UNCLASSIFIED

TECHNICAL REPORT NO. AFWL-TR-65-143, Vol III

July 1966

AIR FORCE WEAPONS LABORATORY
Research and Technology Division
Air Force Systems Command
Kirtland Air Force Base
New Mexico

Research and Technology Division AIR FORCE WEAPONS LABORATORY
Air Force Systems Command Kirtland Air Force Base New Mexico

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way suppiied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is made available for study with the unierstanding that proprietary interests in and relating thereto will not be impaired. In case of apparent conflici or any other questions between the Goverrment's rights and those oî others, notify the Judge Advocate, fir Force Systems Comand, Andrews Air Force Base, Washington, D. C. 20331.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationsls may be made only with prior approval of AFWL (WLRT), Kirtland AFB, NM, 87117. Distribution is limited because of the technology discussed in the report.
firebail phencigniology akd CoDe developmiext
Volume III
SPUTTER Subroutines for Radiation Transport in Spheres
General Atomic Division of General Dynamics Corporation Special Nuclear Effects Laboratory

San Diebo, California
Contract AF 29(601)-6492

TECHNICAL REPORT NO. AFWL-TR-65-143, Vol III

> This document is subject to special axport controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLRT), Kirtland AFB, NM, 87117 . Distribution is limited because of the technology discussed in the report.

FOREWORD

This report was prepared by General Atomic Division of General Dynamics Corporation, San Diego, California, under Contract AF 29(601)-6492. The research was performed under Program Element 7.60.06.01.D, Project 5710, Subtask 07,003/005, and was funded by the Defense Atomic Support: Agency (DASA).

Inclusive dates of research were 1 June 1963 to 13 July 1965. The report was submitted 15 March 1966 by the Air Force Weapons Laboratory Project Officer, Int F. C. Tompinins III (HLXT).

The Contractor's report number is GA-6585.
The report is divided into six volumes as follows: Volume I, Sumary and the Fireball Models; Volume II, Early Fireball Phenomena in the TIGHTROPE Event; Volume III, SPUETER Subroutines for Radiation Transport in Spheres; Volume IV, SPUITER Subroutines for Radiation Transport in Planes; Volume V, Material Properties; and Volume VI, Extensions of the Physics and Problem Areas.

The SPUTTER subroutines for radiation transport in spheres described in Volume III were developed by Dr. B. E. Freeman and Dr. C. G. Davis, Jr. The cooperation and contributions of Captains Milton Gillespie, William Whitaker, and George Spillman of the Air Force Weapons Laboratory axe gratefully ackrowleüged.

This technical report has been reviewed and is approved.

Colonel, USAF
Chief, Research Division

[^0]
ABSTRACT

The radiation transport subroutines of the SPUTTER code for spherical geometry have been revised. The DIFFU subroutine has been eliminated and RADTN, TRANS, and KAPPA have been recoded. The results of this work on the codes are (1) improved logical organization, (2) more efficient and rapid calculation, (3) improved accuracy, (4) more complete documentation, and (5) comparisons with test problems. The much simpler and more acrurate diffusion approximation is exploited when a new diffusion criterion is satisfied in shells within the spheren A more accurate angular integration of the intensity makes use of the y-line integration results more efficiently to give improved fluxes. Reorganization of the calcuiation, suving of quantities to be used again, and use of a fast exponential routine have resulted in speeding up the routines by approximately a factor of 2. The diffusion and angular integration improvements apparently have resulted in an additional factor of 2 speedup for the same accuracy.

The SPUTTER code subroutines for radiation transport in spheres described herein are as they existed on July 1, 1965. General Atomic has exercised due care in preparation, but does not warrant the merchantability, accuracy, and completeness of these subroutines or of their description contained herein. The complexity of this kind of program precludes any guarantee to that effect. Therefore, any user must make his own determination of the suitability of these subroutines for any specific use and of the validity of the information produced by their use.

CONTENTS

Section

I. INTRODUCTION 1
II. NUMERICAI SOLUTION OF THE $2 R A N S P O R T E Q U A T I O N$ 3
2.1. Integration Along Y-lines 4
2.1.1. General Formula 6
2. 1. 2. Special Calculation near $x=0$ 10
2.1.3. Small-optical-depth Expansion 12
2.1.4. $Y=0$ Ray 13
2.1.5. Boundary Conditions 13
2.2. X -line Positioning Requirements 14
2.2.1. X-storage Limitation and Frequency-independent Criteria in SRADTN 15
2. 2. 2. Transport Criteria per Frequency Group in STRANS 15
2.3. Angular Integrations 16
2.3.1. Integral Formulations of Flux, Energy, and Pressure 16
2.3.2. Angular Interpolation of Intensities 19
2.3.3. Numerical Quadrature Formulas 20
III. THE DIFFUSION APPROXIMATION 28
3.1. Differential Form of the Diffusion Flux 28
3.2. Criteria for Selection of Diffusion Regions 29
3.3. Difference Form of the Diffusion Flux 30
IV. FREQUENCY INTEGRATION 33
V. SUBROUTINE ORGANIZATION AND ECONOMICS 36
5.1. The SRADTN Subroutine 36
5.1.1. Set Initial Y-line Array 36
5.1.2, Merge Frequency Groups 37
5.1.3. Set Up Sources and Derivatives 37
5.1.4. Determine Diffusion Region 38
5.1.5. Time-step Control and the Monofrequency Calculation 38
5. \&. The STRANS Subroutine 39
5.2.1. Y-line Placement 40
5.2.2. Intensity Integration Along Y-lines 40
5.2.3. Angular Integration 40
5.2.4. Boundary Conditions 41
5.2.5. "Top Slices" and Finish Up 41

AFWL-TR-65-143

5.3. Auxiliary Subroutines 41
5.4. Input Numbers 42
5.5. Edits 43
VI. TIMING AND ACCURACY COMPARISONS 49
6.1. Calculations for Timing and Accuracy 49
6.2. Comparison for Timing 50
6.3. Compari son for Accuracy 52
6. 4. Conclusions 52
REFERENCES 55
Appendixes
A. SRADTN 59
B. STRANS 75
C. FREXP 93
D. KAPPA 99
E. PLNKUT 107
distribution 110
Figures
2. 1. Examples of relationship between y-lines and (r, θ) pairs 5
2.2. Illustration of discontinuous source function 6
2.3. Assumed spatial dependence of source function near $\mathbf{x}=0$ 11
2.4. Example of angular dependence of intensity 21
2.5. Example of angular dependence of intensity 22
2.6. Example of angular dependence of intensity 23
2. 7. Example of angular dependence of intensity 24
2. 8. Angular intervals between adjacent y-lines 25
6. 1. Flux versus radius comparison with results from old version of code 53
6.2. Central brightness con parison with results from old version of code 54

SECTION I

INTRODUCTION

The spherical version of the radiation transport routines for SPUTTER ${ }^{(1)}$ has been completely revised to increase both the speed and the accuracy of the calculation. The new subruutines contain a revised diffusion criterion, the use of Planck means in the transparent, or thin, limit (Rosseland means have always been used in the thick limit), and an improved method of integrating over angles.

The logic in the SRADTN subroutine has been reorganized: first, to select an initial set of y-lines from which the set for each frequency group will be chosen later; second, to merge frequency groups for which the source func ion is small, even for the highest temperature in the mesh; third, to limit the source calculation to regions of appreciable temperature and thereby reduce the transport calculation; and, finally, to establish diffusion regions and perform the diffusion calculation in SRADTN (formerly this was done in a subroutine called DIFFU). In essence, therefore, the new SRADTN subroutine establishes the limiting set of active zones for sources, y-lines, and frequency groups. The new STRANS subroutine contains the intensity integration along y-lines for the frequency groups selected in SRADTN.

What has been achieved in reccing these subroutines has been the removal from inside the main y-line loop the redundant calculations made previously, and this was principaily done by storing the complete set of $x-y$ intersections. The improvement in the angular integration is achieved by storing intensities along the previous y-line and interpolating between y-lines for an improved quadrature summation of fluxes. Both the quadratic and linear forms of interpolation were tested, but since the linear form appears to be more appropriate in most cases, it is used in STRANS.

Appropriate expansions in optical depth for transparent regions as well as diffusion boundary conditions are used in the new subroutines. At present the Rosseland mean is used in the thick limit and the Planck mean in the thin limit. This approach is only temporary, as eventually the more realistic transmission means, which will automatically limit correctly, will be used.

The numerical solution of the radiation transport equation along selected sampling rays through a sphere is discussed in Section II. The improved diffusion approximation is described in Section III, and the frequency integrations needed for the SPUTTER calculations are described in Section IV.

Although most of this report is concerned with the improved SRADTN and STRANS routines, some changes bave also been made in certain auxilliary subroutines, e.g., a faster exponential subroutine FREXP, the Planck function subroutine PLNKUT, the absorption coefficient interpolation subroutine KAPPA, etc. These improvements are discussed in Section V, and the listings of the subroutines SRADTN, STKANS, FREXP, KAPPA, and PLNKUT are given in the Appendixes. The preliminary results of the improvements in accuracy and calculation times from comparison with the old subroutines are given in Section VI.

The obvious differences between the new and the old subroutines are in the new angular integration scheme and criteria for diffusion. The y-line integration of intensities is essentially the same. Actually, what has been achieved is a careful re-evaluation of the complete code, which has resulted in many time savings and in some increased accuracy. Additional accuracy can be achieved by going to more complete and therefore more complex integration schemes requiring additional core storage. These schemes will probably need the increased fast-storage capacity of the new generation of computers (e.g., CDC 6600 and IBM 360). Careful comparisons have been made between single cycles of multifrequency transport carried out with the old code and with the new code (as discassed in Section VI). These calculations have pointed up certain limitations in the numerical solution of the radiation transport equations, which are still not completely resolved. Questions as to the treatment of thin (optically) hot zones adjacent to thick cold zones, shock fronts, radiative fronts, the use of Planck emission means or, for that matter, what is the appropriate average, etc., still remain. The frequency-dependent calculations lead to questions regarding the selection of frequency groups and the use of various frequency-group averages. The present subroutines allow for a basic solution of the spherical transport equations, in which many improvements relative to the above questions, as well as additions in respect to such matters as retardation, scattering, etc., can be made.

SECTION II

NUMERICAL SOLUTION OF THE TRANSPORT EQUATION

The radiation routines described herein contain a formulation based on numerical solution of the radiation transport equation along a selection of sampling rays through the sphere. Relevant averages over the angular distribution are obtained by numerical quadrature, as described in Section 2.3, and the numerical solution of the transport equation along the photon ray is presented in Section 2. 1. Criteria for selecting the sampling rays are discussed in Section 2. 2. All of the derivations of this section apply to photons of a particular frequency; integration over frequency is discussed in Section IV.

The radiation transport equation in spherical geometry that describes the changes in the specific intensity I_{v} of photons of frequency v resulting from pure absorption and emission according to the local thermodynamic equiiibrium assumption is

$$
\left(\mu \frac{\partial}{\partial r}+\frac{1-\mu^{2}}{r} \frac{\partial}{\partial \mu}\right)_{v}=\sigma_{v}^{\prime}\left(B_{v}-I_{v}\right)
$$

where

$$
\begin{aligned}
& B_{v}=\frac{2 h}{c^{2}} \frac{v^{3}}{e^{h \nu / \theta}-1} \\
& \sigma_{v}^{\prime}=\sigma_{v}\left(1-e^{-h \nu / \theta}\right),
\end{aligned}
$$

and σ_{ν} is the pure absorption coefficient. The scattering coefficient is assumed to be negligibly small compared to the absorption coefficient. Additionally, the retardation of the photons is neglected, as is valid when the radiation energy is small and temperatures change slowly. The resulting equation describes the quasi-steady intensity field resulting from the distribution of sources existing at a particular time. This equation is simplified by introducing two new ind ϵ pendent variables, x and y, in place of r and μ, where

$$
\begin{equation*}
x=r \mu, \quad y=r \sqrt{1-\mu^{2}}, \quad x=\sqrt{x^{2}+y^{2}}, \quad \frac{x}{y}=\frac{\mu}{\sqrt{1-\mu^{2}}} . \tag{2.1}
\end{equation*}
$$

The distance blong the photon ray is measured by x and the distance of closest approach of the undeviated ray is given by y. Since each ray is characterized by a particular y-value, it is also called a y-line. These relations are illustrated in Fig. 2.1, where the geometry of two y-lines is shown in relation to the radius and polar angle (Fig. 2. la) and these quantities are translated into the correspording two rays at a typical point on the spherically symmetric surface (Fig. 2. Ib). In terms of x and y, the transport equation becomes

$$
\begin{equation*}
\frac{\partial I_{v}}{\partial x}=\sigma_{v}^{\prime}\left(B_{v}-I_{v}\right) \tag{2.2}
\end{equation*}
$$

an equation which could equally well be considered the fundamental defining equation for tie intensity in that it describes the processes that change the intensity along the ray. Defining the monocinromatic optical depth, τ, as

$$
\begin{equation*}
\tau=\int_{0}^{x} \sigma_{v}^{\prime} d x \tag{2.3}
\end{equation*}
$$

the differential equation can then be integrated between two points, T_{i-1} and τ_{i}, on a ray:

$$
\begin{equation*}
I_{i}=I_{i-1} e^{-\left(\tau_{i}-\tau_{i-1}\right)}+\int_{\tau_{i-1}}^{T i} B e^{-\left(\tau_{i}-\tau\right)} d \tau \tag{2.4}
\end{equation*}
$$

This equation forms the starting point for the numerical solution of the eransport equation. For a particular ray having a y-value chosen according to the prescriptions given in Section 2.2, the intensity is evaluated at selected points along the ray, starting from the outside boundary of the sphere with a prescribed boundary value. The immediate problem, then, is to prescribe the method for approximating the quadrature in Eq. (2.4). This prescription and the task of prescribing boundary conditions are discussed next.

2. 1. INTEGRATION ALONG Y-LINES

In the finitemone calculation of the SPUTTER code, the value of the source function, B_{ν}, is known only at a series of radii corresponding to the average positions of zones in the calculation. Intensities are needed, however, at all interfaces between zones in order to determine radiation fluxes. Consequently, it is necessary to construct an interpolation function between known values so that the integration of Eq. (6.4) can be carried out.

Fig. 2. 1-- Examples of relationship between y-lines and (r, f) pairs

Of the many aiterna-ives, a ximple scheme is chosen which permits the integration to be performed in closed form.

2.1.1. Generai Eormula

As indicated in Fig. 2.2, the source function is usually assumed to be linear in r between given values of $B_{i+\frac{1}{2}}$ at the midpoints of zones $T_{i+\frac{1}{2}}$. At certain interfaces, nowever, when the criteria described in Section V are satisfied, the source function is assumed to be constani at the zone value, which is also shown in Fig. 2. 2. Values of the source furction B_{i} are first ootained by interpolation at the zone interfaces \bar{F}_{i}

Fig. 2. 2--iliustration of discontinuous source function
which, together with the midpoint values, form the termini for the integral of Eq. (2, 4). More specifically, in the interval $\gamma_{i-1} \leq \tau \leq \tau_{i}$, the source function takes the values

$$
B=a_{-}+b_{-} \tau_{;} \quad T_{i-1} \leq \tau \leq \tau_{i-\frac{1}{2}}
$$

where

$$
\begin{equation*}
a_{-}=\frac{B_{i-1} \top_{i-\frac{1}{2}}-{ }^{5}{ }_{i-\frac{1}{2}} \top_{i-1}}{\top_{i-\frac{1}{2}}-T_{i-1}}, \quad b_{-}=\frac{B_{i-\frac{1}{2}}-B_{i-1}}{T_{i-\frac{1}{2}}-\top_{i-1}} \tag{2,5}
\end{equation*}
$$

and

$$
B=a_{+}+b_{i} \tau, \quad \tau_{i-\frac{1}{2}} \leq \tau \leq \tau_{i},
$$

were

$$
a_{i}=\frac{B_{i-\frac{1}{2}} T_{i}-B_{i} T_{i-\frac{1}{2}}}{T_{i}-T_{i-\frac{3}{2}}}, \quad b_{i}=\frac{B_{i}-B_{i-\frac{1}{2}}}{T_{i}-T_{i-\frac{2}{2}}}
$$

For the case of a constant or step-function source, the source fanction B takes a value dependent on which interface of the zone is affected. If the left interface $\left(\pi=\pi_{i-1}\right)$ satisfies the criteria for a constart source,

$$
B=B_{i-\frac{1}{2}} \quad \quad_{i-1} \leq i \leq \tau_{i-\frac{1}{2}}
$$

If the right interface $\left(\tau=\tau_{i}\right)$ satisfies tise criteria,

$$
B=B_{i-\frac{1}{2}}, \quad T_{i-\frac{1}{2}} \leq T \leq T_{i}
$$

The integral of Eq. (2.4) can 3e evaluated with the interpolation function of Eq. \{2.5) to give for the intensity

$$
\begin{equation*}
I_{i}=\alpha_{i-\frac{1}{2}}+\left[\left(i_{i-1}+\gamma_{i-\frac{1}{2}}\right] e^{-\Delta!2}+p_{i-\frac{1}{2}}\right] e^{-\Delta / 2} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha_{i-\frac{1}{2}}=a_{+}+b_{+}\left(\tau_{i}-1\right), \\
& \beta_{i-\frac{1}{2}}=a_{-}-a_{+}+\left(b_{-}-b_{+}\right)\left(\tau_{i}-\frac{\Delta}{2}-1\right), \\
& \gamma_{i-\frac{1}{2}}=b_{-}\left(1+\Delta-\tau_{i}\right)-a_{-}
\end{aligned}
$$

In these expressions, $\Delta=\tau_{i}-\tau_{i-1}$. The coefficients of Eq. (2.6) car be re-expressed by using the definitions oí Eq. (2.5):

$$
\left.\begin{array}{l}
\alpha_{i-\frac{1}{2}}=B_{i}-\frac{B_{i}-B_{i-\frac{1}{2}}}{\Delta / 2}, \tag{2.7}\\
\beta_{i-\frac{1}{2}}=\frac{B_{i}-B_{i-\frac{1}{2}}-\frac{B_{i-\frac{1}{2}}-B_{i-1}}{\Delta / 2},}{\Delta / 2}, \\
\gamma_{i-\frac{1}{2}}=-\left(B_{i-1}-\frac{\left.B_{i-\frac{1}{2}}-B_{i-1}\right)}{\Delta / 2}\right)
\end{array}\right\}
$$

The terms in Eq. (2.7) may be intexpreted as sontaining combinations of numerical approximations to the values of the source furction and the T derivative of the soarce function at the boundaries of the interval.

This form of the equation, in fact, can be obtained in another way starting from Eq. (2.4). Twn saccessive integrations by parts transform the expression for I_{i} into the following eqaivalent form:

$$
\begin{equation*}
I_{i}=\left(B-\frac{\partial B}{\partial \tau}\right)_{i}+\left[I_{i-1}-\left(B-\frac{\partial B}{\partial \tau}\right)_{i-1}\right] e^{-A}+\int_{\tau_{i-1}}^{T_{i}} \frac{\partial^{2} B}{\partial \tau^{2}} e^{-\left(\tau_{i}-\tau\right)} d \tau \tag{2.8}
\end{equation*}
$$

in terms of values of the source function and the first two derivatives of the source fanction with respect to τ.

In an optically thin interval, the most impertant contribution arises from the terms $\mathrm{I}_{\mathrm{i}-\frac{1}{2}}$ and B , which represent the transmitted intensity and the emission from the zone. The derivative terms cancel in this approximation; this is perhaps more directly incicateá by Eq. (2.4). In the optically thick interval, which is the extreme opposite, only the first two terms evaluated at i are usually of significance. The terms from $i-1$ are strongiy attenuated and $\partial^{2} B / \partial \tau^{2}$ in the integral is usualiy smail. In the iimit, the diffusion approximation results from the term $\mathrm{aB} / \partial \tau)_{i}$. Between limits, it is necessary to consider the integral term in Eq. (2.8).

If Δ is not too laige, a representative mean value of the exponential in the interval may be taken to give for the integral of Eq. (2.8)

$$
\left.\left.\int_{\tau_{i-1}}^{\tau} \frac{\partial^{2} B}{\partial \tau^{2}} e^{-\left(\tau_{i}-\tau\right)} \dot{\alpha} \tau \cong e^{-\Delta / 2}\left[\frac{\partial B}{\partial \tau}\right)_{i}-\frac{\partial B}{\partial \tau}\right)_{i-1}\right]
$$

and thus the expression for intensity becomes
$\left.\left.I_{i}=\left(i-\frac{\partial B}{\partial \tau}\right)_{i}+\left\{\left[I_{i-1}-\left(B-\frac{\partial B}{\partial \tau}\right)_{i-1}\right] e^{-\Delta / 2}+\left[\frac{\partial B}{\partial \tau}\right)_{i}-\frac{\partial B}{\partial \tau}\right)_{i-1}\right]\right\} e^{-\Delta / 2}$.
This expression has just the form of Eqs. (2.6) and (2.7) when the difference expressions are identified with the derivatives.

It is clear from the derivation of Eq. (2.6) that the resulting intensity is a positive quantity. With positive values for zone source functions, the linear interpolation expression assures that the integral contribution is always positive. Since the boundary intensity is always a positive quantity, the positivity of all intensities is assured.

In the diffusion approximation limit, however, Eq. (2.9) is to be preferred ovez Eqs. (2.6) and (2.7), since in this limit only quantities at interface i will survive, and

$$
\left.I_{i}=B_{i}-\frac{\partial B}{\partial \tau}\right)_{i},
$$

which can be evaluated more accurately than the corresponding difference approximation to the ${ }^{\text {Ierivative of Eq. (2.7). The point is that } B \text { depends }}$ only on radial position and not on angle, so that an interpoiation formula using τ is more artificial than one based on a radial quantity, such as

$$
\begin{equation*}
\frac{\partial \mathrm{E}}{\partial \tau}=\mu \frac{\partial \mathrm{B}}{\partial \mathrm{~h}} \tag{2.10}
\end{equation*}
$$

where

$$
\mathrm{h}=\int_{0}^{\mathrm{r}} \sigma^{\mathrm{t}} \mathrm{dr} .
$$

The independent variable h depends only on r, so that angular integrations of I_{i} can be performed explicitly in the diffusion approximation, which tiukes account of the dependence on angle of Eq. (2.10). A difference approximation can also be based on this expression, assuming that B is linear in $h, i . e .$,

$$
\begin{equation*}
\left.\frac{\partial B}{\partial \tau}\right)_{i} \cong \frac{B_{i}-B_{i-\frac{1}{2}}}{h_{i}-h_{i-\frac{1}{2}}} \mu_{i}, \tag{2.11}
\end{equation*}
$$

where $\mu_{i}=x_{i} / r_{i}$ is the cosine oi the angle of the ray at the interface with radius r_{i}. The corresponding equation for the intensity is Eq. (2.6), in which

$$
\left.\begin{array}{l}
\alpha_{i-\frac{1}{2}}=B_{i}-\mu_{i} \frac{B_{i}-B_{i-\frac{1}{2}}}{h_{i}-h_{i-\frac{1}{2}}}, \\
\beta_{i-\frac{1}{2}}=\mu_{i} \frac{B_{i}-B_{i-\frac{1}{2}}}{h_{i}-h_{i-\frac{1}{2}}}-\mu_{i-1} \frac{B_{i-\frac{1}{2}}-B_{i-1}}{h_{i-\frac{1}{2}}-h_{i-1}}, \tag{2.12}\\
\gamma_{i-\frac{1}{2}}=-\left(B_{i-1}-\mu_{i-1} \frac{B_{i-\frac{1}{2}}-B_{i-1}}{h_{i-\frac{1}{2}}-h_{i-1}}\right) .
\end{array}\right\}
$$

In spherical geometry, however, if varies along the ray, so the difference approximation in Eq. (2.11) is not identical with the linear-in-T difference approximation. Consequently; Eq. (2.12) is different from Eq. (2.7). Although Eq. (2.12) is superior in the diffusion limit in that the surviving terms give the correct diffusion expression, unfortunately, for the general case, the positivity which applies to Eq. $(2,7)$ is lost; consequently, it is not clear which expression is best. (In slab geometry, where μ does not change along the ray, the difference equation analogue of Eq. (2.10) is exact and the positivity of the equation resulting from the linear-in-h assumption is assured.) The greatest danger of negative intensity comes from regions of small optical depth; however, these are calculated by a limiting form of the equations, as described below. Equations (2.6) and (2.12) are soived in tise STRANS subroutine further described in Section V. Should negative intensities result from the calculation, they are replaced by zero.

2.1.2. Special Calculation near $x=0$

The source function profile shown in Fig. 2.2 fails to take into account all of the information available in the neighborhood of $x=0$. Since the source function along the y-line displays symmetry about $x=0$, it is clear that its derivative should be zero there, a condition violated by the preceding interpolation rule. Consequently, a special calculation is performed in the two intervals adjoining $x=0$, which are formed by the double penetration of the zone by the y-line, as illustrated in Fig. 2.3a. In the half-intervals immediately adjacent to $x=0$ (see Fig. 2. 3b), the source is taken to be quadratic in x, the constants of which ars dytermined by requiring that the derivative be zero at $x=0$ and that the function take on the known source value at the center of the zone. The squrce in the remaining intervals is formed from the linear-in-x assumption. Since ihe interpolation function is contained within a single zone, the function in Fig. 2.3b has exactly the same form as a function of τ as it has as a function of x.

The quantity $x_{\frac{1}{2}}$ is the x-coordinate of the center of the zone having inner radius r_{0} and ${ }_{\text {radial thickness }}^{2} \Delta r$ (see Fig. 2.3a),

$$
x_{\frac{1}{2}}=\left[\Delta r\left(r_{0}+0.25 \Delta r\right)\right]^{\frac{1}{2}}
$$

and corresponds to the value of the source function $B_{\frac{1}{2}}$. Values of the source corresponding to $x=0$ and $x=x_{1}$ are B_{0} and B_{1}.

Fig. 2.3--Assumed spatial dependence of scurce function near $\mathrm{x}=0$

To illustrate the derivation of the intensities $I_{0}=I(x=0)$ and $I_{1}=I\left(x=x_{1}\right)$, the following steps in the calculation of the source integral for the interval $-x_{1} \leq x \leq 0$ are indicated. In this interval the source function is represented as two parts (see Fig. 2.3b)

$$
B=a_{-}+b_{-} x, \quad-x_{1} \leq x \leq-x_{\frac{1}{2}},
$$

where

$$
a_{-}=\frac{x_{1} B_{\frac{1}{2}}-x_{\frac{1}{2}} B_{1}}{x_{1}-x_{\frac{1}{2}}}, \quad b_{-}=\frac{B_{\frac{1}{2}}-B_{1}}{x_{1}-x_{\frac{1}{2}}},
$$

and

$$
B=a_{+}+b_{+} x^{2}, \quad-x_{\frac{1}{2}} \leq x \leq 0,
$$

where

$$
a_{+}=B_{0}, \quad b_{+}=\frac{B_{\frac{1}{2}}-B_{0}}{x_{\frac{1}{2}}^{2}} .
$$

In terms of these quantities, the integral of Eq. (2.4) is then

$$
\begin{aligned}
\int_{-x_{1}}^{0} B e^{\sigma x} \sigma d x=a_{-}\left(e^{-\Delta_{\frac{1}{2}}}-e^{-\Delta}\right) & +\frac{b}{\sigma}\left[(\Delta+1) e^{-\Delta}\right. \\
& \left.-\left(\Delta_{\frac{1}{2}}+1\right) e^{-\Delta_{\frac{1}{3}}^{3}}\right]+a_{+}\left(1-e^{-\Delta_{\frac{1}{2}}^{2}}\right) \\
& +\frac{b_{+}}{\sigma^{2}}\left[2-\left(\Delta_{\frac{1}{2}}^{2}+2 \Delta_{\frac{1}{2}}+2\right) e^{-\Delta_{\frac{1}{2}}^{2}}\right]
\end{aligned}
$$

where $\Delta_{\frac{1}{2}}=\sigma x_{\frac{1}{2}}$ and $\Delta=\sigma x_{1}$. Substitution and reduction gives the following expression for I_{0} :

$$
I_{0}=B_{0}+F+e^{-\Delta_{\frac{1}{2}}}\left[G-\left(\Delta_{\frac{1}{2}}+1\right) F\right]+e^{-\Delta}\left[I\left(-x_{1}\right)-B_{1}-G\right],
$$

where

$$
\begin{equation*}
F=\frac{2\left(B_{\frac{1}{2}}-B_{0}\right)}{\Delta_{\frac{1}{2}}^{2}} \text { and } \quad G=\frac{B_{1}-B_{\frac{1}{2}}}{\Delta-\Delta_{\frac{1}{2}}} \tag{2,13}
\end{equation*}
$$

In an analogous fashion, I_{1} is obtained by integration over the interval $0 \leq x \leq x_{1}$,

$$
I_{1}=B_{1}-G+e^{-\left(\Delta-\Delta_{\frac{1}{2}}\right)}\left[G-\left(1-\Delta_{\frac{1}{2}}\right) F\right]+e^{-\Delta}\left[I_{0}-B_{0}-F\right]
$$

Equations (2.13) and (2.14) are evaluated in the "top slice" portions of the code when the y-line integration reaches $x=0$.

2.1.3. Small-optical-depth Expansion

If the optical depth is very small, the intensity expression in Eq. (2.4) takes a much simpler form,

$$
\begin{equation*}
I_{i}=I_{i-1}+\left[\frac{1}{4} B_{i}+\frac{1}{4} B_{i-1}+\frac{1}{2} B_{i-\frac{1}{2}}-I_{i-1}\right] \Delta \tag{2.15}
\end{equation*}
$$

Although this result is the limiting form of Eqs. (2.6) and (2.7), but not of Eqs. (2.6) and (2.12), the terms must cancel through second order in an expansion in Δ before the first surviving term, derived in part from the quadratic terms of the exponentials, is obtained. Consequently, for sufficiently small argument, the finite number of figures used in the exponential will render the result inaccurate. For the exponential from the IBM-7044 system, this restricts the argument to a number greater than $\sim 2 \times 10^{-4}$; but with the lower-accuracy fast exponential (see Section V), the argument must be somewhat larger. Since the relative error approximately equals the argument of the exponential, the criterion for using Eq. (2.15) in the STRANS subroutine is now set at $\Delta \leq 2 \times 10^{-2}$. With this value, the greatest relative error arising from the expansion and cancellation should be on the order of 1 percent.

For the quadratically interpolated intervals near $x=0$, the small-optical-depth result is different from Eq. (2.15) as follows:

$$
\begin{align*}
& I_{0}=I\left(-x_{1}\right)+\left[\frac{1}{2} B_{1}+\frac{1}{2} B_{\frac{1}{2}}-I\left(-x_{1}\right)\right] \Delta+\left(\frac{2}{3} B_{0}-\frac{1}{2} B_{1}-\frac{1}{6} B_{\frac{1}{2}}\right) \Delta_{\frac{1}{2}}, \\
& I_{1}=I_{0}+\left[\frac{1}{2} B_{1}+\frac{1}{2} B_{\frac{1}{2}}-I_{0}\right] \Delta+\left(\frac{2}{3} B_{0}-\frac{1}{2} B_{1}-\frac{1}{6} B_{\frac{1}{2}}\right) \Delta_{\frac{1}{2}} . \tag{2.16}
\end{align*}
$$

The same criterion for performing the calculation of Eq. (2.16) rather than that of Eqs. (2.13) and (2.14) is used, i. e., $\Delta \leq 2 \times 10^{-2}$.

2.1.4. $\mathrm{Y}=0 \mathrm{Ray}$

The special case of the ray passing through the center of the sphere and having $y=0$ is required (as described below) in each use of the STRANS subroutine. Equation (2.12) is still appropriate for this case but in a simplified form. For inwardly directed photons, $\mu=-1$; for outwardly directed photons, $\mu=+1$. A separate section of STRANS is used for the $y=0$ calculation in order to simplify the code and to take into account that the angular integration need not be performed.

2.1.5. Boundary Conditions

Integration of the transport equation to obtain intensities is performed through the thickness of a spherical shell, called a "trans" region. At intersections of y-lines with the inner and outer surfaces of each shell it is necessary to supply the starting value of the intensity I_{i-1} required in Eq. (2.6). Three classes of boundary conditions occur:

1. The trans region outside boundary coincides with outside radius $\mathrm{R}_{\mathrm{IB}+1}$ of the SPUTTER calculation and a prescribed
function, I_{0}, is applied as an outer boundary value:

$$
\begin{equation*}
I\left(R_{I B+1}, \mu\right)=I_{0}, \quad \mu \leq 0 \tag{2.17}
\end{equation*}
$$

The trans region inside boundary is at the center of the sphere, $R=0$.
2. The center of the sphere provides a boundary condition for the $y=0$ ray at $R=0$ in the trans region. At $R=0$, the intensity is isotropic, giving the condition for starting the outward-directed ray calculation:

$$
\begin{equation*}
I(R=0, \mu=+i)=I(R=0, \mu=-1) \tag{2.18}
\end{equation*}
$$

3. All other trans boundaries are bounded by regions in which the diffusion approximation iá valid (see Section III). Consequently, the boundary surface intensities on contiguous trans regions inside or outside of a diffusion region are given by the diffusion approximation intensity derived in Section III;

$$
\begin{equation*}
\left.I_{i-1}=B_{i-1}-\mu_{i-1} \frac{\partial B}{\partial h}\right)_{i-1} \tag{2.19}
\end{equation*}
$$

2.2. Y-LINE POSITIONING RE:QUIREMENTS

The correct placement of y-lines through regions which are changing rapidly in temperature and/or optical depths is important for an economical and accurate solution of the transport equations using the direct integration method. The advantage of being able to locate y-lines only where they are needed is 2 decrease in computational time by reducing the number of y-lines calculated.

The decision as to where to place a group of rays depends on the radiai position of the region in question. The inner core (or zone) will be the least resolved, but, in general, this is a region of isothermality. For example, in fireball calculations, there is a central diffusion region bounded by a region having rapidly changing conditions due to radiative fronts and hydrodynamic shocks. Under these conditions, there are fewer y-lines placed through the central core, many through the transition regions, and none outside the zones containing sources.

The following description of our placement criteria in SRADTN and STRANS is based on these considerations.

2. i. 1. X-storage Limitation and Frequency-indeperdent Criteria in SEADTI!

$I_{i=}$ orier to remove tue repetitious calculation of x-values at intersections of the y-liaes with radii $x=\sqrt{R^{2}-Y^{2}}$, a storage array is set up for the $x^{\prime} s$ as weil as for the quantity y^{2} (used in STRANS). The size of this array is limited by available storage; the present limit of 2400 in the x-block allows for approximately 70 y -lines. The principal criterion for selecting a set of y-lines to be used in STRANS is to piace y-lines at boundaries where the temperature is changing. For example, if $\log \left(\theta_{i+1} / \theta_{i}\right)$ is greater than CVB (CVB = 0 gives the maximum number of y-lines), a y-line is placed at that boundary, but if the gradient of $\log \theta$ is less than CVB, that zone is skipped. The practical use of this criterion will result in reducing the calculational time for y-lines inside isothermal regions. No y-inies are used in regions outside zones with the temperature less than $0.05 \mathrm{ev} \mathbf{0 . 0 2 5} \mathrm{ev}$ is the temperature for ambient air).

2.2.2. Transpert Criteria per Frequency Group in STRANS

In the transport subroutine (STRANS), y-lines from the set established in SRADTN are selected using criteria based on the frequency-dependentsource and optical-depth gradients. If a diffusion region having an oater boundary r_{D} exists inside the transport region, y-lines are placed as near as possible to $0.5 r_{D}, 0.75 r_{D}$, and r_{D} penetrating the diffusion region. In addition, if inside of the transport region the gradient inequalities

and

$$
\frac{\tau_{i}-\tau_{i-1}}{\tau_{i}+\tau_{i-1}}>G L
$$

are satisfied, where the input number GL is usually around 0.3 , a y-line is added at the interface i. Finally, in isothermal source regions outside the diffusion core, every fifth ray is selected. These selection rules could be refined, but at the present time they afford a reasonable represeatationto be used in the angular integration of the intensities.

2.3. ANCULAR INTEGRATIONS

Intensities calculated in the integrations along y-lines are used in several ways in the SPUTMCER calculation. In addition to displaying the intensities in a special edit (see Section 5. 5), integrals over angle of the intensity are used in the calculation of the evolution of the system in time. Additiona: integral quantities are of interest in evaluating the progress of the problem and in preparing thermal envirorment data for subsequent calculaticns. The desired integral quantities are formulaien in Section 2.3.1.

To calculate the desirer integral quantities from the intensities obtained in the integrations along a discrete sampling of y-lines, as fescribea in Section 2.1, it is necessary to perform numerical quadratures. At a given interface radius no regalar interval in tie angle variable (either μ, x, or y) is availabie. Consequently, ihe numerical quadrature is based on an interpolation expression, described in Section 2.3.2, in whish no regularity can be assumed. Finally, in Section 2.3.3, the numerical quadrature formulas are given.

2.3.1. Integral Formulations of Flux, Energy, and Pressure

One of the most important of tine anguiar integrais of intensity is the radiative flux, the divergence of which gives the radiative contrioution to the rate of change of the material energy. The net flux is a vector quantity, the component of which in the direction of the witit vector \vec{r}_{1}, $\phi \vec{i}_{1}$) (in ergs/ $\mathrm{cm}^{2}-\mathrm{sec}$), is given by the expression

$$
\begin{equation*}
\phi\left(\vec{r}_{1}\right)=c \int I \cos d Q \tag{2.2G}
\end{equation*}
$$

which also depends on the spatial position \vec{r}.
In Eq. (2.20) the intensity is a function of position $\overrightarrow{\mathbf{r}}$ and direction, denoted by the unit vector $\underset{r}{r}$, the Cartesian componenta of which can be expressed in terms of the polar angle θ between \vec{r} and the radial direction \vec{k} and the azimuthal angle o measured between the meridian planes of $\overrightarrow{\hat{r}}$ and an arbitrary direction \hat{j} normal to \vec{k}, and hence

$$
\overrightarrow{\hat{r}}=\cos \theta \vec{k}+\sin \theta(\sin \phi \overrightarrow{\mathrm{I}}+\cos \phi \vec{j}) .
$$

The angle between $\overrightarrow{\hat{r}}$ and \vec{r}_{1} is θ, so that $\cos \boldsymbol{\theta}=\overrightarrow{\hat{r}} \cdot \vec{r}_{1}$, and the element of solid angle is $\mathrm{d} \Omega=\mathrm{d} \phi \sin \theta \mathrm{d} \theta$. The net flux in the $\overrightarrow{\mathrm{r}}_{1}$ direction is given
by the irtegration of $\mathbf{d Q}$ over the entire sphere. The forward and tackerzd currenis, ϕ^{\ddagger} and ϕ^{-}, horrever, are obtained by integration over the bemispheres H^{+}and H^{+}about $\overrightarrow{\mathrm{T}}_{1}$ ard about $-\overrightarrow{\mathrm{r}}_{1}$, respectiveiz; i. e.,

$$
\phi^{+}\left(\vec{I}_{\underline{2}}\right)=c \int_{H^{+}} 1 \cos \theta d \theta
$$

$$
\dot{\varphi}^{-}\left(\overrightarrow{r_{1}}\right)=-\varepsilon \int_{H^{-}}^{\Gamma} I \cos \theta d \Omega
$$

In terms of these quantities, the net fliux is

$$
\dot{\phi}\left(\vec{r}_{1}\right)=\dot{\phi}^{\dot{\epsilon}}\left(\vec{r}_{1}\right)-\dot{\phi}\left(\vec{r}_{1}\right) .
$$

In spinericai gecrnetry, in winich i aepencis on ácut not on \dot{b}, the integration over azimuthal angle can be performed, and tine result depends only on the radial dintance r and the component direction \vec{r}_{1}. In order to evaluate the progress of 空e caiculation and to provide yelevart thermal environment data for subsequent calcuiations, three representative currents are formed--the forward and backward currents in the radial jirection and the current in the direczion normal to the radius vector. Only one such lateral current is needed since the currents in all lateral directions are the same for spheres. For the forward current, \dot{o}^{7}, the quantities in Eq. (2.21) are $\vec{r}_{1}=\vec{k}, \cos \theta=\cos \theta=\mu$, and the integral is over $0 \leq \theta \leq \pi / 2$ ard $0 \leq \phi \leq 2 \pi ;$ thus

$$
\phi^{+}=2 \pi c \int_{0}^{2} i \mu d \mu
$$

For the backward surrent, $\dot{0}^{-}$, the guantities are $\vec{r}_{1}=\vec{k}, \cos \theta=\mu$, and the integral is over $\pi / 2 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi$; thus

$$
\begin{equation*}
\phi^{-}=-2 \pi c \int_{-1}^{0} i \mu d \mu . \tag{2.24}
\end{equation*}
$$

 may be evaluated by aliag $\vec{X}_{i}=\vec{i}, \cos =\sqrt{1-\mu^{2}} \sin \phi$, ard $0 \leq \theta \leq \pi$, $0 \leq \phi \leq \pi$, so that

$$
\begin{equation*}
4^{0}=2 c \int_{-1}^{1} 1 \sqrt{1-\mu^{2}} d y \tag{2.25}
\end{equation*}
$$

In spherical geomèry the term estering the energy equation, $\nabla . \vec{\phi}$, in which ϕ is the radianive nef flex vector, takes tine form

$$
\frac{1}{2} \frac{\partial}{\partial r}\left(r^{2} \delta_{r}\right.
$$

in which in is the net flow comporent in the radial direction \vec{k}. Two of the above quañities are related to ϕ_{2} in that

$$
\begin{equation*}
\dot{\varphi}_{=}=\dot{o}^{+}-\dot{t}^{-} . \tag{2.26}
\end{equation*}
$$

Consequently, of the three quantities, $\dot{\phi}_{I^{\prime}}, \dot{o}^{+}$, and $\dot{\varphi}^{-}$, only two, ϕ_{I} and \dot{o}^{+}, are iormed.

Two adōitional angular integrals of the intensity are useful in evaluating the progress of the transport calculation aad, in addition, they are used in more accurate formulations of the radiaticr transport equation. The first of these quantities, the rafiation energy density, E_{R} (in ergs $/ \mathrm{cm}^{3}$), gives a quantitative measure of the energy stored in the radiation field for comparison with the materinl ene:gy. If E_{R} is not negligible (as assumed to be the case in this formulation), it should be taken into account in the radiation transport equation in which retardation is included (see Section $2 . \frac{1}{1}$ of Volume VI). The same angular integral also plays a role in the Thomson scattering integral of the Compton acattering by free electrons, as discussed in Section 3.1 of Volume Vil (tne effect of which is also neglected in this formulation).

The radiation energy is given by

$$
E_{R}=\int I d \Omega
$$

whick, for spherical grometry。 $\equiv \eta$ which the azimuthal integration can be

Ferformed, redaces to

$$
\begin{equation*}
E_{R}=2 \pi \int_{-1}^{1} I d \mu \tag{2.27}
\end{equation*}
$$

The second quantity is the radiation pressure, $P_{R}\left(\vec{r}_{1}\right)$ (in ergs/ $/ \mathrm{cm}^{-3}$), Wich is defired as the net rate of transfer of the radiant momeniam component in ife \vec{r}_{1} direction across the unit surface ohose normal is also in the \vec{r}_{1} direction. In rerma of $\cos \theta=\vec{r}_{1} \cdot \vec{x}_{\tilde{r}}$, the cosine of the angle which the photon beam makez rith the suriace nimmal, the pressure exerted across $\overrightarrow{\mathrm{F}}_{1}$ by the radiation fiela is

$$
P_{R}\left(\vec{r}_{1}\right)=\int I \cos ^{2} \cdot d \Omega
$$

in which the integral over solid angle extends over the cmplete sphere.
The pressure $P_{R}\left(\vec{r}_{1}\right)$ is alse sbtaized from the radiation pressure terso: $\underset{\sim}{P}$ by the operations $\vec{E}_{1} \cdot \underset{\sim}{F} \cdot \vec{r}_{1}$. For spherical geometry in whicn the azimuthal angie integration can ie performed, all of the off-diagonal elements of the pressuze tensor yanish, whereas all of the diagonal elements can be expressed in terms of the diagonal element in the radial direction,

$$
P_{R}(\vec{k})=2 \pi \int_{-1}^{1} 1 \mu^{2} d \mu \equiv F_{R}
$$

and the radiation energy integral of Eq. (2.27). Furthermore, the integral of Eq. (2.28) is also contained in the expression for the Thomson limit of the Compton scattering into the beam in both plane and spherical geometries.

In summary, the radiation integrals are calculated in the radiation subroutine STRANS in terms of the following quantities: ϕ^{+}, Eq. (2.23); ϕ^{0}, Eq. (2.25); ϕ_{r}, Eq. (2.26); ER, Eq. (2.27); and P_{R}, Eq. (2.28).

2.3.2. Angular Interpolation of Intensities

To form rumerical approximations to the angular integrals derived above, it is necessary to selest a quadrature formula. Equivalently, the rule must de specified for the angular interpoiation of intersities at a given radius between values calculated at different values of $\mathbf{x}(\mathrm{o} ; \mu$) in the integrations along y-lines. Unfortunately, from the point of view of the
angular integration, as a result of the application of the j-line selections criteria, tha values of x are not regularly spaced so no simple high-order rule is easily applicable. th the cu:rent rersion, the interpolation is performed within the interval between adjacent x values by making use of the two values of intensity at the end points of the interval oniy.

An accurate integration will resolt if the interpolation formula conforms to the actoal angular dependence of the intensity. To illustrate the range of possible dependencies which may occur in a firebali caleulation, Figs. 2.4 through 2.7 show a selection of curves of angular dependence of intensity corresponding to selected radia $2 \operatorname{con}^{\text {and }}$ prion frequencies. It is clear from these curves that no simple deperaience will be miversally successiul. In fact, these curves point up the desirability, in 2 mort, advanced code, of having an interpolation formila in which information from several angular positions is used.

In the preparation of the current version of the STRANS subroutine, two interpclation ruies were investigated: linear-in- μ^{2} and linear-in-pr dependence. Althougis the μ^{2} interpolation is suitable for some cases, such as that of Fig. 2.6, the linear-in-p cependence approximates the behavior of most of the cases iliusirated. Furthermore, both the diffusion approximation and the transparent isothermal regime have this dependence as a limiting value. Consequently, the linear-in- μ interpolation fcrmula has been incorporated into the STRAIIS routine.

2.3.3. Numerical Quadrature Formulas

The contribution of the angular interval ($\mu_{i}, \mu_{i \leq 1}$) to these irtegrals at position r is ferived in the linear-in- μ approximation. The intensity in this approximation is

$$
I=a+b \mu, \quad \mu_{i} \leq \mu \leq \mu_{i+1}
$$

where

$$
\begin{aligned}
& a=\frac{\mu_{i+1} I_{i}-\mu_{i} I_{i+1}}{\mu_{i+1}-\mu_{i}}=\frac{x_{i+1} I_{i}-x_{i} I_{i+1}}{x_{i+1}-x_{i}}, \\
& b=\frac{I_{i+1}-Y_{i}}{\mu_{i+1}-\mu_{i}}=r \frac{I_{i+1}-i_{i}}{x_{i+1}-x_{i}} ;
\end{aligned}
$$

I_{i} is the value of the intensity at μ_{i}. According to the y-line integration

Fig. 2. 4--Example of angular dependenen of intensity
1watollx

Fig. 2. 5--Example of angular dependence of intenalty

Fig. 2. 7--Example of angular dependence of intensity
scheme, μ_{i} and μ_{i+1} correspond to the angles formed at the intersections of two adjacent y-lines with the iriterface radius, at which point the integrals are to be formed. Two intervals are symmetrically located about $\mu=0$ by a pair of y-lines, as showe in Fig. 2.8. It is clear from the figure that

Fig. 2. 8--Angular intervals between adjacent y-lines
these two intervals can be treated together in the integrations over the interval ${ }^{-1} \leq \mu \leq 1$. Denoting intensities with positive μ by I^{+}and those with negative μ with $\overline{\mathrm{I}}$, the integrals can be grouped according to whether the integrand is even or odd. For even integrands,

$$
\begin{equation*}
\int_{-1}^{1} I f(\mu) \mathrm{d} \mu=\int_{0}^{1}\left(\mathrm{I}^{+}+\mathrm{I}^{-}\right) \mathrm{f}(\mu) \mathrm{d} \mu \tag{2.29}
\end{equation*}
$$

where $f(-|\mu|)=f(|\mu|)$, and for odd integrands,

$$
\begin{equation*}
\int_{-1}^{1} I f(\mu) d \mu=\int_{0}^{1}\left(I^{+}-I^{-}\right) f(\mu) \mathrm{d} \mu, \tag{2,30}
\end{equation*}
$$

where $f(-|\mu|)=-\mathrm{f}(|\mu|), \mathrm{I}(|\mu|) \equiv \mathrm{I}^{+}(\mu)$ and $\mathrm{I}(-|\mu|) \equiv \mathrm{I}^{-}(\mu)$ in which $0 \leq \mu \leq 1$.
For a given radius r, the quantities μ, x, and y associated with the interval $\left(\mu_{i}\left|,\left|\mu_{i+1}\right|\right)\right.$ satisfy the following inequalities:

$$
\left|\mu_{i+1}\right|>\left.\right|_{r_{i}} \mid, \quad x_{i+1}>x_{i}, \quad y_{i}>y_{i+1}
$$

where $x_{i}=\left|\mu_{i}\right| r$ and $y_{i}=\sqrt{r^{2}-x_{i}^{2}}$.
In terms of the above quantities, the contributions to the integrals of the interval $\left(\left|\mu_{i}\right|,\left|\mu_{i+1}\right|\right)$ in the linear-in- μ approximation are obtained as follows:

Forward Flux, ϕ^{+}(Eq. (2.23)):

$$
\begin{align*}
\int_{\mu_{i}}^{\mu_{i+1}} I^{+} \mu d \mu & =\frac{a^{+}}{2}\left(\mu_{i+1}^{2}-\mu_{i}^{2}\right)+\frac{b^{+}}{3}\left(\mu_{i+1}^{3}-\mu_{i}^{3}\right) \tag{2.31}\\
& =\frac{\left(x_{i+1}-x_{i}\right)}{6 r^{2}}\left[\left(x_{i+1}+2 x_{i}\right) I_{i}^{+}+\left(2 x_{i+1}+x_{k}\right) I_{i+1}^{+}\right]
\end{align*}
$$

Net Flux, ϕ_{r} (Eq. (Z. $2 \mathbf{c}$) $):$

$$
\begin{align*}
\int_{\mu_{i}}^{\mu_{i+1}}\left(I^{+}-I^{-}\right) \mu \mathrm{d} \mu= & \frac{\left(a^{+}-a^{-}\right)}{2}\left(\mu_{i+1}^{2}-\mu_{i}^{2}\right)+\frac{\left(b^{+}-b^{-}\right)}{3}\left(u_{i+1}^{3}-\mu_{i}^{3}\right) \\
= & \frac{\left(x_{i+1}-x_{i}\right)}{6 r^{2}}\left[\left(x_{i+1}+2 x_{i}\right)\left(I_{i}^{+}-I_{i}^{-}\right)\right. \tag{2.32}\\
& \left.+\left\{2 x_{i+1}+x_{i}\right)\left(I_{i+1}^{+}-I_{i+1}^{-}\right)\right]
\end{align*}
$$

Lateral Flux, ϕ^{0} (Eq. (2.25)):

$$
\begin{align*}
\int\left(I^{+}+I^{-}\right) \sqrt{1-\mu^{2}} d \mu= & \frac{\left(a^{+}+a^{-}\right)}{2 r^{2}}\left[x_{i+1} y_{i+1}-x_{i} y_{i}\right. \\
& \left.+r^{2}\left(\sin ^{-1} \frac{x_{i+1}}{r}-\sin ^{-1} \frac{x_{i}}{r}\right)\right] \tag{2.33}\\
& +\frac{\left(b^{+}+b^{-}\right)}{3 r^{3}}\left(y_{i}^{3}-y_{i+1}^{3}\right)
\end{align*}
$$

Radiation Energy, ER (Eq. (2.27)):

$$
\begin{align*}
\int_{\mu_{i}}^{\mu_{i+1}}\left(I^{+}+I^{-}\right) d \mu & =\left(a^{+}+a^{-}\right)\left(\mu_{i+1}-\mu_{i}\right)+\frac{\left(b^{+}+b^{-}\right)}{2}\left(\mu_{i+1}^{2}-\mu_{i}^{2}\right) \\
& =\frac{\left(x_{i+1}-x_{i}\right)}{2 r}\left(I_{i}^{+}+I_{i}^{-}+I_{i+1}^{+}+I_{i+1}^{-}\right) \tag{2,34}
\end{align*}
$$

Radiation Pressure, P_{R} (Eq: (2, 28)):

$$
\begin{align*}
\int_{\mu_{i}}^{\mu_{i+1}}\left(I^{+}+I^{-}\right) \mu^{2} d \mu & =\frac{\left(a^{+}+a^{-}\right)}{3}\left(\mu_{i+1}^{3}-\mu_{i}^{3}\right) \div \frac{\left(b^{+}+b^{-}\right)}{4}\left(\mu_{i+1}^{4}-\mu_{i}^{4}\right) \tag{2.35}\\
& =\frac{1}{12 r^{3}}\left[\left(I_{i}^{+}+I_{i}^{-}\right)\left(\gamma-4 x_{i}^{3}\right)+\left(I_{i+1}^{+}+I_{i+1}^{-}\right)\left(4 x_{i+1}-\gamma\right)\right]
\end{align*}
$$

where $\gamma=\left(2 r^{2}-y_{i}^{2}-y_{i+1}^{2}\right)\left(x_{i}+x_{i+1}\right)$.

SECTION III

THE DIFFUSION APPROXIMATION

The radiation transport equation in the limiting case of an optically thick medium admits of the diffusion approximation in which the expression for the radiation intensity is greatly simplified; only the iocal properties affect the radiation intensity at the point in question. An expansion of the radiation source function B_{y} about the foint r permits the intensity $\bar{I}_{v}(\mu)$ of the radiation fizid in the direction making ar angle, whose cosine is μ, with the radial direction to be formed.

3.1. DIFEERENTIAL FORM OF THE DTFFUSION FLUX

The general solution of the fransport equation forms the starting poini of the derivation. The iniegral expression for the intencity applicable to all geometries is

$$
I(\tau)=\int_{-\infty}^{T} B\left(\tau^{\prime}\right) e^{-\left(\tau-\tau^{\prime}\right)} d \tau^{\prime}
$$

where $\tau=\int_{0}^{r} \kappa_{\nu} \rho$ ds, in which κ_{ν} is the monochroinatic absorption coefficient (in $\mathrm{cm}^{2} / \mathrm{g}$) at frequency v. By expanding $\mathrm{B}\left(\tau^{\prime}\right)$ in series about the point τ, i.e.,

$$
B\left(T^{\prime}\right)=B(T)+\frac{\partial B}{\partial T}\left(T^{i}-T\right)+\frac{i}{2} \frac{\partial^{2} B}{2 \tau^{2}}\left(\tau^{\prime}-\tau\right)^{2}+\ldots,
$$

the intensity becomes

$$
I=B-\frac{\partial B}{\partial \tau}+\frac{1}{2} \frac{\partial^{2} B}{\partial \tau^{2}}-\cdots
$$

or

$$
I=B-\frac{\mu}{\kappa \rho} \frac{\partial B}{\partial r}+\frac{\mu^{2}}{\kappa \rho} \frac{\partial}{\partial r}\left(\frac{1}{\kappa \rho} \frac{\partial B}{\partial r}\right)-\cdots
$$

for spherically symmetric geometry.

The diffusion approximation resulis from retention of only the first two terms, so that the diffusion intensity is

$$
\begin{equation*}
I=B-\frac{\mu}{x p} \frac{\partial B}{\partial r} \tag{3.1}
\end{equation*}
$$

and the monochromatic diffusion firx ϕ_{r} and raciation energy E_{R} are

$$
\begin{align*}
& \phi_{I}=2 \pi c \int_{-1}^{5} \Psi d \mu=-\frac{4 \pi c}{3} \frac{1}{k T} \frac{\partial B}{\partial r} \\
& E_{R}=2 \pi \int_{-1}^{1} I d \mu=4 \pi B . \tag{3.2}
\end{align*}
$$

3.2. CRITERIA FOR THF SELECTION OF DIFFUSION REGIONS

The criteria for the validity of the diffusion approximation can be cbtained by examination of the above derivation--namely, that the expansion of the source function be justified and that the expansion converge rapidly so that the neglect of all but the leading terms is valid. If the source function is linear in T^{\prime} at the point in question and is also linear for a distance of the order of one mean free path on either side of the point, the criteria are satisfied. Thege criteria are difficult to quantify since they ref:r to a finite region containing the point in question. If all of the terms (or a large number of them) were checked for rapic convergence, this would imply (making a smoothness assumption) that the diffusion critericn is met. It is not possible with finite differences, however, to form the higher-order local derivative approximations.

In the SPUTTER subroutine SRADTN, criteria designed to give an indication of both the local and nonlucal behavior have been empioyed. First, at the zone interface at which the intensity and flux are to be evaluated, the inequality

$$
\begin{equation*}
\left|\frac{\partial B}{\partial h}\right| \ll B \tag{3.3}
\end{equation*}
$$

is required. In this expression $h=\int_{x: p} d r$ is the radial uptical depth; the derivative is approximated by the centered first difference of B between adjacent zones. The resulting expression, of course, contains some rozlocal aspects resulting from the finite difference approximation, which ensures that when neighboring zonez are optically thick, no nonlocal source perturbation is close enough to invalidate the diffusion approximation.

However, so prowice for the cases whers 2 source perturbation is located a iraction of an optical depth from an interface meeting tise condirion oí Eq. (3. 3), the diffusion region is constricted. Starting irom the closest interfaces outside the finiosion rcgion (where Eq. (3. 3) is aot satisiied), ali of tionse interiaces lying within áprescribed muraker oí mean irce patinz are removed irom the fifinsion region.

The criteria used in SPJTTER are controlled by input numbers. The criterion of Eq. (3.31 uses the input narriber HCR:

$$
\begin{equation*}
|\mathrm{TG}|<\mathrm{HCB} \times \mathrm{Y} 2, \tag{3.4}
\end{equation*}
$$

wheze TG is the difference approximation to the gradient and $Y 2$ is the source function evaluated at the interiace by interpolation. The second criterion uses the input number FV VB (in mean free paths). If

$$
\begin{equation*}
|Q 3(\mathrm{I}]-Q 3(J)|>\text { HVB } \tag{3.5}
\end{equation*}
$$

then the interface with index J winich satisfies Eq. (3.4) is removed from the diffusion region. In Eq. \{3.5), $Q 3$ is the radial optical depth and I is the index of the nondiffusion interface adjoining the diffusion region.

Although the diffusion caiculation is considerably faster than the t=ansport, the establishment of two transport regions separated by the single zone requires still more calculation to set up y-lines and perform bookireeping operations. Tc avoid the duplicate setup calculations required for an additional transport region, a test is made to eliminate a diffusion region consisting of a single zone.

3.3. DIFFERENCE FORM OF THE DIFFUSION F \mathcal{H} UX

The diffuzion intensity derived above ie

$$
I=B-\frac{\mu}{\kappa \rho} \frac{\partial B}{\partial r}
$$

In the group frequency approximation of SPUTTER, the intensity integrated over a frequency interval $\left(\nu_{j}, v_{j+1}\right)$ is reauired:

$$
\int_{v_{j}}^{v_{j+1}} I d v=\int_{v_{j}}^{v_{j+1}} B d v-\frac{\mu}{\rho} \frac{\partial \theta^{4}}{\partial r} \int_{v_{j}}^{\nu j+1} \frac{\partial B}{\partial \theta^{4}} \frac{d \nu}{\kappa_{\nu}}
$$

In terms of the partial Rosseland mean absorption cozfficiert

the frequency group intensity becomes

$$
\begin{equation*}
I_{j}=\int_{v_{j}}^{\nu} I d \nu=\int_{\nu j}^{\nu} \nu_{j+1} B d \nu-\frac{\mu}{\rho} \frac{\partial \theta^{4}}{\partial r} \frac{\int_{j}^{\nu} \frac{\partial B}{\partial \theta^{4}} d \nu}{x_{j}} \tag{3.6}
\end{equation*}
$$

It is dezired to evaluate this quantity at each zonal interface in the mesh. Since the known quantities are the zone temperatures and densities, the absorption coefficients κ_{j} and the integrated source functions $X 6=\int B d v$ are first evaluated not at the interfäces but at positions representative of each zone.

The question remains as to how best to approximate the derivatives and interpolate for the coefficients in Eq. (3.6) at the interfaces from the quantities available at zone positions. The answer depends on the terrperature and density profile across the interface from which these terms could be calculated directly. Since the profile is not known, we must select a reasonable approximation which will permit the calculation to be carried out. In fact, the appropriate profile depends on the events which have taken place in the calculation and on the energy transport mechanisms of greatest importance in it. As extreme examples, a problem dominated by hydrodynami $2 s$ might have quantities cietermined by passage of a strong shock and subsequent linearization in mass coordinatea of the pressure behind the shock, whereas a radiation-dominated diffueion problem is characterized by linearity of the radiation potential, which, in turn, depends on the Rosseland opacity. Of course, such detailed information about the progress of a problem is generally unavailable, so, at best, an approximation based on over-all accuracy is needed.

Since the terms under consideration are the radiation diffusion equations, the interpolation is performed in a way to give greateat accuracy when the diffusion terms are most important-namely, when the profile
 reduce the sumber of coefficients requiring interpolation, This can be done by noting the icentity

$$
\frac{\partial}{\partial r} \int_{v_{j}}^{v} B+1 \quad B d \nu=\frac{\partial \theta^{4}}{\partial r} \int_{v_{j}}^{v} \frac{\partial \theta^{j}}{\partial \theta^{4}} d \nu
$$

and by forming the variable $\tau=\left\{p x_{j} d r\right.$. In terms of these quantities, the intensity can be written as

$$
i_{j}=\int_{v_{j}}^{v} B+1 \quad B d v-\mu \frac{o v_{j}}{\partial T}
$$

SECTION IV

FREQUENCY INTEGRATION

Equations derived in Sections II and III which are applicable to a particular frequency of the radiation field are of limited usefulness in the SPUTTER calculations. Although in principle a calculation at a particular frequency might be valuable for comparison with high-resolution spectroscopy, in practice no such data have been available. Of much more use are intensities averaged over a wide frequency band. These quantities can be compared with data from wide-band measurements and, most important of all, can be summed for use in the energy integration in the SPUTTER code. The quantities to be summed are the frequency-integrated radial flux component, the radiation energy density, and the radiation pressure. For performing interaction calculations, it is also valuable to form other components of the radiation flux.

Basically, the quantity which is required for each of the above applications is the frequency-group intensity I_{ij},

$$
\begin{equation*}
I_{i j}=\int_{\nu_{j}}^{\nu j+1} I_{i} d \nu \tag{4.1}
\end{equation*}
$$

Then, for example, this quantity can be integrated over angles to form $\phi_{r_{i j}}$, the contribution to the radial flux at position i of fre juency group j :

$$
\phi_{r_{i j}}=\int_{-1}^{1}\left(I_{i j}^{+}-I_{i j}^{-}\right) \mu \mathrm{d} \mu,
$$

and thus the total radiant flux at position $i=$

Equation (2.9) gives the expression for the frequency-dependent intensity to be used in Eq. (4.1). The frequency integration of Eq. (2.9) is discussed in Section VII of Volume V, but the current SPUTTER code does not include the transmission functions. The first two terms of Eq. (2.9) which form the diffusion limit can be integrated, as in Section 3. 3, to give

$$
\begin{equation*}
{ }_{i j}=E_{i j}-\frac{\mu}{\sigma_{R_{j}}} \frac{\partial B_{i j}}{\partial r} \quad \text { (diffusion limit) } \tag{4.2}
\end{equation*}
$$

in which the first term

$$
B_{i j}=\int_{v_{j}}^{v_{j+1}} B_{i}(v) d v
$$

is the frequency-group Planck function and the second term contains the frequency-group Rosseland mean absorption coefficient $\sigma_{R_{j}}=\rho \kappa_{j}$. In this form, Eq. (4.2) correctly gives the frequency-group Intensity for the optically thick limiting case. The remaining B_{i} and $\left.\partial B / \partial \tau\right)_{i}$ terms of Eq. (2.9) are formed in the same way. Thus,

$$
\begin{align*}
I_{i j}=B_{i j} & -\left(\frac{\mu}{\sigma_{R}} \frac{\partial B}{\partial r}\right)_{i j}+\left[\left(\frac{\mu}{\sigma_{R}} \frac{\partial B}{\partial r}\right)_{i j}-\left(\frac{\mu}{\sigma_{R}} \frac{\partial B}{\partial r}\right)_{i-1, j}\right] \overline{e^{-\Delta / 2}} \\
+ & {\left.\left[I_{i-1, j}-B_{i-1, j}+\left(\frac{\mu}{\sigma_{R}} \frac{\partial B}{\partial r}\right)_{i-1, j}\right]\right]^{-\Delta} } \tag{4.3}
\end{align*}
$$

In Eq. (4.3), mean values of the exponentials have been extracted from the frequency integrals and the outstanding problem is to specify their values. Two options are available; they differ in the absorption coefficient used to calculate the optical depth. The first is

$$
\begin{equation*}
\overline{e^{-\Delta}}=e^{-\sigma R^{\delta}} \tag{4.4}
\end{equation*}
$$

and the second is

$$
\overline{e^{-\Delta}}=e^{-\sigma P^{\delta}}
$$

where

and

$$
\delta=x_{i}-x_{i-1}
$$

For small optical depth, the correct result mikes use of the Planck mean absorption coefficient. From Eq. (2.15) the frequency integration then gives

$$
\begin{equation*}
I_{i j}=I_{i-1, j}+\left[\frac{1}{4} B_{i j}+\frac{1}{4} B_{i-1, j}+\frac{1}{2} B_{i-\frac{1}{2}, j}-I_{i-1, j}\right] \sigma_{p} \delta \tag{4.5}
\end{equation*}
$$

The above prescriptions for frequency-group means are far from satisfying and call for further work. Considerable economies can be made through reductions in the number of frequency groups if a more accurate means of averaging wi hin groups can be found. Presently used choices of irequency groups appear to give a reasonably accurate result, however, as indicated by comparisons between calculations with the nominal number of frequency groups and calculations with a very large number of frequency groups. (If is expected that a unique correct result will be obtained as the number of frequency groups is increased, irrespective of the choice of the weighting function in the frequency-group-average absorption coefficient.) Consequently, a very few frequency groups should be adequate if a suitable averaging procedure were developed.

Even with a crude averaging scheme, considerable inprovement in accuracy results from choice of frequency-group boundaries so as to reduce the variation of the absorption coefficient within the group.

Work on the absorption coefficient for air indicates that approximately 20 groups, carefully selected as to their locations, afford quite adequate resolution. Enough information is known about air to make this selection appear quite reasonable. Air absorption coefficient tapes (DIANE)* have been prepared for 18,20 , and 90 groups. The $90-$ group tape is used to check on the frequency integrations at selected times. The proper averages to use are difficult to decide on at this time. There are provisions for reading inte storage from the DIANE tapes both the Rosseland and Planck averages, which are used at present in the thick or thin limits, respectively.
*See Section VI of Voiume V.

SECTION V

SUBROUTINE ORGANIZATION AND ECONOMICS

The present spinerical transport subroutines were written with the idea of removing unnecessary calculations from inside the frequency loop and characteristic ray (y-line) integrations while improving the accuracy in the angular integrations by using an interpolation between y-lines. These improvements required an increase in storage for the subroutines to attain a decrease in calculational time and an increase in accuracy. It is now practical to use fewer y-lines and thus a factor of approximately 4 in savings on calculational times over the old routines may be achieved. The reorganized subroutines will be discussed in two sections, corresponding to the two major subroutines: (l) the radiation subroutine (SRADTN) in which most of the preliminary setup and the diffusion calculation is completed and (2) the transport subroutine (STRANS) in which the intensity calculation and angular integrations are performed. The subroutines which execute the opacity interpolations (KAPPA), Planck function (PLNKUT(2)), and fast exponential (FREXP) will be discusged in Section 5.3. The input numbers and the output edits will be presented in Sections 5.4 and 5.5.

5. 1. THE SRADTN SUBROUTINE

In SRADTN, the main y-line array is set up, high-frequency groufs are merged, a source region is established, boundary sources and derivatives are calculated, regions for transport and diffusion are formed, diffusion fluxes are calculated, frequency integration is performed, and the radiation time-step control is evaluated. Each of these activities in SRADTN will be discussed in subsequent paragraphs.

5.1.1. Set Initial Y-line Array

The number of y-lines is limited by the storage ailocated for the x-block. A test is made, and if this storage is to be exceeded by the placing of a y-line at each radius, the y-array is reconstructed by using every other radius for the y-line placement. However, an additional y-line is added at each zone interface where the temperature gradient is large (refer to Section 2.2.1).

5.1.2. Merge Frequency Groups

Frequency groups that are too far out on the Planck tail for a "maximum" temperature in the mesh are merged. The criterion used is as follows: 珵 the lower frequency boundary $h v_{1}$ of the group in question ($\mathrm{h} \nu_{1}, \mathrm{~h} \nu_{2}$) is greater than ten times the maximum temperature (THMAX) in the mesh, this group will be merged with the next lower group. Merging will continue until over half the groups have been merged; at this point, either the calculation is terminated or a second DIANE tape is called. On merging, Rosseland and Planck averages axe formed by using the following equations for $d B / d \theta^{4}$ and the appropriate sums:

$$
\begin{align*}
& \frac{{ }^{25}}{d \theta^{4}} \cong \frac{0.0384974}{\theta^{4}}\left[\left(\frac{h v_{2}^{4}}{1-e^{-h \nu_{2} / \theta}}\right) e^{-h \nu_{2} / \theta}-\left(\frac{h v_{1}^{4}}{1-e^{-h v_{1} / \theta}}\right) e^{-h v_{1} / \theta}\right], \\
& \sum b_{j} \theta^{4}, \quad \sum \frac{d B_{v}}{d \theta^{4}}, \quad \sum b_{j} e^{4} \kappa_{P}, \quad \text { and } \sum \frac{d B_{\nu}}{d \theta^{4} \kappa_{R}} . \tag{5.1}
\end{align*}
$$

The Planck weighting functions (b_{j}) are obtained from PLNKUT, as described later. On completing the merging, the merged opacities are formed:

$$
\begin{align*}
& \overline{\kappa_{R}}=\sum d B_{\nu} / d \theta^{4} / \sum d B_{v} /\left(d \theta^{4} \times \kappa_{R}\right) \quad \text { (CAPAR) }, \\
& \overline{\kappa_{P}}=\sum b_{j} \theta^{4} \kappa_{P} / \sum b_{j} \theta^{4} \tag{5.2}
\end{align*}
$$

5.1.3. Set Up Sources and Derivatives

The frequency-dependent sources must be established at the interfaces from the zonal quantities $b_{j} \theta_{i+\frac{1}{2}}^{4}$ (X6(i)) and $\tau_{i+\frac{1}{2}}$ (H3(i)). The difference equations used were given in Section 2.1. Before the calculation of the Planck function (b_{j}) is made, i, e., before calling PLNKUT, a test is made to see if u_{1} (i. e., the reduced frequency $\left.h v_{1} / \theta\right) \geq 19$; if so, $b_{j}=0$ (i. e., the source $X 6(i)=0.0)$. If $u_{1}<19.0$ and $u_{2} \leq 0.01$, then $b_{j}=0$ also, assuming that for $\theta^{4}<10^{5}$, the small $\mathrm{b}_{\mathrm{j}}\left(\mathrm{b}_{\mathrm{j}} \sim 10^{-5}\right)$ will produce a negligibly small source contribution. An index (ICX) is set equal to the last zone that contains a source, This source index is used to limit the transport calculaiion to the region containing sources. While setting up the sources and derivatives, tests are made on their discontinuous nature to use either a linear or constant form in the intensity integrations. The initial check is on the minimurr optical
depth of adjacent zones to ensure that both are transparent (less than 0.3). If this condition holds and if both the sources and optical depths are changing rapidly in r (change greater than a factor of two), the derivative at that interface ($T G(i)$) is set equal to zero. The zero souxce derivative is used in STRANS, as a test, to set up the constant source terms. For the intensity integration, special boundary sources and derivatives are also established at the edge of the source region ($I=I C X$) and at the outside of the mesh ($I=I M$) (see Section 2.1.4).

5.1.4. Determine Diffusion Region

The principal criterion for defining a diffusion region is that the first derivative of the source function ($T G$) be small compared to the source (Y2) (see Section 3.2). When the zone is found to be diffusion, the boundary is tagged by setting ($\mathrm{X} 3=-1$.). Before incorporating this interface into a diffusion region, the possible influence from sources on either side is considered and a further test is made. From the last diffusion boundary, a test is made for an optical depth in succeeding zones to the left. If more than HVB optical depths appear in the next zone, then this zone is calculated by transport and removed from the diffusion region (set $\mathrm{X} 4(\mathrm{i})=-1,0$). HVB is an input number, which is usually around 5 . When $r=0$ is reached after testing each zone, zones out to the right of the present transport region are tested in the same manner. The above test buffers the transport region with an (HVB) mean-free-path-thick diffusion boundary. If the zone boundary stays diffusion, i.e., X3(i) $=-1.0$ and $\mathrm{X} 4(\mathrm{i})=0.0$, a diffusion flux is calculated from the source gradients, as described in Section 3.1. The regions where $\mathrm{X} 3(\mathrm{i})=0$. or $\mathrm{X} 3(\mathrm{i})=-1$. and $\mathrm{X} 4(\mathrm{i})=-1$. have been established as transport regions because they did not meet the diffusion criteria or they reverted to transport regions by the optical-depth test described above. This transport region is then identified by setting the left boundary to IAX and the right boundary to IBX. More than one trans region may be set up in SRADTN, and if so, an STRANS calculation will be made for each region. No one-zone diffusion region is allowed and the region outside the sources ($\mathrm{I}>$ ICX) is always considered a transport region.

5.1.5. Time-step Control and Monofrequency Calculation

These two aspects of the new code are related since the "grey" absorption coefficients from the DIAIVE tape are used to estimate a radiation time stap as well as to form the monofrequency time-dependent calculation. In the multifrequency calculation, after all groups have been processed, an additional call for KAPPA is made to read in the grey absorption coefficients. These averages were obtained by integrating the frequency-dependent absoiption coefficients for both Planck $\left(\overline{\kappa_{p}}\right)$ and Rosseland ($\overline{\kappa_{R}}$) in the DTANE code. The actual time step for radiation transfer is then obtained from the formula

$$
\begin{equation*}
\Delta t_{\mathrm{k}}=\left(0.5+1.5 \mathrm{H} 3(\mathrm{i})^{2}\right) /\left(\mathrm{ack} \mathrm{R}_{\mathrm{\theta}} \theta^{3}\right) \times \mathrm{CV}(\mathrm{i}) \tag{5.3}
\end{equation*}
$$

where $C V(i)$ is the specific heat and $a c=4.12 \times 10^{12}$. The mé -3 point in question is also checked to ensure that it will not gain or lose more than half its original energy:

$$
\begin{equation*}
\Delta t_{R}=0.5 \times C V(i) \times \theta(i) \times G(i) /|E R(i)| \tag{5.4}
\end{equation*}
$$

where ER(i) is the divergence of the flux and $G(i)$ is the mass in the zone. The minimum of these values is compared to the hydro time step (Courant) and if smaller,

$$
\begin{equation*}
\text { NRAD }=\text { FIX\{DTH2 } / D T R M I N) \quad \text { end } \quad D T R=D T H 2 / N R A D \tag{5.5}
\end{equation*}
$$

is set to cycle NRAD times through the racuiation routine.
The monofrequency calculation also uses the grey absorption coefficients from the DIANE tape. If KMAX $=0.0$ and $S 15=1.0$, the frequency-averaged opacities are byparsed on the tape and only the grey absorption coefficients are read into storage. For succeeding cycles, S 15 is set equal to zero and the interpolations for $\overline{\kappa_{R}}$ and $\overline{\kappa_{p}}$ are performed in KAPPA using the stored opacities originally read into KAPPA's common storage. When the problem is restarted it is therefore necessary to reload S15 equal to one. If the DIANE tape is not designated (the tape unit assigned must be stored in AMASNO $(J+17)$, where J is the material number), then the KAP routine is called (KAP8 for air) and used for the monofrequency calculation.

5.2. THE STRANS SUBROUTINE

The subroutine STPANS is called by SRADTiN to cariy out the intensity integration butween IAX and IBX, saving various quant ties on the inward pass that will be used on the outward pass as well as the angular integration of the flux between y-lines ($\int_{-1}^{1} I \mu d \mu$). The logic is to calculate first the intensities aiong the central ray ($y=0$), storing these vaıes and the exponentials $\left(e^{-\Delta T}\right)$ for use on the cutward pass. The outward pass is inen calculated using the above exponentials and the new intensities are s \because ed separately. After the intensity transport along a typical ray ($y \neq 0$)is, done, the flux calculation is done while the right side of the calculation is being completec. The angular integration is based on a linear interpolation of the intensities between y-lines. The logic in STRANS is described in detail in the following sections.

5.2.1. Y-line Placement

In SRADTN, a complete set of y-lines was estailished, based on storage limitation and temperature gradients. In STRANS, y-lines in each frequency groupare selected more judiciously, based on a number of conditions. First, if a diffusion core exists (IAX > 1), three rays that will penetrate the core are selected. As each ray is selected, the intensity calculation and anguiar integration is completed. In the transport region, a test is made for steep gradients between pairs of zones, as indicated in Section 2.2.2. If changes greater than approximately 15 percent occur, a y-line is selected; ii not, every fifif. y-line is used.

5.2.2. Intensity Integration Along Y -lines

As indicated in Section II, the central $y=0$ integration is carried out first and the intensities at each intersection are stored in working arrays. The integration using Eq. (2.9) starts from the outside IBXPI and works inward, storing the exponentials $e^{-\Delta T}$ in $H 4(i)$ and the intensities I_{i} in SUMX3(i) to zone IAX. For the outward pass, these exponentials are used in Eq. (2.9), but now the sign of the derivatives is changed to $d B / d T \rightarrow-d B / d T$. After the selection of a y-line, the intensity calculation is performed. Now, not only the exponential is stored, but also $\mu(\partial \mathrm{B} / \partial \mathrm{h})_{i+\frac{1}{2}}$ in X8(i) on the inward pass for use on the outward pass. During the outward pass, the angular integration is accomplished and stored in X2(i) using the intensities calculated on both y-lines, as described in Section 5.3. The special condition where a y-line intersects a zone near $x=0$ is treated differently (see Section 2.1).

The regions where constant sources, and therefore zero boundary derivatives, should be used in the intensity integrations were established in SRADTN by setting $T G(i)$ equal to zero. In the integration along a particular y-line, a test is made on $T G(i)$ at each interface; if zero, the sourçe terms $Y 2(i-1)$ and $Y 2(i)$ are set equal to $\mathrm{X} 6\left(i+\frac{1}{2}\right)$ (see Fig. 2.2).

As was discussed in Section 2.1.1, the accuracy of the exponential term and the effect oftruncation errors mean that the general formula will not reduce in the limit of small optical depths to the transparent case. To roxrect this situation, a test is made on τ_{i} (the one-half optical depth stored in $\mathrm{H} 3(\mathrm{i})$ as calculated) and if it is less than 10^{-2}, a switch is made to the limiting form of the transport equation (Eq. (2.15)) developed in Section II.

5.2.3. Angular Integration

This section of STRANS uses the intensity information stored on adjacent y-lines to give a more accurate angular integration. The ineas interpolation of the intensities is used in the quadrature formulation of the fluxes (Eq. (2.32)
in Section 2. 3). While the intensity integration is being completed on the right-hand side (RHS), use in made of stored intensities on the left-hand side (LHS) for adjacent y-lines to calculate the fluxes across radial boundaries X2(i). The stored quantities used are: SUMX3(i) for the LFS intensity on the present y-line, $F M(i)$ for the LHS intensity on the previous y-line, and SUMX4(i) for the RHS intensity from the previous y-line pass. F2 is the current intensity being calculated along the y-line in question. The special condition to complete the flux integrations where no y-lines exist uses a "top-slice" approximation, as discussed in Section 5.2.5.

5.2.4. Boundary Conaitions

The usual assumption of zero intensity at the surface of the sphere is used; i. e., $I_{i-1}=0$ to start the intensity calculation. If the indication is that a diffusion region bounds the transport region (IBX < IM), a diffusion boundary condition for the intensity is applied (see Section 2.1.5). At the center, the outward intensity is set equal to the inward intensity.

5.2.5. "Top Slices" and Finish Up

The term "top slice" is used to describe the integration of the flux for zones which do not have y-lines. For instance, outside the sources there is no need for y-lines, and therefore it is assumed that the intensity drops to zero at the outside. If there exist zones with sources (the normal case) between y-lines, then a linear interpolation from y_{1} to y_{2} is used to establish intensities for integration at those zones. The interpolation form usedis given in Section III. If a diffusion region bounds the transport region, a diffusion intensity for the interpolation is calculated (see Section III).

5.3. AUXILIARY SUBROUTINES

In addition to the two new basic subroutines SRADTN and STRANS, some changes have been made in the auxiliary subroutines EXP, PLNKUT, and KAPPA. These changes include (1) a fast exponential (FiEXP), (2) a two-argument Planck function, and (3) the use of the average opacities from KAPPA (θ and ρ interpolation) for the monofrequency calculation as well as for the Flanck opacities.

The new rast exponential routine uses table lookup and interpolation rather than the normal expansion methods. The routine is written in machine language but uses the library routine $\operatorname{EXP}(\mathrm{X})$ for positive X or $X>-10$. An over-all gain in speed of a few percent was achieved in one comparison SPUTTER calculation.

The PLNKUT routine, with its associated tables PLNKTT, has been corrected and made more efficient by using a two-argument call which now calculates from either the analytic form or from the tables the difference in

$$
\begin{equation*}
b\left(u_{1}, u_{2}\right)=\frac{1}{B} \int_{v_{1}}^{v_{2}} \frac{h v^{3}}{c^{2}} \frac{1}{e^{-h \nu / k T}-1} d \nu=b_{j} . \tag{5.6}
\end{equation*}
$$

The accuracy is improved since now not only differences of nearly equal numbers are subtracted.

The subroutine KAPPA, which calls in the group-averaged absorption coefficients from the DIANE tape and performs a bilinear log interpolation in temperature and density, has been modified to obtain the grey absorption coefficients as well as the Planck averages. At present the format of the DIANE (absorption coefficient) tape includes a BCD record for tape identification, the Rosseland and Planck averages for a selected set of temperatures and densities from 0.25 ev to 50 ev and from 10 normal to 10^{-6} normal, and the actual integration, $S \kappa_{\nu} d \nu$, for the grey case. The grey or frequency-integrated averages are also used for an estimate of the time step in SRADTN. KAPPA reads in first the tape name, the number of frequency groups, and the size of the records. If the sentinsl for multifrequency is set to KMAX $=1$, then the first frequency group, $h \nu_{1}$, and its absorption coefficients are read into storage. The interpolations in $\log \theta_{i}$ and $\log \rho_{i}$ are performed and a return to SRADTN is made. If $K M A X=0$, then KAPPA skips over the frequency-dependent absorption coefficients and reads into storage the grey averages. A signal, $\mathrm{Sl} 5=0$, is subsequently set, and for further cycles the interpolations are made on the stored quantities; the tape is not called again.

5.4. INPUT NUMBERS

The input quantities used in the radiation transport subroutines and their functions are listed below by card number. Included is a set of values for the input quantities selected for solving typical problems.

Card

No.	Quantity	Value	Purpose
44	KMAX	1.	Signal to do multifr equency
77	CVB	0	Select all y-lines
81	HVB	5.	Buffer of trans region in number of optical depths
83	HCB		Diffusion criteria (see Section 5, 4)

$\begin{aligned} & \text { Card } \\ & \text { No. } \end{aligned}$	Quantity	Value	Purpose
87	CB	0	Brightness print on cycles
88	GA	0.33	Gradients in optical depths and sources for applying TG criteria (see Jection 5.3)
90	GL	0.3	Gradients in source and MPP for selecting y-lines
121	CMIN	0.3	Minimum depth of adjacent zones for applying TG criteria (see Section 5. 3)
127	AC03T4	0.1	One-half optical depth for Planck-Rosseland transition
147	Sl2	10.	Cycles between multifrequency prints
150	S15	1.	Restart on grey calculation
8478	TELM(37)	0.005	Fraction of total energy in zone for time-step criteria
8725	AMASNO(25)	9.	To select B5, in this case for air tape
8858	SOLID(10)	10.	Signal to use Planck mean free paths
8466	TELM(25)	1.	Constant multiplying radiation time step

5.5. EDITS

The editing of such frequency-dependent quantities as H 3 , the optical depth (Rosseland), X6, the source (b, θ^{4}), X2, the flux (in ergs/ $4 / 3 \pi \mathrm{sec}$), ER , the radiation energy (in ergs/ cm^{3}), PR , the radiation pressure (in dynes $/ \mathrm{cm}^{2}$), PHO, the sidewise flux (in ergs $/ \mathrm{cm}^{2}-\mathrm{sec}$), PHL, the forward flux (ergs $/ \mathrm{cm}^{2}-\mathrm{sec}$), and PH2, the backward flux (in ergs $/ \mathrm{cm}^{2}$.sec) versus radius is accompiished by setting $S 12$ to the desired number of cycles between prints. These multifrequency edits have been used to evaluate the criteria for the subroutines as well as for diagnostics during the calcuidtions. For example, one quantity found to be mozt useful for fireball diagnostics has been the flux out in rarious frequency g, oups. Eecause of this, the flux out is edited out in the standard SPUTTER ortput, X7.

A list of sample editing for a particular frequency group is given on page 45. The HNU is in electron volts.

To obtain a limited set of intensifies for purposes of debugging the code, a "debug print" option cay be added. The FORTRAN statements and input cards necessary for debugging are listed on page 46. The quantities
found useful to display for each frequency group and for a central y-line and a selected y-line are listed on pages 47 and 48 .

Table 5.2
INPUT CARDS FOR DEBUG OPTION

```
LCCATION OF VARIABLE IN SPUTTER COMMON NUMBER OF INPUY WORDS THIS CARD INPUT HORD
* LOCATION OF VARIABLE IN SPUTTER COMMON
INPUT WORD
311 1 0.
8876 1 5.9
8877 1 6.1
```

R(152)
SOLID(28)
SOLID(29)

```
C
```

C
DEBUG PRINT
DEBUG PRINT
C
C
708 DHNU=HNUP-HNU
708 DHNU=HNUP-HNU
IF(R(152))713,712,713
IF(R(152))713,712,713
713 IF (HNU-SOLID(29)) 712,714,714
713 IF (HNU-SOLID(29)) 712,714,714
714 IF (HNU-SOLID(28)] 715,715.712
714 IF (HNU-SOLID(28)] 715,715.712
715 WRITE (6,3) HNU,HNUP
715 WRITE (6,3) HNU,HNUP
717 WRITE (6,5) Y(JJ)
717 WRITE (6,5) Y(JJ)
718 URITE (6,6) JJ,IAX,IBX,ICX
718 URITE (6,6) JJ,IAX,IBX,ICX
WRITE (6,8)
WRITE (6,8)
IAXP I=MAXO(IAX,IAXP-1)
IAXP I=MAXO(IAX,IAXP-1)
DO 721 {=1AXP1,IBXP1
DO 721 {=1AXP1,IBXP1
IFIJJ.GT.1) GO TO }72
IFIJJ.GT.1) GO TO }72
C
C
C
C
719 WRITE (6,7) I,C(I),X6(I),H2(If,H3(I),SUMX3(I),SUMX4il),X2(I)
719 WRITE (6,7) I,C(I),X6(I),H2(If,H3(I),SUMX3(I),SUMX4il),X2(I)
GO TO 721
GO TO 721
720 KKK=KK-I+1:M+3
720 KKK=KK-I+1:M+3
C
C
C
C
C
C
print regular y-line injegradion
print regular y-line injegradion
WRITE {6,7)I,X(KKK),X6(I),H2(I),H3(I),SUMX3(I),SUMX4(I),X2\&I)
WRITE {6,7)I,X(KKK),X6(I),H2(I),H3(I),SUMX3(I),SUMX4(I),X2\&I)
721 CONTINUE
721 CONTINUE
7 1 2 CONTINUE

```
    7 1 2 \text { CONTINUE}
```


TIMING AND ACCURACY COMPARISONS

A timing and accuracy study was made on the new radiation and transport subroutines, SFADTN and STRANS, so that the new routines could be compared with the old routines to obtain a quantitative estimate of the improvements. It was estimated that the =corganization of the subroutines would reduce the calculational time by 50 percent.

6.1. CALCULATIONS FOR TIMING AND ACCURACY

1. Initial formulation of sources, including source at icx +1 , and characteristic y-lines was made with the faster exponential subroutine FREXP. (This is compared with the same calculation using the library exponential subroutine.) I
2. In the subsequent calculations, the FREXP was used and sources at icx +1 were set to 0 .
3. The index for setting the initial y-line distribution (all y-lines are not necessarily used) was improved. A calculation was made where the input number, CVB, that controls the initial number of y-lines was set to 0 (i.e., generate all y-lines).
4. The above calculations were done with thick/thick (i.e., Rosseland) opacities ueed throughout ($\operatorname{SOLID}(10)=10$.). A two-cycle run was completed to check that the calculation recycles correctly.
5. The main accuracy and timing comparisons were made with calcuiations having normal y-line and all-y-line configurations and with the thick/thick and thick/thin approximations (set of 4). The thick/thin approximation used here differs from the Planck and Rosseland avesages used in the old subroutines.

The comparison in calculation time was obtained by using timing calls at selected locations in the logic of the code. To use the timing calls, it was necessary to establish a fiducial time from the system clock and then print the location of the time call, the time, and the difference in time between calls for each call. The subroutine that carries out these steps is CLOCK.

In the calculations described above, the subroutine CLOCK was called at the following locations in SRADTN and STRANS:
13. 105 - After setting $\log _{10}$ of θ and $S V$
13.118-After calculating x-array
13.140 - After call KAPPA on merge
13.700 - End of merge and source
13.701-After call KAPPA on main frequency loop
13.151-After calculating general sources
13.180-Before call transport (STRANS)
13.292-After edit (normal) end of frequency loop
13.286-After last frequency s'cart time step
13.289 - End of cycle

STRANS

14. 708 - Before debug print

6.2. COMPARISON FOR TIMING

The general conclusions from the timing study are summa"ized as follows:

1. The use of the faster exponential subroutine FREXP in comparing a normal y-line problem showed an improvement of approximately 2.5 percent.
2. The all-y-line calculations did not increase the calculational time in proportion to the increase in y-lines, i. e., a factor of 5 increase in y-lines increased the running time by only 80 percent.
3. The normal setup times and typical frequency-group-dependent calculational times for a number of runs (in units of $1 / 60 \mathrm{sec}$) are:
Set up $\log _{10} Q$ and $S V$ ~ 4
Calculate x-array (36 y -lines) ~32
Call KAPPA first group ~34
Call KAPPA second group ~ 23
Merge above and calculate source ~ 10
Total setup time, including merging two groups ~ 103
4. A breakciown of tie times required for a normal frequency loop (i. e., nermal y-lines) is as follows:

Bring in new z.tsorfition coefficients (call KAPHA)	~ 18
Source calculation (PLNKUTT)	$\sim 5-8$
Calculations before "call trans," mostly diffusion fluxes	~ 2
y-line calculation of intensities	~ 7
Normal print (X2, H3, etc.)	~ 35
Total time per irequency group with normal EDIT	~68
Brightness print	~ 11

The radiation cycle is completed by calculating a minimum time step from the grey absorption coefficients obtained at this time from a fit in KAP8.

The total times for a radiation cycle with ~ 60 zones (36 are active) and 21 frequency groups require for

Normal editing	$\sim 1.49 \times 10^{3}(1 / 60 \mathrm{sec})$
Brightness editing	$\sim 1.2 \times 10^{3}(1 / 60)$
No special editing	$\sim 1.00 \times 10^{3}(1 / 60)$

The ali-y-line caiculation with normal editing takes $\sim 2.40 \times 10^{3}(1 / 60 \mathrm{sec})$.
In comparison, with the old subroutines the calculation times (in units of $1 / 60 \mathrm{sec}$) for a particular frequency group require:

All y-line	~ 200
KAPFA	~ 17
Source	$\sim 13-30$
Normal prints	~ 17
Brightness print	~ 13

The setup time for all groups, including the monofrequency time step, is $\sim 30(1 / 60 \mathrm{sec})$. The total times for a radiation cycle with 60 zones, 21 frequency groups, and all y-lines require for
All prints
Normal editing
$\sim 5.40 \times 10^{3}(1 / 60 \mathrm{sec})$
$\sim 5.19 \times 10^{3}(1 / 60 \mathrm{sec})$

6. 3. COMPARISOA FOR ACCURACY

The new SRADTN and STRANS subroutine calculations are compared to an all-y-line, all-transport result from HA5. In general, the results all agree within 5 to 8 percent either from a flux versus radius comparison (Fig. 6. 1) or from a central brightness comparison (Fig. 6.2). The differences are qualitatively understood and are within acceptable limits. The close agreement (within 1 percent) of the new all-trans, all-y-line calculations with the standard routines indicates that the normal y-line calculation for Rosseland averages (~ 5 to 8 percent) gives very goo results with fewer y-lines. This result can probably be improved.

6. 4. CONCLUSIONS

The over-all computational time has been reduced by a factor of two from the old standard iransport calculation without apparent loss in accuracy. The new formulation will allow for fewer y-linzs and subsequent further decrease in running time from the old calculation with estimated difierences of only 5 to 8 percent.

Fig. 6. l--Elux versus radius comparison with results from old version of code

Fig. 6. 2--Central brightness comparisori with results
from old version of code

REFERENCES

1. Optical Interactions, Vol. II, The SPUTTER Program (U), Air Force Sperial Weapons Laboratory, RTD-TDR-63-3128 (AD-440287), Way 1964. (Vol. II Unclassified).
2. Lindley, W. B. , PLNKUT, Eyaluation of the Integral of the Planck Function in SPUTTER, General Atomic, Informal Report GAMD-6366, May 5, 1965.

ATHRTIR-65-143, Yol III

This page intentionally left blank.

Appendix A

 COMMON /LINDLY/ HNU,SGNL, IHNU, NHNU,HNUP,NT,IM, IN, DHNU,THICK,NY
C COMMON /CNTRL/ SCYCLE JMULY
C

 COMmDA /DAVIS/ FEX (152): ICX, IR, PR(1521.

 1 TG(152), X(2400), 0X(152)
 6
C

DIMENSION			cseo		(1)	R 11		fM		H	(1)		(1).
1	H3	(1).	H4		(11)	PrRR	111,	Q1	(1)	Q2	(1).		(1).
2	Q37	(1),	Q38		111.	SUnx2	(1),	SUMX3	(1).	SUMX4	(18.	$\times 8$	(1).
3	Y	(1)	Y2	-	(1),	YSQD	(1).	PHO	(1),	PHI	(1)		

C

c oX CONTAINS x from the previous y line


```
C PH2 BACKHARD FLUX (ERGS/CH**2-SEC;
RHO
```



```
N\piIMES=BOILB
IMP1=18
IM=18M1
IN=IA
INMI=IN-1
CALL DVCHK(KOOFX)
GO T0&17:171,KOOFX
17 1R=IN
THTAMX=.025
104 DO 105 I=IN,IM
    x3(1)=0.
    x4(1)=0.
    X5(I)=0.
    x6(1)=0.
    x (1) =0.
C*******************************************************************************
C
C SET UP FOR KAPPA INTERPOLAIIGN
c
C**********************禾*********************************************************
Q1(1)=THETA(I)**4
    Q37(I)=ALOG(THETA(It)
    Q38(I)xALOG(SV(I))
    CSQD(1)=C(1)**2
C
                    find ir largest index of zone with theta
                    greater than 0.05
IFithetalil-thtamxiloo,100,101
101 THTAMX =THETA(I)
1100 IF(THETACI)-0.05)105,105,106
106 IR=I
105 CONIINUE
\(\operatorname{CSQD}(18)=C(18) * * 2\)
C
c
Problem stops if max temp less than 0.05
c
IF(THTAMX-0.05) 108,108,107
\(108 \mathrm{Sl}=13.108\)
CALL UNCLE
\(107 \mathrm{~K}=1 \mathrm{FIX}(\mathrm{FLOAT}(1 B)+2.0) /(2.4 E 3 / F L O A T(I R)+(F L O A T(I R)+1.0) / 2.1)\)
\(111 k 1=k\)
```

$\mathbf{Y ~} 11\}=0.0$ YSODE1: $=0.0$ IRAI $=1 R-1$ $J K=1$

c
SET
U P Y
LINES
C

C
C DRAH Y LINES--ONE FOR EACH LARGE TEMPERATURE CHANGE
C NO Y GREATER THAN C(IR)
C
$00112 \mathrm{I}=\mathrm{IN}$, IRM1
If (ABS(Q37(I+1)-Q37(1))-CVB) 113.113.114
$114 J K=J K+1$
$Y(J K)=C(I+1)$
YSQD $(J K)=C S Q O(1+1)$
K1=K
GO TO 112
113 IF(K1)114,114,115
$115 \mathrm{Ki=Ki} 1$
112 CONTINUE
NY=JK
GO 70116
$117 K=K+1$
GO TO 111

C

C

C
C FORMAT=-YSQD,-NUMBER OF INTERSECTIONS,X•S.
C
$116 \mathrm{~K} 2=1$
DO $118 \mathrm{~J}=2 \mathrm{~V} \mathrm{JK}$
$I=I M P 1$
$X(K 2)=-Y S Q O(J)$
$K 2=K 2+2$
$K K=1$
120 TSI=CSQD(I)-YSQD(J)
If(TS1)122,122,119
119 X $1 \times 21=$ SQRT (TS1)
$K 2=K 2+1$
IF!K2-2400)1191,1191,117
$1191 \mathrm{I}=\mathrm{I}-1$
$K K=K K+1$

```
        GO 10 120
    122 KKK=K2-KK
    X(KKK)=-(KK-1)
    118 CONTINUE
C
C
    X(K2)=-1.0
```


C
C SETUP EREOUENCY LOOP
C

HNUP=4000.
C
C
SET UP MAX FREQ BOUNDARY
HNUP $4=2.5$ EE 14
IHNU=1
00121 I=IN,IMPI
ERR(I) $=0.0$
PRR 11 I $=0.0$
121 SUMX2(1)=0.0

C
C. TEST FOR MONOFREQUENCY
C

IF (KMAX .EQ. O GO TO 150
140 -GALL KAPPA(IN,IM)
HNU4=HNU***4

C MERGE GROUPS HAVING HNUGLESS
C.THANTENTIMES LARGEST THETA
C

IF(THTAXX-0.1*HNU) 142.141,141
C
C REJECT TAPE If MORE THAN HALF OF GROUPS MERGE
c
142 IF (IHNU +IHNU-NHNU) $143,144,144$
144 S1=13.0144
C
C
C
C
use siatement as in plane code now
WILL HOPE TO CALL NEXY TAPE IN FUTURE
C

CAll uncle
143 DO $145 \mathrm{I}=\mathrm{IN}$, IM

BETA=HNU/THETA(I)
BETAP = HNUP ITHETTA(I)
DFB=PLNKUT (BETA,BETAP)
IFIDFB .EQ. O.1 GO TO 145
TEMP \{1)=DFB*Q1(I)
EMBI $=E X P(-B E T A)$
EMB2=EXP(-BETAP)
TEMP (2)=DFB*0.0384974/Q1(I)*(HNU4/(1.0-EMB1)
1*EMB1-HNUP4/(1.0-EMB2):*EMB2)
FORM NUMERAIORS AND DENOMINATORS OF MERGED KAPPAS
$X 6(1)=X 6(1)+$ TEMP (1)
$X_{4}(1)=X 4(1)+$ TEMP (2)
X5(1) $=\times 5(1)+$ CAPAC(1)*TEMP(1)
$\times 3(1)=X 3(1)+T E M P(2) / C A P A R(1)$
145 CONTINUE
HNUP = HNU
$I \mathrm{HNU}=\mathrm{I} \mathrm{HNU}+1$
HNUP $4=$ HNU4
IF(THTAMX $-0,1$ HNU) $140,703,703$

C
C
C

150 NHNU=1

C
C
C
C
CALLS KAPPA ONE IIME ON RESTART (S15=1.0) FOR AVERAGE OPACIIIES FROM DIANNE TAPE AND STORED IN KAPPA FOR FUTURE INTERPOLATIONS
c
CALL KAPPA(IN,IMS
DO $704 \mathrm{I}=\mathrm{IN}, \mathrm{IM}$
$\times 5(I)=1$ 。
$704 \times 6(I)=$ Q1 (I)
$I C X=I R$
GO TO 139
141 IF(IHNU-1) 153,702,143
C
C
C
FORM MERGED KAPPAS
C
703 DO $700 \mathrm{I}=\mathrm{IN}, \mathrm{IM}$
IF (X6(1)) 210,700,200
$210 S 1=13.210$
CALL UNCLE
$200 \operatorname{CAPAR}(I)=X 4(I) / X 3(I)$
215 CAPAC(I) $=\times 5(1) / X 6(I)$
700 CONT INUE
HNUP $=4000$.

HNUP4=2.56E14
I HNU $=1$ HNUL 1
6010702

c
C TYPICAL GROUP CALCULATIONS OF SOURCES *

701 CALL KAPPAIIN, IMI
HNU4 $=$ HNU** 4
702 ICX=IN
DO 151 I=IN,IR
BETA=HNU/THETA!I!
EMBl=EXP(-BETA)
C
C
C
Avíio CALCULATION OF DFB LESS THAN LE-5
IF(BETA-19.)146.147,147
146 BETAP=HNUP/THETAII)
EMB2=EXP(-BETAP)
IF(BETAP-.01)147,147,148
147 IF(ICX-IR) $149,157,157$
157 ICX=1-1
$149 \times 6(1)=0.0$
c
c
X5(1)=0.0
C
GO TO 151
c
C
C
148 DFB=PLNKUT $\{B E T A, B E T A P$)
X6(1)=DFB*Q141)
132 ICX=IR
151 CONTINUE
139 Q31 $=0.0$

C
C FORM ROSS AND PLANCK OPTICAL DEPTHS *
C

DO 152 IxINyIM
IF(CAPAR(1)) $153,153,154$
154 IF(CAPAC(I):153,153,155
153 Sl=13.153
CALL UNCLE

C
155 IF(SCLID(10).EQ.O.)GO TO 167

```
        H2\I\=CAPAR{I|/SVII:
        GO TO 169
    167 H2(I)=CAPAC(1)/SV(1)
    169 H(I)=CAPAR{I}/SVII)
        H3(1)=CAPAR{I)/SV(I)*DELTAR(I)
        Q31=031+H3(1)
        Q3(1+1)=031
        H(I)=0.5*H(I)
        H2(I)=0.5*H2(I)
        H3(I)=0.5*H3(1)
C
C
        x2(1)=0.0
        x3(1)=0.0
        x4(1)=0.0
        Y2(I)=0.0
        TG{I)=0.0
        SuMx3{1)=0.0
        SUMX4(I)=0.0
        PH1(I)=0.0
        PHO(I)=0,0
        PR(I)=0.0
    152 RHO(I) =0.0
    X2{IMP1)=0.0
    PHO(IMP1)=0.0
    PH1(IMP1)=0.0
    X3(IMP1) =0.0
    X4(1MP1)=0.0
c
C
        X5(IR+1)=0.0
C
                                    X6&IR+1)=0.0
    TG(IN)=0.0
    Y2(IN{=X6(IN)
    X3(IN) =-1.0
C*&#***************************************************************************
C
\(C\)
```

 SETUPSOURGES
 SETUPSOURGES


```
C
C
C
C
C
FORM Y2 AND TG
SET \(\times 3=-1\) IF DIFFUSICN CRITERION MET USING HCB
DO \(156 \mathrm{I}=\mathrm{IN}, \mathrm{ICX}\)
IF (I-IM) 135,136,136
```

```
    135 TEMP(1)=H3(I+1)4H3(1)
    IF (AMINI{H3(IH,H31I+1|)-CNIN) 1:557,1157,1156
    1157 IF(A8S({H3(I)-H3(I+1))/TEMP(1)8-GA) 1156,1i56,1158
    1158 IF {X6(1) EQ. O.0) GO TO 1159
        IF{ABS{(XG{1)-XS{I+1|)/{X6({)+X6(1+1)|)-GA) 1156.1156.1159
    1159 TG(I+1)=0.0
        GO TG 156
    1156 TG{1+1)={X6(1+1)-X6(1):/TEMP{1)
        C
        C
    S
    C
    C RADIAIION BOUNDRY CONDITIONS AT ICX
    136 Y2(IMPI)=XG(ICX)
    TG(1MP1)=0.0
C
C
    137 I= IN+1
    159 IF{X3![1: & 60,161,162
    160 I=1+1
    1F(1-I&X-1:159,161,172
    162 S1=13.162
    CALL UNCLE
    162 J=I-:
    165 IF(03(1)-Q3(J)-HV8)163,163,164
    163 X41Jj=-1.0
    J=j-1
    IF(J-IN!164,165,165
    164 I= I+1
    IF(I-ICX-1)166,172,172
    166 IF(X3(1)|168,164,162
    168 J=1
    171 1F(03(J)-Q3(1-1)-HVB)170,170,160
    170 x4(J)=-1.0
    j }=j+
    IF(J-1CX-1)171:160,160
    172
    I=&N+1
C
C
C
ENLARGE TRANSPORT REGION BOUNCRIES BY HVB MEAN FREE PATHS
137 I \(=\mathrm{IN}+1\)
159 IF\{X3! [1) \(160,161,162\)
\(601=1+1\)
1F(1-1 \(6 x-1: 159,161,172\)
162 S1=13. 162
CALL UNCLE
\(16^{2} \mathrm{~J}=\mathrm{I}-\) :
165 IF \((Q 3 i 1)-Q\)
\(163 \times 4(J i=-1.0\)
\(\mathrm{J}=\mathrm{j}-1\)
If(J-IN) \(164,165,165\)
\(164 I=1+1\)
IF(I-ICX-1) \(166,172.172\)
166 IF(X3(I)|168,164,162
\(168 \mathrm{~J}=1\)
171 1F(Q3(J)-Q3(I-1)-HVB) 170,170,160
\(170 \times 4(\mathrm{~J})=-1.0\)
\(j=\sqrt{1}\)
172
\(I=\mathbb{N}+1\)
\(c\)
C
```


TEST TO FORM TRANS REGIONS

```
IF(X3(IN))173,174,162
173 IF(X4(IN):174,175,162
174 IAX \(=1 \mathrm{~N}\)
176 If(x3(1))177,178,162
```

```
    177 IF(X4(I))17E,179,162
C
REMOYE ONE ZONE DIFF REGION
C
    178 I= 1+1
    IF{I-ICX-11176,180,180
    179 I=1+1
    IF(I-ICX-1)187,180,180
    187 IF(X3(I))188,176,162
    188 IF(X4(1)|176,189,162
    189 IBX=I-3
    GO TC 181
    175 X2(IN)=0.0
    PR (IN)=Y2(IN)*45.560
    RHO\(IN)=Y2(IN)*137.0
        PHO(IN)=Y2(IN)#1.E12
        PHI(IN)=PHO{IN}
    185 [F(X3(1)1182,183,162
    182 IF{X4(I)|183,184,162
C
C
C
184 X2(I)=-4.12E12*TG(I)*CSQD(I)
    PR (I)=Y2(1)*45.660́
    RHO(I)=Y2(1)*137.0
    PHO(I)=1,E12*Y2(I)
    PH14I}=PHO{I;
    I=I+1
    IF(I-ICX-1)185,186,186
C
183 IAX=1
    GO TO 178
    180 I BX=IM
    181 CALL TRANS\IAX,IBX)
    IF(IBX-IM) 190,360,760
    190 I=1 8X+2
    GO 1O 184
    186 IAX=1
    GO 10 180
                    OO TRANS TO IM IN REGION OF NO SOURCE
                                FORM X2 FOR UIFF LONES IN ORDER
C
C
```


C

760 IF (EDITMF)282,282,280
280 IARGI $=$ SOLIO 118$)+0.001$
IARG2=EDITMF\&0.001
IF (MOO(IARG1, IARG2)) 282,281,282

```
        281 HRITE (3) HNU, IN, IM, IMP1, SOLID{181, TH, DHNU
            WRITE (3) {C(I), I=IN,IMP1), (H3(I), I=IN,IH|, (X6{I), I=IN,IMPI),
            1 (X2{II, I=IN,IMP1), {PHO{I|, I=IN,IMPI), (PHI|I), I=IN,IMPI),
            2 (RHOII), &=IN,IMPI|, {PR|I|,IxIN,IMPI), (CSQOII|, IxIN,IMPI)
            XX=-2.0
            WRITE (3) }XX,XX,XX,XX,XX,XX,X
            BACKSPACE 3
            JMULT=1.0
        282
            00 292 I=IN,IMPI
            SUMX2(I)=SUMX2(I)+X2(I)
            ERR(I)=ERR(I)+RHO(I)
            PRR(I)=PRR(II+PR(I)
        292 CONTINUE
C
                    ADVANCE FREQUENCY AND STORE EMERGENT FLUX
                    TEST FOR COMPLETION OF GROUPS
    HNUP = HNU
    HNUP4=HNU4
    CRTPC(IHNU+50) = X2(IMP1)
    IHNU = IHNU + I
    IF (IHNU - NHNU) 283, 283, 285
283 CALL DVCHK (KOOOFX)
    G0 TO(284,701),K000FX
C***************************************************************************
C ENO FREQUENCY &OOP *
```



```
    284 S1 = 13.0284
    CALL UNCLE
    285 DO 286 I=INM1,IMP1
    288 X2(I)=SUMX2(I)
    286 ER(I) = SUMX2(1) - SUMX2(1+1)
C
C
                                    FORM MONOFREQUENCY QUANTITIES AND FIND MIN TIME STEP
    WSB=0.0
    00 81 I=1,MAXLM
    81 WSB=WSB+ELM(I)
    DTRI=1.E10
    OTR2=1.E1O
C
C
C
C
    IF (KMAX .EQ. O) GO TO }111
    CAL! KAPPA\IN,IM\
1110 DO 124 I=IN,IM
```

IF(CAPAR(I))1111,1111,1112
$111151=13.1111$
call uncle
c
C
1112 TEMP(3)=CAPAR(1)
IF(SCLID:10) 11113,1114,1113
1113 TEMP(1)=CAPAR(I)
GO 101117
1114 TEMP(1)=SQRT(CAPAR11)*CAPAC(1))
1117 IFITEMP(1j)1111,1111,1118
$1118 \mathrm{H}(\mathrm{I})=0.5$ TEMP (1)/SV(I)
H3(I) $=$ H(I) * DELTARII)
IF(0.05-THEIA(I)) 1120,1201,1201
1120 IF (H3(I) .GT. 0.1) GO TO 1201
IF (ER(I) .EQ. O.0) GO TO 1201
HSBBEE(I)*G(I)
If (TELM(3T), EQ. O.0) G0 T0 1201
If (WSBB-TELM(37)*WSB) 1201,1203,1203
1203 TEMP\{2)=0.5*CV(I)*THETA1I)*G(I)/ABS(ER(I))
GO TO 1202
 $\operatorname{TEMP}(2)=\operatorname{TEMP}(2) * T E L M(25)$

C

1202 IF (TEMP (2)) 124, 124,1211
1211 CONTINUE
IF(TEMP(2)-DTR1)1122,1130,1130
1122 OTR $2=$ DTR1
$I M_{N} 2=I M N 1$
DTR1 $=$ TEMP (2)
IMN1 $=1$
GO TC 124
1130 IF(TEMP(2)-DTR2)1140, 124.124
1140 DTRZ=TEMP(2)
IMN2 $=1$
124 CONTINUE
DTRMIN=DTR1
$E O=I M N I$
C
c
PRINI MIN:MUM TIME STEPS BETWEEN EDITS
c
IF(DTR1-TELM(26) $)=150,1160,1160$

```
    1150 TELM(26)=0TRI
        TELK(27)=1MN1
        TELM(28)=DTR2
        TELM(29)=1M(2)
        TELM(30)=SCLID(18)+1.0
    1160 GONTINUE
C
C DETERMINE IF RADIATIGN OR HYDRO WILL SUBCYCLE
C
    IF (ETRMIN-DTRI 125,240,1165
1165 BLANK3=TH+AMIN1(OTRMIN,GR*DTH2)
        IF (S17) 240,123,240
    123 S9 = 1.0
C****************************************************************************
C
C
C
REDUCE TIME STEP
C***************************************************************************
125 NRAD=2P1(18)/DTRMIN+1.0
    CTR=ZP1(18)/FLOAT(NRAD)
        IF(NRAD-NTIMES) 240,240,238
    238 Sl=13.238
    call uncle
    240 RETURN
        END
```


Appendix B

STRANS

 C*

SPUTTERCDMMON

	MMON	LMDA:371. N	NR	NSMLR	IA	IB	- ICA	ICB
1	KHAX	, BLAiVkI, B	BLANK2,	BLANK3,	IAP1	1 BPL	- ICAP1	ICBP1
2	II	IG, NRA	NRAD	BLANK4,	IAM1	1 BML	ICAMI	1CBM1
3	IIPI	, IGM. , I	IALPHA,	BLANK5,	TH	TMAX	- Blanko,	DE
4	FREQ	- CNTMAX, AR	AR	ASMLR	PUSHA	- PUSHE	- boilla	BOILB
5	CYA	, CVE , S	Slug	ALPHA	HVA	- HYB	- HCA	HCB
6	EMINA	EMINB, C	CA	C8	GA	GB	- Gl	GR
7	RHOL	RHOR , E	EPIO	EPSI	dala	- RIB	- RDIA	RDIB
8	RPIA	- RPIB - R	RPDIA	RPDIB	TPRIN	, TA	- TB	TC
	COMMON	TD , T	TE	0TH2	DTH2P	DTHI	- Dtrmin.	dtmax
1	DTMAX	DTMAX2, D	DTMAX3.	DTR	SUITCH	, CO	- CMIN	dElita
2	GAMA	WCRIT, S	SIGMAQ,	AC ,	, AC03T4,	, CNVRT	T SUMRA	SUMPB
3	ROIA	- ROIAML, R	ROIB	ROIE	, GMS	, S1	- 52	S3
4	S4	, S5 , S	S6	S7	SE	- 59	- \$10	\$11
5	S 12	- S13 - S	S14	S15	S16	S17	, 518	S19
6	S20	EO , F	FO	TAU	ZERO	- R	(152). DEL	R 115
7	ASO	(152). RD	(152).	VD	(1521.	RDO	(152), SMLR	$(152$
8	DELR	37), P	(152),	P1	(152).	PB	1152), PBi	11523
	COMMON	P2	11521.	SV	(152),	RHO	(152), THET	(152)
1	H	(152), E	(152).	EI	(1521.	EK	(152), A	115
2	V	(152): G	(152).	D	(1521,	C	(152). X2	152
3	$\times 3$	(152), X4	(152).	X 5	(152).	X6	(152). $\times 7$	15
4	SMLA	(152). SMLB	(152).	SMLC	(152).	SMLD	(152), SMLE	152
5	EC	(152) , ER	(1521,	SMLQ	(152i.	SMLH	(152): BIGA	$(15$
6	BIGE	(152), CV	(152),	BC	(152),	BR	1152), CHIC	15
7	CHIR:	(152): CAPAC	C (1521.	Capar	(152),	CRTC	11521. CRTR	(152)
8	CRTPC	(152), GOFR	(152),	FEN	(152).	Car	(152), OXIM	(37)
	COMMON	TELM	(37),	EKLM	(37),	ELM	(37). FCLA	(37
1	FRLM	37), WLCM	(37),	QLM	(37)	AMASNO:	(37), CHRNO	$(37$
2	2P1	371, 282	(371.	SOLID	371.	ECHCK	(37), RK	$(104$
3	RL	37). RHOK	(104)	RDK	(104).	THETAKI	(104). TEMP	$(16$
4	HEAD	(12), MaxL		MAXLM				

C*

COMMON /LINDEY/ HNU,SGNL, IHNU,NHNU,HRUP,NT,IM,IN,DHNU,THICK,NY
6
CONMON /CNERL/ SCYCLE, JMULT
C

*

(ERGS/CM**3)				
C FRR RAOIATEON PRESSURE (ERGS/CH**3)				
C				
c				
c H\{I]=0.5fROSSELAND MFP				
6 TEMP 11 = DEETAX*Hil				
C H2(I)=0. 5 P PLANCK MFP				
C 				
H3(I)=\{TAU $3 \cup 8$ R)				
$\frac{c}{c}$				

6
$I A X=N$
$13 X=\mu$
$50971=1 \mathrm{~A}, 1 \mathrm{M}$
99 e2\{1\}=0.
CAEL DVCHK (KCOOFK)
G0 TO\& 100. 1011 , KOCOFX
$1003=14+0100$
CALL U絃LE

IALPHA=ALPHA
C
C
ERROR IF NOT SPHERE
G0 TO 102.102.1031, IALPHA
$102 S 1=14.2102$
CALC UNELE

c

c
$1031=18 \times P 1$
$F 2=0.0$
$1: 3$ IF(IBX-IM) $106,108,110$
C
C
C

SPHERE ONLY

C
$110 \mathrm{Si=14.0110}$
CALL UNCLE

 C LHS OF RAY FIRST:STOREF2 TN SUUKZ.
6

IF (TEHP(2)-TROQG1 131.131.3132

```
C
    131:F2*F2+{(Y2(I)+Y2{I+1)方*0.54X6{1)-F2-F2I*TEMP{2;
        GO T0 112
    c
    C
C
C
    132 H4(I}=FREXP{-H3{I})
        FZ=YZ(I)+TG{I)+({FZ-YZ(I+1)-TG(I+1))
        1 *H4(I)+TG{I+1)-TG{I)!*H4CIH
    112 IFIF2.LT.O.) GO TO 115
C
c
C
    114. 5UMX3(I)=F2
        {F{TG(I).EQ.O.1 Y2{1)=X6(I-1)
        I=I-1
        IF{TG(1).EQ.0.J Y2(I)=X6(1)
        IF{I-IAX} 116,1111,111
            F2=0. IF I GREATER THAN ICX
        105 I= 1-1
        108 SUMX3(I)=0.0
            IFII-1-ICX: 110,114,105
C
C DIFFUSION BOUNDARY CONDITICN AT IBXPI
    106 IF(TG(I).EQ.O.) Y2(I)=X6(I)
        TEMP{2}=H2{[)*DELTAR{I}
        IF (JEMP{2)-TRDBG) 133,133,134
    C
    C
        133 F2=Y2{I+1)+TG{I+1)+((Y2(I)+Y2(I+1))*0.5+X6{I))*TEMP(2)
        GO TO 112
    C
    C
    134H4(I)=FREXP(-H3(I))
        F2=Y2(I)+TG(I)+(TG:I+1)-TG(I))*H4(I)
        GO IC 112
    C
    5 NEGATIVE F2 LEROED
    C
        115 F2=0.0
        60 10114
```

```
                C
C RHS OF RAY
116 1=1AX
        IAXP=1AX
        IF|IAX-IN1110,222,119
    222 [AXP=[N+1
        RH2{1) xSUKX3(1)*137.0
        PR (1)=SUMX3{1)*45.66
        PHO11:=1.02EE12#SUMX3111
        PH1(1)=PHO{1)
        GO TE 223
C
C
    119 TEMP(2:=HZ(I-1)*DE{EAR(I-1)
        IF |TEMP(2)-TRDAG) 135,135,136
C
C
```



```
            60 T0 121
C
C
    136 H4(I-1)=FREXP(-i33(I-1))
        F2=Y2{I}-TG{I)+(TG{[)-TG{(-1)}**H4{1-1)
        6010121
C
                            REGULAR INYEGFATION STEP (Y=0,RHS)
    120 TEMP{2:*H2.{I-10*DELTAR{I-1)
    If (TEMP(2)-TRD8G; 137,137,138
C
    137 F2=F2+({Y2{(1)+Y2(1-1))*0.5+X6(I-1)-F2-F2)*IEMP(2)
        G0 10 121
C
    138F2=Y2(I)-TG(I)+((F2-Y2(I-1)+TG(I-1)&\H4(I-1)
    1 +TG(I)-TG(I-1))#H4(I-1)
    121 IFIFZ.LT.O.IGOTO 221
C
C
C
SAVE RHS INTENSITIES IN SUKX4
\(223 \operatorname{SUM} \times 4(1)=F 2\)
\(0 \times(I)=C(I)\)
IF\&TG(If.EQ.O.) Y2\{I\}=Xo(I)
```

```
    I=1+1
    IF{TG{1H.EG.0.) Y2(i)=X6{1-1)
    IF(1-18XP11122,122,126
    122 IF(3-1-ICX) 120,120,124
C
C NEGATIVE FZ IEROED
C
    221 F2=0.0
    20 }1022
    124 IFIF2.EQ.O.) GD TD 223
    F2=F2*FREXP(-H3(I-1)-H3(I-1))
    C0 TG 223
```



```
C
C COMPLETEEY=0 R A Y
C
```



```
    126 YSODI=0.0
            J J=1
            j\ S=1
            KK=1
C
C
C
                    SEARCH FOR Y-LINE NEAR HALE OF C\IAXI
                            CI=0.50*C(IAX)
    II=1 AX+1
    60 10 708
```



```
C
                    SETUPYY-LINES
SET
UP Y-LINES
C FIRST, TEST IF Y LIES OUTSIDE OF ACTIVE MESH.
C
127 IF(JJ-NY) \(129,129,308\)
128 IF(C(II)-Y(JJ)) \(152,150,150\)
152 II = I I +
GO TO 128
129 [F(C(ICX)-Y(JJ)) \(307,151,151\)
146 IF(C(IAX)-Y(JJ)) \(128,145,130\)
130 IF(C1-Y(JJ)) 141s 141,142
142 IF (Ci-Y(Jj+i) ) \(144,140,140\)
140 JJエJJ+1
\(K K=K K-I F\{X\{X(K K+1)\}+2\)
GO TO 127
C
c
C
SEARCH FOR Y-LINE NEAR THREE QUARTERS OF C(IAXI
\(141 \mathrm{Cl}=\mathrm{C}, 1+0.25 * \mathrm{C}(\mathrm{IAX})\)
```

6010145

145 YSQOP $=-X\{K K i$
$K=K K+1 M-1 B X+2 \cdot$
TEMP (5)=YSQDP-YSQDİ
60 T1 503
151 [FiC(IBXPi)-Y(JJ) $300,300,146$

SEARCH FOR Y-LINE NEAK CIIAXI

153 TEMP\{ij=x6ifil+x6(I-1i
IFITEAPIİ•EQ.O.IḠ̃ TŎ ís4
 FAAT GCRITERION BASED ON ETI

355 IF $\{J \backslash=J J-41157,145,145$
157 J $1=3 d+1$.
$K K=X K-1 F I X(X(K K+1))+2$
GO 10. 127
307 IEMP (1) =CSOD (ICX I 1)
GO. TO 305
308 TEMP\{1)=CSOD (1R+1)

GO 10305

C
C COMPLETE 22 INTEGRATION WHEN LAST Y-LINE USED

300 DO $310 \mathrm{I}=1 \mathrm{AXP}, 18 \times \mathrm{I}$
c
C ANGULAR INTEGRATICN OF X2 USING LINEAR INTERPOLATION
$\times 2(I)=\times 2(I)+\{0 \times(I)+0 \times(I)) *(\operatorname{Sunx} 4(I)-\operatorname{SUM} \times 3(I)) * O X(I)$
C
C
C
OPTIONAL CALCULATION ON SIZ
IF(EDITMF) $310,310.625$
625 IARGI $=$ SOL IO $(18)+0.001$
IARG2=EOITMF+0.001
IF (MOD(IARG1, I ARG2)) $310,627,310$
627 IF(IEX-IM) $315,317,51 \mathrm{C}$
315 If(I-IAXP) $510,312,340$
312 XS=SQRT(CSQD(IBXP1+1)-CSQO4 (BXP11)
FM(IBXP1) $=\mathrm{Y} 2(1 \mathrm{BXP} 1 ;+\times S / C(1 B X P 1+1) * T G(18 \times P 1+1) *$
1 EXP(-XS*H(IBXPI))
GO TO 340

317 FM(IBXP1)=0.0
340 TEMP(5) $=$ CSOD(EBXP1)-YSOO1
TEAP (11)= CSOOIIS-YSODI
FU=\{IEMP\{11)*(FMIIBXP1)+FM\{IEXPi) $1+(C S O D(18 X P 1)-$

FL=SUMX3(1)+SUMX4(I)
$\operatorname{tEMP}(6)=0 \mathrm{X}(1) * 0 \times\{1)$
FP=FL+FL
FPL \times FP F FL

PR(I) $=P R(1)+T E M P(6) *\{F P L+F L) * E X(1)$

PH1(1)=PHI(I)+FPL*TEMP(6)
310 CONTINUE

C
C
BRIGHTNESS PRINT
320 If(CB) 726,725,726
726 IARGI = SOLID(18)+0.001
IF IIARGI .EQ. O: GO $T 0725$
IARG2=CB+0.001
IF (MOD(IARG1,IARG23) 725,727.725
$727 x X=-1.0$
WRITE (3) XX, IAX, IBX, NY, SOLIDE181, TH, XX
WRETE (3) (Y(J), $J=1, N Y)$, (Q2(J), $J=1$ s NY)
$X X=-2.0$
WRITE (3) $X X, X X, X X, X X, X X, X X, X X$
8ACKSPACE 3
72500321 I=1AX,18XP1
c
c
c
OPTIONAL CALCULATION ON SI2
IFAEDITMF) $321,321,730$
730 IARG1 $=$ SOLID 18) +0.001
IARG2=EDITMF+0.001
IF (MOD (IARG1,IARG2):321,731,321
731 IF(I.EQ.1) GO TO 321
RHO (I) $=$ RHO (I) $* 34.25 / \mathrm{C}$ (I)
PR(1)=PR(I)*5.71/(CSQD(I)*C(1))
PHO\{1)=PHO(I)*0.327E12/CSGD(1)
PHI(I)=PHI(I)*O.343E12/CSQD(I)
$321 \times 2(1)=\times 2(1) * 1.026 E 12$
322 RETURN

```
C
    305 F2=0.0
        TEMP{5}=TEMP{1)-YSQD1
        00 306 I=IAXP,IBXP1
        TENP{15)=TEMP(1)-CSGD(1)
        IFITEMP{151) 318,319,319
        318 FM(I)=0.0
        C
        c. ANGULAR INTEGRATION OF XZ USING LINEAR INTERPOLATION
    C
        XH=SQRT{-TEMP(15)}
        X2{I]=X2{I)+(0X{[1)-XM)*{0X(1)+0X(I)+XM)*{SUMX4(I)-SUMX3{I|)
        IF{EDITMF} 306,306,323
        323 IARG1 = SQLIO(18)*0.001
        IARG2=EDITMF+0.001
        IF(MOO(IARGI,IARG2): 306,324,306
        324 FL=SUMX3(I)+SUMX4(I)
        TENP(6)=0X(I)*OX{I}
        TEMP(7)=-TEMP(15)
        FCA=SQRT(TEMP(1):
        FXM=OX(1)-XM
        FXP=CX{1 } XM
        RHO{I)=RHO(I)+FXM*FL
        PR{{\=PR{I}-FKP*{TEMP{6}+TEHP(7))*FL
        1 +4.0*F!*OX(I)*TEMP(6)
        PHO(I)=PHO(i)-1FL*XM*(OX(I)*TEMP(9)-XM*FCA+CSQD(I)*
    1 (ARSIN(OX(I)/C(I))-ARSIN(XM/C{I))}-0.667*FL*{FCA*TEMP{1)
    2 -TEMP{9)*YSQD1)])/FXM
    PH1(I)=PH1(I)+FXM*FL*{FXP+OX(I))
    GO TC }30
C
319 X2(I)=X2(I)+(0x(1)+0X(I):*{SUmX4(I)-SUMX3(I) )*OX(I)
OPTIONAL CALCULATION ON SI2
IF(ECITMF) \(306,306,635\)
635 IARG1 \(=\) SOLID \((18)+0.001\)
IARG2 \(=\) EDITMF +0.001
IF\{MOD \& I ARG1,IARG2:) 306,637,306
\(637 \operatorname{TEAP}(5)=\operatorname{TEMP}(1)-Y S Q D 1\)
FU=TEMP(15)*(SUMX4(IAXP) +SUMX3(IAXP))/TEMP(5)
FL \(\approx\) SUMX3II) + SUMX4(I)
\(\operatorname{TEMP}(6)=0 \times\{I) * D \times(I)\)
\(F P=F L+F U\)
\(F P L=F P+F P L\)
RHOII) \(=\) RHO (I) + OX(I) *FP
```

PR(1)=PR(1)+TEMP(6)*\{FPL+FL)*OX(1)

$1+.667 *\{F L-F U\} *\{C(I) * C S Q D(I)-T E M P(9) * Y S Q D 1) / 0 \times(1)$
PHI (I)=PHI(I)+FPL*TEMP(6)
306 CONTINUE
GO TO 320

C CHS CALCULATION FIRST,STORE F2 IN FM
C
$5031=18 \times P 1$
$F 2=0.0$
502 IF(IBX-IM) $506,508,510$

6

C
C
$510 \mathrm{Sl}=14.0510$
call uncle
C
C
C
C
506 IF (TG\{I).EQ. 0.0$\} Y 2(1)=X 6(1\}$
$X 8(1)=X(K) / C(1) * T G(I)$
$\operatorname{TEMP}\{2\}=(X\{K-1\}-X\{K\}) * H 2(I\}$
IF (TEMP\{2)-TRDBG) $533,533,534$
$533 F 2=Y 2(I+1)+X(K-1) / C(I+1) * T G(I+1)+(1 Y 2(I)+Y 2(I+1)) * 0.5 * X 6(I))$ 1 *TEMP(2)
GO TO 512
C
C
C
$534 \operatorname{TEMP}(1)=(X(K-1)-X(K)) * H(1)$
H4(I) $=$ FREXP $(-\operatorname{TEMP}(1))$
$F 2=Y 2(I)+X 8(I)+(X(K-1) / C(I+1) * T G(I+1)-X 8(I)) * H 4(I)$
GO TO 512
C
C
c
51L $x 9(I)=x(K) / C(1) * T G(I)$
$\operatorname{TEMP}(2)=\{X(K-1)-X(K)) * H 2(1)$
REGULAR INTEGRATION STEP(LHS)
C

IF (TEMP(2)-TRDBG) $531.531,532$
C
C
C
 GO TO 512
C
$532 \operatorname{TEMP}(1)=\{X(K-1)-X(K)\} * H(1)$
H4(I)=FREXP(-TEMP (1))
$F 2=Y 2(1)+X 8\{I)+(\{F 2-Y 2(I+1)-X 8(I+1)) * H 4(1)$
$1+X 8\{1+1)-X B(1)) \neq H 4\{(1)$
512 IFIF2.LT.O.1 GO TO 515

SAVE F3 OF LHS IN FM FOR INTEGRATION.
613 FA(I)=F2
IF(TGII).EQ.O.) $\mathrm{Y} 21[1=\times 6(1-1)$
$\mathrm{I}=\mathrm{I}-1$
$K=K+1$
IF(TG(I).EQ.O.) Y2(I)=X6(I)
IF(I-IAX)516,513,513
513 IF(X(K))514,509,511
$514 \operatorname{TEMP}(3)=\operatorname{SQRT}(\operatorname{DELTAR}(1) *(4.0 * C \& 1)+\operatorname{DELTAR(1)))}$ *H\{I)
IF (TEMP\{3) .GT. O.0) GD TO 517
$S 1=14.0517$
CALL UNCLE
$517 \operatorname{TEMP}(2)=X(K-1) * H 2(1)$
IF (TEMP(2)-TRDBG) 535,535,536
$535 \operatorname{TEMP}(16)=(\mathrm{Y} 2(I+1)+X 6(1)) * \operatorname{TEMP}(2)+(0.667 * Y 2(1)-0.5 * Y 2(1+1)$
$1-0.167 * \times 6111) * T E M P(3) * H 2(1) / H(1)$
$F 2=F 2 *(1.0-2.0 * \operatorname{TEMP}(2))+$ TEMP (16)
GO TG 521
$536 \operatorname{TEMP}(1)=2.0 * X(K-1) \neq H(I)$
H4(I)=FREXP\{-TEMP\{1;)
$\operatorname{TEMP}(7)=\operatorname{FREXP}(-\operatorname{IEMP}(3))$
TEMP (13) $=(X 6(1)-Y 2(1)) / T E M P(3) * * 2 * 2.0$
$\operatorname{TEMP}(15)=(X 6(1)-Y 2(1+1)) /(\operatorname{TEMP}(1)-\operatorname{TEMP}(3))$
$F 2=Y 2(1)+\operatorname{TEMP}(13)+\operatorname{TEMP}(7) *(-\operatorname{TEMP}(15)-\operatorname{TEMP}(13) *(\operatorname{TEMP}(3)+1.01)$
$1+H 41$ II (F2-Y2(I+1)+TEMP(15):
GO 10521
C
C NEGATIVE F2 ZEROED
C
$515 \mathrm{~F} 2=0.0$
GO 10613
6
$507 \times 8(1)=x(\mathrm{~K}) / \mathrm{C}(1) * T G(1)$
60 TC 613
c
c
c
$509 \$ 1=14.0509$
CALL UNCLE
508 FM(I) $=0.0$
$\mathrm{I}=\mathrm{I}-1$
$K=K+1$
IF(I-1-ICX)510,507,508
523 F2 $=0.0$
GO 10522
c
c
521 IFIF2.LT.0.1GO TO 523
522 FM(1)=F2
C
c.
C
DO $524 \mathrm{~J}=\mathrm{IAXP}$, I
$333 \operatorname{TEMP(11)=CSQD(J)-YSQD1}$
$\times 2(J)=\times 2(J)+(0 \times(J)+0 \times(J)) *\{\operatorname{SUMX4(J)-SUMX3(J))*OX(J)}$
optional calculation on siz
IF(EDITMF)524,524,231
331 IARG1 $=$ SOLID(18)+0.0U1
IARG2=EDITMF+0.001
IF (MOD(IARG1,IARG2) $524,332,524$
332 FU=(TEMP(11)*(FM(I) $+F 2)+(Y S Q D P-C S Q D(1)) *(S U M X 4!$ IAXP)
$1+$ SUMX3(IAXP)) I/TEMP(5)
$F L=S U M X 3(J)+S U M X 4(J)$
TEMP(6) $=0 \times(\mathrm{J}) * 0 \times(\mathrm{J})$
$F P=F L+F U$
$F P L=F P+F L$
RHO (J) = RHO (J) + OX(J) *FP
$\operatorname{PR}(J)=\operatorname{PR}(J)+\operatorname{TEMP}(6) *(F P L+F L) * O X(J)$
PHO (J) $=\operatorname{PHO}(J)+F U *(O X(J) * T E M P(9)+C S Q D(J) * A R S I N(O X\{J) / C(J l)!$
$1+0.667 *(E L-F U) *(G(I) * C S Q D(1)-T E M P(9) * Y S Q D 1) / O X(I)$
PHI(J) $=$ PHI(J) + FPL*TEMP (6)
524 CONTINUE
IAXP $=1+1$
Sumx311:=F2
$\operatorname{SUM} \times 4(1)=F 2$
$1=1$ AXP
$K=k-1$

IF（TEMP\｛21－TRDBG） $538,538,700$
SMALL OPTICAL DEPTH EXPANSION（ $X=0$, RHS）
538 F2 $=$ F2＊ $11.0-2.0$ सTEMP（21）+ TEMP\｛16）
G0 TO 704
700 F2＝Y2（1）＋TEMP（15）＋FREXP（－TEMP（1）＋TEMP（3））＊（－TEMP\｛15）
1 ＋TEMP\｛13） 1 （1．0－TEMP（3）$)+\mathrm{H} 4(1-1) *(F 2-Y 2(1-1)-T E N P(13))$ GO 10704
C
CALCULATE RHS Y－LINE INTEGRATION
516 IAXP＝IAX
$I=1 A X$
$K=K-1$
IFiX\｛K＋11！525：509，526
$526 \times 8(1-1)=X(K+1) / C(1-1) * 1 G\{1-1)$
$\operatorname{TEMP}(2)=\{X(K)-X(K+1)\} * H 2(1-1)$
C
C
C
C
C

GO 10704
c
C
$702 \operatorname{TEMP}(1)=\{X(K)-X\{K+1)) * H(1-1)$
701 F2＝Y2（1）－X8i！）＋（X8\｛I）－X8\｛I－1）＊FREXP（－TEMP（1）） GO 10704
$710 \operatorname{TEMP}(2)=(X(K)-X(K+1)) * H 2(1-1)$
IF（TEMP（2i－TRDBG） $539,539,540$
C
C
SMALL OPTICAL DEPTH EXPANSION（RHSI
539 F2 $2=F 2+(1$ Y2（I）$+Y 2(I-1)) * 0.5+X 6(I-1)-F 2-F 2) *$ IEMP（ $2 ;$
GO TO 704
540 F2 $=\mathrm{Y} 2(1)-X 8(I)+(1 \mathrm{~F} 2-Y 2(I-1)+X 8(1-1)) \neq \mathrm{H} 4(1-1)$
$1+X 8(1)-X 8(I-1))=\mathrm{H} 4(I-1)$
704 IF（F2．LT．0．1GO TO 705
c
C
．
706 CONTINUE
C
C
ANGULAR INTEGRATION OF X2 USING LINEAR INTERPOLATION
$703 \times 2\{i\}=x 2(1)+\{(x(k)+X\{x\}+G X\{i j)=\{F 2 \sim F M\{11\}$

optional calculatioms of maf. glentifies oney on editmf
IFIEDITMF1735,735,736
736 IARG1=SOLID(18)+0.00i
IARG2=EDITMF+0.0C1
If (MODCIARG1,IARG21) 735,732,735
$732 \mathrm{FU}=\mathrm{FM} \cdot \mathrm{I} 1+\mathrm{F} 2$
FL=SUNX3(II + SUMX4(i)
$\operatorname{TERP}(6)=0 \times(1) * 0 \times\{1)$
$\operatorname{TEMP}(7)=x(K) * X(K)$
FXM= $\mathrm{EX}(1)-\mathrm{X}(\mathrm{K})$
FXP $=0 \times(1)+X(K)$
$F M I=F L-F L$
RHO (I) $=$ RHOII $)+$ FXH* (EU $+F L)$
PR\{1)=PR\{1)+FXP*(TEMP(6)+TEMP(7))末FM1
1 +4.0*\{FL*OX(I)*TEMP(G)-FU*X\{K)*TEMP!7!)

2 \#\{Y(Jj)*YSQDP-TEAP 29$\}$ *YSQDIB) $/$ FXK

c
C SAVE F2 AND FM FOR NEXI Y-LINE
c
735 SUMX4(1)=F2
SUMX3(I)=FM(1)
$\mathrm{CX}(\mathrm{I})=\mathrm{X}(\mathrm{K})$
IFiTG\{if.EQ.0.1 Y24It=Y.6iIf
$1=1+1$
$k=k-1$
IF(TGII).EQ.0.) Y2(1)=x6(1-1)
IF(I-1BXP1)707,707,70
707 IF(I-1-ICX)710,710,711
C
c
c
705 F2 $=0.0$
GO TO 706
711 IF(FZ.EQ.O.) GO TO 706
$\operatorname{TEMP}(1)=\{X(K)-X(K+1)) * H(I-1)$
H4(1-1)=FREXP(-TEMP(1)-TEMP(1))
F2 $=$ F2* $\mathrm{H}_{4}(\mathrm{I}(-1)$
GO 10706
c
C
DIFFUSION BQUNDARY CONDITICN WHEN $x=0$.
$525 \times 8(1-1)=0.0$
$\operatorname{IEMP}(1)=X(K) * H(1-1)$

50 707\%3

712 \{ffjusEni\} GE TT 322

C

C

KK=KK-
322 Y50C1=YS@D(at)
TEAPIg:=Y\{5j)
JJ…jul
724
Jal $=$ -
Q2\{ $3 j-1\}=72 \geqslant 3.21424$
50 TE 12?
END

Appendix C FREXP

*

mornal	Cla	2.4
	STA	N2
	TSl	EXF
	TXI	* $+3,91^{-}$
	ECI	1.FREXP
N1	PLE	**
	TRA	FREXP-1
11	PZE	
1748	DEC	1.0
	DEC	0.3678794411.
	DEC	0.1353352832
	DEC	0.0497870683
	DEC	0.0183156388
	DEC	0.0067379469
	DEC	0.0024787521
	DEC	0.0009118819
	DEC	0.0003354626
	DEC	0.0001234098
FTAB	DEC	1.0
	DEC	. 99221794
	DEC	. 98449644
	DEC	. 97683503
	DEE	. 96923324
	DEC	. 96169060
	DEC	. 95420668
	DEC	. 94678098
	DEC	. 93941307
	DEC	. 93210250
	DEC	. 92484882
	DEC	. 91765159
	DEE	. 91051038
	DEC	. 90342472
	DEC	. 89639421
	DEC	. 88941842
	DEC	. 88249691
	DEC	. 87562926
	DEC	. 86881506
	DEC	. 86205389
	DEC	. 85534534
	OEC	. 84868899
	DEC	. 84208444
	DEC	. 83553128
	DEC	. 82902913
	OEC	. 82257757
	DEC	. 81617622
	DEC	. 80982469
	DEC	. 80352259
	DEC	. 79726952
	DEC	. 79106511
	OEC	.78490900

UEC	. 77880079
DEC	. 77274011
DEC	. 76672660
UEC	. 76075939
DEC	. 75483961
DEC	. 74896540
DEC	. 74313691
DEC	. 73735377
DEC	. 73161563
DEC	. 72592215
DEC	. 72027299
DEC	. 71466778
DEC	. 70910619
DEC	. 70358787
DEC	. 69811252
DEC	.69267976
DEC	. 68728928
DEC	. 68194076
DEC	. 67663385
DEC	. 67136824
DEC	. 66614361
DEC	. 66095965
DEC	.65581602
DEC	. 65071242
DEC	. 64564854
DEC	. 64062406
DEC	. 63563868
OEC	. 63069209
DEC	. 62578401
DEC	. 62091413
DEC	. 61608213
UEC	.61128774
DEC	. 60653067
DEC	. 60181060
DEC	. 59712727
DEC	. 59248041
DEC	. 58786967
DEC	. 58329484
DEC	. 57875560
DEC	. 57425170
DEC	- 56978284
DEC	. 56534874
DEC	. 56094916
DEC	. 55658382
DEC	. 55225240
DEC	. 54795480
DEC	. 54369058
UEC	- 53945954
DEC	. 53526144
DEC	. 53109600

DEC
DEC DEC DEC
DEC DEC DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
1 DE
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DE
DEC END
.52696298
. 52286212
.51879318 .51475589 .51075003 .50677535 . 50283159 . 49891852 .49503590 .49118359 .48736108 .48356841 .47980525 .47607137 .47236656 .46869057 . 46504319 . 46142419 .45783336 . 45427047 .45073532 .44722766 .44374731 .44029404 .43686765 .43346792 .43009464 .42674762 .42342664 .42013151 .41686203 .41361798 .41039918 .40720543 . 40403653 . 40089229 . 39777252 .39467703 .39160563 . 38855813 . 38553435 . 38253409 . 37955719 . 37650345 .37367270 .37076476 .36787944

Appendix D
KAPPA
SIBFTS KAPPA FULIST,DECK,REF SUBRCUTINE KAPPA(N,M)
C
C
C
C
C
THIS ROJTINE WAS RECOMPILED JANUARY 11: 1965
1 O- OIANE-TAPE YERSION
aSSUMES EXTRA CALL FOK GREY DATA -- NO GODD HITH STANDARD RADTN
dOES MOHOFREQUENCY GITH aVERAGE KAPPAS

C
C
C
C
SPUTIERCOMMON
**

	COMMON	LMDA 371 , N	NR	NS	IA				
1	kmax	BLANKI, B	BLANK2,	8LANK3,	, IAPI	18P1	C	CAPI	ICBPI
2	11	IG , N	NRAB	BLANK4.	IAMI	IBMI		CAM1	ICBM1
3	IIPI	IGM1 - I	IALPMA,	BLANK5,	, TH	thax	BL	BLANK6,	DELPRT
4	FREQ	- cnjmax, ar	AR	ASMLR,	, PUSHA	- PUSHB	B, BO	borla	B0ILB
5	CVA	- cVb , S	slug	Alpha	- hya	- HVB	, HCA	hCA	HCB
6	EMINA	, EMINB , C	CA	CB	GA	- GB	- GL		GR
7	RHOL	RHOR , E	Epio	EPS I	RIA	, RIB		DIA	RDTB
8	RPIA	RPIB , R	RPDIA	RPDIB	TPRIN	, TA	- TB		IC
	COMMON	TD , T	TE	DTH2	OTH2P	OTH1		TRMIN	dTMAX
1	DIMAX	, DTMAX2,	dimax3.	DTR	SHITCH.	, CO	- CMI	Min	delta
2	gama	WCRIT, S	SIGMAQ.	AC	ACO3T4.	, CNVRT	T, SU	SURRA	Sum
3	RGIa	, ROIAM1, R	ROIB	ROIBPI,	GMS	S1	, 5		S3
4	S4	, S5 , S	S6	57	- 58	- 59	- S		S11
5	\$12	, S13 , S	S14	S15	S16	- 517	, S1	18	S19
6	\$20	EO , F	FO	tau	ZERO	R	(152).	, DELT	(152
7	ASE	(152), RD	(152],	vo	(152),	RDD	(152).	- SMLR	(1521.
8	DELR	37): P	(152),	Pl	11521.	P8	(152).	, PB1	(152)
	COMMCN	P2	(152).	SV	(152).	RHO	(152).	, TheJa	(152),
1	W	(152), E	(152),	EI	(152).	EK	(152)	=	(152).
2	v	(152), G	(152).		(152).	C	(152).	, $\times 2$	(152)
3	$\times 3$	(152), X4	(152).	X5	(152).	X6	(152)	, $\times 7$	(152).
4	SMLA	(152). SMLB	(152),	SMLC	(152).	SMLD	(152)	- SMLE	(152).
5	EC	(152), ER	(152).	SMLQ	(152),	SMLH	152:	= BIGA	(152).
6	BIGB	(152). CV	1152),	BC	(152),	BR	81521.	, CHIC	(152):
7	CHIR	(152). CAPAC	C (152),	capar	(152),	CRTC	(152).	, CRTR	(152).
8	CREPC	(152), GOFR	(152).	FEW	(152).	car	(152)	- OKLM	371
	COMMON	telm	(37),	Eklm	(37).	ELM	371.	- FCLM	37),
1	FRLM	37), WLM	37).	QLM	37)	AMASNOt		- CHRNO	37).
2	2P1	37). 2P2	371.	SOLIO	37\%,	ECHCK	371.	, RK	(104),
3	RL	371: RHOK	(104).	ROK	(104),	thetak	(104).	- TEMP	,
	HEAD	121, MAXL		MAXLM					

C*

COMMCN /LINDLY/ HNU,SGNL,IHNU,NHNU,HNUP,NT,IM,IN,DHRU,THICK,NY
C
EQUIVALENCE (SMLC,CSQD), (SMLEFFM) (SMLA,H4), (SNLO,Y2): (GOFR,X).

 EQUIVALENCE (ECHCK\{18),1041):
C
CAYEAT: KAPPA MILL FAIL ON ANY THO LAMBDA REGIONS OF THE SAME MATERIAL
C- IF THERE IS BETWEEN THEM AT LEAST GNE REGION OF A DIFFERENT MATERI
C: FOR WHICH A DIANE TAPE IS TO BE REAC.
C. AMASNO (17-29) RESERVED FOR DESIGNATION CF DIANE TAPE UNIT.

- 100 :FGRMAT $\{12,12 A 53$

IN=N
IH $\mathrm{H}=\mathrm{M}$
NT $=0$
NMAT $=0$
110:-00 600 J=1, HAXLM
IK=2MOA(J)
IL- =LMBA(J+1.)-1
IF (IL-IN) $600,130,120$
120 IF (IK-IN) $130,140,140$
151) IK=IN
-6010170
140:IF (IK-IM) $150,160,600$
150 IF (IL-IM) $170,170,160$
150. IL=IM

170 CONTINUE
SOLIDE 20: = IK
SOL1D $211=11$
SOLID (22)=,
L=QKLM(J)
180 IF (AMASNOLL+1? i) 190.190 .320
C. DONT READ A DIANE TAPE. CALL A KAP INSTEAD.

190 GO TO $1200,210,220,230,240,250,260,279,280,290,300,3101 \mathrm{~L}$.
200: CALL KAPI
GO 10590
2:0. CALL KAP2
GO 10590
220 CALL KAP3
GO TO 590
230 CALL KAP4 GO TO 5SO
240 CALL KAP5
GO 10590
250 CALL KAPG GO TO 590
260 CALL KAP7 GO TC 590
270 CALL KAP 8
GU TO 590

```
    230 CALL KAPG
    60 T0 590
    290 CALL 多AF10
    60 1G 590
    300 CALL KAP11
        60 10 590
    310 CALL KAP12
    GO TO 590
    320 I = AMASND(4+17)
        IF (NT-1) 330,460.330
C read drane tape
    330 NT = AMASNO{L+17)
        NMAT = NMAT + 1
C LIMIT ON MMAY SET BY DIMENSION OF bUFS
    IF (NHAT-1) 345,345,340
    34051 % 15.0931
    CALL UNCLE
    345 IF (KHAXI 370:350,370
    350 IF (S15.EQ.O.) G0 10 420
    RESD (NT,100: 10A,IIDIIH,I=1:12!
    READ(NYI THNG.FNWO
    MMDIFNHD
    NHNU=THNU
    DO 360 II=1,NHNU
    READ(NT)
360 REAOSNT:
    READINTS HNU,FJAMAX
    JAmaX=FJAMAX
    IFIHNU.GT.O.) GD TO }36
    READ(NT) (BUFSII,NHATI,I=1,NLDS)
    NHNU=1.
    REEIND NT
    60 10 420
365 S1=15.0365
    CALL UACLE
    370 IF (IHNU-1) 380,380,390
    380 REAO (NT,ICO) IDA,(ID(I),I=1,12:
    READ (NT) THNU, FNWD
    NHNU = THFSU
    HWD = FNHD
390 READ (NT) HNU, FSAAHAX
    JGAAX = FJAMAX
    READ NTI (EUFS\I;N&ATI: I=1,NWDI
    IF (IHNU-NHNU-1) 420,410:&00
    Si = 15.0957
    cala uncle
    4 1 0 \text { REHIND NE}
    420 00 430 JA=1,23
    430 KENY(JA: = 0
    NCN% = 1
```

00450 JA=1, JAMAX
THETAT (JA) a BUFS(MCNT, NMAT)
KAMAX(JA) $=$ BUFS(NCNT +1 \&NMAI
If (JA-JAMAX) 440,450,450
440 KCNT $(J A+11=$ KCNTIJA +3 KAMAX(JA) +2
450 HCNT $=$ NCNT $+3 *$ KAMAX $(J A)+2$
$4601 L=50 L 101211$
$I K=S O L 10(20)$
D0 580 I=IKyIL
TIST $=037113$
RTST $=0381$ II
DO $470 \mathrm{JA}=2, \mathrm{JAMAX}$
IF (ITST-THETAY(JA)) $480,480,470$
470 CONTINUE
JAT $=$ JAMAX
GO TE 490
$480 \mathrm{JAT}=\mathrm{JA}$
490 KAM $=$ KAMAXIJATI
KAM1 = KAMAXIJAT-11
DO $500 \mathrm{KA}=2, \mathrm{KAH}$
NCNT $=$ KCNT(JAT) $+3 *$ KA -1
IF (RTST-BUFSINCNT+3,NMATI) $510,510,500$
500 CONI INUE
KAT2 $=K A-1$
GO TO 520
$510 \mathrm{KAT} 2=\mathrm{KA}$
520 DO 530 KA=2,KAMi
NCNT2 $=$ KCNT $(J A T-1)+3 *$ KA -1
IT (RTST-BUFSINCNT2+3, NMAT \& $540,540,530$
530 CONTINUE
KAT1 $=\mathrm{KA}-1$
GO 10550
540 KAT1 $=\mathrm{KA}$
550 NCNT $1=$ KCNT $(J A T-1)+3$ * KAT1 - 1
NCNT $4=$ KCNT\{JAT +3 * KAT2 - 1
AA1 $=$ BUFS(NCNTI-2,NMAT)
AA2 $=$ BUFS(MCNT $1+1$, NMAT)
AA3 $=$ BUFS (NCNT4-2, NMAT:
AA4 $=$ BUFS(NCNT4+1, NMAT)
AAS $=$ BUFS (NCNT1, NMAT)
AAG $=$ BUFSINCNT $1+3$ SNMAT:
AAT = BUFSINCNT4, NAATI
AA $8=$ BUFS(NCNT4+3,NHAT)
AA9 $=$ THETATIJAT)
AA10 = THETAT(JAT-1)
AA11 = BUFS(NCNT1-1, NMAT)
AA12 $=$ BUFS(NCNJ $1+2$,NMAT)
AA13 $=$ BUFS(NCNJ4-1, NHAT)
AAL4 = BUFS(NCNT4+2, NMAT)
IF (AMINI(ABS(AAG-AAS), ABS(AAB-AA7), ABS(AA10-AAY))) 570,560.570

```
    560 51 = 15.0915
    CALt UHCLE
```



```
        AAO = AA3 rf RTST - AAT) F {AA4 - AA3l / (AAS - AAT)
        AAF = &A13 +f RIST - AAT} * {AA14 - A&13! / &AA8 - MAT}
```



```
        CAPACIIS = EXP{AAF + (AAF - AAE) * ITTST - AA10) / (AAS - AALOI)
    580 CONF% I'NUE
    59* CONTINUE
    60% EONTINUE
        SLS=0.0
C INCUEED EHISSION GORRECTION FOR KAPPAS OBTAINED FROM KAP ROUTINES,
C NOT DIANNE TAPES, IN MULTIFREQUENCY CASE
    If (KMAX) 610,650,610
    610 1F(HNU) 650,650,615
    615 DO 640 J=1, HAXLH
        IK = L阬OA(J)
        LL F &MOA\ j+1) - 1
        L = OKLH(J)
        IF {AMASNO{L+{7)\ 620,620,640
    620 DG 630 L=IK,1&
    630 CAPAR!I!=CAPAR\I!*{IS-EXPI-HNU/THETA\I|J)
    640 CONTINUE
    650 CAL{ DVEHK!YOHY:
        G0 TG {660,670}, KDMY
    660 $1 = 15.0152
        CALL UNCLE
6 7 0 ~ R E T U R N ~
    END
```


Appendix E

PLNKUT

c

```
COMmON JTOLC/ TBL(120:
```

C
C
C WAKEING//JDO MOT COMPILE AKD GO///TABLES RUST $8 E$
C SUPFLIEG

C ASSUME EETAZ HORE THAN BETAL IF IEEIA2 - TBLII!iO. 15. 15
10 PLHKUT $=.05132911$ * EEETA2**3 * 21.0 - 8ETA2 * 1.375 - BETA2 * 1.0511 - BETAL**3 * \{1.0- 8ETA1 * 1.375 - 8ETA1 * .05\}! RETURK
$15 \mathrm{~J}=1$ BETA = BETAL
17 if (8ETA - TBL1inlia, 21, 21
$18 \mathrm{FCN}=1.0-.051329911$ * BETA**3 3 (1.0- 8ETA * $1.375-$ BETA i. 05%

GO TO 35
21 IF (BETA - 10.) 19, 30, 30
19 I =
16 IF (EETA-TBL(1+1)! $20,20,25$

($\{$ (TBi $(1+1)-T B L(I))$
GO TG 35
$25 I=1+1$
IF \{1-60\} 16, 30, 30
30 FCN $=.153989733$ * EXP\{-8ETA) * (ICBETA +3.0$)$ * BETA +6.01 *
1 BETA +6.01
35 GO TC (37, 40), J
37 J = 2
OFCN = FCN
BETA = BETA2
GO TC 17
40 PLNKUT $=$ DFCN - FCN RETURN END
SIBHAP PLNKTE LIST.UECK,REFTBLC CTHTRL TBL,T8R +112
TBL DEC $1.0,1.04,1.08,1.12,1.16,1.29,1.26,1.32,1.38,1.44,1.50$
DEC $\quad 1,6,1,7,1,8,1.9,2,0,2.1,2.2,2,4,2.6,2,9,3,2,3,5,3.8,4,0$DEC $4.2,4.4,4.6,4, \varepsilon, 5.0,5,2,5,4,5.6,5,8,6,0,6.16,6.32,6,48$DE $6.64,6.80,6,96,7.12,7.28,7.44,7.60,7.76,7.92,8,08,8.24$DEC $8.40,8.56,8.72,8.88,9.04,9.20,4.36,9.52,9.68,9.84,10.0$DEC .965382,.961696..957807..953716..949426,.944936..937836DEC .930303..922348,.913982..905220.. 88978,.87334..85598DEC $\quad .83779, .81886, .79926, .77909, .73736,-69435, .62882, .56372$DEC $\quad .50062, .44071, .40298, .36721, .33353, .30201, .27266, .24547$DEC . 22041,. 19740,. 17637,.15722,.13984,.12714,.11544,.10469DEC .0ร482..08579..07753..06999..06311,.05686..05117,.04601DEC $\quad 04134, .03710, .03327, .02981, .02669, .02388, .02135, .01907$DEC .01702,.03518,.01354,.01206,.01074..00955ENTRY PLNKTT
PENKTT ESS 0
END

DOCUMENT CONTROL DATA - RED

1 Inne 1963-13 Tuly 1965

6. nepowt drte July 1966	\qquad 118	$\begin{gathered} \text { 7i. No. Op axfe } \\ 2 \end{gathered}$
an. con:nact on ghant no. AF $29(601)-6492$ a. mojest no. 5710	9a. ONIEINATOR'S REPORT NUMERMS) AFWL-TR-65-143, Vo1 III	
${ }^{\text {C. Subtask No. }}$ $07.003 / 005$	GA-6585	
10. AVALLABILITY/LIMITATION NOTICES This dCC and each transmittal to foreign go only with prior approval of AFWL. is limited because of the technolo	[If UuJECT 50 ments or foreign), Kiziland AFB, discussed in the	at export corrtrols onels may be made 87117. Distribution t.

il. SUFPL EMENTARY NOTRS
12. SPONSORINO MLLITARY ACTVITY
AFRL (HLRT)
Kirtland AFB, NH 87117
is. Abstract
The radiation tramport subroutinee of the SPUTTER code for epherical geometry have been revised. The DIFIU subroutine hes been eliminated and RADTN, TRANS, and KAPPA have been recoded. The results of this work on the codes are (1) improved logical organization, (2) more efficient and rapid calculation, (3) improved accuracy, (4) more complete documentation, and (5) comparisons with test problems, The much simpler and more accurate diffusion approximation is exploited when a new diffusion criterion is satisfied in shells within the sphere. A more accurate angular integration of the intensity makes use of the $y-l i n e$ integration results more efficiently to give improved fluxes. Reorganization of the calculation, saving of quantities to be used again, and use of a fast exponential routine have resulted in speeding up the routines by approximately a factor of 2. The diffusion and angular integration improvements apparently have resulted in an additional factor of 2 speedup for tine same accuracy.
and each transmittal to foreign governments or foreign nationals may be made is limited because of the technology discussed in the report.

AFTL (HLRT)
Kirtland AFB, NM 87117

UNCLASSIFIE:
Security Classification

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcoatractor, grantee, Department of Defense activity or other organization (copporale tuthor) isguing the report.
2a. REPORT SECURETY CLASSIFICATION: Enter the over all security classification of the report. Indicate whether "Restricted Data" is included Marsing is to be in accord ance with appropriate security regulations.
2b. GROUP: Automatic downerading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
2. REPORT TITLE: Enter the complete report titic in all capital fetters. Titles in all cases thould be unclassified. If a meaningiul title cannot be selected without clasaification, show title classification in all capitula in parentheais immediately following the title.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annu it, or final. Give the inclusive dates when a apecific reporting period is covered.
4. AUTHOR(S): Enter the nama(s) of author(s) an shown on or in the seport. Enter tast name, firat name, middle initial. If rillitary, show rank, and branch of service. The name of the principal author is an absolute. minimum requirement.
5. REPORT DATE: Enter the date of the report as day, month. year, or month, year. If more than one date rppecra on the report, use date of pubilication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i..- , enter the number of pagen containing information
7b. NUMBER OF REFERENCES: Enter the total number of reforences cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
88, \&c, \& 8d. P:ROJECT NUMBER: Enter the appropriate milicary department identification, such as project number, subproject number, aystem numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUKBER(S): Enter the officiel repnrt number ty which the document will be identified and controlled by the origanating activity. This number must be unique to this report.
9b. OTHER KEPORT NUMBER(S): If the report has been assigned any other repert numbers (either by the onginstor o: by the sponsor), alao enter this number(s).
6. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemanation of the report, other than those
imposed by security classification, using standard statenents such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Fireign ampouncement and dissemination of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directiy from DDC. Other qualified DDC: users shall request through
(4) "U. S. military aqencies may obtain copies of this report cirectly from DDC. Dther qualified users shall request through
"
(5) "All distribution of this report is controlled. Qualified DDC users shall sequest through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known
11. SUPPLEMENTARY NOTES: Une for additional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboretory sponsoring (payIng for) the research and development. Inciude acidress.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may lso appeer elsewhere in the rody of the technical report. If additional space is required, a c'rtınuation sheet shall be attached

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall ead with an indication of the military security classification of the information in the paragraph, represented as (TS). (S). (C), or U)

There is no lir 'ation on the iength of the abstract However, the suggeste ength is from 150 to 225 words.
14. KEY WORDS: Key words are tect.nical!y meaningful terns or short phrases that characterize a report and may be used as index entries fur cataloging the report. Kev words must be selected so that in security classification is requared Identifiers, such as equipment model designation, trade name, malitary project code neme, geographic Ic;ation, may be used es key words but will be followed by an indication of technical contax: The assigriment D^{\prime} links, rules, and weights is uptional

[^0]: * Volume II has been withdraw, and will not be published.

