

REPORT NO. 1314

EQUATIONS OP MOTION FOR A MODIFIED POINT MASS TRAJECTORY
by
Robert F. Lleske
Mary L. Reiter
March 1966
Distribution of this document is unlimited.
U. S. ARMY MATERIEL COMMAND BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARY'LAND

Destroy this report when it is no longer needed. Do not return it to the originator:
THIS REPORY HAS BEEN DELIMITEDAND CLEARED FOR PUBLIC RELEAST:JNDE D DOD DIRECTIVE 5200.20 ANONO REETRICTIONS ARE IMSNASD UPON
ITS USE AND DISCLOSURE
DISTRIBUTION STATEREN A
APfROVED FOR PUBLIC RELEASE;
DISTRISUTION UNLIMITED.

Distribution of this document is unlimited.

EQUATIONS OF MOTION

FOR A
MODIFIED POINT MASS
TRAJECTORY

Robert F. Lieske
Mary L. Reiter

Computing Laboratory

RDT \& E Project No. 1P523801A87

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1314

RFLieske/MLReiter/vm
Aberdeen Proving Ground, Md. March 1966

EQUATIONS OF MOTION
 FOR A
 MODIFIED POINT MASS
 TRAJECTORY

Abstract

A modified point mass mathematical model which incorpirates an estimate of the yaw of repose, has been developed to represent the flight of a spin stabilized, dynamically stable, artillery shell. This improved mathematical model has the desirable feature of representing the effects of the significant variables of yaw of repose and axial spin along the trajectory.

TABLE OF CONTENTS

Page
Abstract 3
Table of Symbols 7
Introduction 11
Basic Laws of Motion of a Rigid Body 12
Estimate for Yaw of Repose 13
Utilization 19
Conclusions 22
References 23
Distribution List 25

maxtoos page was blank theictore was not fidiod

TABLE OF SYMBOLS

Term	Definition	Units
A	Axial moment of inertia	$\mathrm{lb}-\mathrm{ft}^{2}$
Az	Azimuth of line of fire (clockwise from north)	mil
B	Transverse moment of inertia	$\mathrm{lb}-\mathrm{ft}{ }^{2}$
C_{s}	Ballistic coefficient for standard mass	$\mathrm{lb} / \mathrm{in}^{2}$
d	Reference diameter of projectile	ft
玉	Position of projectile with respect to spherical Earth surface	ft
$\underline{\square}$	Acceleration due to gravity	$\mathrm{ft} / \mathrm{sec}^{2}$
go	Acceleration due to gravity (surface)	$\mathrm{ft} / \mathrm{sec}^{2}$
$\xrightarrow{\text { H }}$	Total angular momentum	$\mathrm{lb}-\mathrm{ft}^{2}-\mathrm{rad} / \mathrm{sec}$
$\xrightarrow{\square}$	Unit vector in the direction of $\underset{\sim}{ }$	-
K_{A}	Spin damping moment coefficient	-
${ }^{\mathrm{K}} \mathrm{D}_{0}$	Drag force coefficient	- -
$\mathrm{K}_{\mathrm{D}_{a}}$	Yaw drag rce coefficient	-
K_{F}	Magnus force coefficient	-
K_{H}	Damping moment coefficient	-
K_{L}	Lift force coefficient	-
K_{M}	Overturning moment coefficient	-
.$^{\text {K }}$	Pitching force coefficient	-
K_{T}	Magnus moment coefficient	-

Term	Definition	Units
1	Lift factor	
L	Latitude of launch	deg
M.	Mach number	
m	Projectile mass	1 b
$\mathrm{m}_{\text {s }}$	Standard projectile mass	1 b
N	Axial spin	$\mathrm{rad} / \mathrm{sec}$
Q	Yaw drag factor	
\mathbf{r}	Distance between center of Earth and projectile	ft
R	Effective radius of Earth	ft
t	Time	sec
$\xrightarrow{\mathbf{u}}$	Velocity of projectile with respect to ground	ft/sec
$\stackrel{\mathrm{V}}{ }$	Velocity of the projectile with respect to air	$\mathrm{ft} / \mathrm{sec}$
$\xrightarrow{\mathbf{w}}$	Velocity of the air with respect to ground	$\mathrm{ft} / \mathrm{sec}$
$\underset{\sim}{x}$	Unit vector along the longitudinal axis of the projectile	$\underline{-m}$
$\underset{ }{\mathrm{X}}$	Position of the projectile with respect to a ground-fixed coordinate system	ft
a	Angle of yaw of projectile	rad
$\xrightarrow{\text { a }} \mathrm{e}$	Approximation for yaw of repose	rad
$\xrightarrow{\wedge}$	Coriolis acceleration due to rotation of the Earth	$\mathrm{ft} / \mathrm{sec}^{2}$
p	Air density as a function of E_{2} (where E_{2} is a component of E)	$1 \mathrm{~b} / \mathrm{ft}^{3}$

Term	Definition
Ω	Angular velocity of the Farth
.	First derivative with respect to time
.	Second derivative with respect to time

Units
rad/sec

- $/ \mathrm{sec}$
$-\quad / \sec ^{2}$

Fitious pacie whs blank theractore was not fidmed

INTRODUCTION

The mathematical model for rigid body trajectory simulation, as reported in BRL Report No. 1244, closely matches the results of physical experiments of spin-stabilized projectiles over a spectrum of test conditions. However, its usefulness, as in most rigid body simulations, is hindered by the tine required to numerically solve the system of differential equations. This report describes the derivation of a mathematical model which will not be as time consuming to solve as the rigid body system, but which will represent as rlosely as possible the center of gravity motion of the projectile by utilizing a force system, axial spin and an estimate of the yaw of repose.

BASIC LAWS OF MOTION OF A RIGID BODY

The frame of reference for all vectors to be presented is a groundfixed, right-handed Cartesian coordinate system with unit vectors $(\underset{\rightarrow}{1}, 2,3)$. Assume the $\underset{\rightarrow}{2}$ axis to be parallel to the vector $\underset{\rightarrow}{g}$, and $\underset{\rightarrow}{g}$ to have the same direction as $\underset{\rightarrow}{1} \times \underset{\rightarrow}{3}=-$

Assume that the body can be considered a solid of revolution. Then spin-stabilized projectiles can be oriented by choosing a unit vector $\underset{\rightarrow}{x}$ alcng the axis of symmetry, pointing from tail to nose. N is the magnitude of angular velocity parallel to $\underset{\rightarrow}{x} . N$ is positive if it results from a rotation causing a right-handed screw to advance in the direction of \xrightarrow{x} -

The following set of simultaneous differential equations of motion for a spin-stabilized projectile is developed in BRL Report 1244.

The equation of motion of thie center of mass is:
(1.1) $\underset{\rightarrow}{\dot{u}}=-\frac{\rho d^{2}}{m}\left(K_{D_{0}}+a^{2} K_{D_{a}}\right) v \underset{\rightarrow}{v}+\frac{\rho d^{2}}{m} K_{L}[\underset{\rightarrow}{v} \times(\underset{\rightarrow}{x} \times \underset{\sim}{v})]$

$$
-\frac{\rho d^{3}}{m} K_{S} v \underset{\rightarrow}{\dot{x}}+\frac{\rho d^{3} K_{F} N}{m}(\underset{\rightarrow}{x} \times \underset{\rightarrow}{v})+\underset{\rightarrow}{\underline{g}}+\underset{\sim}{\Lambda}
$$

The total angular momentum of the body can be expressed as the sum of two vectors in the ground-fixed coordinate system:
(a) The angular momentum about $\underset{\rightarrow}{x}$.
(b) The total angular momentum about an axis perperdicular to $\underset{\rightarrow}{x}$.

The angular mornentum about $\underset{\rightarrow}{x}$ can be represented by the vector A $N \underset{\rightarrow}{x}$ and the angular momentum about an axis perpendicular to $\underset{\rightarrow}{x}$ by the vector $B(\underset{\rightarrow}{x} \times \underset{x}{\dot{x}})$.

Let $\underset{\rightarrow}{H}$ denote the total angular momentum of the body. The vector representation of $\underset{\rightarrow}{\mathrm{H}}$ is:
(1.2) $\underset{\rightarrow}{\mathrm{H}}=\mathrm{ANx}+\mathrm{B}(\underset{\rightarrow}{\mathrm{x}} \times \underset{\underset{x}{\dot{x}})}{\text { (}}$

The vector rate of change of angular mo:ne.atum is the sum of the applied moments.
$(1.3) \underset{\sim}{\dot{H}}=A \dot{N} \underset{\underline{x}}{ }+A N \underset{\sim}{x}+B(\underset{x}{x} \underset{\sim}{\ddot{x}})=$

$$
\begin{aligned}
& \rho d^{3} K_{M} v(\underset{\rightarrow}{v} \times \underset{\rightarrow}{x})-\rho d^{4} K_{H} v(\underset{\rightarrow}{x} \times \underset{\rightarrow}{\dot{x}}) \\
& +\rho d^{4} K_{T} N\left[\underset{\rightarrow}{x} \times(\underset{\rightarrow}{x} \times \underset{\sim}{v}]-\rho d^{4} K_{A} N v \underset{\sim}{x}\right.
\end{aligned}
$$

ESTIMATE FOR YAW OF REPOSE

An estimate for the yaw of repose will be derived from the rigid body system of differential equations of motion for the purpose of representing the effects of yaw.

The following conditions are assumed:
(1) The projectile can be represented sufficiently well as a body of revolution.
(2) The projectile in dynamically stable.
(3) Initial yaw is assumed small, i. e., it has no sigr.ificant effect on the trajectory.

Examination of equation (1, 1) shows the magnitude $|\underset{\rightarrow}{x} \times \underset{\rightarrow}{v}|$ as being present in the lift term and the Magnus term, the lift term being more significant. Examination of equation (1.3) shows its presence also in the corresponding terms of $\underset{\rightarrow}{\dot{H}}$.

If $I=\underset{\rightarrow}{v} / v$, then $|\underset{\rightarrow}{x} \times \underset{\rightarrow}{I}|=\sin a$. To a first order approximation,
this is a ; however, for computational purposes it is a more desirable quantity than a. To get the proper orientation of this quantity, the following yector will be defined:
(2.1) $\underset{\rightarrow}{a} \equiv \mathrm{e} \equiv \underset{\rightarrow}{I} \times \underset{\rightarrow}{\mathrm{x}} \times \underset{\rightarrow}{I})=\underset{\rightarrow}{x}-\cos a \underset{\rightarrow}{I}$

Obviously, $\underset{\rightarrow}{a} e \cdot \xrightarrow{I}=0 . \underset{\rightarrow}{a}$ e represents vector yaw * directed from I toward x. The effect of $\underset{\rightarrow}{a} e$ on the trajectory is generally srnall under the assumptions stated. Furthermore, it will be assumed that $\underset{\rightarrow}{\dot{a}} e$ is negligible. This implies \dot{a} is small; moreover, the following approximations are warranted:
$(2.2) \underset{\rightarrow}{\underset{x}{x}}=\cos a \underset{\rightarrow}{\dot{I}}$
(2.3) $\underset{\rightarrow}{\ddot{G}}=\cos \alpha \ddot{\vec{I}}$

The separation of $\underset{\rightarrow}{H}$ into vomponents parallel and perpendicular to $\underset{\rightarrow}{\mathrm{x}}$ yields:

$$
\begin{aligned}
& \text { (2.4) } A \dot{N}=-\rho d^{4} K_{A} N v \\
& \text { (2. 5) } A N \dot{x}+B(\underset{\rightarrow}{x} \times \underset{\rightarrow}{\underset{x}{x}})=\rho d^{3} K_{M} v(\underset{\rightarrow}{y} \times \underset{\rightarrow}{x}) \\
& -\rho d^{4} K_{H} v(\underset{\rightarrow}{x} \times \underset{\rightarrow}{\dot{x}})+\rho d^{4} K_{T} N[\underset{\rightarrow}{x} \times(\underset{\rightarrow}{x} \times \underset{\sim}{v}]
\end{aligned}
$$

To determine $\underset{\rightarrow}{a} e$, first replace $\underset{\rightarrow}{x}$ and its derivatives in (1.1) and (2.5) using equations (2.1), (2.2) and (2.3).

* NOTE: $|\underset{\sim}{\alpha} e| \neq a$. However, as mentioned earlier, in magnitude $|\underset{\rightarrow}{a} e|$ is a first-order approximation for yaw, $\underset{\rightarrow}{a} e$ is in the plane determined by $\underset{\rightarrow}{x}$ and $\underset{\rightarrow}{1}$, in the direction from $\underset{\rightarrow}{I}$ toward $\underset{\rightarrow}{x}$. Hence, $\underset{\rightarrow}{\text { a }}$ will be referred to as vector yaw.

The resulting equations are:
(2.6) $\underset{\rightarrow}{\dot{u}}=\frac{-\rho d^{2}\left(K_{D_{0}}+a^{2} K_{D_{D}}\right) v^{2} I}{m}+\frac{\rho d^{2} K_{L} v^{2} \xrightarrow{a} e}{m}-\frac{\rho d^{3} K_{S} v \cos a \dot{I}}{m}$
(2.7) $\mathrm{AN} \cos a \underset{\rightarrow}{\dot{I}}+\mathrm{B} \cos a(\underset{\rightarrow}{a} \mathrm{e} \times \underset{\rightarrow}{\ddot{I}})+\mathrm{B} \cos ^{2} a(\underset{\rightarrow}{I} \times \ddot{I})$

$$
=\rho d^{3} K_{M} v^{2}(\underset{\rightarrow}{I} \times \underset{\rightarrow}{a})+\rho d^{4} K_{T} N v\left[\cos a\left(\underset{\rightarrow}{a} e^{+\cos a} \underset{\rightarrow}{ }\right)-I\right]
$$

$$
-\rho d^{4} K_{H} v \cos a[(\underset{\rightarrow}{a} e+\cos a \underset{\rightarrow}{I}) \times \dot{I}]
$$

Cross multiplication by $\underset{\rightarrow}{I}$ of both sides of equations (2.6) and (2.7) and, with $\underset{\longrightarrow}{\Lambda}$ negligible in comparison to g, the simultaneous solution of the resulting equations gives the following for $\underset{\rightarrow}{a} \mathrm{e}$.
(2.8) $\underset{\rightarrow}{a} \mathrm{e}=\{\operatorname{mpd}^{4} \mathrm{~K}_{\mathrm{T}} \mathrm{Nv} \cos a[\underset{\rightarrow}{I} \times(\underset{\rightarrow}{\dot{\mathrm{u}}}-\underset{\rightarrow}{\underline{g}}+\underbrace{\left.\rho d^{3} \mathrm{~K}_{S} v \cos a \underset{\sim}{I}\right)}_{\mathrm{m}}]$

$$
\begin{aligned}
& +\rho d^{2} K_{L} v^{2}\left[-A N \cos a(\underset{\rightarrow}{I} \times \underset{I}{I})+B \cos ^{2} a[I \times(\ddot{I} \times I)]\right. \\
& \left.\left.+\rho d^{4} K_{H} v \cos { }^{2} a \dot{I}\right]\right\} /\left\{\rho^{2} d^{7} K_{F} K_{T} N^{2} v^{2} \cos a\right. \\
& \left.+\rho d^{2} K_{L} v^{2}\left[\rho d^{3} K_{M} v^{2}+B \cos a \underset{\rightarrow}{I} \cdot \underset{\rightarrow}{I}\right]\right\}
\end{aligned}
$$

For further substitution into $(2,8)$ the following are required:
(2.9) $\underset{\rightarrow}{\mathrm{I}}=\underset{\mathrm{v}}{ } / \mathrm{v}$

$$
\begin{equation*}
\underset{\rightarrow}{\ddot{v}} / v-(\ddot{\square}, \underset{\rightarrow}{I}) \underset{\rightarrow}{I} / v=[\underset{\rightarrow}{I} \times(\underset{\rightarrow}{\ddot{\underset{G}{I}} \times \underset{\rightarrow}{I})] / v} \tag{2.12}
\end{equation*}
$$

(2.12) will be considered negligible since $\ddot{\underline{v}}$ can be approximated by $\underset{\rightarrow}{\mathbf{u}}$, and $\underset{\rightarrow}{\mathbf{u}}$ is essentially parallel to $\underset{\rightarrow}{I}$.

With this assumption,

$$
\begin{aligned}
& \left.\left[2 B \cos ^{2} \alpha(\dot{\dot{v}} \cdot I)-\rho d^{4} K_{H} \cos ^{2} \alpha v^{2}\right]\right] / \\
& i \rho d^{3} K_{L} K_{M} v^{4}+\rho d^{5} K_{F} K_{T} N^{2} \cos a v^{2} \\
& +K_{L} B \cos a\left[(\underset{\rightarrow}{\dot{\sim}} \cdot I)^{2}-(\underset{\sim}{\dot{v}} \cdot \underset{\sim}{\dot{V}}]\right\}
\end{aligned}
$$

In the denominator of equation (2.13) the v^{4} term predominates ; therefore, $K_{L} B \cos a\left[(\underset{\rightarrow}{(\dot{\mathrm{~V}}} \cdot \underline{I})^{2}-(\underset{\rightarrow}{\dot{\mathrm{V}}} \cdot \underset{\rightarrow}{\dot{\mathrm{y}})}]\right.$ will be considered negligible. The ratio of this term to the remaining terms in the denominator is of the order of $\left(g^{2} / v^{4}\right)$. In the numerator, $[\underset{\sim}{\dot{v}}-(\underset{\rightarrow}{\dot{v}}, \underline{I})$ is the component of $\dot{\mathbf{v}}$ perpendicular to the projectile flight in the air coordinate system.

For most spin stabilized trajectories $\mid \underset{\rightarrow}{\dot{v}}-(\underset{\rightarrow}{\dot{G}}, \underset{\rightarrow}{I}$] is no more than the magnitude of g; hence, consider

$$
\left|\mathrm{K}_{\mathrm{L}} \xrightarrow{\mathrm{~g}}\left[2 \mathrm{~B} \cos ^{2} a(\underline{\mathrm{~V}} \cdot \mathrm{I})-\rho \mathrm{d}^{4} \mathrm{~K}_{\mathrm{H}} \cos ^{2} a \mathrm{v}^{2}\right]\right|
$$

For artillery shells, this term is generally bounded by

$$
(2.15) \mathrm{K}_{\mathrm{L}}|\mathrm{~g}||2 \mathrm{~B}:=(10 \mathrm{~g})|=\left|20 \mathrm{~K}_{\mathrm{L}} \mathrm{Bg}_{\mathrm{o}}^{2}\right|
$$

Now

$$
\begin{aligned}
& \text { (2.16) }\left|-A K_{L} N(\underset{\rightarrow}{v} \times \underset{\rightarrow}{\dot{u}})+m d^{2} K_{T} N[\underset{\rightarrow}{v} \times(\underset{\rightarrow}{\dot{u}}-\underline{g})]\right| \approx \\
& \quad N v\left|\left\{-A K_{L}+m d^{2} K_{T}\right\} K_{L} \frac{\rho d}{m} v^{2}+A K_{L} g_{o} \sin \phi\right| \\
& \quad \text { where } \cos \phi=\frac{\underset{\sim}{g} \cdot \stackrel{v}{v}}{}
\end{aligned}
$$

For artillery shells, it is usually true that

$$
\text { (2.17) }\left|\left\{-A K_{L}+m d^{2} K_{T}\right\} K_{L} \frac{\rho d^{2} v^{2}}{\mathrm{~m}}\right| \ll\left|A K_{L} g_{o} \sin \phi\right|
$$

Comparison of (2.15) and (2.17) shows that the ratio of (2.14) to (2.16) is less than the order of $\left(2 \mathrm{Og}_{\mathrm{o}} / \mathrm{Nv}\right)$. For high spin, (2.14) will be considered negligible.

Let

$(2.18) \underset{\rightarrow}{\mathrm{v}}=\underset{\rightarrow}{\mathrm{u}}-\underset{\xrightarrow{\mathrm{w}}}{ }$
$(2.19) \underset{\rightarrow}{\dot{+}}=\underset{\rightarrow}{\dot{u}}$

If the effects of the pitching force (K_{S} term) and $\underset{\rightarrow}{\dot{w}}$ are assumed insignificant, and cos a can be approximated by 1 , equation (2.13) is reduced to
$\left(2.20 \quad \underset{\rightarrow}{a} e=\frac{-\mathrm{AK}_{\mathrm{L}} \mathrm{N}(\underset{\rightarrow}{\mathrm{v}} \times \underset{\rightarrow}{\dot{u}})+\mathrm{md}^{2} \mathrm{~K}_{\mathrm{T}} \mathrm{N}[\underset{\rightarrow}{\mathrm{v}} \times(\underset{\rightarrow}{\dot{u}}-\underset{\rightarrow}{\mathrm{g}})]}{\rho \mathrm{d}^{3} \mathrm{~K}_{\mathrm{L}} \mathrm{K}_{\mathrm{M}} \mathrm{v}^{4}+\rho \mathrm{d}^{5} \mathrm{~K}_{\mathrm{F}} \mathrm{K}_{\mathrm{T}} \mathrm{N}^{2} \mathrm{v}^{2}}\right.$

The primary goal of the development of $\underset{\rightarrow}{a} e$ was the acquisition of a mathematical model whirh would incorporate the effects of yaw, but would not require the computing time of a complete r:igid body simulation. The following representation was devised to incorporate $\underset{\rightarrow}{a} e^{\text {in a }}$ modified point-mass mathematical model. This representation includes auxiliary equations necessary for the numerical solution of the differential equation of motion of the center of mass.

The equation of motion of the center of mass is:

$$
\begin{aligned}
& (3.1) * \underset{\rightarrow}{\dot{u}}=-\frac{\rho m_{s}}{144 \mathrm{C}_{\mathrm{s}} \mathrm{~m}} \quad\left\{\mathrm{~K}_{\mathrm{D}_{\mathrm{o}}}+\mathrm{K}_{D_{a}}\left[Q u_{\mathrm{e}}\right]^{2}\right\} v \underset{\rightarrow}{\mathrm{v}} \\
& +\frac{\rho d^{2}}{m} \quad K_{L} v^{2} \xrightarrow[\rightarrow]{\underset{\sim}{a}} e+\underset{\rightarrow}{\mathrm{g}}+\underset{\rightarrow}{\text { }} \\
& +\frac{\rho d^{3}}{m} \quad K_{F} N Q(\underset{\rightarrow}{a} e x \underset{\sim}{v})
\end{aligned}
$$

$$
\text { where: } \begin{aligned}
C_{s} & =\text { ballistic coefficient for standard mass } \\
1 & =\text { lift factor } \\
m & =\text { projectile mass } \\
m_{s} & =\text { standard projectile mass } \\
Q & =\text { yaw drag factor }
\end{aligned}
$$

*Note: If Q and 1 are set to zero (0) in equation (3.1), this system reduces to the classical point mass equations of motion.

The axial spin is:
(3.2) $N=-\int_{0}^{t} \frac{\rho d^{4}}{A} K_{A} N v$

The approximation for the yaw of repose is:
$(3.3) \underset{\rightarrow}{a}=\left(a_{b}-a_{a}\right)(\underset{\rightarrow}{v} \times \underset{\sim}{\dot{q}})-a_{b}(\underset{\rightarrow}{v} \times \underset{\underset{\sim}{g}}{ })$
$\frac{A K_{L} N}{K_{M} v^{4}+\rho d^{5} K_{F} K_{T} N^{2} v^{2}}$

$$
{ }^{a} b_{b}=\frac{m K_{T} N}{\rho d K_{L} K_{M} v^{4}+\rho d^{3} K_{F} K_{T} N^{2} v^{2}}
$$

The velocity of the projectile with respect to air is:
(3.4) $\underset{\rightarrow}{\mathrm{v}}=\underset{\sim}{\mathrm{u}}-\underset{\sim}{\mathrm{w}}$

The position of the projectile with respect to ground-fixed Cartesian courdinate system is:
(3.5) $X=\int_{0}^{t} \xrightarrow{u} d t$

The approximation for the position of the projectile with respect to spherical Earth surface is:
(3.6) $\underset{\rightarrow}{E}=\left[\begin{array}{l}x_{1} \\ x_{2}+R-\left(R^{2}-x_{1}{ }^{2}, 1 / 2\right. \\ x_{3}\end{array}\right]$
where $R=$ effective radius of Earth.

The approximation of the force of gravity is:
(3.7)

$$
\begin{aligned}
& \underset{\rightarrow}{g}=-g_{0} \frac{R^{2}}{r^{3}}\left[\begin{array}{l}
x_{1} \\
x_{2}+R \\
x_{3}
\end{array}\right] \\
& r=\left[x_{1}^{2}+\left(x_{2}+R\right)^{2}+x_{3}^{2}\right] 1 / 2
\end{aligned}
$$

where $g_{0}=$ value of gravity at point of launch
$\mathbf{r}=$ distance between center of Earth and projectile
The Coriolis acceleration due to rotation of the Earth is:
(3.8) $\xrightarrow{\Lambda}=\left[\begin{array}{c}-\lambda_{1} u_{2}-\lambda_{2} u_{3} \\ \lambda_{1} u_{1}+\lambda_{3} u_{3} \\ \lambda_{2} u_{1}-\lambda_{3} u_{2}\end{array}\right]$

For the northern hemisphere, the λ 's are defined by the following equations. [For the southern hernisphere replace L by (-L).]

$$
\begin{aligned}
& \lambda_{1}=2 \Omega \cos L \sin A Z \\
& \lambda_{2}=2 \Omega \sin L \\
& \lambda_{3}=2 \Omega \cos L \cos A Z
\end{aligned}
$$

where: $\Omega=$ Angular velocity of the Earth (radians/sec)
$L=$ Latitude of launch point
$A Z=A z i m u t h$ of fire measured clockwise from north
The orientation of yaw (Ψ) is the angle between the plane containing both $\underset{\rightarrow}{v}$ and $\underset{\rightarrow}{a} e$ and a vertical plane containing $\underset{\rightarrow}{v}$. It is measured clock wise from the vertical plane. If desired, Ψ is given by the expression:
(3.9) $\Psi=\tan ^{-1}\left[\frac{\left(v_{1}{ }^{a} e_{3}^{-} v_{3}{ }^{a} e_{1}^{\prime}\right)}{\left(v_{1}{ }^{a} e_{2}^{-} v_{2}{ }^{a} e_{1}\right) v_{1}-\left(v_{2}{ }^{a} e_{3}^{-} v_{3}{ }^{a} e_{2}\right) v_{3}}\right]$

The dimensionless aerodynamic coefficients are functions of many dimensionless power products, including the dimensionless shape parameters, Reynolds number and Mach number. Aerodynamic coefficients are defined with reference to a specific set of shape parameters and may be expressed as functions of Mach number.

CONCLUSIONS

A modified, point-mass mathematical model has been developed which incorporates an estimate of the yaw of repose. This improved mathematical model has the desirable feature of representing the effects of the significant variables of yaw of repose and axial spin along the trajectory. By the incorporation of this yaw of repose, the factors (ballistic coefficient, yaw drag factor and lift factor) used to match empirical results have been found to vary little from theoretically determined values over the spectrum of conditions.

In comparisons between the rigid body mathematical model, the most complete representation available, and point-mass representation, the modified point-mass model accounted for better than 90 percent of the discrepancies in the time-dependent variables range, height and deflection. These comparisons were made for spinstabilized artillery rounds currently being used by the U.S. Army. The modified point-mass model solution required only approximately twice the computation time of the point-mass solution while the rigid body solution requices about one hundred to one thousand times that of the point-miss solution.

REFERENCES

1. Lieske, R. F., and McCoy, R. L., Equations of Motion of a Rigid Projectile, BRL Report No. 1244, March 1964.
2. McShane, E. J., Kelley, J. L., and Reno, F., Exterior Ballistics. University of Denver Press, 1953.

DOCUMENT CONTROL DATA - R\&D
(Security claseification of tifle, body of abaffact and lindexine annotation muat be untored whon the overall report is cfassifiod)

1. ORIGINATING ACTIVITY (Corporato author)
U.S. Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland
3. REPORT TITLE
EQUATIONS OF MOTION FOR A MODIFIED POINT MASS TRAJECTORY

4. DESCRIPTIVE NOTES (Type of report and inclusive datea)
5. AUTHOR(S) (Last name. fret name, initial)

Lieske, Robert F. and Reiter, Mary L.

10. AVAILAG:LITY/LIMITATION NOTICES

Distribution of this document is unlimited.
12. SPONSORING MILITARY ACTIVITY
U.S. Army Meteriei Command Washington, D.C.
13. ABSTRACT

A modified point mass mathematical model, which incorporates an estimate of the yaw of repose, has been developed to represent the flight of a spin stablized, dynamically stable, artillery sheil. This improved mathematical model has the desirable feature of representing the effects of the significant variables of yaw of repose and axial spin along the trajectory.

Unclassified
Security Classification

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
2b. GROUP: Automatic downgrading is specified in DoD Directive 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
2. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without ciassification, show title classirication in all capitals in parenthesis immediately following the title.
3. DESCRIPTIVE NOTES: If apprcpriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
4. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolut? minimum requirement.
5. REPORT DATE: Enter the dete of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i. e., enter the number of pages containing information.
7b. NUMBER OF REFERENCES: Enter the total nunber of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written
$8 b, 8 c, 888$. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
6. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination of this report by DDC is not authorized,"
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain copies of this report directly from DDC . Other qualified users shall request through
(5) 'All distribution of this report is controlled Qualified.DDC users shall request through
\qquad ."
If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the pub!ic, indi cate this fact and enter the price, if known
7. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
8. SPONSORING MILIT ARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying $f o r$) the research and development. Include address.
9. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is requirer, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security clessification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geopraphic location, may be used as key words but will be followed by an indica:ion of technical context. The assignment of links, rules, and weights is optional.

