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ABSTRACT 

This report is the third of a set of three reports documenting 
work in the area of automatic compiler generation. The first two 
reports described the theoretical basis for such a system. This 
report documents an operating system embodying the concepts 
described in the first two volumes. The system described in this 
report allows a programmer to write in FORTRAN, ALGOL, or JOVIAL 
and produce object code for either the DCD I60Ú.B or the UNI VAC 
1218. The system described can be expanded to Incorporate other 
machines or languages. 
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SECTION I 

OVERVIEW 

A. INTRODUCTION 

The Air Force has had a continuing interest in facilitating the production 

of compilers for procedure-oriented languages, and specifically in 

generation of these compilers automatically (by computer program). 

The reasons for such interest include desire for easy accommodation 

of new languages and/or new machines, as well as desire for availability 

of standardized forms of all procedure-oriented languages. The economic 

and technological benefits which may be derived if these goals are 

achieved are many and obvious. 

We have, through successive studies culminating in this contract, 

characterized and then developed a comprehensive system for compiler 

generation, based on some novel concepts and processing techniques 

j^l, 2, 3J . A prototype version of the system is now undergoing final 

checkout and refinement. 

This report attempts to give a comprehensive picture of the system, its 

reasons, and its methods. We will stress the general methods and 

techniques which are used, rather than the details of program steps. 

The remaining portions of this action will characterize the problem of 

compiler generation, outline our overall solution, and note the results 

which have been achieved. Further sections of the report will discuss 

in detail the various components of the solution. 
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B. OBJECTIVES AND REQUIREMENTS OF COMPILER GENERATION 

The notion of compiler generation has been attractive from a theoretical 

viewpoint for some years: there are no theoretical bars of any kind, and 

the very existence of compilers itself suggests the possibility of auto¬ 

matic generation. By 1961 much relevant work had been done [4, 5, 6. 7], 

and these results (and in particular the methods of Irons) have provided 

a foundation for present compilation techniques. 

However, the achievement of automatic compiler generation entails the 

solution of further problems. Any method for compiler generation, if it 

is to work at all, must by its very nature involve the characterization of 

languages, and of the processing rules and mechanisms used to effect 

translations. To be successful, such a method should give assurance 

of adequacy in several respects. Adequacy questions to be dealt with 

concern 

Completeness: languages to be accommodated will embody differing 

grammatical structures, so that the grammatical notions contained 

in a generation schema must be adequate to properly treat a wide 

class of languages (as well as guarantee proper treatment for the 

known languages). Also, a sufficient variety of internal (to the 

compiler) processing mechanisms is required, as well as an adequate 

schema for production of output code. 

Uniqueness of interpretation: every algorithm expressed in a 

procedure-oriented language must have a unique translation in 

machine language, so that ambiguity of interpretation is not 

permissible. A proper generation schema will thus provide 

guarantees that the compilers which are generated cannot embody 

such ambiguities. 
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Finiteness of computation: every compiler must incorporate both 

a decision algorithm (as to program grammaticalness and legality) 

and a translation algorithm. To ensure that generated compilers 

will fulfill these functions, a generation schema should provide 

assurance that all computations (grammatical analysis, internal 

processing, production of output code) performed for any input 

program whatsoever, must terminate in a finite amount of time. 

That is to say, there should not exist any input program which 

could cause a generated compiler to "loop". 

The usual practical objectives must also be considered -- namely, the 

size and speed of both generated compilers and compiled object programs. 

Some loss of efficiency in these regards could result from the use of 

compiler generation and such efficiency loss would be tolerable only if 

kept within reasonable bounds. 

Finally, the concept of compiler generation itself imposes implicit 

requirements. If several compilers are generated for the language L, 

then obviously the languages accepted and processed by these compilers 

should be identical (else the phrase "generating compilers for L" is 

meaningless). The characterization of L embedded in each of the com¬ 

pilers should be truly machine-independent (in order to guarantee that 

the identity of L is maintained from compiler to compiler). 
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C. OVERALL METHOD OF SOLUTION 

The argument above can be carried further. If the characterization of 

a language L embedded in each of several compilers is indeed machine- 

independent, then surely 

The processing algorithms within the compilers which interpret 

this characterization should also be machine-independent, and 

a logical separation should be maintained between the characteri¬ 

zation of L and the machine language for which the compiler .s 

intended; that is, L should not be characterized directly in terms 

of the machine language. 

Both of these conditions are required if the machine-independence of L 

is to be guaranteed. If the second of these is met, then L must be 

characterized in terms of a "buffer language"; that is, a machine- 

oriented but machine-independent computation language. 

The arguments of the last two paragraphs cannot be iterated indefinitely, 

for if machine-independence is required at each successive step, then the 

longed-for machine language can never be encountered. But our most 

vital concern is to ensure the invariance of language structure and 

processing rules from one compiler of L to another, especially if L is 

a language having a large number of rules of formation (such as ALGOL 

or FORTRAN). For this reason, the use of an intermediate language 

is very desirable. 

Further, suppose that the intermediate language which is used has very 

few rules of formation, so that programs in this language consist of 

simple sequences of "instructions", each "instruction" consisting of an 

"operation" followed by one or more operands and signifying a small 
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and clearly-defined computation (e. g. ADD(X) ). It is then simple to 

maintain the structure of this language from machine to machine, to 

translate from this language to a machine language in machine- 

independent fashion, and to achieve (excluding for the moment machine- 

dependent optimizations) simple sequences of machine language instruc¬ 

tions for each intermediate language instruction. Thus for all practical 

purposes the intermediate language is machine-independent. 

Our overall solution to the compiler generation problem can now be 

quickly summarized. First, a logical separation between procedure- 

oriented languages and machine language is maintained by the use of an 

intermediate language which we call BASE language (see Figure 1). 

Correspondingly, transformation from a procedure-oriented language 

Lt to a machine language M takes place in two steps, which we call 

1. Compilation from L to BASE 

2. Translation from BASE to M 

These steps are shown in Figure 2. 

BASE language consists of a set of operations in "macro" or "functional" 

notation; i. e. a BASE operation has the form OP (Tj/Xj, .... 

Tn/Xn), where OP signifies the operation (e. g. ADD), Tj the i*h operand 

type (e. g. variable, data, label) and Xj the ith operand itself. 

Each compiler (L—-►BASE) corresponding to Figure 2 performs its 

processing via machine-independent algorithms, and is in effect gener¬ 

ated by the use of a programming system which we call the POLY LINGUA 

System. Conceptually this system consists of three items: 

1. Compiler Model program - a table-directed processor, 

2. An abstract notation (or more precisely, a set of notations) 

which allows precise specification of language structure and 

processing rules, and 
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PROCEDURE 

Figure 1. Logical Separation of Procedure-Oriented 
Languages and Machine Languages 

PROCEDURE- 
ORIENTED 

MACHINE 

Figure 2. Compilation System Corresponding to Figure 1 
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3. A Generation System program, which converts abstract 

language specifications into data tables for use with the 

Compiler Model, after performance of various formal 

checks on the specifications. 

As a first step in the production of a compiler (L—BASE), an abstract 

specification is written for the language L (see Section III for details), 

in terms of the system data base described in (IIIC), so as to enable 

precise reference to data entities which will be treated by the compiler. 

Next, the specification of L» is processed through the generation system, 

and thus converted to a set of data tables which is called a "tape" of L. 

When this tape is combined with the compiler model, so as to direct the 

operation of that program, a compiler (L*—►-BASE) is formed. This 

sequence of operations is illustrated in Figure 3. 

Figure 3. Sequence of Operations in Generation 
of a Compiler (L—►•BASE) 
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Each translator (BASE—M) is in concept machine-dependent. How¬ 

ever, for the class of machines typified by the IBM 7094, the CDC 1604, 

and so on, translators are constructible which perform their processing 

entirely via machine-independent algorithms, machine dependencies 

being completely confined to the contents of certain data tables. Thus 

in practice, for this class of machines, it is possible to regard each 

translator (BASE —as the conjunction of a machine-independent 

"translator model" program and a "machine specification" consisting 

of a set of data tables. These does not seem to be any bar against 

extension of this translator construction method for more complex 

classes of machines. 

Thus our solution conforms to the requirements we have developed for 

compiler generation systems. Transformation from a procedure- 

oriented language L to a machine language M is performed in two steps: 

first via a machine-independent compiler (L ►■BASE), which is gen¬ 

erated by program, and then via a translator (BASE ^ M) which may 

(for a wide class of machines) be generated also. Uniqueness of inter¬ 

pretation is intrinsic to the syntactic analysis technique embedded in 

each compiler, and sufficient checks to ensure finiteness of analyses 

Q, 3] are made during processing of the language specification by the 

generation system. It appears that our technique will have excellent 

efficiency. 

What class of procedure-oriented languages is treated by our solution? 

With regard to grammatical structure, we do not know of any restriction. 

The syntactic model upon which the system is based |jlj can accommodate 

as a language any recursive set (i. e. any set for which "sentencehood 

or "membership" is decidable); the particular variation of the model 
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actually used within the system is at least as inclusive as (and in fact, 

appears to be more inclusive than) the context-sensitive ("type 1") phrase 

structure grammar of Chomsky Language specifications have been 

prepared for ALGOL, FORTRAN and JOVIAL, with no grammatical 

difficulty. Further, the system accommodations for compiler internal 

processing functions and for code production have proved quite ample 

for these three languages. Finally, production of translators is depend¬ 

ent only on the BASE language, and appears to offer no conceptual 

difficulty. 

Thus our system, in its present form, will accommodate a very wide 

class of languages. Its limitations with regard to efficient treatment of 

"object time" code will result in part from the design of the BASE 

language (specifically, inclusion or exclusion of various operations). 

Limitations on the set of "compile time" functions performable by 

generated compilers will be a direct result of the set of "internal func¬ 

tions" operations. The current set of BASE language codes may not be 

optimal, and the set of "compile time" functions which may some day be 

necessary cannot be foretold; hence care has been taken to provide ease 

of expansion in both respects. 
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A. 

D. OBJECTIVES AND RESULTS OF THIS STUDY 

The present study is the third of a series. The first of these was purely 

exploratory: an initial specification was made of our system for compiler 

generation, and basic notions were developed, including the incorporation 

of formal checks within a generation system to ensure properties such as 

finiteness of analysis. 

The second study was a small effort, designed to determine more con¬ 

clusively the feasibility of the method chosen by means of two projects: 

1. Writing of a generation system for use on the Univac 1103A 

at RADC, and 

2. Writing of a specification for the JOVIAL language. 

The results of this study served to prove the worth of a generation 

system to show the adequacy of the definitional scheme and to allow 

development of the notations used in language specifications. 

The overall objective of the present study has been to attain a final 

development of our system, and in doing so, to develop as completely 

as possible the compilation system shown in Figure 4. Specifically, 

the objectives of this study were 

1. to write the Compiler Model program, 

z. to write two translators, for the CDC 1604 and the Univac 

1218, and 

3. to write and test language specifications for ALGOL, and 

FORTRAN. 
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Figure 4. Capabilities of Desired System 

In this effort stress was placed on the development of general methods 

and principles, rather than on details which would be necessary to pro¬ 

vide production compilers. It has been felt throughout these studies 

that such attention to method would be repaid a thousandfold, via the 

resulting efficiency of the programs, in the event of success. Accord¬ 

ingly, considerable effort was spent in re-examination and redesign of 

the functions of the compiler model, resulting in a short, general, and 

reasonably efficient program. Extensive effort was spent in deriving 

the translator formulation noted previously. 

As an extra effort (not called for in the study), a set of table builder pro¬ 

grams was written to replace the generation system developed in the 

second study. We had hoped instead to develop a very general operation 

system, consisting of the compiler model and an auxiliary processor 

driven by a set of specifications delineating the specification notations 

themselves. In fact, all of the parts necessary have been written, but 

we have not had time to perform checkout of the merged system. 
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At this moment, the compiler model program, translator for the 1604, 

and the ALGOL specification are all simultaneously undergoing final 

checkout. Although these still contain "bugs", the compilation system 

has already compiled several programs which have been able to 

assemble and then execute. The principle of operation is thus proven, 

and it is only a matter of time until complete error-free operation is 

obtained. 



SECTION II 

THE BASE LANGUAGE 

In the system of Section I-C, a logical separation between procedure- 

oriented languages and machine language is maintained by the use of an 

intermediate "macro" or "functional" language. The intermediate 

language is called BASE, and the transfoimation from a procedure- 

oriented language into a machine language M is said to be accomplished 

in two steps (cf. Figures 1 and 2, page 1-6): 

1. Compilation (L —BASE) aid then 

2. Translation (BASE —►M). 

The interposition of BASE as a "buffer language" allows a mutual inde¬ 

pendence of the processes (L—► BASE) and (BASE—►M). Thus one 

translator (BASE —♦-M) suffices for all L, and vice versa. Further, 

the operations of BASE can potentially be defined to have arbitrarily 

desired meaning, since 

a. BASE is the sole link between compilation and translation, 

and b. The translation process need conform only with the definitions 

of BASE operations and those of machine instructions. 

In other words, a translator is precisely an interpretation of desired 

BASE specifications. The potential power and complexity of operations 

which might comprise BASE are proscribedonly by the format in which 

these codes may be specified. The particular codes and interpretations 

given here are not as important as the use throughout of a uniform and 

non-restrictive notation, because of which unlimited freedom and 

versatility are obtainable within BASE. Evolution of BASE operation 

types or interpretations will always be accommodatable by appropriate 

changes within a BASE —► M translator. 
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The format of BASE operations is modeled after that of a function of 

n variables, F(X .... ,X ). Each operation consists of a three-letter 
1 n 

operation code followed by some number of arguments, each argument 

consisting of an operand type specifier and the operand itself. Typical 

symbolic notations (cf. Section 11I-C) are 

FFF(Sj/ XJ) for a one-argument operation and 

GGG(S, / X,, S^/X^.S / X ) for an n-argument operation, 
1 1 2 ¿ n n 

th r • j -vr l* . th , 
where S. signifies the i operand type specifier and X. the i operand 

itself. 

By convetion, every operation has at least one argument (which need not 

have meaning), and otherwise every operation has an appropriate (possibly 

variable) number of arguments, as required. Within the system, an 

operation having more than one argument has the form of a sequence of 

one-argument subfunctions. The dummy operation code ARG, which 

serves merely to carry one argument, is used to accomplish this 

"decomposition", which results in the identity 

GGG(S. / X.S /X ) = GGG(S / X ) ARG(S / X ). . . ARG(S / X ) 
11 nn It nn 

The code ARG is also a permissible three-letter operation code, so 

that the operation GGG may be written symbolically in either of the above 

forms. Availability of the ARG code allows the composition of a sequence 

for GGG as the result of a number of processing steps. Thus the arguments 

for an operation may be specified all at once (using either notation above), 

or an appropriate number of arguments may be composed during subse¬ 

quent processing. Note that a variable number of arguments is obtainable 

for any operation using this mechanism. 
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The operand types used in BASE operations are: 

Operand Type Mnemonic 

Program variable name V 

Program label V 

Program data constant D 

Temporary register T 

Compiler-defined constant C 

Compiler-defined label L 

Property p 

By "program variable name", we mean a name defined within a 

procedure-oriented language program (e. g., in item declarations, such 

as XYZ in real XYZ). Labels in such programs are conceptually defined 

in the same way and thus are given the same operand type. A "program 

data constant" is a number (e. g. , 123. 45E6) or a symbolic constant 

(e. g. , 4H(ABCD)) which appears in a procedure-oriented language 

program. A standard procedure is used to treat such constants. The 

string of symbols comprising the constant is transmitted to the translator 

and also assigned an identity number (say N); thereafter, that constant 

may be reference in any BASE operation as the operand D/N. "Temporary 

registers" are of course registers within an object program which are 

used to store data temporarily. "Compiler-defined constants" are 

integers defined by the compiler, as for example, the first operand of 

a GTO code. "Compiler-defined labels" are labels defined for inclusion 

into the object program; such labels are usually implicit in the program 

under compilation, as for example, in an ALGOL or JOVIAL "IF statement". 

The treatment of "property operands" differs from that of other operand 

types. When this operand type is used, the argument actually desired 

is a "property" of the operand given, rather than the operand itself. 

Specifically, the desired argument is a machine-dependent number which 
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will exist in the object program and which is known to the translator, 

but cannot (because of machine-dependence) be known to the compiler. 

An example of such an argument is "the number of machine words 

corresponding to a given data structure" (e. g. , an entry of a table). The 

"property" operand type allows "naming" of such a parameter by the 

computer and subsequent substitution by the translator of the appropriate 

number for the given name. 

A simple convention is used to interpret property operands: the operand 

field associated with the P type contains a numeric code indicating the 

property desired; and the operand for which this property is desired 

follows as the argument of an ARG code. Additional arguments may be 

necessary to further define the property desired; in general as many 

extra arguments as necessary are simply inserted into the string of 

operation codes whenever this operand type is used. 

The following properties are at present provided for: 

Code Property 

0 Machine address of the given item, or of the origin 
word of the given data structure 

1 Number of machine words corresponding to the named 
data structure 

2 Length of a dimension of the given data structure. 
This property requires an additional argument, 
specifying the dimension whose length is desired. 

Typical usages and their interpretations are given below. 

Usage Interpretation 

Add the variable X 

Add the machine address or origin address 
of the variable X 

ADD (V/X) 

ADD(P/0, V/X) 

ADD (P/ 2, V/X, C/2) Add the length of dimension 2 of the data 
structure X 



The table following this discussion gives the BASE codes which are used 

at present, together with their interpretations and conventions. First, a 

short discussion of the input/output operation INO is in order, both to 

illustrate the general use of arguments throughout BASE and also to explain 

the philosophy which has been adopted with regard to input/output. 

Every procedure-oriented language assumes the existence of an overall 

environment in which object programs are to operate. In particular, each 

language assumes the provision of certain specific input/output facilities 

to its object programs. In other words, a language - specific set of sub¬ 

routines must be presumed to exist at object time to accomplish the 

desired input/ output processing. Accommodation of a set of procedure- 

oriented languages thus requires a range of such subroutines of varying 

types, each pertinent to one or more languages. 

Modern operating systems, such as the COOP Monitor, normally furnish 

such subroutines; and in any case the subroutines are required to be 

available at object time. Accordingly, the INO operation is in reality 

simply a subroutine call having an arbitrary number of arguments; 

the first argument is a numeric code corresponding to the desired 

subroutine, and succeeding arguments are as required by the desired 

subroutine. In this way any number of subroutines can be accommodated. 

As a specific illustration of this method, consider the FORTRAN statement: 

WRITE (6, 100) A, B. This statement is normally implemented via 3 sub¬ 

routines, which might be described ? follows: 
Arbitrary 

Arbitrary Name Num. Code 

WRITE 1 Initialize all WRITE subroutines and 
data tables 

WRITE 2 

WRITE 3 

Transfer one list elements to WRITE 
subroutines for processing 

End WRITE processing as necessary 
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Aside from a trivial variation in the handling of the constants 6 and 100, 

the seqvience of BASE operations which would appear for the above 

FORTRAN statement is: 

Base Sequence Corresponding CODAP Sequence 

INO (C/4) 
ARG (C/6) 
ARG (C/ 100) 

Initialize 
WRITE 
Routines 

+ 

+ 

ENA 
ENQ 
RTJ 

0 

+ 6 
. . 100 
Q8QINGOT 
0 

INO (C/5) 
ARC (V/A) 

Transfer 
List 
Element 

+ 

+ 

RTJ 
0 
0 
1 

Q8QGOTTY 
0 
0 
A 

INO (C/ 5) 
ARG (V/B) 

Transfer 
List 
Element 

+ 

+ 

RTJ 
0 
0 
1 

Q8QGOTTY 
0 
0 
B 

INO (C/ 6) End WRITE RTJ Q8QENGOT 

The operation INO (C/4, C/6, C/100) simply specifies a call on WRITE 1, 

with the arguments 6 and 100, and so on. The names by which the 1604 

COOP Monitor actually calls these routines are Q8QINGOT, Q8QGOTTY, 

and Q8QENGOT so that the BASE sequence is almost trivially translatable 

to the corresponding CODAP sequence also shown above. 
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OPERATION CODES AND CONVENTIONS 

Category Code 

General ARC 

Arith- CLR 
metic 

and 
Boolean STO 
Operations 

ADD 

SUB 

MP Y 

DIV 

DVI 

EXP 

CHS 

ABS 

BOR 
AND 
NOT 

Symbolic EXB 
Operations 
and 
Operations 
on Parts 
of Items 

Operands 

One 

None (i. e. has one operand 
which is ignored). Nomi¬ 
nal form is CLR (C/0) 
One 

One 

One 

One 
One 

One 

One 

None; nominally CHS(C/0) 

None; nominally ABS (C/0) 

One 
One 
None; nominally NOT(C/0) 

Three operands; first is 
variable name 

Significance 

Dummy operation which 
carries one argument. 

New computation follows 
(clears "accumulator") 

Store results of compu¬ 
tation thus far 
Add to computation thus 
far 
Subtract from compu¬ 
tation thus far 
Multiply 
Divide computation thus 
far by indicated argument. 
"Integer divide" - quotient 
is truncated to nearest 
integer. 
Exponentiate computation 
thus far by indicated 
argument. 
Change sign of compu¬ 
tation thus far 
Take absolute value (set 
sign "+") 

Boolean "OR" 
Boolean "AND" 
Take Boolean complement 
of computation thus far. 

Extract bits from variable 
given by first operand. 
Second operand indicates 
starting point (from "left") 
of bits to be extracted; 
third operand indicates 
number of bits to be ex¬ 
tracted. 
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Input/ 
Output 

T ransfer 
of 

Control 

EXC Three operands; first is 
variable name 

PTB Three operands; first is 
variable name 

PTC Three operands; first is 
a variable name 

Extract characters from 
variable given by first 
operand. Second oper¬ 
and indicates starting 
point (from "left") of 
characters to be ex¬ 
tracted; third operand 
indicates number of 
characters to be 
extracted. 
Put bits in variable given 
as first operand. With 
this exception, other oper¬ 
ands have same significance 
as in EXB. 
Put characters in variable 
given as first operand. With 
this exception, other operands 
have same significance as 
in EXC. 

INO Variable number as 
required - see discussion 

Calls input/output sub¬ 
routine indicated by first 
operand. 

GTS One 

GTO First operand is an 
integer constant; second 
operand is a label 

Call to subroutine indicated 
VPR and/or NPR operations 
follow, giving parameters 
as required by subroutine. 
Go to instruction indicated 
by second operand. First 
operand is a code indicating 
the condition under which 
the transfer takes place: 

Code Conditions for 
Value Transfer 

0 
1 
2 
3 
4 
5 
6 

(unconditional) 
< 0 
<0 
= 0 
>. 0 
> 0 
* 0 

HLT None; nominally HLT(C/0) Halt 
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Data 
Declar¬ 

ations 

1TM Nine operands; first is 
variable name, and the 
rest are integers 

ARG 
n = *0 

Declares the first operand as an 
item. The ARG codes which 
carry the rest of the operands 
give the following information: 

-»■ item type: 
unspecified 

1 floating 
2 fixed 
3 bit string 

(length = l»*Boolean) 
4 Hollerith string 
5 STC string 
6 complex 
7 double precision 

ARG^ number of bits or 
characters (0 = word size) 
ARG^ *♦'*• number of components 

fFor ARG , = 3, 4,or 5: 
l-*-^>length fixed, 
0-*»-length variable 
For ARG1 = 2: 
1 unsigned, 

. 0 signed 
''For ARG^ = 1 or 2: 
0*-*-truncate, 
1 round 

ARG-«-♦io«•-*> + , 1-p--2 
‘ r For ARG } = 2: 

Jbits of precision 
•s For ARG^ = 1: number 
I of bits in exponent 
KO machine format) 

♦W"word within entry for 

ARG 

ARG. 

ARG. 

ARG 
8 ~ \ 

4 table items 
fto^-».not specified) 

ARG9 If ARGg 0: bit origir 
within word 
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■W' 

ITA Two operands: first is 
variable name, second is 
integer signifying item type. 

TBL Five operands 

F1L Ten operands; first gives 
variable name 

Declares the first operand as an 
item; type is given by the second 
operand. This is an abbreviation 
of the ITM declaration as follows: 
ITA(V/X,C/n ) = ITM(V/X,C/n , 
C/O, C/1.C/0Í C/0, C/0, C/0 ) 

First operand is declared as a 
table. Succeeding ARG codes 
give information as follows: 

layout: 0 parallel, 
1 ■»♦serial 

ARG^^-W'packing density: 

JO •»♦none 
] 1 medium(machine -based) 
I 2 »♦dense 

ARG^»-»fMaximum number of 
(.entries 

ARG^-*-«*rSize definition: 
^■•♦•variable, 
(l »rigid 

Declares first operand as a file. 
Succeeding ARG codes give in¬ 
formation as follows: 
ARG^numeric code signifying 

device nmae 
ARG^^-w-Tfile use: 

|0 •»►unspecified 
< 1 »»input 
1 2»»output 
V.3-*»s cratch 

ARG3— recording mode: 
0-^binary, l-»»hollerith 

ARG.»-» number of records 
4 

ARGj.»-»rO»-number of records 
is variable 

l»-»number of records 
is fixed 

ARG^**- number of bits or char¬ 
acter/logical record 

ARG_,»-»-(0*»number of bits/chars 
is variable 

l*»number of bits/chars 
is fixed 

II-10 

J 



SEE One 

A RGgnumb er of bits/char¬ 
acters/physical block 

ARGg-»^/() ♦♦number of bits/ 
jchars is variable 
il ♦♦number of bits/ 
(chars is fixed 

Declares operand as a reference 
name. This code may be used in 
place of second and following 
arguments of TEL, FIL, ITM 
codes, or may follow a DIM code. 
The attributes desired are de¬ 
clared identical to those of the 
SEE operand. 

Data SEQ Variable number, as 
Structure required 

OVR Variable number, as 
required 

Dimensions, DIM One operand 
Indices , 
Subscripts 

and 
Switches 

All operands are variable names. 
The first operand is declared as 
naming a data structure which 
consists of the sequence (in the 
given order) of the data entities 
given in the following arguments. 
If the first argument is C/0, then 
no name is given, but object pro¬ 
gram space is declared to be 
allocated sequentially as specified 
by the arguments. 
Appears following SEQ declarations. 
Same as SEQ, except that the space 
allocations declared are to be over¬ 
laid over those of the preceding 
SEQ declaration, beginning at the 
same place in memory as the 
previous SEQ declaration. 

Begins a dimension declaration 
for the stated operand. The 
dimension declaration consists 
of alternating LOB and UPB codes 
(as many as required to specify 
the proper number of dimensions), 
the it-h LOB (or UPB) code followed 
by a sequence giving an arithmetic 
expression for the lower bound 
(or upper bound) of the ith dimension. 

II-II 



EDI One operand 

INX Variable number, as 
required 

SCR One operand 

ESC One operand 

LOB One operand 

UPB One operand 

SWI One operand 

SWP One operand 

ESW One operand 

The declaration is terminated 
by an EDI code. A SEE code 
may appear as an alternate form 
of declaration. 
Declares termination of the 
dimension declaration of the 
stated variable. 
Declares set of index values for 
the variable which is the first 
argument. Values are given in 
order by succeeding arguments 
for the dimensions of the variable. 
Declares operand as a "subscript" 
for the following computations. 
Declares end of "subscript" con¬ 
notation for indicated variable. 
If operand is a constant, this is 
lower bound value (see DIM 
discussion). Otherwise the 
operand is ignored, and a 
sequence of codes follows giving 
an arithmetic expression for the y' 
lower bound. 
Declares upper bound. Similar to 
LOB. 
Declares operand as a "switch name", 
and begins switch declaration. 
Switch points are given by succeeding 
codes; see below. 
If operand is a program variable 
(V type), then this variable is 
declared as a switch point for the 
switch in whose declaration this 
code appears. Otherwise, the 
switch point is defined by the sequence 
of codes following the SWP (this 
sequence must terminate with a 
GTO code). 
Ends switch declaration of indicated 
variable. 
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Declaration 
of 

Constants 

Codes 
Pertaining 

to 
Subroutines 

Program 
Structure 

DTA One operand 

SYM One operand 

STC One operand 

INI One operand 

ENI One operand 

SBR One operand 

ESB One operand 
OSR One operand 

NPR One operand 

VPR One operand 

IDT One operand 

TRM One operand 
LBL One operand 

BEG None 

END None 

Declares the operand as the name 
of a program data constant. Suc¬ 
ceeding SYM or STC codes each 
carry one character of the named 
constant. 

Operand is a 6 bit Hollerith char¬ 
acter. 

Operand is a character in 6 bit 
Standard Transmission Code. 
Pr ecedes one initial value of the 
stated variable. Succeeding SYM 
or STC codes each carry one 
character of the initial value. 
Ends sequence of initial values for 
dated operand. 

Declares operand or a label for the 
subroutine whose body follows. 
Ends the indicated subroutine body 
Declares operand as label of optional 
subroutine: optional subroutines are 
included in the code output when 
called: 

Declares operand as a "name par¬ 
ameter" of a subroutine. NPR and 
VPR codes carry formal parameters 
which appear in the declaration of 
a subroutine and also carry actual 
parameters appearing in subroutine 
calls. 

Declares operand as a "value 
parameter" of a subroutine. See 
discussion of NPR. 

Declares operand as "program 
identity". If used, this code must 
begin the BASE program. 
Terminates the program. 
Declares operand as a 1 .bel for 
the operations which follow. If 
two or more L,BL> codes appear 
in sequence, the labels declared 
are all assumed to be equivalent. 
These two codes are used as 
segmentation markers to denote 
segmentable code blocks. 
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SBC None 

DIR None 

EDR None 

Subcomputation: The codes between 
any two SBC markers are denoted 
as a subcomputation. 
Precedes a "direct code" sequence 
the characters of which are carried 
with the SYM codes. 
Ends a "direct code" sequence. 
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SECTION m 

COMPILATION TO BASE LANGUAGE 

A. INTRODUCTION TO THE POLY LINGUA SYSTEM 

This section will begin discussion of the POLYLINGUA system, the 

programming system which is used to generate compilers which trans¬ 

late from procedure-oriented languages to BASE language. It should 

be recalled that the POLYLINGUA system consists of two programs — 

a Compiler Model, which is a table-directed processor, and 

a Generation System which produces tables for use by the 

Compiler Model 

— in conjunction with an abstract notation (actually a set of notations) 

which is used to write abstract specifications of language structure and 

processing rules. 

The sequence of steps in the generation and use of a compiler, shown in 

Figure 3, begins with the writing of an abstract specification of the 

language under consideration, using the notations provided for that 

purpose. Each specification consists of portions delineating 

alphabetic symbols of the language 

syntax 

internal processing functions 

code produced 

diagnostic messages 
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Processing of this specification through the generation system yields a 

set of data tables (called a "tape"), which when combined with the 

compiler model, forms a (machine-independent) compiler from the 

language in question to BASE language. In use, the operation of the 

compiler is directed by the contents of the tape. 

The workability of this system is due, not to specific features contained 

in the various programs, but to the emphasis placed throughout on con¬ 

sistency of means for abstract definition, consistency of means of 

interpretation used in the compiler model, and especially on the relation 

between these. Thus the abstract notations used in language specifica¬ 

tion are an integral part of the system: the compiler model in operation 

carries out the intent of the abstract notations; and the precise result of 

such notations is determined by the details of compiler model operation. 

The notations of language specification refer to an assamed universe of 

data, called the system data base. In turn, the compiler operates on 

physical representations of these entities. For this reason our presen¬ 

tation will discuss first the system data base, then the specification 

notations and use of the conversion programs which serve as an interim 

generation system. In Section IV, operation of the compiler model will 

be discussed in detail. 
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B. SYSTEM DATA BASE 

The universe of data in which the compiler model operates is called the 

system data base. As noted above, entities in the data base are referred 

to by the specification notations, and operated on by portions of the 

compiler model. We will indicate here the entities which comprise the 

data base, in sufficient detail to allow further discussion of the notations 

and compiler model. 

The compilation process consists in concept of the syntactic analysis of 

a given string (the "input" or "program" string), and consequent con¬ 

struction of a second string (the "output" or "code" string). Both of 

these strings are regarded as of unbounded length, and as being con¬ 

tained on some suitable but unspecified physical medium. In construc¬ 

tion of the code string, data is retrieved from the input, is processed, 

and appears in or determines segments of the code string. 

From a syntactic viewpoint, the input string is a sequence of syntactic 

types or constructs, which are grouped by the analysis into larger and 

larger units. Thus the input string is viewed abstractly as a sequence 

of number pairs, one representing a syntactic type and the other being 

an associated reference number or datum, as required. 

The code string is a simple sequence of "operations", each operation 

consisting of a number triplet representing respectively an operation 

code, an operand type, and an operand. 



Also within the system data base are data entities pertinent to the 

compiler's internal processing — retrieval of this data, processing 

of the data, and construction of the code string. There are three such 

entities: 

1. a set of "function registers" F., each such register assumed 

to contain a positive integer 

2. a "property table" of positive integers (j). At times in the 

processing, various symbol strings are "defined" to this 

table (i. e. entered into the table), and the j**1 entry in the 

table corresponds to the such string. The integers P. (j) 

are called "properties" of the j01 entry; PQ (j) is also called 

the "syntactic classification" of the j**1 entry; and the defined 

symbol string itself is called the "name" of the entry. 

3. a set of "symbol registers" Sj, each containing some string 

of symbols. 

The following discussion gives further details on use of these d^ta 

entities. 



C. SPECIFICATION NOTATIONS 

We indicate here the notations used in the various portions of a language 

specification. Many examples of these notations are to be found in the 

specifications of ALGOL and FORTRAN contained in Volume II of this 

report. We will illustrate our discussion using a mythical language, 

aptly called EXAMPLE, the specification of which is shown in Figure III-l. 

EXAMPLE has no purpose or meaning other than illustration. 

As shown in Figure III-l, a specification is in general composed of five 

portions, as follows: 

Symbols: a list of the alphabetic symbols and reserved words 

which constitute the primitive syntactic types of a language; for 

each of these both a syntactic type and a datum are specified. 

Syntax: a set of syntactic productions of P (where k is a label 
lx 

affixed to the production). 

Internal Functions: sets of of "internal operations"; each set 

Sk corresPonds to 016 production Pk having the same label 

affixed. 

Codes: blocks of "output code"; each block corresponds to 

the production P^ having the same label affixed. 

Diagnostics: a set of messages for diagnostic output. 
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Symbols 

The figure shows a typical deck structure. The symbol portion of this 

specification (lines 3 through 9) contains all of the usual "symbol cards". 

Each symbol delineation may be preceded by a label, as in line 4, if 

desired; the labels have no intrinsic meaning. The number within 

parenthesis indicates the number of characters under consideration; 

these characters follow immediately after the right parenthesis. Next, 

the symbolic name enclosed within parenthesis is the name of a 

"syntactic type" or "construct". The number or character following 

this is the associated datum: 

((A) signifies a datum consisting of the hollerith character "A" 

(2) signifies a datum consisting of the number "2" 

Thus line 3 specifies that a symbol A appearing in an actual input program 

is to be represented in the conceptual input string by the syntactic type 

TYPE1 having an associated datum consisting of the hollerith character 

"A", while line 8 specifies that the symbol sequence 'END' appearing in 

an actual input program is to be represented in the conceptual input 

string by the syntactic type END having an associated datum of the number 2. 

Both a syntactic type and a datum must be given for each symbol or 

sequence of symbols delineated within the symbol section. As shown in 

line 6, the symbol "blank" may be thus delineated. The symbol ((EOC)) 

is a special symbol which denotes a physical "end of card*, this may also 

be delineated. All alphanumeric symbols not appearing in the symbol 

section are assumed to be delineated by the syntactic type NULL and a 

datum of 0. 
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Syntax 

The syntax portion (which appears on lines 12 through 24 of Figure IU-1) 

consists of a group of unsequenced productions, followed by ordered 

sequences of productions called "Rules". Each production must be 

labeled in the manner shown. Productions in the unsequenced group 

may not contain any construct for which a Rule exists. The productions 

within a Rule are tested for satisfactory match in the order in which they 

appear (see £l J » PP* 107 and 108). 

Special significance is placed on the construct names NULL and NEXT, 

which may be used only in the manner described here. NULL signifies 

the "empty" or "vacuous" construct; it may appear only on the right 

side of a production, as the replacement of a sequence of other constructs. 

Replacement by NULL is equivalent to deletion from the string. 

The name NEXT may be used only on the left side of a production. It 

signifies "any construct in this position". Thus the sequence given in 

line 22 is equivalent to any of 

(DOT) (DOT) (EOC) 

(DOT) (TYPE 1) (EOC) 

(DOT) (END) (EOC) 

A production containing NEXT may appear only within a Rule. 



Internal Functions 

As Figure III-l shows, the internal functions portion consists of sets of 

"operations", each in general having two operands. Each such operation 

specifies a specific manipulation of some data entity within the system 

data base. A labeled operation (e. g. , line 29) and all succeeding operations 

until the labeled operation -- constitute a set associated with the produc¬ 

tion having the same label. Thus the set of lines 29 and 30 is associated 

with the production labeled 1004. In principle a set of internal functions 

is specified for each production in the syntax section (with the intent that 

"performance" of the production during compiler operation causes 

performance of the associated set of internal functions); if no such set is 

specified, then the associated set is simply a null set. 

The set of operations, and the data classes with which they deal, are 

exhibited in Figures III-2 and III-3. Figure III-2 shows the possible 

operand types, categorized into operand subclasses. Note that in general 

operands may be specified in any of three ways 

Directly 

Indirectly, as the value of a specified function register (e. g. , F ) 
5 

As data associated with some syntactic construct, which construct 

is specified via its position in an associated syntactic production. 
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Figure HI-3 shows the complete set of operation types. The notations 

used in the column "Form of Operation" in this figure have the format 

OPCODE OPERAND SUBCLASS OPERAND SUBCLASS 

where the operand subclasses are those of Figure IH-2. The appearance 

of two or more operand subclasses within braci'ets -- e. g. , -- 

signifies that either operand subclass may be used. The operations 

are discussed in detail in Section IV. 

A syntactic type may be used to designate a numeric value (either xx of 

class B, or the second operand of the STV operation). Thus, for example, 

the operation STV F5 ((TYPES)) would result in the numeric value 

corresponding to TYPE3 being used to set Fg. A syntactic type, when 

used in this manner, must be enclosed within double parentheses as 

shown. 
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Operation 
Category 

Numeric 
Operations 

Operand 
Operand Symbolic 
Sub-class Notation 

A Fxx 

F(Fxx) 

Px(Fxx) 

Meaning of Notation 

th 
The (xx) function register Fxx 
i. e. , F^, where 0 £ i499. 

Fpj, where 0 ^ j ^ 99. 

The (x)th property of the (Fxx)th 
variable - the value of Fxx specifies 
the desired entry within the "property 
table". I. e. , P. (F.), where 

1 J 

[O < i < 3 
(04 j 4 31 

Px(±xx) P. (Jc), where 0 4 i 4 3. Jc specifies 

the desired entry within the property 
table. The argument ±xx specifies the 
construct C via its position in the 
associated syntactic production, and 

JC is the daturn associated with C. 

B xx A positive integer 4 99 

Scope The current scope "begin number" - 
See detailed discussion of scope in 
Section IV. 

N(Sxx) "Number conversion" of the contents 
of Sxx. See discussion below of Sxx, 
and detailed discussion of Number 
Conversion. 

N(S(Fxx)) Number conversion of S 
Fxx 

comments above. 

see 

Figure III-2. Classes of Operand Types 
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Operation 
Category 

Symbolic 
Operations 

Numeric 
and Scope 
Tests 

Operand 
Sub-class 

Operand 
Symbolic 
Notation 

Vx(±xx) 

Sx 

Meaning of Notation 

th 
The X transform or "value " 
associated with a syntactic 
construct. The argument ±xx 
specifies the construct via its 
position in the associated 
syntactic production. 

th, 
The (x ) symbol register Sx 
i. e. , S., where 0 ^ i ^ 3. S is 

i i 
assumed to contain a (possibly 
null) string of non-blank symbols, 
left-justified. The rest of S. is 

assumed to be "blank". 

S(Fxx) The symbol register S 
Fxx" 

xxx A three-digit number 
Fxx As above 
Px(Fxx) As above 

Scope The current SCOPE "begin 
number" -- see detailed 
discussion of SCOPE 

Figure III-2. Classes of Operands (Cont) 
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Figure 111-3. Internal Function Operation Types 

Operation 
Category 

Numeric 
Operation 

Symbolic 
Operations 

Form of 
Mnemonic Operation Result Comments 

SET Set F. or P.(j) to a 
i iJ 

desired value. 

INC 

DEC 

MPY 

DIV 

EXP 

INC Aj 

DEC 

MPY At 

DIV Ax 

EXP Aj 

Increase F^ or P^ (j) 

by a desired value. 

Decrease F^ or P^ (j) 

by a desired value. 

Multiply F^ or P^ (j) 

by a desired value. 

Divide F. or P. (j) 
i i J 

by a desired value. 

Exponentiate F^ or P^ (j) 

by a desired value. 

STV 

PUT 

PRE 

STV A XXX XXX—►A Set F. or P. (j) to the 
i i 

value XXX which is 

^ 999 

PUT D1 

PRE D1 

Put the desired symbol 
or symbols into S.. 

Prefix the symbols of 
S. by the desired 

i 

symbol or symbols 
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Figure m-3. Internal Function Operation Types (Cont'd) 

Operation 
Category Mnemonic 

Symbolic SUF 
Operations 
(Continued) 

RML 

RMR 

Form of 
Operation Result 

suFD.fy d. [dJ^d, 

RML D [ÿ 

RMR D 

Comments 

Suffix the symbols of 
S. by the desired 
i 

symbol or symbols 

Remove from the left 
(prefix) of S., or from 

the right (suffix) of S., 

XX symbols or the number 
of symbols specified in 
Fxx. 

Scope SSI SSI 
Operations 

SSE SSE 

Set SCOPE "interior" 

Set SCOPE "exterior" 

Property DEF 
Table 
Manipulation, 
Searches, and 
associations 
with syntactic 
input string 

ASO 

DEF D xxxx 

ASO ixx 

Assign a new property 
table entry to the name in 
the given S.. Set F. to 

i 0 

the new entry number. 
Set Pg (Fq) to xxxx. 

"Associate" the value in 
Fxx or Px (Fxx) with the 
construct in position ±xx. 
i. e. , set the construct's 
associated datum to the 
value in Fxx or Px (Fxx). 



Figure m-3. Internal Function Operation Types (Cont'd) 

Operation 
Category 

Property 
Table 
Manipula¬ 
tion, Searches, 
and associa¬ 
tions with 
syntactic input SER SER Sx 
string 
(Continued) 

Form of 
Mnemonic Operation 

RTV RTV A ±xx 

Result 

SER ±xx 

SER ALL 

DO 

ENS ENS 

IDF IDF ±xx 

Comments 

"Retrieve" the datum 
"associated" with the 
construct in position ±xx, 
and set Fxx or Px (Fxx) 
to this value. 

Search property table for 
entries having name in Sx. 

Search property table for 
entries having same name 
as is associated with 
construct in position ±xx. 

Search all property table 
entries. 

Do operations succeeding 
this and preceding next 
ENS operation a number 
of times specified in the 
operand. 

End search sequence. (A 
search sequence is the 
sequence of operations 
preceded by SER or DO 
and succeeded by ENS. 

"Identify" the construct in 
position ±xx as specified 
by A. i. e. , set the construct 
in position ±xx, to the 
numeric value of the given 
Fxx or Px (Fxx). 
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Figure III-3. Internai Functional Operation Types (Cont'd) 

Operation 
Category 

Nume ric 
and scope 
Tests 

Form of 

Mnemonic Operation Result Comments 

TST 

AGR 

OGR 

AEO 

OEO 

ANQ 

ONO 

ASI 

OSI 

TST xj. 
n n 

AGR E 

OGR E 

AEO E 

OEO E 

ANO E 

1 I B 

[b] 

1 IB 

A test consisting of n 
consecutive test operations 
(see below) follows this 

operation. If the test is 

"successful", the k opera¬ 
tions following the test are 
performed. If the test is 
not successful, the k opera¬ 
tions following the test are 
skipped. 

Test E, E_? 
1 2 

Test E, = E_? 
1 2 

Test E j * E2? 

Test if Ej is " interior " to E2 

A test consists of 
a sequence of those 

operations and/ or 
the scope tests 

which follow, and 
no others. The 

"success" of a test 

is a boolean func¬ 
tion of the individual 
tests; the first 

letter of the mne¬ 
monic indicates 
whether the indi¬ 
vidual result is to 
be "or"ed or "and"ed 
into the total result. 

OSI E 
1 Test if E is "interior" to E 

1 2 
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Figure ÏII-3. Internai Functional Operation Types (Cont'd) 

Operati on 
Category Mnemonic 

Mi scellaneous 

PRS 

PRN 

CAP 

Form of 
Operation Result Comments 

PRS 
Mess. 

No. 

'Sx 

Name (Fxx) 
.Name (±xx). 

Print the message whose 
number is given, together 
with the specified symbol 
string. Set error flag to 
indicate that error has 
occurred during compilation. 

PRN 
Mess 

No. 

'Sx 
Name (Fxx) 

.Name (±xx), 
Same as above, except no 
error has occurred. 

CAP Call auxiliary processor. 
The number n specifies that 
the n“1 subprocessor is 
desired. 
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Codes 

Sets (or "blocks") of code are arranged in roughly the manner as the 

internal function sets, and with roughly the same intent -- each set is 

associated with the production having the same label, and the block is 

output upon "performance" of the associated production. 

The operation codes and format are those discussed in Section II. However, 

the argument field does not usually contain an actual argument, but rather 

indicates (using the symbology of the numeric operand subclasses A and B 

of Figure III-2) the numeric value which is to be used as the argument. 

Thus MPY(T/F2) specifies a multiply operation on a temporary register, 

and the number which is output as the actual argument is to be taken from 

F2. As an exception to the nomenclature of subclasses A and B, the 

symbology R(±xx) is used to signify the datum associated with the construct 

in position ±xx. 

A number of operation "pseudo-codes" are used, which do not signify BASE 

language operations, but rather have special meanings. The code ARG is 

a dummy operation code used only to carry an argument. For example, the 

sequence 

XXXfV/Aj) 

arg(v/a2) 

is precisely equivalent to XXX(V/Aj, V / A^). The code MAC is used to 

designate a macro block -- a block which has the macro name as label. Thus if 

MAC (BLOCK1) and (BLOCK1) ADD(V/A ^ ) 

sub(v/a2) 

mpy(t/a3) 
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are given in a code specification, the three-operation sequence is output 

when the MAC code is encountered. MAC codes may not occur within 

macro blocks. 

The codes CON and VAL. are used to provide conditional code output. The 

code CON designates a "condition value", the argument field specifying the 

source of this value. As shown below, 

CON(C/F5) 

VAL(C/Aj) 

VAL(C/A ) 

VAL(C/A3) 

Block performed if condition 

satisfied (i. e. , F^^Aj) 

Block performed if condition 

satisfied (i. e. , F ^ A ) 
D u 

End of Block 

a CON operation is succeeded by a sequence of subblocks, each such 

subblock beginning with a VAL operation. The entire sequence shown 

above is called a " conditional block". If the "condition value" is ^Aj, 

which is given in the first VAL operation, then the block following 

that VAL operation is output, and no other block within the conditional 

block is output. If the condition is not satisfied, then the next VAL 

operation is tested, and so on. The constants A^ are all A^4 7, and it is 
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required that the condition value be satisfied. If a VAL. operation appears 

as the last operation in a code block, then no code is output. For a sequence 

of two VAL operations, e. g. , 

VAL(C/3) 

VAL(C/4) 

no code is output if the first of these satisfies the conditions. A conditional 

block may not be embedded within another conditional block, and obviously, 

if a conditional block is part of a larger block it may occur only at the end 

of that larger block. 

Examples of these features occur in the ALGOL and FORTRAN specifications. 

Diagnostics 

The cards specifying diagnostic messages are of fixed format. The 

message numbers appearing in columns 2 through 5 are used in the PRN 

and PRS internal function operations to refer to the messages. These 

numbers indicate position of the messages within a print table, and should 

have the smallest values possible. The message portion of the card 

consists of columns 7 through 78. 

Table Builder Formats 

The example of Figure III-l is written using the "reference" notation which 

will be implemented via the generation system. The language accepted by 

the table builder now in operation differs from this in two simple respects; 

1. A control card of the form shown in line 54 is used in place of 

each sequence of control cards shown. 
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2. Symbol cards are of fixed field format; lines 52 and 53 show the 

fixed field equivalent of lines 7 and 3 respectively. The left 

parenthesis of the syntactic type must occur in column 3 0; the 

left parenthesis of the datum must occur in column 39. A 

numeric datum must have two digits. 
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D. OPERATION OF THE POLYLINGUA SYSTEM 

Current operation is illustrated in Figure 3-4. The Polylingua system 

operates under the COOP MONITOR as three separate jobs. 

The first job consists of the table builders (BLDA, BLOB) which process 

a language specification deck on logical unit 9, and output a binary 

specification tape (SPECTAPE) on logical unit 8, as well as a listing of 

the input with interspersed error messages on logical unit 6. 

The second job is the compiler model (CM1) which processes a source 

program from (INTAP) logical unit 5 in a manner specified by the language 

specification of (SPECTAPE) logical unit 8. Output is BASE language on 

(CODTAP) logical unit 7 and a listing of the input on (LOGTAP) logical 

unit 6 with interspersed error messages. Optional output is a syntax trace 

and listing of BASE language on (LOGTAP). The optional output is obtained 

by setting jump switch 1 ON during execution of the job. 

The third job consists of one of the translators (T04 or T18). Its input is 

CODTAP on logical unit 7 and output is symbolic machine code CODAP1 or 

TRIM III on logical unit 2. After execution of T04, CODAP1 is called on 

with input from logical unit 2 and output relocatable binary on unit 56. 

After execution of T18 the symbolic tape is taken to the UNIVAC computer 

and processed by TRIM III. 

E. OPERATION OF THE JOVIAL COMPILER 

1. Operation 

a. Mount COOP MONITOR on channel 3 unit 1 

b. Auto-load 

c. Mount jovial compiler on unit specified on console typewriter 
for logical unit 10 

d. Mount scratch tapes on logical units 6, 8, 56, 57 
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POLYLINGUA SYSTEM 

T10417 
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e. Set jump key 2 

f. At completion of job save tape 56. 

Label "load and go for program name11 

F. HARDWARE AND SYSTEM SOFTWARE REQUIREMENTS 

1. Hardware 

a. 

b. 

c. 

d. 

CDC 1604, 1604A, or 1604B main frame with 32 k core 

Card reader’'J -., , 
f Lan be replaced by additional tape drives when 

Line printer ) o£f"line media conversion equipment available 

Min. 4 tape drives for operation, at least 6 tape drives are 

needed for maintenance 

2. Software 

a. Coop monitor 

(1) The monitor must initialize available CORE to ZERO 

instead of RT J ERROR* 

(2) 1-0drivers for the specific model of 1-0 devices attached 

(3) Interrupt processing for the specific model of main 

frame 

(4) CODAP1 assembler 

(5) Object time subroutines supplied with JOVIAL compiler 

b. JOVIAL compiler 

3. Documentation required for operation and maintenance 

a. COOP monitor operators manual CDC 

b. COOP Monitor programmers guide CDC 

c. CODAP 1 CDC 

d. CODAP1 system revisions CDC 

e. Library routines CDC 

f. JOVIAL SDC 

509 

60050800 

510 

60081000 

60051600 

TM-WD/988/200/00 
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60081100 

The following additional documents were used during development 

g. COSY CDC 

h. FORTRAN-63 CDC 

i. ALDAP CDC 

j. COBOL CDC 

k. Documentation aids IBM 

The following four pages illustrate tape unit assignments and deck 

60052400 

60083400 

60052100b 

H20-0177-0 

structures. 
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SECTION IV 

THE COMPILER MODEL 

A. PROGRAM ORGANIZATION AND TERMINOLOGY 

All processing performed by the Compiler Model (Program CM1) is table- 

directed, and its organization reflects this orientation. It is strictly 

divided into five subprograms: 

SYNPR - syntax processor 

IFTPR - internal functions processor 

CODPR - code processor 

CNLPR - control processor 

INOPR - input/output processor 

Of these, the programs SYNPR, IFTPR, and CODPR comprise the "inner loop" 

of analysis, processing, and code output (see Figure IV-1). The other proces¬ 

sors are infrequently called by these, usually when information transfer is 

required for continuation of processing. 

In turn, the operation of the "inner loop" programs is specified by a set of 

language data tables: 

SYNTAB - syntax table 

DIRTAB - director table 

IFTTAB - internal functions table 

CODTAB - code table 

Thus the programs themselves are concerned, not with the totality of the 

logical processes they perform, but rather with efficient handling of the data 

entities pertinent to these logical processes. 
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The "innermost" loop within CM1 is the syntactic analysis performed by 

SYNPR. Communication between SYNPR and the other "inner loop" programs 

(IFTPR and CODPR) is provided by the "director table" ^>IRTAI^.SYNPR per¬ 

forms the syntactic analysis of the input "construct string" (CONCOR) via a 

matching process. When the i**1 syntactic production is matched, a syntactic 

replacement (a construct which replaces one or more constructs of CONCOR) 

is called for. Also called for in general are performance of the i*“ set of 

internal functions, and output of the i^ set of code operations. 

All of these actions are specified via the i4^ entry of DIRTAB. Each entry 

of this table has the format: 

1 L.EFTNO RITNO REPCON IFTLOC CODLOC 

1*-Syntactic Replacement-^-Internal Functions«» ̂ Code Proce8sing-»| 

The items L.EFTNO and RITNO give the positions (within the syntactic 

production) of the constructs which are to be replaced; REPCON represents 

the replacement construct (to be placed at position RITNO. IFTLOC specifies 

the first entry of the portion of IFTTAB which is now to direct the processing 

performed by IFTPR. Similarly, CODLOC specifies the first entry of the 

portion of CODTAB which will be processed by CODPR to become output code. 

th til 
Thus, once the i production has been matched, the iin entry of DIRTAB 

completely specifies the ensuing processing performed by the inner loop until 

resumption of the analysis matching process. 

B. SYNTAX PROCESSOR 

Organization 

The syntax processor (SYNPR) is used to perform syntactic analysis of the 

input "construct string. " This string is represented for processing purposes 

by a table, designated the CONCOR table. Each entry of the table consists 

of two entries: 

CONSTR - to represent a "construct" or "syntactic type" 

REFNO - an associated "reference number" or datum 
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The syntactic analysis is performed by matching the CONSTR items within 

CONCOR against similar items in SYNTAB (the syntax table), then - for a 

successful match - replacing one or more entries of CONCOR by a single 

entry. Thus the primary processes performed by SYNPR are the referencing 

and handling of CONCOR, and the referencing of SYNTAB. 

SYNPR is conceptually divided into two subprograms: 

RECOG, which performs the matching or "recognition" process, and 

REPLAC, which performs the replacement procedure 

As shown in Figure IV-2, REPLAC is represented by two separate subprograms, 

REP1 and REP2. This arrangement is logically necessary because operations 

within the internal functions processor (IFTPR) and the code processor 

(CODPR) must refer to positions within CONCOR pertaining at the time of 

matching the production (i. e. , before a replacement is made). Thus REP1, 

which operates immediately after RECOG, places the "replacement construct" 

REPCON as directed by DIRTAB, but does not in any other way change CONCOR. 

Then, upon return to SYNPR for continuation of analysis, after operation of 

IFTPR and CODPR, the rest of the replacement procedure is performed by 

REP2. 
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CODPR 

CNLPR 5 

1 

Continue 

Analysis 

Begin 

Analysis 

L 

REF2 

Change CONCOR references 
in accordance with REP1 
action, to continue analysis 

RECOG 

Perform analysis process 
until a successful match is 
found. 

REPi 

Replace one CONCOR entry 
but do not change CONCOR 
reference 

Perform 

Necessary 
Processes 

IFTPR 

SYNPR 

Figure IV-2. SYNPR Organization 
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Referencing and Handling CONCOR

CONCOR is conceptually a sequence of "symbols", any of which is 

referenced by its position within the table. This conceptual model is 

analogous to a sequence of marbles laid in an inclined trough, where 

each marble is referred to by its position. Then, the syntactic replace

ment process is analogous either to changing the color of a marble (which 

has no effect on position) or removal of some marbles - and in this last 

case, other marbles inevitably roll down the incline to fill the gap, so 

that positions of some marbles are "automatically" changed.

The actual implementation of CONCOR cannot be this simple. Each 
CONCOR entry must correspond not merely to a "relative symbol position", 

but to an actual core memory location (or locations). Thus the core 
memory allotted to CONCOR is rigid in format, rather than flexible as 

with the conceptual model, so that the "nulling out" process performed 

during replacement creates "holes" in CONCOR.

The appearance of CONCOR before processing is begun can be 

represented graphically as follows:

where each shaded box is a CONCOR entry. However, after some proc

essing, CONCOR might have the appearance:

where each white box is a "hole" or "null symbol" (writtenA)-
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To achieve speed by eliminating the buildup of long strings of between 
non-nuU entries, CONCOR is maintained as illustrated below:

This method "cuts" CONCOR into two pieces:

1. The string of non-null entries ending at the entry number 
POS; this is the part of the string which has already been 
examined.

2. The string of non-null entries beginning with the entry 
number NEXPOS; this part of the string has not yet been 
examined. In fact, the "scan position" is always at 
NEXPOS.

There is of course a third (but insignificant) piece — the portion of 

CONCOR between POS and NEXPOS, which consists solely of A's.

Processing is begun with a small initial gap between POS and 

NEXPOS. Thereafter, REP2 maintains CONCOR so as to

a. Pack all A's into the center

b. Maintain the scan position at NEXPOS.

As a result, nulling out is commoniy accomplished by decreasing POS 

and/or increasing NEXPOS; entries in the "dead" portion need not 

actually be nulled out, since they are never examined.

IV-7

i



We can now show the actual effect on CONCOR of various syntactic productions. 

Suppose the string under examination is 

X A B C 

t 
POS 

• • • •• 

t 
NEXPOS 

Then each syntactic production below results in the string to the right of 

it. 

Syntactic Production 

D -> Z 

Resulting String 

X A B C • • • Z E III 
D 

BCD 

fpc IS Inexpos 

X A B C • • • A E F Y 

t POS t NEXPOS 

X A B C • • • z E F Y 

ÍPOS NEXPOS 
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Syntactic Production Resulting String 

BCD 

CD XD 

DE 

DE —DZ 
(N. B. — illegal case) 

BCDE 

X A B c • • • A E F Y 

1 POS [NEXPOS 

X A B c • • • X D E F 

1 POS 1 NEXPOS 

X A B c • • • D Z F Y 

1 Ipos \ NEXPOS 

X A ] 1 
M 

c D • • • Z F Y 

1 POS 1 NEXPOS 

X A B C • • • D 
z Lü Y 

POS NEXPOS 

Referencing of entries by their relative position within a syntactic 

production (as in REPI, REP2, and IFTPR) is always done relative to 

NEXPOS, which is "position 0". Entries to the "left" or "beginning" 

have negative positions (e. g. POS is "position (-1)"), and entries to the 

"right" or "end" have positive positions. For example, in the string used 

in all the above examples, A <—> position(-3), E <—> position(<fl), and 

D <—> position 0. 
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The "Ends" oí CONCOR 

A final detail in the handling of CONCOR is the detection of the 

"ends" of the string. Both a "permanent end of string" (PES) and a 

"temporary end of string" (TES) must be detected. Although the input 

string (CONSTO) is conceptually of unlimited length, the actual pro¬ 

cessing of this string is done in the (fixed) CONCOR area which may 

necessitate segmentation of the string. On the other hand, the string 

might not be sufficiently long to fill CONCOR. 

A simple scheme is used to satisfy these requirements. Markers 

(i.e. reserved values of CONSTR) are used to denote PES and TES; every 

program string is bracketed between PES markers, and TES markers 

are used to delineate segments of CONSTO within CONCOR. Thus, the 

CONCOR portion of CONSTO is always bounded by "end markers". If 

CONSTO is contained entirely within CONCOR, the markers on both sides 

are PES markers. If CONCOR is a "leftmost" ("rightmost") portion of 

CONSTO, then it is bounded on the right (left) by TES markers; if a 

"middle" portion, it is bounded on both sides by TES markers. 

Two conditions must be insured: 

a. That TES markers can not interfere with the syntactic 
analysis (causing, for example, the appearance of (say) 
A B TES rather than ABC, and so on), and 

b. That PES markers cannot be bypassed (as, for example, 
by a production involving the reserved construct NEXT). 

In the implementation of this scheme, a single marker (CONSTR = 

0) is used to denote both PES and TES; for TES. the corresponding value 
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of REFNO is 0, while for PES this value is 1. The marker is used in 

conjunction with two positions of CONSTGt denoted BEGCON and END- 

CON. First» every program string is preceded by twenty (20) PES 

markers» and succeeded by twenty PES markers. The position BEGCON 

specifies the "beginning" of that portion of CONSTG which is in CONCOR» 

and similarly» ENDCON specifies the "end" position. In the vicinity of 

PES markers» BEGCON and ENDCON are assigned as follows: 

PES PES PES • • • PES A B 

1_i-J 1 
20 markers | 1-INITIAL VALUE 

BEGCON OF POS 

and the initial values of POS is set to the position following BEGCON. 

Y Z PES • • • PES PES PES 

I 20 markers 
ENDCON 

Only one TES marker is used for each TES bound. In this case» 

the values of BEGCON and ENDCON are assigned as follows: 

TES 
ei C2 

• • • 
C18 C19 S) 

T 
BEGCON 

ENDCON 

C19 C18 • • • C2 C1 TES 
20 



Each time the scan position changes, the value of NEXPOS is tested 

against ENDCONi if NEXPOS Ü ENDCON. an "end” has been reached. 

Also, each time the scan position moves to the left, the value of POS is 

tested against BEGCON; if POS < BEGCON, an "end" has been reached. 

The Syntax Table - Structure and Interpretation 

a. General 

Syntactic analysis is performed primarily by matching sequences 

of CONCOR symbols (i. e. , constructs) against their similar sequences 

in SYNTAB. In addition, analysis is occasionally dependent on the 

values of "function registers". Also, the order in which CONCOR 

subsequences (in the vicinity of the scan position) are examined is 

dependent on the construct which is in the scan position. 

All of these features are accommodated within a table of uniform 

format, hence this format and its interpretation are of necessity 

complex. The basic structure of SYNTAB is that of a linked set of 

tables and subtables, each entry specifying a ling to another table. 

A "primary table" is used, which contains one entry for each construct. 

The primary table is of course the first n entries in SYNTAB. 
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and which is thought of as being aligned with the CONCOR symbol in the 

scan position (NEXPOS). The matching procedure is always begun by 

reference to the entry corresponding to the construct in scan position; 

this reference determines for the given scan position the interpretation 

of all subtables to be examined. 

b. Typical Subtable Configuration 

The set of possible interpretations of primary table entries is: 

(a) No match is possible for this scan position. 

(b) A match has already been obtained. 

(c) Matching will proceed successively to the "left", 
starting at POS. 

(d) Matching will proceed successively to the "right", 
beginning at NEXPOS + 1. 

(e) Matching will begin at POS, and then in directions 
given in further entries. 

Clearly, the handling of primary table entries is atypical: match with 

the "scanned" symbol is automatic, and the entry sets the conditions for 

further matching. To illustrate more usual handling, and also a typical 

subtable configuration, suppose that the CONCOR string 

X A B C Y Z w 

n 
POS NEXPOS 
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is under consideration. Then if the construct C leads to interpretation 

(c) above, and if the sequences in SYNTAB are 

'""a A C 

ABC 

BBC 

^_C C C 

the subtable configuration below is obtained. 

T 
o 

In this example, the primary table entry designates the subtable T 

and similarly every entry designates either a subtable or (if a com¬ 

plete sequence is matched) a "definition number" . Basically, the 

entries of a subtable are matched successively against the appropriate 

CONCOR symbol, each successful match resulting in examination of a 

further subtable, until either 

(a) no further match is possible (the subtable is 
exhausted), or 

(b) a complete sequence is matched. 



Analysis in this case leads to the "definition number" N 
2 ’ 

For the interpretation (d), this process would be identical except 

for the direction in which sequences are checked. The interpretation 

(a) would signify that no subtables exist, whereas (b) would signify that 

no subtables were necessary, since the primary table entry itself had 

resulted in a complete sequence match. 

c. Configuration for Syntactic Functions 

The sequences of the above example correspond to syntactic pro¬ 

ductions of the form shown on pages 35 and 36. Another form of syn¬ 

tactic production must now be discussed which form utilizes the "syntactic 

function". We have noted that analysis sometimes depends on the value 

of a "function register"; we now present both a notation and an interpre¬ 

tation of SYNTAB to accommodate this feature. 

All productions thus far discussed have the basic form 

+-> <t> 

where and <)> are symbol strings; once has been "recognized", 4» 

is uniquely determined. In certain cases, <f> is defined as a function ¢, 

defined for some numeric variable Z, so that the corresponding syntactic 

production may be written as 

*-► ® (Z), 

or may be written provided all "function names" are required 

to be unique. 
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The "recognition" of + now results in testing of the value of Z, and one 

of several strings is chosen as <t> on the basis of this value. 

For example, we might have 

(Z) , 

0 < Z < 3 

4 < Z <S 6 

Z = 7 

Z > 8 

so that recognition of XYZ results in either XYA, Q, ZYZ, or X, de¬ 

pending on the current value of Z. Our system use function registers 

F. to represent numeric variables, and only the values of such 

registers are permitted as arguments Z of syntactic functions. We 

may thus use the more descriptive notation to represent a 

syntactic function. 

XYZ « 

where 

* (Z) =- 

XYA for 

Q for 

ZYZ for 

X for 
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! 
I 
! 

Syntactic functions are accommodated in SYNTAB as follows. 

First, the construct value of 1 is reserved to signify a syntactic function 
$ 

in SYNTAB; we use the notation FCN to denote this value. Such entries 

appear only in subtables (e. g. Tj, T2, etc. ), but not in the primary 

table. Each FCN entry designates a subtable, which designates 

(a) the function register which is to act as the numeric 
variable, and 

(b) a set of bounding values, each value designating a 
"definition number". 

To illustrate this use, consider the examples 

P -► * (F14) 

^XYZ -> ^(F22) 

where 

for F14 = 0 

9 (F14) R for F14 = 1 

for F14 £ 2 

(N,) 

<n2) 

<n3> 

^ (F22) = £ 
XYA for Oi F22¿ 3 (N4) 

Z for F22 £ 4 (N_) 
5 

These examples result in the subtable configuration below 

$ 
For any language, all values of CONSTR in CONCOR entries are * 2, with 

of course the exception of TES and PES markers having the reserved value 0. 

I 
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(Note: 4095 is the largest possible function register value. ) 

In each case the FCN entry (construct value = 1) denotes a subtable 

whose first entry specifies the function register Fj which is involved. 

Each successive entry designates a value , and corresponding defini¬ 

tion number N.. The are arranged in strictly increasing order (i. e. 

y < y ^), and the last value given is always 4095 (the largest possible 

value of F. ). To evaluate the syntactic function, the entries are examined 

in succession. If F.£ , then the designated is taken, otherwise 

the (j + l)st entry is examined. Since the last value is 4095, the relation 

must be satisfied for some entry. 
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d. Configuration for "Rule Sets" 

We have mentioned previously that the order in which CONCOR 

substrings are scanned may depend on the construct in scan position. 

Correspondingly, interpretation (e) on pageiv-i*allows scan direction to 

be table-directed. This mechanism is intended to accommodate "rule 

sets" (i. e., ordered sets of productions), which are discussed briefly in the 

1962 report (pp. 107, 108). 

From the viewpoint of CM1, a rule set for a symbol S is comprised of 

a set of sequences, all containing the symbol S in scan position, which 

are to be tested for a match in a specified order. For example, the fol¬ 

lowing rule set for X : 

RULE (X) 

(1) WXH -> P 

(2) XY -» Q 

(3) WX -> R 

(4) X -> Z 

specifies that the symbol to the right of X is to be matched against Y in 

(2), before the match to the left for W in (3) is made. Thus, if the CON¬ 

COR substring containing X is in fact WXY, the match completed will be 

(2) rather than (3); if this substring is in fact WXH , the match completed 

will be (1). 

The direction of scan may thus be either to the left or to the right 

or both in the same production. More important, it is necessary to accom¬ 

modate the situation typified by (3) and (4), in which 
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(a) further symbols to the left or right are checked for 
match, and then 

(b) if none is obtained, then a match is complete, what¬ 
ever symbol had previously been checked. 

Thus, (3) checks for WX ; but if this is not present, X is nevertheless 

matched. As another example, consider 

ABCX -> L 

(6) BCX -» S 

(7) CX -> M 

as an alternative rule set for X . In (5), if B is matched, then (5) will 

be matched if an A is to the left, and otherwise (6) will be matched; and 

so on for (6), (7), and (8). First three symbols, then two symbols, then 

one symbol, then no symbols to the left of X are to be checked. 

A combination of mechanisms is used to accommodate rule sets. 

First, the construct value of 0 is reserved to represent a special reserved 

construct name: NEXT. The construct NEXT is assumed to match any 

construct? Thus the appearance in CONCOR of 

X A B C Y Z 

I I 
POS NEXPOS 
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is matched by any of C B 

NEXT B 

NEXT 

C 

C 

C NEXT 

appearing in SYNTAB. 

Productions (3) and (4) may now be written 

r(3) W X  > R 

^(4) NEXT X  > Z 

and simply accommodated by the table structure 

Similarly, the alternative example may be rewritten 

(5) A B 

(6) NEXT B 

(7) NEXT 

(8) 

C 

C 

C 

X 

X 

X 

L 

-> S 

-> M 

NEXT X-> F 
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and accommodated by the table structure 

Interpretation (e), which is used for rule sets, operates as follows: 

scanning is always assumed to begin toward the left, and to continue 

toward the left until SYNTAB indicates a change of direction. When a 

direction change is specified, scanning of subtables then proceeds toward 

the right. Each subtable entry E is checked 

(1) for a match with CONCOR 

(2) for the values which signify FCN or NEXT. 

The action taken for FCN has already been discussed. If either of 

the other conditions is met, the subtable designated by the entry E is con¬ 

sidered next. Prior to such consideration, however, note is taken of the 
4< 

entry E which succeeds E ; if no match is completed in consideration of 
* 

the subtables of E , the matching process returns to consideration of E . 

To illustrate these points, we exhibit the table configuration for 

our first example: 
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A (*) on a subtable linkage indicates a change in scan direction 

from left to right. The matching process begins at entry ; if the 

symbol to the left of X is a W ( is then considered. However, if 

the symbol to the right is not an H , then entry E^ must next be consid¬ 

ered, in order to test for the sequence of (2). 

Interpretation (e) of page IV-13 is the most general interpretation of SYNTAB, 

and could suffice for interpretations (c) and (d). These interpretations 

are used merely for the sake of processing speed, since (e) is inherently 

much slower. 

In comparison with (e), interpretations (c) or (d) have the following 

characteristics: 

(1) Matching scan is in one direction only. 

(2) If the entry E is matched, and the subtable designated 
by E is considered, then (except for the process of (3) 
below) the entry E* which succeeds E is never consid¬ 
ered. Thus, once any subtable has been exhausted with 
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no match produced, the matching process for that scan 
position is terminated by the process of: 

(3) The last entry of the subtable designated by the primary 
table entry (e. g. , above) is checked for the values FCN 
or NEXT. An FCN entry is processed as in section (c), 
while a NEXT entry designates a "definition number" N. 

Each entry of the SYNTAB table is composed of the following items: 

TABCON = a number representing a construct/syntactic type 

DONE = indicates completion of match (= 1 if match is 
complete) 

RITE = indication of scan direction (for interpretation (e) 
only) = 1 if scan direction is to change to the right 

LINK 1 = number of entries in subtable whose first entry is 
given in LINK 1. 
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C. INTERNAL FUNCTIONS PROCESSOR 

Organization 

The internal functions processor (IFTPR) is used to perform the operations 

described in Section III C, via direction by the internal functions table 

(IFTTAB). These operations are performed primarily on three data entities 

FTAB - A set of "function registers", each register containing 

a positive integer < 4096. 

PTAB - The "property table", a table of positive integers <4096. 

The ith entry of PTAB has 4 properties P (i), P.fi), P_(i), 
O 1 2 

P3(i), and an associated name contained in the PINTAB 

table. 

STAB - A set of "symbol registers", each containing some string 

of symbols, 

IFTPR is organized into discrete subprograms, one for each of the different 

types of operations. At the beginning of each operation, control is trans¬ 

ferred to the appropriate subprogram by the use of a program switch which 

is indexed by operation code. In the following we will outline, for each type 

of operation, the specific details and important methods. 

Numeric Operations 

Function registers and properties are all assumed to be positive integers 

<4096. Accordingly, all operations are performed modulo 4096. As 

example, ^ = 2050 and F^ = 2055, then 

INC Fj F2 results in F^ = 9, since 4105 = 9 (mod 4096) 

DEC Fj F^ results in F^ = 4091, since -5 = 4091 (mod 4096). 

For the operation DIV, the integer part of the quotient is taken, so that 

for F = 8 and F “ 3, the operation DIV F F results in F s 2. 
1m 1m 1 
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The operation STV, which sets a function register or property to a given 

value, allows the use of numeric values ^999 as the second operand. 

Two special types of operands may be used in numeric operations; namely 

SCOPE and N(Sxx), the latter is the "number conversion" of Sxx. The use 
I 

and significance of these operands is discussed later. 

Symbolic Operations 

Each symbol register S. (i = 0, 1, 2, 3) consists of 120 consecutive cells, 

each cell capable of containing one six-bit character. Each cell is 

either "blank" or "nonblank"; S. is said to be empty if all of its cells are 

"blank". 

Symbolic orperands are basically of two types - contents of symbol 

registers, or single six-bit characters. By "contents of S.", we mean the 

(possibly null) string oí nonblank characters which is left-justified in S.. 

A single character is referred to either as the i^b "transform" or "value" 

V.(C) associated with a given construct position, since single characters 

are obtained only from the CONCOR string. Every character is assumed to 
th 

have a number of transforms which may be defined; the 0 transform is 

the character itself. These transforms are contained in a "value table" 

(VALTAB); if the character is regarded as a 6-bit number n, then the 

VALTAB entry corresponding to Vj is given by 64i + n . 

The PUT operation places the desired character (s) in S», left-justified. 

The operations PRE (for "prefix") and SUF (for "suffix") are both con¬ 

catenation operations, resulting in the "attachment" of two strings. For 

SUF, a string is attached at the "end" of the initial string, while for PRE, 

a string is attached at the "beginning" of the initial string. As an example, 

suppose Sj = PQRS and = WXYZ. Then SUF 3^2 would result in S^ = 

PQRSWXYZ, while PRE S,S, would result in S. = WXYZPQRS. 
12 1 

! 
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The RM.L and RM.R operations remove or detach from S^, a given number 

of characters. Characters are removed from the "left" (prefix) or "right" 

(suffix) of the symbol register. For example, if ~ PQRS, then RML 

SI 3 results in = S, while RMR SI 3 results in S^ = P. 

It should be noted that symbol registers may contain no more than 120, and 

no less than 0 (nonblank) characters. If S^ is empty, we write S^ =/L. 

Recall that for any symbol string eC, we must have eCA-s/Lot soC . Then 

if Sj = PQR and S2 = .A. we will have: 

Operation 

PUT Sj S2 

PRE Sj S2 

SUF Sj S2 

Result in S^ 

A 

PQR 

PQR 

The effect of the 120-character limitation is to "lose" characters from the 

right or suffix part of the string. Let S, » a,. . . a and S. * b, . . . b, • 
11 n 2 1 k J 

the results of PRE and SUF operations on these are defined as follows: 

Operation 

PRE Sj S2 

SUF Sj S2 

Result in S^ 

For n + k £ 120 For n + k > 120 

. bkar . 

• 3* ^ • • n 1 

bl* * * bkal* * * a(120-k) 

ar • • anbr * * b( 120-n) 

Number Conversion 

One type of operand which may appear in numeric operations is the "number 

conversion" of a symbol register, shown in the table of operand types as 

N(SXX). Use of such an operand implicitly specifies conversion of the 

contents of a symbol register to a number in function register format (i. e. 

a 12 bit positive integer). This implicit operation allows CM1 to make use 

in its analysis of numbers furnished by the input program itself. 

IV-27 



A number of conventions are rigidly adhered to in use of number conversion: 

1. The symbol register contents to be converted are assumed to 

constitute a positive integer, for some radix. 

2. The radix r, 2 ^ r < 63, which is to be used in conversion is the 

value found in at the time of occurrence of the operand N(SXX). 

3. Use of the number conversion operation always results in = 10 

at the end of the operation. 

4. Each (non-blank) six-bit character of SXX is assumed to be a digit 

of the number in the given radix system. 

5. The conversion operation thus computes, modulo 4096, a positive 

integer in internal format equivalent to the integer specified in 

the radix r. The result of conversion is used as specified by the 

numeric operation (e. g. SET, ADD, etc.). 

Scope and Scope Operations 

A scope mechanism is provided within IFTPR. Each scope value corresponds to 

a particular portion of the "program string" CONCOR, and is written as a 

number pair (B., E(B.))3 corresponding to the portion of CONCOR between 
th 11 

the i "begin marker" B ar.d its associated "end Marker" E. A "begin 

marker" by the operation SSE. Scopes are processed by IFTPR using the 

integer items SCOPE AND ENDM, and the table SCPTAB. 

th 
The i entry in SCPTAB represents the number of the end marker associated 

with the ith begin marker. The value of SCOPE represents, at any time, the 

entry number corresponding to the first available entry in which an endmarker 

number may be written (that is, SCOPE represents the "current scope"). The 

item ENDM. represents the number of the last end marker which has appeared. 
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SCOPE, ENDM, and all entries of SCPTAB are initially set to zero. All 

further manipulation of these entries is performed only in response to the 

SSI and SSE operations, as follows: 

SSI - Set the value of SCOPE to the smallest integer 
I >SCOPE such that the I**1 entry of SCPTAB is O. 

SSE - Increase the value in ENDM by 1. 
Set the SCPTAB entry indicated by SCOPE to the new 
value of ENDM 
Set the value of SCOPE to the largest integer 

I < SCOPE such that the I^1 entry of SCPTAB is O. 

The item SCOPE may be used as an operand in numeric operations. The 

basic reason for this usage is to allow PTAB properties to be set to SCOPE, 

for eventual tests on SCOPE of various identifiers. A special convention 

applies to properties and function registers which represent SCOPE values ? 

namely all numbers which represent SCOPE values are ^ 2048. 

Therefore, whenever SCOPE is specified as an operand, the actual quantity 

which must be used as an operand is precisely SCOPE + 2048. 

PTAB Manipulation and Searches - Association with CONCOR 

The operations discussed here are concerned essentially with the formation 

and later "detection" of associations between PTAB entities and syntactic 

entities (constructs in CONCOR). Specifically, the processes performed 

by these operations are: 

1. "definition" of a given symbol string - 

a. entry of the string into PINT AB 

b. reservation of a new PTAB entry to correspond 

to the new PINTAB entry 

c. setting of the "syntactic class" (PQ) of the new 

PTAB entry. 
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2. "association" of a PTAB entry with a construct in CONCOR 

(as well as "retrieval" of this association from CONCOR). 

3. se?.rch to determine if a given symbol string has been 

assigned a PTAB entry (and if the properties in this entry 

satisfy certain conditions). 

4. "identification" of a construct in CONCOR as specified by 

a function or property value (i. e. setting of CONSTR to 

this value). 
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Before discussing the operations, we will indicate, in more detail the 

structure of the PTAB and PINTAB tables. An entry of PTAB has the 

format below. 

PO PI P2 P3 PTHRED 

Properties Location 

Thread 

and the items have the following significance: 

PO 

PJ 

P2 

P3 

PTHRED 

the "zeroth" property, i.e. syntactic class 

the "first" property 

the "second" property 

the "third" property 

location thread; specifies the entry number of 
the next entry associated with the same name 
in PINTAB. 

All PTAB entries are assumed to be zero initially. It should be noted that 

in many languages names need not be unir ue, so that a given name may be 

associated with each of a number of PTAB entries. For speed in searching 

PTAB, the entries associated with a given name are "threaded" together, 

and the PINTAB entry for that name contains the number of the first entry. 

The PINTAB table contains the set of names associated with PTAB, and is 

used as an index by name to PTAB. Thus, PINTAB contains a set of names, 

and for each name, a number referencing one of the entries associated with 

that name. PINTAB is conceptually structured as a linked set of tables and 

subtables, each entry specifying a link to another subtable. As an example, 

consider the set of names 

AAB 

AAB 

ABC 

XYA 

XYZ 
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which is conceptually accommodated by the PINTAB structure: 

Linkages between table entries are indicated via two sets of threads 

denoted THREDly and THRED2. THRED1 specifies the first entry of 

the subtable associated with the element« while THRED2 specifies the 

next entry in the subtable of which the element is a member. Reproducing 

part of our diagram, we have 

PTAB entry numbers are specified via an item denoted ENTNO. 

The individual operations can now be specified. 

DEF - Operates on a symbol string contained in the designated symbol 

register, as follows: 

1. A new PTAB entry is reserved, and the entry number 

corresponding to this entry is set into Fo. 
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2. The string is entered into PINTAB, and referenced to the 

new TPAB entry as necessary (see discussion on use of 

PINTAB). 

3. The syntactic class of the new entry (i.e. P0(F )) is set to 

the given number. 

ASO - Set the CONCOR item REFNO ($jXX$) (i.e. the REFNO item for 

the given construct position) to the value specified. The primary intent 

of this operation is to allow the setting of REFNO to the value in Fo, 

thereby "associating" the particular construct with the PTAB entry 

referred to by Fo# 

RTV - Set the specified function or property to the value found in REFNO 

($+XX$), i.e. to the REFNO value for the specified construct position. 

The intent here is to retrieve associations formed as above. 

IDF - Set the CONSTG item CONSTR ($+XX$) to the value of the speci - 

fied function or property. The primary intent here is to allow identifica¬ 

tion of a given construct position with a PTAB entry, by setting the 

construct to the syntactic class Pq of the entry. 

SER - Search PTAB for all entries having the name specified. For each 

such entry: 

1. Set the entry number into Fq 

2. Perform the set of internal operations following the search 

operation, and ending with an ENS operation. 

A specified set of operations may thus be performed for every entry having 

a given name. Conditions on other properties of the entry may be imposed 

in conjunction with the name test, by use of the TST operation to be 

discussed. 



ENS - End search sequence. No operation is performed; this code 

merely acts as a marker to delineate the end of the set of operations 

performed for an entry meeting the search condition. 

The name used for comparison in the searching of PTAB may be given 

in one of two ways: 

a. As the contents of a symbol register 

b. Implicitly, as the name associated with a given construct 

position. 

For a name given as contents of a symbol register, a search of PINTAB 

is first performed for this name. This search will be successful if and 

only if PINTAB contains a string identical in all respects with that in 

the symbol register - a string of the same length, all of whose charac¬ 

ters "match" those of the string in the symbol register. If PINTAB 

contains such a string, then a PTAB entry number will be specified for 

this string. If PINTAB does not contain such a string, then there will 

not be any PTAB entries satisfying the condition - execution of the 

search, and of all operations contingent on it, is immediately fulfilled 

by skipping all of these and proceeding to the next operation following 

these. 

If the PINTAB search is successful, the PTAB entry number given is 

(potentially) the first of a list of numbers, each succeeding number to be 

found in the PTHRED item of the entry being considered. All of the 

entries which will be considered will meet the name criterion. Entries 

are considered as follows: The contingent operations are performed for 

the specified entry number. After this is done, the PTHRED item is 

tested; if zero, there are no more PTAB entries to be considered. If 

PTHRED ¿ 0, then PTHRED specifies the next entry number. 
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Assignment of a new entry for a given name also requires a search 

of PINTAB. If the search is not successful, then the name is added to 

PINTAB, and the new entry number referenced. If the name is in PIN- 

TAB, then all the entries having that name are examined until the one 

having PTHRED = 0 is found. Then, this PTHRED is set to the new entry 

number, PTHRED of the new entry being set to zero. 

If a search name is given as specified being identical with that of a given 

construct, the PTHRED items of PTAB must be examined to find the 

beginning of the list having that name. For all entry numbers smaller 

than the one specified, the PTHRED items are examined to see if they are 

equal to the one specified. If none such is found, the one specified is the 

beginning of the list having the same name; if one is found, the process is 

repeated for that entry number. 

Tests 

The operations described here provide a means of testing for conditions 

on numeric and scope items - which is to say, testing for conditions on the 

values of function or property registers. Contents of symbol registers 

may not be tested by this means. 

The underlying purpose of these operations is to allow three types of 

manipulation: 

1. Testing for conditions of "legality" of the language, and setting 

an "error flag" if such a condition is not met. 

2. Effectively rendering PTAB searches conditional on tests of 

numeric properties. 

3. Conditional performance of operations. 

Two types of operations are used in performance of testing: a "delineation" 

operation TST, and a set of "conditional" operations (each of which tests for 

a certain condition). The TST code is used to delineate the set of conditional 

operations which actually comprise the test, and also the set of operations 

whose performance is dependent on outcome of the test. 
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Every test delineated by a TST operation is comprised of a set of "condition" 

operations, each of which tests for a given numeric or scope condition. The 

set of numeric conditions used is 

GR 

EQ 

NQ 

Scope conditions will be discussed later in this section. The set of results 

obtained from such a set of operations defines a test "value"; 

1 successful 

0 unsuccessful 

Each conditional operation has such a value, and these values are logically 

"anded" or "or'ed" together, as specified by the operation. Thus, each 

condition operation specifies 

a. A numeric condition on functions or properties 

b. Desired manipulation of the test value — whether "and" or "or" is 

desired. 

The total test value is thus an ordinary Boolean function of the individual test 

values, and is computed in this fashion. 

The individual operations can now be presented. 

TST - Perform the sequence of condition operations which comprise the 

specified portion of IFTTAB. Compute a test value as specified by these 

operations. If the final test value is 1 (test is successful), perform the 

operation following the TST code; if the final value is 0, skip the following 

ope ration. 
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AGR - Test if Ej> (see table of operation types); "and" the test 

result. 

OGR - Test if Ej > E^; "or" the test result. 

AEQ - Test if Ej = E^; "and" the test result. 

AEQ - Test if Ej = E^J "or" the test result. 

OEQ - Test if Ej = E^; "or" the test result. 

ANQ - Test if E^^ E2» "and" the test result. 

ONQ - Test if Ej E^; "or" the test result. 

ASI - Test if Ej is "interior" to E2; "and" the test result 

OSI - Test if Ej is "interior" to E^; "or" the test result. 

Miscellaneous Operations 

This section discusses the "print" operations PRS and PRN, which are 

intended to "log out" messages and the operation CAP. 

PRS - Print or log out: 

a. Program Line Number 

b. Message whose number is specified 

c. Symbol string in Sxx, or 

Number in Fxx, or 

Name associated with a given PINTAB entry. 

Note that a search through PTAB (similar to that when a name is implicitly 

given) and also a "backward" search through PINTAB are required to obtain 

a name. 
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Also: set an "error flag" to indicate that an "illegal condition" for this 

language has occurred. 

PRN - Print out as for PRS; do not set error flag, since an illegal condition 

has not occurred. 

CAP - Call (transfer control to) the "auxiliary processor" AUXPR. The 

intent of this operation is to allow use of the subprograms of CM1 for purposes 

other than compilation and to facilitate expansion of the set of internal opera¬ 

tions. The number given as NUM2 is used as a numeric index for an AUXPR 

switch, to choose the correct auxiliary routine desired. 

D. CODE PROCESSOR 

The code processor performs the simple function of transferring operation 

codes from the code table (CODTAB) to the code string (CODCOR), at the 

same time substituting proper arguments. A simple macro-block capability 

is incorporated, and CODPR maintains a "push-down list" of "return points" 

in order to expand these properly. 

CODPR also outputs conditional blocks, as discussed in Section III-C. The 

mechanism for this is extremely simple. A CON code causes evaluation 

of the specified condition. If the value of the succeeding VAL code successfully 

compares with the condition value, the block following the VAL code is output. 

Otherwise, the VAL code itself indicates the location of the next VAL code. 
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SECTION V 

TRANSLATION FROM BASE LANGUAGE TO MACHINE LANGUAGE 

A. INTRODUCTION 

This section will discuss the methods of construction of the translation 

(BASE-^-1604), which is denoted T04B, and the translator (BASE-*4218), 

which is denoted T18. It has been possible to construct these translators 

to perform their processing via machine-independent algorithms, indicating 

machine dependencies by the contents of a data table. Thus each translator 

consists essentially of a basic program (which might be called a "translator 

model") in conjunction with a set of machine-dependent data. 

Both of the translators produce, instead of machine binary language, instructions 

in the formats respectively of the two assembly languages. This procedure 

was followed for several reasons: first, both a "BASE-to-binary" translator 

and an assembler must construct dictionaries, and later assign machine 

addresses for the dictionary entries. Also, current assemblers produce 

code in consonance with their standard operating systems, and may even 

produce code sequences to optimize use of machine facilities. Hence 

production of assembly code appeared to be more desirable them production 

of binary code. It should be possible ultimately to bypass the first pass of 

the assemblers, using only the assembler second pass, but thus far this has 

not been attempted. 

It has been felt that BASE language operations, besides being couched in 

macro notation, could be directly translated by a macro assembler, and 

preliminary investigation had shown that znacros for this purpose could in 

fact be written. However, it was found that present macro assemblers lack 

certain crucial facilities - the ability to set and use attributes of data variables, 

and retrievable auxiliary data storage - without which such macros become 

very tedious, lengthy and inefficient. Consequently, the translator model 

algorithms have been programmed directly in JOVIAL, and it is felt that the 

efficiency of these algorithms is much higher than the potential efficiency 

of a macro processor. 
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B. ORGANIZATION AND DESIGN 

Inputs to the translator model are 256-entry blocks of BASE language code, 

each entry containing an operation code, operand type, and operand. As 

noted previously, the output from translation is assembly code. 

The translator is organized into a main program (which consists primarily 

of a set of program switches), major subroutines GET andINSTR, and some 
small subroutines. 

The program switches within the main program are based on the type of BASE 

language operation under consideration, and (when necessary) on operand type 

and accumulator type. Data-defining operation codes cause formation of 

dictionary entries, and corresponding data definitions in assembly code format 

are output at the end of translation. Several of the operations (e.g. SBR) 

require the use of a retrievable auxiliary data storage. Such use is indicated 

at the appropriate program switch points. Decision within the translation model 

to output code and/or form a dictionary entry and/or store information in 

auxiliary storage is always made via the same mechanism - transfer within 

the program to a "switch point" corresponding to the operation, operand or 

accumulator type under consideration. This mechanism is of course 

independent of the specific operations which are considered. The GET procedure 

obtains successive entries of BASE language code when initiated by the main 

program, and lists these entries on a "debug listing". 

The actual code conversion - from machine-independent form to machine- 

dependent assembly language - is performed within the procedure INSTR. 

To perform this conversion, two tables containing machine-dependent 
information: 

FORMAT table - each entry is a particular sequence of output characters, 

into which the procedure inserts data operands (also 

in the form of character sequences) 
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DRCTOR table - "director table"; each entry of this table specifies 

•li 

(1) a particular character sequence within the 

format table 

(2) number of data operands 

(3) for each operand, a position within the desired 

character sequence. 

The number of operands which may be specified in a DRCTOR entry is at 

present limited to 5. If desired, the translator output can be preceded or 

succeeded by assembler control cards. 

It whould be noted that this mechanism is completely general for the case of 

conversion to assembly format. This is because assemblers accept only a 

limited number of different formats, which can be specified using the FORMAT 

table. The mechanism allowing insertion of specific operands then guarantees 

that any legal assembler formât can be generated with appropriate operands. 
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