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ABSTRACT

A nonlinear optimal feedback control scheme for controlling a vehicle

re-entering the earth's atmosphere from lunar return initial conditions

is reported.

The optimal feedback control law used in the scheme is obtained from a multi-

dimensional surface fit of the control function for several optimal trajectories.

Partials of the control with respect to the state vector are included in the fit-

ting procedure. The functional minimized by the trajectories is the total

(convective plus radiative) stagnation point heat.

The feedback cont:ol scheme is developed, and several re-entry trajectories

are simulated. Modest increases in total heat from optimal values are ob-

served, and large (although tolerable) terminal point errors occur. It is

believed that the terminal errors can be greatly reduiced, if necessary.

A powerful pi edictor Lcheme is developed which allows optimal trajectories

to be changed as a function of a parameter. This is used to extend the range

of an optimal trajectory, to perform an "absolute minimum': test, and to map

the tcufimal 'e-etirv corridur.

Sufficiency tests for a relative minimum are mechanized, and it is shown that

the trajectories considered are minimizing paths. The optimization method

is extended to include the bounded state-coordinate problem.
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SECTION I

INTRODUCTION

Many schemes have appeared, over the past few years, for tne control of

vehicles re-entering the earth's atmosphere. They range over a wide spec-

trum of missions, from the attainment of a given landing site to rather

complex in-flight maneuvers, and, in operation, may be completely auto-

matic or may require a pilot in the loop. The schemes have been developed

for a variety of vehicles, onboard sensors, and onboard computing capabilities

and, additicaially, cover a wide range of initial re-entry conditions. A good

survey is given by Wingrove in Reference 15.

Under the heading of optimal control, re-entry schemes become sparse. The

only seemingly applicable approach published to date is the " neighboring op-

tirnum control scheme" of Reference 8. This is a linear control scheme based

on small perturbations from a nominal optimal trajectory. Previous studies

(Reference 1) indicate that such a method may not be applicable for re-entry

control, although for other applications it may be perfectly suitable. The

objective of this report is to describe a nonlinear optimal feedback contro

scheme, developed and simulated during the contract period.

Figure 1-1 illustrates the approach. The vehicle is the plant to be controlled

through application of the control vector u(t), "and sensors measure parameters

of the motion a. The navigator box supplies the biie vector and its time

derivative at discrete and equally spaced iiistants of time. (The time incre-

ment may be made variable if necessary.) A predictor equation estimates

conditions at the next sample point, on the basis of present conditions and past

state-vector derivitives, to introduce lead into the control system. The control

generator is a known (vector) function of the state and independent variable

(usually time). Its evaluation gives the optimal control for the predicted point.

The hold circuit supplies the optimal control over the next time interval.

1'
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Figure i-1. Nonlinear Optimal Feedback Control Scheme Mechanization

Development of the control generator equation comprises the bulk of this report.

Section I considers a two-dimensional re-entry trajectory optimization problem.

in which total stagnation point heat (convective and radiative) is the function

minimized. Terminal values of velocity, altitude and range are specified,

leaving terminal flight path angle and time unspecified. After this problem is

solved, the terminal range is extended, to obtain a design trajectory, and the

optimal re-entry corridor is ' mapped" through the use of a very powerful pre-

dictor scheme. The control function for the mapped trajectories is used for

development of the control generator equation. A data generating program is

described which supplies partials of the control with respect to the state vector

as well as the control itself. This data is punched on cards at equally spaced

values of range, since range is used as the independent variable in the program.

It is also shown in Section II that the mapped trajectories are minimizing tra-

jectories over a, large region of solution space.

In Section III, the control data is fitted as a multidimensional polynomial, and

the fit is evaluated, so far as errors are concerned.

2



Mechanization and simulation of the control equation in the scheme of Figure 1-1

is considered in Section IV. It is found that the scheme produces -easonable

re-entry trajectories with modest increases in total heat from the optimal

values for most of the trajectories simulated. A few trajectories fail because of

control inaccuracies in the area of the first dip into the atmosphere, so the region

of initial conditions for application of the scheme must be suitably limited. The

region of application is still very large. The terminal condition errors for the

successful trajectories are found to be large (although tolerable) and are usually

biased in sign and magnitude. It is believed that these errors can be greatly

reduced, although no effort was expended in this direction.

Some additional topics are considered in Section II. An inequality constraint

on the sensed acceleration is included in the re-entry trajectory optimization

problem. Several optimization methods ar,- used in an unsuccessful attempt to

obtain a 10-g optimal trajectory. The most powerful method is the predictor

scheme, and this fails because of a singular point on the constrained subarc.

A means of isolating this singular point was devised, but time limitations pre- f

vented explcitation cf tb-he idca on the computer. The optimization methods are

also extended to the bounded state coordinate problem, and the bounded brachis-

tochrone problem is solved on the computer.

Conclusions and recommendations ai'e presented in Section V.

i|
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SECTION II

OPTIMAL TRAJECTORY COMPUTATIONS

A. THE RE-ENTRY TRAJECTORY OPTIMIZATION PROBLEM

1. Statement of the Problem

A re-entry path which minimizes the total stagnation-point heating

T

J f qd'r (2.1)

0

of a blunt-nose re-entry vehicle is to be found. The heating rate q is the

sum of convective and radiative components

q c + qr' (2.2)

where

q cv, P(2.3)

N 3I2 12.5
q 7.sN/ I ( . (2.,

I0 il 0. 000) 1

The state vector components are the velocity v, flight path angle y,

dimensionless altitude L and great circle range C. The density p is
R

given by

poe-3R9 (2.5)
0

and values for the constants are vehicle nose radius N 4 feet, c 2 x 10

earth radius R = 20, 903. 520 feet, exponential constant 3 = 1/23, 500 ft.

and sea level density o = 0. 0023769 slugs/ft. 3. II



The equations of motion are

dv -S 2 90 sin y
- = Pv CD (u) 2----~

dt 2m +

dY S v cos Y go cosv
- pv CL(u) + - - 2

dt 2m R(1+) v(1 +

(2.6)
d v

dt - R sinY

d{ v
dt - 1+g Cs

The vehicle frontal area to mass ratio is -- 0.5 ft. 2 -
1 and the liftm

and drag coefficients are given in terms of the control function u as

CD = CDO + CDL cos u (2.7)

C = CLO sin u (2.8)

DOO

CDO = 0. 8!

C = 052DL

CLO -0.505. I
Inequality constraints include a bound on the control function

2 2u2 - u 0 0, (2.9)

with u ! a constant, and a pilot's acceleration constraint

B -ar 20. (2. 10)

6



In Equation (2. 10), B is a specified constant, and the pilot's acceleration is

given by

a SZ v2 2 : 2 2.1
ap= + CD (

where go is sea-level gravity which normalizes the units of ap to g's.

Equation (2. 9) was found necessary to produce initial trajectories which

neither skipped out of the atmosphere nor dived in too deeply. It is sequen-

tially relaxed during the optimization process.

Initial conditions are taken as v = 35, 000 ft/sec, Y = -5. 75 degrees,

initial altitude ho 400, 000 ft, and CO = zero; the terminal surface equa-

tions are

v(T) - X1 = 0

h(T) - X 2 = 0 (2. 12)

(T) - X 3 = 0

with the constants X 1 = 1650 ft/sec, X 2 = 75, 530 ft, and X 3 = 979 statute

miles. Note that the final flight path angle and terminal time are left un-

specified.

A fairly detailed exarmiration of this prob.... is cc-t-titii in Reference1

consequently, only a brief summary of the results is presented here.

The Hamiltonian may be written

HI = q + P'f+ (u u 2  + (P2 B - ap) (2. 13)

where p is the four-dimensional multiplier vector and f represents the

right-hand side of the system (2.6). The Euler-Lagrange equations, where

zero terms have been omitted, then read

7
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b1 b f a f a f af
Pl. - + P I + P2- + P34 + p 4  "  2 -P

" I , f2 p 3 f4
P2 + 2 4-3 i + P4

(2. 14)

b4b 2 b4 pa
p3  i P f + P2 + 4  2a

P4  IP4= F40 1

af 1 P f 2 2 a p
S= P +  2 " (2.15)

au a u a u

2. The Unconstrained Subarc

Both the multipliers I and tA2 are zero here, so Equation (2, 15) is used to

determine the control function. After the substitutions have been made, the

resulting formula is

-CLoP2

tan u CDLPV 2.16

and u is centered about zero by the constraint (2. 9); i. e.,.

8 I-
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The minimum-principle equation is

-PlVCDLCOSU P2CLO sn u CDLCOo U + P2CLo am U. (2.15)

in which U is any admissible value in the range (2.17). The left-hand side

of (2. 18) may be considered as a dot product, and the choice of a unit vector

(cos u, sin u) which has minimum dot product with the vector (-PlvCDL' P2 CLO) 'a

-CLoP 2
sin u=

p2 + CDLPV2

(2.19)
CDLPIv

This is parallel but in the opposite direction. Then, from the signs of p1 and

P2' assuming CLO negative, it follows that:

If p2 = 0 and p l 0, then u = 0

2 = 2

p 2 > 0 p1 > 0 0 <u< -

P2 > O Pl z 0 U =27-

P2 > P 2 I<<(2.20)

P2 = 0 PI < 0 u = +n(bsuig condition if u= n)

P 2 < 0  Pl > 0 U '< 0

p2 0 =0 p 0_

P 2 <C P, <0 r,<U < T-

-- -1
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There are no singular points if p1 and P2 are never simultaneously zero.
The bubarc ends either when (2. 10) or (2. 9) becomes zero, or when the

stopping condition, the first of (2. 12), is satisfied.

3. The Constrained Subarc u u

Let 0 be the angle defined by Equation (2. 16) and the sign conventions given

by (2. 20). Then substitution into the minimum principle equation, (2. 18), gives

co.5 (0- u) 2 cos (0- U) (2,21)

which is satisfied if u and 0 < ± T, have the same sign, The condition 0 = Ty

indicates a bang. Furthermore, substitution into (2. 15) (with 12 0), and

some rearrangement, gives

-SV co) +v ICL1V2  sin(0-u) (2. 22)

Since u and sln(O-u) have the same sign, v, 0, as required.

There are no eingular points, and the control function is continuous at the

junction between constrained and unconstrained subarcs. Thus *. from

U. 22). must start and" end with value ev-u, since ai such points u 0.

Then the terminal surface is either iL = 0, provided jL 0, or the stopping

condition.

The constrained subarc, over which a = B, is considered in a separate

subsection.

10



4. The Optimization Scheme and Computer Results

It is shown in Reference I that the sclution of systems of equation6 such as

(Q.6) and (2. 14), ii,. which u satisfies (2. 16) and (2. 20) (with --0). or in

which u and I satisfy (2. 21) and (2. 22), may be written in the form

x = %(t,x . p O

(2.23)
p -- p(t, x o , P O

where x and p0 are the initial values of the state and multiplier vectors

respectively. It is also shown in Reference 1 that the necessary conditions

%hich augment the terminal equations (2. 12) are

P2 (T) -= 0

(2.24)
H = 0.

where H is the Hamiltonian (2. 13) with the inequality constraint terms removed.

When the functonal forms of the solutions (2. 23) are taken into consideration

(and noting that x ij fixed for the optimization problem), the set (2. 12) and

(2. 24) become

v(Tp) -X 1 = 0

C(T, "0 ) -X = 0

(2. 25)

P2(Tp) 
= 0

H(p) 0

0I
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These five equations in the five unknown quantities (T. po) may be solved via

the Newton-Raphson method if partial deri-..ives can be found. The partials

with respect to T are the time derivatives (2. 6) ann (2. 14) evaluated at t= T.

The other partials are found by integrating the system of equations

d (~xl B2H1I xl B2H I 'ipl

(2.26)

d(BPI= 2HI ax) B2H I( a

I II---I
dt laj\a p \5 8 a ) pa

in which "a" represents a particular initial condition. The partial derivatives

of the Hamiltonian Hi(x,p) may change from subarc to subarc, and for each
subarc it is known that

2 2 p'

are symmetric matrices and that

2H! i

Since (2.26,) is a set of 2n linear first-order, homogeneous differential equa-

tions, there is a maximal set of 2n independent (column) vector Eolutions.

When initial conditions are taken as the (2n x 2n) identity maatrix, the first n

(column) vector solutions represent partial derivatives with respect to the

vector x o, and the last n solutions are partials with respect to p o The solu-

tions are continuous in time, except possibly at corner points, where the

discontinuities are well defined.

12{



In the present case, discontinuities occur at points ti, where the angle 0

becomes T T , or equivantly, where P 2 
= 0 with p, < 0. Let 1ij(t) and

~), i, j4......4, be the elements of the
13

and 0

solution matrices respectively. At t= t ! , only the second of Equations (2.6)

is discontinuous when u changes signs, and all of Equations (2. 14, are

continuous (since p 2 (t) 0). According to Reference 1, this means that

only the second row of is discontinuous at t = t i with
0

+ 2 Y(t112j (t l I 2j (t ) I (- 1- 2j (t lI j =  1, . .. 4 , (2 .2 7)

and (-), (+) signifies values from the left and from the right, respectively.

Now assume that a path and partial derivative solutions have been found.

Then the modified Newton-R, phson equations for the system (2. 25) are

dT v(T) n(lT) r, ( 3T) il(T) 0

dp 1 1  M T13 I(T) j32(T) m13 3 (T) 3(T)-X 2 IR (2.28)

C.% )A1 0 )AI I

d P3 0P 2 (T) C 2 1 (T) 2 2 (T) 2 3 (T) C 4 i P2 (T)

d P4  0 f 1(0) f 2(0) f 3 (0) f 4 (0) LH
The zero in the right -hand vector corresponds to the stopping condition, the

first of Equations (2. I), which is satisfitd by every trajectory. The Hamil-

tonian is a constant for each path, uo thc- last row of the matrix contains its

partials evaluated at t 0. [

13
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An optimal trajectory for u, = 16 degrees was obtfAned and is displayed in

Reference 1. It appears here as the first of a family of optimal trajectories

in Figures 2-1 through 2-8. The second member, for u- I20 degrees (not

shown), was generated by using ths modified Newton-Raphson method with

the 16-degree optimal values for (T, po) as starting r'onditions, All other

members of the family, obtained in a similar fashion, are displayed in

Figures 2-1 through 2-8, and values for the opt&;-"* iriteris are givea in

Table 2-1.

Figure 2-1 shows that the trajectories dive deeper into the atmosphere and

skip higher as the constraint is removed. All these curves end at the same

point, as required by the terminal surface equations (2. 12). The first dive

produces higher pilot's acceleration peaks (Figure 2-2) but reduces the

secondary peak. The unconstrained maximum value is 20. 5 g's. The flight

time increases (Figure 2-3) which is a consequence of the lengthening skip.

This is apparent in the velocity curves (Figure 2-4) which tend to level out

over the skipping portions of the trajectories. The flight path angles (Figure

2-5) also show the deeper dive and higher skip. All these curves apparently

pass through a common point, corresponding roughly with the bottom of the

first dip (see Figure 2-1). The convective and radiative heating rates are

displayed in Figure 2-6. They peak higher, and fall off faster, as the con-

straint ,it reilaxed. The total heating rates of Figure 2-7 have the same char-

acteristics, and show that even though the peaks are higher, the enclosed area

becomes smaller.

'Fhe optimal control functions are displayed in Figure 2-8, When the 16-degree

trajectory (which seems to be in a category of its own) is excluded, the control

curves tend nicely to the unconstrained trajectory curve. They all have a

"bang" which goes towa'rds the endpoint as the constraint is relaxed and, in

the limit, produces the -180-degree value of the control function (the angle 0

goes to -180 degrees at the bang). The first portions of these curves show

that the trajectories are forced into the atmosphere, since positive control

14
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Table 2-I. Control C'minstram t u and
Optimal Criterion J

Ul J

(dcgrees) (BTU/ft *

16 27,334

25 26, 524

35 26,246

45 26.071

55 25. 951

180 25. 736

corresponds to negative lift. Small values of the control also correspond

to maximum drag, so maximum energy is dissipated. F:.efore the bottom

of the dive, the control functions all pass through zero and then on to the

maximum lift condition (-9o degrees for the 180-degree optimal). The

positive lift is required for ranging purposes and is maintained for the re-

mainder of the re-entry process.

4

B. RE-ENTRY CORRIDOR MAPPING COMPUTATIONS

It w.9!5 .... pl, tau .tma. t.aecories having maximum sensed

acceleration loads of 10 g's would be used for the nonlinear optimal feedback

control scheme of Section IV. However, a singular point causer' computa-
tional difficulties. (The details of the problem and the znethod devised to

circumvunt the difficulty are preseated in another subsection.) It was

accordingly decided to proceed using ui'co',strained trajectories as a basis

for demonstrating feasibility for -,e nonlinear optimal feedback cvntrol

scheme.

23
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The first step in the corridor mapping process was to round out the terminal

conditions following Equations (2. 12) to X2  75,000 feet and X 3 = 1000 miles.
The original values (75, 530 feet and 979 miles, respectively) were made

necessary by the initial conditions and the almost ballistic constraint

u 1 = 16 degrees. The resulting trajectory is displayed in Figure 2-9 as the
first member of a family of optimal trajectories for which the terminal range

is the parameter.

1. Range Extension

It was d.:cided to explore the ranging possibilities of the vehicle as the next

step in the optimal re-entry corridor mapping process. The predictor scheme

presented in Appendix A greatly facilitated the computations.

The differential equations are (2. 6) and (2. 14) (with 1 and t. zero), and the
control u satisfies (2. 16) and (2. 20). The boundary conditions are given by
(2. 25) where terminal range X3 is the mapping parameter. Differential

eq;ations (2. 26) were integrated to obtain the partial derivative solutions

for the modified Newton-Raphson equations (2. 28). The stopping condition

for the integracions was the attainment of a desired terminal time T (updated

after each iteration), sc the zero element of the last vector in (2. 28) was

replaced by the term (v(T) - Xl). The change in the stopping condition was
made because it is somewhat easier and faster to stop at a given vahe of T

than it is to interpolate for v(T) = X The stopping condition for iterations

was that the maximum ratio of variable-change to variable be less than a

specified constant.

Starting trajectory initial conditions are v = 35, 000 ft/sec, y0= -5. 75 degrees,
h 0 400, 000 ft. Co = 0, and terminal conditions are X 1 = 1650 ft/sec,

X= 75, 000 ft, and X = 1000 miles. The next three trajectories were
obtained using the optimal Newton-Raphson method, described in Appendix B,

with terminal range increments of 10 miles. Succeeding members of the

family were obtained asing the Adams-Moulton predictor equation

24
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+ 5 9x 3  (2.29)xIi m 24 5 m m-i m-2 -3

in which x is the vector (T, p ), x' is the derivative of (Tp ) with respect

to terminal range, and h is the range increment. It is shown in Appendix A

that x ' is the third column vector of the inverse Newton-Raphson matrix in

Equation (2. 28), when (T, po) satisfies Equations (2. 25).

The ra-go was extended to 2020 miles by this proces-. Most of the inter-

mediate predicted values of (T, p0 ) produced optimal trajectories, which

shows the power of the predictor scheme. As the upper limit on range was

approached, prediction gradually worsened, and it is doubtful that range

could be extended much further for the vehicle and initial conditio,.s con-

sidered.

1'ive of the family of trajectories are plotted in Figures 2-9 through 2-15.

Figure 2-9 shows that the first dive into the atmosphere becomes shallower,

as range is extended, and that the skip whieh follows becomes higher and

longer. This behavior is caused by the control function (Figure 2-10) which

leaves the negative lift region (u > 0), and goes to the maximum lift condition

(u -90 degrees) earlier in the flight as range is extended. Less energy is

lost on the first dive, as can be seen in the velocity curves of Figure 2-11,

and the decrease in the first acceleration peak of Figure 2-12. The 1..iLht-

path angle excursions, Figure 2-13, also become smaller. Toward the end

of the skip, the control approaches the negative lift condition, and, for the

longer ranges, produces negative lift to more quickly terminate the skip.

The secondary acceleration peak rises with increasing range in order to

dissipate the increased remaining energy. There is & minor sashay in the

at hz near the endpoints, due to the control passing through maximum lift

and (LID) on its way to -180 degrees.

Figure 2-14 shows that total heat increases with terminal range, as might

be expected. However, it is somewhat surprising that the total flight time

of Figure 2-15 first increases with range, and then decreases for longer

terminal ranges.
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On the basis of these results, it was decided that the 1500-miie trajectory

would be used as the"nominal" trajectory for development of the nonlinear

optimal feedback control scheme. This trajectory represent_ a i .ascu We

compromise between total heat, peak acceleration and total length of skip.

2. Corridor Mapping Program

The corridor mapping problem considered is that of sweeping oL',. a ,eastiable

region of initial conditions about the "nominal" trajectory, and thereby ob-

taining a set of optimal trajectories covering the expected re-entry corridor.

The terminal values of velocity, altitude and range are the same for all these

trajectories, as is the terminal value of multiplier p 2 and the Hamiltonian

(both zero), so that the trajectories all belong to the same field of extremals

(see Section IA).

It is shown in subsection C that time is unimportant, so far as this problem

is concerned, and furthermore, that all re-entry trajectories may be started

at a point where initial range is zero. Hence, the only initial conditions which

need be varied are v o yad a o

It is convenient, for the mapping process, to integrate the system of differ-

ential equations from the ter m inal Pint to the in"Ltal pui-v Th e. redictor

scheme may then be used to move the initial conditions over their range of

variation. Accordingly, define "back time" by

s z T-t . (2.30)

and note that

dx dx dt dxd-' =  dtds = " d- " •(2.31)
ds dt ds - dt
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so that the change of indepLadent variable changes only the sign of the right-

hand sides of the differential equations. The system of equations to be integrated

thus includes (2. 6). (2. 14) - - with * 1 "2 2 a 0 - - and (2. 26), with opposite

signs for the right-hand sides, and the control u satisfies (2. 16) and (2. 20).

The " initial" conditions for the transformed equations '2. 6) and (2. 14) are

s = 0 and

v T  X,= 0

T x 2 IR 0

(2. 32)

CT -X 3  0

P9 "- O

with X = 1650 ft/sec, X = 75, 000 ft, and X = 1500 miles. At s- T, the

functional dependence of the solutions on the missing initial conditions nay
be written

x= (T'P IT' "T )T' T 0
(2.33)

p p ITP YT ' P3T" P4T

so the set of boundary ....... vi~ to be satisied b each optimal t,ct-,r, is ,

PIT p T-i, P3 T P4T 1 0 =

T T' ' T I

TPl.'YT.P 3 T P 4 ) X30R 0 (2.34)

C {TT, '/T. P3T P4T) 0

H PI TT.P3T P4Tj 0,

34



X10. X20 and X 3 0 are, of course, the initial conditions at to 0 (or terminal

conditions at s- T) to be varied in the mapping process.

Let - ij(s) and C'Q (s), i. j= 1 ..... 4, be the solutions of the transfu'med system

of Equations (2. 26) with initial conditions

0 0 0 100

r i() 01 001 (i C(0)] 0 0 0 01 (2. 35)
0'~ 0 00 100 1 01
0L00 0 0 00 1 J

Then the Newton-Raphson equations for system (2.34) are

dT ,(T) I I T) 1 2 (T) 13(T 14 (T) v(T)-X 0

dP, T  *Y(T) 21 (T) ,22 (T) T1 23 (T) -124 (T) (T) -X20

dYT - T) ) M 'T) ? 2 (T) r 3 3 T) 3 4 (T) g(T)-X 3 0IR (2.36)

dP 3  C T r'4 1 (T) r 4 2 (T) '"4 3 (T) r144(T) C (T)
T

dP 4  0 fl(0) -P 2 (0) f 3 (0) 14(0) H

T

Thit: rirst three columns of the i-.vecse matrix may be identified as the deriva-

tives of (T, PIT' 'T' P3T* P47 ) with respect to XIO, X 2 0 , and X30/R , res-

pectively, for the predictor equation (2. 29).

Twenty-six trajectories spanning the re-entry corridor were generated using

the optimal Newton-Raphson method and the predictor scheme. The initial

conditions and total heat for these and the "nominal" trajectory (at t= 0) are

summarized in Table 2-2. Trajectory 2 was obtained f'rst. The first three

trajectories were determined by the optimal Newton-Raphson method, using

4X 1 0 = +50 ft/ser as the increment. The predictor scheme then generatcd

the remaining trajectories. The predictor sch-emne was used exclusively to

obtain trajectory 3, since back derivatives were available from the trajectories

leading up to trajectory 2.
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Table 2-2. Initial Cv;ditions and Total Heat for 27 Optimal
Trajectories Obtained During the Corridor
Mapping Piocess

Initial Sign of Change
Initial Flight Path Initial From Trajectory 1

Trajectory Velocity Angle Altitude L- X36 Total
Number (ft/sec) (degrees) (ft) 10 2 0  30  Heat

1 35000 -5.75 400,OOC 0 0 0 28,872

2 35750 -5.75 400,000 + 0 0 31,888

3 34250 -5. 75 400,000 - 0 0 26.252

4 35000 -5.30 400,000 0 + 0 29,278

5 35000 -7.65 400,000 0 - 0 28,666

6 35000 -5.75 440,000 0 0 + 29,032

7 35000 -5.75 360,000 0 0 - 28,757

8 35750 -5.30 400,000 + + 0 32.280

9 35750 -7.65 400,000 + - 0 32,116

10 34250 -5.30 400,000 + 0 26,657

11 34250 -7.65 400,000 - 0 25,792

12 35750 -5.75 440,000 + 0 + 32,135

13 35750 5.75 360,000 + 0 - 31,44

14 34250 -5.75 440,000 - 0 + 26,362

15 34250 -5.75 360,000 - 0 - 26,128

16 35000 -5.30 427, 50ti 0 + + 29,963
17 35000 -5.30 360.000 0 + -- 29,017

18 35000 -7.65 440,000 0 - + 28, 510J

19 35000 -7.65 360,000 0 28,817

20 35600 -5.40 430,000 + + + 32,444

21 35600 -5.40 370,000 + + A 1374

22 35600 -7.35 430,000 + - + 31,110

23 35600 -7.35 370,000 + 31,375

24 34400 -5.40 430,000 - + + 27,326

25 34400 -5.40 370,000 + 26,891

26 34400 -7.35 430,uuO - + 26,216

27 34400 -7.35 30,00 - - 26,368
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Trajectories 4 and 5 were generated in a similar fashion, using AX20 - 0.025

degree. It was found, however, that as the flight path angle became steeper

(going toward trajectory 5), the increment could be increased to AX20 = 0. 1

degree with very little degradation in the performance of the predictor scheme.

Trajectories 6 and 7 were obtained similarly, and it was determined that

AX 3 0 = 2500 ft was a satisfactory increment for the altit,:de mapping process.

From convergence characteristics of the optimal Newton-Raphson process, it

was found that velocity changes were easiest to obtain, and that flight path

angle changes were hardest to satisfy. Consequently, trajectories 8 through

19 were generated using the most easily changed single parameter. For

example, the trajectory for which N 20 -5. 30 degrees was the starting path

for the generation of trajectories 8 and 10, and the mapping process took place

over X 1 0 .

Trajectories 20 through 27 were generated in a similar fashion, except that inter-

mediate maps overX30 were performed first, followed by maps over X 10. Thus

for example, the trajectory for which X -5. 40 degrees was the starting tra-

jectory to generate paths for which X = 370, 000 feet and 430, G00 feet respec-
30

tively. The X 1 0 map for these paths produced trajectories 21, 25, 20 and 24.

The ease of attainment of the various paths varied considerably as a function

of parameter values. As pointed out above, the step size for the X 2 0 -map

could be increased to AX20 = 0. 1 degree as the flight path angle became

steeper. When going in the opposite direction, however, the smaller step

size was required. Trajr:ctory 17 was generated with some difficulty, al-

though the process became easier as initial altitude decreased. In trying to

increase altitude to 440, 000 feet for trajectory 16, the preclictor scheme

failed to go beyond X 3 0 = 427, 500 feet.
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In most cases, the velocity-map wab easily accomplished. Optimal Newton-

Raphson many times converged in one step, and the predictor scheme (once

started) almost always predicted optimal trajectories. Some difficulties

were experienced in trying to obtain trajectories 20 and 24 (the worst cases

were always shallow initial flight path angle and increased altitude, as might

be expected). A trajectory for X 1 0 - 34, 950 feet was obtained after severa

optimal Newton-Raphson iterations, and further such steps would have been

wasteful of computer time. A two point predictor formula from Reference 2

was used to predict trajectories above and below the two members of the

elocity-map family of paths. With these improved estimates, the optimal

N ewton-Raphson scheme converged rapidly, and, thereafter, the predictor

scheme predicted optimal trajectories at each step. This again shows the

power of the predictor scheme and indicates that lower-ordered predictor

formulas might well be of value during the mapping process.

In all cases, the optimal Newton-Raphson scheme was quite sensitive to the

weighting factors used to multiply Equations (2. 34) (see Appendix B). It was

found, however, that a single set of weights could be used when mapping over

a given variable. The numbers used are given in I-able 2-3.

Table 2-3. Weighting Factors for the Optimal Newton-Raphson
Method Used for the Mapping Variables.

I weihts I~ 1 0  IVariable1-
____ 11o "'20 "30

w1 x 10 x2  1

w 2  1 x 10 1 x 10 1 X 10
w 3  1 X 1B- 2  1 X 10 - 2  i0

w4  1 lx 10-3 1 x lo - 3  1 x 10 - 3

w 5
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Trajectories 2 through 7 are compared with the "nominal" 1500-mile

trajectory in Figures 2-16 through 2-27, It is seen that trajectories 2 and

3 are qjite symmetric about the nominal path, except for areas where the

curves cross each other. Larger differences from nominal values are observed

for trajectories 4 and 5 (Figures 2-20 - 2-23), and particularly for trajectory 5.

Note that the steeper initial flight path angle produces a large .kip and high

acceleration peaks. Somewhat similar results are observed for trajectories

6 and 7 (Figures 2-24 - 2-27). Here however, a lower initial altitude produces

a long r skip and higher acceleration peaks. The control functions for all 27

optimal trajectories are plotted in Figure 2-28. Note that the characteristics

are similar to those of Figure 2-10. The control functions for those trajec-

tories displaying large skips assume their minimum values earlier, and then

rise higher than those for the better behaved paths. A good coverage of the

control region of interest was obtained during the mapping process.

C. THE DATA GENERATING PROGRAM

The data to be fit consists of the control function u for the 27 optimal tra-

jectories, and two multipliers like p, and P 2 . The multipliers are included

in hopes that an arctangent relationship such as (2. 16) will produce an over-

all reduction in the size of the control function fit. Additional data includes

the partial derivatives of u and the two multiplie.-s with respect to the state

vector.

1. Statement of the Problem

The problem is transformed to an equivalent, although somewhat reduced

and more convenient, form through a series of transformations. These

transformations are carried out in Appendix C and the results are presented

here. The new set of differential equations corresponding to (2.2) and sys-

tem (2. 6) are:
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dq 1 1+h) p 1/ 2 v a. (R+h) p 2 1, 4

dz Cos v Os Y 0

dV a3 pV(R+h) .ta.tan y
dz cos Y CD(U) + (R+h)

- - v: - (2.27)
dy a6 p(R+h) a

a-d = a 5 + Y CL(u)A V(R4h)

dh
d-""= a 5  (R+h) tan -

dt a (R+h) ..

dz V1 / 2 cosy

with constants defined by

Ca 1 = - a5

a 2 = 7.5 x 10 -N a 5

c 3 S
a3 = mR

a4  2a 7  (2.38)

C

R

a 3

2

a 7  c 3gR.
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The new independent variable is range measured in miles, which is related

to C through

= 5,280 (2.39)
z 3 , c 3

and the new velocity and altitude are given by

V = v
2

(2.40)
h R

The terminal conditions corresponding to (2. 12) are

V(zT) -1 0

0h(zT  - 2  (2.41)

- x 3/ C3  .

The new Harniltoniai is

H2, go + P'g, (2.42)

where g is the right-hand side of the first of (2. 3'), g is a four-dimensional

vector denoting the remaining right-hand sides, And P is the new multiplier

vector. The Euler-Lagrange equations are
d Pl = go ag' b--

dP Pg +g1- - J-i= ~ + P1 -" + P2 aV + P 4  v - i

d P ~ g g1 -2 p, -.
dz - + Pl - - + P2- + _3 % + P 4 "- - (2.43)

dP 3  go bgl g 2  g3  _P g4

dP a

dz

I -
- ~ - - ~ = = = = -



The control function satisfies

J~tan- C LO0P2
2C CDiI V (2. 44)

with the sign conventions (2. 20). Since P 4 is a constant and ternhinal time is
an unspecified quantity, the transversality corlritions require

P 4 = 0. 
(2. 45)

Thus, the time equation, the last of (2. 37), is unimportant in the problem,
and the set ef depenident variables is reduced to (V, y, h).

Other boundary conditions could be derived. However, this problem is
equivalen, to the problem of subsection A (when 1A = 12= 0) with equivalence
relationships (2.1-:9), (2. 40), End, as shown in Appendix C,

P 2 =p

3 H (2.46)

2 11

2. The Partial Derivatives

The system of variational equations like (2. 26) for the new system of
differential equations may be written



-__ -ET a -av1 P 2 1

6g2 2  a92 ag 2  a g 2

a 2

1-1 0 *-g-3 a93 0 0 033 g

d 3- - 'y ah (2.47)dz b:H 2 b 2 H2 b 2 H2 9 gl g

2 -22 2 H g 2  g3

2 . . .. . 2aVa Y7 bh~y )Y by' BY
2 2 2a H 2  2H 2  H2 3gl g 2  bg 3

1 3 . ... . 3Vh ah8 Y all h h

Let the fundamental system o' soli.tions to (2, 47) be

a X(Z) a(z)

0 0
zz , n(C) I, (2.48)

6 P(Z) a Iz
L-Fx- Po

and furthermore, let the elements if the submatrices be denoted by

ax(z) z x(Z, i i = 1,2,3
x°  P . 1 j , 2. 3; TIo °j (Z =4 5

(2.49)-

=~~ (Z i, j=1, 2, 3; P :
3 . 4) -
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An optimal trajectory in the neighborhood of an optimal trajectory will satisfy
the perturbed equations

6 :Z ax(z) axax(Z) 6

o 0
(2. 50)

6P(z) - 6x + 6PP4z)
x0 0 a P0

o o 0P

at arbitrary values of range, and linearized versions of the boundary c ditions(2. 41), (2. 45) and

P2(z Te ) = o 
(2.51)

at the terminal point. These may be written

MVz T )  r, 1(LT ) 11 12 (zT ) n13 (z T) v n14 (z T) r 15(z T) 1I6 (z T) 6 P1o

6h(z-,) 31(ZT) '32(zT) 33(z 6Y + 4%ZT) r3 5 (ZT) T36(zT) P231 LT 322(ZT) 3 4 325(T 36 T o2
-6P (z ) 2(z;) (z2(zZ5h

P2(z T )  21T r 22(ZT) 23 T ) ho 24 (zT )  25(z T ) 26(ZT 6P 3

(2. 52)

since equation (2. 45) and th? last of (2. 41) are always satisfied in the reducedsystem. Let (2. 52) be represented by

A 6x ° + P o6P 
('. 53)

so that

6P 0  -B 1A6x0 K 61 2. 54)

I-:

0 0A
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Note that B is the Newton-Raphson mairix in the reduced system, which must

be nonsingular. It is shown in Appendix E that if B is nonsingular, the path is

normal according to the definition of normality in Reference 7.

When (2. 54) is substituted into (2. 50) the result is

7I

6x(z) L Px (z) 6
0 0 (2.55)

ax 0J

Under the assumption that the first n-utrix of (2. 55) is nonsingular, it follows

that the partial derivatives of the muiLipliers with respect to the stale are

_____~1- =Z + E ' xz ~2 - 2. 56)ax :6Po axo Po0

IVIO- + L K].
The partial derivatives of the control are derived from Equations (2. 44) and

(2, 5C) with the result being

1
,6LV .u , 0. . (2.57)

Several ccmments should be made. The process described above constructs

a particular field of extremals in the neighborhood of an extremal trajectory

i the inverse matrix in (2. 56) exists at each point along the path (see Reference

7, pp 237-240 and Section liA following). By conatruction, however, the

matrix is singular at the endpoint. In spite of this singular poi-t. it can be

shown that the resulto do constitute a field when the endpoint le excluded, so

long aza the Inve-fie matrix in (2. 56) exists at all other points along the extre-

rnal path. The 27 optimal trajectories extend this field over a finite region of

space. The partial derivatives (2. 57) may he used to construct a "neighboring

optimal" linear feedback control scheaie, as ii Reference 8, about any one

of the optimal trajectories,
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3. Comrputer Results

The systemn of differential equations in the computer program includes (2. 37)

and (2. 43), in which the last equation of each set is onjitted, and the contrCl

function satisfies (2. 44) and (2. 20). The equivalence relationships (2. 40)

and (2. 46) establish initial conditions from the results of the mapping pro-I

grain. Systemn (2. 47) is also integrated to obtain the solutions (2. 48). Since

the initial conditiotib for the multipliers may be somewt-at in error, Newton-

IRaphsrjn equations are includeo to adjust them to their proper values. When

the process has converged, the K-miatrix of Equation (2. 54) is coMpued4 n

the ini~ial conditions for system (2.,47) are changed to

for the last pass. The first three column solutions are then the matrices of

E;quations (2. 55), and the laiit three- solutions are used for an. auxilliary

sufficienlcy condition computation (see Liubbection D). On ttb. last Pass the

control u, rnultiplieri P1I and 132 ' and the partial derivatives [from (2. 56) and

(2. 57)]1 are punuhed on cards at specified valuee of range. in the present

case 101 bets of data are obtained spaced at range inc1-rementu of 15 miles.

At the lost point (z =1,500 miles) the parilals are omitted.

In computing the p Artials at tne output points, the inver~e matrix of Equation

(2. 56) i obtained by inverting the .9olution in (2. 55). This does not increaue

computing time excessively, since the matrix is simall (3 x .3). In larger 2
systumd, however, one,. may wish to solve- the nonhomnogeneous Ricatti equa- f'
tion dvrived in Appendix D. and thereby obtain the volutionti (2. 56) d~rectly.

'J'he partial derivativei of the control function for the nominal trajectory are

plotted In Figure 2-29. The curve appears to be rather uninteresiting over
motit of the trajectory, until it Is remembered that V i4 Lt -ery largie quanitity

over this region. The hump in the 1U. curve correspondsi approximately to the
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bottom of the first dive (see Figures 2-16 through 2-19), where control changes

drastically influence the remainder of the path. Beyond this point, the partials

are small, corresponding to the skip in the trajectory. The partials all head

toward + - at the end of the trajectory (by construction). Since the partials

can be used as time varying gains in a linear feedback control scheme (as in

References I and 8) one might wonder why they are not negative, to corres-

pond to negative feedback. The reason for this is that positive control pro-

duces negative lift. One can intuitively justify that the partials, acting as

feedback gains, produce the proper trajectory changes, at least toward the
end of the path.

Figures 2-30 and 2-31 are plots of the multipliers P 1 and P for trajectories

1 through 7. They are included to show the nature of the variations over the

optimal re-entry corridor.

D. SUFFICIENCY CONDITIONS

The sufficiency tests described in this subsectioli are tailored to problems

like the re-entry problem stated above in which the Lagrange form of the

optimization problem 's considercd and the terminal equations are quite

simple. The tests can, of course, be extended to other cases, such as prob-

lems with more complex endpoint equations, the addition of a function of the .

endpoints to the function to be minimized, and the inclusion of inequality

constraints in the problem statement.

1. Sufficiency Conditions for a Relative Minimum

Bliss' theorem 85.1 (Reference 7, page 241) forms the basis for the relative

minimum sufficiency test. This theorem requires

6:
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(1) A field in which the extremal is imbedded

(2) The strengthened version of the Weierstrass condition

H (u) < M1(U) (2. 59)

(3) The second variation, evaluated with field elements, to have

a proper minimum at the ends o. the extremalo

If these three conditions ai e satisfied (for a normal extremal without corners)

then the path is a strong relative minimizing path in the sense of Bliss-

Theorem 82, 1 (Reference 7, page 235).

For application to the re-entry problem, consider the formulation of sub-

section C. Condition (2) is 3atisfied since the control (2. 44) using sign con

ventions (2. 20) establishes the absolute minimum of the Hamiltonian (with

respect to u) and no other control U gives the same value. The problem is

normal E.ince the Newton-Raphson matrix B of Equation (2. 53) is nonsingular.

It is shown in Appendix E that B nonsingular implies normality in the sense

of Reference 7.

A field is constructed through the use of lemma 84. 2 of Reference 7 (pp 238-
240). This requires that the path first be nonsingular. Lemma 87. 1 of

Refercnce 7 (page 247) shows that the path is nonsingular if the strengthened

Clebsch condition Theorem 78. 2 of Reference 7) holds. With a single control

function this requires

2
2 > 0 (2.60)

6u
2

over the path, which is true for the problem under consideration. Then a

field is constructed if a conjugate system of solutions U, V (both nxn matrices)

to the accessory equations (2.47) can be found, with U nonsingular everwhere

along the extremal. By definition, a conjugate system of equations satisfies

UV V'U. - (2.61)
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A suitable choice for U and V is

U ax ax (Z) 2 (z) [K-i i
o 0

(2. 62)

-V = x - -Po-P = rr2 1 (z) + T 2 2 (z) (K-I1
0 0

which accounts for the second half of the initial conditions (2. 58) for Equations

(2. 47). The rinotation, adopted here, splits the fundanental solution matrix

(2. 48) into the four submatrices .n(' 7ated in (2. 62). One can show that the

choice (2. 62) form,,; a conjugate system betause of the easily proved relation-

ships

TI = n TI
11 21 21 11

r 1 ' (2. 631
12 n22 22 ' 1( 6

22 n I I 12 1T21

Then a field is constructed if U of (2. 62) is nonsingular at each point along

the extremal.

Several comments should be made. Although the results (2. 62) and (2. 63)

are presented for the problem of subscction C, they hold in general. The

minus sign in (2. 62) arises because of the use of the minimum principle

instead of the maximum principle, as explained in Appendix E. Since the

original problem included u as the derivative of an additional state coordinate,

one might wonder whether the field should be constructed in (n+2) dimensiors

ratherthan in(n+l)dimensions. It is shown in Appendix E that the additional

dimension need not be considered. The sufficiency proof is complete at this

point for fixed endpoint problems.

,;Matrix K. from Equation (2. 54) is taken as zero in (2. 58). It is only necessary 7
to show that there is a conjugate system U,V with det U 0.
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In the computer program, the deie mnnant of U was computed at each output
point (2.= 0 to 1500 miles with incrementc L-. - 15 n~ls.The determinant

started at unit, (z = 0), and rose to very large values as z increased (about
2910 maximum) for each of the 27 trajectories considered. Becaus of the

smoothness of the problem solutions, it was concluded that the determinant

did not vanish or become negative between output points, and hence, that fields

were indeed constructed for each trajectory.

Condition (3), above, is based upon lemma (87. 2) of Reference 7 (page 247). I
This gives generalizeo expressions for the second variation test for problems

with separated end conditions. There is no contribution to the second variation

at the initial point, since conditions at this point are all fixed. Hence, for the

type of problem considered, it is required that

[a a'] a P(ZT) x(ZT) p '(zT) U(zT) 1 oj (2.64)

U (z T) T~~ U, (z T V(ZT a

for all (a0 . a) satisfying

xi(zT)a ° + U.(: ,)a - 0, i- 1. r. (2. 65)

Expression (2. 64) is the second variation (as derived in Reference 1) evaluated
at the terminai point with field elements, and (2. 65) represents the linearized
terminal conditions with subscript i on U representing the ith row vector of U.

In the re-entry problem the terminal value of range is also specified, which
implies a = 0, and accordingly reduces the size of expression (2. 64). The
remainder of the terminal conditions (2. 41) may be written in the linearized

form
0

U(z T ) a I I (2.66)

L 0 J- f

66L

ki



where the middle row of U is included for the unspecified variable y, and A
is an arbitrary scalar. When (2. 66) is inserted in (2. 64) (with a = 0) there

results

-0 A O] V(ZT)U-ZT) U O] > 0. (2.67)

L0

Thus, the center element of the product matrix in (2. 67) must be negative to

satisfy condition (3). It is negative for each of the 27 trajectories considered.

Hence, the sufficiency conditions are all satisfied, and each of the 27 trajectories

is a stong relative minimizing trajectory.

2. An Absolute Minimum Test

The test given here does not establish global sufficiency. It does, however,

allow a large region of solution space to be examined for other solutions to

the optimization problem. The method is not applicable to fixed end-point

problems. The idea is simple: replace one of the transveosality conditions by

a new terminal equation in which a parameter iF included. Obtain a set of

soultions to this problem, as functions of the parameter, and examine the set

for satisfaction of the omitted transversality condition.

To illustrate the method, consider the problem statement of subsection A, and

in particular, the set of necessary condtions (2. 25). The fourth of these is

replaced by the equation

y(T, p 0 (2.68)

in which 1' i- the parameter, and solutions as functions of 1 are to be

examined for satisfaction of p T) = 0. The Newton-Raphson equati)a fur

the new system of equations may be written

67
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dT (-T) r I IT) . 1 2(T) 3 (T) r. 1 4 (T] Iv(T)-XI
#1P0 y(T M 921(T) 22(T)r 23{(T) n 24{(T) Y -7T;-

-P20 3(T) 32 3 3 (T) r 3 2 (T) 3 (T) 3 4 (T) (T)-X /R (2.69)

dP3 0  (T) i 4 1(T) r 4 2 (T) ri 4 3 (T) 4 4 (T) (T)-X 3

dP4 0 0  f 1 (0) f2(0) f2 (0) f 4 {) JH
According to Appendix A, the derivatives of the initial conditions with respect

to the parameter - are in the second column of the inverse matrix. These

are used with the predictor equation (2. 29) to establish the family of solutions.

An unconstrained optimal trajectory with terminal range of 1450 miles
was used for the test. The r-esults certainly hold for the 1500 mile

trajectory. During computer runs it was found that an increment

L7 = 1/2 degree initially produced a member of the family of solutions at

each step. Prediction gradually worsened, however, as the extremes of

were approached, and it is unlikely that further extension of r can be accom-

plished.

The total heat J for the family of trajectories is plotted in Figure 2-32.

There is only one minimum for the range of F given, and it is noted that the

minimum is quite insensitive to lat ge vat idtijuzi in terminal flight path angle.

From Hamilton-Jacobi theory, it is known that-p (T) is the slope of Figure r
2-32. The slope is zero for the optimal trajectory, and becomes very large

(in absolute value) at the extremes of the curve, so -p,.(T) is never again£

zero over the range of 7. It is concluded that the originul optimal trajec-

tory is the absolute minimizing trajectory, at least over the obtainable range

of the parameter 

f.

6
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E. THE CONSTRA:NT a = B AND EXPERIENCES WITH VARIOUS OPTIMIZATION
SCIEMES

1. Constrained Subarc Equations

Consider the problem of subsection A, and include the constraint equation

(2. 10) in the problem formulation. When equaiity holds in (2, 10), the resulting

equation is used to determine the control u. This is squared and rearranged to

obtain

a cos 2 u + 2b cos u + c = 0 (2.70)

where

2 2

a C)L

b C cDOC)L (2. 71)

J)i)per a.i,d low,.r lhi it: for aj)j)liCatwnl 41'1 foulid by '.i):.tlt ti J. U 0, :1 irit(,

('-70) iAnd CXpIndi-1g in tbe vicinity of thCsL p,,ritI. It id found that the liquality

(C1) 1)1 , (C -C > 0 (2 72)
Do D, S IX)D DL16 ;A

I'LI!it 110.d. fhu UXp,:, il fui' "Til '  ih propetional to sin L,. which is zero
Lit Li (I , TLhese p inti, rAru thuti singuilar point-;, be oquuli \ must be

.xuludcd In (2. '2). A'i. uctning thisl', EquUlioln (2. 70) tn'ty bV solved to obtain

whure tlu . nlitt,.,d L'ou lulti UL'tildu ti,, ralige Icue U 1 , It id C&Li y ,Nho u - V_
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that the term in the square root is positive by substituting the upper limit of

(2. 72) into the expression and evaluating.

The minimum principle again takes the form (2. 21), except that this time

- luI < < uI. (2. 74)

Otherwise, 0 and u would be identical. Then, once again, 0 0 and u must

have the same sign, and o-- 0 is the bang condition.

The multiplier 42 is determined from Equation (2, 15) (with v. 1 I 0). When all

the substitutions are made, it turns out that

90 ~ ~ tc C CD CO 2 )2 + iCDLP1v)2] si,(U-t[c~f c~] 2 - -(2. 75)2 = - - 2 12 75
v b ac sin u

Since sin (u-0) and sin u have the same eigns, i2 % 0 at required. Again, u

is continuous at Junction points, so 12 must start and end at zero; and L = 0

with 4,, #0, describes the subarc terminal surface, unlosj the stopping condi-

tion is uatisfied firlit.

It iti convenient to include 13 as an additioital parameter in the problem, and to

int-oduce the new teiminal ucuation

B - B * 0. (2. 765)

13 is the final maximum g-level (ujually taken as 10 g's) In the constraint -

0
equation (2. 10), nd the solutions now depend upon B as well as the iet (Tpo).

This alAOws the computatJon of extrcmals for various g-levels.
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The accessory equations are system (2. 26), modified for the constrained

subarc, and the discontinuities (2. 27) are included for corner points. An

additional column solution is obtained, for partials with respect to B, by

integrating the nonhomogeneous accessory equations

(2. 77)
2 /

d- \ HI aB x " I P 2H
dt 6 ) ax bB bxp 6B axaB

where the no.-.homogeneous partials in (2. 77) are computed through the

appearance of B in the control ftnction (2. 73) from the last of (2. 71). The

forcing terms are zero, of course, for the unconstrained subarc, and the ini-

tial cor.dition for (2. 77) is '.h,! zero vector.

Let 7ii(t) and Ci(t), i 1, .., 4; J= 1,.... 5, be the elements of the partial

derivative solutions obtained from (2. 26) and (2. 77). Then the Newton-Rsphson

equations for the expanded set (2. 25) and (2. 7) may be Aritten

d (T) "n CF) n (,r
) 

P 
(T ) 

' 1 r ) 
. 1 

(T )  ( -x

dPlo 9 (T). 1131 (T) TI32 (T) TI33 (T) ri34 (T) n35 (T) 9(T) -X 2/R

d9 2 0  C(T) 14 1 (T) i4 (T) 114 3 (T) 714 4 (T) n 4 5
1T) C(T)-X 3 (27)

dP 3 0  P2 ,T) C 2 1(T) C 22 (T) C23(') ; 2 4 (T) C 2 5(T) P2(71

dP 4 0  0 f 1 (O) 12 (0) f 3 (0) f4 (0) 0 H

dB 0 0 0 0 0 1 B-B
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2. Experiences with Various Optimization Schemes

The objective of the studies was to obtain a 10-g optimal trajeqtory, and to

evaluate various optimization schemes during the process. The stcrting

trajectory was the unconstrained optimal trajectory -with terminal range

X 3 = 1000 miles, shown in Figures 2 G through 2-13. with peak acceleration

of about 20. 7 gt s. Existen.e of the 10-g trajectory was assumed from the

u 1 = 16 degrees acceleration plot of Figure 2-2. The function f of Appendix

B was taken as

f = w 1  (v(T) -x) 2 + w 2  (T) -xi/R) 2 + w3
2 (C(T)-X 3 2

(2. 79)

+ w4
2 (p2 (T)) 2  - w5 H2 + w 2 (B - B

The problem, as stated, turned out to be extremely difficult, and a 10-g

optimal trajectory was never found. Thus, the optimization schemes were

compared under worst conditions.

The modified Newton-Raphson scheme, used first, refused to converge after

several successful iterations. Marquardt's method (Appendix B) produced

good initial changes in f, ad gradually deteriorated in performance as B

approached B o. The difficulty eppeared to be that seconid-order terms,

neglected in the developiieit of 1lh mche -i ne. larger as the minimum

was approached. When the weightp i. (2. 79) were changed, the scheme again

worked well at firsi, then deteriorated rapidly. It always, however, produced

some improvem!;,L in f.

The parameter B was reduced to about 11, 5 g's during the course ol the -
experiments, whereas the other compouciits in (2. 79) gradually became larger.

The constrained subarc exhibited a variety of behavior. It sometimes con-

tained a corner, and other times did not, and in some trajectories it was I
absent.
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The Fletcher-Powell method was never successfully used. The H-matrix

(see Appendix B), modif-ed after the first step, was either indefinite (it

should he positive-definite), or it had a very bmall eigenvalue. Thid was on

the order of computer roundoff error and caused the method to break down.

No means of correcting the situation was found, although a recent note

(Reference 10) may contain the answer.

The use of tt-' identity matrix as the initial H-matrix led to the optimal gradient

method, in which the gradient direction is used, and the magnitude of change

is chosen to minimize f. Initial convergence was good but rapidly went to

zero due to the "saw-tooth" effect. This effect, noted by many users of

gradient techniques, makes level surfaces of f appear as extremely elongated

ellipses, and gradient changes in general, therefore, produce little or no

change in the functional to be minimized.

The use of

H - 1 x (2. 80)

as the initial H-matrix (see Appendix B) results in the Newton-Raphson

direction for the first step of the Fletcher-Powell method. This led to the

optimal Newton-Raphson method, which was tried on a trajectory which satis-

fied BB= but whose terminal conditions were very far from those desired.

The method worked quite well, and almost produced the 10g-optimal trajec-

tory. The singular point u = :±rr, however, caused computational difficulties,

so the approach was abandoned.

The predictor scheme of Appendix A was also tried on this problem. In terms

of the notation of Equation (2. 78), the derivatives used in the predictor

equation (2.29) are
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T1 v(T) Inl11(T) TIl2 (T) lTI 13M l 4 (T) T11l5(T)

P1 0  (T) 11 3 1 (T) 13 2 (T) 3 3 (F) T
3 4 (T) ?13 5 (T)

d p(T) n 4 1 (T) )1 (T) ) (T) iT) 4 5 (T) (2.81)-j- P20o1 4 4 44

P3 0 1 p 2(T) 2 1 (T) C 2 2 (T) 2 3 (T) C24 (T) C2 5 (T)

L 0  fn(0) f 2 (0) f 3 (0) f4 (0) 0

A 17. 9-g optimal trajectory was obtained using the optimal Newton-Raphson

method (Equations (2. 28) with C determined to minimize (2. 79) with w 6 = 0).

The initial conditions for the iterations were taken as those for the u I = 55

degrees optimal trajectory of Figures 2-1 through 2-8. A second optimal

trajectory for B = 16, 9 g's was similarly obtained, using the 17. 9-g optimal

values as starting conditions. A cubic was fit through the initial conditions

and their derivatives [obtained from (2. 81)] to obtain estimated initial conditions

for the B = 17. 7-, 17.5-, 17.3-, and 17. I-g optimal paths. The new paths

were then obtained, and the predictor scheme was used [with h = 0. 2 g in (2. 29)]

to compute optimals down to B = 14. 9 g's. Al] of these paths had a corner

point, which migrated toward the initial point of the constrained subarc as B

was lowered. The predictor scheme failed to obtain the 14. 7-g optimal be-

cause the corner point was too close to the initial point of the constrained
subarc. This caused computalional problems because of the singular point u= 0.

On the other hand, the terminal range of the 16. 7-g optimal trajectory was

extended to 1460 miles using the predictor scheme, and th2 corner point 4
migrated toward the endpoint of the constrained subarc. Once again, the

singular point uz 0 preveited further range extension. Thus, two parameters

were found which controlled the location of the corner point, and a 10-g opti-
mal trajectory could have been obtained by manipulating thom properly. This

was not done, however, since a 10-g optimal trajectory with a continuous V

control function waR 8ought. Instead, the constraint equation was modified i---i

so as to isolate the singular point u= 0 and to thuH allow the crner point to -

move across the constrained-unconstrained subarc junction points.
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3. Constraint Equation Modification

The singular point u = ± n has a clear physical significance: in the next

instant of time the pilot's acceleration will exceed B g's, since no control

function exists which will alleviate the situation. Computations are accordingly

stopped at this point. (Normally, 0 < I u I <n, on a constrained subarc, and

i u moves, in time, toward zero or r. The subarc either terminates normally,

or runs into computational difficulties as a singular point is approached.) The

point u= 0 should define the endpoint of the constrained subarc, since no control

exists, for the next instant of time, which will keep ap 13 g's. It should be

possible to show, mathematically, that this is so. However, the mechaniza-

tion of any such solution would undoubtedly add complexity to an already com-

plicated computer program. It was decided, instead, to modify the constraint

equation so as to isolate the singular point u= 0. The modified equation reads

a V2 C2+ 2 + 2K (.2
p +CD +-cos u

With the constant 2K = 0. 0001, the added term normally contributes very little

to the original equation; hence, there is a very small difference between the

two expressicns. The error maintains the "real" acceleration less than B g's.

As u approaches zero, however, the adder becomes large, and effectively

isolates the point u= 0. The equation to be solved for the control function.

analogous to Equation (2. 70), is

2 2K
a cos u + 2b cos u + c + - 0 (2.83)1-cos u

with a, b and c defined by (2. 71). Although this may be solved as a cubic,

it was found more convenient to use Newton's method. Also, since cos u may

be close to unity, the transformation

z = cos u- 1- -284)

was introduced for somewhat better accuracy.

76



The transformed version of (2. 83) reads

z2 + 2(a+b) (a+2b+c) 2K (2.85)aa aijz

The constrained subarc equatio,.s ia the computer program were changed

for the modification. Lack of time prevented more than one or two debugging

runs to be made, so the corner point was never removed from the constrained

subarc.

F. EXTENSION TO THE BOUNDED STATE COORDINATE PROBLEM

1. Statement of the Problem

The theory for the problem of minimizing

T

Sf (x. u)d r (2.86)
J o

0

subject to differential equations

x = f(x,u), x(0) = x o , (2.87)

inequality constraints

G(x,u) 2 0. (2.88)

in which u must appear explicitly, and terminal conditions in either the form

xi(T) -:i" 0, i= 1,..., rn (2. 89)

x.(T) -X 0, j= 1..., r-1 n n- - -- :(,,90)

T-K 0
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is treated irn Reference 1. The objective here is to add inequality constraints

of the form

G(x) ; 0 (2.91)

anid to develop a method for numerically solving the resulting problem.

2. Necessary Conditions

A set of necessary conditions for this problem has been known for some time

(see References 11-14). They are stated here with one control function and one

inequality constraint equation (2. 91) assumed for simplicity. Generalization

to more control functions and more inequality constraints is readily accomplished.

It is also assumed that the time derivative of (2. 91),

6G 3G
G = f , (2. 92)

contains the control function explicitly. The case where higher derivatives

are required to involve the control function is treated in References 11 and 14.

The lamiltonian for this problem is

H f - p'f (2. 93)0

where f is the integrand of (2. 86), p is an n dimensional multiplier vector,
0

represents transpose, and f is the right hand side of the vector differential

equation (2. 87). Now a constrained subarc is one over which ineouiality (2. 91)

is an equation. A necessary and sufficient condition for G to be zero over such

a subarc is that G be identically zero over that arc (see Reference 13). This

condition is included in a new Ilamiltonian, defined by

1 1 +" (2. 94)
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where the new multiplier i is identically zero over unconstrained subarcs

(G(x) > 0) but may be different from zero over constrained subarcs. Equa-

tions (2. 93) and (2. C4) clearly have the same value, and the last term of (2. 94)

may be though of as a constraint on the Hamiltonian.

The usual necessary conditions now hold. The Euler-Lagrange equations

are derived fron the Hamiltonian (2. 94,, and the minimum principle requires

that

H(x, u, p, iL) H(x, U, p, 0), (2. 95)

where u is the extremal value and U is any admissible control (satisfying

G 0 over constrained subarcs). The Clebsch condition must also be satisfied,

and usually is if (2. 95) holds. In fact, it can be shown that the Clebsch condition

gives the necessary condition

< 0 . (2.96)

Boundary conditions at the initial and terminal points of the trajectory are

the same as those given in Reference 1. Additional conditions may, however,

be requiced at junction points between constrained and unconstrained subarcs.

If there are only two subarcs, the condition G= 0 may be treated as either an

initial condition or terminal condition, depending on the ordering of constrained

and unconstrained subarcs, and the multipliers will be continuous over the

path. If the ordering is constrained-unconstrained-constrained for a three-

subarc-path, the multipliers will be cuntinuous ior the same reason. All
other cases with three or more subarcs will produce discontinuous multipliers.

It is well known (see Reference 12) that the discontinuities take place at one

end of the constrained subarc and that the multipliers are continuous at the

other end. It (,oes not niatter which end has the discontinuities (for proof see

appendix G), so the initial point tI is chosen here, as in Figure 2-33.
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Figure 2-33. State Coordinate Geometry in the Vicinity
of the Constrained Subarc Initial Point

The necessary conditions at t 1 (the analog of the Weierstrass- Erdman

corner conditions) then read

(tGPtt b (2. 97)

H~ H (2. 98)*

G (t) 0. (2.99)

whiere superscripts + and -indicate limitc from the right and left,

respectively.

Notice that when (2. 97) is substituted inteo the left-hand side of Equation (2. D8),

the coefficient of v becomes G~IEqu.ttion (2. 92)] , which is zero by defini- -

tion. Equation (2. 98) is thus inde, eud'ant of v, and contains only p- values of-j

the multipliers. This equation can usually be reduced to an equivalent nec--

essary condition.j

If G contains t explicitly, then the Hamiltonian is discontinuous by he

amount V - (tY) -
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For example, it is used tn the bounded brachistochrone problem (subsection

F4) to show that the optimal control is continuous in time at the point t1 ,

which implies ihat

G = . (2. 100)

This condition, rather than (2. 98), is used there.

3. Basis for Computational Scheme

In the optimization problem treated in previous subsecticns. the extremal

solutions were functions of the independent variable (call it t) and the multi-

plier vector p0 . The constant v in equation (2. 97) cannot be determined

from the necessary conditions, and hence, becomes an additional parameter

for the solutions. The extremal solutions thus have the functional forms

x =x(t, Po V)
V). (2. 101)

p p(t, p0 . v).

Each time the multipliers are discontinuous another constant v is introduced.

Unless one has an a priori knowledge of the number of constrained subarcs, the

problem could have a variable number of variables. This gives no theoreticO !

difficulty, but I.he practical bookkeeping problems in a digital computer pro-

gram could become unmanageable. In what follows, then, it is assumed that

the optimal path consists of three subarcs, ordered unconstrained-constrained-

unconstrained.

The necessary -:onditions at the terminal point give (n+l) equations in the

(n+2) variables (T, p0 ' v). The necessary conditions (2.98) (or equivalent)

and (2. 99) determine the point t1 and give an additional equation in (T, p0 . v). _ )
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'I'he problem is thus one of determining the solution of (ni+2) equations in (n+2)

unknown and the Newton-Raphson methcd may ne used to find the solution.

Piartiul deivatives of the bolutions with respect to p are obtalned as before,

by integrating the accessory differential equations.. An additional column in

the bolution matrix is reserved for partials with respect to v. Initial condi-

tions for this 4olution are oktained by differentiating Equation (2. 97), and

noting tbat x(tI) is independent of v. The method of oolving the problem is

i1l.ustrated in the fol)owing example.

4 Ihe Boundi.d Brachistochrone Problem

Thu bounded brachistochrone problem was chosen to test the theory. It is

timple enough to have an analytical solution, yet nonlinear in nature. The

equations of motion, ati given in Ileference 11, are

x - v cos y (2. 102)

y u v sill Y (2. 103)

v -g sin y, (2. 104)

'1'k problem is to minimize the time it takes to go from a given initial point

V X . x- while !iatltfylng the path cvij truirit

; 0 y - ax - b a 0. (2. 105)

The stute lictor has the cQunponelnts (x, y, v) qnd y is th. control function to

be determincd. Figure 2 34 nhows the path conutraint, terminal condition a-rd

a potnsible path.

1=
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Figure 2-34. Bounded Brachistochrone Problem Geometry

The time derivative of (2. 105) is

G - v(8in y - u cos y) (2. 106)

no the lamiltonian is written aH

III + PlvcOH Y + P2V Lainy-p 3 gin y + v(siny-acosy) . (2. 107)

The hu1cr-lagrange cqui.ions becoine

p 2  • 0 (2. 100)

P3  " cOh Y 4- p Hill - (2. 110)

0 -pv sin + p,v coi - p 3 g con 'y + i.v(co'+ a uiny) . (2111)
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Over unconistrained subarca the multiplier . is zero, so (2. 111) may be Golved

for 'Y(v, p1 p) las

pIv (2.112)

or

sin -(P 2 v -P 3 g) ____(2.113)

-\11~vr+ (P2v P392

Cosv Y -P - (2. 114)

-VFPTv + (P 2 v - p~g),

The minuai signs in (2. 113) and (2. 114) are chosen to minimize the Hcmiltonian

(2. 107).

On constrained subarea. solution of G s 0 [Equation (2. 10)JI gives

tun y = a, (2.115)

since by ainuumptiot' v rd , and Eq9uation{2. 111)ae

Pi va -(P;,v -P 3 0)(211)

Now let 0 be the angle define~d by (2. 113) and (2. 1 14). This is a convenient
defintion, since at the boundary point t 2 Nece Figure 2-34) everything Is

continuous, so 0 becomen ^/ at that point. The constrained subarc liamil-

tonlan may theni be written

V Pr+(2V-p 3 g) coo CY- 0) .(2.117)
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The minimizing value of y makes the cosine positive, so it must satisfy

S - v < 2 (2.118)

thus resolving the ambiguity of Equation (2. 115).

The multiplier i of Equation (2. 116) is negative over the constrained subarc.

To see this, consider the complete statement of the minimum principle for

this problem. It reads

rI(y) H(i') (2.119)

for all r satisi'ying G( I) z 0. Written out,

plv cos y+ (P 2 v-P 3 g) sin Y! p 1 v cos r+ (P2 v-P 3g) sin F , (2. 120)

or from (2. 117),

c03 (y- ) k cos (F- C) . (2. 121)

Now .o= contadicts (2. 121) if y# i, so 0 must satisfy G( ) <0 except at

the endpoint t2 where -y - Thus,

G( ) v(sin o - a cos ) 0, tI <t <t2. (2. 122)

Substitution of (2. 113) and (2. 114) then gives

v
~~pv j1v[P lv a - (P2 v-p 3 g)]< 0, tl< <t 2 . (2.123)i lplVj2 + ip~v-P31 )2 LI Pv 3 )] 1 2

The bracketed term of (2. 123) is the only term which can be negative. and is

the numerator of (2. 116). Sinc- the denominator of (2. 116) is positive, R must

be negative over the second subarc. An interesting interpretation of the angle 0

is that it is the extremal value of y if the constraint is not present.
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The relevant boundary conditions for this problem are the terminal and

intermediate conditions

x(1, x = 0 (2. 124)

y(t 1 ) - ax(t) - b = 0 (2, 125)

and the transversality conditions

P2 (T) = 0 (2. 126)

p 3 (T) = 0 (2. 127)

+(t1 ) p (t 1) + va (2. 128)

p2(t) p 2(tI) - v (2. 129)

+(tl) P3 (tl) (2. 130)

H +(t ) I H-'t 1) (2. 131)

H: 0 (0 ,:t T). (2. 132)

The condition (2. 131) implies continuity of the control function at t- t which

in turn implies G-(t,) = 0, or

v(t1 ) sin y(t 1 ) - a cos 'y(t 1 ) 0. (2. 133)

Continuity of ) follows from substitution of (2. 128) through (2. 130) into

(2. 131), giving

pIv(cos 'Y Cos Y + (P 2 v-p 3 g)(sin y - sin Y + vv a cos y-sin y 0,

(2. 134)

where the paramctcr t 1 has been suppressed and the bracketed term vanisheo.
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Now let %Pbe the angle defined by (2.113) and (2. 114) using p values. (2. 134)

then becomes

cos(y + -4) = cos( 7 
- 4) = 1.

since -y 4., so iL follows that

+
'Y = (0 , (0 y <2II) (2. 135)

on the optimal path,

From a numerical standpoint the problem falls itto two categories, determined

by the number of subarcs contained in tlhe path.

Case I! G > 0 Over the Entire Path (One Subarc) -- AltLough the optimal path

is to consist of three subarcs, it is possible that some intermediate extremal

will not reach the boundary. The reduced differential equations of the extremals

are (2. 102)-(2. 104) and (2. 108)-(2. 110) with control y determined from (2. 113)

and (2.114). The problem then becomes one of finding (T, po) which satisfy

x(T'P) xf = 0 (2. 130)

P2  * 0 (2. 137)
0

P 3 (T, p ) 0 (2, 138)

H(p 0 ) = 0. (2. 139)

The modified Newton-Rapheon equations are
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0 x(T) - ) (T) r T) n 3(T) dT

P2  0 0 1 0 dp
0 0

-C = (2. 140)
P3 (T) P 3 (T) 3 1 (T) C32(') C3 3 (T) dP2

0

H(po) 0 fl(0) f 2 (0) f 3 (0) dP3

LP_
where the t's are the elements of the first row of FP'O and the 's are the

second and third row components of . Since the Hamiltonian is zero

over the entire path it can be evaluated at t - 0 where all p's are initial

values, so the last row contains the partials of the Hamiltonian with respect

to the p0 s at that point. Equation (2. 136) is used as the stopping-condition for

the integrations which accouitts for the zero in the left-hand vector of (2. 140).

The accessory dilferential eyuations are

[ + I a 'n3 + 6y F l 1 + p 2

Fv +- F V P 3

2+ 26Y + fz 3T 1
H ~ ~ C~~ C ± C c3] (2. 141)

11 = 0*~
*2 = 0 ... .

bf 3 a Ui~ " 6 C -+ C 6]

-0
P- Al + -_--P3

C3  [ ;~T 2  + 2 '
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and the initial conditions are

0 0 0 0

ax(O) 0 0 0 0

bp 0 0 0 01

op( 0)(2. 142)

0 1 0 0

0 0 1 0

The lst column of (2. 142) will, of course, give a zero vector solution

of (2. 141). It is included for the three-subarc-case in which case it will

contain the partials of x and p with respect to v.

Case II: Two or Three Subarcs -- The first and third (if present) subarcs

satisfy the differential equations for Case I. Over the second subarc the

reduced differential equations of the extremals are (2. 102)- (2. 104) and -

(2. 108)-(2, 110) with -y determined from (2. 115) and (2. 118). Since . is

a constant, the accessory equations simplify to

T1 = COS 'Y 13

712  = sin T13

l3  = 0 _(2.143)

=0

C2 0

€. -[cos -t C1 + s in 2 l "
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The initial conditions for (2. 108)-(2. 110) are given by (2, 128)-(2. 130), with

constant v to be determined, whereas initial conditions for (2. 143) are
bti

+ P+ o i, j =, 2, 3 (2.144)

+

T1i4 = 0, i 1, 2, 3 (2.145)

+ j= 1, 2, 3 (2. 14G)

6tl

++ a

+ (2. 147)
C24

C34 = 0.

In these equations j designates the column number in the matrices

and i corresponds to the numbeitig in (2. 43).
j0oF

Intermediate extremals computed during iterations will aot in general satisfy

the necessary conditions at the point t. In particular, the control function

may be discontinuous, which implies G 0. In this case the partials of t

in (2. 144) and (2. 146) are computed from G(t 1) - 0, i. e.,

at T 1 T 2 = 1,2,3 (G 0). (2._148)
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1 tl

If - happens to be zero, the coefficients of disappear in (2. 144)

and (2. 146). These partial derivative solutions ar then ccatinuous at

t = ti, and Bt L need not be computed. All variables are continuous at

the juniction point t2 between the second and third subarcs (if there happens

to be a third subarc).

Two additional necessary conditions ar? required to set up the modified

Newton-Raphson equations. These are

G(t 1 ) = y(t 1, pO) - ax(t 1 , po) - b = 0 (2.149)

G (t 1) - (t1, pO) - a (t1 , pO) 0 (2. 150)

if G-(t 1 ) 1 0, then (2. 149) determines t (po), and (2. 150) is the additional

necessary condition to be satisfied. The modified Newton-Raphson equations

are then

0 (T ! () l (T) Til 3(T) i 4(T)] 1-dT

F 112 4 1

P2(T) 0 C2 1 (r) C22(T) 23 C24(T) dp1

dv
6tI ) 0 P32 P3 0(p

where
(2-(t.1 bt1

-)P - 71 ar2 + 1, (t -- o , i = 1, 2, 3, (2.152)

10
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0(t 1 ) ag(sin 2 Y- Cos 2  , (2.153)
at.

and *-- is defined by Eruation (2. 148). If (2. 150) is satisfied,

then it determines t 1 and (2. 149) becomes the additional equation which

must be satisfied. In this case the last equation of (2. 151) is replaced by

- t) G(t) 0 GG- C G (t )  
= dP l d 1 + P o d P 2 + - - IP o

10 0-j-cp 0p~ 0

where
aO(t)a r2i - ani A i 1, 2, 3 (2. 154)

The First Constrained Path -- It is possible to choose the initial values

(plo, P2o' Po ) such that the path strikes the boundary (2. 149) before the

stopping-condition (2. 136) is satisfied. ?tnere will then be a second subarc,

and the problem is that of determining a value of vto go with it. Since the

optimal path is to consist of three subarcs, the scheme chosen is based upon

leaving the constrained subarc as soon as possible.

According to Appendix G, the multiplier discontinuities may be computed

at either end of a constrained subare. Assuming they are determined at the

point t =t Equation (2. 110) takes the form

P3  - P1 Cos V + p 2 siny + (2. 155)

+

Since pI - plo 2 = P2 o , and y is found from (2. 115) and (2. 118),

P3 (t) is w 11 determined. The conditions p+ (t,) = 0, "(t 2) >0 and v con-

tinuaus must be satisfied if t 2 is the endpoint of the second subarc. The

first condition is solved for v giving

(pv - p3g)- P-Va vV = - .- 1(2. 156)

v(l+a
2 )

t (t 2 ) 1 0 is satisfied, so t 2 is %,ell determined.
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whereas the second requires that

2"2+

d(t 2 ) = gf!-a ) cos 2 y >0 (2.157)

Inequality (2. 157) is always satisfied for the value of a considered. The

determinipg factor is the continuity of y which requires (froin the minimum

principle)

sgnlp + %a) = :ign (cos -y,)

(2. 158)

s.gn[ (p2 - v)v - p 3g] = -sgn (sin y+).

Satisfaction of f2. 158) then determines the endpoint of the second subarc.
If the third subarc comes back to the boundary, the second subarc is ex-

tended to this point, and testing for the end of the second subarc is resumed.
On the other hand, if the second subarc extends to the endpoint, then -n1 4 (T)

C3 4 (T) = 0, and C2 4 (T) = 1. Solution of (2. 151) (or its equivalent if
0- = 0) gives iterative corrections which tend to satisfy the last three nec-
essary conditions. The computed dv is ignored, since the necessary condi-

tion for P2 (T) on a two subarc optimal is P2 (T) = v, rather thwn zero. The
optimal path is to have tLree subarcs, so the corrections are used iteratively

with the first constrained path logic. A three-subarc path is eventually obtained.

Numerical Results -- The constants for the ptoblem solved are the same as

those used by Dreyfus in Reference 11. They are x0 = 0, yo 6, v I,y 0
g = 32. 172, a = --0. 5, b = 5 and xf = 6. A set of initial multipliers were

found which produced a three-subarc path having a terminal time of 1. 25429 .

seconds. The optimal path of Figure 2-35 resulted after 33 iterations, and a
comparison of this path with the exact solution is given in " able 2-4.
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Table 2-4. Comparison of Computed and Exact Optimal Paths

Quantitv Computed I Exact

Value I Value

'y (degrees) -85. 2577 - 8 5 . 2578

t0 . 385117 0. 385141

x(t 1 ) 1.60687 1.60710

y(t 1 ) 4. 19657 4. 19645

G(t 1 ) 1 x 10 - 5  0. 25 x 10 - 9

-(t 1 ) -0.7 x 10 - 3  0

2  0.533530 0. 533526

>(t 2 3. 1F470 3. 18465

v(t 2 ) 3.40766 3. 40767

T 0. 742246 0. 742245

\(T) 6. 00001 6

I(T) 2. 75571 2. 75571

J(0) 0. 1 x 10 " 10 0

11(t 1) 0.6 x 10 0

(T) 0 13 0

p3 (T) 0. 7 x 10 0

The differences between exact and computed values resulted from rather

loose interpolation procedures in the computer program. Although these

could have been corrected to obtain more accurate results, it was not felt

necessary since the purpoue of solving the problem was to prove the method.
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SECTION III

THE CONTROL FUNCTION

A. JUSTIFICAT'ON OF THE FORM OF THE CONTROL FUNCTION

The form of the nonlinear optimal feedback control function is
Ii

u - u(x, t), (3.1)

where x is an n-dimensional state vector and t is the independent variable.

This form is justified theoretically, and a simple example lo given. The

general procedure for obtaining the control is also outlined,

1. Theory

Consider a set of optimal trajectories, utarting at various initial conditions,
which all satisfy the same met of terminal transversalty conditions. The

control functions for their trajectories are clearly those required for the non- I 1
linear optimal feedback control Rcheme. The fact thkt the control fo the

fatnily of trajectories is of the form (3. 1) follows from the field theory of the

calculus of variations. Fur the control problem, a field is a region of (t, x) -

space with which there is associated a set of slope functions, control functions
and multipliers

u u (t, x) (3.2)
p - p (t, x),

having continuous first partial derivatives, which satisfy the differential



equationB x (x, v), and which make the Hilbert integral

*; f[H(x, u (t, x), p (t, x)) dt - p'(t,x) dx (3.3)

independent of path. A field is constructed through the use of a theorem

which states that an n-parameter family of trajectories which smoothly

covers a region of (t, x) - space and cuts a surface transversally exactly

once defines a field. (The proof fellows from Bliss' corollary 83. 1 and

the fact that I* a 0 on a transversal surface.) Smoothness is established by

the non-singularity of a matrix representing 4Oio , as in Section IIC, over

each path. The transversal surface ie excluded from the field since, by

construction, the matrix 4x° is singular at the endpoint of each trajectory.

2. Example

Consider tha problem ..

fT2 1 d minimum J3. 4) A
t

1 2

£2 =u, 
"-

with terminal conditions

T-K *0

x 2(T) -X 2  0 .
(3. 6)

Id
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The Hamiltonian is

2
H = -- +PlX2 +p 2t, (3.7)

so the Euler-Lagrange equations are

=0

(3.8)
b2 -Pl

and the control satisfies

u = -P 2 . (3.9)

The solutions after (3. 9) is inserted into (3. 5), are

t2  .3

X x+x 2 0 t - P2 0 -" + P 1 -

2
x2 x20 - P 2 0 t + PIO-2 (3.10)

P1  P1 0

P 2  P20" P 1 0 t

where tie (0) subscripts indicate conditions at t = 0. The transvecsality

conditions (Reference 1) require

PI(T) .0

P2 (T) = V2  (3.11)

H ' v 3 .

991
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The last two of (3. 11) can always be satisfied. However, the first and

(3.6) require

P1 0  0

(X2 - x20 (3. 12)P20 - K °

The set of all trajectories which cut the terminal surface (3. 6) trans-

versally are thus found to be

(x2 - x20) tp 0 20 2 (3.13)

(X 2 - x20

(X 2 - X20)

P2 - - K

with control function from (3. 9)

2- x20)

U = K 2 (3. 14)

73x

The matrix to is found to be
0

r , I , -- ) t-i
x " I 1 2K)

LR o 1 t (3. 15)

which is non-singular everywhere, except at t=K. The trajectories thus

smoothly cover the solution space. The first two of (3. 13) may be solved to

obtain
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.2
x xt- IXx -

10 1 - 2 0  '2 20~ 2K
(3. 16)

Kx 2 -X2 t

x 20 K-t

Substituting into the last of (3. 13) gives

1  0

X2 -x 2
K-t (3. 17)

with control determined fromn (3. 17) and (3. 9).

Of course, the control may be deduced from (3. 14) directly in this simple

example. One simply replacee K by (K-to) and 2-egards the present point

as the initial point.

The example illustrates the general procedure of constructing the desired

field. For more complex problems. Equation (3. 9) is found to have th-e

general form

U = I (x, P), (3.,18)

and the solutions (3. 10) are

x = x (t, X0 , p0 )(319

p = p (t, X0 pO).

The transversality condition4 give the relationships

P0 =po (xo) (3.,20)



so 'that (3. 19) becomes

x - x(t,x 0 )

p = p(t, x 0 ). (3.21)

Note that the transversality conditions and terminal equations must

constitute an n-dimensional non-singular (or normal) system to obtain the

solution (3. 20). Non-singularity of the matrix (3. 15) allows inversion of

th( first of (3. 21) to obtain

x = x (t, x), (3. 22)

which is the general form of (3. 16). Substitution of (3. 22) into the last

of (3. 21) gives

p = p(t, x) (3.23)

as the general form of (3. 17). The control (3. 18) then assumes the

desired form (3. 1). Substitution of the control intc the original differential

equations then gives the last of the field equations (3. 2).

In more complex problems, the process described above can be done only

in a small region about a trajectory, as in Section II C.

B. METHODS FOR DETERMINING THE CONTROL

As shown in the example, the control may sometimes be obtained by direct

solution of the optimization problem. This is generally impossible; however,

one might include in the category of "direct solution, the faster than real
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time solution of the optimization problem in an airborne computer. This

appruach is unrealistic at the present time, due to large computational

requirements.

An alterr.ate p-issibility is that of solving of an approximate optimization

problem. The model differential equations are usually as simple as the

process allows; however, most optimal trajectories are fairly insensitive

to path deviations, so far as the optimal criterion is concerned. With feed-

back, the approximate problem solution would approach an optimal solution

as the re-entry progressed so that terminal errors would be nulied as well.

Some time was spent seeking suitable simplifications to the re-entry problem,

and some useful relationships were found. However, the problem was not

realistically simplified to the point that analytical solutions could be obtained.

Another po)ssibility considered was that of using a Rayleigh-Ritz-Galerkin

procedure to compute near-optimal trajectories in the airborne computer.

This process also ran into large computer requirements, and hence, was

not pursued further.

A final alternative is that of using surface fitting procedures to approximate

the optimal control function. This has the advantage of moderate on-board

coMputer ,requirt-LvtS and may well handle large deviations from "nominal"

re-entry conditions. The method also has growth potential, in that self

adaptive features may be built in by increasing the dimensionality of the fit.

However, several facts should be borne in mind in such an approach. There

is, in general, no way of detcrmining the best form of the approximating

function. Polynomial approximations are probably best from the standpoint

of evaluation in the airborne computer, so this form is assumed for the re-

mainder of the report.
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T he region over which an approximation is to be valid is usually delermined

by the errors which can be iolerated. It is generally not true that higher-

ordered fits produce more accu:acy after a certain point, for computer

truncation and ronndoff errors destroy the benefits of the additional terms.

It is better to segment the region into subregions and to use lower-ordered

fits to obtain more accuracy. The segmentation is readily accomplished

and mechanized for one-dimensional approximations, but may lead to serious

mechanization problems in more dimensions.

The larger the dimensionality of the approximation, the harder the problem of

obtaining the fit. It is best, if possible, to split the over-all approximation

problem into subproblems of reduced dimension.

The polynomial approximation approach was chosei as the approach for

further development of the non-linear optimal feedback control scheme.

C. DEVELOPMENT OF THE CONTROL FUNCTION

The polynomial approximations considered are of the for.n

. i j k C.
w = ikijkty1 Y2 Y3 z i j, k, 2,0, (3.24)

i+j+k :ra,

i, j, k. L

where w is the approximated control function u, or one of the multipliers

PI, P z is range, and the variables Yl 1 Y2 and Y3 are related toV, h

through the equations

Y= V-Vn

Y2= Y- n (3.25)

h-hn"
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Nominal 5tate variables Vn , y n, h n are taken as those for trajectory I
in Table 2. 2, and the reason for the transformation is made clear below.

The multiplier approximations are used in evaluating the expression

u = tan 1  2C (3.26)2CDLP I v

It ib possible to split the over-all approximation (3. 24) into two parts

because of the method in which the data was collected (Section II C). Thus,

consider the two approximations

a ijk (Z) = bjkt t 2 0 (3.27)

aa (z) zJ k (3.28)

ijk 2
*

/ Tijk(Z yly~ y~k i.~ (3.28)
t_- i+k .5

ij.k

The method of solution is to determine sets of coefficients a ijk( z r),

zr 15r, r = 0, 1,.... 99, (3.29)r

for the three-dimensional approximation (3. 28). and to use these as

data for the several one-dimensional fits (3. 27).

Consider, then, the problem of determining the coefficients a.. for ...ijLk
a given value of ringe. It is convenient to transform the problem to

the form

W ijkx x 2
3js' , ij,k zo (3.30)L - i i+j+k :5m

ijk
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in which ! xn  1, n = 1, 2, 3, tirough the relationships

x , Y + Y ,

x2 =a2 Y2 + 2 (3. 31)

x3 c'. Y3 + *Y3"

The tr:isformation (3. 31) gives a better conditioned system of equations

to be solved for the coefficients, and, moreover; makes it easy to find

negligibie cuefficients, if there should happen to be any. The coefficients

aijk are obtained by substituting (3. 31) into (3. 30) and rearranging the

results.

When derivatives are included as data, the normal procedure is to

differentiate the approximating polynomial to obtain equations. Thus, for

example,

aw aw aV ay1  1 aw
Z;LCiik- i-1i k

ax I  a a' a X I  , ov cijk ix I x 2 3 ( 3.32)

ijk

with similar expressions for Bw . The four eauationsx 2 ' b

1 X1 x2 x3 x1 xIx 2 XIX 3 x2  x 2 x 3 x3 .•• w

0 1 0 0 2x 1  x2  x3  0 0 0 . . .
c = (3.33)

00 1 0 0 x 0 2x 2  x3  0 ...

0 0 C 1 0 0 x 0 x2  2x 3 ..

with vector

c 0 0 0 ' Ce0 0 ' c 0 1 0 ' C 0 0 1 , c 2 0 0 ' c 1 1 0 ' 1 0 1 , c 0 2 0 ' c 0 1 1 , c0 0 2 ,

10G



are expansions of (3. 30) and its partial derivative equations, in which

terms through second-order in x are shown. The matrix of (3. 33) may be

evaluated numerically for each of the 27 trajectories. These are

collected into a matrix system of equations

A( = f (3. 34)

in which A is a (108 x q) matrix, c is a q-dimensional vector of co-

efficients, and f is the right-hand side of (3. 33) for the 27 trajectories.

The dimension q is related to the order of fit m through

q 1 +J- (ll-6m+m2 ), (3. 35)

and the range on m is O<m !6.

1. Lagrange Fits

The approx,-.ating function is required to agree with actual function

values and derivatius q times. Then q of Equations (3. 34) are selected

and the right-hand sides contain the relevant function values and partial

derivativ's d,:termined during the data generating process. The questicn

of which equ:ition4 to uR(- is re,,lved on the " of thc ica . ityulai-

systtm of equations, as determined by the process of Appendix F. Notice

that the matrix ot evaluated basis functions is thi: same, regardless of

which function (t, P1 1.2) it fit.

An explor4itory program was written to obtain lagrange fita for (u, P1 , P')

for all 'values of ni corsid.red. As originally constructed, the matrix of

ba,-ts function" wam invertec, and three matrix nultilies produced the

LCUffiCli.ltH for the fitH. Each fit w;i evaluated at the 27 data points, and _L_

er',rs woe computed. Output included actual and computed function valuve,

ITAU L5, U,:Id tht: '2mid deviation for each fit, conmputcd from

IU7
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4

F3
ii i

27

E 3L.. 236)

i=t

112272 1

0 ~27 (3. 37)

in which e i is the error in the function for the ith trajectory. Additionally,

the arc tangent relationship (3. 26) was evaluated, and errors and statisdics

for this were included as output. Adequiate precautions were taken to ensure

t-t the inverse matrix was well conditioned. If the product of the matrix

of basis functions and its inverse wee.r* not close to the identity matrix, a

well-known Niwton-Raphson correction was applied. * Those function errors

which were supposed to be zero provided an additional accuracy check (at

least, cne function equation must be included in the set of equations solved,

to obtain the -oefficient c 0 0 0 ).

The first attempts at fitting used (V,y, h) in place of (x I . x 2 . x 3 ) in Equation

(3. 30). The matrix of basis functions turned out to be very badly conditioned,

Lo the linear transformations
i '" = v i, -4

xl =alvi p,~

X2 = a 2 , 2 _(3.38)

with lxii I gl, iz1 2,3, were introduced. The a's and O's, of course, are

computed from maximum and irinimum values of (V, y, h) at the given value

of range. The riew matrix of basis functions was well conditioned, and fits

for all value of m were obtained.

• Iteference 9, report No. 3. pg. 216. The NASA project reports cuntain

a wcalth of information on surface fitting techniques, as applied tQ a

problem similar to the one considered here.
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The exploratory program was run for several range points and the

following conclusions were reached:

* Fits for m=5 in Equation (3. 30) were best for most of the
range points explored. Maximum control errors on the order

of 10* were found, although the means and deviations were

much less.

" The control function fit was superior (in all cases) to the

fit obtained from Equation (3. 26).

The equations used in the fitting process changed from one

range point to the next.

" The equations used in the fitting process changed when the

accuracy of the constants in Equation (3. 38) was increased

from 5 to 8 significant digits (at a given range point), in-

dicating great sensitivity.

0 The constants in Equation (3. 38) were dependent on range.

An attempt was made to fit the constants of Equation (3. 38) as functions

of range so that the approximations (3.30) could be used directly. The

Cheb*/cheff fitting program ,aescribed below was used in the attempt.

In view of the behavior of the variables (see Figures 2-16 - 2 28) it is
evident that the constants are only piecewise smooth as functions of
range, Hence, the fits obtained were riot good. Moreover, when the

fitted constants were used in the transforma tion, the inverse basis

function matrix again became ill conditioned. Hence, it became neces-

sary to perform a "back" transformation by inserting (3. 38) into (3. 30)

and rearranging the results. This gave polynomials in terms of (V, V, h).

The coefficients a so obtained were fairly large, indicating that subtraction

ijk
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must take place in the evaluation of the polynomial. in a seven digit word-

length computer, this could lead to severe truncation and roundoff error.

Moreover, the back transformation could not be performed at all for fits

like (3. 30) in which 3 k i,J, k k 0. (The computer used had a 12-digit word-

length, and the fits obtained were somewhat worse than those for m- 5

above.) When the transformation (3. 31) was used, the back transformation

was readily accomplished, and the coefficients raij k so outained were well

behaved. Thus ,hle conclusion:

0 The approximation (3. 28) with variables (3. :,5) should be used for

evaluation in a seven digit wordlength airbo; ne computer.

Tae transformation (3. 31.) is obtained from (3. 38) by adding dnd subtracting

.he appropriate amounts. Thus,

X l = f lV + l =  (V -V ) - Vn + 31 )  = l + /1 (3.39)

11-n

with similar expressions for x 2 and x 3 .

It was de-cided to explore least squares approximations as the next step ill

the developmnent of the control function.

2. Least Squares Fits

One may readily verify that the syste:m of equations to be solved is (see

Refere:nce 2)

(A'A) c ' ,_(3.40) =

I

ii "
Fi

=



where the notation is that of Equation (3. 34), and vector f contains function

values and partial derivatives obtained during the data generating process.

Unit weights are used since the derivative equations were of the same order

of magnitude as the functional equations. An exploratory progr-Am similar

to that for the Lagrange fits was constructed, except that a subroutine to

solve simultaneous equations was used in place of matrix inversion. The

accuracy of the fits so obtained was very good, as measured by the closeness

to zero of the mean, Equation (3. 36). One may readily verify that the first

normal equation for the system (3. 34) requires (3. 36) to be zero. Then the

deviation, Equation (3. 37), may be interpreted as the functiona, portion of

the error minimized by the least squares process.K

The exploratory program was run with the following conclusions:

* The least squares fits were better than the corresponding

Lagrange fits.

a Fits for m = 5 were again best for most of the range points.

* The control function fit was superior (in all cases) to the fit 4
obtained from Equation (3. 26).

The approximation (3. 28) with variables (3. 25) should be used '4
for evaluation in a seven-digit wordlength airborne computer.

It was decided to use the least squares approximations for the control function.

Accordingly, fifth-order least squares fits were obtained for the range values

(3. 29), excluding r - 95 - 99. The order of the best fits for these range

points are summarized in Table 3-1.

I
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Table 3-1. Order of Best Fits Near Terminal Point

Rane Point Order of Fit
(r) (mD)

95 4

96 4

97 1
98 1

99 2

The control functions of Figure 2-28 are shown in F-gures 3-1 through 3-27.

together with the corresponding errors in the least squares approximations.

The maximum errors occur in the vicinity of maximum change in the control

function which corresponds to the bottom of the first dip into the atmosphere.

The approximations are quite good before this region, and very accurate from

about z = 800 to z = 1300 miles, which covers the complete skip after the first

dive. The approximations become somewhat worse as the e-ndpoint is approached.

?. Chebyscheff Fits

The final phase of the control function approx!matin is that of performn.g the

56 one-dimensional approximations (3. 27). This was not done, since time did

not permit both this approximation and the simulation studies of Section IV to

be accomplished. It is evident, from Figure 3-283, that the one-dimensional

fits must be segmented into several parts in order to obtain any degree of

accuracy in the approximations so the final phase is not a trivial problem.

A Chebyscheff criterion fitting computer program was constructed for this

final phase. The method is due to Professor F. Koehler of the University of

Mirnesota, who was a consultant during the contract period. Assume that

equally-spaced data is given over the interval 10, 1], and that the order of the

fit to be obtained is n. A Lagrange polynomial of order n is constructed for

the (n+l) tabular points closest to the Chebyacheff zeros, denoted by

112
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x 1 -.- - c s(, i - ] i =o s . . n+l (3.41)

(1)l

Let pn (1)x) denote the Lagrange polynomial. If the function f(x) to be
n (1)

approximated is a polynomial of degree n+l, then pn (x) is the solution
which satisfiee the Chebyscbeff criterion

Max I f(x) - p(x) I = Min. (3.42) ,

In general, this is not true, 8o the method proceeds iteratively to the solution.

Let c(x) be the error

C(x) = f(x) - pnx) (3.43)

which vanishes at n+l points by construction. If the data is smooth enough,

c(x) will vanish exactly n+l times, andtherewill be n+2 maximum errors

(two at 0 and 1, and n relative maximum and minimums). The objective, on

each iteration, is to equalize the n+2 absolute errors. Let z , z i .... Zn

denote the points at which the maximum errors occur, and let i]x) be a

correction polynomial chosen to equalize the errors. Then

-dz ) +')= -C (Z (,()n [e(Zn+) -1(zn 1). (3.44)

Let h be the common value in (3.44) so that

(z o 0= h+ c(z 0 )

,T )  -h + c (z )

(3.45)

T) (z) = (-I1)h + (z n

n+
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E~quations (3.45) are n+2 eq~uations in h and the n+1 coefficients of thei

n order polynomial rI(x). The approximating polynomial for the next

iteration i.7, taken as

(2 (X ( ) W + rxW. (3. 46)

1,teration is requi red, since the location of the maxi mum errors, in genli al.

shifts at each stage.]

'Fhe inethod was found to work very well in practice. It rapidly converged

to sl-atiuiiary points, z, i= 0, 1,...n+1l, arnd the selection of the s ame set4

of points z on two successive iteratine was found to be a good stopping I;.
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SECTION IV

MECHANIZATION AND SIMULATION OF THE
NONLINEAR OPTIMAL FEEDBACK CONTROL SCHEME

A. SIMULATION DESCRIPTION

The mechanization of the scherie for the re-entry problem is illustrated in

Figure 4-1. Detailed descriptiots of each block in the diagram follow.

INITIAL
CONDITIONS x

McaIzto fo the RETOR ANCONTRO

REENTRY VEHICLE N OR x GENERATOR
IAND SENSORS: thAIorO m o fXlg f((1min' Ior ln-a l n-'tn-3)t

ACCEEROETER A.tn+l -tn. tn-t
On+l" U (Xn,+1)  ,

Figure 4-1. No>nlin ar Optimal Feedback ControliScheme
Me chanization for the Rie-entry Applicatluji

1. Re-entry Vehicle and Sensors

In view of the shor', time of flight (15 minutes or less), accelerometers are the

only sensors assumed to be aboard the vehicle. They measure the acceleration

components (smoothed, if necessary) in the lift and drag directions,

a, 7- - CL( sin u

a1  S 1 1- C Cos(4. 1)

S'[C_ | "-DO DL2 = m- -( DO+CDLcosuJ
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S ad
The constants 2TM' CLO' C D n DL may be changed from their nominal

values to evaluate the over-all performance of the scheme, and the density

profile may assume one of several forms for the same purpose.

2. Navigator

The navigator integrates the differential equations of motion and supplies the -

state vector and its timp derivative at discrete instantq of timne. In terms of

accelerometer measurements, the equations of motion are

2
dv g R sin y

dt 2 (R+hb)

dv a v CosY g0R 2 Cos Y

dt v1" (R+h) \(~)

(4.2)

dh. v sinvy

dz R vcos y
I C 3 (R +h)

The state vector components are velocity v, flight path angle Y, altitude h,_

and range z (ri-eatured in miles), and the state vector derivative is the right-

hand side of (4. 2). The total heat is also found, for scheme evaluation purposes.

by integrating equation (2. 2) aWong with system (4. 2).

3. Predictor and Control Generator

The predictor equation is the Adams-M'.~ulton equation

n~ X1+ . n 59 - + 37x 2 - 9"n-3)

used to introduce lead into the system. Lack of time prevented experiments with

other predictor equations, and A 1/2 and 2 seconds were the only time incre.

nients considered.
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Equation (4.3) requires three back derivatives as well as the present point.

so it is not applic.ble for the first 6 seconds of flight. The first three back - -

derivatives are generated from (4. 2) with a constant control in Equations

(4. 1). The actual value of this utintrol is wximpormant since the veicla i.3

out of the sensible atmosphere during the first 6 seconds. However, it is

taken as the control generator equation value at the initial point (which

assumes z ° = 0) for continuity purposes. (Figure 2-28 shows that tb

control is almost constant during the initied phase of the flight.

In Section I1, 100 control function fits of the form

U i= kaik V-V N)1  h- ; i,J,k X 0 (4.4)

i. j, k i+j+k ! m,

in which VN , YN and h. are 1' nominal" trajectory values, were found. The

coefficients alJk were noted to be functions of range; however, they were not

reduced to polynomial form due to lack of time.

Tne control generator interpolates linearly between fitted range points (spaced

15 miles apart) to determine the coefficients aijk at the predicted ravge point.

Also, the nominal trajectory values are determined by the same process. The

polynomial (4. 4) is then evaluated with the predicted values of V, Y and h.

Of course, the control is constant for the first 6 seconds of flight. It is also

evaluated differently for the last 30 miles. This is necessitated by the singu-

lar endpoint and the general compi ession of the state vector differences near

the endpoint (see Figures 2-16 through 2-28). Hence. a linear interpolation

for the control is performed with range as the variable. The two points used .. -

are the control at z n+ 1 = 1470, and - nat z = 1500 miles, - z 1500 miles is

the stopping condition for simulated trajectories.
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4. Hold Circuit

The hold circuit supplies the constant control during the first 6 seconds, and the

linear function of range during the last 30 miles of flight. In the intermediate

region, it is taken as a cubic in time using the points un+ .... n- 2 to evaluate

the coefficients. The transformation

t - tn 2 (t - tn )S n-2 2 + n 4. 5)

allows the cubic coefficients to be computed from

0 0n-9 Fm
F: -2 3 1n-

a1 1

a3  -6 ""--Un+ i

B. SIMULATION RESULTS

Table 4-1 contains results of simulation runs for the 27 optimal trajectories.

AJ is the difference between simulation and optimal trajectory total heat, and is

seen to be a positive quantity; A is the time increment used in the Adams-

Moulton predictor equation (4. 3), and 6v and Ah are the terminal velocity and

altitude errors from the optimal trajectory values of 1650 ft/sec and 75, 000 feet..

respectively.

1I
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Table 4-1. Simulation Results for the 27 Optimal
Trajectories of Table 2-2.

Trajectory Total Heat Total Heat a I AV Ah
Number Optimal Tra'. Simulation (BTU/ft 2 ) (sec) (ft/sec) (ft)

1 28,872 28,898 26 2 226 - 8,655

2 31,888 31,913 25 2 59 8, 565

3 26, 252 26, 270 18 2 234 - 8, 537

4 29,278 29,295 17 2 218 - 8,982

5 28, 666 28,721 55 2 298 - 5,804

6 29,032 29,051 19 2 227 - 8,898

7 28, 757 28,810 53 2 217 -10, 566

8 32,280 32,295 15 2 226 - 8,884

9 32,116 32, 148 32 1/2 281 - 6, 254

10 26,657 26,687 30 2 211 - 9,018

11* 25,792 25,844 52 2 49 -25,640

12 32, 135 32,344 209 1/2 220 - 7,649

13 31,844 31,900 56 2 246 - 9, 34.:

14 26,362 26,382 20 2 225 - 8, 952

15 26, 128 26,173 45 2 244 - 9, 520

16 29,963 Fail at z = 1056 miles

17 29, 017 Fail at z = 1431 miles

18 28,510 28,562 52 2 243 - 9,603

!9 28, 817 Fail at z = 472 miles

20 I 32, 444 Fail at z 1077 miles

21 3 1,374 31,397 23 2 249 - 8,447

22 31,110 31,173 63 2 250 - 9,168

23 31,375 31,449 74 1/2 263 - 5, 570

24 27,326 27,348 22 2 220 - 9,048

25 26,891 27,043 152 1/2 137 -12,201

26 26,216 26, 256 50 2 253 - 8, 930

27 26,368 26,417 49 l!/2 -- 43 -10, 750

* Lz = -6 miles.
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Most of the trajectories were simulated using A 2 seconds. The advantage

of making A as large as possible is that the onboard computer- can be used for

other tasks (such as computing display information) during the idle time.

It was found that several trajectories failed with this increment (trajectories

9, 12, 16, 17, 19, 20, 23, 25 and 27), and a failure was recorded if the con-

trol for a given trajectory exceeded ±500 degrees. This was an adequate test,

since if the control for a given trajectory exceeded ±180 degrees, it also ex-

ceeded ±500 degrees. Computations were also stopped if the altitude fell

below 50, 000 feet. This happened with trajectory 11, which stopped with a

range error az -6 miles, as shown in Table 4-1.

With A= 1/2 sec., only trajectories 16. 17, 19 and 20 failed. This time

trajectory I I stopped wi.i- a range error A z = -0. 1 mile, as indicated in

Table 4-2. Trajectory I was also run arid only small improvement in terminal

conditions resulted (Table 4-2).

A simulaticn program with no prediction (A = 0 was constructed to test the

ultimate capabilities of the control function polynomial approximation. (The

polynomial is evaluated at each integration step, and the system is assumed to

react instantaneously.) This was run for trajectories 1, 9 and 11 with the

results shown in Table 4-2. There was no change in terminal conditions for

trajectory I (compared with the A= 1/2 second case), and only slight changes

for trajectory 9. Path 1 I reached the stopoing condition (z = 1500 miles) even

through the final altitude was less than 50, 000 feet. Trajectories 16, 17, 19

and 20 failed again when run with this program.

Table 4-2. Additional Simnuletion Results

Trajectory Total Heat Total Heat AJ A I Av lh
Number Optimal Traj. Simulation (BTU/ft 2 ) (sec) (ft/sec) (ft)

1 28,872 28,897 25 1/2 226 - 8,655
28,872 28,897 25 0 226 - 8, 655

9 32,116 32,147 31 0 281 - 6,279
11* 25,792 25.842 50 1/2 -171 -25, 107
11 25,792 25,842 50 0 -170 -25,043
28 29,589 Fail at z = 1044 miles
29 29,011 29, 048 37 2 223 - 8,579
30 28,496 28, 551 55 2 253 - 9,026
31 28,687 28, 720 33 1/2 263 - 8,081

* Az -0. mile
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Four additional traiectories, numbered 28-31 in Table 4-2. were run to test

the nonlinear optimal feedback cont, ol scheme for off-design trajectories.

The initial conditions for these are given in Table 4-3, and they correspond to

the initial cond,tions of trajectories 20-27 with Ax10 = 0. Trajectories 29 and

30 ran with A= 2 seconds, whereas A= 1/2 seccnd was required for path 31.

Trajectory 28 fails, even with A= 0.

Table 4-3. Initial Conditions for Trajectories 28-31

Trajectory initial Velocity Initial Flight Initial Sign of Change
Number (ft/sec) Path;Angle Altitude From Trajectory

(degrees) (ft) A10 A20 Tx30

28 35,000 -5.40 430,000 0 + +

29 35,000 -5.40 370,00C 0 +

30 35,000 -.7.35 430,000 0 +

31 35,000 -7.35 370,000 0 -

Path 28 may be compared with paths 20 and 24 to see the effects of initial

velocity changes, since Ax20 and x30 are the same. Numbers 20 (+ Axl0)

and 28 (Lxl0 = 0) fail, whereas path 24 (-Ax10) is successful with A 2 seconds.

Similar comparisons are shown in Table 4-4.

Table 4-4. Effects of Initial Velocity Change on A

Sign o
Trajectory Ax I X20 A

Number 10 20 30

21 + + 2
29 0 + 2
25 - + 1/2

22 "+ + 2
30 0 + 2

26 - + 2

23 + - /2
31 0 - 1/2
27 - - 1/2
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The chnaracteristics of the successful flights are illustrated in Figures 4-2

through 4-5. Only those for trajectory I are displayed, since most of the

flights are fairly sirnilar. The first dip into the atmosphere is quite critical,

and the inaccuracies in the control function (Figue 3-1) drastically affect the

remainder of the path. The vehicle emerges into the skip region (where the

control function fit is very accurate) following a new optimal path. This is

pursued zhrough the second dip to a point (about 1410 miles) where the con-

trol fit again becomes somewhat inaccurate. Inaccuracies from this point

onward do not affecttotal heat very much, but do contribute to terminal

velocity and altitude errors. Another sources of these errors is the linear

fit of the control in the last 30 miles of flight. The control is still rising

at 1470 miles (Figure 2-28) and the additional lift available to the optimal

trajectory is neglected in 'he simulation. This causes the vehicle to dive

more steeply and (in general) to lose less velocity as the endpoint is approached.

The terminal errors should be reduced by starting the linear interpolation

closer to the endpoint; however, no experiments of this nature were per-formed.

It is understandable that trajectory 16 failed. This path was difficult to obtain

during the mapping process, indicating that it was near the edge of the corridor,

and consi:quently, that the control fit Is near the edge of the region of appli-

cability. Control function inaccuracies could easily move the vehicle into a

region where the control function fit is no longer applicable. A comparison of

optimal arid .imuated tiajec rlc, sho;';_ tha-t the -i -- ite far from the

optimal a' the point of failure (Av = -450 ft/sec, Ah = 7,000 feet).

The large inaccuracies in the control function of trajectory 17 (Figure 3-17)

occur in the vicinity of the first dip into the atmosphere (the bottom is at

z = 600 miles). They cause the skip to be quite different from that of the

optimal trajectory. The effect, however, is aot noticed until near the end of the

trajectory, since the accurate control fit produces a reasonable control for the

intermediate portion of the flight. The vehicle eventually leaves the region of

applicability for the control function polynomial.
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The initial conditions for trajectory 19 cause the vehicle to dive deeper into

the atmosphere which in turn produces greater lift and drag forces. The
vehicle follows the optimal path through the bottom of the dip (at z = 375 miles).
However, the control inaccuracy bulge in the region z = 400 miles to z r400

miles (Figure 3-19) causes the vehicle to be captured by the atmosphere,

instead of following the skip of the optimal path. This shows the sensitivity

of the paths to the control fun;ction errors ni:.r the bottom of the firat dip.

The flights of trajectories 20 and 28 are similar to tbat of path 16, and they

show that simultaneous positive perturbations in initial flight path angle and

altitude are not tolerated by the control function fit.

The conclusions drawn from the simulation results are:

* In its present form, the nonlinear optimal feedback control scheme

produces reasonable re-entry trajectories with modest increases

in totai heat from the optimal values, for a suitably restricted

region of initial conditions.

* The inaccuracy of the control function fit over the first dip into the

atmosphere drastically affects the remainder of the flight, The

accuracy of the fit should be made better here to eliminate the

failures, and to consequently decrease the total heat.

* It is believed that the terminal point crrors can be i-eduLed by

starting the linear interpolation for the control as a function of

range closer to the endpoint.

* The time interval A, used in the predictor equation, was found to

be a fun.ction of the simulated trajectory; A should be made a vari -

able quantity, dependent upon the state of the vehicv.
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SEC'ION V

CONCLUSIONS AND RECOMMENDATIONS

A. ACCOMPLISHMENTS

A re-entry optimization problem is presented and solved through the methods

developed in Reference 1. These produce an accurate solution to the optimiza-

tion problem. A powerful predictor scheme was developed, which supplements

the work of Reference 1 and which allows the optimal solutions to be changed

as a function of a parameter. This was used to extend the range of the original

optimal trajectory, and to perform an "absolute minimum" test. The latter

showed that the optimal path is a mi. imizing path, at least over a large region

of solution space. Sufficiency tests for a relative minimum were also developed.

It was shown that the trajectories ccnsidered are relative minimums.

The predictor scheme was used to map the re-entry corridor, and 27 optimal

trajectories spanning the corridor were obtained. The control functions for

these trajectories, and partials of the control with respect to the state vector,

were used to obtain a polynomial approximation for the control function over

the optimal re-entry corridor. The approximation was used in the mechaniza-

tion of a nonlinear optimal feedback control scheme. Simulation results showed

that modest increases in total heat over optimal values were experienced, and

that large (although tolerable) terminal errors resulted. it is believed that the

terminal condition errors can be greatly reduced, if necessary. A few of the

trajectories :ailed, which, in effect, limits tbe region of applicable initial

re-entry conditions to some extent.

Another re-entry optimization problem, in which the sensed acceleration is

constrained to be less than or equal to a given number of g's, was posed, and

several optimization methods were used in an attempt to obtain a 10-g optimal

path. The methods all failed, although the predictor scheme emerged as the
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most powerful of the group. A singular point on the constrained subarc

prevents convergence to the solution. A means of circumventing this

problem was found but remains to be tested.

The optimization methods were also extended to include the bounded-state

coordinate problem.

B. RECOMMENDATIONS

The nonlinear optimal feedback control scheme in its present form produces

near optimal re-entry trajectories if the space of initial conditions is suitab'y

restricted. The scheme is technically sound but fails in some instances only

because of control function errors.

The polynomial approximation is based upon control values for several optimal

trajectories, and the paths are readily generated through use of the predictor

scheme. It is possible to generate many more paths than were used in the

study, and consequently, to fill out the optimal re-entry corridor with optimal

values of the control function. The increased number of data points should

enable better control function approximations to be made.

The data processing task is that of reducing the data points to a form readily

implemented ;n the control scheme. Polynomial approximations are probably

best for this purpose; however, there are many ways of approaching the fitting

problem. It may be that surface fits of the partial derivatives are well behaved

over a large region of the corridor, so that fit& of these, followed by an inte-

gration, may produce more accurate control function approximations. On the

other hand, it may be necessary to segment the corridor into several pieces,

and to perform surface fits for each of these to obtain the required accuracy.

Also, it may be possible to split the over-all fit into several low-dimensional

subfits, so that each stage of the fitting process may be carefully controlled.
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The data processi:g task is seen to be in an incomplete state at the present

time. Since many practical optimal feedback contrA problems could be

implemented if this task were accomplished in a practical way, it is re-

commended that:

0 Prat ical methods should be sought for performing tWe data

processing task.

The control function polynomial approximation is presently based upon

unconstrained optimal trajectories. However, many real optimization

problems necessarily contain constraints upon the control and state vectors.

It is recommended that:

* Mechanization problems associated with inequality constraints

should be examined.

In view of the rising importance of adaptive control capabilities, the methods

should be extended to this case. Theoretically there is no problem, although

practically, the dimensionality of the surface fit is increased. Thus:

* Problems associated with extending the methods to include

adaptive control capabilities should be examined.

Finally, most feedback control schemes which operate o'ver a finite time

interval contain a singular point at the endpoint. This is true for the problem

studied in the report, The singular point causes difficultfes in the vicinity of

the endpoint, and usually results in terminal point errors. Thus:

* The singular terminal point problem should be examined

theoretically to determine if the endpoint errors can be

minimized.
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MATERIALS SECTION (TABLE LXXV)

No work of the nature diescribed in Section 2 of Table LXXV was performed

under Contract AF33(615)-1858, BPS Number 4(6399-62405364--822501).
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APP ENDIX A

A PREDICTOR SCH-EME

Suppose that one has an n -dime rsiz'nal system of equations of the form

~~xb) =0 (A. 1)

in which x is an n-dimensional vector and b is a single parameter. Assume

further that the matrix 4 exists and is non-singular cver the range of b
considered, and that the vector Aalso exists. Then by the implicit function

theorem it follows that

x =x (b), (A. 2)

and

db (A. 3)

If m solutions (A. 2) to the syste.n R.k 1) are kno-%n for equally spaced values

of the paramieter b, arid if the c.urresponding derivatives are computed from

(A. 3) (rali Lite cvil-piete SySt .:m --- , and X, X, respectively),
the problemn is that c, predicting the next member of the famiily of solutions,

ni+ l'

Open type integration formulas are Aell suited for this task, and many such

formulas are given in Chapter 6 of Reference 2. In particular, a formula

truncated after third differences (the Adams-Moulton predictor equation) is

=X - -- (5 5x ~59 xl +37' x' ' )(A. 4)rn I xr 2 mm 1 m 2 r-3'
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where h is the spacing between parameter values. Notice that the present

point and derivative, and three previous derivatives are required for this

equation. Other formulas using less back information are easily derived

from the results given in Reference 2. The simplest ouch ecr.ation,

using only the present point and derivative, is the Newton-Raphson equation,

Xm+ 1 =x + hx'm . (A. 5)

As an example of the use of the predictor scheme, consider the range

extension problem of Section IIB. The equations corresponding to (A. 1)

are

V(T, )-X = 0
0 1

FTFo ) -X 2 /R = 0

(A. 6)
(T, P) -X 0

P2 (T, P-) - 0

H (F 0.

The para~neter b is identified with the terminal rangeX 3 , so Equations

(A. 3) become -f
T (T) 1 1 (T) n 1 2 (T) nl 3 (T) - 1 4 (T) 0

1'/0 '(T) 3 1 (T) 13 2 (T) p 3 3 (T) n3 4 (T) 0

P20 = (T) r34 1 (T) ' 4 2 (T) T14 3 (T) ,' 4 4 (T) 1 (A. 7)

P30) IP(T) 21 (T )  C 2 2 (T) C2 3 (T) 2 4 (T) 0

P4() 0 fl(0) f 2 (0) f 3 (0) f4(o) 0
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It is s' en that the third column of the inverse .Newton-Raphson matrix contains

the derivatives for the predictor equation when the solutions (T, P ) satisfy

system (A. 6) (for a given value of the parameter X 3 ).
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APPENDIX B

THREF OPTIMIZATION TECHNIQUES

In addition to the modified Newton-Raphson method and the predictor
scheme, three other optimization techniques were considered during the

period devoted to optimal trajectory computations. They include the

optimal Newton-Raphson scheme, the Fletcher-Powell method (Refzrence 3)
and Marquardt's scheme (Reference 4).

As a common basis for discussibn, let the system of equations to be solved

by the optimization schemes be

1 W = 0, (B. 1)

where both 41 and x are n-dimension.l vectors. Multiply this system by

a diagonal weighting matrix W to obtain

(x) = WP(x) = 0. (B. 2)

W clearly does not change the solution, but does aid in the numerical

computations. Define a function

f(x) = '(W)(x, (B. 3)

whose absolute minimum value (zero) corresponds to the solution of

(B. 1) or (B. 2), and let g(x) be the gradient vector,

g(x) =2 ( Ox W () (B.4)4
\ x 1
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Both the optimal Newton-Raphson and Fletcher -Powell methods require

that a minimum value for f be found in a dire cton s. Let

x =x 0 + Ns (M. 5)

Where x0is the prmsent point and k. is a para-meter, and deternin-2 a

point

X, X0 + KT~s, 0O<K~l (B. 6)

,.%here

=minimum of 1, 1(x) (B. 7)

Equation (B. 7) was found in the appendix of Reference 3, where W. C.

Oavidor. (Reference 5) is given credit for its origin. The factor K in

Equation (B. 6) Aas found necessary for the re-entry problem since

E,uation (B. 7), in some instances, produced too large an estimate for T),.

If f (X0 ) g(xj , f (x 1 ) and g(x 1 ), are known numerically, then the function

f(x) mnay 'ke approximated by the cubic equation

f (x 0 + Xs) = a + a +4 a 2 % + a 3 X. -B. 8)

Values for the coefficients are 'IF-lnd to be

a 0  f(x)

a, g (X0 :s

1i-Ii "o~ A)s1 (B. 9)

a = i~ [ Z g (x ) s+g '(x )sJ

Z =~ If(X.) f f(,)]+ gI(x )s+g'(x )s _T' T O 0 1



When Equlation (B. 8) is differentiated and evaluated for the mrinimnizing

value \ a, it is found that

-a 2a-3l B 10)3a 33a+ a 3 ] B

so ie approximat minimum value of f in the direction s is given by
f (x + a' S).

Thfe direction s ir, the optimnal Newton-Raphson method is given by

the Ncwtoni-faphson cha.-ge

Sai J )1 B.11
N L ~Xj 0

%Vhen K and r, are both unity in (M. 6) and (B. 7), x1 is the Newton-

11-ph~zon predicted point, Eo the miethod becomnes straight Newton-Raphson

as the solution is approached.

The Flutchcr -Powell dircction is4

_Hx(B. 12) -

where II(x )is a positive -definite matrix to be updated after each step
(i'elci cnce 3 suggests the iderntity matrix as a suitable initial choice).

x +a S ,(B. 13)2 0 F
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f(x 2) and g(x 2) hav:e been evaluated, the updating equations for the next step

are

H(x 2 ) H(x o ) + A + B

A = 0.
cO,

(H(xo)Y)(H(xo)Y) ,
B = - (B. 14)

Y' H(x 0 )y

y g(x 2 ) - g(x 0 ).

IJ

In Marquardt's scheme it is assumed that a linearized expansion adequately

describes the surface behavior in a suitably small sphere of radius 6 o about

x o . Thus, Equation (B. 2) may be written

Z(x o + 6) = (xo) + -x , (B. 15)

where the change 6 is to satisfy the constraint

0. (B. 16)0

The function (B. 3), using approximation (B. 15), is minimized subject to the

constraint (B. 16) by setting the partials of

2F (6, k) f(x 0 + 6) (66 - (B. 17)

to zero. Upon performing the operations it turns out that -

[o ta(x) ao (x) +-g(x 0 )&X 0x ax 8 - 2 (B . 18)
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In practice, X ; 0 is a parameter. When X 0, it follows from (B. 4) and

(B. 11) that 5 is the Newton-Raphson change. On the other hand, if X is

large, 5 approaches a gradient change. The policy is to make X as small
as possible during iterations.

I

Ji
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APPENDIX C

THE TRANSFORMED OPTIMIZATION PROBLEM

The system of differential equat.onr for the re-entry problem are

q 12 3+ . N _3/2 v 12. 51/23+7.5N' (c.L' j
g P 0 sin (C. 1)

-S 2 Q siny
V 2m v CD(U) ( 2(1 + 2i

S Pvc(U) + 0 Cos (C. 2)TrR(]- L ) v0l+ 0 2

S- sinYR

dC _ v

The transformation

Sc = 5,280 (C. 3)
c3 3

changes the units of range from feet to miles, and transforms the last

of (C. 2) to

dz 1L v cos "y(C. 4)
dt C 3 dt c 3 (l + 9)

171

_ _ _ _ A



Now z is a monotonfic increasing function of t. sQo z may be used as independent

variable in place of t. .Using the transformation

d -dt d(C. 5)
dz Tz T

and (C. 4) on (C. 1) and the first three of (C. 2), one finds

d C3  (1 4)p( v

+ 7.5x1ON (1+~) 3/2 ( ji.
COS 'y 10%I

dv c 3S (1 + C) Pv C(/ _C~g 0, tan -y (C. 6)

d-y c C3S (lIS2 + jJg) P

d i coy 3

dz R (1--+ tan ~y

Now let

V V 2 
(C. 7)
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and n(-tc that

dz dt (C.8)

Also, transform altitude to units of feet through

h = (C.9)

Then Equations (C. 6) become ,

= C3  (R + h 1/2V

dz R - cos y

R os j) \o --

_dY CsU)hpvC. k0) 1

dz mR cos D(u) 2C3goR (R + h) - .1

dy c 3S (R+h)P c3  c 3 g o R _J

i cos V CL(u) + - V (F +h)

dh 'dz = R (B + h) tan y,. . ..... . .

dt 3 (R + h)
dz R V112
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The Hamiltonians for the systern (C. 1) and (C. 2), and the system (C, 10)
art:, rcspectively.

H =f 0 +p'If (C.i 11)

and

H2  g+ Pg (C. 12)

Each Hamniltonian represents a canonical system of equations, so a

cainonical transformation may be used, in part, to transform one system

into the other. A second transformation is required for the change of

independent variable.

The generating function F2 (q, P, t) of Rf-ference 6, page 240, represents

a canonical transformation between old and new state vectors (q, Q) and

multipliers (p, P). The transformed equations satisfy

aF 2 (C 1=3 -

aF . - -- . ...

aF 2

K H iat

Let

F2  V,2 +__y_ R (C 14)
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Then in the transformed system,

V v 2

(C. 15)

h R

3

and

p1

x2 P 2

P3 (C. 16)

4 c 3 P4

The first, third and fourth of (C. 15) are respectively, the transformations

(C. 7), (C. 9) and (C. 3), and the second represents the identity transformation

on y. The corresponding multipliers are given by (C. 16), and the new Hamil-

tonian K (the sarne form as the old) is cvaluated iii tvi'rm of 'he neA varab'es.

The transformation for the change of independent variable is based upon the

proof of Bliss' theorem 74. 2, page 205 of Reference 7. Let f, f be the right-

hand sides of the differential equations in the variables (V, Y, h, z) x and u,

The generalized Lagrangian associated with this system is

F = f + x' (f - S) (C. 17)
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where K is the multipl:er vector (C. 16), and the first variation of the funetion

rT
J Fdt (C. 18)

0

is to be taken. Let the independent variable of (C. 18) be changed from t to

x z. This may be done since range is an increasing function of time.

Then (C. 18) becomes

zf dx dx 5

dz dz dt
tF x, dz (C. 19)SdtT- Uz

whereu is taken as the time derivative of a fifth state coordinate. The

generalized Lagrangik-p for (C. 19) is

dx.

F + ~ ~f - d) + x t(C. 20)
0 4kf4V) dz

In the following, the derivative subscripts represent partiai' Adth respect

to the derivatives. One may readily verify the relationships

F F1  
- k. i = ,2, 3 (C.21)x.- x. -- 1

dz

F dx (C. 22)

dz

4
Ft F + x x -u FU H1  (C.23)

i=1
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In (C. 23), the definition for the Hamiltonian

Y!!H F-ZV y.'* (C24)

i

has been used, where the derivatives yi include the control function

as well as the derivatives of the state components with respect to the

independent variable. In the present case, F u of (C. 22) is zero (from

the transversality conditions) so that (C. 23) is recognized as the usual
Icontrol problem Hamiltonian. When the Hamiltonian for F is formed,

according to (C. 24), and (C. 21), (C. 22), and the center expression of

(C. 23) are inserted, one finds

H' = (C. 25)

On the other hand, when H1 is used for (C. 23) one finds

f 3 f
H' o+ X H dt

f l iT l I

d Fu + k4f4 ( t (C. 26)
- -- dz f 1.6

The last expression is zero, so with F taken as zero, this is the same
U

as the Hamiltonian (C. 12), for by the transformation (C. 5) (taken as the last

transformation),
1 ~I-

gi -- i= 0, 1, 2, 3. (C.27)

T.?
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Thus,

P= = P

C. 28) -

3 3= R P a =  ' =  "W ": -4.-_.

P 4  = -H 1  = -H -__

H 2 H '. . . .-aP 4 :

-

2 4. 3p4.
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APPENDIX D

A NON-HOMOGENEOUS RiCATTI EQUATION FOR
FIELD PARTIAL DERIVATIVES

The fundamentai system of solutions for the system of equations

2H H[]

d = (D. 1)
dt 2

is

000

A field of extremals is constructed by obtaning solutions to the lineariz p
boundary conditions for the optimization problem such that

_ia= K i D. 3
0

as, (for example) in Section IIC, and then determining the partial derivatives

-6-R- I ,o,, ! ? (.4

This field cannot be constructed if the inverse matrix fails to exist at any point

along the extremal (excluding the end point).

79
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U 6 + -xK

~-~- ~ p(D. 5)

v + -LK.
0 p 0

Then from differentiation of

U U I (D. 6)

it follows that

Substituting from (D. 1), and premultiplying by V. one finds

v vu VU -- vu (D. .8)

Also from (W. 1). b,! post-multplying the expression for V by U 1 ,

U 1  + 2 i Vu j (D. 9)

When (D. 8) and (D. 9) are added, the left-hprid side is iound to be a pcrfect

differential, Ho that

-i 1 -_[ -I '1 1 -I l i - I(VU + VU V T-jV 2u VU

(D). 10)

From (1). 5). (D). 4) and (D. 3) it is found that

4pU-1 ~ K, (D 1)

where 4-iks knowu to be a svmrnmetric matrix. Other fields may be gicwrith-c

by eh~it ig the initifAl conditionsi to offer symmetric mutricep, se!ch all the

mutrix .uiwidcrod Jn thu sufficiency test, Section 1113.J
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APPENDIX E

RELATIONSHIPS FOR SUFFICIENCY CONDITIONS

NON-SINGULAR NEWTON - RAPHSON MA'rRIX AND NORMALITY

According to Reference 7 (pages 230 and 231), the accessory minimum problem

has order of abnormality q if there exist q linearly-independent sets of con-

stants and solutions of the canonical accessory equations

2H a2H

(E. 1)
2 26 2H a H

of the form r F 0, C(t), c for each of which

+  0 (E.2)

0

C + 0 0, (E.3)

0

The functions

[0,x(O),T,x(T)] = (E.4)

are end conditions satisfied by the extremal path, and repeated subscripts

in (E. 2) and (E. 3) denote sums. If the order of abnormaliy q is zero, the

path is normal.
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In the optimization problem the initial conditions are all specified, which

implies

1(0) = 0

i 1 .... n

Ci(0) = -(E. 5)

+i- exi(0) 0.C n+ I io

Thus the solutions to be considered are linear combinations of the solutions

-o- 1 2 (t) n1 2 (o)

with
8(t) -rr 1 2(t)

(E. 7)T)(t) T 12, 2(t) C

fBy hypothesis, tne first of (E. 7) are all zero. It is shown that if the

Newton-Raphson matrix is non-singular, the constants c are all
zero, so from (E. 7) therc are no non- zero solutions 'r e 0, C(t), c . Thuz,

s = 0, and the problem is normal by lemma 81. 1 of Reference 7.

'I he terminal conditions (E.4) are assumed to be -

x (T) - X k  0, k = 1 ..... r t n (E. 8)

T-K 0 (E.9)

182



where (E. 9) is omitted if the terminal value of the independent var.aole is

not specifi.-d. The terminal equations (E. 2) and (E. 3) are then

= Cn~+~ k 1, 1...r (E. 10)

(T 0, j r+1. ... ,.n

C(n+l}+k X k (T) £4r2* (E. 11)

Assume first that (E. 9) is included. Then the first r and the last (n-r) of

(E. 7)at t= T = K give

B c = 0, (E. 12)

where B is the Newton-Raphsori matrix (as in Section IIC). If B is non-

siniular, c - 0, and the result follows. If (E. 9) is omitted, then (E. 11)

must be included, since with c 2 0, it is an additional conistraint

eq-iation. However,

C(n+l)+k xk (T) M x.(Ti(T) + P.T)i .T -Ci(0) x.(0) cx0 =

(E. 13)

since the exnression is constant in t, This; may be shown by using tle

canonical equations

(E. 14)

and (E. 1) whun differentiating the second of (E. 13) with respect to t to obtain
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0 = dxk(T) xk(T) dT + Tk(T) k 1. r

(E. 15)

0 = ap. = .(T) dT + . (T) j r + 1 ... n
3!

and the last of (E. 14), as in Section ILA. Then if B is non-singuiar the

set (, cn+l) in (E. 5) is zero, and the result again follows.

RELATIONSHIP BETWEEN MAXIMUM PRINCIPLE AND MINIMUM PRIINCIPLE
ACCESSORY SOLUTIONS

The difference in maximum and minimum principle formulations of the opti-

rrization problem is the signs of the multipliers, including the unit multiplier

fo' the integrand f of J, the function to be minimized. Thus, the Hamiltonian

for the maximum principle is the negative of the Hamiltonian for the minimum

princeple. Let the functional form of the solutions for the maximum principle

formulation be

x = x(t 0 o ,z o )

(E. 16)
z z(t,x 0 z O)

and the corresponding forms for the minimum principle formulation be - -

x = x(t, Xo PC)

-(E. 17)
P = P(t, x Po )

0 0

It follows that

x(t, x 0 1P) = x(t, xZ) (E. 18)

if the multipliers for the two .nystems satisfy

p (t, x ,p 0 ) -Z(t,x 0 ) E 0~
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The accessory solutions are the partial derivatives of (E. 18) and (E. 19) with

respect to x 0 ,p o and zo. Upon differentiating, the correspondance between

systems of solutions is found to be

Ix (t.XoP) = y (t,Xo.z o )
O O

(E. 20)

x-a (t,x,p) = x x(to x F (t, xo0, zoC)  = _t o z )

o o 5zo0-0
6P 00z (tt NXo. 0

i p ( t x P o = zxZ o

o o

6 z
0 (t'x ° 'P ° ). z t = ,~ x ° z° ) 0P z o (t , X° z°

0 05' 0 6P z-
VPo 0 0 0

In constructing a field of extremais for the sufficiency test, Bliss uses the

maximum principle formulation of the problem. A suitable choice for the

conjugate system of solutions is

U 6X (t, z + (t, -- _ + I

(- t, X 0 40 Y (t0' 7Z) X +

Upon substitution from (E. 20), these become, for the minimum principle,

U = (tx po) ax: (t,xp) I 
0 0

(E. 22)

-vP I .
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REDUCTION OF FIELD FROM (n+2) DIMENSIONS TO (n+l) DIMENSIONS

Consider the system of equations

6H_(xZ
2) z ' Z, n+ I

n+ I  U Z' Z n+l )

(E. 23)

znlhx,
-Z = "x z, Zn 1

Zn+1 n+0

which arises from the maximum principle formulation of the optimization

problem when xn+ 1 (the integral of u) is considered as an additional state

coordinate. It is tacitly assumed that xn+1 does not appear in the right-hand

side of system (E. 23) and that it does not appear in the boundary conditions.

Hence, as a necessary condition,

Z+ 0, (L. 24)

and the first and third of (E. 23) are the system of equations to be solved for the

optimal trajectory. It is not immediately obvious that the field of extremals

used in the sufficiency test csa be correspondingly reduced from (n+2) dimenuions

to (n+l) dimcnsions. Thit, however, can be shown as follows. The accebsory

equationa corresponding to (E. 23) are

a] 2 H 02 a2  2

z -n+l

d au 0 u I|

d ~1IWr Th+l I Vx F_ Bznl 'n
2 H -a 2 H - (E. 25)

Ln+I 1 o 0 o 0 n+ I

IBG
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and the fundamental solution mat'ix may be written

. M~t) 0 T12 21t) blt)

n at(t) 1 c' (t) d(t) IT(o) = , (E. 26)

) n2 2 (t) (t)-

0 0 0 ij

where a, b, c and e are n inimensional vectors and d is a s,alar. A conjugate

system of solutions is determined by its initial matrices, now taken as

SU( )][ 1 01

V ()j -j(E. 27)

for when the initial conditions satisfy

U'V = V'U (E. 28)

then so do the solutions

U U 0'(t)+ 2 (t)) 0

= (t) [a(t) + c(t)] 1

[n 2 1 (t) + T 2 (t)I 0 E. 29)

Then the determinant of U is

[r I t) r 12(tM 01
det U =det Ie / TT (dt ) + r-'-'( E. 3 0)L [(t) + c (t)1L 11 2 ()r 12 t
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so that if r 1 (t) + nT2 (t) is non-singular, then so is U. The reduced system

FUR 1  t n12 (t 1 FU~) U~I I
VU = 1 (t) n22 (01  "RU ( V(O) U (0) 1E

LVJ L 1 LR'J LIv
is a conjugate system of solutions which forms a field for the reduced problem

if[nil(t) + n12(t)I is non-singular. Thus, the field in (n+l)-space implies

the existence of the field in (n+2)-space.

The system (E.21) results when V(O) is taken as -- -- -

(0) - E.32)

18"
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APPENDIX F

THE LEAST SINGULAR SQUARE MATRIX OF AN rxq MATRIX

Let n be greater than q. and let each row vector V. of the matrix be normalized1!
to 1,

q
(V V 2  -- 1 i = 1.. . n. (F. 1)

j=1

The method proceeds by construction, so let

WK = V + + aKV K  (F. 2)

be a unit vector made up of the first K most orthogonal vectors, and find

the maximum projection (V M , W K ) of W K on a row vector Vm , m >K. The

projection is the cosine of the angle between V m and WK , which, when
maximized, gives the smallest angle between V m and the K-dimensional

Euclidian space determined by the K vectors in (F. 2). Thus, the problem

is that of finding the minimum of the maximum projections of the remaining

(n-m) row vectors, and using this to form WK+V.

Consider the maximization problem represented by

f (a) = (VmW) maximum, m K, --(F. 3)

subject to the constraint

(WK,WK) 1. (F. 4)

Introducc a Lagrange multiplier X and form the expression

f. k) (V , w + k I (W W . (1. 5)
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The derivatives of F with respect to a..j 1.... K, must vanish at a

raximum, so

ba. m0 = (V V  2 (V WK) j 1 ..... K. (F. 6)

Multiplying by aj, summing over j and using (F. 4) results in

(W V ) = 2k = f (a). (F. 7)
Kmm

On the other hand, the system (F. 6) mayIe wriiten in the matrix form

(V 1 , Vm) (VIV1) (V 1 V 2 ) 2 (V 1 , VK)l 2k a 1

(V , V 2' V1) (V 2 . V 2) (V2, VK  2k a 2
1

( 2 'V) ' V ). (VVK (F. 8)

L (VKVmt (VKVI) (VK' V2 (VK V K )  21 aK

or more simply

b = 0 K (2% a), (F. 9)
in

froui which
-1

2ka IJ[K} bmn (F. 10)

Now bm is the left-hand side of (F. 8), which, when multiplied by a, gives f M'

so in view of (F. 7),

2X(b m'a) f m 2  b m [OK b b (F. 11)
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Equation (F. 11) shows that the maximum and minimum projections have

opposite signs and allows the squared value of the projection to be evaluated

in terms of known quantities. This is gocd enough fur the computer mechani-

zation of the sch ,me, which almost suggests itself.

Consider the (n x n) matrix

(V1, V1). (Y1 Vn )

(F. 12)

(V, 'Vl (V .V n

which is symmetric and has ones-down the main diagonal. At the K stage,

this may be partitioned into four submatrices

], 
(F. 13)

113 C,

so consider the product

K IK o K(F. 14)
11C 0 1 BI N C

The (rn-Q t h row of the lower left submatrix times the (m-K)t h column of B

gives the square of the projection (F. 11). This is easily computed for each of

the remaining vectors, and the minimum cf these identifies the most orthogonal

vector to the K-dimensional subspace.

Now suppose that rows and columns are inter -hanged in the last matrix of (F. 14)

to bring the minimizing row and column next to the identity matrix. This retains

the symmetry of C. Then elementary column operations may be used to obtain

the (K+I) x (K+I) identity matrix for the nExt step.

r

1 91

I



APPE'-NDIX G

PHOOU -I'I IAT DISC ONTI N UITIES JN TILE MULTIPLIERS
c AN m1W iDTEIMINEHD AT EITHER END OF A CONSTRAINED SUBARC

The geometry is shown in Figure G-1. It is to he shown that the value

P~ is obtained by fo11o~king
eithcr path A or path B. Path

Aassunies that the multipliers

are continuous at the initial

P2 CG point t, and discontinuous at
ax tiec endpoint t,. Path B assumnes

____the diS:G,1Iunuititu2 are at the

P1 C) xinitial point.

DO

G ~Q GO G~OFigure G1.

L.. ~ t Geometry of the Problem

T'he necesbary conditions fur the constrained subarc are

x f (X, U) (G. 1)

~a1 ax,

a + 0 G .211- (x, U, P.i)(G 3

o G(x, u)* (G. 4)

193 1--



I, The last two equations arc "solved' to obtain

u W~x (G. 5)

Substitution of (G. 5) and (G. 6) into (G. 1)y and (G. 2) gives the reduced

differential equations for the constrained subarc:

x = f (X, u W)) (G. '7)

_af 0  )[x

Po =0 (G. 9)

Equation (G. 9) has been added for convenience.

Now (G. 7) and (G. 8) are "uncoupled" since p does not appear in

(G. 7). Since x =x(t) and tWe coefficients of p in (G. 8) contain

x alone, (G. 8) and (G. 9) form a linear first-order homogeneous[ systern of differential equations Aith time varying coefficients,

4 A(t)O (V10

where 41' is the n+I dimensional vector
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Let be the fundamental solution matrix of (G. 10) with (t ) I,

the (till) x (n+l) identity matrix. Then the value of p 2 computed

along path A is

2 A ( --- (G . 12)

Along path 13,

7P91 4  Ft2L v 3

= I(t2)  (G. 13)

If (G. 12) and (G. 13) give the same value for P 2 it follows that

raIi (G. 14)

this, consider the vector identity

(X, 1()) 2 + 0 u 0 (G. 15)
bx ax au ax
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S InIe

- (G. 16)

resolts from equations (G. .) and (G. 5). On the other hand,

IY.G + +- f' _ _ u' ar G.'7
ax ax ax 2  axx +U -f . - LI x (G. 17

Additionally,

Combining (G. 15) - (G. 18), one finds

ad af G1 .9I I
dt axl ax (t) 3u ax jax,(. 9

SIR

which is the same as (G. 8) with po = 0 and p LG Thus aG
axax

is a solution of (G. 8) with po = 0, and the values of p, computed .

along paths A and B are the same.

I 9
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