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ABSTRACT

The structure of a very strong shock wave propagating
through a deuterium-tritium gas mixture and a pure tritium
gas is studied. The temperature behind the shock wave is
sufficiently high so that thermonuclear reaction probabilities
are large. The wave structure is similar to that of detona-
tions in chemically reacting gases. It is assumed that the
characteristic times for collisions and reactions are such
that the von Neumann-Zeldovich model of detonations is
applicable; i.e., the shock can be treated as a viscous
gas dynamic shock followed by a deflagration wave inside
of which all the reactions occur. The physical and mathe-
matical assumptions involved in the analysis of thermo-
nuclear shock wave structure are examined. The reaction
probabilities for deuterium and tritium fusion reactions
are computed and the appropriate reaction kinetics equations
are developed. The effect of energy losses due to bremsstrah-
lung on the wave structure is considered for a gas that is
optically thin to radiation of all frequencies. The result-
ing set of structure equations are solved numerically for
several physicaily interesting cases. The neutron flux and
power output due to reactions is calculated for a shock wave

propagating in a electromagnetically driven shock tube filled
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with a mixture of deuterium and tritium. A power of

1 kw/cm3 is predicted under specified operating conditions.
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CHAPTER 1

INTRODUCTION AND HISTORICAL SURVEY

A shock wave is a disturbance that propagates with
supersonic speed with respect to the undisturbed gas ahead
of it. It compresses and heats the gas through which it
moves. If the gas is capable of undergoing molecular,
atomic or nuclear reactions, the gas composition may change
across the shock front.

A shock wave in which exothermic reactions take place
is called a detonation (see figure l). A thermonuclear
shock is defined as a detonation in which thermonuclear
reactions occur. If the high temperature created by the
shock wave is maintained, the gas may coatinue to react
until all the fuel is consumed. Radiation is an important
energy transfer mechanism at temperatures for which thermo-
nuclear reaction rates are appreciable. If the gas is opaque
to radiation, a steady state may be established behind the
wave. If the gas loses energy through radiation, lrowever,
no steady state is established behind the wave; the gas
continues to radiate until its temperature is the same as
that of its surroundings.

The variation of temperature, pressure, density, speed

and species concentration with space inside the shock wave
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FIG. 1 DETONATION WAVE IN A NON-RADIATING GAS
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is called the shock structure. The flow variables change

continuously from one side of the wave to the other. The
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interior of the wave is where wviscous and thermal conduct-

P

ing processes are important and where all the reactions

e

take place. However, for a gas in which radiation energy

loss is negligible the conditions behind the wave are

independent of the detailed transport and reaction processes
occurring in the shock structure. If radiation energy loss
cannot be neglected, the conditions behind the wave depend
l‘ ' on the physical processes occurring in the structure.

I In this paper the structure of detonations in gases
capable of undergoing thermonuclear reactions is investi-
gated. There is no known literature that deals directly
with thermonuclear shock structure. However, studies of

B gas dynamic shocks, detonations in chemically reacting gases,

and shocks in radiating gases are relevant.

k . The early theoretical work on gas dynamic shock waves

‘_ was done by Rankinel and Hugoniot .2 They d« -ived the jump
conditions across the wave and considered the gas dynamic

k‘t' shiock structure equations in an inviscid gas with non-zero

therinal conductivity. 1In general, the gas dynamic shock

structure equations consist of two ccupled non-linear first

order differential equations. If either viscosity or thermal

conductivity is neglected, one of the equations is algebraic.
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Rayleigh3 studied shock structure in a viscid gas with zero
thermal conductivity. The solution of the shock structure
equations in a viscid-thermal conducting gas was obtained
by Gilbarg and Paolucci4 using continuum theory and by
Wang Changs, Mott-SmithG, 2011er7 and Grad8 using the
Boltzmann equation.

9

Detonations were first observed in 1881 by Berthelot.

Chapmanlo and J‘ouguet11 studied detonations theoretically,

postulating that the gas behind the detonation moved relative

to the wave with the speed of sound. Von Neumannlz, D'dring13

and Zeldovich14 analyzed the detonation structure problem
in 1940 assuming that a detonation wave consists of a gas
dynamic shock followed by & deflagration, a wave in which
exothermic reactions take place that propagates with sub-
sonic speed. Under this assumption, the shock structure
equations include one algebraic equation and one first
order non-linear differential equation. Hirschfelder and
Curtissls, assuming that the gas dynamic shock and defla-
gration are coupled, solved two simultaneous non-linear
differential equations for the detonation structure. Deto-
nations have been studied for meny kinds of reacting gas
mixtures. For example, Resler and Caryl6 have studied
detonations in dissociating air and Petchek and Byron17

have investigated ionizing shocks in argon.

3
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Radiative shock wave structure has been studied exten-
sively since 1952 when Prokof'ev18 investigated the case of
steady flow with zero viscosity and thermal conductivity,
i.e., the "radiation smoothed" case. Heaslet and Baldwin19
extended earlier work on the "radiation smoothed" shock by
considering cases with discontinuous profiles. Marshak20
and Traugott21 have included the effects of viscosity and
thermal conductivity in their analyses of radiative shock
structure. Shocks in optically thick atmospheres have been
investigated by K.och22 for a plasma and Scala and Sampson23
for a chemically reacting gas. Shocks in optically thin
atmospheres have been studied by Gr05524 for an ordinary
gas and by Scala and Sampson23 for a gas undergoing chemical
reactions.

In the present paper, the model of detonation structure
that von Neumann used in his study of shocks in chemically
reacting gases, is applied to an analysis of detonations in
gases capable of undergoing thermonuclear reactions. First,
a set of shock structure curves showing the effect of reac-
tions is obtained for detonations in tritium and deuterium-
tritium mixtures. We neglect the effects of viscosity and

thermal conductivity of the gas and radiative energy loss

in this initial treatment. Then, the more complicated

problem of a coupled detonation and radiative shock wave




in tritium and deuterium~tritium mixtures is studied. As
there are no applied magnetic fields in the problem,

bremsstrahlung is the only type of radiation included in
the analysis. The gas is assumed to be optically thin to
radiation of all frequencies. A set of structure curves,
showing the coupled effects of reactions and radiation on

the shock structure, is obtained.
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CHAPTER II

PHYSICAL AND MATHEMATICAL FORMULATION OF THE PROBLEM

In this chapter the problem of detonation wave structure
in gases undergoing thermonuclear reactions will be formu-
lated physically and mathematically. Before writing down
the appropriate shock structure equations for thermonuclear
shocks (first, assuming no radiation losses, and then includ-
ing radiation losses), the von Neumann model of detonation
structure will be described. A discussion of the physical
and mathematical assumptions used to simplify the structure

equations will follow.

2.1 Von Neumann Model of Detonation Structure

The model of detonation structure used by von Neumann
in his study of shocks in chemically reacting gas mixtures,
treats a detonation as a shock followed by a deflagration.
The shock wave, which is thin compared to the deflagration
that follows it, propagates supersonically into the undis-
turbed and unreacted gas; the deflagration, inside of which
all the reactions occur, propagates subsonically into the
gas through which the shock has already travelled.

The chanées in pressure, density, speed, temperature
and ratio of reaction product density to total density (KA )

inside the detonation, viewed in a reference system moving

PRSIETYATE  ~EER e S AR St il
.
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with the detonation, are depicted schematically in figure 2.

Each variable asymptotically approaches its upstreamvalue as x
goes to =~ o° and its downstream value as x goes to + @O ,
In the shock wave (points 1 to 2 in figure 2), the gas is
compressed, decelerated and heated. In the deflagration
(points 2 to 3 in figure 2), the gas, as the reactions
proceed, is gradually expanded and accelerated. The tempera-
ture, which reaches almost its final value behind the shock,
rises to a maximum inside the deflagration and then decreases
slightly as the fuel gets used up and the random thermal
energy is transferred into bulk kinetic energy of the gas.

The von Neumann model is a valid description of a
detonation provided thatf. the characteristic time for reac-
tions to take place,'tR, is long compared to the time involved
in passage of the shock wave (Hirschfelder,25 p. 801). The
time for the shock wave to pass in a plasma depends on the
ion-ion collision time,'tc, behind the shock (Von Karmanzs).
Therefore the validity criterion for the von Neumann model
is that ’tc/T:R < < | behind the gas dynamic shock.

In order to get some physical feeling for the conditions
inside thermonuclear shocks, we shall note some typical values
of parameters such as temperature, pressure and speed. The

initial gas mixture (point 1 on figure 2) is assumed to pe

fully ionized to avoid the mathematical complications of

f
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FIG. 2 DETONATION IN A NON-RADIATING GAS ACCORDING
TO VON NEUMANN MODEL.
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dissociation and jonization. Hydrogen is fully ionized at

about 5 X 104 oK (Brezin927). Initial number densities

of interest for controlled thermonuclear fusion are

= 1015 - 1016 cm-3 (Glasstone and Lovbergze}. The

detona-

tion speed, which is also the initial gas speed relative to

a reference system moving with the detonation, is about

logcm/sec.

The shock wave heats the gas to a temperature of about

. 1010 oK. Behind it (point 2 on figure 2),

number densities

have increased by a factor of four and gas speeds have

decreased by the same factor (see section 2.3). As

the

yeactions go to completion inside the deflagration wave,

the density, speed, pressure and temperature change

no more

than a factor of two. The characteristic temperatures and

number densities behind the deflagration (point 3 on figure 2)

are about 1010 OK and 1015 c:m-3 respectively.
The temperatures and speeds characteristic of

nuclear shocks are much higher than those associate

thermo-

d with

other kinds of strong shock waves. A graph of post-shock

temperature VS. wave speed for hydrogen is shown in figure -

As the wave speed is increased, the gas first becomes disso=

ciated and then ionized. As the wave speed is increased

further, radiation processes in the gas become important.

The post-shock temperature is given by the pankine-Hugoniot

v, viona A . St S i S &
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conditions for a gas dynamic shock. In the dissociation
and ionization speed-temperature regimes, the appropriate
chemistry has been incorporated into the jump conditions
(Taussigzg). In optically thick atmospheres, the radiation
energy density becomes important compared to the internal

22). Radiation

energy of the gas for u, > 107cm/sec {Koch
terms must be included in the jump conditions for such shock
speeds., For an optically thin atmosphere, radiation energy
losses become important only for shock speeds above logcm/sec.
There are no Rankine-Hugoniot conditions for shocks in opti-
cally thin atmospheres because no steady state is established
behind the shock. The post-shock temperature shown in

figure 3 is the maximum temperature reached in the structure
of the shock (Grossz4).

The post-shock temperature for thermonuclear shocks is
the temperature behind the entire wave, gas dynamic shock
plus deflagration. It is given by the set of Rankine-
Hugoniot conditions that include the energy released and
the change in gas composition due to reactions (see section
2.3) . The lowest detonation speed which satisfies these
Rankine-Hugoniot conditions is called the Chapman-Jouguet
speed. If the detonaticn travels with the Chapman-Jouguet
speed, the downstream flow is sonic. For speeds greater

than the C~J speed, there are two solutions to the Rankine-

et Bk A




.

e R AR 8 S T A S | - * o » w00 iy A

13

Hugoniot conditions. The upper branch, a strong detonation,
has subsonic flow behind it; the lower branch, a weak deto-
nation, has supersonic flow behind it (HayesBo). A graph
of post-shock temperature as a function of wave speed for
deuterium is shown in the figure 3. Deuterium and tritium
fusion reactions have much larger cross sections than
hydrogen fusion reactions and are therefore of greater
interest in problems of controlled thermonuclear fusion

31

(Taylor and Tobolsky ).

2.2 Physical and Mathematical Assumptions

The physics to be described in a complete treatment of
a thermonuclear shock structure problem includes (1) reac-
tions, (2) radiation, {(3) transport processes, (4) non-equi-
librium effects due to the multi-component nature of gas,
and (5) the effects of applied electromagnetic fields. Reac-
tions occur in the gas which has been shock heated. Some
of the energy added to the gas by reactions is lost through
radiation. Traasport processes due to the viscosity and
thermal conductivity of the gas account for the bulk flow
of momentum and energy. Since the gas is a mixture of
several kinds of ions end electrons, non-equilibrium pro-
cesses (e.g., diffusion, charge separatican, and energy and

momentum transfer between species) occur. External magnetic

S B s o Pen i n e s v, e+t ¢
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fields, necessary to contain a thermonuclear plasma in order
to tap its energy, further complicate the physics by adding
cyclotron radiation and hydromagnetic effects.

A mathematical treatment of thermonuclear shock
structure including all the relevant physics would requirve
the solution of the set of non-linear differential equations
that result from a coupling of the many species Boltzmann
or continuum equations with the radiative transfer equation
and Maxwell's equations. To reduce the number of differen-
tial equations in the problem to a manageable set, some
of the physical effects must be igrored. The present treat-
ment will include reactions and radiation while neglecting
transport phenomena, non=-equilibrium cffects due to the
presence of more than one species, and the containment problem.
The many species nature of the gas is incorporated in the
state and continuity equations only.

A list of assumptions used in the treatment of thermo-
nuclear shock structure without radiation in tritium and
deuterium-tritium mixtures is given below. It is followed
by a discussion of their physical validity. The further
assumptions that must be made when radiation is included
in the problem are then listed and discussed.

PHYSICAL ASSUMPTIONS FOR THERMONUCLEAR SHOCK STRUCTURE

1. 1he von Neumann model of detonations is valid:
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Ef the shock wave is thin compared to the deflagration
at
‘ g wave; all reactions take place in the deflagration
% region. Since the influence of reactions on the
7% detonation structure is of primary interest, the i
% shock is treated as a discontinuity and only the
é deflagration structure is studied.
'g 2. Transport phenomena due to viscosity and thermal
§ conductivity are negligible in the deflagration. 3
3 3. Non-equilibrium effects due to the presence of é
more than one species are negligible: All species
| ’ travel with the local gas speed; the particles of

each species have a Maxwellian distribution of
energies at the local gas temperature; charge
separation is neglijible.

4. One-dimensional, single fluid, continuum equations
provide an adequate description of the phenomena.

5. All macroscopic velocities and temperatures are

i * low enough so that relativistic effects can be
Y
' neglected.
6. There are no applied electromagnetic fields.
k Assumptions 1, 2 and 3 were made in order to simplify

both the mathematics and the physics of the thermonuclear
_ shock structure problem. Their physical validity depends

on the ratios of characteristic collision and reaction times
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for typical temperatures and number densities inside
thermonuclear shocks.

Spitzer32 defines the following characteristic times
for a plasma: The time required for a single species, non-
Maxwellian distribution to approach the Maxwellian distri-

butiocn is

5 3
T = 11.4 A7 T* (°K)
€ -3, .4
n(cm 7)) 2° fnA

sec, (2.1)

where Z is the atomic number of the ion, A is its atomic

weight, and

A 3 kT . (2.2)

The self collision time for electrons, "Cce, is just T:c
with Ae= 1/1836, the atomic weight of electrons. The rate
at which equipartition of energy between two groups of

particles is established is

3
x
T o= 587 ! 222 e S I (2.3)
N2 knA \R) A,
If the two groups are ions and electrons, and if T1:3 Tz,
then s
tqu 5.87 _P:i T—;——ﬂ—) secC. (2.4)
A n 22 fnaA

o
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The time associated with viscous processes, which is what

von Karman26 calls the characteristic time associated with

R

A S e T R NI

thermodynamic transformations, is the ion-ion collision

at ) o
il

Ti g rfgenn R o W o e et N e

time. The time associated with thermal conduction processes
is the ion=-electron collision time. Another relevant

characteristic time is the mean time between reactions

_ 1l
TiR T nlev) ? (2.5)

where (vv)> is the reaction cross section times the relative

r speed of the interacting particles averaged over the product

f- of their distribution functions (Osborn35

e

The ratios of the collision times,’tc,'t

ce’ Leq e

independent of temperature and number density. For a tritium

plasma (A = 3),

K—‘E = 74.3 and :t:ﬂ-q = 38.2.
; Tee lc
’ Ratios of collision times to the reaction time must be eval-

uated separately for each temperature and number density

of interest. For n = lO15 cm-3 and 109 Ok < T & 10lo oK,

.
oo
-

In A (which is not a very sensitive function of temperature

ot A

l and number density) = 21. The values of Leq/ Ur and

'tc/ T:R (with A = 3) are given in Table 1 for several

temperatures in this range.
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=) | Te/T
° O
T (°K) {(tv ) ) eq/ (R Te/Tr
1 x 10° 2x 1077 1 0.0 0.0006
!
5x10° | 8x 10 Y 1.02 0.027
|
1x100° | 1x107% | 3.8 0.11
i f
2 x 10%° 3x1067% 1 3005 0.79

TABLE 1. Ratios of Characteristic Times

The shock region is thin compared to the deflagration
region (assumption 1) if Tc/TR {<1 behind the shock.
For a tritium plasma the temperature inside the shock rises

from its downstream value, 5 x 104 Ok, to 10]'0

OK before any
reactions take place. However, as the temperature approaches
its post-shock value, ion-ion collision times and reaction
times become comparable. Therefore the reactions may not
be completely confined to the deflagration wave; some may
take place in the tail of the shock.

Viscosity is negligible inside the deflagration (assump-
tion 2) if '[c/I:R ¢l for typical temperatures and number
densities. The requirement for neglecting thermal conduc-

tion and diffusion is that (t c/ T R )(1/M2 >L {1 (von Karmanze).

A s P
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' * M is the Mach number, the ratio of the local gas speed to

the local sound speed:

- 2.5
M =(m> : (2.6)
R

¥ , the ratio of specific heats at constant pressure to

ey L PO

R

that at constant volume, has the value 5/3 for a plasma,

‘ - a mixture of monatomic gases. It can be shown (see section

2.3) that inside the deflagration,

2

1
- ¢ { .
R !

Since (’t c/ LR )( 1/M2) > 1 inside the deflagration, the
effects of viscosity, thermal conduction and diffusion would
have to be included in a fuller treatment.

The requirement for the ions and electrons to be in ther-
mal equilibrium (assumption 3) is that T:eq/WfR < ¢l inside

the deflagration. The reaction product ions are released with

T

Mev energies. The electrons, since they are not involved in
[ reacticns, are cooler than the ions. Although reaction
_ product ions transfer energy to fuel ions in a time comparable
M ‘ to the reaction time, energy transfer from the hot ions to
the cooler electrons occurs much more slowly. (For
L T=2x 10lo OK, (c/ TR ° 0.8 while r[eq/TZR = 30) .

The neutrons released in reactions, (which we assume are

B
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kept in the gas), must be in equilibrium with the ions and
electrons for the gas to be in thermal equilibrium. Cross
sections for neutron-triton scattering, Ty are 2 1 barn
for Mev neutron energies (Huches and Schwartz33). A 10
Mev neutron goes through 2-5 collisions before its energy
reaches 2 Mev (Glasstone34). The neutron collision time,
’tcN 2 (number of collisions to thermalize ) x l/(nc&VN).

For '1‘-'1010 OK, \_/N is 109 cm/sec, Therefore the ratio of

a8

s 8 A < R

the neutron-ion collision time to the ion-ion time,T;N/T; isx 1,

and the neutrons thermalize with the ions in a time
comparable to the ion-ion collision time. Equilibration
times for neutrons and electrons, however, are much larger
than those for neutrons and ions since neutron-electron
collision cross sections are very small. The neutrons,
like the ions, are therefore not in equilibrium with the

electrons.

The gas has local charge neutrality if the electron

Plasma frequency,

4 ne e2
W\" = k—_—m (2.7)
e

-

(Spitzer32) is much larger than the frequency associated

with the shocn wave, L R - AW/T . For the typical

temperatures and number densities mentioned previously,
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Therefore the assumption of charge neutrality is a good one.
One-dimensional, single fluid, continuum equations
(2assumption 4) have been used in many studies of shock
structure (e.g. Gilbarg and Paolucci4 and Kochzz). A
discussion of the use of continuum fluid equations rather

than the Boltzmann equation is given by Gilbarg and

Paolucci4 and by Gross.24 Treatment of the ions, neutrons

and electrons as a single fluid neglects the lack of thermal
eguilibrium between the electrons and the ions and neutrons.
If the electrons are assumed to be as hot as the ions and

neutrons, a significant fraction of them would have relati-

vistic energies. The non-relativistic equations are valid

(assumption 5) if KT <<.mc2 for each species. (mc2 for
electrons is = % Mev.) The use of non-relativistic equa-

tions is justified physically, however, since the electrons
are actually cooler than the ions and neutrons.

The following physical assumptions are made in addition
to those listed previously when radiation is included in
the thermonuclear shock structure problem:

7. Radiation effects are significant in the deflagration

region only.

G e Sl e
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8. The gas is optically thin to radiation of all

frequencies.

O
W

The radiation comes from ion-electron bremsstrah-
lung only.
Since the von Neumann model of detonations is assumed,

the effects of radiation are studied in the deflagration

region only. In figure 3, it is seen that for thermonuclear

shock speeds, the maximum temperature behind an optically

thin shock is only slightly lower than the temperature

oty AL N T R A
A q Elirs o M e L Trr et Pl ,!:4:._ :

behind a non-radiative gas dynamic shock. Therefore assump-
tion 7 is valid.

‘ A gas is optically thin to radiation if the photon
absorption mean free path, ):; , for all frequencies, v ,
is much larger than all the other characteristic lengths in
the problem. The reaction mean free path is the largest
characteristic length for non-radiative thermonuclear shocks.
Therefore the gas is optically thin if )\‘;) > > )\R for

10 15 =3

all frequencies. (For T =100 ©%Kand n =10 am ~, X\

R
is =X 109cm). The only type of radiation occurring in a
fully ionized plasma in the absence of magnetic fields is
bremsstrahlung. Since non-relativistic equations are used,
only ion-electron bremsstrahlung is considered; electron-

electron bremsstrahlung is neglected. An approximate expression

for the mean free path for absorption of a photon by a hydrogen

! O s e -
P L i 3 ot e }
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isotope plasma, as the result of a free-free transition,

is (Glasstone and Lovbergza):

'y 3
5 P (kev) - cm
2 L ]

v -
>\p ~7 x 10 (2.8)

The power emitted per unit wavelength per unit volume due
to ion-electron bremsstrahlung (Glasstone and Lovbergza)
is

12.4) ergs
AT cnd R-sec

-23_ ¥ 2, =3y -2
26.01 x 10”°n_ L; (ni 2%) 7% X\ "%exp(- (2.9)

=1

The maximum value of (.i.l:’ occurs for
aA

] .82 g

T (kev)

(2.10)

20

. -3 N
For T = 1 Mev, N is 6.2 x 10 R (Vo 5 % 105 cps).

The photon absorption mean free path for this temperature

-i | and frequency is = ].029 cm, which is much larger than the

reaction mean free path. The smallest frequency for which
15

Vv

o]
N eps ( > =3 x10° R). The

' : 15

ratio of the power emitted at a frequency of 10°~ c¢ps to

is > > )\R is 1+ = 10
1 2 20 ; ~-11
{ that emitted at a frequency of 5 x 10 cps is ~ 3 x 10 =
¢

3 Therefore the fraction of radiation energy emitted at

g frequencies for which the gas is not optically thin, is

negligible. It is, therefore, a good assumption to treat
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the gas as an optically thin atmosphere.

2.3 Shock Structure Equations Without Radiation

The following are the time-deperident continuum f£luid
conservation equations for the deflagration wave (von

Karman26):

The continuity equation for the ith specie is

[

‘N c .
-El + f?; (n, u) =WwW,, i=12,..., N, {2.11)

o

where N is the nuniber of species in the mixture, and Wi is
the production rate of the ith species(see section 2.4).
Multiplying each continuity equation by m, and summing over

all species, one obtains the mass flow equation,
£ 4+ = (Pu) =% m W, (2.12)

. (2.13)

where = 21 ni mi

If no particles (e.g., neutrons) escape from the gas, and
if negligikle mass is lost or created in reactions, then

= m,oW o= 0. The mass, 4m, lost in a nuclear reaction is
i
Am = (m1 + m2) - (m3 + m4) ’ (2.14)

where my and m, are the masses of the reacting nuclei and
m, and m, the masses of the product nuclei (Evans36). If

Am/(ml+m2) is < < 1, the mass lost in reactions can be

R T F e et e ot
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neglected in the mass equation. For thermonuclear reac-

O
s . gn

tions, Am/(ml + m2) is ¢ 0.01, so mass is conserved to a

’ , high degree of accuracy.

A momentum flow equation for each species in the mixture,
analogous to the species continuity equations for mass flow,
can also be written down. The momentum flow equation for
the mixture is obtained by summation of the species momentuﬁ
equations., If the viscosity and thermal conductivity of

% the mixture and the diffusion of the species are neglected,

the momentum flow equation for the mixture is,

.h. 3 .b_ 2 = _Q__
, £ (Fu) + £5 (PU7) = (2.15)
i
where p =y n kT. (2.16)
i
1 The energy flow equation for the mixture,which is derived
by summing the energy eqguations for all the species, is
u2 AL u2
A .ﬂ.— e = -—— - 2 -
o 9 (Plety = g+ & (Fulety = ag)) = - &lew), (2.17)
ot

% g where e is the internal energy of the mixture, and Ay is
a volume energy source due to thermonuclear reactions.

If the shock is viewed from a coordinate system moving
with the shock speed, all time derivatives in the continuity,
1 mass, momentum and energy equations vanish. If the result-
| ing time=~independent equations are integrated once with

respect to the spatial variable, x, they become

B0 0 T e R N W 2 ) o
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pu =A, (2.18)
2
p+pu =B, (2.19)
w2

where h = pu + e = 7éi ‘S'r is the enthalpy of the gas
(which is assumed to be ideal).
The constants of integration, A, B, and C,evaluated

from the steady state conditions upstream and downstream

from the shock (see figure 2), are

A=pu =pu,, (2.21)
.2
B=p, +P Uy =Dy +p, s, (2.22)
u2 u2
and c=h +" =n,+% - o . r2.28)
2 2

In state 1 the reactions have not begun so oy = 0. The
reacu..ons have gone to completion in state 3 so Ay = Q,
the energy released per unit mass of the initial mixture
if it reacts completely.

Thermonuclear shocks are very strong shocks, i.e.,
pl‘i<'Pl ulz. The Rankine=-Hugoniot conditions for a thermo-
nuclear shock follow from equations (2.21), (2.22), (2.23)
and the assumption of a strong shock. The ratio of the
gas speed behind the thermonuclear shock to the gas speed

ahead of the thermonuclear shock, (the shock speed), is

W

T
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: 2 2\3
| 5uOOf oy (1- 2¢7*-1) o/u,?)
; -u— = = IY_-l-]T t — (2.24)
1 ] Y+ 1
where §=2 .,
i 3
; The minimum shock speed that satisfies equation (2.24), the
Chapman-Jouguet speed, is
A
&
u = (20¢% - 1) o). (2. 25)
For C-J flow conditions, equation (2.24) reduces to ;
;
. {
3._.¥_ _3
u, ¢+l 8 ° (2520}
1
The ratio of the gas speeds behind the gas dynamic shock to that
in front of it, "2 , is given by equation (2.24) with Q = O.
u
1 u
The two values of _2 that satisfy equation (2.24) with
i |
: Q = 0 are
R
i u. 1+l & —ais S
L 4 1 1
One feature of thermonuclear shocks is that the tempera- ;
?‘ ' ture of the gas behind the thermonuclear shock, '.l‘3 , is indepen- {
dent of the initial temperature of the gas. T3 is related ‘
! to the energy released in reactions, Q, and the shock speed,
g
ul) by
2 2
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B ry=2 2L o o (XL wZhiy 12 (v?-n g
W, ¥+l ¥+l w2
1 (2.28)

R T, _ (-1 )
For C-J flow, s 3 2(“_1 )l’ Q=% Q. (2.29)
The temperature c¢f the gas behind the gas dynamic shock,
Tz, is given by equation (2.28) with Q = 0, i.e.,
-R—Tz-g i(_x_:l_). u 2 . (2.30)
W (y+1)2 1
2
If the shock is propagating with the C-J speed,
RT, (¢-1)2 )
g = 4 Q = '3" 2 . (2.31)
2 Y +1
and

The temperature behind the gas dynamic shock, Tz’
that behind the thermonuclear shock, T3, are plotted as

functions of the shock speed in figure 4. The gas is assumed

to be a deuterium-tritium mixture containing equal numbers
of tritium and deuterium ions. The C~J speed for the mixture

is 3.48 x 109 cm/sec corresponding to a post-detonation

2 for all

The increase in specific enthalpy across the

temperature of 4.2 x 1010 ok, T, is higher than T

shock speeds.
deflagration is accompanied by an increase in temperature,

since the mean molecular weight of the mixture remains con-

stant as the reactions occur.

B e
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The temperatures behind the gas dynamic and thermo-
nuclear shocks as a function of shock speed for a tritium

gas are shown in figure 5. The C-~J speed is 2.55 x 109cm/sec,
10

creating a temperature of 2.2 x 10° ©K behind the thermo-

nuclear shock. The temperature behind the deflagration

(thermonuclear shock) is equal to the temperature behind

the gas dynamic shock for shocks propagating with the C-J

speed. T3 is ™ T2 for shocks propagating with speeds

between the C-J speed and 3.4 x 109 cm/sec. If the shock 3

e 4 SRS

speed is increased further, the temperature behind the

deflagration will be lower than that behind the gas dynamic

shock. An increase in the enthalpy of the gas as the reac-

tions occur does not necessarily show up in increased

temperatures,as the mean molecular weight of the mixture

et A2 5 B

decreases with reactions. The temperature behind a gas i
dynamic shock propagating in a gas containing the reaction
products of tritium fusion reactions, (alpha particles and ;
neutrons in a l:2 ratio by number), is also shown in figure

4 for comparison.

2.4 Reaction Rates

! The source terms, Wi, in the species continuity equations,
must be specified in order to solve the non-radiative shock

structure scuitions across the deflagration. These functions
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are related by the requirement for mass conservation,

m, Wi = 0, It can be shown that they all depend on
a

the reaction rates for the fusion reactions taking place
in the plasma.

The reaction rate for binary nuclear reactions is

n. n
we -2 (qv) (2.32)

1+ 4.
)

where n, and n2 are the number densities of the interacting

nuclei and where the Kronecker- J takes into account the
possibility that the reacting particles are of the same

kind (Al = Az). If each species has a Maxwellian distri-

bution of velocities at the same temperature, the reaction

probability <(tv)> is given by (Glasstone and Lovbergzs)

4 2 2
(rv ==, (—’L)a f:rvexp (_,uv ) v2 dv, (2.33)
T 2xr/ 2 kT

mom

m_-+Hm
L 2

T = cross section for binary nuclear reactions, and

where/u.= is the reduced mass of the system,

v = relative speed of the interacting nuclei.
It is convenient to express (1V) as an integral over

center-of-mass energy, Ecm' Since

1 2
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the reaction probability can be written,
z ¥ E
eon L BT 1 |3 j F(E_) e (— eam)| E__ AE_ . (2.35)
TN) = 4 P |- R
(VY 4@5 (ZTTkT ) : cm = cm  cm

Nuclear reactions are studied in the laboratory by sending
beams of nuclear projectiles toward a target. Therefore
nuclear reaction cross sections are usually given as a
function of the laboratory energy of the incident particle

E If the target nuclei are in motion, as in a plasma,

L.

EL is the relative energy of the interacting nuclei. With

the relation between E_ and E__,
L cm

E =0E_, (2.36)

the reaction probability, written in terms of EL, is
8T AL |3 (7 «BL\ E aE . (2.37)
(V) = 5 < ) } 1’(BL)exp(-;-ﬁ:) L L'
m 2 WKkT 5

A reaction mean free path, XR’ a mean reaction time,
T R’ and a reaction power density can be defined in terms

of (1v) . If we let

(e

the reaction mean free path is defined as

MRV 'ER, (2.39)

o AR ks 5 |

. . s S .t F -
— — - —,— . = R _ ot d
- p— ~




rita 1 b + . . . - . ¢ . wm e o b ST B T g R e e

g

33
L
8 kT\* : . S : ;
where (v> = :aj;-, for a Maxwellian velocity distribution. (2.40)

The power density is just the reaction rate multiplied by

the energy released per reaction,

&
AA,

s - n. n
} Py 1+ 2{Nda, s (2.41)
2

h where QR = (am) ¢

2.5 Shock Structure Equations With Radiation

No steady state is established behind thermonuclear
shocks propagating in a gas that is losing energy through

radiation. Therefore, there are no Rankine-Hugoniot cond.-

4 tions which determine the post-shock state of the gas given
its initial state. Since no steady state is established
behind the shock, it is not obvious for the radiative case
that a reference frame travelling with the shock speed is
one in which all time derivatives in the structure equations
vanish.

A physical argument can be used to show that the shock
frame is a steady reference frame for shocks in optically
thin atmospheres. It is apparent that successive particles
! of gas, passing through the shock, go through the same history
in any region containing the shock that is much thinner than

& a photon absorption mean free path. The profiles of the

N L e e - APk,
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flow variables, viewed in the shock frame, are therefore
steady throughout such a region. Thus, we can validly
set time derivatives equal to zero in the structure equa-
tions if we limit the integration of these equations to

a region containing the shock that is much thinner than

a photon absorption mean free path. (The structure equa-
tions may be integrated over all space fcor thermonuclear
shocks in a non-radiating gas.)

All of the non-radiative thermonuclear shock struc-
ture equations are valid for thermonuclear shocks in
optically thin atmospheres except the energy equation.
The radiation pressure in the radiative momentum equation
and the energy density term in the energy equation are
negligible because all of the radiation is assumed to
escape from the gas. The only radiative term in the energy
equation is gf , the divergence of the radiative flux,
(Vincenti and Kruger37). The energy flow equation with

radiation for thermonuclear shocks in an optically thin

atmosphere is

d
g—x— (Pu (h + 32;3 - qp)) + 'd_xq = 0. (2.42)

If equation (2.42) is integrated over all space and then

divided by the mass flow constant, ;, u = A, then

] = ) - ’ T T T e e W g )
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i , 2

h +

X
1 ‘f dq
- + = —_ ax' = ¢, (2.43)
qTN A o dx'

NIG

An expression for gq can be obtained from the radia-

dx
tive transfer equation,
aI,
/M.a = j:)( JV - K‘V IV)’ (2.44)

where Iv is the radiative intensityn/x is the cosine of
the angle between the x-axis and the direction of observa-
tion of Iv,‘pjv is the volumetric emission coefficient, and

3
f'Kv is the volumetric absorption coefficient (Goulard 8).

For an optically thin gas, emission processes are more

important than absorption processes so f’ju > kav Iv

(Vincenti and Kruger37). The radiative transfer equation

thus becomes, i
dI

i /{( -—2 =f-' jv - (2.45)
"i dx

If it is integrated over all frecuency and solid angle,

%-t assuming that the emission is isotropic, we get an expression
| d
for a& »
] da _ .. (.. .
B 33—4- }rJV dv, (2.46)
where q=2% | JuI du du. (2.47) |
e - }
¥

v e s R R Rt e R P fﬂ: R R A

st X =




An expression for the vc.ametric emission coefficient,
fjv, must be obtained in order to evaluate the integral
in equation (2.46). Since there are no magnetic fields
and hence no cyclotron radiation, and since recombination
of atoms is negligible at thermonuclear temperatures,

the only non-neglible radiative process is ion=-electron

bremsstrahlung. Therefore the volumetric emission coeffi-

o W‘I";'-’"""-Wwﬂw"- = ety E bt Ry TR R e b el <% j- o 5
" . AT e SRS el e o T i e D i B ¢

i cient is just the power due to bremsstrahlung per unit
I
} volume per unit colid angle per unit frequency, which can
% be obtained from equation (2.9) by changing variables from
| wavelength to frequency. If the resulting volumetric emission
; coefficient is integrated over all frequency and solid angle,
(assuming isotropic emission), one obtains an expression
for the power per unit volume due to bremsstrahlung of all
frequencies, Pon (Glasstone and Lovber928)=
=27 - ek 1o er
Ppg = 1.57 x 107" n_ ¥ (n, 2%)7% (o) SE— . (2.48)
i cm™ sec
1
The radiation term in equation (2.43) is just K-j Por dx'.
In summary, the shock structure equations for a radia-
tive thermonuclear shock in an optically thin atmosphere are
pu =A, (2.18)
2
p#* pu = B, (2.19)
) P o S TS e T - A S e e b SR A N ‘
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3
i
ﬁ 2 L X
. _ - 3 ) =
h+2 q‘I’N+A § PBRdx' c, (2.49)
p =fs% L (2.50)
d e
; and ax (ni u) = Wi’ i=l, 2,..., N, (2.51)

where A, B, and C are defined by equations (2.21), (2.22),
and (2.23) and where the expression for PBR is given by
equation (2.48). The remaining undefined quantities, the
| thermonuclear energy release term, D2 and the rate func-
! tions, Wi, depend on the specific nuclear chemistry and will
; be discussed in the next chapter.
The shock structure equations have now been developed
as far as possible without reference to a particular reac-
ting gas mixture. In the next chapter, the nuclear chemistry

appropriate to three different reacting gas mixtures, will

; be discussed and incorporated into the equations.
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CHAPTER III

THERMONUCLEAR SHOCK STRUCTURE EQUATIONS FOR THREE DIFFERENT

GASES

The general set of radiative thermonuclear shock struc-
ture equations derived in Chapter II will now be developed
to apply to thermonuclear shocks in (1) deuterium-tritium
gas mixtures with equal numbers of deuterium and tritium
ions, (2) a pure tritium gas, and (3) hydrogen-tritium gas

mixtures. The three cases will be discussed in succession.

R T

After an examination of the properties and cross sections
of the nuclear reactions occurring in the gas mixture, the
equations that govern reaction kinetics will be derived.

: The particular set of shock structure equations for the gas

mixture will then be put into a convenient dimensionless

form.

3.1 Fusion Reactions in Deuterium-Tritium Mixtures

The following reactions occur in deuterium-tritium gas

mixtures (Wandel, Hesselberg Jensen and Kofoed-Hansen39)
1. D+D-T + p,
2. D + D-—aHe3 + n,
3. T ok D---oHe4 + n,
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S0 T = T-~—aHe4 + 2n,

6. He3 2 He3—ﬁ He4 + 2p,

7 T+He3—~He4+p + n.

Reactions 5 through 7 have smaller cross sections at most
energies than reactions 1 through 4 and are usually neglected
in the treatment of thermonuclear problems. A graph of the
cross sections for reactions 1 through 4 for deuteron energies
up to 1 Mev is shown in figure 6.

The kinetics of deuterium reactions (reactions 1
through 4) are complicated because deuterium reacts with
its reaction products, tritium and helium=-3., Furthermore
neutrons and protons are both intermediate and end products.
Although problems involving the full set of deuterium reac-
tion kinetics eauations have been solved, it is considerably
more difficult to deal with a coupled set of fluid and
Kinetics ecuations for deuterium,

It has been assumed, in the treatment of ithe thermo=-
nuclear shock structure in a deuterium-tritium mixture with
ecual numbers cf deuterium and tritium ions, that only the
T(S,n) He4, (?=D), reaction occurs. Thls assumption is
well justified for temperatures below 100 kev as reaction
probabilities for T-D reactions are 100 times greater than

zhese Scr the D-D reacticns and 10 times greater than that
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L I

4
for the reaction He3 (d,p) He , (He3 - D), (see figure 7).

T R T

For Mev temperatures, the reaction probabilities for the

three reactions are comparable. However, since reaction

rates depend both on reaction probabilities and the pro-
ducts of number densities of the reacting nuclei,
W= nln2<qw1>), He3 - D reactions can be neglected because

of the small He3 number densities. The ratio of the reaction

w e e e

rates for T-D and D-D reactions, assuming they have the same

probability is

[ wa N 2nT
i "op “p

- The triton population is enriched at the expense of the
{ t deuteron population as tritons are born in D-D reactions,
so as the reactions proceed, the T-D reaction becomes more
important than the D-=D reaction.

The T=-D reaction cross section has a wide resonance
; whose peak is at 0.107 Mev labcratory energy (see figure 8).
K The lifetime of the associated state is 2-3 times the natural
| nuclear lifetime, the time for a deuteron to traverse a tri-

40). The main reaction mechanism at

},’ tium nucleus (Kaplan
these energies is formation of a He5 compound nucleus
which decays into a neutron and alpha particle. At higher

energies, stripping reactions dominate; an alpha particle

1 and neutron are formed directly when the deuteron strips
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a deuteron from a triton (or a triton strips a proton from

a deuteron).

The only reaction between a deuteron and a triton

that is observed at Mev temperatures is T(d,n) He4. 17.6

Mev in released in this reaction. The threshold energies

t

for two other reactions, T(d, 2n) He3 and T(d,pn) T, are

o
3{"
L
W
X
¥
2

2.226 and 2.99)1 Mev (center of mass) respectively. These
reactions are not observed for deuteron laboratory energies

below about 12~14 Mev (Ajzenberg-Selove and Lauritsen4l).

e v

i 7 According to classical mechanics, no reactions should
N - occur for deuteron energies less than the Coulomb barrier energy
which is = 660 kev for a tritium nucleus. Quantum
mechanically, deuterons with energies less than the barrier
energy have finite probabilities of tunneling through the
barrier. The probability of penetrating the barrier, the

Gamov factor, is

2 3
e 2.2 e (2u)
7ok P =exp (- ZEL |z exp|- 22— ) ) (3.1)
. X (E) A (E)?
; 2.2 e2
E where r = "172° is the classical distance of closest

E
approach in a collision and \ =

h . .
GE)t is the de Broglie
wavelength. The maximum reaction cross section for an

&
s-wave interaction (neglecting Coulomb repulsion) ism X .

A plausible formula for the reaction cross section for

L o bt o T B
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energies much less than the barrier height, is the product
of the maximum collision cross section and the Gamov barrier

penetration factor. The Gamov reaction cross section

),

Although the theoretical value

BI

- (3.2)
(E)*

exp(

has this energy dependence.
of B', given in equation (3.1) is sometimes used, the values
of A' and B' are usually obtained from the best available

low energy data.

The Gamov cross section fits the experi-

mental data well for deuteron energies less “.an 20 kev,

3.2 Reaction Probabilities for Tjd,n)He4 Reactions

The reaction probability for T-D reaction must be
computed numerically for the tenperatures occurring in
thermonuclear shocks. Cross sections for energies between
1 and 10 kev were computed from the Gamov formula with

A' = 2,19 x 104 barns kev and B' = 44.24 (kev)l/z.

106
other values of the cross section for energies between 10
kev and 10 Mev have been taken from the experimental data
shown in figure 8 (LA-2014)42. {sv) was evaluated with

a Simpson's 1/3 rule adapted to unevenly spaced data points.
(Uneven spacing of data points made it possible to deter-

mine the number of points according to how rapidly the

cross section was changing with energy.) A graph of (ov)

’ -
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for kT between 10 kev and 3 Mev is shown in figure 9.
Reaction probabilities, {ov) , for several values of

kT between 1 kev and 150 kev were compared with the results

of earlier calculations done by Wandel et al39, Thompson44,

and those quoted by Glasstone and Lovberg 38 (p. 18, based

45
).

on a combination of the work of Wandel, Thompson,and Tuck
These results are presented in Table 2,

The cross sections can be read accurately from the
graph to two decimal places only. Therefore agreement to
two decimal places between our results and those obtained
by the others is all that is meaningful. The experimental
data used by Thompson and Glasstone and Lovberg is not
the data that was used in our calculation. Wandel et al,
however, used the data presented in LA-2014 and their results
agree with ours to two decimal places. Disagreement bet-
ween our valves of (v:> and the values computed by Thompson
and Glasstone and Lovberg for kT= 2 kev is explained, by the
fact that the contribution of the cross section for lab
eneragies below 1 kev was neglected in our calculation.

However, for the purposes of this study, the value of <e+>

at kKT = 2 kev is never used.

PN
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FIG. 9 REACTION PROBABILITIES FOR T(d,n)He* AND T(t,2n)He*
REACTIONS BASED ON MAXWELLIAN DISTRIBUTIONS.
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Glasstone and| dav)
Wandel et al Lovberg Thompson | Fuller
3 x 10749 2.76 x
1.3 x 10717 | 1.4 x 10°%7 | 1.35 x
1.11 x 10”7 lax 1078 Y.osx 10718 1.12 x
4.3 x 10716 | | 4.30 x
'} |
. 5.58 x 10710 | - 15.62 x
. , |
50 8.54 x 10718 | 8.60 x
. t
60 8.7 x 10710 | 8.86 x i
100 ' 8.45x 10 g.1x10t% 5.0 x10® 8.47 x 5
- = +
150 7.04 x 1018 7.00 x 107 1° F
- 4
£
TABLE 2. Reaction Probability for T(d,n)ﬁe4 Reaction £
3.3 Kinetics Equations for Deuterium-Tritium Reactions

If only the T-D reaction occurs, a reacting deuterium-
tritium mixture is made up of tritons, deuterons, neutrons,

alphas and electrons. The total pressure of the mixture is

p=(n + n + n + (3.3)

+ 5
T D N n, + n kT

The number densities of the different species can be related

to each other by the equations of charge conservation,

(3.4)

b S b ‘
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electron number flux conservation (electrons do not partici-

pate in the reactions),

neu =F, (3.5)

can be evaluated from the initia] conditions. Since the

initial mixture contains deuterium and tritium ions in

e€qual numbers,

ne. = ZnT . (3.7)

F = ZnT u, , (3.8)

= 2
and A = 3 nTl mT u ., (3.9)

A combinatior of eéquations (3.4) - (3.9) yields

(nT - nD) = 2(nN - n) . {3.10)

N

Since n, = M » and since it is assumed that the species
1 1

do not diffuse,

< v
S e B R 5 e
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(3.11)

for all x. Therefore, it follows from equation (3.10) that
(3.12)

for all x also.
The continuity equations for the species are not all

independent. Tritons and deuterons are destroyed at the

same rate, so Wi = WD. Furthermore, neutrons and alpha
particles are created at the same rate, so w& =W . Since
mass is conserved in the reactions, 2% m, wi = 0, and there-
fore w& = -Wi. As expected, the rateof triton and deuteron

destruction is equal to the rate of neutron and alpha creation
There is only one independent continuity equation (which we
choose to be the triton eguation).

In order to eliminate number densities from the flow
equations, we define a dimensionless variable X , the ratio
of the density of the reaction products to the total density

at the point x:

- nN mN + l‘l‘4 m‘

, (3.13)

where

~ = ny, m, + ng, mD + nN mN + nw mo. (3.14)
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Before the gas begins to react, n_= n,6 = A= 0.

N L
After the gas has reacted completely, n

0, so
p = Pp = 0, so A&=1.
A combination of equations (3.11) - (3.14) gives expressions

for the neutrnn and triton number densities:

=3
nN =3 m , (3.15)
-3 Lld= .
and n, =3 (3.16)

With these expressions for n_ and n the state egquation

T N’
(3.3) becomes,
_l2pk T, (3.17)
p; = 5 “\r
1 Qrn : 12k R
which is independent of « . Since === = —— , the state
Sme 5/4
equation can be written in its usual form for a mixture:
R
p=rz T, (3.18)
~ 5
where W= e

In general, a state equation depends on the degree of
reaction only if the number of particles before the reaction

is not egual to the number of particles after the reaction.

1

For the reaction, T3 + Dz-—rn + He4, the number of particles

before and after the reaction is the same; for the reaction,

3 3

T + T — He4 + 2nl, however, the particle number goes from

o R Aot ¢ o - — % T e
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two to three. If the particle number does not change in the
reaction, the mean molecular weight of the reacting mixture

remains constant.

If we rewrite the continuity equation for tritons in

terms of o , using equation (3.16), it becomes

a

= (1-0)%vy  (em” see™). (3.19)

T Ty

A d« (3)2 P
m
The thermonuclear power per unit volume term,P&V, in the
differential form of the energy equation, (equation (2.17)),
. d ’ dq, ;

—— = N
is 4% (F u qTN) A s . PTN’ can also be written as
the product of the reaction rate, W, and the energy released

per reaction, QR' Equating these two expressions for PTN

we see that

d«
= (3.20)

= ®
m, "R

If both sides are integrated with respect to x, subject to

the condition that Ay = 0 for K= 0, equation (3.20)

becomes
qTNzor(’ (3.21)
Q
where Q= 2 R .
> My

A A NN U L AR R S
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%
mp + mp

released per unit mass of initial mixture if it reacts com-

It is easily verified that Q= , the maximum energy

pletely.

3.4 Dimensionless Form of Shock Structure Equations for
Deuterium-Tritium Mixtures

The shock structure equations can be put into dimen-
sionless form, if they are multiplied by an appropriate
combination of the mass, momentum, and energy flow constants,

A, B and C. The dimensionless temperature is defined by

XKTH

my

T

1

’ (3.22)

where H (3.23)

"
o l>
(N3 I N)

and m, is the average ion mass for the inital mixture. For
the deuterium-tritium mixture, with egual numbers of deuterium

and tritium ions, m, ==(mD + mT)/Z. Therefore,

rt=kTH - RTH. (3.24)

(my + mp)/2 2.5
The dimensionless speed, density and pressure are defined in

the following way:

L

te = u( H), (3.25)
B

e (3.26)
¥=3

. o,
2EE
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and A\l

H]

@ o

. (3.27)

In summary, the complete system of shock structure

equations in dimensionless form is

&w =1, (3.28)
THws=1, (3.29)
5 W 0 w2
5 q;' + =1 {HQ + A = CH, (3.30)
M=2¢T , (3.31)
d 3 AH (1-«)? Prn
d« _ 3 AH A (rvy - I (3.32)
dx 5 m w AQ

) 3
where o =8 [p = ax' (3.33)
A J'BR ’ L )
a

and P = 2.261 x 10~/ “—-5—-*1(345) LA+ (3.34)

BR 2 ~
mT R

The function 4, can be rewritten in a way that makes its
physical significance apparent by changing variables of

integration from x to  and by making use of equation (3.32).

It then becomes

(3.35)

There are two limiting cases of the shock structure equa~

tions, one including reactions and no radiation, the other

including radiation but no reactions. The non-radiative limiting

seetiCoon
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case, (A = 0 for all x), was discussed previously. The non-
reactive limiting case is obtained if we set %f = 0 for all

x and J(0)=0. The radiation is assumed to occur downstream
from the gas dynamic shock, so the physical validity of this

case is questionable. However the pure radiative solution

of the equations is useful in providing a bounding curve

for the solution of the physically more valid case that

includes both reactions and radiation.

3.5 Dimensionless Parameters in the Ener ation

There are three dimensionless parameters in the energy
equation, CH, HQ, and A.

The parameter, CH, combines the constants of integration
of the mass, momentum and energy equations. It depends only
on the initial Mach number of the gas, Ml’ and not on the

reaction chemistry, i.e.,

/
- 1
=%' A —g ) . (3.36)
1

The initial Mach numbers, M for thermonuclear shocks are

lJ
>>1, so CH = 1/2. The value of CH is therefore independent

of the initial conditions.

sy
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The parameter, HQ, combines the mass and momentum flow
constants with the energy per unit mass released in the

reactions, i.e.,

o 2
HQ = 9-2- L ; - (3.37)
ul 1l + —_5
Kul

!
1l Bk didie Hi

PR,

For very large initial Mach numbers, HQ reduces to Q/ui;

since u, and Q are related by the Chapman-Jouguet condition,

1
.
| & then
i
(2 1
g 0y = '.—-—'-2— = —2 - (3.38)
| & 2(¥°-1) 32

i HQ is therefore independent of the reaction under considera-

tion for shocks propagating with the C-J speed.
The third dimensionless parameter, A, is a measure of

the relative importance of power lost in bremsstrahlung
and power gained in thermonuclear reactions. When A is
much smaller than other terms in the energy equaticn, (A <¢<1l),
radiative losses are insignificant. When the value of A
approaches 1, radiative power losses become comparable to
the power gained in reactions. Unlike the parameters CH and
HQ, & is neither constant nor independent of the reaction

chemistry.

3.6 Fusion Reacticons in Tritium

T™o fusion reactions can occur in a pure tritium gas.

T P e 2 S P '
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4
l, T +T-—2n + He ;

and 2. T + T-~—>He5+ n; Hesn-a He4 + n.

G n*mw*%%imfmﬁ'ﬂffmﬂ%

‘ : 11.33 Mev is released in each reaction. If an incident

triton strips a proton offa target triton, reaction 1l

A R T B s

occurs, and He4 and two neutrons are formed directly. The

-y
o g

e neutron energy spectrum is continuous since there are three

deuteron off a target triton, the reaction occurs in two

stages (reaction 2 ). The neutron energy spectrum is dis-

rete because only two bodies come off in each stage of

¢!

g . : 3
the reaction (Ajzenberg-Selove and lAauritsen 9).

T-T cross sections have been measured for incident lab
energies between 60 kev and 1.14 Mev (Govorov et al4°). The

€ 1
cross section as a function of energy may be represented by

the fun<tion

" — =

» b

- & (& % bUnE (o)) %10 2" en° (3.39)

where a

-91.2 + 2.5,

(55.8 + 1)/anlo -
T increases monotonically from 10 mb at 60 kev to 82 mb
ﬁ at 1.14 Mev (see figure 1ll).
Below these energies we can assume a Cross section of
the Gamov type. There is scme question about the applica-
bility of Gamov cross section to stripping reactions. How-

ever it is the only available cross sections for these energies

ol

o e v I o 5 ey R, -




a
- N —————— e
58
|
" A B -
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z 630 barns keV
a'= 54 (kev)!/2
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[covorov ET AL 43]
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and has been used by Thompson44. The theoretical value of

the constant B' is 54 (kev)l/z. The value of A' which gives

Govorov's measured value of «— at 60 kev is ¥

A' = 0.6 exp(léi)%_ barns kev . (3.40)
60

The T-T cross sections for EL { 60 kev are shown in figure 10.

3.7 Reaction Probabilities for T( t,2n) He4 Reactions
kT = 1 Mev

An expression for the reaction probability for T-T
reactions can be obtained analytically for the temperatures
that occur in thermonuclear shocks (KT = 1 Mev). In order
to compute <1Vv), an assumption must be made about the behavior
of the cross section at energies for which no experimental
values are available (EL<,60 kev and EL>'1.14 Mev). For
kT = 1 Mev, collisions between particles with lab energies
less than 60 kev do nct contribute significantly to {vv>.
Therefore, any coavenient assumption about the behavior of
the cross section at these energies, can be made. The
Govorov cross section has Leen extrapolated to its crossing
point on the energy axis, Eo = exp (-~ % ). It is assumed
to be zero for energies below Eo' Collisions between parti-
cles with energies above 1.14 Mev make important contributions

to {1v). The Govorov cross section has been extrapolated

* An alternative way to match the Gamov and Govorov cross

sections at 60 kev would be to choose values of A' and B'

such that the cross section and its firest derivative were
continuous at 60 kev.
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to all energies above 1.14 Mev for convenience in computing
(4¥) . The contribution of the cross sections for energies
much higher than kT is damped ~ut by the exponential in
the integral.

{gV) can be evaluated with the center of mass energy,

E__, as the variable of integration. Since M = TI'._ for
cn 2

pure tritium, the relation between lab and center of mass

energy 1is just Ecm = -5_ .

Therefore, it follows from equations(2.35) and (3.39), that

| =27
: 87T = 10 1
i <(T'V> = Ny 3/2 X
| (27 kT)
(a+b tn(2E_)) exp (- f‘gm) E dE . (3.41)
L cm kT cm cm

The inteyral can be evaluated most simply by changing

variables, from Em to the dimensionless variable, & , where

b3

_cm
€ = o (3.42)

Then

where a'= a + b 4n(2kT)
When the integral is performed, the resulting expression

for (1v) is

I e aasdiamtnnd s et s e mc cerHesd e
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4 x 10'-27 i Eo Eo
lovy = ==222— (k1) p|E (=) +ep (-=2| |, (3.44)
(‘n"m )" T 2kT
T

where E (x) = Jﬂﬁfg_i:Xl dy .
b4
X

Written in terms of our dimensionless variables, {(TV) becomes

L E H/ E H/
<W)=(L§-3)‘bﬁal(—‘;—,€&)+exp (- .5;?&) . (3.45)

TH
5 1 EoH
Since H« = = ——7—m is a dimensionless
2 2

parameter that depends on the Q of the reaction and the cut-

off energy for the Govorov cross section, Eo.

kT < 100 kev

If kT =< 100 kev, the contribution of collisions of
particles with lab energies below 60 kev becomes important.
The Gamov cross section must be used for energies below 60
kev. There are now two contributions to {tV). The Gamov
cross section is integrated from some energy (which is much
less than kT) to EL = 60 kev. The Govorov cross section is
integrated from EL = 60 kev to EL =00, The Gamov cross
section was evaluated at 37 values of lab energy between

0.1 and 60 kev, and integrated over these energies with a

Simpson's rule for unevenly spaced pivotal points. The
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integral over the Govorov cross section was performed

analytically with the result

=27 4 E E
LV gov= 8210 (xr)* [ﬂ‘o (1+ =22 ) exp (- =)

(ﬂm,l.)Jé kT KT
E E
+ (b (B G22) +exp (- 520 ))] (3.46)

where ¢ _ =a +b Ans0 and E__ = 30 kev.
o oo
i ; TV
The results of the calculations for (V) and ( >Gov
are shown in Table 3. For kT = 1 kev, the Gamov contri-
bution dominates; for kT = 10 kev, the Govorov contribution
is roughly twice the Gamov contribution:; for 100 kev, the

Govorov contribution dominates.

3
kT (kev) (sv)Gam (V) Gov (avy :2c)
1 3.56 x 10~2° 1.04 x 1079 3.56 x 10°2
5 6.64 x 10 2° 1.88 x 1020 8.52 x 10°2°
10 2.11 x 10722 | 3.90 x 107° | 6.10 x 107°
20 2.44 x 107°° 2.23 x 10718 2.47 x 10718
50 1.29 x 10712 8.97 x 1018 9.10 x 10718
100 5.84 x 10720 | 1.93 x 1077 1.93 x 1077
200 2.34 x 10°%° | 3.68 x 1077 3.68 x 1071/
500 6.38 x 10721 7.83 x 1077 7.83 x 1077
900 2.70 x 10”2 1.22 x 1078 | 1.22 x 10716

TABLE 3. Contributions of Gamov and Govorov Reaction
Probabilities to (<v)

et G —————
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An approximate formula for {s\J) for kT £ 10 kev, is

(Thompson44)
oo, SIS ()
app /af- xp 4w cn/sec, (3.47)

where, for T-T reactions,

/A4A = the reduced mass in a.m.u. = %-,
W = kT,
[}
A:A-—L— AI=A.2_’

r% .
B==fit)s' ='§%i'

—~

Thompson has used the Gamov constants, A' = 59.9 barns kev
and B' = 668 (kev)l/z. However, the values of <{IV) for

kKT = 1 kev and kT = 10 kev, given in his paper, are incon-
sistent with the values of (TV>app obtained with his
values of the Gamov constants. The Gamov constants,

A' = 54 barns kev and B' = 630 (kev)'2, have been used in
this study. The values of (TV)app are ocompared with the
results of the numerical integration of the Gamov cross
section for kT = 1 kev and 10 kev in Table 4. The agree-
ment between the numerical results and the analytical
results is quite good since the analytical formula is only
approximate. This constitutes a check on the numerical

integration for small values of kT.
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A'= 54 A'= 54 A=59.9

LT (kev) | <Vdgam  B'= 630 {Vapr B'= 630 |@app B'=668
1 3.56 x 1025 3.32 x 10°2° 0.795 x 102>
10 6.10 x 102 7.00 x 1072 3.69 x 10°1°

TABLE 4. Reaction Probabilities for Low Temperatures

The T-T reaction probability for kT between 12 kev and
2 Wev, is shown in figure 9, along with the T-D reaction
probability. The T-D reacﬁion probability rises to a maxi-
mum value at < 70 kev and then decreases with increasing
temperature. This shape shows the influence of the resonance
in the T-D reaction cross section. The T-T reaction proiabil-
ity, however, rises monotonically with increasing temperature.
Although T-D reaction probabilities are about 100 times larger
than T-T reaction probabilities for kT v 10 kev, the two

become comparable at = 2 Mev.

3.8 Kinetics Equations for Tritium Reactions

A reacting tritium gas mixture consists of electrons,
tritons, alphas and neutrons. Hes has a lifetime of the
order of 10-2lsec so it need not be included as one of the

species of the mixture. The total gas pressure is

p = (nT + nN + n‘ + ne)kT. (3.49)
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The number densities of the species are not independent.

Since the gas has local neutrality,

n, = nT + an 5 (3.50)

No electrons are created or lost in the reactions so the

electron number flux is conserved:

ne u =F,
where F = nTl u; . (3.51)
The total mass flux is also a constant, {
Ay mp + myme + ngmg ) u=A, (3.52) 1,
s
where A = nTl mT u, . ﬁ
Since A = mTF, it follows that
P = m, n, - (3.53)

The electron number density profile has the same shape as
the total density profile (which is reasonable since the
electrons are inert). The relationship between the alpha

and neutron number densities,

n =

fil 3 (3.54)
2

follows when the equations of electron flux coaservation
and mass flux conservation are combined with the condition
for local charge neutrality.

The continuity equation for tritons is
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-. & (ny ) _ W, =n2 (o). (3.55)

|W,| is twice the reaction rate for tritons since two

tritons are lost in each reaction. The continuity equation

\ for alpha particles is

%x_ (v oy, . (3.56)

The rate of neutron creation is twice the rate of alpha

particle creation so

Wy = M, . (3.57)

Since the total mass flux is conserved, ¥ m.W. = 0, and
i 4. 5

therefore

I N ° (3.58)

It is convenient to eliminate number densities from

the continuity and state equations. o is defined in the

usual way as the ratio of the density of the reactions pro-
ducts to the total density,

%En“%/: T« T ; (3.59)

where

f = N, M, + neme+ nomoo. (3.60)
If equation (3.59) is solved for ng and D the resulting
expressions are,

n, = -E,fr— , (3.61)

i e R L
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and n, . (3.62)

T
aw

The state equation can be rewritten in terms of o . With

¢ the relation E o %’, it becomes,

¢ p=PR T (2+4).
3 2

(3.63)
This equation is recognized as the familiar equation for a
mixture of gases, p = f’% T, if it is noted that the mean
molecular weight per particle of the mixture, W, instead
of being constant, varies with o , i.e.,

[ W= 3/(2 + «/2). (3.64)

The set of dimensionless variables that were used to

4 make the deuterium-tritium structure equations dimensionless,

| are now used to make the tritium structure equations dimen-

sionless. The appropriate dimensionless temperature is,

T=5—-Tm;§=R—'§i*— . (3.65)

The mass and momentum equations are the same for the deuterium-

T

[ tritium and pure tritium gases. The specific reaction chemistry

is contained in the state equation,
T = (2+ 4;-) ¢ T , (3.66)

the continuity equation,

2
a4 _AH (-4 TV
ey ‘E-;L TNy, (3.67)

j
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and the radiation term in the energy equation,
*P
A = HQ f_gg d«', (3.68)
o PTN
where t
P_=1.57 x 10727 RABH (37 1% ot (3 4
BR 2 2
m, R/ W
and Py =AQ 4L (3.70)
dx

3.9 inetics uations for t,2n e4 eactions in drogen=

Tritium Mixtures

If hydrogen is added to a tritium gas, the Chapman-
Jouguet speed is reduced. An examination of the shock
structure equations for a mixture of hydrogen and tritium
if of interest in connection with shock tube experiments.
The C-J speed for such mixtures can be reduced to a value
which may be obtainable in an electromagnetically driven
shock tube.

Iet € be a parameter that measures the initial density

ratio of protons to tritons:

é-:-ﬁi i T (3.71)
Br Ty
Since reactions probabilities for proton fusion reactions are

small , the only energy release comes from the tritium reactions,

Q. is the energy released per reaction, the enrergy released

R
per gram of gas of the initial mixture is

At e
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a=%% 1 . (3.72)
m, 1+€

The gas consists of five species: electrons, protons,
tritons, alphas, and neutrons. The species number densities
can be related by charge conservation,

n, =n,+ n,+ 2n , (3.73)

conservation of electron flux,

n,6u= F, (3.74)
conservation of proton flux,

n, mLu= G, (3.75)

and conservation of mass,

u + + + m u=Aa
= (g + oy my +ame + nm )
where F, A, and G are constants of integration which can be

evaluated from the initial conditions. The initial electron

density is

nel = nHl + nTl = nTl (143 ¢ ). (3.76)
Therefore,

F = n,r1 (1+3€) u, (3.77)

G = m, nﬂl vy =em,r n,rlul b (3.78)
and A= (nul m, + nTl mk) u, = nTl m,, (1+ ¢ )ul.(3.79)

Only one of the three constants of integration is indepen-

dent, i.e.,

G = e A, (3.80)
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and padf3 1, (3.81)
(1+¢) L
If we solve for 1/u in the above equations, we obtain
L .2 e I

This relationship can be used to get two different expressions

for nH:

n
nnnzi -n.( +3&(nT+—2N~ +l‘¥( ), (3-83)
and n, = é (3nT+nN+4n°(). (3.84)

Setting the two expressions for n, equal to each other,

we see that

| oy

"N (3.85)
2 - m = E(nd - 2 )

Since € is an arbitrary input parameter, equation (3.85)
holds, (as in the pure tritium case, to which it reduces

when £ =0), only if

%= ng , (3.86)

for all x.

The total pressure of the gas mixture is
p= [20s3e)imy +np + 2 | (3.87)

It is convenient to eliminate number densities from the

state and continuity equations and express them in terms of

. an ——
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some appropriate reaction parameter o« . One such choice of
o{ puts the state equation into the same form as for the

pure tritium case. Let

£ = (M««)én (3.88)
— 2
r
where ¢ = —<X& . (3.89)
R~ l+3e E
1 -
Then (1+3c— -«()- "'r“‘*reR . (3.90)
P
An effective triton mass,
m,i‘ = m, éR - (3.91)

can be defined. Expressions for the neutron and triton

number densities follow from equations (3.88) and (3.90):

ng = £% , (3.92)
mp

and n,r=-£;— (1+§e - "‘) . (3.93)
My

The sum of the neutron and triton number densities is inde-
pendent of « . The number densities of the two inert compo-

nents (protons and electrons) of the gas mixture are propor-

tional to (n,r + nN), i.e, (3.94)
ny = 3€lng + ny),
and n, = (1+3¢€ ) (n'.l‘ + nN) 4 (3.95)

[
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If equations (3.92) and (3.93) are substituted into the
state equation, it becomes
p =p kT (2+‘_L) .
m& 2

This is identical to the state equation for pure tritium

(3.96)

if we replace the triton mass by its effective masg. It

must be noted that when the reactions are complete,

1
1+3¢ °

n, = 0 and therefore from equation (3.90), d =

The energy equation for the hydrogen-tritium mixture
is the same as equation (3.30). The expression for A must
be modified to contain the appropriate reaction chemistry,
and the constant Q in the thermonuclear energy release term
must be redefined. The thermonuclear energy release term,
d Q, has the value Q for a tritium gas when all the reac-

tions are completed. The maximum value of « for the hydro-

gen-tritium mixture is 1+§e, . The maximum energy released

pe. unit mass of the initial mixture, {(given by equation

. R 1 :
(3.72)), is Q =2mT v e ° We define a constant Qeff
such that o Q approaches Q as « approaches .1 .
e 1+3€

It follows that

Q

R

Qeff . (3.97)

2m,,

The flow variables are made dimensionless in the same
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way as those for the pure tritium case. The dimensionless

temperature becomes

T = kXl (3.98)

My

As in the state equation, the mass of the triton has been
replaced by its effective mass.

The dimensionless mass, state and momentum equations
for the hydrogen-~tritium mixture are the same as those for

pure tritium. The dimensionless energy equation is

2
XA VY - (& ¢ L
2% * 3 - KHQ . +O0=CH OL4=EET, {3laB2)
where A is defined in the usual way and
3 % 3
P = 1,57 x 10-27 ABH /._&& 1+« ﬁta (3.100)
BR 2 2 L ] ®
ms \ R) ‘U

The continuity eguation is,

2
dd _AH (1 ) LU (3.101)
dx : \1+3e W
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CHAPTER 1V
SHOCK STRUCTURE CURVES IN PHASE SPACE
4.1 Non-Radiative Shock Structure Curves jin Phase Space

The system of non-radiative shock structure equations,
developed in Chapter III for three different gas mixtures,
includes four algebraic equations, (mass, momentum, energy

and state equations) and one non-linear, first order, dif-

ferential equation, (the continuity equation). In order

i ; to integrate the differential equation for the shock pro-
; files in real space, all the flow variables except one

must be eliminated. The algebraic equations are solved

for relationships between the variables. These relation-
ships are called the phase space shock curves.

A relationsnip between the dimensionless speed, W,
and the degree of fusion, «{ , can be obtained from the non-
radiative mass, momentum, and energy equations. A combina--
tion of equations (3.28) and (3.29) gives an expression for

% , which can be substituted into equation (3.30). The
resulting equation is

F_5n.l
W -4u.+2 (cH +HQOX) =0, (4.1)

or

2
L (23 PR Y B
A - Ho (32 CH) HO (w e) Sl

i i . 0 e

Ve
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Since CH = 1/2 and HQ = 9/32, equation (4.2) becomes,
6.4 512
=1 = i (W--B') . (4.3)

Equation (4.3) is independent of the specific reaction
chemistry since the dimensionless mass, momentum and energy
equations are identical for all three cases considered in
Chapter III. The W - & curve is a parabola that opens to
the left with an axis of symmetry parallel to the «-axis.
The vertex of the parabola is located at (o, « ) =(§-, l).
The W - L relation is plotted in figure 12. (Points 1,

2 and 3 are the same as in figure 2.)

The two branches of the & = o curve join at the
vertex of the parabola. The lower branch, (\._ ), corresponds
physically to a gas dynamic shock followed by a C-J deflagra-
tion. It is the familiar solution assumed by the von Neumann
model. Ahead of the shock, L) 1is equa) tc 1. Behind the
shock, W is equal to 1/4, while behind the deflagration,

W' has the value 5/8. The upper branch, (w,), is also a
solution of the non-viscous non-thermal conducting shock
structure equations. It corresponds physically to a C-J
detonation. \J is a continuous function of A , monoto-
nically decreasing as ol increases from 0 to 1. The C-J
detonation has not been observed experimentally and is

therefore not considered in most theoretical treatments,
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(e.g., von Karmanzs). It is presented in the phase plane
diagrams for completeness sake; shock structure curves in
real space have not been computed for this branch.
A relationship between the dimensionless temperature,
“T , and the degree of fusion, « , is obtained by com-
bining the mass, momentum, and energy equations with the
state equation. The mass, momentum and energy equations
are first combined to give a relation between o and T

for the deuterium-tritium mixture:

\.«.\'2 - Ww + 2T = 0; (4.4)
and a relationship between Ww , T and K for the pure

tritium gas:

WA (2+ g)'t = 0. (4.5)

Combining these relations with the appropriate energy equa-
tion, we obtain a relationship between U and X . The T -«
relation, unlike the W =X relation, depends on the reac-
tion chemistry because it contains the state equation.

The relationship between temperature and degree of
fusion for the deuterium-tritium mixture is

2

4 _ '
16 T2 + (-;— +2D' - BHQA)T+ .1_3__1_6_1 + HO& (HQ® - %) =0, (4.6)
where D' =1 -4CH = =1, (4.7)

‘T as a function of « is plotted in figure 13. The

jump conditions for temperature are obtained by setting

e bt e e G Tex )

e e




78 ]
T = kTH H = ( P| U' )2
(Mmy + my)/2 p+p vt
as= (nymy+n,my)/p
rf 4
REACTION T(d,n) He
| L PURE
) 0.13 'REACTION
f 0.2} éDONlc
Ll 0. f *
‘ REACTION L
; ¢t AND '\
| 040 ~._ rapiaTion 7/ Y
; ~
; ® '\
, 0.09 | X /
| \.
i 0.08 | \ /
- X
| 0.07 |- // \
o0s Y \
0.05 //
/7
004} /
//
003}
/
/
0.02} /
/
ook 7
QJPERSON:C
Oz 1 A 1 1 A 1 1 ) 1
® 0.2 0.4 0.6 0.8 1.0
a

FIG. 13 DIMENSIONLESS TEMPERATURE , T, vs. DEGREE OF
FUSION ,a , FOR A DETONATION IN A DEUTERIUM -
TRITIUM MIXTURE (1:1)
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« =0 and 1 in equation (4.6). When d=0,
12
16t +( 2+ )yt + 2=l ., (4.8)
2 16
3
and T+ = 33 ¢ (4.9)

The zero root comes from assuming that D' = -1, Actually
D' is not exactly -1 and when its correct value is used, the
zero root of equation (4.8) becomes = 10-6. The other

root is only different from 3/32 in about the sixth decimal

place. When & =1,

2
UG '
1672+ (20'+ £ - ane)r + 2=b + moqme- 2) =0,  (4.10)
15
and Tt =752 = 0.117 . (4.11)

The branch, 7. , (like w,), corresponds to a C-J detonation.
The other branch, T + corresponds to a gas dynamic shock
followed by a C-J deflagration. The two branches meet at the
downstream point.

The T-o& curve is not any simple shape like the =
curve, However, the existence, location, and nature of extre-
mal points on it can be determined analytically. If equation

(4.4) is differentiated with respect to o , a relationship

at dw . .
between 3 and 3= 18 obtained:
ar _ dw
2 aa (l=2w) 34 (4.12)
dr ; dw 1 .
If as - 0, then either 3k =0 or w= 2° There are no points
on the v «d curve where %E" = 0, but w does go through
i - T T T —_—
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the value 1/2 on the . curve. Therefore, there is some

point on the 7. curve where g—f =0. If equation (4.4) is

differentiated a second time, the extremum is found to be

2
a maximum; (since -g—:-’ >0 for w= % and therefore 'g—‘;;g<0) .

It can be shown from equations (4.3) and (4.4) that the

coordinates of the maximum are (¢ ,« ) = % § % ) =
(0.125, 0.889).
The value of the Mach number at any point on the 7T - «

curve is given by the easily verifiable relation

2
w 2
z =2 Y M. (4.13)
. 2 1 3
The temperature maxinum occurs when M° = 3= 'g' . Therefore
the temperature increases with increasing « for %é— M2< %
and decreases with increasing « for %/— Mzﬁ 1. When

M.2= % ,» the static pressure, p, is equal to the kinetic

pressure, fuz. The temperature therefore rises with decreas-
ing pressure when p > P u2, and falls with decreasing pressure
when p< £ u2. The competing physical processes are the
reactions, which add energy to the gas, thereby raising the
temperature, and the transformation of random thermal energy
into directed kinetic energy, which lowers the temperature.

As the reactions go to completion, the reaction rates decrease

and eventually the second effect dominates the first.
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The relation between the dimensicnless temperature, T ,
and the degree of fusion, A , for pure tritium and hydrogen-

tritium mixtures is

2
2,2 - L D'° -1
(4+ )2 “+(4+ L) 2 ( >t 8 2HQ K ) + e
D-‘!
+ HQA (HQA - £y ) =0. (4.14)

)~

¢ as a function of « is depicted in figure 14. The T«
cross terms in equation (4.14) are of higher degree than those
for the deuterium-tritium case because the state equation
depends on & . The upstream (<. = 0) roots of this equation,
which are the pre-shock and post-shock dimensionless tempera-
ture, are identical to those for the deuterium-tritium relation
between T and « , (equation (4.6)). This is reasonable
since the structure equations are made dimensionless in a

way that eliminates their dependence on the mean molecular
weight of the initial gas mixture, and since no reactions

take place in the gas dynamic shock. The downstream (o = 1)

temperature satisfies the equation

2

~2 D. l‘_ - ~ D. -1 - D. -
25T + 5¢( 5 + 5 2HQ) T + e +HQ (HQ > )=0, (4.15)
which has the double root,
T=5 - (4.16)
£ 32 *

For the discontinuous solution , ?.(x = 0) =T (&L =1). 1In

other words, +the decrease in mean molecular weight per
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particle just cancels any net rise in temperature across the
deflagration region.

The existence of extremal points on the 7T=4 curve
can be shown also. If equation (4 .5) is differentiated

with respect to o , then,

'Y

dr

(L~2w) g—:‘f= (2+5) £+, (4.17)

N I

This expression, unlike its counterpart for the deuterium-

tritium mixture, does not give a simple condition for the

existence of an extremum on the 7T -« curve., However, if
the 7 =d curve is differentiated directly, and we set

dr

. =0 in the resulting equation, we find an expression which

T and o satisfy at the extremal point. If this expression

is substituted into equation (4.14), the coordinates of the

extremum are found to be (7, ) = (0,1036, 0.72), which corres-

ponds to a dimensionless speed, W = 0,427, It can be shown,
although the algebra is more ccmpiex than for the deuterium-
tritium example, that this extremal point is a maximum. There
is a second extremal point which has been discarded because it

dces not correspond to a physically allowed value of o

4.2 Radiative Shock Structure Curves in Phase Space

When radiation energy loss is considered, the energy
equation changes from an algebraic equation to an integral

equation (see equations (3.30) and (3.33)). The radiative

W
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energy loss term, A, can be written as a function of X
(see equation 3.35). The mass, momentum, and state equa-

tions can be used to eliminate all variables except ‘T and

oA from the energy equation. The resulting equation,
relating “C and X for the radiative case, is the same
as that for the non-radiative case, (equation (4.6) for
Y the deuterium-tritium mixture and equation (4.14) for the

tritium gas), if D' is replaced by

D=D"'+4A () , (4.18)
o
where 6 = HQ -YRP d« *,
P
and RE-Pﬂ‘- . (4.19)
P Fon

It follows from equation (3.32) and (3.34) that Rp can be
written as the product of a function of &« , and a function

of T, i.e.,

R, =KA (X) B(T), k>0, (4.20)
where A(X ) ﬂﬁ%? ’
L E
and B(T)= _C .
{aupt)

An iterative method is used to solve the integral equa-
tion relating the dimensionless temperature to the degree of
fusion. The non-radiative solution (A = 0, for all A ) is

assumed for the first iteration. The first non-zero
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approximation to the radiative loss term, Al (), can be
evaivated with the non-radiative T-® relation (if (aV) is
a known function of T ). A first approximation to the
radiative relation between "C and  is then obtained. It
is used to evaluate s, (X). This iterative process is
continued until “U(«K ) does not change to some required

degree of accuracy from one iteration to the next. The

numerical procedure converges to three significant figures

———

in about six iterations. The results of the integration
for T (X ) are shown in figure 13 for the deuterium-tritium

case, and in figure 14 for the pure tritium case. A ()

for both cases is plotted in figure 15.
The radiative relation between thue dimensionless speed

and the degree of fusion is

A -1 -ﬁg—=-%i (w-%)z. (4.21)

T

It can be evaluated once A{® ) is known. The results for

both the deuterium-tritium mixture and the tritium gas are
shown in figure 1l2. For E%(( 1, the radiative solution is
P asymptotic to the non-radiative soiution. Away from the

! non-radiative asymptotic limit, equation (4.21) depends on

the specific reaction chemistry through £ which is a function

of the reaction and bremsstrahlung rates.

Certain features of the radiative phase space solutions,
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7 ' e.g., the existence of extremal points, can be ascertained

without sclving the radiative phase space integral equation.

The existence of extremal points on the w- « shock curve
can be determined by differentiating equation (4.21) with

respect to A . The resulting expression is

L 4 _ 128 y-5,4de .

I 50 ax =~ 59 8 a (4.22)
‘ Since

1  da _

Ho ax Rp, (4.23)

solving equation (4.22) for g—':-', we see that

|
B 1-R
| o 2. P (4.24)

d« 128 , 5

8

It follows that w has an extremal value when the bremsstrah-
lung power loss just equals the thermonuclear power gain,
R =1).
( 5 )
The nature of the extremal point of equation (4.21)

T

depends on the sign of the second derivative evaluated at

ra
[ the extremum. An expression for 'd—it\z is obtained by dif-
d
»_ i ferentiating equation (4.24) with respect to « . The result-
ing expression is
y _ .
: TN Wi U PR B e aE)
; a(® 128 (w-%) a4 w-2  dwx
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At the ext de _
e extremum, dd 0, so
2 dr
au _ o 1 -k . (4.26)
P do 2 128 W- % d«
| &
I § . 5
i i For the deflagration branch, & is & 8 - Therefore, if
B dn
& —L is positive,the extremum is a maximum. Differentiating
d«

g

equation (4.20) with respect to £ , we see that

=
ar 1 T
gx A (o) gg at d«
dr
—P  must be evaluated separately for the tritium-deuterium

s d\x.
| and pure tritium cases.
For the deuterium-tritium case, it follows from equation
(4.12), (which is valid for the radiative case since it is

derived from the mass, momentum and state equations which

have no radiative terms in them), that if g—: =0, then gf =0.

This result holds for any gas whose egquation of state is

independent of . Therefore, if we evaluate g}i , we see

that %E.E is positive at the extremal point, i.e.,

Pag 3t 1
T +x 1-x ~ 0O (4.28)

Therefore, the extremum is a maximum. In other words, when

radiation is taken into account in the structure equations,
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the speed of the gas increases until the radiative losses
just equal the gains due to reactions. The speed then
begins to decrease as the temperature of the gas falls and

the density of the gas increases.

If the state equation depends on KX , as it does for

the pure tritium case, then -g:- =0 does not imply that =— ar . 0.

da<

In fact, it follows from equation (4.17) that when %ﬁ‘ = 0,
«
ar

[ - T . . . . .
then —~—= swhich is negative. The first term in equa-
d< 2(2+%) c <
344 1

dB
tion (4.27) is K T 1ix 1-x - Therefore, if 2 is negative,

then dRE is positive and the extremum is a maximum. It

ax
can be shown from equation (4.20) that g?: is negative if
; <TVY
&n gDy (4.29)
4at

The reaction probability for T-T reactions has the form,

const\_ / consty
/T 1\ T /)

(see section 3.7). Therefore the requirement on %’é , given

{1V »= const x ’ti (e,.p/

in equation (4.29), is satisfied and the extremal point on
the tritium « -« curve is a maximum.
The existence of extrema on the radiative T =« curves

can also be determined analytically. For the deuterium=tritium

T 1 d .
case, g:' = 0 implies either w= 3 or -d_: =0. When the entire

system of equations is integrated, we see that the dimension-

atr
less speed never reaches the value 1/2. Therefore if aa -0,
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duw
d«

speed occur for the same value of X , Since 1l-2w is posi-

then = 0 and the extremal values of temperature and

tive, a speed maximum corresponds to a temperature maximum.
The temperature and speed extremal values do not occur

at the same value of X for the tritium gas. It follows
at dw T

from equation (4.17) that when Ez = 0, then Frike 571:353>’0°
Since the slope of the v -4 curve is positive when'%g = 0,

and since w goes through only one maximum value, the
temperature maximum occurs for a smaller value of «( than
the speed maximum. In fact, the physical condition for the
existence of a temperature maximum is not that the bremsstrah-
lung power equal the thermonuclear power as it is for the
deuterium-tritium case. There is no such simple criterion
for a gas whose equation of state depends on « .

The coordinates of the maximum points on the radiative
“C -« and .« -« phase space curves can be found only if
the phase space integral equation is solved. The maximum
on the deuterium-tritium ‘U -x curve occurs at the point
(T, «) = (0.1019, 0.38). The maximum on the W -« curve
occurs for (u, «) = (0.285, 0.38) . A comparison between
the non-radiative and radiative phase space solutions shows
that the effect of the radiative energy loss is to lower the
maximum temperature inside the wave and to shift its occurr-

ence from 4« =0.89 to «=0.38. The speed, which
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monotonically increases with increasing ol when radiation
losses are neglected, rises to a maximum vaiue and then
falls when radiation losses are included in the analysis.

The .oordinates of the maximum point on the T -«
curve for tritium are (T, ) = (0.0974, 0.37), correspond-
ing to a dimensionless speed of W = 0,308. Those of the
maximum point on the W -« are (w , o ) = (0.322, 0.56).
When radiation is included in the equations, the temperature
maximum occurs when 37% of the material has fused compared

to the non-radiative value of 72%.
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CHAPTER V

SHOCK PROFILES IN REAL SPACE

5.1 Solution of the Shock Structure Equation for a Reacting
and Radiating Gas

The profiles of the temperature, speed, density, pres-

sure and degree of fusion in the reaction zone can be found

i : by solving the full system of shock structure equations. The
phase space solutions are used to eliminate all of the flow

.‘ variables except o from the continuity equation. The

resulting non-linear differential equation is

d«

: e =g (A (5.1)
SA H (8 - )2
where g () = ny o2 {av) ’
and &= , =1, for the deuterium~-tritium mixture, i
=1, ®R=1 for pure tritium, and
2 1 ’ 1
§= Zl- ol +;‘ = for the hydrogen-tritium mixture.

No reactions occur in front of the wave. This physical

fact is incorporated into the differential equation by assum-

ing that the reaction probability cuts off at the initial
temperature of the gas, i.e., {({V) (Tl)= 0. No reactions

occur behind the wave because the fuel has been consumed,i.e,o =#.

Therafore g(«) approaches 0 as x approaches + o and -0
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& (x) varies directly with the initial number density
and inversely with the shock suced since AH = -—,3‘-1- . This
dependence may be eliminated if the continuity equation is
made dimensionless. An appropriate scale length with which
to make the continuity equation dimensionless is the reaction
mean free path at the beginning of the reaction zone, M\ 2°

The dimensionless spatial variable becomes

X
§=3" > (5.2)
AZ
where \ = e —
2 2 nz('xv)z

The dimensionless continuity equation is

d _ SAHNy  (® -)? oy (5.3)
das M wZ

. 0 f
The constant AH )\z/mT is proportional to nl/nzwv}z/u]).
Since n, and n, are linearly related by the jump conditions
across the gas dynamic shock, equation (5.3) is independent

of the initial number density of the gas. It follows from

equations (2.30) and (2.40) that LV>2 is proportional to
1/2

’I‘2 which is proportional to the shock speed. The differen-
tial equation thereby becomes independent of uy also.

In most shock structure problems, one must integrate
the differential equation from ¢ = -o00 to € = + o

because the boundary condition is known only at g= -0 .
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In this problem, the boundary condition is known for a finite

b s e SR

value of f which for convenience we assume to ¢ =0. The
assumption of the von Neumann model of thermonuclear shocks

requires that « =0 throughout the rag dynamic shock. Al-

though g% =0 ahead of the gas dynamic shock, g% #0 behind it

since («v’)(‘l‘z) is non-zero. The differential equation for
ﬁ () in the reaction zone can thus be reduced to the

quadrature,

& () = % fdd : (5.4)

Equation (5.4) can be integrated analytically for
2

oK
'y { (1. w” and (Tv) are constant over the range of

integration and can be taken outside the integral. Therefore,

mTLJZ « §
2 d« :
¢ (%) g P (5.5) 1
SNO‘Z@ vy,> (K=d) ‘
Performing the integration, we see that
[
2 i Y
moo 1
SAH N (TVH, |1 - .
o
This expression can be simplified if 1/(1- 7 ) is expanded { i

o«
to first order in R The resulting linear relation be-

tweeng and « 1is

my W
c;(x) =\;—

o
San.x?_(w)z H

> <‘ £ . (5.7)
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The relation between g and A , obtained by numerically
integrating equat.ion (5.4), establishes that the linear
relation between <§ and « 1is valid for %/_ 0.001.

Equation (5.4) cannot be integrated analytically when
%) 0.001. wz and {7V) remain inside the integral. Their
functional dependence on ¥ is complicated. A closed form
expression for J{gqV) (T ) exists only for T-T reactions at
Mev temperatures. In all other cases {TV) must be evaluated
numerically (see sections 3.2 and 3.7). A change of vari-
ables in (qV) from T to « results in an integral that
cannot be evalugted analytically. Therefore the integration
has been perfdfmed qgmerically with an Euler forward integra-
tion scheme. |

5.2 Solution of the Shock Structure Equations for a Radiating
Gas

The shock structure equations for a reacting gas, and
for a reacting and radiating gas, were prese¢nted in Chapter 1IV.
If the gas radiates but does not react, equations (4.6) and

(4.14) reduce to

2
2 1 t, D=1 _ p
16 T° + ( > + 2D)C + 16 o, {5.8)

where D= D'+ 4,

X

(PBR (Tth,w) ax'.

[«

>
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The relation between the dimensionless speed, 7, and 4,

obtained from the energy equation, is

i
W = (2 e~ 2a - 10T)0 (5.9)

An iterative method, (similar to that used to solve
the phase space equations for a reacting and radiating
gas), can be used to solve the structure equations for a
radiating gas, The values of T and W behind the gas
dynamic shock (given by the jump conditions) are used
for the first iteration. Since these values of T and W
are constant for all x, Al(x) (which can be evaluated
analytically), varies linearly with x. Al(x) is substituted
into equation (5.8) to obtain ‘qfl(x). Once Al(x) and q?l(x)
are known, u)l(x) can be evaluated with equation (5.9). Given
Tl(x) and wl(x), Az(x) can be computed numerically. The
process is repeated until T (x), W (x) and A(x) remain
the same to some required accuracy from one iteration to
the next. The scheme converges to three decimal places in
a few iterations for the cases we have considered.

One feature of the no reaction limiting case of the
structure equations is that the time-independent ilow equa-=-
tions are not satisfied for all values of x. As the gas
radiates, its temperature and speed decrease. I+ follows

from equation (5.9), that for values of ‘U which are £« 0.1,

—
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the maximum value that A can have is CH = 0.5. Therefore
the solution of these equations is meaningful only for
those values of x for which A £ CH. The cut off distance
occurs about one reaction mean free path behind the gas
dynamic discontinuity.

5.3 Profiles of the Flow Variables for Shocks Propagating
with the Chapman-Jdouquet Speed in Deuterium=-Tritium

and Tritium Gases

The profiles of the flow variables behind the gas
dynamic shock have been computed for thermonuclear shocks
propagating with the Chapman-Jouguet speed. The profiles
of dimensionless temperature, speed, density, and pressure
are shown in figures 16 to 19 for the deuterium-tritium
mixture and figures 21 to 24 for the tritium gas. Three
cases are displayed in each figure: (1) pure reaction,

(2) reaction ani radiation, (3) pure radiation., The pure
reaction curves are computed for values of o\ up to

o = 0,99. The Euler forward integration procedure is
inadequate for values of the spatial variable corresponding
to +« greater than 0.99. However, the behavior of the
curves as they approach the values given by the jump condi-
tions across a thermonuclear shock is not of much interest.
The reaction and radiation curves are computed for values of

of up to A = 0.80 for the deuterium-tritium mixture, and
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A = 0,91 for the tritium gas. The flow variables are chang-

ing very rapidly with space for larger values of 4 , so a
higher order integration scheme is needed. However, the

behavior of the variable for <« > 0.80 is of no physical
interest. The pure radiative curves are computed for
values of x such that the radiation energy loss parameter,
A, is £ CH.

The reaction and radiation shock profiles combine the
features of the pure reaction and pure radiation solutions.
As y — 0, all three curves approach the values given by
the jump conditions behind the gas dynamic shock. For
% « < 1, the reaction and radiation solution coincides
with the pure reaction curve. For 3 >>1, it follows the
general shape of the pure radiation curve. However, the
two do not coincide because the composition of the gas
changes as the reactions occur, and the pure radiative case
is valid only for a gas consisting of reactants.

The pure reaction and pure radiation shock profiles put

upper and lower bounds on the values of the flow variables

at each poiat % -

less speed, uw , rises monotonically from ¢ = 0 to ¢ = o

The dimensionless density, ¢ = %;, and pressure, 1! = l= w',

decrease monotonically over the same range. The temperature

——— e e v e M

D

For the pure reaction case, the dimension-
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rises to a peak and then decreases gradually to its post-
detonation steady state value. The temperature peak occurs
at ¢ = 13.9 for the deuterium-tritium mixture and at

ﬁ = 2,6 for the tritium gas. For the pure radiation case,
all of the variables are monotonic functions of {’. The
temperature and speed of the gas decrease from f =0 to

f = o ; there is no eneryy source (e.g., reactions) to
accelerate and heat the gas. The gas density and pressure
increase monotonically with increasing § .

When the coupled effects of reactions and radiation are
included in the equations, W, ¢, and 17T are no longer
monotonic functions of ?s . At first the speed of the gas
increases, as in the pure reaction case. It continues to
increase until the power input due to reactions is equal to
the power loss due to bremsstrahlung, (Rp = 1). Then the
speed begins to decrease, as in the limiting pure radiative
case. The curves of dimensionless density and pressure also
undergo a shift in slope for Rp = 1; the pressure and density
decrease with increasing g for Rp ¢ 1 and increase with
increasing %’ for Rp > l. The turning point of the . , ¢1,
and 77 curves occurs at ¢ =0.356 for the deuterium-
tritium case and at § = 0.947 for the tritium case. The

temperature increases with increasing § until R

S =1 for

the deuterium-tritium mixture and Rp = 0.425 ( % = 0.386)
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for the tritium gas. It then falls as radiative effects
become dominant.

The variation of « , the degree of fusion, with space
behind the wave front is shown in figures 20 and 25 for the
two gas mixtures. L increases monotonically with increas-
ing Q since thermonuclear reactions are irreversible.
The reaction and radiation curve coincides with the pure
reaction curve for small values of «. As £ increases,

« (£)increases faster for the reaction and radiation case
than for the pure reaction case. The following argument
can be used to explain this result.

The ratio of the reaction rate for the radiating gas

(R) and the non-radiating gas (NR) is

9 2

dg/ o fp <Vl
4 = R

dd J 1 v

a):m F i ét g

The density for a given g for a radiating gas is greater
than (or equal to) thac for a non-radiating gas (see figures
18 and 23). The temperature fcr a given & for a radiating
gas is less than (or equal to) that for a non-radiating gas
(see figures 16 and 21). The reaction probability for T-T

reactions decreases with decreasing temperature. The reac-

tion rate is proporticnal to the reaction probability and
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to the density squared. Since

2
& E <TV >(TEB)

= TV ()

NR

for each value of §> , the reaction rate is larger (or the
same) when radiation losses are included in the equations
than when they are neglected for the tritium gas. The
reaction probability for T-D reactions, (unlike that for
T-T reactions), increases with decreasing temperature for

kT > 70 kev, i.e.,

vy (Tp)
(Q’V) (TNR)

1,

Therefore, even if /02 = '02 :

R NR

the reaction rate is greater for the radiating gas than it is
for the non-radiating gas for the deuterium-tritium mixture.

The general properties of the shock profiles can be
discussed with the variatles in dimensionless form, but in
order to compute the thickness of the reaction zone, the
actual values of the physical variables must be known., For
an initial temperature of 5 x 104 °K, and an initial pressure
of 1.33 x 10° dynes/cmz, (n, = lole(cm-a)), the reaction mean

free path behind the gas dynamic shock is =~ 10°cm. oOne
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possible definition of the width of the reaction zone is

the distance over which 80% of the material fuses, A

.80°
It is expressed in the units of X\ ,» in Table 5.
A 80
kT) (Mev pure reaction &
Gas ( )2( ) >\2(°:m) reaction radiation
deuterium- 2,93 6.01 x lO8 5.43 1.54
tritium
teit S, 1.88 1.59 x 10° |  4.83 2.96

TABLE 5. Reaction Zone Thickness

The distance behind the gas dynamic shock over which 80%
nf the reactions occur is the order of several earth radii.
The thickness of the reaction zone varies inversely with
the initial pressure of the gas. Therefore, it will be
reduced if the pressure is increased. Reaction zone thick-
nesses for smaller degrees of fusion can be computed also.
There is no need for such a high degree of fusion in order
to obtain useful power from thermonuclear reactions.

5.4 Profiles of the Flow Variables for Shocks Propagating
with Chapman-Jouquet Speeds in Hydrogen-~Tritium Mixtures

It was shown in section 2.3 that the minimum shock speed

satisfying the Rankine-Hugoniot conditions for a non-radiative
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thermonuclear shock is the Chapman-Jouguet speed., For
shocks travelling with the C-J speed, the fusion reactions

go to completion inside the wave and a steady state is

established behind it. Shock speeds of the order of 107cm/sec

are presently obtainable in electromagnetically driven shock
tubes. Shock speeds of 108cm/sec have been reported. There-
fore, a study of thermonuclear shocks which travel with
speeds lower than the C-J speed for tritium, or a deuterium-
tritium mixture, is of interest for shock tube experiments.
The C-J speed for a hydrogen-tritium mixture is a
function of the relative concentration of the two species.

Since the C-J speed for the mixture is proportional to
1

o
(rf:j;-) , (see equations (2.29) and (3.72)), the C-J speed

decreases as more hydrogen is added to the mixture. The
C-J speed is reduced to 108cm/sec for €& = 643. Although
the power yield would be small for such mixtures, there
would be a measurable neutron flux in the shock tube. Neu-
tron fluxes can be measured with appropriate counters. Such
measurements could be used to determine whether the plasma
temperature had its predicted value behind the gas dynamic

shock.

The flux of neutrons per unit area per unit time is

defined as

¢N =ng, u . (5.10)
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The neutrons are assumed to be in equilibrium with the other

species and to travel with the local fluid speed. If

« L 1_';'& , it follows from equations (3.92) and (5.7)
that
A2 H ¢
o
Sy = b N | x . (5.11)
{ E 2, , 2 2
' g W (1+43€)°

The distance, x, behind the wave in the shock reference
frame is related to the time, t, elapsing after the wave

has passed a given point by

x=u, t .

1 (5.12)

Therefore the neutron flux also increases linearly with time

1
143¢ °

behind the wave for « ¢ £ The values of the neutron

flux at 2,
shock have
& = 33.3
cm/sec for

behind the

4, 6, 8 and and 10 meters behind the gas dynamic

been computed for hydrogen=tritium mixtures with

8

and € = 643. The C-J shock speed is 4.34 x 10

mixtures with & = 33,3, A 10 meter gas sample

gas dynamic shock has a temperature of 18.67 kev.

The shock speed for mixtures with & = 643 is 1 x 108 cm/sec.
The temperature bzhind the gas dynamic shock is 0.981 kev.

The neutron flux as a function of space and time is given in
Table 6.

The degree of fusion corresponding to each value

of the flux is also included.
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:
€ 1 X ¥
¢% (cm -sec ) |x(m) (M sec) %
&
2 33.3 %ﬁ
! 6.34 x 10 2 |o0.46 |1.53 x 107 'i
y 1.27 x 0% 4 |o0.92 |3.06x 107t .
i »
. i
1.90 x 10t 6 |1.38 4.59 x 10~ 3
2.54 x 10%% 8 |1.84 6.12 x 10”1
3.17 x 1014 10 | 2.30 7.15 x 10”1t
z
643
2.48 x 10° 2 |2 2.56 x 10°18
4.96 x 10° 4 |m 5.12 x 1018
7.44 x 10° 6 6 7.68 x 10718
: | 9.92 x 10° 8 |8 1.02 x 1077
1 i
) i ; ! = E. 5
1.24 x 10’ 10 |10 ' 1.28 x 10717 5
i ¥
;, TABLE 6. Neutron Fl-x Behind Gas Dynamic Shock in 3
.z
:

5.5 Profiles of the Flow Variables for Shocka Propagating
with Speeds Below the Chapman-Jouguet Speed

In the preceding sections, shocks travelliing at the
Chapman-Jouguet speed have been considered. One method of

r~3ucing shock speeds to experimentally obtainable vaiues

s v M A5

wis proposed: the addition of inert material like ordinary

hydrogen to a fusible gas like tritium. This method has the

i
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disadvantage of increasing the bremsstrahlung rate without

increasing the reaction rate. Another method of obtaining
4 _ thermonuclear shocks might be to send shocks with speeds

less than the Chapman=-Jouguet speed into a deuterium-tri-

! : tium mixture. The approximations that we make in order to
! solve for the structure of shocks travelling with the C-J

§ speed become better for shocks travelling at lower speeds

i (see section 2.2).

' The analysis of thermonuclear shocks propagating with
speeds below the Chapman-Jouguet speed follows very simply

i from the analysis of the C-J case. 1In order to keep the jump

* ] conditions across the gas dynamic shock in the same form

as those ior the C-J case, we define a constant Qm, such

that the C-J relation between the shock speed and Qm is

preserved for any value of the shock speed, i.e.,

2 = Y2 -
uy = 2( 1a - (5.13)
2
R T, _ , (¥ =1)
Then, W 2=4-"5"7" 9 . (5.14)

The shock structure equations for deuterium=tritium mixture,

Q
presented in section 3.4, are valid only for d<itxm = am- .

where Q is the value of Qm when the shock speed is equal to

the C~-J speed. The time independent equations are not

satisfied for larger values of «

. ; iy = o O e . |
'
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Temperature profiles in the reaction zone have been

computed for shock speeds of 1.10 x 108 cm/sec, 3.48 x 108

cm/sec and 1.10 x 109 cm/sec (which correspond to an = 0,001,

0.01, and 0.1, respectively). The results are displayed

in figure 26. The profiles of the relative degree of rfusicn,

- , in the reaction zone are shown in figure 27. A graph

of the ratio of the bremsstrahlung power to the thermonuclear

power, Rp, for the reaction zone is shown in figures 28 for

RN T ST o O e i 1\ ARSI e S i e e -

the three cases and figure 29 for shocks travelling with the
C-J speed in a deuterium-tritium mixture and a tritium gas.

Radiative effects are not important for shocks travel-

ling with speeds between 3.48 x 108 and 1.10 x 109 cm/sec.

E Rp remains at the roughly constant value of 6 x 10-3 for

shocks travelling with a speed of 3.48 x 108 cm/sec and

2

i 2.5 x 10 “ for sh-c ks propagating at 1.10 x 109 cm/sec. The

temperature profiles for the two cases look like the non-

radiative temperature profile for shocks travelling with the
C-~J speed; the temperature rises to a peak value and then

decreases as approachese(m. The details of the shape of

each curve depend on the temperatures occurring in the

oTh

reaction zone (which depend on the shock speed). The reaction

probability does not have the same functional dependence on

'7 M,,¢ 44

temperature for all temperatures. The temperature and relative

degree of fusion rise fastest for temperatures close to the

. P I . v B -
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maximum value of the reaction probability (kT~70 kev).
Radiative effects become important as the shock speed
is reduced to 1.10 x 108 cm/sec. The power ratio in the

reaction zone is = 8 x 10-1. The larger power ratio

occurs because the reaction probability decreases rapidly

as kT falls from 40 kev to 4 kev. The power ratio decreases

4 e 1A R
(e e
o L

with distance behind the gas dynamic shock. Even though
fuel is being replaced by inert reaction products which
radiate but do not react, the reaction probabilility is
rising very fast for the temperatures occurring in the
reaction zone (3-4 kev) so that the reaction rate is increas-
ing faster than the bremsstrahlung rate. The temperature
profile does not look like the other profiles shown in
figure 26 because radiative effects are significant. The
temperature increases with distance behind the gas dynamic
shock but does not reach a peak and then decrease because
the condition for a temperature maximum, Rp-l, is never
satisfied.

Oone definition of the thickness of the reaction zone
is the distance from the beginning of the reaction zone
to the point where a fixed percentage of the gas has reacted.
The reaction zone thicknesses for shocks travelling with

the three different shock speeds given above have been computed




~

R = SR

for four different percentages of reacted gas.

BB T T b iy e et

e o

are presented in Table 7.
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The results

Partial Thickness of Reaction Zone (cm)
., ul( ;c)

0.01% 0.1% 1% 10%
b.001 |1.10 x 10% |8.5 x 10% | 7.9 x 10°
0.01 |3.48 x 10° 7.0 x 10% |7.3 x 10° | 1.4 x 10°
0.1 1.10 x 10° {2.7 x 105 2.7 x 10* | 2.9 x 10° 7.9 x 10°
1.0 13.48 x 10° |2.8 x 10% | 2.8 x 10° | 2.8 x 10° |3.3 x 10’

TABLE 7. Thickness of Reaction Zone for a Given Degree

The thickness of the reaction zone depends on the tempera-

of Reaction as a Function of Shock Speed

tures and densities occurring in the reaction zone and the

shock speed.

and then falls off with increasing temperature.

<rv>

rises to a maximum value for kT ~ 70 kev

One would

think that the reaction zone thickness would be minimized

for shock speeds such that T
thickness depends on shock speed and the square of the density

as well as on reaction probability.

= 70 kev.

However, the

The thicknesses of the

reaction zone (for small values of « ) can be compared for

two shocks travelling with different shock speeds in thea

ok i o Lot
MNP 4
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following way. It follows from the continuity equation that

d«
Qe 2
o - Ay ¢ova _ﬁa

- LoV 2
Qﬁ) A b A
&/

du do(\ ox,
If Ay = AKXy, then —— d:g{p —= . Since the initial

g
| g density of the gas is the same for both cases, foz is
| [
| 2 - Ap
I ~ Py The ratio of the mass flow constant, .= , is
1 o [] a

-‘ ks
: equal to (_TE) . Therefore,
3 a
5 Tz

| Axb (Tg) vy g
‘ bx, [T;) Ca \/>

b a
If T2 is > 'I‘2 , then
b 4

A T

e -S ifé::;b ><—§)

A o a
(For example, if TI; = 70 kev ((d'V>b'== 8.9 x 1016 cm3/sec)
and 13 = 29.3 kev (<7 6.6 x 10716 em®/sec ), then
2% L
Ax 1.1 .) One can determine the shock speed

that gives the thinnest reaction zone from the graph of
reaction probability vs. temperature for T-D reactions. The
minimum thickness for a given degree of reaction occurs for
'1‘2 2~ 40 kev which corresponds to a shock speed of 4.08 x 108
cm/sec.
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The gas dynamic shock was assumed to be raich thinner
than the reaction zone for shocks travelling at the C-J
speed. The validity of this assumption for shocks trawvw-
elling with speeds below the C-J speed will now be examined.
The thickness of the gas dynamic shock is aséumed to be one
collision mean free path evaluated at the end of the gas
dynamic shock. It is found to be 168 m for shocks propagating
at 3.48 x 108 cm/sec. (The collision mean free path varies
roughly as the temperature squared.) Therefore, although
it takes only 73 m for 0.1% of the gas to react for a shock
speed of 3.48 x 108 cm/sec, 168 m or more are required for
the gas temperature to build up to its final value behind
the gas dynamic shock.

The behavior of the flow variables over a distance of
10 m behind the gas dynamic shock is relevant to shock tube
experiments. The neutron flux as a function of space (or
time, if viewed in the laboratory), is shown in Table 8
for shock speeds of 1.10 x 108 cm/sec and 3.48 x 108 cn/sec.
The corresponding values of o are also noted. Much
higher neutron fluxes are obtainable from deuterium-tritium
mixtures than from hydrogen-tritium mixtures for shocks
of the same speed.

For thermonuclear shocks to be obtainable in shock

tubes, the thickness of the gas dynamic shock must be minimized.
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However, the shock speed must be high enough so that reac-
tion rates are appreciable. The gas dynamic shock is

~ 1.68 m thick for a thermonuclear shock propagating at

= 1.10 x 10% cm/sec. Neutron fluxes of 1017 (cm™2-sec™})
§ are achieved in the reaction zone. About
Ok
% ul ! [
¥ 8, oA tb ( 2 )| x(m) t(/qaec) A
; i (10°z%) cm”-sec
L 1.10 | 0.001
{ 17 -7
. 1.24 x 10 2 |1.82 | 2.34 x 10
| 2.48 x 10" 4 |3.64 | 4.68x 107
i 3.72 x 10"’ 6 |5.46 | 7.02x 107’
| 4.96 x 107 8 |7.28 | 9.35 x 107’
6.20x 107 |10 |9.10 | 1.17 x 107®
3.48 | 0.01
s.86 x 100 | 2 |o.s76 | 2.89 x 107
9.73 x 10 ' 4 |1.15 | 5.80 x 107>
| 1.6 x 10 6 |1.73 | s.69 x 107
| . -
| 186 x102° | 8 12.30 | 1.11x107*
‘ |
' ' 2.43x10%° 10 2.88 | 1.45 x 107¢
I i
| 4

TABLE 8. Neutron Flux Behind Gas Dynamic Shock in a
Peuterium-~Tritium Mixture as a FPunction of
Shock Speed
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0.0001% of the gas will have reacted 8 m behind the gas

dynamic shock. The specific thermonuclear power is

Pry = n02 “'r2 {eV>, %

~(2 x 10%%)2 (1.66 x 10718 (17.6 x 1.602 x 10'13)“'—9%3
cm
3
=< 2 kw/cm” .

If the shock tube is 10 m long and has a radius of 10 cm,
then the total power output is =~ 5 x 105 kw. (Fission power

reactors have power outputs of the same order of magnitude.)

A shock tube is a pulsed device so the power output is
not continuous. A estimate <an be made of the total energy
released in reactions with each pulse. We assume that a
given gas element will react from the time the shock wave

initiates the reactions until the rarefaction wave following

the shock wave quenches them. If the shock wave has travelled

for a time, t, the distance between the shock front and the
rarefaction wave (in the limit of very large initial Mach
number) is (Gr03324)

ug

e) = & ¢ (5.15)

The energy released during the operation of the shock tube

may be estimated by

op
2
E = Py (nr") j a(t) at

L,rf
e s

u
2 1
= PTN(TTr ) o e (5.16)
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The operating time, top’ is equal to the length of the
apparatus divided by the shock speed. If the shock speed is
= lO8 cm/sec, then the operating time for a 10 m long
shaock tube is —~ 10 msec, Evaluating equation (5.16),

(noting that P__~ 2kw/cm3 and r=10 cm), we see that the

TN
energy released is =~ 750 joules. This particular figure is
of course only a rough estimate. However, it indicates

that an energy output of the order of hundreds of joules

is feasible.
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: LIST OF SYMBOLS
!
g A mass flow constant
2 A ion atomic weight
§ i Al constant in Gamov cross section
' ‘ & degree of fusion
i dm maximum degree of fusion
B monentum flow constant
B' constant in Gamov cross section
C energy flow constant
c speed of light
D function of radiative loss parameter
’ constant that depends on A, B and C
) constant in shock structure differential equation
JaY dimensionless radiative energy loss parameter
Ecm energy in center of mass coordinates
EL energy in laboratory coordinates
e internal energy
e electron charge
£ density ratio of protons to tritons
e;R constant that depends on ¢
F electron flow constant
G proton flow constant

¥ ratio of specific heats
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constant that depends on A, B and C
enthalpy

Planck's constant

mass emission coefficient

Boltzmann constant

mass absorption coefficiernt
constant in shock structure differential equation
de Broglie wavelength

Debye shielding distance

photon absorption mean free path
reaction mean free path

reaction mean free path behind gas dynamic shock
alpha particle mass

deuteron mass

electron mass

neutron mass

proton mass

triton mass

effective triton mass

alpha particle number density
deuteron number density

electron number density

neutron number density

proton number density
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triton number density

dimensionless speed

power due to bremsstrahlung

power due to thermonuclear reactions
pressure

dimensionless pressure

dimensionless density

energy released in reactions per gram of initial
gas mixture

effective energy released per gram of initial
gas mixture

energy released per reaction
radiative energy flux
thermonuclear energy per unit mass
universal gas constant

ratio of bremsstrahlung power to thermonuclear
power

density

cross section

Gamov cross seaction
Govorov c.uss8 section
reaction probability
temperature

dimensionless temperature

self collision time
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self collision time for electrons

self collision time for neutrons

equilibration time
reaction time

gas speed

shock speed (initial gas speed)

mean molecular weight

production rate of ith specie

dimensionless spatial variable

atomic number

e s A A . o A B A2 4

%
3
4
&
1
z
¥
*
i
'%é
3
?
%
i
%
e
*

lytar




o N————— R T

134

REFERENCES

l. W. J. M. Rankine, Phil. Trans. Roy. Soc. London 160, 277
(1870).

2. H. Hugoniot, J. Ecole Polytech (Paris) 58, 1 (1889).

3. Lord Rayleigh, Proc. Roy. Soc. (London) A84, 267 (1910).

4. D. Gilbarg and D. Paolucci, J. Rat. Mech. Anal. 2, 617
(1953).

5. C. S. Wang Chang, App. Phys. Lab Report No. APL/JHO,
CM503 (l1948).

6. H. M. Mctt-Smith, Phys. Rev. 82, 885 (1951).
7. K. Zoller, Zeitschrift fur Physik 8, 321 (1921-1922).
! 8. H. Grad, Comm. on Pure and App. Math. 5, 257 (1952).

9. M. Berthelot, Comptes Rendus, de l'Academie des Sciences,
Paris, pp. 18=-22,

10. D. L. Chapman, Phil. Mag., 47, 90 (1899).

11. E. Jouguet, J. Mathematique, 6th Series, 1, 367 (1905)
and 2, 5 (1906).

12. J. von Neumann, OSRD Rep. 569 (1942).
13. W. Doring, Annalen der Physik, 43, 421 (1943).
14. Y. B. Zeldovich, JETP, 10, 542 (1940).

15. J. O. Hirshchfelder and C. F. Curtiss, J. Chem. Phys. 28,
1130 (1958).

16. E. L. Resler Jr. and B. Cary, The Threshold of Space,
Pergamon Press, {1957).

17. H. Petschek and S. Byron, Ann. Phys. 1, 270 (1957).

18. V. A. Prokof'ev, Uch. Z2ap. Mos. Gos. Univ., Mech. 172,
79 (1952).

=+ e e —— R R ey SUVE DI




——

15T

P

i v:.:«ﬁﬁ‘ﬁw*«' 5 D

P

e 2 UL SR

19,

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

3l.

32.

33.

34.

135

M. A. Heaslet ard B. S. Baldwin Jr., Phys. Fluids 6, 781,
79 (1963).

R. E. Marshak, Phys. Fluids 1, 26 (1958).

S. C. Traugott, Procedings of the 1963 Heat Transfer
and Fluid Mechanics, edited by A. Roshko et al.
(Stanford University Press, Stanford, California, 1963).

P. A. Koch, Phys. Fluids 8, 2140 (1965).

S. M. Scala and D. H. Sampson, Heat Transfer in Hypersonic
Flow with Radiation and Chemical Reaction, edited by

D. Olfe (Pergamon Press, New York 1963).

R. A. Gross, Rev. Mod. Phys., 37, 724 (1965).
J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular

Theory of Gases and Liquids, (John Wiley and Sons, Inc.,
New York 1954).

T. von Karman, Aerothermochemistry (notes edited by
G. Millan, Jan. 1958).

D. Brezing, Columbia U. Plasma Lab Rep't. 13 (September
1964).

S. Glasstone and R. H. Lovberg, Controlled Thermonuclear
Fusion, (D. von Nostrand Company, Inc., Princeton, 1960).

R. T. Taussig, Phys. Fluids, 9, 421 (1966).

W. D. Hayes, Gasdynamic Discontinuities, (Princeton
University Press, Princeton, 1960).

H. Taylor and A. V. Tobolsky, Amer. Scientist 46, 191
(1958).

L. Spitzer, Jr., Physics of Fully Ionized Gases (Inter-
science Publishers, New York, 1962).

D. J. Hughes and R. B. Schwartz ed, Neutron Cross Sections,
BNL 325 (1959).

S. Glasstone, Principles of Nuclear Engineering (D. van
Nostrand Company, Inc. Princeton, 1955).

e~ Je— AR 5 MR it | > o onsiae




35.

36.

37.

38.

39.

40.

41.

42.

43.

~
=

136

R. K. Osborn, Fusion and Plasma Physics (lecture notes,
University of Michigan Dep't. of Nuclear Engineering,
June 1961).

R. D. Evans, The Atomic Nucleus (McGraw-Hill Book
Company, Inc. New York, 1955).

Vincenti and C. Kruger, Introduction to Physical Gas
Dynamics (John Wiley and Sons, Inc., New York, 1965).

R. Goulard, Fundamental Equations of Radiation Gas
Dynamics (Purdue U. School of Aeronautical and Engineer-
ing Sciences, Lafayette, Indiana, 1962).

C. F. Wandel, T. Hesselberg Jensen and 0. Kofoed-Hansen,
Nuclear Instr., 4, 259 (1959).

I. Kaplan, Nuclear Physics (Addison Wesley, Reading,
Massachusetts, 1955).

F. Ajzenberg-Selove and T. Lauritsen, Nuclear Phys.,
11, 1 (1959).

N. Jarmie and J. D. Seagrave, Eds., USAEC Report
LA-2014 (1957).

A. M. Govorov, Li Ka-yeng, G. M. Osetinskiij, V. I.
Salatskii, and J. V. Sizov, JETP, 15, 266 (1962).

W. B. Thompson, Proc. Phys. Soc. (London) B70, 1 (1957).

il R |




b

““—F

R i

Unclassified
Security Classification

]

Haiih

DOCUMENT CONTROL DATA - R&D

(Security clessificetion of title, body of sbatrect and indexing annotetion must be entered when the oversll veport ie clessilied)

1. ORIGINATIN G ACTIVITY (Corporate suthor) 20 REPORYT SECURITY C LASSIFICATION
Unclassified
Columbia University 2b. amour
3. REPORT TITLE z
:
Thermonuclear Shock Wave Structure =z
&=
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) %
: =
Technical Report =
5. AUTHOR(S) (Last name. firet name, initisl) %
Fuller, Ann L. "
6. REPORT DATE 748 TOTAL NO. OF PAGES 7b. NO. OF REFS
July 1966
G8e. CONTRACT OR GRANT NO. /' S0. ORIGINATOR'S REPORT NUMBENR(S)
AF49(638)1634

Plasma Laboratory Report No. 31

b PROJECT NO.

c. (1.} gr:c;:o”l-onf NO(S) (Any othar nusbers that mey be aseigned

d

10. AVAILABILITY/LIMITATION NOTICES

Qualified requestors may obtain copies of this report from DDC.

!

12. SPONSORING MILITARY ACTIVITY

Air Force Office of Scientific
Research, Washington, D. C.

11. SUPPLEMENTARY NOTES

oo AR R el ol o R I i i

18 AMSTRECSY XgTheAstructure of a very strong shock wave propagating
through a deuterium-tritium gas mixture and a pure tritium gas is
studied. The temperature behind the shock wave is sufficiently high
so that thermonuclear reaction probabilities are large. The wave
structure is similar to that of detonations in chemically reacting
gases., It is assumed that the characteristic times for collisions
and reactions are such that the von Neumann-Zeldovich model of detona-
tions is applicable; i.e., the shock can be treated as a viscous gas
dynamic shock followed by a deflagration wave inside of which all thej
reactions occur. The physical and mathematical assumptions involved §
in the analysis of thermonuclear shock wave structure are examined. §

The reaction probabilities for deuterium and tritium fusion reactions
are computed and the appropriate reaction kinetics equations are de-
velcped. The effect of energy losses due to bremsstrahlung on the
wave structure is considered for a gas that is optically thin to
radiation of all frequencies. The resulting set of structure equa-

The neutron flux and power output due to reactions is calculated for

with a mixture of deuterium and tritium. A power of 1 kw/ is

Lgfedicted under specified operating conditions e
‘Uiclassified

DD .. 1473

*curity :{:‘S\EC{W/ A~

tions are solved numerically for several physically interesting cases@§

a shock propagating in a electromagnetically driven shock tube filled




s

} Unclassified

7 Security Classification
‘_ﬂ-

KREY WORDS

LINK A LINK 8 LINK C

ROL K wT ROL X wY ACLE wY

{
—
&
Thermonuclear reactions
Shock Wave

Detonation

Deuterium

Tritium

L !

. ORIGINATING ACTIVITY: Enter the name snd addrean
ithe contractor, subcontractor, grantee, Department of De-
3»0 activity or otner orgenization (corporate suthor) issuing
1report,

.. REPORT SECURITY CLASSIFICATION: Enter the ove~
i security classification of the report. Indicate whether
estricted Data” is included Marking ia to be in eccord-
Jee with sppropriate security regulations.

. GROUP: Automatic dowrngrading ia specified in DoD Dij-
‘ttve 5200. 10 and Asmed Forces Industrial Manua!l. Enter

' group number. Aleo, when applicable, stiow that optional
"things have been uaed for Group 3 and Group 4 as suthor-
o

REPORT TITLE: Enter the complete report title in all
sital lettera. Titlea in all casea ahould be unclassified.
1 »zaningful title cannot be selected without cissaifica
n, show iitle clasaificstion in all capitela in parentheaia
nediately following the title.

DESCRIPTIVE NOTES: If sppropriste, enter the type of
ort, e.g.. intenim, progresa, summary, annual, or final,

se the inclusive datea when a apecific reporting period ia
‘ered.,

AUTHOR(S) Enter the name(a) of suthor(a) aa shown on
in the report. Entet laat name, first name, middle initial.
ralitary, show rank snd branch of service. The nsme of
principal «thor iv an abaolute minimum requirement.

REPORT DATZ. Enter the date of the report as day,
nth, year, or month, year. If more than one date eppears
the report, use date of publication

TOTAL NUMBER OF PAGES: The total page count

wiid follow normal pagination procedures, i.e., enter the
mber of pages containing information

NUMBER OF REFERENCES Enter the total number of
erences cited in the report.
. CONTRACT OR GRANT NUMBER: If eppropriate, enter
+ applicable numter of the contract or grsat ynder which
r report waa written !

. &, & 8d. PROJECT NUMBER: Enter the appropriste
litery department idesitification, such ea project nuxbder,
tproject number, aystem numbers, tsak number, etc.

. ORIGI:ATOR'S REPORT NUMBER(S): Enter the offl-
al report aumber by which the document will be identified
d controlled by the originsting sctivity. This aumber must
vaique to this report.

. OTHER REPORT NUMBEK($): If the report has been
signed any other report aumbers (either by the originstor
by the aponaor), aleo enter this number(s)

. AVAILABILITY/LIMITATION NOTICES Eater any lim-

T

stions on further diaseminstion of the report, other than those|

INSTRUCTIONS

impoaed by security clasaificstion, using l(ladlrd ststementa
such as: /

(1) '’Qualitied requesters may obtsin copies of thia
report from DDC."’*

(2) 'Foreign announcement and dissemination of thia
report by DDC is not authorized ’’

(3} **U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
uaera shall requeat through

(4 '*U. S. military agencies may obtsin copies of thia
report directly from DDC. Other qualified uaere
shall request through

(5) '"*All diateibution of this report ia controlled Qual.
ified DDC users shall request through

If the report hsa been furnished tc the Office of Techaical
Services, Department of Commerce, for aale to the public, indi-
cate thia fact und enter the price, if known

1L SUPPLEMENTARY NOTES: Use for sdditiona) sxplane-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departments! project office or laborstory sponsoring (pay-
ing for) the research and development. Include sddress.

13. ABSTRACT: Enter an abstract giving a brief and lactual
summary of the document indicstive of the report, even though

it may also appear elasewhere in the body of the technicsl re-
port. If additional spsce ia required, a continustion sheet shall
be attached.

It ia highly desirable that the abstract of clsusified reports
be uncleasified. Each psragraph of the sbstrect shall ead with
an indication of the militery security claseification of the in-
formation in the paragraph, pepresentad aa (T5;. (5). (C), er (U).

There ia no limitation <n the léingth of th¥ sbstract. How-
ever, the suggested leagth ia from 150 to 225 wonde.

14. XEY WORDS: Key worda sre techaicslly mesningful terms
or ahort phrases that chsracterize s report and may ba used ss
index entries for cetaloging the repert. Key worde must be
selected a0 thst no aecurity clsssifisstion is required. ldeati-
fiers, such aa equipment medel designation, trade name, militery
project code name. rogwuc locstion, may be used ss key
words but will be followed by sa indication of techaics! con-
teat. The asaignment of links, rules, and weights is optioas!.

W TTERY )

A

Unclassified

Security Clessification




