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ABSTRACT

This report is concurned with the mechanical properties of metals under biaxial-
stress conditions. First, \here is presented a discussion of the fundamentals of
biaxial-stress systems; this is followed by descriptions and critical evaluations of
various types of biuxial-stresn~ tests, the associated test specimens, biaxial-stress
property criteria, and data presentation for Military Handbook 5. The major portion
of the report is devoted to the graphical presentation of biaxial-stress property data
from various published and unpublished sources. The properties covered include bi-
axial stress-strain curves, biaxial yield stress, biaxial ultimate stress, stragin at
biaxial ultimate stress, and strain at biaxial-stress fracture. The alloys considered
include twenty steels (standard and specialized engineering steels heat treated to high
ultimate-tensile-stress levels, stainless steels, tool steels, and high-nickel maraging
steels), five aluminum alloys, three niagnesium alloys, and one titanium alloy,

Supplementary thecretical considerations are covered in the three appendices.
The report concludes with a discussion of the biaxial-stress propertizs, the factors
affecting them, and suggestions for additional tests needed to provide more complete

material-property data for designers,
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SYMBOLS AND NOMENCLATURE

S

Constant in the generalized-conic biaxial-stress envelope equation,

Equation (26)

Biaxial-stress ratio

Constant in the generalized-conic biaxial-stress eavelope
equation, Equation (26)

Location of center of Mohr stress circle

Constants in the generalized-conic biaxial-stress envelope
equation, Equation (26)

Nominal diameter

Young's modulus of elasticity (uniaxial)

Biaxial modulus of elasticity

Principal nominal strains

Principal nominal plastic strains

Effective nomiral plastic strain, defined by Equation (24)
Equivalent uniaxial plastic s/tra,in {(nominal)

Normal nominal strains in the ixx and y directions

-

Shear strain {nrominal) on the edges of an element with edges
oriented in the x and y directions

Nominal axial yield stress under biaxial-stress conditions

’

Nominal axial ultimate stress under biaxial-stress conditions
Nominal hoop yield stress under biaxial-stress conditions

Nominal hoop ultimate stress inder biaxial-stress conditions

s |
Ultimate tensile stress (nominal uniaxial normal)

Tensile yield stress (norninal, normal uniaxial in the reference
direction)

Principal in-plane nominal strzsses
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SYMBOLS AND NOMENCLATURE
{Continued)

Total axial normal stress (nominal)

Axial normal stresses {nominal) caused by P and by p
Heop (circumierential) nominal nérmal stress

Hoop nominal normal stress due to p

Shear stress, including torsional (nomiral)

Normal nominal stresses in the x and y directions

Shear stress (nominal) on the edges of an elemerxt with edges
oriented in the x and y directions

von Mises effective nominal stress, defined by Equation {22)
Normal nominal stress at maximum pressure or maximum load
Uniaxial nominal stress, see discussion following Equation (24)
Shear modulus

Length of cylindrical portion; length of side of square plate
(in Appendix III)

External axial force on a cylindes; force per edge of square
plate {in Appendix III)

Internzl pressure

Radius of Mohr stress circle

Applied torque

Wall thickness

Wall thickness at maximum pressure (see Appendix 1II)
Ultimate tensile stress (rominal, uniaxial normal)
Volume of material

fc/Fty, see Appendix I

fA/Fty, see Appendix II

True strain, see Appendix 1l
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INTRODUCTION

Most mechanical-property data for metallic materials are obtained from simple
tensile tests. However, in many aerospace applications the material is cften highly
stressed ia two mutually perpendicular directionu, rather than in only one direction as
in a simple tensile test. Such applications include pressure-storage bottles, pres-
surized aircraft fuselages, liguid-propellant tankage, and solid-propellant motor cases.
Curiously, metallic materials behave quite differently under these biaxial-stress condi-
tioune than they do in a simple tensile test. Biaxial loading changes the strese-strain
curve of a mate.ial in both the elastic and plastic ranges, Reported values of the nomi-
nal stress at burst in a pressure vessel have been as high as 121 percent of the ultimate
tensile strength (UTS) obtained in a tensile test. In other instances nominal stress
values at burst have been 28 low as 60 percent of the UTS. ‘

Obviously it'is very importan:; to those having responsibility for design and mate-
rial selection for advanced aerospace vehicles to know as accurately as possible the
biaxial strength of the various materials under consideration in these .applications. If
there is going to be considerable increase in strength under biaxial conditions, this can
reeult in a significant saving in structural weight or an increase in the structural
reliability., On the other hand, if failure= cccur at stress values appreciably below the
UTS, this can limit vehicle performance ratber severely. ‘

Some investigators have atterapted to predict the biaxial streagth from uniaxial
tensile properties by the application of the theories of elasticity and plasticity, Today
it is possible to pz"edict' reliably the siope of the biaxial stress-strain curve in the
elastic range for all isotropic (or nearly isotropic) metallic materials and the shape of
the biaxial stress-strain curve in the plastic range for some isotropic metallic mate-
rials, However, it is not possible to predict whether failure will occur at a low nomi-
nal-stress level in a brittle fashion, or whether the stress-strain curve will proceed
a short distance into the piastic range or continue far into the plastic range and permit
failure to finally occur by a ductile necking-down action.

Since failure under biaxial-siress conditions could not be predicted reliably on the
basis of tensile-test data only, many investigators have attempted to devise relatively
inexpensive laboratory specimens to simulate the biaxial-stress conditions presented in
tke full-scale structure. As will be seen in the next secrion, must of these simplified
specimens have not correlated well with failure data from full-scale tests. Thus, con-
siderable caution mnst be used in applying failure-stress data obtained from laboratory
specimens to the design of full-scale structures. In fact, the only reliable small-scale
specimen which yields failure data which correlates at all with data obtained from full-
scale tests is a relatively expensive pressurized specimen which has ceptain geometri-
cal relationships to the full-scale structure,

Even a smzll-scale pressure-vessel test is considerably more expensive than a

simple tensile test. Thus, it is expensive to run tests on the dozens of alloys of current
interest, This has been recognized for some time by the Military Handbook 5 Coordina-

tion Group, who as early as 1960 began to consider criteria for biaxial-stress proper-
ties. Some of the considerations imvelved in selection of criteria are discussed in
Reference 1, while Reference 2 describes the criteria finally adopted.
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The present study is limited .entirely to information already generated by various
governmental ard industrial laboratories. Over 300 references, including articles,
papers, books, and formal and informal reports, have been scanned for -pertinent data.
The purposes of this study are as follows:

{1} Todiscuss the validity of various test specimens in vrder to provide

-guidance for future-tests and:-possible stavdardization of tests in this
area

(2) To discusas the biaxial-property criteria adopted by the Military

Handbook 5 Coordination Group-in order to promote more standardiza-
tics in-this area

(3) To reduce quantitative data from reliable tests to the standard

property format adopted by the Military Handhook 5 Coordination
Group -

B . Ui i om D = WA A

(4) To make suggestions relating to the type and extent of inforrnation
which is needed in order to ''pin down'' the effects of the many
variables involved.
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FUNDAMENTALS OF BIAXIAL STRESS SYSTEMS
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' !

General

The stress-strain system acting at any given point in a loaded body .is most con-
veniently handled in terms of principal stresses and principal straius. In this section,
these concepts and other fundamental definitions are explained by wuy of review,

Normal, Shear, and Principal Stresses

The stresses acting at any puint in a stressed member can be resntved into com-
ponents acting on various planes passing through the point,

The stress component acting normal (perpendicular) to-the plane is called
normal stress (such ae fy in Figure 1), Normal stresses are.of two kinds: tension
stresses, \.hichtend to pull apart-adjacent particles, and compression stresses, which
tend to press together adjacent particles. In multiaxial stress systems, it is customary
to use a sign convention in which tension stresses are denoted as positive (+) and com-
pression stresses are considered to be negative (-).

Any stress component which acts in the plane under concideration is called sh.ar
stress (such as fxy and fxz in Figure 1). Shear stresses tend to cause adjacent parti-
cles to slide past each other, =

In order to define the sign convention used for shear stresses, it is necessary to
ccus.Jder an infinitesimal square element cut from the plane of a thin-sheet type struc-
ture (see Figure 2a). Suppose ther'e exists a shear stress acting downward un the right-
hand face of the element (face a in Figure 2b). Then equilibrium of vertical forces act-
ing on the element requires that there be a shear force acting upward on the left-hand
face (face b in Figure 2b). Furthermore, equilibrium of moments acting ahout any
point ‘on the plane shown requires that the pure couple in the clockwise direction pro-
duced by shear stresses fg; and fg} be balanced by a counterclockwise couple of the
ganme magnitude. This couple can be produced only by shear stresses acting on the
upper and lower faces (faces ¢ and d). Thus, there must be shear stresses fg¢ acting
tosthe left on the upper face and fgd acting toward the right on the botiom face, as shown
in Figure 2b. Thus, it is shown that, if a shear stress exists on one face of an infini-
tesimal plane element within a body, it must exist on all four faces in the form of two
paire of stresses. The shear stresses which produce a clockwise couple are denoted
as positive (+), while the shear siresses which produce a counterclockwise couple are
considered to be negative (-). Equilibrium of normal stresses is shown in Figure 2c.

1f one selects three orthogonal (mutwally perpendicular) nlancs through a point,
there always exists some orientation of this system such that only normal stresses
exist, the sheat stresses all being zero. These novmai strecses are called principal
stresses, and the numerically largest of these is denoted the maximum principal stress.
The directions perpsendicular to the three orthogonal planes are known as principal-
stress dir-ctions.
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a.  Typical infinitesimal b. Equilibrium of shear
element stresses ({fgq= fgp*

fse” fsq)

.y
(2]

n,——.

fy s~ b . af———au=ig

¢. Equilibrium of normal stresses
(fg=fp;fc=1d)

FIGURE 2. EQUILIBRIUM OF STRESSES ACTING ON AN
INFINITESIMAL ELEMENT
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The easiest way to vizualize the relationships involved in a multi-axial stress
system is to use*a Mohr stress-circle diagram. This serves as an aid in calculating
the principal stresaes and principal-stress directions. In this report the chief concern
is with deterniination of principal stresses., For information oxn calculation of princi-
pal-stress dirt'ctiona, refer to any modern text on elementary stress analysis or
strength of materials,

To conatruct\“a Mohr stress-circle diagram, the abscissa of the diagram is
denoted as the normal-stress axis and the ordinate as the shear-stress axis, That is,
taking due account of the sign conventions mentioned, all normal stresses are plotted as
the abscissa and all shear stresses as the ordinate, Figure 3a is a typical biaxially
loaded two-dimensional element. Cn face a of this element there are acting a normal
tension stress, fy, and a positive shear stress, fxy. Thus, on the Mohr sirvess-circle
diagram (Figure 3bj, point a is plotted with coordinates (fx, fxy). Note that point a on
the Mohr diagram corresponds to the stress situation at faces a and b of the clement,
Similarly, corresponding to faces ¢ and d on the element, point c is plotted on the Mohr
diagram with coordinates (fy, - xy)'

The geometry of the Mohr diagram is such that all Mohr circles have centers
located on the normal-stress axis, Since points a and ¢ are two points lying on the
circle,. and since they are equidistant from the nvrmal-stress axis, pcints a and ¢ must
be ends of a diameter of the circle. Thus, the center of the Mchr circle is located at
the point where line ac intercepts the normal stress axis and the radius of the circle is
equal to one-half of distance ac (see Figure 3c). In terms of the stress components,
fx, fy, and fxy, the center is located at an abscigssa C of

C = 1/2(fy + iy), L

pd
and the radius is . .t > ///
s12Ge = 2=Y 45 %, e
2 xy e
-

Each point on the Mohr circle is associated wz/t‘x/partxcular orientation of the
infinitesimal square element. Thus, the prmcipal/etresses (denoted by f], f2 in
Figure 3c) occurs at the two points on the Molit circle where the shear stresses are
zero, From the geometry of the diagram, the principal stresses are calculated as
follows: e

Y £ -1 2 )
f1=Ctr= -2ty > LESUR (1)

f +¢ f ~-¢ ¢ 2
f2=C-r=—J-‘_——.z - B A +f N (2)
2 2 xy

Equations (1) and (2) can be used to calculate the principal stresses f}, {2 from
the comporent stresses fx, fy, fxy for any biaxial-stress sytem,

It should be noted here that the most general stress system which can exist at a
point in a body is one in which none of the three principal stresses are zero; this 1s
called a triaxial-stress state. Thus, a biaxial-stress state can be considered as a
special case in which one principal stress is essentially zero. In thin-walled members,
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the principal stress which is zero is the one in the thickness direction. Finally, the
simplest stress state is the uniaxial one; such as that which exists in a long, slender
pin-jointed tensile member with no eccentricity.

In biaxial stress systems, it is often convenient to refer to the state of stress in
terms of a dimensionless ratio, the biaxial-stress ratio B, which is defined as the ratio
of one in-place principal stress to the other, the latter acting in a principal-stress
direction arbitrarily selected as the reference principal-stress direction,

Normal, Shear, and Principal Strains

Nominal strain is defined as the change in length per unit of original length ina
member or a portion (gage length) of a membec,

Normal strain is the change in dimensions of a member in the direction in which
the original dimension was measured, Shear strain is the angular distortions (in
radians) of a member under loading. For example, consider a square element shown
by dashed lines in Figure 4, If the unit square deforms to the diamond shape shown
by solid lines in Figure 4, the normal strains ex and ey and shear strain exy are as
defined in the figure,

If one selects three orthogonal planes passing through any given point in a loaded
member, there always exists some orientation of this system of orthogonal planes such
that only normal strains are present, all shear stresses being zero, The crthogonal
directions associated with this orientation are known as principal-strain directions and
3 the associated normal strains are called principal strains, The analogy to the concept
1 of principal stresses is readily apparent. However, it must be noted that in general
b ‘ the principal-strain directions coincide with the principal-stress directions only for
’ isotropic materials (defined subsequently). .

Using a Mohr strain-circle diagram(3) which is somewhat anaiogous to the Mohr
streas-circle diagram discussed previously, the following expressions for the principal
strains e} and e can be obtained:

e @ [eere) o d] o @
e, = (%) [(ex te) - l/(e" -ey) 2+ e,z‘y] , (4)

where ey, ey and exy are the component strains as defined previously,
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Elastic Deformation Under Biaxial Stresses

A material is said to be elastical'v isotropic that has elastic properties (modulus
of elasticity, Poisson's ratio, and shear modulus) that are independent of the directional
orientation with which the test specimen is taken from the material. An anisotropic
material is one having different elastic properties in different directions. There are
many different forms of anisotropic elastic behavior (see Reference 4), some of which
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are quite coraplizated, ¥grtunatzly, however, nearly all alloys of structural impor-
tance are elastically icotfopic or nearly so {within 10 percent maximum variation in
modulus of elasticity v?ih directional orientation). Thus, in engineering, it is satis-
factory to use the classic stress-strain relations of claseical isotropic linear elasticity
theory(5), For the cdse of biaxial stresses, these are

‘ / e1 = (i1 -p2)/E (5)
// ep = {f-uf))/E (6)
/ e3 = -Hlfy+)/E, (1)

where e} and ez are the in-plane principal strains, e3 is the principal strain in the
thickness direction; f], f3, and f3 are the corresponding principal stresses; E is the
modults of elasticity; and y is Poisson's ratio.
/
Solving Equations (5) and (6) simultaneously for the principal stresses f]} and f2
gives the following more convenient expressions:

E
1

fp= —leg +pel) . (9)
1-p

It is noted that Equations (5) through (9) contain only two independent elastic con-
stants, E and . This is a considerable simplification compared to a general aniso-
tropic material, which has 21 independent elastic constants. In an isotropic elastic
material there are some other simplifications. As previously mentioned, the principal-
strain directions coincide with the principal-stress directions. Furthermore, the
following relationship among E, 4, and the shear modulus, G, must hold:

E

G= m-)' o (10)

For design purposes, it is often more convenient to use a biaxial modulus rather
than Equations (8) and (9). The biaxial modulus Eg is defined as the slope of the ‘elas-
tic portion of the maximum principal stress ve maximum principal-strain curve. Thus,

f) = Ege} (11)

where {] is assumed to be the maximum principal stress,

From the previously given definition of the biaxial-stress ratio B and Equations (8)
and (11), the following equation for caiculating Ep is obtained:

(12)

10
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where here B is defined as f2/f] and f)>f3. Thus, the biaxial modulus depends only
upon the tensile elastic properties E and 4 and the biaxial-stress ratio B.

Plastic Deformation Under Biaxial Stresses

Although the theory of elastic deformation is well established and widely used in
engineering, this is not the situation for the case of plastic deformation. There are
many more factors which affect plastic deformation. The most rigorous plasticity
theories, which nevertheless do not adequately account for all of the observed effects,
are too unwieldy for widespread use in engineering, However, before discussing these
aspects it is well to state some definitions.

Figure 5 shows a typical stress-strain curve taken from a test to failure,
Whether the loading is biaxial or only uniaxial is immaterial at this juncture. The plot
is of nominal stress versus total nominal strain. The portion of the curve beyond the
point where the stress-strain relation is no lenger linear and the entire deformation is
no longer recoverable is known as the plastic range of the curve; the linear portion is
the elastic range discussed in "Elastic Deformation Under Biaxial Stresses''.

At any point P within the plastic range, the total strain may be considered to con-
sist of two components: an elastic component and a plastic component (see Figure 5).
There are several reasons why these two strain components are distinguished. The
primary reason is that the elastic straia is recoverable upon removal of the load, while
the plastic strain is not. Thus, the plastic strain is sometimes called permanent
strain, Another reason is that the elastic component may be considered as having a
lateral-contraction ratic equal to the conventional elastic Poisson's ratio, while the
plastic component may be considered as having a lateral-contraction ratio of one-half
(this is synonymous with stating that the plastic deformation results in no change in
material volume}. The total lateral-contraction effect in the plastic range then is the
sum of these two mechanisms; thus, the total lateral-contraction ratio changes from the
elastic (Poisson's) value to the higher plastic value, the change being a fairly gradual
one.

The total behavior of a metal at any point in the plastic range is determined by the
different mechanisms: (1) that of elastic deformation which is governed by the equations
presented in "Elastic Deformation Under Biaxial Stress", and (2) that of plastic defor-
mation which is governed by much more complicated relationzhips. An "elastic-
perfectly plastic' metal {not to be confused with polymers) is one having a flat stress-
strain curve (i.e., constant stress) throughout the plastic range. A '"rigid-plastic'!
material is one having no elastic deformation at all, only ideally plastic deformation;
this of course is not a very realistic assumption to make for most structural-design
analyses. Most real materials, especially the metals of importance in aerospace
structures, exhibit an increasing stress with increasing strain, although the increase is
much less than it is in the elastic range for the same change in strain {see Figure 5).
Such materials are said to be "strain-hardening'. Note that the term '"hardering" here
means increasing in stress and does not refer to ordinary hardness such as measured
with an indentation hardness tester.

1. The term "rigid"” is used here in the sense of volumetric rigidity, since these is & volume change in purely e!zstic deforma-
tion, while there is not volume change associated with the plastic component. Thus. a material having no elastic
deformation does not chiange volume and {s said to be rigid.
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There are two main types of plasticity theory{6):

(1) Deformation theory, in which the stress is considered to be a
function of the total strain {(deformation).

(2) Flow (or incremental) theory, ia which the stress is considered
to be a function of the strain increment,

The flow theory is generally conceded.to be more correct; however, it is much
more difficult to apply to engineering~design situations,

situation of continuous loading at a constant biaxial-stress ratio (called "proportional

loading), the two theories coincide exactly,

Fortunately, for the common

Furthermore, even for the situations in

which this condition is not met, for the small strains associated with yielding of curreat

high-strength aerospace alloys, the difference between the total deformation and the
incremental deformation is usually not very large,

theery of plasticity is most widely used in engineering design.
expressions for the effective stress and effective strain which are given by Equa-

tions (22) and (24), respectively, in Appendix I.

13

Therefore, the simpler deformation
This theory presents

B ity e g

B

7

- R

FiYs




I

. TYPES OF BIAXIAL-STRESS TESTS AND SPECIMENS

~

A:nong the earlies: tests conducted to determine the behavior of metellic mate-
rials under biaxial-stress conditions were those by Lode(7). In these tests thin-walled
cylinders {Figure 6a) were subjected to various combinations of interrnal pressure, p,
and externally applied axial loed, P, (either tension or compression). "The internal
pressure producad the following stresses: (a) & hnop strrss fyp in the circumferential
direction given by

D
mp= &, (13)

where p is the internal pressure, D i the nominal diameter, and t is the wall thickness
and (b) provided the ends of the cylinder are closed so that the axial fn:..e due to pres-
sure is carried to the cylinder walls, an axial strers fop given by

D

fap= B . (14)

The axial stress fo p produced by an external force P ie computced by

P
= — 15
IaE = o o (15)
where P is taken as positive if the external force is tenricn and negative if “he external
force is compression.

Ther the principal stresses fiy and {5 acting on a typical element (Figure 6b) in
the hoop and axial directions, respectively, are given by

fa= AP+ s - (a7

Stress-strain relations can be obtained at various constant biaxial-stress ratios
as follows: a series of tests is run on a number of tubular specimens, each specimen
is tested at a constant ratio of external load P to internal pressure p, then by varying
the vzlue of the constant ratio for each specimen, the desired data are obtained.

Numerous practical difficulties have limited the use of the tube -type specimen
just described. Imgaroved testing apparatus of this type have bieen described by
Osgood(8) Marin(9), and Fitzgibbon(10).

A relatively simple test for obtaining a biaxial-stress field with a biaxial-stress
ratio of 1/2 is to use an internally pressurized tnbe with closed ends. Thus, this is a
special case of the combined-loading test just described. This type of test has been
particularly popular in the pressure-vessel and missile-motor-case industrics, in
qualification work as well as in material and process evaluations and .n applied
research. In some of these tests very small laboratory -type specimene have been

14
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used, while in others {raction-scale models and full-scale vessals have been used.
Although these tests were undoubtzdly of considerable value in connection with the par-
ticular development program of which they were a part, there are many pitfalls to be

avoided in applying data okisined in this fashion to other applications. Some of these
pitfalls are discuzsed in Section VI,

The pressurized tube subject to external load is relatively satisfactory for ob-
taining biaxial-stress fields in which both of the principal stresses in the plane of the
tube wall are tension-type stresses. However, the possibility of buckling when the
resultant axial stress {5 is compressive limits the use of this type of loading in obtain-
ing data for cases when it is desired to have one principal stress be tension and another
compression, For such a situation, Taylor and Quinney(!}} and Marin{12) have used a
thin-walled tubular specimen subjected to external axial tension and torsion. The
torsional shear stress fg is computed by the following approximate equation:

fg = 2T/aD3t (18)

where T is the applied torque. Thea by applying Equations (1) and (2), the principal

stresses are found to be
£} = (fAR/2) + V(iAE/Z)Z + f% (19)

f2 = IpR/2) - VfAEIZ)Z + £2 (20)

where fpo fF is given by Equation (15). Inapection of Equations (19) and (20) shows that
the biaxial-stress ratio fmin/fmax can range from -1 to 0, assuming fo ¥ ranges from
0 (pure torsiou test) to tension values only (in the latter case, fg = 0).

Recently Pugh, et al, have described a machine capable of applying simultaneous
imternal pressure and axial lead(13),

Another pressure-vessel type of specimen, an internally pressurized thin-walled
aphere (Figure 7), has been used by Marin and his associates (Reference 14). Such a

specimen has a uniform biaxial stress state, so that the hoop and axial stresses are
equal to

fiy = fp = pD/4t, (21)

where D is the nominal diameter of the sphere. Then, since there i3 no practical means
of applying any external lords (other than external pressure which would merely coun-
teract the effect of the inte1nal pressure) uniformiy, this type of specimen is limited to
tests at only one biaxial-stross ratio, a ratio of unity, Thus, this type of specimen is
not nearly ag flexible as the dual-loaded cylindrical pressure vessel.

T¢ wveid the high costs of fabricating pressure-vessel specimens, a number of
other specimens have becn devised to stress she@t material biaxially. One of these is
the fla.-diaphragm specimen subject to pressure on one side (Figure 8). This test is
vtnown 28 the bulge test, since the specimen bulges excessively before fracture if the

16
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FIGURE .7 INTERNALLY PRESSURIZED, THIN-WALLED
SPHERICAL BIAXIAL-STRESS TEST
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FIGURE 8 PRESSURIZED FLAT DIAPHRAGM {BULGE TEST)
BIAXIAL-STRESS TEST SPECIMEN
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FIGURE 9. PRESSURIZED FORMED-CUP BIAXIAL-STRESS
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material has sufficient ductility. If the planform of the didphragm is circular, the
stress field at the center has a biaxial-stress ratio of unity; by using elliptical
planforms of various eccentricities, various biaxial-stress ratios can be achieved at
the center of the diaphragm, The primary disadvantage of this specimen is that it has

a nonuniform biaxial-stress distribution. Consequently, the unyielded material adjacent
to the yielded portion constrains the yielded material and allows the specimen to reach
much higher maximum stress and strain values than would be attained by a specimen of
the same material with a uniform biaxial-stre ‘ield. Nevertheless because of its

simplicity, the bulge test has been widely u.cy to qualitatively rate or compare various
materials (1 5-19), '

A specimen somewhat similar to both pressure-vessel-type and diaphragm-type
specimens is the formed cup specimen (Figure 9). This has been used to evaluate
missile ~-motor-case materials under biaxial-stress ratios of unity (homispherical
cupl20, 21) and 1/2 (ellipsoidal cup(22). This specimen suffers from the same disad-
vantage, nonuniform stress distribution, as the diaphragm specimen, although to a
lesser degree, Therefore, stress values obtainea from tests on such a specimen cannot
be used directly in design, but only for gqualitative comparison purgoses,

Another'type of biaxial-stress specimen which has been used recently is the
dirzct in-plane loading type. This includes the cruciform (four-arm) specimen (Fig-
ure 10b) developed by Chance Vought Corporation(23) and the eight-arm specimen (Fig-
ure 10a) developed by Douglas(24), Several questions have been raised as to the
validity of data obtained from tests on these specimens. One of these is concerned with
the degree of uniformity of the stress field in such specimens in view of the possibilities
of eccentricity of loading and stress concentration at the intersactiong of tt: arms. A
perhaps more serious point is that such specimens are not valid for obtaining ultimate
strength for spplications to pressure-vessel-type structures even though the data are

valid for biaxially loaded flat-sheet structure. This point will be explained and
elaborated on in Section VI,

According to classical plasticity theory, a flat tension or bending specimen with a
groove across a face develops a biaxial-stress ratio of 1/2 when loaded well into the
plastic range. This principal was recently applied to static biaxial-stress testing of
motor-case weldments by Corrigan, Travis, et al, who used a face-grooved tensile
specimen(25) {Figure 11). However, later tests by Travis, et al, in which this type
specimen was used(26) @id not correlate very eatisfactorily with cylindrical-pressure-
vessel burst tests conducted by the same investigators., In fact, the hoop-stress values
at burst were much closer to the uniaxial ultimate tensile strength than to the strength
of the face-grooved specimens, Two possible explanations for this discrepancy are
nonuniformity of stress field and its effect on restraint (as previously discussed in
connection with the bulge tzst) nr the fact that the ultra-high-strength steels tested did

not exhibit enough ductility to permit the material to go far enough into the plastic range
to test the conditions of the theoretical solution.

19
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BIAXIAL~STRESS PROPERTY CRITERIA AND DATA PRESENTATION

General

Since the fundamentals of biaxial~atress systems and the type of biaxial tests have
been discussed, it is now possible to dirsct attention to the biaxial properties, the cri-
teria for determining them, and ways of presenting the q..ta.

Biaxial Stress-Strain Curves

Undoubtedly the most complete information on the behavior of a metal under
biaxialestress conditions is conveyed to the designer by a series of stress~strain curves
to failure, with two curves for each biaxial~-stress ratio of interest. One curve would
represent maximum principal stress versus the corresponding strain and the other
would depict a similar stress-strain relationship corresponding to the minimura prin-
ciple stress.

Unfortunately, due to brevity in reporting data, very few investigators have
reported stress-strain curves for the minimum principal stresses; thus, the question as
to the behavior in this direction must remain largely unavailable today. The bright
aspect of this situation is that in the large majority of design situations, the designer
is primarily interested in the maximum=-principal-stress behavior.

Typical biaxial stress=-strain curves obtained by Goodman are presented in
Figure 12 in format proposed for MIL-HDBK-5, The data are presented as plots of
maximum principal stress versus the corresponding strain for various values of
biaxialwstress ratio. These particular plots happen to cover tension-tengion/loading
only (i. e., both in-plane principal stresses are tension); thege are primarily of interest
in internally pressurized structures with limited e ‘ernally applied compressive
loadinga. As will be ssen in Section V some investigators have conducted tests in
tension-compression loading; these are primarily of interest in internally pressurized
structures subject to very high externally applied loadings in the xwxial direction.
Apparently to date very few investigators have conducted tests under loadings of both
types (tension-tension and tension-compression) on the same material; in fact, proba-
bly, none on metals of aerospace importance.

Biaxial Yield-Stress Criterion

For derign purposes, certain characteristics of the uniaxial stress~strain curve
have becomne standardized design criteria. These include the yield stress (9. 002 in. /in,
offset), ultimate stress, total elongation, etc.

In design for biaxial-stress loadings, it is also desirable to have standardized

design criteria. However, in the case of yield stress, a numoer of different approaches
have been either used or proposed, cach resulting in slightly different numerical values
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for the biaxial yield stress even though they all reduce to the 0, 002 in. /in. offset
strain for the case of uniaxial loading, Three different agproaches or ways to determine
the biaxial yield stress are described and discussed in detail in Appendix I.

The Military Handbook 5 Working Group has approved the uniform-plastic~strain
criterion as the standardized criterion to be used in MIL-HDBK=-5, In using this cri-
terion, the biaxial yield streas is determined from a biaxial stress=strain curve in
exactly the same way as the uniaxial yield stress is found from a uniaxial stress=-strain
curve. As shown in Figure 13, a straight line {(called the offset line) is drawn from the
0, 002 in, /in, point on the abscissa, parallel to the straight~line (elastic) portion of the
stress~strain curve, to the point p where it intercepts the stress-strain curve. The
stress value at which the offset line intersects the stress=-strain curve is the yield
stress. It is noted that although the offset lines for various biaxial-stress ratios
{including uniaxial) all emanate from the same point, they do not all have the same slope
since the elastic portions of the curves do not all have the same slope (biaxial modulus -
see "Elastic Deformation Under Biaxial Stress").
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FIGURE 13. UNIFORM-PLASTIC-STRAIN YIELD CRITERION
FOR UNIAXIAL AND BIAXIAL LOADINGS

e m

: Biaxial Ultimate~Stress and Other Criteria

i

} £8 in uniaxial loading, the ultimate stress for biaxial-stress conditions is defined
gimply as the highest nominal stress value reached, One of the minor problems in
connection with this criterion is the old one as to how to distinguish between the ultimate
stress and the rupture {or fracture) strnas if the highest siress level reached occurred ;
at fracturs. However, in such a case the materisl must be quite "brittle", and there is

no resaon why the sams numerical value cannoi be reported for beth quantities.
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Another perculiarity which has arigen receniy in connection with certain specially
heat treated high-strength steels 1s that the highest point on the stress-strain curve 1s
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reached before the 0, 002 in, /in, offset strain is attained. When the 0, 002 in. /in. offset
strain is reached the nominal stress has dropped somewhat. ’

Other biaxial=stress criteria of design interest but which are seldom rcported
include:

(1) Fracture (rupture) stress - nominal stress at final fracture
(2) Strain at fracture (total elongation) - self-explanatory

(3) Strain at ultimate stress - also self-explanatory, but believed
to be more significant than strain at fracture,

Presentation of Biaxial-Stress Property Data
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As stated previously in ""Biaxizl Stress=Strain Curves', the best way to convey
biaxial~property information to the designer is in the form of a series of biaxial stress«
strain curves, each for a given biaxial-stress catio. However, often data are required
at values of biaxial=stress ratio falling between those for which stress=-strain curves
are presented. These can be obtained by selecting points (for example, yield-stress
values) from the biaxial stress~strain curves and plotting the value of one in-plane
principal stress versus the other one, both values being the respective stress levels
at which yielding (as defined by 0. 002 in, /in. offset = see "Biaxial Yield-Stress
Criterion") occurs. A smooth curve drawn through a series of such points is called a
biaxial=stress envelope. This ervelope greatly increases the accuracy of determining
the stress values corresponding to intermediate biaxial-stress raties as compated to
linear interpolation,
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A technique for establishing the biaxial-stress envelope by curve fitting to a
generalized second~degree (''conic') equation was presented tc the MIL-HDBK-5
Working Group in April, 1963 ,(27) and was subssquently described in a paper(l). Since
neither of these publications have received widespread publication, this technique is
presented in Appendix II for completeness. Figure 14 shews a biaxial envelope for
D6AC Steel. It should be mentioned here that, although the generalized conic equation
is more general than any of those agsociated with the four most widely used theories of
strength and reduces to all of them in special cases, it is limited to curves which are
never concave (looking from outside the curve, as in Figure 14 toward the origin).
However, as will be seen in Figure 65, for example, biaxial-siress envelopes for
certain materials occassionally do have concave regions., For such cases, the easiest
way to fit a curve to the data appears to be judicious manual curve fitting. In spite of
this limitation on the gencralized conic approach, it does give a more quantitative way
of specifying the biaxial envelope than the traditional one of saying, for example, that
the biaxial-stress material behavior of the material "appears to be closei to that of the
von Mises yield criterion than it is to the maximum-shear-stress theory',
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Some years ago, the ANC~-5 Panel (predecessor of the MIL-MDBK-5 Working “
Group) agreed that elevated-temperature yield streases should be plotted in dimension~
less form as percentages of the room-temperature yeild stress. Likewise, to facili~
tate interpolation to intermediate strength levels, it was suggested that biaxial yield- 1
stress envelopes be plotted as percentages of the room=-temperatuie unmaxizal yield
stress in a specified reference direction. This has been done in prepariug envelopes
for biaxial yi2ld stress and biaxial ultimate stress in Section ¥ and in Figure 14, 3
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STEEL {SOLID CURVE DENOTES MEAN VALUE; NUMBERS IN PARENTHESES
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Most of the alloys currently in use in aircraft and space-structures applications
are nearly isotropic (see "Elastic Deformation Under Biaxial Stresses''), For aniso-
tropic materials, it is important to relate the hiaxial yield stresses to the uniaxial
vield stress in a reference direction, Traditionally the reference direction iv defined as
the longitudinal (rolling) direction for all flat products, and the hoop (circumferential)
direction for shells of revolution (tubes, cones, etc.). However, to prevent any possible
confusion from arising, the reference direction used for the uniaxial yisld stress should
always be indicated clearly.

Since the biaxial yield stress and the biaxial ultimate stress are so strongly
affected by the corresponding uniaxial properties (Fty aad Fyy), it is advantageous to
plot biaxial yield strese (for a specified biaxial~stress ratio B) versus uniaxial tensile
yield stress and similarly biaxial ultimate stress (for a given B) versus ¥y,. This
method of data presentation is used extensively in Section V.
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BIAXIAL PROPERTIES BY ALLOY

Biaxial data wexe obtained for a number of steels and light metals and are pre-
sented in this section of the report; The metals were selected tc be of interest be 1iee
of their structural importance in aerospace-vehicle structures. The metals chesern ire
not limited to those in MIL-HDBK-5,

Tabies I, 1I, and III contain a dotailed suznmary of pertinent data reported .a the
publications reviewed,

Table 1 is a summary of )i of the available biaxial data examined and showz liow
much data are available as stress-strain curves, biaxial yield and ultimate stress,
strain at ultimate stress, aud at fracture. Individu-~l references are identified by
principal author, Only a cursory examination of Table I is needed to conclude that few
materials have been evasiqated sufficiently to determine biaxial atress-strain curves and
biaxial yield and uirimate stress envelopes,

Table I identifies the ~hemical composition and heat treatment and other process-
ing nsed for materials in Table 1.

Table III contains a geometric description of all specimens used in obtaining the
axial-stvess information described in Table 1.

Following thie tables are Figures 15 through 89 that contain the detailed data de-
scribed in Table I, These figures include the following types of presentations:

(1) Biexial stresu-strain curves

(2) Yield-stress envelopes

{3) Ultimate-stress envelopes

(4) For steels, effect of tensile yield stress versus nominal hoop
yizld stress

(5) For steels, effect of ultimate tensile strzss versus nominal hoop
burst stress,

As seen on these figures, relatively few biaxial-yield and ultimate~streas enve-
lopes were fround for the steels as compared with the light metals, For this reason,
the curve s showing the effects of tensile yield and ultimate stress on the nominal hi-
axi1al yield and burst stress were included as discussed in Section IV of this repozt,

The zlloys for which data were found include many low-alloy steels, tool steels,

nrecipitatior-hardening stainless steels, aluminua alloys, magnesium alloys, and one
titanium al.oy,
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The specific alloy list broken down into the two categories of Steel and Light

Metals is as follows:

Steels
4130 300M
4135 X-200
4137 MBMC-1
MX-2 R-270
4140 H-11
4330M 17-7 PH
4335V AMs=350
AMS 6434 PH 15-7 Mo
4340 ' 18 Ni
D6AC 25 Ni

Light Metals

20)4-T4 7178-T6

2014-Tb AZ 31 B

2024-T AZ b1 A

2024-T3 AZ 0 A

7075-T6 6 AL-4V
29 and 30
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TABLE 11, CHEMICAL ANALYSES AND PROGESSING
s $ oS e S e o ]
i Melting Chemical Comrotition, percent by weight
Material  Reference  Method c Mn p s st i C Mo v
v 1‘2
i %g Pert A.
B 4130 28 No data available
? g . 29 Unknown 0,33 0,47 0,009 0,012 0,923 -n 1,00 0,16 -
§3§ . 80 Unknown 0,82 0,47 0,009  0.012 0,28 . 1,0 0,16 -
% . s Unknown =~ - -~ .- - . - - -
. 4135 21 Afr 0.34 0.56 .- .. 0.2¢ 06,12 0.2 0.18 -
§ 4137 22 Uakmown 0,89 1,00 0,010 0,010 1,00 - 1,10 0.25 -
3 MX-2 or 22 Unknown 0.89 0,70 0,010 0,010 1,00 . 1,10 0,25 0,15
4137 Co 21 Atr 0.41 0.72 - - 0,88 0,08 1,01 0,28 0.14
1 81 Unknown 0,40 0,63 0,008 0,004 0.9 0,066 0,93 0,27 0.15
z 4140 82 Alr 0.40 0,81 0,014 0,013 0,22 035 066 0.2 --
} 4330M 83 No data available
i 4335-VA 3] Alr 0.40 0,79 .. - 0.88 1,76 0,82 0,95 0,19
i AMS- 81 Unknown 0,38 0,76 0.006 0,007 0,48 1,81 09 0.8 0,19
: 6434 8¢ Unknown 0,85 0.0 0,08 0,08 0,80 1,80 075 0,35 0.20
) AMS- [} Air 0.85 0,68 0,018 0.016 0,24 1.64 077 0.42 0,29
6434 Mod,
4340 85 Unknown 0,89 0,60 0,008 0,012 0,2¢ 1.85 0.38 0.25 .
" " 81 Unknown 0,42 0,66 0.010 0.018 0,81 1,87 0.8 0,26 -
" 28 Air 0.8 6.M - - 0.80 078 0.1 0,20 -
» 36 No data available
. s Air 0.42 ©.78 0,008 0,007 0,31 1798 0,76  0.92¢ .-
, D6AC 35 Unknown 0,43 0.8 0,008 0,007 0,24 0.51 120 1,05 .
i " 37 CEVA 0,4¢ 0.70 0.607 0,008 0,24 0.51 0.97 1.04 0,07
i " 28 CEVA 0.46 0,74 - . 0.28 0,44 110 0.8  0.05
N " 38 No data available
s " 39 CEVA 0.47 0.65 0,004 0.007 0.2¢ 0,60 0.94 098 0.3
( " 23 Unknowu 9,49 0,78 0,007 0,006 0,25 0.5 1,00 1,05 0,06
i » 40 No data available
; " 41 No data availadle
. 800 M 21 Alr 0.42 0.88 - .. 1.48 1.85 0,91 0,30 0,11
i " L Unknown ©0.48 0.80 0,008 0,008 170 1.92 090 0.81 0.11
" 29 Alr 0.40 0,80 0,009 0009 1,48 1.7 0,8  0.87 0.11
" 39 CEVA 0,42~ 0,62- 0.010 0,005 1,52~ 1.85 0,70~ 0,28~ 0,10~
} 0.44 C.67 1.68 0,98 0,41 0,19
. 26 At 0.40- 0.80- ©0,009- 0,013  1.66- 1,72- 0.83  0.84~ 0,04-
! 0.43 o0.82 0,018 .80 1,94 0.44 0.10
| X-200 29 Unknown 0.40 0,89 0,010  0.010  1.41 -~ 198 0.40 0,07
!
{ " o8 Unknown 0,43 0,87 0,010  £,008  1.59 - 2,15 0,58  0.07
}
; 26 CEVA 0.45 0,82 9,008 0,008 1,55 0,097 2,00 C.40  0.06
i 26 Al 0.42 6,60 0.6 0,000 1,57 - 2.06 0,51 0,07
! MBMC-1 9 Aty 0.44 0.8¢ 0,010 0,015 1,72 0.8 0.72  0.26 0,02
! " 29 Alr 0.8 0.79 0,016 5,016  1.68 e 0,80 - 0.05
“ 26 Air 0.44 082 0,020 0,018 1,58 - 1,58 .- 0.06

34
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DATA FOR MATERJIALS IN TABLE 1
Heat Treatmem
Austenitising Quench Tempering
Others Temp, B Time, min Medium Temp, B Temp, F Time, bt Fabricatior Method
Steels
- 1625 60 Salt 40 400 s}
800 3 Roll and Weld
-- 1625 80 Salt 400 400 2 Roll and Weld 3
L - 1625 20 oil - 450 2 - %
Lo - No further data available -~ - - Deep drawn I}
B | - g - o 500 Deep Jdrawn ;
T 1725 Salr 400 600 P iy
) 1.00 Co 1700 80-45 oil - 550 Twice Deep drawn T
A | 1.05 Co 14700 .- - - 550 Twice Deep drawn =
SR 1,08 Co 1700 25 oil - 550 241-1/2  Deep drawn w
0.06 Al P
.- 1550 180 oi .- 450 22 Deep drawn W
R i -~ No further data available .- - - . Deep drawn j
i 0.038 Al 1625 20 oil - 450 21 Deep drawn H
R - 1575 Unknown on - Various Unknown  Roll and Weld 1
g - 1600 120 oil - 450 "2 Deep drawn '
3
L3
- 1625 Unknown oil .- 425-800 Twice Roll and Weld b
- 1625 20 Oit .- 450 2 Deep drawn 3
- 1525 10 oft - Vatious 4 Machined forging g
A
- 1550 80 oil - 400 2.5 Roll and Weld 3
-- 1550 Unknown Air - 800 Twice Roll and Weld i
; - 1550 30 Salt 400 300-1150 .- Machined forging i
i - 1550 45 Air - - 4 Machined forging %
$ - - - - - - - - - z’
| - 1550 60 Air .- 600 28 Sheet material ’g
N L
* |
i - No further data available -~ - -~ Deep diawn :
[ 0.05 Al 1750 20 ol - 600 &1 Leep drawn 7
i -- 1600-1700 60 Sait 400} 3
i Air 600 22 Roll and Weld 3
s 0.06= 1650 60 Salt 400 R
0.10 Al Air - 605-600 88 Rolt fonned :
0.86 Cu 1600 0 Git - 600 2.5 Roli and Weld )
i
- 1750 30 Alr . 700 0.5 Roll and Weld
1750 60 Argon .- 700 1 H
1000 1 b
" 1750 86 Alr ) 800 1 Flat Specimens i
600 1 :
-- 1760 15 Afr .- 600
. 1156 15 Ax . 700 235 Roll and Weld :
-- 1660 180 oil - 600 3 Deep drawn : o
.- 1600 €0 il -~ } . s ,
Salt <00 €00 .0 Roll and Weld %g’:ﬁ 3
. 1609 30 Salt 400 600 2.5 Roll and Weud ? R
gjd ‘ j
35 b




Materin!  Referemse

* Chemical Composizion, percent by weiglt

5t Ni Cr Mo v

Part A.

R-270 21 Afr 0.46 0.€2 -- - 113 1,08 1.68 0.52 0.21
- 3 Unkoows  0.45 0,85 0,007 0.003 1.22 1.28 1,7 0,47 0.20
H-21 22 No data avaiisble
" 81 Unknown 0,42 0.29 0.013 0.009 0, 87 .o 4.81 1.33 0.51
" S4 Usknown 0.40 €,30 0,010 0.010 0.99 -~ 5.00 1.80 0. 50
" K] Unknown  0.38 0.43 0,012 0.012 1.08 0,08 5.02 1.85 0.45
- 29 Unknown 0.41 0.44 0,009 0.006 0.91 - 5.29 1.86 0.5
" 39 Unkaown  0.40-  0.20- 0.02 0.02 0.80- .-~ 4,75- 1,20- 0.40-
e 0.45 0.40 1.00 5.25 1,40 0.60
, : " 23 Unknown 0.43 0.87 0.001 0.003 0.89 .- 4, 8¢ 1.29 0, 54
\ . 42 No data available
; " 26 Al 0.39- 0,82~ 0.008- 0.006- 0,84~ - 5,08- 1.20- 0.47-
; 0.41 0,40 0,019 0,011 0.92 5.16 1,34 0.50
! 17-1Ph 338 No data available
i (TH
! 17-7Ph 33 No data available
! )
! AM-350 38 No data available
1 PH156-7 34 Unknown 0,07 0,50 0,02 0.02, 0.30 7.10 15.10 2.25 -
Mo
. 18 Ni 31 Unknowa 0.02 0.02+ 0,004~ 0.008- 0,04~ 18.48- ~- 4.9 -
0.07 0.007 0,009 0,08 19. 00
. 25 Ni 43 Unknown 0.08 0.011 - - <0.01 24,4 - .- -
Material Reference - _S_E_ Fe Cu Mn Cr _Z_:_ _ﬁg_
Pan B,
2014-T4 44 0.8 .- 4,4 0.8 - .- 0.4
2014-T6 23 0, 5- 1.0 8.8~ 0. 40~ 0,10 0.25 0.20~
1.2 5.0 1,20 0.80
2014-T5 45 0.8 -- 4,4 0.8 .- .- 4
2024-T 12 -~ .- 4.4 0.6 .- .- 1.5
7075-T6 47 - .- 1.6 Trace Trace .- 2.5
! 7178~T6 28 0.28 -- 0.46 0.74 1,10 .- -
I AZ31B 48 0.01 0, 009 0.01 0, %7 - ¢. 90 Bal.
AZBlA 48 0.03 v 001 0,01 0,22 L 0.4 Bal.
AZBvA 48 0.01 0.0M 2.01 0.2% -~ 0.40 Bal,
SAL-4V 28 - 0,18 0,025 .- -~ .- -
SAI=YV 28 - 0.1§ 0.022 - .. .- -
6A1-4V 28 .- 0.15 2,085 -- - .- b
T ctmi i <y . il S S, ety T 2 g M, J e e

v % T st e
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{Continued) ;%ig )
Heat ‘Treatment ;%:
Augtenitizing Quench Tempering §42
Othen Temp, B Time, min Medinm Temp, F Temp, F Time, hr  Fabrication Method {”i; :
=
Steel: (Continued) %?:';3
0.32 W; No fuzther data available - .- . - Deep drawn E
1.70 Go 133 k!
0.035 AL 1750 20 oit . - 600 242 Deep drawn 3
0.31w i
-- 1850 15 oil - 975 24202 Deep drawn §
.- 1850 - Alr - - -- Roll and Weld j{«{ ‘
- 1850 120 Alr - 1000 %I Deep Drawn =,
1100 2242 Deep Drawn 4
-- 1859 60 Air -~ 1000 22 Roll and Weld ;
1025 2 Roll and Weld o
-- 1859 60 Air -- 100( 22 Nearly flat sheet X
- 1850 30 Alr - 1000 %2 Hydrospin and weld 7
-- 1800 15 Air - 1000 2.5 Roll and Weld
1850 20 400 2.5 Roll and Weld "
%
1
1,17 Al Standard "TH" Treatment - - -~ Roll and Weld .
¥
7.6-9,4Cr, 1500 60 Air - 915 4 Roll and Weld N
0.39-0,556 (Solwt. annzal) (Maragad) 1
Ti
1.77Ti 1500 60 Air -- 1300 4 Machined for~ing f
(Soltz. anneal) 500 1 :
(Maraged) §
Ti Al M Mo Cd Pb Sn o] v H
— $
Light Metals %‘
-~ Bal. - —~ e - - - - .- &
0.15 Bal.  -- - .- -~ - - - - i
;
-~ Bal, -~ - . - - .- - -~ i
-~ Bal. - - e - -~ -~ - -- v
-~ Bal. 0.4¢ 0.36 -- -- -~ - 0,05 -- oo
-- 2.4 0001 -~ 0,01 0006 <.004 -- -- - .
-~ 58 0,001 - 0.01 0,032 0,004 - - - 4
-~ 7.8 0,001 -- 001 0.018 0.004 -- -- --
Ral. 5.2 0,028 - .- -~ -~ 0.018 4.1  0.909
Bal. 6.65 0,015 - - -- -- 0.019 4.2  0.0026
Bal. 5.98 0,025 - - -- - 0.07 4.28  0,0049
L3
i
37 .
s a
!
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TABLE I, GEOMETRICAL CHABACTEHISTICS OF SPECIMENS IH TABLE 1

Type End

.
Marerial  Reference Vesel Wall Thickneis Tength Dismetr LD Closures Remerks
X PartA. Steels o
4130 28 Cyl. 0.050 5.5 2.0 2.7 Threaded .
" 2 CyL 0.084 22 12 1,83 Spherical  Sulscaie test vessel
" ' 30 CyL 0.084 - 11,85 -~ - -
" . 2 CyL 0.075 18,186 8,375 8.89 o -~
4135 ! 21 Cyl 0,050 24.0 5.76 4.11 Ellipsoidal M-58 Falcon
4137 i n CylL 0.050 27.0 5.75 4.70 Ellipsoidal Subscale rest vessel
MX-2or 22 Cyl, 0.050 27.0 8,75 4.0 Ellipsoidal Falcon motor case design
4137 Co 21 Cyl. 0.070 12,0 3.48 3.5% Spherical Subscale test vessel
{ a1 Cyl. 0.078 13.0 3.45 3.7 Spherical  Subcale test vessel
41e0 } 32 Cyl. 0,200 83.5 11,56 4.63 Nearly flat Subscale test vessel
4330M ; 33 Sph, Unkaown 0 6.50 0 - Subscale test vessel
4335-VA } 21 Cyl. 0,070 12,0 3.43 3.50 Spherical  Subscale test vessel
AMS t 31 Cyl. 0,078 13,0 3.45 8.7 Spherical  Subscale test vessel
6136 | o Oyl Unknown 12,0 .00 2,00 Ellipso.dal Subscale test vessel
AME6434 32 Cyl. 0,200 83.5 1,56 4.68 Nearly flar Subscale test vessel
Mod.
4340 35 Cyl. Unknown 4.00 4.0 1,00 Flat Subscale test vessel
" 31 Cyt 0.073 18.0 8.45 8.77 Spherical  Subscale test vessel
" 2€ Cyl Unknown 2.00 2.00 1,00 Threaded Subscale test vessel
- 36 Dome Unknown -~ Unknown -~ - RC~10 motor case
j‘/ 36 Sph. Unknown 0 Unknown 0 - Stozage vessul
- 26 Cyl. Unknown 8.0-314,0 8,0  1,00-1,75 Spherical Subscale test vessel
DGAC 35 Cyl. Unknrown 4,00 4,00 1,00 Flat Subscale test vessel
" 3! Cyl. 0.070 Unknown 10.00 Unknown Flat bolied Subscale test vessel
° 28 Cyl, Unkaown 2.00 2.00 100 Threaded Subscale test vessel
" 38 Cyl. Unknown 20.0 24,0 0,888 Unlnown  Subscale test vessel
- 3% Cyl. 0,040 Unknown 24.0  Unknown Unknown Subscale test vessel
" £3 Flat 0.026 . - - -~ Special specimen
caue,
" Cyl. Unknown 208,90 65,0 3.2 Ellips. +  Fuliscale motor case
skint
- 40 Cyl. Unknown 21,75 4.5 1.5 Flat bolted Subscale test vessel
» 41 Oyl 0,080 37 87.35 0.9 Eilips. +  Fullscale MM/1st stage
skirt
300M 21 oyl 0,070 12.0 3.43 8. Sphericel  Subscale test vesse)
" 31 Cvl. 0,973 13,0 3.45 3.M Spherical  Subscale test vessel
" 29 Cyl. ¢.082 22,0 13,0 .83 Spherical  Subscale test vessel
- 59 CyL 0.123 Unknown 55.0  Unlmown  Eilipsoidal Polaris A2a 2d stage
" 26 Cyl. 0 067 8,0-14,0 8 00 2,00-1.70 Spherical Subscale vest vessel
X~200 o9 Cyl. f.072 £2.0 2.0 1% Stherical Subscale test vessel
" 23 Flat 0. 08¢ -~ =~ . . Special specimen
cruc.,
" 26 Cyl. 0.083-0.082 £.0-14,0 5.0 1 ¢-2,75 $pherical Suiscale 1.yt vessel
MBMC-i 32 Cyl 0, 100 B3.5 i85 4,63 Nearly fiar Subscale rest vesrel
" 22 Cvl, 2,985 22,0 122 i,8 spherical  Subscate rest vessel
" 28 oy 0,082 8 0-14,0 .00 1.0-1.75 Spherical  Subscale test vesssl
R&-270 a1 Tyt 2,690 12,0 3.43 3. 80 Spherinal  Subscaie test vessi
" 31 CyL £.078 12,9 3.35 3.7 Splwvizal  Subscale test vessel
H3y 3 Crl, ¢, 030 27,60 5706 4,73 “ne Sukzrelz ven vessel
sphenical
are al
i €yl O oue 13.0 &45 0 3.7 Lphepsead  daboele Tel vazsel
'4", 8

o
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TABLE III. (Continued)

Type Dimensions, inches
Material Reference Vessel Wall Thicknen Length Diameter  L/D

Part A. (Centinued)

EEPPR ty TN
¥ .

3
H-11 84 Cyl.  Unknown 12,00 3.00 2.00 Eltipsoidal Subscale test vessel B %
" 82 Cyl. 0.109 53.5 11,55 4.6 Nearly flat Subscale test vessel o
- 28 Cyl, .08 22 12 1,8 Spherical  Subscale test vessel - ;
" 39 Cyi. 0.0€3 Unknown 54 Unknown Unlmown  Subscale test vessel At
" 23 CyL  0.040 9.0 9.0 10 Sphorical  Subscale test vessel B
" 42 Cyl. Unlmown Unlmown 8.4 Unknown  Spherical Subscele test vessel
" 25 Cyl, 0.047-0.083 8.0-14,0 8,0 1,0-1.756 Spherical Subccale test vessel
17-1PR(TH) 38 Cyl. Unknown Unlnown 6,50  Unksown Unknown Suhscale test vessel -
33 Sph.  Unknown 0 6.5 0 - Subscale test vessel
17-TPH(RH) 83 Sph.  Unknown 0 6.50 0 - Subscale test vessel S
AM-350 as Sph.  Urkrown 0 6. 50 0 - Subscale test essel
FH15-T1Mo 34 Cyl. Unknown 12,00 6,00  2.00 Ellipsoidal Suixcale test vessel .
18 Ni a1 Cyl. 0,078 13,9 8,45 .M Ellipsoidal Sulucale rest vessel .
" 40 Cyl. Unkuown 28.0 40.0 0.70 Ellips. +  Subscale motor caze ’
skirt
" 40 Cyl. Unimown £10,0 65.5 3.21 Ellips. +  Fullscale motor case :
skt ‘
" 40 Cyl. Unknown 9.8 6.19 1,5 Flat bolted Subscale test vessel :
25 Ni 43 Cyl.  0.070 Unknown 6.00  Unknown Unknown Subscale test vescel .
1
Pam 3. _Light Metals i
2014-T4 4 Gyl 0.05 20 1.0 7.0 Threaced Subscale test vessel .
0.075 o
2014-T6 45 CyL 0,05 7.0 .9 .0 Threaded  Subscale test vessel ; ‘
0.07 P
. P
2024-T 9 Cyl. 0.20 16,0 2.0 8,0 Threaded Sulecale test vessel {
12 Cyl. 0,10 7.0 10 7.0 Threaded  Subscale test vessel i
2024-T3 46 Cyl. 0.027-2,0896  Unlmown 0.375- Unknown TUnlmown Subscale test vessel i
1.8 oo
7075-T6 41 Cyl. 010 16.0 2.0 8.0 Threaded - :
46 Cyl. 0.025-0.037  Unknown 0.375- Unkiown Unpknown Subscale test vesei A B
0.750 oo
, !
7178-T6 28 CylL Unknown 2,00 2.00 1.0 Threaded - 3
AZ31B 48 Cyl. 0,03 2,00 04375 @57 Threaded  Subscale test vessel Lo
AZSlA 48 Cyl. 0.08 2.00 0.4375 4,57 Threaded Subscalc test vessel .
A780A 48 Cyl, 0.03 2.00 6.4376 4.57 Threaded Subscale test vessel = i
6414V 28 Cyl.  Unknown 2.00 2.00 1,00 Threaded  Subscale test vessel

.
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EFFECT OF TENSILE YIELD STRES: ON NOMINAL HOOP

YIELD STRESS AND OF ULT!MATE TENSILE STRESS ON
NOMINAL HOOP BURST STRESS AT A BIAXIAL-STRESS
RATIO OF 0.5 AND MODERATELY ELEVATED TEMPERA-

TURES FOR DGAC STEEL. CYLINDRICAL SHELLS

Dato Sources: Shown in legend
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DISCUSSION OF BIAXZIAL~STRESS PROPERTIES AND

ﬁzg\,\:g, s, t‘,';,;ﬁ"

»g SOME FACTORS WHICKE AF:,ECT THEM !
' e &
E % §
B 3«
| % General ;
am o
| 3
| ; In this section, various factors affecting the biaxial-stress properties are dis-
l~ cusced primarily srom the standpoint of design application. Many of the trends de~ =
| ; #rribed are based directly upon the biaxial-stress property data prescnted in Section 5; b
‘. % others are illustrated by direct comparisons with data from various other sources and 3% !
| 3 are further supperted by results of plasgtic-tensile~instabsiity theory presented in % g
g Appendix III i?: :
% s
o !
Effects of Type of Specin:2n ? l :
.i l
The main types of test specimens are described in Section Ilf as follows: J
S

Rl

(1) Cylindrical shell, subject to internal pressure alone or internal
pressure plus externally applied axial load

2 Tar” g

(2) Spherical shell subject to internal pressure

(3) Flat-diaphragm epecimen (bulge test)

SR i, A Aattar Lol havpan® LB T BGAY ket

PP
DS Y

(4¢) Formed-cup specimen

Sy

(5) Direct in-planc loading specimen (such as the cruciform specimen)

(6) Face~grooved tensicn specimen.

b Bistcals Sl AR 250 41 A0 2N

Although very few direct comparisons are possible duve to the paucity of experi-
mental data, reference to Figures 90 through 93 does indicate that in general the type of
test specimen hes a smaller effect on the elastic range and yield stress than the inherent 4
scatter in ibe material properties as measured. In Figure 90 the stress-strain curves
are corapared for cylindrical, flat~diaphra;m (bulge), and in~-plane (cruciform) speci~-
o) mene of 2014-T6 alumioum alloy. In Figure 91 cylindrical versus cruciform specimens
of DSAC steel are compared at B = 1. 0, while Figure 92 covers the same comparison
for H-11at B » 0.5, Figure 92 compares cylindrical versus fiat-diaphragm bulge spece
imensg of 2024=T alunanum alloy. Compired with the cylinder specimens, there does
seem to o a lower yield siress associated with the flat-diaphragm bulge-test specimen
and a hig..~r one for the cruciform specimen (Figures 92 and 93). However, Figure 91

& Ay

suggests tha' tiis latter statemeat may not be valid in general.

Dt am i —— ——

. >y

s

Thus, in summary, io the elastic range the specimen type is not important. How=
ever, in some cases in the early portion of the piastic range, the specimen type may
influence the results.

s Ay T R ke

The effect of type of specimen on biaxial ultimate siress and biaxial ductility
{strain measured either at ultimate stress or at fracture) appears to bave & much larger
effect. For example, compare the dif{erence in ultimate siress and in ductility, bota
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strain at ultimate and at fracture, for 2024-T in Figure 93. This indicates that the flat-
diaphragm test is more severe in regard to ultimate strese and less severe in regard to
durtiiit than the cylindrical shell. In contrast, the formed-cup specimen, as used by
Bhat{22) for emmple appears to give ultimate~stress values which arz conszderably
higher than those given by cylindrical-shell specimens. This is surprising for several
reagons: first, the formed cup superficially appears to be very similar to the bulge-test
specimen, especially at failure. Second, the "biaxial kickup' or strength increase as-
sociated with a biaxial-stress ratio of 1/2 (or 2) would be expected to give the cylindrical
shell subject to internal pressure a considerable margin over the formed cup (which, like
the flat-diaphragm bulge~-test specimen, has a biaxial~stress ratio of 1).

There do not appear to be any experimental data available to verify the relation~
ship between the biaxial ultimate stress obtained from a pressurized spherical shell and
that obtained from a cylindrical shell at the same biaxial ratio of unity (achieved in the
cylinder by a combination of internal pressure and externally applied axial Ioad). Fortu-
nately, however, plastic-tensile-instability theory predicts that the ultimate stress should
be identical for these two cases (see Cases 1 and 3 in Appendix Illj). Thus, at least for
the case of fairly ductile materials, it should make little difference whether the data for

= ]| are obtained from a spherical or a cylindrical shell specimen.

As previously mentioned, the face-grooved tension specimen, although simple in
concept ard inexpenrive to make, unfortunately does not correlate satisfactorily with

cylindrical-pressure-vessel burst data and thus should not be used fcr pressure-vessel
design purposes,

In summary, the effect of specimen type is usually small in the elastic range and
early stagee of yielding {say up to and iucluding the yield stress). Th» effect of cpeci~
men type on ultimate-stress and ductility data appears to be quits stroug, The following
types of specimens are recommended for the applications indicated:

Application Type Specimenr Recommended

Pressure vessels, rocket-motor cases, Cylindrical shell with internal pressure
liquid-propellant tankage, pressurized pius axial load as reqaired to achieve
cabins biaxial-stress ratio

Flat skin panels loaded in-plane Cruciform specimen

Material-formability studies Formed-cup or flat-diaphragm bulge

specimens

Effect of Heat Treatment

For the steels, various heat treatments are selected in order to increase the ulti-
mate tensile strength of the material. This increase is usually determined by measure-
ments mads on uniaxzial tensile specimens. The effects on biaxial properties are shown
on the numerous figures presented in Section V of this report. These figures show the

nominal hoop burst and yield stress varsus the uniaxial tensile uitimate and yield
stresscs reapectively.

As an example, Figures 16, 18, 19, Z1, and 23 show these curves and data points
for 4130, 4135, 4137, 4140, and MX-Z steels. There appears to be some scatter in the
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datz pointe as can be axpected, but the poiats generally follow the lines Fpg, = L1 F u ‘%ﬁ
and Frey & L 1 ¥y Thus, as the uliimate tensile strength and yield strength are in- ke
cgrsased, the hoop burst and yvieid strengths ave increased by a factor of 1.1, This ex- .
ample is not necessarily applicable to ail of the steels, however, as shown in the subse- J
quent {igures in Ssctica V. For instance, in 4340 steel as shown on Figures 31 through ’ 4
39, the increase factor is between 1.0 and 1.1, ,&%

The stainisse stsel, 17-7 PH, showe a peculiar behavior regarding the effnct of
heai treatment, Figures 63 and 64 show that for the TH heat treatment, all of the data
points fall below the Fy, = 1. 1 Fy, line, That is, as the ultimate tensile atress in-
creases from say 150 ket to nearly 190 ksi, the nominal hoop burst stress increases
from about 160 ksi to sbout 198 ksi, But after the ultimate tensile atrength is increased
to above 200~ksi level, the hoop burst stress drops off drastically, This dramatic
change is shown most ¢learly on Figure 63. With regard to the RH heat treatment, it is
not certain whether the same cendition occurs at strength levels equivalent to the usual

draw temperatuve used for the RH condition, This level will be in the range 210 ksi to
2490 ksi,
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Effects of Biaxial-Stress Ratio

The biaxial-stress ratio B affects the following biaxial-strength properties:
(1} The slops of the elastic portion of the biaxial stress=-strair curve,
i.e., it affects the biaxial modulus discuseed in "Elastic Deformation
Under Biaxial Stresses"
(2) The biaxial yield stress

(3) The bizxial ultimate stress

(4) The total strain reached at the biaxial ultimate stress.

In the paragraphs to follow, these various effecis are discussed from both a
plasticity~-theory point of view and in the light of the actual test data reported.

The effect of the biaxial-stress ratio on the biaxial modulus Ep is easily pre-

dicted by Equation {12} in "Elastic Deformation Under Biaxial Stresses', repeated here
for convenience:

Eg = E/(1 - uB) .

From this expression, it is readily seen that the effect of P is not a strcng one, since
Poisson’s ratio u is approximutely 0, 3 for most alloys of structural importance. Also it
is apparent ikat En is a maximum for a biaxial~stress ratio of unity when it is recalled
that B as used in Equation (12) is defined as the ratic of the smaliest in-plane principal
stress to the other in-plane principal strees (i.e., B = 1), There is gond agreement be-

el 1SN TR

4

P A

tween theory and expeviment for the effect of B on EB' i
5,

Numerous theories of multiaxial strength bave been proposed over the years to by

predict the effect of multiaxial~ustress conditions on the yield stress of materials, es~
pecially metals and alloy 8. Some of these are mentioned and depicted in Appendix II. ’
However, by far the most popular theory for yield stress of "ductile! alioys 1s the
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octahedral-shear-stress theory, propesed by von Mises. Applied to the case of biaxial- g%
stress loading, this theory predicis ax elliptical-shaped biaxial~stress envelope as :
shown by Curve 3 in Figure 96 in Appendix II. Usaing the equation for this ellipse, it can
be shown that the cctahedral-shear~3stress theory predicte that ihe largest yield stress
occurs at biaxial-stress ratios of 3.5 and 2.0, where the predicted value is 15.5 percent
greater than the unlaxial tension yield stress.

For al! of the alioys reported in Section V, the highest yield-siress values do occur
either at B values of 0,5 or 2.0, In many cases the yield-stress values at T values of
0.5 and 2.0 are equal; however, in some cases there is a slight difference between them.
This slight difference indicates a small amount of anisotropy, either inherent in the ma-~
terizl oy more likely due to the nature of the malerial processing, For example,
Figures 17, 25, 30, 40, and 60 show the effect of biaxial~stress ratio on yield stress for
various stecis. In all of the alloys represented by these figures, the highest yield~
stress values were asgociated with a B rario of 2,0, In every instance, the hoop-stress
direction war perpendicular to the rclling direction with the possible exception of the
4340 alloy. The 4340 specimense were machined from hot-rolled bar stock and all of the
other specimens under discussion here were made from either machired forgings or by
deep drawing., These iatter two processing methods may preduce more grain orientation

than hot rolling, but generally it is not considered to be great encugh to influence the
data of the type pregented in this report.

Further comparison of the yield stress at biaxial-stress ratios of 2.0 or 0.5 with
the uniaxial tension yield stress for the steels indicates that the biaxial gain or increase
in yield stress compared to the uniaxial value is less than the 15.5 percent increase pre-
dicte? by the octahedral-shear-stress theory. For the steels covered, it appears to
range from approximately 8 to 12 percent. This slight reduction in actual biaxial gain
compared to the theoretically predicted value can be accommedated quite easily by the
generalived-coric biaxial-strength theory discussed in Appendix II, at the expense of
movre terms in the equations 2nd consequently more data veduction effort. However,
this latter theory can be adjusted to give excellent bisxial yield~stress predictions for
stesls, compared with the slightly unconservative values predicted by the octahedral-
shear-stress theory. As explained in Appendix II, the difference is due to the inclusion
of the "linear terms" in Equation (26); these terms are associated with the slight effect
of the "hydrostatic' or mean-principal-stress effect on yielding.
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Among the metals other than stecls, the general picture for the effect of biaxial-

stress ratio on biaxial yield stress of titanium alloy (6Al-4V, in particular) is similar
to that of steel, although there does seem to be a greater difference between the yield~

stress vilues for B = 0.5 and B = 2, 6, This may be partially explained by material
anisotropy.

[PPSR SRV SNPIEE SR A

=

The picture is not nearly so clear-cut in the case of aluminum ailoys. There ap-
pear to be large deviations between yield stress values for B = 0.5 and 2, 0 as iliustrated
on Figure 84. These greater deviations between values predicted by the cctahedral-
shear-stress theory and those actually measured can be explained, at leaet partially, on
the basis of the greater strain hardening (increase in stress with strain during plastic
deformation} in the metals other than steel, as follows: The octahedral-ghear-stress
theory ag originally proposed by von Mises ie intended to predict the beginning of plas:ic
deformation, hewever, the standard offset value used ag¢ the MIL~HDBK~5 criterion of
yield stress is 0, 002 in./in. Thus, in rndergning the first 0. 002 in./in, of plastic .train ;
most of the stee!s exhibit very little increase (if any) in stresa, while the other ailoys H
show a significant strain-hardening effect in the initial yield region.
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So far the discussgion has been limited to positive values of the ratic B, i.e., 20

. stress fields in which both of the in-plane principal stresses have the same sign. Very ,g

: little data are available on the effect of negative biaxial-stress ratios on yield stress for Lyl

" materizls of aerospace structurali importance. However, the general trend predicted by ?gﬁ

é, : : ae

% either the octahedral-shear~stresg theory or the maximum~shear-gtress theory appears g} {

:. to be verified. This tread ie that for pure shear (B = ~1.0) the yield siress ie Iowest and 7 : §f
2 as the ratio B moves either above or below this value of =1. 0, the yieid stress increasges. 83 z
‘ This trend is exemplified by Figure 76, for example, B g :

In regard to biaxial-yield-stress data, mention should be made of a relatively re~ 2
cent development in metallurgical process apparently most promising for materials with ggj

Y

B oS
e

hexagonal close~packed crystalline structure, such as titanium. In this process, by
orienting slip systems, the crystallographic texture is changed in such a wey that the
yield stress in the thickness direction is increased and thus the in~plane yield stress
(under certain biaxial stress conditions) is increased appreciably. The concept seems to
have been originated by Backofen and his associates. (52§ It has the effect of modifying
the biaxial-yield-stress envelope so that there is an appreciablo increase in the convex
bulge in the envelope in a certain range of positive biaxial-stress ratios. For instance,
if a material is originally governed by the octahedral-shear-stress theory, its biaxial-
yizld-stress envelope is governed by the following equation, with the symbols as defined
in Appendix 1L

T
L4
4

e
TS

"

gt s

x?‘%yz-xynl .

However, if this same material is texture hardened, it may have an envelope expressed
by

x4+ yl-Axysl ,

where the cosfficient A may range as high as 1. 7 from experimental data(53), This cor-
reoponds to an increase in biaxial yield stress {at B = 1. 0) of 82 pexrcent based on the
assumptions in the reference. No pressure vessels wers used to determine the data.
The texture~hardening process has not yet been used in production applications. How-
ever, with the considerable promise it holds and the intensive research presently being
carried out on it, the texture-hardening process probabiy will go into use in production
items requiring high biaxial yield stresses.

The effect of biaxial-stress ratio on the biaxial ultimate strees is a much more
complicated subject than the effect on yield. One reasoa for this is the anisotropy in-
duced by large plastic dsformations; in other words, a maierial which is initially iso-
tropic can have its stress-strain curve under loading in a certain direction raised as a
result of extensive plastic deformation in thai direction. JFurthermore, the mechanism
of failure depends upon the biaxial-stress ratio. Thus, for example, the ultimate~-stress~
failure phenomenor undexr conditions involving & maximum principal stress which is ten-
sion is often the plastic~tensile-instability pheromenon which is quite different from the
phenomenon of failure under conditions of pure shear (B = ~1.0). It is beyond the scope
of this report to give an extensive discussion of plastic~tensile-instability theory as ap- A
plied to the ultimate stress of biaxially stressed materials such as pressure vessels, Y
rocket=motor cases, pressurized cakins, etc. Such a discussion, with particular refer- E
ence to rocket-motor-case applications, is given by Bert and Hyler(5‘4), and more re-
cently the theory has been extended to arbitrary precsurized shelle of revolution, includ-
ing ellipsoids, parabeloids, torsipheroids, atc., by Bert(55),
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Since the theory of ultimate-stress failure under biaxial-stress conditions seems
to be adeguately developed only for the tension-tension quadrant of the biaxial envelope
{i,e., positive values of B), agreement between theory and experiment can be discussed
for that quadrant only, For the materials tested by Goodman there was excellent agree~
ment between piastic-tensile-instability theory and test data. (28) For other cases, there
has been a latck of sufficient data for positive verification; however, the trend has defi-
nitely been verified,

One interesting thing about blaxial ultimate stresses for pressure vessels subject
to various biaxial-stress ratios is the slight!"apparent anisotropy' due to the differences
in mechanical behavior of different B ratios. For example, the predicted (and measured)
ultimate stress of a pressure vessel of isotropic material at a ratio B of 2, 0 is slightly
lewer than that for a B value of 0.5. The difference is due to the greater contribution of
hoop stress in the first instance compared with the second.

The effect of texture bardening on the biaxial ultimate stress has not been ade~
quately explored to date; however, there is sorne theoretical indication that this process
may actuslly decrease the ultimate stress at the same biaxial-stress ratio for which it
produces a significant increcse in yield stress.

Effect of Cylindrical-Shell Specimen Geometrical Parameters

For pressure-vessel type applications, in "Effects of Type of Specimen®, the
cylindrical-shell-type specimen was recommended. In tkis section, the effects of the
geometrical parameters of the cylinder are discussed. The basic geometrical charac~
texistics are defined as follows:

(1) Cylinder nominal diameter D
(2) Wall thickness t

(3) Length of cylindricai portion L
(4) End-closure configuration.

For convenience, by application of ditnensional analysis, the following geometrical
paramciers are found to be more convenient thar those listed above:

(1) Wal: thickness t

(2) Diameter /thickness ratio D/t
(3) Length/diameter ratio L/D
{4) End-closure configuration.

The effect of wall thickness is an effect on the basic material properties such as
the uniaxial-tension properties F  and F,. This is the reason that different uniaxial
strength properties are listed in MIL~HDBK~5 for a vaziety of thickness or Ygize effect"
should be expected to carry over into the biaxial properties. Unfortunately, however,
insufficient biaxial-stress property datz have been gathered for materials of different
thicikness to provide quantitative details on this paint,

Other than the inherent relationship among stress, internal pressure, and D/t, and
the effect of thickness described in the preceding paragraphs, there is no known cause
for any appreciable effect of D/t, provided that che D/t value is within the range consid-
ered to be the thin-walled range, say D/t greater than 20. Again, however, no experi-
mental data are available to substantiate this hypothesis,
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The effect of length/diameter ratio is one effect which has been observed experi- P
mentally(37, 38) and has been predicted analytically using plastic tensile~-instability A
theory( 6-60), In contrast to a long cylinder which expands uniformly along its length up %3
to the point of localized tensile instability {ductile thiaring of the wall), a short cylinder *3
bulges considerably near the center prior to initiation of tensile instability. This differ~ ‘gi, !
ence is due to the girdle-like restraint afforded by the end closure in the short cylinder. Fﬁé ]
Thus, the short cylinder tends to approach the shape of a sphere, which inherently has a 25
higher burst pressure than a cylinder. Thus, the shorter is the cylindrical portion (i.e., ‘&f
the smaller tte L/D ratio), the higher is the ultimate strees. ks;
P
Closely related to the L/D ratio effect is the effect of the end-closure configuration,
Since the so-~called girdle effect described in the preceding paragraph is primarily due to e
radial restraint, it is logical to expect that the more rigid is the end closure, the greater z;
the girdle effect and thus the higher the ultimate stress. This was borne out by analytical f :
work carried out by Costantino, Salmon, and Weil, who found that a hemispherical end o
closure results in a lower ultimate stress than a rigid flat end closure. (61) ¢ i
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CONCLUDING REMABKS

This report centains a compreirensive summary of existing data on biaxial-stress
properties of metadlic ziloys of aerospace etructural importance. " The data arg pre~
sented graphically in 3 number of ways. Wken available, biaxial stress~strain curves
are shown. Also when sufficient testing of a given material was done, biaxial yield-
stress and ultimate~stress envelopes are preseated in the form agreed upon for presen-
tation in MIL~-HDBK~5. More often, however, »ndividual investigators or groups of in-
vestigators have evaluated materials of interest at only one or two biaxial-stress ratios
but over the useful strength range of the material In these cases, the biaxial-stress
envelopes could not be constructed. Instead, the graphical displays show the biaxial-
strength property plotted as 2 function of the corresponding uniaxial-strength property.

Examination of the large compilation of test results shows that considerable varia~
tion exists in the types of specimens employed and in the quantity of useful measuremeits
made during testing. Since test type and specimen configuration affect quite significantly
the usefuiness of the results, and since the instrumentztion and consequent ;neasure-

ments determine the quantity and quality of data, it appears that future programs should
focus attention on these details.

£ lthough it would be commendable to expect or hope that standardized biaxial-siress
test pracedures could be established, it may not be feasible to do so, since many tests
are cosducted on prototype tardware. However, from the standpoint of establishing de~
sign allowables for a document such as MIL~HDBK~-5, specimen design and :est proce~
dures should be sach that properties should reflect the msaterial behavior rather than that
of the test specimen. To this end it appears that the cylindrical-shell test spenimen may
be a useful and versatile one, since with this specimen a range of biaxial~stress condi-
tions (of structural significance) can be evaluated readily by combined internal pressure
and external load (tension and compression).

With such a test, some standardization of specimen design can be done in regard
to L/D, t/D 2nd end~-cap configuration to minimize end-restraint interactions. Also,
specimen manufacture, either machining or forming with welding of longitudinal aré cir-
cumferential seams, can be specified so that processing and flaws from processing
{particularly weld flaws) do not influence behavior. Since many materials are strain-
rate sensitive, a standardized rate of loading, or alternatively, strain rate should be
specified. Finally, such testing should include instrumentation with which coinplete
stress-strain curves can be determined, particularly in the region beyond the yield
stress up to ultimate stress.
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APPENDIX 1

SN Toune

DISCUSSION OF VARIOUS PROPOSED BIAXIAL YIELD-STRESS CRITERIA

The purpose here is to discuss the reasoning behind the development of several
yield-stress criteria which have been proposed for isotropic-or nearly isotropic metals
under biaxial loading, All of these are comparable to the well-known 0, 2 percent offset
yield~strength criterion for uniaxial loading. It is desirable that a standard biaxial
yield-stress criterion be selected so that there is unanimity in analyzing and presenting
data as well ag in design use.

.

The three yield criteria discussed here are:

® Uniform plastic-strain criterion

FURLEUIPIE ST Y . et

® Equivalent plastic~strain criterion

® Eqguivalent plastic~-work criterion.

Perhaps the most simple biaxial~yield criterion is the uniform plastic~strain cri-
terion (described in '"Biaxial Yield-Stress Criterion"). The reascning in this case is that
if (. 2 percent permanent strain is acceptable for uniaxial loading, it should also be ac~
ceptable under biaxial loading conditions. Although this criterion has been used by
several aerospace companies, theoretical objections kave beern: raised to its use because
it is independent of the biaxial-stress ratio. Nevertheless, this was the yield criteria
adopted for use in MIL-HDBK-5,

For a wide variety of structural metals, it has been found experimentally that
under multiaxial loading the initiation of yielding occurs when a certain "effective stress"
reaches a value equal to the uniaxial yield stress in tensiop. For many structural metals,
it is agreed that this effective stress is the stress value associated with the von Mises
yield criterion, which is the same as the octahedral-shear~stress theory, the distortion-

energy 1;heo:ry2 , or improperly, the deformation~energy theory3. The general expression
for the von Mises effective stress { is

T-= %)\/ (-22) 2+ (2t ® 4 (.£3~f1) ¢, (22)

where £], £2, and £3 are the three principal stresses. For the biaxial-loading case;
which is the primary interest here, Equation (22) reduces to

T\ -, 4% . (23)

ey TSR RTINS N

2. Strictly speaking, the distortion-energy theory coincides with the von Mises criterion only for isotropic materials,

3. It is impruper to use the term delormation-energy theory, since it does not distinguish between the total deformation energy
and the distortion (shear) energy.
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For practical engineering purposes, the interest is in the strese corresponding
1o some plastic {offset) strain, such as 0. 002 in./in., rather than the stress at which
yielding begins. Since the effective stress concept was well established, it was a logical
step, first made by Dorn and Thomsen(62) » to define an effective plastic strain 'é'p by an
equation analogous to the von Mises criterion, name1y4 B

s s
oy e IR LN A
& R, 2 R D N \E

: = (Y2} \Z Z Z

) where €p1s €p2s €p3 are the three principal plastic strains. In the general biaxial-
) ;&’ loading ‘case, none of the principal plastic strains are zero, since the biax:al stresses
2 can produce plastic deformation in the thickness direction. Although the constant ap-
2 , pearing in front of the square root in Equation (24) is different than the one in Equa~

§ tion (22), both expressions result in effective values (T, ep) for the uniaxial case which
% are equal to the actual values (f5, epo).

i

p

N Marin, Ulrich, and Hughes, following a suggestion by L. W. Hu, equated ex~

L

pressions for the effective plastic estrains for the uniaxial and general biaxial cases,
respectively.(65) The result was the following expression for the relationship between

the plastic strain in the maximum~principal-stress direction on a biaxially stressed
specimen and its equivalent uniaxial plastic strain €po’

Y
Pt

x>

€ ,
R - ;2‘-=(1-o.53)/\/1-3+32 . (25)

PO

This relationship is depicted graphically in Figure 94 as a function of the biaxial ratio B.

In determination of an offset yield strain equivalent to the uniaxial yield criterion
epo = 0. 002 in./in., it is only necessary to enter Figure 94 with the appropriate B
(or 1/B) ratio, move vertically to an intersection with the curve and horizontally to the
ey’ €po ordirate. This ordinate value when multiplied by epo gives the equivalent offset
strain. Except for the difference in c\fiset strain, the procedure for determining the
yield strength is the same as for the uniform plastic-strain criterion.

e e et T i e

The equivalent plastic~strain criterion is based partially on a particular theovy of
plasticity (the octahedral-shear-stress theory) and partially on actual test results for
the material concerned. This is because the amount of offset strain used is based on the
theory in conjunction with the biaxial ratio concerned, while the actual yield~stress
values are taken from test results for the material, biaxial-stress ratio, and offset>,

o e e~ e

4, Further discussion of the concepts of eff=~rive smress and effective plastic strain may be found in Reference (53), Alse, it is
noted that Equatiun (24) is based on the assumption that the plastic Poisson's ratio fs 1/2, This assumption has been verifted

for the plastic portion of the strain in most metals by numerous investigatoss (64).

A mote consistent procedure would be to determine the biaxial stresses for the equivalent plastic-strain values prescribed

by Dot and Thomsen's definition of effective plastic strain, next to use these stress values to determine the coefficients

of the general conic curve, then to use these coefficients to define a new prescription for equivalent pla:tic strains, and

! finally to determine the stresses comesponding to these new plastic-sttain values. This procedure could be repeated as

’ niany times as possible to obtain any desired accuracy. However, for the sake of standardization, 1 may be desirable to

have the same offset for the same biaxial ratio regardless of the material, Since, in general, different materials would ,

have different effective-stress coefficients, it is better to use th.e Dorn-Thomsen definition of effective plastic strain, ’
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To overcome the disadvantagse suffered by the two previously described criteria,
Dr. L. H. Lee of the University of Nocre Dame has proposed the equivalent plastic~work
criterion. This criterion is based on the work of Dr. D. C. Drucker(66
concept here is simply to equate the plastic werk done (strain energy) under biaxial load~
ing to the plastic work done in straining uniaxially to a plastic strain of 0, 002 in./in.

), Baegically, the

The unit plastic work done (measured in in=lb/cu in. of material) is equal to the
total area beneath the stress-strain curve minus the elastic work, as shown schematically
in Figure 95. Thus, in order to accurately determine plastic work from experimental
data, it is necessary to planimeter an area from the stress-strain diagram.

Under biaxial loading, work is done in each of the biaxial principal directions.
Thus, for each biaxial test, it i8 necessary to determine the area of the stress~strain
curve for each of the two biaxial principal directions and then add these areas. This
means that experimental strain measurcements in the second principal direction, which

usually have not been reported in the literature, are required in order to utilize this
criterion.
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APPERDIX 11

DISCUSSION OF THE GENERALIZED CONIC THEORY OF BIAXIAL STRENGTH

Many differsnt thaories - multiaxial strength have been pr émsed for isotropic
ma%e*ialz. Pive of these bave bezn discussed in detail by 2iarin{67) and can be repre-
sentod, for the tension-tonsion guadrast of the biaxial-strength envelope, by the follow=
ing nondimensicnnl esguations, where x denotes £ / ftX (and Fh / Fty) and y is £5/ fty
{and ¥ AYI ¥ ty)" whers fi,, is the uniaxial tensile yiel strength.

{1) Maximume-normal-stress theory, proposed by Rankine, best suited
for so~called brittle maverials:

(x-1) (y=1) =0 .

(2) Maximum-shear-stress theory, proposed by Coulomb, best suited
for some ductile materials?

(x=1) {y-1) =0 .

(3) The octahedral~shear=stress theory, proposed by von stes, best
suited for many ductile materials:
2

x2+y “xy=1 .

{4) Maximum-=-strain theary, propcsed by Saint-Venant, not in curvent use:

(x=py=1} y=ux=1) =0 .
{5) Maximum total-strain-energy theory, in very limited use:

x% + yz ~uxy=1 .,

The nondimensional biaxial~yield~strength envulopes representing these five
theories for tension~tension loading are given in Figure 96. However, there is often
uncertainty in determining which of the theoreticai envelopes correaponds best to actual
test resulto for a given material under loadinge corresponding to a range of biaxizl~
stress-ratio values, Many times it is quite difficult to detexmine whetner test data fall
closer to the maximum=-shear~atress theory or to the octahedral-shear-ctress theory,
Sometimes it appears that the data points form 2 smocth carve which differs from all of
the theoretical envelopes. Alsc, for reasons of economy,; it is customary to corduct ki~
axial tests for only z limited number of biaxial~stress ratics {usually five: 0, 1/2, 1, 2,
and o)., This sometimes presents difficulty in fitting a smeoth ¢nvelope curve to the data
points. In order to overcome all of these difficulties, it is suggested here that a general
conic curve, which is the most gensral second~degree aigebraic curve, be used to re-
duce the data. This cen be written as follows:

axl+byl bexy+dxtev=1 {26)

2. As{n MIL-HDB¥ .3, the symbol f desotes en acral or calculated st2is, whereas the symbol F indicates a mutmum or
aliowable strength,
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where the coefficients a through 2 can be determined from test results for five different
biaxial ratios. For an isotropic material, Equation (26) has a = b and d = e, Once the
coefficients have been determined, Equation (26) can be used to compute points on the
envelope curve corresponding to any intermediate biaxial ratio.

It is noted that each of the strength theories mentioned above can be represented by
Equation (26) provided the coefficients are selected properly, as shown in Table IV.

TABLE IV. SPECIAL CASES OF : :IE GENERAL CONIC
BIAXIAL~-STRENGTH ENVELOPE

Coefficients for Equation (26)

Strength Theory a b c d e
Maximum-normal-stress theory o 0 -1 1 1
Maximum-=-shear-stress theory 0 0 ~1 1 1
Octaliedral-shear-stress theory 1 1 -1 0 0
Marimum-strain theory g -(14ud)  1-p  1-p
Maximum-=~total-strain-energy theory 1 1 - 0 0
Hill's anisotropic plasticity equation ax b¥ c¥% 0 0

*Arbitrary value,

For those who desire a more fundamental basis for th¢ conic equation, reference
is made to an equation given by Hill for triaxial stress in an anisotropic material,(68)
First, the third normal stress and the twe out-of-plane shear siresses in Hill's equation
are set equal to zerc since here we are dealing only with the biaxial case, Next, it is
noted that when the biaxial normal-stress values used are principal~stress values, the
in-plane shearing stress is zero., Furthermore, normal stresses appeared only as dif-
ferences in Hill's equation (thus, d = e = 0 in Table 1IV), because he assumed that th:
superposgition of a hydrostatic stress does not influence yielding. However, more
recent experimental evidence obtained by Hu suggestec that hydrostatic strzss can affect
yielding significantly.“’” Thus, the iinal result is thes general couic equation suggested
above.
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APPENDIX 111

ANALYSIS OF ULTIMATE STRESS OF DUCTILE MATERIALS UNDER BALANCED
BIAXIAL LOADING FOR THREE SPECIMEN CONFIGURATIONS,
USING PLASTIC-TENSILE-INSTABILITY THEORY

Provided that there are no severe local discontinuities such as notches, cracks,
metallurgical flaws, so that flaw failure (brittle fracture) does not occur, the ultimate
stress of a structure is determined by a particular kind of instability phenomenon known
as plastic instability?. This instability phenomenon is not to be confused with buckling,
which is a compressive instability phenomenon., In fact, plastic instability occurs only
ander tension loadings. The most simple example of plastic instability is the so-called
necking phenomenon which occurs in a uniaxial tensile specimen as the ultimate tensile
stress is reached.

By definition, the ultimate tensile stress is the maximum load reached in a tensile
test divided by the original cross-sectional area. Now as a tensile specimen is stretched
well into the plastic range, its cross-sectional area becomes smaller and smaller due to
the Poisson contraction effect. At the same time, the material usually undergoes a cer-
tain amount of strain hardening; that is, 25 the specimen is stretched, it can accom-
modate higher and higher stresses. However, depending upon the exact shape of the
strese-strain curve for the particular specimen, eventually a point is reached at which
the relative area decreases at a rate exactly equal to the relative rate of strain hardeniny.
At this point, which is the plastic instability point corresponding to the ultimate tencile
stress; a local neck begins to develop somewhere along the length of the specimen.
Further extension is concentrated at the necked region and the loz¢ decreases.

Ag is well known to materials engineers, the ultimate tensile stress is a basic ma-
terial property for a given material, material condition, temperature, specimen size,
and rate of ioading. However, in the general case of biaxial loading, the ultimate stress
is highly dependent upon geometrical configuration, as illustrated by the three exampies
treated subsequently.

To vividly illustrate the effect of geometrical configuration on biaxial ultimate
stress, theoretical calculations will be carried out for three configurations with the sam.e
biaxiality:

-{1} A thin-walled sphere with internal pressure
(2) A square plate loaded uniformly in all directions

(3) A thin-walled closed-end cylinder with internal pressure and sufficient
external tensio . load to give a balanced biaxial-tension-stress field.

1. It would be better nomenclaiure to use the term “tensile instabflity”, since it can occur in highly elastic materiais such as
rubbzr, as well as iv the plastic range In the case of structural metals,
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Case 1. Thin-Walled Sphere

The true stress {ia the warl of the sphers) which is the same in all dirvections is .
nasily computed by / ]
7

o =pDi4t , (27)

where p is the intsenal pressuxe; D is the instantaneous diameter, and t is the
instantancous wald! thickness.

Now the Jfal'éme 7 of material in the shell (not the space volume enclosed by

the shell) is /
;

Ve=mD3 . (23)

“If it is agfumed that the material volume does not change during plastic deformaiion,

Equw? as {27} aud (28) can Lo combdined so as to eliminate D, with the following xesult:

P= Czatalz s (29)
whire Cj is a constant equal to 4\,1-4/‘\/ .
The ultirate stress in a opherical vessel is the engineering stress corresponding

to the maximum pressurz, The condition at whick the maximum pressure is reached is
found hy setting the total differential dp of Equation (29) equal to zero.

4

/
THus
" 321, M2 0, dty + 6,32 a0, =0

or

dt [t = =2/3 doy, /oy, (30)

where the -::‘.z;script m denotes the maximum«~pressure point.

Now the quantity dt/t represents the change in wall thickness as a ratio to the
instantanecas wall thickness. This i3 the negative of the differential of the true strain
(sometimes called the logarithmic strain) €¥ iu the thickness direction. Thus,
Equaticn (30) reduces to

O, = 2/ 3)dom/de;kn . (31)

Since dam/ de¥ is merely the slope of the true stress-true strain curve, the
simple graphical construction shown as a solid straight line in Figure 97 can be used
to obtain the value of th~ true ultimate stress Om,.

Case 2. Biaxially~Iloaded Square Plate

The total load P actirg on each edge of a square plate of edge length L and
thickness t is simply

P=Ltw ,
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and the material volume of the plate is merely
! V=12 .
Thus “ '\\

P= Czc{‘t” z (32)
Differeatiating Equation (32) to obtain *he maximum load point and substituting

the definition for the true strain in the thickness direction in similar fashion as in the
pzevious example, it is found that

O = 240, [dex (33)
which is represented graphically hy the dotted-line construction in Figure 97.

Cate 3. Thin-Walled Tube With Axial Tension

Recently Felgar has demonstrated that the governing relationship for Case 3 is
the same as that given above for Case 1.(70)

* Kk Kk ko

From these three cases, it is evident that ultimate stress (or plastic instability)
is not necessarily a constant value, but will depend rather directly upon the geometry of
the part, the type of loa ling and the biaxial-stress ratio, For this reason » when re~
porting biaxial ultimate stress values in a handbook such as MIL-HDBK-5, it is neces-
sary to identify the type of specimen from which the data were obtained.

In the above discussion use was made of true stress-true strain relations. How-
ever, material design criteria usually are expressed in terms of engineering stresses,
which are based on the original cross-sectional area. Thus, it is necessary to convert

from true-stress values to engincering-stress values. The fellowing equation can he
used for this conversion:

Om

e,
where here e denotes the base of the natural logarithmic system (approximately 2.72),
€¥ is the true strain corresponding to Opyy» and ﬁ'g‘ is the effective Poisson's ratio
(defined here in terms of true strains, rather than the usual definition in terms of
engineering strains). Application of these results to Figure 97 shows that the ultimate
stress for Case 2 can be appreciably higher than that for Cases 1 and 3 for materials
with a large amount of strain hardening.

(34)
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