UNCLASSIFIED

VERTICAL MOTION OF HIGH ALTITUDE BALLOONS

A TECHNICAL REPORT iV
eport to

OFFICE OF NAVAL RESEARCH

VERTICAL MOTION OF HIGH ALTITUDE BALLOONS
Technical Report IV

Report to
OFFICE OF NAVAL RESEARCH
PHYSICS BRANCH
CONTRACT NO. Nonr 3164(00)

TABLE OF CONTENTS

Page
List of Figures iv
List of Tables v
I. SUMMARY 1
I.. FORMULATION OF THE THEORY OF BALLOON DYNAMICS 2
A. INTRODUCTION 2
B. THE EQUATION OF VERTICAL MOTION 2
C. ENERGY EQUATIONS 4
D. THE EQUATION OF EXPANSION OF THE BALLOON GAS 6
E. VALVING, EXHAUSTING AND BALLASTING 6
F. SPECIFICATION OF THE ATMOSPHERI 7
G. HEAT TRANSFER BY CONVECTION 9

1. Air-Side Forced Convection 9
2. Free Convection 10
3. The Thermal Parameters of Air and Helium 11
H. HEAT TRANSFER BY RADIATION 12
4. Emission of Rediation by the Balloon Fabric 12
5. Infrared Radiation From the Earth 14
6. Absorption of Infrared Radiation by the Balloon 14 Fabric
7. Solar Radiation 15
8. Absorption of Solar Radiation by the Ralloon 17 Fabric
I. SUMMARY OF EQUATIONS. REQUIREMENTS FOR UNIQUE 19 SOLUTION

TABLE OF CONTENTS (Continued)

Page
III. THE COMPUTER PROGRAM 22
A. INTRODUCTION 22
B. INPUT DATA 22
C. A BRIEF DESCRIPTION OF THE PROGRAM 27

1. The MAIN Rcutine 27
2. Subroutine RNGKTA 29
3. Sưroutine YPRIME 29
4. Subroutine RHOT 30
5. Subroutine PLOT 30
D. ACCURACY OF INTEGRATION 31
E. OUTPUES 33
F. OTHER OPERATING INSTRUCTIONS 37
IV. CORRCLAXION OF COMPUTED AND ACTUAL FLIGHTS 40
A. A METEF DISCUSSION OF THE APPROXIMATIONS IN 40 "tiE MODEL AND OF THE UNCERTAINTIES IN THE INPUT DATA
B. FLIGHT CORRELATION 42
6. Stargazer Manned Flight 43
7. Thermistor Flight 43
8. Stratoscope S4-2 Flight 43
REFERENCES 57
LIST OF SYMBOLS 58
FORTRAN LISTING OF BYOGRAM 67
DISTRIBUTION LJ.ST 84

LIST OF FIGURES

Figure
No. Page
1 Calculation of Solar Radiation for Azymuth Angles 18Greater Than 90°
2
Input Data Printed in Output for Stratoscope 34Flight S4-2
3 30
Sample of Printed Output
4 Plotted Output for Stratoscope Flight S4-2 38
5 Input Data for Stargazer Manned Flight 44
6 Flotted Ou_put for Stargaser Manned Flight 46
7 Input Data for Thermistor Flight 48
8 Plotted Output for Thermistor Flight 51
9 5210Plotted Output for Stratoscope Flight S4-2 With
Reduced (by 10\%) Infrared Radiation During Night 54 Reduccd (by 1az) Tafrared Radiation During Night11General Flow Chart66

Table No.

1 Variation of Solar Radiation (Relative to Radiation Outside Atmosphere) With Optical Air Mass

A preliminary analysis of the vertical motion of high altitude balloons was presented to the Office of Naval Research on February 27, 1961. That report (Reference 1) was Technical Report I of a series of reports which have been sponsored by ONR contract Nonr-3164(00).

In December 1963, Technical Report II (Reference 2) was published. This report extended the analysis of Reference 1 and presented a computer program which describes balloon motion. Technical Report III which was cuncerned with the rotational motion of high altitude balloons was also published in December 1963.

Since Technical Report II was published, more information has become available for correlation purposes: the Stratoscope series has continued; the Fort Churchill summer programs have produced flight data for extreme altitudes; and a flight was made by ADL with the help of NCAR which measured helium gas temperatures. During this period the analysis and the computer program have been extended and improved. They are presented in this report, Technical Report IV.

The mathematical formulation of the model is presented in Section II.

In Section III, the computer program is described in great detail. Since this version of the program is more accurate than that presented in Technical Report II, all program users are hereby requested to obtain this newer version. With the permission of ONR, the program is available to any interested party in the subject of high altitude balloon performance.

Finally, in Section IV, the correlation of some computed and actual flights is presented. The correlation is very good. The results from the above mentioned ADL-NCAR flight have increased the confidence in the validity and accuracy of the computer model.

II. FORMILATION OF THE THEORY OF BALLOON DYNAMICS

A. INTRODUCTION

Balloons move upwards because of the force of buoyancy, a simple and well understood force. The upward accelerating force (free lift) is equal to the weight of the displaced air minus the weight of gas (gross list), minus the total weight of the balloon fabric, payload, ballast, ctc. So it is a simple matter to write the dynamic equation of vertical. motion of a balloon, even though the aerodynamic effects (induced mass and drag) of the surrounding air introduce some complications.

The gross lift, however, is a function of not only the atmospheric conditions, which change as the balloon moves, but also the temperature of the gas, which depends on the net heat received by the balloon. Due to their iarge surface, balloons are very sensitive to heat transfer, esperialiy to thermal radiation. Thus, a balloon acts somewhat like an engine, converting heat to mechanical energy, and its equation of motion must be coupled to appropriate energy equations. Writing the appropriate energy equations, which will account for all important effects, is not a simple matter.

There is an energy equation for the helium gas. The gas exchanges heat with the fabric through free convection and does work against the atmosphere when it expands. The expansion of the gas increases the lift and, thus, influences the motion of the balloon. This equation of energy becomes more conplicated when gas is valved out or exhausted.

There is, also, an equation of energy for the fabric. In addition to exchanging heat with the gas through free convection, the fabric exchanges heat with the air through free and forced convection. Also, the fabric emits thermal radiation and receives thermal radiation from the sun, the earth, and the atmosphere. Because of the importance of these effects, the various radiation fields as well as the radiative parameters of the fabric must be specified accurately.

These and all other important physical processes entering balloon dyuamics are described in detail in the following sections and are formulated in a complete system of equations. A f\&w words about the system of units used on the mathematical formulation of the problem are in order here. Length is in feet (ft), time in seconds (sec), mass in pounds (lb), temperature in degrees Rankine (${ }^{\circ} \mathrm{R}$), and force in pounds. All other quantities are expressed in terms of these five units. For instance, work and energy, including heat, are in foot-pounds (ft lb). In any case, the units of every quantity are given in the list of Symbols.

B. THE EQUATION OF VERTICAL MOTION

Let w_{G}, w_{F}, and w_{B} be the weights in lbs of the payload, balloon fabric and balion gas, respectively. The total mass (in slugs) of the balloon system as it moves through the atmosphere is:

$$
\frac{1}{g}\left(w_{G}+w_{F}+w_{B}+C_{B} \rho_{A} v_{B}\right)
$$

the last term being the apparent additional mass of the system due to the surrounding air. V_{B} is the volume of the balioon in $f t^{3}, \rho_{A}$ is the density of air in lbs $/ \mathrm{ft}^{3}$, and $g=32.2 \mathrm{ft} / \mathrm{sec}^{2} . \mathrm{C}_{\mathrm{B}}$ is a constant whose value depends on the shape of the balloon. For a spherical balloon, C_{B} is equal to 0.5.

Let z denote the altitude of the balloon in ft and y its velocity in $\mathrm{ft} / \mathrm{sec}$. Then:

$$
\begin{equation*}
y=\dot{z} \tag{1}
\end{equation*}
$$

and the equation of motion of the balloon system is:

$$
\begin{equation*}
\left(w_{G}+w_{F}+w_{B}+C_{B} \rho_{A} V_{B}\right) \frac{\dot{y}}{g}=F L-\frac{1}{2 g} C_{D} \rho_{A} A|y| y \tag{2}
\end{equation*}
$$

where a dot denotes differentiation with respect to time, and the free lift FL is given by:

$$
\begin{equation*}
F L=\rho_{A} V_{B}-w_{B}-w_{G}-w_{F} \tag{3}
\end{equation*}
$$

The second term of the right hand side of Equation 2 is the drag exerted on the balloon by the surrounding air. C_{D} is the drag coefficient and A is the effective area of the balloon(in $f t^{2} D_{\text {in }}$ the direction of motion. For a spherical balloon, C_{D} is equal to about 0.45 for Reynolds numbers in the range of 500 to 2×10^{5}.

In balloon terminology, the first two terms of the right hand side of Equation 3 are known as gross lift. Using the equation of state, the gross lift can be expressed in terms of quantities which are well known in balloonry. The equation of state (perfect gas law) for both air and gas is:

$$
\begin{equation*}
\mathrm{p}=\frac{\mathrm{R}}{\mathrm{M}} \rho \mathrm{~T} \tag{4}
\end{equation*}
$$

where p is the pressure (in $l b / f t^{2}$), ρ is the density in $l b / f t^{3}, T$ is the temperature in ${ }^{O}, M$ is the molecular weight and R is the universal gas constant in ft $\mathrm{lb} / \mathrm{lb} \mathrm{mol}^{\circ} \mathrm{R}$. The gross lift, $G L$, can now be expressed in the following form:

$$
\begin{equation*}
G L=w_{B}\left[-1+\frac{M_{A} P_{A}\left(T_{A}+\theta\right)}{M_{B} T_{A}\left(P_{A}+\pi\right)}\right] \tag{5}
\end{equation*}
$$

where the subscripts A and B pertain to air and gas, resinctively. The quantity $\theta=T_{B}-T_{A}$ is known as the gas superheat (actually, it is a supertemperature), while $\pi=P_{B}-P_{A}$ is known as the gas superpressure. Since the percent superheat and superpressure are usually small quantities, Equation 5 can be reduced to the following approximate relation:

$$
\begin{equation*}
G L \cong w_{B}\left[\frac{M_{A}}{M_{B}}-1+\frac{M_{A}}{M_{B}}\left(\frac{\theta}{T_{A}}-\frac{\pi}{P_{A}}\right)\right] \tag{5a}
\end{equation*}
$$

For balloons with no superpressure, Equation 5 reduces to:

$$
\begin{equation*}
\mathrm{GL}=\mathrm{w}_{\mathrm{B}}\left(\frac{M_{A}}{M_{B}}-1+\frac{M_{A} \theta}{M_{B} T_{A}}\right) \tag{5b}
\end{equation*}
$$

When θ is nejative, the force $w_{B} \frac{M_{A} A^{\prime}}{M_{B} T_{A}}$ is negative and, in balloon terminology, it is referied to as thermodynamic drag.

C. ENERGY EQUATIONS

- For a closed system, tie cime rate of change of its internal energy, U, must be equal to the rate of supply of energy (in heat or other form), \dot{Q}, minus the rate of work done by the system, \dot{W}. In other words:

$$
\begin{equation*}
\dot{U}=\dot{Q}-\dot{W} \tag{6}
\end{equation*}
$$

The units in this equation are $\mathrm{ft} \mathrm{lb} / \mathrm{sec}$. This law of conservation of energy will be applied to the balloon gas system and to the balloon fabric system.

For the balloon gas system:

$$
\begin{equation*}
\dot{U}=\frac{d}{d t} C_{v} w_{B} T_{B}=C_{v} w_{B} \dot{T}_{B}+C_{v} T_{B} \dot{w}_{B} \tag{7}
\end{equation*}
$$

where C_{v} and T_{B} are the specific heat at constant volume in ft $1 b / 1 b{ }^{\circ}{ }_{R}$ and the temperature in ${ }^{\circ}{ }_{R}$ of the gas, respectively. Notice that loss of gas by exhausting or valving is included in the above equation.

The only exchange of heat of the gas i, with the balloon fabric through free convection. Let q_{6} denote the rate of this heat transfer in $\mathrm{ft} \mathrm{lb} / \mathrm{sec}$ from the gas to the fabric. In addition to this energy,
the gas system also loses energy at the rate of $C_{V} T_{B} \dot{w}_{B}$ whenever gas is expelled (\dot{w}_{B} is negative). Therefore:

$$
\begin{equation*}
\dot{Q}=-q_{6}+C_{v} T_{B} \dot{w}_{B} \tag{8}
\end{equation*}
$$

If the ate of increase of the balloon gas volume is \dot{V}_{B}, then the rate of work done by the balloon gas on the atmosnhere is ${ }_{\mathrm{P}}^{\mathrm{B}} \dot{\mathrm{V}}_{\mathrm{B}}$, where p is the atmospheric pressure in psf. Also, the balloon gas does work on the atmosphere, whenever gas is expelled, at the rate of $-\mathrm{p} \dot{\mathrm{F}}_{\mathrm{B}} / \rho_{B}$, where ρ_{B} is the density of the gas in $l \mathrm{~b} / \mathrm{ft}^{3}$. Therefore:

$$
\begin{equation*}
\dot{\mathrm{W}}=\dot{\mathrm{PV}}_{B}-\frac{\mathrm{p}}{\rho_{B}} \quad \dot{w}_{B} \tag{9}
\end{equation*}
$$

Now, assuming that the pressure in the balloon is equal to the atmospheric pressure and using the equation of state (Equation 4) for the balloon gas, Equation 9 can be written as:

$$
\begin{equation*}
\dot{\mathrm{W}}=\dot{\mathrm{p}}_{\mathrm{B}}-\frac{\mathrm{R}}{\mathrm{M}_{B}} \mathrm{~T}_{\mathrm{B}} \dot{\mathrm{w}}_{\mathrm{E}} \tag{9a}
\end{equation*}
$$

Finally, substituting for \dot{U}, \dot{Q} and \dot{W} from Equations 7,8 and $9 a$ in Equation 6, the following energy equation for the gas in the balloon is obtained:

$$
\begin{equation*}
C_{v}{ }_{w_{B}} \dot{T}_{B}=-q_{6}-\dot{p}_{B}+\frac{R}{M_{B}} T_{B} \cdot \dot{w}_{B} \tag{10}
\end{equation*}
$$

For the balloon fabric system:

$$
\begin{equation*}
\dot{U}=\frac{d}{d t} \quad\left(C_{F} w_{F} T_{F}\right)=C_{F} w_{F} \dot{T}_{F} \tag{11}
\end{equation*}
$$

where C_{F} and T are the specific heat in $f t l b / l b{ }^{\circ}{ }_{R}$ and the temperature in ${ }_{R}$ o $\frac{F}{1}$ the $f(\vec{a} b r i c, ~ r e s p e c t i v e l y . ~ \dot{W}$ is equal to zero and \dot{Q} is given by:

$$
\begin{equation*}
\dot{\mathrm{q}}=\mathrm{q}_{2}-\mathrm{q}_{3}+\mathrm{q}_{4}+\mathrm{q}_{5}+\mathrm{q}_{6}+\mathrm{q}_{7} \tag{12}
\end{equation*}
$$

where all the q 's are rates of heat transfer in ft $1 \mathrm{~b} / \mathrm{sec}$, accounting for the effects described below.
q_{2} : absorption of infrared radiation (from earth) by fabric.
q_{3} : emission of radiation by fabric.
q_{4} : forced convection to fabric from air.
q_{5} : free convection to fabric from air.
q_{6} : free convection to fabric from balloon gas.
q_{7} : absorption of solar radiation by fabric.
Thus, the energy equation for the fabric is:

$$
\begin{equation*}
C_{F} w_{F} \dot{T}_{F}-q_{2}-q_{3}+q_{4}+q_{5}+q_{6}+q_{7} \tag{13}
\end{equation*}
$$

Equations 10 and 13 are the two required energy equations. Expressions for the q 's will be derived in Sections G and H.
D. THE EQUATION OF EXPANSION OF THE BALLOON GAS

From the equation of state (perfect gas law), the following expression for the rate of expansion of the balloon gas, $\dot{\mathrm{V}}_{\mathrm{B}}$, is obtained:

$$
\begin{equation*}
\dot{v}_{B}=\frac{R}{p_{B}}\left(w_{B} \dot{T}_{B}+T_{B} \dot{w}_{B}\right)-\frac{v_{B}}{p} \dot{p} \tag{14}
\end{equation*}
$$

It should be kept in mind that the pressure of the balloon gas is tal in equal to the atmospheric pressure p. However, p conforms to the hydrostatic equation:

$$
\begin{equation*}
\dot{p}=-\rho_{A} \dot{z} \tag{15}
\end{equation*}
$$

Therefore, substituting for \dot{p}, Equation 14 becomes

$$
\begin{equation*}
\dot{v}_{B}=\frac{R}{p M_{B}}\left(w_{B} \dot{T}_{B}+T_{B} \dot{w}_{B}\right)+\frac{\rho_{A}}{P} V_{B} \dot{z} \tag{14a}
\end{equation*}
$$

E. VALVING, EXHAUSTING AND BALLASTING

The pressure in inextensible balloons is not quite the same as the outside atmospheric pressure. There is a slight overpressure which causes the gas to flow out when the valve is open. As the balloon reaches its ceiling and becomes fully inflated, a similar small pressure difference across the appendix of the balloon causes automatic exhausting of gas. When this exhausting is sufficient, it can prevent the balloon from bursting and it causes stabilization of ceiling without high altitude bounce.

Let \dot{E} and \dot{V} be the rate of volumetric gas flow in $f t^{3} / \mathrm{sec}$ due to exhausting and valving, respectively. Both quantities are negative for out flow of gas. Then the rate at which the weight of the balloon gas changes is given by:

$$
\begin{equation*}
\dot{w}_{B}=\rho_{B}(\dot{E}+\dot{V}) \tag{16}
\end{equation*}
$$

Valving data are usually giver as lift lost per unit time (lb/sec), L_{V}, which is a positive quantity. Since:

$$
\begin{equation*}
\dot{\mathrm{L}}_{\mathrm{V}}=-\left(\rho_{\mathrm{A}}-\rho_{\mathrm{B}}\right) \dot{\mathrm{V}} \tag{17}
\end{equation*}
$$

Equation 16 becomes:

$$
\begin{equation*}
\dot{w}_{B}=\rho_{B} \dot{E}-\frac{\rho_{B}}{\rho_{A}-\rho_{B}} \dot{L}_{V} \tag{18}
\end{equation*}
$$

The weight of the payload, W_{G}, is changed by ballasting. If B is the ballasting rate in $\mathrm{lb} / \mathrm{sec}$, then:

$$
\begin{equation*}
\dot{W}_{G}=-\dot{B} \tag{19}
\end{equation*}
$$

F. SPECIFICATION OF THE ATMOSPHERE

For a complete specification of the atmosphere only one state variable is required since the other two state variables can be computed from the hydrostatic equation and the equation of state. Usually, the atmosphere is specified by giving a temperature profile with respect to altitude. The pressure and density can then be computed from the hydrostatic equation:

$$
\begin{equation*}
\frac{d p}{d z}=-\rho_{A} \tag{20}
\end{equation*}
$$

and the equation of state:

$$
\begin{equation*}
p=\frac{R}{M_{A}} \rho_{A} T_{A} \tag{21}
\end{equation*}
$$

where M_{A} and T_{A} are the molecular weight and the temperature of the atmosphere. Eliminating ρ_{A} from these two equations and integrating once, one obtains:

$$
\begin{equation*}
\ln _{n} \frac{p_{p}}{P_{0}}=-\frac{M_{A}}{R} \int_{z_{0}}^{z} \frac{d z}{T_{A}} \tag{22}
\end{equation*}
$$

where p_{0} is the pressure at the initial altitude z_{0}. It is clear now that, for a complete specification of the atmosphere, the initial pressure P_{0} (or the initial density) is required in addition to the temperature profile.

Suppose the temperature profile is specified by giving a number of altitudes and corresponding temperature values, z_{n} and T_{n}. Then in the interval n and $n+1$, the temperature can be approximated by the straight line:

$$
\begin{equation*}
T_{A}=s_{n} z+b_{n} \tag{23}
\end{equation*}
$$

where:

$$
\begin{align*}
& s_{n}=\frac{T_{n+1}-T_{n}}{z_{n+1}-z_{n}} \tag{24}\\
& b_{n}=\frac{T_{n} z_{n+1}-T_{n+1} z_{n}}{z_{n+1}-z_{n}} \tag{25}
\end{align*}
$$

Integrating Equation 22 with T_{A} as given by Equation 23, the following expressions are obtained. For an isothermal layer, $T_{n+1}=T_{n}$ and $s_{n}=0$:

$$
\begin{equation*}
\frac{p}{p_{n}}=\exp \left[\frac{M_{A}}{R T_{n}} \quad\left(u_{n}-z\right)\right] \tag{26}
\end{equation*}
$$

For a nonisothermal layer, $T_{n+1} \neq T_{n}$ and $s_{n} \neq 0$:

$$
\begin{equation*}
\frac{p}{P_{n}}=\left(\frac{T_{n}}{T_{A}}\right)^{\left(M_{A} / s_{n} R\right)} \tag{27}
\end{equation*}
$$

The corresponding expressions for the density are:

$$
\begin{equation*}
\frac{\rho_{A}}{\rho_{n}}=\exp \left[\frac{M_{A}}{R T_{n}}\left(z_{n}-z\right)\right] \tag{28}
\end{equation*}
$$

for an isothermal layer, and:

$$
\begin{equation*}
\frac{\rho_{A}}{\rho_{n}}=\left(\frac{T_{n}}{T_{A}}\right)^{\left(1+M_{A} / s_{n} R\right)} \tag{29}
\end{equation*}
$$

for a nonisothermal layer.
G. HEAT TRANSFER BY CONVECTION

1. Air-Side Forced Convection

Forced and free convection as well as radiation depends on the shape of the heated object. Convection correlations exist in the literature for plates, cylinders and spheres but not for shapes taken by balloor.s, which can be anywhere from a distorted bubble with a long stem to an onion-like shape at ceiling.

The balloon is considered to be spherical of volume V_{B}, and all heat transfer calculations are based on this geometry. Whenever the deviation of the actual balloon from the assumed shape is thought to have an important effect on a particular heat transfer mechanism, a correction constant is introduced. These cor*ection constants are evaluated by correlation with actual flights.

The diameter, D, cross-sectional area, A, and surface area, S, of a sphere of volume V_{B} are given by:

$$
\begin{align*}
\mathrm{D} & =1.24 \mathrm{~V}_{\mathrm{B}}^{1 / 3} \\
\mathrm{~A} & =1.21 \mathrm{~V}_{\mathrm{B}}^{2 / 3} \tag{30}\\
\mathrm{~S} & =4.83 \mathrm{~V}_{\mathrm{B}}^{2 / 3}
\end{align*}
$$

For a sphere in the Reynolds number range of 17 to 70,000 , McAdams (Ref. 3) recommends the following correlation for the heat transfer coefficient, h, by forced convection:

$$
\begin{equation*}
\frac{h D}{k}=0.37(\mathrm{Re})^{0.6} \tag{33}
\end{equation*}
$$

where k is the conductivity of the surrounding medium and $R e$ is the Reynolds number. He points out that turbulence can increase the above value of h by 40 to 60 percent. The laminar flow past a sphere becomes turbulent when the Reynolds number is about 2.5×10^{5}.

For all big balloons, the Reynolds number is above 2.5×10^{5} for the most part of their vertical flight. In calculating the heat exchange of the balloon fabric with the surrounding air by forced convection, the balloon is assumed to be spherical and Equation 33 is used with a correction constant C_{4}. The heat transfer is given by:

$$
\begin{equation*}
q_{4}=1.44 C_{4} k_{A} V_{B}^{1 / 3}\left(T_{A}-T_{F}\right)\left(1.24 V_{B}^{1 / 3} y \frac{\rho_{A}}{\mu_{A}}\right)^{0.6} \tag{34}
\end{equation*}
$$

where k_{A} is the conductivity of air in ft $l \mathrm{~b} / \mathrm{ft} \sec { }^{\circ}{ }_{R}$ and μ_{A} is the viscosity of air in $1 \mathrm{~b} / \mathrm{ft} \mathrm{sec}$.
2. Free Convection

For free convection from vertical plates and inside vertical cylinders, McAdams recommends the following expression fip the heat transfer coefficient, h, when X is in the range $10^{9}-10^{12}$.

$$
\begin{equation*}
\frac{h L}{k}=0.13 X^{1 / 3} \tag{35}
\end{equation*}
$$

where L is the height of the plate or cylinder. X is the product of the Grashof and Prandtl numbers and it is proportional to the third power of L.

Let us assume that, with an appropriate correction constant, the correlation given by Equation 35 is valid inside or outside a sphere, as long as X based on the diameter of the sphere is within or near the above range.

Taking the balloon as a sphere, it can be shown that, for both the air-side and helium-side of large balloons, X is within or near the above range. Using Equation 35 with correction constants C_{5} and C_{6}, the heat transfers by free convection in the air-side, q_{5}, and heliumside, q_{6}, are given by:

$$
\begin{align*}
& q_{5}=0.628 C_{5} k_{A} V_{B}^{2 / 3}\left(T_{A}-T_{F}\right)\left(\frac{\left.g \rho_{A}^{2}\right|_{A} T_{A}-T_{F}}{\mu_{A}^{2} T_{A}} \operatorname{Pr}_{A}\right)^{1 / 3} \tag{36}\\
& q_{6}=0.628 C_{6} k_{H} V_{B}^{2 / 3}\left(T_{B}-T_{F}\right)\left(\frac{8 \rho_{H}^{2}\left|T_{B}-T_{F}\right|}{\mu_{H}^{2} T_{B}} \operatorname{Pr}_{H}\right)^{1 / 3} \tag{37}
\end{align*}
$$

where Pr_{A} and Pr_{H} are the Prandtl numbers of air and helium, respectively. k_{H} is the conductivity of helium in ftlb/ftsec ${ }^{\circ} R$ and μ_{H} is its viscosity in lb/ftsec. It has been assumed that the coesficients of expansion of air and helium are equal to the inverse of their absolute temperature.

3. The Therinal Parameters of Air and Helium

In the following paragraphs a brief description is given of the Prandtl number, viscosity and thermal conductivity of air and helium. 'The temperature range of interest is $350^{\circ} \mathrm{R}$ to $550^{\circ} \mathrm{R}$.

The Prandtl number for air and helium is essentially constant and equal to 0.7 (Ref. 3).

The viscosity is a function of the temperature only, and, in a given temperature range, it can be taken in the form (Ref. 4):

$$
\begin{equation*}
\mu=A T^{n} \tag{38}
\end{equation*}
$$

The constants A and n are determined by making this expression conform to two experimentally measured values of the viscosity at the two extreme temperatures of the range of interest.

From Reference 5, the viscosity of air is 1.333×10^{-4} and 1.827×10^{-4} poise at temperatures -69.4 and $18^{\circ} \mathrm{C}$, respectively. Thus, Equation 38 becomes:

$$
\begin{equation*}
\mu_{A}=1.22 \times 10^{-6} \mathrm{~T}_{\mathrm{A}} 0.883 \tag{39}
\end{equation*}
$$

where the viscosity is in $l \mathrm{~b} / \mathrm{ft} \mathrm{sec}$ and the temperature in ${ }^{\mathrm{O}}$.

From Reference 4, the viscosity of helium is equal to 1.587×10^{-4} and 1.967×10^{-4} poise at temperatures -60.9 and $17.6^{\circ} \mathrm{C}$, respectively. Therefore:

$$
\begin{equation*}
\mu_{H}=4.10 \times 10^{-6} \mathrm{~T}_{\mathrm{H}} 0.682 \tag{40}
\end{equation*}
$$

where the units of μ_{H} and T_{H} are $\mathrm{lb} / \mathrm{ft}$ sec and ${ }^{\circ}{ }_{\mathrm{R}}$, respectively.
The specific heat at constant pressure is essentially constant for most gases (Ref. 4). Therefore, since the Prandtl number is also constant, the thermal conductivity of air and helium must depend on temperature in the same way as the viscosity, i.e., in the form of Equation 38 with the same n. The only unknown constant A can be determined by :naking this expression conform to one experimentally measured value of the thermal conductivity at the middle of the temperature range of interest.

From Reference 4, the thermal conductivity of air ard helium is 5.80×10^{-5} and $3.52 \times 10^{-4} \mathrm{cal} / \mathrm{cm} \mathrm{sec}{ }^{\circ} \mathrm{K}$, respectively, at a temperature of $0^{\circ} \mathrm{C}$. Thus:

$$
\begin{align*}
& \mathrm{k}_{\mathrm{A}}=4.08 \times 10^{-7} \mathrm{~T}_{\mathrm{A}} 0.883 \tag{41}\\
& \mathrm{k}_{\mathrm{H}}=7.63 \times 10^{-6} \mathrm{~T}_{\mathrm{H}} 0.682 \tag{42}
\end{align*}
$$

where the thermal conductivity is in $\mathrm{ft} 1 \mathrm{~b} / \mathrm{ft} \mathrm{sec}^{\circ} \mathrm{R}$ and the temperature in ${ }^{\mathrm{R}}$.

H. HEAT TRANSFER BY RADIATION

1. Emission of Radiation by the Balloon Fabric

The fabric emits radiation in the infrared ${ }_{4}$ part of the spectrum. The flux emitted by each side of the fabric is $\varepsilon \sigma T_{F}^{4}$, where ε is the average emissivity of the fabric in infrared and σ is the Stefan-Boltzmann constant. Since the balloon gas is considered transparent, part of the radiation emitted by the inner side of the fabric is absorbed by the fabric so that the effective emissivity $\varepsilon_{e f}$, of the fabric as a whole is not. 2ε but:

$$
\begin{equation*}
\varepsilon_{e f}=\varepsilon+\varepsilon-\varepsilon \alpha-\varepsilon R \alpha-\varepsilon R^{2} \alpha-\varepsilon R^{3} \alpha-\ldots \tag{43}
\end{equation*}
$$

where α and R are the average absorptivity and reflectivity of the fabric in infrared, respectively. This series can be summed to give the following two alternative results:

$$
\begin{equation*}
\varepsilon_{r e f}=\varepsilon_{r}\left[2-\frac{\alpha}{1-R_{r}}\right]=\varepsilon_{r}\left[1+\frac{r}{1-R_{r}}\right] \tag{44}
\end{equation*}
$$

where the subscript r is used to denote infrared and τ_{r} is the average transmissivity of the balloon fabric in the infrared spectrum at a reference temperature.

$$
\begin{equation*}
a_{r}+\tau_{r}+R_{r}=1 \tag{45}
\end{equation*}
$$

If the balloon is considered to be spherical, the radiating fabric area is the surface of a sphere of volume V_{B} as given by Equation 32. Therefore, the effective energy emitted by the fabric is given by:

$$
\begin{equation*}
q_{3}=4.83 \varepsilon_{\text {ref }} \sigma V_{B}^{2 / 3} T_{F}^{4} \tag{46}
\end{equation*}
$$

where σ is in $f t l b / f t^{2} \sec { }^{O_{R}}{ }^{4}$ so that the units of q_{3} are $f t l b / s e c$.
Arthur D. Litile, Inc., has developed a computer program for computing the effective i.dltiple absorptivity and emissivity of films. Using measured values of α and R versus wavelength and a given radiation intensity spectrum, $I(\lambda)$, the values of $\alpha_{r}, \varepsilon_{r}$ and R_{r} of the film are computed from expressions such as the folfowing:

$$
\alpha_{r}=\frac{\int \alpha(\lambda) I(\lambda) d \lambda}{\int I(\lambda) d \lambda}
$$

The effective absorptivity and emissivity of the film for multiple passes of radiation is then computed from Equation 44.

This program is used to calculate the effective absorptivity and emissivity of balloon fabrics in infrared as well as their effective absorptivity in the sun's radiation (0.3 to 3 microns). For infrared the radiation spectrum used is that of a black body at a temperature of about $300^{\circ} \mathrm{K}$. For solar radiation, the sun's spectrum outside the earth's atmosphere is used. These values of effective absorptivity and emissivity are used for the entire flight of the balloon.

There are two sources of possible errors in the above described method of computing the effective absorptivity and emissivity of balloon fabrics. Firstly, the spectra of the various radiations are not the same throughout the flight of a ballosn: the temperature of the fabric changes, and the spectra of the infrared radiation from the earth and of the solar radiation are altered through the atmosphere. Secondly,
the averaging process over wavelength should be carried out on the multiple-pass parameters and not on the one-pass parameters. The errors introduced by our approximate method will be significant when the radiative properties of the fabric change violently with wavelength in the spectrum of interest. Indeed, some fabrics behave in this manner.

2. Infrared Radiation From the Earth

The infrared radiation emitted by the earth jis absorbed and emitted again by the atmosphere. To be sure the resulting radiation field varies throughout the atmosphere not only in its total intensity but in its frequency content as well. Water vapor and carbon dioxide are the main constituents of the atmosphere which interact heavily with the infrared radiation of the earth.

There are nany papers dealing with the absorbing properties of water vapor and caibon dioxide layers. For instance, Reference 6 gives extensive tables and curves describing these properties. From these data it is possible to construct a theoretical model for the computation of the radiation received by a balloon as it moves through the atmosphere. However, such a model would require an inhibitive amouit of computation and it would be almost useless since the concentration and stratification of water vapor and carbon dioxide in the atmosphere is quite unpredictable.

The infrared radiation field in the atmosphere has been measured by many observers. Most important in this field are the works of Gergen (Refs. 7-11). The radiation field versus altitude is measured with black ball flights. The equilibrium temperature of the black ball, T_{r}, is recorded and given in charts versus altitude.

This type of measurement has been made for many locations. The results show that the profile of T varies with geographical end seasonal conditions. Essential changes of Ehe T profile for the same location can take place within days. The measurement is carried out during the night, so that the detector is not effected by the sun. It has been estimated that the day radiation field is about $10^{\circ} \mathrm{F}$ higher than the measured night field.

The results of these measurements support the following approximate but simple general rule. At ground, T_{r} is usually less than the temperature of the air, the deviation being not more than about $10^{\circ} \mathrm{F}$. Then T_{r} decicases almost linearly with altitude up to tropopause, where σT_{r}^{4} is about 30% of its value at ground. From there to higher altitudes, $\mathrm{T}_{\mathrm{r}} \mathbf{r}^{\text {remains approximately constant. }}$

3. Absorption of Infrared Radiation by the Balloon Fabric

The use of a spherical detector to measure the infrared radiation field is, indeed, a very fortunate coincidence. Since in the theoretical model the balloon is considered to be spherical, i.e., of the same shape
as 4 the detector, the radiation flux incident on the balloon is simply $\sigma \mathrm{T}_{r}^{4}$ and the energy absorbed by the fabric can be calculated very easily. Thifs would not be the case, if the detector had a different shape. In the following calculation of the infrared radiation absorbed by the fabric, it is assumed that the T profile is known. If this profile has not been measured for a particular location and time, then the simple rule, described in the last paragraph of the preceding section, is recommended for its specification.

Since the balloon gas is considered transparent, the absorption of the incident $f l u x \sigma T_{r}^{4}$ by the fabric is multiple, as in the case of emission described in Section 1 . Thus, an effective absorptivity, a ref, and not the one-way absorptivity of the fabric must be used. The câfulation of $x_{\text {fef }}$ is done as described in Section 1 with a radiation spectrum identicaf to that of a black body at temperature T_{r}. With the absorbing surface S as given by Equation 32 , the infrared radiation energy absorbed by the fabric is given by:

$$
\begin{equation*}
\mathrm{q}_{2}=4.83 \alpha_{\mathrm{ref}} \sigma \mathrm{~V}_{\mathrm{B}}^{2 / 3} \mathrm{~T}_{\mathrm{r}}^{4} \tag{47}
\end{equation*}
$$

4. Solar Radiation

The total intensity of solar radiation outside this earth's atmosphere is $2.05 \mathrm{cal} / \mathrm{cm} \min$ (Ref. 6) or $96 \mathrm{ft} \mathrm{lb/ftsec}$. i:-s spectrum is in the visible range of frequencies. A considerable amount of energy is in the infrared and some energy is in the ultraviolet.

As this energy enters the atmosphere, part of it is absorbed by the various atmospheric constituents. Ozone absorbs ultraviolet; ozone, oxygen and water vapor absorb visible; water vapor and carbon dioxide absorb infrared. By the time the solar radiation reaches the earth its tatal intensity is reduced to $1.44 \mathrm{cal} / \mathrm{cm}^{2} \mathrm{~min}$, when the azymuth angle of the sun is zero (i.e., the sun is directly overhead), and its frequency spectrum is altered.

An approximate way of describing the attenuation of the solar radiatior in the atmosphere is through the optical air mass, m, which is the ratio of the path length of the sun's rays through the atmosphere to the normal path length. The following table is constructed from data given in Reference 6.

Table 1. Variation of Solar Radiation (Relative to Radiation Outside Atmosphere) With Optical Air Mass.

Opticai Air Mass (m)

Sola: Radiation (T)

0	1.0
1	.7018
2	.5596
3	.4595
4	.3849
5	.3249

For a computer program, it is expedien to have closed form expressions instead of tables of values. The following expression conforms to the values of the above table with an error of less than 3%.

$$
\begin{equation*}
T=1 / 2 \quad\left(e^{-0.65 m}+e^{-0.095 m}\right) \tag{48}
\end{equation*}
$$

The optical air mass, m, depends on the altitude and on the sun's azymuth angle, δ. When the sun is directly overhead, its azymuth angle is zero. Sea level sunrise or sunset correspond to $\delta=90^{\circ}$. For $\delta=0, m$ is equal to 0 and 1 for a point outside the atmosphere and at sea level, respectively.

Let m_{\circ} be the value of m at sea level. Then, keeping δ constant, the value of m at any altitude, where the pressure is p, is given by:

$$
\begin{equation*}
m=m_{0} \frac{p}{p_{o}} \tag{49}
\end{equation*}
$$

where p_{o} is the pressure at sea level.
The variation of m with δ is given in Table 16-18 of Reference 6. It can be verified easily that the following expression conforms to the values of this table with an error of less than 0.5%.

$$
m_{0}=\left[1228.6+(613.8 \cos \delta)^{2}\right]^{1 / 2}-613.8 \cos \delta, 0 \leqslant \delta \leqslant 90(50)
$$

Thus, for given time (and, therefore, given δ) and given altitude, the optical air mass car be found from Equations 49 and 50. Then the solar radiation (relative to that outside the atmosphere) for that particular time and point in the atmosphere can be computed from Equation 48. Obviously, this procedure is valid for values of δ up to 90°. Sea level sunrise and sunset will occur at $\delta=90^{\circ}$, and a point at sea level will not receive any solar radiation for δ greater than
90°. This is not the casa for a point higher up in the atmosphere, where sunrise and swiset ozcur at values of δ greater than 90°. This point will receive solar radiation for values of δ greater than 90°. A procedure must be devised for computing the solar radiation in this range of δ.

Consider point A in the atmosphere (Figure 1), which has an altitude z. At this particular time, the sun's rays are along line SA, and δ is larger than 90°. The atmospheric path travelled by the sun's rays is CA. Line $B D$, drawn from the earth's center, is perpendicular to line $A C$. The altitude of point B, z_{1}, is given by:

$$
\begin{equation*}
z_{1}=(R+z) \sin \delta-R \tag{51.}
\end{equation*}
$$

where R is the radius of the earth.
For point B, the azymuth angle of the sun is equal to 90°. Thus, the optical air mass for point B, m_{1}, can be computed from Equations 49 and 50 with $\delta=90^{\circ}$ and $p=p_{1}$, where p_{1} is the pressure at z_{1}. Then the attenuation of solar radiation at point B is $T\left(m_{1}\right)$ as given by Equation 48.

In travelling the remaining air path BA, the solar radiation is reduced further. Let m_{2} be the optical air mass corresponding to altitude z and azymuth angle of the sun equal to $180^{\circ}-\delta$, i.e., when the sun is at S^{\prime}. Any radiation originating at B is reduced to $T\left(m_{1}\right)$ when it arrives at C^{\prime}, and any radiation originating at S^{\prime} (or C^{\prime}) is reduced to $T\left(m_{2}\right)$ when it arrives at A. Therefore, any radiation originating at B is reduced to $T\left(m_{1}\right) / T\left(m_{2}\right)$ when it arrives at A. Thus, the solar radiation received by point A (relative to that outside the atmosphere) is given by:

$$
\begin{equation*}
T=\frac{T^{2}\left(m_{1}\right)}{T\left(m_{2}\right)} \tag{52}
\end{equation*}
$$

The range of δ covered by this computation is:

$$
\begin{equation*}
90^{\circ}<\delta \leqslant 90^{\circ}+\cos ^{-1} \frac{R}{R+z} \tag{53}
\end{equation*}
$$

For larger values of δ, the solar radiation received by point A is equal to zero.

5. Absorption of Solar Radiation By the Balloon Fabric

The area of a spherical balloon normal to the solar raye, which come from infinity, is equal to the area of a circle, A, as given by Equation 31. This is the effective absorbing area of the fabric for one pass of radiation. However, since the balloon gas is again considered

FIGURE 1 CALCULATION OF SOLAR RADIATION FOR AZYMUTH ANGLES GREATER THAN 90°
transparent, there is multiple absorption by the fabric and an effective absorptivity α mef must be used, not the one-way absorptivity of the fabric. The subscript v stands for solar radiation. This absorptivity is computed as described in Section 1 with the solar radiation spectrum.

Thus, the solar energy absorbed by the fabric is given by:

$$
\begin{equation*}
q_{7}=116 \alpha_{\text {vef }} \operatorname{TV}_{B}^{2 / 3} \tag{54}
\end{equation*}
$$

The numerical constant in this equation comes from the solar constant outside the atmosphere ($96 \mathrm{ft} \mathrm{lb} / \mathrm{ft}^{2} \mathrm{sec}$) times the numerical constant of the effective area (1.21) as given by Equation 31. T is a function of the optical air mass computed as described in Section 4.

It remains to define the sun's azymuth angle, δ, in a time coordinate system which is related to the flight of the balloon. Let LONG and LAT be the longitude and latitude of the balloon in degrees, respectively. If at time zero, the Greenwich hour angle is GHA, then at any subsequenc time t the local hour angle, LHA, is given by:

$$
\begin{equation*}
L H A=G H A-L C N G+\frac{t}{240} \tag{55}
\end{equation*}
$$

where LHA and GHA are in degrees and t is in seconds. Let DEC be the declination of the sun in degrees. DEC is a slowly varying function of time so that it can be considered constant throughout a balloon flight. Then δ is given by the following equation.

$$
\begin{equation*}
\cos \delta=\sin L A T \sin D E C+\cos L A T \cos D E C \cos L H A \tag{56}
\end{equation*}
$$

I. SUMMARY OF EQUATIOAS. REQUIREMENTS FOR UNIQUE SOLUTION.

In summary, the governing differential equations of the model are:

$$
\begin{align*}
& \dot{z}=y \tag{57}\\
& \left(w_{G}+w_{F}+w_{B}+C_{B} \rho_{A} v_{B}\right) \frac{\dot{y}}{g}=\rho_{A} v_{B}-w_{G}-w_{F}-w_{B} \\
& -\frac{1.21}{2 g} C_{D} \rho_{A}|y|_{y} V_{B}^{2 / 3} \tag{58}\\
& C_{V} w_{B} \dot{T}_{B}=\frac{R}{M_{B}} T_{B} \dot{w}_{B}-p \dot{V}_{B}-q_{6} \tag{59}\\
& C_{F} w_{F} \dot{T}_{F}=q_{2}-q_{3}+q_{4}+q_{5}+q_{6}+q_{7} \tag{60}
\end{align*}
$$

$$
\begin{align*}
& \dot{V}_{B}=\frac{R}{p M_{B}}\left(w_{B} \dot{T}_{B}+T_{B} \dot{w}_{B}\right)+\frac{\rho_{A}}{p} V_{B} \dot{z} \tag{61}\\
& \dot{w}_{B}=\rho_{B} \dot{E}-\frac{\rho_{B}}{\rho_{A}-\rho_{B}} \dot{L}_{V} \tag{62}
\end{align*}
$$

Notice that in the drag term of Equation 58 , the effective area has been taken equal to the cross-sectional area of a spherical balloon of volume V_{B} 。

Thus, there are six first order nonl:near differential equations. The independent variable is, of course, timき, Let the six dependent variables be $z, y, W_{B}, V_{B}, T_{B}$, and T_{F}. For a unique solution of these variables, all other varlables must be known. In detail, the following items must be specified.

1. The launch site (longitude and latitude) and the launch time.
2. The atmospheric temperature (T_{A}), pressure (p), density (ρ, A), thermal conductivity $\left(k_{A}\right)$ and viscosity (μ_{A}). The specification of all these properties is accomplished by means of a temperature profile (T_{A} vs z) and the initial pressure or density.
3. The infrared radiation field in the atmosphere. It is syecified by giving the "black ball radiation equilibrium temperature" profile ($\mathrm{T}_{\mathbf{r}}$ vs z).
4. The weight (W_{F}), specific heat $\left(C_{F}\right)$, infrared effective multiple emissivity (ε ref) and effective multiple absorptivity for infrared ($\alpha_{\text {ref }}$) and for solar radiation ($\alpha_{\text {vef }}$) of the balloon
fabric.
5. The total payload insluding ballast (w_{G}), and the ballasting schedule.
6. The valving schedule and exhausting rate. Specification of the latter is very difficult, if not impossible, since, in addition to the size and shape of the appendix, the instantaneous pressure differential across the appendix must be known. In the computer program, exhausting is allowed through a mathematical expedient which will be described in Section III-C.
7. The thermal conductisity (k_{H}) and viscosity (μ_{H}) of the gas as functions of the gas temperature (T_{B}).
8. The Prandtl number for air and for the balloon gas. Also, the specific heat at constant volume of the gas $\left(C_{V}\right)$ and R, M_{A} and M_{B}.
9. The five constants $C_{B} C_{D}, C_{4}, C_{5}$ and C_{6}. As it will be shown in Section IV good ${ }^{\text {Cobrrelation with actual flights is obtained }}$ with the following values for these constants:

$$
\begin{aligned}
& C_{B}=0.5 \\
& C_{D}=0.3 \\
& C_{4}=1.5 \\
& C_{5}=1.5 \\
& C_{6}=1.0
\end{aligned}
$$

Furthermore, for a unique sclution, initial values of the six dependent variables must be given. For a balloon flight, the initial values of z, y, T_{B} and T_{F} car be obtained rather easily with the excencion, perhaps, of T_{F}. As for the initial values w_{B} and V_{B}, they can be calculated from the initial value oi the free lift, which must be given, and the equation of state with, of course, the gas pressure equal to r.he atmospheric pressure.

III. THE COMPUTER PROGRAM

A. INTRODUCTION

A computer program has been devised to solve the problem of the vertical flight of a balloon as formulated in Section II. The program integrates numerically the six first order differential equations (Equations 57 to 62) once the necessary input data are given.

The program is coded in the FORTRAN II algebraic language and it has been operated in the IBM 7090 Data Processing Equipment in conjunction with the FORTRAN MONITOR SXSTEM. The computer time depends pritarily on the integration time interval, the on and off line printing period and the plotting period. For an integration time interval of 20 seconds, an off-line printing period of 15 minutes and a plotting period of 5 minutes, the times required by the 7090 , which does the integration, and by the 1401, which prints the output, are both about one hundreth of the actual flight time.

In the following sections, the program is explained in detail. The FORTRAN listing of the entire program and a gene:al flow chart are given at the end of this report. The symbols used in the program are defined in the List of Symbols. The flow chart is intended to show in one compact picture the general fl ow of information, sequence of operations and logic of the program.

B. INPUT DATA

The input data contain all the information required for a unique solution (see Section II-I) as well as information pertaining to the integration, and to printing and plotting of output.

All input data are read in the program from the input tape, which gets this information from a deck of cards. No information can be fed to the computer on-line. However, all six sense switches can be used during the course of computation to perform various functions.

Besides the leading title card, which contains alphanumeric information in format 12A6, there are two categeries of infut cards: control cards and data cards. Control cards must have only an integer number, from 0 to 13, in the first two columns in format 12 . Data cards must have the first two columns blank and then, in successive fields of 10 , input data in format F10.4. The data are divided in eleven types. Each type must be preceded by a control card.

The content of a complete set of data cards for one flight is shown in Table 2. Each line represents one card. Notice the order of control cards. The control card with the number 1 will make the
computer to start computing and, therefore, it must be placed after all the data cards. The control card with the number 2 will make the computer to CALL EXIT instantly and, therefore, it must be the last card in the deck. It is not necessary to have the vazious types of data in the indicated order. They can be rearranged as long as they carry the correct control card. For instance, data type 4 can be placed after data type 8, and so on. However, within a given type of data, the datid must be given in the indicated order. A control card must always be followed by the appropriate data cards.

Type 3 data contain the specific heat of the fabric (Cl) in ftlb/lb , the constants of convective heat transfer (C4, C5 and C6) which are equivalent to the constants C_{4}, C_{5} and C_{6} of Section II, the infrared effective multiple absorptivity ($A B I R$) and emissivity (EMIR) of the fabric, and the effective multifle absorptivity for solar radiation (ABUV) of the fabric.

Type 4 data contain the initial weight of the payload including ballast (WGO) in lbs, the weight of fabric (WFO) in lbs, the inflated volume of the balloon (VBM) in ft^{3} as specified by its manufacturer, the initial free lift (FLO) in lbs, and the aerodynamic constants for drag (CD) and apparent additional mass (CB) which are equivalent to the constants C_{D} and C_{B} of Section II.

Type 5 data contain the initial temperature of the gas (TBO) in o_{R}, the initial temperature of the fabric (TFO) in ${ }^{\circ}{ }_{R}$, the initial altitude of the balion above sea level (ZO) in $f t$, the initial velocity of the balloon (Y20) in ft/sec, the declination of the sun (DEC) in degrees, and the latitude (XLAT) and lorgitude (XL $\emptyset N G$) of the balloon in degrees.

Type 6 data contain the time interval for the integration (H) in sec, the printing period of output (DPR) in sec, the initial time (XO) in sec, the final time (XT) in sec, the Greenwich mean time (GMTS) in sec at the initial time, the seenwich hour angle (GHA) in degrees at the initial time, and the plotting period of output (DP) in sec.

Type 7 data contain two arrays of time (TCSI) in sec and corresponding values of the so called "solar radiation factor" (CCSI). They must be in order of increasing TCSI. The number of cards must not exceed 100. Solar radiation for a clear sky is computed automatically. Reduction of the solar radiation caused by transient effects such as clouds are accounted for by the solar radiation factor. When no such effects are considered, th correct and sufficient data of this type are the following two cards:

$$
\begin{array}{ll}
\operatorname{TCSI}(1)=X 0 & \operatorname{CCSI}(1)=1.0 \\
\operatorname{TCSI}(2)=X T & \operatorname{CCSI}(2)=1.0
\end{array}
$$

Table 2. Content and Order of Input Cards for One Flight

Table 2. Content and Order of Input Cards for One Flight (Cont.)

To account for a transient effect, more cards are needed containirg values of CCSI sinaller than 1.0 and the corresponding times TCSI.

Type 8 data contain the "manual"* valving rate (VO) ir pounds of lost lift per second on the first card. Even when no gas will be valved manually in the course of computation, this card must lead the valving data. The following cards contain two arrays of time (TV) in sec and corresponding values of automatic valving rate (VV) in pounds of lost lift per second. They must be in order of increasing TV. The number of cards must not exceed 100. Also, TV(1) must be equal to or smaller than XO and TV(NVI) must be equal to or greater than XT. The following example shows the meaning of these valving data and the way they are used by the program.

Suppose for a flight $X O=0$ and $X T=36,000 \mathrm{sec}$, and that the valving data for this flight are:

$$
\begin{array}{ll}
\mathrm{V} V & =1.0 \\
\operatorname{TV}(1)=0 & \mathrm{VV}(1)=0 . \\
\operatorname{TV}(2)=18000 . & \mathrm{VV}(2)=0.3 \\
\operatorname{TV}(3)=18100 . & \mathrm{VV}(3)=0 . \\
\operatorname{TV}(4)=36000 . & \mathrm{VV}(4)=0 .
\end{array}
$$

These data mean that the "manual" valving rate is 1 and that automatic valving takes place cilly between times 18000 and 18100 at a constant rate of 0.3. Thus, the total amount of gas valved automatically is equivalent to a loss of 30 lbs of lift.

Type 9 data contain ballasting information. The first card contains the "manual"* ballasting rate (BO) in lbs/sec. Even when no manual ballasting will be done in the course of computation, this card must be first. The following cards contain two arrays of time (TB) in sec and corresponding values of automatic ballasting rate (BB) in lbs/sec. The rules for writing these data as well as their interpretation by the program are similar to those of valving data (type 8).

Type 10 data contain the air density ($\mathrm{RH} \varnothing \mathrm{O}$) in $\mathrm{lbs} / \mathrm{ft}^{3}$ at ground level on the first card. The following cards contain two arrays of altitude above sea level. $(Z Z)$ in $f t$ and the corresponding values of air temperature (TZ) in ${ }^{\circ}$. They must be in order of increasing $Z Z$. The number of cards must not exceed 100. $2 Z(1)$ must be equal to ground level. $Z Z(N T)$ must be equal to or greater than the expected maximum altitude of the balloon. Atmospheric data corresponding to $\mathrm{ZZ}(\mathrm{NT})$ are used whenever the balloon goes above $Z Z(N T)$ (see subroutine RHOT).

[^0]Type 11 data contain two arrays of altitude above sea level (ZIR) in ft and the corresponding values of the equilibrium radiation temperature of a black ball (RTIR) in ${ }^{\circ}$. . The rules for writing these data are the same as those for type 10 data. Whenever the bailoon goes above ZIR(NIR), infrareddata correspending to $2 \operatorname{IR}$ (NIR) are used (see subroutine YPRIME).

Type 12 data contain two arrays of observed time (ETIME) ia sec and corresponding values of observed balloon altitude above sea level (EALT) in ft . These data are used for flight correlation. The only restriction on these data is that they must be in order of increasing ETIME and the number of cards is limited to 400.

Finally, type 13 data contain two arrays of time (TIR) in sec and the corresponding values of the so called, "infrared factor" (CIR). These data pertain to infrared radiation from the earth and the atmosphere. For a predictable atmosphere, infrared radiation is computed by the program from the input data (type 11) of equilibrium radiation temperature of a black ball. The infrared factor accounts for possible transient effects. The rules of writing these data are similar to those of "solar radiation factor" data (type 7).

For an example of a complete set of values of input data see Section III-E.

Multiple Flights. More than one flights can be computed in one run. This is accomplished by placing the decks of input cards for each flight in consecutive ordrr. however, between flights the control card with the number 2 must be replaced by a blank card. If the input data of certain type(s) of a following flight are the same as those of the preceding flight, it is not required to include these data in the deck of the following flight. It should be emphasized that this holds for entire type(s) of data and not for part of the data in 2 given type.

C. A BRIEF DESCRIPTION OF THE PROGRAM

The program is composed of a MAIN routine and four subroutines (RNGKTA, YPRIME, RHOT and PLOT), which perform special tasks.

1. The MAIN Routine

The MAIN reads the input data from the input tape. When a run is made with more than one flights, the computer will read the input data and compute one flight at a time. The cards containing the input data as well as the control cards must be punched correctly and must be in the proper order, as described in Section III-B. Otherwise, the first time that the MAIN finds an error, it wiil. terminate the entire run after writing a comment in the output tape, which will help one to locate the error in the data.

As a further check that the correct data are used, the MAIN will write in the output tape all the data used for the flight before proceeding to the computation of the flight. The input data printed in the output should be examined carefully to make sure that they are identical to the input data fed in the computer.

A flight will be terminated automatically when:
(a) The entire payload, including the gondola, has been dropped. This could happen by excessive "manual" ballasting (see below). A comment will be written ir the output tape indicating that this has happened.
(b) The balloon hits the ground.
(c) The time exceeds the final time of the flight specified in the input data.

Then the program will proceed to the next flight.
A flight can be terminated instantly by turning SENSE SWIICH 6 on. The computer will pause. Turn this switch off and press START to proceed to the next flight.

The MAIN does a considerable amount of computation involved in the reduction of the input data to a suitable form and in the required interpolations of the input data. It, also, computes some of the variables in the desired oritput form and units, as shown in Section III-E, and store: them in the output tape. A unit of output has two lines of print. The second line, which contains the six heat transfer rates, is obtained only when SENSE SWITCH 2 is on.

The MAIN also stores internally, not in the output tape, the information needed by subroutine PLOI, which is called only once before proceeding to the next fiight. The information stored consists of five arrays which contain the time (sec) and the corresponding computed altitude (ft) and temperatures (${ }^{\circ} \mathrm{R}$) of the fabric and gas as well as the temperature of air ($\left.{ }^{\circ} \mathrm{R}\right)$. The dimension of these arrays is 400 . For a given flight, after these arrays are filled, no more information is stored.

On-line printing of output is controlled by SENSE SWITCH 3. With this switch on, each time the computer stores output in the output tape it also prints on-line the title of the flight and the following information: Greenwich Mean Time, balloon altitude above sea level (ft), balloon velocity (ft/min), valving rate (in pounds of lost lift per second), percent of total gas valved, ballasting rate (lb/sec), percent of total ballast dropped and percent of total gas exhausted. Other information is also printed on-line, as it is required by the program, and, therefore, the on-line print should always be saved.

Automatic valving and ballasting takes place at rates specified in the input data. Additional vaiving and ballasting ("manual") can be effected during the course of the computation by SENSE SWITCHES 1 and 4, respectively. When SENSE SWITCH 1 is on, the computer will valve gas in addition to that valved automatically at a rate (VO) which is specified in the input data. The same is true with SENSE SWITCH 4 and ballasting.

The MAIN also performs exhausting of gas in a rather artificial way. The integration is carried out in steps of time intervals equal to H. At the end of each step, the instantaneous volume of the gas, $Y(6)$, is compared with the inflated volume of the balloon, VBM, as specified by its manufacturer. If $Y(6)$ is equal to or smaller than VBM, no gas is exhausted and the computer proceeds to the next step. If $Y(6)$ is greater than $V B M$, the exhausting rate is set equal to ($Y(6)-V M B$) /H and the same step is repeated. If again $Y(6)$ comes out greater than VBM, the exhausting rate is increased by $(Y(6)-V B M) / H$, and so on. Twenty such iterations per integrating step are allowed automatically. If at the end $Y(6)$ is still greater than VBM, the computer will print on-line "ITERATION DOES NOT CONVERGE, etc" and pause. In this position, when START is pressed with SENSE SWITCH 5 on, the computer will enter again the iterative loop for more iterations and so on. On the other hand, when START is pressed with SENSE SWITCH 5 off, the computer will proceed to the following flight. Our experience with this program is that an adequate amount of gas is exhausted with cnly one iteration per integrating step.

Finally, the MAIN does an energy check, which will be described in Section III-D.

2. Subroutine RNGKTA

The actual integration of the six differential equations is carried out by this subroutine with Gill's fourth order Runge and Kutta method, which is a stable, self starting, accurate numerical integration technique. RNGKTA requires another subroutine, YPRIME, in which the differential equations are stated.

3. Subroutine YPRIME

YPRIME contains the six first order differential equations and evaluates the first derivatives of the dependent variables. It, also, evaluates the various heat transfer rates. Thus, YPRIME is called frequently by MAIN, as well as by RNGKTA, whenever information on the derivatives of the dependent variables or the heat transfer rates is needed.

For the rate of absorption of solar radiation, YPRIME computes the intensity of solar radiation and, when sunrise or sunset occurs at the balloon, it computes the Greenwich Mean Time and writes directly on the output tape the appropriate comment (for instance, GMT $=2.20 .13$ SUNSET AT BALLOON).

When the balloon goes above the infrared radiation field specified in the input data (type l1), YPRIME will print on-line an appropriate comment and the computer will pause. In this position, if START is pressed, the flight will br continued using the infrared data of the highest altitude for as long as the balloon remains above the specified infrared field. On the other hand, if START is pressed with SENSE SWITCH 6 on, the flight will be terminated.

In computing the convective heat transfer rates due to the atmosphere, YPRIME gets information about the atmosphere from subroutine RHOT .

4. Subroutine RHOT

This subroutine computes the atmospheric temperature and the product of atmospheric temperature and density for given altitude. The computation is done according to formulae developed in Section II-F.

When the balloon goes above the atmospheric temperature profile specified in the input data (type 10), RHOT will print on-line an appropriate comment and the computer will pause. In this position, if START is pressed, the flight will be continued using the atmospheric data of the highest altitude for as long as the balloon remains above the specified atmosphere. On the other hand, if START is pressed with SENSE SWITCH 6 on, the flight will be terminated.

Subroutine RHOT is called frequently by MAIN, as well as by YPRIME, to give information about the atmosphere.

5. Subroutine PLOT

After the completion of the computation of a flight and before proceeding to the next flight, this subroutine is called to store in the output tape information from which the IBM 1401 will produce a plot in graphical form. Subroutine PLOT is furnished to the user in binary card form as the FORTRAN source deck is not available for all the included subroutines.

The grid of the graph is marked with small crosses. The abscissa represents time elapsed from the beginning of the flight in hours, and the ordinate represents altitude above sea level in feet and temperature in ${ }^{\circ} R$. There are two compilations of this subroutine: in one, the range of the ordinate is from 0 to 147,500 feet for altitude and from 300 to $595^{\circ} \mathrm{R}$ for temperature, and in another f fom 0 to 100,000 feet for altitude and from 300 to $550^{\circ} \mathrm{R}$ for temperature.

On the produced graph paper, points for the computed and observed balloon altitude and the computed temperatures of the air, fabric and gas are marked with symbols described in the following key:

$$
\begin{align*}
& \text { DEWA }=\mathrm{p} \dot{\mathrm{~V}}_{\mathrm{B}} \tag{68}\\
& \text { DEVE }=\mathrm{C}_{\mathrm{p}} \mathrm{~T}_{\mathrm{B}} \dot{\mathrm{w}}_{\mathrm{B}} \tag{69}
\end{align*}
$$

where C_{p} is the specific heat at constant pressure of the gas.
Notice that Equation 63 relates the rates at which the various forms of energy of the gas-fabric system are exchanged. The interpretation of the various terms is as follows. ETOT is the internal energy. DKE and DPE are the rates of change of kinetic and potential energy, respectively. DDRAG is the rate at which energy is expended to overcome drag. DEWA is the rate of work done (on the atmosphere) when the balloon expands. DEVE is the rate of energy lost when gas is valved and/or exhausted. Finally, the sum of the q terms is the rate of net heat received by the system.

Let the right hand side of Equation 63 be denoted by ER. Integrating this equation from time 0 to t, one obtains:

$$
\begin{equation*}
\text { ENET }=\text { ETOT }-E T O T 1=\int_{0}^{t} E R d t \tag{70}
\end{equation*}
$$

where ETOTl is the value of ETOF at zero time. Let the integral of Equation 70 be approximated by the following first order formula:

$$
\begin{equation*}
E P=H \sum_{i=1}^{N} E R_{i} \tag{71}
\end{equation*}
$$

where $E R{ }_{i}$ is the value of $E R$ at the end of each time step H.
At the end of each integration by RNGKTA, the MATN routine evaluates ETOT, and, therefore, ENET from the integrated variables. Similarly, it evaluates the increment in EP, which is $H\left(E R_{i}\right)$, due to each step and keeps track of the total EP. Clearly, ENET and EP, thus evaluated, are not equal for two reasons (if all integrations were exact, ENET and EP would be identical). Firstly, there is an error involved in the integrations done by RNGKTA. Secondly, there is another error involved in the above approximate first order integration of ER. To be sure the second error is larger than the first one. Nevertheless, the ratio:

$$
\begin{equation*}
\text { ECHK }=\frac{\text { ENET-EP }}{\text { ENET }} \tag{72}
\end{equation*}
$$

which is evaluated by MAIN and stored in the output tape each time output is stored there, has some bearing on the accuracy of RNGKTA. If ECHK is a small number, this means, at least, that RNGKTA is very accurate.

A - Air Temperature
B - Balloon Gas Temperature
E - Observed Balloon Altitude
F - Balloon Fabric Temperature
L - Overlap of A and B
P - Overlap of A and F
Q - Overlap of B and F
2 - Computed Balloon Altitude
$\$$ - Overlap of E and Z, or of A, B, E, F, Z and Grid.
Since the computer can mark a maximum of sixteen equally spaced points per half hour of abscissa, the uncertainty in time for each marked point can be as large as 1 minute and 53 seconds. Similarly; there is an uncertainty in the ordinate. For instance, wi : the 0 to $100,000 \mathrm{ft}$ compilation the computer can mark a maximum of six points per $10,000 \mathrm{ft}$ of ordinate and, therefore, the uncertainty for each marked altitude point can 'se as large as $1,667 \mathrm{ft}$.

D. ACCURACY OF INTEGRATION

With a program as massive as this program it is highly desireable to have a scheme by which the accuracy of integration can be estimated for given integrating time interval. With such a scheme the integrating time interval can be maximized for a given desired accuracy and, thus, the total computer time per flight can be minimi od.

To this end, an energy check is most effective. If Equation 58 times y and Equatious 59 and 60 are added and the rasulting equation is rearranged, the following energy equation is obtained:
$\frac{d}{d t}(E T O T)=-D R E+D P E-D D R A G-D E W A+D E V E+q_{2}-q_{3}+q_{4}+q_{5}+q_{7}$
where:

$$
\begin{align*}
& \text { ETOT }=C_{V} w_{B} T_{B}+C_{F} w_{F} T_{F} \tag{64}\\
& \text { DRE }=\left(w_{G}+w_{F}+w_{B}+C_{B} \rho_{A} V_{B}\right) \frac{\dot{y}}{g} y \tag{65}\\
& \text { DPE }=\left(\rho_{A} V_{B}-w_{G}-w_{F}-w_{B}\right) y \tag{66}\\
& \text { DDRAG }=\frac{1.21}{2 g} P_{A} C_{D}|y| y^{2} V_{B}^{2 / 3} \tag{67}
\end{align*}
$$

$$
\begin{align*}
& \text { DEWA }=p \dot{V}_{B} \tag{68}\\
& \text { DEVE }=C_{p} T_{B} \dot{w}_{B} \tag{69}
\end{align*}
$$

where C_{p} is the specific heat at constant pressure of the gas.
Notice that Equation 63 relates the rates at which the various forms of energy of the gas-fabric system are exchanged. The interpretation of the various terms is as follows. ETOT is the internal energy. DKE and DPE are the rates of change of kinetic and potential energy, respectively. DDRAG is the rate at which energy is expended to overcome drag. DEWA is the rate of work done (on the atmosphere) when the balloon expands. DEVE is the rate of energy lost when gas is valved and/or exhausted. Finally, the sum of the q terms is the rate of net heat received by the system.

Let the right hand side of Equation 63 be denoted by ER. Integrating this equation from time 0 to t, one obtains:

$$
\begin{equation*}
\text { ENET }=\text { ETOT }- \text { ETOTL }=\int_{0}^{t} \text { ERd } t \tag{70}
\end{equation*}
$$

where ETOTl is the value of ETOT at zero time. Let the integral of Equation 70 be approximated by the following first order formula:

$$
\begin{equation*}
E P=H \sum_{i=1}^{N} E R_{i} \tag{71}
\end{equation*}
$$

where $E R_{1}$ is the value of $E R$ at the end of each time step H.
At the end of each integration by RNGKTA, the MATN routine evaluates ETOT, and, therefore, ENET from the integrated variables. Similarly, it evaluates the increment in $E P$, which is $H\left(E R_{i}\right)$, due to each step and keeps track of the total EP. Clearly, ENET and EP, thus evaluated, are not equal for two reasons (if all integrations were exact, ENET and EP would be identical). Firstly, there is an error involved in the integrations done by RNGKTA. Secondly, there is another error involved in the above approximate first order integration of $E R$. To be sure the second error is larger than the first one. Nevertheless, the ratio:

$$
\begin{equation*}
\text { ECHK }=\frac{\text { ENET-EP }}{\text { ENET }} \tag{72}
\end{equation*}
$$

which is evaluated by MAIN and stored in the output tape each time output is stored there, has some bearing on the accuracy of RNGKTA. If ECHK is a small number, this means, at least, that RNGKTA is very accurate.

Many flights have been computed with H equal to 10 and 20 sec . The corresponding values of ECHK are of the order of 0.003 and 0.007 .

E. OUTPUTS

As stated in Section III-C, the first part of output is a printout of the input data used for the flight. They are printed in the form shown in Figure 2. Notice that the appropriate control card identification (IT) precedes each type of data. The meaning and units of these data are as described in Section III-B. This printout of data should be checked carefully to make sure that the correct input data have been used by the computer.

The printout of input data is followed by the computed output in the form shown in Figure 3. A unit output contains two lines. The contents of the first line are the values of the variables appearing at the head of each page of output. These variables are:

Greenwich Mean Time (GMT) in hours, minutes and seconds.
Time from beginning of flight (TIME) in sec.
Altitude of balloon from sea level (ALTITUDF) in ft.
Velocity of balloon (VEL) in $\mathrm{ft} / \mathrm{min}$.
Atmospheric pressure (PRESS) in mbar. Atmospheric temperature (TA) in ${ }^{\circ} \mathrm{R}$. Balloon fabric temperature (TF) in ${ }^{\circ}$. Balloon gas temperature (TB) in ${ }^{\circ} R$. Balloon volume (VOLUME) in ft^{3}.
Weight of payload and balloon fabric (LOAD) in lb. Weight of balloon gas (GAS WT) in lb.
Free lift (FR LIFT) in lb.
Cumulative ballast dropped (PERB) in percent of initial load (payload plus balloon fabric).
Cumulative gas valved (PERV) in percent of initial gas weight. Cumulative gas exhausted (PERE) in percent of initial gas weight. Number of iterations (IRS) required to exhaust an adequate amount of gas during the most recent interating step.
Einergy check (ECHK) as explained in Section IIz-D.
The second line of unit output contains the six heating rates in ftlb/sec. This 1 ine appears in the output only when SENSE SWITCH 2 is on. The heatirg rates are:

Rate of absorption of infrared radiation by balloon fabric (IRAB).
Rate of emission of infrared radiation by balloon fabric (IREM). Forced convection heating rate of balloon fabric by air (FCAF). Natural convection heating rate of balloon fabric by air (NCAF). Natural convection heating rate of balloon fabric by balloon gas (NCGF).
Rate of absorption of solar radiation by balloon fabric (SLAB).
When sunset or sumrise occurs at the balloon, the Greenwich Mean Time of the occurrence together with the appropriate comment are printed in the output (see Figure 3).

		JULY 23,1965				
INPU: DATA						
$I T=3250.00000$	1.50000	1.50000	1.00000	0.69000	$0.6900 n$	0.15000
$\begin{array}{ll} 1 T=4 \\ 11120.00000 \end{array}$	3320.00000	5505000.00000	1460.00000	0.30000	0.50000	
$I T=5542.00000$	542.00000	1000.00000	$0 .$	19.90000	31.75000	102.50000
$1 T=620.00000$	900.00000	$0 .$	40080.00000	4920.00000	198.39000	300.00000
$\begin{aligned} & \text { ITr } 7 \\ & \quad 0.0000 .00000 \end{aligned}$	$\begin{aligned} & 1.0,000 \\ & 1.00000 \end{aligned}$					
11=8 1.00000 0. 34980.06000 35480.00000 35980.00000 36480.00000 36980.000 CO $37480.000 c 0$ 37980.00000 38480.00000 38980.00000 39480.00000 39980.00000 41000.00000	-0. 0.30000 0.33000 0.35000 0.38000 0.43000 0.48000 0.58000 0.70000 0.88000 1.20000 1.50000 1.50000					
$\begin{array}{r} \text { IT= } 9 \\ 1.00000 \\ 0 . \\ 60.00000 \\ 240.00000 \\ 2040.00060 \\ 2340.00000 \\ 39780.00000 \\ 40080.00000 \end{array}$	$\begin{aligned} & 0 . \\ & 1.41670 \\ & 0 . \\ & 1.41670 \\ & 0 . \\ & 3.00000 \\ & 0 . \end{aligned}$.				
$\begin{array}{r} I T=10 \\ 0.07000 \\ 1000.00000 \\ 3400.00000 \\ 5025.10000 \\ 9700.00000 \\ 19400.00000 \\ 25000.00000 \\ 31800.00000 \\ 35950.00000 \\ 40800.00000 \\ 46500.00000 \\ 51000.00060 \\ 54550.00000 \\ 61600.00000 \end{array}$	542.00000 535.00000 529.00000 513.00000 483.00000 459.00100 430.00000 413.00000 393.00000 375.00000 360.00000 368.00000 380.00000					

FIGURE 2 INPUT DATA PRINTED IN OUTPUT FOR STRATOSCOPE FLIGHT S4-2

> 68550.00000 19100.00000 82700.00000 100000.00000
> 1000.00000 51000.00000 100000.000CO
> 392.00000
> 532.00000 392.00000
> 0.
> 780.00000 $\cdot 1380.00000$ 1980.00000 2580.00000 3180.000 CO 3780.00000 4580.00000 5100.00000 6780.00000 8580.00000 10300.00000 12100.000 CO 13900.00000 1.700.00000 17500.00000 1.3300.000C0 21180.00000 22980.00000 24780.00000 26580.00000 28380.00000 30180.00000 31980.00000 33780.00000 34980.00000 35580.00000 36180.000 CO 36780.00000 37380.00000 57980.000 CO 38580.00000 39180.00050 39780.00000 40080.00000
> 1000.00000 16000.00000 25000.00000 37000.00000 52000.00000 59000.00000 66500.00000 13000.00000 80000.00000 80000.00000 80000.00000 80000.00000 80000.00000 19500.00000 78500.00000 78000.00000 78000.00000 78000.00000 78000.00000 78000. 00000 77500.00000 77500.00000 17500.00000 77500. 30000 77000.00000 77000.00000 75000.00000 73500.00000 71000.00000 68000. 10000 65000.00000 60000.00000 56000.00000 47000.00000 41500.00000
> IT=13
> 0.1 .00000
> 41000.00000
> 384.00000 400.00000 407.00000 423.00000
■
SH 3 STRATOSCOPE FLIGHT S4-Z JULY 23,1965 altitude
1000 .
IREM $=$

$\stackrel{\dot{8}}{\stackrel{y y}{2}}$
GMT
PERE
o:
6.
04
03
03
0.
\therefore

$\stackrel{\square}{n}$ \square

$$
\begin{array}{cc}
60972 . & 462 . \\
1 R E M= & 3.8541 E \\
68880 . & 529 .
\end{array}
$$

PRESS TA

$$
971.5 \quad 542.0
$$

$$
\begin{aligned}
& 971.5542 .0 \\
& 05 \quad \text { FCAF }=-0 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { TF } \\
& 547.0
\end{aligned}
$$

$$
479.4479 .3475 .8
$$ 05 FCAF $=-3.0800 E 04$

$$
\begin{gathered}
229.7 \quad 406.1 \quad 411.7 \\
05 \text { FCAF }=-3.0800 E \quad 04
\end{gathered}
$$ $102.1 \quad 366.8 \quad 358.1$ SUNSET AT BALLOON

$$
\begin{array}{ccc}
48.9 & 384.5 & 374.4 \\
05 \quad F C A F= & 2.8813 E \quad 04
\end{array}
$$

$$
\begin{gathered}
34.9 \quad 395.2 \quad 382.0 \\
\\
\hline 5 C A F=3.3907 E O 4
\end{gathered}
$$

$$
\begin{array}{cccc}
335.9 & 2201481 . \quad 13760 \\
\text { NCAF } & =2.8856 E \quad 04 \quad \text { NCGF }=-1.5454 E
\end{array}
$$

 FIGURE 3 SAMPLE OF PRINTED OUTPUT

$$
\begin{aligned}
& 41.88 \quad 4.7 . \\
& 05 \\
& S L A B=0 .
\end{aligned}
$$

$$
\begin{aligned}
& -4.49 \quad 4.7 .-0 . \\
& 04 \quad \text { SLAB }=0 .
\end{aligned}
$$

$$
60.214 .7
$$

$$
\begin{aligned}
& 60.21 \quad 4.7 \\
& 04 \\
& \\
& \\
&
\end{aligned}
$$

$$
\begin{gathered}
-84.34 \mathrm{~S}_{4} .77^{-0 .} \\
04 \mathrm{SLAB}^{2}=0 . \\
8.63 \quad 4.7-0 .
\end{gathered}
$$

$$
\begin{aligned}
& 8.63 \quad 4.7-0 . \\
& 35 A B=0 . \\
& 4.15 \quad-0 .
\end{aligned}
$$ $35.15 \quad 4.7$

02
SLAB $=0$.

$$
\begin{gathered}
40-36615 \cdot 1=5 \forall 3 \mathrm{~J} \\
2 \cdot 68 \varepsilon \quad 0.00 \% 1 \cdot 0 \varepsilon^{5}
\end{gathered}
$$

$$
0 \cdot 28 \varepsilon 2^{\circ} 56 \varepsilon 6 \cdot \rightarrow \varepsilon
$$

$$
\begin{gathered}
529 . \\
5.3585 E
\end{gathered}
$$

$$
454 .
$$

$$
-171
$$

11.0
11.4
11.6
11.7
11.7
11.8
11.8
11.8
11.8 PERV
PERE

$$
\text { 40 } 31918 \cdot 1=3853 \text { so }
$$ 05 FCAF $=2.3008 \mathrm{E} 04$ $00 \quad S L A B=0$

Following the printed output, the output contains a plot as shown in Figure 4. The contents of this plot have already been explained in Section III-C5, where subroutine PLOT was discribed.

When a flight is aborted because of errors in the data, the output contains comments which will help one to locate the errors.

F. OTHER OPERATING INSTRUCTIONS

In accordance with the requirements of the FORTRAN MONITOR SYSTEM (FMS), a few starred cards must be used in the order indicated below when the program is run with FMS.
*IDENTIFICATION CARD
*XEQ
MAIN ROUTINE DECK
SUBROUTINE RNGKTA DECK
SUBROUTINE YPRIME DECK
SUBROUTINE RHOT DECK
SUBROUTINE PLOT DECK
*DATA
INPUT DATA DECK

The asterisk of the starred cards must be in column 1 , and their contents must start from column 7 .

The tapes that are used in FMS are A2 (logical 5) for input and A3 (logical 6) for output.

The functions of the six sense switches of FMS, when they are on, have been described in Section III-C. In summary, the functions of these switches are:

SSl: "Manual" valving of gas, in addition to automatic valving, at rate VO.

SS2: Heating rates are printed in output.
SS3: On-line print of output.
SS4: 'Manual" ballasting, in addition to automatic ballasting, at rate BO.

SS5: Iterations for exhausting gas will be continued.
SS6: Present flight is discontinued.

FIGURE 4 cont'd. PLOTTED OUTPUT FOR STRATOSCOPE FLIGHT S4-2

IV. CORRELATION OF COMPUTED AND ACTUAL FLIGHTS

A. A BRIEF DISCUSSION OF THE APFROXIMATIONS TN THE MODEL AND OF THE UNCERTAINTIES IN THE INPUT DATA

To appreciate the correlation of a computed with an actual flight, one should have a good understanding of the mathematical model and of the computer program. Then one would be int a position to know the degree of correlation he should expect. In developing the mathematical. model we have made many simplifications, sone of them quite gross, of the actual balloon. In addition, the computer program requires a certain amount of specified quantities (input data), and the question arises as tc how accurately these data should and could be specified. In this section, we will review briefly the approximations contained in the matheratical model and the factors which, according to the model, play a very important role in balloon performance. Then, in the following section, we will present the correlation of some recent balloon flights with those computed by our program.

In calculatine t.e dynamic parameters of the balloon (drag and apparent additional mass) and all the heat transfer rates (convective and radiant), we have considered the balloon to be a sphere witn the same volume as the actual balloon. To compensate for this rough approximation, we have introduced correction factors whose values have been determined by correlation of actual balloon flights with an acceptable degree of accuracy.

Thus, the drag coefficient of the balloon, based on the crosssectional area of the equivalent sphere, has been taken equal to 0.3 , 50% smaller than the drag coefficient of a sphere, since it is expected that a balloon must have less drag than the equivalent sphere. The coefficient of apparent additional mass, based on the mass of the displaced air, has been taken equal to 0.5 , whirh is equal to that of a sphere in potential flow (viscous effects have been neglected). Evidently, this is a reasonable approximation, since this coefficient depends on volume more than it depends on cross-section.

Besides the spherical model approximation, more approximations have been introduced in the calculation of the convective heat transfer rates. For forced convection, it has been assumed that a known formula for spheres in laminar flow is applicable to balloons, even through the Reynolds number of balloons is usually higher than the Reynolds numbers covered by this formula. In fact, due to high Reynolds numbers, the flow of air around a balloon is quite turbulent, which means that the heat transfer is greater than that given by this formula. Thus, we have taken the correction constant equal to 1.5. For free convection, it has been assumed that known formulae which hold for vertical plates and cylinders are applicable to balloons with the diameter of the spherical balloon equal to the height of the plate. The correction
constants have been taken equal to 1.5 and 1.0 for the air-side and gasside, respectively, since it is expected that the air-side must have greater heat transfer than the gas-side.

For the radiant heat transfers, we 1 lieve that the spherical. model is quite accurate and, therefore, we have not introduced any correstion cor. - ints expicicity. However, corrections can be introduced through the effective absorptivities and emissivities.

Another basic approximation introduced in the theory is that both the gas and the fabric are characterized by an average temperature. The main support for the validity of this approximation stems from the fact that balloons experience very violent rotations, which tend to mix the gas as vell as to equa' ize the temperature of the fabric and the amount of soldr radiation incident on the fabric as a whole. However, any heat transfcr associated with the rotations of balloons has not been considered in the mathematical model. Heat transfer as well as other effects associated with the horizontal drift of balloons have also been neglected.

As pointed out earlier, the exhausting process of the model is quite artiricial. This may give, sometimes, a bad correlation as the balioon arrives at its ceiling.

There a.a quite a few parameters which play an important role in balloon performance and which must be specified in the computer program as input data. One of the most important ones is the initial fres lift. It has a pronounced effect on the rise of a balloon to its ceiling. The initial free lift is computed by subtracting the weight of the payioad from the gross lift (minus weight of fabric) which is measured on ground with a scale. Usually, the initial free lift is not more than about 10% of the gross lift. If there is a 1% error in both the measurement of the payload and the measurement of the gross lift, the uncertainty in free lift can be as large as 20%.

The initial values of temperature of the balloon gas and fabric must be specified as input data. For a balloon which has lust been filled with gas and is waiting to be released, specifying these temperatures is nct an easy task. In our practice of the computer program we have been taking both of these temperatures approximately equal to the air temperature at ground level. These temperatures have an important effect on balloon performance oniy during the initial part of the ascent phase.

The effective absorptivity of the balloon for solar radiation and its effective emissivity and absorptivity in infrared are three more crucial factors which are sometimes difficult to specify very accurately. This is so because these parameters are effective for multiple passes of ra.iation, the balloon gas being considered transparent. The one-pass atsorptivity or emissivity of a fabric can be measured very accurately. But, in order to calculate the effective multiple-pass absorptivity or emissivity, the one-pass reflectivity of the fabric must also be known (see Section IT.H.1). Accurate measurement of reflectivity is not an
easy task.
The black ball equilibriun radiation temperature must also be specified accurately, since a 2.5% uncertaincy in this temperature (Bay , $10^{\circ} \mathrm{R}$ in a nominal temperature of $400^{\circ} \mathrm{R}$) would give an uncertaintv of 10% in radiation intensity. Infrared radiation plays an important e in balloon performance, especially in the absence of solar radiati. as is the case quite often for a major part of the flight of large balloons. In order to specify this temperature accurately, a black ball flight should be made before launching a balloon. If such a flight is not possible and there is no other way of specifying this radiation field, as for instance from black ball measurements made at the launch site or another similar site under similar seasonal conditions, the rule prescribed in. Section II.H. 2 should be followed in specifying this field. In any case, a change in the radiation temperature of the above order can easily take place overnight.

Air temperature data play a very important role, but usually they can be specified accurately. The same is true for valving and ballasting data.

Finalls, it should be pointed out that observed balloon altitude is computed usually from pressure measurements using the hydrostatic law and a standard atmosphere for atmospheric temperature. It can be shown that possible deviations of the atmospheric temperature from that of a standard atmosphere can give changes in altitude of the order of a couple of thousand feet for altitudes above $25,000 \mathrm{ft}$. or so.

B. FLIGHT CORRELATION

Three recent flights are correlated and discussed in this section. Other flights have been treated in our previous report (Ref. 2). These three flights include a variety of effects: sunset, sunrise, ascent, overnight performance, descent, valving, ballasting, different fabric materials, etc. Fairly accurate and reliaile input data can be prescribed for all of them. Keeping in mind the discussion in the preceding section, one can say that the correlation of computed and observed balloon trajectories is reasonable and in fact very good.

The correlation of these and other flights was obtained with the following values of the five correction constants:
$C B=0.5$
$C D=0.3$
$C 4=1.5$
$C 5=1.5$
$C 6=1.0$

These values are compatible with theoretical considerations as it was pointed out in the preceding setion. We secommend that these values be used in predicting balloon performance.

1. Stargazer Manned Flight

This balloon was launched from Holloman Air Force Base, New Mexico on December 13, 1962. It was launched at 1100 MST, reached its ceiling of $81,000 \mathrm{ft}$. in about 90 minutes and dropped to $71,000 \mathrm{ft}$. after sunset which occurred about 6 hours and 20 minutes after launch.

The input data used for this flight are shown in Figure 5. The fabric of the balloon was GI-12 (mylar and scrim), which has a specific heat of $250 \mathrm{ft} \mathrm{lb/lb}{ }^{\circ} \mathrm{R}$. Notice the value of 0.69 for $A B I R$ and EMIR and the value of 0.15 for ABUY. These values were estimated by our computer program (see Section II.H.1) and then were corrected somewhat for best flight correlation. Notice, also that the initial gas and fabric temperatures ($519^{\circ} \mathrm{R}$) are $9^{\circ} \mathrm{R}$ above the air temperature at ground level. The initial free lift specified in the flight data was 6% of the gross load. To obtain a reasonable correlation in the ascent phase, the initiai free lift has been increased to 9.6% of gross load or 650 lb . The infrared radiation field (IT $=11$) is specified according to the approximate rule given in Section II.H.2. Ballasting and valving are identical to those of the actual flight. The air temperature data were given by the Holloman base.

The correlation of computed and actual flights is shown in Figure 6. Notice that the agreement is excellent not only in the ascent phase but also during and after sunset. In the computed flight, 14.5% of the initial gas was exhausted by the time the balloon was stabilized at its ceiling. An additional $0 . \%$ was exhausted when, in anticipation of sunset, ballasting took place a little prematurely. Thus, a total of 15.2% of gas was exhausted as compared to 0.9% valved as the balloon was reaching its ceiling. The amount of ballast dropped during sunset was 7.2% of gross load.

2. Thermistor Flight

This flight was sponsored by ONR and was launched by NCAR from Page, Arizona, on October 18, 1964. Arthur D. Little, Inc., requested this flight in order to measure the temperature of the balloon gas as well as the temperature of air at various distances from the balloon. This was accomplished by various thermistors which were placed by Arthur D. Little, Inc., in and near the balloon. The principal objective of this flight was to acquire knowledge about the temperature of the balloon gas and to compare this temperature with gas temperarures computed by our program. Such a comparison is the ultimate check of the validity and accuracy of our model. A description of the flight and the instrumentation will be published in the near future.

A print-out of the input data is shown in Figure 7. The fabric of the balloon was 1.5 mil polyethelene film. Its specific heat is equal to $428 \mathrm{ft} \mathrm{lb} / \mathrm{lb}{ }^{\circ} \mathrm{R}$. The radiative parameters of this fabric (0.17 and 0.10) have been estimated with our computer program (see Section II.H.1). The initial temperature of the balloon gas (5190R) and of the balloon

BH 1 StARGAZER	MANNED FLIGHT	12-13-63.	1800 GMT			
infut data						
IT= 3						
250.000C0	1.50000	1.50000	1.00000	0.69000	0.69000	0. 15000
IT= 4						
4800.00000	1966.00000	3120000.00000	650.00000	0.30000	0.50000	
IT= 5						
519.0000	519.00000	4290.00000	0.	-23.19000	32.91000	105.94000
$17=6$						
10.00000	900.00000	0.	43200.00000	64800.00000	91.36000	300.00000
IT: 7						
$\begin{gathered} -0 . \\ 50000.00 \mathrm{cco} \end{gathered}$	$\begin{aligned} & 1.00000 \\ & 1.00000 \end{aligned}$					
IT= \mathbf{t}						
$\begin{aligned} & 1.00000 \\ & 0 . \end{aligned}$	0.					
4500.00090	0.38300					
4607.00000	0.30300					
6000.00000	0.20800					
6111.00000	-0.					
44700.00000	0.22000					
44916.00000	-0.					
45600.00000	0.22000					
45816.0000	-0.					
48300.00000	0.27500	,				
48517.00000	-0.					
50400.00000	0.33000					
50490.00000	-0.					
51300.00000	0.30000					
51420.00000	-0.					
52800.00000	0.38000					
52854.00000	-0.					
53640.00000	0.38000					
53698.00000	-0.					
	0.55000					
57660.00000	$-0 \text {. }$					
59280.00000	0.72000					
59336.00000	-0.					
59820.00000	0.77000					
59875.00000	-0.					
80000.00000	0.					
IT=9						
1.00000						
0.00000	0.					
19260.00000	1.00000					
$19335.000 \mathrm{Co}$	$0 .$					
20340.00000	1.00000					
20380.00000	0.				-	
21600.00000	1.00000					
21675.00000	0.					
22560.00000	1.00000					
22635.00000	0.00000					
22740.000 CO	1.00000	.				
22820.00000	0.					

23460.00000	1.00000
23540.00000	0.
24120.00000	1.00000
$24160.000 c 0$	0.
24600.00000	1.00000
24640.00000	0.
61500.00000	1.00000
$61580.000 c 0$	0.

61680.00000	1.00000
61955.00000	
61800.00000	1.00000
61943.00000	
61980.00000	1.00000
61955.00000	
62280.00000	1.00000
62320.00000	
62340.00000	1.00000
\$2495.00000	
63180.00000	1.00000
64220.00000	
65100.000 co	1.00000
65105.00000	
65760.000 Co	0.50000
65765.000 co	0.
130000.00 C 00	0.
$\boldsymbol{T}=10$	
0.06694	
4290.00000	509.85000
6571.39956	506.15000
39498.00000	389.07000
52696.00000	370.35000
56000.00000	365.67000
59304.00000	365.67000
72529.00000	383.67000
105660.00000	419.67000
$1 \mathrm{~T}=11$	
4290.00000	500.00000
39498.000 0	392.00000
100000.00000	392.00000
$1 \mathrm{~T}=12$	
200.00000	5000.00000
1400.00000	23500.00000
2600.00000	40000.00000
3800.00000	57500.00000
5000.00000	73500.00000
6200.000CO	80500.00000
7400.00000	H1000.00000
8600.00000	81000.00000
9800.00000	81000.00000
11000.000 CO	81000.00000
12200.00000	81000.00000
13400.00000	81000.00000
14600.000 0	81000.00000
15800.00000	81000.00000
17000.00000	81000.00000
18200.00000	1100c.00000
19400.000 0	B0500.00000
20600.00000	80400.00000

21800.00000	80000.00000
23000.00000	79500.00000
24200.00000	78000.00000
25400.00000	76500.00000
26600.000CO	74500.00000
27800.00000	73000.00000
29000.00000	72000.00000
30200.000 0	71700.00000
31400.00000	71300.00000
32600.00000	71000.00000
1T=13	
-0.	1.00000
50000.00000	1.00000

FIGURE 5 cont'd. INFU'Г DATA FOR STARGAZER MANNED FLIGHT

FIGURE 6 PLOTTED OUTPUT FUR STARGAZER MANNED FLIGHT

FIGURE 6 cont'd. PLOTTED OUTPUT FOR STARGAZER MANNED FLIGHT
input data

$1 T=3_{428.00000}$	1.50000	1.50000	1.00000	0.17000	0.17000	0.10000
IT=4						
325.00000	189.00000	250000.00000	10.00000	0.30000	0.50000	
IT= 5						
519.00000	525.00000	4300.00000	0.	-9.80000	37.00000	111.45000
$17=6$						
10.00000	150.00000	0.	6600.00000	57840.00000	73.72000	300.00000
1才= 7						
$\begin{gathered} 0 . \\ 20000.00000 \end{gathered}$	$\begin{aligned} & 1.00000 \\ & 1.00000 \end{aligned}$					
20000.00000	1.00000					
$I T=8$						
$\begin{aligned} & 1.00000 \\ & 0 . \end{aligned}$						
$\begin{gathered} 0 . \\ 20000.00000 \end{gathered}$	0.					
IT= 9			*			
1.00000			*			
$\begin{gathered} 0.00000 \\ 900.000 \end{gathered}$	$\begin{aligned} & 0 . \\ & 0.60000 \end{aligned}$					
900.00000 910.00000	0.60000 -0.					
4020.00000	0.60000					
4030.000 CO	-0.					
4440.00000	0.80000					
4450.00000	-0.					
20000.00000	-0.					
IT-10						
0.06520						
4300.00000	525.00000					
10680.00000	510.00000					
18935.00000	472.98000					
21107.00000	466.81000					
22193.000 CO	459.92000					
24553.00000	454.04000					
25774.000C0	447.52000					
26594.00000	445.07000					
27568.000c0	439.42000					
28436.00000	435.52000					
29260.00000	432.77000					
30181.00000	429.31000					
31131.00000	424.52000					
31882.00000	420.93000					
32651.00000	415.64000					
33519.000 CO	411.77000					
34331.00000	407.81000					
35166.00000	404.45000					
36028.00000	400.61000					
36916.000C0	396.65000					
37742.00000	394.05000					
38691.00000	389.86000					
39574.00000	386.19000					

40386.00000
41226.00000 41830.00000 42676.00000 43506.00000 44362.00000 45117.00000 46027.00000 47107.00000 48098.000 CO 48540.00000 49309.00000
383.44000 382. 13000 384. 32000 387.65000 385.07000 .80 .94000 377.17000 372.88000 369.29000 368.41000 373.03000 377.17000
49948.00000 507.74.00000 51633.00000 52167.00000 53081.00050 53848.00000 54943.00000 55679.00000 56335.00000 57222.00000 58199.00000 59194.00000 59977.00000 60657.00060 61360.00000 62389.00000 63008.00000 63815.00000 64651.00000 $65168.000 C 0$ 65877.00000 66614.00000 67381.00000 68382.000 CO 69221.00000 69923.00000 70892.00000 71761.00000 72667.00000 73560.000 CO 74439.00000 75535.00000 76137.00000 77142.00000 78065.00000 78753.00000 79177.00000 80055.00000 80587.00000 81454.00000 81779.00000 82532.000 C0 83134.00000 83933.00000 99999.00000

IT=11
4300.00000 41300.00000
$99999.000 C 0$
$I T=12$
0.
685.00000
1408.00000
2115.000 CO
2790.00000
3510.00000
$+290.00000$
5010.00000
5670.00000
$5970.000 C 0$ 6270.00000 6510.00000 6630.00000 11100.00000 14370.00000

IT=13

0.

20000.0C000
376.04000
373.77000 374.51000 372.90000 372. 37000 369.61000 369.61000
368.71000 368.71000
375.97000 375.97000
372.12000 376.45000 372.41000 371.44000 371.44000
375.13000 374.32000 374.93000 375.10000 382.57000 379.86000 379.98000 377.78000 377.60000 379.85000 380.41000 379.27000 380.78000 385.80000 387.55000 386.58000 386.38000 386.86000 387.34000 387.55000 389.15000 390. 31000 390.65000 393.33000 391.99000 395.81000 395.70000 398. 03000 399.02000 399.79000 396. 57000 398. 38000 414.00000
515.00000 382.00000
382.00000
4300.00000 9073.00000 14125.00000 21106.00000 31131.00000 41226.00000 51633.00000 61360.00000 70892.00000 75595.00000 79177.00000 81779.00000 83134.00000 83933.00000 83933.00000

FIGURE 7 cont'd. INPUT DATA FOR THERMISTOR FLIGHT
fabric ($525^{\circ} \mathrm{R}$) were deduced from the measurements of some thermistors. Notice that the gas is colder than the fabric, the latter being at ground air temperature. The air temperature data are actual temperature measurements made by a thermistor hanging below the gondola. The infrared radiation data are specified according to the approximate rule given in Section II.H.2. The observed altitude data (IT $=12$) were computed from measurements of both atmospheric temperature and pressure using the hydrostatic law. Therefore, we believe that they are very accurate.

The correlation of computed and actual flights is excellent as shown in Figure 8. Unfortunately, the thermistor measuring air temperature ceased to function properly after the balloon reached its ceiling and, therefore, we cannot continue the correlation to the end of the ceiling phase. Four hours and twenty minutes after launch, the cutdown command was given and the flight was terminated. The payload was brought to ground by parachute.

The correlation of computed and measured temperatures is shown in Figure 9. Several thermistors were suspended inside the balloon along its centerline. Only the upper three functioned properly throughout the entire flight. They were at a fixed distance of 7,19 and 31 feet from the top of the balloon. The relation of the temperature of each thermistor to the average temperatures of the gas and fabric depends, of course, on the position of the thermistor with respect to the volume of the balloon. The position of each thermistor during the flight can be deduced roughly from the sketch on the lower right of Figure 9, in which the balloon is represented grossly by a sphere. The diameter of the balloon was about 26,46 , and 80 feet at ground, tropopause and ceiling, respectively. Thus, at ground, the lower thermistor was buried in the loose fabric.

With the aid of this sketch, a careful examination of Figure 9 shows that the correlation of computed average temperatures and measured temperatures is very good. The maximum deviation, at some parts of the flight, is less than 10° R. During most of the flight, the deviation is much leas than $10^{\circ} \mathrm{R}$.

We think that this flight has given considerable support to the validity of our analysis, and that it has verificd our long held view that the fabric of balloons experiences rather low temperatures througin tropopause. The temperature of the top thermistor must be closely coupled to the fabric temperature. As shown in Figure 9, the fabric of this balloon was at a temperature of about $380^{\circ} \mathrm{R}\left(-78^{\circ} \mathrm{F}\right)$ at tropopause.

The small oscilations in the computed temperatures at tropopause are due to corresponding oscillations in the input air temperature data.

3. Stratoscope Flight S4-2

Stratoscope II Flight S-4 (Photo) was launched from Palestine, Texas, on July 23,1965 , at 122 GMT. It reached its ceiling of $80,000 \mathrm{ft}$

after one hour and twenty-five minutes, approximately 35 min after balloon sunset. It dropped about $3,000 \mathrm{ft}$ during the night. It was brought down the next day during sunrise.

The input data are shown in Figure 2. The fabric of the balloon was GT-12 (mylar and scrim). Notice that the fabric properties are identical to those of che Stary zer Manned Flight. The inicial frec lift ($1,460 \mathrm{lb}$) is exactly the value specified in the flight data. The initial balloon gas and fabric temperatures ($542^{\circ} \mathrm{R}$) are taken equal to air temperature at ground level. The air temperature data are not measured values for Palestine. They were computed from the table of Reference 12 pertaining to the July subtropical atmosphere ($30^{\circ} \mathrm{N}$). The infrared data have been computed according to the approximate rule given in Section II-H. 2 .

The correlation of actual and computed flights is shown in Figure 4. Considering the fact that standard instead of actual atmospheric data have been used, the correlation is fairly good during the ascent and early ceiling phases. From this correlation and from the excellent correlation of the Stargazer Manned Flight, it appears that the following values for the properties of the GT-12 (mylar and scrim) fabric are acceptable:

$$
\mathrm{Cl}=250 \mathrm{ftlb} / 1 \mathrm{~b}^{\circ} \mathrm{R}
$$

$$
\begin{aligned}
& \mathrm{ABIR}=0.69 \\
& \mathrm{EMIR}=0.69 \\
& \mathrm{ABUV}=0.15
\end{aligned}
$$

A better correlation during the latter part of the ceiling phase can be obtained by reducing the infrared radiation during the night. This can be achieved through the infrared radiation factor data (IT = 13). Leaving all the other data as they are and changing the infrared radiation factor data as follows:

$$
I T=13
$$

0.0	1.0
7200.0	1.0
36000.0	0.9
41000.0	1.0

we obtain the correlation shown in Figure 10. The above data mean that from 2 to 10 hours after launch the infrared radiation incident on the balloon is reduced by 10%. This means that the black ball radiation temperature is about 10 R less than that given in the input data (IT = 11).

$\begin{array}{ll}\text { FIGURE } 10 & \text { PLOTTED OUTPUT FOR STRATOSCOPE FLIGHT S4-2 WITH } \\ & \text { REDUCED (by 10\%) INFRARED RADIATION DURING NIGHT }\end{array}$

FIGURE 10 cont'd. PLOTTED OUTPUT FOR STRATOSCOFE FLIGHT S4-2 WITH REDUCED (by 10\%) INFRARED RADIATION DURING NIGHT

Atthur D.Xitie, 3nr.

Such a change in the infrared radiation field from day to night has, in fact, been noticed (see Section II-H.2). Notice that the correlation during the night is now much better. Evidently, reduction of infrared radiation caused the actual balloon to drop $3,000 \mathrm{ft}$ during the night.

The correlation of the last part of the desent phase is not good. This must be due to the fact that there is some uncertainty in the time of closing of the helfum valve.

REFERENCES

1. A.G. Emslie, C.E. Pearson and E.R. Benton, "Balloon Dynamics", Technical Report I, Arthur D. Little, Inc., for the' Office of Naval Researcl, February 1961.
2. I.W. Dingwell, W.K. Sepetoski and R.M. Lucas, "Vertical Motion of High Altitude Ballonns", Technical Report II, Arthur D. Little, Inr., for the Office of Naval Research, December 1963.
3. W.H. McAdams, HEAT TRANSMISSION, Third Edition, McGraw-Hill. Book Co., lnc., 1954.
4. S. Chapman and T.G. Sowling, THE MATHEMATICAL THEORY OF NON-UNIFORM GASES, Second Edition, University Press, Cambridge, England, 1960.
5. HANDBOOK OF CHEMISTRY AND PHYSICS, Fourty-third Edition, The Chemical Rubber Publishing Co., 1961.
6. HANDBOOK OF GEOPHYSICS, Revised Edition, The MacMillan Company, 1961.
7. J.L. vergen, "Black Ball: A Device for Measuring Atmospheric Infrared Radiation", Review of Scientific Instruments, Vol. 27, No. 7, July 1956.
8. J.L. Gergen, "Black Ball Observations and the Radiation Chart", University of Minnesota, Atmospheric Physics Technical Report, 1957.
9. J.L. Gergen, "Atmospheric Infrared Radiation over Minneapolis to 30 Millibars", Journal of Meteorology, Vol. 14, No. 6, Dec. 1957.
10. J.L. Gergen, "Observations of Atmospheric Radiation over McMurdo Sound, Antartica", University of Minnesota, Atmospheric Physics Technica: Report, 1958.
11. J.L. Gergen, "A Synoptic Radiation Study", University of Minnesota, Atmospheric Physics Technical Report, 1960.
12. A.E. Cole, A.J. Kantor, "Air Force Interim Supplemental Atmospheres to 90 Kilometers", Air Force Surveys in Geophysics No. 153, AFCRL-63-936, December, 1963.

$\begin{aligned} & u \\ & \text { u } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { - } \end{aligned}$		Description	Units
$E R_{i}$		Value of ER at the end of each step of integration.	ftlb/sec
ETOT	ETOT	Internal energy of balloon gas and fabric.	ftlb
ETOT:	ETOTI	Value of ETOT at beginning of flight.	ftlb
FL	FL	Free lift.	1b
g	G	Acceleration of gravity ($=32.2$)	$\mathrm{ft} / \mathrm{sec}^{2}$
GHA	GHA	Greenwich hour angle at beginning of ilight.	deg
GL	GL	Gross lift.	$1 b$
h		Coefficient of heat transfer.	$\mathrm{ftlb} / \mathrm{ft}^{2} \mathrm{sec}^{0} \mathrm{R}$
k		Thermal conductivity.	ftlb/ftsec ${ }^{\circ} \mathrm{R}$
${ }^{\mathrm{k}} \mathrm{A}$	CAIR	Thermai conductivity of air.	ftlb/ftsec ${ }^{0}$ R
${ }_{\mathrm{H}}^{\mathrm{H}}$	CHE	Thermal conductivity of balloon gas.	ftlb/ftsec ${ }^{\circ} \mathrm{R}$
\dot{L}_{V}	V	Lost lift per unit time due to valving.	lb/sec
Lat	XLAT	Latitude of balloon.	deg
LHA		Local hour angle.	deg
LONG	XIONG	Longitute of balloon.	deg
m	A TRM	Air mass.	\because
m_{0}		Air mass at sea level.	
m_{1}	AIRM1	Air mass for point B in Figure 1.	
m_{2}	AIRM2	Air mass corresponding to the supplemeat of actual azymuth angle of sun.	
M_{A}	XMA	Molecular weight of air.	
M_{B}	X M M	Molec ar weight of balloon gas.	
n		Index.	
P	P	Atmospheric pressure.	$\mathrm{lb} / \mathrm{ft}^{2}$
P_{n}		Atmospheric pressure at altitude z_{n}.	$\mathrm{Lb} / \mathrm{ft}^{2}$
P_{0}	P2ER	Atmospheric pressure at ground level.	$1 \mathrm{~b} / \mathrm{fc}^{2}$
P_{1}	PZ1	Atmospheric pressure at point B in Figure 1.	$\mathrm{ib} / \mathrm{ft}^{2}$
Pr_{A}		Prandsl number of air.	
Pr_{H}		Prandtl number of ballcon gas.	
q_{2}	DEH2	Rate of absorption of infrared radiation by balloon fabric.	ftib/sec
q_{3}	DEH3	Rate of emisaion of infrared radiation by balloon fabric.	ftibisec

		Description

FSod	Value of solar constant outside earth's atmosphere (= 96).	$\mathrm{ftlb} / \mathrm{ft}^{2} \mathrm{sec}$
GIT	Greenwich Mean Time.	hr:minisec
GMTS	Greenwich Meal Time at beginning of flight.	sec
H	Time interval for integration.	see
IRAB	Rate of absorption of infrared radiation by balloon fabric.	ftlb/sec
IREM	Rate of emission of infrared radiation by ballion fabric.	
IRS, LAMBDA	Number of fterationd in exhausting gas,	
LOAD	Weight of payload and balloon fabric.	Ib
ncas	Natural convection heating rate of balloon fabric by air.	ftlb/sec
NCGF	Natural convection heating rate of balloon fabric by balloon gae.	ftib/sec
PERB	Cumulative ballast droped in percent of initial load (payload plus balloon fabric).	
PERE	Cumulative gas exhausted in percent of initial balloon gas weight.	
PERV	Cumulative gas valved in percent* of initial balloon gas weight.	

PHI One-third power of balloon vnlume. ft

-PM, PRESS	Atmospheric pressure.	mbar
RAD	Conversion factor from degrees to radians $\left(=\frac{\pi}{180}\right)$.	rad/deg
RHDO	Density of air at ground level.	lb/ft
RT	Product of density and temperature of air	$1 b^{\circ} \mathrm{R} / E t^{3}$
$\operatorname{RTIR}(\mathrm{I})$	Array of specified black ball equilibrium radiation temperatures.	${ }^{*}$ R
RTZ (1)	Array of products of density and temperature of air computed from atmospheric data.	$1 b^{7} R / f t^{3}$
SLAB	Rate of absorption of solar radiation by balloon fabric.	ftlb/sec
SLATD	Sine of LAT times sine of DEC.	

TAA (I)

TR (I)
TBO
TCSI(1)
TFO
TIR(I)

TY (I)
VALD
VBM
VFL yo

VV (I)
WBO
WFO

WG

WGO
WT
XLAH
$X P$
XPL
XT
XO
$\mathbf{X X X}(I)$
Y1 (I)

Y20
Y3(I)

Array of computed air temperatures stored for subroutine RLOT.

Array of specified times for autoratic ballasting. Initial temperature of ballcon gas.
Arrey of specified times for sclar radiation factor. Initial temperature of balloon iabric.
Array of specified times for infrared radiation factor.
Array of specified times for automatic valving.
Cumulative weight of valved gas.
Inflated volume of bailoon.
Vertical velocity of balioon.
Manual valving rate (in pounds of lost lift per second).
Array of specified autcmatic valving rates (in $\mathrm{lb} / \mathrm{sec}$ pounds of lost lift per second).
Initial weight of balloon gas.
Weight of balloon fabric.
Weight of payload and bailoon fabric. ib
Initial weight of payload.
Initial weight of payl sad and balloon fabric.
Local hour angle.
Printing time.
Plotting time.
Specified final time of flight. sec
Specified initial time of flight.
Array of times stored for subroutine PLOT.
Array of computed balloon altitudes stored for subroutine PLOT.

Specified initial vertical velocity of balloon.
Array of computed temperatures of balloon fabric stored for subroutine PLOT.
sec
sec1b
lbs 1b 1b 1b
rad sec sec
sec
${ }^{0} R$
sec.
sec
$E t^{3}$
ft/min
lb/sec
$1 b$
1b
sec
sec
ft
ft/sec
${ }^{\circ} \mathrm{R}$

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	号	Description	Units
	Y4(1)	Array of computed temperatures of balloon gas stored for subroutine PLOT.	${ }^{\circ} \mathrm{R}$
	ZIR(I)	Arrxy of altitudes above sea level at which RTIR(I) is ziven.	$f t$
	20	Specified initial altitude of balloon above sea level.	ft

NOTES:

1. Sequence of operalions in each box starts from the top always.
2. "Read Card" means read card from input tape.
3. "Write" means write outp ii tape.
4. "Print" means print on-line.
5. SS means sense switch.

FIGURE 11 GENERAL FLC

GURE 11 GENERAL FLOW CHART

DIMENSION TB(100), B6(100), $x \times(100)$
DIMENSION Y(100), F(100), O(100)
DIMENSION TITLE (12)
DIMENSIDN RTIR(100)
DIMENSIDN ZIR(100),FIR(100),DIREZ(100),DSIDT(100)
DIMENSION ZUV(100),FUV(100), DUVDZ 11001
DIMENSION Y $1(400), Y 3(400), Y 4(400), X X X(400)$, TAA $\{400)$
DIMENSION ETIME (400), EALT 400)
DIMENSION TIR(100),CIR(100),DCIRDT(100)
COMMON X, Y, F, O
COMMON NT, LZ, TZG RTZ, TZA, TZB
COMMON C1, C2, C3, C4, C5, C6, C7
COMMON TA, RT, P, RHO, PHI, WG, OMEGA, CSI, E, V
COMMON XMA, XMB, G, CP, CV, R, CD, VRM, WF
COMMON DEH, DEH3,DEH4 JEH5,DEH6, DEH7:
COMMDN WFH, DWFH, WFO
COMMON CB
COMMON ZIR,FIR,DIRDZ,NIR, ZUV, FUV, DUVDZ,NUV, DSIDT
COMAON ABIR,EMIR,ABUV
COMMDN $M, Y 2 \times Y 3, Y 4, T A A, X X X$
COMMDN DP, Q, XO,ETIME,EALT
COMMON CCIR
COMMON SLATD, CLATD,RAD,GH^, XLONG,PZER,FSOL,SBOLZ,AH, AM, AS,GMTS FSOL=96.
$S B O L Z=3.6995 E-10$
$X M H=4$.
$X M A=28.89$
CP=972.69
$C V=536.73$
$R=1545$.
$G=32.2$
$R A D=3.1415 \% 180$.
1001 READ INPUT TAPE 5, 995, ITITLE(i), $I=1,121$
DO $990 \mathrm{MZY}=1,400$
$Y 1(M Z Y)=0$.
$Y B(M Z Y)=0$.
$Y 4(M Z Y)=0$ 。
$X X X\{M Z Y ;=0$.
TAA(MTY) $=0$.
990 COMTINUE
PRINT 994, (TITLE(I), I=1,121
999 READ INPUT TAPE 5, 10, IT
IFIIT) 998,998,1000
998 WRITE QUTPUT TAPE $6,994,(T I T L E(I), I=1,12)$
WRITF DUTPUT TAPE 6,50
CALL EXIT
$1000 \operatorname{GOTO} 100,200,300,400,500,950,700,800,900,600,960, \quad 980,14001,17$
997 WRITE QUTPUT TAPE 6,994, PTITLEIII,1=1,121
WKITE OUTPUT TAPE 6,80,IP
CALL EXIT
970 WRITF OUTPUT TAPE 6,994, (TITLE $11,1=1,121$
WRITE OUTPUT TAPE 6;60::P
CALL EXIT
971 WRITE OUTPUT TAPE 6,994 (TITLE(1),I=1.12)
WRITE OUTPUT TAPE 6,70,IP

```
    CALL EXIT
200 CALL EXIT
100 WRITE DUTPUT TAPE 6,944,(TITLE(I),I=1,12)
    WRITE DUTPUT TAPE 6,2000
    I=3
    WRITE OUTPUT TAPE 6,2001,1
    WRITE OUTPUT TAPE 6,2002,CI,C4,C5,C6,ABIR,EMIR,ABUV
    I=4
    WRITE QUTPUT TAPE 6,2001,I
    WRITE OUTPUT TAPE 6,2002,WGO,WFO,VBM,FLO,CD,CB
    I=5
    WRITF OUTPUT TAPE 6,2001,I
    WRITE OUTPUY TAPE 6,2002,TBO,TFO,2O, Y20,DEC,XLAT,XLONG
    I=6
    WRITE OUTPUT TAPE 6,2001,I
    WRITE OUTPUT TAPE 6,20G2,H,DFR,XO,XT,GMTS,GHA,DP
    I=7
    WRITE OUTPUT TAPF 6,2.001,I
    DO 200& I=1,NSI
2004 WRITE DUTPUT TAPE 6,2005,TCSI(I),CCSI(I)
    I=8
    WRITE DUTPUT TAPE 6,2001,I
    WRITE DUTPUT TAPE 6.2006,VO
    DO 2007 I=1,NVI
2007 WRITE JUTPUT TAPE 6,2005,TV(II,VVII)
    I=9
    WRITE DUTPUT TAPE 6,2001,I
    WRITE OUTPUT TAPE 6,2006,BO
    DO 2008 I=1,NBI
2008 WRITE OUTPUT TAPE 6,2005,TB(I),BB(I)
    I=10
    WRITE DUTPUT TAPE 6,2001,I
    WRITE OUTPUT TAPE 6,2006,RHOO
    DO 2009 I=1,NT
2009 WRITE OUTPUT TAPE 6,2005,2ZII),TLIII
    I=11
    WRITE OUTPUT TAPE 6,2001,I
    OO 2010 I*I,NIR
20I0 WRITE OUIPUT TAPE 6,2005,ZIR(I),RTIR(I)
    I=12
    WRITE OUTPUT TAPE 6.2001.I
    DO 2011 I=1,NEX
2011 WRITF OUIPUT TAPE 6,2005,ETIME(II,EALTII)
    l=13
    WRITE OUTPUT TAPE 6,2001.I
    DO 2012 I=1,NCIR
2012 WRITE QUTPUT TAPE 6,2005,TIR(I),CIRIII
2013 CLATD=COSF(XLAT*RAD) =COSF(OEC*RAD)
    SLATD=SINF(XLATERAD) SINF(DEC*RADI
    Y(1)=22(1)
    CALL RHOT (Y(1),TEMP,RTI
    PLER=RT ©R/XMA
    FL=FLO
    VII!=20
```

$Y(2)=Y 20$
$Y(3)=T F O$
$Y(4)=T 80$
$X=X 0$
$X P=X 0$
$X P L=X 0$
$W F=W F O$
$W G=W G O+W F O$
VALD=0
$W T=W G$
LP= 25
$L P C=1$
$I Y=0$
$N P L=0$
CALL RHOT (Y(I), TEMP, RT)
RHO = RT / TEMP
$P=R T$-n:VNa
TA $=$ TEMP
$Y(5)=(F L+W G) /(X M A * Y(4) /(X M 8 * T A)-1.1$
$W B O=Y(5)$
$Y(6)=R \approx Y(5) * Y(4) /(P * X M B)$
CSI=CCSI(1)
CCIK=CIR(1)
PHI $=Y(6) *(1.13$.
---- INITIALIZING TOTAL ENFRGY ----EI----
CALL YPPIME
DKE=(WG+Y(5)+. S*RHO*Y(6))*Y(2)*F(2)/C
DPE = (RHO Y (6)-WG-Y(5) $)+Y(2)$
DORAG=CD*. 60375 *PHI*PHI*RHO*Y(2)*ABSF(Y(2))*Y(2)/C
DEWA=P EF (6)
DEVE $=Y(4,0 C P \oplus F(5)$
ETOT=CV*Y(5)*Y(4) +CI*WFO*Y(3)
ETOTL=ETOT
ENET $=.0$
$E P=0.0$
tCHK=O.
101 LAMBDA $=0$
If (X TV(1)) $102,103,103$
102 WRITE DUTPUT TAPE $6,40, x$,TVIII
WRITE DUTPUT TAPE 6,45
6010995
$10300104 \quad 1=2,100$
IF ITYIIIt 0.50 H - XI 104,104,105
104 CONTINUE
107 WRITE OUTPUT TAPE 6,108
108 FURMAT 128 H I X IS GRFATER TMAN TVIIOO//IHO/IHOI
GO 10996
$105 \mathrm{~V}=\mathrm{VY}(1-1)$
114 IF ISENSE SHITCH 11 106. 110
$106 \mathrm{~V}=\mathrm{V}+\mathrm{V} 0$
110 1F(X-18(1)) $111,112,112$
111 WRITE QUTPUT TAPE $6,55, x, T B(1)$
WRITE DUTPUT TAPE 6.45
GO 10996

```
    112 DU 113 I= 2, 100
    IF (X - IBII| -0.5#H ) 116, 113. il3
    113 CONTINUE
    WRITE OUTPUT TAPE 6,125
    125 FURMAT {28H1 X [S GREATER IHAN TB(100//IHO/1HO)
    GO TO }99
    116 B = AB (1-1)
    117 IF ISENSE SWITCH 4) 118, 119
    118 B = B+BO
    119WG = WG -R*H
    IF (WG) 109, 109, 120
    109 WRITE OUTPUT TAPE 6,15,WG
    PRINT 15,WG
    CO TO }99
    120 [F (x - TCSI(1) ) 121, 122, 122
    121 WRITE OUTPUT TAPE 6,65,X,TCSIIII
        WRITE OUTPUT TAPE 6,45
        GO TO }99
    122 DO 123 I=2,NSI
    IF(X-TCSI(I )+.5*H)124,123,123
    123 CONTINUE
    124 CSI=DSIDT(I-1)*(x-TCSI(I-1))+CCSI(I-1)
    IF(X-TIR(1))126,127,127
    126 WRITE OUTPUT TAPE 6.81,X,TIRIII
    WRITE OUTPUT TAPE 6,45
    GOTO 996
    127 DO 128 I=ट゙,NCIR
    IF(X-TIR(I)+.j*HII29,128,128
    128 CONTINUE
    129 CCIR=CIR{I-1)+DCIRDT(I-1)*(X-TIR(I-I))
    132 IF(IY)1130,153.130
    153 1Y=1
    GOTO140
    130 E = 0.
    XS = x
    DO 131 1=1,6
    131 Y(1+10) = Y(I)
    CALL RNGKTA (H, 6, 1, 11
    134 IF(Y(6)-V8M)160,100,133
    160 PHI = Y(6!*e/1./3.)
CALL YPRIME
DKE=(WG+Y(5) +. 5 ©RHOEY(6)) ©Y(2) *F(2)/G
DPE = (RHOEY(6)-WG-Y(5)) 0 (2)
DORAG=CD*. 60375 \&PHI \&PHI \&KMO\&Y(こ) \& ABSF(Y(2)) ©Y(2)/G DEWA \(=P\) PF(6)
DEVE=Y(4) CPAF(5)
\(E P=E P+1-O K E+O P E-D D R A G-D E W A+D E V E+D E H 2-D E H 3+D E H 4+O E H 5+D E H 7 I\)-H
ETOT=CVEY(5) EV(4) +CIOMFOOY(3)
ENET=ETOT-ETOTL
ECHK = (ENET-EP)/ENET
\(F L=Y(5)-(X M A \in Y(4) /(X M B-T A)-1-1-W G\)
```



```
6010140
```

```
138 GO TO 996
133DO 135 LAMBDA=1, 20
    E=E+1VaM-V(G))/H
    x = XS
    DO 136 I=1,6
136 Y(I) = Y(I+10)
    CALL RNGKTA (H, 6, 1, 1)
    IF(Y(6)-VRM) 160,160,139
139 IF ISENSE SWITCH 5) 137, 135
137 PRINT 35, X, ( Y(I),I=1,6), VBM, E
135 CONTINUE
145 PRINT }2
    PAUSE
    IFISENSE SHITCH 51 133, 138
140 IF(Y(1)-2Z(1))141,142,142
141 IX = 1
    G0 10 143
142 [F (X-XI) 144, 141. 141
144 IX=2
    |F(X-XP) 157,143,143
143 XP = XP + DPR
    IF(LP-17)146,147,147
147 IF (SENSE SWITCH 3) 14R, 149
148 PRINT 994, (TITLE (|), ixi,12)
149 WKITE OUTPUT TAPE 6, 994, (TITLE(I), l:l,12)
    WRITE OUTPUT IAPE 6, 978
    LPC = LPC+1
    LP=0
146 VR = V - RHO*E
    AH=INTF(/GMTS+X)/3600.1
    AM=INTF((GMTS+X-3600.*AH)/60.1
    AS=GMTS+X-60.*AM-3600.*AH
    AM=ABSF(AM)
    AS=ABSF(AS)
    PERB=100.-(WT-WG)/WT
    PERV=100.eVALO/WHO
    PERE = 100. (WHO-Y(5))/(WB0)-PFRV
    NEL=60.*Y(2)
    PM=0.4788010?
    IF ( SENSE SWITCH 3) 150, 151
150 PRINT 9I,AH,AM,AS,Y(1),VEL,V,PERV,A,PERB,PERE
151 WRITE DUTPUT TAPE 6,977,AH,AM,AS,X,Y(II,VEL,PM,TA,Y(3),Y(4),Y(B):W
    ZG,Y(SI,FL,PERG,PERV,PERE,LAMADA, ECHK
    LPE LP+I
155 IFISENSE SWITCH 21156.15%
156 WRITE DUTPUT TAPE 6,5001, DEH2, DEH?, DEN4,DEH5,DEHG,OEHY
157 CONTINUE
    |F(X-XPL) 210,209,209
209 XPL=XPL*CP
        NPL =NPL+1
        IF(NPL-400) 211,211.210
211 N=NPL
    Y({N)=Y(1)
    Y3(N)=Y(3)
    Y4(N)=Y(4)
```

$\therefore X X(N)=X$
$T A A(N)=T A$
210 GOTO 1212.1521 . IX
212 CALL PLOT
GOTO 9.26
152 IF (SENSE SWITCH 6) 165. 101
165 PRINT 166
166 FORMAT (22HO RESET SENSE SWITCH 6/1HO/1HO) PAUSE
996 READ INPUT TAPE 5,10.1T
IF(IT-2) 991,200.991
991 |F(IT) 992,1001,992
992 WRI'E OUTPUT TAPE 6,993
CALL EXIT
300 READ INPUT TAPE $5,20,1 \mathrm{~T},(\mathrm{XX}(1), I=1,7)$
$I P=3$
IF(IT) 997.302.970
$302 \mathrm{Cl}=\mathrm{XX}(1)$
$\mathrm{C}_{4}=\mathrm{XX}(2)$
C5 $=\times \times(3)$
C $6=\mathrm{XX}(4)$
$A B[R=X X(5)$
$E M I R=X \times(6)$
ABUV $=X X(7)$
304 READ INPUT TAPE ; 20 : :T
(FIIT) 997.971.1000
400 READ INPUT TAPE 5, 20, 1 T, $(\mathrm{XX}(1),!=1,7)$ $I P=4$
IF(IT) 997,402.970
402 WGOEXX 411
WFO $=X X$ (2)
$V B M=X X(3)$
FLO $=X X(4)$
CO CXX (5:
$C B=X \times 16$:
404 READ INPUT TAPE 5, 20, IT
.F(IT) 997.971.1009
500 READ INPUT TAPE 5,20,IT,(XXII),I $=1,7)$
; $P=5$
IFIJY 997.502.970
502 1BOEXX(1)
iFO $=\times \times(2)$
$20=x \times(3)$
Y $20=x \times(4)$
กEC $=\times \times(5)$
$X 1, A T=X X(6)$
$X \operatorname{LONG}=X \times(7)$
504 READ INPUT TAPE 5, 20, IT
(FIIT) 997,971,1000
950 READ INPUT TAPE 5,20,IT, (XXII),I=1,7)
IP=6
IF(IT) 997,952,970
$952 \mathrm{H}=\mathrm{XXP1}$:
$O P R=X \times(2)$
$X 0=X X(3)$
$X T=N X(4)$
GMTSxXX(5)
$G H A=X X(6)$
$D P=X \times\{7\}$
954 READ INPUT TAPE 5, 975. IT
\&FITI 997.971.1000
700 I $P=7$
DO $701 \quad I=1,100$
READ INPUT TAPE 5, 30, IT, TCSIIII, CCEIII
[FIIT1997,701,704
701 CONTINUE
REAO INPUT TAPE 5, 30. IT
IFIII 997.971,70*
706 I=1:
704 NSI = I-1
DO $705 \mathrm{~J}=2$, NS:
USIDT(J-1)=(CCSI(J)-CCSI(J-1))/(TCSI(J)-TCSI(J-1))
705 CONTINUE
GOTO 1000
BOO READ INPUT TAPE 5, 30, IT, XXIII
$1 P=8$
IF11!1997,802.970
$802 \mathrm{VO}=\mathrm{XX} 111$
DU $801 \mathrm{I}=1,100$
READ INPUT TAPE 5, 30, IT, TVIII, VVIII
IFIITI 997,801,804
80: CONTINUE
REAO INPUT TAPE 5, 30, IT
IFIIT: 997.971,805
B05 $1=1+1$
804 NVI =I - 1
GO 101000
900 READ INPUT TAPE 5, 30, IT, XX(11)
$1 P=9$
IF゙1I: 997,902.970
$902 \mathrm{BO}=\mathrm{XX}(1)$
DC1 901 I $=1,100$
READ INPUT TAPE 5, 30, IT, TR(II, BOII)
IFIIT) 997.901.905
901 CONTINUE
READ INPUT TAPE 5, 30, IT
IF(II) 997.971.904
$904 \quad I=I+1$
905 NBI $=1-1$
GO TO 1000
600 READ INPUT TAPE 5, $30,1 T, \mathrm{XX}(1)$
$I P=10$
1F(IT) 997,602,970
602 RHOO $\times \times 111$
DO $603 \quad 1=1,100$
READ INPUT TAPE 5, 30: IT, LZ(II, TZ(I)
IF (II) 997, 603: 608
603 CONTINUE
READ INPUT TAPE 5, 30, IT

IF(IT) 997,971,609
609 I $=1+1$
$608 \mathrm{NT}=1-1$
RTZ11) = RHGO TZ(i)
DO $6041=2$, NT
IF (TZ(I) -TZ(I-1)) 605, 606. 605
605 TLA(1-1) $=1$ TZ(1)-T2(1-1) $/ 1(2111)-22(1-11)$

RYZ(I) $=$ RTZ(I-I) (TZ(I-I)fTZ(I))** XMA/(R *TZA(I-I)))
60 10 604
606 TZA($(-1)=0.0$
TZB($\mid-11=T 2(1)$
RTZ(I) $=$ RTZ(I-I) EXPFI XMA*(ZL(I-I)-ZZ(I))/R *TZ(I-I) $)$
604 CONTINUE
GO TO 1000
960 IP=11
DC 961 $1 \times 1,100$
READ INPUT TAPE 5,30,IT,ZIR(I),RTIR(I)
FIR!II=SBOLZ*RTIR(I)**4.0
IFIIT1997.961,962
961 CONTINUE
READ INPUT TAPE 5,30,IT
IF(IT) 997,971,964
964 I $\times 1+1$
962 NIREI-1
$00963 \mathrm{~J}=2$, NIR
D(RDZ(J-1)= (F!R(J)-FIR(J-I))/(ZIR(J)-ZIR(J-I))
963 CONTINUE
GOTO 1000
$980 \quad 1 \mathrm{P}=12$
DO $984 \mathrm{MZY}=1,400$
ETIMF (MZY) $=0$.
EALT $(M 2 Y)=0$.
984 CONTINUE
LO 981 1:1,400
READ INPUT TAPE 5,31,IT,ETIME(I), EALT(I)
IF(IF)997.981.982
981 CONTINUE
READ INPUT TAPE 5,30, IT
IFIIT) 997,971,983
$9831=1+1$
982 NEX=1-1
GO ro 1000
$1400 \quad 1 P=13$
DO 1401 1m1.100
READ INPUT TAPE 5,30,IT,TIR(I), CIRII)
IF(IT)997,1401.1402
1401 CONTINUE
READ INPUT TAPE 5,30,IT
IFIIT) 997.971.1403
$1403 \mathrm{I}=\mathrm{I}+1$
1402 NCIR=I-1
DO1404 I=2,NCIR
DCIRDT(I-I)=(CIR(I)-CIR(I-I))/(TIR(I)-TIR(I-I))
1404 CONTINUE GO TO 1000
END

```
    SUBROUTINE RNCKTAIHI,NL,N2,N3I
    COMMON X,Y,F,O
    DIMENSION Y(100),F(100), G(100)
    IF(N3-1)2,1,2
l HzHl
    HH=.5#H
    N=N1
    M=N2
    Du 3 I=1,N
3O(II=0.0
2 DO 4 J=1,M
CALI YPRIME
    DO 5 I=1,N
    S#F(I)#H
    T=.5*(5-2.*0(I))
    Y(I)=Y(I)+T
50:1)=01 I i+3.#T-.5*S
    X=X+HH
    CALL YPRIME
    DO 6 I= I,N
    S=F(I)*H
    T=.29289322*(S-Q(I))
    Y(I)=Y(I)+T
6O(II)=0(I)+3.*T -. 29289322*S
    CALL YPRIME
    DO 7 Ix INN
    S=F(I):H
    T=1.7071067=(S-0(I))
    Y(|)=Y(|)+T
7Q(I)=01I)+3.*T-1.707106*S
    X=X+HH
    CALL YPRIME
    DO 8 I=1,N
    S=F(I)|H
    T=(S-2.QQ(1))/6.
    Y(I)=Y(I)+T
8Q(I)=0(I)+3.*T-.5*S
4 CONTINUE
    RETURN
    END
```

```
    SUBROUTINF YPRIME
    COMPILATION 8D
    10 FORMAT(14H DIVIDE CHECK ,III
    DIMENSION SCALE(60)
    DIMENSION 2Z(100), TZ(100), RTZ(100), TZA(100), T2B(1001
    DIMENSION TCSI(100),CCSI(100), TV(100), VV(100)
    DIMENSION TB(100), B8(100), XX(100)
    DIMENSION Y(100), F(100), Q(100)
    DIMENSION TITLE (12)
    DIMENSION ZIR(100),FIR(100),DIRDZ(100),DSIDT(100)
    DIMENSION ZUV(100),FUV(100),DUVDZ(100)
    DIMENSION Y1(400),Y3(400),Y4(400),XXX(400),TAA(400)
    DIMENSION ESIME(400), EALT:400)
    COMMON X, Y,F,O
    COMMON NT, ZZ, TZ, RTZ, TZA, TZB
    COMMON C1, C2, C3, C4, C5, C6, C7
    COMMON TA, RT, P, RHO, PHI, WG, OMEC,A, CSI, E,V
    COMMON XMA, XMB, G, CP, CV, R, CD, VBM,WF
    COMMON DEH2,DEH3,DEH4,DEH5,DEH6,DEHY
    COMMON WFH, OWFH,WFO
    COMMON CB
    COMMON ZIR,FIR,OIRDZ,NIR,ZUV,FUV,DUVDZ,NUV,OSIOT
    COMMINN ABIR,EMIR,ABUV
    COMMON M,Y1,Y3,Y4,TAA,XXX
    COMMON DP,XT,XD,ETIME,EALT
    COMMON CCIR
    CUMMON SLATO,CLATD,RAD,GHA,XLONG,PZER,FSOL,SAOLZ,AH;AM,AS,GMTS
    CALL RHOT ( Y(1), TA, RT )
    P=RT=K/XMA
    RHO = RT / Tf
    PHI=Y(6)=*(1.0/3.0)
    DO 181 I=2,NIK
    IF(Y(1)-ZIR(1 )/182,181,181
18I CONTINUE
    GO TO (184,183),IXY
    184 PRINT 20,X,Y(1)
    20 FORMATIIHO,9H AT TIME=F7.O,75H SEC THE BALLOON WENT ABOVE THE INFR
        IAREC FIELD SPECIFIED IN THE :NPUT DATA./I8H BALLOUN ALTITUDE=F7.O.
        26H FEET./123H START TO CONTINUE FLIGHT USING INFRARED DATA OF UPPE
        3R POINT UF SPECIFIED FIELD FOR AS LONG AS BALLOON REMAINS MDOVE FI
        4ELO./SIH SENCE SWITCH 6 DOWN ANL START TO TERMINATE FLIGHT.I
        PAUSE
        IXY=2
        GO TO 163
    182 IXY=1
    183 FLUXIR= DIRDZ(I-1)*(Y(1)-2IR(I-1))+FIR(I-1)
    DEH2=CCIR&ABIR*4.83*PHI*PHI*FLUXIR
    DEH3=EMIR*4.83*PHI*PHI*SBOLZ*(Y(3)**4.)
186 XLAH=RAD*(GHA-XLONG+X/240.)
    CAM= SLATD + CLATD COSF(XLAH)
    IF (CAM) 100.101,101
101 AIRM苗 (P/PZER)*((1228.6 +376750.44*CAM*CAM)**.5 -613.8eCAM)
    TRANS:.5*(EXPF(-.E5*AIRM)+EXPF(-.095*AIRM))
    FLUXUV= FSOL-TRANS
```

GOTO 110
100 RETH = 20903520.
CAL \#RETH/(RETH+Y(1))

IF (CAMM-CAM1102,103.103
$102: 21=(R E T H+Y(1))(1 .-C A M * C A M) * *$. $5-R E T H$
CALL RHOT (ZZL,TTT,RTT)
PLL=RTT*R/XMA
AIRML $=35.1 * P Z 1 /$ PLER
$A 1 R M 2=(P / P Z E R) *(11228.6+376750.44 * C A M * C A M) * * 5+613.8 * C A M)$
TRANI $=.5$ (EXPF: $-.65 *$ AIRMI) + EXPF $(-.095 *$ AIRMI) $)$
TRAN2 $=.5 *($ EXPF(-.65 *AIRM2) + EXPF $(-.095 * A I R M 2))$
FLUXUV=FSOL* TRANI*TRANI/TRAN2
GOTO 110
103 FLUXUV=0.
110 CUNTINUE
DEHHT = DEH7
DEH7=CSI ABUV*1.208*PHI*PHI*FLUXUV
[F(DEHHT)111,111:115
111 [F(DEH?)119,119,114
114 fF(X)119,1:9,120
120 INM=1
GO TO 121
112 WRITE DUFPUT TAPE $6,113, A H, A M, A S$
113 FORMAT (1 H $10.25 \mathrm{X}, 4 \mathrm{HGMT}=3 \mathrm{~F} 3.0,5 \mathrm{X}, 18 \mathrm{HSIJNRISE}$ AT BALLOON)
GO TO 119
115 IF(DEH7)118.118.119
118 INM=2
$121 \mathrm{AH}=\mathrm{INTF}((\mathrm{GMTS}+\mathrm{X}) / 3600.1$
$A M=1 N T F((G M T S+X-3600 . * A H) / 60$.
$A S=G M T S+X-60 . * A M-3600 . * A H$
$A M=A B S F(A M)$
$A S=A B S F(A S)$
GO TO(112.116).INM
116 WRITE DUTPUT TAPE $6,117, A H, A M, A S$
117 FORMAT ($1 \mathrm{HO}, 25 \mathrm{X}, 4 \mathrm{HGMT}=3 \mathrm{~F} 3.0,5 \mathrm{X}, 1$ THSUNSET AT BALLOONI
119 VISA=1.096E-05*(TA/460.) E*. 883
CAIR=260.1*VISA
VISH=1.211E-05*(Y(4)/460.)**.682
$C H E=1443 . \bullet V I S H$
$R H O H=(X M B \in P) /(R \backsim Y(4))$
FVUS $=.37 *(1.24 * R H O * P H I * A B S F(Y(2)) / V I S A) * *(6)$
DEH4 $=3.895 * C 4 * C A I R=P H I \bullet F N U S *(T A-Y(3))$
XNUSA=. $1612 * P H I *($ (RHU*RHO*G*. T*ABSF(TA-Y(3) I)/(VISA*VISA*TA)I** (11.0/3.0)

OEH5 $=3.895$-C5*CAIR P PHI © XNUSA* (TA-Y(3)
 1)* (1.0/3.0)

$F(1)=Y(2)$
$F(2)=(1 R H O=Y(6)-W G-Y(5)) \sim G-.6038 * C D * P H I * P H I * R H O * Y(2)$-ABSF(Y(2)))/
1(WG+Y(5) +CB WRHOEV(6))
$F(3)=(D E H 2-D E H 3+D E H 4+$ OEH $5+$ OEH6 4 DEH7)/(CICWF)
$F(4)=(-D E H 6-R H O \odot Y(6) * Y(2)) /(Y(5)$ - (CV+R/XMB))
F(5) =RHUH-E-RHOH-V/(RHO-RHOH)
$F(6)=(f F(4) / Y(4))+(F(5) / Y(5))+(X M A Q Y(2) /(R=T A):)=Y(6)$
RETURN
END

SUBROUTINE RHOT (2, T, RT)
COMPILATION 8C
DIMENSION SCALE(GO)
DIMENSION 2Z(100), TZ(100), RTZ(100), TZA(100), TZB(100)
OIMENSION TCSI(100),CCSI(100): TV(100). VV(100)
DIMENSION TB(100), BB(100), XX(100)
DIMENSION Y(100), F(100), Q(100)
DIMENSION TITLE (12)
OIMENSIDN ZIR(100), FIR(100), DIRDZ (100), DSIDT(100)
DIMENSION ZUV(100), FUV(100), DUVDZ (100)
DIMENSION Y1(400),Y3(400), Y4(400),XXX(400), TAA(400:
OIMENSION ETIME(400), EALT(400)
COMMON X, Y, F, Q
COMMON NT, LZ, TZ, RTZ, TZÂ; TLB
COMMON C1, C2, C3, C4, C5, C6, C7
COMMON TA, RT, P, RHO, PHI, WG, DMEGA, CSI, E, V
COMMON XMA, XMB, G, CP, CV, R, CD, VAM ,WF
COMMON DEH2,DEH3,DEH4, DEH5,DEH6,DEH7
COMMON WFH, DWFH, WFO
COMMON CB
COMMON ZIR,FIR,DIRDZ,NIR,ZUV,FUV,DUVOZ,NUV,DSIDT
COMMON ABIR,EMIR,ABUY
COMMON M, Y1,Y3, Y4,TAA, XXX
COMMON OP,XT,XO,ETIME,EALT
IF 1 2- 22(1)1) 10C.200, 200
100 T = T211)
$R T=R T Z(1)$
RETURN
200 NMI $=$ NT-1
DO $201 \mathrm{~J}=1$, NM1
IF $12-221 \mathrm{~J}+111$ 300, 300, 201
201 CONTINUE
GO TO (202, 203), IYX
202 PRINT 20, X,Y(1)
20 FORMATI $1 H 0,9 H$ AT TIME $=F 7.0 .63 H$ SEC THF BALLOUN WENT ABDVE ATMOSPHE IRE SPECIFIED IN INPUT DATA./18H BALLOON ALTITUDE=F7.0.8H FEET./128 2H START TO CONTINUE FLIGHT USING ATMOSPHERIC DATA DF UPPER POINT O 3F SPECIFIED ATMOSPHERE FOR AS LONG AS BALLDON REMAINS ABOVE IT./51
4H SENSE SWITCH 6 COWN AND START TO TERMINATE FLIGHT.I
I $Y X=2$
PAUSE
GO TO 203
300 IYX=1
203 IF (TZA(J)I 301, 302. 301
301 I = T2A1 J) 2 + T2B (J)
RTARTZ(J) (TZ(J)IT) © (XMA/(RerZA(J))
RETURN
302 T = T2A (J)
RT=RTZ(J) EXPF(XMAe(22(J)-2)/(ReT))
RETURN
END

```
    SUBROUTIME PLUT
    SUPROUTINF PLUT
C. CONHILATION 7R
3000 FORMAT(14+I GRAPH :ORINTEDI
    DIMENSION SCALE(BN)
    OIMENSIUN 2Z(1ONI,TZ1100),RTZ110N),T\angleA11ONI,TZO(100)
```



```
    CIMENSIUN TIO(1OC),BO(100),XX(10:)
    OIMENS!ON Y(1CO),F(1OC!),0(1DOI
    DIMENSIUH! TITLE 1!2I
    IIMCNSIUN ZIR(IOO),FIK(100),OIROZ(1O0),OSIOT(100)
    DIMFNSIGN ZUV(1OU),FIIV(100),DUVOZ(1, `)
    UIMENSIUN YI(4NC),Y3(400),Y4(40C), XXX(4!:C),TAN(400)
    UIMENSIUN ETIME(400), EALT(4RO)
    COMMMSN }x,Y,F,
    COMMON NT,ZZ,TZ,RTZ,TLA,TZA
    CONMON CI,C2,C2,C4,C`,CE,C7
    COMMON TA,RT,P,R(NI,PHI,WG,OMERA,CSI,E,V
    COMMON XMA,XHR,G,CP,CV,R,CD,VEM,WF
    COMMON CEH2,DEH3,PEH4,OFH5,DEHG,DEHT
    COPMON WFH, FWFH.WFO
    COMMON CE
    COMMON ZIR,FIR,NIRDZ,NIR,ZUV,FUV,OUVOL,WUV,ISIINT
    COMMON AGIR&ENIP,ARUY
    COFMON N,Y1,YZ,Y4,TAA,XXX
    COMMON OP,XT,XO,ETIME,EALT
    SCALE(5)=6H 325
    SCALE(7)=SH 1OOCC
    SCALE(11)=6H 35C
    SCALE(13)=6H 20007
    SCALE(17)=5H 375
    SCALE(19)=6H 300O?
    SCALE(23)=6H 400
    SCALEI25:=6H 4000N
    SCALE!29)=6H 425
    SCALE(31)=6H 5NOQVO
    SCALE,3)}=6\textrm{H}45
    SCALEI37:=6H 6CCO.
    SGALE(4)]=6H 475
    SCALE(43)=6H 7CCOC
    SCALE(47)=6H 5CC
    SCALE(49: =6H 30000
    SCALE(53)=6H 5?5
    SGALEI531=6H 90COO
    SCALE{59106H 550
18 M=1
    MI=XNTF(IXT-X0)/10400.)/1
    7MM=M+1
    GO TO (4,12,13,14,15,16,171,mM
12SCALE\1)=6H n-3
    50 10 9
13 SCALE(1)=6H 3-6
    60 10 9
14 SCILEIII=6H 6-9
    50 10.9
15 SCALE(1)#4H 9-12
    60 70 9
```

slirroutine plot
16 SCALEII!=OH 12-15
© 0 TO Y
17 SCALE(1)=6H 15-18
9 XM=FLOATF(M)
$X X H=(X M-1) \# 10800.$.
$X X X M=X M=17800$.
CALL LIMITS (XXY, XXXM,0.,100000.)
CALL GRIO (XXM,1800.,0.,10000.)
$X=X F(X F(110800) . / D P)=(X M-1) 1).+!$
$L=X F 1 X F(1!0900 . / D P) *(X M))+1$
$0 C=0 J=K, L$
qC CALL POINTS (XXX(J), Y1(J), 35)
10 CALL LIMITS (XXM, XXXM, 300.,550..) DOLOOJ=K, L
100 CALL POIVTS (XXX(J), Y3(J), 15)
11 CALL LIWITS ${ }^{(X X M, X X X M, 300 ., 550.1}$ 00110J=K,L
110 CALLL PCINTS (XXX(J),Y4(J),11) CALL LIMITS (XXM, XXXM, 300.,550.) D0120J=K,L
120 r.ALL POINTS (XXX(J),TAA(J),10) CALL LIMITS (XXM, XXXM,D.,100000.) CO130J=1,400
136 CALE POINTS (ETIME(J),EALT(J),14) CALL GKäH (SCALE)
4 PRINT 320: $M=M+1$ 1F (M-7)131.19.'9
131 IF ($M-M T$)7,7,19
19 RE TURN
ENE $11,0,0,0,1,0,0,0,0,0,0,0,0,0,0)$

```
    SUBRDUTINE PLOT
C CIJMPILATION FOR 147500 FT
    3000 FORMATII4H GRAPH PRINTEDI
    DIMENSION SCALEIGOI
    DIMENSION ZZ(100), TZ(100), RTZ(100), TZA(100), TZB(100)
    DIMENSION TCSI(100),CCSI(100). TV(100). VY(100)
    DIMENSION T8(100), B8(100), XX(100)
    DIMENSION Y(100),F(100), Q(100)
    DIMENSION TITLE (12)
    DIMENSION LIR(IO0),FIR(100),DIRDZ(100),DSIDT(100)
    DIMENSION ZUV(100),FUV(100),DUVOZ{100)
    DIMENSION Y1(400),Y3(400),Y4(400),XXX(400),TAA(400)
    OIMENSION ETIME(400),EALT(400)
    COMMON X, Y, F, O
    COMMON NT, ZZ, IZ, RTZ, TLA, TZB
    COMMON C1, C2, C3, C4, C5, C6, C7
    COMMON TA, KT, P, RHO, PHI, 'IG, OMEGA, CSI, E, V
    COMMON XMA, XMB, G, CP, CV, R, CD, VBM ,WF
    COMMON DEH2,DEH3,OEH4,DEH5,DEH6,DEH7
    COMMON WFH,DWFH,WFO
    COMMON CB
    COMMON LIR,FIR,DIRDZ,NIR,ZUV,FUV,DUVDZ,NUV,DSIDI
    COMMON ABIR,EMIR,ABUV
    COMMON M,Y1,Y3,Y4,TAA,XXX
    COMMON DP,XT,XO,ETIME,EALT
    SCALE(B)=6H 340
    SCALF(9)}=6\textrm{HH}2000
    SCALE(16)=6H 380
    SCALE(17)=6H40000
    SCALE(24)=6H4420
    SCALE(25)=6H 60000
    SCALE(32)=6H460
    SCALE(33)=6H 80000
    SCALE(40)=6H 500
    SCALE(41)=6H100000
    SCALE(48)=6H 540
    SCALF(49)=6H120000
    SCALE(56)=6H 580
    SCALF(57)=6H140000
18 Mal
    MT=XINTF((XT-XO)/;10000.)+1
    7 \text { MMaM+1}
    GO TO (4,12,13,14,15,16,17),MM
12 SCALE|II=6H O-3
    GO 10 9
13.SCALEIII=KH 3-6
    60 10 9
14 SCALE{1)=6M 6-9
    CO TO 9
15 SCALEIIIE6H 9-12
    60 TO 9
16 SCALEI1)=AH 12-15
    CO }10
17 SCALEII)=6H 15-18
```


$9 X M=F L O A T F(M)$

$X X M=(X M-1)=$,10800 .
$X X X M=X M=10800$.
CALL LIMITSIXXM, XXXM, O..147500.)
CALL GRID (XXM,1800.,0.,20000.)
$K=X F[X F((10800.1 D P) *(X M-i))+1$,
$L=X F\{X F(110800 . / D P)=(X M))+1$
$0090 \mathrm{~J}=\mathrm{K}, \mathrm{L}$
90 CALL POINTS $(X X X(J), Y \mid(J), 35)$
10 CALL LIMITS (XXM, XXXM, 300., 595.) DO $100 \mathrm{~J}=\mathrm{K}, \mathrm{L}$
100 CALL POINTS (XXX(J), Y31J). 151
11 CALC LIMITS (XXM, XXXM, 300.,595.) DU 110 J=K.L
110 CALL POINTS (XXX(J),Y4(Ji,11) CALL LIMITS (XXM, XXXM, 300..595.) DO $120 \mathrm{~J}=\mathrm{K}, \mathrm{L}$
120 CALL POINTS (XXX(J),TAA(J), 10) CALL LIHITS (XXM, XXXM,0.,147500.) DO $130 \mathrm{~J}=1,400$
130 CALL POINTS (ETIME(J),EALT(J),14) CALL GRAPH (SCALE)
4 PRINT 3000 $M=M+1$
IF(M-7)131,19.19
131 IF(M-MT)7,7,19
19 RETURN
END

[^0]: * See Section III-Cl for an explanation.

