
UNCLASSIFIED

AD NUMBER:

LIMITATION CHANGES

TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD0488851

Approved for public release; distribution is unlimited.

Distribution authorized to US Government Agencies and their Contractors;
Export Control; 1 Jul 1966. Other requests shall be referred to Rome Air
Development Center, Griffiss AFB, NY 13440.

RADC notice dtd 31 Aug 1968

tH
iO
00
GO
QO

RADC-TR-66-54
Finol Report

AUTOMATIC PROGRAMMING TECHNIQUES

P. Gilbert
D. M. Gunn

C. L. Schager
Teledyne Systems Corporation

TECHNICAL REPORT NO. RADC-TR-66-54
July 1966

This document is subject to special
export controls and each tranamlttal
to foreign govemmenta or foreign
nationala may be made only with
prior approval of RADC (EMLl),
GAFB. N.Y. 13440.

Rome Air Development Center
Research and Technology Division

Air Force Systems Commond
Griffiss Air Force Bose, New York

When US Government drawings, specifications, or other data are used for any purpose other
than a definitely related government procurement operation, the government thereby incurs
no responsibility nor any obligation whatsoever; and the fact that the government may have
formulated, furnished, or in any way supplied the said drawings, specifications, or other
data is not to be regarded, by implication or otherwise, as in any manner licensing the
holder or any other person or corporation, or conveying any rights or permission tó manu¬
facturer, use, or sell any patented invention that may in any way be related thereto.

Do sot return thia copy. Retain or destroy.

BLANK PAGE

AUTOMATIC PROGRAMMING TECHNIQUES

P. Gilbert

D. M. Gunn

C. L. Schager

This document is subject to special
export controls and each transmittal
to foreign governments or foreign
nationals may be made only with
prior approval of RADC (EMLI),
GAFB, N.Y. 13440.

FOREWORD

This final tec>Jiical report was prepared by P. Gilben;, D.M. Gunn,
and C.L. Schager of Teledyne Systems Corporation, 12525 South Daphne
Avenue, Hawthorne, California, under contract AF 30(602)-3330, Project
Number 459^. The RADC Project Engineer is William G. McClellan, EMIRD.

This document may be further distributed by any holder only with
the specific prior approval of RADC (EMIRD), Griffiss AFB, New York.

!Hiis report has been reviewed and is approved.

Approved:
WILLIAM G. MCLELLAN
Project Engineer

Approvi

Colonel, USAF
Processing Div

FOR THE COMMANDER:
J. GABELMAN

* (Thiaf ArJvnnrstfJ

/
Chief, Advanced Studies Grou

ABSTRACT

This report is the third of a set of three reports documenting
work in the area of automatic compiler generation. The first two
reports described the theoretical basis for such a system. This
report documents an operating system embodying the concepts
described in the first two volumes. The system described in this
report allows a programmer to write in FORTRAN, ALGOL, or JOVIAL
and produce object code for either the DCD I60Ú.B or the UNI VAC
1218. The system described can be expanded to Incorporate other
machines or languages.

iii

BLANK PAGE

Section

I

TABLE OF CONTENTS

OVERVIEW.

A. Introduction.

B. Objectives and Requirements of Compiler Generation

C. Overall Method of Solution.

D. Objectives and Results of this Study.

II THE BASE LANGUAGE.

HI COMPILATION TO BASE LANGUAGE

A. Introduction to the POLY LINGUA System.

B. System Data Base.

C. Specification Notations.

D. Operation of the POLYLINGUA System.

IV THE COMPILER MODEL

Program Organization and Terminology.

Syntax Processor .

Internal Functions Processor.

Code Processor.

TRANSLATION FROM BASE LANGUAGE TO MACHINE LANGUAGE

A.

B.

C.

D.

VI REFERENCES.

Note: This report consists of 2 volumes; the table of contents given applies only
to volume 1. c j

1-1

1-2

1-4

I- 10

II- 1

III- l

III-3

III-5

III- 21

IV- 1

IV- 3

IV-25

IV-38

V- l

.VI-1

V

SECTION I

OVERVIEW

A. INTRODUCTION

The Air Force has had a continuing interest in facilitating the production

of compilers for procedure-oriented languages, and specifically in

generation of these compilers automatically (by computer program).

The reasons for such interest include desire for easy accommodation

of new languages and/or new machines, as well as desire for availability

of standardized forms of all procedure-oriented languages. The economic

and technological benefits which may be derived if these goals are

achieved are many and obvious.

We have, through successive studies culminating in this contract,

characterized and then developed a comprehensive system for compiler

generation, based on some novel concepts and processing techniques

j^l, 2, 3J . A prototype version of the system is now undergoing final

checkout and refinement.

This report attempts to give a comprehensive picture of the system, its

reasons, and its methods. We will stress the general methods and

techniques which are used, rather than the details of program steps.

The remaining portions of this action will characterize the problem of

compiler generation, outline our overall solution, and note the results

which have been achieved. Further sections of the report will discuss

in detail the various components of the solution.

1-1

B. OBJECTIVES AND REQUIREMENTS OF COMPILER GENERATION

The notion of compiler generation has been attractive from a theoretical

viewpoint for some years: there are no theoretical bars of any kind, and

the very existence of compilers itself suggests the possibility of auto¬

matic generation. By 1961 much relevant work had been done [4, 5, 6. 7],

and these results (and in particular the methods of Irons) have provided

a foundation for present compilation techniques.

However, the achievement of automatic compiler generation entails the

solution of further problems. Any method for compiler generation, if it

is to work at all, must by its very nature involve the characterization of

languages, and of the processing rules and mechanisms used to effect

translations. To be successful, such a method should give assurance

of adequacy in several respects. Adequacy questions to be dealt with

concern

Completeness: languages to be accommodated will embody differing

grammatical structures, so that the grammatical notions contained

in a generation schema must be adequate to properly treat a wide

class of languages (as well as guarantee proper treatment for the

known languages). Also, a sufficient variety of internal (to the

compiler) processing mechanisms is required, as well as an adequate

schema for production of output code.

Uniqueness of interpretation: every algorithm expressed in a

procedure-oriented language must have a unique translation in

machine language, so that ambiguity of interpretation is not

permissible. A proper generation schema will thus provide

guarantees that the compilers which are generated cannot embody

such ambiguities.

1-2

Finiteness of computation: every compiler must incorporate both

a decision algorithm (as to program grammaticalness and legality)

and a translation algorithm. To ensure that generated compilers

will fulfill these functions, a generation schema should provide

assurance that all computations (grammatical analysis, internal

processing, production of output code) performed for any input

program whatsoever, must terminate in a finite amount of time.

That is to say, there should not exist any input program which

could cause a generated compiler to "loop".

The usual practical objectives must also be considered -- namely, the

size and speed of both generated compilers and compiled object programs.

Some loss of efficiency in these regards could result from the use of

compiler generation and such efficiency loss would be tolerable only if

kept within reasonable bounds.

Finally, the concept of compiler generation itself imposes implicit

requirements. If several compilers are generated for the language L,

then obviously the languages accepted and processed by these compilers

should be identical (else the phrase "generating compilers for L" is

meaningless). The characterization of L embedded in each of the com¬

pilers should be truly machine-independent (in order to guarantee that

the identity of L is maintained from compiler to compiler).

1-3

C. OVERALL METHOD OF SOLUTION

The argument above can be carried further. If the characterization of

a language L embedded in each of several compilers is indeed machine-

independent, then surely

The processing algorithms within the compilers which interpret

this characterization should also be machine-independent, and

a logical separation should be maintained between the characteri¬

zation of L and the machine language for which the compiler .s

intended; that is, L should not be characterized directly in terms

of the machine language.

Both of these conditions are required if the machine-independence of L

is to be guaranteed. If the second of these is met, then L must be

characterized in terms of a "buffer language"; that is, a machine-

oriented but machine-independent computation language.

The arguments of the last two paragraphs cannot be iterated indefinitely,

for if machine-independence is required at each successive step, then the

longed-for machine language can never be encountered. But our most

vital concern is to ensure the invariance of language structure and

processing rules from one compiler of L to another, especially if L is

a language having a large number of rules of formation (such as ALGOL

or FORTRAN). For this reason, the use of an intermediate language

is very desirable.

Further, suppose that the intermediate language which is used has very

few rules of formation, so that programs in this language consist of

simple sequences of "instructions", each "instruction" consisting of an

"operation" followed by one or more operands and signifying a small

1-4

irannF1

and clearly-defined computation (e. g. ADD(X)). It is then simple to

maintain the structure of this language from machine to machine, to

translate from this language to a machine language in machine-

independent fashion, and to achieve (excluding for the moment machine-

dependent optimizations) simple sequences of machine language instruc¬

tions for each intermediate language instruction. Thus for all practical

purposes the intermediate language is machine-independent.

Our overall solution to the compiler generation problem can now be

quickly summarized. First, a logical separation between procedure-

oriented languages and machine language is maintained by the use of an

intermediate language which we call BASE language (see Figure 1).

Correspondingly, transformation from a procedure-oriented language

Lt to a machine language M takes place in two steps, which we call

1. Compilation from L to BASE

2. Translation from BASE to M

These steps are shown in Figure 2.

BASE language consists of a set of operations in "macro" or "functional"

notation; i. e. a BASE operation has the form OP (Tj/Xj,

Tn/Xn), where OP signifies the operation (e. g. ADD), Tj the i*h operand

type (e. g. variable, data, label) and Xj the ith operand itself.

Each compiler (L—-►BASE) corresponding to Figure 2 performs its

processing via machine-independent algorithms, and is in effect gener¬

ated by the use of a programming system which we call the POLY LINGUA

System. Conceptually this system consists of three items:

1. Compiler Model program - a table-directed processor,

2. An abstract notation (or more precisely, a set of notations)

which allows precise specification of language structure and

processing rules, and

1-5

PROCEDURE

Figure 1. Logical Separation of Procedure-Oriented
Languages and Machine Languages

PROCEDURE-
ORIENTED

MACHINE

Figure 2. Compilation System Corresponding to Figure 1

1-6

3. A Generation System program, which converts abstract

language specifications into data tables for use with the

Compiler Model, after performance of various formal

checks on the specifications.

As a first step in the production of a compiler (L—BASE), an abstract

specification is written for the language L (see Section III for details),

in terms of the system data base described in (IIIC), so as to enable

precise reference to data entities which will be treated by the compiler.

Next, the specification of L» is processed through the generation system,

and thus converted to a set of data tables which is called a "tape" of L.

When this tape is combined with the compiler model, so as to direct the

operation of that program, a compiler (L*—►-BASE) is formed. This

sequence of operations is illustrated in Figure 3.

Figure 3. Sequence of Operations in Generation
of a Compiler (L—►•BASE)

1-7

Each translator (BASE—M) is in concept machine-dependent. How¬

ever, for the class of machines typified by the IBM 7094, the CDC 1604,

and so on, translators are constructible which perform their processing

entirely via machine-independent algorithms, machine dependencies

being completely confined to the contents of certain data tables. Thus

in practice, for this class of machines, it is possible to regard each

translator (BASE —as the conjunction of a machine-independent

"translator model" program and a "machine specification" consisting

of a set of data tables. These does not seem to be any bar against

extension of this translator construction method for more complex

classes of machines.

Thus our solution conforms to the requirements we have developed for

compiler generation systems. Transformation from a procedure-

oriented language L to a machine language M is performed in two steps:

first via a machine-independent compiler (L ►■BASE), which is gen¬

erated by program, and then via a translator (BASE ^ M) which may

(for a wide class of machines) be generated also. Uniqueness of inter¬

pretation is intrinsic to the syntactic analysis technique embedded in

each compiler, and sufficient checks to ensure finiteness of analyses

Q, 3] are made during processing of the language specification by the

generation system. It appears that our technique will have excellent

efficiency.

What class of procedure-oriented languages is treated by our solution?

With regard to grammatical structure, we do not know of any restriction.

The syntactic model upon which the system is based |jlj can accommodate

as a language any recursive set (i. e. any set for which "sentencehood

or "membership" is decidable); the particular variation of the model

1-8

actually used within the system is at least as inclusive as (and in fact,

appears to be more inclusive than) the context-sensitive ("type 1") phrase

structure grammar of Chomsky Language specifications have been

prepared for ALGOL, FORTRAN and JOVIAL, with no grammatical

difficulty. Further, the system accommodations for compiler internal

processing functions and for code production have proved quite ample

for these three languages. Finally, production of translators is depend¬

ent only on the BASE language, and appears to offer no conceptual

difficulty.

Thus our system, in its present form, will accommodate a very wide

class of languages. Its limitations with regard to efficient treatment of

"object time" code will result in part from the design of the BASE

language (specifically, inclusion or exclusion of various operations).

Limitations on the set of "compile time" functions performable by

generated compilers will be a direct result of the set of "internal func¬

tions" operations. The current set of BASE language codes may not be

optimal, and the set of "compile time" functions which may some day be

necessary cannot be foretold; hence care has been taken to provide ease

of expansion in both respects.

1-9

A.

D. OBJECTIVES AND RESULTS OF THIS STUDY

The present study is the third of a series. The first of these was purely

exploratory: an initial specification was made of our system for compiler

generation, and basic notions were developed, including the incorporation

of formal checks within a generation system to ensure properties such as

finiteness of analysis.

The second study was a small effort, designed to determine more con¬

clusively the feasibility of the method chosen by means of two projects:

1. Writing of a generation system for use on the Univac 1103A

at RADC, and

2. Writing of a specification for the JOVIAL language.

The results of this study served to prove the worth of a generation

system to show the adequacy of the definitional scheme and to allow

development of the notations used in language specifications.

The overall objective of the present study has been to attain a final

development of our system, and in doing so, to develop as completely

as possible the compilation system shown in Figure 4. Specifically,

the objectives of this study were

1. to write the Compiler Model program,

z. to write two translators, for the CDC 1604 and the Univac

1218, and

3. to write and test language specifications for ALGOL, and

FORTRAN.

1-10

Figure 4. Capabilities of Desired System

In this effort stress was placed on the development of general methods

and principles, rather than on details which would be necessary to pro¬

vide production compilers. It has been felt throughout these studies

that such attention to method would be repaid a thousandfold, via the

resulting efficiency of the programs, in the event of success. Accord¬

ingly, considerable effort was spent in re-examination and redesign of

the functions of the compiler model, resulting in a short, general, and

reasonably efficient program. Extensive effort was spent in deriving

the translator formulation noted previously.

As an extra effort (not called for in the study), a set of table builder pro¬

grams was written to replace the generation system developed in the

second study. We had hoped instead to develop a very general operation

system, consisting of the compiler model and an auxiliary processor

driven by a set of specifications delineating the specification notations

themselves. In fact, all of the parts necessary have been written, but

we have not had time to perform checkout of the merged system.

1-11

At this moment, the compiler model program, translator for the 1604,

and the ALGOL specification are all simultaneously undergoing final

checkout. Although these still contain "bugs", the compilation system

has already compiled several programs which have been able to

assemble and then execute. The principle of operation is thus proven,

and it is only a matter of time until complete error-free operation is

obtained.

SECTION II

THE BASE LANGUAGE

In the system of Section I-C, a logical separation between procedure-

oriented languages and machine language is maintained by the use of an

intermediate "macro" or "functional" language. The intermediate

language is called BASE, and the transfoimation from a procedure-

oriented language into a machine language M is said to be accomplished

in two steps (cf. Figures 1 and 2, page 1-6):

1. Compilation (L —BASE) aid then

2. Translation (BASE —►M).

The interposition of BASE as a "buffer language" allows a mutual inde¬

pendence of the processes (L—► BASE) and (BASE—►M). Thus one

translator (BASE —♦-M) suffices for all L, and vice versa. Further,

the operations of BASE can potentially be defined to have arbitrarily

desired meaning, since

a. BASE is the sole link between compilation and translation,

and b. The translation process need conform only with the definitions

of BASE operations and those of machine instructions.

In other words, a translator is precisely an interpretation of desired

BASE specifications. The potential power and complexity of operations

which might comprise BASE are proscribedonly by the format in which

these codes may be specified. The particular codes and interpretations

given here are not as important as the use throughout of a uniform and

non-restrictive notation, because of which unlimited freedom and

versatility are obtainable within BASE. Evolution of BASE operation

types or interpretations will always be accommodatable by appropriate

changes within a BASE —► M translator.

II-1

The format of BASE operations is modeled after that of a function of

n variables, F(X ,X). Each operation consists of a three-letter
1 n

operation code followed by some number of arguments, each argument

consisting of an operand type specifier and the operand itself. Typical

symbolic notations (cf. Section 11I-C) are

FFF(Sj/ XJ) for a one-argument operation and

GGG(S, / X,, S^/X^.S / X) for an n-argument operation,
1 1 2 ¿ n n

th r • j -vr l* . th ,
where S. signifies the i operand type specifier and X. the i operand

itself.

By convetion, every operation has at least one argument (which need not

have meaning), and otherwise every operation has an appropriate (possibly

variable) number of arguments, as required. Within the system, an

operation having more than one argument has the form of a sequence of

one-argument subfunctions. The dummy operation code ARG, which

serves merely to carry one argument, is used to accomplish this

"decomposition", which results in the identity

GGG(S. / X.S /X) = GGG(S / X) ARG(S / X). . . ARG(S / X)
11 nn It nn

The code ARG is also a permissible three-letter operation code, so

that the operation GGG may be written symbolically in either of the above

forms. Availability of the ARG code allows the composition of a sequence

for GGG as the result of a number of processing steps. Thus the arguments

for an operation may be specified all at once (using either notation above),

or an appropriate number of arguments may be composed during subse¬

quent processing. Note that a variable number of arguments is obtainable

for any operation using this mechanism.

II-2

The operand types used in BASE operations are:

Operand Type Mnemonic

Program variable name V

Program label V

Program data constant D

Temporary register T

Compiler-defined constant C

Compiler-defined label L

Property p

By "program variable name", we mean a name defined within a

procedure-oriented language program (e. g., in item declarations, such

as XYZ in real XYZ). Labels in such programs are conceptually defined

in the same way and thus are given the same operand type. A "program

data constant" is a number (e. g. , 123. 45E6) or a symbolic constant

(e. g. , 4H(ABCD)) which appears in a procedure-oriented language

program. A standard procedure is used to treat such constants. The

string of symbols comprising the constant is transmitted to the translator

and also assigned an identity number (say N); thereafter, that constant

may be reference in any BASE operation as the operand D/N. "Temporary

registers" are of course registers within an object program which are

used to store data temporarily. "Compiler-defined constants" are

integers defined by the compiler, as for example, the first operand of

a GTO code. "Compiler-defined labels" are labels defined for inclusion

into the object program; such labels are usually implicit in the program

under compilation, as for example, in an ALGOL or JOVIAL "IF statement".

The treatment of "property operands" differs from that of other operand

types. When this operand type is used, the argument actually desired

is a "property" of the operand given, rather than the operand itself.

Specifically, the desired argument is a machine-dependent number which

II-3

will exist in the object program and which is known to the translator,

but cannot (because of machine-dependence) be known to the compiler.

An example of such an argument is "the number of machine words

corresponding to a given data structure" (e. g. , an entry of a table). The

"property" operand type allows "naming" of such a parameter by the

computer and subsequent substitution by the translator of the appropriate

number for the given name.

A simple convention is used to interpret property operands: the operand

field associated with the P type contains a numeric code indicating the

property desired; and the operand for which this property is desired

follows as the argument of an ARG code. Additional arguments may be

necessary to further define the property desired; in general as many

extra arguments as necessary are simply inserted into the string of

operation codes whenever this operand type is used.

The following properties are at present provided for:

Code Property

0 Machine address of the given item, or of the origin
word of the given data structure

1 Number of machine words corresponding to the named
data structure

2 Length of a dimension of the given data structure.
This property requires an additional argument,
specifying the dimension whose length is desired.

Typical usages and their interpretations are given below.

Usage Interpretation

Add the variable X

Add the machine address or origin address
of the variable X

ADD (V/X)

ADD(P/0, V/X)

ADD (P/ 2, V/X, C/2) Add the length of dimension 2 of the data
structure X

The table following this discussion gives the BASE codes which are used

at present, together with their interpretations and conventions. First, a

short discussion of the input/output operation INO is in order, both to

illustrate the general use of arguments throughout BASE and also to explain

the philosophy which has been adopted with regard to input/output.

Every procedure-oriented language assumes the existence of an overall

environment in which object programs are to operate. In particular, each

language assumes the provision of certain specific input/output facilities

to its object programs. In other words, a language - specific set of sub¬

routines must be presumed to exist at object time to accomplish the

desired input/ output processing. Accommodation of a set of procedure-

oriented languages thus requires a range of such subroutines of varying

types, each pertinent to one or more languages.

Modern operating systems, such as the COOP Monitor, normally furnish

such subroutines; and in any case the subroutines are required to be

available at object time. Accordingly, the INO operation is in reality

simply a subroutine call having an arbitrary number of arguments;

the first argument is a numeric code corresponding to the desired

subroutine, and succeeding arguments are as required by the desired

subroutine. In this way any number of subroutines can be accommodated.

As a specific illustration of this method, consider the FORTRAN statement:

WRITE (6, 100) A, B. This statement is normally implemented via 3 sub¬

routines, which might be described ? follows:
Arbitrary

Arbitrary Name Num. Code

WRITE 1 Initialize all WRITE subroutines and
data tables

WRITE 2

WRITE 3

Transfer one list elements to WRITE
subroutines for processing

End WRITE processing as necessary

II-5

Aside from a trivial variation in the handling of the constants 6 and 100,

the seqvience of BASE operations which would appear for the above

FORTRAN statement is:

Base Sequence Corresponding CODAP Sequence

INO (C/4)
ARG (C/6)
ARG (C/ 100)

Initialize
WRITE
Routines

+

+

ENA
ENQ
RTJ

0

+ 6
. . 100
Q8QINGOT
0

INO (C/5)
ARC (V/A)

Transfer
List
Element

+

+

RTJ
0
0
1

Q8QGOTTY
0
0
A

INO (C/ 5)
ARG (V/B)

Transfer
List
Element

+

+

RTJ
0
0
1

Q8QGOTTY
0
0
B

INO (C/ 6) End WRITE RTJ Q8QENGOT

The operation INO (C/4, C/6, C/100) simply specifies a call on WRITE 1,

with the arguments 6 and 100, and so on. The names by which the 1604

COOP Monitor actually calls these routines are Q8QINGOT, Q8QGOTTY,

and Q8QENGOT so that the BASE sequence is almost trivially translatable

to the corresponding CODAP sequence also shown above.

II-6

OPERATION CODES AND CONVENTIONS

Category Code

General ARC

Arith- CLR
metic

and
Boolean STO
Operations

ADD

SUB

MP Y

DIV

DVI

EXP

CHS

ABS

BOR
AND
NOT

Symbolic EXB
Operations
and
Operations
on Parts
of Items

Operands

One

None (i. e. has one operand
which is ignored). Nomi¬
nal form is CLR (C/0)
One

One

One

One
One

One

One

None; nominally CHS(C/0)

None; nominally ABS (C/0)

One
One
None; nominally NOT(C/0)

Three operands; first is
variable name

Significance

Dummy operation which
carries one argument.

New computation follows
(clears "accumulator")

Store results of compu¬
tation thus far
Add to computation thus
far
Subtract from compu¬
tation thus far
Multiply
Divide computation thus
far by indicated argument.
"Integer divide" - quotient
is truncated to nearest
integer.
Exponentiate computation
thus far by indicated
argument.
Change sign of compu¬
tation thus far
Take absolute value (set
sign "+")

Boolean "OR"
Boolean "AND"
Take Boolean complement
of computation thus far.

Extract bits from variable
given by first operand.
Second operand indicates
starting point (from "left")
of bits to be extracted;
third operand indicates
number of bits to be ex¬
tracted.

II-7

Input/
Output

T ransfer
of

Control

EXC Three operands; first is
variable name

PTB Three operands; first is
variable name

PTC Three operands; first is
a variable name

Extract characters from
variable given by first
operand. Second oper¬
and indicates starting
point (from "left") of
characters to be ex¬
tracted; third operand
indicates number of
characters to be
extracted.
Put bits in variable given
as first operand. With
this exception, other oper¬
ands have same significance
as in EXB.
Put characters in variable
given as first operand. With
this exception, other operands
have same significance as
in EXC.

INO Variable number as
required - see discussion

Calls input/output sub¬
routine indicated by first
operand.

GTS One

GTO First operand is an
integer constant; second
operand is a label

Call to subroutine indicated
VPR and/or NPR operations
follow, giving parameters
as required by subroutine.
Go to instruction indicated
by second operand. First
operand is a code indicating
the condition under which
the transfer takes place:

Code Conditions for
Value Transfer

0
1
2
3
4
5
6

(unconditional)
< 0
<0
= 0
>. 0
> 0
* 0

HLT None; nominally HLT(C/0) Halt

11-8

Data
Declar¬

ations

1TM Nine operands; first is
variable name, and the
rest are integers

ARG
n = *0

Declares the first operand as an
item. The ARG codes which
carry the rest of the operands
give the following information:

-»■ item type:
unspecified

1 floating
2 fixed
3 bit string

(length = l»*Boolean)
4 Hollerith string
5 STC string
6 complex
7 double precision

ARG^ number of bits or
characters (0 = word size)
ARG^ *♦'*• number of components

fFor ARG , = 3, 4,or 5:
l-*-^>length fixed,
0-*»-length variable
For ARG1 = 2:
1 unsigned,

. 0 signed
''For ARG^ = 1 or 2:
0*-*-truncate,
1 round

ARG-«-♦io«•-*> + , 1-p--2
‘ r For ARG } = 2:

Jbits of precision
•s For ARG^ = 1: number
I of bits in exponent
KO machine format)

♦W"word within entry for

ARG

ARG.

ARG.

ARG
8 ~ \

4 table items
fto^-».not specified)

ARG9 If ARGg 0: bit origir
within word

II-9

■W'

ITA Two operands: first is
variable name, second is
integer signifying item type.

TBL Five operands

F1L Ten operands; first gives
variable name

Declares the first operand as an
item; type is given by the second
operand. This is an abbreviation
of the ITM declaration as follows:
ITA(V/X,C/n) = ITM(V/X,C/n ,
C/O, C/1.C/0Í C/0, C/0, C/0)

First operand is declared as a
table. Succeeding ARG codes
give information as follows:

layout: 0 parallel,
1 ■»♦serial

ARG^^-W'packing density:

JO •»♦none
] 1 medium(machine -based)
I 2 »♦dense

ARG^»-»fMaximum number of
(.entries

ARG^-*-«*rSize definition:
^■•♦•variable,
(l »rigid

Declares first operand as a file.
Succeeding ARG codes give in¬
formation as follows:
ARG^numeric code signifying

device nmae
ARG^^-w-Tfile use:

|0 •»►unspecified
< 1 »»input
1 2»»output
V.3-*»s cratch

ARG3— recording mode:
0-^binary, l-»»hollerith

ARG.»-» number of records
4

ARGj.»-»rO»-number of records
is variable

l»-»number of records
is fixed

ARG^**- number of bits or char¬
acter/logical record

ARG_,»-»-(0*»number of bits/chars
is variable

l*»number of bits/chars
is fixed

II-10

J

SEE One

A RGgnumb er of bits/char¬
acters/physical block

ARGg-»^/() ♦♦number of bits/
jchars is variable
il ♦♦number of bits/
(chars is fixed

Declares operand as a reference
name. This code may be used in
place of second and following
arguments of TEL, FIL, ITM
codes, or may follow a DIM code.
The attributes desired are de¬
clared identical to those of the
SEE operand.

Data SEQ Variable number, as
Structure required

OVR Variable number, as
required

Dimensions, DIM One operand
Indices ,
Subscripts

and
Switches

All operands are variable names.
The first operand is declared as
naming a data structure which
consists of the sequence (in the
given order) of the data entities
given in the following arguments.
If the first argument is C/0, then
no name is given, but object pro¬
gram space is declared to be
allocated sequentially as specified
by the arguments.
Appears following SEQ declarations.
Same as SEQ, except that the space
allocations declared are to be over¬
laid over those of the preceding
SEQ declaration, beginning at the
same place in memory as the
previous SEQ declaration.

Begins a dimension declaration
for the stated operand. The
dimension declaration consists
of alternating LOB and UPB codes
(as many as required to specify
the proper number of dimensions),
the it-h LOB (or UPB) code followed
by a sequence giving an arithmetic
expression for the lower bound
(or upper bound) of the ith dimension.

II-II

EDI One operand

INX Variable number, as
required

SCR One operand

ESC One operand

LOB One operand

UPB One operand

SWI One operand

SWP One operand

ESW One operand

The declaration is terminated
by an EDI code. A SEE code
may appear as an alternate form
of declaration.
Declares termination of the
dimension declaration of the
stated variable.
Declares set of index values for
the variable which is the first
argument. Values are given in
order by succeeding arguments
for the dimensions of the variable.
Declares operand as a "subscript"
for the following computations.
Declares end of "subscript" con¬
notation for indicated variable.
If operand is a constant, this is
lower bound value (see DIM
discussion). Otherwise the
operand is ignored, and a
sequence of codes follows giving
an arithmetic expression for the y'
lower bound.
Declares upper bound. Similar to
LOB.
Declares operand as a "switch name",
and begins switch declaration.
Switch points are given by succeeding
codes; see below.
If operand is a program variable
(V type), then this variable is
declared as a switch point for the
switch in whose declaration this
code appears. Otherwise, the
switch point is defined by the sequence
of codes following the SWP (this
sequence must terminate with a
GTO code).
Ends switch declaration of indicated
variable.

11-12

Declaration
of

Constants

Codes
Pertaining

to
Subroutines

Program
Structure

DTA One operand

SYM One operand

STC One operand

INI One operand

ENI One operand

SBR One operand

ESB One operand
OSR One operand

NPR One operand

VPR One operand

IDT One operand

TRM One operand
LBL One operand

BEG None

END None

Declares the operand as the name
of a program data constant. Suc¬
ceeding SYM or STC codes each
carry one character of the named
constant.

Operand is a 6 bit Hollerith char¬
acter.

Operand is a character in 6 bit
Standard Transmission Code.
Pr ecedes one initial value of the
stated variable. Succeeding SYM
or STC codes each carry one
character of the initial value.
Ends sequence of initial values for
dated operand.

Declares operand or a label for the
subroutine whose body follows.
Ends the indicated subroutine body
Declares operand as label of optional
subroutine: optional subroutines are
included in the code output when
called:

Declares operand as a "name par¬
ameter" of a subroutine. NPR and
VPR codes carry formal parameters
which appear in the declaration of
a subroutine and also carry actual
parameters appearing in subroutine
calls.

Declares operand as a "value
parameter" of a subroutine. See
discussion of NPR.

Declares operand as "program
identity". If used, this code must
begin the BASE program.
Terminates the program.
Declares operand as a 1 .bel for
the operations which follow. If
two or more L,BL> codes appear
in sequence, the labels declared
are all assumed to be equivalent.
These two codes are used as
segmentation markers to denote
segmentable code blocks.

11-13

SBC None

DIR None

EDR None

Subcomputation: The codes between
any two SBC markers are denoted
as a subcomputation.
Precedes a "direct code" sequence
the characters of which are carried
with the SYM codes.
Ends a "direct code" sequence.

II-14

SECTION m

COMPILATION TO BASE LANGUAGE

A. INTRODUCTION TO THE POLY LINGUA SYSTEM

This section will begin discussion of the POLYLINGUA system, the

programming system which is used to generate compilers which trans¬

late from procedure-oriented languages to BASE language. It should

be recalled that the POLYLINGUA system consists of two programs —

a Compiler Model, which is a table-directed processor, and

a Generation System which produces tables for use by the

Compiler Model

— in conjunction with an abstract notation (actually a set of notations)

which is used to write abstract specifications of language structure and

processing rules.

The sequence of steps in the generation and use of a compiler, shown in

Figure 3, begins with the writing of an abstract specification of the

language under consideration, using the notations provided for that

purpose. Each specification consists of portions delineating

alphabetic symbols of the language

syntax

internal processing functions

code produced

diagnostic messages

m-i

Processing of this specification through the generation system yields a

set of data tables (called a "tape"), which when combined with the

compiler model, forms a (machine-independent) compiler from the

language in question to BASE language. In use, the operation of the

compiler is directed by the contents of the tape.

The workability of this system is due, not to specific features contained

in the various programs, but to the emphasis placed throughout on con¬

sistency of means for abstract definition, consistency of means of

interpretation used in the compiler model, and especially on the relation

between these. Thus the abstract notations used in language specifica¬

tion are an integral part of the system: the compiler model in operation

carries out the intent of the abstract notations; and the precise result of

such notations is determined by the details of compiler model operation.

The notations of language specification refer to an assamed universe of

data, called the system data base. In turn, the compiler operates on

physical representations of these entities. For this reason our presen¬

tation will discuss first the system data base, then the specification

notations and use of the conversion programs which serve as an interim

generation system. In Section IV, operation of the compiler model will

be discussed in detail.

Ill-2

B. SYSTEM DATA BASE

The universe of data in which the compiler model operates is called the

system data base. As noted above, entities in the data base are referred

to by the specification notations, and operated on by portions of the

compiler model. We will indicate here the entities which comprise the

data base, in sufficient detail to allow further discussion of the notations

and compiler model.

The compilation process consists in concept of the syntactic analysis of

a given string (the "input" or "program" string), and consequent con¬

struction of a second string (the "output" or "code" string). Both of

these strings are regarded as of unbounded length, and as being con¬

tained on some suitable but unspecified physical medium. In construc¬

tion of the code string, data is retrieved from the input, is processed,

and appears in or determines segments of the code string.

From a syntactic viewpoint, the input string is a sequence of syntactic

types or constructs, which are grouped by the analysis into larger and

larger units. Thus the input string is viewed abstractly as a sequence

of number pairs, one representing a syntactic type and the other being

an associated reference number or datum, as required.

The code string is a simple sequence of "operations", each operation

consisting of a number triplet representing respectively an operation

code, an operand type, and an operand.

Also within the system data base are data entities pertinent to the

compiler's internal processing — retrieval of this data, processing

of the data, and construction of the code string. There are three such

entities:

1. a set of "function registers" F., each such register assumed

to contain a positive integer

2. a "property table" of positive integers (j). At times in the

processing, various symbol strings are "defined" to this

table (i. e. entered into the table), and the j**1 entry in the

table corresponds to the such string. The integers P. (j)

are called "properties" of the j01 entry; PQ (j) is also called

the "syntactic classification" of the j**1 entry; and the defined

symbol string itself is called the "name" of the entry.

3. a set of "symbol registers" Sj, each containing some string

of symbols.

The following discussion gives further details on use of these d^ta

entities.

C. SPECIFICATION NOTATIONS

We indicate here the notations used in the various portions of a language

specification. Many examples of these notations are to be found in the

specifications of ALGOL and FORTRAN contained in Volume II of this

report. We will illustrate our discussion using a mythical language,

aptly called EXAMPLE, the specification of which is shown in Figure III-l.

EXAMPLE has no purpose or meaning other than illustration.

As shown in Figure III-l, a specification is in general composed of five

portions, as follows:

Symbols: a list of the alphabetic symbols and reserved words

which constitute the primitive syntactic types of a language; for

each of these both a syntactic type and a datum are specified.

Syntax: a set of syntactic productions of P (where k is a label
lx

affixed to the production).

Internal Functions: sets of of "internal operations"; each set

Sk corresPonds to 016 production Pk having the same label

affixed.

Codes: blocks of "output code"; each block corresponds to

the production P^ having the same label affixed.

Diagnostics: a set of messages for diagnostic output.

in-5

8 I 8

t K

8 t

t ti

t f

r H r

H I - X

U. O - c

P H U — J P

Z X ►4 oc J c

S U D £_

X H ÎS Z i

8 Z o o - 1

« O - •

1 U H H S

• X X U« 3

2 o UJ (U o 2

8 H H 3

2 Z Z LU 3

« Ò O 'S) •

% U U D s

% a

a a

* 3

a a

s — s

"a a
s U1 — s
5 CL û 1 s

s >- Z s

a n
H LU

-
S

t - t

t — a

î
J s — A. — — 3

a fO OC _ri4 X *VJ — f

Ü — (U ~ J O Z — J LU •J 3

: O o CL ni O H J CL •J 3
- oc LU >• 0 oc 3 _ J O >* D 3

5 — Q. 03 H CL z 03 O Z H Z 3

; — — — ^;i - — — _ ;

S — h il " ■^1 Il
-L -^1

h " 8

t h h h " " " "
h h a

t — — — — — — a

£ < Ö O o - M o — L

a — -^1 w — — fM r«“! X . . ~ a

s ; LU — w Z — Z — s

• H a a. S CL < ' H ' < U U s
s Z > Z >< J j. 0 o s

2 t“ U û LU H W H eu Q . «1_
LU eu s

-
—

— — — — — — -

^â- h— ^ . s

a — — — i-r. _ a

a X 14 a

2 « ~ — — — — Z >5 H

a —
0

O H H H H < < X S) •

s — rvi X 14 U O 0 o O J eu Z s

• w H Z — — — Ö 03 Û Û Q Q cc Z 6 a

g r: CL û. H < o Q U _ _ _
U

— — 3

2 1— >• >• 0 J U1 Z 0 H 8
Ä U) i— H H Q ffJ (Q U U — — — L_ U -

a •J _ _ _ - Z r*i Z 8

• 0. i/) LU - LU
t

— D •

• -j CL o CL n- j H H X U. •

- < O >• LU > X
i^-

O < t

• X y cc H (Q H Z ta — Û H J a

r U1 i/ - — — < - U — Z < r
• — _ — X J 0 >- Z 5

« U] C o Q 'S) < 03 1 LU 'S) CL -

? -1 ff U1 - H — (U f

r H CÛ L1 U a a H -
O « > <

t “
- o Y. >* LU LU z Z

t-
-,

</ - T _ U U 'S) J •J U - •
. _ r- u*> — D •
► « * • CL CL • K
• 1 •
« *N f iT' -o ao rT O — -

‘ ó C C o o O o o O c — - *
« o c C o o O o o O c c o o -

O — — - - - -

- _

III-6

i

F
ig

u
re

II

I-
l.

A

S

a
m

p
le

L

a
n

g
u

a
g

e

S

p
e
c
if

ic
a
ti

o
n

c
o
m
u

(j
O)
ex

C/5

(U
00
(fl
3
00
c
(fl

J

(U
—I

ex
£
(fl

C/5

c
O
U

(U
11

3
00

Cx

III-7

Symbols

The figure shows a typical deck structure. The symbol portion of this

specification (lines 3 through 9) contains all of the usual "symbol cards".

Each symbol delineation may be preceded by a label, as in line 4, if

desired; the labels have no intrinsic meaning. The number within

parenthesis indicates the number of characters under consideration;

these characters follow immediately after the right parenthesis. Next,

the symbolic name enclosed within parenthesis is the name of a

"syntactic type" or "construct". The number or character following

this is the associated datum:

((A) signifies a datum consisting of the hollerith character "A"

(2) signifies a datum consisting of the number "2"

Thus line 3 specifies that a symbol A appearing in an actual input program

is to be represented in the conceptual input string by the syntactic type

TYPE1 having an associated datum consisting of the hollerith character

"A", while line 8 specifies that the symbol sequence 'END' appearing in

an actual input program is to be represented in the conceptual input

string by the syntactic type END having an associated datum of the number 2.

Both a syntactic type and a datum must be given for each symbol or

sequence of symbols delineated within the symbol section. As shown in

line 6, the symbol "blank" may be thus delineated. The symbol ((EOC))

is a special symbol which denotes a physical "end of card*, this may also

be delineated. All alphanumeric symbols not appearing in the symbol

section are assumed to be delineated by the syntactic type NULL and a

datum of 0.

Ill-8

f
I

Syntax

The syntax portion (which appears on lines 12 through 24 of Figure IU-1)

consists of a group of unsequenced productions, followed by ordered

sequences of productions called "Rules". Each production must be

labeled in the manner shown. Productions in the unsequenced group

may not contain any construct for which a Rule exists. The productions

within a Rule are tested for satisfactory match in the order in which they

appear (see £l J » PP* 107 and 108).

Special significance is placed on the construct names NULL and NEXT,

which may be used only in the manner described here. NULL signifies

the "empty" or "vacuous" construct; it may appear only on the right

side of a production, as the replacement of a sequence of other constructs.

Replacement by NULL is equivalent to deletion from the string.

The name NEXT may be used only on the left side of a production. It

signifies "any construct in this position". Thus the sequence given in

line 22 is equivalent to any of

(DOT) (DOT) (EOC)

(DOT) (TYPE 1) (EOC)

(DOT) (END) (EOC)

A production containing NEXT may appear only within a Rule.

Internal Functions

As Figure III-l shows, the internal functions portion consists of sets of

"operations", each in general having two operands. Each such operation

specifies a specific manipulation of some data entity within the system

data base. A labeled operation (e. g. , line 29) and all succeeding operations

until the labeled operation -- constitute a set associated with the produc¬

tion having the same label. Thus the set of lines 29 and 30 is associated

with the production labeled 1004. In principle a set of internal functions

is specified for each production in the syntax section (with the intent that

"performance" of the production during compiler operation causes

performance of the associated set of internal functions); if no such set is

specified, then the associated set is simply a null set.

The set of operations, and the data classes with which they deal, are

exhibited in Figures III-2 and III-3. Figure III-2 shows the possible

operand types, categorized into operand subclasses. Note that in general

operands may be specified in any of three ways

Directly

Indirectly, as the value of a specified function register (e. g. , F)
5

As data associated with some syntactic construct, which construct

is specified via its position in an associated syntactic production.

m-io

Figure HI-3 shows the complete set of operation types. The notations

used in the column "Form of Operation" in this figure have the format

OPCODE OPERAND SUBCLASS OPERAND SUBCLASS

where the operand subclasses are those of Figure IH-2. The appearance

of two or more operand subclasses within braci'ets -- e. g. , --

signifies that either operand subclass may be used. The operations

are discussed in detail in Section IV.

A syntactic type may be used to designate a numeric value (either xx of

class B, or the second operand of the STV operation). Thus, for example,

the operation STV F5 ((TYPES)) would result in the numeric value

corresponding to TYPE3 being used to set Fg. A syntactic type, when

used in this manner, must be enclosed within double parentheses as

shown.

Ill-11

Operation
Category

Numeric
Operations

Operand
Operand Symbolic
Sub-class Notation

A Fxx

F(Fxx)

Px(Fxx)

Meaning of Notation

th
The (xx) function register Fxx
i. e. , F^, where 0 £ i499.

Fpj, where 0 ^ j ^ 99.

The (x)th property of the (Fxx)th
variable - the value of Fxx specifies
the desired entry within the "property
table". I. e. , P. (F.), where

1 J

[O < i < 3
(04 j 4 31

Px(±xx) P. (Jc), where 0 4 i 4 3. Jc specifies

the desired entry within the property
table. The argument ±xx specifies the
construct C via its position in the
associated syntactic production, and

JC is the daturn associated with C.

B xx A positive integer 4 99

Scope The current scope "begin number" -
See detailed discussion of scope in
Section IV.

N(Sxx) "Number conversion" of the contents
of Sxx. See discussion below of Sxx,
and detailed discussion of Number
Conversion.

N(S(Fxx)) Number conversion of S
Fxx

comments above.

see

Figure III-2. Classes of Operand Types

III-12

Operation
Category

Symbolic
Operations

Numeric
and Scope
Tests

Operand
Sub-class

Operand
Symbolic
Notation

Vx(±xx)

Sx

Meaning of Notation

th
The X transform or "value "
associated with a syntactic
construct. The argument ±xx
specifies the construct via its
position in the associated
syntactic production.

th,
The (x) symbol register Sx
i. e. , S., where 0 ^ i ^ 3. S is

i i
assumed to contain a (possibly
null) string of non-blank symbols,
left-justified. The rest of S. is

assumed to be "blank".

S(Fxx) The symbol register S
Fxx"

xxx A three-digit number
Fxx As above
Px(Fxx) As above

Scope The current SCOPE "begin
number" -- see detailed
discussion of SCOPE

Figure III-2. Classes of Operands (Cont)

ni-13

Figure 111-3. Internal Function Operation Types

Operation
Category

Numeric
Operation

Symbolic
Operations

Form of
Mnemonic Operation Result Comments

SET Set F. or P.(j) to a
i iJ

desired value.

INC

DEC

MPY

DIV

EXP

INC Aj

DEC

MPY At

DIV Ax

EXP Aj

Increase F^ or P^ (j)

by a desired value.

Decrease F^ or P^ (j)

by a desired value.

Multiply F^ or P^ (j)

by a desired value.

Divide F. or P. (j)
i i J

by a desired value.

Exponentiate F^ or P^ (j)

by a desired value.

STV

PUT

PRE

STV A XXX XXX—►A Set F. or P. (j) to the
i i

value XXX which is

^ 999

PUT D1

PRE D1

Put the desired symbol
or symbols into S..

Prefix the symbols of
S. by the desired

i

symbol or symbols

III-14

Figure m-3. Internal Function Operation Types (Cont'd)

Operation
Category Mnemonic

Symbolic SUF
Operations
(Continued)

RML

RMR

Form of
Operation Result

suFD.fy d. [dJ^d,

RML D [ÿ

RMR D

Comments

Suffix the symbols of
S. by the desired
i

symbol or symbols

Remove from the left
(prefix) of S., or from

the right (suffix) of S.,

XX symbols or the number
of symbols specified in
Fxx.

Scope SSI SSI
Operations

SSE SSE

Set SCOPE "interior"

Set SCOPE "exterior"

Property DEF
Table
Manipulation,
Searches, and
associations
with syntactic
input string

ASO

DEF D xxxx

ASO ixx

Assign a new property
table entry to the name in
the given S.. Set F. to

i 0

the new entry number.
Set Pg (Fq) to xxxx.

"Associate" the value in
Fxx or Px (Fxx) with the
construct in position ±xx.
i. e. , set the construct's
associated datum to the
value in Fxx or Px (Fxx).

Figure m-3. Internal Function Operation Types (Cont'd)

Operation
Category

Property
Table
Manipula¬
tion, Searches,
and associa¬
tions with
syntactic input SER SER Sx
string
(Continued)

Form of
Mnemonic Operation

RTV RTV A ±xx

Result

SER ±xx

SER ALL

DO

ENS ENS

IDF IDF ±xx

Comments

"Retrieve" the datum
"associated" with the
construct in position ±xx,
and set Fxx or Px (Fxx)
to this value.

Search property table for
entries having name in Sx.

Search property table for
entries having same name
as is associated with
construct in position ±xx.

Search all property table
entries.

Do operations succeeding
this and preceding next
ENS operation a number
of times specified in the
operand.

End search sequence. (A
search sequence is the
sequence of operations
preceded by SER or DO
and succeeded by ENS.

"Identify" the construct in
position ±xx as specified
by A. i. e. , set the construct
in position ±xx, to the
numeric value of the given
Fxx or Px (Fxx).

ÏÏI-16

Figure III-3. Internai Functional Operation Types (Cont'd)

Operation
Category

Nume ric
and scope
Tests

Form of

Mnemonic Operation Result Comments

TST

AGR

OGR

AEO

OEO

ANQ

ONO

ASI

OSI

TST xj.
n n

AGR E

OGR E

AEO E

OEO E

ANO E

1 I B

[b]

1 IB

A test consisting of n
consecutive test operations
(see below) follows this

operation. If the test is

"successful", the k opera¬
tions following the test are
performed. If the test is
not successful, the k opera¬
tions following the test are
skipped.

Test E, E_?
1 2

Test E, = E_?
1 2

Test E j * E2?

Test if Ej is " interior " to E2

A test consists of
a sequence of those

operations and/ or
the scope tests

which follow, and
no others. The

"success" of a test

is a boolean func¬
tion of the individual
tests; the first

letter of the mne¬
monic indicates
whether the indi¬
vidual result is to
be "or"ed or "and"ed
into the total result.

OSI E
1 Test if E is "interior" to E

1 2

111-17

Figure ÏII-3. Internai Functional Operation Types (Cont'd)

Operati on
Category Mnemonic

Mi scellaneous

PRS

PRN

CAP

Form of
Operation Result Comments

PRS
Mess.

No.

'Sx

Name (Fxx)
.Name (±xx).

Print the message whose
number is given, together
with the specified symbol
string. Set error flag to
indicate that error has
occurred during compilation.

PRN
Mess

No.

'Sx
Name (Fxx)

.Name (±xx),
Same as above, except no
error has occurred.

CAP Call auxiliary processor.
The number n specifies that
the n“1 subprocessor is
desired.

Ill-18

Codes

Sets (or "blocks") of code are arranged in roughly the manner as the

internal function sets, and with roughly the same intent -- each set is

associated with the production having the same label, and the block is

output upon "performance" of the associated production.

The operation codes and format are those discussed in Section II. However,

the argument field does not usually contain an actual argument, but rather

indicates (using the symbology of the numeric operand subclasses A and B

of Figure III-2) the numeric value which is to be used as the argument.

Thus MPY(T/F2) specifies a multiply operation on a temporary register,

and the number which is output as the actual argument is to be taken from

F2. As an exception to the nomenclature of subclasses A and B, the

symbology R(±xx) is used to signify the datum associated with the construct

in position ±xx.

A number of operation "pseudo-codes" are used, which do not signify BASE

language operations, but rather have special meanings. The code ARG is

a dummy operation code used only to carry an argument. For example, the

sequence

XXXfV/Aj)

arg(v/a2)

is precisely equivalent to XXX(V/Aj, V / A^). The code MAC is used to

designate a macro block -- a block which has the macro name as label. Thus if

MAC (BLOCK1) and (BLOCK1) ADD(V/A ^)

sub(v/a2)

mpy(t/a3)

III-19

are given in a code specification, the three-operation sequence is output

when the MAC code is encountered. MAC codes may not occur within

macro blocks.

The codes CON and VAL. are used to provide conditional code output. The

code CON designates a "condition value", the argument field specifying the

source of this value. As shown below,

CON(C/F5)

VAL(C/Aj)

VAL(C/A)

VAL(C/A3)

Block performed if condition

satisfied (i. e. , F^^Aj)

Block performed if condition

satisfied (i. e. , F ^ A)
D u

End of Block

a CON operation is succeeded by a sequence of subblocks, each such

subblock beginning with a VAL operation. The entire sequence shown

above is called a " conditional block". If the "condition value" is ^Aj,

which is given in the first VAL operation, then the block following

that VAL operation is output, and no other block within the conditional

block is output. If the condition is not satisfied, then the next VAL

operation is tested, and so on. The constants A^ are all A^4 7, and it is

m-20

required that the condition value be satisfied. If a VAL. operation appears

as the last operation in a code block, then no code is output. For a sequence

of two VAL operations, e. g. ,

VAL(C/3)

VAL(C/4)

no code is output if the first of these satisfies the conditions. A conditional

block may not be embedded within another conditional block, and obviously,

if a conditional block is part of a larger block it may occur only at the end

of that larger block.

Examples of these features occur in the ALGOL and FORTRAN specifications.

Diagnostics

The cards specifying diagnostic messages are of fixed format. The

message numbers appearing in columns 2 through 5 are used in the PRN

and PRS internal function operations to refer to the messages. These

numbers indicate position of the messages within a print table, and should

have the smallest values possible. The message portion of the card

consists of columns 7 through 78.

Table Builder Formats

The example of Figure III-l is written using the "reference" notation which

will be implemented via the generation system. The language accepted by

the table builder now in operation differs from this in two simple respects;

1. A control card of the form shown in line 54 is used in place of

each sequence of control cards shown.

III-21*

2. Symbol cards are of fixed field format; lines 52 and 53 show the

fixed field equivalent of lines 7 and 3 respectively. The left

parenthesis of the syntactic type must occur in column 3 0; the

left parenthesis of the datum must occur in column 39. A

numeric datum must have two digits.

III-22

D. OPERATION OF THE POLYLINGUA SYSTEM

Current operation is illustrated in Figure 3-4. The Polylingua system

operates under the COOP MONITOR as three separate jobs.

The first job consists of the table builders (BLDA, BLOB) which process

a language specification deck on logical unit 9, and output a binary

specification tape (SPECTAPE) on logical unit 8, as well as a listing of

the input with interspersed error messages on logical unit 6.

The second job is the compiler model (CM1) which processes a source

program from (INTAP) logical unit 5 in a manner specified by the language

specification of (SPECTAPE) logical unit 8. Output is BASE language on

(CODTAP) logical unit 7 and a listing of the input on (LOGTAP) logical

unit 6 with interspersed error messages. Optional output is a syntax trace

and listing of BASE language on (LOGTAP). The optional output is obtained

by setting jump switch 1 ON during execution of the job.

The third job consists of one of the translators (T04 or T18). Its input is

CODTAP on logical unit 7 and output is symbolic machine code CODAP1 or

TRIM III on logical unit 2. After execution of T04, CODAP1 is called on

with input from logical unit 2 and output relocatable binary on unit 56.

After execution of T18 the symbolic tape is taken to the UNIVAC computer

and processed by TRIM III.

E. OPERATION OF THE JOVIAL COMPILER

1. Operation

a. Mount COOP MONITOR on channel 3 unit 1

b. Auto-load

c. Mount jovial compiler on unit specified on console typewriter
for logical unit 10

d. Mount scratch tapes on logical units 6, 8, 56, 57

III-23

I
POLYLINGUA SYSTEM

T10417

III-24"

i

e. Set jump key 2

f. At completion of job save tape 56.

Label "load and go for program name11

F. HARDWARE AND SYSTEM SOFTWARE REQUIREMENTS

1. Hardware

a.

b.

c.

d.

CDC 1604, 1604A, or 1604B main frame with 32 k core

Card reader’'J -., ,
f Lan be replaced by additional tape drives when

Line printer) o£f"line media conversion equipment available

Min. 4 tape drives for operation, at least 6 tape drives are

needed for maintenance

2. Software

a. Coop monitor

(1) The monitor must initialize available CORE to ZERO

instead of RT J ERROR*

(2) 1-0drivers for the specific model of 1-0 devices attached

(3) Interrupt processing for the specific model of main

frame

(4) CODAP1 assembler

(5) Object time subroutines supplied with JOVIAL compiler

b. JOVIAL compiler

3. Documentation required for operation and maintenance

a. COOP monitor operators manual CDC

b. COOP Monitor programmers guide CDC

c. CODAP 1 CDC

d. CODAP1 system revisions CDC

e. Library routines CDC

f. JOVIAL SDC

509

60050800

510

60081000

60051600

TM-WD/988/200/00

111-25

60081100

The following additional documents were used during development

g. COSY CDC

h. FORTRAN-63 CDC

i. ALDAP CDC

j. COBOL CDC

k. Documentation aids IBM

The following four pages illustrate tape unit assignments and deck

60052400

60083400

60052100b

H20-0177-0

structures.

III-26

Ill-27

N
O

T
E

:
I

(—
>

In
p

u
t

O
t—

$
O

u
tp

u
t

—
)

S
c
ra

tc
h

9
in
 C

o
lu

m
n

1
re

p
re

se
n

ts
 9

/
7

m
u

lt
ip

le
 p

u
n
ch

.

00 o
h» O'
r» oo
r» r-

o
r*» \f\
4-

N rr
h- «Ni
^ »H
o

<0 O'
« 00
<o r**
«o <â
•O if»
vo 4-
<o f*>
«O CM
vO -t
4) O
l/> O*
(/> 00
ir> r-
m <o
in tn
VTl 4’
m co
ir> cm

4“ O'
4- 00
4 O*
4 *0
4 m
4 4
4 CO
4 CM
4 <-t
4 O
CO O'
ro oo
en c'¬
en >o
en tf>
CO 4
en co
en cm
en ï-*
en o
CM O'
cm oo
cm o-
CM «o
cm
CM >T
pg en
CM CM
CM -<
CM O
-• O'
<-* OO

O
m

^ 4
-H fO
^ CM

^ O
•J O'
o ce
o n-
O vO
c. un
O 4
O en
O cm
O —'

a
<
o
o
o

UJ
£

OC
ai »
a: r-
X un
< o*
oc r-
O 's

ne o
> ac un
>-0.5»
< » -O
a oc >.
^ LU o
c: co un
3. X «

ZJ un
Z >.

CM JJ
O K- >.
o z
3 JO

a. O
. _) o o
“ï u un
<

^ * uo
o. >.

CO
o >.
C’
O' O'

Z
o

3
O
ai
X
ai

X
O

ai
a
o
r.

oc

X
o

ac
o

O

15
O'

a
X • o
U -H
o » >
» o oc

un un <
» » z
o
O Ol s:
O K
O 3
<-• O
» ai
o X
en lu
O' O'

OS
Ob
X

O
<
3
O
Z

X a
< oc
a <
U o
o
e: tu
a _i

o
oc a
3 O
O
un a
CB LU

X
<

3
a
H-
3
a
a.
o
>■
-j
oo
X
ai
un
un

a
z
<

oc
ai
X
X
<
oc
U

c¿ a
>■ oc
>. CL
< *
CJ OC
>. ai
oc»
A. X P»
3 un
Z «

en p»
O K >.
O Z —
3 •>

XI CJ CM
O O >.
"0 O 0-
< un

3
O
ai
K

oc
o

un
z
<
OL

oc
a

4
O

au
o
LU
o

'JJ
U-

3
U
UJ
X
UJ

un

CM

un

z * •> o z

» >
3 OC
un <

• 3 » Z
O «C » —
O »XI
o o

co

(J
Ol

CL vO
U lO
o

:*
O LU

xj Lj un rn oc
C* O' O' O' 'T

3
U
LU
X
LU

• 3
3 CX
3 Z
«X *■*
« •>

L3 -H
Z û.
MH C
.e cj
lu o
oc u

CT

>•
Z
<

X
<
oc
o
o
oc
a
o

h- oc
u <i
LU <3
-ï
30 LU H»
3 3 3

MH CX
ac a z
u ~

• a a
o o oc
un <r u
» e~ o ►—
* < x; MH

X' 3 a> z
I- u
3 X
J
- ’ c_
X z

m-29

_

C
O

N
T

R
O

L
 C

A
R

D
S
 F

O
R
 C

O
M

P
IL

E
R

 M
O

D
E

L
 A

N
D
 T

R
A

N
S

L
A

T
O

R

»
t I

CO O
h* 0»
h» co

«#•

«V

^ o
<0 O'
<o CO
<o
«O «0
'O IT
'Ô <#
-o m
<o N
<C fM
«0 o
m 0«
m co
m
m <o
in in
m *
in m
in im
m *h
m o
't
*

o*
CO

'C-
'C-
<4-

•O
m

m
04

o
O'

ro oo
m r-
rr <0
rn in
m
m n
r*'! (M
cn
m o
fM O'
rsj oo
OM i'-
Osl o
(M in
pg •«•
<\i ro
PvJ Psl
pg -h
pg c_>
i-g ^
»I oo

~4 -0
^ m

*■
fp
pg

—i O
C J O'
o an
o P-
O vO
o tn
O
Ü fp
O pg
O PH

in •
j» >
r- _j
V, OJ

•n lu
» « oo

uj in oo
». >* <
< n-
z m a

«i
CJ

0C 'T
UJ >1
X 'O
X in
< *
oc ro
O ^
o o
ac m
a. «
» pg

0t 's

'JJ

re
c«
s¿
u
UJ
a

o a
uj o:
X <
uj o

o
UJ o

CL
X r-
3 m

o
o

I <o >
h- in o

X
<
or
u>
a
or
a.

oo

so
U

O
UJ
rjj

3 OC *
O 's *
O «O O
O 's O
<00 0
•"s O

Q. O fP
o -g »
o 's m
o « <•
O' O' O'

UJ
• X «
o < <
-• z t- œ ► oO o?

_f u. o
» a.

4n <o u. z
« CJ PH

X h-
ar • o a X
uj -j a z a
K -I Z UJ H-

< HH pH
LU JJ

O PH
O X
UJ X
X o
UJ u
O' *

a pH
z X
PH <
Jt c
UJ CJ
X o
O' O'

z
a
X

a
z

III-30

tí
W
p4

a<

§
u

j
<

ã
•i

tí
o
t*4
W s
tí
< u
J
O
tí
H
Z
o

u *

9
in

 C
o

lu
m

n
 1

re

p
re

se
n

ts
 9

/
7

m
u

lt
ip

le
 p

u
n
ch

.

SECTION IV

THE COMPILER MODEL

A. PROGRAM ORGANIZATION AND TERMINOLOGY

All processing performed by the Compiler Model (Program CM1) is table-

directed, and its organization reflects this orientation. It is strictly

divided into five subprograms:

SYNPR - syntax processor

IFTPR - internal functions processor

CODPR - code processor

CNLPR - control processor

INOPR - input/output processor

Of these, the programs SYNPR, IFTPR, and CODPR comprise the "inner loop"

of analysis, processing, and code output (see Figure IV-1). The other proces¬

sors are infrequently called by these, usually when information transfer is

required for continuation of processing.

In turn, the operation of the "inner loop" programs is specified by a set of

language data tables:

SYNTAB - syntax table

DIRTAB - director table

IFTTAB - internal functions table

CODTAB - code table

Thus the programs themselves are concerned, not with the totality of the

logical processes they perform, but rather with efficient handling of the data

entities pertinent to these logical processes.

IV-1

í

í
Î
f

*

!

í
\
\

\
í

f

i

I
i-

Î
'
'

1
.

«

'

n-
H

IV -2

i

The "innermost" loop within CM1 is the syntactic analysis performed by

SYNPR. Communication between SYNPR and the other "inner loop" programs

(IFTPR and CODPR) is provided by the "director table" ^>IRTAI^.SYNPR per¬

forms the syntactic analysis of the input "construct string" (CONCOR) via a

matching process. When the i**1 syntactic production is matched, a syntactic

replacement (a construct which replaces one or more constructs of CONCOR)

is called for. Also called for in general are performance of the i*“ set of

internal functions, and output of the i^ set of code operations.

All of these actions are specified via the i4^ entry of DIRTAB. Each entry

of this table has the format:

1 L.EFTNO RITNO REPCON IFTLOC CODLOC

1*-Syntactic Replacement-^-Internal Functions«» ̂ Code Proce8sing-»|

The items L.EFTNO and RITNO give the positions (within the syntactic

production) of the constructs which are to be replaced; REPCON represents

the replacement construct (to be placed at position RITNO. IFTLOC specifies

the first entry of the portion of IFTTAB which is now to direct the processing

performed by IFTPR. Similarly, CODLOC specifies the first entry of the

portion of CODTAB which will be processed by CODPR to become output code.

th til
Thus, once the i production has been matched, the iin entry of DIRTAB

completely specifies the ensuing processing performed by the inner loop until

resumption of the analysis matching process.

B. SYNTAX PROCESSOR

Organization

The syntax processor (SYNPR) is used to perform syntactic analysis of the

input "construct string. " This string is represented for processing purposes

by a table, designated the CONCOR table. Each entry of the table consists

of two entries:

CONSTR - to represent a "construct" or "syntactic type"

REFNO - an associated "reference number" or datum

IV-3

The syntactic analysis is performed by matching the CONSTR items within

CONCOR against similar items in SYNTAB (the syntax table), then - for a

successful match - replacing one or more entries of CONCOR by a single

entry. Thus the primary processes performed by SYNPR are the referencing

and handling of CONCOR, and the referencing of SYNTAB.

SYNPR is conceptually divided into two subprograms:

RECOG, which performs the matching or "recognition" process, and

REPLAC, which performs the replacement procedure

As shown in Figure IV-2, REPLAC is represented by two separate subprograms,

REP1 and REP2. This arrangement is logically necessary because operations

within the internal functions processor (IFTPR) and the code processor

(CODPR) must refer to positions within CONCOR pertaining at the time of

matching the production (i. e. , before a replacement is made). Thus REP1,

which operates immediately after RECOG, places the "replacement construct"

REPCON as directed by DIRTAB, but does not in any other way change CONCOR.

Then, upon return to SYNPR for continuation of analysis, after operation of

IFTPR and CODPR, the rest of the replacement procedure is performed by

REP2.

IV-4

CODPR

CNLPR 5

1

Continue

Analysis

Begin

Analysis

L

REF2

Change CONCOR references
in accordance with REP1
action, to continue analysis

RECOG

Perform analysis process
until a successful match is
found.

REPi

Replace one CONCOR entry
but do not change CONCOR
reference

Perform

Necessary
Processes

IFTPR

SYNPR

Figure IV-2. SYNPR Organization

IV-5

Referencing and Handling CONCOR

CONCOR is conceptually a sequence of "symbols", any of which is

referenced by its position within the table. This conceptual model is

analogous to a sequence of marbles laid in an inclined trough, where

each marble is referred to by its position. Then, the syntactic replace

ment process is analogous either to changing the color of a marble (which

has no effect on position) or removal of some marbles - and in this last

case, other marbles inevitably roll down the incline to fill the gap, so

that positions of some marbles are "automatically" changed.

The actual implementation of CONCOR cannot be this simple. Each
CONCOR entry must correspond not merely to a "relative symbol position",

but to an actual core memory location (or locations). Thus the core
memory allotted to CONCOR is rigid in format, rather than flexible as

with the conceptual model, so that the "nulling out" process performed

during replacement creates "holes" in CONCOR.

The appearance of CONCOR before processing is begun can be

represented graphically as follows:

where each shaded box is a CONCOR entry. However, after some proc

essing, CONCOR might have the appearance:

where each white box is a "hole" or "null symbol" (writtenA)-

IV-6

To achieve speed by eliminating the buildup of long strings of between
non-nuU entries, CONCOR is maintained as illustrated below:

This method "cuts" CONCOR into two pieces:

1. The string of non-null entries ending at the entry number
POS; this is the part of the string which has already been
examined.

2. The string of non-null entries beginning with the entry
number NEXPOS; this part of the string has not yet been
examined. In fact, the "scan position" is always at
NEXPOS.

There is of course a third (but insignificant) piece — the portion of

CONCOR between POS and NEXPOS, which consists solely of A's.

Processing is begun with a small initial gap between POS and

NEXPOS. Thereafter, REP2 maintains CONCOR so as to

a. Pack all A's into the center

b. Maintain the scan position at NEXPOS.

As a result, nulling out is commoniy accomplished by decreasing POS

and/or increasing NEXPOS; entries in the "dead" portion need not

actually be nulled out, since they are never examined.

IV-7

i

We can now show the actual effect on CONCOR of various syntactic productions.

Suppose the string under examination is

X A B C

t
POS

• • • ••

t
NEXPOS

Then each syntactic production below results in the string to the right of

it.

Syntactic Production

D -> Z

Resulting String

X A B C • • • Z E III
D

BCD

fpc IS Inexpos

X A B C • • • A E F Y

t POS t NEXPOS

X A B C • • • z E F Y

ÍPOS NEXPOS

IV-8

Syntactic Production Resulting String

BCD

CD XD

DE

DE —DZ
(N. B. — illegal case)

BCDE

X A B c • • • A E F Y

1 POS [NEXPOS

X A B c • • • X D E F

1 POS 1 NEXPOS

X A B c • • • D Z F Y

1 Ipos \ NEXPOS

X A] 1
M

c D • • • Z F Y

1 POS 1 NEXPOS

X A B C • • • D
z Lü Y

POS NEXPOS

Referencing of entries by their relative position within a syntactic

production (as in REPI, REP2, and IFTPR) is always done relative to

NEXPOS, which is "position 0". Entries to the "left" or "beginning"

have negative positions (e. g. POS is "position (-1)"), and entries to the

"right" or "end" have positive positions. For example, in the string used

in all the above examples, A <—> position(-3), E <—> position(<fl), and

D <—> position 0.

IV-9

The "Ends" oí CONCOR

A final detail in the handling of CONCOR is the detection of the

"ends" of the string. Both a "permanent end of string" (PES) and a

"temporary end of string" (TES) must be detected. Although the input

string (CONSTO) is conceptually of unlimited length, the actual pro¬

cessing of this string is done in the (fixed) CONCOR area which may

necessitate segmentation of the string. On the other hand, the string

might not be sufficiently long to fill CONCOR.

A simple scheme is used to satisfy these requirements. Markers

(i.e. reserved values of CONSTR) are used to denote PES and TES; every

program string is bracketed between PES markers, and TES markers

are used to delineate segments of CONSTO within CONCOR. Thus, the

CONCOR portion of CONSTO is always bounded by "end markers". If

CONSTO is contained entirely within CONCOR, the markers on both sides

are PES markers. If CONCOR is a "leftmost" ("rightmost") portion of

CONSTO, then it is bounded on the right (left) by TES markers; if a

"middle" portion, it is bounded on both sides by TES markers.

Two conditions must be insured:

a. That TES markers can not interfere with the syntactic
analysis (causing, for example, the appearance of (say)
A B TES rather than ABC, and so on), and

b. That PES markers cannot be bypassed (as, for example,
by a production involving the reserved construct NEXT).

In the implementation of this scheme, a single marker (CONSTR =

0) is used to denote both PES and TES; for TES. the corresponding value

IV-10

1'

of REFNO is 0, while for PES this value is 1. The marker is used in

conjunction with two positions of CONSTGt denoted BEGCON and END-

CON. First» every program string is preceded by twenty (20) PES

markers» and succeeded by twenty PES markers. The position BEGCON

specifies the "beginning" of that portion of CONSTG which is in CONCOR»

and similarly» ENDCON specifies the "end" position. In the vicinity of

PES markers» BEGCON and ENDCON are assigned as follows:

PES PES PES • • • PES A B

1_i-J 1
20 markers | 1-INITIAL VALUE

BEGCON OF POS

and the initial values of POS is set to the position following BEGCON.

Y Z PES • • • PES PES PES

I 20 markers
ENDCON

Only one TES marker is used for each TES bound. In this case»

the values of BEGCON and ENDCON are assigned as follows:

TES
ei C2

• • •
C18 C19 S)

T
BEGCON

ENDCON

C19 C18 • • • C2 C1 TES
20

Each time the scan position changes, the value of NEXPOS is tested

against ENDCONi if NEXPOS Ü ENDCON. an "end” has been reached.

Also, each time the scan position moves to the left, the value of POS is

tested against BEGCON; if POS < BEGCON, an "end" has been reached.

The Syntax Table - Structure and Interpretation

a. General

Syntactic analysis is performed primarily by matching sequences

of CONCOR symbols (i. e. , constructs) against their similar sequences

in SYNTAB. In addition, analysis is occasionally dependent on the

values of "function registers". Also, the order in which CONCOR

subsequences (in the vicinity of the scan position) are examined is

dependent on the construct which is in the scan position.

All of these features are accommodated within a table of uniform

format, hence this format and its interpretation are of necessity

complex. The basic structure of SYNTAB is that of a linked set of

tables and subtables, each entry specifying a ling to another table.

A "primary table" is used, which contains one entry for each construct.

The primary table is of course the first n entries in SYNTAB.

IV-12

and which is thought of as being aligned with the CONCOR symbol in the

scan position (NEXPOS). The matching procedure is always begun by

reference to the entry corresponding to the construct in scan position;

this reference determines for the given scan position the interpretation

of all subtables to be examined.

b. Typical Subtable Configuration

The set of possible interpretations of primary table entries is:

(a) No match is possible for this scan position.

(b) A match has already been obtained.

(c) Matching will proceed successively to the "left",
starting at POS.

(d) Matching will proceed successively to the "right",
beginning at NEXPOS + 1.

(e) Matching will begin at POS, and then in directions
given in further entries.

Clearly, the handling of primary table entries is atypical: match with

the "scanned" symbol is automatic, and the entry sets the conditions for

further matching. To illustrate more usual handling, and also a typical

subtable configuration, suppose that the CONCOR string

X A B C Y Z w

n
POS NEXPOS

IV-13

is under consideration. Then if the construct C leads to interpretation

(c) above, and if the sequences in SYNTAB are

'""a A C

ABC

BBC

^_C C C

the subtable configuration below is obtained.

T
o

In this example, the primary table entry designates the subtable T

and similarly every entry designates either a subtable or (if a com¬

plete sequence is matched) a "definition number" . Basically, the

entries of a subtable are matched successively against the appropriate

CONCOR symbol, each successful match resulting in examination of a

further subtable, until either

(a) no further match is possible (the subtable is
exhausted), or

(b) a complete sequence is matched.

Analysis in this case leads to the "definition number" N
2 ’

For the interpretation (d), this process would be identical except

for the direction in which sequences are checked. The interpretation

(a) would signify that no subtables exist, whereas (b) would signify that

no subtables were necessary, since the primary table entry itself had

resulted in a complete sequence match.

c. Configuration for Syntactic Functions

The sequences of the above example correspond to syntactic pro¬

ductions of the form shown on pages 35 and 36. Another form of syn¬

tactic production must now be discussed which form utilizes the "syntactic

function". We have noted that analysis sometimes depends on the value

of a "function register"; we now present both a notation and an interpre¬

tation of SYNTAB to accommodate this feature.

All productions thus far discussed have the basic form

+-> <t>

where and <)> are symbol strings; once has been "recognized", 4»

is uniquely determined. In certain cases, <f> is defined as a function ¢,

defined for some numeric variable Z, so that the corresponding syntactic

production may be written as

*-► ® (Z),

or may be written provided all "function names" are required

to be unique.

IV-15

The "recognition" of + now results in testing of the value of Z, and one

of several strings is chosen as <t> on the basis of this value.

For example, we might have

(Z) ,

0 < Z < 3

4 < Z <S 6

Z = 7

Z > 8

so that recognition of XYZ results in either XYA, Q, ZYZ, or X, de¬

pending on the current value of Z. Our system use function registers

F. to represent numeric variables, and only the values of such

registers are permitted as arguments Z of syntactic functions. We

may thus use the more descriptive notation to represent a

syntactic function.

XYZ «

where

* (Z) =-

XYA for

Q for

ZYZ for

X for

IV-16

!
I
!

Syntactic functions are accommodated in SYNTAB as follows.

First, the construct value of 1 is reserved to signify a syntactic function
$

in SYNTAB; we use the notation FCN to denote this value. Such entries

appear only in subtables (e. g. Tj, T2, etc.), but not in the primary

table. Each FCN entry designates a subtable, which designates

(a) the function register which is to act as the numeric
variable, and

(b) a set of bounding values, each value designating a
"definition number".

To illustrate this use, consider the examples

P -► * (F14)

^XYZ -> ^(F22)

where

for F14 = 0

9 (F14) R for F14 = 1

for F14 £ 2

(N,)

<n2)

<n3>

^ (F22) = £
XYA for Oi F22¿ 3 (N4)

Z for F22 £ 4 (N_)
5

These examples result in the subtable configuration below

$
For any language, all values of CONSTR in CONCOR entries are * 2, with

of course the exception of TES and PES markers having the reserved value 0.

I

IV-17

(Note: 4095 is the largest possible function register value.)

In each case the FCN entry (construct value = 1) denotes a subtable

whose first entry specifies the function register Fj which is involved.

Each successive entry designates a value , and corresponding defini¬

tion number N.. The are arranged in strictly increasing order (i. e.

y < y ^), and the last value given is always 4095 (the largest possible

value of F.). To evaluate the syntactic function, the entries are examined

in succession. If F.£ , then the designated is taken, otherwise

the (j + l)st entry is examined. Since the last value is 4095, the relation

must be satisfied for some entry.

IV-18

d. Configuration for "Rule Sets"

We have mentioned previously that the order in which CONCOR

substrings are scanned may depend on the construct in scan position.

Correspondingly, interpretation (e) on pageiv-i*allows scan direction to

be table-directed. This mechanism is intended to accommodate "rule

sets" (i. e., ordered sets of productions), which are discussed briefly in the

1962 report (pp. 107, 108).

From the viewpoint of CM1, a rule set for a symbol S is comprised of

a set of sequences, all containing the symbol S in scan position, which

are to be tested for a match in a specified order. For example, the fol¬

lowing rule set for X :

RULE (X)

(1) WXH -> P

(2) XY -» Q

(3) WX -> R

(4) X -> Z

specifies that the symbol to the right of X is to be matched against Y in

(2), before the match to the left for W in (3) is made. Thus, if the CON¬

COR substring containing X is in fact WXY, the match completed will be

(2) rather than (3); if this substring is in fact WXH , the match completed

will be (1).

The direction of scan may thus be either to the left or to the right

or both in the same production. More important, it is necessary to accom¬

modate the situation typified by (3) and (4), in which

IV-19

(a) further symbols to the left or right are checked for
match, and then

(b) if none is obtained, then a match is complete, what¬
ever symbol had previously been checked.

Thus, (3) checks for WX ; but if this is not present, X is nevertheless

matched. As another example, consider

ABCX -> L

(6) BCX -» S

(7) CX -> M

as an alternative rule set for X . In (5), if B is matched, then (5) will

be matched if an A is to the left, and otherwise (6) will be matched; and

so on for (6), (7), and (8). First three symbols, then two symbols, then

one symbol, then no symbols to the left of X are to be checked.

A combination of mechanisms is used to accommodate rule sets.

First, the construct value of 0 is reserved to represent a special reserved

construct name: NEXT. The construct NEXT is assumed to match any

construct? Thus the appearance in CONCOR of

X A B C Y Z

I I
POS NEXPOS

IV-20

is matched by any of C B

NEXT B

NEXT

C

C

C NEXT

appearing in SYNTAB.

Productions (3) and (4) may now be written

r(3) W X > R

^(4) NEXT X > Z

and simply accommodated by the table structure

Similarly, the alternative example may be rewritten

(5) A B

(6) NEXT B

(7) NEXT

(8)

C

C

C

X

X

X

L

-> S

-> M

NEXT X-> F

IV-21

and accommodated by the table structure

Interpretation (e), which is used for rule sets, operates as follows:

scanning is always assumed to begin toward the left, and to continue

toward the left until SYNTAB indicates a change of direction. When a

direction change is specified, scanning of subtables then proceeds toward

the right. Each subtable entry E is checked

(1) for a match with CONCOR

(2) for the values which signify FCN or NEXT.

The action taken for FCN has already been discussed. If either of

the other conditions is met, the subtable designated by the entry E is con¬

sidered next. Prior to such consideration, however, note is taken of the
4<

entry E which succeeds E ; if no match is completed in consideration of
*

the subtables of E , the matching process returns to consideration of E .

To illustrate these points, we exhibit the table configuration for

our first example:

IV-22

A (*) on a subtable linkage indicates a change in scan direction

from left to right. The matching process begins at entry ; if the

symbol to the left of X is a W (is then considered. However, if

the symbol to the right is not an H , then entry E^ must next be consid¬

ered, in order to test for the sequence of (2).

Interpretation (e) of page IV-13 is the most general interpretation of SYNTAB,

and could suffice for interpretations (c) and (d). These interpretations

are used merely for the sake of processing speed, since (e) is inherently

much slower.

In comparison with (e), interpretations (c) or (d) have the following

characteristics:

(1) Matching scan is in one direction only.

(2) If the entry E is matched, and the subtable designated
by E is considered, then (except for the process of (3)
below) the entry E* which succeeds E is never consid¬
ered. Thus, once any subtable has been exhausted with

IV-23

no match produced, the matching process for that scan
position is terminated by the process of:

(3) The last entry of the subtable designated by the primary
table entry (e. g. , above) is checked for the values FCN
or NEXT. An FCN entry is processed as in section (c),
while a NEXT entry designates a "definition number" N.

Each entry of the SYNTAB table is composed of the following items:

TABCON = a number representing a construct/syntactic type

DONE = indicates completion of match (= 1 if match is
complete)

RITE = indication of scan direction (for interpretation (e)
only) = 1 if scan direction is to change to the right

LINK 1 = number of entries in subtable whose first entry is
given in LINK 1.

IV-24

C. INTERNAL FUNCTIONS PROCESSOR

Organization

The internal functions processor (IFTPR) is used to perform the operations

described in Section III C, via direction by the internal functions table

(IFTTAB). These operations are performed primarily on three data entities

FTAB - A set of "function registers", each register containing

a positive integer < 4096.

PTAB - The "property table", a table of positive integers <4096.

The ith entry of PTAB has 4 properties P (i), P.fi), P_(i),
O 1 2

P3(i), and an associated name contained in the PINTAB

table.

STAB - A set of "symbol registers", each containing some string

of symbols,

IFTPR is organized into discrete subprograms, one for each of the different

types of operations. At the beginning of each operation, control is trans¬

ferred to the appropriate subprogram by the use of a program switch which

is indexed by operation code. In the following we will outline, for each type

of operation, the specific details and important methods.

Numeric Operations

Function registers and properties are all assumed to be positive integers

<4096. Accordingly, all operations are performed modulo 4096. As

example, ^ = 2050 and F^ = 2055, then

INC Fj F2 results in F^ = 9, since 4105 = 9 (mod 4096)

DEC Fj F^ results in F^ = 4091, since -5 = 4091 (mod 4096).

For the operation DIV, the integer part of the quotient is taken, so that

for F = 8 and F “ 3, the operation DIV F F results in F s 2.
1m 1m 1

IV-2 5

The operation STV, which sets a function register or property to a given

value, allows the use of numeric values ^999 as the second operand.

Two special types of operands may be used in numeric operations; namely

SCOPE and N(Sxx), the latter is the "number conversion" of Sxx. The use
I

and significance of these operands is discussed later.

Symbolic Operations

Each symbol register S. (i = 0, 1, 2, 3) consists of 120 consecutive cells,

each cell capable of containing one six-bit character. Each cell is

either "blank" or "nonblank"; S. is said to be empty if all of its cells are

"blank".

Symbolic orperands are basically of two types - contents of symbol

registers, or single six-bit characters. By "contents of S.", we mean the

(possibly null) string oí nonblank characters which is left-justified in S..

A single character is referred to either as the i^b "transform" or "value"

V.(C) associated with a given construct position, since single characters

are obtained only from the CONCOR string. Every character is assumed to
th

have a number of transforms which may be defined; the 0 transform is

the character itself. These transforms are contained in a "value table"

(VALTAB); if the character is regarded as a 6-bit number n, then the

VALTAB entry corresponding to Vj is given by 64i + n .

The PUT operation places the desired character (s) in S», left-justified.

The operations PRE (for "prefix") and SUF (for "suffix") are both con¬

catenation operations, resulting in the "attachment" of two strings. For

SUF, a string is attached at the "end" of the initial string, while for PRE,

a string is attached at the "beginning" of the initial string. As an example,

suppose Sj = PQRS and = WXYZ. Then SUF 3^2 would result in S^ =

PQRSWXYZ, while PRE S,S, would result in S. = WXYZPQRS.
12 1

!

IV-26

The RM.L and RM.R operations remove or detach from S^, a given number

of characters. Characters are removed from the "left" (prefix) or "right"

(suffix) of the symbol register. For example, if ~ PQRS, then RML

SI 3 results in = S, while RMR SI 3 results in S^ = P.

It should be noted that symbol registers may contain no more than 120, and

no less than 0 (nonblank) characters. If S^ is empty, we write S^ =/L.

Recall that for any symbol string eC, we must have eCA-s/Lot soC . Then

if Sj = PQR and S2 = .A. we will have:

Operation

PUT Sj S2

PRE Sj S2

SUF Sj S2

Result in S^

A

PQR

PQR

The effect of the 120-character limitation is to "lose" characters from the

right or suffix part of the string. Let S, » a,. . . a and S. * b, . . . b, •
11 n 2 1 k J

the results of PRE and SUF operations on these are defined as follows:

Operation

PRE Sj S2

SUF Sj S2

Result in S^

For n + k £ 120 For n + k > 120

. bkar .

• 3* ^ • • n 1

bl* * * bkal* * * a(120-k)

ar • • anbr * * b(120-n)

Number Conversion

One type of operand which may appear in numeric operations is the "number

conversion" of a symbol register, shown in the table of operand types as

N(SXX). Use of such an operand implicitly specifies conversion of the

contents of a symbol register to a number in function register format (i. e.

a 12 bit positive integer). This implicit operation allows CM1 to make use

in its analysis of numbers furnished by the input program itself.

IV-27

A number of conventions are rigidly adhered to in use of number conversion:

1. The symbol register contents to be converted are assumed to

constitute a positive integer, for some radix.

2. The radix r, 2 ^ r < 63, which is to be used in conversion is the

value found in at the time of occurrence of the operand N(SXX).

3. Use of the number conversion operation always results in = 10

at the end of the operation.

4. Each (non-blank) six-bit character of SXX is assumed to be a digit

of the number in the given radix system.

5. The conversion operation thus computes, modulo 4096, a positive

integer in internal format equivalent to the integer specified in

the radix r. The result of conversion is used as specified by the

numeric operation (e. g. SET, ADD, etc.).

Scope and Scope Operations

A scope mechanism is provided within IFTPR. Each scope value corresponds to

a particular portion of the "program string" CONCOR, and is written as a

number pair (B., E(B.))3 corresponding to the portion of CONCOR between
th 11

the i "begin marker" B ar.d its associated "end Marker" E. A "begin

marker" by the operation SSE. Scopes are processed by IFTPR using the

integer items SCOPE AND ENDM, and the table SCPTAB.

th
The i entry in SCPTAB represents the number of the end marker associated

with the ith begin marker. The value of SCOPE represents, at any time, the

entry number corresponding to the first available entry in which an endmarker

number may be written (that is, SCOPE represents the "current scope"). The

item ENDM. represents the number of the last end marker which has appeared.

rV-28

SCOPE, ENDM, and all entries of SCPTAB are initially set to zero. All

further manipulation of these entries is performed only in response to the

SSI and SSE operations, as follows:

SSI - Set the value of SCOPE to the smallest integer
I >SCOPE such that the I**1 entry of SCPTAB is O.

SSE - Increase the value in ENDM by 1.
Set the SCPTAB entry indicated by SCOPE to the new
value of ENDM
Set the value of SCOPE to the largest integer

I < SCOPE such that the I^1 entry of SCPTAB is O.

The item SCOPE may be used as an operand in numeric operations. The

basic reason for this usage is to allow PTAB properties to be set to SCOPE,

for eventual tests on SCOPE of various identifiers. A special convention

applies to properties and function registers which represent SCOPE values ?

namely all numbers which represent SCOPE values are ^ 2048.

Therefore, whenever SCOPE is specified as an operand, the actual quantity

which must be used as an operand is precisely SCOPE + 2048.

PTAB Manipulation and Searches - Association with CONCOR

The operations discussed here are concerned essentially with the formation

and later "detection" of associations between PTAB entities and syntactic

entities (constructs in CONCOR). Specifically, the processes performed

by these operations are:

1. "definition" of a given symbol string -

a. entry of the string into PINT AB

b. reservation of a new PTAB entry to correspond

to the new PINTAB entry

c. setting of the "syntactic class" (PQ) of the new

PTAB entry.

IV-2 9

2. "association" of a PTAB entry with a construct in CONCOR

(as well as "retrieval" of this association from CONCOR).

3. se?.rch to determine if a given symbol string has been

assigned a PTAB entry (and if the properties in this entry

satisfy certain conditions).

4. "identification" of a construct in CONCOR as specified by

a function or property value (i. e. setting of CONSTR to

this value).

IV-30

Before discussing the operations, we will indicate, in more detail the

structure of the PTAB and PINTAB tables. An entry of PTAB has the

format below.

PO PI P2 P3 PTHRED

Properties Location

Thread

and the items have the following significance:

PO

PJ

P2

P3

PTHRED

the "zeroth" property, i.e. syntactic class

the "first" property

the "second" property

the "third" property

location thread; specifies the entry number of
the next entry associated with the same name
in PINTAB.

All PTAB entries are assumed to be zero initially. It should be noted that

in many languages names need not be unir ue, so that a given name may be

associated with each of a number of PTAB entries. For speed in searching

PTAB, the entries associated with a given name are "threaded" together,

and the PINTAB entry for that name contains the number of the first entry.

The PINTAB table contains the set of names associated with PTAB, and is

used as an index by name to PTAB. Thus, PINTAB contains a set of names,

and for each name, a number referencing one of the entries associated with

that name. PINTAB is conceptually structured as a linked set of tables and

subtables, each entry specifying a link to another subtable. As an example,

consider the set of names

AAB

AAB

ABC

XYA

XYZ

IV-31

which is conceptually accommodated by the PINTAB structure:

Linkages between table entries are indicated via two sets of threads

denoted THREDly and THRED2. THRED1 specifies the first entry of

the subtable associated with the element« while THRED2 specifies the

next entry in the subtable of which the element is a member. Reproducing

part of our diagram, we have

PTAB entry numbers are specified via an item denoted ENTNO.

The individual operations can now be specified.

DEF - Operates on a symbol string contained in the designated symbol

register, as follows:

1. A new PTAB entry is reserved, and the entry number

corresponding to this entry is set into Fo.

IV-32

2. The string is entered into PINTAB, and referenced to the

new TPAB entry as necessary (see discussion on use of

PINTAB).

3. The syntactic class of the new entry (i.e. P0(F)) is set to

the given number.

ASO - Set the CONCOR item REFNO (jXX) (i.e. the REFNO item for

the given construct position) to the value specified. The primary intent

of this operation is to allow the setting of REFNO to the value in Fo,

thereby "associating" the particular construct with the PTAB entry

referred to by Fo#

RTV - Set the specified function or property to the value found in REFNO

($+XX$), i.e. to the REFNO value for the specified construct position.

The intent here is to retrieve associations formed as above.

IDF - Set the CONSTG item CONSTR ($+XX$) to the value of the speci -

fied function or property. The primary intent here is to allow identifica¬

tion of a given construct position with a PTAB entry, by setting the

construct to the syntactic class Pq of the entry.

SER - Search PTAB for all entries having the name specified. For each

such entry:

1. Set the entry number into Fq

2. Perform the set of internal operations following the search

operation, and ending with an ENS operation.

A specified set of operations may thus be performed for every entry having

a given name. Conditions on other properties of the entry may be imposed

in conjunction with the name test, by use of the TST operation to be

discussed.

ENS - End search sequence. No operation is performed; this code

merely acts as a marker to delineate the end of the set of operations

performed for an entry meeting the search condition.

The name used for comparison in the searching of PTAB may be given

in one of two ways:

a. As the contents of a symbol register

b. Implicitly, as the name associated with a given construct

position.

For a name given as contents of a symbol register, a search of PINTAB

is first performed for this name. This search will be successful if and

only if PINTAB contains a string identical in all respects with that in

the symbol register - a string of the same length, all of whose charac¬

ters "match" those of the string in the symbol register. If PINTAB

contains such a string, then a PTAB entry number will be specified for

this string. If PINTAB does not contain such a string, then there will

not be any PTAB entries satisfying the condition - execution of the

search, and of all operations contingent on it, is immediately fulfilled

by skipping all of these and proceeding to the next operation following

these.

If the PINTAB search is successful, the PTAB entry number given is

(potentially) the first of a list of numbers, each succeeding number to be

found in the PTHRED item of the entry being considered. All of the

entries which will be considered will meet the name criterion. Entries

are considered as follows: The contingent operations are performed for

the specified entry number. After this is done, the PTHRED item is

tested; if zero, there are no more PTAB entries to be considered. If

PTHRED ¿ 0, then PTHRED specifies the next entry number.

IV-34

Assignment of a new entry for a given name also requires a search

of PINTAB. If the search is not successful, then the name is added to

PINTAB, and the new entry number referenced. If the name is in PIN-

TAB, then all the entries having that name are examined until the one

having PTHRED = 0 is found. Then, this PTHRED is set to the new entry

number, PTHRED of the new entry being set to zero.

If a search name is given as specified being identical with that of a given

construct, the PTHRED items of PTAB must be examined to find the

beginning of the list having that name. For all entry numbers smaller

than the one specified, the PTHRED items are examined to see if they are

equal to the one specified. If none such is found, the one specified is the

beginning of the list having the same name; if one is found, the process is

repeated for that entry number.

Tests

The operations described here provide a means of testing for conditions

on numeric and scope items - which is to say, testing for conditions on the

values of function or property registers. Contents of symbol registers

may not be tested by this means.

The underlying purpose of these operations is to allow three types of

manipulation:

1. Testing for conditions of "legality" of the language, and setting

an "error flag" if such a condition is not met.

2. Effectively rendering PTAB searches conditional on tests of

numeric properties.

3. Conditional performance of operations.

Two types of operations are used in performance of testing: a "delineation"

operation TST, and a set of "conditional" operations (each of which tests for

a certain condition). The TST code is used to delineate the set of conditional

operations which actually comprise the test, and also the set of operations

whose performance is dependent on outcome of the test.

IV-35

Every test delineated by a TST operation is comprised of a set of "condition"

operations, each of which tests for a given numeric or scope condition. The

set of numeric conditions used is

GR

EQ

NQ

Scope conditions will be discussed later in this section. The set of results

obtained from such a set of operations defines a test "value";

1 successful

0 unsuccessful

Each conditional operation has such a value, and these values are logically

"anded" or "or'ed" together, as specified by the operation. Thus, each

condition operation specifies

a. A numeric condition on functions or properties

b. Desired manipulation of the test value — whether "and" or "or" is

desired.

The total test value is thus an ordinary Boolean function of the individual test

values, and is computed in this fashion.

The individual operations can now be presented.

TST - Perform the sequence of condition operations which comprise the

specified portion of IFTTAB. Compute a test value as specified by these

operations. If the final test value is 1 (test is successful), perform the

operation following the TST code; if the final value is 0, skip the following

ope ration.

IV-36

AGR - Test if Ej> (see table of operation types); "and" the test

result.

OGR - Test if Ej > E^; "or" the test result.

AEQ - Test if Ej = E^; "and" the test result.

AEQ - Test if Ej = E^J "or" the test result.

OEQ - Test if Ej = E^; "or" the test result.

ANQ - Test if E^^ E2» "and" the test result.

ONQ - Test if Ej E^; "or" the test result.

ASI - Test if Ej is "interior" to E2; "and" the test result

OSI - Test if Ej is "interior" to E^; "or" the test result.

Miscellaneous Operations

This section discusses the "print" operations PRS and PRN, which are

intended to "log out" messages and the operation CAP.

PRS - Print or log out:

a. Program Line Number

b. Message whose number is specified

c. Symbol string in Sxx, or

Number in Fxx, or

Name associated with a given PINTAB entry.

Note that a search through PTAB (similar to that when a name is implicitly

given) and also a "backward" search through PINTAB are required to obtain

a name.

IV-37

Also: set an "error flag" to indicate that an "illegal condition" for this

language has occurred.

PRN - Print out as for PRS; do not set error flag, since an illegal condition

has not occurred.

CAP - Call (transfer control to) the "auxiliary processor" AUXPR. The

intent of this operation is to allow use of the subprograms of CM1 for purposes

other than compilation and to facilitate expansion of the set of internal opera¬

tions. The number given as NUM2 is used as a numeric index for an AUXPR

switch, to choose the correct auxiliary routine desired.

D. CODE PROCESSOR

The code processor performs the simple function of transferring operation

codes from the code table (CODTAB) to the code string (CODCOR), at the

same time substituting proper arguments. A simple macro-block capability

is incorporated, and CODPR maintains a "push-down list" of "return points"

in order to expand these properly.

CODPR also outputs conditional blocks, as discussed in Section III-C. The

mechanism for this is extremely simple. A CON code causes evaluation

of the specified condition. If the value of the succeeding VAL code successfully

compares with the condition value, the block following the VAL code is output.

Otherwise, the VAL code itself indicates the location of the next VAL code.

IV-38

SECTION V

TRANSLATION FROM BASE LANGUAGE TO MACHINE LANGUAGE

A. INTRODUCTION

This section will discuss the methods of construction of the translation

(BASE-^-1604), which is denoted T04B, and the translator (BASE-*4218),

which is denoted T18. It has been possible to construct these translators

to perform their processing via machine-independent algorithms, indicating

machine dependencies by the contents of a data table. Thus each translator

consists essentially of a basic program (which might be called a "translator

model") in conjunction with a set of machine-dependent data.

Both of the translators produce, instead of machine binary language, instructions

in the formats respectively of the two assembly languages. This procedure

was followed for several reasons: first, both a "BASE-to-binary" translator

and an assembler must construct dictionaries, and later assign machine

addresses for the dictionary entries. Also, current assemblers produce

code in consonance with their standard operating systems, and may even

produce code sequences to optimize use of machine facilities. Hence

production of assembly code appeared to be more desirable them production

of binary code. It should be possible ultimately to bypass the first pass of

the assemblers, using only the assembler second pass, but thus far this has

not been attempted.

It has been felt that BASE language operations, besides being couched in

macro notation, could be directly translated by a macro assembler, and

preliminary investigation had shown that znacros for this purpose could in

fact be written. However, it was found that present macro assemblers lack

certain crucial facilities - the ability to set and use attributes of data variables,

and retrievable auxiliary data storage - without which such macros become

very tedious, lengthy and inefficient. Consequently, the translator model

algorithms have been programmed directly in JOVIAL, and it is felt that the

efficiency of these algorithms is much higher than the potential efficiency

of a macro processor.

V-l

B. ORGANIZATION AND DESIGN

Inputs to the translator model are 256-entry blocks of BASE language code,

each entry containing an operation code, operand type, and operand. As

noted previously, the output from translation is assembly code.

The translator is organized into a main program (which consists primarily

of a set of program switches), major subroutines GET andINSTR, and some
small subroutines.

The program switches within the main program are based on the type of BASE

language operation under consideration, and (when necessary) on operand type

and accumulator type. Data-defining operation codes cause formation of

dictionary entries, and corresponding data definitions in assembly code format

are output at the end of translation. Several of the operations (e.g. SBR)

require the use of a retrievable auxiliary data storage. Such use is indicated

at the appropriate program switch points. Decision within the translation model

to output code and/or form a dictionary entry and/or store information in

auxiliary storage is always made via the same mechanism - transfer within

the program to a "switch point" corresponding to the operation, operand or

accumulator type under consideration. This mechanism is of course

independent of the specific operations which are considered. The GET procedure

obtains successive entries of BASE language code when initiated by the main

program, and lists these entries on a "debug listing".

The actual code conversion - from machine-independent form to machine-

dependent assembly language - is performed within the procedure INSTR.

To perform this conversion, two tables containing machine-dependent
information:

FORMAT table - each entry is a particular sequence of output characters,

into which the procedure inserts data operands (also

in the form of character sequences)

V-2

DRCTOR table - "director table"; each entry of this table specifies

•li

(1) a particular character sequence within the

format table

(2) number of data operands

(3) for each operand, a position within the desired

character sequence.

The number of operands which may be specified in a DRCTOR entry is at

present limited to 5. If desired, the translator output can be preceded or

succeeded by assembler control cards.

It whould be noted that this mechanism is completely general for the case of

conversion to assembly format. This is because assemblers accept only a

limited number of different formats, which can be specified using the FORMAT

table. The mechanism allowing insertion of specific operands then guarantees

that any legal assembler formât can be generated with appropriate operands.

SECTION VI

REFERENCES

1. Gilbert, Hosier, and Schager. Automatic Programming Techniques,
RADC-TDR-62-632, Final Report for Contract AF 30 (602)-2400.

2. Gilbert, Hosier, and Earnest. Automatic Programming Techniques. (Phase I) ,
RADC-TDR-63-563, Final Report for Contract AF 30 (602)-2924.

3. P. Gilbert. '* On the Syntax of Algorithnic Languages," to appear in
Journal of the AClCl.

4. P. Naur (Editor). "Report on the Algorithmic Language ALGOL 60",
Comm, of the ACM (May I960).

5. E. T. Irons. "A Syntax-Directed Compiler for ALGOL 60",
Comm, of the ACM (January 1961).

6. S. Ginsburg and H. Gordon Rice. "Two Families of Languages Related to
ALGOL", Journal of the ACM (July 1962).

7. A. E. Glennie. "On the Syntax Machine and the Construction of a
Universal Compiler", Technical Report No. 2, July I960, Carnegie
Institute of Technology, Computation Center.

8. N. Chomsky. "On Certain Formal Properties of Crammers ", Information
and Control, vol. 2 (1959), pp. 137-167.

VI-1

UNCIASSTFTTO

„ „ DOCUMENT CONTROL DATA • R&D ” '
-elmamUlemllan of »II., body of ,b,inel -no intfo.ta* -.nor.»on moot t>. -.f-rod »*.n a. ,. cloo.ffMl

Teledyne Systems Corp
I2525 So. Daphne Ave
Hawthorne. Calif.

I«. AEPONT SECURITY C L ASSIFIC A TION

UNCLASSIFIED
lb «ROUF

3 REPORT TITLE -—-

AUTOMATIC PROGRAMMING TECHNIQUES

Final Reoort
9 AUTHORW nrnnm, tint nmmm, Initial)

July 1966
112

•• cont"act on nnant -o.AFSO (602) 3330

a, nnojBCT no. 4594

e.

*

None

Su.M£2oMFO"T fAnj. otfftAr numbrnm 0tml mar bm Mamttmul

RADC TR-66-54

ig. AVAIL ABILITY/LIMITATION NOTICES ^-■"

This document is subject to special export controls and each transmittal to
foreign governments or foreign nationals may be made only with prior approval
of RADC (EMLl). OAFB. NY. 13440._

1«. SUPPLEMENTARY NOTES
II. SPONSORINO MILITARY ACTIVITY

Rome Air Development Center (EKCRD)
Griffiss Air Force Base, New York 13440

This reP°rt is the third of a set of three reports docu¬
menting work in the area of automatic compiler generation. The
first two reports described the theoretical basis for such a system,
This report documents an operating system embodying the concepts
described in the first two volumes. The system described in this
report allows a programmer to write in FORTRAN, ALGOL, or JOVIAL
and produce object code for either the CDC 160UB or the UNIVAC 1218,
The system described oan be expanded to incorporate other machines "
or languages.

DD FORM
1 JAN «4 1473 UNCLASSIFIED

Security Claaaification

UNCLASSIFIED

l. ORIGINATINQ ACTIVITY: Entar tha nam* and addraas
of tha contractor, subcontractor, grantao. Dap art mont of Da-
fanaa activity or other organisation (corporate author) issuing
tha report.

2a. REPORT SECUnTY CLASSIFICATION: Enter the over¬
all security classification of tha report. Indicate whether
"Rastrictad Data" is included Markii* is to be in accord,
anca with appropriate aacurity regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di¬
rective 5200.10 and Armad Forces Industrial Enter
tha group number. Also, when applicable, show that optional
markings hava bean usad for Group 3 and Group 4 as author¬
ised.

3. REPORT TITLE: Enter tha complete report title in all
capital latter a. Titles ih ell cases should ba unclassified.
If a meaningful title cannot ba selected without classifica,
tlon, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriât », enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give th>» inclusive dates when a specifir reporting period la
cover ed.¿

5. AUTHOR(S): Enter tha namafa) of authors) as shown on
or in tha report. Entet laat name, first name, middle Initial.
If military, show rank end branch of service. Tha name of
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of tha report aa dry,
month, year, or month, year. If more than one data appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, La., enter the
number of pages containing information

7b. NUMBER OF REFERENCES Enter the total number of
references cited in the report.

Be. CONTRACT OR GRANT NUMBER: If «propriété, enter
the applicable number of the contr jet or grant under which
the report was written

8b, Sc, & Sd. PROJECT NUMBEF: Enter the appropriate
military department identification, euch as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi¬
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S>i If the report has been
assigned any other report numbers (aithar by tha originator
or by tha aponaor), also enter this numberfa).

10. AVAIL ABILITY/LIMITATION NOTICES: Enter any lim¬
itations on further dissemination of the report, other than those

UNCLASSIFIED

imposed by security classification, using standard statements
such as:

(1) “Qualified requesters may obtain copies of this
report from DDC. ”

(2) “Foreign announcement and dissemination of this
report by DDC is nod authorised. ”

(3) “U. S. Government agencies may obtain coffies of
this report directly from DDC. Other qualified DDC
users shall request through

8»

(4) “U. S. military agencies may obtain copies ot this
report directly from DDC. Other, qualified users
shall request through

»8

(5) “All distribution of this report is controlled. Qual¬
ified DDC users shall request through

88

If the report has been furnished to the Office of Technical
Servicea, Department of Commerce, for sale to the public, indi¬
cate this fact and enter the price, if known.

1L SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

1Z SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay¬
ing tor) the reeearch and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re¬
port. If additional space is required, a continuation sheet shall '
be attached.

It is highly desirable that the abstract of clasaified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security claasification of the in¬
formation in the paragraph, represented as (TS). (S). (C). or (V).

There is no limitation on the length of the abstract. How¬
ever, the suggested length is from ISO to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterise a leport and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi¬
fiers, such as equipment model desipration, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con¬
text. Ths assignment of links, rules, and weights is optional

Security Classification

