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Leonard M. Silverman, Department of Electrical Engineering Technical
Report #94, Columbia University; NONR 4259(04).

Background : This report is an outgrowth of a study of nonlinear and time-
variable systems being conducted in ihe Department of Electrical Engineer-
ing, Columbia University . Contained in the report are the results of an
investigation of the subclass of such systems described by a system of first-
order linear time-variable differential equations.

Condensed Report Contents: Systems of linear time-variable differential
equations are studied, with particular emphasis on identifying those system
properties and concepts that can be characterized without knowledge of
the equation's solution. Criteria are developed for determining the degree
of controllability and observability of such systems. These criteria are
based on the rank of matrices formed directly from the system coefficients.
A transformational property of these matrices is utilized in o procedure

for reducing noncontrollable and nonobservable systems to lower dynamic
order. Also obtained are new methods for characterizing and generalizing
equivalent system representations, including criteria for equivalence and
zero-state time invariance of time-variable systems.

Based on the theory of equivalent systems, a new approach to
the synthesis of nonstationary impulse response matrices is developed. This
method, which does not require an a priori assumption of separability, pro-
vides a systematic procedure for realizing a wide class of responses.

Application is also made to time-variable electrical networks.
By relating the concepts of controllability and unilateral transmission, the
existences of a class of unilateral networks composed solely of two-terminal
RC (time-variable) components is established.
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ABSTRACT

This research is concerned with a study of time-variable
linear systems with particular emphasis on those system properties
and concepts that can be characterized without solving time-variable
differential equations, Criteria are developed for determining
the degree of controllability and observability of a time-variable
system. These criteria are based on the rank of the controllability
and observability matrices, newly defined quantities formed from
the system coefficient matrices and a finite number of their
derivatives. The controllability and observability matrices are
also shown to be useful in a variety of other system analysis
problems. In particular, a transformational property of these
matrices is utilized in an explicit method for reducing noncontrollable
and nonobservable systems to systems of lower dynamic order.

Also obtained are new methods for characterizing and generating
equivalent system representations, including criteria for equi-
valence, zero-state equivalence and zero state time-invariance

of time-variable systems. Based on the theory of equivalent systems
and the criteria for controllability and observability, a new approach
to the synthesis of nonstationary impulse response matrices is
developed. This method of synthesis, which does not require ana

priori assumption of separability, provides a systematic procedure
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for realizing a wide class of impulse responses. By relating the
concepts of controllability and unilateral transmission, the existence
of a class of unilateral networks composed solely of two-terminal
RC (time-variable) components is demonstrated. A stable example

of such a network is presented and possible applications

discussed.
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CHAPTER !

INTRODUCTION

1.1 Motivation

In recent years there has been a growing interest in the
theory and application of systems whose parameters vary with time.
Among the types of systems for which this is the case are electrical
networks, control systems and communication channels. Some
examples of inherently time-variable networks include parametric
amplifiers, modulators and switched networks. In addition, problems
involving control of missile flights, or communication over fading
channels often may be analyzed by techniques applicable to time-
variable systems. A fairly general survey of research on time-
variable systems in the period 1950-1960 may be found in the paper of
Zadeh |{1]. For contributions prior to 1950, the paper of Bennett[ 2]
is valuable. A great deal of emphasis in the past five or six years
has been on those systems (both fixed and time-variable) that can be
adequately represented in state-variable form([3]. This has especially
been true in modern control theory (see the review paper of Athans[4 ]),
and more recently in network analysis [ 5-11].

The major advantage of the state-variable approach to the
analysis of time-variable systems is that an essentially geometric
structure is given to the differential equations which describe system

behavior. This structure considerably reduces notational complexity
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and furthers insight into many analysis and synthesis problems.
Although there is a fairly complete theory of time-variable
systems in state-variable form [ 3 ] this theory is for the most part
based on an explicit knowledge of system solutions. It is generally
impossible, however, to find the solution to a set of time-variable
differential equations in closed form. While it is possible to

compute the solution to any desired degree of accuracy on a digital

computer, it cannot be characterized directly in terms of the
system parameters. This is one reason why relatively little
progress has been made in the analysis, synthesis and application
of variable parameter systems compared with what has been
accomplished for fixed systems.

These considerations motivate a closer examination of
several important properties of time-variable systems with the
intent of characterizing them as completely as possible in terms of
) own system parameters, and exploiting them in several specific

apolications,

1.2 Problem Formulation and Background

The major system concepts examined here are described
below. Precise definitions are given in the body of the thesis.

(1) The concept of controllability is essentially concerned

with the type of coupling that exists between input and state
of a linear system, and determines the extent to which a

system can be controlled. Dual to controllability, the concep:




of observability is concerned withthe type of .oupling *watsi6i8

between state and output of a linear system, and determ: =5

the extent to which a system's behavior c# a be obs: ~ved

(2) Related .o controllability and ovs3rya. ‘lity .3
the idea of system reducibility. If a sys‘'=n:'s input-
output behavior for zero-initial conditio s ¢en be achieved
with a system of lower dynamic order, if‘s5 z:u< ic be %
reducible. Noncontroilable or nonobservable systems are

always reducible.

(3) To meaningfully discuss analysis and synthesis,
some notion of system equivalence is essential. Two
systems whose states are related by a nonsingular trans-

formation of coordinates (possibly time -variable) are said

:
!
i

to be equivalent. Also important is the concept of zero-
state equivalence. Two systems having the same input-

output response for zero initial conditions are said to be
zero-state equivalent. Thus, a reduced system is zero-

state equivalent to its original description.

The most fundamental of the above system propertits are
controllability and observability. It has become increasingly evident
in recent years that these concepts are significant in diverse problems
of system analysis and synthesis not necessarily related to control
problems. However, controllability first played an important role in

the development of optimal control theory. Criteria which may be viewed
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as types of controllability were present, for example in the work of
Pontryagin [12 ], Gamkrelidze [13], LaSalle [14], and Bertram and
Sarachik[15]. Formal definition of controllability and its dual
observability was made by Kalman [16-18 ], who also showed the
importance of observability in optimal filtering problems [19, 20] .
Kreindler and Sarachik[2] | introduced the concept of output
controllability, and indicated some subtleties differentiating various
degrees of controllability and observability in the time-variable case.
Unfortunately, the necessary and sufficient conditions formulated by
Kalman and his colleagues [18,19, 20, 22, 23], and by Kreindler and
Sarachik [21], for the various forms of controllability and observability
depend explicitly on the system solution in the time-variable case.

As this is generally not available except as a numerically tabulated
solution, it has been difficult to analytically characterize the
controllability and observability properties of a time-variable system.
The same is true for reducibility and for system equivalence, since
known conditions for these properties are also given in terms of system

solutions.

It is our intent to obtain criteria for controllability,
observability and system equivalence which in no way depend on
knowledge of solutions to time-variable differential equations. In
addition, methods for constructing zero-state equivalents of reducible
systems and for finding explicit transformations between equivalent

sy'rstems will be examined.
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Several specific problems, whose solutions depend on
an explicit characterization of the above properties, will also be
attacked. These include:

(1) Conditions for the existence of simple canonical
forms for time-variable systems and methods for their construction.

(2) A systematic procedure for realizing a prescribed
impulse response matrix as a system of differential equations in
state-variable form.

(3) Construction of unilateral networks from two-terminal,

time-variable resistors, inductors and capacitors.

1.3 Summary

In Chapter 2 some pertinent information from the theory of
linear systems is reviewed and the various degrees of controllability
and observability are defined. The known criteria for controllability
and observability are also summarized ir this chapter.

New criteria for controllability and observability are derived
in Chapter 3. These criteria are based on the rank of the
""controllability" and ""observability' matrices, which are formed from
the system coefficient matrices and a finite number of their derivatives.
The precise extent to which these matrices characterize controllability
and observability is made clear by relating them to a generalized
Wronskian matrix of vector functions, It is shown that this matrix has
all the important properties possessed by the common Wronskian of

scalar functions [ 24 ] .
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Reducibility is also treated in Chapter 3. The controllability
and observability matrices are used not only to test for reducibility
but in the actual construction of reduced equivalent systems. The
methods presented for system reduction are shown to have several
important advantages in comparison with previous techniques that were
restricted to either fixed systems [ 18] or a special class of time-
variable systems [ 25]. The basis of the present reduction scheme is
an interesting transformational property of the controllability and
observability matrices, This property is quite evident once observed,
but does not seem to have been exploited previously, even for fixed
systems.

Further application of this property is made in Chapter 4,
where a general approach to the problems of system equivalence and
representation is presented. A new degree of controllability and
observability is defined in this chapter. For the class of systems
possessing these properties (which includes fixed controllable and
observakle systems), necessary and sufficient conditions for system
equivalence are derived, together with explicit methods for con-
structing transformations relating equivalent systems. Among the
interesting and potentially useful results obtained from this
investigation is a criterion for determining if a system is zero-state
equivalent to a fixred system. Also given in Chapter 4 are methods

for transforming single-input-single-output time-variable systems
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to several important canonical equivalents. Included are the
classical input-output differential equation form, and the ''phase-
variable' canonical form [ 26-28 ], widely used in control system
applications, These canonical structures are especially valuable
when simulating a time-variable system on an analogue (or digital)
computer since they require relatively few variable components.

The theory of equivalent systems developed in Chapter 4
provides the basis for a new approach to the problem of synthesizing
a prescribed impulse response matrix as a system of differential
equations (i, e., an analogue computer realization). This method,
presented in Chapter 5, differs significantly from previous techniques
[18, 23, 29,' 30] in that an a priori assumption of realizability is
not required. While this method is not completely general, it
provides a systematic synthesis procedure for a wide class of
responses, In particular, for stationary impulse response matrices,
a theory and procedure for minimal realization is obtained which
has many advantages in comparison with previous approaches
[ 18, 30, 31, 32].

In Chapter 6, application of the controllability criteria is
made to a problem concerning time-variable networks. While it is
well known that networks containing time-variable RLC components
are generally non-reciprocal, the possibility that such networks may

in fact exhibit unilateral behavior does not appear to have been explored.
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By relating the system concept of controllability to the network
concept of unilateral transmission, we are able to systematically

generate a class of unilateral RC networks.
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CHAPTER 2

TIME-VARIABLE LINEAR SYSTEMS

2.1 Basic Definitions and Notation

The class of systems to be considered in this thesis are

those describable by a finite set of first order differential equations

*
of the form

X (t) = A(x(t) + B(t)u(t) (2. 1a)

| y(t) = C(t)x(t) , (2. 1b)

where x(t), an n-vector, is the state of the system at time t ; u(t),
ai r-vector, is the input; and y(t), an m-vector, is the output. The
inatrices A(t), B(t) and C(t), are of order compatible with the

vectors x(t), u(t) and y(t).

*
Notation: Lower case symbols will be used to denote both scalar

and vector functions, while upper case symbols will be reserved for
all other matrices. When the context is clear, the explicit dependence
of functions on their argument will be suppreesed (i.e., A = A(t)).
The operations of transposition and inversion will be denoted by A'
and A'l, respectively, and the following notations will be used for
differentiation:

| i = —(l)
th-A-A ,

k
. '—dk‘—A ALY
dt
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If the coefficient matrices are sufficiently well behaved,

the output of such a system is given by [ 1 ]

t
y(t) = C(t)é(t,t )x(to) + [ C(t)é(t, T)B(T)u(r)dr , (2.2)

)

where x(to) is the state of the system at some arbitrary time to R

and ¢(t,7) is the system transition matrix. The transition matrix

may be defined as

#(t,7T) = X(t)x'l(f) (2. 3)

where X(t), an n x n matrix, is a fundamental matrix [ 2 ] of (2.1a);

that is,

X(t) = A()X(Y) (2. 4)

and X(t) has rank n for all t.

It is also convenient to define the impulse response matrix

of system (2.1):

*
To avoid unnecessary complication, it will generally be assumed that
the matrices A, B and C are continuous functions of time,

e e 21505.8 e R e i e At
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C(t) &(t, ) B(T), t2T
H(t,T) = (2.5)
0 t<0

For zero initial conditions, the impulse response matrix completely

characterizes the input-output behavior of system (2. 1) since if

| "‘to) =0 :

\ . t
. ylt) = I H(t, T)u(r)dT . (2. 6)
%

From (2. 3) it is clear that the impulse response matrix

may also be expressed in the form

H(t,T) = ¥()e(n) , t2T 2.7
| where

v() = CX() , (2. 8)

8 = x1nBm , (2.9

and X(t) is a fundamental matrix of (2. 1a). Although W(t) and B(t)

' are not unique matrices for a given system, they are unique within

a constant transformation. If Xl(t) and Xz(t) are any two funda-
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mental matrices of (2. la) then

Xl(t) = Xz(t)K (2.10)

where K is a constant nonsingular matrix[ 2] .

It is often useful to consider various equivalent represent-
ations of a given system for purposes of both analysis and synthesis.
There are many types of system equivalence that can be defi . :d
[ 3,4], but the following will be most important here.

Definition 2.1: Let T(t) be an n xn matrix, nonsingular and

continuously differentiable for all t, and let z(t) = T(t)x(t) .

Then it will be said that the system

z(t) = A{)z(t) + Blt)u(t) (2.11a)

vy = Cz() (2.11b)
where

A= (Ta+ )T} (2. 12a)

B - TB (2.12b)

-~ -1

cC =cCcT |, (2.12¢)
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is equivalent (algebraically equivalent [ 3]) to system (2.1) and that
T is an equivalence transformation.

If X(t}) is a fundamental matrix of (2. 1a) then T(t)X(t)
is clearly a fundamental matrix of (2. 11a), so that the transition
matrix of (2. 11) is given by

- -1

3(t,7) = T(:é(t, T (1) . (2.13) |
The impulse response matrix is thus seen to be invariant under an
equivalence transformation since from (2.12) and (2. 13)

H(t,7) = C(t)2(t, 7)B()

= C(t)é(t, )B(T) = HI(t, 7).

Furthermore, if x(to) is the initial state of (2.1), and z(to) = T(to)x(to)
is the initial state of (2.11) then i

C(t) &(t, to)z(to) = C(t)8(t, to)x(to) .
Thus, systems equivalent under Definition 2.1 are both zero-state
and zero-input equivalent[ 4] .

i VAR T IASRN RPN e




R 2

. o R - St (PR e ® il e S ey o S A B up AAECNTRNAV IR,

L7

2.2 Controllability

The concept of controllability as it arose in the study of
optimal control problems is essentially concerned with the possible
state transitions that can be effected in a system by application of
some input. There are two basic types or '"degrees'' of controllability
having importance in control theory; complete [ 3, 5, 6], and total
[ 7] (differential [8 ], proper [ 9]} controllability. The major
difference between the two is that total controllability insures that
the state of the system can be controlled as quickly as desired,
while complete controllability only implies that the state can be
controlled in some finite time.

Precise definitions of these concepts will be given below.
Various equivalent definitions, as well as a fuller discussion of the
role they play in control theory may be found in the work of Kalman
[3,5], LaSalle [ 9], Kalman, Ho and Narendra{ 6 ], Kreindler
and Sarachik [ 7], and Weiss and Kalman [ 8 ].

Definition 2.2 (Controllability):

[to, tl] if for any state x, at

(a) System (2.1) is said to be completely controllable on an interval

and any desired final state x

0 t 1

at t1 , there exists an input u(t) defined on [to,tl] such that

x(tl) = Xy

(b) System (2.1) is said to be completely controllable at time t0

if there exists a finite time t) > t_ such that the system is completely

0
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controllable on [to, tl] . If system (2.1) is completely controllable

at all to, it is said to be completely controllable.

(c) System (2.1) is said to be totally controllable on an interval

[ to, tl] if it is completely controllable on every subinterval of

[ tys tl] .

{ f (d) System (2.1) is said to be totally controllable at time to if for
(

all t, >t , it is completely controllable on [to,tl]. If system (2. 1)

is totally controllable at all t it is said to be totally controllable.

0 )

Necessary and sufficient conditions for controllability of
a time-variable system are well known [ 6,7, 8] and will be
summarized below. If X(t) is any fundamental matrix for (2.la) and
B(t) = x'l(t)B(t), then

Theorem 2.1: System (2.1) is completely controllable on the

interval [t if and only if the rows of @(T) are linearly inde-

0 by

pendent functions of T on [to, t 1] .

Theorem 2.2: System (2.1) is totally controllable on the interval

[ to? tI] if and only if the rows of A(T) are linearly independent
functions of T on every subinterval of [to, tl] .

Criteria for controllability at a specific initial time, and
| for all initial times follow naturally from Definition 2. 1 and the above
theorems [ 7, 8] .

It should be observed that it is usual to express the

! controllability criteria in terms of particular fundamental matrices

o e - ' : 7 T 5 3 A AT |
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(either b(t), T) [7] or @(to, T) (8 ]). Since any two fundamental
rmatrices are related by a constant (with respect to 7 ), nonsingular
matrix as in (2. 10), the independence of the rows of @(T) is not
affected by the choice of fundamental matrix used to define it.
Furthermore, controllability is invariant under an
equivalence transformation. To see this, let ;{(t) be a fundamental

matrix for (2.11la) and let

B = X 1B .

By definition, T3(t) = T(t)B(t), and as noted previously, ?((t)=T(t)X(t),
where X(t) is a fundamental matrix for (2.1a). Therefore,
g(t) = @(t) and anything said about the controllability of (2.1), must

hold for (2.11).

2.3 Observability:

The concept of observability introduced by Kalman [ 3, 5, 10],
is of considerable importance in optimal filtering and prediction .
problems. Essentially, if a system is observable, its state at some
particular time can be determined from observations of the system
output. Various degrees of observability will be defined below. It
will be clear from these definitions and the criteria which follow that
observability plays a role dual to that of controllability in describing

a systems structure. This duality first observed by Kalman|[ 10 )
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greatly simplifies the solution of many problems [ 5,10]. Further

discussion of observability and the dual relationship it bears to

controllability may be found in[ 7] and[8].

Definition 2. 3 (Observability):

i (a) System (2.1) is said to be completely observable on an interval

[to, tl] if any initial state x, at t, can be determined from

' knowledge of the system's output over [to, tl] .

i

) (b) System (2.1) is said to be completely observable at time to if

there exists a finite time tl > to such that the system is completely

observable on [ ty tl] . If system (2.1) is completely observable at

all t0 , it is said to be completely observable.

(c) System (2.1) is said to be totally observable on an interval

[to, tl] if it is completely observable on every subinterval of [to, tl] .

(d) System (2.1) is said to be totally observable at time t0 if for

all t, >t,, it is completely observable on [to, tl] . If system (2.1)

is totally observable at all to , it is said to be totally observable.

4 If X(t) is any fundamental matrix for (2. la) and
W(t) = C(t)X(t) then the following conditions for observability may be

established [7,8 ].

f Theorem 2.3: System (2.1) is completely observable on the interval

[to, tl] if and only if the columns of V¥(t) are linearly independent

functions of t on [to,tl] .

T, T R ik SRR | R :D&Q‘Y abre LXC SEEML Ll




Theorem 2.4: System (2.1) is totally observable on the interval

[to, tl] if and only if the columns of ¥(t) are linearly independent
functions of t on ever subinterval of [to, tl] .

The form of Theorems 2.3 and 2.4 when compared with
that of Theorems 2.1 and 2. 2 immediately suggests a precise
formulation of the duality between observability and controllability
[7].

Theorem 2.5: System (2.1) is completely controllable (observable)

on the interval [ tos tl] if and only if the system

w(t) = -A'(tw(t) + C'(t)u (t) (2. 14a)

Y = B'@)w(t) (2. 14b)

is completely observable (controllable) on [to, tl] :

To prove the theorem, it is only necessary to observe
that if X(t) is a fundamental matrix of (2. 1a), then (X-l(t))' is a
fundamental matrix of (2.14a) [2].

If system (2.1) is time-invariant, all degrees of
controllability (and observability)lare equivalent and we may classify
systems as being either controllable (observable) or non controllable
(non observable). Most importantly, the necessary and sufficient
conditions for controllability and observability in the fixed case can
be formulated directly in terms of the coefficient matrices of the

system, as in the following theorems[3].
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Theorem 2. 6: A fixed system of the form (2.1) is completely
controllable if and only if the matrix Qc has rank n, where
. s : -1
Q =[BIaAB!... ! A" 'p] . (2. 15)
Theorem 2.7: A fixed system of the form (2.1) is completely
observable if and only if the matrix Qo has rank n, where
S . ., n-1
Q, = [c: AcC . ... (A7) c'] . (2.16)

In Chapter 3, criteria which seem to be natural
generalizations of Theorems 2. 6 and 2. 7 for time-variable systems

will be derived.
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CHAPTER 3

*
CONTROLLABILITY, OBSERVABILITY AND REDUCIBILITY

3.1 Introduction

The necessary and sufficient conditions for controllability

and observability summarized in Chapter 2 depend explicitly on the

L
: ;Z?i system solution matrix in the time-variable case. Since this matrix
| 5 is generally not available except as a numerically tabulated solution,
, ; it has been difficult to characterize the structural properties of a

4 time-variable system in terms of its coefficient matrix description.
i In order to circumvent the problem of system solution

-:\\ we propose to determine the extent to which the controllability and

| —

observability properties can be characterized in terms of thg matrices
A, B and C. This problem has been studied by several otf‘\er
workers including Stubberud [ 1], and Chang[2 ]. Our independently
derived results will be described below and compared with those of
the above.

Of prime importance in this development are the system
""controllability' and '"observability' matrices. It will be shown that
these matrices, which do not require knowledge of the system solution

for their construction, provide significant structural information,

1 %*
| Parts of this chapter have appeared in two papers by the author and
H. E. Meadows [ 3,4].
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including: (i) a sufficient condition for complete controllability and
observability, and (ii) a necessary and sufficient condition for total
controllability and observability. These conditions are established
here by relating the controllability and observability matrices to a
new test for linear independence of certain vector functions. This test
is a generalization of the familiar Wronskian determinant criterion
for scalar functions.

The controllability and observability matrices will also be
shown to be useful in determining whether a system is non-controllable
or non-observable and in constructing transformations of coordinates

to reduce such systems to zero-state equivalents of lower dynamic

order.

3.2 The Controllability and Observability Matrices

; The controllability and observ.ability matrices of a time-
variable linear system of the form (2. 1) will now be defined. To
insure that these matrices exist and are well behaved for all time it
will be assumed that the matrices A, B and C are continuously
differentiable n-1, n and n times, respectively. This restriction
can be considerably weakened for many arguments [ 3 ], but at the

expense of greater mathematical complication.

The controllability matrix of system (2.1) is defined as

Q=[p3p:...gpl] (3.1)

PSSR S S Y

T s el g bt U X

1

: & o ':"K"L.,%




£ . ‘4
MF%M,«._,_ NS : o SERR ot v v

lu

where
P = -AP + iP P =B (3.2)
k4l = "7k dt k! 0o~ .
The observability matrix is defined in a dual manner as
Q, = [s5y:8:...:8 |] (3.3
S = A'S + iS s . =cC (3. 4)
k+1 k dt 'k’ 0 ’ )

Whenever the context is clear, the subscripts 'c' and '0' will be
dropped.

A property of these matrices which proves to be quite

useful in the subsequent development concerns their behavior under
transformation of system coordinates.

o
Property 3. 1: If T is an equivalence transformation and if QC

is the controllability matrix of the transformed system, then

&

Qc = TQC . (3. 5)

ajad

a

Equation (3. 5) follows by induction since if Pk = TPk

P g

then

b4

A A dp
k+1 'Apk+dt k

. -1 ° o
(TA+T)T (Tpk) + (T Pk + TPk)

T(-APk i Pk) = Tlel

f : TR SRR i iy |




',‘ - o el SO—_ s
3
%
;:"‘
27 #
and by definition,
3
P0 =B=TB=TP, i

Similarly, if éO is the observability matrix of the transformed system

then

35 ~:~: 3,:';—4-"%,.»

o = ()l

0 0" (3. 6)

To indicate the role played by the controllability matrix as

a test for controllability it is first noted that

ey

k 3
i;[ x'(nBm)] = X'I(T)Pk(ﬂ (3.7) E
“ ¥

where X(T) is any fundamental matrix of (2. la). Equation (3. 7)

follows by induction since P0 = B, and if

Ll
k

(X" nBm] =X mE M,
dar '

then

dk+l

d,,_k+l

[ x~1(r) B(T)]

f

d -1
'a?[ X (1) Pk(T)]

.x'l MxXmx° . (1) Pk(-r)+x' ! (1) pk(r).




but
e -1
XX (1) = Afr) .
Therefore,
dk+1 ] ' 1 .
: [X "(MB(1)] =X (N[ -AMP_(r) + P, ()]
= k+1 k k
dr
i =xnp (1)
% S A
B
&t
%{ It follows then that
. ) A . - -1
fom ;o' ry ... 1P = xma m e
where @{t: = X-l(t)B(t). If w is a scalar input then the matrix on the
left side of (3. 8) is recognized to be the Wronskian matrix of the
g

rows of ®(T) . It is well known [ 5] that the rank of the Wronskian
matrix may be used to test the linear independence of scalar functions.
Since X-l(‘r) is nonsingular for all T, the rank of Qc('r) is equal to
that of the Wronskian matrix for all T . For single input systems,
therefore, the controllability matrix yields as much information about
the degree of controllability of the system as does the Wronskian
matrix of the rows of 8(7) . In the following section, it will be shown
that a Wronskian matrix may be defined for vector functions having

all the important properties of the scalar Wronskian matrix.
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3.3 The Vector Wronskian Matrix

Consider the set of r-dimensional row vector functions
sl(t,, ez(t), 1e .,en(t) , where the elements of each Gi(t, together
with their first n derivatives are continuous functions. The Wronskian
matrix of such a set of functions is defined as
W(Gl,ez,---.en)=[@0:®l:---:@ ] (3'9)

n-1

where

&= |- | =@ % ° Gt Pk-1

When the context is clear W{(t) will denote the Wronskian matrix.
The following theorem provides a direct generalization of the
test for linear independence of scalar functions.

Theorem 3.1: If W(t) has rank n for some t in an interval [to,tl].

then the functions 91’ 62, ...,0 are linearly independent on [to, tlj,
n
To prove the theorem, suppose that the Gi are dependent

on [to, tl] ; then there exists a constant n-vector ) # 0 such that for

all te[tus tl:l’

Vel = 0
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By differentiating this relationship n-1 times, it is clear that for all

te [to. tl] 5

NW() = 0

which contradicts W(t) having rank n for some te [to,tl].

The following theorem provides an important test for linear
dependence of vector functions. Although the statement of the theorem
is - direct generalization of a known result for scalar functions [5],
the proof is believed to be entirely novel in that it utilizes properties
of forced linear systems of the form (2. 1). The usual proof of this
theorem in the scalar case [5] relies on the relationship the Wronskian
of a set of functions bears to the solution of homogeneous differential

equations - no such analogous relationship holds for vector functions.

Theorem 3.2: If W(t) has rank q less than n for all te [to,t ] and
if the Wronskian matrix of any q of the 91 has rank q for all
te[to, tl] , then the functions 91’ 92, s 3 'en are linearly dependent on

[to, tl] , and may be expressed as a linear combination of the q

independent rOws.

Consider the system

[ ]
X =

y = X

@(thu
(3.10)

e e e
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Let Q be the controllability matrix of (3. 10); then it is clear that Q = W,
Without loss of generality, it may be assumed that 91, 92. cey Bq have
a Wronskian matrix of rank q for all tc[to. tl] , then
Ql
Q = r
QZ
where Ql has q rows and rank q for all te[to,tl]. Since Q also
has rank q everywhere on the same interval, the rows of Q2 can be
written as a linear combination of the rows of Ql for all te[to, tl] ;
that is
Q2 z KQl (3.11)
where K is an (n-q) xq matrix. Note that
- t
K = QZQI
1 [ ' -1 q . .
where Q1 = Ql(QlQl) so that K has a continuous derivative.
If it can be shown that K is a constant matrix the theorem
will be established.
Define the matrix
I 0
q
Tz , (3.12)
-K I
n-q
e ) """""“‘ T """"'—' T T T T TR e s bR SR
\ 3
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where lq is the qth order identity matrix, and note that

q

T®k= , k =0,1,..., n-l
0
where
K
_d _le _
O * T %1 By = 2|1 =0
. 6
q

T is clearly nonsingular for all t and as K is continuously differentiable

on [_'to, tl] , T is an equivalence transformation on the interval. If

z = Tx, therefore, the system

[ -~ PS

z = Az + Bu

y = Cz (3.13)
where

A= 11}

B = To

é& = 1!

is equivalent to (3. 10) on [to, tl]. Since

I 0
-1 q
K I
n-q
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then
0 0
A =
3 [ ]
4 K 0
It is also true, however, from the definition of Pi that
,1,'..
f; PS PS A d " ~ - ~ . "
: A[Py 1. .. P 1) 3P, q-117 [P}i . .IP ]
t or
; o o] [n T 0, - 0, "’q-l - 8,
B =
W Xk of |o 0 0 0
Therefore,
K Qo:....nq_l] 0
or
]
L KW(el. 92,...,eq) =0 (3. 14)
}m
By assumption, W(Gl, 6, .. Gq) has rank q for all te [to,tl] so
that (3. 14) implies
§
? "

which establishes the theorem.
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The following corollary to Theorem 3. 2 provides a test for
determining whether a set of functions are dependent over some interval.

Corollary 3. 1: If the Wronskian matrix has rank less than n for all

tc[to,tl] then there exists some subinterval of [to,tl] over which the
functions Gl, 92, o O On are linearly dependent.

The proof of this corollary by induction is a generalization

of that for the scalar case given by Hurewicz [5].

For n=1, W(Ol) = 61 so that if the rank of W(Gl) is less
than one for all te [to, tl] then Ol = 0 for all te [to,tl] and the
corollary is trivially true.

Suppose that the corollary is valid for n=k-1 and

W(GI,OZ, ce s Gk) has rank less than k for all t€ [tO’tl:" Either

W(el,e?_,...,e l) has rank k-1 for some te[ to,tl] or it has rank

k

less than k-1 for all te[to,t ]. If the former is true, then by

1
continuity there must exist some subinterval of [to, tl] on which
W(Gl, 92, cey ek-l) has rank k-1 everywhere. In this case, Theorem
3.2 implies that 8 1’ 92, cees ek are dependent on the subinterval. If
w(6,. 6, - - - 8, _,) has rank less than k-1 for all teft,, tl] then by
assumption 91' 92, R q(-l are linearly dependent on some sub-
interval of [ to’ tl] , which completes the proof.

It is now possible to prove the major result for the vector

Wronskian matrix which, when related to the controllability matrix,

provides a necessary and sufficient condition for total controllability.
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Theorem 3. 3: A necessary and sufficient condition for the row vector

functions 91,9 o5 On to be linearly independent on every subinterval

2’0-

of an interval [to, tl] is that their Wronskian matrix not have rank
less than n on any subinterval of [to, tl] .
Sufficiency follows immediately from Theorem 3.1 since

any subinterval of [t ] must contain points where W{(t) has rank n.

0’4

Necessity follows from Corollary 3.1 since if W(t) has

rank less than n on some subinterval of [t ], there must be

t
0’1
some sub-subinterval over which the functions are dependent.

If the elements of the row vectors 91, 6 Gn are

PIRERD
analytic functions of t the Wronskian test for linear independence can
be strengthened considerably. In the Appendix properties of matrices
of analytic functions are discussed, and the following result which

follows easily from Theorem 3.2 is established.

Corollary 3.2: Let 91, 92, S Gn be row vectors of functions

analytic on [to,tl] ; then 91, 6 en are linearly independent

PARERY
on [ tys tl] if and only if W(t) has rank n for some t € [to,tl] 3
Furthermore, if W(t) has maximal rank q less than n , exactly
q of the Gi are linearly independent on the interval,

It should be noted that the rank of a matrix of analytic functions
is constant save possibly at a finite number of points in any finite

interval. Thus if W(t) has rank n for some te [to, tl] it has

rank n for all but a finite number of points in

\ /'
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*
[to, tl] . It is clear then that if a set of analytic row vectors are
independent on any subinterval of [ ty tl] they are independent on

every subinterval of [to,tl] .

3.4 Criteria for Controllability and Observability

-1
If ®(t) = X "(t)B(t) where X(t) is any fundamental matrix
solution of (2.1) and Wc(t) is the Wronskian matrix of the rows of

@(t) then from (3. 8)
-1
W () = X (tQ (1) (3. 195)
c c
Immediate application of Theorem 3.1 gives the following sufficient

condition for complete controllability,

Theorem 3.4: (a) System (2.1) is completely controllable on the

interval [to, tl] if Q_ has rank n for some te[to,tl].
(b) If for some t> tO’ Qc has rank n then

system (2.1) is completely controllable at t0 .

*
To simplify notation, if an analytic matrix has rank q at all
but a finite number of points on an interval, we will say that the

matrix "has rank q ' on the interval.
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This result was also prov/ : directly in L3] and independently by
Stubberud [1], and Chang [2], and is the time-variable form of

Pontryagin's '"general position criteria" [6]. It was also shown in 3]

that Theorem 3. 4 holds under much weaker conditions on the coefficient

matrices. '%
In general the condition of Theorem 3. 4 is not necessiary for

complete controllability as demonstrated by the following example.

Example 3. 1: Consider the second order single-input system

X 0 0 X, g(t)
= + u
[ ]
X, f(t) O X, 0
where
0 tso
y(t-1) O<st <2
f(t)=( 0 2<st <4
y(t-5) 4<t <6
0 6<t ,
g(t) = f(t-2),
and
-1
exp( —-——'2—) lt' <1
1-t
Mt) = |
0 le]21.
_ - v S S
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A fundamental matrix for this system is
1 0
X(t) = s
F@it) 1
t
where F(t) = f f(s)ds, so that
-®
1 0]]g(t) g(t)
8(t) = x'l(t)B(t) = =
F( 1 0 F(t)g(t)

It is clear here from Fig. (3.1) that g(t} and F(t)g(t) are linearly

independent on the interval [0,8 ]. However,
g(t) gw | few gt

0 -f(thgty] Lo 0

so that Q  has rank <2 forall te[0,8].

Observe that even though this system is completely
controllable on [ 0,8 ] it is not controllable on any interval [O,t ]
for t s 6. That is, starting at time t = 0 there is a waiting period
of 6 units before a desired final state can be reached.

Although a necessary and sufficient condition is not possihle
for complete controllability in terms of the Qc matrix such a
condition can be given for the more useful property of total controll-
ability. This condition, which follows directly from Theorem 3. 3 and
equation (3.15), constitutes a major result of this chapter. It may be

summarized as follows:
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Theorem 3.5: System (2. 1) is totally controllable on the interval

[to. tl] if and only if Qc does not have rank less than n on any sub-

interval of [ tor tl] .

R s
i

If (2.1) is a fixed system, then the controllability matrix

¥ takes the form
1;;;:
g“j : : . n-1
Ok QC=[B.-AB.....(-A) B]
¥ and is equivalent in rank to the familiar form of the fixed controllability
matrix given in equation (2.15). Theorem 3.5 may thus be viewed as
a generalization of the well known and widely useful criterion for
controllability of fixed systems given in Chapter 2.
It should be quite apparent that results dual to those
presented for control.ability hold for observability, To formalize
*
7 these results we first define the Wronskian matrix of a set of column
vector functions
, V() = [p 0 Ip,000. .. (0]
as
[ g0
W, ()
Wit} = g ;
v, )

el




S et et B

where

5 O -
Yo = =¥ 0, ¥t = Hy .

If ¥(t) = C(t)X(t) whe=e X(r) is a fundamental matric solution of

(2.1), then the matrix
- 1 -y

plays a role completely dual to that of Wc(t) in establishing the
following theorems.

Theorem 3.6: (a) System (2.1) is completely observable on the

interval [to,tl] if Q, has rank n for some te¢ [to,tl].
(b) If for some t > to, QO has rank n then the
system (2.1) is completely observable at to s

Theorem 3.7: System (2.1) is totally observable on the interval | to, tI]

if and only if Q0 does not have rank less than n on any subinterval
of [ to? tl] .

If the coefficient matrices of system (2. 1l)are analytic
functions of time, 4 the distinction between complete and total
controllability disappears, as will now be shown. First note that if
(2.1) is an analytic system, its fundamental matrices must also be

analytic [ 7]. Thus, it follows from Corollary 3.2 that if the rows of

*For simplicity, we will refer to (2.1) as an '"analytic system'' in this
case.

e e e e s oo 2 — e o e e G e A B .
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X-l(t) B(t) are linearly independent functions on some interval of t,
they are independent on every interval of t. That is, if the system
is completely controllable on some interval, it is totally controllable
on the interval. Since the converse is always true, complete and
total controllability are equivalent concepts for analytic systems,
and controllability is independent of the particular choice of intervals
and initial time (as is true for fixed systems). As a special case of
b

Theorem 3, 5, therefore, we have the following coro...ry.

Corollary 3.3: An analytic system of the form (2. 1)is completely

controllable if and only if Qc has rank n.

Similarly we have:

Corollary 3.4: An analytic system of the form (2. 1) is completely

observable if and only if QO has rank n,

3.5 System Reduction

In this section we will consider the problem of determining

from the Q matrix whether a system is non-controllable (i.e., not

Ny

j completely controllable) on an interval. It is clear from Example 3.1

that this is not always possible. Coupled with this problem is that of

i "gystem reduction." It is well known {8 ] that any non-controllable

3
This result was also established by Stubberud [l ] and Chang[2 ].
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or non-observable system can be reduced to a zero -state equivalent
system of lower dynamic order. When possible such reduction is
usually desirable in analysis since the resulting system is more easily
solved. Moreover, in synthesis, a first step in realizing a prescribed
input-output response may result in a system of higher order than
necessary. A least order realization can then be obtained by reducing
the initial system. This type of synthesis is utilized [8 ] for fixed
systems. The method of reduction given in[ 8], however, is based on
knowledge of the transition matrix and t-hus cannot readily be generalized
to time-variable systems. Reduction of time -variable systems is
considered in [ 9 ] in the special case of systems realizable by a single-
input-single-output differential equations. Presented below is a general
approach to the problem of system reduction based on properties of the
controllability and observability matrices. The following will be
important in this development.

Property 3.2: If Q_ has rank q for all t e[ to: tl] then any matrix of

the form

has rank q for all te¢] to? tl] .
A proof of this property i+ given in the appendix of [ 3 ].

Property 3.3: Let Qc be the controllability matrix of (2. 1) and define

the related matrix

43
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Q' - [P, P, : ‘P 3.17
R S i

Then on any interval where Qc has rank n, the system A-matrix can

be expressed as

A= @ -aha! (3.18)

Equation (3. 18) follows from the observation that

e s o

Q" - .aq +4 (3.19)
c c c
Since P0 = B , knowledge of consistent matrices Q and Pn suffices
‘ to determine (2. 1) uniquely on any interval where Q has rank n.
It will be said that a system is reducible if for all time, its
impulse response matrix may be realized by = system of lower order.
Reduction is always possible if a system is not completely controllable
and/or not ccmpletely observable. In certain degenerate situations a
system may be reducible even if it is completely controllable and
observable [19], but such cases will not be considered here. The
reduction problem will be separated into two parts:
(i) Construction of the least order completely
! controllable system realizing the impulse
response matrix of (2.1) - i, e., that part

affected by the input.
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(ii) Construction of the least order completely
observable system realizing the impulse response
matrix of (2.1) - i.e., that part which affects the
output.
By combining (i) and (ii) the least order completely controllable and
completely observable subsystem may be found.

Definition 3.1: System (2. 1) is reducible (from the input) to order

q < n and no lower order if it is equivalent to a system of the form

b4
>
>

2] P 221 B,
2 = = + u
z2 0 A22 z 0
v« (€, &l (3. 20)

and the qth order subsystem

y = C.z (3. 21)

is completely controllabie.
It is clear that the impulse response matrix of (3. 21) is

equal to that oi (3. 20) and hence to that of (2. 1).
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Definition 3. 2: System (2. 1) is reducible (from the output) to order

qQ <n and to no lower order if it is equivalent to a system of the form

[} a "
. zl All 0 zl Bl
zZ = =) + u

° -~ Y A

z, Ay Al Lzd LB,
y = [c“:l 0] 2 (3. 22)

and the qth orrler subsystem

3
S
A
-
IR S
Rty
i
b
\%3
} il
i

&3-*
: »1|" 1 1171 1
{

>
>

(3.23)

is completely observable.

Note that in this case the reduced system is zero-state and

? zero input equivalent (i. e., "equivalent'" in the sense of [ 11]) to the

original system.

f Only reduction from the input will be treated below, since

reduction from the output may be effected in a dual manner.

Conditions under which a system is reducible (non-controllable)
will now be explored. The following theorem indicates the importance

of the controllability matrix in this context.
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Theorem 3.8: System (2.1) is reducible to a qth order totally

controllable system if and only if an equivalence transformation T(t)

exists such that

D

TQ (3. 24)

where 61 has q rows and does not have rank <q on any interval.
It is immediately evident that if Q is the controllabi lity

matrix of a system of the form (3. 20) then

él
(3.25)

jold
1]

0
so that the necessity of the conditions of Theorem 3.8 is clear.
To prove sufficiency, it is first noted that Property 3.2

implies
0

r“ - rn d -~ a
An A2 |9 a9

A

AZl AZZ_} _0 j 0 J

b

Since 61 does not have rank <q on any interval, and
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21° Also, since B is formed from the firstr

it can be concluded that ;\ 0.

columns of 6 it must have the form

By

>

which concludes the proof.

~

The constraint on Q, in Theorem 3.8 can not in general be

1
relaxed to include reduction to systems that are rot totally controllable.
It is possible, as shown by Example 3.1, that a system may possess
a controllability matrix of the form (3. 25) yet not be reducible.

The conditions under which Q admits a transformation
satisfying Theorem 3.8 will now be examined.

It is clear that if such a transformation T exists, then its

inverse R must satisfy

and also be an equivalence transformation. The matrix Q may be

partitioned as

o)
D>

11 12

D)
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where 611 isa q x (rq) matrix not haviag rank <q on any interval
and is the controllability matrix of the reduced system (3. 21). Let

R be partitioned as | Rq Rn-q] where Rq has q columns and
rank q everywhere. Then it is evident that a necessary condition for
T to exist is that Q not have rank <q on any interval and that the

~

first rq columns of Q be factorable in the form Rqul . If such

factorization is possible then the reducing transformation is given by
T = [R . R ] (3. 24)

where Rn is any set of n-q continuously differentiable columns
making T"l nonsingular.
The above discussion together with Theorem 3.5 implies the

following corollary to Theorem 3. 8.

Corollary 3.2: System (2.1) is reducible to a totally controllable

system of order q < n if and only if Q does not have rank <q on
any interval, and the first rq columns of Q can be factored in the
form qu)“ , where Rq has q columns and rank q everywhere and
Q

11 does not have rank <q on any interval.
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It might appear that the conditions of Corollary 3.2 are
redundant in that the factorability of Q seems to be implied by its
rank. That this is not the case is demonstrated by the following
example,

Example 3.2: Consider the second order system

X fl(t)
= u
i ;22_ sz(t)-
where
fl(t) = y(t)
fz(t) = y(t-2)

and Y(t) is as definedin Example 3. 2. For this system,

P~ [ -

fl f1
Q =

fz fzj

has rank 1 almost everywhere on the interval [-1,3), as does the first
column of Q. The system is completely controllable, however, and
is thus not reducible on the irterval.

A simpler sufficient condition for reducibility applicable for

a somewhat smaller class of systems is provided by the following

corollary.

y . ' " 5 f‘l§; i ~..',
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Corollary 3.3: If Q has rank q everywhere and q columns of Q

also have rank q everywhere then system (2. 1) is reducible to a qth
order totally controllable system.

Any set of columns of Q baving rank q may be used as Rq

in (3. 24),avoiding the need to factor Q. This method is essentially a

generalization of Stubberud's technique [9] for single-input systems.

Cases where factorization may be necessary were not considered in

[9], however, nor were the precise conditions under which reduction

may be performed made clear.

Observe that it is possible for the Q matrix to have rank q
everywhere without any q columns having rank q everywhere, as in
the following example.

Example 3. 3: Consider the system

;‘l sint
x2 sint
Yl = xl

The controllability matrix of this system,

sint cost

sint cost

has rank 1 for all t but no single column hasthis broperty, so that
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Corollary 3.3 is not applicable. Itis clear, however, that the first
column of Q may be factored as
: 1
sint ,
1
so that
1 1
-1
T =
1 U
will reduce the system to
él = (sint)u
y RS |
One difficulty involved in using the method of reduction
associated with Corollaries 3.2 and 3.3 is that the choice of the
columns Rn may not be obvious. Theorem 3.9 below provides a
method of reduction in terms of the rows of Q , which has the virtue
of providing a simple explicit form for the reducing transformation and
the reduced system.
Theorem 3.9: If Q has rank q < n everywhere,and q rows of Q,
say Q1 , have this property, then system (2.1) can be reduced by the
transformation
/
ik N et TR s e 8 -AMJ =

t
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n-q]

to a totally controllable system of order q where the rows of Q have

been reordered so that

Q1
Q = 0
QZ_
and
QZ = KQ1

As in (3.11), K may be expressed as

(3. 25)

—

so that T is an equivalence transformation. It is clear that

which proves that T does indeed reduce the system.
Although (3. 25) provides an explicit form for the proportionality
matrix K, it is often easier to find K by alternate methods. A method

that is quite useful and widely applicable is presented below.




If in addition to the conditions of Theorem 3.9, q columns
of Ql’ which will be denoted as Qll , also have rank q everywhere

then

K = QZlQll ; (3. 26)
where Q21 denotes the columns of Q2 corresponding to the columns
of Qll . For this case, simple explicit forms for the matrices of the
reduced system can be derived.

o *
Define QI; to be that submatrix of Q which corresponds

to Qll; that is,

b
Qll SECA [Q”]+ Q“.
QIZ

sk
Also, let Q

*
1 be the first q rows of Q . Then since

and

it follows from (3. 18) that

e

54

e ——

T——

i RS A AR R B T s SRR A T S AR Vs

e




AL =@, -af0 ! 3.27
11 11 10011 ’ (3 &iTf

It is obvious that

B = B (3. 28)
and
Cy = [C: Gl e
-1
Q19
or
C. =c. +cq. q! (3. 29)
SRS W o T b B : '

In addition to giving an explicit form to the reduced system this
reduction method has many computational advantages. Any method of
system reduction involves finding a transformation of coordinates. The
usual reduction procedure is to find the matrices of the reduced system
from the appropriate submatrices of the transformed coefficient
matrices obtained via (2. 12), This approach, which has been used by
Kalman [8 ] for fixed systems and Stubberud [9] for time-variable
single-input single-output systems, requires the inversion and
multiplication of n x n matrices. If relations (3.26) - (3.28) are
utilized, however, only a single matrix inversion (of a q x q matrix)
and a single matrix multiplication (of q xq matrices) are required to
find A,, . The construction of é is also simplified and no

11 1

computation is required for B

-
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It should be emphasized that this explicit method of system
reduction is always applicable for fixed systems,since if Q has rank
q it is trivially true that some submatrix of the form Qll also has
rank q .

An example of the reduction procedure for a time-variable
sycstem follows.

Example 3. 4: Consider the third order system

(xl? 0 2 0 ] Px‘- [sint |
X = -2 X
x‘)_ 0 0 2 + |cost] u
x3 i LcosZt -sindt 1 j ny _smt_]
yl 1 0 0 Fx‘ |

Y, } v 1 0 X,

L X, J
3
The controllability matrix of this systemn is
-sint -cost -sint ]
@ = cost sint -cost
Lsint cost -sint |
and its rank is 2 for all t. Also, the submatrix
sint -cost
Q -
11 .
cost sint
» R R SR YR a5 L L 8
// “ ../’/,,.,_' 2
. AL-¥) . Y g e T S foon o .
ol AR SOATERALIURON e - e

= s SOl ; 8 RO :
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1s nonsingular for all t and has as its inverse
sint cost
a -
1 [ : J '
-cost sint
For this choice of Qll ,
Qzl = [ sint cost]
and
a x -cost -sint
11 :
sint -cost
Therefore it is seer from (3,.26) and Theorem 3.9 that
1 0 0 o
T =1 0 | 0
1 sin2t 1
and from (3.27), (3.28) and (3. 29) that
. [O 2 ] . [sint 1 . [l 0]
A = , B = J ., G = .
i -2 0 ! cost ! 0 1
¥
3.6 Fixed Systems
Several of the results of this chapter will now be specialized :
and applied to the analysis of fixed systems. It will be seen both here i
é‘}*
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and in subsequent chapters that the more general approach

necessitated by the consideraticn of time -variable systems leads to a
clarification and simplification of many fixed system problems.

The reducibility criteria for fixed systems simplify

cconsiderably, as evidenced by the {ollowing theorem

Theorem 3.10: A fixed system of the form (2. 1) is reducible from the

input to a qth-order completely controllable system, if and only if Qc

has rank q .

The proof of this theorem follows directly from Theorem 3.8
and the fact that if QC is a constant matrix of rank q, there always

exists a constant non-singular matrix T such that

ch

where 6C1 has q rows and rank q .

If the system state-variables are so ordered that the first

q rows of QC have rank q , then

where K is given by equation (3. 26), and the reduced system by

equations (3. 28), (3.29), and

-1

(3.30)
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Similarly, we have:

Theorem 3.11: A fixed system of the form (2.1} is reducible from the

t
output to a q h-order completely observable system if and only if Qc

has rank q .

An important advantage of the criteria for reducibility given
by Theorems 3.10 and 3. 11, as well as the reduction procedure
presented, is that they require operations solely on the controllability
and observability matrices. Furthermore, as will now be shown, they
lead to an explicit measure of the degree of the least order system
obtainable by reduction from both the input and the output (i. e., the

least order system realizing the system's impulse response matrix).

Theorem 3.12: Let Qc and QO be the controllability and observability

matrices of a fixed svstem of the form (2. 1), then:

(1) The system is irreducible [ 8 ] (completely controllable

]
and completely observable) if and only if the matrix QOQc has rank n.

i e

(2) If Q(;QC has rank q <n, then (2.1) is zero-state

s

f equivalent to an irreducible system of order q, %
i
° N = £
v = Av + Bu 4
3
2
y = Cv (3.31) 1
: ;f
Furthermore, »%
; ?
) 3
= - — e o RN -- -
\




ala = [ & \5: A8 Ay, R IE
CA
cxre-!
—==n-1

can ) (3. 32)

The procf of part (1) is easily established. If Q(;Qc has
rank n, then both QO and QC must have rank n which in turn
implies the system is irreducible. If QO'QC has "ank <n then either
QO or QC has rank <n, and the system is reducible either from the
input or the output,

Part (2) is established by first transforming system (2. 1) to

the equivalent form

EY % o X s DR
. ~ ~ ) ~ . I~
2 A1 Bz Pz Bag| %2 By
. =1 I ~ :+l =
24 0 0 A33 A34 Zy = | 0
z 0 0 Z A z. . 0
y = [C, 0 C (=
where zl is a q-vector and the subsystem
L] - ~ + ~
20 [ E e
y = Clzl
/ ) j
/ e
i ‘ ’: % N !"A":;f‘e“;\y (14 " :

=4
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is completely controllable and observable. The procedure for
constructing this equivalent system follows.
Let q. s n be the rank of QC , then by Theorem 3. 10 there

exists a constant nonsingular transformaticn Tc such that if w = Tcx.'

[ " A PN
. wl All AlZ wl Bl
W = = + u
] A
w2 0 A22 w2 0
y =1C C, Iw
and
ch
1 Q =TAQ = ,
C c c
; 0
|
q where wl and ch_ have q, rows and ch has rank q.- If Q0
is partitioned as
Q= [0,':0.01=ar!
0 01 02 0
]
o At
v where QOl has q, columns, then clearly
9 = Q 'Q . . 3.
’i QOQc QOIch (3. 34)
Since ch has rank qc s
~ ~ -~ ~ _l Af
L 1 [} ' = [
QOl QOQchl(QCIch ) QOQchl

%
&
8,

.Q:
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e



o te - s Sl ’

which implies that the rank of bOI is s q . Equation (3. 34), however,

implies that 6201 has rank 2q . Therefore, éOI must have rank q .

It follows then from Theorem 3. 11 that there exists a constant

nonsingular matrix To such that if

then (2. 1) is equivalent to a system of the form (3. 33). Thus,

-1

Al - A 1A !
| Q = [Qp):9%1[ T 0
0 I
n-q
c
= ' ‘D '8
l:QOI g . Q03 . Q04]
where ’501' has q columns and rank q .
If 6c is partitioned as
ch
Qc = QcZ = To 0 ch
0 0 In 0
-qc
0
L -
where acl has q rows,then
] . ]
§ QOQC - QOchl
§ ; :".*‘;"-“ B e

I
< SR

J'
""-L

o
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and 6(:1 must have rank q . Making the identifications

A=A11, B=Bl’ C=Cl and
g, = (B BBl .1 avls
~ _l. P _n_l
Q, = [CiAC ... - (A°°7)'C']

completes the proof.

Example 3.5: Consider the system

P'-‘ of o r w
x1 1 -1 1 0 xl
X 1 0 0 1 X

2| _ 2|,
. -1 1 - 1

X4 1 x3

: -1 2 -3 2
| *¢f | 1 4
y =01 1 0 -lx.

For this system

Frp
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and
B
1
@ =
0 1
|
1

has rank 1, so that the system is reducible to a first order system.

find the reduced system we first reduce the given system from the

-3

0 -1
4 -1}
o -3|
4 -1

have rank 2, their product

11
11
1|
11

input. Note that the submatrix

1 1

O
1

2 1

of Qc is nonsingular, With this choice of Qll s

1 1

o -1

so that from (3. 30),
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1 0
-2 1
and
. 1
- @-0oo

It will be shown in Chapter 4, that the form of the product
QE)QC given by (3. 32) leads to a new direct method for constructing
a least order system zero-state equivalent to (2.1). This procedure

avoids the successive transformation required by Theorems 3. 10

and 3.11.

3.7 Analytic Systems

Most of the results obtained in the previous section for fixed
systems generalize directly for systems with analytic coefficient
matrices, as will now be demonstrated.

Theorem 3.13: An analytic system of the form (2. 1) is reducible

from the input to a qth-order completely controllable system, if and

only if Qc has rank q.

E b
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The necessity of the reducibility criteria is obvious. To
prove sufficiency note that if Qc (and thus WC) has rank q,

Corollary 3.2 implies that exactly q rows of X-l(t)B(t) are

linearly independent. Therefore, there must exist a constant non-

singular matrix Tl such that

.‘,{L
o

where Wc has q rows and rank q. Clearly, T = T X is

an equivalence transformation and from (3.15),

TQ
Thus, Theorem 3.8 implies that the system is reducible to a qtl'l
order completely controllable system,

In the case that q rows of Qc have rank q for all
t , the explicit form of the reducing transformation given in Theorem 3.9

may be utilized. If, as may happen, Qc does not have maximal

-~

rank for some t, the factorization procedure may be necessary to
find the transformation.
In a dual manner to the above it may also be shown that:

r Theorem 3.14: An analytic system of the form (2. 1) is reducible

from the output to a qth-order completely observable system if and

only if Qo has rank q .
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Since the proof of Theorem 3. 12 depended solely on
Theorems 3.10 and 3.11 it is clear that a completely parallel proof

based on Theorems 3.13 and 3.14 may be given for the following.

Theorem 3.15: Let QC and Q0 be the controllability and
observability matrices of an analytic system of the form (2.1), then:’
(1) The system is irreducible if and only if
the matrix Q(')QC has rank n .
(2) If Q(')QC has rank q < n then (2.1) is
zero-state equivalent to an irreducible system

of order q,

:/ = Av + Bu
y = Cv (3. 34)
Furthermore,
e, = r'“s"[ﬁ'ﬁ' P . P ]
0~ ¢ 0 0. "1 . g-l. . n-1
—t
Sl
—l
. -1
_Sn-l (3. 35)
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In Chapter 4, it will be shown that an extremely efficient

method for reducing analytic systems follows from the form of

QbQc given by (3. 35), as well as several important results per-

taining to the representation of such systems.
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CHAPTER 4

*
SYSTEM EQUIVALENCE AND CANONICAL REPRESENTATION

4.1 Introduction

A new degree of controllability and observability, stronger
than those previously defined, will be introduced in this chapter. It
will be shown that the state of a system possessing these properties
can be controlled and observed ""instantaneously.' The motivation
for defining these properties (to be called uniform controllability
and uniform observability), arises from the role they play in the
study of equivalent systems. There are many problems in the analysis,
synthesis and control of linear systems that can be solved most
effectively by transforming a given system to an appropriate equivalent
representation., For example, when simulating a time-variable
system on an analogue computer, it is desirable to minimize the
number of variable components (e.g., multipliers) required. There
are several well known canonical structures for single-input single-
output systems which require no more than 2n multipliers [ 1, 2, 3].

It is therefore desirable to know the conditions under which a system
has an equivalent canonical representation and to be able to construct
such representations when they exist.

For fixed systems, conditions for a system to be equivalent

to several particular canonical forms are well known[1 ], but the

%*
Parts of this chapter have appeared in two papers by the author and
H. E. Meadows [ 18, 19].
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techniques for transforming to these forms are often complex or ad-hoc
methods [ 4, 5,6]. There are few previous results for time-variable
systems in this area.
| We will present below a general approach to the problem of
} system equivalence for both fixed and time-variable systems, For the
[ class of uniformly controllable and observable systems (which includes
fixed completely controllable and observable systems), anecessary
} and sufficient condition for equivalence of two systems will be given
which requires no knowledge of their solutions. In addition, an explicit
4 form for the transformation between equivalent systems is found. New
insight into the problem of system reduction is gained from this study,
and a method for directly finding the class of minimal order systems
zero-state equivalent to a prescribed system will be given. An
interesting and potentially useful byproduct is a necessary and sufficient

condition for an analytic system to be zero-state time-invariant and

a method for finding an equivalent fixed system if such is the case.

Two important canonical systems will be studied in detail-

the input-output differential equation form, and the '"phase-variable'

canonical form. It will be shown that uniform observability and

o R o

uniform controllability, respectively, are necessary and sufficient

5 et

¥

for the existence of equivalent systems in these forms. Explicit

==

methods for constructing canonical equivalents will also be given.

£ 2 ek
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4.2 Uniform Controllability and Uniform Observability 1
In the previous chapter conditions for compiete and total

controllability were given in terms of the matrix Qc . As shown, it

is not necessary for this matrix to have maximal rank at all points

to insure either of these types of controllability. A point to be
emphasized in the present chapter is that for many problems of system
equivalence the controllability matrix must have rank n for all t.
Thu§ we define the following new degree of controllability.

Definition 4. 1. System (2. 1) is said to be uniformly controllable on an

interval [to, tl] if the matrix Qc has rank n for all te[to, tl] .
A new degree of observability is defined similarly:

Definition 4. 2: System (2.1) is said to be uniformly observable on an

interval [t ,tl] if the matrix Q0 has rank n for all teLto,tl].

0
An interesting interpretation of uniform controllability can
be made which shows how this criterion relates to the more familiar

types of controllability which arise in optimum control problems. Ifa

system is totally controllable, then by definition the state vi the system

may be transferred to any desired value in an arbitrarily short interval
of time L, application of some input. It will now be shown that if a
system is uniformly controllable, it is even possible to perform the
state transition instantaneously. Furthermore, an explicit input in

terms of the controllability matrix will be given which effects the

transition.
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It is first necessary to examine the response of a time -
variable system to impulse functions and their derivatives. In this
discussion we will rely heavily on the development of Zadeh and Desoer
[3]. Since the response to an impulse is discontinuous in general, it
is necessary to distiaguish the value of the state prior to and after the
application of an impulse. The notation t~ will denote the left hand
side<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>