with increasing (y,.

I1£f, on the other hand, one lets a +» 00 at fixed k-l

and k1, but with
|y| (and L) » oo, where \y‘, however, increases more slowly than

a (e.g. as ab, 0 ¢ 6 ¢ 1), then the acoustic pressure in the limit is
conveyed exclusively by waves with the wave number km parallel to the
source plane and hence with vanishing wave mmbg; in the y direction.
The same is true if the circular cylinder is changed to a semi-infinite
slab with faces normal to the wave vector of the planar pressure source.
In the second type of limit in all cases the pressure varies with a

(disregarding dependence on y) as 3'3/ 2. We proceed to the detailed

calculations.

2. Infinite rectangular geometry; dipole pressure source without dome
Consider an infinite slab of ideal fluid subject to a fixed

impedance condition on the two faces (x = + a) and a plane pressure

source with time dependence exp(-imt) on one side of a cross section

A2-3.




(y =0, =- ac< x< a) normal to the two faces (see figure). The pressure
source, and hence all other quantities, are assumed independent of the
third coordinate, 2z. Omitting time dependence through-
out, let the applied pressure be P(x). Denote by
p(x,y) the acoustic pressure field in the slab, in
which the sound velocity is c. The boundary condition

(1) p(x’0+) + P(X) = p(x,O-),

i.e. there is a discontinuity -P(x) in p(x,y) across | |
impedance condition
the plane y = 0. Continuity of fluid velocity at y = 0 implies the

second b.c.
(2) ©Op/0Y)gpy = ©P/O¥)y . -

The solution can be expanded in normal modes for the x

dependence. Taking account of (1) and (2) one has

(s8]

3) P(x,y) =+ (1/2) z c_y_(x) exp(ik, }y])
n=0

for y 2 0, respectively, where the wn(x) are a complete set of

orthonormal functions satisfying the one-dimensional Helmholtz equation

A2-4.,




4) @?/ax? + KBy (x) = 0

and the given impedance conditions at x = + a; c. is given by

(5) c_ = f. dx ¢ (x) P(x);
-a
and
2 2 2 -
(6) ko =k -k, k I afc.

By virtue of (4) and (6), the expression (3) properly satisfies the

Helmholtz equation for the acoustic field (where y # 0):

- 7 @ + ) p(x,y) = 0. (v £ 0)

2 2 \1/2
For n such that k2n < 0, one replaces ik2n by -(-an) .

ittt i = L mdE logmmaie o

o g

f 2.1 Rigid walls

Suppose that the walls at x = + a are rigid. Consider first

a4 pressure source

l (8) P(x) = pocoskx.
i Then
{ (9) wn(x) = a-]'/2 cosknx, n>0

’l’o (x) = 2-1/2 ’

B T T T T ———

(9.1) kn = nr/a,

‘ A2-5.
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and (5) yields

n
(10) c -2psa'1/2ks1nka—2(2?7—,

n on K“-K
n

where

s =1 (ngo0), s, = ZQL/Z .

n
Hence
-1 ®  on 1
(11) P(x,y) =2 pa k sinka{ I (-)"£(n) + 3 £(0)
n=l
-1 ®© n
= Py k sinka = (-) f£(n),
n=-00
where
- cosknx
(12) £(n) =+ (1/2) T2 exp (ik, | y|).
n

The infinite sum in (11) can be transformed in various ways
by forming the function wf(z)cscrz for complex 2z and integrating
it around one or another closed contour in the 2z plane (Sommerfeld-
Watson method), bearing in mind that a branch cut conmects the branch

points z = i_kmq/w, at which k, = km and k, = 0. One such path

2z
yields a result that can be written (we assume k > &m)

(13) P(x,y) = p, (x,¥) + oP(x,Y),

where

(13.1) Poo (7)) = ¥ (1/2)p_coskx exp[- (&7 - k2)/2)yl]
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| - a1 -l m o coskx 2 . 2.1/2
op{x,y) = + 7 = pka sinka{1 (vr/z)ni_m(-) 7.2 sin[(km k) M]
( km§
1 cos (xu/a) 2 241/2

- P.V. d }. k -

( JL u [sinu kz_(q/a)z s n{[ w (v/2) ] Iyl}
1 ch(xu/a) 2 211/2
(14) - sinllk” + (u/a) |y|]
shu k2+(q/a)2 {[ w / ]
1 ch(xu/a) { 2 211/2 }
+ du = sinl| k=~ + (u/a) y
[a shu k2+(u/a)" [w ] ‘ '}
w

where the integer m 1s defined by m ¢ km a/T < m+1l, P.V. denotes
principal value, and ch = cosh, sh = sinh, 1In Eq. (14), ap is

expressed as the sum of a number of real integrals, whose values are

real, and a pure imaginary term proportional to a finite sum. At y = 0,

( clearly aAp = 0 and by (13)

p(x,0) = + (L/Z)pocoskx,

which satisfies the b.c. (1), in view of (8), as it must.
Imagine now that the distance between the walls, 2a, increases
indefinitely while the lengths, k‘l, x,y remain fixed. The length
{ k;l(- c/w) may be taken to be fixed or to increase as a. The real
[ contributions to aAp clearly vaaish in this limit., The number of terms

in the sum in the imaginary part increases proportionally to kwa, but
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on account of the alternating signs (considered further below) this
contribution vanishes as ell, leaving only the first term Poo in
(13). This term is just the solution for the problem in the absence
of walls, where the slab (and source plane) are infinite in the x direc-
tion. That is, the pressure at a given point is unaffected by reflections
from the walls when these recede to infinity. (See also Ref. 15.)

Now imagine instead that as a + @, so also Jy| » o, but

that }y| does so more slowly, e.g.

(14.1) y/axal with 0<56<]}.

fixed
In this limit one has rather poo/Ap + 0. In fact, consider for any,wave

number kM, such that kM > km, that part pM(x,y) of p(x,y) in Eq. (11)

that derives from modes n with kn > kM:

@
(15) () Z 2pa ksinka 3 ()" £().
n=N+2

where N 1is defined by kN+1 < kM < kN+2 (thus N increases as a,
since kM is independent of a). (This partial sum, if (k-kM)a > T,
includes those terms that principally contribute to poo(x,y).) Each
term in the sum (15) decreases exponentially with |y | , and one recognizes
that in the limit where a » o0 and |y| -+ @ 1in accord with (14.1), one

will have pM/p + 0 and




-1 1 N+l n
(16) p(x,y) +» 2 Po2 k sinka{i £(0) + nil(-) f(n)} .

Stated otherwise without reference to limiting processes, in
some domain of values of k,a,x, and y (a domain of considerable interest
in the intended applications), the pressure at depth ly\ from the source
plane is well approximated not by the result Poo for infinite a
(dome size), but by the contribution from the lowest modes n wup to some
modal wave number limit, i.e. for kn < kM’ the contribution from higher
modes, including those with kn'f k, being negligible on account of
their rapid exponential attenuation with |yl .

The limiting case to be dealt with here is that where, in

addition to the previously assumed limiting parameter relations, namely
i

l/ka » 0, x/a >0, y/a >0,
and relation (14.l), we have also
l/kw a->0,

i.e. the lateral extent (parallel to the source plane) is large compared
to a sound wave length. 1In this case the sum (11) [or (16)] for p(x,y)
can be summed, independently of any parameters, to leading order in a-l,
as shown below.
Take N in Eq. (16) to be even. Let £(n) - T(kn), in accord
with (12). For n such that T(k') is analytic over kn-(l/Z) < k' < kn+(74)
(where Eq. (9.1) is extended to nonintegral n), we have, since

A2-9.
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kn+1 - kn = 1/a,

17) £(n) - £(n4l) = (1/2)[E(-1/2) - £(a43/2)]+ O((@/a) T 1 (k)

where a prime denotes d/dkn and O0(e) a quantity of the order of «¢.
Hence, apart from a modification required for n such that T(k') is

not analytic for k' near kn’ we have

N+l N
(18) z ()@ = 1/2) [£(-1/2) - £w3/2)] + o((r/a)” £ T (k)

n=p } n=

even

By (12), T(k') is not analytic at k' = + kw , having branch
points there on account of the factor exp[i(ki -ki)L/zlyll. Therefore,
in a certain range of n where kn'f kw we do not use (17); this range

is specified as running from n= j 4+ 1 -n, ton=j + Dys where the

2
integer j is defined by

(18.1) Ry < ky <Ky

If the wave number range thus to be excluded is called Ak, we note that

the number of modes 2n2 in this range increases indefinitely as ska » o
we are free to let pk - 0 in this limit, however, and so, as kwa > ®,

we let

(19) nz/kwa + 0, while n, » o,

2

€.8. nz/kwa(x a € with o el (cf. (14.1)). 1If we apply (17) outside

the stated range of n, we obtain instead of (18)

Az-10.
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N+1 a 3 N
(200 z ()€ = Q/2fE(-1/2) - £QuI/2)]+S_+ S, +0(@/a)” T'TL'),
n=o :
evén
vhere
-1
s.= = [f@ - £@D)] - @/DEQ + 1/2 - ny),
n-j-l-l-n2 =
even
(20.1)
3-l4a,
5, % [£@) - £@A)] + A/DEQ + 1/2 + 0y,
n=j+1
even

we assume for definiteness that j 1is odd, and the prime on the sum
over T''' is intended to signify that the interval j+1-n2 {ng j-1+n2
is omitted.

Consider the final term in (20). From explicit differentiation
of (12) with respect to kn it can be seen that the part of Tﬁ" of

lowest order in a-l (with x fixed) is

. 3,
.1 co8 kx I, ak,
.(20.2) ¥z < exp(ik, [¥]) i —5—
| 22 -k % 27 a3
in which we have
3 3 2, -5 .
(20.3) dky fdk = = 3k “k koo

this part is of lowest order because for n near the lower limit,

j+1-n,, of the excluded interval, we have
2

. » 1/2
f}n'vvkm - nzm/a, whence k2u (ZkaPzt/‘) , a8 nz/kwﬁ + 0.
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The dependence on a and n, of the lowest-order part of the last

term in (20) is thus given, in view of (20.2) and (20.3), as

k -n,v/a
- j+l-n N r o 2 -
cad gz zsksﬁ,‘.ZL ak (2 - 2)"2

(20.4) 0@V o33 /2,
where snrd O(a° ng) and factors unrelated to the dependence on a and
0, in the limit ka+®,n, >o, “Z/Km‘ + 0 have been dropped. A
contribution of the same order as (20.4) results from the sum over n
on the upper side of the excluded interval. It will be shown below that
S_+ S+(f S) 1in (20) is also of the order of a'L/z in a but is
independent of n, in the limit n, + ®. Hence in the limit in question,
according to (20.4), the éonttibution of the last term in (20) in fact
vanishes relative to S_ + S+. We therefore neglect this term.

The term -(1/2)£(N 4+ 3/2) 1in (20) we can write directly
from (12). By definition of N and the limiting relation (14.1), it
can be neglected. The term (1/2)£(- 1/2) in (20) may be combined in
computation of p(x,y) with the term -(1/2)£(0), which must be added
to (20) to form (16). The difference (1/2)[£(- 1/2) - £(0)] may be
found in the pertinent limit of large a by a Taylor expansion of (12)
about n = 0. The linear term in this expansion vanishes leaving the

difference AIO(a-z) which is of no lower order than contributions being

discarded.
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In computing the remaining terms S_+ S - in (20), for
generaiity we replace axpression (12) for £(n) by

(21) f(n) = h(knsx) 3(k2ns7)s

vhere g(k, ,y) = + (1/2) exp(ik, |y|) and suppress the x and y depend-

ence. We define b, a function of k a that described the position of k

between adjacent modal wave numbers, by

(22) km - kj = b(x/a) ©0Ogbgl), i.e. b= (kma/-r) -j.
Then

kn - kj - (J-n)xr/a = km - (J - n+b)x/a.

L CTRBIVL o SO 19

The sums in (20.1) have incresasingly many terms as n, » ® but for
f all of them, as stated above, kn » km &8 a » 00. Proceeding first

with s_, from (22) we have
23) kpg = G2 < kY2 5 YT 2/ 2 - a4 0y

to lowest order in wx/a. Thus

£(n) = £(@+1) » hlk) Pa/dky))y (e = Ky (1),

(24)
3 +1/2 - n) > hikfe, + Qe Ky gy ]

wheze g, = g(k2 = 0), (bg/bkz)o - (bg/akz)kz -0 ° From (20.1), (23),
(24), we find in the limit of n, + 00
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(25) S_ - (1/2) h(k )g, +V2 h(k ) (a‘/akz’o“ml/z a@/a)/up),

where

n, -1

, .
(26) M) = lim { : [@? - @um/?] - (1/2)(n2+b-1/2)1/2}.

m=1
odd

nz-ooo

Similarly, with regard to S 4 which involves a sum in which

l ‘23: =z - kzi > 0, we have
’ f(n) - £(n+l) » h(km) (63/31:2)0' i <K2n - K2,n+1)’

Proceeding as before, we now find

@) s - (/D) b8, - 1VZ hiky) Ca/Rky), k2 e/ ma-b).

Thus §_ + S, 18 ~ 0(a /%), Hence, from (16), (20), (25), and (27), we
finally obtain, to lowest order in a'l,

!

1,2 -3/2, . 1/2

[’ ' (28) P(x,y) »2 (2r)7/ " p_ a /2y km/ h(k, ) (3g/0k,)

x sin ka [M(b) -1 M(l'b)] >

where, in the present instance of Eq. (12),

(28.1) h(km) = cos kc‘)x/(k2 -k 2)

® ’

{ - @83k, = F (/) tly| = - 10/2)y.

& A2-14.
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For values of kma .such that the integer j defined by (18.1) is even
instead of odd as assumed above and b 1is still defined as at (22), the
value of S 1is found to be the negative of the value of S for the
same b in the case where j is odd. 1In other words, if we define

] rather as that odd integer such that

ky < Ky <Ky
and b by
km-kj-b(r/a), 0bg2,

then, if So(b) denotes S as computed above [Eqs. (25), (27)] for

0 bc 1, one has for the full range 0 b < 2:

jiso(b), ogbgl
(29) 5C) (s, ®-1), 1<b<2;

5,0) =VZ h(k) @e/ky), k /2 /) )
- 1 MQ-D)].

According to (29), p(x,y) will be a continuous function of kma, as it
must be, only 1f So(l) - - so(o), or equivalently if M(l) = - M(0).
This equality in fact holds, as one can show from the definition (26).

To lowest order, then, p(x,y) [ Eq. (28)] has a dependence
of the form

a~ V2 B(k 2),

A2-15.
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where E(z) 1s a periodic function with period 2r (or, apart from
a sign reversal, r). The function M(b) was programmed for machine

computation by Dr. H. Steinberg; results, with use of (29), are given

in Fig. 2-3 of the text.

According to the result embodied in (28), in the limit
ccnsidered, the principal contribution to the pressure at (x,y) derives
from modes whose x-wave numbers kn nearly coincide with the wave

number of sound, Em’ at the given frequency, and whose y-wave numbers,

_therefore, nearly vanish, producing a linear dependence on distance BA

from the source plane.

Now consider, in place of (3), a pressure source

(30) ?(x) = P, sinkx,

where we apply a tilde to quantities to distinguish this new case. Then

in place of (9) and (9.1)

(31) ;n(x) - a.l/2 sinﬁnx (for all n ) 0), Iin = (n + 1/2)n/a.
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Proceeding, we find in place of (11)

m P
(32) P@E,y) = - 2 pak coska z ()" E(n),
o
n=o
where
P
~ .1 8iok x ~
(33) f(n) = + 2 'kz—:k,—f exp (ikzn'y').

1

As at (13), in the limit of a + oo at fixed kT, gm'l, x, and

y, the solution is that obtained in the absence of walls:

(36) oo (X2¥) = ¥ (1/2)p, sinkx exp [-(kz-k:)l/ zlyl}o

In the modified limit treated above, where |y| + o as a -+ o as

specified at (14.1), we may cut off the infinite sum in (32) at n = N + 1,

say, as in (16). Introducing the expansion (17) for Ekn) - Ekn + 1)
and proceeding us before, we obtain an expression of the form of (20).
There is no term analogous to (1/2) £(0) to be subtracted this time,
as seen on comparing (11) and (32); however, the term (1/2) £(-1/2) of

(20) itself vanishes by (31) and (33), since

sink_x/zx = sin 0 = O.

To loweat order in a'l, therefore, we obtain, as at (28),

A2-17.




Py » 2 @Y Va0 Y b)) ek,

(35)

X cos kn.[n(b) - 1u(1-b)] >

where by (33) we have in place of (28.1)

hik ) = sie k x/(k2-k ),

(36) ~
@g/3k,) = - 1(1/2)y.

The pressure corresponding to an excitation

A ikx
P(x) = PO e ’

obtained by combining (28) and (35), cen then be written

. /2,
P,y > - @)% =5 M(1-b) + “M(b)
v o 8372(1(2_1(&2)[ J

37
x (sinka coskwf - icoska sinkwx).

2.2 Free walls
Now suppose that the walls at x = + a are free (zero impedance).
Consider first a pressure source
¥ P(x) = pocoskx.

o Then, using the earlier notation for present quantities even if they

differ from the earlier ones, we have

A2-18.
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v, (x) = a~Y/ zcos'i:nx (n 3 0)

with k given at (31). The solution as a + oo at fixed [yl etc.,
is independent of the boundary condition at the wall and hence given

again by (13.1). 1In the modified limit of concern, on the other hand,

wve obtain
-1 N+1 n
p(x,y) » - 2 poa coska 3 (<) £f(mn),
n=o
where
~ ~N

-1 kpcosk x ~
f(n) = + 7 W exp(ik2n|yl).

The term (1/2)£(-1/2) again vanishes, this time on account of the factor

’l‘cl in £(n). We have

n
p@,y) » -2 0% p a2k M2 nk ) e/dky),
(38) x coska [M(®) - IM(1-b)]
vith
h(k ) = k cosk x/(k? - k %),
(d8/3k,) | = - 1(1/2)y.
Now consider a pressure source
P(x) = posinkx.
We have

wn(x) = a'l/z sinknx (n> 1)

A2-19.
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with kn = ny/a as at (9.l). In the limit of concern

-1 N+l .
p(x,y) + 2p,a " sinka £ (-) £f(n),
n=1
where
k sink x
-1 "n n
f(n) = + 2 W exp(ik2n|y|).

n

The term (1/2)£(-1/2) is A'O(a-z) on account of the factors khainkux

in £(n), and hence of the order of neglected terms. We have thea

p,y) » 2 @2 p a2k V2 h) usoky),
(39)

x sinka [ M®) - iM(1-D)]
with

2 2
h(gm) - kmﬁinkmf/(k - km )
(bg/bkz)o = - 1(1/2)y .
For a pressure source

ikx
P(x) = Poe ’

by combination of (38) and (39) we obtain

A2-20.
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P(x,y) » (20) /€ p_ -t M(1-b) + iM(b)

(40)

x (cos kmx cos ka - i sian kmx sin ka)

The awplitude of the pressure in the limit, according to (37)

and (40), is smaller in the case of free walls than in the case of rigid

walls by a factor km/k.

3. Cylindrical geometry; dipole pressure source without dome

In place of the infinite slab we consider now an infinite
circular cylinder of radius a with a pressure discontinuity applied
over a cross section (y = 0) as before and an impedance condition at the

cylindrical surface. Let the cylindrical coordinates be (y,r,8) = (y,xr).
! ' {

Consider a pressure source ! y. :
pressure !
ikr cos (6-8) O o€
’

(41) P(r,8) = P,e

#T=~.. _ a
]

"'# e
| J ~impedance

i.e. a plane (line) wave of definite wave number . condition

in direction . ,
' r

The resulting pressure field may be expanded in the form

® ®
(42) p(x,0,y) = (27)-1/2%2 p C‘nn Jm(kmr)eim(e'e’) gk
m=-00 N=0

2m’y) ,

to
where the cmn are expansion coefficients corresponding A(al) which may be

written explicitly, the kmn are modal wave numbers that satisfy the

A2-21.
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b.c. at r = a, and

43)  Blyg ) = F (/Dexp(liyy v ) for y R 0, kpy = (k2 -k HY2,

We shall consider only the average force, say F(y), on a circular area

of radius Ro centrally located in a cross section of the cylinder at

y. Let any quantity U for m = 0 be denoted siaply by q,- Then

we have
2y Ro

(44) F(y) = j de j dr r p(r,8,y) = (21)1/%’0‘2% kR I1 (kR )8 gy, 3)-
o o

The cn are found to be given by

ka Jo(xn) Jl(ka) - Rn Jo(ka) Jl(xn)
[(k&)z - xnz][Joz (xn) . le(xn)]

(45) c_(ka) = 2 2r) /2

where xn = kna.

3.1 Rigid walls

In this case the eigenvalues x are specified by

(46) Jl(xn) =0 (n > 0). |

Eq. (45) then yields

A2-22.
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ka Jl(ka)
Jo(xn)[(‘“)2 - an]

1/2

Cn = 2(2r)
(47)

2x ()" ka Jl(k.)(enkna)‘/z

(?

2, 2
- kn )a
where e is defined by
1
3, = () (@2fre x )2
By virtue of the asymptotic form of Jp in (46) and of Jo» we have
e, 1 as n -+ o,

but for n = 0, since ko = 0 and JO(O) = ], one must regard the product

eoko as inseparable and given by eoko = 2/va. Eq. (44) thus becomes

@D
48) Flu) = (21)3/2p6;1/ 2 ) T (9" £,
n=o
where
1/2
J.(kR) (ek)’"
(49) £(n) = — s 77 8(kpp ¥)
n kW -k i

[cf. (11) and (12)].

In the limit of a » oo with other lengths fixed, the

solution becomes that in the absence of the wall, namely
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Pgo (F10,Y) = -'_@.f_‘(}/Z‘)po exp [1krcos ©-)] exp| - a? - kmz)l/ 2'7'].

(50) i )
F o) =% (/2p [z 3,6 )] exp[- 0 -k HYy]],

the first square-bracketed factor in Foo (times po) being merely the

integral of the source pressure over the area tkoz.

In the limit of special concern [Eq. (14.1)] , on the other
hand, as usual the sum in (48) may be terminated at some n =N + 1,
Application of the previous procedure based on (17) in this case can be
made only at large n, as will be seen below; in consequence, in addition
to the contribution of lowest order in a'l deriving from “hose u such
that in the limit kn < Km,we might find a second contribution of tqis
order from those n such that in the limit kn‘= 0. The latter contribution
did not occur previously and is associated with the circular geometry of

the present case; in fact, however, it proves to vanish.

Consider those terms in the sum

N+1 -
z (<) £(n)
n=0

in (48) with n> n, for some even 0, such that 1 ¢ n < N. As

kma + 0, we shall let
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(50.1) n, + 0o but nl/kaa +0,

just as for n, at (19). For n> Dy then, we have

(51) e 1, x (n + 1/4)» ,

where the latter results from the asymptotic form of Jl in (46). For
these n, we may thus omit e, in (49), wvhence £f£(n) depends on n

only via k 0’ and we may define
f(n) = T(kn).

For non-integer n we may define T(kn) by use of the asymptotic form

(51) for kna(z xn).

Now, having T(kn) an analytic function and kn a1 = kn + v/a

for n> n,, we may apply Eq. (17) to those n outside the intervals

Cg{ngn, j+1- n,{n <j-1+ n,. Analogously to (20), we have

now
ML 3
(52) £ (-)"E() > S, +S_+5, - (/2)EM3/2) +0((w/a)” 2T (k)),
e eeen
where
M
(53) 5, = £ [f() - £(n+l) ] + (1/2)£(n +3/2)
eveén

S_» S+ are defined as at (20.1) (for odd j), and T'' denotes a sum over
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the intervals n, +2¢ngj-1- n,, J+14+ R, { n { N. Again we
may neglect the term - (1/2)f(N+3/2) in the limit in question.

The last term in (52) requires consideration with regard
to terms n such that n'\'ﬁl as well as the terms such that
n ~ G%EV%) % n,. The contribution of the latter terms depends on a

and n, Just as previously determined at {20.4). As for the former

terms, we may write (49) in the form _
(54) Tk) = &/Dk Y2 ek), @>n)

where the factor 8/3 is introduced for convenience. Then t(kn) at fixed
n (or at fixed n-nl) approaches a nonzero constant as a - oo. Likewise,

by differentiation of (54) we obtain a result of the form
-1 -3/2 -3/2 -1/2 1/2
(55) T"'(kn) kn t kn u + kn v, + kn w o

where un[s u(kn)], Vs and W like tn’ approach constants at fixed n
as a » 00. Congider, for example, the contribution of the first term of
(55) to the residual sum in- (52) with regard to its dependence on a

and n1 &S a - 00

3 j=1len g

(56) o/ Tz 2k k@) ~ (1/2) rfa)? J’ ak_ k"2 e )
a=n, +2
ev%n nlm/a

~o (/)2 myr/a) YY) ~ 0@V 0y,

Similarly, the r:maining terms in (55) are respectively

A2-26.
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573 o V2 a VY, 0wV a VY, 0w 0¥,

By comparison we shall see below that the contribution 51 defined
at (53) is ~0(a” 1/2 ), as was the contribution S_ + S in (52), and is
independent of n; in the pertinent limit. The terms in (57) are
thus of higher order in a and will be neglected. As n; > o, in
accord with (50.1), the term (56) also vanishes relative to

§1 +8_ + S+ [cf. (20.4)] and may also be neglected.

To evaluate sl, write (49) as

-1/2 J) (xR/8) 8(kyq»¥) 5 (e x )L/z

xn/a k2 - (xn/a) an

f(n) = a

with k2n2 =k 2. (xn/a)z. In the limit, in view of (50.1) we have, in

the pertinent range n ¢ n, + 1,

E(m) > (I/2)R, g(kw,y)k-z(enxn)l/ 2 g2

Hence by (53)

(58) s, » /2R, 8k k% a2,

where the constant G 1is defined by
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n
G = lim { 5! [.("n"n)l/2 - (°n+1"n+1)1/2 J+ a/2 (°n1+3/2"n1+3/2)1/2}

)+ @*aven
(59)
n
= lim 21 [(enxn)l/2 - (°n+1xn+1)L/2]'+ (11/2/2)(:11 + Z/A)L/z} .
n)* @AV .
Representing (49) as
(60) £m) = h(k) 8(ky,Y)

in analogy with (21), we have also from (23) and (27)

(61) sz 5. +5, »VZ h(k) Ra/dky), k Y2/ (ue) - ma-b)

with
. (kr) k2
(i) k 2 2
[V} k™ -k
[
(62)

@8/3k,) = = 1(1/2)y.

Eqs. (48), (52) then yield

F(y) » kwpétl/ 2 g 2" cos (ka - 30/4) { W/2)R k%6 (k)

(63)
+ (22 kml/ 2 (k) (38/3k,) [ M) - iM(l-‘n)]},

with h(km) and (ag/akz)o as given in (62) and

glk,y) =+ (1/2) exp(ikylyl).




s =4
.

ok

since, in the limit ka + 00,

(64) 3 (ka) + (@/rka)"/? cos(ka - 3w/8).

The eavelope of t'« limiting form (63) for F(y) varies as a V2 juse
as in the cases of rectangular geometry in Sec. 2.

A numerical evaluation of the constant G of Eq. (59), how-

ever, 1nd1cates* that
(65) G=0.

This result could presumably be established exactly

analytically. Thus, according to the result expressed in (63) with
G = 0,for cylindrical geometry in the limit considered, the principal
contribution to the (average) pressure near the axis of the cylinder
at distance |yl from the source plane derives exclusively fxom modes

with kn - km’ just as in the case of rectangular geometry.

3.2 Free walls

In this case the eigenvalues x, are specified by

(66) J(x) =0 (0.

Eq. (45) then yields

* From the computation it is directly inferred that |G| < 10-5.
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ano(ka)

3, & [k? - x 2]

1/2
Cn = ~ 2(2w) /

(67)
- ()™ 3 (xa) e 2k a) Y2
2

2, 2
(k* - kn )a

where e is now defined by
1
3, = () @/re x )2,

whence again

e »1 as n~+» o,

n
Eq. (44) thus becomes
@
(68) Fo) = - @Y% 2R g )z ()Em),
n=o
where
/2, 3/2
J;(kR) e k
1" no n n
(68.1) f(n) = gk, ,¥).
kn k2 - kn2 2n

We may proceed as previously for rigid walls through

Eq. (52). 1In place of (54), however, we have a summand of the form

Tk = 6/3) kY2 e). (> )

Hence the terms corresponding to those of (36) and (57) are each of the
order of the respective previous one multiplied by nl/a. As for Sl’ we

write (68.1) as
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2 &R/ BGyaiY) 1 3

f(n) = a ;
x /a4 K -(xn/‘) n n
with k 2, k 2 (x a)z In the limit’ in the range + 1w
2n ' u/ . A ange n ¢ 0 e
have )
-2 _1/2 _3/2 -3/2
f(n) » (I/Z)Ro S(km:Y)k en xn a ’
whence

5, » (/2R (k1)K 2F a2,

where the constant F 1s defined by

n
F = lim { 2t [ x Y2 - e x 302+ @¥Y2) () + o7y 2}.

e n+1¥n+l
1

évén

On the other hand,

(69) s +VZ h(k ) @a/dk,), k Y2 (/)2 (M) - tM(1-b)]

with
IR K 32
hk ) » == —f—s ,
@ w k™ = km
(70)

Q8/3ky) = - 1(1/2)y.

Hence, whereas S 1is ﬂ«O(a-l/‘) as in the case of the rigid wall,
S1 is 'VO(a'a/“) and the leading residual term (corresponding to (56))
is 'V0(8-3/2 nl-L/z). Therefore, in this case the leading term is due
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only to S. Eqs. (68) and (69) thus yield
(71)
Fiy) » ~G2r7) Y/ %p B 0™ 2 208 (kamr/i)k Y20 ) Ga/oky) [1®) 17 b))

since J_(ka) » (2/rka)"/? cos(ka - 1/4), with h(k) and (3g/3k,)_

as given by (7C).

4. Generalization to certain interposed domes

With a view to sonar domes, we may imagine that a thin planar
dynamic element, i.e. a plate or membrane of negligible thickness, is
present at y = 0 -, just beneath the source plane. We also
generalize to the case where the lower fluid does not
extend to y = - 00, but is terminated at a plane y = - L on which an
impedance condition is given. In addition, since little complicatior
results, we permit the fluids on the two sides of this dynewmic sheet to
have different densities and sound velocities, namely p+, ¢t for y>0
and p- ¢ for y < O.

Now for certain boundary conditions at the periphery of the
dynamic sheet, related to the impedance conditions given at the lateral
walls of the fluids, the set of modal functions for the sheet and the sets
of planar modal functions for both fluids will all coincide. (This point

will be discussed more ex»licitly in another report).In such case the
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previous work can be ttivialiy generalized to treat the new problem.

Let these modal functions and wave nusbers again be denoted

wn(x), kn’ respectively, where we assume the rectangular geometry for

definiteness. An acoustic impedance can be defined for the sheet in

each mode, say zni z(kn.m).

Analogously to (3), we expand

© % *
(72) px,y) = T ¢ ¥, (® 805Gy for ¥ 2o,
n=o
{ _
i
4 respectively, where the &n(x) are orthonormal and satisfy (4), and
3 }; g(an,y) is given by
(13) exp(iK;Y) > y20
{ :
8(kysY) =

| cos[k;n(y+L)+ a] <8
- i J

cos[k;nL + a]
+ + ) + +
- (e - 2,1/2 ~ - -
k (km kn ) ’ k(b a/c ,

where a is related to the impedance at y = - L, say z., by

{ tan a = lop /ep0 2 »
:
and the function g 1is arbitrarily normalized to g(an,O) =1, For
( +
| k ~such that k;nz ¢ 0, it is convenient to rewrite (73) as

A Y
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[ exp(- Kp0) , Y20

hs _ +
g(kzn’Y) - 8(1‘(2“’)') = ‘ ] .
. ch[KZn(y-H.) + a]
- A , ¥<0O
\ ch[KZnL + u]
(73.1)
+ +
- 2 -2
K2n - (kﬂ - km )s

th & = - fap /Ky % - @ = - ia)

The acoustic velocity field corresponding to the pressure (12)
in mode n has a y component

s r 4, 0 b
Vg (xsy) = (p @) " cq ¥y (¥) g (ky »¥)/0y-

Boundary conditica (1) is now replaced by

00
(74) p(x,04) + P(x) + Z znvzn(x,o) = p(x,0-).
n=o0
Likewise, (2) is replaced by
- ~ + S
(73) p (OP/0Y) upy = P (3p/Y) yuo-
whence, by substitution of (72),

- N + - - “
(76) o7t (08053, /3] yug = P Cn (280 s9)/3Y Jymo *
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We expand
00

(77) P(x) = £ cy (x)
n=o

Substituting (72) and (77) into (74) and using (79), one obtains

- . - -, =1
(78) c = cn{l - 1 tan®_[ (ky_ p"/k’z'n p7) + (2. Ky /p w) 5} ,

where en = k;nL + a. A similar result can be given for c: . By (17)

the preseat c, is the same that of Eq. (3) and is again given by (5).

The limiting processes of Sec. 2 can be carried through once

more mutatis mutandis, as will be shown. In (3), for example, c, is
+ +

replaced by c, and +(1/2) exp(ik2n|y|) by g(k2n,y). Similarly, the

result for a +» oo at fixed y now becomes

sk
Poo (%5¥) = P(x) g(iK,,y)

2 X

with K, = (k" = kw 2)1/2 [cf. special cases (13.1) and (34)]. With regard

2
to the second type of limit, however, where |y | » oo while y/a » 0, if
k: F k; , one must consider separately the groups of terms with

k 3’k+ and k¥ k_ , since k+ and k_ are then distinct branch points.
n W n w w w

We assume rather once more that c+ = ¢, whence k$ = k;, and also that

p+ =p . The index + will be dropped from these quantities. In this

case the product c; g(kgn,y) in (72) for y < O may be written by (73)
and (78) as
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i cos (k, y + ) |
(79) cn 3(k2nty) - cn 0089 - 1 Bil‘an:rl + (znkzﬁm)]

z Ca gk okznoY)o
in which the new function g thus depends on an in part via en(an)
and on kn via z - All the work of Sec. 2 and 3 is once again
applicable, the only required change being that the former g(k2n,y) is
replaced by the present g\k ,k2n,y) In particular, with this change
the results (28), (35), (38), (39}, (63), and (71) st 1l hold. [In (63),

for example, (aa/bk ) becomes (bg(k kz,y)/Bk , since the arguments

)
2 kz-o

kn,kz of g are related by k 2 ]

Where, as here, a sheet of impedance z, is interposed, there
is generally some resonant wave number kr for each frequency w. If z

includes some damping, the previous work is applicable in the extreme

limit in question. If the damping vanishes, the contribution from

modes having kn =fkr must be separately considered even in the limit.

5. Approach to the limiting solution as the lateral dimension
a increases at fixed depth ly/

It may be suggested that the asymptotic solution found for
the limit as a » oo and ly, + oo with y/a + O represents also the
correction to lowest order in a-l of the asymptotic solution applicable
in the limit where y remains fixed as a » @, i.e., in the case of
circular geometry, that the term (63) or (71) may be added to the term
(50) to give the solution to the lowest two orders in a'l, namely
to orders a° and a'3/2, as a » oo at fixed y. That this result
probably does not hold, however, can be seen by proceeding with the

full sum on n for p(x,y) as given at (11), as we did previously with

t.he truncated sum at (16). For definiteness, we consider the case

of rectangular
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geometry, rigid walls, and excitation P c08 kx, but the same nrocedure
applies directly in the other cases.

A corrected version of Eq. (20) again holds when N = o,
provided we sum explicitly over an interval n = g - n, + 1 to n=35 + n,
which includes the additional point k, = k at which £(n) dis not

analytic, where s 18 the integer defined by
k. < k<k

and ve let ho +00 as & » @ but as usual with no/ka + 0. The form

of Eq. (20), thus modified, merely has added to the right side the quantity

sk. where
o-1+n° 1 A
(80) s, = = [f(n) - f(n+1)]' (1/2)£(s + 5 = n )+(1/2)E(8 + 5 + n)
neg-n +1
even

and we assume 8 to be odd for definiteness and choose n, to be even.
To form p(x,y) in (11), however, che sum (20) is multiplied by a'lsinka
(among other factors), and it is convenient to consider sk together with

this factor end write

s+n
a~! sinka S, = Z ° )? £m) ol sinka

n-o-n°+1

(81) U

(Y1)

k

+ o™ toka [-(/DE(s + % - 0 )+(A/DEGs + 5 +0)].

Inserting (12), replacing + (1/2) cxp(ikznlyl) by
ﬁ(kn,an,y) for generality in accord with Sec. 4, and noting that

(-)n sinka = sin(ka - nr), we may rewrite the summation term in (81) as
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Ui iz °© (-)n f(n) * a = sinka
nsg-n +1
o
(82)
k x
- sin(ka-nr¥ cosk &
i ka - nxr k ¢+ kn g(kn’ an’Y)’

wheze the limits on the sum remain the same., As a -+ 0, the range of
kn in the sum contracts to zero relative to kn or k 1itself, since

no/ka + C., In (82) let

cosknx n
(83) H(k ) 2 o Bk, kyps¥)e
n
Since
®
(83.1) X M’. -1,
n=- ka - o¥

the sum (82) can be rewritten as

8-n 00

(84) Ul = H(k) - H(k)( s % 4+ = 3in(ka-nv)

\ n==00 n=s+n_+1 ka - nw

840
¢z © (dolam) g o).
n-s-so+1

when & +» @ and n,6 +a with no/a + 0 and fixed y, all cf the term.

in (84) but the first vanish, yielding by (11) and (83) the approp-

riate result for this 1limit:
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P(x,y) + P, (®,y) = p,cos kx E(k.kz.y)-

We wish to consider the correction to this result to next higher
order in a"}, so far as contributed by the subject interval near k= k.
This correction is due to the remaining terms of Ui in (84), to the
second part of the right member of (8l1), and to the residual terms in
Eq. (20) Ehat derive from values. n just outside the interval
s -n + l1{ng=+ B, which is summed over explicitly. We find readily
(noting (ka-nv)'lﬁu no-l) that the contribution of the second group of
terms in (84) is of the orxder of aono'l relative to the zero-order
contribution from the first term. The contribution of the last group
in (84) we find to be of the higher order a'zno. The pertinent residual
terms of (20) (related to the third derivative of (ka-mr)'1 -[(k-kn)a]'l
with respect to kn) yield a contribution of the order given by
00 :
(t/a)3 a,l(a/t) j dkn(k-kn)-a o« a°n°-3 .
k+n°t/a
Also, the latter set of terms in (8l1) immediately yield a contribution
of the order aono'l. This contribution is found, however, to cancel

that of the second group in (84) in this order. All remaining contributions

are then at most of one of the following orders:

(85) n °, a‘n_.
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Unless the terms of one or the other of these orders cancel, the highest
order in a'l achievable for the lowest-order one of the pair (85) by
choosing 6, where n, d:ab, is obtained for & = 1/2 and is of the order
aﬁi/z. This ,however, is the same order as the asymptotic forms obtained
in the previous sections for the case 'y[ + 00 [e.g. (¢3) or (71)}.

Though cancellation of the leading-order terms considered above has not
beeﬁ excluded, it appears unlikely.If there is no such cancellation, we
thus see that such results as (63) and (71), though representing the
leading terms as a + oo when |y' + 00, represent only part of the
correction to next-to-leading order in a'l in the limit when y remains

fixedn

6. Use of limiting forms or simplified sums as approximations

The approach in this appendix has been to consider results that

hold rigorously in a certain limit without detailed regard to how this
limit is approached or whether it is approached sufficiently that the

limiting form constitutes a useful approximation in applications of

concern. These questions are considered in the text. Some of the
intermediate work is useful for approximation under conditiouns where
limiting expressions are not. In particular, we can make the expansion

(20) and may drop the residual terms without, however, passing to

the limit a > @, n, > @ in (20.1) ‘and without, therefore, using
the limiting forms (24). In this way we merely use (20) to sum

out the intervals where f(n) changes slowly and which therefore

PR

contribute little to the sum, leaving explicit sums over intervals where

< inidadi
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the contribution is large. A similer procedure was applied in
(52) end (53), and for isolating and sumwing explicitly over the
interval near resonance in the more general case of Sec. 4. The
point here is just that the intervals that tend to contribute most
to the sum (20) are those where the third derivative of £(n) with
respect to k is large or where f(n) is not an analytic function

of kn at all. Such approximations are expounded in the text.
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APPENDIX 3
RADIATFD POWER

We consider the power radiated by the dome or plate in
the model considered in the test. First, for the laterally in-
finite case, the frequency spectrum of the time-average radiated
power per unit area is given by

W (@) = Jakktg,n|ry o] %agee) (1)

where A, one half the real part of the reciprocal outside radia-
tion impedance, is simply

K5/ 20%w if k < wfc’

A= +
0 if k > w/c

(we recall k; = [(w/c+)2-k2]1/2).

For the finite circular cylindrical dome or plate of
radius a, the spectrum of the total time-average radiated power
is given by

W(e) =33 A(kmn’w)lrl(kmn’w)|ZdekIO(k’w)'cmn(k)i2 (2)

where A(k,») represents the same function as above and the sums run
over all modes m, n.cmn(k) was given at Eq. (2-11). It is seen
that the sums can be limited to propagated modes, i.e., tom, n
such that kum < wfet. Each such mode, however, is excited even

by driving components with k>> w/et.

Expression (2) could be simplified on assumption of
large a in a manner similar to that employed in Part 2 of the text,
with a contribution given approximately by W  of Eq. (1) above and
a further a-dependent contribution deriving from low kmn'
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The radicted power is more often of interest for a
rectangular rather than a circular plate. The present model
could be altered accordingly and corresponding results obtained.
The power radiat=d by rectangular plates has been considered
previously by Kraichnan (Ref. 4), among others.* His assumption
of no correlation among contributions from different orthogonai
modes is exactly true in the present wodel, as seen from Eq. (2),
having resulted here from the assumption of certain conjugate
boundary conditions on an imagined cylindrical projection of the
plate boundary normally into the outer fluid.

*kraichnan computes results for an explicit driving turbulent
pressure spectrum PO(R,QD obtained from a crude model.
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APPFNDIX 4

CONJUGATE BOUNDARY CONDITIONS FOR EXTENDED-WALL DOME MODEL

We consider here the simplified dome model introduced
in the text, where the cylindrical lateral wall of the dome is
imagined, so far as the acoustic fields are concerned, to be ex-
tended infinitely outward into the outer fluid with the same bound-
ary condition applied (see Fig. A2-1).

Suppose first that the dome cover is a membrane,'not a
plate. Suppressing time dependence and following the notation of
App. 1, we may expand the cover displacement and acoustic potentials
as

n® = @0 i WO (k0 Ry el™, 1y

+ -1/2 im8 :
¢ (x¥) = (2m) / ay;lenJm(kmnR)el eer(lk;mHY), (2)

cos[kémn(y+L)+amn]

(3)

- -1/2 - im@
¢ (® = (2m) pag- NIk Rye .
cos(kzan+amn)
where - and ¢$ﬁ are expansion coefficients, Ngn and N . are Known
normalizing coefficients for the I and

k%ﬁn = (w/ci")2 - kin (if k_ < w/ciﬁ,
tan o = iwp /kZmnszn;

the eigenvalues kmn 2ce to be fixed by the boundary conditions
on the acoustic fields in the fluids at the lateral wall (R=a) and
the eigenvalues k;n by those on the membrane at its periphery (R=a).

1f the boundary conditions on the membrane are so related
to those on the fluids that k;m = kmn’ the eigenfunctions in the
expansions (1) and (2)-(3) for the membrane and fluids are the same,
and the equations that determine the coefficients N and ¢§n’
namely Eqs. (2), (5), and (6) of App. 1, relate g, 809 ¢$n inde-
pendently for each m and n. For each mode m,n, the relations and
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responsz coefficients of App. 1 are again obtained, with k = Ko
and the previous quantities indexed by m,n as required.

In particular, for a rigid wall on the fluid, the kmn
are fixed by

J =
Jy (k@) = 0. (4)
The conjugate condition on the membrane must likewise yield
J&(k;na) =0,
and by Eq. (1) this condition is seen to be that
an(R) /OR = O at R=a. (5)

This condition of a vanishing normal derivative of displacement

of the membrane at its periphery corresponds to a vanishing force
in the n direction, i.e., a freely sliding attachment, as in slots
perpendicular to the equilibrium plane. Similarly, for a pressure-
release fluid wall, such that

J (k_a) =0, (6)

o —
the condition on the membrane yielding kmn = kmn is

n(a) = 0. (7)

This corresponds to an immovable attachment of the membrane at ics
periphery.

Now suppose the dome cover is a thin plate rather than a
membrane. In this case Eq. (1) does not represent the most general
expansion for arbitrary boundary conditions. In general, apart
from the J_, another type of Bessel function must be included, the
expansion being one in eigenfunctions of the fourth-order equation
[V2-(kgn)2][V2+(kgﬂ)2]n=0 rather than the second-crder equation
[V2+(k8n)2]ﬂ=0- dé may, nevertheless, achieve the simplifying
identity of the plate and fluid eigenfunctions, as before, by pre-
scribing boundary conditions on the periphery of the plate such that
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even the generalized expansion (1) reduces, in fact, to the given
form of (1) containing only the functions J, and such that we again
have k;n = kmn‘ In particular, for a rigid wall on the fluid, so
that Eq. (4) applies, we again require Eq. (5) to apply. We confine
attention to the modes with m=0, which are the only ones that con-
tribute to averages over a circular area concentric with the cylindri-
cal fluid, dealt with in the text. For these modes, with the con-
straint that the radial functions include only the oscillatory type
J, °f Eq. (1), the vanishing slope, [Eq. (5)] implies

that the force on the plate (in the n direction) vanishes. The
boundary condition on the plate thus corresponds to a freely slid-
ing clamp, which fixes the slope at the periphery but offers no
resistance to displacement normal to the plate. For a pressure-
release wall on the fluid, on the other hand, so that Eq. (6) applies,
we again require Eq. (7). For the m=0 modes, the vanishing displace-
ment, Eq. (7), and the previous limitation of the radial functions

to J,, may be shown to imply a moment at the plate periphery which
vanishes in the limit of large plate radius (k:na + o), The bound-
ary condition on the plate in this instance thus corresponds to a
hinged periphery, which fixes the displacement but offers no resis-
tance to rotation.

In the text and App. 1, hysteretic and viscous damping
are attributed to the dome material. In practice, depending on what
the dome material or construction is, the main damping may occur
rather at the joinings with the supporting structure, i.e., in the
present model, at the periphery of the dome cover. Such an effect
can be incorporated in the model by assumption of a resistive
boundary condition on the plate (or membrane) displacement n(R). In
the case of the membrane, for example, the force per unit lengtn in
the normal (n) direction exerted by the membrane on its periphery
at R=a is given in the usual notation (e.g., see App. 1) by-T(1-if)
’«B“IBR)R=a and the velocity there by -iwn. If the ratio of these
two quantities, the mechanical impedance per unit length of boundary,
is the same for each mode, say

25 2 r + ix,, (8)

*That the condition corresponds to a hinge only in the limit of large
radius accords with the fact that free motion on hinges is possible
only for a straight-line boundary.
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from Eq. (1) we obtain

o Jh (k2 a) i
mm = m(rp + ixp)a. (9)
m* mm .

Previously we considered explicitly cnly the cases J!(kJ a) =

or J (k° a):O;correSponding respectively to vanishing or infinite
impedance Zz . In an inte-mediate case where the ratio (9) is
finite, a resistive component of force, ie., damping in the bound-
ary attachment, is present if r_+# 0. In order to achieve identity
between dome-cover and fluid eigenvalues and eigenfunctions, as
before, we must attribute to the fluid walls a certain damping re-
lated to that at the dome-cover periphery.

The eigenvalues k:n from (9) will be complex unless it
happens that rp/xp = {. With boundary damping inserted, then, we
have, in general, complex k:n’ The imaginary part of kmn
contributes an additional imaginary (damping) term in the denominator
of the acoustic response coefficients F(kn,w,y) used in the text

(see also App. 1). Correspondingly, in the consideration of resonances
an additional contribution will be present in the wavenumber half

width 6k and similarly in the frequency half width &w (see Part I).
It would be needlessly detailed to consider thesc expressions ex-
plicitly. It is worthwhile, however, to recognize that boundary
damping wouid appear in a way similar to other types of damping
explicitly treated in the text, so that the more general dis-
cussions of resonances aund their role in determining average pres-
sure spectra may be regarded as applicable whatever the main
sources of mechanical damping.
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APPENDIX 5

AVERAGE-PRESSURE SPECTRA ON A CIRCULAR AREA FOR
"+ CERTAIN WAVE-NUMBER-FREQUENCY SPECTRA

A.51 Area Dependence vs Spectrum at wa Wave Numbers

We point out first the dependence on the radius
R, of the averaging area that results from a sample wavenumber
frequency spectrum of pressure Io(k,w) in a turbulent boundary
layer. I, is defined to include an integral over direction 6 of
the surface wave vector k: Io(k) = fdGPo(k,e). Let the dependence
of Io(k) at low k correspond to a constant value up to k=kc, fol-
lowed by a power-law rise to k=k1, followed by arbitrary dependence
(see Fig.A-5-1). ’

B (k. /k)"™ for 0 < k < k,
I (k) = (B (k/k)™ for k <k <k, (1)

Io(k) for k) < k
\
where the frequency dependence of I, and B, are suppressed. Here

B, is independent of k; if the assumed form (1) 1is required to
yield a fixed value,indepengint of n, for the spectrum deriving from
k < ky; i.e., for P_(w) = fo dkho(k,ao, then B is given by

-1
B, = (1n+2)k1'2 {lm(kc/kl)n+2] P_.

The spectrum of average pressure is given as usual by
[}

Q, (@) = f dik (23 (kR ) /kR 121 (k). (2)
o
Q. (1) yields

Q, = Q. +Q,, (3)
Loy g e
<k - -
\ |
|
! |
ll‘c k1 k

Figure A5-1. Hypothetical wavenumber spectrum of bhoundary-
layer pressure fluctuations at low wave number.
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where
k R kR
Q_ = 4BR;? [(kc/kl)n f x5, 2 () + (kR ) f dxx“'lle(x)], %)
o k R
c o
Q, - f dick([23, (kR ) /kR 121 (k). (5)
k
1

We consider Ro such that klRo >> 7. Then, as at Eq.(2-6S»Q+,°¢R;3,

andi assuming that Io(k) changes relatively little over an interval
TR, we have

Q, % (4/mR]> [ dkk™?1_(k) . (5.1)
1

We consider R such that, however, k R, < 1. Eq.(4) then rapidly
reduces to

Q= Bn{in/(m“z) Tk 2 /e + 4RIZ (k)R ) '“F,,(klrto)}, (6)
where

z
Fn(z) E jpdxxn-lle(x).
0

For the assumed large kIRb, we have asymptotically

£ for 0 < n<1

1

4Fn(k1Rb) +> hnlnklk.o for n
gn(klRo)“'1 for 1 < n,

where fn’ hn’ and g are numbers depending only on n. For

klkb >> m, we may thus write (6) as

Q. Bnﬁn/(r”z)]kcz(kc/kl)n + qn(kl’Ro§ 7N
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with

fthan'(2+n) for 0 <n<1l

]
-

_ -1,-3
qn(kl’Ro) = hnk1 R, tnklRo for n (8)

gnk;IR;3 for 1 < n

The first term in the partial average-pressure spectrum
(7)  is independent of R (on account of the assumption Rb_g'ﬁ; .
15 Y Io(k) in the assumed intermediate, power-law range kc < k< k1
increases more rapidly than as k, the second term in (7), accord-~
ing to (8), depends on Rb as R;3, just as the high -k contribution
Q, of (5.1). If I increases less rapidly than as k, i.e., as K"
with n < 1, the second term depends on R, rather as R;‘2+n). Hence
we see that an observed dependence of Qo(w) as R;m with m 2 2 implies
a rather rigid restriction on the rate of increase of Io(k) in the
range where ka is not very large. There is, of course, a substan-
tial uncertainty in the experimenially observed arce dependence, on
account of the measurement uncertainty, the limited number of areas

used and the variability of extraneous factors.

The actual dependence of Io(k,aﬂ at low k is naturally
less simple than that of (l). 1In particular, when compressibility
is considered there is reason to expect peculiarity in the behavior
of I where k aﬁ:;)/c, i.e., near the wave number of sound at the
given frequency.  This range of k, like the initial range in (1),
ylelds a contribution to Q  that is independent of R for R g c/w.
Theoretically, in a somewhat higher range, where k‘g*ﬁlc, it appears
that I_(k) should increase as k” (e.g., see Ref. 14), 1f so, this
range would contribute to Qo(ag a term varying as R;3 according to
the third form of (8). It is suggested, therefore, that average-
pressure spectra in some area range with Uw/w << Ro S,c/w may have
an area dependence more as

*In particular, the view that the turbulent velocity field, which
plays the role of a source in the equation for pressure fluctuation,
may be regarded as unaffected by compressibility even if the latter
is otherwise incorporated in that equation, i.e., the view that the
turbulence drives the sound field without being appreciably affected
by it, appears to fail where wave-numbers k * w/c are in question.

**Inhomogeneity in the direction of flow, however, represents another
complicating effect of presently unknown consequence.
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B + CR, (9)
than as R;2. Further considereation of the available measurements
with this point in mind might he useful.

A.5.2 Results For Certain Wavenumber-Frequency Spectra

Let WO(L',T) denote the space-time correlation function of
pressure for separation vector ¥ in the boundary plane and time delay
v. Then the spectral density is

P (K,0) = 2(2m) "3 a?% fare 1R THOTY @ o, (10)

where P, is 8o normalized that the mean squared pressure is

00

2 2
<p> = | do d°RP_(R,w). (11)
[

We consider first the form sometimes used in previous
work on boundary vibration:

1/2
W, (T, = <p2>exp{-a [<c1-vr)2 + :32] -0 1[4}. (12)

Here v represents a mean convection velocity, a'l a correlation
distance corresponding to a fixed time,and ® a decay time such
that the correlation corresponding to a point fixed in the convected
frame decreases by a factor e. By a gross fit to the measured
WO(C,T), Ref. 2 specifies the parameters as

o267, @ 306,/U_, vo0.80_ (13)
From (10) we find
-2 2 a g1
PO(E,w) = 4(27) “<p™> . (14)

(K242 312 (w-vk,)“+07*

Suppose w/va >> 1 and w >> 9'1, as will be true according to (13)
if “ﬁ*/um >> 1. Then the point spectrum is given by

P (@) = fdzﬁpo(lz,w) o 4(2m) "Lep2s(1/ave+1) ave ™ (15)
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in agreement with Ref. 2 , Eq. (29), in this approximation. The
first term derives from the region k; < a and the second from
kl ~ ofv. According to (13), the second is larger by a factor
~48. Co

The average-pressure spectrum on a large area, i.e., where
wRO/v >> m; derived from (14) is found to be given approximately by

Q, (et (2m) "Lep?r07l02 [s+(3/4) ave (R /) *F, (16)

where

1 if R << ol
S = 5 1 (17)
2(aR°) if Ro > a

and it is again assumed that w/av >> 1 and w >> 9'1. The second

term in (16) derives from k, 2 w/v, and the first from k, 5 @ if

R, << ol and from k1 TrRo"1 tf R > a"l. With the values (13),

in the case R, << ol the second term in (16) is smaller than the
first roughly if wR /v > 3, which is true by assumption; in the

case R >> a © the second term 1s emgl.e* if (av/u)(VO/R g, 3, i.e.,
according to (13), if (wRO/Uw) (wb*/Um) £ 0.03. The second term,
it is noted, represents a high-k component that varies, as usual,

as Ro'3:1and the first term a low-k component that in the case

R, >> a (c?{responding to z:znearly flat wavenumber spectrum

where k g 7R ), varies as R,

We note further the results obtained when a >> (w+9'1) /v,
which is implied, in particular, if one approximates by assuming a
vanishing correlation scale at the outset, so that (12) becomes

W, ¢,7) ocﬁ(Cl-vr)G( 3)exp( -9~ |—r|) (18)

(e.g., see Ref. 2 ). The point spectrum in this regime is flat,
namely

P (@) = 22m) "Lep?i(av) Tt (19)
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(cf. (15)). For wa/v >> 7w, i.e., a large area, we find

Q () = 8(2r) “Lee?re lw 2 (ar ) 2 (1427 Lov/R ). (20)

The contribution of the first term is the same as in the case of
(16) (i.e., for w/av >> 1) when, in reference to (17), aR, >> 1.
That of the second term, howevzi, which derives from k, ~ w/v and
varies as R;3, differs drastically from that of the second term
in (16). This reflects the fact that (18) may be regarded as a

valid approximation to (12) only so far as low wave numbers (k S,a)
are concerned.

For comparison with the results based on (12), we now
consider a time correlation, in place of exp(-e-llTP, who 2 fre-
quency transform declines more rapidly with w, namely

g(x) = 1+ L |c]yexp(-07t |r)y. (21)
This form satisfies g(0)=1, as required, and, unlike the earlier
form, has a continuous derivative at t=0: g'(0)=0. In place of
(14) we find
» P (R,0) = 8(21) 2ep> —y—Frry 9;_3 —— (22)
(k“+a“) [(w-vkl) +0 )
If w/va >> 1 and w > 9-1, the point spectrum is found to be
given approximately by
P, (@) = 4(2m) "rplsavw 212 (ave) "L (ew) 241, 23)

The contribution from high wave numbers (klav w/v, second term) is
the same as in (15); now, however, except at very low frequency it
dwarfs the contribution from low wave numbers (first term).
a large area (wRo/v >> ) we find

Q () = 8(2r) "Lep07w™4 (s + (3/8)ave(er /v) “L(ve/r )21,

where S is again defined by (17). In this instance, unlike that

of (16), the contribution from high wave numbers (second term),
which varies as R;3 and is the same as in (16), exceeds that from
low wave numbers (first term) typically up to rather high frequency.

For

(24)
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The form (12) corresponds better to the gross observed
time decay than the form based on (21), and the magnitudes and
frequency dependence of the resulting Po(u9 and Qo(ug accord
generally better with observed spectra. Still, there is no ap-
parent reason to consider that it has any detailed or unique valid-
ity.

We note now the area scale, or correlation area, cor-
respond’ng to (12) and to the modification using (21). The corre-
lation area Ac is properly defined, inzthe elementary statistical
sense, by writing the force spectrum A Qo(ug on an area A, in the
limit of large A, in terms of the point-pressure spectrum Po(w) as

%Q (o) = AA_P_ (o).

Since in this limit we have
2,-1
Q@ > @n2ale (0,0,
we may write Ac also as
2 .
A, = () [Po(O,w)/Po(uQ]. (25)
Corresponding to (12), we then find in the approximetiocn of (15)
A, = 2va'2/(1+av9).
With acceptance of (13), this becomes
A, = 27(0.0051)6, (26)

Corresponding to (21) (i.e., (22)], on the other hand, in the ap-
proximation of (23) we find

A = 2ma"2/[1+(1/2)ave(8w)?].

With acceptance of (13) this becomes (except at very low frequency,
where b, /U < 1074)

A, 2r(1.2) (107) (U fw) 2. (27)
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The magnitude of (27) is too small to accord with measured values
of Qo(aa; it does, however, depend on frequency and the flow param-
eters in a manner more consistent with observation (see Ref. 3)
than the result (26).

The correlation field prescribed by (12), or (14), may
be formally expressed as a superposition of contributions from a
range of convection velocities u without decay. A fixed convection
velocity is reflected in a factor 6(w-uk1) in the wavenumber-fre-
quency spectrum; for example, if 9'1*0 in (12), corresponding to
pure convection (at velocity v) without decay, Po(k,ab of (14) con-
tains a factor with limiting form given by

9-1

-1
6 (w-vk,) . e ~0 28
2;:;;;;2:5:2 *> 75 (w-vk,) ( ) (28)

In general, we write this factor in (14) as
-1 @
= 7 f du £(w,ky,u)6 (w-uk,), (29)

-0

2,
(u)-vk1)2+9.2

whence
Tr-le-l/k1
(o/k;-v)% + (87 /k)*

f(w,kl,w/kl) =

This relation does not determine the weighting function f(w,kl,u)
uniquely. If, however, we prescribe that f depend only on the
velocity difference u-v, we obtain

w-le-l/kl
v+ (@ /kp)?

E(w,ky,0) = (30)

The weight f, we note, has a nonvanishing value for all
convaction velocities -» ¢ u < », The present formal superposition
(29), however, though suggestive, is contrived and presumably not
significant, since the point of the form (12) or (14) with o 140
is to embody a deviation from pure convection iu the correlation
function. That is, the superposition (29) does not imply that a
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correlation function of the character of (12) is applicable only if
some portion of fluid is actually convected at e&ach velocity u.

If one actually had pure convection, but with a superposition over
all convection velocities 0 u(xz) < U that are equal to the mean
velocity at some depth X9 in the boundary layer, the corresponding
factor b(w-u(xz)kl) contained by Po(t,m) , after integration over x,,
would imply P (k,w)=0 for ky < w/U_, in contrast to (14).
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component may vary more as Roz. If the latter component predominates in
the spectrum at given frequency for a large flush element, it pre-
dominates still more for a shielded element. The high-wavenumber
component for a shielded element contains a part that is indepen-

dent of lateral dome size (face area) when this is large, but this

part is highly attenuated by the dome if L >> U, /w, where L ic

dome thickness, w angular frequency, and U, asymptotic flow velo-

city. The other gart of this high-wavenumber cciiponent is reduced
somewhat as though the pressure wure averaged over the face area
of the ‘dome section. On assumption that the wavenumber spectrum
changes little in the pertinent interval (in accord with area

dependence as R'2 for a flush element), the low-wavenumber component
is reduced rath8r as though averaged over an area of radius given
roughly by the smaller of one-third the sound wave length or three
times the dome thickness whenever this area is larger than the
actual area of the element. With reference to the noise-to-signal
ratio for an array of elements, though a thin unilayer dome can
thus be very effective against the high-wavenumber component of
flow noise, it can reduce the low-wavenumber component by no more
than the array factor, or by not as much if L < d/5, where D is
the element spacin%. o~

In the case of a dome with cover havi E impedance, the
effect of flexural resonances of the dome-fluid system is studied.
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Errata

for Report TRG-0il-TN-66-1, "Flow Noise Transmitted Through
Domes or Acoustically Modified by Non-Rigid Boundaries," by
David M. Chase, January, 1966.

P. 0-3, line (-3): Preceding "a range" insert "in."

p. 0-5, line (-2): For "borader, .having" read "broader, leaving."
p. 0-25, Eq. (0-32): For " (wa/c)/?" read " (wa/c) ¥2."

p. 0-25, line (~4): For "(0-4)" read " (0-24)."

p. 1-11, Eq. (1-31): Second form should read

3, % .2
"(4/7R 7) [ dkk "I (k,w)."
) K )
m
p. 2-36, Eq. (2-94): Following Q_(w,-L), for "-" read " = ."
P. 2-49, line 5: For "A(D/wroz)" read "A(Dz/iroz)."

2y1/2" 2y-1/2 "

p. 2-54, Eq. (2-103.8): For "(1Ro read "(1rRo

P. 2-54, line (-2): For "k," read "kw'"

2 »
p. 2-74, Eq. (2-143): For "6+(w)" read "55+(w)."

p. Al-l, line (-2): For "po" read "po."

p. Al=4, Eq. (13c): Left member should be "I (k,w,y)."

P. A5-4, Eq. (10): For "fdz;" read "Idzf."




