
UNCLASSIFIED

AD NUMBER

AD488613

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors; Critical
Technology; MAR 1966. Other requests shall
be referred to Space Systems Div., AFSC,
Los Angeles, CA.

AUTHORITY

SAMSO USAF ltr, 19 Aug 1969

THIS PAGE IS UNCLASSIFIED



NOTICE

This document is subject to special export
controls and each transmittal to foreign
governments or foreign nationals may be
made only with prior approval of SSD
(SSTRT).

Report No. TOR-669(9990)-I4

StPROBABILITY OF DETECTION FOR SOME
ADDITIONAL FLUCTUATING

TARGET CASES
Prepared by
P. Swerling

Tracking and Radar Department
Sensing and Information Systems Subdivision

Electronics Division

El Segundo Technical Operations
AEROSPACE CORPORATION

El Segundo, California

Contract No. AF 04(695)-669

March 1966

Prepared for

COMMANDER SPACE SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

LOS ANGELES AIR FORCE STATION
Los Angeles, California



ILI

_ formation in this report is embargoed under the U. S.

Export Control Act of 1949, administered by the Depart-

ment of Commerce. This report may be released by

departments or agencies of the U. S. Government to

departments or agencies of foreign governments with

which the United States has defense treaty commitments.

Private individuals or firms must comply with Depart-

ment of Commerce export control regulationit.



Report No.
TOR -"9(9990)- 14

PROBABILITY OF DETECTION FOR SOME ADDITIONAL

FLUCTUATING TARGET CASES

Prepared by

P ing. Co ltant
Tracking and Radar Department

Approved by Approved by

HL. Iirschl. Director
Tracking and Radar Department Sensing and Information

Systems Subdivision j

The information in a Technical Operating Report is developed for a particular

program and is therefore not necessarily sif broader techitical- -p•plczbt•t,.

El Sagado Technical Operations
AE4OSPACE CORPORATION

El Segundo, California

I' .

;l •m ma ll • • I I- mm m m mm- -nl- -Imm- mmm



ABSTRACT

The chi-square family of signal fluctuation distributions is defined. Rules

are given for embedding the Swerling cases, and other cases of interest, in

this family. Probability of detection curves are presented for the chi-square

family of fluctuations, iacluding cases whose probability of detection curvcs

cannot be bracketed by the Swerling cases and the non-fluctuating case. The

work of Weinstock has indicated such cases to be of practical interest; the

fluctuation loss, for probability of detection exceeding . 50, can be much

larger than that for Swerling Case I.

A discussion and partial analysis, accompanied by examples, is devoted to

the question: when can the detection probability curves for signal fluctuations

not belonging to the chi-square family be well approximated by curves result-

ing from chi-square fluctuations, and what methods can be used to choose

adequately fitting chi-square fluctuation models when such a fit is possible?
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SECTION I

INTRODUCTION

It is often assumed that the Swerling cases (), together with the non-fluctuating

case(l), bracket the behavior of fluctuating targets of practical interest.

However, recent investigations of target cross section fluctuation statistics

indicate that some targets may have probability of detection curves which lie

considerably outside the range of cases which are satisfactorily bracketed by

the Swerling cases. The curves of detection probability vs. average signal-

to-noise ratio for such targets may be considerably flatter than that for

Swerling Case I; put dnother way, the fluctuation loss for detection probabilities

greater than . 50, based on required average signal-to-noise ratio to achieve

a given detection probability, may be considerably greater than for Swerling

Case I. The recent work of Weinstock(2) provides examples. It is of interest

to compute probability of detection curves for cases of this type, of which

those considered by Weinstock may be regarded as extrapolations of the

family of Swerling cases, and also to interpolate to various cases intermediate

between the Weinstock and Swerling cases, and the non-fluctuating target.

Moreover, many examples can be g*ven of fluctuation statistics, of potential

practical interest, which lead to detection curves which cannot be well approx-

imated by a fluctuation model belonging to any simple family of extrapolations

or interpolations of the Swerling cases.

This report contains a collection of results on these topics, motivated by

cases of possible practical interest which the author has encountered. Even

though the results presented are an extension of previous calculations, they

by no means provide good approximations for all cases which may arise in

practice.



Section 2 begin- by stating some general, well-known results concerning the

properties of fluctuation distributions which determine the probability of

detection curves. Next, the chi-square family of fluctuation distribution3 is

defined, and rules are given for embedding the Weinstock cases, the Swerling

cases, and the non-fluctuating case in the chi-square family.

Weinstock(2) has investigated the fluctuation statistics likely to characterize

certain target classes consisting of various relatively simple shapes, or

combinations of shapes, similar to some types of earth satellites, wita

particular reference to the question of whether their fluctuation statistics

can be well approximated by chi-square distributions. His distributiois are

derived by considering both the theoretical scattering patterns of such objects

and their scattering patterns as measured from scale models.

He found that the chi-square family does not yield entirely satisfactor, fits to

the empirically-derived distributions; more important for present purposes,

however, is his finding that the best chi-square fits to some of the distribu-

tions call for using chi-square distributions with less than two degrees of

freedom, in fact, with degrees of freedom between one *and two (Swerling

Case I is chi-square with two degrees of freedom).

He estimates that the fluctuation loss for such cases, based on average-

required signal-to-noise ratio, is significantly greater than for Swerling

Case I, the "worst" of the Swerling cases. However, Weinstock's estimate

of fluctuation loss is not based on detection curves calculated from tht

probability distribution of signal plus noise at the output of the post-detector

integrator, but rather, on a reasonable rule of thumb involving just tho signal

fluctuation statistics. In Section 3 of the present report, curves are given

of probability of detection vs. average signal-to-noise ratio, based on the

actual signal plus noise distribution, for the Weinstock case with one degree

of freedom. The results show deviations from the detection curves for

Swerling Case I which are even greater than those estimated by Weinstock.

-2-



In Section 4, a rapid, simple, and reasonably accurate method is given for

interpolating to intermediate cases which still belong in some sense to the

chi-square family. This method enables complete results to be derived for

the family of cases considered, without recourse to further computation; the

results are all derived by graphical interpolation utilizing only the graphical

results for the Swerling cases and the non-fluctuating case presented in

Ref. 1, and for the Weinstock case presented in Section 3 of this report.

Also, in Section 4, a discussion is given of procedures for applying these

results and of some of the limitations to which they are subject.

Section 5 presents a partial analysis of a class of fluctuation distributions of

potential practical interest, which is characterized by the property that for

one region of the parameters involved, these distributions can be well

approximated by distributions belonging to the chi-square family, while for

other valtes of the relevant parameters, no such good chi-square fit is

possible.

-3-



SECTION Z

THE CmI-SQUARE FAMILY OF DISTRIBUTIONS

2.1 PRELIMINARY DISCUSSION

Suppose the receiver model is the familiar one usually considered

with white receiver noise, independent frorr. pulse to pu!se; a normalizeel

square-law ernvelope detector; and uniform integration of N detector outputs

follw'ed by P threshold. Denote by x.. i a , .. , N, the signal-to-noise

tatios of the individuai pulses. with N the number of pulses integrated,; and let

N
X = E•'xi I

i=!

if the signal is fluctuating. x. and X are random variables. As shown r,i

Ref. 3, for the receiver model under ans:deration, the probability d€ensitV

fnc.tit-: of the output of the p-st-detection integrator is determined by the

probalidty distribution of X which in 'urr is determined by the joint proba-

Wblity c'stribution of x 1 ,.... xN.

Z. 2 THE CHI-SQUARE FAMILY

Let v be any random variable, with mean v. The ranoom vat table v -ail he

said. to have a chi-square distribution with Zk depreer bf freedom :f the

probability density function of v is

w"(v.v) :k - - I exp v )0 2)
V V v

p0 .

-4 -



(In conventional terminology of statistics, the chi-square distribution is

obtained when ; = Zk and Zk is an integer; however, a terminology will be

used here according to which the chi-square family of distributions is the

two-parameter family defined by eq. (2), and Zk is not restricted to be an

integer.

'Now, denote by x. the ensemble average of. x,, and by X the ensemble average
I I

of X. Then. from (f)I

N
T :Ni (3)

where

i ~i

The fluctuation distribution will be called strict-sense chi-square if X has a

ch-.-square distribution. In such a case, the probability density function of X

will be denoted by

WK(XX) 1 K K- *x (5)
(K I Y) x x x

:0 X SXO

where 2K = number of degrees of freedom of X.

Ordinarily. it is more usuas to specify f;uctuation distributions in terms of
the joint distributions of the single-pulse signal-to-noise ratios xi (and hence

of the target cross sections seen on each pulse, which are related to x by a
I
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multipllcative constant, assuming other factors in the radar range equation

do st vary). The fluctuatils will be called wide-sanse chi-sqiuare if the

indivWdal x, have chi-square distributions. In this case. the probability

deasity functione of the individual xi will be denoted by

I kWk(Xi* x) e x. >0 t61
i (k I )

0 x. O1

where Zk = number of degrees of freedom of x..

In some special cases, as described immediately below, X as well as the

individual x. are chi-square distributed. In more general cases, the fact that

the x i are chi-square distributed does not imply that X is also, although in

many such cases it may be true that the distribution of X can be closely

approximated by a chi-square distribution.

Z. 3 RULES FOR EMBEDDING VARIOUS CASES IN THE

CHI-SQUARE FAMILY

Embedding of the Weinstock, Swerlang. and non-fluctuating cases in the chi-

square family is governed by the following rules:

Rule 1: If the individual xi have chi-square distributions all w*ith
the same mean x and the same number of degrees of freedom 2k.
and if the fluctuations are pulse-to-pulse independent, then X has
a chi-square distribution with mean X = Mx and degrees of free-
dome ZK = UkN.

Rule 2, If the individual xi have chi-square distributions all Aith
the same number of degrees of freedom Zk (but not necessarily
with the same means), and if the fluctuations are scan-to-scan,
then X has a chi-square distribution with mean Y = N-. i being
given by eq. (4). and degrees of freedom 2k = ZK. (If the individual
means Ti are different, scan-to-scan fluctuation means that the
values of x /ri are all equal for the N pulses on a single s. an.

-6-



Rule 3: Suppose the individual xi have chi-square distributions
all wit :he same mean x and the same number of degrees of
freedom Zk. Also suppose the N pulses can be divided into
f groups. each containing NOf pulses, such that the fluctuations
are completely correlated (i. e. . the values of xi are equal) for
all pulses within a group, but the values of x, are statistically
independent from group to group. Then, Y has a chi-square
distribution with mean X = NT and degrees of freeborn ZK = Zkf.

Fluctuations of the type described in Rule 3 might arise, for example. as

the result of frequency hopping, where the frequency increments are large

enough to produce independent samples for the target in question, and where

f different frequencies are used. Fluctuations resulting from target motion

would generally not be of the type described in Rule 3.

It is also of interest to consider the case where the fluctuations are of the

kind described in Rule 3. with the single exception that the f groups do not

all contain the same number of pulses. Such a case might arise, for example.

if fluctuations were produced by f different frequencies but if N were not an

integral multiple of f. In this case, X is not chi-square distributed. How-

ever, it tan be shown, by methods to be- outlined in Section 4, that the dis-

tribution of X in most cases of tMis type, if the groups are not too disparate

in size, is closely approximated by a chi-square distribution with mean

Xz Nx and degrees of freedom Zkf.

The rules stated above imply the fc.lowing table showing the relation of various

standard cases to the chi-square family.

Discussion of procedures to apply when X is not rigorously chi-sqlaare (such

as. for more general types of fluctuation correlatians, or when xi are not

chi-square), and the limitations of such procedures, will be deterred to

later sections.

-7.



Table 1. Relation of Various Fluactuating Target Cases to Chi-Square F',ii-OI

Fluctuating Target Model Value of k v.alue ,, 1K

Swerling Case I I i

Swerling Case II i N

Swerling Case Ii 2 0?

Swerling Case IV 2 ZN

Weinstock Case. Scan- To-Scan 112 1/2

Weinstock Case. Pulse-To-Pulse, 1/2

Non- Fluctuatinj Case or x

ii

_



SECTION 3

I
DETECTION CURVES FOR WEINSTOCK CASE k -K

Figures 1. 2. and 3 show probability of detection curvet vs. x for the case

k K (i.e. . the Weinstock case with scan-to-scan f~uctuatio•s), (or

N 1. 10. 100 respectiveiy, and !or false alarm %ufraer a 1 1010 Ide/fied

as in Marcum !.

As can be seen, the curves lie significantly outside the range of caset

bracketed by the Swerling cases. It is unnecessary to compute separate

curves for the Weinstock case for pulse-to-pulse fluctuations. since, by

Rule 1. such curves mire 6dentical to those for scan-to-scan fluctuations

with higher values of k.

It is. of course, of interest to extend these results to all values of k between

one-half and infinity, as well as to different values of n and N. This could be

done by repeating the computations using the general formulas presented in

Section 3. 1. a simpler method, without requiring recourse to additional

computations, is given in Section 4.

DERIVATION OF FIGURESI. Z, 3

Suppose the random variables x I are chi-square distributed with common

means x and degrees of freedom Zk, i. e.. with density function given by

eq. (6). According to the method described in Ref. 3. the characteristic

funct~on of the signal plus noise output y of the post-detector integrator.

assuming N completely correlated pulses. is (using the same notatzon and

definition of chard-teristic function as in Refs. 1. 3. and 4)

C(p) iei - (I + p)'N([l - 4P l

I NV p"(Npk
N k I -i jp . (71

•)i I I
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Utilizing pair no. 581. 1 of Ref. 5, with appropriate changes of notation, this

means that the probability density function of y is

+rNx -
dP(y, N, k) = __k_ yN-I -y FkN, ldy y 0 (8)

(N - +) k'

=0 , y<0

where IFI is the confluent hypergeometric function

The probability that y exceeds a threshold Yh is

P D f= 0 dP(y, N, k) (9)
Y b

The detection probability PD can be desk-computed by utilizing the asymptotic

expansion of the confluent hypergeomet'ric function. Using the derivation of

Copson (6), pp. 260-265, the first three terms of this asymptotic expansion are

N (N) e z + (N - k)(1 - k)F I (k, N , z) (k= N -k [ I +
I Fr(k) N-k 1 z

+ (N - k)(N + I - k)(1 - k)(2 -_) .+ (10)

where I. is the gamma function.

The variable z = y(I + k/Nx)- is all in cases of interest sufficiently large

for the asymptotic expansion to yield good results

Refs. 7 and 8, in stating the asymptotic expansion of 1 F 1 , give a series of
terms additional to those which appear from Copson's formula(6 ). These
terms are much smaller than those arising from Copson's formula. Moreover,
it is difficult to see how these additional terms could be applicable in the case
at hand, since for k = I /Z, z real and positive, they would be pure imaginary
while 1 FI is purely real.

-13-



Finally, a formula for P Do suitable for desk computation, is obtained by
inserting (0) into (8) and (9) and performing the integration. In the cases

at hand, after various obvious integrations by parts, the following result is

obtained. Let

z Y b
b + N-x

k

Then, for k ;d integer,

P D = A I + A 2 + A 3

In the latter expression, the terms A,, A 2P and A 3 are given by:

+ k -k I( Zb k 1)]

N_ 1 (13)1 1 xjN I 4-k

where I is the incomplete gamma function (1) :

I P) e - v vpdv

fo 
P!

I + -L N-k+i (N k) e- z b z k-i

A N-x I b (14)2 1 + N:i] r (k)
k

-14-



and 4

A + N - k+2 (N -k)(N- k e Lzb ze k- 4b

321 + _2(1 -I)- F(k - 1) - I(k) (15)

In (14) and (15), I is the incomplete gamma function with the same arguments

as in (13).

Somewhat simpler appearing formulas can be obtained by collecting terms;

ho-ver, it is computationally convenient tn segregate the terms A1 , A 2 ,

and A3 %rising from the first, second, and third terms of the asymptotic

expansion of IF1.

The actual computations of Figs. 1, 2, 3 were done using Table 26.7 of

Ref. 7, which gives values of the incomplete gamma function. The values
10

of Yb used were 23.4, 42. 3, and 168 respectively for n = 10 , N = 1, 10,
100; these were taken from Figs. 27 and 57a, pp. 141-142 of Ref. I (actually,

from the author's records of the original calculations of the curves of Ref. 1).

For many points, the first two terms of the asymptotic expansion suffice.

-15.



SECTION 4

INTERPOLATION TO OTHER VALUES OF K

Figures 4, 5, and 6 give results for essentially all cases where X is chi-

square distributed, for 'N - i, 10, and 100 and n = 1010, and for

1/2 : K 5 co(the case K = 1O00 is, within a tenth of a db. or less, equivalent

to K = cc). The results are plotted, in conformity with usual practice,

against 3, the required average signal-to-noise ratio for individual pulses;

however, the vertical axis is K, half the number of degrees of freedom

for X. Methods of extending these results to other values of n and N will

be stated shortly.

The remainder of this section comprises: a description of the interpolation

method used to obtain these results, with an estimate of the accuracy achieved;

rules for extending the re'sults to other values of n and N; rules for applying

the results to various cases; and an outline of a possible accuracy investiga-

tion when applying the results to cases where X is not rigorously chi-square

:distributed but may be approximately so distributed.

4. 1 METHOD OF DERIVATION OF FIGURES 4, 5, AND 6

The method of obtaining Figs. 4, 5, and 6 is based on Table I, Section 2. 3.

This table enables many of the points in Figs. 4, 5, and 6 to be read directly

from existing graphical results, either in Ref. I or in Section 3 of this

report. In this manner, the following points can be directly obtained: For

N = 1,K = 1/2, 1, 2, 1000; for N = 10, K = 1/2, 1, 2, 10, 20, 1000; for

N = 100, K = 1/2, 1, 2, 100, 200, 1000. (K 1000 is equivalent within
less than . i db, to the non-fluctuating case.) These points alone are almost

sufficient for a graphical interpolation. However, to get a good interpolation,

they should be supplemented by a few intermediate poihts. This can be

conveniently done as follows.

-16-
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For any fixed value of K, let

x(K, N, PD) required value of x to get (16)

PD for N integrated pulses

Then approximately,

10 log 10 (3(KNN'PD)} 1 D 0 logi 0 {.-(KN, PD)} + 10 logl0/•t

+ LINT(K, PD' N') - LINT(K, PD' N) (17)

where LINT is the integration loss expressec. in db. However, the integration
loss 1,INT is, within a few tenths of a (ib, independent of K. One can verify
from Swerling's curves(1) that for Swerling Case 1, with K . 1, the integration
loss is within halr a rib or less of that for K 0, for the range of parameter
values of interest. Moreover, in order to get intermediate points for

Figs. 4, 5, and 6, it is nectessary only to apply eq. (17) for higher values
of K, v. g. , K Z 4. For suIt'h vahues, the integration loss is within two or

h rt'e, tenths of a (11) of that for K 0. Thus, the values of LINT for the non-

filu'tuating caset can b(' usen.

In this way, points on the curves o" Figs. 4, 5, ani 6 can be obtained for
intermediate values of K. As an illustration, suppose one wishes to obtain
thte points K 10 and K 2(0 fo'r Fig. 6, i. e., for N 100. The procedure
is as follows. First determinte x (10, 10, Pl)) and x (20, 10, PD) directly
from the curves for N 10, n 10 , SwerLing Cases II and IV, respectively.
'h'lenii detenrmint, x (10, 100, Pl)) and x (20, 100, PD) fr rnm e q. (17).

'l'h p)lotti ng of curves such as those in Figs. 4, 5, and 6 can proceed very
rapidly; v. g. , about 15 to 30 minutes suffices for an entire set of curves
for a givt,n value of N.
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The major sources of error in the resulting curves *re:

(I) errors resulting from reaJing vaaues of X off the
graphs in Ref. 1.

(2) errors in applying integrAtion loss for intermediate
points.

(3) errors in fitting a curi-e through the resulting points.

Of these, probably (I) is the major source of error. It is estimated that,

for ali points on the curves, the revultant of such errors is bounded by

about . 5 dbý and it may. for riany points, be of thw order of two or three

tenths of a db.

4. Z EXTENSION TO OTHER VALUES OF N AND n

The extension to other values of N rr.iv be a,.complished by plotting the

points N - 1. 10, 100. together with other wints obtained from eq. 0 7).

anci fitting a curve to tine resulting points. The error in applying non-

Il..ctia'ng integratio- loss can be expected to be srmal, even for smnll•

K. since one wili auy need to apply the difference between the integration

.oases for relatively close values of N and N' (such as 10 and )0). ad

these differences will to gigh accuracy be independent of K.

Extension to other values of n can also most conveniently be accomplished

by applying a smaU correction to x. which to high accuracy can be taken

equal to the correction that would %ipply for non-fluctuating targets. (This

correction is roughly . 35 db per order of magnitude change in n for a near
to 610. and increases to about . 7 db per order of magnitude for n near 10 .,

It to estimated that. for the paraneter regions of interest, the** nethods of

extending to other n and N could introduce resultant errors of the order of

2 2 to . - db. the resultant of those with ihe previously mentioned errors in

Fige. 4. 5. and 6 a estimated to be within about . 6 db throughout the

parameter region of interest.
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The results presented here for K i 1 should agree with those of Refs. 9 and

10 for the cases labelled V 5 i in those references with V = I/K. (The cases

labelled V > i in Refs. 9 and 10 have however no relation to our cases

K < 1. ) The results in Refs. 9 and 10 were obtained by digital computation.

Comparison shows agreement, within the expected accuracy, in those cases

where there should be agreement. Great caution must be exercised in

utilizing the material in Refs. 9 and 10, which state some highly misleading

assumptions and conclusions as to the manner in which the results can be

applied and interpreted.

4. 3 RULES FOR APPLICATION OF FIGS. 4, 5, AND 6

As previously mentioned, fluctuation distributions are more commonly

specified in terms of the joint distribution of (xi) than in terms directly of

the distributions of X. Thus, the procedure for applying Figs. 4, 5, 6, or

their extensions to other values of n and N consists of two steps:

(I) Given the joint distribution of (x.), determine the number
of degrees of freedom in the chi-square distribution of X,
for cases where X has a chi-square distribution; or more
generally, if the distribution of X can be well approxi-
mated by a chi-square distribution, determine the param-
eters X and K of a chi-square distribution giving an
adequate fit.

(2) Apply Figs. 4, 5, 6, or similar results. (If the "best
fitting" chi-square has mean different from the true
mean of X, as can sometimes happen, then F in Figs. 4,
5, 6 is simply X/N, where X is the mean of the best-
fitting chi-square rather than the true mean of X. In such
cases, one must specify the relation of X to some parameter
of the true distribution of X; see Section 5 for an example.

In general, there is no difficulty in the second step; the difficult step is the

first. Various possible situations can be delineated:

(a) Suppose the joint distribution of (xi) is such that X has
a chi-square distribution, such as the cases described
in Rules 1, 2, 3 of Section 2.3. Then K is found by a
direct application of these rules stated in Section 2. 3.
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(b) Suppose the individual x have chi -square distributions.
but for one reason or alk4her their Joint distribution does
not fall withins the compass of the special cases in which
X has also a chi -square distribution. This may be the
case, for example, for more general types of fluctuation
correlations; or if x. do net all have the same nuimber of
degrees of freedom; or if xi have differeat mean values.

in many such cases. it is probabl& th= the distribution
of X can be well approximated by a chi-square distribution.
One indicated method of obtaining the approximating chi-
square distribution is to use the chi-square with the same
mean and second moment - X. which is to say. fluXe
the leading term in the L. -teev series expansion of
the distribution of X. The second moment of X can be
obtained, given the first and second moments of (xi). in-
cluding cross moments. It is not certain that this -aways
gives the best fit. for purposes of approximating the de-
tection probability curves for s"me given interval of
detection probabilities. In any case. such a procedure
should be accompanied by an estimate of the accuracy
achieved. So far as the author is aware, no analysis
has been made o the interesting question of what accuracy
is achievable by applying this procedure when the indi-
vidual zi have chi-square distributions but X does not.
An outline of possible approaches to such an investigation
is given in Section 4.4 below.

(c) If the individual xi themselves are not restricted to have
chi-squtare distributions, then the probability of detection
curves may or may not be obtainable, to an adequate de-
gree of approximation, by the procedure of finding a chi -

square fit to the distribution of X. Examples can be given
to illustrate both situations (see Section S. for instance).
Each situation must be analysed oa its own merits. Method-
ology for doing this is illustrated in Section S.

-•!o I
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'• O.w poift which should be emphasized is that tio fluctuation distributiong

may have identical first and second moments, and still yield completely

differeat detection probabilities; or. the ratio of mean to standard deviation

may be the same. but the curves of detection probability vs. x may be

widely different. Examples of this are easy to give. Conversely, two

flmucouns dietributions may have very different ratios of mean to standard

deviation. and still have very similar detection probability curves, examples

of this situation are also easy to give. Thus, even if a good chi-square fit

is possible. it cannot necessarily be obtained by matching the first two

moentas of the distribution of X. Section 5 illustrates this also.

Suppose one wishes to find a chi-square fit to the fluctuation distribution, in

such a way as to yield a good approximation to the probability of detection

curves over some interval of detection probabilities, say P1 - I D "• r "

A good rule of thumb is that the cumznulative distribution function of X m.%st

also be approximated, to about the degree of accuracy desired, over th.

same region of probabilities of the fluctuation distribution (i. e.. betwern

the P atw P, percentiles of the fluctuation distributioni. it is assumed

here that a 'good fit requires that the value of K must be constant, and that

X must have a fixed ratio to the true mean. for all probabilities of interest.

Accuracy of approximation can be defined in terms of the difference, in db.

bettween the values of X at a given probability.

4.4 OVTLLVL OF ACCURACY LNVESTIGATION FOR

CHI-SQUARE FITS

It was mentioned that it wo.ald be of interest to investigate the accuracy

obtainable by applying the procedure stated in Section 4. 3. to cases where

the individual x have chi-square distributions but X doesj not.t

One approach would be !o expard, in specific instances, the exact distributiorn

41 X in a Laguerre series. and deterrmine the rna nitude of the second or

higher terms. This requires the third. ,ir higher moments of X to be Lornpktec."

which in tuzrn can be dwn 4 i~ if one knows the third or higher moments.
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imluding cross moments. of (x. Homever. such an approach leaves
something to be desired, since it would be preferable to Abtan accuracy

estiniates by direct comparison of the exact aud approximate probability of

detection curves themselves, rather than 3f the distributions of X; Wioo, it

would be desirable to oouain generally appiicable boumiW on the error in

addition Zu error estimates for individaal cases.

The analytical tools for ccmparing the detection prolabilities themselves

exist, and these tools may a)..o make possible the derivation of general

error ow#ds. The starting point is the fact that the chracteristtc function

of the exact probability distribution st the integra:or output has betm

derived(4).

For example. consider the case where th4 x3 have common means x and

number of degrees of freedom Z.k. but the fawctuation correlations are

arbitrary. Then. the exact characteristic fUnction of the integrator output is

I"I|C)0+ )Nk - 1) n P11 I~ j

whe?.- (JA.i are non-negative constants related to the fluctuation correlations.

they are the eigenvalues of a certain matrix(4.

On the" other hand, the characteristic function of the iategrator outpiat.

assuming that X has an approx-mate chi-square distribution with mean

Nx and degrees of freedom ZK. is

C(p) P),()
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The exact cumulants (and hence the exact moments) of the integrator output

can be determined in terms of the quantities + i,,x,)m for

j=i

m = t, 2 .... ... Thus, one might proceed as follows.

Suppose the type of fluctuations is simply specified by k and by the set

(•.), i = 1, . . . , N. One can then determine bounds on the quantities

N 7 ) m for m= 3,4,.. given that FL.0 and

+ k

i-

N

Si + =x C1 (20)

i=iN

~ I+ ij) C2  (2 1)

where CI and C 2 are given constants related to the first and second moments

of the integrator output.

Similarly, the moments of the approximate integrator output distribution

determined from eq. (19) can be calculated. This could be done on the basis

that Nx in eq. (19) is the true mean value of X and XR K is equal to the true

variance ofX. This amounts to applying the procedure stated in Section 4. 3,

using a chi-square fit to X with the same mean and second moment as X actually

has. Alternatively, one could assume Nx and K in (19) to have slightly dif-

ferent values, provided these are related in a specified way to the true

distribution of X, since in some cases better fits could be obtained in this

way.
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Finally. one could expand both the true and approximate distributions of the

integrator output i say a Laguerre series. The results obtained as just

described would then enable general bounds to be placed on the differences

"in successive terms of these two Laguerre series.

Such an investigation would probably show that for sufficiently $aMAU values

of N. say ' S S. good approuimations arc always lbtained by using a chi-

square approximation to the distribution of X. having first and second

moments equal to the true first apd second moments of X. On the other

hand. as N increases, the possible variations in the distribution of X. suS-

ject to its having given first and second moments. get larger, so that (or

sufficiently large N (possibly 10 or more), it is quite likely that additional

restrictions would have to be placet in the fluctuation correlations in order

to ensure good approximation by this met!hod.

-17.-
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SECTION 5

SOME RlEULTS O:N LOG-NORMAL DISTRIBUTIONS

Some evidence resulting from the analysis of cross section measurements

of ships and missiles( has indicated that the radar cross section distribu-

tions of some targets of these types may be log-normal (to be more precisely

defined below). Tt is thus of interest to investigate whether and when the

log-normal distributions can be well fitted by chi-square distributions, how

good the fit is, and what are the parameters of the best-fitting chi-square

distribution for given parameters of the log-normal distribution.

If the radar cross section is log-normally distributed, so wiU be x. the

single-pualse signal-to-noise r..tio (assuming other factors in tne radar range

equatie.as do not vary. If the fl,:.tuations are scan-to-scan, X will also be

!og-normally distributed. It is thus of interest to investigate how well a

log-normal distribution of x can be fitted by a chi-soAare distribution. For

more general types of fluhtuation correlations, X will not be log-norn-ally

distributed, but :he fitting of the distribution of x by a chi-square will still

be of interest, since the existence of a good chi-square fit ior the distribution

of x will in generai imply the existence of a good chi-square fit for X.

The procedure fo- using the fllowing ret-ilts to calculate detection probability

when cross section is log-ntrmaiiv distributed, would then be:

it! Sc-e whether tne log-n-rmal parameters are such that a

good rhi-square fit to the distribution of x is possible.
if it is. determine th.e arameters i and k of the best
f~tt:..g chi-square. As will be seen, i is no lonLer
necessarily the true mean of x nor is t.ae variance of the
best-fitting chi-square distribution necessarily equal to
the trur variance of x. however. i and k can be related
in a ceitnite way to the parameters of the log-normal
distr.bution of x.
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(21 Next. using the procedures outlined in Section 4. obtain
the best chi-square fit to the distribution of X. taking into
account the tspe of fluctuation correlations.

( Tl'-'n. apply Figs. 4. 5. 6. or their extensions.

The analysis *o be presented here will not be concerned with signal plus

noi;e distributions, but iust with the question of fitting given log-normal

distributions by chi-square distributions. According to the rule of thumb

cited in Section 4. 3. the results should be strongly indicative of when the

detect•on cUar t(s resilting from tog-normal distributions of x can be well

approx-imated by th, procedure lust stated, and when not. However, such

conclusions ought finally to be veriiied by calculation of detection probability

turves based on signal plus noise distributions, explicitly based on log-normal

dis'r:outions for x. The problem, of obtaining such detection curves is a

useful one "o inves.igate (the author understands that this problem is under
till

elct ave invelstigation

Precisdy what is meant bv a good fit of a log-normal distribution by a chi-

square distribu:ion will become clear in the course of presenting the results.

5. I LOG-NORMAL DISTRIBUrTIONS AIND Ck{I-2QUARE FITS

A rand.;m variable x is saM to have a log -normal distribution if the

logari:hm of x is normally distributed. The probability density function

for x itself is

wix. 2. - I( 0

Here, or is the itandard deviation of the natural logarithm of x. and a is

the' mnedian o" x.
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Fig. 7 plots some log-normal distribut:ions vs. In (xia). Figs. 8 and 9

bhow plots of chi-square distributions for various values of k : one half the

number of degrees of freedom, vs. ln(xi). x being !he mean of the chi-

"square distribution.

Goodness of fit will be defined with respect to some given interval of

probabilities. For the results to be presented. this interval will be chosen

to be .01 5 P 1 . 99. The goodness of fit will be determined by how well a

curve such as those shown in Figs. 8 and 9 can fit a given curve of the kind

shown in Fig. 7. over the whole interval . 01 'S P - . 99 In fact. let x be

the mean value of a given chi-square distribution, and let x' be the mean

value of another chi-square distribution which interscts a given log-normal

distribution at a certain value of P. TVen, the deviation of the chi-square

distribution with mean x, from the given log-normal distribution, at

probability P. will be defined (in dbt as

10 logI(

The goodness oi fit of a given chi-square to a given log-normal distribution

is defined as the maximurn deviation ior all P in the interval . 01 !5 P 5.19.

It is also of interest to definc chi-square distributions which bracket any

given log-normal distributtion over a Riven range of probabilities. Sucet

bracketing is then a sitrfng indication that to,. tru. detection probability will

be bracketed by the va.ucs calculated by assuming x to have the chi-squar.-

distributions which bracket the true log-normal distribution of x. provri.e.

the trui- (etection pro'bability lies in about the same range as that over whic•.

the log-norma. ( stribrti,,n is bracketed. (By distribution in the abo'..,

reference is had to the cumulative probability distribution, not the density

functior..
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NOW, a 8AlMace at Figs. 7. 8, and 9 shows that chi-square distributions which
fit or bracket given log-normal distributions can be obtained in the following
manger, &ad moreover that for all practical purposes the best fits or the

closest brackets are thus obtained:

Comaider a given log-normal family characterized by a fixed value of 4, as
given by a curve such an those in Fig. 7. Find the three cht-squar- dis-

to ions. all having a fixed value of k. and means x0 . xI ' X,. such that-

(a) The curve with nran x1 intersects the given log-normai
curve at P 0 .10 and P . 99 (this determines both k and

xI

(b) The curve with mean x, and the same value of k :s tangent
to the given log-normal curve.

(c) The curve with rnean x has the same k and

- -- I
o (xx

0 12

rhen. the (k. x 0 curve gives the best fit to the given log-normal curve. and
the (k. x t and (k. x2 ) curves give the closest bracket of the given log-nrn,-..
curve (all with respect to . 01 1 P ! .991, Best here means with res PCct

to minimizing the maximum deviation of fit, or mrntimizing the ratio j: x,
to xI for the bracket: it is not certain that this gives the best fit or clt.sest

bracket for the probability oi detection curves over the given probabilit-

interval.
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Define

goodness of fit [o loso(Gi.)l

Ito lot,() j24)

m 0.
m0

Maximum deviation of fit over

range .0 0' P 9

closeness of bracket z 110 log10~)

=d2 X (goodness of fit)

It is also convenient to define

Ax : .-- - =-
x I XGTI nc

Thus, Ax is a ratio rather than an additive incremeM.



Figs. 10-15 show the results of such an analysis for a parameter range of

interest. Fig. 10 gives the values of k, for the best-fitting chi-square

distribution, for given values of ar (this is independent of a). Fig. 11 shows

the value of 10 log1 0 (x//a), i.e.., the ratio of the mean of the best-fitting

chi-square curve to the median of the log-normal distribution to which the

fit is being made, plotted against ar; Fig. 12 shows the same plotted against k.

Fig. 13 shows the goodness of fit 10 logj0Ax vs. a- (it is independent of Q),

and Fig. 14 plots the same information against k. The closeness of bracketing

is, of course, equal to 20 logl 0 Ax.

It is also of interest to relate x , the mean of the best-fitting chi-squareo

distribution, to the true mean E(x) of the given log-normal distribution.

This can be done by noting that, for log-normal distributions as given

by eq. (22),

E(x) = exp ] (27)

Fig. 15 plots E(x)/a vs. a-; from this and Figs. 11 or 12, one can relate

x to E(x).

From Fig. 13, it can be concluded that good chi-square fits to log-normal

distribution can be obtained for a-<. 75, approximately, while good chi-square

fits cannot be obtained for a-> 1. 1, approximately. Of course, this depends

on ones definition of "good". The range .75 5 a- _5 1. 1 is a transitional

region. It is also to be noted that for a significant part of the region where

good chi-square fits can be obtained, they cannot be obtained by matching

the first two moments of the given log-normal distribution.
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