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ABSTRACT 

A description is given of an uncooled rocket engine operating tech- 
nique applicable to the experimental study of missile base heating.    The 
primary advantage offered by this technique over those in current use is 
that it retains the single combustion chamber,   uncooled engine concept 
of the short-duration test technique while providing burn durations of 
sufficient time to permit use of conventional,  steady-state instrumenta- 
tion.    This technique also eliminates the usually complex propellant and 
control systems associated with conventional liquid-cooled long-duration 
engines.    Uncooled engine operating characteristics are reported for 
burn durations of 1. 2 sec; extrapolation of these data indicate engine 
burn duration can be extended to 2. 5 sec.    Base heating data obtained 
with a 5. 47-percent-scale Saturn I-BlockII model utilizing the uncooled 
engine test technique are compared with data from a Saturn I-Block II 
model which utilized short- and long-duration test techniques. 

in 
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SECTION I 
INTRODUCTION 

Many test programs have been conducted in ground test facilities to 
measure the heat flux and pressure on the base of model booster stages 
of rocket powered vehicles.    Early test programs (Refs.   1 through 6) 
utilized small liquid rocket engines scaled as nearly as practical to the 
full-scale engines.    Typical firing durations for these engines were on 
the order of 20 sec (long-duration).    This burn time was sufficiently 
long to permit use of conventional steady-state instrumentation to meas- 
ure and record temperature,  heat flux,   and pressures on the model base. 

Base heating investigations have also been conducted in several 
ground test facilities utilizing a short-duration shock tube technique 
developed by the Cornell Aeronautical Laboratory,  Inc.  (CAL) (Refs. 7 
through 9).    With this technique,  gaseous propellants are used,   and 
steady-state engine operation is usually limited to under 50 msec 
(short-duration).    However, this extremely short burn duration neces- 
sitates use of high-response,   laboratory-type measuring equipment 
and complex setup,  calibration,  and data reduction procedures (Refs. 10 
through 15). 

During the early planning for a short-duration base heating test on 
the Saturn I-Block II and SIB booster at AEDC (Refs,   16 and 17),  it was 
recognized that the state-of-the-art of model testing could be advanced 
if an uncooled engine which did not require the conventional liquid pro- 
pellant and coolant systems could be designed to operate for burn dura- 
tions up to 3 sec.    This technique would allow use of conventional 
instrumentation,  would retain the operating simplicity of the short- 
duration model,   and would ensure that adequate time is allowed for 
adjustment toward equilibrium temperatures in separated flow regions 
on the model base (Ref.   18).    The technique would also permit greater 
flexibility and accuracy in scaling   missile base geometrical details 
such as external engine contours,   engine cant angle,   and engine gimbal 
angle. 

To evaluate the uncooled engine testing technique,  an uncooled com- 
bustor and nozzle assembly were designed and fabricated by personnel 
of the Rocket Test Facility (RTF).    The model utilized the previous 
long- and short-duration Saturn I-Block II,   5. 47-percent-scale model 
configurations to allow comparison of base heating data with previous 
short- and long-duration data obtained in the same ground test facility. 
In addition to the external model fairings, the propellant injector and 
flow measuring Venturis and the special fast-action bipropellant valve 
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were furnished by the George C.  Marshall Space Flight Center, NASA, 
Huntsville,  Alabama. 

In this report design considerations for the uncooled combustor 
and nozzles are discussed,   and engine operating characteristics and 
base heating data obtained during five test firings of the uncooled engine 
model at simulated flight conditions of Mach number 1.63,   38, 000-ft 
altitude are presented. 

SECTION II 
APPARATUS 

2.1   TEST ARTICLE 

The uncooled engine consisted of a single copper combustion chamber 
with an eight-nozzle cluster configuration as shown in Fig.   la.    Propel - 
lants were gaseous oxygen and ethylene.    The combustor and nozzles 
were housed in existing 5. 47-percent-scale Saturn Si-Block II fairings 
which included flow deflectors,  air scoops,  hold-down stubs,   and aero- 
dynamic fins (Fig.   lb).   The model base heat and flame shields were of 
a sandwich-type construction,  identical to those used with the long- 
duration test program reported in Ref.  3.    The injector, the propellant 
flow measuring Venturis,  and the fast-action bipropellant valve were 
those used in the short-duration test program reported in Refs. 16 and 17. 

The full-scale booster propellant pump turbine exhaust gases were 
simulated by hydrogen gas,  which was discharged from exhausterators 
located circumferentially about each of the four outboard engines and 
from overboard ducts for each of the four inboard engines (Fig.   lb). 
The hydrogen was supplied from a common manifold having eight outlets; 
each outlet incorporated a 0.0025-in.-diam sonic orifice with a flow coef- 
ficient of 0.95.   The hydrogen flow rate was set for 0.0094 lbm/sec/eng 
which simulated the heat content of the full-scale turbine exhaust gases. 
Further details regarding turbine exhaust simulation using hydrogen gas 
can be found in Refs.   16 and 17. 

Design and operating criteria for the uncooled engine model are 
compared with long- and short-duration models and the full-scale Saturn 
booster in Table I. 

2.1.1   Design and Description of Nozzles 

The uncooled nozzles were designed to operate for burn durations 
up to 3 sec and to duplicate as nearly as possible both the long- and 
short-duration nozzle configurations.    External nozzle geometry aft of 
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the heat shield and internal nozzle geometry were duplicated, but it was 
necessary to make the uncooled nozzle throat section thicker to provide 
an adequate heat sink. Detailed drawings and photographs of an inboard 
and an outboard nozzle are presented in Fig.   2. 

During initial nozzle design,   several materials and combinations of 
materials were investigated for possible use.    These included oxygen- 
free copper,  tantalum-tungsten alloy,  copper-beryllium alloy,   and 
copper-zirconium alloy.    Although each of these materials possesses 
certain advantages for use in this particular application,  the tantalum- 
tungsten alloy was selected because of its high melting point and superior 
strength at elevated temperature.    Table II shows thermophysical prop- 
erties of the 90-percent tantalum,   10-percent tungsten (Ta 10W) alloy 
from which the nozzles were fabricated.    Properties of the other mate- 
rials investigated during the design were obtained from Refs. 19 and 20. 

A bolted flange arrangement was used to attach the nozzles to the 
combust or.    A gas-tight seal was provided by thin,  chevron-type 
Inconel® rings {Figs.  2b and c) located between the nozzles and the com- 
bustor.    These seals incorporated a spacer to prevent contact between 
the nozzles and the combustor. 

The calculated maximum burn time of the uncooled engine model 
was based on the time required for the nozzle throat inner wall tempera- 
ture to reach 75 percent of the TA 10W melting point.    Heat transfer 
calculations used in the design of the nozzles are presented in Appendix I. 

2.1.2   Desfgn ond Description of Combustor 

The combustor design was established using the general configura- 
tion of the short-duration,  single-chamber combustor (Ref.   17).    A 
sectional view showing the chamber and integral nozzle feed tubes is 
presented in Fig.   3,    Because the combustor was to be uncooled,  it was 
necessary to select a material with high thermal diffusivity so that the 
chamber inner wall surface would not melt during burn times up to 3 sec. 
The maximum stagnation temperature in the chamber was estimated to 
be 6000°F at a chamber pressure of 500 psia based on a combustion effi- 
ciency of 95 percent for gaseous oxygen and ethylene {Fig.   4 and 
Appendix I).    Figure 4 presents theoretical performance of O2-C2H4 
and LO2-RP-I propellants obtained by the method described in Ref.  21. 
Oxygen-free,  high-conductivity (OFHC)® copper was selected as the 
most suitable material under these conditions.    Table II presents 
thermophysical properties of OFHC copper.    The combustor was cast 
in one piece,   radiographically inspected for voids and cracks,  and then 
machined.    Photographs of the casting and the finished combustor are 
shown in Figs.   3b through d. 
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2.1.3   Design and Description of Propellent System 

The uncooled engine gaseous ethylene-oxygen propellant system 
was designed to satisfy the following criteria: 

Maximum chamber pressure rise time 100 msec 

Steady-state operating time 5 sec 

Ethylene flow rate 3.9 lb^/sec 

Oxygen flow rate 8.6 lbm/sec 

To achieve the desired short starting transient an "infinite volume" 
reservoir system was used in conjunction with a fast-acting dual- 
chambered automatic propellant valve (autovalve) capable of opening or 
closing in 15 msec.    A schematic of the propellant system is shown in 
Fig.   5,   and details of the autovalve are shown in Fig.   6.    The autovalve 
consists of two mechanically linked,  pneumatically operated piston 
valves housed in a single body, which was bolted to the combustor.   The 
autovalve had externally mounted cartridge heaters to maintain gas tem- 
perature. 

Propellant flow rates were controlled by sonic flow metering Venturis 
(Fig.  7) located at the entrance to the autovalve.    The Venturis were 
designed by CAL, in accordance with Ref.   22.    The venturi throat diam- 
eters were 0. 395 in.  for the ethylene and 0. 569 in.  for the oxygen,  and 
flow coefficients of both were assumed to be 0. 99.    Propellant flow rates 
were calculated by the methods given in Appendix II. 

The injector (Fig.  8) introduced the gaseous propellants into the 
chamber in a simple direct-impinging spray pattern.    Approximately 
20 percent of the fuel flow was injected through film cooling orifices 
located in the combustor forward face (Fig.  3d) to prevent combustor 
wall overheating and erosion.   Ignition was accomplished with a specially 
designed spark plug (Fig.   3a) located in the combustor wall. 

The gaseous oxygen reservoir consisted of several high-pressure 
cylinders manifolded to give a capacity of 55, 000 scf at 2500 psia.    The 
oxygen was delivered from the reservoir to the model through a 
3-in. -diam stainless steel line. 

The gaseous ethylene reservoir consisted of a single 182-ft3,  high- 
pressure cylinder.    A 3. 5-ft3 auxiliary tank was installed in series with 
the primary reservoir near the flow measuring venturi.   The ethylene in 
this tank was pre-heated to 180°F by strip heaters on the tank to ensure 
that the ethylene remained in a gaseous state while flowing through the 
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venturi,  autovalve,  and injector.    The auxiliary tank contained enough 
heated ethylene for one 5-sec run.    The ethylene was forced from the 
top of the tank by the cooler gas which entered through a diffuser plate 
at the bottom. 

2.2  INSTRUMENTATION 

Instrumentation was provided to measure nozzle and combustor 
temperatures,  propellant system pressures and temperatures,  com- 
bustor pressure,  and model base pressure and heat flux.    A summary 
of the methods and accuracy of the measuring and recording systems is 
given in Table III. 

2.2.1 Nozzle and Combustor Instrumentation 

Outside wall temperatures of one inboard and one outboard nozzle 
were measured with six surface-attached Chromel  -Alumel    (CA) 
thermocouples.    Locations of these thermocouples are given in Fig.  9. 

Combustor temperatures were measured with three CA thermo- 
couples attached to the outside wall and one CA thermocouple recessed 
in the chamber wall to a depth approximately 0. 19 in.  from the inner 
wall.    Locations of these thermocouples and details of the thermocouple 
plug are presented in Fig.   10.    Combustor chamber pressure was meas- 
ured with a strain-gage transducer connected with approximately 2 ft of 
0. 130-in. -ID line to a pressure tap located in the downstream end of the 
chamber,   as shown in Fig.   10. 

2.2.2 Propellant System Instrumentation 

Propellant system instrumentation (Fig.  5) consisted of pressure 
and temperature measurements necessary to set engine operating con- 
ditions and provide data for calculation of propellant flow rates.    Oxygen 
and ethylene reservoir pressures were sensed with strain-gage trans- 
ducers.    Propellant line pressures were sensed just upstream of the 
flow measuring Venturis also with strain-gage transducers.    Venturi 
throat pressures and injector pressures were sensed with quartz crystal 
piezoelectric transducers.    Propellant gas temperatures were measured 
with two sonic,   aspirated CA thermocouples,  one installed in the oxygen 
line and the other in the ethylene auxiliary tank.    Ethylene temperature 
was also measured just upstream of the flow measuring venturi with an 
iron-constantan (IC) thermocouple probe immersed in the gas stream. 
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2.2.3   Model Base and Flame Shield Instrumentation 

Model base and flame shield instrumentation consisted of slug mass 
calorimeters,  commercial membrane-type heat gages,  and thin-film 
dual-element heat gages for measurement of heat flux.    This combina- 
tion of instruments encompassed the types used in the previous long- 
and short-duration base heating tests.    Details of heat gage construction 
are shown in Fig.   11,  and data reduction and other related information 
are given in Appendix III.    Location of instrumentation on the base and 
flame shield is shown in Fig.   12. 

Model base pressures were sensed with strain-gage transducers 
connected to the pressure orifices on the base heat shield (Fig.   12) with 
approximately 15 ft of 0. 1275-in. -ID tubing. 

2.3.4   Tunnel Instrumentation 

Tunnel aerodynamic instrumentation consisted of static pressure 
taps located at various axial stations throughout the plenum, test section, 
and diffuser.    These pressures were sensed with close-coupled strain- 
gage transducers; selected pressures were also connected to manom- 
eters in the control room to monitor pre-fire steady-state tunnel condi- 
tions. 

Permanent visual records of the firings were provided by two 
16-mm high-speed motion-picture cameras mounted at test section 
camera ports in the exit plane of the nozzles. 

2.3  INSTALLATION 

Testing was conducted in Propulsion Engine Test Cell (T-l) which 
is an open-circuit wind tunnel (Ref.   23) equipped with an axisymmetric, 
supersonic nozzle having a centerbody contoured to conform to the 
stream surface in the flow field necessary to obtain Mach number 1.6 3 
(Ref.  24).    The model and centerbody were cantilever-mounted from a 
spider arrangement in the plenum chamber (Fig.   13) and extended aft 
through the nozzle into a 36-in. -diam by 28-in. -long test section.    Tun- 
nel airflow and engine exhaust gases discharged into a conical inlet, 
72-in. -diam,  50-ft-long,  straight cylindrical diffuser (Ref.   24) and 
were ducted to the facility rotating exhaust machines.   Instrumentation 
leads, propellant system lines, valves,  control leads, turbine exhaust 
lines,   etc.,  are contained in the centerbody.    The lines and leads 
terminate in the inlet plenum,  where they pass out of the test cell 
through a sealed porthole and are connected to the permanent facility 
system. 
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SECTION III 
PROCEDURE 

Prior to each test period,  high-pressure pumps were used to charge 
the propellant reservoirs to the pressure necessary to give the desired 
propellant flow rates according to Appendix II.    The ethylene auxiliary 
tank and line heaters were then turned on,  and the ethylene temperature 
was allowed to stabilize at 180°F (250°F for Run No.   1).    A calibration 
of all instrumentation systems was obtained with the test cell at sea- 
level pressure and again at 2. 0 psia.    After calibrations were complete, 
tunnel flow was established. 

The tunnel test section static pressure was set to correspond to the 
desired simulated altitude.    Inlet total pressure was set to give a pres- 
sure ratio corresponding to Mach number 1.63.   Inlet air temperature 
was maintained at 150°F. 

After tunnel flow had stabilized,  the firing was initiated by a se- 
quencer which automatically controlled the firing events as shown below: 

t-5 sec Instrumentation started manually 

t-0 sec Automatic sequencer initiated and high- 
speed cameras started 

t+2 sec Signal sent to autovalve to open 

t+2. 1 sec Autovalve open and common time signal 
triggered on all recorders 

t+2. 4 sec Turbine exhaust flow initiated 

t+3. 0 sec Primary close signal sent to autovalve and 
to turbine exhaust valve,  argon purge 
initiated 

t+3. 15 sec Secondary close signal sent to autovalve 

t+13. 0 sec Close signal sent to argon purge valve 

The cqmbustor and nozzles were cooled for 10 sec after each firing 
with an argon purge,  which was introduced into the oxygen line just up- 
stream of the injector.    The argon flow rate was approximately 8 lbm/sec 
Nitrogen was not used for purging because of its incompatibility with hot 
tantalum. 
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SECTION IV 
RESULTS AND DISCUSSION 

The uncooled engine model test technique was evaluated in five 
firings.    The first two firings were conducted primarily for systems 
checkout and were limited to 0. 5- and 1. 0-sec burn duration.   Base 
heating data were obtained with and without turbine exhaust simulation 
during the third, fourth, and fifth firings.   The third and fourth firings 
were of 1. 0 sec duration; the fifth was timed for 1.5 sec,  but an ignition 
malfunction resulted in an actual burn time of only 1.2 sec.   Although 
the uncooled engine model test program was planned to extend system- 
atically the engine burn duration from 0. 5 to 3. 0 sec,  testing was 
terminated after the 1. 2 sec firing because of test cell scheduling con- 
siderations for a higher priority program. 

The following discussion presents combustor and propellant system 
operating characteristics,  combustor and nozzle temperatures,  model 
base and flame shield heat flux measurements,  base pressures,  and a 
comparison of uncooled engine model heat flux and base pressure data 
with previous long- and short-duration data.    Typical test cell oper- 
ating pressures for short- and long-duration tests are compared to 
those obtained with the uncooled engine technique in Fig.   14.    The good 
agreement shown in test section pressure ratio indicates that all three 
techniques were tested at essentially the same simulated flight conditions. 

4.1   COMBUSTOR AND PROPELLANT SYSTEM OPERATING CHARACTERISTICS 

A summary of propellant system operating pressures,  tempera- 
tures,  flow rates,  and other pertinent data from the uncooled engine 
tests are presented in Table IV.    A typical combustor pressure history 
for a 1. 0-sec firing is shown in Fig.  15a.   Ignition system malfunctions 
occurred on the first and fifth firings and resulted in a delayed ignition 
which caused a combustor overpressure during the starting transient 
(Fig,   15b).    The overpressure did not damage the combustor or nozzles. 

By using an "infinite-volume" propellant reservoir system and a 
fast-acting propellant valve, it was anticipated that the uncooled engine 
starting transient would be on the order of 0. 1 sec.    The advantages 
derived from a rapid starting transient are:   (1) heat flux to the base 
approaches a step input,  and (2) shorter engine burn times can be used 
to obtain the desired period of steady-state engine operation. 

The recorded chamber pressure (Fig.  15) and propellant line pres- 
sure histories (Fig.  16) indicate that, after the autovalve opened, wave 
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reflections in the propellant system were not completely damped until 
about 0. 6 sec.    However,  after the first 0. 2 sec of burn time the magni- 
tude of the pressure oscillations were less than 5 percent of the propel- 
lant line pressure; hence,  engine operation after 0. 2 sec is considered 
steady state and is therefore useful for obtaining base heating data. 

The short starting transient obtained with the uncooled engine is a 
significant improvement over the long-duration model which required 
about 1. 5 sec to reach steady-state operation,   as shown in Fig.   17.    In 
addition, the inherent problem of triethylaluminum contamination of the 
model base instrumentation during ignition of the long-duration 
L.02-RP-1 engine is alleviated on the uncooled engine model because the 
gaseous propellants are spark ignited. 

During the pre-test procedures for the second test, the ethylene 
contained in the heated portion of the fuel line (from the top of the 
auxiliary tank to the autovalve) underwent a decomposition-polymerization 
reaction which filled a portion of the line with a solid polyethylene-type 
polymer,  as shown in Fig.   18.    The exact cause of this reaction was not 
completely ascertained,  but it is surmised that it could have been 
triggered when cold ethylene gas,  probably containing some liquid,  was 
bled into the hot auxiliary tank during the initial propellant system pres- 
surization.    Up until this incident, the auxiliary tank and fuel lines were 
preheated to 250°F; however,  because of the uncertainty as to the cause 
of the reaction, the pre-heat temperature was lowered to 180°F for the 
remaining tests.    No further incidents were encountered. 

4.2  COMBUSTOR TEMPERATURES 

Combustor temperatures measured with surface-attached thermo- 
couples located at an inboard and outboard combustor-nozzle interface 
are presented in Fig.   19.    The calculated temperature for an inboard 
interface is also shown for comparison.    The calculated temperature 
was obtained using a computer program for a two-dimensional heat 
conduction network. 

The measured interface temperatures indicate that heating was 
more severe near the center of the chamber on the combustor center 
section than in the thicker surrounding section.    A variation in tem- 
peratures was noted between firings; these differences are discussed in 
Section 4. 3. 

Extrapolation of the inboard interface temperature data obtained 
during the run (No.  5) in which the highest temperatures were recorded 
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indicates that the melting point of copper would be reached in about 
2. 8 sec.    The highest temperature would probably occur at the aft face 
of the combustor center section; hence,  the copper would have pre- 
sumably melted in this region before 2. 8 sec.    In fact,  melting and 
erosion did occur at the rear of the center section (Fig.  20) although 
the inboard thermocouple indicated less than 1000°F during the longest 
(1.2 sec) run that was made.    Melting of the center section began at 
approximately 0. 5 sec as evidenced by the characteristic green colora- 
tion of copper in the exhaust plumes seen in motion pictures of the 
firings.    Modification of the rear face of the center section by addition 
of a conical section or by flame spraying with a ceramic coating would 
probably alleviate this problem. 

Combustor temperatures measured with a plug thermocouple em- 
bedded in the combustor wall to a depth approximately 0. 19 in.  from 
the chamber inner wall and with a surface-attached thermocouple at the 
same approximate location are shown in Fig.   21.    The test data repre- 
sent the average for the five runs since the maximum deviation was less 
than 17°F.    The maximum temperature measured near the inner wall 
was 210°F.    Extrapolation of these temperature data to the 2. 5 sec burn 
time limitation indicates that inner wall temperature should not exceed 
450ÜF. 

4.3  NOZZLE TEMPERATURES 

Temperature measured with a surface-attached thermocouple 
located on the outer wall of an outboard nozzle in the plane of the throat 
is presented in Fig,  22.   A corresponding measurement on an inboard 
nozzle was not obtained because of a faulty thermocouple.    These test 
data represent the average temperature for the five runs since the 
maximum deviation was less than 20°F.    The measured temperatures 
show good agreement with the calculated temperatures which were 
obtained using one-dimensional,  transient heat conduction theory 
described in Appendix I. 

A calculated temperature curve for the nozzle throat inner wall is 
also presented in Fig.  22 for reference,  although no measurement was 
made at this location.    This curve shows that approximately 80 percent 
of the inner wall throat temperature rise expected for a 2. 5-sec burn 
duration is attained within the first second of engine operation.    Since 
the nozzle throats did not show any signs of deterioration for run dura- 
tions up to 1. 2 sec,  it is presumed that throat overheating would not 
occur if burn duration was extended to 2. 5 sec. 
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Surface temperatures measured on an outboard and an inboard noz- 
zle skirt are shown in Fig.   23.    Data were obtained on the inboard noz- 
zle skirt section during only the second and third firings because of 
thermocouple malfunction on other firings.    The indicated temperatures 
were much higher than those previously shown for the throat primarily 
because of the thinner wall thickness at the skirt station.    The indicated 
skirt temperatures were higher than predicted by the one-dimensional 
theory (Fig.   23).    This is attributed to the fact that conduction heat 
transfer from the hotter throat station to the nozzle skirt is not accounted 
for in the theoretical calculation.    Temperatures on an inboard nozzle 
skirt were not obtained for the run (No.  5) in which the highest tempera- 
tures were recorded; for this run outboard skirt temperatures were 
estimated by determining the percent increase in temperature of the out- 
board nozzle between runs 2 and 5 and applying this factor to the indi- 
cated temperature of the inboard nozzle for run 2.    This procedure was 
validated by a similar correlation between runs 2 and 3J   during which 
data were available for both nozzles.    The results of this procedure indi- 
cate that the inboard and outboard nozzles are both capable of operation 
for burn durations up to 2. 5 sec. 

A large variation in skirt temperatures between individual firings 
is shown in Fig.   23.    A similar variation was also evident in the com- 
bustor temperatures shown in Fig.   19.    Examination of the engine oper- 
ating parameters presented in Table IV,  however,   does not indicate any 
significant trends in engine performance between individual firings, 
which correlate with the trend (with run number) in model temperatures. 
One explanation for the variation in temperatures might be that in re- 
ducing the ethylene pre-heat temperature from 250 to 180°F,  liquefaction 
of the ethylene occurred during the run thereby lowering the combustion 
efficiency and combustion temperature.    However,  if this occurred the 
effect of changes in ethylene flow rate and combustion efficiency would 
have had to compensate since there was no significant change in cham- 
ber pressure.    It is also possible that the "hard starts" on the first and 
fifth runs had an effect on the model temperatures since these two runs 
produced the highest temperatures. 

Nozzle surface temperatures measured at an inboard and outboard 
combustor interface during the first run are shown in Fig.  24.    Data 
were not obtained on the subsequent four runs because of faulty thermo- 
couples.    During design of the nozzle-to-chamber attachment,  it was 
thought that the nozzle interface might become hot enough to cause 
failure of the Inconel seal and/or possibly cause local melting of the 
copper combustor interface.    However,  extrapolation of the nozzle flange 
temperature data and the combustor temperatures previously shown in 
Fig.   19 indicates that the burn time can be extended to about 2.5 sec 
before the hotter inboard interface temperatures approach the melting 
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point of copper.    Furthermore,  the extrapolations indicate that the tem- 
peratures at 2. 5 sec would not be high enough to damage the Inconel 
seals,  which can withstand 1800°^ for durations up to 3 min.    It should 
be pointed out,  however, that considerable difficulty was encountered 
in obtaining a leak-tight joint with the Inconel seals.    Success in using 
seals of this type is dependent on having scratch-free,  fine surface 
finishes on both mating surfaces and maintaining a very close tolerance 
on seal compressive force. 

4.4   BASE HEATING 

Heat flux to the base heat shield was measured with three types of 
heat gages.    The first type consisted of in-house fabricated slug mass 
calorimeters,  which duplicated those used in the previous long-duration 
model tests.    The second type consisted of commercial,  membrane-type 
heat gages.    This type gage had not been used previously in Saturn model 
tests; however,   similar gages have been used with good results in other 
base heating tests such as reported in Ref.   26.    The third type consisted 
of dual-element thin-film heat gages developed by CAL and used exclu- 
sively in all previous short-duration tests. 

In the following discussion, typical heat flux measurements obtained 
with each of the three types of gages are presented,  followed by a com- 
parison of uncooled engine base heat flux with short- and long-duration 
data from Ref.   17. 

4.4.1 Slug Mass Calorimeters 

Temperature and heat flux histories for a typical slug mass calorim- 
eter are presented in Fig.  25.    Heat flux was computed by the method 
described in Appendix III.    For run 3,   an average value of total heat 
flux without turbine exhaust simulation was obtained by arithmetically 
averaging the data between ignition and shutdown.    A corresponding value 
for run 4 was obtained by averaging the first 0. 4 sec of the run.    The 
total heat flux with turbine exhaust simulation was obtained by averaging 
the data from run 4 between 0. 4 sec and shutdown.   Base heating data 
are not reported for run 5 because of the abnormal engine starting tran- 
sient and inconsistent engine operating temperatures compared with 
runs 3 and 4. 

4.4.2 Membrane-Type Heat Gages 

Typical heat flux measurements obtained with the commercial, 
membrane-type heat gages are presented in Fig.   26.    For both runs 3 
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and 4,   data from each of the gages reached a stable level then increased 
beginning between 0. 4 and 0. 5 sec.    This increase was expected for 
run 3 since hydrogen,   which was initiated at 0. 4 sec,   could have burned 
in the base.    For normal operation without hydrogen (run 4) however, 
the rise in heat flux was unexpected.    It is believed that this increase in 
total heat flux was caused by an increase in radiation heating from the 
vaporized copper present in the inboard engine exhaust plumes (as indi- 
cated visually).    This supposition is reinforced by the fact that the gages 
closest to the inboard engines (N8 and N10) showed a larger increase 
than the outer gage (N13). 

4.4.3 Dual-Element Thin-Film Heat Gages 

The thin-film heat gages were designed to be used for heating dura- 
tions of only 0. 050 sec; hence a calculation was made to determine the 
time required for the rear face (radiation gage) temperature to begin 
increasing due to conduction through the substrate.    This calculation 
indicated that conduction began in about 0. 10 sec.    Therefore,  data ob- 
tained after this time with the thin-film gages are invalid for quantita- 
tive purposes. 

However,  the thin-film gages were very effective in showing the 
qualitative effect of turbine exhaust discharge on base heating.    This 
can be seen in Fig.  27 by comparing convective and total heat flux for 
run 4,  which does not have hydrogen discharge,  with run 3, which does. 
A definite increase in heating occurred immediately upon initiation of 
hydrogen,  indicating recirculation and burning of turbine exhaust gas in 
the base cavity. 

4.4.4 Base Heating Campari son 

A comparison of uncooled engine model base heating data with short - 
and long-duration data (Ref.   17) is presented in Fig.   28.    Total heat flux 
is presented as a function of heat gage azimuth location about the model 
centerline.   The base was divided into an inner and outer region mainly 
for the sake of clarity of data presentation but also because previous 
model and flight test data have indicated different levels of heating in 
these two regions. 

For the uncooled engine model,  heat flux data from all three types 
of heat gages are included in the comparison.   The slug mass calorim- 
eter heat flux data were obtained by the averaging method given in 
Section 4. 4. 1.    The membrane-type gage heat flux data were obtained 
at a burn time of 0. 4 sec for the comparison without turbine exhaust 
simulation; the average difference in heat flux level between runs 3 and 4 
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was attributed to hydrogen burning and hence was added to the level 
obtained at 0. 4 sec to obtain data for the comparison with turbine exhaust 
simulation.    Thin-film gage heat flux data were obtained at 0. 125 sec and 
are presented only for the comparison without turbine exhaust simula- 
tion because of the gage limitation explained in Section 4. 4. 3. 

For the condition of no turbine exhaust simulation (Fig.  28a), the 
uncooled engine heat flux data were slightly lower than the short- and 
long-duration data but indicated the same circumferential trend and 
were generally in good agreement. 

The comparison of heat flux data with turbine exhaust simulation is 
presented in Fig.  28b.    Both the uncooled engine heat flux and the long- 
duration heat flux increased when hydrogen flow was initiated because of 
recirculation and burning in the base; however,  no significant increase 
was apparent in the short-duration data.   Part of the increase in the un- 
cooled engine model heat flux is attributed to the radiation heating from 
the vaporized copper discharged from the inboard engines.    In general, 
however,  valid base heating data can be obtained,  and the effect of re- 
circulated turbine exhaust gases can be evaluated using the uncooled 
engine test technique. 

4.5  FLAME SHIELD HEATING 

The flame shield on the Saturn vehicle is the plate located between 
the four inboard engines at the nozzle exit plane.   The purpose of the 
flame shield is to prevent recirculation of hot exhaust gases from the 
inboard engine cluster into the base region.    Uncooled engine model 
flame shield heat flux data from four slug mass calorimeters with design 
and location identical to calorimeters used in the long-duration tests are 
presented in Fig.   29.    A comparison of uncooled engine heat flux data 
with long- and short-duration data are presented in Fig.   30.    The short- 
duration data were obtained with a thin-film heat gage.    The trend of the 
uncooled engine model data is similar to that of the long-duration data, 
but the magnitude of measured heat flux was nominally 45 percent higher 
than the long-duration heat flux at the center of the flame shield.    This 
variation is attributed to the higher exhaust gas temperature obtained 
with the more efficient gaseous engine of the uncooled model.    Table I 
shows that the uncooled engine exhaust gases are about 110 percent 
hotter than the long-duration LO2-RP-I model engine exhaust gases. 
For the single calorimeter location where data were available from all 
three testing techniques,  the heat flux measurements of the uncooled 
engine model were 5 and 22 percent higher than long- and short-duration 
data,   respectively. 
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4.6   BASE PRESSURE 

Both the uncooled engine and long-duration models had seven pres- 
sure taps located at identical positions on the base heat shield.    The 
short-duration model had sixteen taps located throughout the base; how- 
ever,  the locations did not duplicate those of the other models.    Since 
no trend in pressure could be detected during any individual run,  a 
single base pressure level was obtained for each model by arithmetically 
averaging the available measurements. 

A comparison of uncooled engine model base pressure data with 
short- and long-duration data is presented in Fig.   31.    Excellent agree- 
ment is indicated between uncooled engine and short-duration data at the 
Mach number 1.6 3,   38, 000-ft trajectory condition.    On the other hand, 
the long-duration base pressure data were significantly higher than the 
short-duration and uncooled engine data although test conditions were 
identical.    This disagreement is presumably due to differences between 
the single chamber,  multiple-nozzle gaseous propellant engine used for 
the short-duration and uncooled engine models and the L02-RP-1, multi- 
engine,  long-duration model.    The differences which are probably most 
significant are:   (1) the uncooled engine model and short-duration model ■ 
inboard engines are canted outward 3 deg from the model centerline, 
whereas the long-duration inboard engines were not canted,  (2) different 
isentropic exponents of the combustion products,  (3) different engine 
efficiencies,  and (4) different nozzle wall temperature.    Of these four 
differences,  the inconsistency in geometrical detail is probably more 
important since it changes the vent area between adjacent inboard engine 
exhaust plumes and hence the quantity of gas rejected onto the base 
cavity.    It also changes the impingement characteristics of the inboard 
and outboard engines which in turn probably influence the mixing 
phenomena between the outboard engine exhaust plumes and the surround- 
ing airflow. 

A comparison of intermediate-duration model flame shield pres- 
sure data with short- and long-duration data is presented in Fig.  31b. 
The pressure taps from which these data were obtained were identically 
located on each model.    Essentially the same results were obtained for 
the flame shield pressure ratio as was shown for the base pressure; 
namely,  that good agreement was obtained between uncooled engine and 
short-duration model data,  and poor agreement between these data and 
long-duration data.    The same possible reasons for disagreement in 
data will apply here as was previously discussed for the base pressures. 
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4.7  APPLICATION OF THE UNCOOLED ENGINE MODEL TECHNIQUE TO 
SUBSONIC TESTING 

The uncooled engine model provides a distinct advantage over the 
short-duration technique for tests which must simulate subsonic flight 
conditions.    Attempts to obtain base heating data with the short-duration 
model at Mach number 0. 8 in Test Cell T-l of the RTF have been unsuc- 
cessful because the engine burn time was shorter than the time required 
for tunnel airflow to stabilize after engine ignition.    Tunnel pressure 
data obtained during these tests indicate that about 1. 6 sec is required 
for tunnel flow to stabilize after engine ignition; hence,  with a nominal 
burn time of 2. 5 sec for the uncooled engine,  there remains 0.9 sec of 
burn time at stabilized engine and tunnel conditions in which valid base 
heating data can be obtained at subsonic conditions. 

SECTION V 
SUMMARY OF RESULTS 

A description of an uncooled engine model testing technique appli- 
cable to the experimental study of missile base heating is presented. 
The technique utilizes an uncooled,  single combustor,  multi-nozzle 
engine which burns gaseous oxygen and ethylene propellants.    An evalua- 
tion was conducted to determine engine operating characteristics and 
obtain base heating data for comparison with short- and long-duration 
5. 47-percent-scale Saturn I-Block II model testing techniques.    The 
significant results of the evaluation are summarized as follows: 

1. Five successful firings of the uncooled engine were obtained. 
Burn durations ranged from 0. 5 to 1.2 sec for a cumulative 
operating time of 4. 7 sec. 

2. Engine operating temperatures were within design specifications 
except at one location in the combustor.    With a minor modifica- 
tion to correct this problem,  engine burn duration can probably 
be extended to 2. 5 sec based on extrapolation of indicated com- 
bustor and nozzle temperatures. 

3. Base heating data comparable with that from the short- and 
long-duration model testing techniques were obtained with the 
uncooled engine model testing technique. 

4. Base heating data obtained in these tests indicate that the effects 
of turbine exhaust gas discharge (recirculation and burning in 
the base region) can be evaluated with the uncooled engine tech- 
nique.    Moreover,  this technique permits a choice of two 
methods for initiating turbine exhaust gas discharge:   one is to 
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initiate flow prior to or simultaneously with engine ignition,   as 
with the short-duration technique; the other is to initiate flow 
after engine operation has stabilized,   as with the long-duration 
technique. 

5.      Features of the uncooled engine technique which make it 
attractive for base heating investigations are: (1) the model is 
simple to fabricate and operate,   (2) details of the missile base 
under study can be easily and accurately scaled,  (3) conventional 
steady-state instrumentation can be used to obtain base heat flux 
and pressure data,   and (4) the technique can be used to obtain 
base heating data at simulated subsonic flight conditions as well 
as at supersonic conditions. 
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a.   Photograph 

Fig- 6   Propellant System Autovalve Details 
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Fig. 7   Concluded 
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b.    Photograph 

Fig. 9   Concluded 
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a.   Schematic 

Fig. 13   Uncooled Engine Mod«! Installation in Propulsion Engine Test Cell (T-1) 
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Fig   20   Photograph of Combustor Interior Showing Erosion on Center Section 
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TABLE I 
COMPARISON OF MODEL DESIGN PARAMETERS 

Model 

Parameter 
Short 

Duration 
Uncooled 
Engine 

Long 
Duration 

Saturn 
SI-Block II 

Flight 
Vehicle 

l    Afterbody diameter,  in. 

Nozzle throat diameter,  in. 

Kozzle exit diameter,  in. 

Kozzle shape 

Nozzle exit angle,  deg 

Nozzle expansion ratio 

Combustion chamber design 

Operating chamber pressure, psia 

Center engine cant angle, deg 

Outer engine gimbal angle,  deg 

Oxidizer 

Fuel 

Coolant 

Oxidizer flow rate, lbm/sec/eng 

Fuel flow rate,  lbm/sec/eng 

Operating O/F ratio 

Characteristic velocity, c*, ft/sec 

c* Efficiency,  percent 

Isentropic exponent,  7 

-'Exhaust gas Mach number 

1 Exhaust gas temperature,  °F 

Burn time,  sec (nominal) 

14.8 

0.884 

2.5 

Contoured 

3 

8.0:1 

Single 

500 

3 

6 (fixed) 

Gaseous O2 

Gaseous 
Ethylene 

None 

1.08 

0.492 

2.2 

6200 

100 

1. 19 

2. ae 

3 740 

0. 050 

14.8 

0.884 

2.5 

Contoured 

3 

8. 0;1 

Single 

5 00 

3 

6 (fixea) 

Gaseous O2 

Gaseous 
Ethylene 

?fone 

1. 08 

0.492 

2.2 

6200 

100 

1.19 

2.98 

3740 

3. 0 

14. 8 

0.9 

2.5 

Contoured 

4 

7.71:1 

Multiple 

500 

0 

6 (fixed) 

Liquid O2 

RP-1 

Water (3 lb/sec) 

1.5 

0.7 

2.2 

4590 

79 

1.25 

3.02 

1760 

20 

277 

16.50 

46. 74 

Contoured 

0 

8.0:1 

Multiple 

600 

3 

6 (neutral) 

Liquid O2 

RP-1 

Fuel 

504 

212 

2.38 

5537 

96 

1.22 

2.98 

3140 

165 

These parameters obtained from Pig. 
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TABLE II 

HIGH-TEMPERATURE PROPERTIES OF 90-PERCENT TANTALUM, 
10-PERCENT TUNGSTEN ALLOY, AND OHFC COPPER 

High Temperature Properties of 90-percent Tantalum 10-percent Tungsten 

Melting Point:    5495°F 

Density: 0.606 lb/in.3 

Specific Heat:     0. 051 Btu/lb-"R 

Elevated Temperature Tensile Properties,  0. 060-in. -thick sheet (Ref.  33) 

Slow Strain Rate 

Temperature, °F 
Ultimate Tensile St 

psi 
rength, Yield Strength, 

psi 
Elongation, 
percent 

1500 103 x 103 98 x 103 11 

1800 94 x 103 80 x 103 4 

2200 67 x 103 55 x 103 4 

2500 22 x 103 20 x 103 22 

2600 21 x 103 14 x 103 17 

3000 12 x 103 12 x 103 33 

3500 7. 5 x 103 7. 2 x 103 37 

4000 4. 3 x 103 4. 3 x 103 35 

4500 2. 1 x 103 2. 0 x 103 ao 

5000 0.6 x 103 0.6 x 103 20 

Thermal Conductivity,  K (Ref,  33) 

Temperature, "F 

2600 
3140 
3500 
4040 
4400 
4940 
5300 

K,  Btu/ft2-sec-°F/ft 

0.00907 
0.OOS34 
0.00786 
0.00719 
0.00672 
0.00598 
0.00551 

High Temperature Properties of OFHC Copper 

Melting Point: 

Density: 

Specific Heat: 

Thermal Conductivity: 

1980°F 

0.323 lb/in.3 

0.092 BtWlb-°R 

0.0625 Btu/ft2-sec-°F/ft 

Short Time Elevated Temperature Tensile Properties (Ref.  34) 

Temperature, "F 

Room. Temperature 
250 
450 
650 

1000 
1300 

Tensile Strength,  1000 psi 

34. 4 
29. 8 
24. 8 
19. 9 
8. 6 
3. 4 
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TABLE III 
INSTRUMENTATION 

Parameter 

Base Heat Flux 

Base lieat l'Lux 

Bat,« Heat Flux 

Bdbu Pressures 

Combustor Chamber 
Prefab ure 

Combustor tind Noi?le 
Wall Temperatures 

PropeUant System 
Pressures 

PropeUant System 
Temperatures 

Test Cell Pressures 

Estimated System Accuracy 

Assumes Steady-SUitu Signal 
at Opei dtinf Level 

±5°F 

±1. T) mv 

Unknown 

±3 peicent 

±2 percent 

±1U°1' 

±2 percent 

±2 percent 

±10°F 

±Q.05 m.  llg 

±3 percent 

Measuring 
Device 

CA Thermocouple Attached 
to Copper Slug 

Membrane Calorimeter 

CAL Thin-Film Heat Gagu 

3 train-Gage-Type Pressure 
Transducer 

Strain-Gage-Type Pressure 
Transducer 

CA Thermocouple 

Kistler Crystal Transducer 
and Charge Amplifiers 

Strain-Gage-Type Pressure 
Transducer 

CA Thermocouples 

Meroury Manometers 

Stram-Gage-Type Pietisuio 
Transducer 

Range of Measuring 
Device 

O-UOQPF 

0-10 mv 

0-300 Btu/tt2-Hue 

0-10 psia 

0-1000 psia 

0-2500°!«' 

0-2000 psia 

0-500°F 

0-16 psia 

0-25 paia 

Recording 
Device 

Multi-Channel Analog-to- Digital 
Converter 

Multi-Channel Analog-to-Digilal 
Converter 

Multi-Channel Analog-to-Digital 
Converter 

Oscillograph 

Direct Print Oflcillogi<*ph 

Multi-Channel Analog-to-Digital 
Convertei Strip Chart 
Oscillograph 

Direct Print Oscillogi aph 

Strip Charts 

Photographic 

Oscillograph 

> 
m 

n 
i 

H 
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TABLE IV 
SUMMARY OF THE INTERMEDIATE-DURATION ENGINE OPERATING CHARACTERISTICS 

~~ —___Run Number 1 2 3 4 5 
Sym Parameter                   ___^_ 

PRO O2 Reservoir Pressure,  psia 1522 1432 1429 1425 1409 

PLO O2 Line Pressure,  psia 1398 1266 1267 1267 1228 

PVO O2 Venturi Pressure, psia Void 377 446 438 426 

PIJI O2 Injector Pressure,  psia Void Void 818 810 828 

TLO O2 Temperature, °F 80 91 104 90 100 

PRCH C2H4 Reservoir Pressure,  psia 1547 1332 1412 1384 1384 

PLCH C2H4 Line Pressure,  psia 1425 1240 1338 1327 1327 

PVCH C2H4 Venturi Pressure, psia Void 691 751 723 723 

PIJ2 C2H4 Injector Pressure,  psia Void Void Void Void Void 

TLCH C2H4 Temperature, °F 250 192 182 183 192 

w0 O2 Flow Rate, lbm/sec 8. BO 7.92 7.85 7.92 7.60 

wc C2H4 Flow Rate,  lbm/sec 3.80 3.60 4.00 3.95 3.90 

Wf Total Flow Rate, lbm/sec 12. S 11.52 11.85 11.87 11.50 

O/F Oxidizer/Fuel Ratio 2.3 2.2 2.0 2.0 2.0 

PC Chamber Pressure,   psia 505 454 495 495 478 

c* Characteristic Velocity,  ft/sec 6323 6208 6573 6578 6573 

t Run Time,  sec 0.5 1.0 1.0 1.0 1. 2 
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APPENDIX I 
NOZZLE HEAT TRANSFER CALCULATIONS 

Determination of the minimum nozzle throat wall thickness required 
for a given burn duration consisted of (1) calculating a gas side film coef- 
ficient and (2) specifying a maximum allowable throat inner wall tem- 
perature,   then calculating the wall thickness corresponding to the 
desired burn duration using an analytical solution for transient,   one- 
dimensional heat conduction in a cylindrical section subjected to sudden 
internal heating.    The method and charts used for this calculation can be 
found in Temperature Response Charts by Schneider {Ref.   27). 

The following equation (Ref.   28) was used for calculating the film 
coefficient at the nozzle throat: 

h6 =  0.026    R     ">V< 

0.B 0 

)       M 
where 

D = throat diameter,  ft 

V = velocity,   ft/sec 

lbm-ft 
g = dimensional constant,   32. 174 — ö~ 

lbf-sec2 

The gas viscosity (n),  density (p),  specific heat (Cp),  and gas con- 
ductivity (K) were assumed constant and were obtained from Ref.  29. 

The chamber gas temperature was calculated from 

Tc
m 

= TcT 

where 
Tcm = chamber temperature calculated for model, °R 

TcT = theoretical chamber temperature = 6700°R {Fig.   4) 

c*m = characteristic velocity for model engines,  ft/sec 

c*T = theoretical characteristic velocity,  ft/sec 

/c*m \ 
A combustion efficiency f —— I of 95 percent was assumed in com- 

puting TCm.    The static temperature and pressure at the nozzle throat 
used in the calculation of hg were obtained from isentropic flow relation- 
ships given in Ref.  30 for y = 1. 22. 
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The results of the transient heat conduction calculations are plotted 
in Fig. 1-1, which shows wall thickness as a function of burn time re- 
quired for the throat inner wall temperature to reach 4120°F (75 percent 
of the throat material melting point) with chamber pressures of 300, 500, 
and 1000 psia and assuming a c* efficiency of 95 and 100 percent.   In the 
actual nozzle design,  the throat section wall thickness was made twice as 
thick as the calculations indicated was required in order to provide an 
adequate safety factor and ensure that local melting did not occur at the 
nozzle throat. 

By using essentially the same calculation procedure described above, 
but holding the wall thickness constant and varying burn time,  the nozzle 
throat inner and outer wall temperature histories were calculated and are 
presented in Fig. 1-2.    Actual nozzle throat wall thickness of 0.528 in. 
was used in these calculations. 
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APPENDIX II 
METHOD OF CALCULATING PROPELLANT FLOW RATES 

Oxygen is assumed a perfect gas at the conditions prevailing through- 
out the propellant supply system and did not pose any specific flow meas- 
uring problems.    The flow rate of oxygen through the sonic venturi was 
calculated at the venturi throat using the continuity equation written in 
the following form: 

= CpA(P)     "<p/pT> 

where 
m = mass flow function 

%  r .      -\% 
m   =   M Wh^»*] 
M = Mach number (M = 1 at venturi throat) 

y = ratio of specific heats = 1.4 

qc = unit conversion factor,   32. 174 lbm-ft/lbf-sec^ 

R = gas constant,  48. 31 lbf-ft/lbm-°R 

A = venturi throat area,  in.2 

P = oxygen line pressure,  psia 

Y 
P/PT = static to total pressure ratio = fl + 1~- MM   Y~1 

Tt = absolute gas temperature, °R 

Ethylene,  on the other hand,  is a highly imperfect gas and must be 
treated differently to avoid serious flow calculation errors.    To ensure 
steady and predictable flow,  the gas must be heated to prevent two- 
phase flow during expansions encountered in the flow process. 

The ethylene flow rate was determined from Mollier diagram data 
and by using the following procedure: 

Flow rate,    w = CnApV 

where 
CD = 0.99 

A = venturi throat area,  ft 2 
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P = gas density,  lbm/ft3 

V - gas velocity = (Ah2gcJ)1^2,  ft/sec 

Ah = enthalpy change,  Btu/lbm 

6c = 32.174 

J = 778.2 

lbf-sec 

ft-lbf 
Btu 

A starting point was established on the Mollier diagram at the inter- 
section of constant pressure-temperature lines corresponding to condi- 
tions just upstream of the flow measuring venturi.    The enthalpy,  hi,   at 
this point was noted and,  by moving along a constant entropy line to an 
arbitrary new h2, the velocity was calculated using (Ah2gcJ)1/2 where 
Ah = h.2 - hi.    The average gas density (p) between hi and h2 was ob- 
tained from the specific volume line,   and the product pV was calculated. 
The process was continued on to a new I13,  I14,  h.5,   .   .   .  etc.,  until pV 
reached a maximum value.    This maximum value of pV occurs at the 
venturi throat; therefore,  it can be substituted into the continuity equa- 
tion and the maximum ethylene flow rate calculated which corresponds to 
the initial upstream pressure-temperature conditions. 

These procedures were used to construct the family of propellant 
flow curves shown in Fig. II-1.    These curves were then used to deter- 
mine propellant flow rates for the tests reported herein. 
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APPENDIX III 

DETAILS OF MODEL BASE HEAT FLUX INSTRUMENTATION 

Slug Mass Calorimeters 

The method of data reduction for the slug mass calorimeters con- 
sisted of evaluating the slope of the slug temperature history at 0.10-sec 
intervals and applying the appropriate slug constant according to the 
following equation: 

v    dT 
K "dT 

where 

K 
cDm 
-^— = 0. 2786 for calorimeters T2 through T16 A 
and 0.4503 for T17 through T20 

cp = specific heat of copper slug,  Btu/lbm-°F 

m = mass of slug,  lbm 

A = exposed surface area of slug,   ft 

dT/dt = slope of slug temperature history- 

Most of the errors associated with slug mass calorimeters,   which 
are exposed to a heat input for relatively long periods of time and con- 
sequently attain high temperatures,  were probably not encountered in 
these tests because of the small slug temperature rise (nominally 15°F). 
Some advantages and disadvantages of using slug mass calorimeters for 
model base heat flux measurements are presented in Ref.   31. 

Membrane-Type Heat Gages 

Instruments of this type consisted of a thin,  blackened constantan 
sensor disc connected at its edges to a larger copper heat sink.    These 
two materials have a combination of physical properties which provide a 
linear relation between the instrument output and incident heat flux.    One 
end of a fine copper wire is butt-welded to the center of the constantan 
disk; another copper wire is connected to the heat sink.    The potential (E) 
between these two wires was measured,  and the heat flux (q) was evalu- 
ated from q = K x E,  where K is a constant determined during calibration 
of the instrument at the factory. 

Dual-Element Thin-Film Heat Gages 

The thin-film heat gages consisted of two platinum resistance 
thermometer strips mounted at right angles on the top and bottom of a 
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1/16-in. -thick,   3/8-in. -diam quartz substrate.    The substrate served 
as a semi-infinite solid which permitted the rear face gage to sense only 
radiant heating for burn times up to 100 msec,  whereas the front face 
gage sensed both convective and radiant heating.    Each heat gage was 
placed in an electrical circuit as an active arm of a Wheatstone bridge, 
which was balanced just prior to firing.    As the heat gage temperatures 
increased,  their resistances changed and unbalanced the bridge to pro- 
duce a millivolt signal proportional to the temperature rise sensed by 
the gages.    The heat gage signals were recorded on magnetic tape with 
a multi-channel analog-to-digital converter system.    Playback of this 
tape on a computer gave a digital printout of temperature rise during 
firing.    Heat transfer rates were then calculated using the following 
modified semi-infinite solid heat conduction equation (Ref.  32): 

Q(0gage  = [l  + 0.00033AT(t>]  J"p ^pK    JAT(t) 

where 

AT(t) =     1 - yja - 5.18  x  10" * ATmeas)    / 2. .59   x  10 -4 

The equation for AT(t) is an empirical correction to account for the 
nonlinearity of the sensor resistance with temperature. 

The term 0. 00033 AT(t) is an empirical correction to match this 
solution to an exact solution by CAL of the nonlinear heat conduction 
equation with substrate properties given as individual functions of tem- 
perature,   using numerical techniques and a digital computer.    A is a 
dummy integration variable with units of time,  and the integral is a cor- 
rection for nonconstant heating rate.   The physical properties are those 
of the substrate evaluated at the engine-off base heat shield temperature. 

Derivation and limitations of this equation are given in Ref.   15. 

Actual heating rates were obtained from the measured gage heating 
rates by applying the following constants determined from known-heat- 
source radiation calibrations and obtained from Ref.   32: 

^rear face gage   ~~   U.dz y radiation 

" convection _   " front face gage   "~   ^■*c» ^radiation 

"total "   ^radiation        ^convection 
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