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PRECIS 

Technical Report 

Title:   "Representation and Realization of Time-Variable Linear Systems", 
Leonard M. Silverman, Department of Electrical Engineering Technical 
Report hA, Columbia University; NONR 4259(04). 

Background :   This report is an outgrowth of a study of nonlinear and time- 
vanable systems being conducted in ihe Department of Electrical Engineer- 
ing, Columbia University.   Contained in the report are the results of an 
investigation of the subclass of such systems described by a system of first- 
order linear time-variable differential equations. 

Condensed Report Contents;   Systems of linear time-variable differential 
equations are studied, with particular emphasis on identifying those system 
properties and concepts that can be characterized without knowledge of 
the equation's solution.   Criteria are developed for determining the degree 
of controllability and observability of such systems.   These criteria are 
based on the rank of matrices formed directly from the system coefficients. 
A transformational property of these matrices is utilized in a procedure 
for reducing noncontrollable and nonobservable systems to lower dynamic 
order.   Also obtained are new methods for characterizing and generalizing 
equivalent system representations, including criteria for equivalence and 
zero-state time invariance of time-variable systems. 

Based on the theory of equivalent systems, a new approach to 
the synthesis of nonstationary impulse response matrices is developed.   This 
method, which does not require an a priori assumption of separability, pro- 
vides a systematic procedure for realizing a wide class of responses. 

Application is also made to time-variable electrical networks. 
By relating the concepts of controllability and unilateral transmission, the 
existences of a class of unilateral networks composed solely of two-terminal 
RC (time-variable) components is established. 

For Further Information:   The complete report is available from the Defense 
Documentation Center for qualified requestors. 
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ABSTRACT 

This research is concerned with a study of time-variable 

linear systems with particular emphasis on those system properties 

and concepts that can be characterized without solving time-variable 

differential equations.    Criteria are developed for determining 

the degree of controllability and observability of a time-variable 

system.    These criteria are based on the rank of the controllability 

and observability matrices,  newly defined quantities formed from 

the system coefficient matrices and a finite number of their 

derivatives.    The controllability and observability matrices are 

also shown to be useful in a variety of other system analysis 

problems.    In particular,  a transformational property of these 

matrices is utilized in an explicit method for reducing noncontrollable 

and nonobservable systems to systems of lower dynamic order. 

Also obtained are new methods for characterizing and generating 

equivalent system representations,   including criteria for equi- 

valence,   zero-state equivalence and zero state time-invariance 

of time-variable systems.    Based on the theory of equivalent systems 

and the criteria for controllability and observability,  a new approach 

to the synthesis of nonstationary impulse response matrices is 

developed.    This method of synthesis, which does not require an a 

priori assumption of separability,   provides a systematic procedure 
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for realizing a wide class of impulse responses.    By relating the 

concepts of controllability and unilateral transmission, the existence 

of a class of unilateral networks composed solely of two-terminal 

RC (time-variable) components is demonstrated.    A stable example 

of such a network is presented and possible applications 

discussed. 
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CHAPTER 1 

INTRODUCTION 

1. 1    Motivation 

In recent years there has been a growing interest in the 

theory and application of systems whose parameters vary with time. 

Among the types of systems for which this is the case are electrical 

networks,  control systems and communication channels.    Some 

examples of inherently time-variable networks include parametric 

amplifiers,   modulators and switched networks.    In addition,  problems 

involving control of missile flights, or communication over fading 

channels often may be analyzed by techniques applicable to time- 

variable systems.    A fairly general survey of research on time- 

variable systems in the period 1950-1960 may be found in the paper of 

Zadeh   [ 1 ].    For contributions prior to 1950,  the paper of Bennett[2] 

is valuable.    A great deal of emphasis in the past five or six years 

has been on those systems (both fixed and time-variable) that can be 

adequately represented in state-variable form[ 3 ] .    This has especially 

been true in modern control theory (8»e the review paper of Athan8[4 ]), 

and more recently in network analysis [5-11 J. 

The major advantage of the state-variable approach to the 

analysis of time-variable systems is that an essentially geometric 

structure is given to the differential equations which describe system 

behavior.    This structure considerably reduces notational complexity 

i 
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and furthers insight into many analysis and synthesis problems. 

Although there is a fairly complete theory of time-variable 

systems in state-variable form [ 3 ]  this theory is for the most part 

based on an explicit knowledge of system solutions.    It is generally 

impossible,  however, to find the solution to a set of time-variable 

differential equations in closed form.    While it is possible to 

compute the solution to any desired degree of accuracy on a digital 

computer,  it cannot be characterized directly in terms of the 

system parameters.    This is one reason why relatively little 

progress has been made in the analysis,   synthesis and application 

of variable parameter systems compared with what has been 

accomplished for fixed systems. 

These considerations motivate a closer examination of 

several important properties of time-variable systems with the 

intent of characterizing them as completely as possible in terms of 

1   own system parameters,  and exploiting them in several specific 

applications. 

1. 2   Problem Formulation and Background 

The major system concepts examined here are described 

below.    Precise definitions are given in the body of the thesis. 

(1)    The concept of controllability is essentially concerned 

with the type of coupling that exists between input and state 

of a linear system,  and determines the extent to which a 

system can be controlled.    Dual to controllability,  the concep-: 
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of observability is concerned with the type of ..raplin^ ^lal i-sirsts 

between state and output of a linear by stem, and determ:   ^s 

the extent to which a system's behavior era be obs; -ve<l 

(2) Related to controllability and ooi. »rv,^ ;UtY is 

the idea of system reducibility.    If a sys^n 's input- 

output behavior for zero-initial conditio it, can b* achieved 

with a system of lower dynamic order,   it ;3 saK tc 6e 

reducible.    Noncontroilable or nonobservable systems are 

always reducible. 

(3) To meaningfully discuss analysis and synthesis, 

some notion of system equivalence is essential.    Two 

systems whose states are related by a nonsingular trans- 

formation of coordinates (possibly time-variable) are said 

to be equivalent.    Also important   is the concept of zero- 

state equivalence.    Two systems having the same input- 

output response for zero initial conditions are said to be 

zero-state equivalent.    Thus,  a reduced system is zero- 

state equivalent to its original description. 

The most fundamental of the above system properties are 

controllability and observability.    It has become increasingly evident 

in recent years that these concepts are significant in diverse problems 

of system analysis and synthesis not necessarily related to control 

problems.    However,   controllability first played an important role in 

the development of optimal control theory.    Criteria which may be viewed 
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as types of controllability were present,  for example in the work of 

Pontryagin   [\Z ],  Gamkrelidze [l 3 ] ,   LaSalle[l4], and Bertram and 

Sarachik [ 15].    Formal definition of controllability and its dual 

observability was made by Kaiman [ 16.18 ], who also showed the 

importance of observability in optimal filtering problems [19, 20) . 

Kreindler and Sarachik [21 | introduced the concept of output 

controllability,  and indicated some subtleties differentiating various 

degrees of controllability and observability in the time-variable case. 

Unfortunately,   the necessary and sufficient conditions formulated by 

Kaiman and his colleagues [ 18, 19, 20, 2Z, 23 1 ,  and by Kreindler and 

Sarachik [21 1 ,   for the various forms of controllability and observability 

depend explicitly on the system solution in the time-variable case. 

As this is generally not available except as a numerically tabulated 

solution,  it has been difficult to analytically characterize the 

controllability and observability properties of a time-variable system. 

The same is true for reducibility and for system equivalence,   since 

known conditions for these properties are also given in terms of system 

solutions. 

It is our intent to obtain criteria for controllability, 

observability and system equivalence which in no way depend on 

knowledge of solutions to time-variable differential equations.    In 

addition,   methods for constructing zero-state equivalents of reducible 

systems and for  finding explicit transformations between equivalent 

systems will be examined. 
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Several specific problems, whose solutions depend on 

an explicit characterization of the above properties, will also be 

attacked.    These include: 

(1) Conditions for the existence of simple canonical 

forms for time-variable systems and methods for their construction. 

(2) A systematic procedure for realizing a prescribed 

impulse response matrix as a system of differential equations in 

state-variable form. 

(3) Construction of unilateral networks from two-terminal, 

time-variable resistors,   inductors and capacitors. 

1. 3   Summary 

In Chapter 2 some pertinent information from the theory of 

linear systems is reviewed and the various degrees of controllability 

and observability are defined.    The known criteria for controllability 

and observability are also summarized in this chapter. 

New criteria for controllability and observability are derived 

in Chapter 3.    These criteria are based on the rank of the 

"controllability" and "observability" matrices,  which are formed from 

the system coefficient matrices and a finite number of their derivatives. 

The precise extent to which these matrices characterize controllability 

and observability is made clear by relating them to a generalized 

Wronskian matrix of vector functions.    It is shown that this matrix has 

all the important properties possessed by the common Wronskian of 

scalar functions [ 24 ]   . 
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Reducibility is also treated in Chapter 3.    The controllability 

and observability matrices are used not only to test for reducibility 

but in the actual construction of reduced equivalent systems.    The 

methods presented for system reduction are shown to have several 

important advantages in comparison with previous techniques that were 

restricted to either fixed systems [ 18] or a special class of time- 

variable systems [ 25] .    The basis of the present reduction scheme is 

an interesting transformational property of the controllability and 

observability matrices.    This property is quite evident once observed, 

but does not seem to have been exploited previously,  even for fixed 

systems. 

Further application of this property is made in Chapter 4, 

where a general approach to the problems of system equivalence and 

representation is presented.    A new degree of controllability and 

observability is defined in this chapter.    For the class of systems 

possessins; these properties (which includes fixed controllable and 

observable   systems),  necessary and sufficient conditions for system 

equivalence are derived, together with explicit methods for con- 

structing transformations relating equivalent systems.    Among the 

interesting and potentially useful results obtained from this 

investigation is a criterion for determining if a system is zero-state 

equivalent to a fixed system.    Also given in Chapter 4 are methods 

for transforming single-input-single-output time-variable systems 
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to several important canonical equivalent!.    Included are the 

classical input-output differential equation form, and the "phase- 

variable" canonical form [ 26-28 ],  widely used in control system 

applications.    These canonical structures are especially valuable 

when simulating a time-variable system on an analogue (or digital) 

computer since they require relatively few variable components. 

The theory of equivalent systems developed in Chapter 4 

provides the basis for a new approach to the problem of synthesizing 

a prescribed impulse response matrix as a system of differential 

equations (i. e.,  an analogue computer realization).    This method, 

presented in Chapter 5,   differs significantly from previous techniques 

[ 18, 23,  29,  30]  in that an a priori assumption of realizability is 

not required.    While this method is not completely general,   it 

provides a systematic synthesis procedure for a wide class of 

responses.    In particular, for stationary impulse response matrices, 

a theory and procedure for minimal realization is obtained which 

has many advantages in comparison with previous approaches 

[18,   30,   31,   32]. 

In Chapter 6, application of the controllability criteria is 

made to a problem concerning time-variable networks.    While it is 

well known that networks containing time-variable RLC components 

are generally non-reciprocal, the possibility that such networks may 

in fact exhibit unilateral behavior does not appear to have been explored. 

{ 
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By relating the ■yttem concept of controllability to the network 

concept o{ unilateral transmission, we are able to systematically 

generate a class of unilateral RC networks. 

• 
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CHAPTER 2 

TIME-VARIABLE LINEAR SYSTEMS 

2. 1   Basic Definitions and Notation 

The class of systems to be considered in this thesis are 

those describable by a finite set of first order differential equations 

of the form 

i 
: 

x(t) = A(t)x(t) + B(t)u(t) 

y(t)   =   C(t)x(t) , 

(2. la) 

(2. lb) 

where   x(t),  an n-vector,  is the state of the system at time   t ;   u(t), 

ai   r-vector,  is the input; and   y(t) ,  an m-vector,  is the output.    The 

matrices   A(t),   B(t)   and   C(t),   are of   order compatible with the 

vectors   x(t),  u(t)   and   y(t). 

Notation:    Lower case symbols will be used to denote both scalar 
and vector functions, while upper case symbols will be reserved for 
all other matrices.    When the context is clear, the explicit dependence 
of functions on their argument will be suppressed (i. e.,    A = A(t)). 
The operations of transposition and inversion will be denoted by   A1 

and   A    ,  respectively,  and the following notations will be used for 
differentiation: 

^ 

-A   =   A 

A =  A(1)  , 

(k) 

dt 

•fefe.» 



If the coefficient matricee are fufficiently well behaved, 

the output of auch a ayatem ia given by [ 1 ] 

13 

y(t) = C(t)t(t ,t0)x(t0)+   j C(t)#(t,r)B(r)u(r)dr ,   (2.2) 

where x(t ) ia the atate of the ayatem at aome arbitrary time t , 

and i(t,T) ia the ayatem tranaition matrix. The tranaition matrix 

may be defined aa 

♦ (t,r)   =   X(t)X'l(T) (2.3) 

where   X(t), an   n x n  matrix, ia a fundamental matrix [ 2 ] of (2.1a); 

that ia, 

X(t)   =   A(t)X(t) 

and   X(t)   has rank  n   for all   t 

(2.4) 

It ia also convenient to define the impulae reaponae matrix 

of ayatem (2. 1): 

To avoid unneceaaary complication, it will generally be assumed that 
the matrices   A,   B  and   C  are continuous functions of time. 

.      \ V. 
-r". 
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C(t)»(t,T)B(T), 

H(t,T)S 

t iT 

t<0 

(2.5) 

For zero initial conditions, the impulse response matrix completely 

characterizes the input-output behavior of system (2. 1) since if 

x(t0) = 0 , 

y(t) 

t 

H(t,T)u (T)dT . (2.6) 

From (2. 3) it is clear that the impulse response matrix 

may also be expressed in the form 

H(t,T)   =   *(t)0(T) t S T (2.7) 

where 

^(t)   =   C(t)X(t)   , 
(2.8) 

14 

9(T)    =   X'VjBfr) (2.9) 

and   X(t)   is a fundamental matrix of (2. la).    Although  ^(t)   and  ®(t) 

are not unique matrices for a given system, they are unique within 

a constant transformation.    If   X.(t)   and   X2(t)   are any two funda- 



. wr- 

mental matrices of (2. la) then 

15 

X^t)    =   X2(t)K (2.10) 

where   K   is a constant nonsingular matrix [   2 ]   . 

It is often useful to consider various equivalent represent- 

ations of a given system for purposes of both analysis and synthesis. 

There are many types of system equivalence that can be defi' -id 

[ 3, 4], but the following will be most important here. 

Definition 2. 1;     Let   T(t)   be an   n x n   matrix,  nonsingular and 

continuously differentiate for all   t ,  and let   z(t) = T(t)x(t) . 

Then it will be said that the system 

z(t) =   A(t)z(t) + B(t)u(t) 

y(t)   =   C(t)z(t) 

(2. 11a) 

(2.11b) 

where 

A   =   (TA + T)T 

B   =   TB 

C  =  CT"1   , 

(2.12a) 

(2. 12b) 

(2. 12c) 

agtiim^miiiiiiMi«'w ' — —c 
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is equivalent (algebraically equivalent [3]) to system (2. 1) and that 

T   is an equivalence transformation. 

If   X(t)   is a fundamental matrix of (2. la) then   T(t)X(t) 

is clearly a fundamental matrix of (2. 11a),  so that the transition 

matrix of (2, 11) is given by 

l(t,T)   =   TnK^TjT'V) (2.13) 

The impulse response matrix is thus seen to be invariant under an 

equivalence transformation since from (2. 12) and (2. 13) 

H(t,T)   =    C(t)I(t, T) B(T) 

=    G(t)$(t,T)B(T)    =    H(t,T) . 

Furthermore,   if  ^(t-)   is the initial state of (2. 1),  and   z(t0) = T(t )x(t ) 

is the initial state of (2. 11) then 

C(t)$(t,t0)z(t0)    =   C(t)§(t, t0)x(t0) . 

Thus,   systems equivalent under Definition 2. 1 are both zero-state 

and zero-input equivalent [ 4 ]   . 

A;V.^a;uxV      '.-i^:-.«•.•■ ■^4^-^^*. 
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2. 2   Controllability 

The concept of controllability as it arose in the study of 

optimal control problems is essentially concerned with the possible 

state transitions that can be effected in a system by application of 

some input.    There are two basic types or "degrees" of controllability 

having importance in control theory; complete [ 3,   5,   6],  and total 

[ 7]   (differential [ 8 ] ,  proper [ 9 ]] controllability.    The major 

difference between the two is that total controllability insures that 

the state of the system can be controlled as quickly as desired, 

while complete controllability only implies that the state can be 

controlled in some finite time. 

Precise definitions of these concepts will be given below. 

Various equivalent definitions,  as well as a fuller discussion of the 

role they play in control theory may be found in the work of Kaiman 

[ 3, 5 ] ,  LaSalle [ 9 ] ,  Kaiman,  Ho and Narendra [ 6 ] , Kreindler 

and Sarachik [ 7 ] ,   and Weiss and Kaiman [ 8 ] . 

Definition 2.2 (Controllability): 

(a) System (2. 1) is said to be completely controllable on an interval 

[ tn,t ]    if for any state   x.    at   t. ,  and any desired final state   x. 

at   t,  ,  there exists an input   u(t)   defined on   [t , t.]    suchthat 

X^j)      =     Xj   . 

(b) System (2. 1) is said to be completely controllable at time   tn 

if there exists a finite time   t. > t     such that the system is completely 

j 
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controllable on   [ t-,!.]   .    If system (2. 1) is completely controllable 

at all   t^,  it is said to be completely controllable. 

(c) System (2, 1) is said to be totally controllable on an interval 

[ t  , t ]    if it is completely controllable on every subinterval of 

(d) System (2. 1) is said to be totally controllable at time   tn   if for 

all   t. > t. ,  it is completely controllable on  [ t_,t.] .    If system (2. 1) 

is totally controllable at all   tn ,  it is said to be totally controllable. 

Necessary and sufficient conditions for controllability of 

a time-variable system are well known [ 6, 7, 8]   and will be 

summarized below.    If   X(t)   is any fundamental matrix for (2. la) and 

e(t) = X"   (t)B(t),   then 

Theorem 2. 1:       System (2. 1) is completely controllable on the 

interval [ t , t ]    if and only if the rows of  ®{T)    are linearly inde- 

pendent functions of   T   on   [t-jt.]. 

Theorem 2. 2:      System (2. 1) is totally controllable on the interval 

[ t  , t ]    if and only if the rows of  ^(T)   are linearly independent 

functions of   T   on every subinterval of   [tn,t.] . 

Criteria for controllability at a specific initial time,  and 

for all initial times follow naturally from Definition 2. 1 and the above 

theorems [7,8]. 

It should be observed that it is usual to express the 

controllability criteria in terms of particular fundamental matrices 

18 
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(either   *(t , T) [ 7 ]    or   Ht , T) [ 8 ]).    Since any two fundamental 

matrices are related by a constant (with respect to T ), nonsingular 

matrix as in (2. 10),   the independence of the rows of  ®(T)   is not 

affected by the choice of fundamental matrix used to define it. 

Furthermore,  controllability is invariant under an 

equivalence transformation.    To see this,  let   X(t)   be a fundamental 

matrix for (2, 11a) and let 

0(t)   =   X'\t)B(t) 

By definition,    B(t) = T(t)B(t),  and as noted previously,    X(t) = T(t)X(t), 

where   X(t)   is a fundamental matrix for (2. la).    Therefore, 

0(t)   =   0(t)   and anything said about the controllability of (2. 1), must 

hold for (2. 11). 

2. 3  Observability: 

The concept of observability introduced by Kaiman [ 3, 5, 10], 

is of considerable importance in optimal filtering and prediction . 

problems.    Essentially,   if a system is observable,  its state at some 

particular time can be determined from observations of the system 

output.    Various degrees of observability will be defined below.    It 

will be clear from these definitions and the criteria which follow that 

observability plays a role dual to that of controllability in describing 

a systems structure.    This duality first observed by Kaiman [ 10 ] 

a        ,     ...       ...:.«6i..1ai.Üt*lS«.U--*iWWel 
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greatly simplifies the solution of many problems [ 5, 10] ,    Further 

discussion of observability and the dual relationship it bears to 

controllability may be found in [ 7 ]  and [ 8 ] . 

Definition 2. 3 (Observability^; 

(a) System (2. 1) is said to be completely observable on an interval 

I tft» ^il    if any initial state   x.   at  tft   can be determined from 

knowledge of the system's output over   [ t-, t.] . 

(b) System (2. 1) is said to be completely observable at time   t.   if 

there exists a finite time   t. > t     such that the system is completely 

observable on [ tn, t.] .    If system (2. 1) is completely observable at 

all   tn ,  it is said to be completely observable. 

(c) System (2. 1) is said to be totally observable on an interval 

I tn» ti]    if i* is completely observable on every subinterval of  [t , t ] 

(d) System (2. 1) is said to be totally observable at time   t.   if for 

all   t.  > tn,  it is completely observable on  [ t^t.] .    If system (2. 1) 

is totally observable at all   t. , it is said to be totally observable. 

If   X(t)   is any fundamental matrix for (2. la) and 

^(t) = C(t)X(t)   then the following conditions for observability may be 

established [ 7, 8 ] . 

Theorem 2. 3:     System (2. 1) is completely observable on the interval 

[ tn, t.]    if and only if the columns of  ^(t)   are linearly independent 

functions of   t   on   [t0>t.]   . 

■HWP^IW?^" ''•""..<. ■ P'qggregffggg? i 
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Theorem 2. 4:     System (2. 1) is totally observable on the interval 

[ t , t ]    if and only if the columns of  tyft)   are linearly independent 

functions of  t   on ever subinterval of (t-, t.] . 

The form of Theorems 2. 3 and 2. 4 when compared with 

that of Theorems 2. 1 and 2. 2 immediately suggests a precise 

formulation of the duality between observability and controllability 

[7]. 

Theorem 2. 5:     System (2. 1) is completely controllable (observable) 

on the interval  [ t  , t.]   if and only if the system 

21 

w(t) ■A'(t)w{t) + C'WuW 

y(t)   =   B'ltMt) 

(2.14a) 

(2. 14b) 

is completely observable (controllable) on   [ t., t.]. 

To prove the theorem, it is only necessary to observe 

that if X(t) is a fundamental matrix of (2. la), then (X (t))1 is a 

fundamental matrix of (2.14a) [ 2 ]. 

If system (2.1) is time-invariant, all degrees of 

controllability (and observability)are equivalent and we may classify 

systems as being either controllable (observable) or non controllable 

(non observable).    Most importantly, the necessary and sufficient 

conditions for controllability and observability in the fixed case can 

be formulated directly in terms of the coefficient matrices of the 

system,  as in the following theorems [ 3 ] . 



Theorem Z. 6:   A fixed system of the form (2. I) is completely 

controllable if and only if the matrix  Q     has rank    n , where 

22 

Q     =   IB I  AB c : An"lB] . (2. 1 5) 

Theorem 2. 7:    A fixed system of the form (2. 1) is completely 

observable if and only if the matrix  Q     has rank   n , where 

Q   Me-: A'C : . . . :(An"1),c'] . (2.i6) 

■   . 

i 

In Chapter 3,   criteria which seem to be natural 

generalizations of Theorems 2.^ and 2.7 for time-variable systems 

will be derived. 

i 
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CHAPTER 3 

CONTROLLABILITY, OBSERVABILITY AND REDUCIBILITY 

3. 1   Introduction 

The necessary and sufficient conditions for controllability 

and observability summarized in Chapter 2 depend explicitly on the 

system solution matrix in the time-variable case.    Since this matrix 

is generally not available except as a numerically tabulated solution, 

it has been difficult to characterize the structural properties of a 

time-variable system in terms of its coefficient matrix description. 

In order to circumvent the problem of system solution 

we propose to determine the extent to which the controllability and 

observability properties can be characterized in terms of the matrices 

A,   B   and   C .    This problem has been studied by several other 

workers including Stubberud [ 1] ,  and Chang [ 2 ].    Our independently 

derived results will be described below and compared with those of 

the above. 

Of prime importance in this development are the system 

"controllability" and "observability" matrices.    It will be shown that 

these matrices,  which do not require knowledge of the system solution 

for their construction,  provide significant structural information, 

ft 

Parts of this chapter have appeared in two papers by the author and 
H.   E.  Meadows [ 3, 4 ] . 
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including:   (i)   a sufficient condition for complete controllability and 

observability, and   (ii)   a necessary and sufficient condition for total 

controllability and observability.    These conditions are established 

here by relating the controllability and observability matrices to a 

new test for linear independence of certain vector functions.    This test 

is a generalization of the familiar Wronskian determinant criterion 

for scalar functions. 

The controllability and observability matrices will also be 

shown to be useful in determining whether a system is non-controllable 

or non-observable and in constructing transformations of coordinates 

to reduce such systems to zero-state equivalents of lower dynamic 

order. 

3. 2   The Controllability and Observability Matrices 

The controllability and observability matrices of a time- 

variable linear system of the form (2. 1) will now be defined.    To 

insure that these matrices exist and are well behaved for all time   it 

will be assumed that the matrices   A,   B   and   C   are continuously 

differentiable   n-1,  n   and   n   times,  respectively.    This restriction 

can be considerably weakened for many atguments [ 3 ],   but at the 

expense of greater mathematical complication. 

The controllability matrix of system (2. 1) is defined as 

Qc = [po: V: ^l (3.1) 

•■  .. t'   V—* .",_*--■ ---c^.: ~  *  vrj^j^i^iiv«, * 



where 

Zu 

'k+l    =   "APk+ dt Pk, P0 - B. (3.2) 

The observability matrix is defined in a dual manner as 

o0 = [s^: SnJ (3.3) 

: 

k+1 A,sk+ drsk' s0 = c. (3.4) 

Whenever the context is clear,  the subscripts 'c' and 'o' will be 

dropped. 

A property of these matrices which proves to be quite 

useful in the subsequent development concerns their behavior under 

transformation of system coordinates. 

Property 3. 1:       If   T   is an equivalence transformation and il   Q 

is the controllability matrix of the transformed system, then 

Q     =   TQ 
c c 

(3.5) 

then 

Equation (3. 5) follows by induction since if   P    = TP 

=   (TA + f )T'1(TP ) + (f Pk + TPk) 

T(-APk   +   Pk)    =   TP 
k + 1 

■■■-.: 
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and by definition, 

A A 

P   = B = TB = TP„ 

Similarly,  if  Q     is the observability matrix of the transformed system 

then 

Q0   =   (T')    Q0 . (3.6) 

To indicate the role played by the controllability matrix as 

a test for controllability it is first noted that 

-^-[X'VjBfT)]     =   X"l(T)P.(T) 
dTk k 

(3.7) 

where   X(T)   is any fxindamental matrix of (2. la).    Equation (3. 7) 

follows by induction since    P   = B ,  and if 

then 

-—[X'V^T)]  ^X'VjP (T) , 
dT ' 

^+l 1 A 1 S—^x-V)!^)]    = ^[X-'^P^T)] 
dT 

= -X'N^X^X'N^P^+X'N^P^T), 

''f^MHfyjggJi 
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but 

Xmx"1^)    =   A(T) . 

Therefore. 

k+1 
^-j^j-ix"   (T)B(T)]  = X"   (T)[-A(T)Pk(r) + Pk(T)] 
dT 

= x- (T)Pktl(r) 

It follows then that 

[0(T) : ^l\r)\  .  .   .   : Q^'1^)   =   x'VjQ  (T) (3.8) 
< • • c 

28 

' 

where   0(t •  = X    (t)B(t).    If  u   is a scalar input then the matrix on the 

left side of (3. 8) is recognized to be the Wronskian matrix of the 

rows of   0(T)  .    It is well known [ 5 J  that the rank of the Wronskian 

matrix may be used to test the linear independence of scalar functions. 

Since   X     (T)   is nonsingular for all   T ,  the rank of  Q  (T)   is equal to 

that of the Wronskian matrix for all   T .    For single input systems, 

therefore,  the controllability matrix yields as much information about 

the degree of controllability of the system as does the Wronskian 

matrix of the rows of   0(T) .    In the following section,   it will be shown 

that a Wronskian matrix may be defined for vector functions having 

all the important properties of the scalar Wronskian matrix. 

igfl ~.;'-' 
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3. 3   The Vector Wronskian Matrix 

Consider the set of r-dimensional row vector functions 

9,(1;,   0,(t),  .   .   . , 9  (t) ,  where the elements of each   9.(t/   together 

with their first   n   derivatives are continuous functions.    The Wronskian 

matrix of such a set of functions is defined as 

™i'e2 Bn) = t%:h: ■ ■ • ^n-l1 (3.9) 

where 

%- 

e, 

@, 0, "dTVi 

When the context is clear   W(t) will denote the Wronskian matrix. 

The following theorem provides a direct generalization of the 

test for linear independence of scalar functions. 

Theorem 3. 1:   If   W(t)   has rank   n   for some   t   in an interval   [tfit ], 

then the functions   Q., 6-, . . . , 6     are linearly independent on [tn, 1.1 

To prove the theorem,  suppose that the   6.   are dependent 

on   [tn,t1] ; then there exists a constant n-vector   \  ^ 0   such that for 

all   te^tj], 

x'olt) = 0 

A \ 
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By differentiating this relationBhip   n-l   times 

teCtQ.tj], 

, it is clear that for all 

i m 

X'WU)   =   0 

which contradicts   W{t)   having rank   n   for some   tc[t  , t.]. 

The following theorem provides an important test for linear 

dependence of vector functions.    Although the statement of the theorem 

is .\ direct generalization of a known result for scalar functions [5] , 

the proof is believed to be entirely novel in that it utilizes properties 

of forced linear systems of the form (2. 1).    The usual proof of this 

theorem in the scalar case [5] relies on the relationship the Wronskian 

of a set of functions bears to the solution of homogeneous differential 

equations - no such analogous relationship holds for vector functions. 

Theorem 3. 2:   If   W{t) has rank   q   less than   n   for all   te [ t-j, t.]  and 

if the Wronskian matrix of any   q   of the   9.   has rank   q   for all 

te[t  , t ] ,  then the functions   6,.  6, 9     are linearly dependent on 

[t  , t  ] ,  and may be expressed as a linear combination of the   q 

independent rows. 

Consider the system 

x   = ®(t)u 

y    =     X 

(3.10) 

fußumign vMmm^-' 
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Let  Q   be the controllability matrix of (3. 10); then it is clear that   Q = W. 

Without loss of generality, it may be assumed that   0., 9-. ■ • . , 9      have 

a Wronskian matrix of rank  q   for all   te[t  , t  ] ,  then 

Q. 

whe re   Q     has   q   rows and rank   q   for all   te[t ,t ].    Since   Q   also 

has rank   q   everywhere on the same interval,   the rows of  Q     can be 

written as a linear combination of the rows of   Q     for all   te[t , t.] ; 

that is 

, 

Q2   =   KQ, 

where   K   is an   (n-q) xq   matrix.    Note that 

(3.11) 

K   =   Q^j 

where   Q      =   Q '(Q  Q ')        so that   K   has a continuous derivative. 

V 
If it can be shown that   K   is a constant matrix the theorem 

will be established. 

Define the matrix 

T = 

I 0 
q 

-K I 
n-qJ 

(3.12) 

, 

S 
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where   I    ii the   qth order Identity matrix, and note that 

TQ, 
*k 

0  J 

k   =   0,   1,... .  n-1 

where 

0k   =   ^"^k-l ' 0, 

re,, 
e. 

Le. 

= n 

T   is clearly nonsinguiar for all   t  and as   K   is continuously differentiable 

on   Ct0. t ],    T   is an equivalence transformation on the interval.    If 

z   =    Tx ,  therefore,  the system 

z   =   Äz + Bu 

y   =   Cz (3.13) 

' 

where 

A = TT 

B = Tb 

C   =   T 

-1 

1 

is equivalent to (3. 10) on   [ t0,  t,] .    Since 

I 0 
q 

K I n-qJ 
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It is also true,  however,  from the definition of  P.   that 

A[P, 
Pq-l]=dt~tP0.: Vl^li P

q
] 

or 

0 0 a, o: 

L-K       Oj    [o 

Therefore, 

: 0 

V0i :• • -'A.i -  n 

J    L 

q-i q 

0 

KCn, 
Vi]= 0 

or 

K w(e1. e2 e ) = o (3. 14) 

By assumption,    Wfe.,  9,,...  B)   has rank  q   for all   te [t,,, t, ]  so 
i      c q 0    1 

that (3. 14) implies 

K   =   0, 

which establishes the theorem. 

.   . 
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The following corollary to Theorem 3. 2 provides a test for 

determining whether a set of functions are dependent over some interval. 

Corollary 3. 1:   If the Wronskian matrix has rank less than   n   for all 

tcCt^.t.] then there exists some subinterval of   [tÄ.t,]    over which the 
0    1 0   1 

functions   6  , 9,, ■ . . « 6    are linearly dependent. 
1     & n 

The proof of this corollary by induction is a generalization 

of that for the scalar case given by Hurewicz [5 ] . 

For   n = 1,    Vf{6.)   =   6      so that if the rank of   W(e ) is less 

than one for all teCtn,t ]  then  9=0   for all   te [t , t ] and the 

corollary is trivially true. 

Suppose that the corollary is valid for   n = k-1   and 

W^,, 9,, .... 9,) has rank less than   k   for all   te[t, t].    Either 

W(91,9_ 9,    ,)   has rank  k-1   for some    te[t, t]  or it has rank 

less than   k-1   for all   te[t .t.].    If the former is true,  then by 

continuity there must exist some subinterval of   [t , t ]   on which 

W(91, 9?. • • • . 6     .)   has rank  k-1   everywhere.    In this case,   Theorem 

3. 2 implies that   9   , ö7, • • • . 9,    are dependent on the subinterval.      If 
1       u K 

W(91,92, ...  9     .)   has rank less than   k-1   for all   te[t  , t ]   then by 

assumption   9,. 97. . • . ift        are linearly dependent on some sub- 

interval of   [ tn, t ] ,   which completes the proof. 

It is now possible to prove the major result for the vector 

Wronskian matrix which,  when related to the controllability matrix, 

provides a necessary and sufficient condition for total controllability. 

,..-*»■'"«« 
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Theorem 3. 3:   A necessary and sufficient condition for the row vector 

functions   6 , 9 , . .. , 6     to be linearly independent on every subinterval 

of an interval  [ t , t.]    is that their Wronskian matrix not have rank 

less than   n   on any subinterval of  [ t., t.] . 

Sufficiency follows immediately from Theorem 3. I since 

any subinterval of  [ t-, t ]  must contain points where   W(t)   has rank   n. 

Necessity follows from Corollary 3. 1 since if   W(t)   has 

rank less than   n   on some subinterval of  [tn,t ] ,  there must be 

some sub-subinterval over which the functions are dependent. 

If the elements of the row vectors   6,, 9_,.... 6     are 
1'   2'        '   n 

analytic functions of   t   the Wronskian test for linear independence can 

be strengthened considerably.    In the Appendix properties of matrices 

of analytic functions are discussed,  and the following result which 

follows easily from Theorem 3. 2 is established. 

Corollary 3. 2:    Let   9,, 9_, .... 9     be row vectors of functions 
*  12 n 

analytic on  [ tA, t.]   ;   then 9  , 8  , .... 9     are linearly independent 

on[tn,t ]  if and only if   W(t)    has rank   n   for some   te[t , t.]  . 

Furthermore, if  W(t)   has maximal rank   q  less than   n   ,  exactly 

q   of the   9.   are linearly independent on the interval. 

It should be noted that the rank of a matrix of analytic functions 

is constant save possibly at a finite number of points in any finite 

interval.    Thus if   W(t)   has rank   n   for some   t c [ tn,   t.]    it has 

rank   n   for all but a finite number of points in 

: ■'"■    '"' 

■       \ 
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[ t., t. J.      It is clear then that if a set of analytic row vectors are 

independent on any subinterval of  [ t-, t.]    they are independent on 

every subinterval of  [t , t.]  . 
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3. 4   Criteria for Controllability and Observability 

If  0(t)    =   X    (t)B(t)   where   X(t)   is any fundamental matrix 

solution of (2. 1) and   W (t)   is the Wronskian matrix of the rows of 
c 

0(t)   then from (3.8) 

W  (t)    =   X    (t)Q (t) 
c c 

(3.15) 

' 

Immediate application of Theorem 3. 1 gives the following sufficient 

condition for complete controllability. 

Theorem 3. 4:     (a)   System (2. 1) is completely controllable on the 

interval  [ tn,  t.]    if   Q     has rank   n   for some   te[tn,t1]. 

(b)   If for some   t > tft,  Q     has rank   n   then 

system (2. I) is completely controllable at   tn . 

To simplify notation,  if an analytic matrix has rank   q   at all 
but a finite number of points on an interval,  we will say that the 
matrix "has rank   q "   on the interval. 
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This result was also prov r. directly ia   L3] and independently by 

Stubberud [1 ] , and Chang [2], and is the time-variable form of 

Pontryagin's "general position criteria" [6].    It was also shown in r3] 

that Theorem 3. 4 holds under much weaker conditions on the coefficient 

matrices. 

In general the condition of Theorem 3. 4 is not necessary for 

complete controllability as demonstrated by the following example. 

Example 3. 1:   Consider the second order single-input system 

x 

2J 

0 o" v 
+ 1 

'g(t)] 

(t) 0_ U2J ,0 J 
u 

where 

f{t) = 

y(t-l) 

o 

y(t-5) 

o 

t s: 0 

0 <: t   s: 2 

2 st   s4 

4 s t   s 6 

6 s t 

and 

g(t) = f(t-2) . 

exp( —^—s-) 
1 - t 

y(t) 

tl si 

lt|.i 

:■ .^.,   ■     .j 
■ '' ^i-'-''  i^—-— ■ 
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Fig. 3.1   Form of parameters In Example 3.1 
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F(t)g(t) 

8 
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A fundamental matrix for this system is 

X(t) 

1        0 

that 

ri  oi 

[F(t)    ij 

rg(t)' 

1  0    j 

= 

g(t) i 

_F(t)g(t)J 

F(t)     1 

here   F(t)   =     j     f(s)d8,   so 

®(t) = X'^^Btt) 

It is clear here from Fig.   (3. 1) that   g(t)   and   F(t)g(t) are linearly 

independent on the interval [0,8 ].    However, 

g(t) g(t) g(t) g(t) 

0 -f(t)g(t). 

so that   Q     has rank   <2   for all   t e [ 0, 8 1. 
c 

Observe that even though this system is completely 

controllable on   [ 0, 8 ]    it is not controllable on any interval  [ 0, t ] 

for   t s 6.    That is,   starting at time   t = 0   there is a waiting period 

of 6 units before a desired final state can be reached. 

Although a necessary and sufficient condition is not possible 

for complete controllability in terms of the   Q     matrix such a 

condition can be given for the more useful property of total controll- 

ability.    This condition,  which follows directly from Theorem 3. 3 and 

equation (3. 15),  constitutes a major result of this chapter.    It may be 

summarized as follows: 

39 
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Theorem 3. 5:   System (2. 1) is totally controllable on the interval 

[t_,t.] if and only if  Q     does not have rank less than   n   on any sub- 

interval of   [ tn,t ] . 

If (2. 1) is a fixed system,   then the controllability matrix 

takes the form 

Q      =   [ B :   -AB 
c 

(-A)n-lB] 

I 

and is equivalent in rank to the familiar form of the fixed controllability 

matrix given in equation (2.15).    Theorem 3. 5 may thus be viewed as 

a generalization of the well known and widely useful criterion for 

controllability of fixed systems given in Chapter 2. 

It should be quite apparent that results dual to those 

presented for control .ability hold for observability.    To formalize 

these results we first define the Wronskian matrix of a set of column 

vector functions 

*(t) = r^t) :^2(t) :0n(tn 

as 

Wit)   = 

V^tJ 

*     ,(t) 

m ft»i»lC9»(»«"'*- 

..'•-■. 

40 



J 

\     ■■■*«■*«».. ^,   _. . 

-/r 
> 

where 

41 

\it) ir\-i(t)' *0(t)   -- Mt) . 

If   ^(t)    =   C(t)X(t)   where   X(t)   is a fundamental matric solution of 

(2. 1),  then the matrix 

W0(t)    -   Q^X{t) (3.16) 

plays a role completely dual to that of   W  (t)   in establishing the 

following theorems. 

Theorem 3. 6:     (a)   System (2. 1) is completely observable on the 

interval  [t^t.]    if   Q     has rank   n   for some   te [t-jt.]. 

(b)   If for some   t > tn,  Qft   has rank   n  then the 

system (2. 1) is completely observable at   tn . 

Theorem 3. 7:    System (2. 1) is totally observable on the interval [ t , t.] 

if and only if  Qn   does not have rank less than   n   on any subinterval 

ofh^tj. 

If the coefficient matrices of system (2. l)are analytic 

functions of time,    the distinction between complete and total 

controllability disappears,  as will now be shown.    First note that if 

(2. 1) is an analytic system,   its fundamental matrices must also be 

analytic [ 7 ] .    Thus,  it follows from Corollary 3. 2 that if the rows of 

For simplicity, we will refer to (2. 1) as an "analytic system" in this 
case. 

\._. 
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X    (t)B(t)   are linearly independent functions on some interval of  t , 

they are independent on every interval of  t .    That is, if the system 

is completely controllable on some interval, it is totally controllable 

on the interval.    Since the converse is always true,   complete and 

total controllability are equivalent concepts for analytic systems, 

and controllability is independent of the particular choice of intervals 

and initial time (as is true for fixed systems).    As a special case of 

Theorem 3. 5,  therefore, we have the following corox.-ry. 

Corollary 3. 3:    An analytic system of the form (2. l)is completely 

controllable if and only if   Q     has rank   n . 
c 

Similarly we have: 

Corollary 3. 4:    An analytic system of the form (2. 1) is completely 

observable if and only if  Q-   has rank   n . 

; 

3. 5   System Reduction 

In this section we will consider the problem of determining 

from the   Q   matrix whether a system is non-controllable (i.e., not 

completely controllable) on an interval.    It is clear from Example 3. 1 

that this is not always possible.    Coupled with this problem is that of 

"system reduction. "   It is well known [ 8 ] that any non-controllable 

■ 

This result was also established by Stubberud [ 1  ]  and Chang [ 2 ] . 
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or non-observable system can be reduced to a zero-state equivalent 

system of lower dynamic order.    When possible such reduction is 

usually desirable in analysis since the resulting system is more easily 

solved.    Moreover,  in synthesis,  a first step in realizing a prescribed 

input-output response may result in a system of higher order than 

necessary.    A least order realization can then be obtained by reducing 

the initial system.    This type of synthesis is utilized   [ 8  ] for fixed 

systems.    The method of reduction given in [ 8],   however,  is based on 

knowledge of the transition matrix and thus cannot readily be generalized 

to time-variable systems.    Reduction of time-variable systems is 

considered in [ 9 ] in the special case of systems realizable by a single- 

input-single-output differential equations.    Presented below is a general 

approach to the problem of system reduction based on properties of the 

controllability and observability matrices.    The following will be 

important in this development. 

Property 3. 2:   If  Q   has rank   q   for all   t E[ t., t. ]    then any matrix of 

the form 

[po:pi: :Pk]  . k>n-l 

has rank   q   for all   te[t0,t ]   . 

A proof of this property it given in the appendix of [ 3 ] . 

Property 3. 3:   Let   Q     be the controllability matrix of (2. 1) and define 

the related matrix 

43 
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Qc • cpi:p
2: • • iv- (3. 17) 

Then on any interval where   Q     has rank   n ,  the system A-matrix can 

be expressed as 

• *     t 
A   =   (Q    - Q )QT 

c        c     c 
(3.18) 

44 
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Equation (3. 18) follows from the observation that 

i 

Q     =   -AQ    +6 
c c        c (3.19) 

Since   P   = B , knowledge of consistent matrices   Q   and  P     suffices 
0 " n 

to determine (2. 1) uniquely on any interval where   Q   has rank   n . 

It will be said that a system is reducible if for all time,  its 

impulse response matrix may be realized by z. system of lower order. 

Reduction is always possible if a system is not completely controllable 

and/or not completely observable.   In certain degenerate situations a 

system may be reducible even if it is completely controllable and 

observable [1'JJ ,  but such cases will not be considered here.    The 

reduction problem will be separated into two parts: 

(i)   Construction of the least order completely 

controllable system realizing the impulse 

response matrix of (2. 1) - i. e.,  that part 

affected by the input. 

-- 
■ ■ ,   ■ 
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(ii)   Construction of the least order completely 

observable system realizing the impulse response 

matrix of (2. 1) - i. e. ,  that part which affects the 

output. 

By combining (i) and (ii) the least order completely controllable and 

completely observable subsystem may be found. 

Definition 3. 1:   System (2, 1) is reducible (from the input) to order 

q ^ n   and no lower order  if it is equivalent to a system of the form 

• 
z   = 

"V 
= 

■Au 
A12] rii 

t 
■Bll 

• 

-Z2J .0 AJ w -0  J 

y = 
A 

c. 
1 '?' (3.20) 

and the   q       order subsystem 

z     =   Ä     z    + B   u 
1 111 1 

y    = Cjz, (3.21) 

is completely controllable. 

It is clear that the impulse response matrix of (3. 21) is 

equal to that oi (3. 20) and hence to that of (2. 1). 

m 
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Definition 3. 2:   System (2. 1) is reducible (from the output) to order 

q sn  and to no lower order if it is equivalent to a system of the form 

46 

Z    s 

r« -] f 

v 
=     1 

• 
i-Z2J 

11 

^   21 22J 

i r   " "A       T 

h + 
A              | lUJ LB2J 

u 

y = CCj    0]z (3. 22) 

and the  q      order subsystem 

Zl   =   A11Z1 + B1U 

y    = CJZJ (3.23) 

is completely observable. 

Note that in this case the reduced system is zero-state and 

zero input equivalent (i. e. , "equivalent" in the sense of [ 1 1 ] ) to the 

original system. 

Only reduction from the input will be treated below,   since 

reduction from the output may be effected in a dual manner. 

Conditions under which a system is reducible (non-controllable) 

wiU now be explored.    The following theorem indicates the importance 

of the controllability matrix in this context. 

A M.   , 
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Theorem 3. 8:   System (2. 1) is reducible to a  q      order totally 

controllable system if and only if an equivalence transformation   T(t) 

exists such that 

47 

TQ   = 
1 

LQ  J 

(3. 24) 

where   Ö.    has   q   rows and does not have rank   <q   on any interval. 

A 

It is immediately evident that if Q   is the controllability 

matrix of a system of the form (3. 20) then 

Q   = 

L 0 

(3.25) 

so that the necessity of the conditions of Theorem 3. 8 is clear. 

To prove sufficiency,  it is first noted that Property 3. 2 

implies 

A* 

L Ü   J 

A* 
where   Q.    has   q   rows,   so that from (3. 19) 

All A12 

A21 A22 

d   * A* 
—-Q    - Q dtwl     wl 

J 

Since   Q.   does not have rank   <q   on any interval, and 

. 
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A^Q,   =   0 

it can be concluded that  A.. = U .   Also, since B is formed from the first r 

columns of   Q   it must have the foi )rm 

B 

B, 

which concludes the proof. 

The constraint on   Q     in Theorem 3.8 can not in general be 

relaxed to include reduction to systems that are not totally controllable. 

It is possible,  as shown by Example 3. 1,   that a system may possess 

a controllability matrix of the form (3. 25) yet not be reducible. 

The conditions under which   Q   admits a transformation 

satisfying Theorem 3. 8 will now be examined. 

It is clear that if such a transformation   T   exists,  then its 

inverse   R   must satisfy 

Q   =   RQ 

■ 

and also be an equivalence transformation.    The matrix   Q   may be 

partitioned as 

Q   = 

Q Q wll w12 

/. »ih v liL \ : •-. *fl^m:i>, 



i ■N 

*i? 

49 

where   Q       is a  q x (rq)   matrix not having rank <q   on any interval 

and is the controllability matrix of the reduced system (3. 21).    Let 

R   be partitioned as   [ R    !  R       I   where   R     has   q   columns and 1    q .      n-qJ q 

rank   q   everywhere.    Then it is evident that a necessary condition for 

T   to exist is that   Q   not have rank  < q   on any interval and that the 

first   rq   columns of   Q   be factorable in the form   R Q..  .    If such 
q   11 

factorization is possible then the reducing transformation is given by 

=  [ R   •"   R     ] 
q.     n-q 

(3.24) 

where   R is any set of   n-q   continuously differentiable columns 
n-q 

making   T        nonsingular. 

The above discussion together with Theorem 3. 5 implies the 

following corollary to Theorem 3. 8. 

Corollary 3. 2:     System (2. 1) is reducible to a totally controllable 

system of order   q ^ n   if and only if   Q   does not have rank "^q   on 

any interval,  and the first   rq   columns of  Q   can be factored in the 

form   R Q,, .  where   R     has   q   columns and rank   q   everywhere and 
q   11 q 

Q   .    does not have rank    < q   on any interval. 

t 
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It might appear that the conditions of Corollary 3. 2 are 

redundant in that the factorability of   Q   seems to be implied by its 

rank.    That this is not the case is demonstrated by the following 

example. 

Example 3. 2:   Consider the second order system 

1 fjU) 

f2(t) 

u 

where 

fjU)   = y(t) 

f2(t)   =  y(t - 2) 

and  y(t)   is as defined in Example 3.2. For this system, 

Q   = 

fl        fl 

f2        f2 

has rank    1   almost everywhere on the interval [-1,3], as does the first 

column of   Q .    The system is completely controllable,   however,  and 

is thus not reducible on the irterval. 

A simpler sufficient condition for reducibility applicable for 

a somewhat smaller class of systems is provided by the following 

corollary. 

KWiH>**WUW«MHHkM 
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Corollary 3. 3: If Q has rank q everywhere and q columns of Q 

also have rank q everywhere then system (2. 1) is reducible to a q 

order totally controllable s/stem. 

Any set of columns of Q   having rank   q   may be used as   R 

in (3. 24)^avoiding the need to factor   Q .    This method is essentially a 

generalization of Stubberud's technique (9]   for single-input systems. 

Cases where factorization may be necessary were not considered in 

[9j ,   however,   nor were the precise conditions under which reduction 

may be performed made clear. 

Observe that it is possible for the   Q   matrix to have rank  q 

everywhere without any   q   columns having rank   q   everywhere,  as in 

the following example. 

Example 3. 3:   Consider the system 

51 

LX2J   L 

sint 

sint 
u 

y    =     x, 

The controllability matrix of this system, 

sint cost 

sint        cost 

has rank   1   for all   t   but no single column has this oroperty,   so that 

. 
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Corollary 3. 3 is not applicable.    It is clear,   however,   that the first 

column of   Q   may be factored as 

1 

U 
sint    , 

so that 

-1 
1 1 

I        U 

will reduce the  system to 

z .    -  (sint)u 

=    z. 

One difficulty involved in using the method of reduction 

associated with Corollaries 3. 2 and 3. 3   is that the choice of the 

columns   R may not be obvious.    Theorem 3. 9   below provides a 
n-q 

method of reduction in terms of the rows of   Q ,  which has the virtue 

of providing a simple explicit form for the reducing transformation and 

the reduced system. 

Theorem 3. 9:   If   Q   has rank   q <  n   everywhere,and   q   rows   of   Q , 

say   Q.  ,   have this property, then system (2. 1) can be reduced by the 

transformation 

/ ■•• ■ .'■.••■ 
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to a totally controllable system of order   q   where the rows of   Q   have 

been reordered so that 

and 

Q 

Q 1 

Q- 

Q2   =   KQ1 . 

As in (3. 11),    K   may be expressed as 

K   =   Q2Q1  t (3.25) 

* 

/ 

so that   T   is an equivalence transformation.    It is clear that 

TQ 
0 

which proves that   T   does indeed reduce the system. 

Although (3. 25) provides an explicit form for the proportionality 

matrix  K ,   it is often easier to find   K   by alternate methods.    A method 

that is quite useful and widely applicable is presented below. 

- imM Om ii hi« nattm 
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If in addition to the conditions of Theorem 3. 9,    q   columns 

■ of   Q      which will be denoted as   Q   .   ,  also have rank   q   everywhere 

then 

K   =  Q^Q^1 (3.26) 

where Q?1 denotes the columns of Q corresponding to the columns 

of Q, , • For this case, simple explicit forms for the matrices of the 

reduced system can be derived. 

Define   Q        to be that submatrix of   Q     which corresponds 

to   Q.,; that is, 

11 

C;:]' °" ■ 
* * 

Also,   let   Q.    be the first   q   rows of   Q Then since 

Q [?] 
and 

11 
QH'  Qn Q* wll 

it follows from (3. 18) that 

— ..._..    ... . :...-.    —... .,.   -,-   _sr-  
/■■..,■■■, ■•■ -^  ..v'    - -'. 
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Aii  = ^n-Qn)Qül (3.27) 

It is obvious that 

(3.28) 

and 

or 

[c,: c2] 

Q21Q11 

ci = ci + c2
Q

2i
Qii 

-i 
(3.29) 

In addition to giving an explicit form to the reduced system this 

reduction method has many computational advantages.    Any method of 

system reduction involves finding a transformation of coordinates.    The 

usual reduction procedure is to find the matrices of the reduced system 

from the appropriate submatrices of the transformed coefficient 

matrices obtained via (2. 12).    This approach, which has been used by 

Kaiman [8 ] for fixed systems and Stubberud f9 j   for time-variable 

single-input  single-output systems, requires the inversion and 

multiplication of   n x n   matrices.    If relations (3. 26) - (3. 28) are 

utilized,   however,  only a single matrix inversion (of a   q xq   matrix) 

and a single matrix multiplication (of  q x q   matrices) are required to 

find  A..  .    The construction of   C.    is also simplified and no 

A 

computation is required for   B.  . 
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It should be emphasized that this explicit method of system 

reduction is always applicable for fixed systems, since if  Q   has rank 

q   it is trivially true that some submatrix of the form   Q       also has 

rank   q . 

An example of the reduction procedure for a time-variable 

j/?tem follows. 

Example 3. 4:    Consider the third order system 

56 

v3 J 

-L 

cosZt        -sinZt        1 

sint  | 

M + cost 

LxJ sint J 

u 

Ly2 

LxJ 

The controllability matrix of this system is 

Q   = 

sint -cost -sint 

cost sint -tost 

sint cost -sint 

and its rank is   2   for all   t .    Also,   the submatrix 

11 

sint -cost 

cost sint 

L- 
_i 

,...■, ,«rf^««iH**Wiai»»«l»(i 
»«•»wtT^^k^vmiMrttr-i^ÄWNFgr«^.* ' - I    -'»     ■ i       uvwBfcieh .>fe**^UM^W^; ' 

; iti ■:.-. 
sS. 

*-if*^ 
-ji a*. » 

.'-\^*^f*<r 



is nonsingular for ail   t   and has as its inverse 
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Q 

.        pint cost"! 

L-cost      smtj 

For this choice of   Q,, . 

Q   ,    =    [ ^int cost] 

and 

Q 
11 

-cost 

sint 

-sint 

■cost- 

Therefore it is seen from (3. 26) and Theorem 3. 9 that 

r i 

T   = 

0 n 

L 1 sin2t 1 

and from (3. 27),   (3. 28) and (3. 29) that 

I 
(-0     2-1 rsint]       ,        n     on 

"H.2   ol  B>=LJ'   C'=[o   J 
3. 6   Fixed Systems 

Several of the results of this chapter will now be specialized 

and applied to the analysis of fixed systems.    It will be seen both here 

■»^,» . r   * ■ - ^'-vr^k-.::. ■ 
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and in subsequent chapters that the more general approach 

necessitated by the consideration of time-variable systems leads to a 

clarification and simplification of many fixed system problems. 

The reducibility criteria for fixed systems simplify 

considerably,  as evidenced by the following theorem 

Theorem 3. 10:     A fixed system of the form (2. 1) is reducible from the 

input to a   q    -order completely controllable system,  if and only if   Q 

has rank   q . 

The proof of this theorem follows directly from Theorem 3.8 

and the fact that if   Q      is a constant matrix of rank   q ,  there always 
c 

exists a constant non-singular matrix   T   such that 

58 

TQ 
cl 

where   Q   ,   has   q   rows and rank   q . 
cl 

If the system state-variables are so ordered that the first 

q   rows of   Q     have rank   q ,  then 
c 

T   = 

I 0 
q 

-K     I 
n-qj 

where   K   is given by equation (3. 26),  and the reduced system by 

equations (3. 28),   (3.29),  and 

«      -1 
All   =   Q11Q11 

(3.30) 

jf 
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Similarly,  we have: 

Theorem 3. 11:   A fixed system of the form (2. 1) is reducible from the 

th 
output to a   q    -order completely observable system if and only if  Q 

has rank   q . 

An important advantage of the criteria for reducibility given 

by Theorems 3. 10 and 3. 11,  as well as the reduction procedure 

presented,  is that they require operations solely on the controllability 

and observability matrices.    Furthermore,  as will now be shown,  they 

lead to an explicit measure of the degree of the least order system 

obtainable by reduction from both the input and the output (i. e. ,  the 

least order system realizing the system's impulse response matrix). 

Theorem 3. 12:   Let   0     and   Q.,   be the controllability and observability 
  c 0 

matrices of a fixed system of the form (2. 1),  then: 

(1) The system is irreducible [   8   ] (completely controllable 

i 
and completely observable) if and only if the matrix  Q^Q     has rank   n . 

0   c 

(2) If  Q-Q     has rank   q < n ,  then (2. 1) is zero-state 
0    c 

equivalent to an irreducible system of order   q , 

1     I 

v Av   +   Bu 

Cv . (3.31) 

Furthermore, 

**w^**m**£bd.&i*&sffgto 
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Q'Q 
0   c 

CA 

CÄ^-1 

c^-1 

[B: AB Iä^B: T n - ^-i A        B] 

(3.32) 

The procf of part (1) is easily established.    If  0,10      has 

rank   n ,   then both   <D     and   Q      must have rank   n   which in turn 
0 c 

implies the system is irreducible.    If   Q'Q      has   -ank   <n   then either 
0   c 

Q„   or   Q      has rank   <n ,   and the system is reducible either from the 
0 c 

input or the output. 

Part (2) is established by first transforming system (2. 1) to 

the equivalent form 

r 

1     1 

\Z 

9 - 

1      3 

L'4. ■ 

11 

L21 

0 

13 

A22    A23 

'33 

43 

14 

'24 

'34 

44 

Zl  '   !B1 

■   i ^ 
z2 i ; B2 

l+l 
0 

0 
J     U    -J     i_ 

u 

(3.33) 

y  =   [Cj      0 C3       C4^ Z 

where   z.    is a q-vector and the subsystem 

Zl    =   A11Z1+   B1U 
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is completely controllable and observable.    The procedure for 

constructing this equivalent system follows. 

Let   q    i n   be the rank of  Q    ,   then by Theorem 3. 10 there 
c c 

exists a constant nonsingular transformation   T      such that if    w = T  x. 6 r r    f 

t 

_ • 

= 1 
• 

LW2j 

All        A12 

22J 

'"l1 

+ 
■^1 

.W2- 
0   | 

u 

y      = [Cj C2   ]w     . 

and 

Q     =   T Q 
c c   c 

cl 

0 

where   w,    and   Q   ,    have   q   rows and  Q   ,    has rank   q.    If 
1 cl x cl ^ 

is partitioned as 

Q0   =   fV. ;Q02]   =   Vc' 
1 

where   Q„'   has   q     columns, then clearly 
01 c 

Q'Q     =   Q.-JQ   .    . 
0   c 01    cl 

(3.34) 

Since Q , has rank q , 
cl c 

Ä       A 

01    0 c cl  cl cl 0 c cl 

"'.-' -»-'' • - t 
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which implies that the rank of  Q       is   ^ q .    Equation (3.34),  however, 

implies that Q   .   has rank   a q .  Therefore,    Q  .   must have rank   q . 

It follows then from Theorem 3. 11 that there exists a constant 

nonsingular matrix   T.   such that if 

z   = 
0 

0 I 
n-qr J 

w , 

then (2. 1) is equivalent to a system of the form (3. 33).    Thus, 

W0 LW01 .    02-1 'V1 

0 

0 

n-q 
c-* 

CQoi;o;Qo3;so4] 

■ 

I 

where   Q   '   has   q   columns and rank   q . 

MM 

If  Q     is partitioned as 
c 

Q     = c 

cl 

0 

u 

[': ■:J1 
where   Q   ,   has   q   rows.then 

cl ' 

Q 'Q w0wc =   Q   'Q w01   cl 

j^jPHWC 

-V-—,-_ 
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■ ■- j ■  ,■ 
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and   Q   ,    mus 
el 

t have rank  q .    Making the identifications   v = Zj . 

A = A ll.  B-%VC-CX   and 

Qcl = [B ; AB*: • 

QOI = [C'-.A'C' 

iÄ""1^ 

\(kn-\c^ 

completes the proof. 

Example 3.5:   Consider the system 

^1 
1 -1 1 0 Xl 

1 

XT -1 0 0 1 X2 
2 

2 + 
a -1 1 -1 1 x3 

2 
x3 

>1 
-1 2 -3 2 

• 
X4. 

2 

u 

=    [    1 1 0     -l]x 

For this system 

- 
1 1 1 1 

2 1 0 -1 

Q    = c 2 1 0 -3 

2 1 0 -1 

i> 

u 
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and 

I Q' w0 

1       1 

1       1 

0 -fl 

4 -1 

0 -3 

4 -lj 

Although both   Q     and  Q     have rank   2 ,  their product 

Q'Q    = 0   c 

1        1 

1        1 

1        1 

1111 

has rank 1,   so that the system is reducible to a first order system.    To 

find the reduced system we first reduce the given system from the 

input.    Note that the submatrix 

».. ■ c:] 

. 

of  Q     is nonsingular.    With this choice of  Q  , 
c 11 

.: ■ c.:] 
so that from (3. 30), 

(•»»■-• 

L 
•v *■.., ■ 

! •     ■ .■ 

JJ '*■■ 

-""■■'■"■»i'liWM..^ 

s^rs-; 
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1 0 

-2 1 

Cj   =  [I 0]    . 

By inspection,  therefore,  the final reduced system is 

V   = V + u 

y = v 
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It will be shown in Chapter 4,  that the form of the product 

Q'Q     given by (3. 32) leads to a new direct method for constructing 

a least order system zero-state equivalent to (2. 1).    This procedure 

avoids the successive transformation required by Theorems 3. 10 

and 3.11. 

3. 7   Analytic Systems 

Most of the results obtained in the previous section for fixed 

systems generalize directly for systems with analytic coefficient 

matrices,  as will now be demonstrated. 

Theorem 3. 1 3;    An analytic system of the form (2. 1) is reducible 

from the input to a   q    -order completely controllable system,   if and 

only if  Q     has rank   q . 

■ 
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• 

The necessity of the reducibility criteria is obvious.    To 

prove sufficiency note that if   Q      (and thus   W )   has rank   q , 

Corollary 3.2 implies that exactly   q   rows of   X     (t)B(t)   are 

linearly independent.    Therefore,  there must exist a constant non- 

singular matrix   T.    such that 

T,^ 
1    c 

W 

where   W      has   q   rows and rank   q .    Clearly,    T   =   T.X       is 
c 1 

an equivalence transformation and from (3. 1 5), 

i TQ 
W 

Thus,   Theorem 3.8 implies that the system is reducible to a   q"1 

order completely controllable system. 

In the case that   q   rows of  Q     have rank   q   for all 
^ c — 

t ,  the explicit form of the reducing transformation given in Theorem 3. 9 

may be utilized.    If,  as may happen,   Q     does not have maximal 

rank for some   t ,  the factorization procedure may be necessary to 

find the transformation. 

In a dual manner to the above it may also be shown that; 

Theorem 3. 14:    An analytic system of the form (2. 1) is reducible 

from the output to a   q*  -order completely observable system if and 

only if   Q     has rank   q . 

- 
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Since the proof of Theorem 3. 12 depended solely on 

Theorems 3. 10 and 3. 11 it is clear that a completely parallel proof 

based on Theorems 3. 1 3 and 3. 14 may be given for the following. 

Theorem 3. 1 5:     Let  Q     and   Q„   be the controllability and 
  c 0 

observability matrices of an analytic system of the form (2. 1),   then: 

(1) The system is irreducible if and only if 

the matrix   Q'Q     has rank   n . 
0   c 

(2) If   Q'Q     has rank   q < n   then (2.1) is 
U    c 

zero-state equivalent to an irreducible system 

of order   q , 

« 
v Av + Bu 

Cv (3. 34) 

Furthermore, 

0   c 
 I 

sl 

q-1 

n-1 

f P    *   P    * 1 o: M : q-l : 
PnJ 

(3. 35) 
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me 

In Chapter 4,  it will be shown that an extremely efficient 

thod for reducing analytic systems follows from the form of 

Q'Q      given by (3.35),   as well as se 
veral important results pe r- 

taining to the representation of such systems. 

ii 
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CHAPTER 4 

SYSTEM EQUIVALENCE AND CANONICAL REPRESENTATION 

4. I   Introduction 

A new degree of controllability and observability,   stronger 

than those previously defined,   will be introduced in this chapter.    It 

will be shown that the state of a system possessing these properties 

can be controlled and observed "instantaneously. "   The motivation 

for defining these properties (to be called uniform controllability 

and uniform observability),  arises from the role they play in the 

study of equivalent systems.    There are many problems in the analysis, 

synthesis and control of linear systems that can be solved most 

effectively by transforming a given system to an appropriate equivalent 

representation.     For example,  when simulating a time-variable 

system on an analogue computer,   it is desirable to minimize the 

number of variable components (e. g. ,   multipliers) required.    There 

are several well known canonical structures for single-input single- 

output systems which require no more than   2n   multipliers [ 1, 2, 3] . 

It is therefore desirable to know the conditions under which a system 

has an equivalent canonical representation and to be able to construct 

such representations when they exist. 

For fixed systems,  conditions for a system to be equivalent 

to several particular canonical forms are well known [ 1 ] ,   but the 

Parts of this chapter have appeared in two papers by the author and 
H.  E.  Meadows [ 18,   19] . 
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techniques for transforming to these forms are often complex or ad-hoc 

methods [ 4, 5, 6].    There are few previous results for time-variable 

systems in this area. 

We will present below a general approach to the problem of 

system equivalence for both fixed and time-variable systems.    For the 

class of uniformly controllable and observable systems (which includes 

fixed completely controllable and observable systems),  a necessary 

and sufficient condition for equivalence of two systems will be given 

which requires no knowledge of their solutions.    In addition,  an explicit 

form for the transformation between equivalent systems is found.    New 

insight into the problem of system reduction is gained from this study, 

and a method for directly finding the class of minimal order systems 

zero-state equivalent to a prescribed system will be given.    An 

interesting and potentially useful byproduct is a necessary and sufficient 

condition for an analytic system to be zero-state time-invariant and 

a method for finding an equivalent fixed system if such is the case. 

Two important canonical systems will be studied in detail- 

the input-output differential equation form,  and the "phase-variable" 

canonical form.    It will be shown that uniform observability and 

uniform controllability,   respectively,  are necessary and sufficient 

for the existence of equivalent systems in these forms.    Explicit 

methods for constructing canonical equivalents will also be given. 

V... 
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4. Z   Uniform Controllability and Uniform Observability 

In the previous chapter conditions for complete and total 

controllability were given in terms of the matrix  Q    .    As shown,  it c 

is not necessary for this matrix to have maximal rank at all points 

to insure either of these types of controllability.    A point to be 

emphasized in the present chapter is that for many problems of system 

equivalence the controllability matrix must have rank   n   for all   t . 

Thus we define the following new degree of controllability. 

Definition 4. 1:   System (2. 1) is said to be uniformly controllable on an 

interval   [trt, t.]   if the matrix  Q     has rank   n   for all   teCt.,, t ] . 
0    1 c U    l 

A new degree of observability is defined similarly: 

Definition 4. 2:   System (2. 1) is said to be uniformly observable on an 

interval   [t  ,t  ]   if the matrix  Q     has rank   n   for all   teLt  ,t.]. 

An interesting interpretation of uniform controllability can 

be made which shows how this criterion relates to the more familiar 

types of controllability which arise in optimum control problems.    If a 

system is totally controllable,  then by definition the state of the system 

may be transferred to any desired value in an arbitrarily short interval 

of time b; application of some input.    It will now be shown that if a 

system is uniformly controllable,  it is even possible to perform the 

state transition instantaneously.    Furthermore,  an explicit input in 

terms of the controllability matrix will be given which effects the 

transition. 

u ^r.- -• '*? 
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L It is first necessary to examine the response of a time- 

variable system to impulse functions and their derivatives.    In this 

discussion we will rely heavily on the development of Zadeh and Desoer 

[3] .    Since the response to an impulse is discontinuous in general,  it 

is necessary to distinguish the value of the state prior to and after the 

application of an impulse.    The notation   t     will denote the left hand 

side of any discontinuity. 

Suppose the state of system (2. 1) is zero at time   tn    and 

u(t) = 6(t - tJd'     where   OL     is an r-vector of arbitrary constants,  then 

T 

7 3 
1 i 

x(t) 

t 

T)B(T)6(T- t0)a0dr. t>t0 . 

By the sifting property of the impulse function 

x(t)    =  $ (t.T)B(T)OL 
T= t. 

t >t. 

or 

x(t)  =  $ (t, t0)B(t0)a0 , t >t. 

Thus,  it may be said that the state at time   t0   has changed instantaneously 

from zero to 

"V = B(to)ao = po(to)ao • (4.1) 

^ i*i*S«te »"C ^^b^M|tj 
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By generalizing the argument of Zadeh and Desoer ([3] page 496) to 

time-variable systems and utilizing (3. 7) it can be seen that if u (t) = 

(k) 
6     (t - tjot    is applied to system (2. 1) the state will "jump" to the 

value 

xlt,)  =   Pk(t0)ok, (4.2) 

where   P, (t)   is defined by the recursion formula (3. 2). 

With this development,  it can now be shown that if system 

(2. 1) is uniformly controllable,   its state can be changed instantaneously 

to any desired value with an input of the form 

■: 

. 

n-1 

u(t)   =      IT 6(k)(t - t )a    . 
k=0 

(4.3) 

Let   x,   be the desired state at   t.v   and   x.   be the initial state 
d r) i 

at   t~ ;  then it is clear that if   u(t) is given by (4. 3) 

i 

I 

n-l 

(xd " Xi) =    ^ Pk<to)ak 
k=0 

If the   nr   vector   a is defined as 

(4.4) 

i 

a r 
a 

La n-r 

■«- 
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then (4, 4) can be rewritten as 

^d-^   =   Qc(t0)a (4.5) 

Equation (4. 5) represents   n   equations in   rr   unknowns, and if  Q  (t ) 

has rank   n , a solution (non-unique) for a exists.    An explicit solution 

is given by 

a- a'c%mt0)Q^)r\Xi- x.) 

- °>oH*ä ■ "i* 

If the matrix  A (t)   is defined as 

AU) = [6(t)i :6(1\t)i: 
r • r. ■^-\nj 

then an input which changes the system state from   x.   to   y ^ at   t 

is 

u(t) = A(t - t0)Qc(t0)(xd - x.) (4.6) 

For a single-input system the above solution is unique and 

(4. 6) reduces to 

&  Ä. 

* ■ 

■ ■■' • ■ .■..-. 
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where 

u(t) = Mt - t0)Q;1(t0)(xd. x.) 
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Mt) = C6(t) :6(1)(t): ^^■^(t)] 

It is interesting to observe that it may be possible to change 

the 3tate instantaneously at   tn   even if Qit )   does not have rank   n . 

The reason for this is that appending further terms of the sequence of 

P 's   to  Q     can increase its rank at a point even though it cannot 

increase its rank over an interval (Property 3. 2).    A simple example 

which demonstrates this is the first order system 

x    =   tu 

For this system  Q    = t ,  and has rank   0   at   t = 0 .    However,    P   = 1 

and the input 

u(t)   =   6(1)(t)(xd-xi) 

will change the system state from   x.   to   x     at   t = 0 . 

A dual result for uniform observability may also be 

established. 

Let   u = 0   for convenience,  and differentiate the output of 

(2. 1) n-1   times.    Then it is clear that 

L 

• 
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Y(t)^ 

y(t) 

y(1)(t) 

y^-^tH 

1= QjjmxCt) (4.7) 

If  Qn(tn)   has rank   n ,  then (4.7) can be solved uniquely for   x(tn) , 

with the solution given explicitly as 

x(t0)  =  (Q0(t0)Q(;(t0))-IQ0(t0)Y(t0) 

or 

77 

x(t0)   =   (Q^t^)   Y(t0) (4.8) 

That is, if system (2. 1) is uniformly observable,   the state of the 

system at any time may be determined instantaneously from obser- 

vations of the system output.and its derivatives. 

4. 3   Equivalent Systems 

Consider now the class of all uniformly observable and 

controllable systems of order   n .    This class will be denoted by   U 

If a system of the form (2. 1) is a member of   U    ,  the notation 

n 

(A.  B,   C)     c U 
n 

will be used. 

If   (A,  B,  C) and (A, B,   C) are equivalent systems of order 

n ,  where 

?\ 
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(A.  B,   C)- ♦ (A,   B.   C)   . (4. 12) 

t      f 

Two equivalent systems (A, B,   C) and (A,  B,   C) will be 

said to belong to the same equivalence class.    The primary goal of 

this section is the characterization of equivalence classes of uniformly 

observable and controllable systems.    It will be shown that for each 

such class there is a unique invariant matrix, knowledge of which 

suffices to generate all members of the class.    We will use this 

property to derive several important results including: 

78 

A   =   TAT"    + TT" 

B   =   TB 

C   =   CT 

the relationship between the two systems will be represented 

symbolically as 

(4.9) 

(4. 10) 

(4.11) 

If (4. 12) holds, then clearly 

-1 
(A. B.   C) —►(A.  B.   C) (4.13) 
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(1) A method for directly finding the class of all systems 

of minimal order which are zero-state equivalent to a given system. 

(2) A necessary and sufficient condition for an analytic system to be 

zero-state time-invariant (i. e. ,  to have a stationary impulse response 

matrix),  and a method for finding an equivalent fixed system when 

such exists. 

< 

Recall that if  Q     and  Q     are the controllability and 

observability matrices of (A,  B,  C)   and   Q     and  Q     are the 
c 0 

corresponding matrices for (A,  B,  C),the relationship 

(A.  B,   C) 2L-^(A.   B.   C) , 

implies that 

Q     =   TQ 
c c 

Q' = Q "r 

(4. 14) 

(4. 15) 

Clearly,  if   (A,  B,  C) and   (A,  B,  C) are equivalent,then (A, B, C) e  U 

if and only if   (A,  B,   C)   e U    .  Equations (4. 14) and (4. 15) also 
n 

directly imply the following property of systems belonging to   U    . 

n 

Property 4. 1:   If  (A,  B,  C)   e   U     and   (A,  B,  C)   e   U 
n n 

are 

equivalent where 

v.-«*'*!««*^^^^ 
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(A, B,  C)—2—MA,  B.  C) 

then 
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T   =  Q Q1 

c   c 
(Q Q1^)1 (4. 16) 

or equivalently, 

Q 'Q     =   Q'Q 
0    c 0   c 

(4. 17) 

The explicit forms of the transformation between equivalent 

systems given by (4. 16) will be extremely useful in the construction of 

canonical representations for time-variable systems.    As a 

preliminary demonstration of the utility of (4. 16), it will be used to derive 

an explicit expression for the impulse response of a fixed single-input 

system (A,  b,  C).    For simplicity,  it is assumed that   A   has distinct 

eigenvalues X.       Under this condition it is well known [ 1]   that if 

(A,  b,   C) is completely controllable it is equivalent to (A,  b,  C),  where 

A = 

^2  . 

.      b   = 

The controllability matrix of (A,   b,  C)   is seen by inspection to be the 

u  
7 
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Vandermonde matrix of A , 

1      X 

V   = 

1      X 

n-1 
1 
n-1 

1      X     .   . 
n 

n-1 
n     J 

It follows from Property 4. 1,  therefore,  that 

: 

(A,   b.   C) MA,  b,   C), 

- 

' 

■ 

where 

T   =   VQ 

and   Q   is the fixed form of the controllability matrix of   (A,   b,   C), 

n-1. 
Q = [b: Ab: . . . :A    b]. 

The impulse response matrix of (A,  b,   C) is thus given by 

H(t)   =   CQV^Eit) , 

where 

(4. 18) 

• *'*wmtoi*i;ii£j^jiQflm 

■v'.'V 

^^fT^  -^   ''."'^'^ ■■■■ -^'■--    -'•■"..'■,■ 
J£J    j 
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E(t) 

\      t 
n 

Since there are many efficient methods for inverting Vandermonde 

matrices [7,8] ,  equation (4. 18) would appear to be a computationally 

advantageous way of calculating the impulse response of a fixed system. 

A result which follows immediately from Property 4. 1 is a 

theorem stated by Kaiman [1]  and recently established by Youla [9] . 

Theorem 4.1:   Let (A,  B, C)   e U     and   (Ä,  B,  C)   eU     be fixed ■ n n 

equivalent systems.    Then 

(A.  B.   C)- -2—►(A.  B.   C) , 

82 

where   T   is a constant matrix. 

To prove this theorem,  merely note that Q     and  Q     must r ' c c 

be fixed, and apply Property 4. 1. 

Although Property 4. 1 gives a method for finding the form 

of the transformation between equivalent systems, we do not as yet 

have a criterion for determining whether two given systems are 

equivalent.    Before considering this problem,  it is necessary to 

introduce two new system matrices. 

+-- 
»«i i     iimmmm.*MutMj.v*:...■>**•!■, „:*,.;:■.;,„ ,   : ,• | 

'   -M-k-- ■■ m ..IM, ., , ̂
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Define. 

Q   = L pn: P, c 0.1 p
n] 

where 

and define 

■AP,    , + P,    ,    I     P    = B , 
k-1       k-1 0 

Qo = tsolsi n 

where 

A'Sk.l + Sk.l ;  so = c' 

* + 
It is clear that  Q     and   Q     are proper submatrices of   Q    ,  and that 

c c c 
$ + 

Q     and   Q     are similarly proper submatrices of  Q    .    We will refer 

to   Q     and   Qrt   as the identification matrices of (A,  B,  C).    The 

choice of this name is made clear by the following property. 

Property 4. 2:   The matrices   Q     and   B   (or  Q     and   C) are 

sufficient to uniquely specify (A,  B,   C)   e U    . 

Property 4. 2 was essentially proved in Chapter 3 since 

A   =    Q    - Q  )QT 

c        c    c 

[(Q! - Qn )Q! ] •. '0'   0 

(4. 19) 

(4. 20) 

and 

v - • »-* • 
-■^.^ "i ii»:>.-L      ;., .^iJi-vsiE ^■■•■•.»■»i,; , - -V... 

«wmwai 

'■  -.r". 
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Let   F     be a 

all 

n  n x n   submatrix of  Qc   having rank   n   for 

sponding submatrix of 
t   (if such exists) and let   F     be the corre 

Q    ,  that is 

.AFc + Fc • 

The n.  equation (4. 19) may be simplified to 

; #      -1 
Fc)Fc 

(4.21) 

SimU^y.le.^beannKnsubma.H.cofQ-Having 

rank   n   for all   t   and   ro   the correspo 
nding submatrix of   (QQ) 

then 

A = F0-1(F;.FJ 
(4. 22) 

Ü 

It is now possible to establish a necessary and sufficient 

condition for two uniformly observable and controllable systems to be 

ilent.    This condition,  which requires no knowledge of the system 
equivai 

responses, does not appea r to have been shown previously,  even for 

fixed systems. 

^ 'ilsSy:'-' 
.   ,/\'V;4;:.-;:^-;,-..,. ,v..--v ■■■v-.:^3^^!v^^?->^ V «■"*' 
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Theorem 4.2:   Let (A,  B,   C)   and   (A,  B,  C) belong to   U   , then the 
n 

two systems are equivalent if and only if 

85 

<Q0),Qc   =   (Q0),Qc 
(4.23) 

That (4. 23) is necessary for equivalence follows directly 

from Property (4. 1). 

To prove sufficiency,  observe that if (4. 23) holds then 

certainly 

0   c 0   c 
Q^Q     =   Q^Q. (4. 24) 

since this equation is simply the first  mn   rows of (4. 23).    By 

assumption,    Q     and  Q     have rank   n   for all   t ,   so that 

Q+   =    TQ+ 

c c 

where 

T   =   (Q/Q- 

and   T   has rank   n   for all   t .    Since   Q     has rank   n   for all   t   it 
c 

must also be true that 

(QQ)'   =   (Q^'T"1 . 

u. 
'*>■ 

■», ■„. 

,   ; .■. #a=^-zzr-j4n: 
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The form of   T   implies that it is continuously differentiable and thus 

*     *     * 
an equivalence transformation.    Consequently, there exist   (A,  B,  C)e U 

such that 

(A.   B,   C) 2L-^{Ä,  6.  t) . 

A   4- A  -f-                                                                                                                                                                                                                    A               A                  A 

Let  Q     and Qn   be the identification matrices of (A,  B,  C); then (4. 14) 
c 0 

implies that 

* + +        —I- 
Q      =   TQ     =   Q 

c c c 

Thus by Property 4. 2, 

(A,  B.   C)   =   (Ä.  B,  C) , 

and (Ä,  B,   C)   is equivalent to (A,  B,  C),  which completes the proof. 

It should be observed that it suffices for equivalence that 

either 

(O+
0)'Qc   =  (Q;)'QC 

or 

Q ,Q+   =   Q ,Q+ w0wc 0   c 

-W- 
^ -■• -x. 
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■ 

4        +        + 
The matrix   T= (Q^'Q    is thus seen to be an invariant 

0      c 

quantity which essentially characterizes an equivalence class of 

systems.   It will now be shown that knowledge of  T  alone (and not 

its factors) serves to determine its equivalence class. 

Let T   be given for some equivalence class of systems and 

let (A,  B, C)   e U     be any member of the class.    All submatrices of 
n 

T  arc invariant under transformation of coordinates so that we can 

identify the following useful submatrices: 

(1) r=  Q'Q 
0   c 

is the matrix formed from the first   mn   rows and the first   rn   columns 

of  T, 

•I 

(2) 
* A 

r   = (Q0)'QC 

is the matrix formed from the last   mn   rows and the first   rn   columns 

of T. 

Suppose that  F contains an   n x n   submatrix  F   having rank   n 

for all   t ,  then it is clear that   F   is of the form 

F   =   FnF 
0   c (4. 25) 

wh ere   F     and   F     are   n x n   submatrices of  Q '   and  Q     respectively. 

■Mnm 

^.A^;--^ ^«^^i.^,-. 
A—-— ... 

■'»■:/>v ,.•,..    'W 

.„Äj 
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(4. 26) 

where 

F! =   FnA   +   F0 . 
0 

Also, let   Fj   be the matrix compose 

rows of  r which correspond to   F .  that is 

d of those columns of the first 

m 

(4. 27) 
F     =   CF 
* 1 c 

Similarly,  let   F,   be the matrix compos 
ed of those rows of the first 

r   columns o 
f   r which correspond to the row 

s of   F .  that is 

(4. 28) 

F2  =  FoB 

Observe that the matrices   F.   F  ,   F.   and   F_   are all submatrices of 

T   and can be determined without knowing the matrices of any particular 

system (A,  B,  C).    What we will now show is that a member of the 

equivalence class associated   with     T    can be determined directly in 

i  ns of the above submatrices. 

Theorem 4. 3:   Lett be given for an equivalence class of systems in   U    , 

md let   F,   F  ,  Fj   and   F2 
be 

defined as above.    Then,  the system 

I     ^. 
^ '-^^ • a ■  -.'.*;-- ■-^.*.-*J*»***^*.tT.-^ 4   , 
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B   =   F, 

>** *    -1 
F     =   F  F 

so that from (4. 22) 
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(A,  B,  C)   is a member of the equivalence class where 

- ♦   -1 
A   =   F F 

C   =   FjF 
-1 

(4. 29) 
'Qk:-- 

Let   (A,  B,   C) be an    arbitrary member of the equivalence 

class.    Since   F   has rank   n   for all   t   then both   Frt   and   F     must 
0 c 

have rank  n  for all   t   .    Consider the transformation of coordinates 

(A,  B.   C) ^-MA, B,  C) 

Under this transformation, 

fo =  Vo'1  =  \ ' 

F     =   F^F      . 
c 0   c 

0- I 

i 

and 

...«»i*«*"""*''""'1' 
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Also. 

A A      _  1       A  ^C d        * 
A = Fo <ro -  dlV 

**        *   -1 
= Fo = FoFo 
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I 

I 

and 

B   =   F0B 

C   =   CF, 

But from equations (4. 25) - (4. 28) , 

Fn   =   FF 
0 c 

♦ *    _1 
F     =   F F 

0 c 
■ 

C   =   F^ 
1   c 

and 

so that 

B   =   F0   F2 , 

*        -1 -1 - 
A   =   FFFF        =A 

c      c 

ß   =   F0FOlF2   =   B 

i 

and 

I — 
Kl, ■ 

fii. . 
0 

■ 

< 

%z 7 
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-1       -1 - 
C   =   F.F     Fn     =   C    . 

lc      0 
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Thus, 

(A.  B,   C) ^(A,  B.  C) 

; 

and the theorem is established. 

i 

( 

. ■■ 

i     Y 

%. 

The fact that an equivalence class of systems can be 

determined from its   T   matrix will now be utilized to derive a new and 

efficient method of system reduction. 

Let   (A,   B,   C) be a fixed system of order   n   with   r   inputs 

and   m   outputs and define  T   to be the product of its identification 

matrices   Q.   and   Q     .    If   T  has rank   q <n ,  let  T   be the submatrix 
ü c 

formed from the first   m(q+l)   rows and the first   r(q+l)   columns of 

th 
T.    It follows then from Theorem 3. 1Z that there exists a   q    -order 

A A A 

completely controllable and observable system   (A, B,   C),  zero-state 

equivalent to (A,  B,   C).    Furthermore,  if   Q,.,   and  Q     are the 
U c 

identification matrices of such a system then 

■ 

i. 

■      , 

T = (6^ (4. 30) 

It is clear that Theorem 4. 3 may be applied to   T  to directly 

A A A 

construct a system equivalent to (A,  B,  C)   (andthus ^ero-state 

equivalent to (A,  B,   C)).    If   F,  F  ,  F.   and   F,   are defined as in 

i 

..     •    ■   ' 

\\ 
--■ — 

JSL. 
J •'.■.■ 
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Theorem 4. 3,  as submatrices of   T ,  then the following theorem holds. 

Theorem 4. 4:   If   (A,  B,   C)   is a time-invariant system and   T   has 

rank  q £ n   then (A,  B,  C) is zero-state equivalent to the  q     order 

completely controllable and observable system (A,  B,  C)   where 

A   =   F F 

B   =   F. 

C   =   FjF"1 (4.31) 

There are several advantages of this method of reduction 

both in comparison with previously published techniques [ 1, 10]   and 

with that presented in Chapter 3.    Most importantly,  reduction from 

the input and the output is performed simultaneously with a resultant 

saving in computation.    Furthermore,  it yields a simple explicit form 

for the reduced system. 

To compare this method with that of Chapter 3 consider the 

system of Example 3. 5. 

Recall that for this system 

1 1 1 1 

1 1 1 1 
QdQc = 1 1 1 1 

1 1 1 1 

•--,   f 

'■ 

'*• . 
>*    '     Jl 
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Clearly,    Q^Q     (and thus T )   has rank   1 ,  and 

F   =   F*   =   F1    =    F2   =    1 . 

Therefore, 

B 

Notice,   that no matrix inversions are required by this method whereas 

by the previous method it was necessary to invert a   2x2   matrix to 

find the reduced system.    It will generally be true that fewer and lower 

order matrix inversions will re required by the present reduction 

procedure. 

An obvious generalization of Theorem 4.4 to analytic 

time-variable systems is: 

Theorem 4. 5; If (A, B, C) is an analytic system and T has rank 

q s n for all t then (A, B, C) is zero-state equivalent to the q1^ 

order uniformly controllable and observable system (A,   B,   C) where 

F F 

V1. (4. 32) 
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and   F ,   F.   and   F_   are defined as in Theorem 4. 3 as submatrices 

of    T. 

It should be noted that the restriction to analytic systems 

in Theorem 4. 5 is a necessary one as the following example demon- 

strates. 

Example 4. 1:     Consider the first order system 

x   =   g(t)u 

y   =   f(t)x 

where 

g(t)  = y(t-i) 

f(t)  = y(t-3) 

and  y(t)   is as defined in Example 3. 1.    It is clear that     T   =   0   for 

t .    However,  the system is not zero-state equivalent to a zero- 

order system since its impulse response 

h(t,  T)    =   y(t-3)y(T-l)    ,    t ^T 

is non zero for   T e [ 0,  2]    and   t e [ 2,  4] . 

An interesting and potentially useful byproduct of Theorems 

4. 3 and 4. 5 is a test to determine if a system is zero-state time- 

.--«eiMjfiasiaat^.,.. 
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» 

invariant (i.e.,  has a stationary impulse response matrix),  and a 

method for finding a fixed zero-state equivalent for such a system. 

This effectively provides a method for solving a class of time-variable 

systems in closed form. 

Theorem 4. 6:   Let (A,   B,   C) be an   nin   order time-variable system. 

Then, 

(1) (A,   B,   C) is equivalent to a fixed system if and only 

if T is a constant matrix of rank   n . 

(2) If (A,   B,   C) is an analytic system,   it is zero-state 

equivalent to a fixed system if and only if   T   has constant rank q 

s n   and the submatrix    T    formed from the first   m(q+l) rows and 

the first   r(q+l)   columns of   T   is a constant matrix. 

The proof of part (1) follows from Theorem 4. 3,  since 

if   T   is constant then   F,   F ,   F.    and   F_   are constant matrices 

and the system (A,   B,   C) defined by (4. 29) is a fixed equivalent of 

of (A,   B,   C). 

Part (2) of Theorem 4. 6 follows similarly from Theorem 

4. 5. 

Example 4. 2:   Consider the time-variable system 

\ 
'   ;"■' ,- 

^^■^^iäte^^ife^^'i^V: xi-Ä ■rJ'^' 
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1 

• 
xl 

- 

t 

_*zm 

l+3sintco3t 3cos  t 

3sin  t 1.3sintcost 

p •                   " 

xl 
+ 

cost 

xi 
-sint 1 

u 

=   [       cost SI int      ] *,1 

L      J 

For this system 

cost     -(sint + cost) 

-sint      sint-cost 

ind 

«;>' 

cost sint 

cost + sint 2cost - sint 

3cost + 4sint      4cost - 3sint J 

Their product, 

(Q+
0)'QC 

i     -i 

1      -3 

L3      -7 
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has rank   2 

In this case (and in gene 
ral for  single-input-single-output 

systems) 

F   =   Q 'Q r ü   c 

1       -1 

1       -3 

> Wmä    - 
4   : 
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f 
and 

* « . 
F     =   (Q0)'Qc 

1      -3 

3      -7 
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Also, 

Fj   =   [ 1       -1]   =    [ 1      0]F 

and 

yF, 

Therefore,   (A,  B,   C) is a fixed equivalent of the above system,  where 

A   = 

Ü       1 

1       2 

B   = 

c = [ i    o]. 

V 

4. 4   Canonical Forms for Time-Variable Systems 

The transformational properties of the controllability and 

observability matrices will now be utilized to determine the conditions 

A.. 
.- • T*. 

■*      .  ' 
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under which a time-variable system has equivalent realizations in 

several canonical forms.    Methods of transforming to canonical 

equivalents will also be given when they exist.    Only single-input- 

single-output systems will be considered here, and to avoid the chore 

of counting the number of derivatives required in various arguments, 

it will be assumed that all system coefficients are infinitely differentiate. 

The matrices of four particular canonical structures are 

given below: 

0      1      0 

0      0       1 

0      0      0 

ai    a2    a3 

0 

0 

n 
J 

, % 

n 

c [10      0 0 ] (4. 32) 

A   = 

0      1      0 

0      0       1. 

0      0      0 

al    a2    V n 

c   = [  c1    c2    cy  .   .  cj (4. 33) 

■U ('   ■ •    ',•■<■■■ .... , - 
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fe 

» 

A 

0 

1 

0 

0 

1 

.  0     a. 

.  0     a. 

Ü 0 . 

1 Ü . 

Ü       1    . 

.  b   = 

Lcj     ?2    c3.  .  .cj 

. 0     a. 

.  0      a. 

.  0     a. 

0      0   ...   1      a 

[    0      0      0 .   .   .     ij 

,  b 

1 

0 

0 

b. 

n 

(4. 34) 

(4.35) 

All of the above structures have the advantages of requiring 

at most   2n   time-variable elements for their realization.    Since a 

general single-input-single-output system of the form (2. 1) may have 

2 
as many as   2n + n     such elements,  a considerable saving of'hardware 

may result if a system can be realized or simulated on an analogue 

computer in one of the canonical forms.    It is well known [ 1 ]  that any 

fixed completely controllable system has equivalent representations in 

***«»W«^*.«>Hi*iJ*^-;,;^Äf^.^ßiIl^jjj( 
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A   = 

0      0   .   .   .  0 

1      0   .  .  .  0 

0      1   . 

0     0   ...  1      a 

, b  = 

c    = 

A   = 

Lcl     ^2    C3-  •   '^ 

u 0   .   .   .  0 

1 ü . . . o 

Ü 1   .   .   .   0 

0      0   .   .  .   1 

.  b 

n 

(4. 34) 

[    0      0      0 .   .   .      1] (4.35) 

\    ■ 

All of the above structures have the advantages of requiring 

at most   2n   time-variable elements for their realization.    Since a 

general single-input-single-output system of the form (2. 1) may have 

2 
as many as   2n + n     such elements,  a considerable saving of hardware 

may result if a system can be realized or simulated on an analogue 

computer in one of the canonical forms.    It is well known [ 1 ]  that any 

fixed completely controllable system has equivalent representations in 
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forms (4. 33) and (4. 34) and that any fixed completely observable 

system has equivalent representations in forms (4. 32) and (4. 35). 

As will be shown below,  however,  this is not the case for time-variable 

systems.    Only uniformly controllable or observable systems possess 

canonical equivalents. 

Forms (4. 32) and (4.33) are of particular interest. System 

(4. 32) is the standard state-variable representation of an input-output 

differential equation [3] , and (4. 33) is the "phase-variable" canonical 

form utilized in many control system problems [ 11-14]. The former 

system will also be seen to be valuable in synthesizing prescribed 

impulse responses. 

In the following two sections,   the necessary and sufficient 

conditions for a system to be realizable in forms (4. 32) and (4. 33) will 

be derived and methods of constructing the transformations of 

coordinates required will be given.    As forms (4. 34) and (4. 35) are 

dual to (4. 32) and (4. 33) respectively,  it is not necessary to treat them 

separately. 
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4. 5   The Input-Output Differential Equation 

In this section,   the conditions under which system (2. 1) has 

an equivalent representation of the form (4. 32) will be derived.    It will 

first be shown,   however,   that this problem is the same as finding the 

conditions under which (2. 1) is equivalent to a differential equation of 

the form 

■•■W^^!^:^^ 

-—'  M i—WWW 
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n+1 n 

E   a.y«1-"   =   E b.u"-" 
i=l i=l 

(4. 36) 

where   a   ,. = 1 ,  and the coefficients   a.   and   b.   for   i = 1,  2,  ... ,n n+1 i i 

are continuous functions. 

The equivalence of (4. 32) and (4. 36) is well known [ 3]   and 

their coefficients are related by the equations 

a.   =   -a.   , 
i i 

i = 11  2,  . . . , n 

and 

n-i     n-i-j+1 

b    .j, +    Zrf       ZJ      (    .   .     a. —r- b. . 
n-l+1      j=i     h=o        ul     l-i-h dth   J 

i = 1,   2,. . . , n-1 

bi • 

i i 

The converse problem,  that of expressing a system in input- 

output differential equation form given its state-variable representation 

has been considered rather intractable by several authors [ 15, 16] . 

Recently,   Weiss and Kaiman [ 17]   have presented a solution which 

utilizes the Impulse response of the given system.    The conditions they 

derive for existence of the input-output differential equation are some- 

what imprecise,   however.    We will solve this problem below by trans- 

forming the system to form (3. 32) which in light of the above discussion. 
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is all that is required.   Most importantly,  this solution does not require 

knowledge of the system impulse response. 

The following theorem provides a necessary and sufficient 

condition for a system to have a canonical equivalent of the form (4. 32), 

Theorem 4. 7:   System (2. 1)   (with   m = r = 1) is equivalent to a system 

of the form (4. 32) if and only if (2. 1) is uniformly observable. 

Let  Q     be the observability matrix of (2. 1) and  Q   , 

A 

the observability matrix of (4.32).    By inspection  Qn = I    , which 
On 

permits the following compact proof. 

Suppose,  (2. 1) is equivalent to (4. 32) then from (4. 15) 

a nonsingular continuously differentiabie matrix   T   exists such that 

Q     =   T'Q     =   T' wü 0 

Therefore,  (2. 1) must be uniformly observable. 

Conversely,  if (2. 1) is uniformly observable then   T = Q ' 

qualifies as an equivalence transformation.    Under this transformation 

of coordinates, 

A,   =   (--i.Q     +Q)Q 
*      dt     0 0 'W0 

*        ^-1   * 
=   Q0   =   Q0  Q0 

Therefore, 

 Ä. 



Also, 

c   = C(Q(;) 

= [' ]• 

^ä 
MMuwanawm M>^».     .     ^ 

10? 

which completes the proof. 

It should be observed that the above proof also provides an 

explicit method for finding form (4. 32) when it exists,  which is 

summarized below: 

(1) z   =   Qjx 

U- 
».^^i 

/.   . -. • ■ ■. ^i^, - ■■'■ 
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(2) a   =   Q0   Sn 

(3) b   =   Q'b 

Note that contrary to the results of   [iTJ,  total observability 

is not sufficient for the existence of the input-output differential equation. 

For example,   the system 

f 

\ : 

x   =   u 

y   =    (sint)x 

cannot be transformed to form (4. 36). 

To demonstrate the value of transforming to canonical form 

i,««« r>r analvsis we consider the following for analogue computer simulation or analysis 

system; 

Example 4. 3: 

"    • 
xl 

*2 
= 

.*l- 

cost sint 

2 
-(l + sin t 

.{cost + 2sint) 

=    L       cost 

1 + cos t sint 

-cost sint      cost 

sint-2cost       -3 

sint 

L3J 

cost + sint 

cost-sint 

-6 

0 

■ 

v. 

The observability matrix of this example is 

. *~a,Mt*i^»fHA 

'     - ■      ^ L :.. ^...,^».!^^T ^iA^... 

A.  v 

m!^m 

J. 
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cost      sint     0 

sint      cost     0 

and since it has rank   3   for all   t , transformation to form (4. 32) is 

possible.   If  z = Q'x , it can be verified that 

i 
II 

I 

"V 
^2 =  1 

>3J 

0 1 0 "1 V *l1 

Ü 0 1 Z2 
+ 1 

1 -2 .3 J '.Z3J 1J 

u 

=   L    1      0     0 J 

Thus by transforming to canonical form, we obtain a fixed 

equivalent in this case.    It can be shown in general via Theorem 4. 4, 

that if a uniformly controllable and observable system possesses a 

fixed equivalent,  its canonical representations will be fixed.    This 

provides further motivation for transforming to these system structures 

when possible. 

4. 6   The Phase-Variable Canonical Form 

The problem of transforming system (2. 1) to an equivalent 

phase-variable canonical form is a considerably more difficult  problem 

L 
»iimmiamtiummtoli* «,.*, 
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than that considered in the previous section.    The reason for this is 

that the controllability matrix of (4. 33) is a function of the coefficients 

a.   .   In the fixed case, Kaiman Ll J has shown that a necessary and 

sufficient condition for f !_h an equivalent to exist is that system (2. 1) 

be completely controllable.    It will be shown here that under sonv vhat 

more restrictive conditions (uniform controllability) a system of the 

form (4. 33) equivalent to system (2. 1) can also be found in the time- 

variable case.    In addition,  a general method is given for constructing 

both the equivalent canonical system and the transforming matrix  T . 

The specialization of this method to fixed systems is of independent 

interest as it proves to be considerably simpler than previously 

published techniques [ 4 j, 1   5 J,   (_ 6J.    Johnson and Wonham 14J con- 

sidered the problem of finding   T   when (2. 1) is fixed and   A   has 

distinct eigenvalues,  and Mufti LSJ extended their technique to the 

case of multiple eigenvalues.     Further refinement of the methods of 

L4j  3ndL5j was made by Chidambara   [bj .    The methods of constructing 

T   employed in [4J , ^Jand^bJ,  however,  involve finding the eigen- 

values and eigenvectors of  A ,  a computational task equivalent to 

solving the differential equations represented by system (2. 1).    It will 

be seen that the method developed here is independent of the eigen- 

values of  A   and that it provides simple explicit forms for the matrices 

ä.T   aad   T-1. 

Let Q ,  and  Q    be the controllability matrices of (2. 1) and 

(4. 33 respectively. 

•*■ ■% 
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Matrices   Q  and   p     will be examined closely,  for it will 
n 

be shown that they serve to determine the transformation from (2. 1) 

to (4. 33) when it exists.   It can be verified by direct construction that 
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Q   = 

0     0 

0     0 

0 -1 

1 q 11 

(-1) 
n-1 

(-1) q n-1,n-1 

ln-2,2        qn-l,2 

qn.2,l        Vl.l 

f ^ 

K n 

k. n-1 
. 

■ 

V 2 

qn. 1 
L «J 

where 

(4. 37) 

qik= -qi-l.k-l + qi.l,k 
l<k<i<n 

(-l)la 
n-i+1 

i-2 

Ea 
j=0 

a    q- i   ^i + q   i i . k = i<i^n 
n-j^i-l,j+l    ni-l,l 

.1- 
(-1) a    ,       l<k   =   i<n 

n 
(4. 38) 

From the form of Q it is clear that any system of the form (4. 33) is 

uniformly controllable. A more informative relation for q can be 

easily derived from (4. 38) as 

r—■'-- ^ 



s ^ 

-<-r •- 

qik=(-1)lan.i+k 

i-k+1 

+ (-l)k    2  I    .q. .    .J.l 
j=0    n'J l-k'J+1 

q.   . ,    ...   .      l<k<i<n x-j.k-j+l (4. 39) 

and 

108 

.i — 
q..   =   (-1)   a    ,     l<i<n . 

ii n ~ 

It follows by a simple induction argument that 

Stei 

CO 

irms involving only the 

ik n-i+k      Icoefficients   a  ,...,a 
n n-i+k+ 

i .   l<i<k<n 

(4. 40) 

For notational convenience,   the bracketed expression in (4. 40) will 

be represented by the symbol 6 .  ,   •    That is, any function that can be 

expressed solely in terms of the coefficients   a , .   .   . ,a .   will be 
n n-r+1 

replaced by the symbol   0     wherever no other information about the 
r 

function is needed.    With this notation (4. 39) becomes 

^ik   =   ^Vi^Vk   =  8i.kH' l^ilk^n ,   e0 = 0 . 

(4.41) 

It is now possible to prove 

Theorem 4.8:   System (2. 1) is equivalent to a system of the form (4. 33) 

if and only if(2. 1) is uniformly controllable. 

The necessity of the controllability condition is easily 

established,  since if (2. 1) is equivalent to (4.33) where   z   =   Tx ,  then 

S V 

.>. I», 
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Q   =   TQ (4. 42) 

But Q and T have rank n everywhere, therefore Q must have 

rank n everywhere, which implies that system (2. 1) is uniformly 

controllable.    Conversely,  if (2. 1) is uniformly controllable the matrix 

T   =   QQ'1 (4. 43) 

is nonsingular when  Q    is the controllability matrix of any system of 

the form (4. 33).    Moreover Property 4. 1 shows that (4. 43) must be 

the form of the transforming matrix if it exists.    Thus to prove that 

the uniform -ontrollability condition is sufficient let   z - Tx  where   T 

is given by (4. 43).    If the relationships 

- •      -1 
A   =    (TA + T )T (4. 44) 

and 

b   =    Tb (4. 45) 

can be satisfied, for s me unique set of coefficients   a.   the desired 

equivalence wi!"i then te esiablished.    Note that (4.45) is valid by 

inspection,   and (4.44) can he rewritten as 

.«iufciMt^».,» 

I 
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(QA   +   ^Q)Q 
(4. 46) 

in w hich 

A = (Q at 

-1   * 
-Q   Q 

'- 
0      0 

-1      0 

0    -1 

. o «r 
. u «2 

. o «3 

0     0   . . .-i     gT 

^p   , where   g.   is the   i-th element of the vector   g . 
and   g = -Q 

From (4. 46) it is clear that 

• AQ + ^Q   =   "QA 

or 

l^2.--  V^n^^'-Vl^^- 

Therefore,  it will suffice to satisfy 

*Notethat   g=-a  , as defined by (4. 34), 
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n -Qg   . (4. 47) 

It follows from the representation of the elements of  Q   and  p    given 

in (4, 37) that the first row of (4. 47) is   a   = g     and that remaining n       n 

rows can be written in the (symbolic) form 

'-"Vn-r^'V^lV" 8«®«  A » n n-4 

-1 (4. 48) 

Since   9,, ..., 6 represent terms involving only the coefficients 
1 n- r 

a    . . . , a      ,   equation (4. 48) determines   a     uniquely as a function of 

the known   g , . . . , g     and previously calculated   a.   for   i>r .    That 

is,   the   a.   can be found recursively beginning with   a    = g    .    The   a. 

will also be infinitely differentiate since the operations involved in 

(4. 48) are multiplication,   addition and differentiation of the functions 

g.   which are infinitely differentiable due to the assumptions on 

system (2.1).    The matrix   T   found by substituting the recursively 

determined   a.   into (4. 43) is therefore nonsingular and continuously 

differentiable,  and system (2. 1) is equivalent to a system of the form 

(4.33). 

It should be emphasized that the proof above provides a 

direct method for finding the canonical system and the transforming 

matrix.    To illustrate the method, the following third order system 

will be considered. 

*m w^>wiiiiiiiimiii,ii». ■■-»«.»Wwm^M» 
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Example 4.4:   Let the coefficient matrices of system (2. 1) be 

A   = 

[-1       i      o' r  -t e 

0       -1      -1 ,  b = 0 

1 -e        e      -2J 0 

The matrices   Q,   p ,   and   g   are then 

Q   = 

e 0 0 

0 0 e" 

0 e-2t   0 

■ 2t 

1 r -* -i e r   -tn e      I 

r3=" 
-2t 

e ,  g = 
-t 

e 

-3t| 
_e 1    J 

It can easily be established from (4. 48) that for   n = 3 

a3=g3'    a2 = -g2 + 283'    ai=gl -82 + ä3 

so for this example, 

l?      i 
2e 

•t- 

-t 
and  Q = 0 

1 

0 1 

1 1 

1 l-e 

The matrices   T   and   A   are thus given by 

■-I-<_!:• .. .- ■Ai'CiÄ&öv/.-■ ..i-■.. 

\ 
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„tv..., 

T   = 

2t 
0 e 0 0          1         0 

0 2t 
e 

2t 
-e ,  A = 0         0         1 

t 
e 

2t 
e   - 

t 
e 

2t 
-e 2e     -e        1 

For fixed systems the transformation method outlined 

above greatly simplifies,  and explicit expressions may be obtained 

for both the coefficients of the canonical system and the transforming 

matrix.    The recurrence relation between the columns of the 

controllability matrix may be given in the form 

Pk+1   =   Apk '    P0 = b' 
(4. 49) 

and from the fixed equivalent of (4.47) it is found that 

^-1 ^-1»n
L g   =   Q    Pn   =   Q    Ab (4. 50) 

For fixed systems,  the elements of both   g   and   a   are the coefficients 

of the characteristic equation of   A     so that 

~" ^-1 »nl- a   =   g   =   Q    Ab, (4. 51) 
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completely specifying the canonical system (4. 33).    Once the 

characteristic equation is found, the transformation   T   is given 

* 
As are   a, a,  and   a  . 
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directly and explicitly by (4.43), where 
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Q   = 

0   .   .   .  0 

o- . 

Cl- 

c c 
n-3      n-2 

c c 
n-2      n-1 

(4. 52) 

.i 

and 

k-1 

c    =    2^   a    .c ,        k = 1, 2,..., n;   c. = 1 . 
k .  „     n-i k-i-1 '   '       ' o 

An even simpler form may be given for the inverse of   T 

-1 
(K = T       is the form of the transformation computed in references 

[ 4J -[ 6])   since 

-1 

• a_   ...   -a 
3 n 

■a. 

n 
1    .   .   .       0 

as may be easily verified.    It is cleai then that 

. * 

,V      ''Vr* ■'*•'    •>- y0-'^'" •-» 
V.- 

^ ■^•»w.itfcin.^^K-* .tW-JBi 



-1 "'-1 
K = T = aa (4. 53) 

requi res no further calculation other than the multiplication of a and 

--1 a once the characterist;c equation of A is known. 

In order to compare the computational value of the above 

procedure with existing techniques the following exampie treated by 

Mufti ( 5 ] and Chidambara [ 6 ] will be considered. 

Example 4. 5: Let the coeffici~nt matrices of system (2. 1) be 

6 

A = - 1 - 1 

-2 2 

From (4. 37) 

4 

-3 

1 

0 

-2 

b = ' 

Q = -4 -3 ' p3 ·: 

l 0 -10 

1 

1 

10 

-5 

-2 

Th coefficients of the characteristic equation are found w ith (4. 51) as 

10 40 -14 10 -2 

a = 1 
36 7 -8 1 -5 = 3 

4 -5 -2 0 
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Thus 
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I 
a"1 

-30      1 

0 10 

1 0      0 

so that from (4. 53), 

K=T     = 

1 4    -2" 

1 -4    -3 

1 0 -10 

-3 

0       1 

1       0      0 

-5      4      1 

-6    -4      1 

13      0       1 

\,. 
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CHAPTER 5 

REALIZATION OF IMPULSE RESPONSE MATRICES 

119 

■ 

5. 1   Introduction 

In this chapter we will be concerned with the realization 

(or synthesis) of prescribed impulse response matrices as systems 

of the form (2. 1).    Various aspects of this problem have been treated 

by Gilbert [ 1 ] ,  Kaiman t 2, 3 ],   Weiss and Kaiman [ 4 ] ,   Youla [ 5 ] , 

and Desoer [ 6 ], and earlier for the scalar case by Darlington [7,8], 

Batkov [ 9 ]  and Borskii [ 10 ] .     We shall present what is believed 

to be a new approach based on the properties of equivalent systems 

derived in the previous chapter and on a method of Borskii [ 10 ] 

for synthesizing scalar impulse response functions. 

Our main emphasis will be on the realization of non- 

stationary response matrices   H(t,  T) and in contrast to previous work, 

we will not assume a known separated form for   H(t, T)    (i.e., 

H(t,T) = WtjatT), where   *(t)   and  ^(t)   are finite matrices).    The 

method to be presented here,   starts with a non-separated impulse 

matrix and yields a uniformly controllable and uniformly observable 

system,  when such exists. 

The specialization of this method to the realization of 

stationary impulse response matrices is of independent interest.    It 

leads to an easily tested necessary and sufficient condition for a 

stationary matrix to be the impulse response matrix of a minimal (completely 
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controllable and completely observable) fixed system of specified order, 

together with a systematic procedure for constructing minimal realizations. 

5. 2   Realization of Time-Variable Impulse Response Matrices 

Let   H(t, T )   be an   m x r   continuous matrix function of two 

variables.    It will be said that   H(t, T )   is realizable if there exists a 

system (A,   B,   C) for which   H(t, T)   is the impulse response matrix. 

Any system having   H(t, r ) AS its impulse response matrix is said to 

realize   H(t, T). 

It has been shown by Kaiman [2]   that a necessary and 

sufficient condition for   H{t, T)   to be realizable is that there exist 

continuous matrices of finite dimension,    Vfit)   and   ^(t) ,   such that 

;*(t)Ö(T)   . 
H{t.  T)   = 

t 2T 

t <T 
(5.1) 

The proof of this condition is quite straightforward.    It is 

clear that the system (0,  9. ^)   will realize (5. 1), and the impulse 

response matrix of any system of the form (A,  B,   C) is given as 

■ 

C(t)X(t)X'1(T)B(T). 
H(t.T)   = 

t 2T 

t <T 

where   X(t)   is a fundamental matrix for the system. 

If  H(t, T)   satisfies (5. 1),  it will be said to be separable. 

The major problem we will consider in this chapter is the realization 

of response matrices which are not given in separable form, or even 

known to be separable a priori.    There are several known procedures 

nil—nij nnn 
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for realizing fixed systems from non-separated response matrices 

(usually from the transfer function matrix - an equivalent specification 

to a non-separiited impulse response matrix) [1,2,3,6],  but the 

general time-variable case does not seem to have been treated 

previously.    We will present a procedure which starts with an arbitrary 

matrix function of two-variables and yields when such exists,  a 

uniformly observable and uniformly controllable realization.    The 

specialization of this synthesis procedure to fixed systems is of 

independent interest,  as it has several advantages compared with 

previously published techniques. 

Assuming that   H(t,T)   is infinitely differentiable in both 

of its arguments,  the following matrices may be defined for all   i,  j ^0 

and   t StT: 

i      J 
H..(t,T)   =   a.   ■• .   H(t,r) 

at1  äTJ iJ 

f. .(t,T) 

Hoo(t'r) 

H10(t.r) 

Vt.T) 

HJJU.T) 

Hi-i.o(t'T)      Hi-i.i(t'T) 

th 

Hi.l,j.l
,t'T' 

If   H(t, T)   is realizable by an   n      order system (A,  B,  C) then it 

is easily verified that 

, 11^ ■-. :%'■■ I 
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H   (t,T)   =  S'(t)$(t,T)P.{r) 
J J 

t sr 

where   $(t,T)   is the transition matrix of (A,  B,  C) and   S.   and   P. 

are as defined in Chapter 3.    Thus,  if   W,.   and   W     are the Wronskian 
0 c 

matrices of (A,   B,   C) then 

r   (t.r)   =  wn(t)W (r) nn 0        c 
t ^T 

and 

r (t.t) = Q'(t)Q (t) = r(t,t) 
nn u       c 

(5.2) 

Similarly, 

rn+1,n+l
(t'" 

(Qj;(t))'Q+{t)   = T(t) . u c 
(5.3) 

The importance of Theorem 4.5      to the realization problem 

is now clear.    Suppose we know that   H(t,T)   is realizable by a system 

of order   n   (not necessarily a least order realization).    The   T  matrix 

—th 
of an   n    -order realization is then directly obtainable with (5. 3) so that 

Theorem 4. 5   can be utilized to construct a uniformly controllable and 

observable realization if such exists. 

While in many cases it is possible to determine   n    by 

inspection (this is true for all stationary impulse response matrices 

—r '' 



[ 2 ] ) it i d s i r b 1 to ha v sy te m tic re li~ lion proc dure whi h 

includ th d t rmin tion of "h ast n < n Observe that if H(t, 1') 

i r aliz bl by a m m r of U 
n 

h rc xi t i nteg rs t ~ n nd 

k l 1 U h t at if i dod j k th n I:'. (t, 1') h s rank n for all 
lJ 

t ' T. The int rs t and k wr the le t su h tha t 

nd 

... p 1] 
k-

h ve rank n for all t It will be shown below that under certCs.in 

cond1tion s th onv r s i also true. That i , by examining the ranks 

of the equence of matric s r. . (t, r), it is ossible to determine whether 
lJ 

H(t, r) is r eahzable as a member of U 
n 

Furthermore, an explicit 

paration a nd r aliza tion procedure will be given. 

To implify the presentation, we w 1ll f' r st consider the 

case where H(t, T ) = h(t, 1' ), a scalar function of tw variables. 

Theorem 5. 1: If for orne finite, non - negativ integer n the matrices 

• (t, T) and r 
1 1 

(t, T ) have r ank n for all t and T , t ~ r , 
nn n+ ,n+ 

th 
then h(t,r) is realizable as an n o r der uniformly controllable and 

uniformly observable syst m. 

123 
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The proof of this theorem together with a canonical 

realization of   h(t, T )   is given below. 

If  F    (t)T)ancl   ^ .,(t, T)   have rank   n   for all   t^T, 
nn n+1,n+1 

then certainly the last row of  F , , (t, T )   must be a linear 
n+l,n+l 

combination of the first   n   rows for all   t   and  T.    That is, 

n-l 

h    (t,T)   =    2^  a      (t.T)h(t,T) : j = 0, 1 n 

for some set of coefficients   a.(t, T) , i = 1, 2, ..., n .    As will now 

be shown,   the   a.fa.T)   are unique,  continuously differentiable functions 

of   t   and do not depend on   T .    Let 

and 

F(t,T)  = r (t.r) 
nn 

F  (t.T)   =   ^-F(t,T). 

A(t,T) = 

a^t.r)      a2{t, T)      a3(t,T) 

(5.4) 

(5.5) 

an(t,r) 

(5.6) 

v • ■ y ■, ■ *. ■';» *. ,■.• ■'..■ \ (   . 



*    ^*L '■"■. ^ 
*     *■ •.. 

^ ,,■.■■*' 

Since   F (t, T)    has as its rows the last   n   rows of 

T   , ,      (t, T) ,   it is clear that 
n+l,n ' 
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F*(t,T)   =-^-F(t,r)    =   A(t,r)F(t,T) (5.7) 

■ 

■ 

■ 

Furthermore,     F(t, T) has rank   n   for all   t ^ T   so that equation (5.7) 

possesses the unique continuously differentiable solution 

■ 

A(t, T)   =   F*(t,T)F"1(t, r). (5.8) 

To establish that   A(t, T)   is not a function of  T ,  differentiate both 

sides of (5. 8) with respect to   r : 

—•A(t,r)    =   [   ^-FV^lF'N^T) -  F*(t,T)F"1(t,T)[^-F(t,T)]F"1(t,T), 

(5.9) 

Since     -f—F(t, r)   and   — F  (t, T)   are formed from the last   n   rows 
oT oT 

and columns of   T       , , (t, T)   and   T   ,.      ,, (t, T), respectively,   it 
n, n+1   ' n+1, n+1   '     * '' 

must also be true that 

A<t>T' ■^•F<,'T| 

OT 
(5.10) 

Therefore, 

»«■--w  1 muM —um ji. 
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-^A^r)  = A(t,r)[ ^F(t,r)]F"1(tlr) 

-A(t, T,F{t, T)F' 
1 (t, T)[ -^ F(t, T)] F' 

1 (t, T) 

=   0 

Thus,  with a slight abuse of notation, 
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A(t,r)   =   A(t)    =   F*{t,T)F'l{t,T) (5.11) 

for any   r ^ t .    For convenience, let   T = t   in (5. 11)    «o that the 

defining equation for   A(t)    is 

A(t)   =   F*it,t)F'l(t,t) (5. 12) 

It will now be shown that   F(t, r)   can be separated in the 

form 

F(t,r)   =   F(t, ^F'^T, X)F(T,T) . (5.13) 

for any arbitrary parameter   X 

1 
Observe first that   F     (t, X)F(t, T)   is not a function of  t , 

since 

■    ■    >, 

!■■ .jm-        ■- .t.. ■'   -» 



'• 

•     . 

127 

■ m 

^{F'Nt, X)F(t,T)]    =   -F"1(t,T)[^-F(tlX)]F"1(t,X)F(t,T) 

+ F(t, \)^-F(t,T) 

= -F(t, X)A(t)F(t, \)F'l(t, X)F(t,T) 

+ F'Nt, \)A(t)F(t,T) 

=   0 

In particular,  therefore, 

F'I (t, \) F(t, T)    =   F'^T, X)F(T,r) , 

which establishes (5. 13). 

Thus,    h(t, T)   is separable in the form 

-1 
h(t,T)   =   [ej'FCt, X)][F    (T, XIFfr,^] 

for any   X   where   e'   is the n-dimensional row vector 

'.{   --   [   I      0   .   .   .  0] 

mffgfg0^mimm 
•1 
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One realization of   h(t, T)    is immediately obtained as 

z    =    F"1^ MF^tjej u(t) 
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y   =   ej'Fft, \)z     . (5.14) 

This realization is without feedback, however, which for 

many applications may be undesirable. Furthermore, even if h(t, r) 

is stationary (i. e., h(t, T) = h(t - T) ), (5. 14) will be a time-variable 

system. 

A more useful realization is obtained by observing that 

for an/   \,  F(t, \)   is a fundamental matrix for 

^   =   A(t)x   , (5.15) 

where  A(t)   is given by (5. 12).    Therefore,  the transition matrix of 

(5. 15) is given by 

0(t,r)   =   F(t, MF'V, X). (5. 16) 

The impulse response   h(t, T)   can thus be expressed as 

h(t,r)   =  e1'0(t,r)F(r)r)e1 (5.17) 

>      ,  _ .^ ,     .    ,..-....... -    . ¥*-*& 
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and is clearly realized by the system in the canonical form (4. 32) 

* 
x =   A(t)x + b(t)u 

!• 

ex (5.8) 

where 

b(t)   =   F(t,t)e 
1 

A(t)   =   F*(t>t)F'1(t,t) (5.19) 

!   m 

It is evident from (5. 2) that the realizations obtained by 

this method are uniformly controllable and uniformly observable, 

since if   Q  (t)   and   Qn(t)   are the controllability and observability 

matrices of (5. 18) then 

V = '„ 

and 

Qc(t)    =   F(t,t) 

\Z{) 

f., 

I 
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An important property of the realization (5. 18) is that if 

h(t, T)   happens to be stationary the system will of necessity be time- 

invariant.    This is obvious,  since if   h(t, T)   =   h(t - T)   then it must 

also be true that 

F(t, r)   =   F(t - T) 

and 

F  (t, r)   =   F(t - r) 

so that 

b   =   F(0)e 
1 

and 

A   =   F  (0)F"   (0) 

Example 5. 1     Suppose we are given the scalar function 

h(t, r)    =   e' sin(t-T), t ^ r 



/■' 

s 3«.% 

Observe that 
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r„(t,r) 22 

e    8in(t-r) e    cos(t-r) 

e' (co8(t-r)-8in(t-r))   e"t(co8(t-r)+8in(t-Tj) 

and 

detr22(t,T)   =   e -2t 
t   a T 

Also. 

r33(t,r) = 

e    8in<t-r) -e-lco8(t-r) e^sinCt-r) 
-t.       .      . . .t 

e"t(co8(t-r)-8in(t-r))   e' (cos(t-T)+8in(t-r))     e" (cos(t-T)-sin(t- 

-2e' co8(t-r) 

T)) 

•2e' 8in(t-T) -t 
-2e   co8(t-r) 

and clearly 

detr33(t,T)   =   0 , 

8 o that   T    (t, T)   also has rank   2   for all   t^T 33 

Let   F(t,T)   =   r_-(t,T) ,  then 
22' 

F(t,t)   = 

-fl 

-t       -t 
e e 

*«**•*»• 
/■Jiidm&a •■.-. k«^ x mi .'r-:-iÄ^^L.^-A' . . i 
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and 

F*(t, t) 

-t -t e e 

.-2e 0    . 

Applying (5.19),    one sees that   h(t, T)   is realized by the system 

L"2J 

0        1 

2     -2 

x. 0   1 
i + 

-t 
uX2J e     | 

u 

-[■ »] 
<-x2 

It should be clear that the realization procedure above is 

not applicable to all realizable impulse response matrices.   If a 

system is not uniformly controllable and observable,  or reducible to 

such a system,  its impulse response matrix will not satisfy the 

conditions of Theorem 5. 1. 

Matrices equivalent to P     (t)   and  F   ,,      , , (t)   were first nn n+1, n+1 

used by Borskii [10]  to realize single-input single-output systems. 

Borskii's methods and proofs are somewhat vague, however,  and lead 

to several false conclusions (such as a statement      that the criteria of 

Theorem 5. 1 are also necessary for realizability).    Furthermore, 

Borskii's form of realization is an input-output differential equation, 

■■■-'■•        ■■ r'^. .V ■-;.,„. 
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which results in unnecessary complication in finding the system 

coefficients. 

5. 3   Realization of Multi-Input Multi-Output Impulse Response Matrices 

We will now consider the general problem of realizing 

non-separated matric functions of two variables.    The major result 

is summarized in the following theorem. 

Theorem 5. 2;  Suppose that for some finite positive integers   t, k 

and   n   (£ s n, k £ n) , the matrices   T .(t,r)   and   F    .   v..,^7") 

have rank   n  for all   t ^ T ,  and an  n x n   submatrix of  F , (t, r) also 
/,k 

has rank   n   for all   t 2 r .    Then,    H(t, T)   is realizable as an  n 

order uniformly observable and uniformly controllable system. 

A constructive proof of this theorem is given below. 

If F(t, r) is an (n x n) submatrix of T (t, T) having 

rank n for all t and T then there must exist matrices C (t, T) 

and   B2(t, T)   suchthat 

th 

H(t,T)    =   Cj^TjF^TjBj^r) (5. 2"») 

Let   F. (t, r)   be the matrix composed of those columns of the first 

m   rows of   F , (t, r)   which correspond to the columns of   F(t, T) . 

Then it is clear that 

-1 
Cj^T)   =   Fj^TlF    (t,T) (5.21) 

A- m 

a I ( i :l^äi-!&2'"W' . .j .'   _<w ■"vW:^«^*>^^v^.'..       ^. 
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Similarly, let   F2(t, T)   be the matrix composed of those rows of the 

first   r   columns of  T.. (t, T)   which correspond to the rows of   F(t, T) . 

Then, 
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Bjl^T)    =   F"   (t,T)F2(t,T). (5.22) 

Also, let   F (t, T)   be those rows and columns of  r..,   ^(t, T) 

corresponding to the rows and columns of  T    , (t, T)   composing   F(t, T), 

Then 

F*(t,r)    =    ^-F(t,T) = A(t,T)F(t,r) 

As in the scalar case,    A(t, r)   is only a function   t ,  and 

is given by 

A(t)    =   FVtJF^M) (5.23) 

It may be shown similarly that   C. (t, T)   is not a function 

of  T , nor is   B(t, r)   a function of   t   .    That is. 

Cjft)   =   FjMJF'  (t,t) 

BAT)   =   F"1(T,T)F,(T,r) 

(5. 24) 

(5.25) 

■•V     v ■''' V 

'MK)M 
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Following directly from (5. 23), as in the single-input- 

■ingle-output case, we obtain the separated form of   F(t, T), 
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-1 
F(t,T)   =   F(t, \)F    (T, X)F(r,T). (5. 26) 

Thus, 

H(t,T)   =   CjWFit, X)F'   (T, X)F(r,r)B1(T)    , (5.27) 

and is realizable by the   n       order system (A,   B,   C),  where   A(t)   is 

given by (5. 23) and 

B(t)   =   F2(t,t) 

-1 C(t)    =   FjMJF     (t,t) 

(5. 28) 

(5. 29) 

p 

Since   I £ n  and   k ^ n , F     (t, T)   must have rank   n   for all  t s T , 

Therefore,   T    (t, t)   has rank   n   for all   t  which in turn implies '      nn   ' r 

Q  (t)   and  Q (t)   must have rank   n   for all   t .    The system (A,   B,  C) 

A, th 
"     is thus an  n     order uniformly observable and controllable 

realization of   H(t, r).    Furthermore, as in the scalar case, the matrices 

A,   B   and   C will be constant if   H(t, T) = H(t - r) . 

An important feature of this realization procedure is that 

the systems obtained will always be minimal.    A system is said to be 

** " "/IM^-"^ •''$-■ 

/ÄÄ^-- wi"^ SXk.Jr* ■■;.'s-V^-- A.-" ■■      A 

»•l• ■■ - f 
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a minimal realization of an impulse response matrix   H(t, T)   if there 

is no system of lower order which also realizes   H(t, T).    It is clear 

from our earlier discussion of reducibility    that a minimal 

realization is completely controllable and observable (globally reduced 

[ 5 ]).    The converse is not generally true, however,as shown by 

Oesoer [ 6 ]   .    For uniformly (and totally) controllable and observable 

systems the converse does hold,as will now be demonstrated. 

Theorem 5. 3;     A totally controllable and totally observable system is 

a minimal realization of its impulse response matrix. 

Let (A,  B,  C) be a totally controllable and totally observable 

system of order   n , and suppose that a system (A,   B,  C) of order 

n-1   has the same impulse response matrix as   (A,   B,  C).    The 

impulse response matrix can then be written in two forms: 

(1) H(t,T)   = *(t)®(r)    , t ^ r 

where   ^(t)   and   ®(T)   have  n   columns and  n   rows   respectively. 

(2) H(t,r)   = >Ht)®(T)    , t ^ T 

where   ^(t)   and   ®(T)   have  n-1   columns and   n-1    rows   respectively. 

If  r(t, T)   is calculated from (2),  it clearly has rank   <n 

for all   t   and   T .    From (1),  however, 
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r(t,T)  = w0(t)wc(T) t ar 

where both W0(t) and W (t) do not have rank <n on any interval. 

Consequently, there exist values of T and t with t ^ T for which 

r(t, T)   has rank   n .    This contradiction establishes the theorem. 

Since the system obtained by the above realization procedure 

is uniformly controllable and observable,   Theorem 5. 3 implies it must 

be a minimal realization of  H(t, T).    Furthermore,  it is unique within 

an equivalence transformation as shown by: 

Theorem 5. 4;      If (A,   B,  C) e U     is a realization of   H(t, T),  then any 

other minimal realization is equivalent to (A,   B,  C). 

—    —    — tVi 
Let (A,   B,   C) be any   n      order realization of   H(t, T).   If 

+     _+        .   -+     -+ Q    , Q     and   Qn , Q       are the identification matrices of (A,   B,   C) 

and (A,   B,   C),   respectively, then clearly 

(Q>'Q>  = rn+lin+1(.,t)  = (Q>.Q> 

Thus,  it follows from Theorem 4. 2       that (A,   B,   C) is equivalent to 

(A,   B,   C).    The transformation relating the two systems is as given in 

Theorem 4. 2 

Theorem 5. 4 also follows from Youla ([ 5 ],   Corollary 1), 

137 
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5. 4   Synthesis of Fixed Systems 

The response of a fixed system may be specified by its 

impulse response matrix   H(t - T)   or its transfer function matrix   G(8) 

(the Laplace transform of   H(t)).    Realizability of   H(t)   or   G(s)   is 

easily determined by examining the form of each element of the 

matrices [ 2 ] .    For example,    G(8)    is realizable if and only if all of 

its elements are the ratios of polynomials with the dominator poly- 

nomial of higher degree than the numerator polynomial (i. e. ,   a proper 

rational matrix).    Finding minimal realizations of a given   H(t)   or 

G(s)   is far from a trivial problem,   however, and has been the subject 

of considerable research in recent years [ 1, 2, 3, 5, 6] .    Several 

procedures have been offered for constructing minimal realizations and 

for determining their order,  but they are in general quite complex when 

G(s) has repeated poles. 

We will present below,  a new approach to the realization 

problem for fixed systems by specializing the results of the previous 

section.    This method has the advantage of yielding simultaneously, 

an explicit measure of the degree of the minimum order realizations 

of   H(t)   and a straightforward synthesis procedure which in no way 

depends on the type of poles possessed by   G(s). 

Let   H(t) be an   m x r   matrix function of   t .    Certainly, 

if   H(t) is to be the impulse response matrix of a fixed system it must 

be continuously differentiable an arbitrary number of times.    Thus 

.-■ 

-■•' ., tVi 

.,^- ■v:.' r 
> i Jl    ' t     ■     ■* '. -' ■ 
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we may define for all   i , j 
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r.ct) = 

H(t) H(1)(t)  H^'^Ct) 

H(,)(t) H(2)(t)  Ha)(t) 

• *                                                                                     • 

H^'^it) H{i)(t)  H(i+j-2)(t) 

where 

H(l)(t)    =   -~H(t)    . 
dt 

Save for the sign of alternate columns,    r..(t)   is equivalent to   r..(t, 0) 

as defined in the previous section.    As the sign changes do not effect 

the rank of any of the matrices,  it is more convenient to use the 

present definition. 

The realizability criteria for fixed systems may now be 

given.    The proof closely follows that of Theorem 5. 2. 

Theorem 5. 5:      H(t)   is the impulse response matrix of a fixed completely 

controllable and completely observable system of order   n   if and only 

if there exist non-negative integers   £ ^ n   and  k < n   such that the 

matrices   r.,(t)   and   P    .   k. • (*)   have rank  n  for all   t^O   and an 

n x n   submatrix of  F , (t)   has rank   n   for all  t ^ 0 . 
/k 

■    -T- r-g ■«-    T.-; -I, j ; ■ —  .i...n.. 
NM 
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Let   F(t)   be an  n x n   submatrix of  T , (t)   having rank   n 

for all   t * 0 .    With respect to this matrix,  let the matrices   F (t) , 

F (t)   and   F   t)   be defined precisely as in the proof of Theorem 5. 2, 

Then, 

H(t)   =   CjWFWBjft) (5. 30) 

where 

C^t)   =   FjWF"1^) (5.31) 

and 

Bjft)   =   F'1(t)F2(t) . (5. 32) 

Also, 

F*(t)   =   F(1,(t)    =   A(t)F(t)   , (5. 33) 

since both F.,,   , .. (t)   and   P    , (t)   have rank   n .    Furthermore, 
/,+1, k+1 I,*. 

A(t)   is not a function of   t   since 

^-A(t)   =   FlZ)(t)F'l{t). F(1)(t)F'1(t)F(1,(t)F"1(t)   , 

A 
,. —     " - 
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,(2) (D FyC'it)   --   A(t)Fx*'(t) 

imply that 

£A<.,  = o . 

It may be shown similarly that   C.U)   and   B2(t)   are constant matrices. 

Thus, 

F(t)   =   AF{t), 
(5. 34) 

and 

H(t)    =   CJFWBJ 
(5.35) 

Since   F(t)   has rank  n   for all   t ,   (5. 34) implies that 

F(t)    =   eAtF(0) 

and 
is a fundamental matrix for the system of n   differential equations 

=   Ax 



 M J.dl. 

From equations (5. 31),   (5. 32) «.nd (5. 34) 

Thus. 

A   =   F(0)F'1(0) 

BJ   -   F'1(0)F2(0) 

CJ    =   F1(0)F'1(0) 

(5. 36) 

(5. 37) 

(5. 38) 

' 
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-1 At 
H(t)   =   F1(0)F  1(0)eAlF2(0) (5. 39 

th 
and is realized by the   n       order system (A,   B,   C) where 

B   =   F2(0) (5.40) 

and 

C   =   F1(0)F    (0) 

Furthermore,  if 

Q     =   [B [AB :    ...  iA^B] 
C • • • 

■ 
■ 

(5.41) 

S    ~ ; 

.- f:stf' 
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i 

and 

Q. = [c :A'C' :  . . . : {An"Vc'] 

then 

T    (0)   =   Q'Q 
nn 0   c 

Since   T    (0)   has rank  n ,   (A,   B,  C)   ia a completely controllable and 
nn 

observable system. 

The converse of Theroem 5. 5 is easily established.    If 

(A,   B,   C)   is an   n      order realization of   H(t)   then it may be verified 

that 

T    (t)   =   Q'eAtQ     . 
nn 0 c 

If   <X!   and  Q     have rank   n ,  then certainly  T    (t)   has rank  n   for all 
0 c ' '     nn 

t .    Similarly, 

^l.-Hl"'   =    <I''A,< 

has rank   n   for all   t .    Also,  if   Q     and   Q'   have rank   n   they must 

contain   n x n   submatrices,    F     and   F. ,   respectively,  having rank   n. 

**M!«ia»' ■•"»•aAw-rfJ« 
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Consequently, 

F(t)   =    Fne
AtF 

0 c 

is an  n x n   submatrix of  T    (t)   having rank  n   for all  t . 
nn 

It follows immediately from Theorem 5. 3 that the system 

(A,  B,  C) derived above is a minimal realization of  H(t)   and from 

Theorem 5.4 it is assured that (A,   B,   C) is unique within an 

equivalence transformation.    Furthermore,   Theorem 4.1     implies 

that all constant minimal realizations of   H(t) are related to (A,   B,   C) 

by a constant transformation. 

Example 5. Z;     Consider the matric function 

H(t)   = 
e"* e'^S+St) 

2e '(4+6t) 

-t 
The determinant of   H(t)    is   -12e     ,  so that   ril(t) = H(t)   has rank   2 

for all   t .    T    (t)    is found to be 

r22(t)   = 

2e 
-t 

-   e 

e'^S+St) 

e" (4+6t) 

-e'^S+St) 

-e'^-Z+bt) 

-2e 

2e 
-t 

e 'V+St) 

e ■t(-2+6t 

e ■t(2+3t) 

e 'Vs+et) 

Denote the columns of   V^t)   by   gj, g2,   83   and   g4 , then it is clear 

-v 
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that   g    = -g.   and  g   = 3g   - g, , ■© that  r,,(t)   also has rank   2   for 
3 1 4 1 fa ib 

aU   t .    Let   F(t) = H(t)-,  then 

F^t)   =   F2(t)   =   F(t) 

and 

F(t)   =   H(t)    . 

Therefore, 

F(0)   = 
1 8 

2 4 
= F^O)    =   F2(0) 

and 

F(0)    = 
-1 

2 

"I 
-5 

2, 

Thus      H(t)   is realized by the second order completely controllable 

and observable system (A,   B,   C), where 

4 

2 

-4 

1 

6 
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B 
1 8 

2 4 

and 

"l 0 

0 1 

Although the above procedure provides a self-contained 

theory for minimal realization of fixed impulse response and transfer 

function matrices,  there are several alternate methods which might 

be better suited for synthesizing high order systems on a digital 

computer.    Among these are Gilbert's method for transfer function 

matrices with simple poles [1 ],  and Desoer's extention for multiple 

poles [ 6 ] .    The advantage of these methods for fixed systems is that 

they do not require operations on time-variable matrices.    We will 

describe another such computational procedure below which utilizes the 

explicit method of system reduction presented in Chapter 4. 

As observed in the discussion prior to Theorem 5. 1,   one 

can always determine by inspection the order (say   n  ) of some 

realization of a fixed impulse response,  or transfer function matrix. 

Kaiman [ 2 ] uses this information in a synthesis procedure which 

entails first constructing a realization of order   n   , and then reducing 

it to minimal order. 

jfc ,  «jmuwwuuiwtiiwi 
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A modification of this approach, which will nosv be outlined, 

greatly reduces the computation required and results in an explicit 

form for a minimal realization of   G(s) .    This method is based on the 

procedure given in Chapter 4 for obtaining a least order representation 

of a system from its   T   matrix. 

(1) Determine n , an upper bound on the order of the 

minimal realizations, by inspection of G(s) (one such method for 

finding  n  is given by Kaiman [2 ]. 

(2) Form   T (0).   It is clear that the elements of  T (0) 
nn nn 

can be computed directly from   G(s); that is, 

H(0)   =   lim   s   G(s)    , 

H*t0)    =     lim   s[8G(s) - H(0)]   , 
8 -^ « 

etc. 

(3) Compute the rank   n   of  r___ (0) .    From Theorem 4. i, 
nn 

n   is the order of the minimal realizations of   G(s). 

(4) Let   T   be the submatrix formed from the,first  m(n+l) 

rows and the first   r(n+l)   columns of  T       (0)    (i. e.,   T   =   F , ,        . (0)). 
~~ ■_* nr l, nx 1 
n n 

An explicit minimal realization of   G(8)   is obtained from T as in 

Theorem 4. 3. 

.*«**•« 
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The method for realizing fixed transfer function matrices 

is quite similar to those recently presented by   Ho   and   Kaiman [ 11 ], 

and by Youla and Tissi [ 12 ]    while the present work was in progress. 

In both [11]   and [ 12 ],   a sequence of matrices equivalent to 

T    (0)    is generated from   G(s)    but the methods of obtaining a 

minimal realization from these matrices differ in several aspects 

from that presented here. 

: 
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CHAPTER 6 

CONTROLLABILITY AND TIME-VARIABLE UNILATERAL NETWORKS* 

6. 1   Introduction 

It has been seen in the previous chapters that the concepts of 

controllability and observability are valuable characterizing properties 

in the general theory of linear systems.   Although this viewpoint has not 

received much explicit attention by circuit theorists,  it appears that 

significant problems in network theory might be formulated clearly and 

solved effectively through arguments utilizing controllability  [ 1, 2, 3, 4]. 

The field of time-variable network theory could especially 

benefit from the introduction of new techniques since relatively little 

progress has been made in this field by comparison with the accomplish- 

ments of fixed network theory.    These considerations motivate a closer 

examination of controllability criteria as applied to variable-parameter 

systems and an attempt to exploit these criteria in a specific 

application to time-variable network theory. 

To demonstrate the applicability of the controllability concept 

to network theory,  it is used to develop a class of networks,   composed 

of only linear two-terminal elements,  which exhibit unilateral trans- 

mission between ports.    The fact that such networks exist does not 

appear to be well known.    Although it is felt that workers in the field 

Parts of this chapter have appeared in a paper by the author and 
H.  E.   Meadows  [ 8  ] . 

HHHH*11 

1 : j    '■-   S > it '     •   "...      • ■■   ', 

is'   ■if •'■".if'.- ~$M ■. m   j^i» ■  ■ 



1 

JL i—www 

152 

of sampled-data systems may be aware of the possibility, to the 

author's knowledge only one example of this type of network has been 

presented in the literature.    R.  J.  Mohr [ 5 ] recently described a 

circuit containing delay lines and periodic switches which behaves 

essentially as a three-port circulator.    Such unilateral networks have 

not been studied in any generality,  however. 

In this paper the normal form of the network equations is 

used to show that unilateral behavior and controllability are related and 

that the conditions for controllability developed for general time-variable 

systems can be used to characterize classes of unilateral networks. 

These networks must contain time-variable components.   An example of 

a particular class of unilateral networks is      »resented in the sub- 

sequent discussion. 

6. 2   Output Controllability 

It will be shown subsequently that unilateral behavior in a 

network is intimately related to the concept of output controllability 

introduced by Kreindler and Sarachik [ 6 ].    Several types of output 

controllability may be defined (as was done for slate controllability in 

Chapter 2)^ but the following will suffice for ou    purpose here. 

Definition 6. 1:   System (2. i) is completely output controllable at   t    , 

if    for any initial state   x,.   at   t , and any desired final output   y, , 
0 0 ' d 

there exists a finite time   tj > t     and an input   u(t)   defined on the 

interval [ tf, t. ]   such that   y(t.) = y    . 

The necessary and sufficient condition for this type of 

controllability established by Kreindler and Sarachik [ 6 ] is stated below. 

■•■■.: .       ■■;'■■ ■ - \ 
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Thtoytm 6. 1: System (2. 1) is completely output controllable at t. 

if there exists a finite time t. > t such that the rows of H(t., T ) 

are linearly independent functions of   r on [ t ,  t ] . 

In order that the concept of output controllability be 

applicable to th- study of time-variable networks, it is necessary to 

obtain a criterion that does not depend on the impulse response matrix. 

This is accomplished below with the aid of the techniques employed in 

Chapter 3 for state controllability. 

Theorem 6. 2:   System (2. 1) is completely output controllable at   t. 
0 

if for some   t > tn     the matrix   C(t)Q  (t)   has rank   m . 
U c 

To prove this theorem,   let   W(t, T ) be the Wronskian matrix 

of the rows of   H(t, T ),  that is 

where 

wit.T) = [A Jt.t): A (t.r): . . . :A   .(t.-n] , 
U .1 . .     n- i 

A   k(t,T)    =     r-HttT);      \,(t,T)    =   H(t,T) 
k Ü 

From (3. 8) it is clear that 

W(t.r)   =   C(t)!
l(t,T)Qc(T) . 
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Suppose that the system is not completely output controllable. 

Then,   Theorem 6. 1 implies that for all   t> iQ > the rows of  H(t,T)   are 

linearly dependent functions of T   on    [t  , t ] .    It follows then from 

Theorem 3. 1 that   W(t,T)   has rank   <m   for all    t ,  and for all 

TC[t0,t]'    In particular, 

W(t.t)   =   C(t)Q  (t) c 

has rank  <m   for all   t ,  which establishes the theorem. 

6. 3   Unilateral Time-Variable Networks 

In the preceding discussion of controllability,  the particular 

type of physical system represented by the system of differential 

equations was not considered.    The present section is concerned with 

the system representation of linear electrical networks; in particular, 

the network property of unilateral transmission and the system 

property of controllability are related.    The sufficient conditions for 

controllability are used to demonstrate the existence of a class of 

unilateral time-variable networks composed of lumped,  linear,  two- 

terminal elements.     The controllability argument   ends insight and 

some generality to this demonstration while also obviating the 

integration of time-variable differential equations. 

The very well-known concept of unilateral transmission is a 

simple one which may be stated in terms of the  impulse response 

u :-i&MälifetnUti-Miixi'iHM M————^ \ 
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associated with a pair of ports.    Consider a network   N   containing only 

linear two-terminal elements,  and let   i  and  j   be any two ports of   N. 

Denote by   h..(t,r]   the voltage [ current],  response at port   i   and 

time   t   to a unit impulse of current [ voltage] at port   j   and time   T . 

Then the network is a reciprocal network if  h..(t, T) = h,.(t, T)   for 

all   t, r   and all   i, j .    It is well known that unless all of its elements 

are fixed,    N   generally may be nonreciprocal.    The existence of 

nonreciprocal effects suggests the possibility of completely unilateral 

behavior in time-variable networks.    If  h..(t, T) = 0   for all   t  and   T , 

and if for some   t   and  T,  h.. (t, T) ^ 0 ,  N   is unilateral from port   i 

to port   j .    Networks of linear two-terminal elements exhibiting 

unilateral transmission between ports appear not to have been 

examined in any generality. 

The main problem in studying this type of unilateral 

behavior is that the networks exhibiting it must contain time-variable 

elements.    Since the exact behavior of a time-variable network is 

difficult to determine,   it seems useful to develop techniques which 

do not require knowledge of network solutions.    If the normal form 

(A-matrix description) is used to write the network equations,  the 

unilateral property may be phrased in terms of controllability of 

a linear system and the test given in the preceding section may then 

be employed to bypass the system solution. 

The equilibrium equations of a linear lumped RLC 

network may be written in the ü  rmal form 

.■?-■• : 
mi^-Am^. 
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x(t)   =  A(t)x(t) +B{t)u(t) (6-1) 

as in (2. 1).    For convenience, and with some loss of generality,    it 

will be assumed that the input and output ports are chosen so that the 

n  vector   x(t)   represents both the state variables (e. g. ,  capacitor 

voltages for an RC network) and the port outputs, and the   n  vector 

u(t)   represents the inputs to the same ports (e.g., current sources 

in shunt with ports of an RC network).    The work of Bryant [ 7 ] may 

be used to determine the matrices   A(t)   and  B(t)   explicitly. 

To deal with transmission between pairs of ports of the 

network, it is convenient to recast  (6, 1) in a slightly modified form. 

th 
Let  e.   represent the unit column vector with a one in the   i      position 

and zeros elsewhere, and  e!   the corresponding unit row vector;   then 

in order to consider inputs applied only at port   i   and outputs only at 

port j ,   (6. 1) may be replaced by the system   F..   described by 
J 

x(t)   =   A(t)x(t) +B(t)e.u(t) 

y(t)   =    e! x(t) 
J 

(6.2) 

Theorem 6. 3:   The network with normal form equations (6. 2) is 

unilateral from   i   to   j   if and only if   system   F..   is nowhere 

controllable, and system   F..   is completely output controllable at some 

time  tn. 

iMmmmmnK' ■"»—- 
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By "nowhere controllable" we mean that ihe system is not 

completely output controllable at any time.    The theorem is clear 

since   h..(t,^)   is simply the impulse response of   F.. ; that is, ji r / jj 

h.^t.T)   =   e:f(t,T)B(T)ci . 

To establish that networks satisfying the criteria of Theorem 

6. 3   do exist, a class of RC unilateral networks will be derived. 

-1 
Provided    that  C    (t)   and   C(t)   exist for all t ,  the equilibrium 

equations for an RC  network can be written as 

V(t) + C"1(t)[£(t) + G(t)]V(t)   =   Cl(t)3(t), (6.3) 

where   V(t)   represents a set of voltage variables pertinent to a tree in 

a capacitive subgraph of the network,  and   C(t)   and   G (t)   are the n- 

port capacitance and conductance matrices corresponding to the voltage 

variables.    The current vector   J(t)   represents a set of current 

sources in parallel with the ports determined by the voltage variables. 

Thus,   the order of the system (6. 3),  is the same as the order of com- 

plexity    of the network,  and the elements of  V(t)   and   J(t)   represent 

output voltage and input currents,   respectively.    It will now be shown 

that a network with system equation (6. 3) may be unilateral.    Define 

S(t) = C'   (t);   then system   F..   corresponding to (6.3) is lJ 

I 
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^ 

•■■ MMMKbi»^ 



*fi 

Wm-.-v., ■ "«—M—wwnarn■■ *»m*mmmttmimutmm v'»mmmimwmmH;mmmw*wMm''*' 

158 
I 

V(t) = -S(t)[C(t) + G(t)] V(t) + S(t)e j (t) 
J   J 

(6.4) 

v.Ct)   =   e!V(t) . 

A necessary condition for   F..   to be nowhere controllable is that the 

ij   element of  S(t)   must vanish identically.    If the contrary were true 

then   h..(t,r)   =   0 would imply that,  for all   t   and for all   r   suchthat 

s.^T)   ^   0 . 

n 

13     ^j 

(6.5) 

But, 

VT'r) 
0 , k ^ i 

1 , k = i ; 

therefore,   (6. 5) is contradictory at   t = T    and   s..(r)   must be zero. 

Consider now the case   n = 3 ,  and let   i   = 3   and   j = 1 . 

Since the port matrices   C(t)   and   G(t)   are symmetric, 

Sl3(t)   =   831(t)   =   0 • 

With this constraint,  the condition for   F.,   to be output controllable at 

some   tn   (Theorem 6. 2) is that the matrix 

S*ft;-..j.. ■ ■.IJ».IMW>IIW'I— 
..■•.   >  

i 
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• j'L Ü j -A(t)S(t)e3 : {A (t)S(t) - 2A(t)S(t) - A(t)S(t)}e3] (6. 6) 

have rank   1  for some  t. > tÄ .   Moreover,   F..   is nowhere 
10 31 

controllability if and only if 

hjjU.T)  = ^31(t.T)811(T)+ cp32(t,T)812(r)   =   0        (6.7) 

To simplify the presentation without great loss of generality, let 

s12(t)   =   s21(t)   =   0 ; 

then (6.7) becomes 

31(t,T)811(T)   =   0 . (6.8) 

The   A(t)   matrix for system (6. 4) can now be written as 

, »►*.•.•- 
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where the dependence of each coefficient on  t is to be understood. 

If   »iji1)   =   0, it is clear from the   A   matrix that ^12(t,r) 

and ^i«(ti^ )   are always zero.   But this would imply that 

h13(t,T) = cpl3(t,r)s23(r) + ^^.7)8^(7)  =   0 , 

or   F.-   is nowhere controllable.    Therefore,  (6. 8) implies that 

^(t.T)   =   0. (6.9) 

But  "PajCt.T) = 0   if a.    = 0   and either   a      = 0  or   a      = 0 .    It will 

now be shown that the latter choice preserves the controllability of  F 
13' 

If a.. = a.. = 0 ,  then (6. 6) reduces to 

[0:  0;  Sll(8l2l23+«13S33,1• 

so that  F.- is output controllable if  gi2
s23 ^   ■gi3s33 ' 

A set of constraints can now be summarized that will insure 

that a third-order RC network is unilateral: 

C12 = C13 = 0' 
(6.10a) 

C22 = "^ 23 '23 ' (6. 10 j) 

«rwew I  
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«13   ' -q^Z * ° • (6. 10c) 

C22C23 F   C22C23 * (6. lOd) 

An illustrative network is provided by the following 

example. 

Example 6. 1:   Consider the circuit of Fig. 6. 1, whose port matrices 

are 

G = 

5 + cost 

4 + cost 

sint 

0 

4 •>• cost. 
* 5 + cost 

0 

C = 

1 0 0 

0 5 + cost -1 

0 -1 2 

Examination of  G  and   C   shows that the constraints in (6. 10) are 

satisfied,   so that the network transmits from port 3 to port 1,  but not 

in the opposite direction.   It may be observed that the constraints in 

(6. 10) are independent of  c   ., g...  c.j,    and   g...    Therefore^ ports   1 

and   3   could be padded arbitrarily while preserving the unilateral trans- 
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1 
f-WVA^ 

(D •c^ 

i 
c, = 4 + cost 

«3 

4 + cost 

-(4 +cost) 

g 
I 

c, = C4S   C8 

«2S 

«4 

B 4 •>• cost 
5 + cost 

= 1 + ^■»•costr 
5 +cost 

5      5 + cost 

Fig. 6.1   A unilateral RC network 
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mission property, as would   be expected intuitively.    Several other 

examples of  RC   unilateral networks are given in f 8 ] . 

The network of Example 6. 1 contains one negative element, 

but as will be shown below,   the circuit behaves in a stable manner under 

all excitations.    This analysis will also contribute further physical 

insight into the unilateral nature of the network. 

Consider the network of Example 6. 1 with the elements in 

parallel with ports 1 and 3 removed as shown in Fig.  6.2.    This 

simplified circuit may also be represented as in Fig.  6.3. 

It may be readily verified that if the network is excited by 

j. ,   then 

v ■v2 + bWjj (6.11) 

and 

V4   =   ^4 ' b(t,jl ' (6. 12) 

where 

b(t)   = 
4 + cost 

It is clear that for any input   j.  , the output voltage at port  3   is 

•v:'y   *- ^ ./• 
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•9,   Vj V 

:y  i 
y,    d) 

Fig. 6.2   A simplified unilateral network 
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Fig.  6.3  Representation of a class of 
unilateral networks 
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identically zero for zero initial conditions,  since 

167 

v3   =   v2+v4  =   0. (6. 13) 

If the network is excited by   j.,  however,  this type of voltage 

cancellation does not take place at port   1   since   N     is a nonreciprocal 

network,  as will now be shown.    The response at port   1   of   N     is 

given by 

v4   =   -v4 + J3 

• bv (6. 14) 

or 

» 
v d 4)v5 bj 3 ' (6. 15) 

i 

while that at port 2   of   N.    is the same as (6. 11) with   j      replaced by 
b 1 

j. .    The nonreciprocal nature of   N     is evidenced by the term   b/b . 

If   b   were constant,   (6. 15) would be identical with (6. 12).    Thus, 

v     =   v    + v     /    0 
1 4       5 
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The impulse response in the direction of non-zero transmission is 

easily found,  and is given by 

h13(t,r)   =   e"(t"r)b(r) - b(t)e"(t'T)   . (6.16) 

It is clear from (6. 16) that the above network is stable in the sense 

that every bounded input  j  (t)   will produce a bounded output   v  (t) 

[ 9 ] ,   since for all   t 

\ < b(t) < 1 . 

Equations (6. 11) and (6. 12) are similarly stable. 

The fact that unilateral transmission is possible in networks 

containing only time-variable RC elements indicates that many practical 

devices might be devised employing the nonreciprocal effects.    Current 

investigations not yet completed have yielded configurations whose 

terminal behavior is equivalent to that of such has c circuits as gyrators, 

nullators, and norators [ 13 ].    Although these realizations can be shown 

to exist mathematically, many practical problems remain before they 

can be implemented physically.    Chief among these are the feasibility 

of the required element variations,  and the sensitivity of the unilateral 

transmission to perturbations in the elements. 

Another possible area of application might be ir the design 

of parametric amplifiers.    In recent years several papers have dealt 

f 
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with unilateral parametric amplifiers not requiring unilateral devices 

IlO, 11, 12].    These amplifiers behave unilaterally only for fixed 

excitation frequency, however,  and when viewed as linear circuits with 

their sources removed they do not have the unilateral property as 

defined here. 
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Chapter 7 

CONCLUSION 

In this thesis, a new characterization of several 

fundamental linear system concepts has been presented which 

employs only explicitly known system parameters and does not 

require the solution of time-variable differential equations.    With 

this characterization, it was possible to provide a unified approach to 

the representation and synthesis of a broad class of variable 

parameter systems, and to derive an interesting class of time- 

variable networks.   A detailed summary of the major results obtained 

is given below. 

7. 1   Summary of Results 

It has been shown that the problem of determining the 

degree of controllability or observability of a time-variable linear 

system in terms of its coefficient matrix description is essentially 

equivalent to that of determining the degree of independence of a set 

of functions by a Wronskian type test.    By developing such a test 

for vector functions, precise criteria for controllability and 

observability have been obtained which do not require the solution of 

time-variable differential equations.    These criteria are based on 

the rank of the controllability and observability matrices, newly 
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defined quantities formed from the system coefficient matrices and 

a finite number of their derivatives.    The controllability and 

observability matrices were also shown to be useful in a variety of 

other system analysis problems.    In particular, a transformational 

property of these   matrices   was employed which enabled the 

formulation of general criteria for system reducibility and led to 

powerful methods for reducing noncontrollable or nonobservable 

systems to lower order.   Also obtained were new methods for 

characterizing and generating equivalent system representations. 

Criteria for equivalence, zero-state equivalence, and zero-state 

time-invariance of time-variable linear systems were among the 

results of this development.    Several useful canonical forms for time- 

variable linear systems were also investigated in this context and 

criteria for their existence and method for their construction were 

given. 

Based on the theory of equivalent systems and the criteria 

for controllability and observability,  a new approach to the synthesis of 

nonstationary impulse response matrices was developed.    This method 

of synthesis, which does not require an a priori assumption of 

separability,  provides a systematic procedure for realizing a wide 

class of system impulse responses.    The specialization of this pro- 

cedure to fixed systems is of independent interest,  since it has 

several advantages in comparison with existing techniques. 
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By relating the concepts of controllability and unilateral 

transmission it was possible to use the controllability criteria to 

demonstrate the existence of a class of unilateral networks composed 

solely of two-terminal RC (time-variable) components.    A stable 

example of such a network was presented and possible applications 

discussed. 

7. 2   Problems for Future Research 

(1) It is well known [1,2] that the optimum filter for 

determining the state variables of a system from observations of its 

output requires differentiators when some or all of the output 

measurements are assumed to be noise free.    The precise conditions 

for existence of such a filter have not been given,  however, nor the 

details of its construction.    In the total absence of noise,  equation 

(4. 8) essentially provides the form of the filter,  and it is clear that 

uniform observability is the required condition for existence.   A 

detailed examination of the observability matrix should provide a 

method for constructing such filters and determining whether they 

exist under the more general noise constraints considered by Bryson 

and Johansen [ 2 ] . 

(2) The solution of many fixed control system problems is 

greatly simplified by first transforming a given system to an 

appropriate canonical form f 3-6 j .    In fact,  the conditions for 

existence of solutions to most of these problems coincide with the 
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conditions for existence of the canonical equivalents.   It is expected, 

therefore, that the theory and methods of constructing canonical 

forms developed in Chapter 4 will prove to be valuable in extending 

previously restricted results to time-variable systems.    For 

example,  it can be shown with the aid of form (4. 33) that if a fixed 

single-input system is completely controllable,  any desired pole 

pattern may be achieved by feeding back a linear combination of the 

state variables of the system.    While the concept of a "pole" is 

somewhat nebulus for time-variable systems,  it is clear that if all the 

coefficients   a.   in (4. 33) can be adjusted independently by feedback, 

the system behavior can be modified as freely as in the fixed case. 

If a system is uniformly controllable,  transformation to form (4. 33) 

is possible and the coefficients of the required feedback vector can 

be found precisely as in ( 3-4    ] . 

(3) It would be desirable to extend the synthesis procedure 

of Chapter 5 to more general impulse response matrices.    While it 

seems unlikely that all linear systems can be realized by this method 

it should be possible to include realization of impulse response matrices 

of total controllable and observable systems.    In addition,   the use of 

the present method as part of an approximation procedure for 

realizing numerically tabulated response data (e^s would usually be 

specified in practice) should be investigated.    A detailed evaluation 

of the various method for synthesizing fixed responses should also be 
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undertaken to determine the one most suitable for machine 

computation. 

(4) As indicated in Chapter 6,  there are many p oblems 

remaining before practical unilateral,  and other nonreciprocal 

networks can be realized with practical time-variable components. 

If these problems can be overcome, however,  a new method for 

building the non reciprocal elements widely used in network theory 

would Le available. 
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APPENDIX 

PROPERTIES OF ANALYTIC FUNCTIONS 

The following well known properties of analytic functions are 

of importance here. 

Property A. 1;   If two analytic functions are equal at more than a finite 

number of points on a finite interval, they are equal everywhere on the 

interval.    In particular, an analytic function that is zero at more than 

a finite number of points on a finite interval is identically zero on the 

interval. 

Property A. 2:   The sum and product of two analytic functions is an 

analytic function. 

Property A. 3;    If an analytic function is non zero on an interval,   its 

inverse is analytic on the interval. 

Property A. 4:     The derivative of an analytic function is an analytic 

function. 

The above properties of scalar analytic functions will nov 

be utilized to derive several properties of matrices of analytic functions 

(analytic matrices). 

Property A. 5;    The determinant of any square submatrix of an analytic 

matrix is an analytic function. 

Proof;     Follows directly from Property A. 2. 
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Property A. 6;   The rank of an analytic matrix is constant save possibly 

at a finite number of points on any finite interval. 

Proof;    Let   f(t)   be the determinant of the largest square submatrix 

nonsingular for some point on a given finite interval.    It follows from 

Properties A. 1 and A. 5 that   f(t)   must be nonzero except possibly 

at a finite number of points on the interval. 

Property A. 7;   If an analytic matrix has rank   q   save possibly at a 

finite number of points on a finite interval then a square submatrix of 

order   q  also has this property. 

Proof:     Follows directly from Property A. 6. 

It is now possible to prove Corollary 3. 2 of Chapter 3. 

First note that Property A. 4 implies that   W(t)   is an analytic matrix 

if  the row vector functions   6,, 6_, .... 9       a'6 analytic. 
1'   2 '   n 

If   W(t)   has rank   n   for some   t € [ t^t.]    then Theorem 3. 1 implies 

that the functions are independent on the interval.    Suppose then that 

W(t)   has rank leas than   n   for all   t e [ t., t.] ,  in which case it must 

have an essentially constant rank   q < n   on the interval (Property A. 6). 

Let   U   be a st'iintayval of [ t-,  t.]    over which   q   rows of   W(t) 

have rank   q   everywhere (that such a subinterval exists,   follows 

from Property A. 7).    From Theorem 3.2, there exists a constant 

nonsingular matrix   '."   such that on   U 

TW^l 
r 
I. 

W(t) 
(A. 1) 
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where   W(t)   has   q   rows and rank   q .    Since   TW(t)   is analytic 

on the entire interval   [ t., t.]    the relationship (A. 1) must also hold 

on  [tQjt.]   (Property A. 1).    Thus,  as in Theorem 3. 2   the   6.   are 

dependent over   [t , t]    while exactly   q   of the   9.   are linearly 

independent on the interval (i. e.,  those corresponding to the rows 

of   W(t)   having lank   q   on   U ). 
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