

Γ	
AD	
LAD	

令

Ç

REPORT NO. 1314

EQUATIONS OF MOTION FOR A MODIFIED POINT MASS TRAJECTORY

by

Robert F. Lieske Mary L. Reiter

March 1966

Distribution of this document is unlimited.

U. S. ARMY MATERIEL COMMAND BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1314

MARCH 1966

Distribution of this document is unlimited.

EQUATIONS OF MOTION FOR A MODIFIED POINT MASS TRAJECTORY

> Robert F. Lieske Mary L. Reiter

Computing Laboratory

RDT & E Project No. 1P523801A87

٩

ABERDEEN PROVING GROUND, MARY LAND

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1314

RFLieske/MLReiter/vm Aberdeen Proving Ground, Md. March 1966

EQUATIONS OF MOTION FOR A MODIFIED POINT MASS TRAJECTORY

ABSTRACT

A modified point mass mathematical model which incorporates an estimate of the yaw of repose, has been developed to represent the flight of a spin stabilized, dynamically stable, artillery shell. This improved mathematical model has the desirable feature of representing the effects of the significant variables of yaw of repose and axial spin along the trajectory.

PREVIOUS PAGE WAS BLANK THEREFORE WAS NOT FILMED

TABLE OF CONTENTS

Page

Abstract . . 3 7 11 Basic Laws of Motion of a Rigid Body 12 Estimate for Yaw of Repose 13 19 22 ·23 Distribution List 25 - - - -

PREVIOUS PAGE WAS BLANK THEREFORE WAS NOT FILMED

TABLE OF SYMBOLS

Term	Definition	Units
Α	Axial moment of inertia	lb-ft ²
AZ	Azimuth of line of fire (clockwise from north)	mil
в	Transverse moment of inertia	lb-ft ²
С _s	Ballistic coefficient for standard mass	lb/in ²
d	Reference diameter of projectile	ft
E	Position of projectile with respect to spherical Earth surface	ft
g -	Acceleration due to gravity	ft/sec ²
go	Acceleration due to gravity (surface)	ft/sec ²
Ħ	Total angular momentum	lb-ft ² -rad/sec
Ī	Unit vector in the direction of \underline{v}	
к _А	Spin damping moment coefficient	
ĸ ∵D _o	Drag force coefficient	
^к D _a	Yaw drag Crce coefficient	
к _г	Magnus force coefficient	
к _н	Damping moment coefficient	
ĸL	Lift force coefficient	
к _м	Overturning moment coefficient	•_
۰ ^K s	Pitching force coefficient	
к _т	Magnus moment coefficient	

Term	Definition	Units
1	Lift factor	
L	Latitude of launch	deg
M	Mach number	
m	Projectile mass	lb
m_s	Standard projectile mass	lb
N	Axial spin	rad/sec
Q	Yaw drag factor	
r	Distance between center of Earth and projectile	ft
R	Effective radius of Earth	ft
t	Time	sec
u,	Velocity of projectile with respect to ground	ft/sec
v →	Velocity of the projectile with respect to air	ft/sec
¥	Velocity of the air with respect to ground	ft/sec
X →	Unit vector along the longitudinal axis of the projectile	
X +	Position of the projectile with respect to a ground-fixed coordinate system	ft
a	Angle of yaw of projectile	rad
a→e	Approximation for yaw of repose	rad
<u>∧</u>	Coriolis acceleration due to rotation of the Earth	ft/sec ²
ρ	Air density as a function of E_2 (where E_2 is a component of \underline{E})	lb/ft ³

Term	Definition	Units
Ω	Angular velocity of the Earth	rad/sec
	First derivative with respect to time	/sec
	Second derivative with respect to time	$/sec^2$

PREVIOUS PAGE WAS BLANK THEREFORE WAS NOT FILMED

INTRODUCTION

The mathematical model for rigid body trajectory simulation, as reported in BRL Report No. 1244, closely matches the results of physical experiments of spin-stabilized projectiles over a spectrum of test conditions. However, its usefulness, as in most rigid body simulations, is hindered by the time required to numerically solve the system of differential equations. This report describes the derivation of a mathematical model which will not be as time consuming to solve as the rigid body system, but which will represent as closely as possible the center of gravity motion of the projectile by utilizing a force system, axial spin and an estimate of the yaw of repose.

BASIC LAWS OF MOTION OF A RIGID BODY

The frame of reference for all vectors to be presented is a groundfixed, right-handed Cartesian coordinate system with unit vectors (1, 2, 3). Assume the 2 axis to be parallel to the vector g, and g to have the same direction as $1 \times 3 = -2$.

Assume that the body can be considered a solid of revolution. Then spin-stabilized projectiles can be oriented by choosing a unit vector \underline{x} along the axis of symmetry, pointing from tail to nose. N is the magnitude of angular velocity parallel to \underline{x} . N is positive if it results from a rotation causing a right-handed screw to advance in the direction of \underline{x} .

The following set of simultaneous differential equations of motion for a spin-stabilized projectile is developed in BRL Report 1244.

The equation of motion of the center of mass is:

(1.1)
$$\underline{\dot{u}} = -\underline{\rho d^2} \left(K_{D_0} + a^2 K_{D_a} \right) \underline{v} \underline{v} + \underline{\rho d^2} K_L \left[\underline{v} \times (\underline{x} \times \underline{v}) \right]$$

$$-\underline{\rho d^3}_{\overline{m}} K_S \underline{v} \underline{\dot{x}} + \underline{\rho d^3}_{\overline{m}} K_F \underline{N} \left(\underline{x} \times \underline{v} \right) + \underline{g} + \underline{\Lambda}$$

The total angular momentum of the body can be expressed as the sum of two vectors in the ground-fixed coordinate system:

(a) The angular momentum about x.

(b) The total angular momentum about an axis perpendicular to \underline{x} .

The angular momentum about \underline{x} can be represented by the vector A N \underline{x} and the angular momentum about an axis perpendicular to \underline{x} by the vector B $(\underline{x} \times \underline{\dot{x}})$.

Let \underline{H} denote the total angular momentum of the body. The vector representation of \underline{H} is:

(1.2) $\underline{H} = AN\underline{x} + B(\underline{x} \times \underline{\dot{x}})$

The vector rate of change of angular mornentum is the sum of the applied moments.

(1.3)
$$\dot{\underline{H}} = A\dot{\underline{N}}\underline{x} + A\underline{N}\underline{\dot{x}} + B(\underline{x} \times \underline{\ddot{x}}) =$$

 $\rho d^{3}K_{M} v(\underline{v} \times \underline{x}) - \rho d^{4}K_{H} v(\underline{x} \times \underline{\dot{x}})$
 $+ \rho d^{4}K_{T} N[\underline{x} \times (\underline{x} \times \underline{v})] - \rho d^{4}K_{A} N v \underline{x}$

ESTIMATE FOR YAW OF REPOSE

An estimate for the yaw of repose will be derived from the rigid body system of differential equations of motion for the purpose of representing the effects of yaw.

The following conditions are assumed:

(1) The projectile can be represented sufficiently well as a body of revolution.

(2) The projectile is dynamically stable.

(3) Initial yaw is assumed small, i. e., it has no significant effect on the trajectory.

Examination of equation (1. 1) shows the magnitude $|\underline{x} \times \underline{y}|$ as being present in the lift term and the Magnus term, the lift term being more significant. Examination of equation (1.3) shows its presence also in the corresponding terms of \underline{H} .

If $\underline{I} = \underline{v} / v$, then $|\underline{x} \times \underline{I}| = \sin a$. To a first order approximation,

this is α ; however, for computational purposes it is a more desirable quantity than α . To get the proper orientation of this quantity, the following vector will be defined:

(2.1)
$$a_e \equiv I \times (x \times I) = x - \cos a I$$

Obviously, $\underline{a}_{e} \cdot \underline{I} = 0$. \underline{a}_{e} represents vector yaw * directed from \underline{I} toward \underline{x}_{e} . The effect of \underline{a}_{e} on the trajectory is generally small under the assumptions stated. Furthermore, it will be assumed that $\underline{\dot{a}}_{e}$ is negligible. This implies \dot{a} is small; moreover, the following approx-imations are warranted:

- $(2.2) \dot{x} = \cos a I$
- (2.3) $\frac{1}{x} = \cos \alpha I$

The separation of $\underline{\dot{H}}$ into components parallel and perpendicular to x yields:

(2.4) $A\dot{N} = -\rho d^4 K_A Nv$ (2.5) $AN\dot{x} + B(\dot{x} \times \dot{x}) = \rho d^3 K_M v(\dot{v} \times \dot{x})$ $-\rho d^4 K_H v(\dot{x} \times \dot{x}) + \rho d^4 K_T N[\dot{x} \times (\dot{x} \times \dot{v})]$

To determine \underline{a}_{e} , first replace \underline{x} and its derivatives in (1.1) and (2.5) using equations (2.1), (2.2) and (2.3).

* NOTE: $|\underline{\alpha}_{e}| \neq a$. However, as mentioned earlier, in magnitude $|\underline{\alpha}_{e}|$ is a first-order approximation for yaw. $\underline{\alpha}_{e}$ is in the plane determined by \underline{x} and \underline{I} , in the direction from \underline{I} toward \underline{x} . Hence, \underline{a}_{e} will be referred to as vector yaw.

The resulting equations are:

$$(2.6) \quad \underline{\dot{u}} = \frac{-\rho d^{2} (K_{D} + a^{2} K_{D}) v^{2} \underline{I}}{m} + \frac{\rho d^{2} K_{L} v^{2} \underline{a}_{e}}{m} - \frac{\rho d^{3} K_{S} v \cos a \underline{I}}{m}$$

$$+ \frac{\rho d^{3} K_{F} N v (\underline{a}_{e} \times \underline{I}) + \underline{g} + \Lambda}{m}$$

$$(2.7) \quad AN \cos a \underline{I} + B \cos a (\underline{a}_{e} \times \underline{I}) + B \cos^{2} a (\underline{I} \times \underline{I})$$

$$= \rho d^{3} K_{M} v^{2} (\underline{I} \times \underline{a}_{e}) + \rho d^{4} K_{T} N v [\cos a (\underline{a}_{e} + \cos a \underline{I}) - \underline{I}]$$

$$-\rho d^{4} K_{H} v \cos a [(\underline{a}_{e} + \cos a \underline{I}) \times \underline{I}]$$

Cross multiplication by \underline{I} of both sides of equations (2.6) and (2.7) and, with $\underline{\Lambda}$ negligible in comparison to \underline{g} , the simultaneous solution of the resulting equations gives the following for $\underline{a}_{\underline{e}}$.

$$(2.8) \quad \underline{a}_{e} = \{ m\rho d^{4} K_{T} Nv \cos a [\underline{I} \times (\underline{\dot{u}} - \underline{g} + \underline{\rho d^{3} K_{S} v \cos a \underline{\dot{i}}})] \\ + \rho d^{2} K_{L} v^{2} [-AN \cos a (\underline{I} \times \underline{\dot{i}}) + B \cos^{2} a [\underline{I} \times (\underline{\ddot{i}} \times \underline{I})]] \\ + \rho d^{4} K_{H} v \cos^{2} a \underline{\dot{i}}] \} / \{ \rho^{2} d^{7} K_{F} K_{T} N^{2} v^{2} \cos a \\ + \rho d^{2} K_{L} v^{2} [\rho d^{3} K_{M} v^{2} + B \cos a \underline{I} \cdot \underline{\ddot{i}}] \}$$

For further substitution into (2.8) the following are required: (2.9) $\underline{I} = \underline{v} / v$ (2.10) $\underline{\dot{I}} = [\underline{\dot{v}} - (\underline{\dot{v}}, \underline{I}) \underline{I}] / v = [\underline{I} \times (\underline{\dot{v}} \times \underline{I})] / v$ (2.11) $\underline{\ddot{I}} = -2 (\underline{\dot{v}}, \underline{I}) \underline{\dot{v}} / v^2 + 3 (\underline{\dot{v}}, \underline{I})^2 \underline{I} / v^2$ $+ \underline{\ddot{v}} / v - (\underline{\dot{v}}, \underline{\dot{v}}) \underline{I} / v^2 - (\underline{\ddot{v}}, \underline{I}) \underline{I} / v$ (2.12) $\underline{\ddot{v}} / v - (\underline{\ddot{v}}, \underline{\dot{v}}) \underline{I} / v = [\underline{I} \times (\underline{\ddot{v}} \times \underline{I})] / v$

(2.12) will be considered negligible since $\frac{\ddot{y}}{\underline{y}}$ can be approximated by $\frac{\ddot{y}}{\underline{y}}$, and $\frac{\ddot{y}}{\underline{y}}$ is essentially parallel to \underline{I} .

With this assumption,

$$(2.13)_{\underline{c}_{e}} = \{-AK_{\underline{L}} N \cos a (\underline{v} \times \underline{\dot{v}}) + md^{2} K_{\underline{T}} N \cos a [\underline{v} \times (\underline{\dot{u}} - \underline{g} + \rho d^{3} K_{\underline{S}} \cos a \underline{\dot{v}} / m)] - K_{\underline{L}} [\underline{\dot{v}} - (\underline{\dot{v}} \cdot \underline{I}) \underline{I}]$$

$$[2 B \cos^{2} a (\underline{\dot{v}} \cdot \underline{I}) - \rho d^{4} K_{\underline{H}} \cos^{2} a v^{2}] \} /$$

$$\{\rho d^{3} K_{\underline{L}} K_{\underline{M}} v^{4} + \rho d^{5} K_{\underline{F}} K_{\underline{T}} N^{2} \cos a v^{2} + K_{\underline{L}} B \cos a [(\underline{\dot{v}} \cdot \underline{I})^{2} - (\underline{\dot{v}} \cdot \underline{\dot{v}})] \}$$

In the denominator of equation (2.13) the v⁴ term predominates ; therefore, $K_{\underline{L}} B \cos \alpha [(\dot{\underline{v}} \cdot \underline{\underline{l}})^2 - (\dot{\underline{v}} \cdot \dot{\underline{v}})]$ will be considered negligible. The ratio of this term to the remaining terms in the denominator is of the order of (g^2/v^4) . In the numerator, $[\dot{\underline{v}} - (\dot{\underline{v}} \cdot \underline{\underline{l}}) \underline{\underline{l}}]$ is the component of $\dot{\underline{v}}$ perpendicular to the projectile flight in the air coordinate system.

For most spin stabilized trajectories $|\dot{\underline{v}} - (\dot{\underline{v}} \cdot \underline{I})\underline{I}|$ is no more than the magnitude of \underline{g} ; hence, consider

(2.14)
$$\left| \begin{array}{c} K_{L} \left[\dot{\underline{v}} - (\dot{\underline{v}} \cdot \underline{I}) \underline{I} \right] \left[\begin{array}{c} 2 B \cos^{2} \alpha (\dot{\underline{v}} \cdot \underline{I}) - \rho d^{4} K_{H} \cos^{2} \alpha v^{2} \end{array} \right] \right| \approx$$

$$\begin{bmatrix} K_{L} g \\ \downarrow \end{bmatrix} \begin{bmatrix} 2 B \cos^{2} \alpha (\dot{y} \cdot \underline{I}) - \rho d^{4} K_{H} \cos^{2} \alpha v^{2} \end{bmatrix}$$

For artillery shells, this term is generally bounded by

(2.15)
$$K_{L} |g| | 2 B = (10g) |= |20K_{L} Bg_{0}^{2}|$$

Now

$$(2.16) \left| - AK_{L} N(\underline{v} \times \underline{\dot{u}}) + md^{2} K_{T} N[\underline{v} \times (\underline{\dot{u}} - \underline{g})] \right| \approx$$

$$Nv \left\{ -AK_{L} + md^{2}K_{T} \right\} K_{L} \frac{\rho d^{2}}{m} v^{2} + AK_{L}g_{0} \sin \phi \right\}$$

where $\cos \phi = \frac{g \cdot v}{g \cdot v}$

For artillery shells, it is usually true that

(2.17)
$$\left| \left\{ -AK_{L} + md^{2}K_{T} \right\} K_{L} \frac{\rho d^{2} v^{2}}{m} \right| < < \left| AK_{L} g_{o} \sin \phi \right|$$

Comparison of (2.15) and (2.17) shows that the ratio of (2.14) to (2.16) is less than the order of $(20g_0 / Nv)$. For high spin, (2.14) will be considered negligible.

11

مي معرفينين

(2.18)
$$y = y - w$$

(2.19) $\dot{y} = \dot{y} - \dot{w}$

If the effects of the pitching force (K_{S} term) and \dot{w} are assumed insignificant, and cos a can be approximated by 1, equation (2.13) is reduced to

$$(2.20 \quad \underline{a}_{e} = \frac{-AK_{L} N(\underline{v} \times \underline{\dot{u}}) + md^{2}K_{T} N[\underline{v} \times (\underline{\dot{u}} - \underline{g})]}{\rho d^{3}K_{L}K_{M} v^{4} + \rho d^{5}K_{F}K_{T} N^{2} v^{2}}$$

UTILIZATION

The primary goal of the development of \underline{a}_{e} was the acquisition of a mathematical model which would incorporate the effects of yaw, but would not require the computing time of a complete rigid body simulation. The following representation was devised to incorporate \underline{a}_{e} in a modified point-mass mathematical model. This representation includes auxiliary equations necessary for the numerical solution of the differential equation of motion of the center of mass.

The equation of motion of the center of mass is:

$$(3.1)^* \underline{\dot{u}} = - \frac{\rho m_s}{144 C_s m} \{ K_D^{+} K_D^{\left[Qa_e \right]^2} \} v \underline{v}$$

$$+ \frac{\rho d^2}{m} K_L^{-} v^2 \underline{la}_e^{-} + \underline{g} + \underline{\Lambda}$$

$$+ \frac{\rho d^3}{m} K_F^{-} N Q (\underline{a}_e \times \underline{v})$$

where: C_c = ballistic coefficient for standard mass

1 = lift factor

m = projectile mass

m_s = standard projectile mass

Q = yaw drag factor

*Note: If Q and 1 are set to zero (0) in equation (3.1), this system reduces to the classical point mass equations of motion.

The axial spin is:

(3.2) N =
$$-\int_0^t \frac{\rho d^4}{A} K_A Nv$$

The approximation for the yaw of repose is:

(3.3)
$$\underline{a}_{e} = (a_{b} - a_{a}) (\underline{v} \times \underline{\dot{u}}) - a_{b} (\underline{v} \times \underline{g})$$

where: $a_{a} = \frac{AK_{L}N}{\rho d^{3}K_{L}K_{M}v^{4} + \rho d^{5}K_{F}K_{T}N^{2}v^{2}}$
 $a_{b} = \frac{m K_{T}N}{\rho d K_{L}K_{M}v^{4} + \rho d^{3}K_{F}K_{T}N^{2}v^{2}}$

The velocity of the projectile with respect to air is:

(3.4) = <u><u>u</u> - <u><u>w</u></u></u>

The position of the projectile with respect to ground-fixed Cartesian coordinate system is:

$$(3.5) X = \int_0^t \underline{u} dt$$

The approximation for the position of the projectile with respect to spherical Earth surface is:

(3.6)
$$\mathbf{E} = \begin{bmatrix} x_1 \\ x_2 + \mathbf{R} - (\mathbf{R}^2 - x_1^2)^{1/2} \\ x_3 \end{bmatrix}$$

where R = effective radius of Earth.

ģ.

The approximation of the force of gravity is:

(3.7)
$$g = -g_0 \frac{R^2}{r^3} \begin{bmatrix} X_1 \\ X_2 + R \\ X_3 \end{bmatrix}$$

 $r = [X_1^2 + (X_2 + R)^2 + X_3^2]^{-1/2}$

where g_0 = value of gravity at point of launch

r = distance between center of Earth and projectileThe Coriolis acceleration due to rotation of the Earth is:

$$(3.8) \quad \underline{\Lambda} = \begin{bmatrix} -\lambda_1 \mathbf{u}_2 - \lambda_2 \mathbf{u}_3 \\ \lambda_1 \mathbf{u}_1 + \lambda_3 \mathbf{u}_3 \\ \lambda_2 \mathbf{u}_1 - \lambda_3 \mathbf{u}_2 \end{bmatrix}$$

For the northern hemisphere, the λ 's are defined by the following equations. [For the southern hemisphere replace L by (-L).]

$$\lambda_1 = 2 \Omega \cos L \sin AZ$$

 $\lambda_2 = 2 \Omega \sin L$

 $\lambda_3 = 2 \Omega \cos L \cos AZ$

where: Ω = Angular velocity of the Earth (radians/sec)

L= Latitude of launch point

AZ= Azimuth of fire measured clockwise from north

The orientation of yaw (Ψ) is the angle between the plane containing both \underline{v} and $\underline{a}_{\underline{e}}$ and a vertical plane containing \underline{v} . It is measured clockwise from the vertical plane. If desired, Ψ is given by the expression:

(3.9)
$$\Psi = \tan^{-1} \left[\frac{\begin{pmatrix} v_1 a_{e_3} & v_3 a_{e_1} \end{pmatrix} v}{\begin{pmatrix} v_1 a_{e_2} & v_2 a_{e_1} \end{pmatrix} v_{1-} \begin{pmatrix} v_2 a_{e_3} & v_3 a_{e_2} \end{pmatrix} v_{1-} \begin{pmatrix} v_2 a_{e_3} & v_3 a_{e_3} \end{pmatrix} v_{1-} \begin{pmatrix} v_2 a_{e_3} & v_3 & v_$$

The dimensionless aerodynamic coefficients are functions of many dimensionless power products, including the dimensionless shape parameters, Reynolds number and Mach number. Aerodynamic coefficients are defined with reference to a specific set of shape parameters and may be expressed as functions of Mach number.

CONCLUSIONS

A modified, point-mass mathematical model has been developed which incorporates an estimate of the yaw of repose. This improved mathematical model has the desirable feature of representing the effects of the significant variables of yaw of repose and axial spin along the trajectory. By the incorporation of this yaw of repose, the factors (ballistic coefficient, yaw drag factor and lift factor) used to match empirical results have been found to vary little from theoretically determined values over the spectrum of conditions.

In comparisons between the rigid body mathematical model, the most complete representation available, and point-mass representation, the modified point-mass model accounted for better than 90 percent of the discrepancies in the time-dependent variables range, height and deflection. These comparisons were made for spinstabilized artillery rounds currently being used by the U.S. Army. The modified point-mass model solution required only approximately twice the computation time of the point-mass solution while the rigid body solution requires about one hundred to one thousand times that of the point-mass solution.

REFERENCES

- Lieske, R. F., and McCoy, R. L., <u>Equations of Motion of a Rigid</u> <u>Projectile</u>, BRL Report No. 1244, March 1964.
- 2. McShane, E. J., Kelley, J. L., and Reno, F., <u>Exterior Ballistics</u>. University of Denver Press, 1953.

An and the state of the sector of state the state		ONTROL DATA - P			- 10 - 10	
(Security classification of title, body · ORIGINATING ACTIVITY (Corporate auti		ing annotation must be		DRT SECURITY CLASSI		
U.S. Army Ballistic Research Laboratorie		ries	Unc	lassified		
Aberdeen Proving Ground, Maryland			2.b. GROUP			
REPORT TITLE						
EQUATIONS OF MOTION FOR A	MODIFIED POI	INT MASS TRAJE	CTORY			
			010111			
DESCRIPTIVE NOTES (Type of report an	d inclusive dates)					
AUTHOR(S) (Last name, first name, initia						
Lieske, Robert F. and Rei	ter, Mary L.					
REPORT DATE		78. TOTAL NO. OF	DACES	7b. NO. OF REFS		
March 1966		26	FRAEF	2		
a. CONTRACT OR GRANT NO.		98. ORIGINATOR'S	REPORT NU	MBER(S)		
ь. раојест NO. RDT&E 1952380	1 4087	Report No.	1 21)			
	INCOL	Report No.	T)T+	•		
с.		9b. OTHER REPOR this report)	T NO(S) (An	y other numbers that may	be assigned	
d.						
0. AVAILABILITY/LIMITATION NOTICE	.5					
Distribution of this docu	ment is unlim	nited.			•	
1. SUPPLEMENTARY NOTES		12. SPONSORING M	LITARY ACT			
		U.S. Army Materiel Command				
		Washingto	n, D.C.			
3. ABSTRACT	••••••••••••••••••••••••••••••••••••••	- I				
A modified point mass mat	hematical mod	lel, which inco	rporates	an estimate of	the	
ware all manages have been a	eveloped to r				zed,	
yaw of repose, has been d			mothomo	fical model has		
dynamically stable, artil	lery shell.					
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th				
dynamically stable, artil desirable feature of repr	lery shell. esenting the	effects of th	e signif			

Unclassified

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified

9b. OTHER REPORT NUMBER(S): If the report has been

assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

be unique to this report.

and controlled by the originating activity. This number must

Unclassified							
Security Classification							
14. KEY WORDS		LIN	IK A	LIN	кв	LI	NK C
		ROLE	wт	ROLE	W Y	ROLE	wτ
Equations of motion						1	
Point mass mathematical model							ł
Estimate of the yaw of repose				•			
Axial spin							[
	•						ł
						1	
						ł	
						·	
•					ĺ		ĺ
							1
						1	
INST	RUCTION			·		L	
Ill security classification of the report. Indicate whether 'Restricted Data'' is included. Marking is to be in accord- ince with appropriate security regulations. b. GROUP: Automatic downgrading is specified in DoD Di- ective 5200.10 and Armed Forces Industrial Manual. Enter he group number. Also, when applicable, show that optional narkings have been used for Group 3 and Group 4 as author- zed. . REPORT TITLE: Enter the complete report title in all apital letters. Titles in all cases should be unclassified. f a meaningful title cannot be selected without classifica- ion, show title classification in all capitals in parenthesis mmediately following the title.	(3)	report from "Foreign report by " "U. S. Go this report users shal "U. S. mi report dire shall requ	announce DDC is n vernment t directly ll request litary age ectly from lest throu	ot authori agencies from DD0 through ncies ma DDC. C gh	ized." s may obt C. Other y obtain Other qual	ain copie qualified copies of lified use	s of I DDC
DESCRIPTIVE NOTES: If appropriate, enter the type of eport, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is overed.	(5)	"All distr ified DDC	users sh	all reque	st throug	'h 	_ •"
AUTHOR(S): Enter the name(s) of author(s) as shown on r in the report. Enter last name, first name, middle initial. f military, show rank and branch of service. The name of he principal author is an absolute minimum requirement.	Services cate this	e report ha , Departme s fact and PPLEMEN	ent of Cor enter the	nmerce, f price, if	or sale to known	o the pub!	lic, ind
. REPORT DATE: Enter the date of the report as day, onth, year, or month, year. If more than one date appears n the report, use date of publication.	the depa	DNSORING	roject off	ice or lat	poratory s	sponsorin	g (pay-
a. TOTAL NUMBER OF PAGES: The total page count hould follow normal pagination procedures, i.e., enter the umber of pages containing information.	ing for) 13. ABS1 summary	the researce TRACT: Ei of the doc	ch and de nter an ab cument ind	velopmen ostract gi dicative o	t. Includ ving a bri of the rep	ie addres: ief and fa ort, even	s. ctual though
b. NUMBER OF REFERENCES: Enter the total number of eferences cited in the report.	port. If	iso appear additional attached.					
a. CONTRACT OR GRANT NUMBER: If appropriate, enter ne applicable number of the contract or grant under which ne report was written. b, &c, & &d. PROJECT NUMBER: Enter the appropriate	It is ports be end with of the in	highly des unclassifi an indicat formation	ed. Each tion of the	i paragrag e military	oh of the security	abstract clessific	shall ation
ilitary department identification, such as project number, ubproject number, system numbers, task number, etc.		U). e is no lim					How-

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Unclassified

Security Classification