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ABSTRACT

A norlinear optimal feedback control scheme for controlling a vehicle
re-entering the earth's atmosphere from lunar return initial conditions
is reported.

The optimal feedback control law used in the scheme is obtained from a multi-
dimensional surface fit of the control function for several optimal trajectories,
Partials of the control with respect to the state vector are included in the fit-
ting procedure. The functional minimized by the trajectories is the total
(convective plus radiative) stagnation point heat.

The feedback control scheme is developed, and several re-entry trajectories
are simulated. Modest incresses in total heat from optimal values are ob-
served, and largz (although tolerable) terminal point errors occur. It is
believed that the terminal errors can be greatly reduced, if necessary.

A powerful predictor scheme is developed which allows optimal trajectories
to be changed as a function of a parameter, This is used to extend the range
of an optimal trajectory, to perform an '"absolute minimum" test, and to map

ihe opiimal re-euairy corridor,

Sufficiency tests for a relative minimum are mechanized, and it is shown that
the trajectories cocnsidered are minimizing paths. The optimization method
is extended to include the bounded state-coordinate problem.
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SECTION I
INTRODUCTION

Meany schemes have appeared, over the past few years, for the contro! of
vehicies re-entering the earth's atmosphere. They range over a wide spec-
trum cf missions, from the attainment of a given landing site to rather
complex in-flight maneuvers, and, in operation, may be completely auto-
matic or mayv require a pilot in the loop. The schemes have been developed
for a variety of vehicles, onboard sensors, and onboard computing capabilities
and, additiunally, cover a wide range of initial re-entry conditions. A good

survey 1s given by Wingrove in Reference 15,

Under the heading of optimal control, re-entry schemes become.sparse, The
only seemingly applicable approach published te date is the 'neighboring op-
timum centrol scheme' of Reference 8. This is a linear control scheme based
on small perturbations from a nominal optimal trajectory. Previcus studies
(Reference 1) indicate that such a method may not be applicable for re-entry
control, although for other applications it may be perfectly suitable. The
objective of this report is to describe a nonlinear optimal feedback control

scheme, developed and simvlated during the contract period,

Figure 1-1 illustrates the approach. The vehicle is the plant to be controlled
through application of the control vector u(t), und sensors measure parameters
of the motion a. The navigator box supplies tiie siwaie vecior and 1ts time
derivative at discrete and equally spaced instants of time. (The time incre-

ment may be made variable if necessary.) A predictor equation estimates

conditions at the next sample point, on the basis of present conditions and past
state-vector derivitives, to introduce lead into the control system. The control
generator is a known (vector) function of the state and independent variable
(usually time), Its evaluation gives the optimal control for the predicted point,
The hold circuit supplies the optimeal control over the next time interval,

L
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Figure 1-1, Nonlinear Optimal Feedback Control Scheme Mechanization

Development of the conirol generator equation comprises the bulk of this report,
Section {I considers a two-dimensional re-entry trajectory optimization problem,
in which total stagnaticn point heat (convective and radiative) is the function
minimized, Terminal values of velocity, altitude and range are specified,
leaving terminal flight path angle and time unspecified. After this problem is
solved, the terminal range is extended, to obtain a design trajectory, and the
optimal re-entry corridor is " mapped" through the use of a very powerful pre-
dictor scheme. The control function for the mapped trajectories is used for
development of the control generator equation. A data generatling program is
described which supplies partials of the control with respect to the staie vector
as well as the control itself. This data is punched on cards st equally spaced
values of range, since range is used as the independent variable in the program,
It is also shown in Section 1l that the mapped trajectories are minimizing tra-

jectories over a large region of solution space,

In Section III, the control data is fitted as a multidimensional pclynomial, and

the {it is evaluated, so far as errors are concerned,
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Mechgnization and simulation of the control equation in the scheme of Figure 1-1
is considered in Section 1V, It is found that the scheme produces —‘easonable
re-entry trajectories with modest-increases in toial heat from the cptimal

values for most of the trajectories simulated, A few trajectories fail because of
control inaccuracies in the area of the first dip into the atmosphere, so the region
of initial conditions for application of the scheme must be suitably limited. The
region of application is still very large. The terminal condition errors for the
successful trajectories are found to be large (although tolerable) and are ususlly
biased in sign and magnitude. It is believed that these errors can be greatly
reduced, although no effort was expended in this direction.

Some additional topics are considered in Section II. An inequality constraint

on the sensed acceleration is included in the re-entry trajectory optimization
problem. Several optimization methods are used in an unsuccessful attempt to
obtain a 10-g optimal trajectory. The most powerful method is the predictor
scheme, and this fails because of a singular point on the constrained subarc.

A means of isolating this singular point was devised, but time limitations pre-
vented explcitation of the idca on the computer. The optimization methods are
also extended to the bounded state coordinate problem, and the bounded brachis -
tochrone problem is sclved on the computer,

Conclusions and recommendations ai'e presented in Section V.

(93]




SECTION Ul
OPTIMAL TRAJECTORY COMPUTATIONS

A. THE RE-ENTRY TRAJECTORY OPTIMIZATION PROBLEM

1. Statement of the Problem

A re-entry path which minimizes the total stagnation-point heating

T
J=j£]d~r
0

of a blunt-nose re-entry vehicle is to be found. The heating rate q is the

sum of convective and radiative components

qQ = q

¢t 9
where
. - 3 p
% ° Y Vy
. / \3/2 v 12,5
q_ = 7.5N\_°_, [ v
10, 000
\°°l ‘ ’

The state vector components are the velocity v, flight path angle vy,

dimensionless altitude § = h

R and great circle range {. The density p is

given by

p = ooe'B RE

and values for the constants are vehicle nose radius N = 4 feet, c= 2x 10"

earth radius R = 20,903, 520 feet, exponential constant 8 = 1/23, 500 ft, "1,

and sea level density p_ = 0.0023769 slugs/ft.°.

8

(2.

(2

(2.

1}

. 2)

3)

®

. 5)




The equations of motion are

dv -S 2 g. siny
o
—_— = ——pvV CD(U) - —
di 2m (1+8)
dy S v cos ¥ g cosy
— = —pvC ) + - =2 5
dt 2m R(1+8) v(1+8)
(2.6}
dg v
T RsinY
d¢{ v
I g SesY-
The vehicle frontal area to mass ratio is -;i-= 0.51ft. % - slug™?, and the lift
and drag coefficients are given in terms of the conirol function u as
Cp = Coo * CDL cos u (2.7
C., = Cpsinu, (2.8)
where
(’DO = (.88
CDL. = 0.52
CLO = -0.505,
Inequality constraints include a bound on the control function
2
uf - u” 2 0, 2.9
with u, a constant, and a pilot's acceleration constraint
B - z 0. 2.10
a, (2.10)

g e oottt =




In Equation (2, 10), B is a specified constant, and the pilot's acceleraticn is

given by
ch2 2 2
ap = —ém—g;— CL + CD , (2.1!)

where g, is sea-level gravity which normalizes the units of ap to g's.
Equation (2,9) was found necessary to produce initial trajectories which
neither skipped out of the atmosphere nor dived in too deeply. It is sequen-
tially relaxed during the optimization process.

Initial conditions are taken as Vo 35,000 ft/sec, 70 = -5, 75 degrees,
initial altitude ho = 400, 000 ft, and Co = zero; the terminal surface equa-

tions are
v(T) - X, =0
hT) - X, = 0 (2.12)
UT) - X5 = 0
with the constants X1 = 1650 ft/sec, X2 = 75,530 ft, and X3 = 979 statute
miles, Note that the final flight path angle and terminal time are left un-
specified.
A fairlv detailed examination of this problim is contained in Reference );
consequently, only a brief summary of the results is presented here.
The Hamiltonian may be written
H o= q+ pf+u fud - u?) +4,B-a) (2. 13)
1 1t 2 p

where p is the four-dimensional muitiplier vector and f represents the
right-hand side of the system (2.6), The Euler-Lagrange equations, where

zero terms have been omitted, then read




3 af, af, 3f, of 4 3a
“py = —* Py —— + P, ——+P +p -u
V- 13y 2 Sav Tty 2y
of ¥f of of
) 2 3 4
Py Py tPy Y P3T—* Py
aY dy dy 3y
(2.14)
3q At af 3f da
- 1 2 4 p
-p = + p + Py t Py —— - By —
3 3¢ Y LY ¢ 3 %%
Py = o, ‘p4= P4o‘
afl Bt2 aap
0 = p, ——+p, —= - 2pn-p, —E_ 2.15
130 25, 1 2 3, (2.15)

2. The Unconstrained Subarc i

Both the multipliers By and W, are zero here, so Equation (2, 15) is used to
determine the control function, After the substitutions have been made, the

resulting formula is

i
CroPz |

t = ’
an u CpLP,Y (2.16)

and u is centered about zero by the constraint (2,9); i.e.,
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The minimum -principle equation is
-pvaDLcosu + pZCLO sinu £ -pvaDL cos U + pZCLO ain U, (2.18)

in which U is any admissible value in the range {2.17). The left-hand side
of (2.18) may be considered as a dot product, and the choice of a unit vector

{cos u, sin u) which has minimum dot product with the vector (—pvaDL, pzcw) is
_C p
sinu = LO ¢
2 2
.VICLOPZ) * CDLPIV’
2,19
CpLPy¥ (2.19)
cosu =
2 2
LoPz] * CDpr")
This is parallel but in the opposite direction. Then, from the signs of P and
p2. assuming CLO negative, it follows that:
If Py = 0 and p1>0, then u= 0
p,>0 p, >0 0<u< -
2 1 2
Pp> 0 Pp= 0 usy
p,> 0 B, <0 -:< u<T
2 ! ¢ (2. 20)
Py = 0 P, <G u = 1 nibang condition if u, = )
p2<0 pl>0 -%(u(()
= = -3
Pa <0 P, 0 u 3
p2<C pl<0 -n<u< -5
9
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There are no singular points if Py and p, are never simultaneously zero,
The subarc ends either when (2. 10) or (2. 9) becomes zero, or when the
stopping condition, the first of (2. 12), is satisfied,

3. The Constrained Subarc u = ¢ UL

Let ¢ be the angle defined by Equation (2. 16) and the sign conventions given
by (2.20). Then substitution into the minimum principle equation, (2.18), gives

cos (8-u) 2 cos (0-U), (2. 21)
which is satisfied if u and ® <t 7, have the same sign, The condition ¢ =

indicates a bang. Furthermore, substitutien into (2.15) (with o = 0), and
some rearrangement, gives

e AV S {CDLplvlz el (2.22)

Since u and sin(¢-u) have the same sign, 1, £ 0, as required.

There are no singular points, and the controt function is continuous at the
junction between constrained and uncenstrained subarcs. Thus Hys from
(2,22}, must start and end with value zerv, since ai such poinisu= ¢.
Then the terminal surface is either By = 0, provided {xl # 0, or the stopping
condition,

The constrained subarc, over which ap = B, is considered in a separate
subsection,

10
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4. The Cptimization Scheme and Computer Results

>

It is shown in Reference | that the sclution of systems of equations such as
2.6) and (2. 14), i which u satisfies (2. 16) and (2, 20) (with by = 0), orin

which u and Y satisfy (2.21) and (2. 22), may be written in the form

x = x{t,x ,
{1, opo)

p- p(i.xo, P

(2.23)

where X and P, are the initial values of the state and multiplier vectors

respectively. It is also shown in Reference 1 that the necessary conditions

which augment the terminal equations (2. 12) are

pz(T) = 0

H = 0,

(2.29)

where H is the Hamiltonian (2. 13) with the inequality constraint terms removed.

When the funct.onal forms of the solutions (2. 23) are taken into consideration

(and noting that X, is fixed for the optimization problem), the set (2.12) and

(2. 24) become

(T

v(T,po) -X, =0

)

o’

C(T,p ) - X3 =0
pz(T,po) = 0

H(po) =0 .

11

(2. 25)
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These five equations in the five unknown quantities (T,po) may be solved via

the Newton-Raphson method if partial derivauves can be found, The partials
with respect to T are the time derivatives (2. 6) ana (2. 14) evaluated at t=T.
The other partials are found by integrating the systcem of equations

d (ax\ Bzﬂllax) 32H1 (ap\
— — = — + ——7— ————
dt ba} q;ax\aa dp an}

d ap\' szl dx 62H1{ap
At a_a} a? \da| axdp ) oa

in which "a'" represents a particular initial condition. The partial derivatives

of the Hamiltonian Hl(x,p) may change from subarc to subarc, and for each
subarc it is known that

2 2
d H, d H,
axz op

are symmetric matrices and that

2 f 42
2%, o HL}
—ovp?)x_ Eh_tbp :

Since (2. 20) is a set of 2n linear first-order, homogeneous differential equa-
tions, there is a maximal set of 2n independent (column) vector solutions.
When initial conditions are taken as the (2n x 2nj identity roatrix, the firstn
(column) vector solutions represent partial derivatives with respect to the
vector X, and the last n solutions are partials with respect to Eor The solu-

tions are continuous in time, except possibly at corner points, where the
discontinuities are well defined.

e
[3¥}
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In the present case, discontinuities occur at points t

where the angle ¢

becomes + ™, or equivantly, where Py = 0 with P, < 0. Let ﬂij(t) and

CIJ(t)' io j= lr

%{."Q an

o]

solution matrices respectively. Att=t_,

., 4, be the elements of the

d Bp_p(q

o]

is discontinuous when u changes signs, and all of Equations (2. 14; ar=

continuous (since pz(t ) 0_).

orily the second row of —5—— is discontinuous at t = tl, with

+

ﬂzj(t )

- 2yt

“2j (tl)

1)

pylty)

C (t ): J“

ooy 4,

According to Reference 1, thie means that

only the second of Equations (2. 6)

and (-), {+) signifies values from the left and frcm the right, respectively.

Now assume that a path and partial derivative solutions have been found.

Then the modified Newton-R:phson equations for the system {2, 25) are

[~ ]

@}

WTH  n,(T)
£(T)  my,(T)
STy oy ()

Py(T) Gy (T)

g fl(O)

L

n 2(T)

f2(0)

ﬁ13(T)

n33€'1‘)
g3'T)
C23(T)

f3(9)

t,(0)

-lr 0

-4

(2.27) L
E
P
|
-

E

IR| (2,28

0<Cs 1 :

p—

The zeroc in the right-hend vector corresponds to the stopping condition, the

first of Equations (2.17), which is satisficd by every trajectory. The Hamil-

tonian is a constant for each path, so the last row of the matrix contains its

partials evaluated at t = O,

13
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An optimal trajectory for u, = 16 degrees was cobtuzined and is displayed in
Reference 1. It appears here as the first of a family of optimal trajectories
in Figures 2-1 through 2-8. The second member, for up s <0 degrees (not
shown), was generated by using the modified Newton-Raphson method with
the 16-degree optimal values for (T, p ) as starting conditions, All other
members of the family, obtained in a similar fashion, are displayed in
Figures 2-1 through 2-8, and values for the optiaias <riteria are givci in
Table 2-1.

Figure 2-1 shows that the trajectories dive deeper into the atmosphere and
skip higher as the constraint is removed, All these curves end at the same
point, as required by the terminal surfece equations (2. 12). The first dive
produces higher pilot's acceleration peaks (Figure 2-2) but reduces the
secondary peak. The unconstrained maximum value is 20. £ gfs. The flight
time increases (Figure 2-3) which is a consequence of the lengthening skip.
This is apparent in the velocity curves (Figure 2-4) which tend to level out
over the skipping portions of the trajectories. The flight path angles (Figure
2-5) also show the deeper dive and higher skip. All these curves apparently

" pass through a common point, corresponding roughly with the bottom cof the

first dip (see Figure 2-1). The convective and radiative heating rates are
dispiayed in Figure 2-6. They peak higher, and fall off faster, as the con-
siraint ic relaxed. The total heating rates of Figure 2-7 have the same char-
acteristics, and show that even though the peaks are higher, the enclosed area
becomes smaller,

‘The optimal control functions are displayed in Figure 2-8. When the 16-degree
trajectory (which seems to be in a category of its own) is excluded, the control
curves tend nicely to the unconstrained trajectory curve. They all have a
"bang" which goes towards the endpoint as the constraint is relaxed and, in
the limit, produces the -180-degree value of the control function (the angle ¢
goes to -180 degrees at the bang). The first portions of these curves show

that the trajectories are forced into the atmosphere, since positive caontrol

14
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Table 2-1. Control Constraint u; and
Optimal Criterion J
u J
1 2 p
(degrees) (BTU/1t°)
=T — |
16 27,334
25 26,524
35 26, 246
45 26,071
55 25, 951
180 25, 736

corresponds to negative lift.

to maximum drag, so maximum energy is dissipated.

of the dive,

Small values of the control also correspond

F.efore the bottom

the centrel functions all pass through zero and then on to the

maximum lift condition (-90 degrees for the 180-degree optimal). The

positive lift is required for

ranging purposes and is maintained for the re-

mainder of the re-entry process.

B. RE-ENTRY CORRIDOR MAPPING COMPUTATICNS

conirol scheme of Section IV. However, a singular point caused computa-

tional difficulties.

(The detiils of the problem and the inethod devised to

circumvent the difficulty are preseuted in another subsection.) It was

accordingly decided to proceed using unconstrained trajectories as a basis

for demonstrating feasibility for ke nonlinear optimal feedback cuntrol

scheme,
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The first step in the corridor mapping process was to round out the terminal

conditions following Equations (2, 12) to X2 = 75, 000 feet and X3 = 1000 miles.

Tiie original values (75,530 feet and 979 miles, respectively) were made

necessary by the initial conditions and the almost ballistic constraint

u, = 16 degrees. The resulting trajectory is displayed in Figure 2-9 as the :
first member of a family of optimal trajectories for which the terminal range i

is the parameter,

1, Range Extension

It was d.:cided to explore the ranging possibilities of the vehicle as the next
step in the optimal re-entry corridor mapping process. The predictor scheme
presented in Appendix A greatly facilitated the computations,

The differential equations are (2, 6) and (2. 14) (with By and Ba zero), and the
control u satisfies (2. 16) and (2. 20). The boundary conditions are given by
(2. 25) where terminal range X3 is the mapping parameter, Differential
equations (2. 26) were integrated to obtain the partial derivative solutions
for the modified Newton-Raphson equations (2. 28). The stopping condition
for the integrations was the attainment of a desired terminal time T (updated
after each iteration), sc the zero element of the last vector in (2. 28) was
replaced by the term (v(T) - Xl). The change in the stopping condition was
made because it is somewhat easier and faster to stop at a given value of T
than it is to interpolate for v(T) = Xl' The stopping condition for iterations
wasg that the maximum ratio of variable-change to variable be less than a
specified constant,

Startirfg trajectory iritial conditions are VoS 35, 000 ft/sec, 1 -5.75 degrees,
ho = 400, 000 f¢, co = 0, and terminal conditions are X1 = 1650 ft/sec,

X2 = 75,000 ft, and X3 = 1000 miles. The next three trajectories were
obtained using the optimal Newton-Raphson method, described in Appendix B,
with termiral range increments of 10 miles. Succeeding members of the

e pe————— g e 21t e o
[ I

family were obtained asing the Adams-Moulton predictor equation

o it s s
'
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in which x is the vector (T, po), x' is the derivative of (T,po) with respect :
to terminal range, and h is the range increment. It is shown in Appendix A !
that x ' is the third column vector of the inverse Newton-Raphson matrix in
Equation (2, 28), when (T, P ) satisfies liquations (2. 25).

The raage was extended to 2020 miles by this process., Most of the inter-
mediate predicted values of (T, po) produced optimal trajectories, which
shows the power of the predictor scheme. As the upper limit on range was

approached, prediction gradually worsened, and it is doubtful that range
could be extended much further for the vehicle and initial conditioins con-
cidercd,

Five of the family of trajectories are plotted in Figures 2-9 through 2-15.
Figure 2-9 shows that the first dive into the atmosphere becomes shallower,
as range is extended, and that the skip which follows becomes higher and
lenger. This behavior is caused by the control function (Figure 2-10) which
leaves the negative 1lift region (u > 0), and goes to the maximum lift condition

(u = -90 degrees) earlier in the flight as range is extended, L 2ss energy is

lost on the first dive, as can be seen in the velocity curves of Figure 2-11,

and the decrease in the first acceleration peak of Figure 2-12. The fiight-
path angle excursions, Figure 2-13, also become smaller., Toward the end
of the skip, the control approaches the negative lift condition, and, for the
longer ranges, produces negative lift to more quickly terminate the gkip.
The secondary acceleration peak rises with increasing range in order to
dissipate the increased remaining energy. There ia & minor sashay in the
neths near the endpoints, due to the control passing through maximum lift

(L/D) on its way to -180 degrees,

Figure 2-14 shows that total heat increases with terminal range, as might
be expected. However, it is somewhat surprising that the total flight time
of Figure 2-15 first increases with range, and then decreases for longer
terminal ranges,

25
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On the basis of these results, it was decided that the 1500-mile trajectory
would be used as the''nominal" trajectory for development of the noalinesar
optimal feedback control scheme. This trajectory represent: a1 2asonuble
compromise between total heat, peak acceleration and total leagth of skip,

2. Corridor Mapping Program

The corridor mapping problem considered is that of sweeping ov! g reasonabls
region of initial caonditions about the ""nominal™ trajectery, and thereby ob-
taining & set of optimal trajectories covering the expected re-entry corridor.
The terminal values of velocity, sltitude and range are the same for all these
trajectories, e8s is the terminal value of multiplier p2 and the Hamiltonian

(both zero), so that the trajectories all belong to the same field of extremals
(see Section {I1A),

It is shown in subsection C that time is unimportant, so far as this problem
is concerned, and furthermecere, that all re-entry trajectories may be started

at a point where initial range 1s zero. Hence, the only initial conditions which
i i v, and & .
need be varied are v _. v §0

It is convenient, for the mapping process, to integrate the system of differ-
ential equations from the terminel kX

P P T - o
¢ the initlal puini. The pyedictor

scheme may then be used to move the initial conditions over their range of
variation. Accordingly, define "back time' by

. {2.30)
and note that
dx _ dx dt __dx -
ds © dtas - Cat - (2.31)
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50 that the change of indepundent variable changes only the sign of the right-

hand sides of the differential equations. The system of equations to be integrated

thus includes (2. 6), (2.14) -- with My = By 0 -- and (2. 26), with opposite
signs for the right-hand sides, and the control u satisfies (2, 16) and (2. 20).

The "initial" conditions for the transformed equations '2.6) and (2. 14} are
s= 0 and

vT --X1 =0
§T -leR = 0
(2,.32)
Cp - X3 = 0
P, = O,
.',l‘
with X1 = 1650 ft/sec, X2 = 75,000 ft, and XS = 1500 iniles, At s=T, the
functional dependence of the solutions on the missing initial conditions tnay
be written
x=x |T,p, . 7P ,P)
( lT T 3T 4,1.
(2.33)

P=P(T.P , Y. Py . P )
1T"r 3, Pa

so the set of boundary conditivis to be sati

o

viT.p, .¥7+.Pq .P - X =
‘ 17T ST 4

Y|IT.py Y. By .P - X = 0
1p207T 3p' T4 20

T
gIT.p, .Y+ P2 ,P -X.,JR = 0 (2.34)
IT T 3T 4T 30
CiT.p, .¥y.Pq P = 0
lT T 3T 4T

H plT.YT.PaT.p4T) =0 .
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and XS() are, of course, the initial conditions &t t= 0 (or terminal

o

conditions at 5= T) to be varied in the mapping process,

Let nij(s) and Cij(s), i, j=1, ..., 4, be the solutions of the transfui'med sysiem

of Equations (2. 26) with initial conditions

0 0 0 0 1 0 ¢ 0O
[nl“(m]= c1 00 {g..m)]= © 0 00 (2. 35)
J 0 0 0 0 3 00 1 0
00 0 0 00 0 1
Then the Newton-Raphson equations for system (2. 34) are
ol — r' — ‘l —
dT YT nT) N (T) mg(T)  ny (T) v(T)-X o
dp, ¥ (T) oy (T} PoolT)  MyalT) 2, (T) Y(T)-X,,
T
dy.p LT M (T ny(T) Mgy(T) Ny (T E(T)-X, /R| (2.36)
dp, CUTI Mgy (T) My (T M o(Th M, (T C(T)
T
dp, 0 £,(0) -{oz(O) £5(0) 1,(0) H
T
S B B L .

The first three columns of the inverse matrix may be identified as the deriva-
tives of (T, pyq, Y. P3r. p4T) with respect to X, ¢, XZO' and XSO/R' res-
pectively, for the predictor equation (2, 29).

Twenty-six trajectories spanning the re-entry corridor were genersted using
the optimal Newton-Raphson method and the predictor scheme. The initial
conditions and total heat for these and the "nominal’” trajectory (at t= 0) are
summarized in Table 2-2. Trajectory 2 was obtained first. The first three
trajectories were determined by the optimal Newton-Raphson method, using
AX‘_O = +50 ft/sec as the increment. The predictor scheme then gencrated
the remaining trajectories. The predictor schheme was used exclusively to
obtain trajectory 3, since back derivatives werc availabie from the trajectories

leading up to trgjectory 2.
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Table 2-2.

Initial Coiditions and Total Heat fer 27 Opiimal

Trajectories Obtained During the Corridor
Mapping Process

Initial Sign of Change

' Initial | Flight Path | Initial From Trajectory 1 |

oo 'rsecs | (degioesy | "t | 2%10] 8%0[8%50 | Mot
1 35000 | -5.75 400,00C 0 0 28, 872
2 35750 -5.75 400, 000 + 0 0 31,888
3 34250 -5.75 400, 000 - 0 0 286,252
4 35000 -5.30 400, 000 0 + 0 29,2178
5 35000 -7.65 40C, 000 0 - 0 28,666
6 35000 -5.75 440, 000 0 0 + 29,032
7 35000 -5.75 360, 000 0 0 - 28, 757
8 35750 -5.30 400, 000 + + 0 32,280
9 35750 -7.695 400, 000 + - 0 32,116
10 34250 -5.30 400, 000 - + 0 26,657
11 34250 -7.65 400, 0CO - - 0 25, 792
12 35750 -5.75 440, 000 + 0 + 32,135
12 35750 -5,15 360, 000 0 - 31, 844
14 34250 -5.75 440, 000 - 0 + 26,362
15 34250 -3.75 360, 000 - 0 - 26,128
16 350C0 -5.30 427, 500 0 + + 26,963
17 35000 -5.30 360, 000 0] + 28,017
18 35000 -7.65 440, 000 0 - + 28, 51C
18 35000 -7.€5 360, 000 0 - - 28,8117
20 35600 -5.40 430, 000 + + 32, 444
21 32600 -5.40 370, 000 + - 11,374
2e 35600 -7.35 430, 000 + - + 31,110
23 35600 -7.3% 370, 000 + - - 31,375
24 24400 -5.40 430, 000 - + 27,326
25 34400 -5.40 370,002 - 26, 891
26 34400 -7.35 43C, uue - - + 26,216
-L 27 34400 -7.35 370, 000 - - - 26,3068
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Trajectories 4 and 5 were generated in a similar fashion, using AX20 = 0.025
degree. it was found, however, that as the flight path angle became steeper
(going toward trajectory 5), the increment could be increased to AX20 = 0.1

degree with very little degradation in the performance of the predictor scheme,

Trajectories 6 and 7 were obtained similarly, and it was determined that

AX ., = 2500 ft was a satisfactory increment for the aliit:de mapping process,

30
From convergence characteristics of the optimal Newton-Raphson process, it
was found that velocity changes were easiest to obtain, and that flight path
angle changes ware hardest to satisfy, Consequently, trajectories 8 through
18 were generated using the most easily changed single parameter. For
example, the trajectory for which }(20 = -5.30 degrees was the starting path
for the generation of trajectoriez 8 and 10, and the mapping process toock place
over Xll’,‘-'
Trajectories 20 through 27 were generated in a similar fashion, except that inter-
mediate maps over X30 were performed first, {ollowed by maps over Xw. Thus
for example, the trajectory for which X20 = -5.40 degrees was the starting tra-
30 " 370,000 feet and 430, 60O feet respec-
map for these paths produced trajectories 21, 25, 20 and 24,

jectory to generate paths for which X
M 1

tively. The X10
The ease of attainment of the various paths varied considerably as a function
of parameter values. As pointed out above, the step size for the Xzo-map
could be increased to AX20 = U.1 degree as the flight path angle became
steeper. When going in the opposite direction, however, the smaller step
size was required. Trajectory 17 was generated with some difficulty, al-

though the procecs became easier as initial aititude decreased, In trying to

increase altitude to 440, 060 feet for trajectory 16, the predictor scheme
failed to go beyond X30 = 427,500 feet.




In most cases, the velocity-map was easily accomplished, Optimal Newton-
Raphson many times converged in one step, and the predictor scheme (oace
started) almost always predicted optimal trajectories, Some difficulties
were experienced in trying to obtain trajectories 20 and 24 (the worst cases
were always shaliow initial flight path angle and increased altitude, as might
be expected). A trajectery for xlO = 34,95C feet was obtained after severa!
optimal Newton-Raphson iterations, and further such steps would have been
wasteful of computer time. A two point predictor formula from Reference 2
was used to predict trajectories above and below the two members of the
\elocity-map family of paths. With these improved estimates, the optimal
Mewton-Raphson scheme converged rapidly, and, thereafter, the predictor
scheme predicted optimal trajectories at each step, This again shows the
power of the predictor scheme and indicates thatlower-ordered predictor

formulas might well be of value during the mapping process,

In all cases, the optimai Newton-Raphcson scheme was quite sensitive to the
weighting factors used to multiply Equations (2. 34) (see Appendix B). It was
found, however, that a single set of weights could be used when mapping over
a given variable. The numbers used are given in Table 2-3.

Table 2-3. Weighting Factors for the Optimmal Newton-Raphson
Method Used for the Mapping Variables.

Weiohte Variable
Ceighte x 2 N
10 20 X390
~2
W, 10 1% 10 1
w, 1x 10 | 1x10t 1x 104
- -
w, 1x 10720 1x 102 10
W, 1x1073] 1x1073 1 x 1073
w, 1 1 1
)

3e

T




"nominal" 1500-mile

Trajectories 2 through 7 are compared with the
trajectory in Figures 2-16 through 2-27. It is seen that trajectories 2 and

3 are quite symmetric about the nominal path, except for areas where the
curves cross each other, Larger differences from nominal values are cbserved
for trajectories 4 and 5 (Figures 2-20 - 2-23), and particularly for trajectory 5.
Note that the steeper initial flight path angle produces a large skip and high
acceleration peaks. Somewhat similar results ar< observed for trajectories

6 and 7 (Figures 2-24 - 2-27). Here however, a lower initial altitude produces
a long:r skip and higher acceleration peaks. The control functions for all 27
optimal trajectories are plotted in Figure 2-28, Note that the characteristics
are similar to those of Figure 2-10. The control functions for those trajec-
tories displaying large skips assume their minimum values earlier, and then
rise higher than those for the better behaved paths. A good coverage of the

control region of interest was obtained during the mapping process.

THE DATA GENERATING PROGRAM

The data to be fit consists of the control function u for the 27 optimal tra-

jectories, and two multipliers like P, and Py- The multipliers are included
in hopes that an arctangent relationship such as (2. 16) will produce an over-
all reduction in the size of the control function fit. Additicnal data includes
the partial derivatives of u and the two multipliecs with respect to the state

vector.

1. Statement of the Problem

The problemn is transformed to an equivalent, although somewhat reduced
and more convenient, form through a series of transformations, These
transformations are carried out in Appendix C and the results are presented
here. The new set of differential equations corresponding to (2. 2) and sys-
tem (2.6) are:
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dq al(n+h)p1/2v

dz cos ¥

av a,; pV(R+h)

dz cos 7

dy ac o{R+h)
a —————

dz 5 cos ¥

dh

a2 ag {R+h) tan ¥

dt as(R+h)

dz Vl/2 cos ¥y

with constants defined by

a8

+

CL(u) + ==

a. {R+h)

(os ¥y

a, tan y
CD(u) R The

(R+h}

53
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The new independent variable is ranje measured in miles,

to ¢ through

2z = —= cg = 5,280

and tne new velocity and altitude are given by

V = v
h

-==- The terminal conditions corresponding to (2. 12) are
Vizp) - X2 = 0
h(zT) - X2 = 0
Zr - XS/ cz = 0.

The new Hamiltonian is

H, = g, + Pg,

9
&

which is related

(2.39)

(2.40)

(2.41)

(2.42)

where £, is the right-hand side of the first of (2,3%7), g is a four-dimensional

vector denoting the remaining right-hand sides, ind P is the new multiplier

vector. The Buler-Lagrange ejuations are

dP1 og

& T s TP v Y Py vt Byay

(9P ey 28 2% 38 Ry
dz dy 1 3y 2 3y 3 2y 4 3y

_.d...}i-sz__ag_o+P-_BEl+P ag2+P agB + P ag4
dz dh 1 3dh 2 3h 3 3h =~ 4 3h
dP

—4 - o,

0 agl bgz ag4

(2.43)
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The control function satisfies

-1 C6P;
2Cp, P,V

1 = tan
D

with the sign conventions (2, 20).

an unspecified quantity, the transversality conditions require

(2. 44)

Since P4 is a conatant and terminal time is

(2.45)

Thus, the time equation, the last of (2.37), is unimportant in the problem,

ancd the set of dependent variables is reduced to (V, ¥, h).

Other boundary conditions could be derived. However, this problem is
equivaleni to the problem of subsection A {(when y
relationships (2.59), (2, 40), &nd, as shown in Appendix C,

Py
Pl T 2v
Py, = p
o .l
"3 R
P, = -H = o
“t
H2 = "C3Py,.

2, The Partial Derivatives

The system of variational equations like (2, 26) for the new system of
differential equations may be written - -

33

R P i, & withig g ot ZEA e ceent
o PO s i g

= B, = 0) with equivalence

(2. 46)
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Maa
‘

T

&l

ax(z)

axo

aP(z;
ox

_ — r -
Bgl agl 3g, 3g, _a_g_L o .
2V 0y at BPl bP2 1
Bgz _a‘r_z agg' ag2 agz 0 "
LAY Y oh BFI bpz 2
dg. dg
s 3 § -
0 3y oh 0 0 0 T
. 9 5 (2.47)
3"H 3°H 3"H 3g dg
22 S M SMa %8 98 a L -
2VZ  3Vay sVAh @V av 1
2 4 2
—a H2 _é H2 -blig_-bgl -agz -aga .
»
aVdy 3y°  ahay ™ aY a7 2
o2H,  ¥°M, a’H. 3 ?g,
0Py 2Ty My %8 9By %% ¢
avah  3h3Y ah’  ah 3h  an 3
L - L.
Let the fundamental system of solitions to (2,47) be
dx(z) iz) |
X &
o o)
, e = 1, (2.48)
3aP(z) JAP(z
Sx_ i)
o o
and furthermore, let the elements Jf the submatrices be denoted by
_ ax(z) | 1 i=1.2,3
S IR AR S T BT 5
] (2.49)
N 3P(z) 1 i= 123 ]
TP BELEE TE T G L a5

o
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An optiinal trajectory in the neighborhood of an optimal trajectory will satisfy

the perturbed equations

dx(z)

- dx(z)
OX(Z) = T{)‘ 6)(0 + -B—p—o— OPO
(2. 50)
. aP(z) AP¢z)
OP(Z) = “~ 63(0 + 3P OPO
o 0
at arbitrary values of range, and linearized versions of the boundary ¢ .ditions
(2.41), (2.495) and
Pylzp) = 0 (2.51)
at the terminal point. These may be written
" ] F" [~ I =T 7
. ' n
EVizyp) 0 Mlep) Myplep) nypep eV Ing Gz 152 ) Nyglzp) 0P,
. - - ’ py
6hiz,) 1= |0 = g (zp) Ngalzq) Ngslz ) 5Y | + N34¢2p) T 35(zp) N36(zp) wpzo
[ » :
GPz(zT) 0 CZI(ZT) CZZ(ZT) C23(ZT) Loho \,24(21,) Czs(zT) Cze(z'r’ OPBU :
L — L - - — _ - L- - 5
(2.52) i
f
i
since equation (2. 45) and the Jast of {(2.41) are always satisfied in the reduced
system. Let (2.52) be represented by T T (
Aéxo + EOPO = 0, | 77\ ;;(7:’\.753)
so that
- .mp-! = . LU I _LITS I i
OPO = -B Abxo = xo:o. 12..54)
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Note that B is the Newton-Raphson maltrix in the reduced system, which must

be nonsingular. It is shown in Appendix E that if B is nonsingular, the path is

i
iaia il eosachalek L i el e St n et .\r-‘l._.mi;ll.lh..‘i..m.c‘)L v

noermal according to the definition of normality in Reference 7.

When (2. 54) is substituted into (2. 50) the result is

_ - i
- ox(z ax(z) .
ox(z) = W) + —ﬁl K éxo
LT o
- B (2.55)
_ | 2P@), 2P@
8P(z) = axo + WO K (‘Xo .
. -

Under the assumption that the first mutrix of (2. 55) i8 nonsingular, it fcllows
that the partial derivatives of the muitipliers with respect to the staie are

-1 :
dP(2) _ P (z) + dP(z) K dx(z) + dx(z) k| . (2. 56)
2 X BPO on bPo

The partial derivatives of the control are derived from Equations (2. 44) and
(2, 5€) with the result being

du
3

Several ccmmments should be made. The process described above constructs

. [?_1 u_ o 2u 3P .
BES R A N T N I T (2.57)

-

a particular field of extremals in the neighborhood of an extremal trajectory
17 the inverse matrix in (2. 56) exiets at each point along the path (s8ee Reference
7, pp 237-240 and 3cction LA following). By construction, however, the
matrix i{s singular at the endpoiat. In spite of tais singular point. it can bc
shown that the results do constitute a field when the endpoint ie excluded, s0
long as the inverse matrix in (2, 56) exiets at gll other points along the extre-
mal path. The 27 optimal trajectories extend this field over a finite region of
space, The partial derivatives (2, 57) may be used to construct a ''neighboring
optimal' linear feedback control scheme, w6 In Reference 8, about any one
of the optimal trajectories,
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3. Computer Results

The system of differential equations in the computer program inctudes (2.37)

and (2.43), in which the last equation of each set is omitted, and the contrcl

function satisfies (2. 44) and (2. 20). The equivalence relationshipsg (2. 40)

and (2. 46) establish initial conditions from the results of the mapping pro-

gram. Systewmn (2.47) is als¢ integrated to obtain the solutions (2. 48). Since

the initial conditionus for the raultipliers may be scmewhat in error, Newton-
Raphson equations arc includea to adjust them to their proper values. When
the process has converged, the K-matrix of Equation (2. 54) is computed, and
the inidal conditions for system (2, 47) are changed tc

1
ni0) =

for the last pass. The first three column solutions are then the matrices of

Fquations (2, 55), and the lagt threc solutions are uged fur an auxilliary

sufficiency condition computation (see gubsection D), On the last pass the

control u, multipliers Pl and Pz,and the partial derivatives [from (2. 56) and
(2, 57)] arc punched on cards at specified values of range. In the present
casce 10} sets of data are obtained spaced at range incrementg of 15 miles.

At the last point (2 = 1500 miles) the paritals are omitted.

In computing the partials at tne output points, the luverse matrix of Equation

(2. 56) is obtained by inverting the golution in (2, 53), This does not increase

computing time excessively, since the matrix {8 small (3 x 3}, In larger

systema, however, one may wish to solve the nonhomogeneocus Ricatti equa-
tion derived in Appendix D. and thereby obtain the solutions (2. 56) directly.

The partial derivatives of the control function for the nominal trajectory are
plotted in Figure 2-29, The g-% curve appears to be rather uninteresting over
most ol the trajectory, until it J8 remembered that V {s a very lacrge guantity

over this region, ‘T'he hump in the -g'% curve corresponds approximately to the

[
} (2.58)
[K -1
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bottom of the first dive {(see Figures 2-16 through 2-19), where contro!l changes
drasticelly influence the remainder of the peth. Beyond this point, the partials

e

are small, corresponding to the skip in the trajectory. The partials all head
toward + « at the end of the trajectory (by construction). Since the partials
can be used as time varying gains in a linear feedback control scheme (as in
References 1 and 8) one might wonder why they are not negative, to corres-
pond to negative fcedback., The reason for this is that positive control pro-
duces negative lift. One can intuitively justify that the partials, aciing as
feedback gains, produce the proper trajectory changes, at least toward the
end of the path.

Figures 2-30 and 2-31 are plots of the multipliers Pl and P2 for trajectories
1 through 7. They are included to show the nature of the variations over the
optimal re-entry corridor.

SUFFICIENCY CONDITIONS

The sufficiency tests described in this subsection are tailored to problems
like the re-entry problem stzted above in which the Lagrange form of the
optimization problem :s considercd and the terminal equations are quite
simple. The tests can, of course, be extended 10 other cases, such as prob-
lems with more cromplex endpoint equations; the addition of a function of the
endpoints to the function tn be minimized, and the inclusion of inequality
constraints in the problem statement.

1. Sufficiency Conditions for a Relative Minimum

Bliss' theorem 85.1 (Reference 7, page 241) formg the basis for the relative
minimum sufficiency test. This theorem requires

o
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e e Y T S n -
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(1) A field in which the extremal is imbedded
(2) The strengthened version of the Weierstrass condition

H ) < H(U) (2.59)

(3) The second variation, evaluated with field elements, to have

a proper minimum at the ends o. the extremal.

If these three conditions are satisfied (for a normal extremal without corners)
then the path is a strong relative minimizing path in the cense of Bliss®
Theorem 82,1 (Reference 7, page 235).

For application to the re-entry problem, cornsider the formulation of sub-
_section C. Condition (2) is satisfied since the control (2. 44) using sign con-
ventions (2. 20) establishes the absolute minimum of the Hamiltonian (with
respect 'o u) and no other control U gives the same value. The problem is
normal since the Newton-Raphson matrix B of Equation {2. 53) is nonsingular,

It is shown in Appendix E that B nonsingular implies normality in the sease
of Reference 7.

A field is constructed through the use of lemma 84.2 of Reference 7 (pp 238-
240). This requires that the path first be nonsingular. Lemma 87.1 of
Reference 7 (page 247) shows that the path is nonsingular if the strengthened

Clebsch condition «Theorem 78, 2 of Reference 7) holds. With a single control
function this requires

2%y

. >0 (2.60)
u

over the path, which is true for the problem under consideration. Then a
field is constructed if a conjugate system of solutions U, V (both nxn matrices)
to the accessory equations (2.47) can be found, with U nonsingular everwhere

along the extremal. By definition, a conjugate system of equations satisfies

Uu'v = v'y, (2. 61)
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A suitable choice for U and V is

_ ox o dx - -y
v = EEE) Tt Tyl [}‘ t
(2.62)
) S ) S -
Vot T eE, T Ta® T T ic-1]

which accounts for the second half of the initial conditions (2. 58) for Equations

(2. 47);{ The nnotation, adopted here, splits the fundanfental solution matrix

{2, 48) into the four submatrices inc ~zated in (2.62). One can show that the

choice (2.62) forms a conjugate system because of the easily proved relation-

ships
"1 21 T "2 i
"12 T2 T oz Mg 2. 6%
r722'1'1ll < 1'T]2'rr21 + 1.

Then a field is constructed if U of (2, 62) is nonsingular at each point along :
the extremal,

Several comments should be made. Although the results (2.62) and (2. 63)

are prescnted for the problem of subsection C, they hold in general, The
minus sign in (2. 62) arises because of the use of the minimum principle
instead of the maximum principle, as explained in Appendix E. Since the

original problem included u as the derivative of an additional statc coordinate,

one might wonder whether the field should be constructed in {n+2) dimensiors
rather thanin (n+1) dimensions.

il gt

It is shown in Appendix E that the additional
dimension need not be considered.

The sufficiency proof is complete at this
peint for fixed endpoint problems,

#“Matrix K, from Equation {2. 54) is taken as zero in (2, 58). It is only necessary
to show that there is a conjugate system U,V with det U # 0,

65
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In the computer program, the de_siminant of U was computed at each output
point (2= 0 to 1500 miles with increments Az - 15 iniles). The determinant
started at unity (z = 0), and ro<e to very large values as z increased (about
1029 maximum) for each of the 27 trajectories considered. Because of the
smoothness of the problem solutions, it was concluded that the determinant
did not vanish or become negative between output points, and hence, that fields

were indeed constructed for each ‘rajectory,

Conditicn (3), above, is based upon lemma (87.2) of Reference 7 (page 247).
This gives generalizea expressions for the second variation test for problems
with separated end conditions. There is no contribution to the second variation
at the initial point, since conditions at this point are all fixed. Hence, for the

type of problem considered, it is required that

- [ao, a’] plzp) X(zp) p'lzp) Uz ) || &,
) ‘ , > 0 (2. 64)
Utep) blzg) Uz Vizg) || a
for all (ao, a) satisfying
x;(zp)a + Uz da = 0, i=1....,r1, (2. 65)

Expression (2. 64) is the second variation (as derived in Reference 1) evaluated
at the terminal point with field elements, and (2, 65) represents the linearized

terminal conditions with subscript i on U representing the ith row vector of U.

In the re-entry problem the terminal value of range is also specified, which
implies an = 0, and accordingly reduces the size of expression (2.64). The
remainder of the terminal conditions (2. 41) may be written in the linearized

form

U(zT)a - A, ST . (2,66)
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where the middle row of U is included for the unspecified variable ¥, and A
is an arbitrary scalar. When {2, 66) is inserted in (2. 64) (with a, = 0) there
results
-0 s 0] V(zT)U'l y{o] > o (2.67)
fay

LO

(zT

Thus, the center element of the product matrix in (2, 67) must be negative to
satisfy condition (3). It is negative for each of the 27 trajectories considered.
Hence, the sufficiency conditions are all satisfied, and each of the 27 trajectories

is a stong relative minimizing trajectory.

2. An Absolute Minimum Test

The test given here does not establish global sufficiency. It does, however,
allow a large region of solution space to be examined for cther solutions to

the optimization problem, The method is not applicable to fixed end-peint
problems., The idea is simnple: replace one of the transversality conditions by
a new terminal equation in which a parameter is included. Obtair a set of
soultions to this problem, as functions of the parameter, and examine the set

for satisfaction of the omitted transversality condition,
To illustrate the methnd, consider the problem stiatement of subsection A, and

in particular, the set of necessary condtions (2. 25)., The fourth of these is
replaced by the equation

‘y(T,pO‘; =0 (2.68)
in which 1" is the parameter, and solutions as functions of T are to be

examined for satisfaction of p (T) = 0. The Newton-Raphson equations for

the new system of equations may be written
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dT viT) 7 (T) n (D “w('r) N 14(T) AT)-X,
. i | -

dpyg ¥(T) T121(T) n22(T) n,3(T) n24(T) ! ¥(T}-!
. !

Pog| = - &(T) Ny (T) Tgo(T) Naq(T) My (T) !g(r)-xzm (2.69)
. !

dp3y SIT) g (T) m o (T) T a(T) v (T) :m*)-xB

dp, 0 £,0)  £,000  £,(0  £,(0 L H s

According to Appendix A, the derivatives of the initial conditions with respect

to the parameter T are inthe second column of the inverse matrix. These

are used with the predictor equation (2. 29) to establish the family of solutions.

An unconstrained optimal trajectory with terminal range of 1450 miles
was used for the test, The results certainly hold for the 1500 mile

trajectory. During computer runs it was found that an increment

AT = 1/2 degree initially produced a member of the family of solutions at
each step, Prediction gradually worsened, however, as the extremes of T
were approached, and it is unlikely that further extension of T can bes accom-
plished.

The total heat J for the family of trajectories is plotted in Figure 2-32.
There is only one minimurmn for the range of T given, and 1t is noted that the

minimum is quite insensitive to lavge varialions in terminal flight path angle,

From Hamilton-Jaccbi theory, it is known that -pz(’[‘) is the slope of Figure
2-3Z. The slope is zero for the optimal trajectory, and becomes very large
(in absolute value) at the exiremes of the curve, so —pz(T) is never again
zero over the range of T. It is concluded that the originul optimal trajec-
tory is the absolute minimizing trajectory, at least over the obtainable range

of the parameter [,
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THE CONSTRAINT a_= B AND EXPERIENCES WITH VARIOUS OPTIMIZATION
SCHEMES p

1. Constrained Subarc Equations

Consider the problem of subsection A, and include the constraint equation
{2.10) in the problem formulation. When equaility holds in (2, 10), the resulting

equation is used to determine the control u. This is squared and recarranged to
obtain

acosu + Zhcosu + ¢ = O (2.70)
where
a s Oyt
b CD()CDL i (2.7

, 2
c et 2. [
DO 1.0 R '

Spv

Upper asd lower Hmits for application are found by suhatitoting u 0, 4+ dinito

(L. 70) and expunding in the vicinity of these pointy, It {s found thal the inguality

aruy
Cpo tep) * 7 2

< -C.,,) >0 (2. 7%)
Spv DO DL

da
rust howd, ‘The expression for -3‘11) is propertional to 8in u, which i zero
atu 0, 27, ‘These pointy arc thus singular points, so l:quulil\y must be

excluded fn {2, 72). Assuming this, Fquation (2, 70) muay be golved to obtain

r -
t / I
us U = —) -1 4 "\/ ] - }-1-2— s ('&. 73)
a h _

where the omitted root tally ouvtyide the range lcoz ul s 1, It is easily shown
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that the term in the square root is positive by substituting the upper limit of
(2. 72) into the expression and evaluating.

The minimum principle again takes the form (2. 21), except thal this time

-t <o< |ul. (2. 74)

Otherwise, ¢ and u would be identical, 7Then, once again, ¢# 0 and u must
have the same sign, and ¢= 0 is the bang condition,

The multiplier oy is determined from Equation (2, 15) (with Byt 0)

When all
the substitutions are made, it turns out that
.2 27 ¢ 2 2 .
o [(’L *Cp ] (< o2} *Cprr1v) ] sin(u-¢)
Hy = - — ‘ 5 (2.75)
v b™ - ac sin u

Since sin (u-¢) and 8in u have the same 8igns, oy U as required. Again, u

{s continvous at juncticn points, so “2 must start and end at zero; and 4, = 0

with }l,, #0, describes the subarc terminal surtface, unless the stopping condi-
tion is satisfied first.

It {4 convenient to include B as an additional parameter in the problem, and to
introduce the new terminal eyuation

(2.76)

B, 15 the final maximum g-level (usually taken as 10 g's) in the constraint

equation (2,10), and the solutions now depend upon B ag wull as the set ('I‘,po).
This aliows the computation of extremals for various g-levels, o
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The accessory equations are system (2. 26), modified for the constrained
subarc, and the discontinuities (2. 27) are included for corner points. An
additional column solution is obtained, for partials with respect to B, by
integrating the nonhomogeneous accessory equaticns

d (bx %4, [ox bzﬂl(Bp 2%,
— | —]-= —_—) =t} 4
at \aB| 3pax \aB! 2ap® \ar| @p3B
(2.77)
d {ap 3%H, [ax 2%u, (x| fm
dt \3B Ax 3B dxdp (bB 3xdB

where the no.Yomogeneous partials in (2. 77) are computed through the
appearance of B3 in the control function (2. 73) from the last of (2, 71). The

forcing terms are zero, of course, for the unconstrained subarc, and the ini-
tial condition for (2. 77) is thn zero vector,

Let 'qij(t) and Cijm' i=1,...,4 j=1,...,5, be the elements of the partial
derivative solutions obtained from (2. 26) and (2. 77), Then the Newton-Ruphson
equations for the expanded set (2. 25) and (2. 7¢) may be written

o ~'r -

o1 W) n (1) n (0 m e n (D ny D | vD-X,

dp10 E(T) 7131(1') 7]32(T) 7133('1‘) 1'134('1') ﬂas(T) §(T)-X2/R

dp,, CT) Ny (T M AT) (1) M (D n T | om-x,

- |, R AL

dpy, BLAT) 5T CoplT) CpalD §ou(X) Coe(] | py(1)

dp,, 0 1,0 50 40 £, o0 H

dB 0 0 0 0 Q 1 B-Bo
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2, Experiences with Various Optimization Schemes

The ubjective of the studies was to obtain a 10-g optimal trajegtory, and to
evaluate various optimization schemes during the process, The sturting
trajectory was the unconstrained optimal trajectery with terminal range

X3 = 1000 miles, shown in Figures 2 5 through 2-13, with peak acceleration
cf about 20,7 g's. Existence of the 10-g trajectory was assumed from the
u, = 16 degrees acceleration ploi of Figure 2-2. The function f of Appendix

B was taken as
. w? 2 2 2 2 2
f= w® (VT =X ) + wy'[8(T) -X,/R) “ + wy [CT)-X,)
(2.79)

+ w4‘2 (pz(T)'2 + w52H2+w62 (B’Bolz-

The problem, as stated, turned out to be extremely difficult, and a 10-g
optimal trajectcry was never found. Thus, the optimization schemes were
compared under worst conditions.

The modified Newton-Raphson scheme, used first, refused to converge after
several successful iterations. Marquardt's method (Appendix B) produced
good initial changes in f, aad gradually deteriorated in performance as B
approached Bo’ The difficulty eppeared tn be that second-order terms,
neglected in the developiuent of the scheme. Lecame larger as the minimum
was approgched, When the weights ia (2, 79) were changed, the scheme again
worked well at {ire’, then dereriorated rapidly, It always, however, produced
gome improvem=zi¢ in f.

The parameter B was reduced to about 11, 5 g's during the course of the
experiments, whereas the other compouents in (2, 79) gradually became larger.
The constrained subarc exhibited a variety of behavior. It sometimes con-

tained a corner, and other times did not, and in some trajectories it was e e

absent,
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The Fletcher-Powell method was never successfully uaed. The H-matrix
(ree Appendix B), modified after the first step, was either indefinite (it
should he positive-definite), or it had a very small eigenvalue. This was on
the order of computer roundoff error and caused the method to break down,

No means of correcting the situation wae found, although a recent note
(Reference 10) mzy contain the answer,

The use of tr« identity matrix as the initial H-matrix led to the optimal gradient
method, in which the gradient direction is used, and the magnitude of change

is chosen tc minimize f. Initial convergence was gooed but rapidly went to

zero due to the ""saw-tooth" effect. This effect, noted by many users of
gradient techniques, makes level surfaces of { appear as extremely elongated
ellipses, and gradient changes in general, therefore, produce little or no
change in the functional to be minimized.

The use of
-1
3’ e
o ~ | 3x Ax (2.80)

H

as the initial H-matrix (see Appendix B) results in the Newton-Raphson
direction {or the first step of the Fletcher-Powell method. This led to the
optirnal Newton-Raphson method, which was tried on a trajectory which satis-

fied B=B but whose terminal conditions were very far from those desired.

The method worked guite weil, and almcest produced the 10g-optimal trajec-

tory.

The singular point u = xm, however, caused computational difficulties,
30 the approach was abandoned.

The predictor scheme of Appendix A was also tried on this problem. Interms

of the nctation of Equaticn (2, 78), the derivatives used ip the predictor —z:—-=-
equation (2. 29) are
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1 WT) N (T) N (T) 0 4(T) n,(T) ny5(T)
Pio E(T) Ny (T) Ngo(T) ngs(T) My (T) Ng5(T)
L Loyl = - (6D a0 N M M N T nyslT) (2. 81)
P3¢ PAT) L5 (T) (oofT) (oa(T)  (5,(T) ¢,y5(T)
| Paq K 1,000 1,000 £5(0) f4(0>— | o _i

A 17,9-g optimal trejectory was obtained using the optimal Newton-Raphson
method (Equations (2. 28) with C determined to minimize (2, 79) with Wo = 0).
The initial conditions for the iterations were taken as those for the u; = 55
degrees optimal trajectory of Figures 2-1 through 2-8. A second optimal
trajectory for B = 16,9 g's was similarly obtained, using the 17. 8-g optimal
values as starting conditions. A cubic was fit through the initial conditions
and their derivativea[obtained from (2. 81)] to obtain estimated initial conditions j
for the B = 17, 7-, 17.5-, 17.3-, and 17. 1-¢ optimal paths, The new paths
were then obtained, and the predictor scheme was used [with h=0.2 g in (2.29)]
to compute optimals down te B = 14,9 g's. All of these paths had & zorner
point, which migrated toward the initial point of the constrained subarc as B

was lowered. The predictor scheme failed to obtain the 14. 7-g optimal be-

cause the corner point was too close to the initial point of the constrained
subarc. This caused computaiional problems because of the singular point u=0,
On the other hand, the terminal range of the 16, 7-g optimal trujectory was _JF
extended to 1460 miles using the predictor scheme, and th2 corner point
migrated toward the endpoint of the congtrained subarc, Once again, the
singular point us 0 prevented further range extension. Thus, two parameters :
were found which controlled the location of the corner point, and a 10-g opti- I B
mal trajectory could have been obtained by manipulating them properly. This '
was not done, however, since a 10-g optimul trajectory with a continuous

; control function was gought. Instead, the constraint equation was modified

]

80 as to igolate the singular point u= 0 and to thus allow the corner point to o S

; move across the constrained-unconstrained subarc junction points.
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3. Constraint Equation Modification

The singular point u = + n has a clear physical significance: in the next

instant of time the pilot's ecceleration will exceed B g's, since no control
function exists which will alleviate the situation., Computations are accordingly
stopped at this point. (Normally, 0 < fu | <m, on a constrained subarc, and

| u I moves, in time, toward zero or . The subarc either terminates normally, i
or runs into computational difficulties as a singular point is approached.) The
point u= 0 should define the endpoint of the constrained subarc, since no control
exists, for the next instant of time, which will keep a_ = B g's. It should be
possible to show, mathematically, that this is so. However, the mechaniza- !
tion of any such solution would undoubtedly add complexity to an already com-
plicated computer program. It was decided. instead, to modify the constraint
equation so as to isolate the singular point u= 0, The modified equation reads

2
. _Spv 2 2 2K
8 ° 'Z—rgﬁg_o _\/(TL *Cp * Tcesu - (2.82)

With the constant 2K = (. 0001, the added term normally contributes very little
to the original equation; hence, there is a very small difference between the
two expressicns, The error maintains the "real” acceleration less than B g's.
As u approaches zero, however, the adder becomes large, and effectively
igolates the point u= 0. The equation to be solved for the control function,
analogous to Equation (2, 70), is

2K
l-cos u

acoszu+2bcosu+c+ = 0 (2.83) i

with a, b and c defined by (2. 71). Although this may be solved as a cubic, ‘
it was found more convenient to use Newton's method, Alsc, since cos u may

be close to unity, the transformation

z = cosu-1 S s S AT =A2, 84)

wag introduced for somewhat betler accuracy.

76




The transformed version of (2. 83) reads

22 4 2atb),, lardbie) 2K (2.85)
a a az

The constrained subarc equations ia the computer program were changed
for the modification. Lack of time prevented more than one or two debugging
runs to be made, so the corner point was never removed from the constrained

sukarc,

F. EXTENSION TO THE BOUNDED STATE COORDINATE PROBLEM

1, Statement of the Problem

The theory for the problem of minimizing

T
J = J[ fo(x,u)d'r (2. 86)
0

subject to differential equations

x = fe,w), x(0) = x_ (2.87)
inequality constraints

Gi{x,u) 2 0, (2. 88)

in which u must appear explicitly, and terminal conditions in either the form

x(T) -3, = 0, i#1,..., rsn Y 1)
or ~ ]
xj(T) - XJ : 0, j=1,..., r-1<n CImEILL I L E LT “E(2. 90) .t
T - K = - ,(t)J 7,." - :L7: T T - - 7,:
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is treated in Reference 1. The objective here is to add inequality constraints
of the form

Gix) =2 0 (2.91)

and to develop a method for numerically solving the resulting problem,

2. Necessary Conditions

A set of necessary conditions for this problem has been known for some time

{see References 11-14). They are stated here with one control function and one
inequality constraint equation (2. 91) assumed for simplicity. Generalization

to more con’rol functions and more inequality constraints is readily accomplished,
It i3 also assumed that the timme derivative of (2.91),

. G . _ oG
G= % = 5%t (2.92)
contains the coutrol function explicitly, The case where higher derivatives

are required to involve the control function is treated in References 11 and 14,

The Hamiltonian for this problem is

H o= i - p'f, (2. 93)
where fo is the integrand of (2,86), p is an n dimensional multiplier vector,

{ ') represents transpose, and f is the right hand side of the vector differential
equation (2. 87)., Now a constrained cubarc is one over which inecuality (2. 91)

is an equation. A necessary and sufficient condition for G tc be zero over such

a subarc is that G be identically zero over that arc (see Reference 13), This
condition is included in a new Hamiltonian, defined by

H, = H + pG,

1 (2. 94)
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where the new multiplier u is identically zero over unconstrained subarcs
(G(x) > 0) but may be different from zero over constrained subarcs, Equa-
tions (2.93) and (2. ¢4) clearly have the same value, and the last term of (2. 94)
may be though of as a constraint on the Hamiltonian.

The usual necessary conditions now hold, The Euler-Lagrange equations

are derived from the Hamiltonian (2, 94}, and the minimum principle requires
that

H{x, u, p, #) s H{x, U, p, n, (2.95)

where u is the extremal value and U is any admissible control (satisfying

(:‘v 2 0 over constrained subarcs). The Clebsch condition must also be satisfied,
and usually is if (2.55) holds. In fact, it can be shown that the Cleksch condition
gives the necessary condition

B <0. (2.96)

Boundary conditions at the initial and terminal points of the trajectory are

the same as those given in Reference 1. Additional conditions may, however,
be required at junction points between constrained and unconstrained subarcs,
If there are only two subarcs, the condition G= ¢ may be treated as either an
initial conlition or terminal condition, depending on the ordering of constrained
and unconstrained subarcs, and the multipliers will be continuous over the
path, If the ordering is constrained-unconstrained-constrained for a three-
subarc-path, the rnultipliers will be continuous for the same reason. All
other cases with three or more subarcs will produce discontinuous multipliers,
It is well known (see Reference 12) that the discontinuities take place at one
end of the constrained subarc and that the multipliers are continuous at the
other end. It Coes not matter which end has the discontinuities (for proof see
sppendix G), so the initial point t 18 chosen here, as in Figure 2-33,
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Figure 2-33. State Coordinate Gzometry in the Vicinity
of the Constrained Subarc Initial Point

The necessary conditions at t. (the analog of the Weierstrass-Erdman

1
corner conditions) then read

; N _ aG(t))
] plty) = p(t)-v —— (2.97)
H" = W (2.98)*
: G'(t) = 0, (2.99)
wiere superscripts + and - indicate limits from the right and left, !
respectively.

Notice that when (2. 97) is substituted intc the left-hand side of Equation (2. 98),
the coefficient of v becomes G { Equation (2. 92)] , which is zero by defini- :
tion. Equation (2.98) is thus indenendent of v, and contains only p values of L3

the multipliers. This equation can usually be reduced to an equivalent nec- ) **
essary condition, B

*
If G contains t explicitly, then the Hamiltonian ir discontinuous by .he

amount v y (tl) .
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For example, it is used wn the bounded brachistochrone problem (subsection
F4) to show that the optimal coatrol is continuous in time at the point ty.
which implies that

G~ = o ' . {2.100)

This condition, rather than (2,98), is used there, - 7 : j'-:.:

3. Basis for Computational Scheme B

In the optimization problem treated in previous subsecticns, the extremal
solutions were functions of the independent variable (call 1t t) and the multi- '
plier vector P, The constant v in equation (2.97) cannot be determined
from the necessary canditions, and hence, becomes an additional parameter
for the solutions. The extremal sojutions thus have the functional forms

1}

x x(t, P, V)

(2. 101)

it

p = plt, p,. V).

Each time the muitipliers are discontinuous another constant v is introduced,

Unless one has an a priori knowledge of the number of constrained subarcs, the

rroblem could hiave a variable number of vaziables., This gives no theoretica!

difficulty, but ihe practical bookkeeping problems in a digital computer pro-
gram could become unmanageable. In what follows, then, it is assumed that 7

the optimal path consists of three subarcs, ordered unconstrained-constrained- “;
unconstrained.

The necessary zonditions at the terminal point give (n+1) equations in the
{n+2) variables (T, Py v). The necessary conditions (2. 98) (or equivalent)
and (2. 99} determine the point 1 and give an additional equation in (T, Pgr V.~
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Tre problem is thus one of detertnining the solution of (n+2) aquations in (n+2)
unknowans and the Newton-Raphson methed may ve used to find the solution,

Partial dervatives of the solutions with respect to p, are obtained as before,
by intcgrating the accessory differential equations.. An additional column in
the solution matrix is reserved for partials-with respect to v. Initial condi-
tions for this solution are ortained by differentiating Equation (2. 97j, and
noting that x(tl) is independent of v. The method of volving the problem is
illustrated in the following example.

4 ‘The Boundad Brachistocheone Problem

The bounded brachistochrone problem was chogen to test the theory. Tt is
simplce enough to have an anaiytical solution, yet nonlinear in nature, 7The
equations of :notion, as given in Reference 1), are

X * v cosy (2.102)
y » v osln ¥y (2.103)
v s -g sin v, (2.104)

‘T'he problem is to mintinfze the time 1t takes to go from a given {nitial point
to x = x4 vhile anttefying the path construint

G * y-wx-b x 0, . (2.105)

The state sactor has the components (x, y, v) and y {8 the control function to

be determined, Figure 2- 34 shows the puth constraint, terminal condition aud
a possible path,
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Figure 2-34. Bounded Brachistochrone Problem Geometry

The time derivative of (2, 105) g

G = vigin ¥ - acos ¥y) (2.106)

a0 the Hamiltonian I8 written ay

Hyo 1+ Pyvcos ¥ + p,v 8in v~ Pygsiny +uv(giny-acosy) . {2,107)

The Luler-Lagrange c¢qua.ions become

p, = ©

(Z.108)
3 .
p, * ¢ (2. 109)
py v - [pl cos y + p, Bin 7] (2. 110)
0 = P,V sin7+p2v CoOBY = Pyg cos¥ + pvicos vy + a siny) . (2. 111)
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Over unconstrained subarcs the multipliexr 4 is zero, so0 (2, 111) may be solved
for y(v, Py. Py p3) a8

pzv - pag
tan y =

P,V (2.112)
or
-(p,v - P48)
2 3
siny = (2.113)
2 2
-\'[(PIV) + (ng - P38)
-plv
cos y =

. (2. 114)

VBrT + e - ]

The minus signs in (2, 113) and (2, 114} are chosen to minimize the Hamiltonian
(2.101).

: a
On constrained subarcs, solutionof G = 0 [Equation (2. 106))! glves

tan ¥ = a, (2.115)

since by assumptior v ¥ 0, and Equation(2, 111)gives

.- .gl“ - (plv - paz)
v(1+a%) | (2.118)

Now let ¢ be the angle defined by (2.113) and (2. 114), This {8 a convenient
definition, since at the boundary point t (nee Figure 2-34) everything is
continuous, 8o ¢ becomes ¥ at that point, The constirained subarc Hamil-
tonian may then be written

oo 1. "\/(Px")z + [Pgv - Pyg)” o ty- @) . (2.17)
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The minimizing value of ¥y makes the cosine positive, so it must satisfy

i

o -5 <v <o (2.118)

:ol B

thus resolving the ambiguity of Equation (2, 115).

The multiplier p of Equation (2. 116) is rnegative over the constrained subarc,
To see this, consider the complete statement of the minimum principle for

this problem, It reads

H(y) < H(T) {2.119)

for all T satisfying é( ') 2 0. Written out,

pyv cos ¥+ (pzv-pag) sin y<p,v cos T+ (pzv-psg) sinT , (2.120)
or from (2.117),

cos (y-0) = cos (- o). (2.121)

Now = ¢ contadicts (2.121) if y# », so ¢ must satisfy (:‘x(a)) < 0 except at

the endpoint t, where y= ¢ . Thus,

2

G(e)s vising-acosg) <0, tl<t<t2. (2.122)

Substitution of (2,113) and (2. 114) then gives

v v
— o [plv a- (p2v-p3g)] <0, ti<t <t,. {2.123)

\/(PIV]Z + (pzv—p3g|2

The bracketed term of (2,123) is the only term which can be negstive, and is
the numerator of (2.116), Since the denominator of (2, 116) is positive, p nwusgt
be negative over the second subarc. An interesting interpretation of the angle ¢
ig that it is the extremal value of ¥ if the constraint is not present.
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The relevant boundary conditions for this problem are the terminal and

intermediate conditions
x{(1, - X = 0 (2.124)

y(t]) - a-X(tl) -h = 0 (2,125)

and the transversality conditions

pz(T) = 0 (2.126) '
py(T) = 0 (2,127)
pylt,) = pi(t) + va (2.128)
Pylty) = Pyt = v (2. 129)
+ -
py(t)) = pylt)) (2. 130)
+ =4
H (tl) = H \t]) (2.131)
H=0 (0t <T). (2.132)
The condition (2.131) implies continuity of the control function at t= tl' which
in turn implies é-(t,) = 0, or
V(tl) sin y—(tl) - a cos "V-(ti) = 0, (2.133) \

Continuity of ¥ follows from substitution of (2,128) through (2, 130) into
(2.131), giving

p;v(cos y' - cos y) + (p-zv—p.ag)(sin vt o siny) + vv[a cos y' - sin‘y+]= 0,
(2.134)

where the parameter t1 has been suppresgsed and the bracketed term vanishes,
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Now let Y be the angle defined by (2. 113) and (2. 114) using p values, (2,134)
then becomes

cos (y" - ¢) = cosly - ¢) = 1,
since ¥ = , so iL follows that

y = ¢ = 5y , (0sy<2M) (2. 135)

on the optimal path,

From a numerical standpoint the problem falls iuto two categories, determined
by the number of subarcs contained in the path,

Case l: G >0 Over the Entire Path (One Subarc) -- Alth.ough the optimal path

is to consist of three subarcs, it is possible that some intermediate extremal
will not reach the boundary. The reduced differential equations of the extremals
are (2.102)-(2,104) and (2.108)-(2.110) with control ¥ determined from (2.113)
and (2,114). The problem then becomes one of finding (T, po) which satisfy

x(’l‘,po) - xf = 0 . (2.130)

p, = 0 - (2.137)
o]

P4(T, p,) = 0 . (2,138)

Hp,) = 0. (2.139)

The modified Newton-Raphson equations are
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p3(T)

H(po)

-

where the n's are the elements of the first row of

second and third row components of (1) .

over the entire path it can be evaluated

‘i(T)

n“(T)

53(T) Cqy(D

0 f1(0)

ﬂlz‘

C32(T)

f2(0)

] [
ny3(T) dT
0 dp10
€33(T) P,
fa((,‘) ip:;o

Aax!T)
=

(2.140)

, and the {'s are the

o
Since the Hamiltonian is zero i

Oat t = 0 where all p's are initial

values, so the last row contains the partials of the Hamiltonian with respect

fo the P,'s at that point. Equation (2. 136) is used as the stopping-condition for
the integrations which accounts for the zero in the left-hand vector of (2. 140}.
The accessory diferential equations are

5
r%%L* gg';‘ N3
3, 3

;%' F 1;?

0

0

%3 3y 23
w WMt Tw

af

QY
%,
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dy
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Bpl

dY
bpl

a., . a,y
¢ 'Eéz ¢ Tp, &

3y 3
s, C2 *'Eﬁ; 3

3y

by * 535 €, t
18p22

vy

€ * 3. $o *
1 3p2 2

n

dY

Bp3 3‘
-

dy

3. ¢

opy 3]
3

F
(2, 141) {
i
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and the initial conditions are

L o 0 o
1axgo> 0 0 0
o, 0 0 0
%Eﬂ 1 0 9 0 |
L. 0 1 0 0
0 0 0
L 1

The last column of {2, 142) will, of course, give a zero vector solution
of (2.141). It is included for the three-subarc-case in which case it wil}l
contain the partials of x and p with respect to wv.

Case ]I: Two or Three Subarcs -- The first and third (if present) subarcs

satisfy the differential equations for Case 1. Over the second subarc the
reduced differential equations of the extremals are (2.102)- (2. 104) aad

(2.108)-(2,110) with y determined from (2.115) and (2. 118). Since ¥ is
a constant, the accessory equations simplify to

n, = cosy Mg

n, = siny M3 -
ng < 0 |
¢, = o S
(o - o -

€. =—[cos « ¢, +sinyi,l.

(2.142)

e




The initial conditions for (2. 108)-(2.110) are given by (2.128)-(2. 130), with
constant v to bhe determined, whereas initial conditions for (2, 143) are

ot
* e g x- - xt 2 i, =1, 2, 3 2.144 ;
nlj ﬂlJ + [Xl Xi ] Bg y 1,] ’ » ( . ) :
] i
+ . i
Mg = 0. 1=1,23 (2. 145) @
]
+ - ;
G Sy .
- - j=1, 2,3 (2. 146)
25 &
4 atl
C3j = Cs_] + (P3 p3) ‘S'p—o
J
+
g = 2
+o (2.147)
g = 72
+
¢ = O 5
|
lan these equations j designates the column number in the matrices ]
-,—)} s TBE» ., and i enrresponds to the numbering in (2. }43). "
v!.lo Opo
Intermediate extremals computed during iterations will niot in general satisfy ,
the necessary conditions at the poirt t,. In particular, the control function - :
may be discontinucus, which implies G= 4 0. In this case the partials of,tl
in (2.144) and (2.146) are computed from G(t,) = 0, i.e., B
btl ang. .
= ..._J___ L 1= 1,23 (G#¢ 0 (2.148)
poj -ax”~ + y S -
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. 3t
If G~ happens tc be zero, the coefficients of ap—: disappear in (2. 144)
and (2.146). These partial derivative solutions aré} then c¢c atinuous at

t=tl,

and Bt] need not be computed. All variables are continuous at
apo.
J

the junction point ty between the second and third subarcs (if there happens F |

to be a third subarc).

Two additional necessary conditions arz required to set up the modified
Newtan-Raphson equations. These are

G(t)) ylt,, pg) - axft;, pj)-b =0 (2.149)

it

é'(tl) yo(t,, p ) -ax- (t.p) = 0. (2.150)

EG™(t,) # 0, then (2.149) determines t,(py), and (2.150) is the additional
necessary condition to be satisfied. The modified Newton-Raphson equations

are then
— M — N
0 x(T) nll(T) M, ofT) "13(T) nM(T) aT
. o
P3(T) p3(T) C31(T) C32(T) C33(T) C34(T) dp2 :
-C = ° (2.151) |
Hip ) 0 £,(0) £,(0) £,(0) 0 dp, ='
. . . 0
G- (tl) oG (tl) G (tl) o 4
. — v
- L o 0 |
i
where i
6700 - oY . ,
-5pi«——- = ny - oang +G(t1’ a—po- , 1= 1,2, 3, (2,152)
o i
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é(tl) = ag(sin2 y - cos2 ¥, {2.153)

ot.

and Bp—l is defined by Equation (2. 148). If (2. 150) is satisfied,
0.
i

then it determines t, , and (2. !49) becomes the additional equation which

1
must be satisfied. In this case the last equation of (2. 151) is replaced by

et e e e

BG(tl) oG 3G i
-C Glt,) = = dp, +3——dp, +3——dp I
1 bpl 1, sz 20 Bp3 30 E
(o} (o] [¢] 3
where
3G(t,)
=n, -~an.. , 1=1,2,3 (2. 154)
bpo 2i I8

The First Constrained Path -- It is possible to choose the initial values
(plo, Py, pso) such that the path strikes the boundary (2. 149) before the

stopping-condition (2.136) is satisfied. 71nere will then be a second subarc,
and the problem is that of determining a value of vto go with it. Since the
optimal path is to consist of three subarcs, the scheme chosen is hased upon
leaving the constrained subarc as soon as possible.

According to Appendix G, the multiplier discontinuities may be computed
at either end of a constrained subarc. Assuming they are determined at the

point t = tz, Equation (2. 110) takes the form

b3 = -[p] cos VA p, sin Y. (2.155)
Since pI = Py pé = p2 , and ‘y is found from (2 115) and (2.118), i
p3(t) is well determined. ’lhe conditions p (t,,) = G (t }>0 and v con-

tinuous must ve satisfied if ty is the endpoint of the second subarc The

first condition is solved for v giving

(pov - pag) - pyva )
v = PALE L Mo , (2.156)
v(1+a?)

w? (ty) # 0 is satisficd, so t, is well determined,
92
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whereas the second requires that

vt ‘
G ) = glr-a% cos® vt >0 (2.157)

Inegjuality (2.157) is always satisfied for the value of a considered. The

determining factor is the continuity of ¥ which requires {from the minimum

principle)
Sgn‘.p; +\va) = sgn (cos -y+)
(2.158)
.+
sgn{(p; - VIV - pgg] = -sgn (sin v ).

Satisfaction or ‘2. 158) then determines the endpoint of the second subarc.

If the third subarc comes back to the boundary, the second subarc is ex-
tended to this point, and testing for the end of the second subarc is resumed,
On the other hand, if the second subarc extends to the endpoint, then n“(T) =
C34(T) = 0, and C24(T) = 1. Solution of (2.151) (or its equivalent if

G~ = Q) gives iterative corrections which tend to satisfy the last three nec-
essary conditions. The computed dv is ignored, since the necessary condi-
tion for pz(T) on a two subarc optimal is p2(T) = vy, rather than zero. The
optimal path is to have tL.ree subarcs, so the correclions are used iteratively

with the first constrained path logic. A three-subarc path is eventually obtained.

‘Numerical Results -- The constants for the problem solved are the came as

those used by Dreyfus in Reference 11. They are X, = o, Yo © 6, vy = 1, T
g = 32,172, a = -0.5, b=5and x, = €, A set of initial multipliers were

f
found which produced a three-subarc path having a terminal iime of 1. 25428

seconds. The optimal path of Figure 2-35 resulted after 33 iterations, and a
comparison of this path with the exact solution is given in _ able 2-4,
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Table 2-4.

Comparison of Computed and

Exact Optima!l Paths

Quantity e Vatue
Y, (degrees) -85.2577 -85. 2578
(4 0.385117 0. 385141
st 1.60687 1.60710
¥(t)) 4.19657 4.19645
G,y 1x10°° 0.25x 107"
G -0.7x107° 0
L 0.533530 0. 533526
Mty 3. 18470 3. 18465
¥lty) 3. 40766 3.40767
T 0.742246 0.742245
(T 6. 00001 6
“(T) 2.75571 2, 1557]
1(0) 0.1x 10710 0
() 0.6 x 1078 0
by (T ¢.ox 1078 o
p4(T) 0.7x 10 1 0

The differences between exact and computed values resulted from rather
loose interpolation procedures in the computer program. Although these
could have been corrected to vbtain more accurate results, it was not felt

necessary since the purpoge of solving the problem wasg to prove the method,




A.

SECTION III
THE CONTROL FUNCTION

JUSTIFICAT'ON OF THE FORM OF THE CONTROL FUNCTION

The form of the nonlinear optimal feedback control function is

u=ulx, t, (3. 1)

where x i8 an n-dimensional state vector and t is the independent variable.
This form {8 justified theoretically, and a simple example i3 given,

The
general procedure for obtaining the control is also outlined,

1, Theox‘y

Congider a set of optimal trajectories, starting at various initial conditions,

which all satisfy the samc sct of terminal transversality conditions. The

control functions for their trajectories are clearly those required for the non-

lincar optimal feedback control scheme, The fact that the control for the

family of trajectories is of the form (3. 1) follows from the field theory of the
calculus of variations, For the control problem, a ficld is a region of (t, x) -

space with which there 18 assoclated a set of slope functions, control functions
and multipliers

X=x(t, %
u=uft, x) (3, 2)
poplt x)

having continuous first partial derivatives, which satis{y the differential
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equations X = f (x, u), and which make the Hilbert integral
Ix = I[H(x, u (t, x), p (1, x)) dt - p'(t,x) dx] (3.3)

independent of path. A field is constructed through the use cf a theorem
which states that an n-parameter family of trajectories which smoothly
covers 4 region of (1, x) - space and cuts a surface trangsversally exactly
once defines a field. (The proof fcllows from Bliss' corollary 83,1 and

the fant that I* 5 0 on a transversal surface.) Smoothness i3 established by
the non-singularity of a matrix representing %(09 ,» a8 in Section IIC, over
each path. The transversal surface ie excluded from the field since, by
construction, the matrixmt) is singular at the endpoint of each trajectory.

]

¥xp

2. Example

Consider the problem

T, ;
A J '!'21‘ d1 s minimum y . 43.4)
ts
Xl = -"‘2 s .:;
. A(3 5)
X, = u, R

with terminal conditicns ) , e

T-K = 0
x)(T) = X, = 0,

RN T TR

b,

Liodiel,

oot Lokl o

Al e il




The Hamiltonian is

2
_u, .
H =% #pyX; * Py

gso the Euler-Lagrenge equations are

p, = 0
i)z = °p1
and the control satisfies

u = -p,.

The solutions after (3, 9) ig inserted into (3, 5), are

¢2 8
X) = X9 ¥ X0t - Py *P10T6
2
= - 1
X3 * %30 " P2o' TP1072
Py * Pyo

Py = Pyp ~ Prot

where the () subscripts indicate conditions at t = 0,
conditions (Reference 1) require

pl(T) =0
pz(T) = Vo
H = Vg
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(3.7

(3.8)

(3.9)

(3.10)

(3.11)
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The last two of (3, 11) can always be satisfied. However, the first and

(3.6) require

Pio
C o Hp - xpg) (3.12)
P20 K d
The set of all trajectories which cut the terminal surface (3, 6) trans-

versally are thus found to be

Xy ® X0 T X0 (3.13)

. (Xr) - XZQ)
Py K ’

with control function from (3. 9)

x
._2_2.(.‘. (3.149)

=4
1}

The matrix r is found to be

el

which i8 non-8ingular everywhere, except at t=K. The trajectories thus -

{1
J (3.19)

1l

::P NL

smoothly cover the solution space. The first two of (3. 13) may be solved to e

obtain
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v s - - oax. - t
X10 ° X1 " ¥t KptXpe) 3%
(3.16)
) Kx2-X2t

0o T T K-t
Substituting into the last of (3, 13) gives

by * 0

Xo-x

Py = (3.17)
with control determined from (3.17) and (3. 9).
Of course, the control may be deduced from (3. 14) directly in this simple
example. One simply replaces K by (K-to) and regards the present point
as the initial pcint,
Tne example illustrates the general procedure of constructing the desired
field. For more complex problems, Equation (3.9) is found to have the
general form

u = ux,p), {3.18)
and the solutions (3, 10) are

x = x(t, x5, Pg) -

(3.19)

p = plt =, po). ’
The transversality conditions give the relationships

P, = Pg (x) (3. 20)
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B.

so that (3. 19) becomes

X = x(t.xo)

p o= p(t,xo), (3.21)

Note that the transversality conditions and terminal equations must
constitute an n-dimensional non-singular (or normal) system to obtain the
solution (3. 20). Non-singularity of the matrix (3. 15) allows inversion of
the first of (3. 21) to obtain

X, = xo(t, x), (3.22)

which is the general form of (3.16). Substitution of (3. 22) into the last
of (3,21) gives

p = pf(t, x) (3.23)

as the general form of (3.17). The control (3. 18) then assumes the
desired form (3. 1). Substitution of the control intc the original differential
cquations then gives the last of the field equations (3. 2).

In more complex problems, the process described above can be done only

in a small region about a trajectory, as in Section II C.

AIETHODS FOR DETERMINING THE CONTROL

As shown in the example, the control may sometimes be obtained by direct
svlution of the optimization problem. This is generaliy imposgible; however,

one might include in the category of "direct solution, the faster than real

102

o e m e ia—tan 3 e v en




time solution of the optimization problem in an airborne computer., This
appruach is unrealistic at the present time, due to large computational

requirements,

An alterrate possibility 1s that of solving of an approximate optimization
problem. The mndel differential equations are usually as simple as the
process allows; however, most cptimal trajectories are fairly insensitive
to path deviations, so far as the optimal criterion is concerned. With feed-
back, the approximate problem solution would approach an optimal solution
as the re-entry progressed so that terminal errors would be nulied as well,

Some ume was spent seeking suitable simplifications to the re-entry problem,
and some useful relationships were found. However, the problem was not
realistically simplified to the point that analytical solutions could be obtained.
Another possibility considered was that of using a Rayleigh-Ritz-Galerkin
procedurea to compute near-optimal trajectories in the airborne computer,
This process also ran into large computer requirements, and hence, was

not pursued further.

A final alternative is that of using surface fitting procedures to approximate
the optimal control function. This has the advantage of moderate on-board
compuler requirements and may weil handle large deviations from ''nominal"
re-entry conditions. The method aiso has growth potential, in that self
adaptive features may be built in by increasing the dimensionality of the fit.
However, several facts should be borne in mind in such an approach. There
is, in general, no way of detcirmining the best form of the approximating
function. Polynomial approximations are probably best from the standpoint
of evaluation in the airborne computer, so this form is assumed tfcr the re-
mainder of the repert.
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The region over which an approximation is to be valid is usually determined

by the errors which can be {olerated. It is generally not true that higher-
ordered fits produce more accuracy after a certain point, for computer
truncation and roundoff ervors destroy the benefita of the additional terms.
It is better to segment the region into subregions and to use lower-ordered
fits to obtain more accuracy. The segmentation is readily accoraplished

and mechanized for one-dimensional approximations, but may lead to serious
mechanization problems in more dimensions.

The larger the dimensionality of the approximation, the harder the problem of
obtaining the fit, It is best, if possible, to split the over-all approximaticn !
problem into subproblems of reduced dimensioun.

The polynomial approximation approach was chosei; as the approach for
further development of the non-linear optimal feedback control scheme,
C. DEVELOPMENT OF THE CONTROL FUNCTION

The polynornial approximations counsidered are of the forn

= E i i, k. 4 .
w = b, ¥y Yo'y¥e 2, Lj.k, 120,
ijk171 7273 i+j+k <ra, (3. 24)
i, j, k.1

where w is the approximated control function u, or one of the multipliers
Pl’ P2 . z is range, and the variables Yy:¥sp and y, are related to v, » h B

through the equations ) o ‘

Y1 = V-V, o .
Yo = Y7, (3.25)
Y3 = h-hn . . L S
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Nominal state variabjes Vn’ Yn hn arc taken as those for trajectory 1
in Table 2.2, and the reasor for the transformation 18 made clear below,
The multiplier approximations are used in evaluating the expression
-C, AP
u = tan ! 27;4&)_52_\_, ‘ (3. 26)
DL
It is possible to split the over-all approximation (3. 24) into two parts
because of the method in which the data was collected (Section II C). Thus,

consider the two approximations

2
aijk(z) = Zbijk L2 , 120 {3.27)
!
wo= T;i'k(Z) yliyzj yak , Lpk20 13.28)
LY i+j+k sm :
i,7.k i

The method of solution is to determine sets of coefficients aijk( zr),

z, = 15r, r = 0,1, ...,99, (3.29)

for the three-dimensional approximation (3. 28), and to use these as )
data for the several one-dimensional fits (3. 27). - :

Consider, then, the problem of determining the coefficients aijl: for

a given value of ringe, It is convenient to transform the problem to
the form

] w = \? cuxy ixodx K i,.k =2 - 77(3 30)
1 - ¥ ) lJl “'0 -
_ : ijk™1 72 73 itj+k £m




in which | X, | £1, n=1,2,3, tlrough the relationships

) Teyty

Xp T ax¥o T

X3 = a3Y¥gtyg
The transformation (3. 31 gives a better condi;ioned system of equations
to be solved for the coefficients, and, moreover; makes it easy to find

negligibie cuefficients, if there should happen to be any. The coefficients

a;, are obtained by substituting (3. 31) into (3. 30) and rearranging the
resuits.

When derivatives are included as data, the normal procedure is to

differentiate the approximating polynomial to obtain equations. Thus, for
example,

dw dw 3V 3y 1 3w . .
= T = T T = Zc ix, Ty dx K
ax, " 2V 2y3x;  a, 3V ijk X1 X2'X3 o

ijk

with similar expressions for -g-w- , i . The four equations
Xo ax3

i 1 x X x b 2 XX X,X X X X x 2 .-1 [ w ]
1 2 3 1 172 173 2 273 3

¢ 1 0 ¢ 2xl X, Xq 0 0 0 . i '%:”—1

60 1 0 0 x 0 2, xg 0 ... . %"2—

R R N N _-a%-d

with vector

r_
c =
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[°000' €100’ “o10' 001’ €200° “110° “101' €020’ 011’ 002’ "

(3.31)

(3.32)

(3.33)




are expansions of (3, 30) and its partisl derivative equations, in which
terms through second-order in x are shown. The matrix of (3, 33) may be
evajuated numerically for each of the 27 trajectories. These are

collected into a matrix system of equations
Ac = f

in which A 1s 2 (108 x g) matrix, ¢ is a g-dimensional vector of co-
efficients, and f is the right-hand side of (3. 33) for the 27 trajectories.
The dimension q is related to the order of fit m through

q = 1+% (11+6m+m?),

and the range on m is 0<m <6.

1. Lagrang_c_li_"ﬁ

The approxir.ating function is required (0 agree with actual function

values and derivatives g times, Then q of Equations (3. 34) arc selected
and the right-hand sides contain the relevant function values and partial
derivatives determined during the data generating process. The questicn
of which caquntions to use is regolved on the haois of the least singular
system  of cquations, as determinced by the process of Appendix F, Notice
thut the matrix ot ¢valuated bagis functions is the: same, regardless of
which function (u, P, Py s fit.

An cxploratory progrum was written to obtain J.agrange fits for (u, Pl' P,
for all values of m considered. As originally constructed, the matrix of
bu<is functions was {nverted, and three matrix ovltiplies produced the

cocflicivata for the fits,  Fuch fit was cvaluated at the 27 data points, and

vrrors were computed,  Output {ncluded actual and computed functinn values,

crrors, @nd the ovowa and deviation for cach fit, computed from
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in which €, is the error in the function for the ith trajectory. Additionally,

the arc tangent relationship (3. 26) was evaluated, and errors and statis:ics

for this were included as output. Adequale precautions were taken to ensure

tr.t the inverse matrix was well conditioned. If the product of the matrix
of basis functions and its inverse wer> not close to the identity matrix, a
well-known Newton-Raphgon correction was applied. * Those function errors
which were supposed to be zero provided an additional accuracy check (at

least cne function equation must be included in the set of equations solved,
to obtain the coefficient COGO)’

The Tirst attempts at fitting used (V,y, h) in place of (xl. Xgs x3) in Equation

(3. 30). The matrix of basis functions turned out to be very badly condition.ed,
s0 the linear transformations

n

X, % oAy Vit By

ap ¥ * By .

x3 = azh +f;,

with | X | <1, =1,2,3, were introduced. The o's and §'s, of course, are

computed from maximum and minimum values of (V, y, h) at the given value

of range.  ‘The new matrix of basis functions was well conditioned, and fits

for all values of m were obtained.
*See lteference 9, report No, 3, pg. 216, The NASA projcct reports contain

a wealth of information on surface fitting techniques, as applied to a ’
problem similar to the one cornsidered here.

1C8

1\

i ]
o il e b okl

)

v
. ol  ——— e e




The exploratory program was run for several range points and the
following conclusions were reached:

e Fits for m=5 in Equation (3. 30) were best for most of the
range points explored. Maximum control errors on the order
of 10° were found, although the means and deviations were
much less,

o The control function fit was guperior (in all cases) to the
fit obtained from Equation (3, 25).

'Y The equations used in the fitting process changed from one
range point to the next,

e The equations used in the fitting process changer when the
accuracy of the constants in Equation (3. 38) was increased
from 5 to B significant digits (at a given range point}, in-
dicating great sensitivity.

s The constants in Equation (3. 38) were dependent on range.

An attempt was made to fit the constants of Equation (3. 38) ac functions
of range 80 that the approximations (3.30) could be used directly. The
Chebyscheff fitting program aegcribed below wae used in the attempt.

in view of the behavior of the variables (see Figures 2-16 - 2 28) it is
evident that the constants are only piecewise smooth as functions of
range, Hence, the fits obtained were not good. Moreover, when the
fitted constants were used in the transformation, the inverse basis
function mnatrix again became ill conditioned. Hence, it became neces-
sary to perform a "back' transformation by inserting (3. 38) into (3. 30)
and rearranging the results. This gave polynoinials in terms of (V, y, h),
The coefficienis aijk 80 obtained were fairly large, indicating that subtraction
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must take place in the evaluation of the polynomisl. In a seven digit word-
length computer, this could lead tc severe truncation and roundoff error,

Moreover, the back transformation could not be performed at all for fits
like (3,20) in which 3 24, j,k 2 0, (The computer used had a 12-digit word-
length, and the fits obtained were somewhat worse than those for m= 5
abeve.) When the transformation (3.31) was used, the back transformation
was readily accomplished, and the coefficients a .. so obilained were well

ijk
behaved. Thus 1e conclusion:

. The approximation (3. 28) with variables (3. !.5) should be used for
evaluation in a seven digit wordlength airbo: ne computer,

Tae transformation (3, 31) is obtained from (3, 38) by adding and subtracting
he appropriate amounts, Thus,

Xp o VHAdp = o) VeV ro Vo +3)) = ayyy Yy (3.39)
with similar expressions for Xy and Xgq.
It was decided to explore least squares approximations as the next step in

the development of the control function,

2, Least Squares Fits

One may readily verify that the system of equations to be solved is (see
Reference 2)

(A"A)c = A'f, (3.40)
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where the notation is that of Equation (3, 34), and vector f contains function
values and partial derivatives obtained during the data generating process.
Unit weights are used since the derivative equations were of tne same order
of magnitude as the functional equations, An exploratory program similar
to that for the Lagrange fits was constructed, except that a subroutine to
gsolve simultaneous equations was used in place of matrix inversion. The
accuracy of the fits so obtained was very good, as measured by the closeness
to zero of the mean, Equation (3. 36}, One may readily verify that the first
normal equation for the syatem (3. 34) requires (3. 36) to be zero. Then the
deviation, Equation (3, 37), may be interpreted as the functional portion of
the error minimized by the least squares process.

The exploratory program was run with the following conclusions:

® The least aquares fits were better than the corresponding
Lagrange fits.

@ Fits for m = 5 were again best for most of the range points.

[ The control function fit was superior (in all cases) to the fit
obtained from Eguation (3. 26),

® The approximation (3. 28) with variables (3. 25) should be used
for evaluation in a seven-digit wordlength airborne computer.

It wae decided to use the least squares approximations for the centrol function.
Accordingly, fifth-order least squares fits were obtained for the range values
(3.29), excluding r = 95 - 99. The order of the best fits for these range
points are sumrnarized in Table 3-1. o o




p———— .

Table 3-1, Order of Best Fits Near Terminal Point

R&ng)e Point Order of Fit
[F]

{m)
95 4
96 4
87 1
98 1
99 2

The control functions of Figure 2-28 are shown in F.gures 3-1 through 3-27,
together with the corresponding errors in the least squares approximations. 1
The maximum errors occur in the vicinity of maximum change in the control
function which corresponds to the bottom of the first dip into the atmosphere, i
The appraximations are quite good before this region, and very accurate from

about z = 800 to 2 = 1300 miles, which covers the complete skip after the first

dive. The approximations become somewhat worse as the £ndpoint is approached.

?. Chebyscheff Fits

The final phage of the control function approximation ie that of performing the .
56 one-dimensional approximations (3.27). This was not done, since time did
not permit both this approximation and the simulation studies of Section IV to
be accomplished. 1t is evident, from Figure 3-28, that the one-dimensional
fits must be segmented into several parts in order to obtain any degree of
accuracy in the approximations so the final phase is not a trivial problem.

A Chebyscheff criterion fitting computer program was constructed for this
final phase. The method is due to Profegscr F. Koehler of the University of
Mirnesota, who was a consultant during the contract period. Assume that
equally-spaced data is given over the interval [0, l] , and that the order of the
fit to be obtained is n. A Lagrange polynomial of order n is constructed for
the (n+1) tabular points closest to the Chebyacheff zeros, denoted by

112
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(n+1) 1 , I n . ,
X, = —2-[1-(:(,9 (‘_'2'}_—n+l ,i=1, ..., n+l (3. 41)
(1)

Let Py {x) denote the Lagrange polynomial. If the function f(x) to be

approximated is a polynomial of degree n+1, then pn“)(x) is the solution
which satisfieg the Chebyscheff criterion

Max | f(x) - p,(x) | = Min. (3.42)

[0 < x sl]

In gencral, this is not true, 8o the method proceeds iteratively to the solution.
L.et ¢(x) be the error

elx) = f(x) - pn(x) (3. 43)

which vanisheg at n+1 points by construction, If the data i8 smooth enough,

e(x) will vanish exactly n+1 times, andtherewill be n+2 maximum errors -

{two &t 0 end 1, and n relative maximum and minimumsj;. The objective, on

each iteration, is to ejualize the n+2 absolute errors. Let Z. Zisenns zn+l
denote the points at which the maximum errors occur, and let n{x) be a

correction polynomial chosen to equealize the errors. Then

R R I R R P IO G Vil CYPHIN I PR DU R 7Y

Let h be the conunon value in (3. 44) so that

n(zo) h + c(zo)

nizy) @ h+elz))

.

n (zn)

D"+ ¢ (=)

, o (- i+
fl(zn“) (-1) h+e(zn+l),

141

i P Y e — == S =
i ey —— =
B e ® I T to——

bl asdi

asautdiblisnn

b v A A M




LAl |

e ez,

F.quatiens (3, 45) are n+2 equations in h and the n+1 coefficients of the
nlh order polynomial n(x). The approximating polynomial for the next
iteration iz taken as

pn(z)(x) an(X> v ). (3.44)

Iteration is required, since the location of the maximum errors, in gencral,

shifts at each stage.

The method was found to work very well in practice. It rapidly converged

to stationary points, z;, i=0, 1,..., n+l, and the selection of the same set

of points ¢, ontwo successive iterationg was found to be a good slopping

condition,

o, et e il
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SECTION IV

MECHANIZATION AND SIMULATION OF THE
NONLINEAR OPTIMAL FEELDBACK CONTROL SCHEME

A. SIMULATION DESCRIPTION

The mechanization of the scherie for the re-entry problem is illustrated in

Figure 4-1, Detailed descriptions of each block in the diagram follow,

INITIAL
CONDITIONS L

1

PREDICTOR AND CONTROL
FARD SEWSORS | *1r 22 NAVIGATOR | Xt %n CENERATOR
wo 1. e X1 (8 xR Ry B2ty 9)
ACCELEROMETERS x= 1 x) B bttty = oo e
o= Vi)

t st<t
"0 " ml HOLD
CIRQUIT

Figure 4-1. Nonlin:ar Optimal Feedback Control Scheme
Mechanization for the Re-entry Application

1. Re-entry Vehicle and Sensors

In view of the shori time of flight (15 minutes or less), accelercmeters are the
only sensors assumed to be aboard the velicie. They measure the acceleration
components (smoothed, if necessary) in the lift and drag directions,

. Sov? .
8, = = CL( sin u

_ Sc)v2

(4.1)
8 * - 3m | Cpo * CpL co8 u| - -
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S . .
The constants o CLO‘ CDO and CDL may be changed from their nominal
values to evaluate the over-all performance of the scheme, and the density
profile may assume one of several forms for the same purpese.

2. Navigator

The navigator integrates the differential equations of motion and supplies the
state vector and its time derivative at discrete instants of time. In terms of
accelerometer measurements, the equations cf mction are

dv goR2 sin y
——— 2 a 2 - -—_—-2——-
dt {(R +h)
2
dy a, v co8 ¥ goR cos Y
—_—— — + -
dat v (R+h) w(R+h)2
(4.2)
g—? = vsainvy
dz _ Rvcosy
at C3IR+E$ .

The state vector components are velocity v, flight path angle ¥, altitude h,

and range z (measured in miles), and the state vector derivative is the right-
hand side of (4. 2). The total heat is also found, for scheme evaluation purposes,
by integrating equation (2, 2) along with system (4, 2),

3. Predictor and Control Generator

The predictor equation is the Adams-M-ulton equation

_ A . . . . _ .
Xnep = Xp* g I55%, - 59x 4 3Tx - 8x .1, (4. 3)

used to introduce lead into the system. Lack of time prevented experiments with

other predictor equations, and A = 1/2 and 2 secuonds were the only time incre:
ments considered.
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Equation (4.3) requires three back derivatives as well as the present point,
8o it is not appliceble for the first € seconds of flight., The first three back
derivatives are generated from (4. 2) with & constant control in Equations
(4.1). The actual value of this vontrol is unimporiant since the vehiclz is
out of the sensible atmosphere during the first 6 seconds. However, it is
taken as the control generator equation valus at the initial point (which
assumes z = 0) for contiruity purposes. (Figure 2-28 shows that th
control is almost constant during the initial phase of the flight.)

In Section III, 100 control function fits of the form

i k
u = Z 840 V-VN) (‘)‘-7N)j (h-hN)  Li,k20 (4. 4)

i,ik i+j+k € m,

in which Vo, ¥ and h are "nominal" trajectory values, were found. The

coefficients a.., were noted to be functions of range; however, they were not

ijk
reduced to polynomial form due to lack of time,.

Thne control generator interpolates linearly between fitted range pointa {spaced
15 miles apart) to determine the coefficients a”k at the predicted rapge point.
Also, the nominal trajectory values are determined by the same process. The
polynomial (4. 4) is then evaluated with the predicted values of V, ¥ and h,

Of course, the control is constant for the firat 6 seconds of flight. It is also
evaluated differently for the last 30 miles. This is necessitated by the slngu-
lar endpoint and the general compr ession of the atate vector differences near
the endpoint (see Figures 2-16 through 2-28). Hence, a linear interpolation

for the control is performed with range as the variable. The two points used

are the control at z 1470, snd -mat z = 1500 miles, z = 1500 miles is

n+l
the stopping condition for simulated trajectories.
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4, Hold Circuit

The hold circuit supplies the constant control during the first 6 seconds, and the
linear function of range during the last 30 miles of flight. In the intermediate
region, it is taken as a cubic in time using the points u

te
n+1’ v Ypop to evalua
the coefficients. The transformation

t-t (t-tn)
— 2 s g — B (4.5)

- — — ] [ "1
ag 1 6 0 0 L
11 1 1
3 5 3 13 3 Yn-1
= (4. 6)
1 1
) ! _27 2 7 Un
1 R L 1 u
83 3 2 3 | ol
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SIMULATION RESULTS

Table 4-1 contains results of simulation runs for the 27 optimal trajectorics.
AJ is the difference between simulation and optimal trajectory total heat, and is
geen to be a positive quantity; A is the lime increment used in the Adams-
Moulton predictor equation (4. 3), and Av and Ah are the terminal velocity and

altitude errors from the optimal trajectory values of 1650 ft/sec and 75, 000 feet
respectively. g
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Table 4-1. Simulation Results for the 27 Optimal
Trajectories of Table 2-2,

Trajectory | Total Heat Total Heat aJ a Av Ah
Number Optimal Tra;. Simulation (BTU/t%) | (sec) | (ft/sec) (t)
1 28,872 28,898 26 2 226 - 8,655
2 31,888 31,913 25 2 59 - 8,565
3 26, 252 26,2170 18 2 234 - 8,537
4 29, 2178 25,295 17 2 218 - 8,982
5 28, 666 28,121 55 2 298 - 5,804
6 29,032 29,051 19 2 2217 - 8,898
7 28,757 28,810 53 2 217 -10, 566
8 32,280 32,295 15 2 226 - 8,884
8 32,116 32,148 3z 1/2 281 - 6,254
10 26, 657 26,687 30 2 211 - 9,018
11* 25,192 25, 844 5 2 - 49 -25, 640
12 32,135 32,344 209 1/2 220 - 7,649
13 31, 844 31,900 56 2 24¢6 - 9,34,
14 26,362 26,382 20 2 225 - 8,952
15 26,128 26,173 45 2 244 - 9,520
16 29,963 Fail 2t z = 1956 miles
17 29,017 Fail at z = 1431 miles
18 28,510 28,562 52 2 243 - 9,603
19 28,817 Fail at z = 472 miles
20 2,444 Fail at z = 1077 miles
21 21,314 31,397 23 2 249 - 8,447
22 31,110 31,173 63 2 250 - 9,168
23 34,375 31,449 74 1/2 263 - 5,570
24 27,326 27,548 22 2 220 - 9,048
25 26,891 27,043 152 1/2 137 -12, 201
26 26, 216 26, 266 50 2 253 - 8,930
27 26,368 26,417 49 1/2 - 43 -10, 750
* Az = -6 wmiles.
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Most of the trajectories were simulated using & = 2 seconds., The advantage
of making A as large as possible is that the onboard computer can be used for
other tasks (such as computing display information) during the idle time.

It was found that several trajectories failed with this increment (trajectories
9, 12, 16, 17, 19, 20, 23, 25 and 27), and a failure was recorded if the con-
trol for a given trajectory exceeded +500 degrees. This was an adequate test,
since if the control for a given trajectory exceeded t180 degrees, it also ex-
ceeded 1500 degrees. Computations were also stopped if the altitude fell
below 50,000 feet. This happened with trajectory 11, which stopped with a

range error Az = -6 miles, as shown in Table 4-1.

With A= 1/2 sec., only trajectories 16. 17,19 and 20 failed. This time
trajectory 11 stopped witr a range error & z = -0, 1 mile, as indicated in

Table 4-2. Trajectory 1 was also run and only small improvement in terminal
conditions resulted (Table 4-2),

A simulaticn program with nc prediction (A= C) was constructed to test the
ultiinate capabilities of the control fun<:tion polynomial approximation. (The
polynomial is evaluated at each integration step, and the system is assumed to
react instantaneously.) This was run for trajectories 1, 9 and 11 with the
results shown in Table 4-2. There was no change in terminal conditions for
trajectory 1 (compared with the A= 1/2 second case), and only slight changes
for trajectory 9. Path 11 reached the stopoing condition (z = 1500 miles) even
through the final altitude was less than 50, 000 feet, Trajectories 16, 17, 19
and 20 failed again when run with this program,

Table 4-2, Additional Simnuletion Results

Trajectory Total Heat Total Heat AJ ¥al av
Number | Optimal Traj. Simulation (BTU/ft?) |(sec) (ft/sec)
1 28,872 28, 897 25 1/2 226
: 28,872 28,897 25 0 226
9 32,116 32,147 31 0 281
11% 25,792 25,842 50 1/2 -171
11 25,792 25,842 50 0 -170
28 29, 589 Fail at z = 1044 miles
29 29,011 29,048 37 2 223
30 28,496 28, 551 25 2 253
31 28,687 28, 720 23 1/2 263
* Az = -0,: mile e PR
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Four additional traiectories, numbered 28-31 in Table 4-2, were run to test
the nonlinear optimal feedback cont.ol scheme for off-design trajectories.

The initial conditions for these are given in Table 4-3, and they correspond to i
the initial cond:tions of trajectories 20-27 with AxlO = 0. Trajectories 29 and
30 ran with A= 2 seconds, whereas A= 1/2 seccnd was required for path 31, ’
Trajectory 28 fails, even with A= 0. %

Table 4-3. Initial Conditions for Trajectories 28-31

Trajectory initial Velocity | Initial Flight| Initial Sign of Change ';
. Number (ft/sec) Path:Angle | Altitude From Trajectory ;
: {(degrees) (ft) Ax,, szo Ax3g
i
28 35,000 -5.40 430, 000 0 + + !

29 35,000 -5.40 3170, 00C 0 + -

30 35,000 ~7.35 430, 000 0 - +

31 35,000 -7,35 370, 000 0 - -
{

Path 28 may be compared with paths 20 and 24 to see the effects of initial
velocity changes, since szo and Ax30 are the same. Numbers 20 (+ Axlo)

and 28 (Axlo = Q) fail, whereas path 24 (-Axlo) is successful with A= 2 seconds.
Similar comparisons are shown in Table 4-4,

Table 4-4, Effects of Initial Velocity Change on A

. Sign of i
Trajectory
Number Bxyq | BXgg | S%39 8
21 + + - 2
29 0 + - 2
25 - + - 1/2
22 + - + 2
30 0 - + 2
26 - - + 2
23 + - - 1f/2
: 31 0 - i/2
| 27 - - - 1/2
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The characteristics of the successful flights are illustrated in Figures 4-2
through 4-5, Only those for trajectory 1 are displayed, since most of the
flights are fairly similar. The first dip into the atmosphere is quite critical,
and the inaccuracies in the control function (Figuce 3-1) drastically affect the
remainder of the path. The vehicle emerges into the skip region (where the
control function fit is very accurate) following a new optimal path. This is
pvrsued :hrough the second dip to a point (about 1410 miles) where the con-
trol fit again becomes somewhat inaccurate. Inaccuracies from this point
onward do not affecttotal heat very much,r but do contribute to terminal
velocity and altitude errors. Another sources of these errors is the linear
fit of the control in the last 30 miles of flight. The control is still rising

at 1470 miles (Figure 2-28) and the additional lift available to the optimal
trajectory is neglected in the simulation., This causes the vehicle to dive
more steeply and (in general) to lose less velocity as the endpoint is approached,
The terminal errors should be reduced by starting the linear interpclation

closer to the endpoint; however, no experiments of this nature were performed.

It is understandable that trajectory 16 failed. This path was difficult to obtain
during the mapping process, indicating that it was near the edge of the corridor,
and cons«quently, that the control fit i{s near the edge of the region of appli-
cability. Control function inaccuracies could easily move the vehicle into a
region where the control function fit is no longer applicaktle. A comparison of
optimal and simuiated trajeciories showe that the vehicle is nuite far from the

optimal at the point of failure {Av = -450 ft/sec, Ah = 7,000 feet).

The large inaccuracies in the control function of trajectory 17 (Figure 3-17)
occur in the vicinity of the first dip into the atmosphere (the bottom is at

z = 600' miles)., They cause the skip to be quite different from that of the
optimal trajectorv, The effect, however, is aot noticed until near the end of the

trajectory, since the accurate control fit produces a reasonable control for the

intermediate porticn of the flight. The vehicle eventually leaves the region of
applicability for the control function polynomial, o T T
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The initial conditions for trajectory 1° cause the vehicle to dive deeper into

the atmosphere which in turn produces greater lift and drag forces. The
vehicle follows the optimal path through the bottom of the dip {at z = 375 miles).
However, the control inaccuracy bulge in the region z = 400 miles to z ¢ 400
miles (Figure 3-19) causes the vehicle to be capturcd by the atmosphere,
instead of following the skip of the cptimal path, This shows the sensitivity

of the paths to the control fuiction errors nai¢r the bottom of the firat dip.

The flights of trajectories 20 and 28 are gimilar to {hat of path 16, and they
show that simultaneous positive perturbaticns in initial flight path angle and !
altitude are not tolerated by the control function fit,

The conclusions drawn from the simulation results are:

e In its present form, the nonlinear optima! feedback control scheme
produces reasonable re-entry trajectories with modest increases
in total heat from the optimal values, for a suitably restricted
region of initial conditions,

@ The inaccuracy of the control function fit over the first dip into the
atmosphere drastically affects the remainder of the flight. The
accuracy of the fit should be made better here to eliminate the
failurcs, and to coneequently decrease the total heat,

@ It is believed that the terminal point errors can be reduced by .
gtarting the linear interpolation for the control as a function of ]
range closer to the endpoint, 1

e The time intervd! A, used in the predictor equation, was found to R
be & funztiun of the simulated trajectory; 4Ashould be made a vari-
able quantity, dependent upon the state of the vehicle,
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SECT.ON V
CONCLUSIONS AND RECOMMENDATIONS

ACCOMPLISHMENTS

A re-entry optimization problem 18 presented and solved through the methods
developed in Reference 1. These produce an accurate solution to the optimiza-
tion problem. A powerful predictor scheme was developed, which supplements
the work of Reference | and which allows the optimal solutions to be changed

as a function of a parameter. This was used to extand the range of the original
optimal trajectory, and to perform an ''absolute minimum' test, The latter
showed that the optimal path is a mi.\imizing path, at least over a large region
of solution space. Sufficiency tests for a relative minimum were also developed.
It was shown that the trajectories ccnsidered are relative minimums.

The predictor scheme was used to map the re-entry corridor, and 27 optimal
trajectories spanning the corridor were obtained., The control functions for
these trajectories, and partials of the control with respect to the state vector,
were used to obtain a polynownial approximation for the contrcl function over
the optimal re-entry corridor. The approximation was used i1n the mechaniza-
tion of a ncnlinear optimal feedback control scheme. Simulation results showed
that modest increases in total heat over optimal values were experienced, and
that large (although tolerable) terminal errors resulted. It is believed that the
terminal condition errors can be greatly reduced, if necessary. A few of the
trajectories lailed, which, in effect, limits the region of applicable initial :
re-entry conditions to sorae extent. -

Another re-entry optimization problem, in which the sensed acceleration is
constrained to be less than or equal to a given number of g's, was posed, and
several optimization methods were used in an attempt to obtain a 10-g optimal

path. The methnds all failed, although the predictor scheme emerged as the
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most powerful of the group. A singular point on the constrained subarc
prevents convergence to the solution. A means of circumventing this

problem was found but remains to be tested,

The optimization methods were also extended to include the bounded-state
coordinate problem.

RECOMMENDATIONS

The nonlinear optimal feedhack control scheme in its present form produces
near cptimal re-entry trajectories if the space of initial conditions is suitably
restricted. The scheme is technically sound but faiis in some instances only
because of control function errors.

The polynomial approximation is based upon control values for several optimal
trajectories, and the paths are readily generated through use of the predictor
scheme. It is possible to generate many more paths than were used in the
study, and consequently, to fill out the optimal re-entry corridor with optimal
values of the control function. The increased number of data points should
enable better control function approximations to be made.

The data processing task is that of reducing the data points to a form readily
implemented in the control scheme. Polynomial approximations are probably
best for this purpose; however, there are many ways of approaching the fitting
problem. It may be that surface fitg of the partial derivatives are well behaved
over a large region of the corridor, so that fite of these, followed by an inte-
gration, may produce more accurate control function approximations, On the
other hand, it may be necessary to segment the corridor into several pieces,
and to perform surface fits for each of these to obtain the required accuracy.
Also, it may be possible to split the over-all fit into several low-dimensional
subfits, so that each stage of the fitting process may be carefully controlled,
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The data processisg task is seen to be in an incomplete state at the present
*ime, Since many practical optimal feedback contrul problems could bhe

implemented if this task were accomplished in a practical way, it is re-
commended that:

® Prac ical methods should be sought for performing tne data
processing task.

The control function pelynomial approximation is presently based upon
unconstrained optimal trajectories. However, many real optimization

probleme necessarily contain constraints upon the control and state vectors.
It is recommended that:

. Mechanization problems associated with inequality constraints

should be examined.

In view of the rising importance of adaptive control capabilities, the methods

should be extended to this case. Theoretically there is no problem, although

practically, the dimensionality of the surface fit is increased, Thus:

. Problems associated with extending the methods to include
adaptive control capabilities should be examined,

Finally, most feedback control schemes which operate over a finite tiie
interval contain a singular point atl the endpoint.
studied in the report,

‘I'his is true for the problem
The singular point causes difficulties in the vicinity of
the endpoint, and usually results in terminal point errors. Thus:

) The singular terminal point problem should be examined

theoretically to determine if the endpoint errors can be
minimized,
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MATERIALS SECTION (TABLE LXXV)

No work of the nature described in Section 2 of Table LXXV was performed
under Contract AF33(615)-1858, BPS Number 4(6399-62405364-822501).
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APPENDIX A
A PREDICTOR SCHEME

Suppose that one has an n-dimensional system of equations of the form
Y(x,b) =0 (A1)

in which x is an n-dimensional vector and b is a gingle parameter. Agsume
further that the matrix %f exists and is non-singular cver the range of b
considered, and that the vector ?% also exists, Then by the implicit function .

theorem it follows that

x = x(b), (A.2)
and
.-1 )
ax | faw) ™ aw 5 |
db =7 |ax 3b (a.3)

If m solutions (A. 2) to the syste.n (A, 1) are known for equally spaced values

of the parameter b, and if the corresponding derivatives are computed from
{A.3) {call the complete system x;, ..., ¥, and x, ". ..., x ' respectively),
the problem is that of predicting the next member of the family of solutions,

e e it o = o——

X .
m +1

Open type integration formulas are well suited for this task, and many such
formulas are given in Chapter 6 of Reference 2. In particular, a formula

truncated after third differences (the Adams-Moulton predictor equation) is

4

h
o me3

X A S

m+1 m 24 (A.4)

(55 Xm " 59 %1t 37 X = 9%
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where h is the spacing between parameter values. Notice that the present

point and derivative, and tkree previous derivatives are required for this
Other formulas using less back information are easily derived ;

equation.
The simplest ~uch equation, ;

from the results given in Reference 2.
using only the present point and derivative, is the Newton-Raphson equation,

X4l 5 X ¥ hxm (A. D)
As an example of the use of the predictor scheme, consider the range
extension problem of Section IIB. The equations corresponding to (A. 1)
are :
V(T,PO) - X1 =0 i
!(T,Fo) -X2/R = 0
(A.6)
{(T, PO') Xy =0
P,(T, Po) = 0 l
HE) =0 i
The paramneter b is identified with the terminal range Xgq. 8O Lquations
(A.3) become .
-1 ‘ o
™, —1 e, vt N i -
n V(T) 'r\u(T) nlz(T) nlS(T) ﬂM(T) 0 o
P10 £(T) n3l(T) ul 32(T) n33(T) ﬂ34(’[‘) 0
Poo | = UT) ng (1) nyo(T) ngg(T ny (M [ 1 (A7)
P PZ(T) CZI(T) 4 22(T) C23(T) C24(T) 0 B
P, 0 £.(0)  £,00)  f.(0)  f,00) 0
£l 1 2 3 4 ’ o E
L. ] - _J L - oo
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It is se=en that the third column of the inverse Newton-Raphson matrix contains

the derivatives for the predictor equation when the solutions (T, Po) satisfy

R —

system (A.6) (for a given value of the parameter X3).
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APPENDIX B
THRETL OPTIMIZATION TECHNIQUES

In addition to the modified Newton-Raphson method and the predictor
scheme, 1hree other optimization techniques were considered during the
period devoted to optimal trajectory computations. They include the
optimal Newton-Raphsonscheme, the Fletcher-Powell methoc¢ (Refzrence 3)
and Marquardt's scheme (Reference 4).

As a common basis for discussion, let the system of equations to be solved
by the optimization schemes be

yix) = 0, (B.1)

where both Y and x are n-dimension2! vectors. Multiply this system by
a diagonal weighting matrix W to obtain

o{x) = Wy(x) = 0. (B. 2)

W clearly does not change the solution, but does aid in the numerical
computations. Define a function

f(x) = ¢’ (x)¢(x), (B. 3)
whose absolute minimum value (zero) corresponds to the solution of
(B.1) or (B. 2), and let g(x) be the gradient vector,

I

gx) = 2 i‘%’j{, 8(x). - (B.4)
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Both the optimal Newton-Raphson and Fletcher-Powell metheds require

that a minimum value for f be found in a direction s. Let

= . + - 4. 5
X X, s (B.5)

where Xq is the pr2sent point and X\ is a parameter, and determin2 a .

point

X = xO+Kn5, 0<Kgl, (B. 5)
where

n = minimum of {1, -gz((_xxc::)‘s} . (B.7)

Fquation (B. 7) was found in the appendix of Reference 3, where W.C.
2avidor. (Reference 5) is given credit for its origin. The factor K in
Equation (B. 6) was found necessary for the re-entry problem since
Equation (B. 7), in some instances, produced too large an estimate for n,
If f():o) g(xo), f(xl) and g(xl), are known numerically, then the function

f(x) may i.e approximated by the cubic equation

_ 2 3
f(x0+)\s) = ao+a1,\+az)\ +a\",
Values for the coefficients are found to be
= ~
a, f(xo)
al = g I(xo;‘s 7,7_7.{%,1_:1 ,

l -,
a, -K_"‘i—[ L4 \,(o)s)

12[ 2Z +g '(xo) s+g'(x1)s]

a
3 AK.nY

2 =ity - el g xsrg s R
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When Equation (B, 8) is differentiated and evaluated for the minimizing

value \ = ¢, 1t 1s found that

1 2
a < -33_3 [ -a2+ a2-3ala3 ],
so the approximate: minimum value of f in the direction s is given by
fx, +us).

The direction s in the optimal Ne wton-Raphson method is given by

the Newton-Raphson chaiige

i'aas(xo) -1
S\ = L ax ¢(xo)‘

When K and nare both umity in (B, 6) and (B. 7), x1 is the Newton-

(B.10)

(B.11)

Raphson predicted poim, o the raethod becomes straight Newton-Raphson

as the solution is approached.
The Fictcher-Powell dircction is

S = -HOGglx ),

where 11(>:O) is a pousitive -definite matrix to be updated after each step
(iteterence 3 suggesis the identity matrix as a suitable initial choice).

Whern a,

X, = X4 + SF'
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f(xz) and g(xz) ha-¢ been evaluated, the updating equations for the next step
are

H(xz) = H(XO) +A+R

/

_ 0Og
A = _0',}'
(H(x )yNH(x )y)’
- . ) o
B = S H(xo)y (B.14)
¢ = « SF
y = g(xz) - g(xo).

In Marquardt's scheme it is assumed that a linearized expansion adequately
describes the surface behavior in a suitably small sphere of radius bo about
X, Thus, Equation (B. 2) may be written

d(x )
+ = —_
¢ (x, + b) 8 (x,) +—5 0, (B.15)
where the change 6 is to satisfy the constraint
6'6-6° = 0. (B.16)

o]

The function (B. 3), using approximation (B. 15), is minimized subject to the
constraint (B. 16) by setting the partials of

F 0.2 = fix, +0) +x(6'6-82 (B.17)

to zero. Upon pecforming the operations it turns out that

3o (x )| | ap(x ) -g(x )
(axo)(axo A8 = — (B.18)




it

In practice, A2 0 ig a parameter. When \ = 0, it follows from (B. 4) and
(B.11) that 5 is the Newton-Raphson change. On the other hand, if \ is
large, 0 approaches a gradient change., The policy is to make A\ as small
as possible during iterations,
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APPENDIX C

THE TRANSFORMED OPTIMIZATION PROBLEM

The system of differential equat'ons for the re-entry problem are

. c 1/2 .3 p |3/2
= == pMevi4+7.5 N[ L
q VN %
] _ g siny
v = -jsm— pV2 CD(U) "'Q_'~_—2'
(1+¢g)
. S v cos ¥ g, cos ¥
y = pvC, (u) + - -
Zm L R(1+g) v(1+0)?
g = -;—; sin ¥
d¢ _ v
I ey OsY -

The transformation

Ca

of (C.2) to

I

2o

= Ao
€3

ac . v
dt c3(1 + 8)

cos v
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Rl

v ’12.5

changes the umts of range from feet to miles, and transforms the last

(C.1)

(C.2)

(C.3)




Now z is a monotonic increasing function of t, =0 z may be used as independent

variable in place of t. Using the transformation

and (C. 4) on (C.1) and the first three of (C. 2), one finds

%1 i cgc (1+5)91/2 v2
z "f.l—\l- co8 vy

!
3/2 11.95
-4 (1+2)] p v y
7.5x10 °N —“‘co”(%) (1’6—07)'0')

+
av . _(iis__ (1 +8) pv CD(u) _cag tan vy
dz 2m o8 vy vi{l+?8
dy . P (280 c(w+ 3 e
3 -

Z 2m co8 ¥y v2(1 + )
de _ 3
£ - g aroany,

Now let
vV = v2
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(C.5)

(C. 6)

(c.7)




and note that

& - 2"3_: (. 8)

Also, transform altitude to units of feet through

h = Reg (C.9)

Then Equations (C. 6) become

dq . c e 1R+h)pl/2v

‘dz R I“N - cos ¥ i

-4 3/2 23/4
. 7.5 x10 " c,N (R_+ h) (1) (—‘é—)

R cos ¥ % 10 L

av - Qc—f (Brh)pV ¢ (4) - 2¢,g R WBY_ ‘ - {C. 10)
dz mR cos vy D 38" R+ h) IS { of
dy _ 35 (R+n)p c3  <3g R o
Tz “ImE sy LY YR - VR

C.. . - -
%% = —];‘ (R +h) tany . L= ]
dt _ 3 (R+h)
dz R VIF2 cos ¥y
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The Hamiltonians for the system (C. 1) and (C. 2), and the system (C.10)

are, respectively,

o
"

£, +p'f

and
H

n

2 o +P'g.

Each Hamiltonian represents a canonical system of equations, so a

canonical transformation may be
into the other.

independent variable.

(C.11)

(C.12)

used, in part, to transform one system
A second transformation is required for the change of

The generating function F, (g, P, t} of Reference 6, page 240, represents

a canonical transformation between old and new state vectors (q, Q) and

multipliers (p, P). The transformed equations satisfy

. %
p 34
aF,
_ 2
Q = apP
an
K = H+ ETa

Let

. s U2 g
F, = »vo+ A,y +AgRE + ) o

(C14)

+ nsrnabddtsn i e s

el L bkt e

L

Ll

TN

i




Then in the transformed system,

vV = v2
Y . 4
(C.15)
h = RE
2 = 2
€3
and
pl
A =
1 v
Ay ¥ Py
Py (C.16)
A 5 —
3 R
Moo T3P

The first, third and fourth of (C.15) are respectively, the transformations
(C.7), (C.9) and (C. 3}, and the second represents the identity transformation
on ¥. The corresponding multipliers are given by (C. 16), and the new Hamil-

tonian K (the same form as the¢ old} is cvaluated in terins of the new variab'es,
The transformation for the change of independent variable is based upon the

proof of Bliss' theorem 74.2, page 205 of Reference 7. Let fo' f be the right-
hand sides of the differential equations in the variables (V, ¥, h, 2) = x andu.

The generalized Lagrangian associated with thie system is

F =fo+)\'(f-3<) (C
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where A is the multipler vector (C. 16), and the first variation of the function

T
J =j F dt
0

is to be taken. Let the independent variable of (C. 18) be changed from t to

Xy = 2 This may be done since range is an increasing function of time.
Then (C. 18) becomes

z
f dx de
- dz _ dz dt
J = f ¥ X\, X, :d___t- , u = at el dz
, 0 dz dz

where u is taken as the time derivative of a fifth state coordinate. The
generalized Lagrangiap for (C.19) is

dx.

3 —_
1 _ dz 1 ]dt
F = f0+z Xi(‘i'T) +x4 (f4"d_t).dz'
i=] “dz dz /]

In the following, the derivative subgecripts represent partials with respect

to the derivatives. One may readily verify the relationships

F, = Fldx_ s, i1, 2,3
i e |
3
_ 1

Fu - Fdx

dz
! -
dt F*le"x'“Fu’Hx
dz i=1
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(C. 18)

(C.19)

(C. 20)

- (C.21)

(C. 22)

(C.23)

Y




H
i
i
v

In (C. 23), the d=finition for the Hamiltonian

H = F - L, Y F)’V{ {C. 24)
: i
E’
has been used, where the derivatives yi' include the control function
as well as the derivatives of the state components with respect to the
'E independent variable., In ‘he present case, Fu of (C. 22) is zero (from
E the transversality conditions) so that (C. 23) ie recognized us the usual
i control problem Hamiltonian. When the Hamiltonian for Fl is formed,
according to (C. 24), and (C. 21), (C. 22), and the center expression of
: (C. 23) are inserted, one finds
H' = Xy, (C. 25)
On the other hand, when Hl is used for (C. 23) one finds
f f.
¢ _ o i dt
Ho= f4+z)‘i'f4_ U a7
i=1
dx
5 dt 1
v Fu + x4f4 Az f4 ) (C. 26)

The last expression is zero, so with Fu taken as zero, this is the same
as the Hamiltcnian (C. 12), for by the transformation (C. 5) (taken as the last

transformation),

£
= 1 T
g 0 170 L3 (C.21m)
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APPENDIX D

A NON-HCMOGENEOQUS RIiCATTI EQUATION FOR
FIELD PARTIAL DERIVATIVES

The fundamental system of solutions for the system of equations

B n7 aly 2u | .
a‘ 1
P 3p?
d ) (D.1)
at
c ¥¥m ¥%m ¢
a2 2x3p
1s
r <

n(t) =

® 3o(t) , ™oy = L (D.2)
S e

A field of extremals is constructed by obtaining solutions to the linearized
boundary conditions for the optimization problem such that

¥
-— :
bxo = K {D.

1A
-

as, {for example) in Section 1IC, and then determining the partial derivatives

-1
_fee zex] [95_ N p_c,(] (D. 4)
% [on bpo on .

This field cannot be constructed if the inverse matrix fails to exist at any point
along the extremal (excluding the end point).




T YL AT,

From (1D.56). (D,4) and (D.3J) it is found that

vu! . %’lx’— %’%M K, (D.

where %’- is known to be a symenetric matrix. Other fields may be genvrated
by changing the initial conditions to otker symmetric mutrices, sich as the
muirix congidered in the sufflcicncy test, Scction 11B. ’
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u

Let
Adx dx
U s— + 35— K
on bpo
(D.5)
)
vV = v B K,
5_5);[0 Bpo
Then from differentiation of
-1
uu = 1 (D.6)
it follows that
vt - vl uth (0.7
Substituting from (D. 1), and premultiplying by V, one finds
-1 -1 3%y -1 8%H -1
VU = -lVU Sgax " YU —5 VU . (D.8)
pox 3 2
P
Also from (. 1), bv pogt-multiplying the expression for V by U-l,
. .2
vu‘=-[°§’+§f£’ vul]. (D. 8)
[bx p
When (D, 8) and (D, 9) are added, the left-hend side is found to be a perfect
differential, so that
-Lwuh RS p 2 Gyt gt L, ! 2
dt I’Bx‘a dx9p 03x ap2 .
(D.10)

11)

sl i bk il
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APPENDIX E :
RELATIONSHIPS FOR SUFFICIENCY CONDITIONS -

NON-SINGULAR NEWTON - RAPHSON MATRIX AND NORMALITY

E According to Reference 7 (pages 230 and 231), the accessory minimum problem
has order of abnormality q if there exist q linearly-independent sets of con- :
stants and solutions of the canonical accessory equations i

2 2..
3°H 3°H . %
= + :
E LR T A !
E — (E. 1) |
¢ - 3% . 2°H ¢ i
sz ' Ox3p i
of the form v = 0, {(t), ;:}l for each of which P
; B
¥ ) |
E &+ oe, Wy 0 (E.2)
! 0
]

J

T 1
: dy,  dy.
€, (-5—tﬂ+ T’E xi) = 0, - : (E.3) 31

The functions

v, o.x(0), T,x(T)] = 0 (E.4)

are end conditions satisfied by the extrernal path, and repeasted subscripts

in (E.2) and (E.3) deacte sums, If the order of abnormaliiy q is zero, the
path is normal,

N

N
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In the optimization problem the initial conditions are all specified, which

implies

“1'(0) = 0
i=1, ., n
({0 = -¢;
L] \ =
€nep t gxi(o, o,

Thus the solutions to be considered are linear combinations of the solutions

[ anr {
dxit)
‘SB—O- ﬂlz(t) an(O) 0
I

dp(t
-sSfj | "2 T30
.J J
with
n(t) = -ﬂlz(t) €

() = rmyolty e o

By hypothesis, tne first of (E. 7) are all zero. It is shown that

if the

Newton-Raphson matrix is non-singular, the constants ¢ are all

zero, so from (E. 7) therc are no noii-zero soluiions 7= 0, ((t),

G = 0, and the problem is normal by lemma 81.1 of Reference 7.

The terminal conditions (E. 4) are assumed to be -

xK(T)-Xk = 0, k=1, ..., r<n
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where (E. 9} is omitted if the terminal value of the independent variaole is
not specified. The terminal equations (E., 2) and (E. 3) are then

QD = €y k=L .or (E. 10)
CJ(T) = 0, ] = r+1' .., N
Cnr1rk *k (T) 5 “Epirso (E.11)

Assume first that {E, 9) is included. Then the first r and the last (n-r) of
(E.Tyatt= T = K give

Be= 0, (E.12)

where B is the Newton-Raphson matrix (as in Section IIC). If B is non-
singular, €= 0, and the result follows. If (E.9) is omitted, then (E.11)

must be included, since with ¢ 0, it is an additional constraint

n+r+2
equaation. However,

c(n+l)+kxk(T) = - Ci(T) xi(T) + pi(TMi(T) = -Ci(O)xi(O) = eixi(O) =0

(E,13)

since the expression is constant int. This may be shown by using tne
canonical equations
dH

(£.14)

and (E. 1} when differentiating the second of (E. 13) with respect to t to obtair

zero. The Newton-Raphson matrix is formed with the total differentials
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"

dxk(’r) = xk(T)dT+nk(T) k=1, ..., r
(E. 15)
0 = ap; = _:')i(T)dT+CJ.(T) j=r+1, ..., n

and the last of (E, 14), as in Section IIA, Then if B is non-singuiar the

set (e, en+1) in (E. 5) is zero, and the result again follows.

RELATIONSHIP BETWEEN MAXIMUM PRINCIPLE AND MINIMUM PRINCIPLE
ACCESSORY SOLUTIONS

The difference in maximum and minimum principle formulations of the opti-
ruization problem is the signs of the multipliers, including the unit multiplier
for the integrand fo of J, the functicn to be minimized. Thus, the Hamiltonian

for the maximum principle is the negative of the Hamiltonian for the minimum
principle, Let the functionsal form of the solutions for the maximum principle

formulation be i

= x(t
x x( ,xo,zo)

(E. 16)

[
L1l

2(t, X zo)

and the corresponding forms for the minimum principle formulation be

]
"

x(t,x,p,)

p p(t, Xg po) R R

It follows that

x(tlxol pu) = x(t: xop zo) T - : ol _(EI 18)

if the multipliers for the two systems satisfy

p (t.xo, po) = -z(t,xo, zo).
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The accessory solutions are the partial derivatives of (E. 18) and (E. 19) with
respect to x ,p and z, Upon differentiating, the correspondance between

systems of solutions is found to be

dx . dx

x, (tx .p) = 3x_ tx .z )
(E. 20}
X dx dz dx
5 (x_,p) = 35— (t,x ,2) "o L —{t,x .,z )
3 o o' %o z, o 3p dz
o} o
d ~ dz
Soltx_p ) = - w (tx .z )
o
5 dz
Q _ 8] dz
t =

‘3‘%(‘)(. p.) Bz .z) Bp 5— .Zo)
In constructing a field of extremals for the sufficiency test, Bliss uses the
maximum principle formulation of the problem. A suitable choice for the
conjvgate system of solutions is

dx dx 2z ]
U =~ (tx.z)-0»——5—--—-(1)::,Z)Lax + 1
o o
{F, 21)

< {Bz 1
2 x L) v+ {t,x 2} 2+ 1f.
x_ ‘oo Tzo 2ot B! [5"0 J

o]

vV o=

0"(

Upon substitution from (E. 20), these become, for the minimum principle,

dx ap
U=-§§:(t,x p)+ (tx p) 3% !

<
[

ap
P 2p _._Q--
%‘:—0 (t,x_.p,) + (t,x . p )[ I] .

Bp J
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REDUCTION OF FIELD FROM (n+2) DIMENSIONS TO (nt+1) DIMENSIONS

Consider the system of equations

x = a;;: (x,z,2

)

n+l

u(x.Z.zn“)

(E.23)

zn+1)

which arises from the maximum principle formulation of the optimization
problem when L S (the integral of u) is considered as an additional state
coordinate, It is tacitly assumed that Xo41 does not appear in the right-hand
side of system (E. 23) and that it does nect appear in the boundary conditions.
Hence, as a necessary condition,

(L. 24)

and the first and third of (E. 23) are the system of equations to be solved for the
optimal trajectory, It is not imtnediately obvious that the field of extremals

used in the sufficiency teat can be correspondingly reduced from (n+2) dimensions
to (n+1) dimcnsions. This, however,

equations corresponding to (E. 23) are

can be ghown as follows. The accessory

[y e

u 7 [~ ' T =
" ’n 1 2% o2 | n
3z ! azz azazn+1

. du' ou! du
he1]® x O oz %] T+l
- e e  EEE

3 o"H du

¢ 2 0 T Tk ¢
Cn+1 LO 0 ¢ 0 cn+1
) i i ]
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and the fundamental solution matrix may be written

n“(t) 0 . nlz(t) b(t)

| at(t) 1 ety d wWoe = 1, (E. 26)
Myl
VZI(t) 0 | nzz(t) €(t)
0 0 , U 1

where a, b, ¢ and e are n Jdimensional vectors and d is a scalar. A conjugate
system of solutions is determined by its initial matrices, now taken as

1
0

= ;"' (E.27)
0

for when the initial conditions satisfy

uwv = Vv'u (E. 28)

then so do the solutions

[~ IR S A o -
U Uy | Ln”m trgin] 0
| ] ’
BRI T I I YO ) 1

I P { {E. 29)

A\ :: iVo : [n21(t) + r122(t)] | ' . -
: H i :
o oL 0 0.
Then the determinant of U is
l"l:m ¥ "12(”] 0 f o
det U = det = det {n (1) + nlz(t)]l - TE(E. 30)

st + c(t)], 1




so that if rtn(t) + T'T12(t) is non-singular, then s0 is U, The reduced system

(u (t) m (t)-| U, (g) U(o)ﬂi I'l
R M 129 R'C R |

v| () m (t)‘i \Y (O)J [V (o>|=ix
R L“xz 221 'R R L

4

(E.31)

is a conjugate system of solutions which forms a field for the reduced problem
if [n“(t) + nlz(t)] is non-sgingular. Thus, the field in (n+1)-space implies
the existence of the field in (n+2)-space, I

The system (E. 21) results when V{(0) is taken p8 =—-===" ;_i

32 S
V{0) = 5x—° + Il 0O T T

o} -

0 0
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APPENDIX F
THE LEAST SINGULAR SQUARE MATRIX OF AN rxq MATRIX

Let n be greater than g, and let each row vector V, of the matrix be normalized
to 1,

q
(V..V) = Z vl = 1, i=1,...,n. (F.1)
it ij
i=1

The method proceeds by construction, so let

We = &,V o+ + 8,V (F.2)
be a unit vector made up of the first K most orthogonal vectors, and find
the maximum projection (Vm,WK) of W, on a row vector Vm’ m >K. The
K’ which, when

maximized, gives the smallest angle between Vm and the K-dimensional

K
projection is the cosine of the angle between Vi and W

Euclidian space determined by the K vectors in (F, 2). Thus, the problem
is that of finding the minimum of the maximum projections of the remaining
(n-m) row vectors, and using this to form WK+1'

Consider the maximization problem represented by

fm(a) = (Vm.WK) = maximum, m > K, _ w(Ij‘.'i)
subject to the constraint ‘____ -
(WK’WK) = 1. - AR 4)

Introduce a Lagrang< multiplier A and form the expression

= } ] — ~ - : . L= -
F(a,\) (V. W)+ [1 (Wi Wi | (F.5)




The derivatives of F with respect to aJ..j = 1, ..., K, must vanish at a

maximum, soO

-a—F = = h! -
Se. c 0 T (VoVa -2V W g

j 1, ..., K. (F. 6)

-

Multiplying by aj, summing over j and using (F. 4) results in

Wy, Vo) = 20 = f ), C(F.T)

On the other hand, the system (F.6) mayle wriiten in the matrix form

~ N ; - r -~ - -
Vv | (Vv Vv, s (VL V| 2hay
i i
(Vo V) v, v)) (Vo Vo) o v v (V,, V) 2\ a,
(F.8)
“"1{'ij Vi V) (Ve Vo) o Ve, V) 2\ aKJ ,
. L. ~ L
or more simply
bn = %k (22 (F. 9)
from which
-1 s
2a = (9] by (F.10) ;

Now b is the left-hand side of (F. 8), which, when multiplied by a, gives f_,
s0 in view of (F.7), oo S

R - -1
2N 'a) = f_¢ = b_! [¢K ]bm.
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Equation (F. 11) shows that the maximum and minimum projections have
opposite signs and allows the squared value of the projection to be evaluated

in terms of kncwn quantities. This is gocd enough for the computer mechani-
zation of the sch ‘me, which almost suggests itself,

Consider the (n x n) matrix

Vv oo L)
(Vn'vl) . e . (Vn,Vn)
L .
which is symmetric and has ones down the main diagonal. At the Km stage,
this may be partitioned into four submatrices
P B
LB' C .,
so consider the product
$g B_' ‘k-l 0 I B
B C|]| o I Be. ' C

The (m-lqth row of the Jower left submatrix times the (rn-l()th column of B
gives the square of the projection (F.11). This is easily computed for each of
the remaining vectors, and the minimum cf these identifies the most orthogcnal
vector to the K-dimensional subspace,

Now suppose that rows and columns are inter :hanged in the last matrix of (F. 14)
to bring the minimizing row and column next to the identity watrix. This retains
the symmetry of C. Then elementary column operations may be used to obtain
the (K+1) x (K+1) identity matrix for the next step,
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APPIINDIN G

PROOI® THAT DISCONTINUITIES IN THEZ MULTIPLIERS
CAN BE DETERMINED AT EITHER END OF A CONSTRAINED SUBARC

The geometry is shown in Figure G-1. it is to be shown that the value

ﬂ P, 1is obtained by following
cither path A or path B. Path
A assumes that the multipliers

are continuous at the initial

dGz point L, and discontinuous at
x  tke endpoint t,. Path B assumes

“ the disccutinuities are at the

initial point.

|
!
|
)
| _ ! >0 Figure G1.
G»0 L G=0 tJ—G —p t Geomcetry of the Problem
t
1 2

The necessary conditions for the constrained subarc are

x = f(x, u) G.1)
0 = p'%& + Z‘i—o + %% . %ﬁ-‘(x, u prop) G. 3)
0 = Gix, u, G. 4)
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The last two cquations are '"'solved’' to obtain

u u(x)

i

1 , af
px, p) = - —x (p g-fn“ia'f?‘)
(55)

=
f

Substitution of {(G.5) and (G. 6) into (G. 1} and (G. 2) gives the reduced

differential equations for the constrained subarc:

x = f(x, u(x))
af %o of I
-h = o _3Qu 95K 2 26 —
P = Pyl 3x (ax 1 ax -g% (ax e
u u
p, = O,

Equation (G. 9) has been added for convenience.

Now (G.7) and (G. 8) are "uncoupled' since p dces not appear in
(G.7). Since x = x{t) and tue coefficients of p in (G.8) contain
x alune, (G.8) and {(G. 9) form a linear first-order hcmogeneous
system of differential equations with time varying coefficients,

Vo= AOY,

where y is the n+i dimensional vector
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(G. 9)

(G.6)

(G.7)

(G.8)

(G.9)

(G.10)

(G.11;




Let ¢ be the fundamental solution matrix of (G. 10) with qS(tl) =1,
the (n+1) x (n+1) i1dentity matrix. Then the value of Py computed
along path A is

Pa l—;y - "(SG‘
B 4 )‘ A ax
= t
2
Po l_ 1 .

If (G.12) and (G.13) give the same value for p, it follows that

Lo Lo,

ana hence that 38(3)5” is a solution of (G. §) with P, = 0. To show
this, consider the vector identity e

3G ) . 9G , 8G au _
v (x, u(s)) = % + 0 5x 0
195

(G.12)

(G.13)

(G.14)

(G.15)

1 =
Loz
-3
g

4
$ =3
I
o3
Los

'
u '
waduillles vl 1.




since

ou _ 1 eé
ax Gy ox
[55)

results from cquations (G. 4) and (G. 5).

. o [x] - %, ,|a

ax I ax ax'z ox
Additionally,

Q- I?QI = iz_g. f

dt \ax ax

Combining (G.15) - (G.18), ore finds

1

9x {gg_ ou  39x
gu

which is the same as (G. 8) with Py © 0 and p

is a solution of (G. 8) with P, * 0, and the values of p, computed

along paths A and B are the same.
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d_(gg’)= o Loat a6
dt

On the other hand,

. o (ﬂﬂ el
ax auJ ax

G
9x

= 2G o 3G
X" Thus %

(G.

(G.

G.

G.

16)

17)

18,

19)

‘
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