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ABSTRACT

This paper presents a method of optimal filter
design for sampled data systems, based on the theory
originally developed by R. E. Kalman. The first half
of the paper deals with the theoretlcal development
of mathematical models for linear, discrete dynamic
processes and the optimal filter equations for such
processes. The latter half discusses digital pro-
gramming techniques for optimal filter design followed

t : by two illustrative examples.
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PREFACE

During the past several decades a fair amount of
theoretical effort has been devoted to the study of
problems which are of a statistical nature., Not the
least important is the class of problems in communica‘;
tion and control which in\;rolvees the separation of random
signals from random noise, or the estimation of the
states of a dynamic process based on noisy observations
of .a few of these states.

In several papers written since 1960, R. E.
Kalman developed a theoretical approach for optimization
of filters for the above mentioned class of problems.
The theory is not all-embracing In that certain con-
ditions must be satisfied before his technique can be
employed.

The intention of this paper is to present a method
for optimal filter design for sampled data systems,
based on Kalman's approach. The first half of the
paper deals with the theoretical development of mathe-

matical model parameters for linear dynamic processes
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and the optimal filter equations for such processes.
The latter half discusses digital programming techniques
Tor optimal filter design followed by two illustrative

examples.
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CHAPTER I

MODELS FOR RANDOM PROCESSES

Before one can hope to achieve any amount of
effective flltering, it is necessary that a fair amount »f
knowledge, about the physical phenomena to be observed,
is known. For instance, If a sine wave buried in noise,
is to be recovered, an apriori knowledge of the signal,
i.e. frequency of the sine wave, is necessary. In addi=-
tion if the statistics of the noise are known then
optimum filtering can be achieved. It therefore becomes
necessary to make a study of the message (signal)
process before the construction of a filter is attempted.
To maintain generality we will henceforth only consider
random éignals with the added stipulation that these
signals are produced by linear dynamic systems excited

by white noise.

l-] LINEAR DYNAMIC SYSTEMS (CONTINUOUS
TIME).

Since we are concerned only with linear dynamic

systems a brief review of linear differential equations is

in order.




ol

A first order diiferential equation

‘%:—l—ouc-:u (.1)

has a solution (see Appendix I)

xt) =% 2, +0fe"°‘ (2=7) ) dy (1.2)

=t X e
where € X» is the homogenous solution and e'«& 7:)4(@0(7’
g
is the particular solution.
Consider now a set of first order differential

equations, which define a linear dynamical system:
i ; | 1.3)
- (—‘( M) (
Vi { JJ |

or in wvectnr notation

£ = FUX +D® U@ (1e)

where x and u are l x n column vectors and F and D
are n x n matrices.
The soluticn (see Appendix I) to this set of

equations is:

x =t +/1:6F@&”7)D(7) wp dy  (1-5)
0] )

N




or it may be written

t
X@® = Ple,t)X(t)+ [P, r)omupdr  (146)

)

By definition we call the vector x the state of
the system and u the input or control function.
Since all states (xz) may not be observable we

define the output of the system to be

4 T HE 26 (1.7)

where y(t) is a p vector and H(t) is a pxn matrix.

S If all states were observable then H would be equal to

the identity matrix I.
‘ We can now represent the system In matrix block

diagran form as shown in Fig. l-l.

| :E 4t X®) x® 7 y&)
_ o — J = 7 H@ ———?

| | ~ F®) &

pE®

Fig. 1=l Matrix blecck diagram of a linear dynamic system.

The integrator in Fig. l-l actually represencs n
integrators, one for each state of the system, while

F(t) shows how the outputs of the integrators are fed
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back to the inputs of the various integrators. Perhaps
a look at a simple R-state system at this time might
clarify Fig. l=l.

Given the linear dynamic system of Fig. l-2, detei=

mine F(t), D(t), and H(t).

u® N (T ZA8) [T )y
O 703 ,
A
- €
- Pl

Fig. -2 A R-state system
We can immediately write down the equations for

the system as:
X, (¢) X, (£) (1.8)
X, (t) = - Bxc@‘) - 9 xa@‘j + u(t) (1.9)

and our observable state(s)
y = >, - (1.10)
It Is immediately obvious that

o I

ZCH D=1 °| ,and H@®=[l I

f - o |

thus giving the vector differential equation

A LA e
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and y@ = [1 o] i"X.]

Lx

-2 LINEAR DYNAMIC SYSThu. .. TR
TIME).

If we specify the equations of a linear dynamlc
system in the form of difference equations then they
are easily mechanized on present day digital computers.
with this in mind the scope of this paper will be
directed towards discrete~time situations.

In (l.6) we see that the continuous-time solution

to a linear dynamic system Is:

x@ = @(t te) X () + Itd) &, D(r) u®dr (1.6)
to

If u(7) is held constant over the interval of

integration then we obtain:

x@® = G (t,t) X(ts) + A (t,%T0) Ults) (1.13)
where v . o
At t) = / $ (t,7) D dT (1.14)

or more conveniently

x (t t) = @ (t +1, t)__)(:(t) + A(tr,t) Ul (1.15)




In (1.15) we assume a sampling period of one time
unit. A block diagram of the linear discrete-dynamic

system is shown in Fig. l-=3.

4 ) .?xm»\m L ‘H(t)——g—f;
= +1 '] /I /je‘a/}‘ . , |
= P(t11,t) K

F'ig. l=3 Matrix block diagrérn of a linear discrete-

dynamic system.

=3 DETERMINATION OF MODEL PARAMETERS.
The matrix i, §occuring in (1.6) and (1.13) is

called the TRANSITION matrix and has the following

properties:
Q (to, t,) = I  (Identity Matrix) (1.16)
(e, ) B(tiyts) = O (£a,to) (1.17)
dﬁif»to) = F(t) @ (¢, to) © (ls)

(1.16) and (l.17) are fairly obvious and (l.18) is
obtained by setting u(t) to zero and differentiating
(1.6). These properties can be useful in checking the
accuracy of analytic expressions for the é) matrix.

If the FF matrix is8 constant then the transition

6




k,M*‘A

matrix elements depend only on the time difference
t=tg and can be calculated from the following expres-

sion:

@ (t)'to) = ef'-‘(t'ta) :.g [F(f‘tO)JL/i.' (1.19)
tzo0

A second (and easier) method for obtaining @(t,to)
is by the use of signal flow techniques and the appli-
cation of unit impulses to the input of selected
integrators. This method will be demonstrated else-
where in this paper.

The A matrix may be obtained by performing the
integration in (l.l4) or by the second methcd mentioned
above for the @ matrix.

-, THE GAUSS-MARKOV PROPERTY.

A large number of physical phenomena possess the
Markov property. Basically it means that the best
estimate of a future state of a process can be made
without the knowlaedge of all the past histeory of <the
process. In a strict sense it implies that the best
estimate of a future state can be derived from the

last observation of tiia states. A very trivial example




would be the motion of a particle with a constant velocity
vector. Given the best estimate of the present position
and velocity of the particle one can formulate a best
estimate of position and velocity for any time in the
future. In fact the output from any linear dynamic
system is Markovian. If _1_1_(1:) is set equal to zero in
(1.15) then this property may be expressed mathematically

ass

X (t+) = § (t+1,¢) X (&) (1.20)

If u(t) is a gaussian random vector then the sequence
of random vectors ...x(t-l), x(t#l), ... generated by

(1.15) is known as a gausc-Markov sequence. The stipu-

lation that u(t) is gaussian implies that the sequence ...,
u(t-l), ult), H(t;‘l), .+« are normally distributed random
vectors such that the cross-variance matrix:

covlue), u(t)] =0  for t,#t:  (L21)

l.e. u(t]) and u(tz) are independent. In addition the
random vectors are completely defined by specifylng their
first and second order moments. i.e. E(u(t)) and

E(u(t).ult) ).  For the purposes of this paper u(t)
8




will be assumed to have zero mean;
e, Elu(t)j=o for all t (1.22)
E{u(t).u(t) ) is called the auto-covariance matrix

of the vector u(t) and will be denoted by U(t), l.e:

Elu® - uw'] = U® (1.23)

i

or

i

cov [ u(t)] U)

Considering now the state of a process, we assume
that the initial state, x(to), is a gaussian random
variable of zero mean and arbitrary variance. By
repeated application of (l.15), we see that future states,
veny x(t=1), x(t), x(tél), ... will also be gaussian
random variables, since they are obtained by linear com-
binations of gausslan random variables.

In probability terminoclogy we may now define the
Gauss-Markov property. Since u(t]) and u(tz) are
independent for t] 3 tp, then the conditional probability

distribution of x(t) is dependent only on the previous

state, l.e:

P26 €0 |xt-1), X (82, (t=3); 0+ ) (L.2y)

=P(x@®) sy |x(t-))

i A‘
L e emenen i, . .. e J— DI . e I S
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- e = =

Where I] is an arbitrary vector.
-5 THE COMPLETE MODEL

In F'ig. 1-3 the observable output vector y(t) cannot
be measured with infinite accuracy and therefore to com-
plete the model for random processes (with previously
mentioned restrictions), a source of measurement noise
must be added. This is illustrated in Fig. l=4 where i_r_(t)

is a noise vector having the same dimensionality

ly(t)
u(s X () | oo xX(t) | Y () Z(t)

(P ltrnt) K

-

:

Fig. l=4 Model for randorma processes generated by discrete-

time linear dynamic systems.
as y(t). v(t) is white noise (gaussian), which we assume
to have zero mean with arbitrary variance:
ELv(t)] = o0 (1.25)
EJy ®.yw'] =covlvi)= R (1.26)

In addition we specify that v(t]) and v(tp) are indepen~

dent for t}xtz, i.e:

COV[V(tt))U'(tz)] =0 for t# T (l1.27)

10




The output of our model is therefore z(t), which

contains the observable vector y(t) corrupted by additive

white noise, v(t).

Z(t) = y(t) + k(%)

Al

(1.28)




CHAPTER II

THE KALMAN FILTER

2=1 DEFINITION OF THE FILTERING PROBLEM

In Chapter I, a model of a linear dynamic system,
excited by white noise, was developed. The purpose of
the Kalman filter is to give a best estimate of all states
of the system, based on noisy observations of the
observable states. Since the system s linear we may

write

) = X () + Gt [2(t) =Z®)] (2.1)

where x*(t) Is the best estimate of x(t), based on the
current observation z(t),

g(t) is the best estlmate of x{t), based on the
previous observation z(t-l),

g(t) is the best estimate of z(t), based on the
previous observation g(t-l), and,

Cil-(t), ls an nxp galn matrix, the magnitude of its

‘dlements being indicative of the amount of information

carried in z(t).

12
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Tec solve the filtering problem, the filter must
therefore determine values for the three unknowns on
the right hand side of (2.1), namely x(t), z(t), and G(t).
2=2 SOLUTION OF THE FILTERING PROBLEM.
 Since we assume a complete knowledge of the
dynamics of the system, computation of _g_c\(_t) and g(t)l is
quite éimple.

E @] z(t=1)]
B t=) X (t-1) + A t-) E[aeD] (2.2)

X ()

however since F[u (t‘)]: O for all t then

X<y = Qe t-1) L (t-1) (2.3)

In the model we saw that
z(¥) =y + ) (1.28)
= H) %) + V()
now Z(t) = £[z(t)|g(t-1)]
H(t) E [ ()| z(z-0] + ELY @]
= Hit) X () (2.4)
since Fly@l)] =0

13




Having now developed expressions for _Q_(t)- and :z_\(t'),
& matrix block diagram of the filter (see Fig. 2-l) can
be produced, The only unknown yet to be calculated is
the oontimal gain matrix G(t). Before approaching this

\calculation a criterion for optimal must be specified.

T e 2409 o~ e
L TSEE60 =) ieley -

_.'%(t‘,t-l) '

h

st
AL .
H(t) k= [r“‘ 52 £) Qetnt) K

Fig. 2~l THE OPTIMAL FILTER.

The criterion used is that we wish to find G(t)
such that the loss function

L }: E[(if(t) -_,aé*(f))T(gs(t)-Z#('t))J is minimized. (2.5) -
That is to say that the sum of the variances of the
errors associated with the estimate of the individual
states is minimized. DBecause the errors are gaussian
it can be shown (ref. 1) that this criterion will in fact
produce an optimal gain matrix.

A number of different derivations for G(t) are
available in the literature. For the most part these
derivations are mathematically rigorous and somewhat

compiex. FPerhaps the easiest one to follow is a semi-

1
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heuristic approach used by Schmidt, [4}.’5. We wish to
minimize the scalar loss function defined by (2.5). Note

that

Epe -2F)T (k)] = Trace E[(x-x")(2-XY)] (2.6

where the Trace operator denctes the sum of the main
dizgonal elements, and (t) is left out to avoid unneces-
sary clutter.
Expanding the covariance matrix in (2.6), using
(2.1), t;qe obtain
El -2l -2%) )= E{[(-2)-6 (z-E]] [2-2) -6(z-8)] }
= E[(x-2)(2-2)7] - E[6(2-2)-&)7]
~E[(x-£)(z-2)6"] + E[6 z-2)z-8)6" ]
but & = HX +¥ , and, _é: = HZX
Substituting for z and %, and noting that E[(’Z-@)VT =0
we obtain
L2 Nx-x*)T] < E[x 202 -2) ] - FL6H Ge-2oix=2)"]
~E[(x-Z) (-2 HE] R g e
FELG (H(x-2)(x¢~ 2 )T )G
zP-GHP -PH'GT+G(HPH™*R)G™ (2.7)

-2)x-£)y] and R= E[v-y"]




We now wish to find an expression for G such thgt
the trace of (R.7) is a minimum. Sipce the terms In
(2.7) are matrices this ncou.ld become a very darduous ‘task.
Let us consider for a moment that (2.7) is a scalar
expression (i.e: the matrices are lxl in dimension), thus

reducing the right hand side to:
P-26PH +G (HPH +R)

We now differentiate with respect to G and set the
resultant to zero obtaining
~2PHT + 2(HPHT+R)G = O
or G= PHT (HPHT't'R)-‘ (2.8)

It can now be shown that (2.8) will in general

provide the‘ optimum gain matrix by letting
C= G=-PHT(APHT +R)™!

or G = C+PHT(HPH +R)" (2.9)

- Simple substitution of (2.9) for G in (2.7) will
reveal that the trace of (R.7) will be a minimum for

&O. Thus (2.8) provides us with the optimum gain

16
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equation.
Combining equations (2.7) and (2.8) results in an
expression for the covariance matrix of the error in the

filter's estimate of the states of the systemj

E[tx x")(x ij P—PHT(HPH™+RIHP - PHT[PH™ (HPHT+R)']
VR +[PHT(HPHT+R)I[HPH™RILPHT (HPH+R)™]"

- PLe) - P(E HE (M) e W +RE) HO FE)  (2.10)
o

el - PG (M) F

In order to complete the filtering problem a recur-

.sive relation for the conditional covariance matrix,

P(t,t-l); must be derived.
Recall that

Pty =) Ef 2 0= R (e, 0= (x (8) =3t,t-0))7 ]
but X (4) = Q (t,t=0)X(t=1) + A(t,T-) @& (+=1)
and 2610 = § (t,0-1) X (t=1,t)

L

P (t,t-1) = E{[c}i(t,t-')(zc_ct-i)-_:_c’“‘(t-:,t-.)) ¥ A(t,t-:)g(t-l)]o /
| LG ct-1)=xc* emt, ey B'CE, e4) # HT(t-I)AT(t»t'"ﬂ}
= § (b t-DE[(Z (e ) - Xt (xe-p-2 (et [0 2o

S te,t-) + A(m-:) Elg ce-) 018 (te) (2.1

* y T KT
i) § e[0T [ pefneJe
17 \; .
7 ' y

\\

j/w PO VO /Mm,&W/ Lo gand
¢

Jude sk o B s o ar“*“"““ ‘% ,

foih. Lo

_ Soeped u-(-> Le & S
{O (3..".';"')&'{‘«?--'\""[; A ¢
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4
Define Q(t) = A6, T=DF[u(t-0- W (e-H]A"(¢,t-1) (2.12)

—
Combining (2.10), (2.l), and (2.12), we obtain

A -
Ple,t=) =G ('t)t'-l)[k/’\(t-l) = PLE=)H (t-1) (H(t-/)P(r-i)H'{t-})w‘h’(t./))'.

——

o
AEDPE[ (t,e-1) + Q(t) (2.13)

Zquation (R.13) is called the variance equation which
denotes the covariance of the error between the actual
states x(t), and the pradicted states e, t-1).

Since (2.13) is recursive, an Initial covariance matrix,
P(t,), must be specified, and, since we assume that x(tg)
is gaussian, with zero mean, our best estimate of x(ty) Is

zero., Hence

P('f'o) S E[ﬁ(*o)‘ac_r(fo).] (Ra14)

In determining P(ty), one will ‘often find that the
elements off the main diagonal will be zero, that is to
‘say’ that the individual initial states are independent of"
one another. To illustrate this, perhaps a simple example

will be helpful. Let us suppose that we are going to make

18
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-observations of the position of a particle in motion, and

assume that the particle's velocity is constant but unknown.

. The two states of the system are position and velocity.

Any knowledge one might have about one of the initial

4]

tates will in no way assist In dete?mining the other initial
state. Hence the two states are Initially independent inso-
far as the observer is concerned. However, as more
observatlons are made, the two states build up a depend-
ency and the off-diagonal elements in P(t), generated by
(2.13) 4 become non-zero.

2-3 SUMMARY OF FILTER EQUATIONS.

. For convenience the equations for the optimal filter

are groupea below: /
SR = B¢ t, t-)[pe-)-Gle-DHIt-DRE-] Ol t) + Q) I
64 = PO HTCe) [HPEOHTE) + Ree)] ™ IT

/ ) ———

IN N
2e,ts) = Qe t-1) g.*(-t-:,t-/) ' III
A ; v
Ble,t) = Hit) X, t-1) 14%
- N '

Xt t) = X2 (t,t-) + 6(t)[26) - Z tyt-1)] %

A . ' /2N S - .

Loy par o pdnRNE At s ;,-(,.a:.(/..m»«tt() bu*"} ’\HL‘ catth
¢ J

CC\- i R AAlans 19 [
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CHAPTER III

FILTER DESIGN

3-l SOME PRELIMINARY CONSIDERATTONS.,

The equations for the optimal filter were derived in
Chapter II, aﬁd are summarized In Section 2-3. Design
of the optimal filter consists mainly of writing a suitable
computer program to carry out the calculations indicated
by the filter equations I through V. The Input to the
Tilter is the nolsy observation vector, g_(t), and the out-

put is the best estimate of the system state vector,

* L x(t) .
One of the chiel problems In carring out the filter ‘

computations is the determination of the inverse of the

matrix found in equation II. If this matrix Is singular,

" j : then the Inverse does not exist. One must then resort

to the calculation of a ;;seudo-inverse. The manner n

which the pseudo-inverse ls determined is shown in[2].

and will not be discussed further here. In either case

é the tlme required for Inverse computation is relatively

high, the time being roughly proportional to the cube of

20




the dimensionality of the matrix. On present day com=-
puters several seconds of computation time may be
necessary to determine the inverse of a Lx4 matrix,.
This being the case, one can easily see that the sampling
rate may be adversely affected. ;n therefore behoves
one to make a close study of this matrix to see if com-
putation time can be reduced.

To illustrate, let us assume we are going to track an
object in space, receiving position information only. The

observable states are range, bearing, and elevation (R,S,

( : ¢), and we wish to determine best estimates of these
’ states along with their derivatives (é, é, é). Our state

vector would then be set up as follows:

’ TR M x1]
v ) R P

' 9 x3
;' ] x(t) = & =| x4
| RN R

The H matrix woud become
j : 100000

H(t) = | 001000

000010
‘— ot

2l




and hence the matrix ( HPH + R ) would be 3x3 In
dimension.
Recalling that P(t) is symmetriczl, computational

reduction might be poasible iIf we can assume

E[(x; () =Rl t-D)(Zual®) ~Riya (ere-1))] <O

for (=14
and further that R(t) has non-zero elements along the
main diagonal only. Making the above a"ssumptionsl the P
and K matrices would become

i
; :. | T @z o 0

o 0]
p2l p2 O 0 0 0
P(t) = 0 0 P33 P34 0 0
0 0 p43  ph4 o) 0
0 0 0 0 P55 p56
| 0 0 0 0 pb5 pbb
{ and R(t) = M 11 0 0
3 0 r22 0
' : 0 0 r33
. -
l .
; We would then “ind that
-
1 0 o |
; pil + rll
: -] 0 1 0]
,; 0 L
; ¥
B P55 r33J
|
i

} . | 22




since the inverse of a matrix, having non-zero eiements
along the main diagonal only, s found simply by inverting
the diagonal elements.

Suppose now that rate information is also available
so0 thet measurements of all six states are made. If,
in addition to the above assumptions, we can assume that
the cross-variance elements in the P matrix, involviﬁg

the even subscripted states, are also zero, then

- -1
2 pli 0 o0 o0 0 )
[21 a22) 0 0__ 0 0
_ 0 0" [a33 p3s]t 0 0
(HPHHR)=: =| 0 0 1;343, alk] ¢ o_,
¢ 0 0 0[5 psé
0 0 0 O |pb5 abb

where ali = pii + pil, 1 = 1,6
thus reducing computational time by at least 63/3x23 or
9 times.

A further reduction might be realized in the given
example by the use of three filters doing Zx2 matrix
manipulations as oppcsed to one filter computing at the
6x6 level.

Agother consideration is the time lag between input

and output. In real time situations this could be of the

R3
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uwtmost Importance. A .glance at the filter equations, I-V,
indicates that if all five equations are computed after the
Input, g(t), has been reéeived, then a conslderable time
lag could ensue before the output is generzted. On the
other hand, If the transition matrix,@(t,t-l), is known
at time t-l, then equations I, II, III, and IV can be
computed prior to receiving the input. The time delay in
this case would only involve the time taken to compute

V, which might be in the orde;- of micro-seconds.

3=2 FILTER FOR A STATIONARY PROCESS.

It is to be noted that equations I and II do not
involve the observations, z(t). If the process, which we
are trying to observe, is stationary, 1.63@, H, Q, and
R are constant matrices, then it will be found that the
optimal galn matrix, &, will stabilize to a constant value.
This matrix could then be precomputed (prior to any
observations), and the filter would be reduced to ths
relatively simple calculations Indicated by III, IV, and V.

A digital program, which computes the optimum
gain matrix for a stationary dynamic process, has been

written in FORTRAN, and Is found in Appendix II. It
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is completely general and can handie any system with up to
twelve states. It Is written as a subroutine to eliminate
possible conflict in the naming of variables. Essentially
the subroutine carries out the iterations indicated by I
and II until such time tnat no element of the gain matrix
changes from its previous value by an amount more than
.0000l. If higher accuracy is desired, this constant can
be easily changed to the degree of accuracy required.
Further description on the usage of this program is found
In the Appendix.

3=3 THE GENERAL FILTER.

In the general case, non-stationarity is assumed.
Appendix III contains two programs, the first of which
performs the computations indicated b:lr the five filter
equations after each observation. The second programmwe
allows for the case when the transition matrix is known
before an observation is made and hence reduces the
time lag (previously discussed) between out put and input.
Further discription of the usage of these programs is

contained in the Appendix.
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CHAPTER IV

ILLUSTRATIVE EXAMPLES

This section of the paper will deal w'ith two illustra-
tive examples. The aim of the first example is pﬂmarily
tutorial. A thorough discussion of the model will be given,
followed by the design of an optimal filter. The second
example will deal with the track smoothing of an anti-ship
misszile. A mathematical model of the missile in flight will

be set up and a filter designed for optimum track smooth-

ing.

EXAMPLE I: p

Given the transfer function for a low pass filter in
Fig. 1, a)determine all mathematical model parameters ,
and, b) design an éptimal filter which will give a best
estimate of the states In the filter. Assume that the
excitation at the Input (u(t)), and t'he' additive nolse

(v(t)) at the output are gausslan and stationary.

v (t)
ult) | Y(t) \é Z(t)
(S+I)(S512)

Fig. 4=l L.ow pass filter of Example I.
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Our first step is to convert Fig. 4=l to a more

convenient form for analysis as shown In Flg. 4=-2.

-

_LrSZ _;_05:
5! s:
w Xa(t) -+ X (1)

Fig. L-2 Signal flow graph for Example I

From Chapter I, equations (l.8) through (l.12), we see

that x(t) = Fx(t) + Du(t) (g4ol)
{ﬁi,(—c) e f X () . o o o
| 7 -2 -3] | x,@ o 1| |uw

We wish now to find the solution to (4.l) in the
form given by (l.15). To do so we musgt assume that
u(t) iz plece-wise constant.

The (:2 and A matrics will be obtalned by using signal
flow techniques and applying unit impulses at selected
locations in the diagram as illustrated In Fig. 4=2. .

From PFig. 4,~2 we see that

ULs) X

@ (S) - i Y]
Xz.(5) 25!.!9

a e
=7

Toma




X (s)
Als) = xgsts
5
Qi () = E0) =__—_$__3L |+ 2) G
S 2
! | +.§_+_§-1 S +3S+Z‘
Qiz(s) = X (5 :-_-—P-—-———J'T - = !
12 2 It Z+2 §% 435+2
D, (8) = Xl - T E - -2
el S 2. - 2
| l‘l"-:;"—-i'—s-; S“+3s+2
.
Q) = 2L = = __8
ee Se Lt X%+ & 43542

D = X o = '

T % bt 3 +5& S(st+3s+2)
| |
. .’T . '
A,a (8) = 22 (s) oy S - =
@l = Se® TR Y Wissee

Taking the inverse of the above and letting the sample

interval be T we find

N e T e
-r N
Qt+Tt)= (4e2)
2e 2T 267 -eT
ol 4
28 : .
-~
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and _ -T -aT
’ 0 + -e'++4€

AE+T8) = (4e3)
0 e-—T_ e-a'r

The solution is now In the form of (l.15)

X (t4T) = Q(tHNt) X(E) + A(t+T,t) L(t) (1.15)

and the mathematical model is shown in Flig. 4-3,

((t)
ue) 20ttT) e X (t) | y(t) z(t
=AY _ ’&\';’x/) T H(t) —eé——;s

@ (t +T7,%) <-'::—-l~

PFigure L4=-3 Mathematical model for Example I

where H{t) is obviox-sly[i O],' since only one state, x} , is

observed.

b) Design of optimal filter

We recall that optimum filtering is based upon a

knowledge of the statistics of u(t) and v(t), and there-
T T-

fore we assume that E[y.‘(t)-_g (t)] and E[x(t)-z_ (t)_]a.re

part of the problem statement. We now calculate the

covariance matrix

O 1T = At +Tit)E[u® - Je)]AT (tn:t) (4oly)
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and R(t) = E[u®.v®)] = (4.5)

The only remaining task is to select an initial
covariance matrix, P(ty), for our best estimates of
the initial states of the model. The selection will depend
to a great extent on a good knowledge of the problem.
In this instance the best selection would probably be .the
main diagonal of Q(t) (previously calculated),with the
off=diagonal terms set to zero. The off-diagonal terms
are zero Iinitlally since knowledge of x)(t,) (at the first
measurement) will in no way provide any information
about X2(tg) lex)(t,) and X 5(t,) are uncorrelated inso-
far as the observer is concerned.

Since the system under study is stationary, the
optimum gain matrix may be pre-determined. This
eﬁtails the use of SUBROUTINE CONFIL in Appendix
II. A sample period of 0.l secs. is used. Using (L4.3)
and (4.4), we compute the covariance of the states,
Q(t). The element q in Q(t) is a measure of the
expected signal power. By making r); (measurement

noise power) equal to various multiples of qQ (including
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zero) we are able to study the behaviour of the gain
matrix as a Junction of noise-to-signal power.

The curues in Figure 4-4 indicite how the optimum
gain metrix elements behave as noise-tc~-signal power s

0 we see that Gl is equal to

increased. With N/S
unity. We expect this since there is no measurement
noise and hence the best estimate of the observable
state is the measurement z(t) itself. However as the
noise power is increased the gain element falls off and
the filter starts to rely more on the predicted value
and less on the observed value. The matrix element G2
also falls off in a similar fashion, with x*e(t) becoming
less dependent on z(t) as the ”relative noise power
increases.
EXAMPLE II

Problem Statement - It is known that the ehemy's
main anti-ship weapon is an air-launched misslle which is
normally launched at a distance of 250 to 300 miles from
target. After launch, it climbs to an altitude of 40,000

ft., attains a speed of approximately 1000 mph, and

maintains this speed by use of a sustainer motor. When

3
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‘average atmospheric turbulence, the veloeity of the

within 25 miles of the expected location of target a
sezrch device is switched on which pinpoints thg_ target
and enables the migsile to gulde itself to target. A
typical friendly ship at sea is fitted with & mono-pulse
search radar sysﬁem with a scan rate of 10 scans/min.
The ship is fitted with a digital computer and target

information ig rvullable to the computer. It is known

.that the probabiiity distribution function of the

accumulated error (in both x and y) is approximately.
normal with zero mean and 2 mile standard deviation.

. Data accumulated on similar missiles indicate that,
due to erratic thrust developed by the misslle motor and 7
!
missile varies in a random fédshion (approximately
gaussian). The standard deviation of this randomness
is about 2% of mean velocity.

Design .-a filter which will determine best estimates

of the missile's position and velocity. Assume that

-attack is equi-likely from all directions.

SOLUTION

Our first step Is to set up a mathematical model
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which describes the dynamics of the missile, in the form

X (¥) = F(t) () + DY) U(t) | ‘

; ‘ . . '
' L Considering only the component in the x direction we A’Jﬁ’/
' ) '

obtain O py2
>~

X, (%) o) V|, () o ol o

T (4.6)

| ‘ X, (t) o Ol | X, (t) o 1] |u®)

1

where ; is the position on the x axis
xo Is the velocity component in the x direction

" A similar vector equation wculd describe the

dynamics in the y direction.,
As we have seen earlier the solution to the above

equation Is

X(t) = P(re) X (1) + AlEEIUlt)  (he?)

assuming uy(t) is plecewlise constant.
'} : We now must determine @(tz,tl).
From (4.4) we obtain the model shown in Fig 3.5., a

simple 1/s* plant.
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Ly L8) o A Xz (1) s L -—Z-.L.<.t)..>

Fig 3.5 Model for missle in Example II.

The parameters @ and A are

y .
@ (('a J '&,) =

0 -

O (et |
A(f& )’(‘:‘) - é

ke, L=t |

Since we intend to sample at a rate of 10 times/

min. (scan wate of radar) then tz - t] = 6 seconds.

or T = 1 hrs,
600
_.‘ _.L~
B (t,¢-1) = b0
| O I
and
_O _L(_L)Z_
A(‘f;) f-T) = 2 \6oo
0 56 |
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To complete the model we require values for H(t) and

Loy
R(t)c v :,4<\‘
7 e
From the problem statement 6 o
o
»d
‘U
\ 2 . v
R(t)=ry = 2° = y.0
and since we are observing p_bsition only
H@) = [ o]
Summarizing our model we have (Fig. 4.6)
' ve)

x (ttzh) x(t)

l____:@(tfz.’rait)

Fig 4,6 Mod=l for Missle of Example II

::?A(hé;, ?)

We are now ready to _set up the filter. One
requirement is the initisl covariance matrix P(o). Since
the missile can approach us from ahy direction with
equal probability our best estimate for the inital states
is zero for both position and velocity, le

-52» (0)- o

2 2 (0) 0
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o ()
We therefore find that (7 [/.p)\\,

Plo) = E[x(0)-X"(0)] !

To determine this we must have a knowledge about i
the detection capability of the radar. A standard search
radar looking for an okject at 40,000 ft. elevation may
have an initial detection -dénsity function, as shown in

Figure 4.7, in all directions in the x-y plane.

Pa N

0 =200 Range (miles) 9

FIG. 4.7 Probability density function for inital — s VT
detection )

Since the missile may approach from any direction
let us assume that the standard deviation when con-
sidering the x direction only is 100 miles. Simllarly let
us assume the velocity component on the x axis has a
standard deviation of 500 mph. We then find that

(jo0)? 0

P(o) =
0 (500)*

38




Our last remealning task is to select a value for vxz(o)
to wrovide numbers for the Qo) matrix, Our best
initial estimate of this quantity would be the pso element
in Plo). \‘\ ) w.;,'l\‘ q

7 w\\d \gd""'

Hence
(©) = (500)°

Subsequent values of Vy(t) could be calculated by
using 9.2(1:) .

We are now prepared to write a program for the
optimal filter.

Since the transition matrix Is a constant but Q
iz vopizble (being a function of V) the 2nd program of
Agpendiz IIT would apply.

- We now summarize taking into ;acccunt the y com-
ponen"'c of direction. ‘The flow chart for the filter
caledations is shown in- Appendix III,

. (rumber of states) = 4
» (number of observables) = 2

T (zample interval) = 1/600 hrs.
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APPENDIX I

LINEAR DIFFERENTIAL EQUATIONS

et us consider the solution of .a lst order dif-
Terential equation by the use of an integrating factor

(p), to make an exact differential,

Given:
dx
—_— = ’ 1
ST Tax u ’()
Find:
x(t) = fxg, u, a, t)
Solution:

Multiply (1) by p(t) and attempt to make the

resulting equation an exact differentiale We have

pgﬁ + pax = pu
dt

(2)

or
fal d
'a'E(Px) -E‘E'x+apx=pu

and
91-(px)=(51£-ap>x+pu (3)
dt dt

Considering the homogeneous part of the problem
(leeey, u = 0), we can make (3) an exact differential
by setting

Lk




&le

= ap =0

We may guess at a solution for (L) as

P = pye

(5)

and by substitution in (4), verify that it is a solution.

Applying this to (3) gives

t
%{;‘ <poeatx> = (0) x + poea u

Integrating

t
Po [ea‘tx - %, = j o2 u(r, d'r:l
o

at

Multiplying by e~~~ gives

+
x = e~8t x, * o3t f .earu(’]’) dar
o
or

™ . '
x = o"3F & & I e"a(t"T)u(‘T) ar
)

(6)

(8)

(9)

The first part of (9) represents the homogeneous

solution while the latter part

t .
x5 =f emalt=T7) u(r) a7
o

LF:S




represents the particular solution or convolution integral,

Now let us consider a set of n of these lst order

differential eguations

%=fi(x., u) i“l, 0001'7

or

% = Fx + Du (11)

waere x and u are | x n column vectors and F and D
are n x n matrices., Multiplying (ll) by the integrating

factor B(t)y; (a row vector) we obtain, after some

manipulation
=0
—
4 ) = (2 +3 3
3. (Px) (-d-%+pF>gs+pD;1_ (12)

A3 before we assume a solution for the adjoint variable,

p(t) as

 Substituting into (l2) and Integrating gives

L6

A‘.;At- N B P el e




ES

t
Eo [e-Ft -x, = jo e-FrDE_(T) d?‘] - (13)

Multiplying both sides by eFt gives

t
Bt F(t =7)
X = e X, e Du (7) 47 (1)

Often the above is expressed in the form

x(t) = Qe £5) xlrg)+ Aley o) ulte)  (15)

.
where (ig the transition matrix or fundamental matrix,

and A represents the distribution matrix with u(7)

held constant at its value u{tgy).
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APPENDIX II
THE S’I‘VATIONARY FILTER
PURPOSE:

The attached program can be used to determine the
stobilized optimum g_a.in matrix for the estimation of the
stutes of a stationary process.

USAGE:
i. .Calling Sequence

CALL CONFIL (P, Q, R, TR, H, KN, KP, .KER,
&)

2. Arguments

ae P - initial covariance matrix of system states =
dimension (12 x 12)

 b. Q «~ covariance matrix of states due to gaussian
excitation « dimension (12 x 1)

C. R - covariance matrix of measurement nolse =
dimension (12 x 12)

de TR = transition matrix of process -
dimension (12 x I2)

. H - matrix which defines the observable states =
dimension (12 x 12)

f. KN = number of states in the system -
dimension (scaler)

L8




T T RS, T R T T

~ |
S KP - number of observable states - ”
dimension (scaler)
h. KER - errcr indication (= 2 implies the inverse ‘
of & matrix could not be obtained) -
dimension (1)

i. G - optimal gain matrix - *
dimension (12 x 12) i

3. Accuracy: see Chapter III i
L. Equipment Configuration: CDC 1604 with FORTRAN

60.

5. Cautions to User:

a. Al arguments in the main program must be
dimensioned the same as those in CONFIL.
b. The main program should contain an ERFOR TEST

(see 2h.)

6. Flow chart showing Typical Usage (see Fig. 1lal),

49




JOPRY

ra — e,

I TR L P Y S A U

R et bt R ek e — i s B o 0 R a4 s et pomrom o o

|

Star

2

initialize
P, Q, R, 0, H, KN, KP

~N yes | indicate
( KER = 2‘?/ > error
No
3
continue

Fig. 11«1 Flow diagram showing typical vsage
of CONFIL
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APPENDIX IIT

GENERAL PILTERS
PRIZIAMBLE: Two programmes, in subroutine form, are
contained in this appendix. The first programme carries
out all filter computations after the Input has been
received at each sample lastant. The time lag between
output and Input will therefore depend on the time taken
for these computations. The second programme is
designed Tor use when qer_tain parameters are. known (or
at least a very good estimate of these parzmeters can
be made) prior to receiving the input at each sample
instant. A prior knowledge of these parameters, namely
TR(t,t-1), H(t), R(t), Q(t) (defined below); enables a
c'b;:side":-able reduction of the above-mentioned time lag
between output and Input. This is achlieved by perform-
ing most of the filter computations prior to réceiving
the input,
A, SUBROUTINE BESTX
PURZPOSE: This subroutine will provide an optimum

estimate of the state vector for any sampled-data
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lincar dyncemic process (with twelve or less states) iIf
bota the proccess randorm excitation and corruptive
mecoastrement noise vectors have gaussian distributions.
USAGE:
1. Culling Seqguence 3

CALL BESTX (B Qy R, TR, H, KN, KPF KER,
G, XP, 2, X)

2. Argumeants

o P - initial covariance matrix of system states =
dimension (12 x 12)

b. Q = covarionce matrix of states due to gaussian
excitation =
dirmension (12 x 12)

Ce R - covoaricnce matrix of measurement noise =
dimension (12 x 12)

d« TR = transition matrix of process =
dimension (12 x 12)

Ga H « matrix which defines the observable states =
dimension (12 x 12)

f« KN = number of states in the system =
dimension (scaler)

g. KP e~ number of observables states =
dimension (scaler)

he KER « error indicatlon (=2 implies the Inverse of a
motrix could not be obtained) -
diraension (1)

i G = optimal gain matrix -
dimension (12 x 12)
56
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je XP -~ prodicted estimate of process state vector -
dimeasion

k. & = cbhbservation vector -
dimension (12 x 12)

l. X - optimal estimate of process state vector
(generated by filter) -
dimension (12 x IR)
3. Egupment Configuration: CDC 1604 with FORTRAN
60.
L. Cautions to User:
d. All arguments in the main program must be
dimensioned the same as those in BESTX
b. The main program should contain an ERROR TEST

(sce 2h.)

c. See attached flow chart depicting typical usage.

57




[0 ]

initialize

s 0y Ry Hy Q, ny, py, x5, 2, &G

\'/

¥

C invut ready?j

V&S

caleulate
Dy Qy Ry H
(if' necessary)

|

X

CALL BESTX

Y
(“rmm =

No

yes

1

input z(o)

x¥ = x + G(z=z)

~J

indicate

error

3 Y

output x

of BESTX
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B. SUBROUTINE GANDPR
PURPOSE: This subroutine will provide, for each
sample instant, a&w optimum gain matrix, and, the pre-
dicted values of the process and the observation state
vectors, if the process is linear and the random
excitation and corruptive measurement noise vectors
have gaussian distributions.
USAGE:
1. Calling Sequence )

CALL GANDPR (P, Q, R, TR, I—I,\X',; XP, 2P,
KN, KP, KER, Q)
2. Arguments

a. P « initial covariance matrix of system states =
dimension (12 x 12)

b. Q « covariance matrix of states due to gaussian
excitation - dimension (12 x 12)

c. R —~ covariance matrix of measwrement noise -
dimension (12 x 12)

d. TR = transition matrix of process -
dimension (I2 x 12)

e, H - matrix which defines the observable states =
dimensiocn (I2 x 12)
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f. X - optimal estimate of process state vector —
dimensicn (12 x 12)

g« XP « predicted estimate of process state vector -
- dimension (12 x 12)

h. ZP ~ predicted estimate of observable state
vector -
dimension (12 x 12)

i. KN - nurmber of states in the system =
dimension (scaler)

Je KP « number of observable states -
dimension (scaler)

k. KER = error indication (= 2 implies the inverée
of a matrix could not be obtained) =
dimension (1)

le G =~ optimal gain matrix -
dimension (12 x IR)

3. BEquipment Configuration: CDC 1604 with FORTRAN
60.
L. Cautions to Usenr:

a. All arguments In the main program must be
dimengioned the same as those in GANDPR.
| b. The main program shouwld contain an ERROR TEST

(see 2h.)

l
{ c. See attached flow chart depicting typical usage.
|
|
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