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ABSTRACT 

f 

The structure of a very strong shock wave propagating 

through a deuterium-tritium gas mixture and a pure tritium 

gas is studied. The temperature behind the shock wave is 

sufficiently high so that thermonuclear reaction probabilities 

are large. The wave structure is similar to that of detona- 

tions in chemically reacting gases. It is assumed that the 

characteristic times for collisions and reactions are such 

that the von Neumann-Zeldovich model of detonations is 

applicable; i.e., the shock can be treated as a viscous 

gas dynamic shock followed by a deflagration wave inside 

of which all the reactions occur. The physical and mathe- 

matical assumptions involved in the analysis of thermo- 

nuclear shock wave structure are examined. The reaction 

probabilities for deuterium and tritium fusion reactions 

are computed and the appropriate reaction kinetics equations 

are developed. The effect of energy losses due to bremsstrah- 

lung on the wave structure is considered for a gas that is 

optically thin to radiation of all frequencies. The result- 

ing set of structure equations are solved numerically for 

several physically interesting cases. The neutron flux and 

power output due to reactions is calculated for a shock wave 

propagating in a electromagneticaliy driven shock tube filled 
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with a mixture of deuterium and tritium. A power of 

3 
1 kw/cm is predicted under specified operating conditions, 
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CHAPTER I 

i INTRODUCTION AND HISTORICAL SURVEY 

A shock wave is a disturbance that propagates with 

supersonic speed with respect to the undisturbed gas ahead 

of it.  It compresses and heats the gas through which it 

moves.  If the gas is capable of undergoing molecular, 

atomic or nuclear reactions, the gas composition may change 

across the shock front. 

A shock wave in which exothermic reactions take place 

is called a detonation (see figure 1). A thermonuclear 

shock is defined as a detonation in which thermonuclear 

reactions occur.  If the high temperature created by the 

shock wave is maintained, the gas may continue to react 

until all the fuel is consumed. Radiation is an important 

energy transfer mechanism at temperatures for which thermo- 

nuclear reaction rates are appreciable.  If the gas is opaque 

to radiation, a steady state may be established behind the 

wave.  If the gas loses energy through radiation, however, 

no steady state is established behind the wave; the gas 

continues to radiate until its temperature is the same as 

that of its surroundings. 

The variation of temperature, pressure, density, speed 

and species concentration with space inside the shock wave 
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Temperature 

Upstream 
unreacted gas 

gas flows into wave 
with speed  u, 

Downstream 
fully  reacted gas 

J gas flows out of wave 
with speed   u2< u, 

FI6. 1       DETONATION   WAVE   IN A  NON-RADIATING  GAS 
VIEWED  IN  REFERENCE   FRAME   TRAVELLING 

WITH   THE   WAVE 
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is called the shock structure. The flow variables change 

continuously from one side of the wave to the other. The 

interior of the wave is where viscous and thermal conduct- 

ing processes are important and where all the reactions 

take place. However, for a gas in which radiation energy 

#'■*;' loss is negligible the conditions behind the wave are 
&>' 

* independent of the detailed transport and reaction processes 

occurring in the shock structure.  If radiation energy loss 

cannot be neglected, the conditions behind the wave depend 

on the physical processes occurring in the structure. 

: In this paper the structure of detonations in gases 

S capable of undergoing thermonuclear reactions is investi- 

gated. There is no known literature that deals directly 

with thermonuclear shock structure. However, studies of 

I gas dynamic shocks, detonations in chemically reacting gases, 

and shocks in radiating gases are relevant. 

The early theoretical work on gas dynamic shock waves 

S 12 ~ was done by Rankine and Hugoniot.  They d*: ived the jump 

conditions across the wave and considered the gas dynamic 

pf shock structure equations in an inviscid gas with non-zero 

thermal conductivity.  In general, the gas dynamic shock 

structure equations consist of two coupled non-linear first 

order differential equations.  If either viscosity or thermal 

t conductivity is neglected, one of the equations is algebraic. 

MHSHM 
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Rayleigh studied shock structure in a viscid gas with zero 

thermal conductivity. The solution of the shock structure 

equations in a viscid-thermal conducting gas was obtained 

4 
by Gilbarg and Paolucci using continuum theory and by 

5 6       7        8 
Wang Chang , Mott-Smith , Zoller and Grad using the 

Boltzmann equation. 

9 
Detonations were first observed in 1881 by Berthelot. 

Chapman  and Jouguet "" studied detonations theoretically, 

postulating that the gas behind the detonation moved relative 

12      13 
to the wave with the speed of sound. Von Neumann , Döring , 

14 
and Zeldovich  analyzed the detonation structure problem 

in 1940 assuming that a detonation wave consists of a gas 

dynamic shock followed by s deflagration, a wave in which 

exothermic reactions take place that propagates with sub- 

sonic speed. Under this assumption, the shock structure 

equations include one algebraic equation and one first 

order non-linear differential equation. Hirschfelder and 

15 
Curtiss , assuming that the gas dynamic shock and defla- 

gration are coupled, solved two simultaneous non-linear 

differential equations for the detonation structure. Deto- 

nations have been studied for many kinds of reacting gas 

mixtures. For example, Resler and Gary  have studied 

17 
detonations in dissociating air and Petchek and Byron 

have investigated ionizing shocks in argon. 

*. 
agfiagUss^HKlS****^ 



Radiative shock wave structure has been studied exten- 

18 
sively since 1952 when Prokof'ev  investigated the case of 

steady flow with zero viscosity and thermal conductivity, 

19 
i.e., the "radiation smoothed" case. Heaslet and Baldwin 

extended earlier work on the "radiation smoothed" shock by 

20 
considering cases with discontinuous profiles. Marshak 

21 
and Traugott  have included the effects of viscosity and 

thermal conductivity in their analyses of radiative shock 

structure. Shocks in optically thick atmospheres have been 

22 23 
investigated by Koch ' for a plasma and Scala and Sampson 

for a chemically reacting gas. Shocks in optically thin 

24 
atmospheres have been studied by Gross  for an ordinary 

23 
gas and by Scala and Sampson ' for a gas undergoing chemical 

reactions. 

In the present paper, the model of detonation structure 

that von Neumann used in his study of shocks in chemically 

reacting gases, is applied to an analysis of detonations in 

gases capable of undergoing thermonuclear reactions. First, 

a set of shock structure curves showing the effect of reac- 

tions is obtained for detonations in tritium and deuterium- 

tritium mixtures. We neglect the effects of viscosity and 

thermal conductivity of the gas and radiative energy loss 

in this initial treatment. Then, the more complicated 

problem of a coupled detonation and radiative shock wave 

.^liftfc :*&% ^«w-'i-:- ^^^a^mm.» 
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in tritium and deuterium-tritium mixtures is studied. As 

there are no applied magnetic fields in the problem, 

bremsStrahlung is the only type of radiation included in 

the analysis. The gas is assumed to be optically thin to 

radiation of all frequencies. A set of structure curves, 

showing the coupled effects of reactions and radiation on 

the shock structure, is obtained. 
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CHAPTER II 

PHYSICAL AND MATHEMATICAL FORMULATION OF THE PROBLEM 

In this chapter the problem of detonation wave structure 

in gases undergoing thermonuclear reactions will be formu- 

lated physically and mathematically. Before writing down 

the appropriate shock structure equations for thermonuclear 

shocks (first, assuming no radiation losses, and then includ- 

ing radiation losses), the von Neumann model of detonation 

structure will be described. A discussion of the physical 

and mathematical assumptions used to simplify the structure 

equations will follow. 

2.1 Von Neumann Model of Detonation Structure 

The model of detonation structure used by von Neumann 

in his study of shocks in chemically reacting gas mixtures, 

treats a detonation as a shock followed by a deflagration. 

The shock wave, which is thin compared to the deflagration 

that follows it, propagates supersonically into the undis- 

turbed and unreacted gas; the deflagration, inside of which 

all the reactions occur, propagates subsonically into the 

gas through which the shock has already travelled. 

The changes in pressure, density, speed, temperature 

and ratio of reaction product density to total density ( <*. ) 

inside the detonation, viewed in a reference system moving 
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with the detonation, are depicted schematically in figure 2. 

Each variable asymptotically approaches its upstream value as x 

goes to - öD and its downstream value as x goes to + oo . 

In the shock wave (points 1 to 2 in figure 2), the gas is 

compressed, decelerated and heated. In the deflagration 

(points 2 to 3 in figure 2), the gas, as the reactions 

proceed, is gradually expanded and accelerated. The tempera- 

ture, which reaches almost its final value behind the shock, 

rises to a maximum inside the deflagration and then decreases 

slightly as the fuel gets used up and the random thermal 

energy is transferred into bulk kinetic energy of the gas. 

The von Neumann model is a valid description of a 

detonation provided that the characteristic time for reac- 

tions to take place,t , is long compared to the time involved 

25 
in passage of the shock wave (Hirschfelder,  p. 801). The 

time for the shock wave to pass in a plasma depends on the 

26 
ion-ion collision time, XL >  behind the shock (Von Karman ). 

Therefore the validity criterion for the von Neumann model 

is that X /t D < < \   behind the gas dynamic shock. 
C   R 

In order to get some physical feeling for the conditions 

inside thermonuclear shocks, we shall note some typical values 

of parameters such as temperature, pressure and speed. The 

initial gas mixture (point 1 on figure 2) is assumed to oe 

fully ionized to avoid the mathematical complications of 

SG-fc 
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FIG. 2      DETONATION IN A NON-RADIATING GAS ACCOROING 
TO VON NEUMANN MODEL. 
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dissociation and ionization. Hydrogen is fully ionized at 

4 27 about 5 x 10 °K (Brezing ). Initial nurober densities 

of interest for controlled thermonuclear fusion are 

15     16   ««3 28 ^ 10 - 10 cm (Glasstone and Lovberg ). The detona- 

tion speed, which is also the initial gas speed relative to 

a reference system moving with the detonation, is about 

10 cm/sec. 
The shock wave heats the gas to a temperature of about 

10  °K. Behind it (point 2 on figure 2)» number densities 

have increased by a factor of four and gas speeds have 

decreased by the same factor (see section 2.3). As the 

reactions go to completion inside the deflagration wave, 

the density, speed, pressure and temperature change no more 

than a factor of two. The characteristic temperatures and 

number densities behind the deflagration (point 3 on figure 2) 

10 «      15  -3 are about 10  °K and 10  cm  respectively. 

The temperatures and speeds characteristic of thermo- 

nuclear shocks are much higher than those associated with 

other kinds of strong shock waves. A graph of post-shock 

temperature vs. wave speed for hydrogen is shown in figure 3. 

As the wave speed is increased, the gas first becomes disso- 

ciated and then ionized. As the wave speed is increased 

further, radiation processes in the gas become important. 

The post-shock temperature is given by the Fankine-Hugoniot 
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FIG.   3      POST-SHOCK TEMPERATURE vs. WAVE SPEED  [ GROSS24] 
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conditions for a gas dynamic shock. In the dissociation 

and ionization speed-temperature regimes, the appropriate 

chemistry has been incorporated into the jump conditions 

29 
(Taussig ). in optically thick atmospheres, the radiation 

energy density becomes important compared to the internal 

energy of the gas for u1 > 10 cm/sec (Koch22). Radiation 

terms must be included in the jump conditions for such shock 

speeds. For an optically thin atmosphere, radiation energy 

g 
losses become important only for shock speeds above 10 cm/sec. 

There are no Rankine-Hugoniot conditions for shocks in opti- 

cally thin atmospheres because no steady state is established 

behind the shock. The post-shock temperature shown in 

figure 3 is the maximum temperature reached in the structure 

of the shock (Gross ). 

The post-shock temperature for thermonuclear shocks is 

the temperature behind the entire wave, gas dynamic shock 

plus deflagration. It is given by the set of Rankine- 

Hugoniot conditions that include the energy released and 

the change in gas composition due to reactions (see section 

2.3). The lowest detonation speed which satisfies these 

Rankine-Hugoniot conditions is called the Chapman-Jouguet 

speed. If the detonation travels with the Chapman-Jouguet 

speed, the downstream flow is sonic. For speeds greater 

than the C-J speed, there are two solutions to the Rankine- 
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Hugoniot conditions. The upper branch, a strong detonation, 

has subsonic flow behind it; the lower branch, a weak deto- 

30 
nation, has supersonic flow behind it (Hayes ). A graph 

of post-shock temperature as a function of wave speed for 

deuterium is shown in the figure 3. Deuterium and tritium 

fusion reactions have much larger cross sections than 

hydrogen fusion reactions and are therefore of greater 

interest in problems of controlled thermonuclear fusion 

31 
(Taylor and Tobolsky ). 

2.2 Physical and Mathematical Assumptions 

The physics to be described in a complete treatment of 

a thermonuclear shock structure problem includes (1) reac- 

tions, i2) radiation, (3) transport processes, (4) non-equi- 

librium effects due to the multi-component nature of gas, 

and (5) the effects of applied electromagnetic fields. Reac- 

tions occur in the gas which has been shock heated. Some 

of the energy added to the gas by reactions is lost through 

radiation. Transport processes due to the viscosity and 

thermal conductivity of the gas account for the bulk flow 

of momentum and energy. Since the gas is a mixture of 

several kinds of ions and electrons, non-equilibrium pro- 

cesses (e.g., diffusion, charge separation, and energy and 

momentum transfer between species) occur. External magnetic 
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fields, necessary to contain a thermonuclear plasma in order 

to tap its energy, further complicate the physics by adding 

cyclotron radiation and hydromagnetic effects. 

A mathematical treatment of thermonuclear shock 

structure including all the relevant physics would require 

the solution of the set of non-linear differential equations 

that result from a coupling of the many species Boltzmann 

or continuum equations with the radiative transfer equation 

and Maxwell's equations. To reduce the number of differen- 

tial equations in the problem to a manageable set, some 

of the physical effects must be ignored. The present treat- 

ment will include reactions and radiation while neglecting 

transport phenomena, non-equilibrium affects due to the 

presence of more than one species, and the containment problem. 

The many species nature of the gas is incorporated in the 

state and continuity equations only. 

A list of assumptions used in the treatment of thermo- 

nuclear shock structure without radiation in tritium and 

deuterium-tritium mixtures is given below. It is followed 

by a discussion of their physical validity. The further 

assumptions that must be made when radiation is included 

in the problem are then listed and discussed. 

PHYSICAL ASSUMPTIONS FOR THERMONUCLEAR SHOCK STRUCTURE 

1. The von Neumann model of detonations is valid: 
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the shock wave is thin compared to the deflagration 

wave; all reactions take place in the deflagration 

region. Since the influence of reactions on the 

detonation structure is of primary interest, the 

shock is treated as a discontinuity and only the 

deflagration structure is studied. 

2. Transport phenomena due to viscosity and thermal 

I conductivity are negligible in the deflagration. 

;f 3. Non-equilibrium effects due to the presence of 

more than one species are negligible: All species 

it travel with the local gas speed; the particles of 

each species have a Maxwellian distribution of 

energies at the local gas temperature; charge 

separation is negligible. 

4. One-dimensional, single fluid, continuum equations 

provide an adequate description of the phenomena. 

5. All macroscopic velocities and temperatures are 

low enough so that relativistic effects can be 

neglected. 

6. There are no applied electromagnetic fields. 

Assumptions 1, 2 and 3 were made in order to simplify 

both the mathematics and the physics of the thermonuclear 

shock structure problem. Their physical validity depends 

on the ratios of characteristic collision and reaction times 

■■■■. ^.^s^^^SP 
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for typical temperatures and number densities inside 

thermonuclear shocks. 

32 Spitzer  defines the following characteristic times 

for a plasma: The time required for a single species, non- 

Maxwellian distribution to approach the Maxwellian distri- 

\        I bution is 
i   I: 

Tg ,11.4**    »»    (°K)     secj (a#1J 

n(cm" )  Z      jinA 

where Z is the atomic number of the ion, A is its atomic 

weight, and 

|'v.3T3Xi 

•A.  = -*   -=-i-     .      (2.2) 
2  3 2 Z^ eJ V IT n 

The self collision time for electrons, X    ,  is just X ce    " c 

with A = 1/1836, the atomic weight of electrons. The rate 

at which equipartition of energy between two groups of 

particles is established is 

A    A /T            T 
t      = 5.87  -i—-  — +    —   I)     sec.          (2.3) 

Cq 2  2 
n2ZlZ2Xn^ \A1           A2 

If the two groups are ions and electrons, and if T.cr; T , 

then 

X     -5.87-j.  ^ ^ sec. (2.4) 
eq      A*  n Z2 InA 

e 
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The time associated with viscous processes, which is what 

26 
von Karman  calls the characteristic time associated with 

thermodynamic transformations, is the ion-ion collision 

time. The time associated with thermal conduction processes 

is the ion-electron collision time. Another relevant 

characteristic time is the mean time between reactions 

T = 
R  n « v > ' (2.5) 

where <.TV > is the reaction cross section times the relative 

speed of the interacting particles averaged over the product 

35 of their distribution functions (Osborn ). 

The ratios of the collision times, "t ,X     , T   are '    c' ce' eq 

independent of temperature and number density. For a tritium 

plasma (A ■ 3), 

Jjß  = 74.3     and ^ = 38.2. 
*-ce tc 

Ratios of collision times to the reaction time must be eval- 

uated separately for each temperature and number density 

« 15   —3       9 10 
;P of interest. For n = 10  cm  and 10 °K < T < 10  °K, 

In A. (which is not a very sensitive function of temperature 

and number density) ^21. The values of Xeq/'CR  and 

T  T Lc/  R (with A = 3) are given in Table 1 for several 

temperatures in this range. 
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T   (°K) <^vi> Teq/TR TC/TR 

g 
1 x 10 -17 2 x 10     ' 0.02 0.0006 

g 
5 x 10 -17 8 x 10     ' 1.02 0.027 

1   X   10                  i         1   X   10                   ! 
1                                               1 

i                              ! 
3.8 0.11 

2 x 1010 3 x lO-16       :         30.5 0.79 
. 

TABLE 1. Ratios of Characteristic Times 

The shock region is thin compared to the deflagration 

region (assumption 1) if XC/XR 4<. 1 behind the shock. 

For a tritium plasma the temperature inside the shock rises 

4        10 
from its downstream value, 5 x 10 °K, to 10  °K before any 

reactions take place. However, as the temperature approaches 

its post-shock value, ion-ion collision times and reaction 

times become comparable. Therefore the reactions may not 

be completely confined to the deflagration wave; some may 

take place in the tail of the shock. 

Viscosity is negligible inside the deflagration (assump- 

tion 2) if U/CR «-tl for typical temperatures and number 

densities. The requirement for neglecting thermal conduc- 

tion and diffusion is that fU/ t R ) (l/fo V < 1 (von Karman ). 
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M is the Mach number, the ratio of the local gas speed to 

the local sound speed: 

2 k 
M m(isTJ • (2-6) 

y , the ratio of specific heats at constant pressure to 

that at constant volume, has the value 5/3 for a plasma, 

a mixture of monatomic gases. It can be shown {see section 

2.3) that inside the deflagration, 

JlM2i 1. 

Since (^c/LR ) (^ 1/M2) > i inside the deflagration, the 

effects of viscosity, thermal conduction and diffusion would 

have to be included in a fuller treatment. 

The requirement for the ions and electrons to be in ther- 

mal equilibrium (assumption 3) is that T!eq/'tR <L C 1 inside 

the deflagration. The reaction product ions are released with 

Mev energies. The electrons, since they are not involved in 

reactions, are cooler than the ions. Although reaction 

product ions transfer energy to fuel ions in a time comparable 

to the reaction time, energy transfer from the hot ions to 

the cooler electrons occurs much more slowly.  (For 

T = 2 x 1010 OK, Cc/*R  0.8 while  teq/tR -30). 

The neutrons released in reactions, (which we assume are 
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kept in the gas), must be in equilibrium with the ions and 

electrons for the gas to be in thermal equilibrium. Cross 

sections for neutron-triton scattering, T"„, are ••» 1 barn 

33 
for Mev neutron energies (Hughes and Schwartz ). A 10 

Mev neutron goes through 2-5 collisions before its energy 

34 
reaches 2 Mev (Glasstone ). The neutron collision time, 

V-c« a (number of collisions to thermalize ) x l/(n<r'v„). 
*■ N N 

10    —      9 
For T"10  OK, V„ is 10 cm/sec. Therefore the ratio of 

N 

the neutron-ion collision time to the ion-ion time,1cV'Q; JSäJI, 

and the neutrons thermalize with the ions in a time 

comparable to the ion-ion collision time. Equilibration 

times for neutrons and electrons, however, are much larger 

than those for neutrons and ions since neutron-electron 

collision cross sections are very small. The neutrons, 

like the ions, are therefore not in equilibrium with the 

electrons. 

The gas has local charge neutrality if the electron 

Plasma frequency, , 

I 4 n ng a \ 
(2.7) r m 

32 
(Spitzer  ) is much larger than the frequency associated 

with the shoes, wave, U.  ■ * "/'tK . For the typical 

temperatures and number densities mentioned previously, 
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R 

Therefore the assumption of charge neutrality is a good one. 

One-dimensional, single fluid, continuum equations 

(assumption 4) have been used in many studies of shock 

4       22 
structure (e.g. Gilbarg and Paolucci and Koch ). A 

discussion of the use of continuum fluid equations rather 

than the Boltzmann equation is given by Gilbarg and 

4 24 
Paolucci and by Gross.   Treatment of the ions, neutrons 

and electrons as a single fluid neglects the lack of thermal 

equilibrium between the electrons and the ions and neutrons. 

If the electrons are assumed to be as hot as the ions and 

neutrons, a significant fraction of them would have relati- 

vistic energies. The non-relativistic equations are valid 

2 2 
(assumption 5) if kT << mc for each species,  (mc for 

electrons is c: - Mev.) The use of non-relativistic equa- 

tions is justified physically, however, since the electrons 

are actually cooler than the ions and neutrons. 

The following physical assumptions are made in addition 

to those listed previously when radiation is included in 

the thermonuclear shock structure problem: 

7. Radiation effects are significant in the deflagration 

region only. 

m 
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8. The gas is optically thin to radiation of all 

frequencies. 

9« The radiation comes from ion-electron bremsstrah- 

lung only. 

Since the von Neumann model of detonations is assumed, 

the effects of radiation are studied in the deflagration 

region only. In figure 3, it is seen that for thermonuclear 

shock speeds, the maximum temperature behind an optically 

thin shock is only slightly lower than the temperature 

behind a non-radiative gas dynamic shock. Therefore assump- 

tion 7 is valid. 

A gas is optically thin to radiation if the photon 

absorption mean free path,  X  , for all frequencies, V , 

is much larger than all the other characteristic lengths in 

the problem. The reaction mean free path is the largest 

characteristic length for non-radiative thermonuclear shocks. 

Therefore the gas is optically thin if X  > > X  for 
P      K 

all frequencies.  (For T = 10  <>K and n * 10  cm"" , X 

9 
is ~ 10 cm). The only type of radiation occurring in a 

fully ionized plasma in the absence of magnetic fields is 

bremsstrahlung. Since non-relativistic equations are used, 

only ion-electron bremsstrahlung is considered; electron- 

electron bremsstrahlung is neglected. An approximate expression 

for the mean free path for absorption of a photon by a hydrogen 

j|*S?:*ä$* äJpÄ*5' 
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isotope plasma, as the result of a free-free transition, 

28 
is (Glasstone and Lovberg ), 

M       «   ,     3 
X ^ 7 x 10-

5  I flSEl V o„. (2.8) 
P 2 n 

The power emitted per unit wavelength per unit volume due 

28 
to ion-electron bremsStrahlung (Glasstone and Lovberg ) 

is 

$^6.01 x W-»»  V°i »*> «"H^C-ifSjHPs-. (2-9) aA e  J- A T  3 p 
cm A-sec 

The maximum value of __* occurs for 
dA 

y.hi Ä. 
T (kev) 

(2.10) 

For T = 1 Mev, X   is 6.2 x 10* X (V   ^ 5 x 1020 cps). 
' max max r 

The photon absorption mean free path for this temperature 

29 
and frequency is ~ 10  cm, which is much larger than the 

reaction mean free path. The smallest frequency for which 

Xv is > > X  is -v ~ 10  cps ( V m  3 x 10 A). The 

15 
ratio of the power emitted at a frequency of 10  cps to 

20 -11 
that emitted at a frequency of 5 x 10  cps is ^ 3 x 10 

Therefore the fraction of radiation energy emitted at 

frequencies for which the gas is not optically thin, is 

negligible. It is, therefore, a good assumption to treat 
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the gas as an optically thin atmosphere. 

2.3 Shock Structure Equations Without Radiation 

The following are the tine-dependent continuum fluid 

conservation equations for the deflagration wave (von 

26% Karman ): 

.th 
The continuity equation for the i  specie is 

It1 + ~h (niu) " V    i = i'2'-" N'    <2-n) 

where N is the nuiriber of species in the mixture, and W. is 

the production rate of the i  species(see section 2.4). 

Multiplying each continuity equation by m. and summing over 

all species, one obtains the mass flow equation, 

*g ♦ ^  (f» u) = £ m W (2.12) 

where f = £ n. m. . (2.13) 
l i x 

If no particles (e.g., neutrons) escape from the gas, and 

if negligible mass is lost or created in reactions, then 

"f~ m. W. «= 0. The mass, Lm.  lost in a nuclear reaction is 
i L    x 

Am - (mx + m2) - (m3 + m4) , (2.14) 

where m and m are the masses of the reacting nuclei and 

36 
m. and m the masses of the product nuclei (Evans  ).  If 

Am/(m.+tn ) is < < 1, the mass lost in reactions can be 



-,.,,.... ^^ifrf&^t&^ri 

/ 
V*. 

25 

neglected in the mass equation. For thermonuclear reac- 

tions, Am/Ofiv. + m?) is <£ 0.01, so mass is conserved to a 

high degree of accuracy. 

A momentum flow equation for each species in the mixture, 

analogous to the species continuity equations for mass flow, 

can also be written down. The momentum flow equation for 

the mixture is obtained by summation of the species momentum 

equations, if the viscosity and thermal conductivity of 

the mixture and the diffusion of the species are neglected, 

the momentum flow equation for the mixture is, 

£ If) +& (f«2) --I, (2.15) 

where  p= Ln. kT . (2.16) 

The energy flow equation for the mixture, which is derived 

by summing the energy equations for all the species, is 

where e is the internal energy of the mixture, and q_ is 

a volume energy source due to thermonuclear reactions. 

If the shock is viewed from a coordinate system moving 

with the shock speed, all time derivatives in the continuity, 

mass, momentum and energy equations vanish. If the result- 

ing time-independent equations are integrated once with 

respect to the spatial variable, x, they become 
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and 

ou=A, 

2 p + pu 

2 u 

B 

h + 2 " %N = C ' 

(2.18) 

(2.19) 

(2.20) 

v  R where h = pu + e ■ -*- _ T is the enthalpy of the gas 

(which is assumed to be ideal). 

The constants of integration, A, B, and C,evaluated 

from the steady state conditions upstream and downstream 

from the shock (see figure 2), are 

and 

A^lW3« 

B=P1   +^1U1  = P3  
+/3U3  i 

2 2 
0=^+^1    =h3+^3     -    Q 

(2.21) 

(2.22) 

(2.23) 
2 2 

In state 1 the reactions have not begun so q_ =0. The 

reacx..'ons have gone to completion in state 3 so q_ = Q, 

the energy released per unit mass of the initial mixture 

if it reacts completely. 

Thermonuclear shocks are very strong shocks, i.e., 

2 
p. <. <. p.  u. . The Rankine-Hugoniot conditions for a thermo- 

nuclear shock follow from equations (2.21), (2.22), (2.23) 

and the assumption of a strong shock. The ratio of the 

gas speed behind the thermonuclear shock to the gas speed 

ahead of the thermonuclear shock, (the shock speed), is 
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Ul"    ft"     Y+1 1+1 
(2.24) 

where     ^ = | . 

The minimum shock speed that satisfies equation (2.24), the 

Chapman-Jouguet speed, is 

ux = (2( r - 1) Q)' (2.25) 

For C-J flow conditions, equation (2.24) reduces to 

u. 

u  r+i  8 
(2.26) 

The ratio of the gas speeds behind the gas dynamic shock to that 

in front of it, __2 , is given by equation (2.24) with Q = 0. 
u, 

u. 
The two values of _2    that satisfy equation (2.24) with 

ul 
Q = 0 are 

u2  Jf-l 

Ü7 " 7+1 
1 

1 
and _2 

u. 
= 1. (2.27) 

One feature of thermonuclear shocks is that the tempera- 

ture of the gas behind the thermonuclear shock, T_, is indepen- 

dent of the initial temperature of the gas. T_ is related 

to the energy released in reactions, Q, and the shock speed, 

ux, by 

n * i iWWMW '>   ''■'^^^»--•■■^■irtfasbfeif^^te^^^g^ 
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w3   
3 ir+i V^+iJ 

r 
1 + i-2 (r * -i) 2L- 

(2.28) 

Por C-J flow, R_ T 
*3 

3«2(m)*Q I Q. (2.29) 

The temperature of the gas behind the gas dynamic shock, 

T-, is given by equation (2.28) with Q ■ 0, i.e., 

,  2.(*-l)    2 
~  Ä. BE     -■■   -  ■  -  -■-      U 

w,        u+D2   x 

R T 

*2 

(2.30) 

If the shock is propagating with the C-J speed, 

2 

W2 

U-l) 

*+i 
Q  = - w   3 

(2.31) 

The temperature behind the gas dynamic shock, T , and 

that behind the thermonuclear shock, T_, are plotted as 

functions of the shock speed in figure 4. The gas is assumed 

to be a deuterium-tritium mixture containing equal numbers 

of tritium and deuterium ions. The C-J speed for the mixture 

%9 is 3.48 x 10 cm/sec corresponding to a post-detonation 

temperature of 4.2 x 10  °K. T3 is higher than T2 for all 

shock speeds. The increase in specific enthalpy across the 

deflagration is accompanied by an increase in temperature, 

since the mean molecular weight of the mixture remains con- 

stant as the reactions occur. 

.L^. 
-^«««MMMBaMSuiBslMMhi., i 
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The temperatures behind the gas dynamic and thermo- 

nuclear shocks as a function of shock speed for a tritium 

9 
gas are shown in figure 5. The C-J speed is 2.5 5 x 10 cm/sec, 

creating a temperature of 2.2 x 10  °K behind the thermo- 

nuclear shock. The temperature behind the deflagration 

(thermonuclear shock) is equal to the temperature behind 

the gas dynamic shock for shocks propagating with the C-J 

speed. T- is "* T for shocks propagating with speeds 

9 
between the C-J speed and 3.4 x 10 cm/sec. If the shock 

speed is increased further, the temperature behind the 

deflagration will be lower than that behind the gas dynamic 

shock. An increase in the enthalpy of the gas as the reac- 

tions occur does not necessarily show up in increased 

temperatures, as the mean molecular weight of the mixture 

decreases with reactions. The temperature behind a gas 

dynamic shock propagating in a gas containing the reaction 

products of tritium fusion reactions, (alpha particles and 

neutrons in a 1:2 ratio by number), is also shown in figure 

4 for comparison. 

2.4 Reaction Rates 

The source terms, W., in the species continuity equations, 

must be specified in order to solve the non-radiative shock 

structure equations across the deflagration. These functions 
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are related by the requirement for mass conservation, 

£ m. W. = 0. It can be shown that they all depend on 
x  1 x 

the reaction rates for the fusion reactions taking place 

in the plasma. 

The reaction rate for binary nuclear reactions is 

n, n 
W = -^-—- <5s/>  , (2.32) 

1+ ^A A A1A2 

where n. and n are the number densities of the interacting 

nuclei and where the Kronecker- S  takes into account the 

possibility that the reacting particles are of the same 

kind (A = A ). If each species has a Maxwellian distri- 

bution of velocities at the same temperature, the reaction 

28 probability   <T \J >     is given by  (Glasstone and Lovberg    ) 

1 M.V  \      2 
<*V>=*    l-^-Y       rvexpf-^     v^dv,      (2.33) 

"X V2 kT/     J V    2 kT/ 

m. m 
where yu. = _■ rrz        is the reduced mass of the system, 

12 

T = cross section for binary nuclear reactions, and 

v = relative speed of the interacting nuclei. 

It is convenient to express < <* ^ > as an integral over 

center-of-mass energy, E . Since 
cm 

1    2 
E  = ? ju v* , (2.34) 
cm 2/* 
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the reaction probability can be written, 

7 E 
exp j- cm E  dE . (2.35) 

cm  cm 

Nuclear reactions are studied in the laboratory by sending 

beams of nuclear projectiles toward a target. Therefore 

nuclear reaction cross sections are usually given as a 

function of the laboratory energy of the incident particle 

E . If the target nuclei are in motion, as in a plasma, 
L 

E is the relative energy of the interacting nuclei. With 
L 

the relation between E„ and E , 
L     cm 

E = - P 
L  M cm ' 

(2.36) 

the reaction probability, written in terms of E_, is 

VJV> = 8^ 
m 

Ai 

2'B» 
j *<V 

, M aL\   ET d ET . (2.37) 
s^'mtt  L   L 

V 

A reaction mean free path, \ , a mean reaction time, 

X    , and a reaction power density can be defined in terms 
R 

of <-V\J> If we let 

n «v/> » 

the reaction mean free path is defined as 

X R •% <v> 'C R ^ 

(2.38) 

(2.39) 

i 
',**. <M -ztem&mJIta «. | 
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where <v>=(-" , for a Maxwellian velocity distribution. (2.40) 

The power density is just the reaction rate multiplied by 

the energy released per reaction, 

(2.41) PTN 
nl 
1 

where °R =  (Am) 
2 

c . 

2.5 Shock Structure Equations With Radiation 

No steady state is established behind thermonuclear 

shocks propagating in a gas that is losing energy through 

radiation«, Therefore, there are no Rankine-Hugoniot condi- 

tions which determine the post-shock state of the gas given 

its initial state. Since no steady state is established 

behind the shock, it is not obvious for the radiative case 

that a reference frame travelling with the shock speed is 

one in which all time derivatives in the structure equations 

vanish. 

A physical argument can be used to show that the shock 

frame is a steady reference frame for shocks in optically 

thin atmospheres. It is apparent that successive particles 

of gas, passing through the shock, go through the same history 

in any region containing the shock that is much thinner than 

a photon absorption mean free path. The profiles of the 

Wl0&k#aN$fäjjL 
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|:. 

flow variables, viewed in the shock frame, are therefore 

steady throughout such a region. Thus, we can validly 

set time derivatives equal to zero in the structure equa- 

tions if we limit the integration of these equations to 

a region containing the shock that is much thinner than 

a photon absorption mean free path. (The structure equa- 

tions may be integrated over all space for thermonuclear 

shocks in a non-radiating gas.) 

All of the non-radiative thermonuclear shock struc- 

ture equations are valid for thermonuclear shocks in 

optically thin atmospheres except the energy equation. 

The radiation pressure in the radiative momentum equation 

and the energy density term in the energy equation are 

negligible because all of the radiation is assumed to 

escape from the gas. The only radiative term in the energy 

dq 
equation is r* , the divergence of the radiative flux, 

37 
(Vincenti and Kruger ). The energy flow equation with 

radiation for thermonuclear shocks in an optically thin 

atmosphere is 

1_ 
dx 

( pu (h + ui - q^)) + |3   =0. (2.42) 

If equation (2.42) is integrated over all space and then 

divided by the mass flow constant, j  u = A, then 

-*S*S*~ -**«* i*&&^. 

•- 
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2 
u I  f dq 

A  J  . h + 2 " "it. + A  J ~ «*' " C- <2-43> 
o dx' 

do 
An expression for — can be obtained from the radia- 

tive transfer equation, 

^d7 = f( *v -Kv Iv), (2.44) 

where I is the radiative intensity,JU is the cosine of 

the angle between the x-axis and the direction of observa- 

tion of Iv, üj    is the volumetric emission coefficient, and 

38 
j- K is the volumetric absorption coefficient (Goulard ). 

For an optically thin gas, emission processes are more 

important than absorption processes so oj > >Pk I. 

37 
(Vincenti and Kruger ). The radiative transfer equation 

thus becomes, 

dl 
AK    =/-Ju . (2.45) 

dx 

If it is integrated over all frequency and solid angle, 

§        assuming that the emission is isotropic, we get an expression 

for ^  , 
dx ' 

If"4"'    i  /   Jvdv, <2-46> 

where        q = 2 v     j   Li    d«  dv . (2.47) 
,>>    » 

*;^^~-*&i*ä&~*- ,-,*■**»■■ *sa**»fca 
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An expression for the vciumetric emission coefficient, 

^j , must be obtained in order to evaluate the integral 

in equation (2.46). Since there are no magnetic fields 

and hence no cyclotron radiation, and since recombination 

of atoms is negligible at thermonuclear temperatures, 

the only non-neglible radiative process is ion-electron 

bremsstrahlung• Therefore the volumetric emission coeffi- 

cient is just the power due to bremsstrahlung per unit 

volume per unit uolid angle per unit frequency, which can 

be obtained from equation (2.9) by changing variables from 

wavelength to frequency. If the resulting volumetric emission 

coefficient is integrated over all frequency and solid angle, 

(assuming Isotropie emission), one obtains an expression 

for the power per unit volume due to bremsstrahlung of all 

28 
frequencies, POT. (Glasstone and Lovberg ): 

BK " 

PBR 3 ^^ X 10   ne £ (ni Z )T* (°K)  ^  
i cm sec 

(2.48) 

The radiation term in equation (2.43) is just r- j P  dx' . 
A c'  BR 

In summary, the shock structure equations for a radia- 

tive thermonuclear shock in an optically thin atmosphere are 

P*  - A , (2.18) 

p + j- U  = B, (2.19) 

*.>>— ■*■ 
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h + *- - q^ + 1 $ PBR dx«  = C, 
u_ 

2 
(2.49) 

P=P£ T 
(2.50) 

and   — (n.. u) = Wi,  i =1, 2,..., N, (2.51) 

I 

where A, B, and C are defined by equations (2.21), (2.22), 

and (2.23) and where the expression for P  is given by 
BR 

equation (2.48). The remaining undefined quantities, the 

thermonuclear energy release term, q_ , and the rate func- 

tions, W., depend on the specific nuclear chemistry and will 

be discussed in the next chapter. 

The shock structure equations have now been developed 

as far as possible without reference to a particular reac- 

ting gas mixture. In the next chapter, the nuclear chemistry 

appropriate to three different reacting gas mixtures, wilJ 

be discussed and incorporated into the equations. 

.«uawaliftaatiBgM » w —w^a 
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CHAPTER III 

THERMONUCLEAR SHOCK STRUCTURE EQUATIONS FOR THREE DIFFERENT 

GASES 

The general set of radiative thermonuclear shock struc- 

ture equations derived in Chapter II will now be developed 

to apply to thermonuclear shocks in (1) deuterium-tritium 

gas mixtures with equal numbers of deuterium and tritium 

ions, (2) a pure tritium gas, and (3) hydrogen-tritium gas 

mixtures. The three cases will be discussed in succession. 

After an examination of the properties and cross sections 

of the nuclear reactions occurring in the gas mixture, the 

equations that govern reaction kinetics will be derived. 

The particular set of shock structure equations for the gas 

mixture will then be put into a convenient dimensionless 

form. 

3.1 Fusion Reactions in Deuterium-Tritium Mixtures 

The following reactions occur in deuterium-tritium gas 

39 
mixtures (Wandel, Hesselberg Jensen and Kofoed-Hansen ) 

1. D + D -»T  + p, 

2. D + D—»H63 + n, 

3. T + D—»He + n, 

3       4 4. He + D—»He + p, 

Jk. «»*»«■*■■"»' * 
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I 5.  T + T —»He + 2n, 

i „334 
6.  He  + He --> He  + 2p, 

I 7.  T + He - ■» He + p + n. 

|        Reactions 5 through 7 have smaller cross sections at most 

energies than reactions 1 through 4 and are usually neglected 

in the treatment of thermonuclear problems. A graph of the 

cross sections for reactions 1 through 4 for deuteron energies 

up to 1 Mev is shown in figure 6. 

The kinetics of deuterium reactions (reactions 1 

through 4) are complicated because deuterium reacts with 

its reaction products, tritium and helium-3. Furthermore 

neutrons and protons are both intermediate and end products. 

Although problems involving the full set of deuterium reac- 

tion kinetics equations have been solved, it is considerably 

more difficult to deal with a coupled set of fluid and 

kinetics equations for deuterium. 

It has been assumed, in the treatment of the thermo- 

nuclear shock structure in a deuterium-tritium mixture with 

ecuai numbers cf deuterium and tritium ions, that only the 
A 

T(d,n) He", (T-D), reaction occurs. This assumption is 

well justified for temperatures below 100 kev as reaction 

probabilities for T-D reactions are 100 times greater than 

these fcr the D-D reactions and 10 times greater than that 
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3        4    3 I for the reaction He  (d,p) He , (He - D), (see figure 7). 

| For Mev temperatures, the reaction probabilities for the 

three reactions are comparable. However, since reaction 

I rates depend both on reaction probabilities and the pro- 
f-, 

ducts of number densities of the reacting nuclei, 

.«' 3 ;* (W = nin2 <^" v >), He - D reactions can be neglected because 
f 3 

of the small He number densities. The ratio of the reaction 
H 

rates for T-D and D-D reactions, assuming they have the same 

probability is 

w
m^   2nm TD ^  T 

VT„    n^ I DD     D 

i The triton population is enriched at the expense of the 

deuteron population as tritons are born in D-D reactions, 

so as the reactions proceed, the T-D reaction becomes more 

important than the D-D reaction. 

The T-D reaction cross section has a wide resonance 

whose peak is at 0.107 Mev laboratory energy (see figure 8). 

41 The lifetime of the associated state is 2-3 times the natural 

nuclear lifetime, the time for a deuteron to traverse a tri- 

A. 40 m tium nucleus (Kaplan ). The main reaction mechanism at 

these energies is formation of a  He compound nucleus 

which decays into a neutron and alpha particle. At higher 

energies, stripping reactions dominate; an alpha particle 

l and neutron are formed directly when the deuteron strips 

X"«* *W^.-."T t,*£ a.Js, ^,3; 
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FIG. 7       REACTION   PROBABILITIES FOR DEUTERIUM FUSION 
REACTIONS BASED ON MAXWELLIAN DISTRIBUTIONS. 

[GLASSTCNE AND LOVBERG28] 
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a deuteron from a triton (or a triton strips a proton from 

a deuteron). 

The only reaction between a deuteron and a triton 

4 
that is observed at Mev temperatures is T(d,n) He . 17.6 

Mev in released in this reaction. The threshold energies 

3 
for two other reactions, T(d,2n) He and T(d,pn) T, are 

2.226 and 2.991 Mev (center of mass) respectively. These 

reactions are not observed for deuteron laboratory energies 

41 
below about 12-14 Mev (Ajzenberg-Selove and Lauritsen ). 

According to classical mechanics, no reactions should 

occur for deuteron energies less than the Coulomb barrier energy 

which is ~ 660 kev for a tritium nucleus. Quantum 

mechanically, deuterons with energies less than the barrier 

energy have finite probabilities of tunneling through the 

barrier. The probability of penetrating the barrier, the 

Gamov factor, is 

/ r(E) \     [ ZlZ2e C2„u)' 
P = exp - —*—*- = exp - 

X (E), ft (E)
A 

(3.1) 

Z Z e 
where r - 1 2   is the classical distance of closest 

E h 

approach in a collision and \ = . ■  ' is the de Broglie 

wavelength. The maximum reaction cross section for an 

s-wave interaction (neglecting Coulomb repulsion) is "n "X . 

A plausible formula for the reaction cross section for 

:. ±,j£t*:& >.»-- -<tjafe->yg|ft,'eiJiBa^ m»a^'-^^ 
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energies much less than the barrier height, is the product 

of the maximum collision cross section and the Gamov barrier 

penetration factor. The Gamov reaction cross section 

r-  -  A' ft   m  — exp 

£ <-> 
(3.2) 

has this energy dependence. Although the theoretical value 

of B', given in equation (3.1) is sometimes used, the values 

of A' and B' are usually obtained from the best available 

low energy data. The Gamov cross section fits the experi- 

mental data well for deuteron energies less t«an 20 kev. 

4 
3.2 Reaction Probabilities for T(d.n)He Reactions 

The reaction probability for T-D reaction must be 

computed numerically for the temperatures occurring in 

thermonuclear shocks. Cross sections for energies between 

1 and 10 kev were computed from the Gamov formula with 

4 1/2 
A' ■ 2.19 x 10 barns kev and B' =44.24 (kev) ' . 106 

other values of the cross section for energies between 10 

kev and 10 Mev have been taken from the experimental data 

42 
shown in figure 8 (LA-2014)  . <-*■»> was evaluated with 

a Simpson's 1/3 rule adapted to unevenly spaced data points. 

(Uneven spacing of data points made it possible to deter- 

mine the number of points according to how rapidly the 

cross section was changing with energy.) A graph of <«rv> 

-• 1 
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for kT between 10 kev and 3 Mev is shown in figure 9. 

Reaction probabilities, <<r~"> , for several values of 

kT between 1 kev and 150 kev were compared with the results 

39        44 
of earlier calculations done by Wandel et al , Thompson , 

38 
and those quoted by Glasstone and Lovberg '  (p. 18, based 

45 
on a combination of the work of Wandel, Thompson,and Tuck ). 

These results are presented in Table 2. 

The cross sections can be read accurately from the 

graph to two decimal places only. Therefore agreement to 

two decimal places between our results and those obtained 

by the others is all that is meaningful. The experimental 

data used by Thompson and Glasstone and Lovberg is not 

the data that was used in our calculation. Wandel et al, 

however, used the data presented in LA-2014 and their results 

agree with ours to two decimal places. Disagreement bet- 

ween our values of <^»> and the values computed by Thompson 

and Glasstone and Lovberg for kT- 2 kev is explained, by the 

fact that the contribution of the cross section for lab 

energies below 1 kev was neglected in our calculation. 

However, for the purposes of this study, the value of <ik> 

at kT = 2 kev is never used. 

sjfe^  &&&&:-■*■■-*' mm***mmwbmm rwmmmtitmitifrk*« i 
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FIG.   9      REACTION PROBABILITIES FOR T(d,n)He4 AND T(t,2n)He4 

REACTIONS BASED ON MAXWELLIAN DISTRIBUTIONS. 
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kT  (kev) Wandel et al 
Glasstone and 

Lovberg Thompson 

3 
<5r\J)     (cm . 

Puller    sec 

2 3      X10-19 2.76 x 10~19 

life 5 1.3    x io-17 -17 
1.4 x 10 1.35 x 10~17 

p. 
10 1.11   X io-17 1.1 x IO-16    Lo5x IO"16 

1.12 x IO"16 
i 

■■ : 

20 4.3 x IO"16    ! -16 
4.30 X  10         ; 

1 25 ;   5.58 x IO"16 i 
5.62 x IO"16 

V- 50 8.54 x io"16 

1 
! 
: 
; 8.60 x 10~16                  1 

**■■ 60 
■ 

8.7 x  IO"16 8.86 x IO-16                  j 

100 8.45 x io'16 8.1 x 10~16      8.0 x IO"16 8.47 x IO"16                  3 

- 
150 7.04 x IO'16 

    -                                     - • 

7.00 x IO"16 

TABLE 2. Reaction Probability for T(d,n)He Reaction 

3.3 Kinetics Equations for Deuterium-Tritium Reactions 

If only the T-D reaction occurs, a reacting deuterium- 

tritium mixture is made up of tritons, deuterons, neutrons, 

alphas and electrons. The total pressure of the mixture is 

p = (n
T 

+ nD + nN +  n^+ne)kT-       (3*3) 

The number densities of the different species can be related 

to each other by the equations of charge conservation, 

n = nm + n_ + 2n. , 
e   T     D      ' 

(3.4) 

j^s^6#i?*P**w* 
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electron number fi„v „~  
*er flux conservation (electrons do not partici- 

Pate m the reactions), 

n u » F, 
(3.5) 

and mass conservation, 

("TV ***> +    »»«» +    «... )«.A.    (3.6) 

F, the electron flow constant and A the ma« « 
*, the mass flow constant 

can »e evaluated from the ^ ^^ ^ ^ 

«itai .nature contains aeuterium and tritium ^ ^ 

equal numbers, 

el     Tl ' 

and therefore 

(3.7) 

i 
ft 

F = 2n  u 
T,  I ' 

and A * * n
T «% u  . 
1 T  1 

A C°"*iMti™ of equations (3.4) - (3.9) yield8 

(nT " V " 2<"N - nN)  . 

(3.8) 

(3.9) 

(3.10) 

Since n  = n   a«^ ., • 0i   ^ and 8ince lt is assumed ttat the ^^ 

do not diffuse, 



- •-. ..^r 
,x 

"-■*.*; <■!. "   * ': 

50 

D    T 
(3.11) 

for all x. Therefore, it follows from equation (3.10) that 

n„ = n, , (3.12) 

! £ 

for all x also. 

The continuity equations for the species are not all 

independent. Tritons and deuterons are destroyed at the 

same rate, so W = W . Furthermore, neutrons and alpha 

particles are created at the same rate, so W„ = W . Since 

mass is conserved in the reactions, i_ m. W. =0, and there- 
' i l i 

fore W = "WT* 
As expected, the rate of triton and deuteron 

destruction is equal to the rate of neutron and alpha creation 

There is only one independent continuity equation (which we 

choose to be the triton equation). 

In order to eliminate number densities from the flow 

equations, we define a dimensionless variable * , the ratio 

of the density of the reaction products to the total density 

at the point x: 

n„ m». + n mt w (3.13) 

where 

■ nT \ + nD % + nN "^ + n m (3.14) 
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Before the gas begins to react, n = n = 0, so  o(.= 0. 

After the gas has reacted completely, n = n ■ 0, so << = 1, 

A combination of equations (3,11) - (3.14) gives expressions 

for the neutron and triton number densities: 

1 

n .*  £1 
N  5  n^ ' 

(3.15) 

and n -I f{l-<\) 
T  5    n^ 

(3.16) 

With these expressions for n and n , the state equation 

(3.3) becomes, 

_ 12 p k_ (3.17) 

"* 

12k    R which is independent of «C . Since -— = —7- , the state 
öroji   5/4 

equation can be written in its usual form for a mixture: 

P = 
R T 
W (3.18) 

where W = T 

In general, a state equation depends on the degree of 

reaction only if the number of particles before the reaction 

is not equal to the number of particles after the reaction. 

3   2   1    4 
For the reaction, T + D —9 n + He , the number of particles 

before and after the reaction is the same; for the reaction, 

3   3    4    1 
T + T —y He + 2n , however, the particle number goes from 
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two to three. If the particle number does not change in the 

reaction, the mean molecular weight of the reacting mixture 

remains constant. 

If we rewrite the continuity equation for tritons in 

terms of <  , using equation (3.16), it becomes 

2 A d* 

5 ni dx T 

3\2   P 

*T 

J (1-«02<W>   (cm"3 sec"1). (3.19) 

The thermonuclear power per unit volume term, P , in the 

differential form of the energy equation, (equation (2.17)). 

is dx * ^ U *W * A dx N *  PTN' can als° be written as 

the product of the reaction rate, W, and the energy released 

per reaction, Q. Equating these two expressions for P 
R TN 

we see that 

A 4a™ . i A. 0_ an 
dx "V R dx (3.20) 

If both sides are integrated with respect to x, subject to 

the condition that q,^ = 0 for "C * 0, equation (3.20) 

becomes 

a-TN = Q <   > 

«   3  °R where    Q ^ ~ — 
5 n^ 

(3.21) 
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, the maximum energy 

released per unit mass of initial mixture if it reacts com- 

pletely. 

3.4 Dimensionless Form of Shock Structure Equations for 
Deuterium-Tritium Mixtures 

The shock structure equations can be put into dimen- 

sionless form, if they are multiplied by an appropriate 

combination of the mass, momentum, and energy flow constants, 

A, B and C. The dimensionless temperature is defined by 

X  3 - k T H 
mj 

where ..$. 

(3.22) 

(3.23) 

and m. is the average ion mass for the inital mixture. For 

the deuterium-tritium mixture, with equal numbers of deuterium 

and tritium ions, m. * (nu + nM/2. Therefore, 

T = k T H     _ R T H 

(mjj + V/2 ""  2.5 
(3.24) 

The dimensionless speed, density and pressure are defined in 

the following way: 

U 5 u^H)" 

A^ 

(3.25) 

(3.26) 



^11 

1 
1 s 
f 
ft 

i 
i 

I 

a* •?i»*|*' ls 

and 
B 

54 

(3,27) 

In summary, the complete system of shock structure 

equations in dimensionless form is 

<fc u; = l , 

TT + u? * 1, 

5       TT        U)2 

2       "^    + Y    "   <HQ  + A  = CH, 

TT=  2 4>T    , 

äi.3    AH     (l-*)2   /TV> _ !TN 
,2 » dx       5     itL,        U5 AQ 

where 

and 

A   0
J   BR 1 

PBR = 2.261 x lo-"   lUffl   i-±ir*. 
m
T  V

R 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

The function A, can be rewritten in a way that makes its 

physical significance apparent by changing variables of 

integration from x to o( and by making use of equation (3.32) 

It then becomes 

a - HO ~d<' 
o     TN 

(3.35) 

There are two limiting cases of the shock structure equa- 

tions, one including reactions and no radiation, the other 

including radiation but no reactions. The non-radiative limiting 
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case, (A - 0 for all x), was discussed previously. The non- 

reactive limiting case is obtained if we set -r-^ -  0 for all 

x and  c((0)=0. The radiation is assumed to occur downstream 

from the gas dynamic shock, so the physical validity of this 

case is questionable. However the pure radiative solution 

of the equations is useful in providing a bounding curve 

for the solution of the physically more valid case that 

includes both reactions and radiation. 

3.5 Dimensionless Parameters in the Energy Equation 

There are three dimensionless parameters in the energy 

equation, CH, HQ, and A. 

The parameter, CH, combines the constants of integration 

of the mass, momentum and energy equations. It depends only 

on the initial Mach number of the gas, M,, and not on the 

reaction chemistry, i.e., 

CH -|- -"+ — Jl-^- 
U r      2 /Vv ^ui / 

2 
c      \ I i    \ 

(3.36) 

The initial Mach numbers, M , for thermonuclear shocks are 

> > 1, so CH = 1/2. The value of CH is therefore independent 

of the initial conditions. 

mmimmmmmmaiam&&, si 
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The parameter, HQ, combines the mass and momentum flow 

constants with the energy per unit mass released in the 

reactions, i.e., 

/      \2 

(3.37) 

, 2 
For very large initial Mach numbers, HQ reduces to Q/u ; 

since u. and Q are related by the Chapman-Jouguet condition, 

then 

J. 
un  s 

2( X2-l)       32 
(3.38) 

HQ is therefore independent of the reaction under considera- 

tion for shocks propagating with the C-J speed. 

The third dimensionless parameter, A, is a measure of 

the relative importance of power lost in bremsstrahlung 

and power gained in thermonuclear reactions. When A is 

much smaller than other terms in the energy equation, (A£<1), 

radiative losses are insignificant. When the value of A 

approaches 1, radiative power losses become comparable to 

the power gained in reactions. Unlike the parameters CH and 

HQ, A is neither constant nor independent of the reaction 

chemistry. 

3.6 Fusion Reactions in Tritium 

Two fusion reactions can occur in a pure tritium gas. 
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1.  T + T —:t 2n + He 7 

5 5    4 
He —> He + n. and 2.  T + T—»He + n; 

11.33 Mev is released in each reaction. If an incident 

triton strips a proton off a target triton, reaction 1 

4 
occurs, and He and two neutrons are formed directly. The 

neutron energy spectrum is continuous since there are three 

bodies after the reaction. If an incident triton strips a 

deuteron off a target triton, the reaction occurs in two 

stages (reaction 2 ). The neutron energy spectrum is dis- 

crete because only two bodies come off in each stage of 

39 
the reaction (Ajzenberg-Selove and Lauritsen }. 

T-T cross sections have been measured for incident lab 

40 
energies between 60 kev and 1.14 Mev (Govorov et al ). The 

G 
cross section as a function of energy may be represented by 

the function 

: = (a + b<nE (kev)) x 10~2? cm2 (3.39) 

where    a = -91.2 + 2.5, 

b = (55.8 + l)/inl0 • 

r increases monotonically from 10 mb at 60 kev to 82 mb 

at 1.14 Mev (see figure 11). 

Below these energies we can assume a cross section of 

the Gamov type. There is seme question about the applica- 

bility of Gamov cross section to stripping reactions. How- 

ever it is the only available cross sections for these energies 
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44 
and has been used by Thompson . The theoretical value of 

1/2 
the constant B' is 54 (kev)   . The value of A' which gives 

Govorov1s measured value of cr at 60 kev is * 

A« = 0.6 exp( — il 
I (60) $ 

barns kev (3.40) 

.'■;■"■* 

The T-T cross sections for E_ £ 60 kev are shown in figure 10, 
L 

3.7 Reaction Probabilities for T( t.2n) He Reactions 

kT^l Mev 

An expression for the reaction probability for T-T 

reactions can be obtained analytically for the temperatures 

that occur in thermonuclear shocks (kT ~ 1 Mev). In order 

to compute <«v>, an assumption must be made about the behavior 

of the cross section at energies for which no experimental 

values are available (E_ < 60 kev and E_ > 1.14 Mev). For 
Ii L 

kT Z  1 Mev, collisions between particles with lab energies 

less than 60 kev do not contribute significantly to <rv>. 

Therefore, any convenient assumption about the behavior of 

the cross section at: these energies, can be made. The 

Govorov cross section has been extrapolated to its crossing 

point on the energy axis, E ■ exp(- — ).  It is assumed 

to be zero for energies below E . Collisions between parti- 

cles with energies above 1.14 Mev make important contributions 

to <^> . The Govorov cross section has been extrapolated 

*   An alternative way to match the Garoov and Govorov cross 
sections at 60 kev would be to choose values of A' end B* 
such that the cross section and its first derivative were 
continuous at 60 kev- 

■^:.^A**s;^,»*i:3!i^i,s . ,. , .^^.-^ 
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to all energies above 1.14 Mev for convenience in computing 

(i^'> c The contribution of the cross sections for energies 

much higher than kT is damped cut by the exponential in 

the integral. 

(%^y    can be evaluated with the center of mass energy, 

E , as the variable of integration. Since /*■ = °T for 

pure tritium, the relation between lab and center of mass 

energy is just E =     Zk . 
cm    2 

Therefore; it follows from equations(2.35) and (3.39), that 

<<rv> 8Tf   K 10 -27 

(2 IT kT) 
3/2 

(a+b  /n(2E    ))  exp /-    cm)  E dE 
cm ^     kT        cm        cm 

(3.41) 

The integral can be evaluated most simply by changing 

variables, from E  to the dimcnsionless variable, £ , where 
cm 

E 
r cm 
c       kT 

(3.42) 

Then 

.    ,v      4x10"?   X    f -fc 
(a'   + b Jfn e)  e    fc de (3.43) 

where        a1« a + b Jtn(2kT) 

When the integral is performed,   the resulting expression 

for    < l x >    is 
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^>   = 4 x IQ"27 

( T ■ )* 
T 

(3.44) 

where Et   (x)   = I e*P   (-y>     dy     . 
y 

Written in terms of our dintensionless variables, <<TV)   becomes 

•®P\ + exp ■o^ 
2T 

(3.45) 

Since H«t -    =       , 
u*      2(lT-l)Q 

E H 

\ 

is a dimensionless 

parameter that depends on the Q of the reaction and the cut- 

off energy for the Govorov cross section, E . 

kT ~ 100 kev 

If kT ~ 100 kev, the contribution of collisions of 

particles with lab energies below 60 kev becomes important. 

The Gamov cross section must be used for energies below 60 

kev. There are now two contributions to <*^>. The Gamov 

cross section is integrated from some energy (which is much 

less than kT) to E ■ 60 kev. The Govorov cross section is 

integrated from E •= 60 kev to E. « oo . The Gamov cross 
Li LI 

section was evaluated at 37 values of lab energy between 

0.1 and 60 kev, and integrated over these energies with a 

Simpson's rule for unevenly spaced pivotal points. The 
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integral over the Govorov cross section was performed 

analytically with the result 

<^.- ^ (W)1 r 
Gov 

E 

<r (1+ ^ ) exp (- ^ ) 
°    kT XT 

♦ (b (El(^) +«p(-5-')) 
E 
oo 
kT 1 (3.46) 

i * where  q- s a + b X n60 and E  =30 kev. 
o oo 

The results of the calculations for <TV>„  and <TV> 
Gam        Gov 

are shown in Table 3. For kT = 1 kev, the Gamov contri- 

bution dominates; for kT = 10 kev, the Govorov contribution 

is roughly twice the Gamov contribution; for 100 kev, the 

Govorov contribution dominates. 

3 
kT (kev) <°>Gam <S v> Gov <1V> (_SS_, 

sec 

1 
-23 

3.56 x 10 1.04 x ID"30 3.56 x 10"23 

5 
-20 

6.64 x 10 1.88 x ID'20 8.52 x ID"20 

10 
-19 

2.11 x 10 3.99 x 10 6.10 x io-19 

20 2.44 x 10 2.23 x 10 2.47 x !0-18 

50 1.29 x 10"19 8.97 x IQ"18 9.10 x IO"18 

100 5.84 x 10"20 1.93 x IQ"17 1.93 x io"17 

200 
-20 

2.34 x 10 3.68 x IQ"17 3.68 x IO"" 

500 6.38 x 10~21 7.83 x ID'17 7.83 x IO"" 

900 2.70 x 10"21 

1 

1.22 x IQ"16 1.22 x io"16 

TABLE 3.  Contributions of Gamov and Govorov Reaction 
Probabilities to <<rv> 
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An approximate formula for <<\J> for kT £-  10 kev, is 

44 
(Thompson ) 

n  o       m-16 ,nl/3       -2/3 /      /B2\  1/3\ 

4p ^ ^V     W       /cm%ec,   (3.47) 

where,  for T-T reactions, 

jM-..  = the reduced mass in a.m.u. A 

W = kT, 

A=— A' =T, 

3 
2 ' 

! ! 

Thompson has used the Gamov constants, A' =59.9 barns kev 

1/2 
and B' = 668 (kev)     However, the values of <s\jy  for 

kT = 1 kev and kT ■ 10 kev, given in his paper, are incon- 

sistent with the values of <*W>    obtained with his app 

values of the Gamov constants. The Gamov constants, 

1/2 
A' « 54 barns kev and B' = 630 (kev) ' , have been used in 

this study. The values of <^>   are compared with the 
app      *~ 

results of the numerical integration of the Gamov cross 

section for kT »1 kev and 10 kev in Table 4. The agree- 

ment between the numerical results and the analytical 

results is quite good since the analytical formula is only 

approximate. This constitutes a check on the numerical 

integration for small values of kT. 
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kT (kev) 

1 

10 

<*v>, Gam 
A' = 54 
B'« 630 

3.56 x 10 
-23 

6.10 x 10 
-19 

A'= 54 
<^>app B'= 630 

3.32 x 10 
-23 

7.00 x 10 
-19 

^>app B'=668 

-23 
0.795 x 10 

-19 
3.69 x 10 

TABLE 4. Reaction Probabilities for Low Temperatures 

The T-<P reaction probability for kT between 12 kev and 

2 Jtev, is shown in figure 9, along with the T-D reaction 

probability. The T-D reaction probability rises to a maxi- 

mum value at <z  70 kev and then decreases with increasing 

temperature. This shape shows the influence of the resonance 

in the T-D reaction cross section. The T-T reaction probabil- 

ity, however, rises monotonically with increasing temperature« 

Although T-D reaction probabilities are about 100 times larger 

than T-T reaction probabilities for kT ~ 10 kev, the two 

become comparable at — 2 Mev. 

3.8 Kinetics Equations for Tritium Reactions 

A reacting tritium gas mixture consists of electrons, 

5 
tritons, alphas and neutrons. He has a lifetime of the 

-21 
order of 10  sec so it need not be included as one of the 

species of the mixture. The total gas pressure is 

l : 

P - («T 
+ «u + *V + ne>

kT* (3.49) 
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The number densities of the species are not independent. 

Since the gas has local neutrality, 

n = n_ + 2n. . 
e   T    << 

(3.50) 

No electrons are created or lost in the reactions so the 

electron number flux is conserved: 

n u = F, 
e     ' 

where    P = n  u.  . (3.51) 

The total mass flux is also a constant, 

(nT mT +    nu\ +    n* m«  ]  U = A' (3.52) 

where 

Since A 

A=nTimTu1    . 

ni F, it follows that 

f = nVj, n e (3.53) 

The electron number density profile has the same shape as 

the total density profile (which is reasonable since the 

electrons are inert). The relationship between the alpha 

and neutron number densities, 

n 
n, N 

(3.54) 

follows when the equations of electron flux conservation 

and mass flux conservation are combined with the condition 

for local charge neutrality. 

The continuity equation for tritons is 
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fc (nTU> -WT  =-^a„>. (3.55) 

w J  is twice the reaction rate for tritons since two 

tritons are lost in each reaction. The continuity equation 

for alpha particles is 

dx        W< ' (3.56) 

The rate of neutron creation is twice the rate of alpha 

particle creation so 

WN = Wt    . (3.57) 

Since the total mass flux is conserved, T. m w. =0. and 
ill 

therefore 

"™ = "* w T N 
(3.58) 

It is convenient to eliminate number densities from 

the continuity and state equations.  c< is defined in the 

usual way as the ratio of the density of the reactions pro- 

ducts to the total density, 

< = r (3.59) 

+ n m where   f   « «T i^ + n^ %        ^ ^ 

If equation (3.59) is solved for n^ and n, the resulting 

(3.60) 

expressions are, 

% 
(3.61) 
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I 

and 
\ (3.62) 

The state equation can be rewritten in terns of o(. . With 

k   R the relation —* * — .  it becomes. 
My       3 

p =fR T (2+1), 
3       2 (3.63) 

This equation is recognized as the familiar equation for a 
P 

mixture of gases, p = f » T, if it is noted that the mean w 

molecular weight per particle of the mixture, W, instead 

of being constant, varies with << , i.e., 

W = 3/(2 + */2). (3.64) 

The set of dimensionless variables that were used to 

make the deuterium-tritium structure equations dimensionless, 

are now used to make the tritium structure equations dimen- 

sionless. The appropriate dimensionless temperature is, 

(3.65) T      k T H  R T H 
™T "" 3 

The mass and momentum equations are the same for the deuterium- 

tritium and pure tritium gases. The specific reaction chemistry 

is contained in the state equation, 

■n = (2+*) <*>^ , 

the continuity equation, 

(3.66) 

d£l = Aä       (!-«)       <tv/> 
dx "T w (3.67) 

I 

/ 
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and the radiation term in the energy equation, 

A » HQ   IfiR  d «' , 
J p 

Where 1 
A. 

and 

P__ « 1.57 x 10 
BR 

*w - AQ d£ 
™    dx 
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(3.68) 

,  (3.69) 

(3.70) 

3.9 Kinetics Equations for T(t.2n)He Reactions in Hydrogen- 
Tritium Mixtures 

If hydrogen is added to a tritium gas, the Chapman- 

Jouguet speed is reduced. An examination of the shock 

structure equations for a mixture of hydrogen and tritium 

if of interest in connection with shock tube experiments. 

The C-J speed for such mixtures can be reduced to a value 

which may be obtainable in an electromagnetically driven 

shock tube. 

Let 6 be a parameter that measures the initial density 

ratio of protons to tritons: 

6 = i \ • (3.71) 

Since reactions probabilities for proton fusion reactions are 

small, the only energy release comes from the tritium reactions. 

Q is the energy released per reaction, the energy released 

per gram of gas of the initial mixture is 
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/ 

(3.72) 
1+6 

The gas consists of five speciest    electrons, proton«, 

tritons, alphas, and neutrons. The species number densities 

can be related by charge conservation, 

e = nH+ »T 
+ 2n 

conservation of electron flux, 

ne u = F, 

(3.73) 

(3.74) 

conservation of proton flux, 

HJJ nijj u ■ G , (3.75) 

and conservation of mass, 

U " (
VH 

+ nT *V + VN 
+ n m ]  U ' A 

where F, A, and G are constants of integration which can be 

evaluated from the initial conditions. The initial electron 

density is 

ne      " "H    +    "r    = nT       (1+3 e   >' el Hl 71        Tl 
(3.76) 

Therefore, 

F = n       (1+3 6)    u , 
1 

G = mHnH1
Ul "6,\nT1

Ul  ' 

(3.77) 

(3.78) 

and l\ ™H  + \ V   *l*\**   (1+ 4  >V(3'79) 

Only one of the three constants of integration is indepen- 

dent, i.e., 

G = #r *■ (3.80) 
■"** ">-:'*%*^| 
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and »-*OL 1    A. 
(1+6)  ^ 

(3.81) 

If we solve for 1/u in the above equations, we obtain 

This relationship can be used to get two different expressions 

for V 

ng - J" - n< + 3 6(nT + -f + n* ),       (3.83) 

and     "a ° 6 <3nr + "N + 4noc J * <3'84) 

Setting the two expressions for iv equal to each other, 

we see that 

^-n* -  *(n, -^) (3.85) 

Since 6 is an arbitrary input parameter, equation (3.85) 

holds, (as in the pure tritium case, to which it reduces 

when £ =0), only if 

«N n A > (3.86) 

for all x. 

The total pressure of the gas mixture is 

p= [2(1+3 fe ) (i^ + nN) +-^ ] kT .        (3.87) 

It is convenient to eliminate number densities from the 

state and continuity equations and express them in terms of 
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can be defined. Expressions for the neutron and triton 

number densities follow from equations(3.88) and (3.90): 

%' e± > 

1 
f f   i 

l    1+3 fe 

(3.92) 

and      n, = -i—  [ -rrrr *    I  • (3.93) 

The sum of the neutron and triton number densities is inde- 

pendent of 4. . The number densities of the two inert compo- 

nents (protons and electrons) of the gas mixture are propor- 

tional to (iu + ruj, i.e., (3.94) 

"*" 3t(nT + V' 

and      n   - fl+3fc) In    +n ) . (3.95) ne - (l+3€) (n^, + 1^) 

-4 
1 some appropriate reaction parameter o( . One such choice of 
I i i 
I o(  puts the state equation into the same form as for the 
I - I 
I pure tritium case. Let 
I ? t • 
| < s  ("« > *_    \ »<J£R f (3.88) 
| * l I i 

a? 

1+ £ m where      £R3    j~fg    • (3.89) * 

!. I- 
Then (jrh--*)- ^tR . <3-*» I 
An effective triton mass, 

»i =mT€R    , (3.91) j 

I 
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Zf equations (3.92) and (3.93) are substituted into the 

state equation, it becomes 

*$    V  2 / (3.96) 

This is identical to the state equation for pure tritium 

if we replace the triton mass by its effective mass. It 

must be noted that when the reactions are complete, 

n = 0 and therefore from equation (3.90), d. «   _  . 

The energy equation for the hydrogen-tritium mixture 

is the same as equation (3,30). The expression for A must 

be modified to contain the appropriate reaction chemistry, 

and the constant Q in the thermonuclear energy release term 

must be redefined. The thermonuclear energy release term, 

<< Q, has the value Q for a tritium gas when all the reac- 

tions are completed. The maximum value of o( for the hydro- 

gen-tritium mixture is  ■• -- . The maximum energy released 

pc unit mass of the initial mixture, (given by equation 

°R    1 
(3.72)), is Q »-—   " ; . We define a constant Q ... 

*rarp  1+1 ei:r 

such that  << Q ., approaches Q as  oC approaches _.L_ . 
e" l+3€ 

It follows that 

Qeff " - 
(3.97) 

*i 
The flow variables are made dimensionless in the same 
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way as those for the pure tritium case. The dimensionless 

temperature becomes 

/r- - k T H (3.98) 

As in the state equation, the mass of the triton has been 

replaced by its effective mass. 

The dimensionless mass, state and momentum equations 

for the hydrogen-tritium mixture are the same as those for 

pure tritium. The dimensionless energy equation is 

f$ + *f - *HQef£ + A = CH,  °<*^, 

where A is defined in the usual way and 

.1        L 

P  ■ 1.57 x 10"27  ABH lffs.17  1+4 T3 

S 
The continuity equation is, 

d*  AH / 1 

dx 
^ I" - <*, 

1+31 

(3.99) 

(3.100) 

(3.101) 

i ! m       ! 

i 

•--*»S6 
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CHAPTER IV 

SHOCK STRUCTURE CURVES IN PHASE SPACE 

4.1 Non-Radiative Shock Structure Curves in Phase Space 

The system of non-radiative shock structure equations, 

developed in Chapter III for three different gas mixtures, 

includes four algebraic equations, (mass, momentum, energy 

and state equations) and one non-linear, first order, dif- 

ferential equation, (the continuity equation). In order 

to integrate the differential equation for the shock pro- 

files in real space, all the flow variables except one 

must be eliminated. The algebraic equations are solved 

for relationships between the variables. These relation- 

ships are called the phase space shock curves. 

A relationship between the dimensionless speed, U) , 

and the degree of fusion, °C , can be obtained from the non- 

radiative mass, momentum, and energy equations. A combina- 

tion of equations (3.28) and (3.29) gives an expression for 

H , which can be substituted into equation (3.30). The 

resulting equation is 

u) . |u) + k   (CH + HQ <* ) =0, (4.1) 

or 

<-fc(8—J - -kt-l)2-      «•■» 
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Since CH = 1/2 and HQ = 9/32, equation (4.2) becomes, 

<- 1 -  -~  (u>- |) . (4.3) 

Equation (4.3) is independent of the specific reaction 

chemistry since the dimensionless mass, momentum and energy 

equations are identical for all three cases considered in 

Chapter III. The u.' - oL curve is a parabola that opens to 

the left with an axis of symmetry parallel to the oC-axis. 

The vertex of the parabola is located at (uj , oC ) =(— , 1). 
o 

The u) - ?£ relation is plotted in figure 12.  (Points 1, 

2 and 3 are the same as in figure 2.) 

The two branches of the u^ - vL    curve join at the 

vertex of the parabola. The lower branch, ( U?_ ) ,* corresponds 

physically to a gas dynamic shock followed by a C-J deflagra- 

tion. It is the familiar solution assumed by the von Neumann 

model. Ahead of the shock, Lü is equal to 1. Behind the . 

shock, U) is equal to 1/4, while behind the deflagration, 

v-O has the value 5/8. The upper branch, (u.\), is also a 

solution of the non-viscous non-thermal conducting shock 

structure equations. It corresponds physically to a C-J 

detonation. K.J  is a continuous function of <^ , monoto- 

nically decreasing as «C increases from 0 to 1. The C-J 

detonation has not been observed experimentally and is 

therefore not considered in most theoretical treatments, 
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26 I (e.g., von Karman ). It is presented in the phase plane 
> 
\ diagrams for completeness sake; shock structure curves in 

real space have not been computed for this branch. 

i A relationship between the dimensionless temperature, 

*X , and the degree of fusion, c< , is obtained by com- 

bining the mass, momentum, and energy equations with the 

state equation. The mass, momentum and energy equations 

are first combined to give a relation between u> and "^ 

for the deuterium-tritium mixture: 

u)2 - u) +  2t  =0; (4.4) 

and a relationship between KJJ   , '"C and o( for the pure 

tritium gas: 

U)* " W + (2+ £)t = 0. (4.5) 

Combining these relations with the appropriate energy equa- 

tion, we obtain a relationship between "X and o<- . The T -** 

relation, unlike the u?-<*  relation, depends on the reac- 

' tion chemistry because it contains the state equation. 

The relationship between temperature and degree of 

; 0 fusion for the deuterium-tritium mixture is 

16t2 + ^+2D' - 8HQ*JT+ D'16"
1 + HQMHQ*- \')   "0,   (4.6) 

where    D' » 1 - 4CH * - 1. (4.7) 

■ 'T  as a function of << is plotted in figure 13. The 

■i jump conditions for temperature are obtained by setting 
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c{ «0 and 1 in equation  (4.6).    When     <X»0, 

16t2 +( j + 2D')T   +~~i   -0, 

and T+ * |j, 0. 

(4.8) 

(4.9) 

The zero root comes from assuming that D' « -1. Actually 

D' is not exactly -1 and when its correct value is used, the 

—6 
zero root of equation (4.8) becomes ^ 10 . The other 

root is only different from 3/32 in about the sixth decimal 

place.    When   <* ■ 1, 

D'2-l 
16 16r2+(2D'+ i - 8HQ)r + «-Tf + HQ(HQ- * )   =0,        (4.10) D' 

2 

and r+ = 15 
128 0.117 . (4.11) 

The branch, *?"- , (like UA), corresponds to a C-J detonation. 

The other branch, t , corresponds to a gas dynamic shock 

followed by a C-J deflagration. The two branches meet at the 

downstream point. 

The f-ok curve is not any simple shape like the  u;-a. 

curve. However, the existence, location, and nature of extre- 

mal points on it can be determined analytically. If equation 

(4.4) is differentiated with respect to °c , a relationship 

d.T      ,  du» 
between TT and — is obtained: d*   d* 

»£-»-*»>& • (4.12) 

df d"*        1 
If — ■ 0, then either — =0 or w= —. There are no points 

on the  w .«(  curve where — = 0, but  tu does go through 
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the value 1/2 on the (*■>-   curve. Therefore, there is some 

point on the f*    curve where — =0. if equation (4.4) is 

differentiated a second time, the extremum is found to be 

duJ 1 d^t" 
a maximum; (since — > 0 for **» ■ * and therefore T^1<0) . 

It can be shown from equations (4.3) and (4.4) that the 

1  8 
coordinates of the maximum are (tr, <  ) = ( * , — ) = 

8*9 

(0.125, 0.889). 

The value of the Mach number at any point on the f- « 

curve is given by the easily verifiable relation 

IM- .2 
^^"    = 2 o  M (4.13) 

2   13 
The temperature maximum occurs when M = -j = r* . Therefore 

1  2 3 
the temperature increases with increasing ** for T-M <■  — 

5      5 
3    2 

and decreases with increasing *   for — <■ M * 1. When 

2 3 
M = r* , the static pressure, p, is equal to the kinetic 

2 
pressure, f\i  . The temperature therefore rises with decreas- 

2 
ing pressure when p> fu  , and falls with decreasing pressure 

2 
when p<L   P u . The competing physical processes are the 

reactions, which add energy to the gas, thereby raising the 

temperature, and the transformation of random thermal energy 

into directed kinetic energy, which lowers the temperature. 

As the reactions go to completion, the reaction rates decrease 

and eventually the second effect dominates the first. 
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The relation between the dimensionless temperature,t , 

and the degree of fusion, <* , for pure tritium and hydrogen- 

tritium mixtures is 
2 

2  2 D'   1 11'  -1 
<4+«) r +(4+«0 2-< f.  -i-^-2HQoC)+D16  

X 

+ HQ* (HQ< - j ) = 0. (4.14) 

T   as a function of o< is depicted in figure 14. The T* 

cross terms in equation (4.14) are of higher degree than those 

for the deuterium»tritium case because the state equation 

depends on at . The upstream (<* = 0) roots of this equation, 

which are the pre-shock and post-shock dimensionless tempera- 

ture, are identical to those for the deuterium-tritium relation 

between T and <* , (equation (4.6)). This is reasonable 

since the structure equations are made dimensionless in a 

way that eliminates their dependence on the mean molecular 

weight of the initial gas mixture, and since no reactions 

take place in the gas dynamic shock. The downstream (<< ■ 1) 

temperature satisfies the equation 

2 
25 r2 + 5( y- + | - 2HQ) T  + D^6 "* 4HQ(HQ- £■ )=0, (4.15) 

which has the double root, 

U-      32  * (4.16) 

For the discontinuous solution , f( oc «= 0) =*?^(oL =1).  In 

other words,  the decrease in mean molecular weight per 

i ; 
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particle just cancels any net rise in temperature across the 

deflagration region. 

The existence of extremal points on the  T-«t  curve 

can be shown also. If equation  (4 .5) is differentiated 

with respect to o< , then, 

(4.17) d-2") J*« (2+f) §r + | . 
*      d*  *   2  d<*  2 

This expression, unlike its counterpart for the deuterium- 

tritium mixture, does not give a simple condition for the 

existence of an extremum on the T- <*    curve. However, if 

the T - 4. curve is differentiated directly, and we set 

£ -0 in th. results elation, we fin* an expression which 

f and o< satisfy at the extremal point. If this expression 

is substituted into equation (4.14), the coordinates of the 

extremum are found to be (f ,*) « (0.1036, 0.72), which corres- 

ponds to a dimensionless speed, u/ * 0.427. It can be shown, 

although the algebra is more complex than for the deuterium- 

tritium example, that this extremal point is a maximum. There 

is a second extremal point which has been discarded because it 

does not correspond to a physically allowed value of «. , 

4.2 Radiative Shock Structure Curves in Phase Space 

When radiation energy loss is considered, the energy 

equation changes from an algebraic equation to an integral 

equation (see equations (3.30) and (3.33)). The radiative 

/ 

*<***>:■' - I 



w 
* 

■-P& ' '■■■■'■■^^i^^^lti^mmr---- 

I H 84 I 

energy loss term, A, can be written as a function of o( 

(see equation 3.35). The mass, momentum, and state equa- 

tions can be used to eliminate all variables except T and 

oC  from the energy equation. The resulting equation, 

relating "t and oC for the radiative case, is the same 

as that for the non-radiative case, (equation (4.6) for 

the deuterium-tritium mixture and equation (4.14) for the 

tritium gas), if D* is replaced by 

I i     *"■ 

»"yy. 

*P 
= K A   U)   B(<C),      K > 0, (4.20) 

where A(o< )   s(7~jT      , 

x 
and B(T )=      T 

<*\1>(T) 

An iterative method is used to solve the integral equa- 

tion relating the dimensionless temperature to the degree of 

fusion. The non-radiative solution (A = 0, for all ^ ) is 

assumed for the first iteration. The first non-zero 

D = D' + 4A K) , (4.18) 
<*. 

where    A = HQ  R dK ' J P 

PBR 
and     RD-p     • (4-19) 

P  TN 

It follows from equation (3.32) and (3.34) that R can be 

written as the product of a function of «<. , and a function 

of "£ , i.e., 
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approximation to the radiative loss term, A. (ci.), can be 

evaluated with the non-radiative T-o(. relation (if <<i^> is 

a known function of T ). A first approximation to the 

radiative relation between T and o< is then obtained. It 

is used to evaluate &    (<*.)• This iterative process is 

continued until T (o( } does not change to some required 

degree of accuracy from one iteration to the next. The 

numerical procedure converges to three significant figures 

in about six iterations. The results of the integration 

for T (oC) are shown in figure 13 for the deuterium-tritium 

case, and in figure 14 for the pure tritium case. A (oC) 

for both cases is plotted in figure 15. 

The radiative relation between the dimensionless speed 

and the degree of fusion is 

**-£■--$ <--!>2- <*•"> 
It can be evaluated once A(<* )  is known. The results for 

both the deuterium-tritium mixture and the tritium gas are 

shown in figure 12. For rrr <<. 1, the radiative solution is 

asymptotic to the non-radiative solution. Away from the 

non-radiative asymptotic limit, equation (4.21) depends on 

the specific reaction chemistry through A which is a function 

of the reaction and bremsStrahlung rates. 

Certain features of the radiative phase space solutions, 
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e.g., the existence of extremal points, can be ascertained 

without solving the radiative phase space integral equation. 

The existence of extremal points on the v> - * shock curve 

can be determined by differentiating equation (4.21) with 

respect to <* . The resulting expression is 

1 _  i  dA _ _ 128 .{j -  5.  du) 
HQ  do( 8 ' d<* 

(4.22) 

Since 

1 
HQ 

dA 
d<* 

= R 

di*.' 
solving equation (4.22) for ~, we see that 

a* 

(4.23) 

du) 
d* 

9 
128 

1-R 
 E (4.24) 

It follows that UJ has an extremal value when the bremsstrah- 

lung power loss just equals the thermonuclear power gain, 

(R =D. 
P 

The nature of the extremal point of equation (4.21) 

depends on the sign of the second derivative evaluated at 

the extremum. An expression for —~ is obtained by dif- 
d<<2 

ferentiating equation (4.24) with respect to oC . The result- 

ing expression is 

djL= _9_ 
di2    128 

P   aw 
2 — 

d* (-1 
dR 

K--Q     d* 
(4.25) 

<m    i—»Li, ..^^a^,T, . jmij-j- t A^J 
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At the extremum, — = 0 ^ so 

du) s _9_   1 

d«( 2   128 W- 3 

dR 

d* 
(4.26) 

For the deflagration branch, v^ is C — . Therefore, if 
o 

dR 
—^ is positive,the extremum is a maximum. Differentiating 
dot 
equation (4.20) with respect to»(, we see that 

dRD 
1   dA  . _ . .  dB dr —    + A(«. )    

A U ) ax        dt- doc 
(4.27) 

dR 

doL 
must be evaluated separately for the tritium-deuterium 

and pure tritium cases. 

For the deuterium-tritium case, it follows from equation 

(4.12), (which is valid for the radiative case since it is 

derived from the mass, momentum and state equations which 

have no radiative terms in them), that if ~r =0, then -r* =0. 
'       dot  '     d< 

This result holds for any gas whose equation of state is 

dA 
independent of oC • Therefore, if we evaluate — , we see 

that —R is positive at the extremal point, i.e., 
dot 

dR 
—E 
d* 

3+ot 
1+x 

1 
1-* > 0 (4.28) 

Therefore, the extremum is a maximum.  In other words, when 

radiation is taken into account in the structure equations, 
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the speed of the gas increases until the radiative losses 

just equal the gains due to reactions. The speed then 

begins to decrease as the temperature of the gas falls and 

the density of the gas increases. 

If the state equation depends on^C , as it does for 

the pure tritium case, then — eO does not imply that — = 0. 
d<* d«< 

In fact, it follows from equation (4.17) that when h± =  0, 

then -—= —.iwhich is negative. The first term in equa- 
d< 2(2+T> 

tion (4.27) is K T~T T^T . Therefore, if -7=, is negative, 

dR 
then  p_ is positive and the extremum is a maximum. It 

dot dB 
can be shown from equation (4.20) that -rr,   is negative if 

2f  d(<^>) 

«*>     d* 
> 1 . (4.29) 

The reaction probability for T-T reactions has the form, 

>* , \     J. T-*  /   / const\, _ / const \   . <1M >= const x  C    (exp(=—p—}+  EW  T )   ), 

(see section 3.7). Therefore the requirement on ~ ,  given 

in equation (4.29), is satisfied and the extremal point on 

the tritium u -<*. curve is a maximum. 

The existence of extrema on the radiative t-4 curves 

/ 

can also be determined analytically. For the deuterium-tritium 

d T 1   d«*> 
case, TT = 0 implies either w = - or — =0. When the entire ' d«* 2   d* 

system of equations is integrated, we see that the dimension- 

dr 
less speed never reaches the value 1/2. Therefore if T[ =0, 

, #***» ■ ■** - ■■»** - IR.i lit;  __   J 
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du 
then  r—  =0 and the extremal values of temperature and 

speed occur for the same value of <* . Since l-2u> is posi- 

tive, a speed maximum corresponds to a temperature maximum. 

The temperature and speed extremal values do not occur 

at the same value of o(. for the tritium gas. It follows 

from equation (4.17) that when — = 0. then TT = T71—r"\ > °- 
^ d<<   '     d*  2(l-2u)) 

Since the slope of the u-* curve is positive when T— =0, 
d«* 

and since u: goes through only one maximum value, the 

temperature maximum occurs for a smaller value of K than 

the speed maximum. In fact, the physical condition for the 

existence of a temperature maximum is not that the bremsstrah« 

lung power equal the thermonuclear power as it is for the 

deuterium-tritium case. There is no such simple criterion 

for a gas whose equation of state depends on <* . 

The coordinates of the maximum points on the radiative 

•T - ot  and ^ - at  phase space curves can be found only if 

the phase space integral equation is solved. The maximum 

on the deuterium-tritium t - ot curve occurs at the point 

(T, oC ) = (0.1019, 0.38). The maximum on the u- -<*. curve 

occurs for (u, x)  = (0.285, 0.38) . A comparison between 

the non-radiative and radiative phase space solutions shows 

that the effect of the radiative energy loss is to lower the 

maximum temperature inside the wave and to shift its occurr- 

ence from JC = 0.89 to  X = 0.38 . The speed, which 
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monotonically increases with increasing oC when radiation 

losses are neglected, rises to a maximum value and then 

falls when radiation losses are included in the analysis. 

The coordinates of the maximum point on the  T" -o( 

curve for tritium are (f, o( ) = (0.0974, 0.37), correspond- 

ing to a dimensionless speed of tJ =0.308. Those of the 

maximum point on the D - oC  are (u; # *L ) = (0.322, 0.56). 

When radiation is included in the equations, the temperature 

maximum occurs when 37% of the material has fused compared 

to the non-radiative value of 72%. 

1 
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CHAPTER V 

SHOCK PROFILES IN REAL SPACE 

5.1 Solution of the Shock Structure Equation for a Reacting 
and Radiating Gas 

The profiles of the temperature, speed, density, pres- 

sure and degree of fusion in the reaction zone can be found 

by solving the full system of shock structure equations. The 

phase space solutions are used to eliminate all of the flow 

variables except oC  from the continuity equation. The 

resulting non-linear differential equation is 

001 = g (*) , (5.D dx 

2 
where g  ( ot )  =  *      •* r—**   v»v>    , *\ UJ2 

and    c =  0.6 , ^ = 1, for the deuterium-tritium mixture, 

F= 1 , ^= 1, for pure tritium, and 

oss r* , *t= TTT  for the hydrogen-tritium mixture. 

No reactions occur in front of the wave. This physical 

fact is incorporated into the differential equation by assum- 

ing that the reaction probability cuts off at the initial 

temperature of the gas, i.e., <lv>{T.)= 0. No reactions 

occur behind the wave because the fuel has been consumed, i.e,^51 H. 

Therefore g(<x) approaches 0 as x approaches + <*»  and  - <*» . 
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ot(x) varies directly with the initial number density 

and inversely with the shock sp«ed since AH ~  —— .    This 
ux 

dependence may be eliminated if the continuity equation is 

made dimensionless. An appropriate scale length with which 

to make the continuity equation dimensionless is the reaction 

mean free path at the beginning of the reaction zone, X 2« 

The dimensionless spatial variable becomes 

x 
?" 

>2 ' 
(5.2) 

where   \-  4v>2 ^^  . 

The dimensionless continuity equation is 

I 

~ - ^h  H^2  ( K -* )2 

d? nVp U) 
<«■ v>  . 

(5.3) 

The constant AH ^2/m_ is proportional to (n /n \/<v>/uA. 

Since n and n are linearly related by the jump conditions 

across the gas dynamic shock, equation (5.3) is independent 

of the initial number density of the gas. It follows from 

equations (2.30) and (2.40) that CV>  is proportional to 

1/2 T0  which is proportional to the shock speed. The differen- 

tial equation thereby becomes independent of u. also. 

In most shock structure problems, one must integrate 

the differential equation from ^ = - oo to $ = + <y 

because the boundary condition is known only at £ - - °° 

X 
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In this problem, the boundary condition is known for a finite 

value of ^ which for convenience we assume to £ = 0. The 

assumption of the von Neumann model of thermonuclear shocks 

requires that << »o throughout the •■?*&  dynamic shock. Al- 

though — =0 ahead of the gas dynamic shock, — j*0 behind it 

since <<vv>(T ) is non-zero. The differential equation for 

^ (oC ) in the reaction zone can thus be reduced to the 

quadrature, 

$ (X ) 

* 
doi' 

gU) 
(5.4) 

Equation (5.4) can be integrated analytically for 

«t 2 
TT" <C < 1. UJ  and (TV) are constant over the range of 

integration and can be taken outside the integral. Therefore, 

2 x 

U) _ "4^2     r  d*' 
£AHX2<JJV)   i i*-*) •\2 

(5.5) 

Performing the integration,  we see that 

2 
^U>   _mT ^2 

^AHX2<TV>2 1 - X 

- 1 (5.6) 

This expression can be simplified if 1/(1- "jj ) is expanded 

d. 
to first order in rr    . The resulting linear relation be- 

tween is and < is S 

* 
U> 

"Sf^2 

$AH.\2<*V;2 H' 
(5.7) 
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and      A  A  -BR 

X 

-?  U>    (tW) dx'. 

*■' 

The relation between <? and <A. , obtained by numerically 

integrating equation (5.4), establishes that the linear 

relation between <? and < is valid for — L 0.001. 
-> *f 

Equation (5.4) cannot be integrated analytically when 

2 
i. > 0.001. u)  and OV) remain inside the integral. Their 

functional dependence on °<- is complicated. A closed form 

egression for <<r\J> (X ) exists only for T-T reactions at 

Mev temperatures. In all other cases <^> must be evaluated 

numerically (see sections 3.2 and 3.7). A change of vari- 

ables in <<i^> from t to v<  results in an integral that 

cannot be evaluated analytically. Therefore the integration 

has been performed numerically with an Euler forward integra- 

tion scheme. 

5.2 Solution of the Shock Structure Equations for a Radiating 
Gas 

The shock structure equations for a reacting gas, and 

for a reacting and radiating gas, were presented in Chapter IV. 

If the gas radiates but does not react, equations (4.6) and 

(4.14) reduce to | 

2 * 
16 T* + ( \ + 2D)t + ^~k      = 0, (5.8) § 

¥ 

where    D = D' + 4A, i 

j 

:4 

1 
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The relation between the dimensionless speed, r> and A, 

obtained from the energy equation, is 

1 
U3 - (2  CH - 2A - lot)!" (5.9) 

An iterative method, (similar to that used to solve 

the phase space equations for a reacting and radiating 

gas), can be used to solve the structure equations for a 

radiating gas. The values of t and u) behind the gas 

dynamic shock (given by the jump conditions) are used 

for the first iteration. Since these values of t: and u> 

are constant for all x, A.(x) (which can be evaluated 

analytically), varies linearly with x.  A.(x) is substituted 

into equation (5.8) to obtain ^.(x). Once A.(x) and f.(x) 

are known, U (x) can be evaluated with equation (5.9). Given 
1 

T.(x) and U (x), A (x) can be computed numerically. The        | 

process is repeated until T. (x), U) (x) and A(x) remain 1 
1 

the same to some required accuracy from one iteration to 

the next. The scheme converges to three decimal places in 

a few iterations for the cases we have considered. 

One feature of the no reaction limiting case of the 

structure equations is that the time-independent flow equa- 

tions are not satisfied for all values of x. As the gas 

radiates, its temperature and speed decrease. T.t  follows 

from equation (5.9), that for values of T which are itO.l, 
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the maximum value that A can have is OH = 0.5. Therefore 

the solution of these equations is meaningful only for 

those values of x for which A ■£. CH. The cut off distance 

occurs about one reaction mean free path behind the gas 

dynamic discontinuity. 

5.3 Profiles of the Flow Variables for Shocks Propagating 
with the Chapman-Jouguet Speed in Deuterium-Tritium 
and Tritium Gases 

The profiles of the flow variables behind the gas 

dynamic shock have been computed for thermonuclear shocks 

propagating with the Chapman-Jouguet speed. The profiles 

of dimensionless temperature, speed, density, and pressure 

are shown in figures 16 to 19 for the deuterium-tritium 

mixture and figures 21 to 24 for the tritium gas. Three 

cases are displayed in each figure:  (1) pure reaction, 

(2) reaction anl radiation, (3) pure radiation. The pure 

reaction curves are computed for values of ö\ up to 

°C = 0.99. The Euler forward integration procedure is 

inadequate for values of the spatial variable corresponding 

to -aC greater than 0.99. However, the behavior of the 

curves as they approach the values given by the jump condi- 

tions across a thermonuclear shock is not of much interest. 

The reaction and radiation curves are computed for values of 

o(  up to c( =0.80 for the deuterium-tritium mixture, and 

■y i 

.: i 

| ; 
f I 
i t 

I ■ 
i I 

if 

^««B-Kftfe 
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1 I oC * 0.91 for the tritium gas. The flow variables are chang- 

ing very rapidly with space for larger values of oC , so a 

higher order integration scheme is needed. However, the 

behavior of the variable for ^ > 0.80is of no physical 

interest« The pure radiative curves are computed for 

values of x such that the radiation energy loss parameter, 

A, is L  CH. 

The reaction and radiation shock profiles combine the 

features of the pure reaction and pure radiation solutions. 

As k   —^ 0, all three curves approach the values given by 

the jump conditions behind the gas dynamic shock. For 

fc c <L 1, the reaction and radiation solution coincides 

with the pure reaction curve. For <? > > 1, it follows the 

general shape of the pure radiation curve. However, the 

two do not coincide because the composition of the gas 

changes as the reactions occur, and the pure radiative case 

is valid only for a gas consisting of reactants. 

The pure reaction and pure radiation shock profiles put 

upper and lower bounds on the values of the flow variables 

at each point <* . For the pure reaction case, the dimension- 

less speed, u. , rises monotonically from £ = 0 to t, = <*■" . 

The dimensionless density, ^ = ~ , and pressure, TI * 1- u, 

decrease monotonically over the same range. The temperature 

■„ **-Bbi«<**a-*HWfc " 
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rises to a peak and then decreases gradually to its post- 

detonation steady state value. The temperature peak occurs 

at "t =13.9 for the deuterium-tritium mixture and at 

<} = 2.6 for the tritium gas. For the pure radiation case, 

all of the variables are monotonic functions of ^ . The 

temperature and speed of the gas decrease from f  = 0 to 

\ = oo  ; there is no energy source (e.g., reactions) to 

accelerate and heat the gas. The gas density and pressure 

increase monotonically with increasing ^  . 

When the coupled effects of reactions and radiation are 

included in the equations, uj , dp , and IT are no longer 

monotonic functions of f   . At first the speed of the gas 

increases, as in the pure reaction case. It continues to 

increase until the power input due to reactions is equal to 

the power loss due to bremsStrahlung, (R = 1). Then the 

speed begins to decrease, as in the limiting pure radiative 

case. The curves of dimensionless density and pressure also 

undergo a shift in slope for R = 1; the pressure and density 

decrease with increasing £' for R < 1 and increase with 

increasing £  for R > 1. The turning point of the u? , ty  , 

and TV curves occurs at  £J  =0.356 for the deuterium- 

tritium case and at  £ = 0.947 for the tritium case. The 

temperature increases with increasing ? until R = 1 for 

the deuterium-tritium mixture and R = 0.425 ( £ = 0.386) 

.«.«««,**.-. i iij.n.-,.. *»..»iu.i«tii-. 
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for the tritium gas. It then falls as radiative effects 

become dominant. 

The variation of "( , the degree of fusion, with space 

behind the wave front is shown in figures 20 and 25 for the 

two gas mixtures. °<.  increases monotonically with increas- 

ing ^  since thermonuclear reactions are irreversible. 

The reaction and radiation curve coincides with the pure 

reaction curve for small values of  oC. As ^    increases, 

oC C ^ ) increases faster for the reaction and radiation case 

than for the pure reaction case. The following argument 

can be used to explain this result. 

The ratio of the reaction rate for the radiating gas 

(R) and the non-radiating gas (NR) is 

ail 

NR 

f       <T V >(T ) 
' R X   /V R' 

2 

1 NR     UNR7 

The density for a given £  for a radiating gas is greater 

than (or equal to) that for a non-radiating gas (see figures 

18 and 23). The temperature for a given £"  for a radiating 
t 

gas is less than (or equal to) that for a non-radiating gas 

(see figures 16 and  21). The reaction probability for T-T 

reactions decreases with decreasing temperature. The reac- 

tion rate is proportional to the reaction probability and 
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to the density squared. Since 

f2 <T\J>(TR) 
NR 

for each value of ¥   , the reaction rate is larger (or the 

same) when radiation losses are included in the equations 

than when they are neglected for the tritium gas. The 

reaction probability for T-D reactions, (unlike that for 

T-T reactions), increases with decreasing temperature for 

kT>70 kev, i.e., 

<«> (v 
2    2 Therefore, even if f    =• P        , 
R   NR 

the reaction rate is greater for the radiating gas than it is 

for the non-radiating gas for the deuterium-tritium mixture. 

The general properties of the shock profiles can be 

discussed with the variables in dimensionleas form, but in 

order to compute the thickness of the reaction zone, the 

actual values of the physical variables must be known. For 

an initial temperature of 5 x 10 °K, and an initial pressure 

of 1.33 x 10 dynes/cm , (n. - 10 (cm* )), the reaction mean 
g 

free path behind the gas dynamic shock is ~ 10 cm. One 

A 
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possible definition of the width of the reaction zone is 

the distance over which 80% of the material fuses, A Q.. 4ÖU 

It is expressed in the units of X «, in Table 5. 

A 
< 80 

Gas (kT)2(Mev) X2(cm) 
pure 

reaction 
reaction & 
radiation 

deuterium- 2.93 6.01 x 108 5.43 1.54 
tritium 

tritiun. 1.88 1.59 x 108 4.83 2.96 

TABLE 5. Reaction Zone Thickness 

The distance behind the gas dynamic shock over which 80% 

of the reactions occur is the order of several earth radii. 

The thickness of the reaction zone varies inversely with 

the initial pressure of the gas. Therefore, it will be 

reduced if the pressure is increased. Reaction zone thick- 

nesses for smaller degrees of fusion can be computed also. 

There is no need for such a high degree of fusion in order 

to obtain useful power from thermonuclear reactions. 

■;l 

5.4 Profiles of the Flow Variables for Shocks Propagating 
with Chapman-Jouguet Speeds in Hydrogen-Tritium Mixtures 

It was shown in section 2.3 that the minimum shock speed 

satisfying the Rankine-Hugoniot conditions for a non-radiative 
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thermonuclear shock is the Chapman-Jouguet speed. For 

shocks travelling with the C-J speed, the fusion reactions 

go to completion inside the wave and a steady state is 
7 

established behind it. Shock speeds of the order of 10 cm/sec 

are presently obtainable in electromagnetically driven shock 
Q 

tubes. Shock speeds of 10 cm/sec have been reported. There- 

fore, a study of thermonuclear shocks which travel with 

speeds lower than the C-J speed for tritium, or a deuterium- 

tritium mixture, is of interest for shock tube experiments. I 

I The C-J speed for a hydrogen-tritium mixture is a § 
I 

function of the relative concentration of the two species. 

Since the C-J speed for the mixture is proportional to 
i 

.  fr  , (see equations (2.29) and (3.72)), the C-J speed 

decreases as more hydrogen is added to the mixture. The 
Q 

C-J speed is reduced to 10 cm/sec for  £ ■ 643. Although 

the power yield would be small for such mixtures, there 

would be a measurable neutron flux in the shock tube. Neu- 

tron fluxes can be measured with appropriate counters. Such 

measurements could be used to determine whether the plasma 

temperature had its predicted value behind the gas dynamic 

shock. 

The flux of neutrons per unit area per unit time is 

defined as 

% = nN  U  • (5-10) 

Jj 
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The neutron« are assumed to be in equilibrium with the other 

species and to travel with the local fluid speed. If 

<<< 

that 

1+36 ,  it follows from equations   (3.92)  and  (5.7) 

*■ 
A* H <erV>. 

\s *ul (1+3 £ ) 
J 

(5.11) 

The distance, x, behind the wave in the shock reference 

frame is related to the time, t, elapsing after the wave 

has passed a given point by 

x « u- t (5.12) 

Therefore the neutron flux also increases linearly with time 

behind the wave for <* < < 1+3 6 . The values of the neutron 

8 

flux at 2,  4, 6, 8 and and 10 meters behind the gas dynamic 

shock have been computed for hydrogen-tritium mixtures with 

(=.    «33.3 and  6 = 643. The C-J shock speed is 4.34 x 10 

cm/sec for mixtures with £ = 33.3. A 10 meter gas sample 

behind the gas dynamic shock has a temperature of 18.67 kev. 
Q 

The shock speed for mixtures with 6 = 643 is 1 x 10 cm/sec. 

The temperature behind the gas dynamic shock is 0.981 kev. 

The neutron flux as a function of space and time is given in 

Table 6. The degree of fusion corresponding to each value 

of the flux is also included. 

• > 
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£ dp    (-l j 
TN  lcnT-sec ' 

x(m) 
t 

(/* sec) 
oi 

33.3 

6.34 x 1013 2 0.46 
-11 

1.53 x 10 

14 
1.27 x 10 4 0.92 3.06 x 10"U 

14 1.90 x 10 6 1.38 4.59 x 10~U 

2.54 x 1014 8 1.84 6.12 x 10"11 

3.17 X 1014 10 2.30 7.15 x lO"11 

643 

2.48 x 106 2 2 2.56 x 10 

4.96 x 106 4 4 
—1 fi 

5.12 x 10 

7.44 x 106 i5 6 7.68 x 10"18 

9.92 x 106 8 8 1.02 x 10"17 

1.24 x 107 10 10 1.28 x 10"17 

TABLE 6. Neutron Fl"x Behind Gas Dynamic Shock in 
Hydrogen-Tritium Mixtures 

5.5 Profiles of the Flow Variables for Shocks Propagating 
with Speeds Below the Chapman-Jouguet Speed 

In the preceding sections, shocks travelling at the 

Chapman-Jouguet speed have been considered. One method of 

r^ucing shock speeds to experimentally obtainable values 

V*AS proposed: the addition of inert material like ordinary 

hydrogen to a fusible gas like tritium. This method has the 
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disadvantage of increasing the bremsStrahlung rate without 

increasing the reaction rate. Another method of obtaining 

thermonuclear shocks might be to send shocks with speeds 

less than the Chapman-Jouguet speed into a deuterium-tri- 

tium mixture. The approximations that we make in order to 

solve for the structure of shocks travelling with the C-J 

speed become better for shocks travelling at lower speeds 

(see section 2.2). 

The analysis of thermonuclear shocks propagating with 

speeds below the Chapman-Jouguet speed follows very simply 

from the analysis of the C-J case. In order to keep the jump 

conditions across the gas dynamic shock in the same form 

as those for the C-J case, we define a constant Q , such 

that the C-J relation between the shock speed and Q is f 
m I 

preserved for any value of the shock speed, i.e., 1 

u2 = 2( y2 - 1)  Qm     . (5.13) 1 1 m ' 
i 
| 

Then, |^2 = 4 ll^ii2 0m    _ (5U) I 

The shock structure equations for deuterium-tritium mixture, 

Qm 
presented in section 3.4, are valid only for <*<  <* = r- , m  Q 

where Q is the value of Q when the shock speed is eoual to 
m 

the C-J speed. The time independent equations are not 

satisfied for larger values of <* 
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Temperature profiles in the reaction zone have been 

8 8 
computed for shock speeds of 1.10 x 10 cm/sec, 3.48 x 10 

cm/sec and 1.10 x 10 cm/sec (which correspond to o(  - 0.001, 

0.01, and 0.1, respectively). The results are displayed 

in figure 26. The profiles of the relative degree of fusion, 

^— , in the reaction zone are shown in figure 27. A graph 

of the ratio of the bremsStrahlung power to the thermonuclear 

power, R , for the reaction zone is shown in figures 28 for 

the three cases and figure 29 for shocks travelling with the 

C-J speed in a deuterium-tritium mixture and a tritium gas. 

Radiative effects are not important for shocks travel- 

8 9 ling with speeds between 3.48 x 10 and 1.10 x 10 cm/sec. 

-3 
R remains at the roughly constant value of 6 x 10  for 

Q 
shocks travelling with a speed of 3.48 x 10 cm/sec and 

-2 9 2.5 x 10 ' for shocks propagating at 1.10 x 10 cm/sec. The 

temperature profiles for the two cases look like the non- 

radiative temperature profile for shocks travelling with the 

C-J speed; the temperature rises to a peak value and then 

decreases as approaches «( . The details of the shape of 

i 

each curve depend on the temperatures occurring in the 

reaction zone (which depend on the shock speed). The reaction 

probability does not have the same functional dependence on 

temperature for all temperatures. The temperature and relative 

degree of fusion rise fastest for temperatures close to the 
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I maximum value of the reaction probability (kT^70 kev). 

Radiative effects become important as the shock speed 

a 
is reduced to 1.10 x 10 cm/sec. The power ratio in the 

reaction zone is <ä 8 x 10*" . The larger power ratio 

occurs because the reaction probability decreases rapidly 

as kT falls from 40 kev to 4 kev. The power ratio decreases 

with distance behind the gas dynamic shock. Even though 

fuel is being replaced by inert reaction products which 

radiate but do not react, the reaction probabilility is 

rising very fast for the temperatures occurring in the 

reaction zone (3-4 kev) so that the reaction rate is increas- 

ing faster than the bremsStrahlung rate. The temperature 

profile does not look like the other profiles shown in 

figure 26 because radiative effects are significant. The 

temperature increases with distance behind the gas dynamic 

shock but does not reach a peak and then decrease because 

the condition for a temperature maximum, R »1, is never 

satisfied. 

One definition of the thickness of the reaction zone 

is the distance from the beginning of the reaction zone 

to the point where a fixed percentage of the gas has reacted. 

The reaction zone thicknesses for shocks travelling with 

the three different shock speeds given above have been computed 
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for four different percentages of reacted gas. The results 

are presented in Table 7. 

o(„ u, ( — ) 1 sec 

Partial Thickness of Reaction Zone (cm) 

0.01% 0.1% 1% 10% 

0.001 

0.01 

0.1 

1.0 

1.10 x 108 

3.48 x 108 

1.10 x 109 

3.48 x 109 

8.5 x 104 

7.0 x 102 

2.7 x 103 

2.8 x 104 

7.9 x 105 

7.3 x 103 

2.7 x 104 

2.8 x 105 

1.4 x 105 

2.9 x 105 

2.8 x 106 

7.9 x 106 

3.3 x 107 

TABLE 7. Thickness of Reaction Zone for a Given Degree 
of Reaction as a Function of Shock Speed 

The thickness of the reaction zone depends on the tempera- 

tures and densities occurring in the reaction zone and the 

shock speed.  <<ri/> rises to a maximum value for kT a  70 kev 

and then falls off with increasing temperature. One would 

think that the reaction zone thickness would be minimized 

for shock speeds such that T = 70 kev. However, the 

thickness depends on shock speed and the square of the density 

as well as on reaction probability. The thicknesses of the 

reaction zone (for small values of <* ) can be compared for 

two shocks travelling with different shock speeds in the 

/ 
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following way. It follows from the continuity equation that 

dx 

d*) A   ^">b  /£ 

d«)   do(\ Ax 
If A*a = A«*b, then rr-J / "r-/* —— • Since the initial 

Ax. a 
density of the gas is the same for both cases,    n      is 

~     p.    .    The ratio of the mass flow constant, _2i ,  is 
, Tb \T ä 

equal to [ _2 \ .    Therefore, 

Axb  J?^<rv> 
Axa      K)*<<r^>. 

b a If    T-  is > T2    ,  then 

*"b is  <    1 if <<rv»b 

<^>a >&* 

(For example, if T7 ■ 70 kev «T1^.-8.9 x 10"  cm /sec) 

and T* a 29.3 kev (4<rv>* 6.6 x 10"  cm /sec ), then 

Ax. 
ä 1.1 .) One can determine the shock speed 

that gives the thinnest reaction zone from the graph of 

reaction probability vs. temperature for T-D reactions. The 

minimum thickness for a given degree of reaction occurs for 

T- a   40 kev which corresponds to a shock speed of 4.08 x 10 8 

cm/sec. 
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The gas dynamic shock was assumed to be r/wch thinner 

than the reaction zone for shocks travelling at the C-J 

speed. The validity of this assumption for shocks trav- 

elling with speeds below the C-J speed will now be examined. 

The thickness of the gas dynamic shock is assumed to be one 

collision mean free path evaluated at the end of the gas v 

dynamic shock. It is found to be 168 m for shocks propagating 
if 

8 *■ at 3.48 x 10 cm/sec.  (The collision mean free path varies I 
■Mi. 

roughly as the temperature squared.) Therefore, although § 
« 

it takes only 73 m for 0.1% of the gas to react for a shock I 

8 I speed of 3.48 x 10 cm/sec, 168 m or more are required for f 
1 

the gas temperature to build up to its final value behind 
I 

the gas dynamic shock. I 
fv 

i The behavior of the flow variables over a distance of | 
.** 
V 

10 m behind the gas dynamic shock is relevant to shock tube 

experiments. The neutron flux as a function of space (or M. 
% 

time, if viewed in the laboratory), is shown in Table 8 

8 8 ** 
for shock speeds of 1.10 x 10 cm/sec and 3.48 x 10 cm/sec. 

The corresponding values of <* are also noted. Much 

higher neutron fluxes are obtainable from deuterium-tritium 

mixtures than from hydrogen-tritium mixtures for shocks 

of the same speed. 

For thermonuclear shocks to be obtainable in shock 

tubes, the thickness of the gas dynamic shock must be minimized. 
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However, the shock speed must be high enough so that reac- 

tion rates are appreciable. The gas dynamic shock is 

A? 1.68 m thick for a thermonuclear shock propagating at 

8 17   —2   —1 
1.10x10 cm/sec. Neutron fluxes of 10  (cm -sec ) 

are achieved in the reaction zone. About 

ul 

(10^) 
<x„ It1     \ x(m) tUsec) 

1 
4>    (    2           * 

cm —sec 

1.10 0.001 

1.24 x lO17 2 1.82 2.34 x 10"7 

2.48 x 1017 4 3.64 4.68 x 10"7 

3.72 x 1017 6 5.46 7.02 x 10"7 

4.96 x 1017 8 7.28 9.35 x 10~7 

6.20 x 1017 10 9.10 1.17 x 10"6 

3.48 0.01 

19 
4.86 x 10 2 0.576 2.89 x 10~5 

j 
9.73 x 1019 

4 1.15 5.80 x 10"5 

i 
i 1.46 x 102C 6 1.73 8.69 x 10"5 

i 

1 
20 

'   1.86 x 10 8 2.30 1.11 x 10"4 

i i                        20 
2.43 x 10 

i 

1 

10 2.88 1.45 x 10~4 

I 

j 

TABLE 8. Neutron Flux Behind Gas Dynamic Shock in a 
Deuterium-Tritium Mixture as a Function of 
Shock Speed 
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0.0001% of the gas will have reacted 8 m behind the gas 

dynamic shock. The specific thermonuclear power is 

TN   D2 T_ x  '2  R 

C(2 x 1016)2 (1.66 x 10"18) (17.6 x 1.602 x lo"13)*2^1 

cm 

2 kw/cm . 

If the shock tube is 10 m long and has a radius of 10 cm, 

then the total power output is ex  5 x 10 kw.  (Fission power 

reactors have power outputs of the same order of magnitude.) 

A shock tube is a pulsed device so the power output is 

not continuous. A estimate can be made of the total energy 

released in reactions with each pulse. We assume that a 

given gas element will react from the time the shock wave 

initiates the reactions until the rarefaction wave following 

the shock wave quenches them. If the shock wave has travelled 

for a time, t, the distance between the shock front and the 

rarefaction wave (in the limit of very large initial Mach 

24. 
number) is (Gross ) 

ui *<t) - -f t. (5.15) 

The energy released during the operation of the shock tube 

may be estimated by 

E = PTNUr * I 
op 

A(t) dt 

*W(^r2) T ^f rTN' (5.16) 
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The operating time, t , is equal to the length of the 

apparatus divided by the shock speed. If the shock speed is 

8 
>- 10 cm/sec, then the operating time for a 10 m long 

shock tube is  cs 10 yusec. Evaluating equation (5.16), 

(noting that P *x 2kw/cm and r=10 cm), we see th^t the 

energy released is c 750 joules. This particular figure is 

of course only a rough estimate. However, it indicates 

that an energy output of the order of hundreds of joules 

is feasible. 
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A 

A« 

o( 
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B 

B' 

C 

c 

D 

D' 

ä 

A 

E 
cm 
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F 
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irass flow constant 

ion atomic weight 

constant in Gamov cross section 

degree of fusion 

maximum degree of fusion 

momentum flow coi>«t*nt 

constant in Gamov cross section 

energy flow constant 

speed of light 

function of radiative loss parameter 

constant that depends on A, ß and C 
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energy in center of mass coordinates 

energy in laboratory coordinates 

internal energy 

electron charge 

density ratio of protons to tritons 

constant that depends on £ 

electron flow constant 

proton flow constant 

ratio of specific heats 
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h 

h 

k 

Kv 

H 

\ 

X 
D 

v 
P 

\2 

m 

m 
e 

n 

nD 

ne 

constant that depends on A, B and C 

enthalpy 

Planck's constant 

mass emission coefficient 

Boltzmann constant 

mass absorption coefficient 

constant in shock structure differential equation 

de Broglie wavelength 

Debye shielding distance 

photon absorption mean free path 

reaction mean free path 

reaction mean free path behind gas dynamic shock 

alpha particle mass 

deuteron mass 

electron mass 

neutron mass 

proton mass 

triton mass 

effective triton mass 

alpha particle number density 

deuteron number density 

electron number density 

neutron number density 

proton number density 
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nT 

Cd 

BR 

TN 

P 

T\ 

Q 

'eff 

R 

TGam 

^Gov 

T 

T 

triton number density 

dimensionless speed 

power due to bremsStrahlung 

power due to thermonuclear reactions 

pressure 

dimensionless pressure 

dimensionless density 

energy released in reactions per gram of initial 
gas mixture 

effective energy released per gram of initial 
gas mixture 

energy released per reaction 

radiative energy flux 

thermonuclear energy per unit mass 

universal gas constant 

ratio of bremsStrahlung power to thermonuclear 
power 

density 

cross section 

Gamov cross section 

Govorov uuss section 

reaction probability 

temperature 

dimensionless temperature 

self collision time 
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Tee 

N 

T. -eq 
TR 
u 

ul 

w 

w. 
i 

? 
z 

self collision time for electrons 

self collision time for neutrons 

equilibration time 

reaction time 

gas speed 

shock speed (initial gas speed) 

mean molecular weight 

production rate of ith specie 

dimensionless spatial variable 

atomic number 
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