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ABSTRACT

In this study the interaction of electromagnetic and acoustic waves

with moving reflectors in solids was investigated. The first part of

the study contains theoretical predictions of the frequency shifts and

amplitude changes of an electromagnetic or acoustic wave after inter-

acting with a moving interface between regions of different character-

istic impedances or a series of such moving interfaces, termed the

"Moving Reflector Theory." The seccnd part contains experimental re-

suits concerning the diffraction of laser light using kilomegacycle

acoustic waves in solids. The latter is considered as a specific case

of the general theory developed in the first part.

The theory predicts that a high frequency amplification or deampli-

fication of an electromagnetic wave can probably be obtained more easily

by reflecting from a moving interface or a series of moving interfaces

which are induced by sending an electromagnetic pumping signal into a

nonlinear material (e.g., ferroelectric or ferromagnetic crystals).

The theory also predicts that a frequency shift which occurs in a wave

(transmitted through a moving nonabrupt interface) is independent of

the width of the interface and the conversion of a longitudinal acoustic

wave to a transverse acoustic wave or vice versa in a ferromagnetic

material. Several kinds of Doppler shift experiments are proposed.

Various similarities with and distinctions between the moving reflector

theory and the conventional parametric amplification theory are dis-

cussed.

Various ways of enhancing the amount of diffraction were employed

to achieve a large diffraction. Using a suitable single crystal (TiO2)

and a high-efficiency transducer (ZnO wafer) giving a ribbon-shaped

acoustic beam, it was possible to diffract in the first-order 10% of

the incident light using 15 watts of cw rf power, and 60% diffraction

was achieved with a pulse 60 watts peak power source. The possibility
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of ,.ffracting such a large percentage of the light obviously has a

number of possible device applications. In the high power experiments

additional diffracted spots of light (second- and third-order) appeared;

fhese are also compared with calculated value. The measured enhancement

of the diffraction intensity due to acoustic resonance was shown to be

in good agreement with the theoretical prediction. Measured and calcu-

lated diffraction patterns from multiple acoustic beams in one crystal

of SrTiO3 are given. They both show the characteristic shape of a

multiple-slit diffraction pattern in optics. The measured frequency

shift in the diffracted beam is shown to agree with both the moving

reflector theory and the parametric principle. Finally, two sbhemes

of using multiple diffraction to shift the laser frequency by integer

multiples of the acoustic wave frequency are analyzed.

- iv -



ACKNOLEDGEMEN2S

I am deeply grateful to Dr. B. A. Auld, my research advisor, for

his expert guidance, for his many contributions, and for his encourage-

ment throughout the course of this study. I also would like to express

my appreciation to Dr. H. J. Shaw for his suggestion of the experimental

part of this study and many helpful discussions. Other members of the

laboratory who helped with discussions and encouragement include Drs.

D. K. Winslow, R. H. Pantell, T. Wessel-Berg, K. B. Mallory, B. J. Elliott,

C. F. Quate, A. Karp, and K. J. Harker.

Special thanks go to Chris Wilkinson and Don Caddes for many helpful

and critical discussions and for their reading and comments on the manu-

script. Technical assistance from Bill Haydl is appreciated.

Much indispensible aid in making the apparatus came from Al Moody

and other members of the machine shop. The samples used were polished

by Bob Griffin and transducers bonded by Jack Seaton; their excellent work

was vital to the success of the experimental part of this project.

Les Yingst and Willy Heintzen helped with the instrumentation.

Finally, I wish to express my appreciation to Professors R. L. White

and A. T. Waterman for their reading and comments on the manuscript, to

Mr. A. S. Braun for his excellent supervision in the preparation of this

dissertation, to Mesdames I. L. Williams, D. M. Lacey, B. H. Dutton,

P. R. Brady, and P. H. Cummings for typing the manuscript and to Messrs.

A. Vacek and N. B. Bettini for drawing the figures.

-v-



TABLE OF CONTENTS

Page

Abstract . . . . . . .... ... ........... iii
Acknowledgu&:its . . . . . . . . ..... ... . v
List of figures . . . . . . . . ................. x

I. Introduction . . . . .. .............. 1

PART I

II. Lorentz transformation of electromagnetic wave quantities .

2.1. Doppler effect existing between two inertial frames

which have relative velocity V in vacuum . . . . .. 5

2.2. Mirror effect in vacuum . . . . . . . . . . . . . . 10

2.3. Doppler and mirror effects in material media . . . . 14

2.4. Lorentz transformation of the electric and magnetic

field intensities .. o... ....... ... 16

2.5. Transformation of TEM wave field components; per-

mittivity; permeability; impedance; Boynting vector

under Lorentz transformation . . . . ... . . . . 18

2.6. Electrodynamics of moving media . . o . .......... 21

III. Wave interactions with moving boundaries . . . ... ......... 25

3.1. Reflection and refraction of electromagnetic waves at

a moving boundary or interface -- general case . . . 26

3.1.1. Frequency shifts in the reflected and trans-

mitted waves . . . . . . . . . . . . . . . . 26

3.1.2. Amplitude changes in the reflected and trans-

mitted waves . . . . . . . . . . . . . . . . . 33

3.2. Reflection and refraction of electromagnetic waves at

a moving interface - normal incidence, moving medium

(nonrelativistic) . . . . o . . . . . . . . . . . . . 35

3.2.1. Frequency shifts in the reflected and trans-

mitted waves . . . . . . . . . .. 35

- vi -



Page

3.2.2. Amplitude changes in the reflected and trans-

mitted waves ...... ................. ... 39

3.3. Reflection and refraction of electromagnetic waves at

a moving interface - Normal incidence, stationary media 40

3.3.1. Frequency shifts in the reflected and trans-

mitted waves ...... .................. ... 42

3.3.2. Amplitude changes in the reflected and trans-

mitted waves . ............. 44

3,4. Wave interactions with moving slabs 1........ 51

3.4.1. Frequency shifts for a single moving slab . . 51

3:4.2. Wave matrix for a single moving interface . . . 54

3.4-3. Reflection and transmission coefficients for a

single moving slab.60

3.4.4. Frequency shifts and amplitude changes for a

series of moving slabs ... ............ 67
3.4.5. The effects of a nonabrupt interface ...... .. 70

3o5. A transmission line model for frequency conversion and

amplification at a moving interface in a stationary

medium . .. . . ............... 72

3.5.1o Frequency shifts in the reflected and trans-

mitted waves ............. .... 73

3.5.2. Calculation of Doppler amplification from the

principle of conservation of energy ..... 75
3.6, The effects of dispersion . . . . ... ....... 80

3,7. Compression of electromagnetic waves .......... 81

IV. Ttie realization of Doppler interactions in real materials 96

4.1. Reflection and transmission of an electromagnetic wave

at a large magnetic field step-function or pulse ... 96

42, A survey of potential ferroelectric materials, for. the

Doppler shift experiments. . .. ................ . 102

-vii



Page

4.3. Conversion of a longitudinal acoustic wave to a trans-

verse acoustic wave in a ferromagnetic material . . . . 105

4.4. Possible configurations for Doppler shift experiments . 114

4.5. Examples of frequency conversion and amplification

using Doppler shift methods. . . . . . . . . . . . . . 117

V. Wave interactions with a moving periodic structure . . . . . 121

5.1. Derivations of the power relations for the cases of a

single, perfect moving reflector and a single moving
"nonreflecting interface" using the laws of conserva-

tion of energy and momentum. . . . . . . . . . . . . . 121

5.1.1. A perfect moving reflector . . . . . . . . . . 122

5.1.2. A perfect moving "nonreflecting interface" • • 125

5.2. The power transfer between the pumping wave and small

signal wave in a nonlinear material ...... . . . .128

5.3. Wave interaction with a semi-infinite moving periodic

structure . ...................... 132

5.4. Application of the general theory to the frequency

converters . . a a . . a . ..................... 135

5.5. Doppler shift frequency converter and electrically or

mechanically tunable filter . ........... . 146

PART II

VI. A nonrelativistic case: Laser light interactions with high

frequency acoustic waves .................. 149

6.1. Introduction . . . . . . . . . . . . . . . . . . 149

6.2. The Raman-Nath and the related theory ......... 151

6.3. Moving reflector theory. . . . . . . ................. 158

6.4. The calculation of diffraction intensity using the ray-

tracing method .................... 165

6.5. Parametric theory . . . . . . . . . . . . . . 180

6.6. Large diffraction of light . . . ......... . 183

6.6.1. Choice of a proper crystal for diffraction . . 183

6.6.2. The requirement of a high efficiency transducer. 184

6.6.3. Generation of a Ribbon-shaped acoustic beam . . 184

6.6.4. Acoustic resonance .............. 184

- viii -



Page

6.7. Enhancement of diffraction due to acoustic resonance . 185

VII. Light diffraction using kilomegacycles acoustic waves in

solids ... ........... . ........ . . . . . . 189

7,1. Experimental technique and preliminary experimental

results of Bragg-diffraction . . . . . . . . . . . .. 189

7.2. Large diffraction of laser light using rutile crystal 192

7.3. Measured enhancement of the diffraction intensity due

to acoustic resonance . . .. . . . .. . .. ... 205

7.4. Diffraction pattern . . . . . . . . . . . . . . . . . 209

7.5. Light diffraction using multiple acoustic beams in

SrTiO3  crystal.. ....... . . . . . . . .. . 212

7.6. The measurement of frequency shift in the diffracted

beam using Fabry-Perot etalon .... ............ .. 225

VIII. Multiple diffraction techniques . . . . . . . . . . . . .. 226

8.1. Simultaneous generation of the upper and lower side-

bands using a pair of Porro prisms ............. ... 226

8.2. Simultaneous generation of the upper and lower side-

bands using a pair of optical cavities . . . . . ... 228

8.2.1. Introduction . . . . . . . . . . . . . . ... 228

8.2.2. Derivation of bhe "harmonic-oscillator-like"

linear differential equation for the expan-

sion coefficients of the optical fiels . ... 230

8.2.3. Recursion formula for the pertinent mode

amplitudes and their solutions ........ 243

Appendix A ....... . . . . . . . . . . . . . . . . . . 251

References............ . . . . . . . . . . . . . . . 257

- ix -



LIST OF FIGURES

2.1. Two inertial frames with constant velocity 
V parallel to

the x and x' axes . . . . . . . . & . . . . . . . . . . 6

2.2. The doppler effect between two inertial frames . . . . . . 8

2.3. The configuration showing the mirror effect . . . . . . . . U1

2.4. The field components of a uniform TEM wave measured in two

inertial frames . . . . . . a . . . . . . . . . . . . . .. 18

3.1. Configuration of a uniform TEM wave interacting with a

moving boundary - general case ....... . . . . . . . 27

3.2. The configuration of a monochromatic acoustic wave inter-

acting with a moving boundary .. . . . . . . . . . . 32

3.3. Configuration showing a uniform TEM wave interacting with

a moving medium of nonrelativistic velocity . . . . . . . . 36

3.4. The configuration showing a uniform TEM wave normally

incident upon a moving interface separating two media at
rest . . . . . . . ... . .. 0 4 . . . . . # . . * . . . . . ..0 0 . 41

3.5. The configuration showing a uniform TEM wave normally

incident on two moving interfaces which make up a moving

slab . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6. The configuration showing a stationary interface separating

two media . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7. The configuration showing a moving interface separating two

media at rest . . . . . . . . .* . . . . . . . . . . . 55

3.8. Configuration showing the scattered waves resulting from

a uniform TEM wave incident upon a moving slab. . . . . . . 61

3.9. The configuration showing a series of moving interfaces . . 69

3.10. The configuration of a moving ramp-type interface ..... 71

3.11. The configuration of a moving "Kinked Ramp" interface . . . 71

3.12. The configuration of a moving trapezoidal slab . . . . . . 71

x



Page

3.13. A lossless transmission line with a moving disconiinuity.

(The coordinate origin is chosen such that at t = 0 the

moving junction is at x = 0 as shown.).... . . . . . . 73

3.14. The configuration showing the conversion of power between

the pumping source and the transmitted wave using the para-

metric principle . . . . . . . . . .0 . . . .. . . . . 77

3.15. The configuration showing the energy balance for an infini-

tesimal section of the transmission line . . . . . . . . . . 77

3.16. The configuration showing the compression of a uniform TEM

wave between two conducting plates (one fixed, one moving) . 83

3.17. The frequency variation of a uniform TEM wave during the

course of compression by two moving conducting plates . . . 89

3.18. Energy density variation of a uniform TEM wave during the

course of compression between two conducting plates (one

fixed, one moving) . ....... ................ . . .. 94

4.1. The configuration of a uniform TEM wave interacting with a

moving boundary in a ferromagnetic medium ......... . . . 97

4.2o The complete dispersion diagram for an infinite ferro-

magnetic medium. The dashed lines are for the ordinary

waves and the silid curves for the extraordinary waves . . . 98

4.3. The configuration showing a spin-wave interacting with a

moving interface ...... . . . . . . . . . . . . . . 109

4.4. The spin-wave manifold ........ .................. . 109

4.5. The configuration showing the conversion of a transverse

acoustic wave to a longitudinal acoustic wave using a non-

abrupt magnetic step function . . . . . . . . . . . ... 111

4.6. The w - K diagram of the longitudinal and transverse

acoustic waves . . . . . . . . . . . . . . . . .ll

4.7. The combined w - K diagram showing the spin-phonon coupl-

ing region (indicated by the dashed lines) and the shift in

operating point .................... 112

4.8. Possible arrangement for the Doppler shift experiment

utilizing single reflection .. .... .. . . . . . . 116

- xi -



Page

4.9. Typical arrangement for the Doppler shift experiment

utilizing multiple reflection - the compression of electro-

magnetic waves . . . . . . . . . . . . . . . . . . . . . . ll8

4.10. Configuration showing a moving boundary interacting with a

video pulse . . . . . . . . . . . . ...................... 119

5.1. A perfect moving reflector in a material medium. The

region bounded by the reflector and the reference plane is

considered as a system . . . . . . . . ................... 123

5.2. A moving "lonreflecting interface" in a material medium.

The region bounded by the two reference planes is considered

as a system . . . . . . . . ............................. 123

5:3. The nonlinear spring used to illustrate the power transfer

between the pumping wave and the small signal wave in a

nonlinear material. . . . ..... ........................ 129

5.4. (a) A semi-infinite moving periodic structure. (b) The

rectangular pumping wave used to induce the moving periodic

structure (a) in a nonlinear material .... ........... 133

5.5. An infinite moving periodic structure induced in a non-

linear material using a square-wave pump . ........ . 136

5.6. A semi-infinite moving periodic structure induced in a non-

linear material using a square-wave pump . . .......... 136

5.7. Frequency and wave number relations for frequency converters.

(a) up-conversion; (b) down-conversion ........... 142

5.8. (a) A semi-infinite "moving paddles" structure. (b) A

semi-infinite train of short pulses used to induce the

structure of (a) in nonlinear materials . . . .......... 145

5.9. (a) An rf pulse. (b) A moving periodic structure induced

by the rf pulse in a nonlinear material . . ... ......... 147

6.1. The configuration for the diffraction of light by ultra-

sonics (oblique incidence) . . . . . . ............... . 152

6.2. Configuration for the diffraction of light by ultrasonics

(normal incidence) . . . . . . . . . . . . . . . . . . . . 155

6.3. The frequency shifts in the diffracted light using travel-

ing acoustic waves . . . . . . . . . . . . . . . . . . 156

- xii -



Page

6.4. The frequency shifts in the diffracted light using stand-

ing acoustic waves ...... .................... *. 156

6.5. The moving periodic structure induced by a traveling

acoustic wave ..... ................ . . . . . . . 160

6. . The configuration showing the reflection and transmission

from a series of moving interfaces . . . . . ... 162

6.7. The wave-vector relation for Bragg diffraction . . . . . . . 165

6.8. The reflection and refraction of a light wave from a single

nonrelativistic moving interface . . . . . . . . . . . .. 166

6.9. (a) Configuration showing the multiple reflection of light

between the interfaces of two layers (light incident from

left) (b) Configuration showing the multiple reflection of

light between the interfaces of two layers (light incident

from right) ............ . . . . . . . . . . . 168

6.10. Configuration showing the cascade network for a series of

moving interfaces ........... . . . . . . . . . 170

6.11. Saturation of the diffraction intensity . . . . . . . . . . 173

6.12. Configuration showing the diffraction of light from an

acoustic column ................ ,..... 174

6.13. Plots of strain vs acoustic power density for various

crystals ...... .. .......................... . . 179

6.14. Configuration showing the system of acoustic resonance . . . 186

7.1. The experimental arrangement for the measurement of Bragg

diffraction ..... ................... . . . .. 190

7.2. Configuration showing the dimensions of cavity center post,

rutile crystal, ZnO transducer and air gap . . . . .... 193

7.3. Acoustic echoes at 1.1 Gc/s with no mercury termination . . 194

7.4. Acoustic echoes at 1.1 Gc/s with mercury termination . . . . 194

7.5. Acoustic beam mapping (along the wide dimension) (along the

narrow dimension) ............ . . . . . . . . . 195

7.6. (a) First-order diffraction pattern. (b) Second-order

diffraction pattern'. (c) Third-order diffraction pattern . 196

7.7. Pho;ographs of the diffraction spots for various angles of

incidence ... .. . .. ... ... .. . ... ... .. . 197

7.8. The rf power dependence of the first- and second-order dif-

fraction intensities ....... ................... . 199

- xiii -



Page

7.9. Configuration for estimating the difference in the dif-

fraction intensity between a perfect traveling wave and

a non-perfect traveling wave ..... ............... 201

7.10. The rf power dependence of the right- and left-hand side

first-order diffraction intensities at normal incidence 206

7.11. The acoustic echoes at 810 Mc/s with no mercury termina-

tion ... ....................... . . . 207

7.12. The Q-curve of the cavity with the acoustic delay line

(no frequency marker) ...... .................. ... 207

7.13. The Q-curve of the cavity with the acoustic delay line.

(The frequency between two consecutive frequency markers

is 1 Mcls.) ....... ..................... . . . 207

7.14. The diffraction spectrum with mercury termination . . .. 208

7.15. The diffraction spectrum with no mercury termination . . . 208

7.16. Configuration showing the directions of propagation of

the laser light and the acoustic wave .......... 210

7.17. (a) The dimensions and the orientation of the wedge-

shaped transducer, (b) The variation of the air gap spac-

ing between the transducer and the center post ........ 213

7.18. Acoustic beam mapping (along the wide dimension) .. ..... 214

7.19. Acoustic beam mapping (along the narrow dimension) . . .. 215

7.20. Acoustic beam mapping (along the wide dimension).

(a) f = 1100.5 Mc/sec. (b) f = 1106.5 Mc/sec. (c) f

1115.0 Mc/sec ....... ................... . . 217

7.21. Dimensions of the wedge-shaped transducer . . . . . . .. 218

7.22. (a) First-order diffraction pattern (measured) . . . .. 220

(b) First-order diffraction pattern (calculated) . . . 221

7.23. Second-order diffraction pattern (measured). . . . . . .. 222

7.24. Photographs of the diffraction spots for various angles

of incidence .................. . . . . . . . 223

7.25. Fabry-Perot patterns of (a) the undiffracted beam; (b) the

diffracted beam with up-shifted frequency; and (c) the dif-

fracted beam with down-shifted frequency . ........ 224

- xiv -



Page

8.1. Configuration for simultaneous generation of the upper

and lower sidebnnds using a pair of Porro prisms . . . . . . 227

8.2. Configuration for the simultaneous generation of the upper

and lower sidebands using a pair of optical cavities . . . . 229

-xv-



CHAPTER I

INTRCDUCTION

This study reports the results of a theoretical and experimental

investigation of the interaction of waves with moving reflectors in

solids. It is divided into two parts: The first part contains theoretical

predictions of the frequency shifts and amplitude changes of an electro-

magnetic or acoustic wave after interacting with a moving interface between

regions of different characteristic impedance or a series of such moving

interfaces, and the second part contains experimental results concerning

the diffraction of light using high frequency acoustic waves in solids.

The latter can be considered as a specific case of the general theory

developed in the first part.

The frequency shift in any kind of oscillation resulting from the

relative motion between a transmitter and a receiver is generally termed

the "Doppler Effect." The Doppler effect itself has long played an

interesting and beautiful role in theoretical physics. However, the appli-

cation of this effect has not been explored in detail. The importance of

the Doppler effect in applications is well illustrated by the fact that

any kind of wave, when reflected from a moving reflector (e.g., a moving

mirror), is shifted in frequency and changed in amplitude. This phenomena

is termed the "Double Doppler Effect."1 In general, the closer the

velocity of the reflector to that of the wave, the larger the shift in

frequency and the change in amplitude.

Landecker first examined the possibility of frequency multiplication

and wave amplification by reflection from a fast electron clud. He

specifically considered the possibility of generating a millimeter wave by

reflecting an X-band microwave signal from the relativistic electron beam

of an electron accelerator such as a betatron.

Fainberg and Tkalich 3 first discussed the reflection of monochromatic
waves from an electron plasma (nonrelativistic beam) moving in a dielectric

-1-



medium. It was shown that by using a slow-wave structure3 , 4 significant

changes in frequency and amplitude may be attained even with nonrelativistic

beams. The possibility of further enhancement of the changes of frequency

and amplitude through the use of multiple reflection was pointed out by

Fainberg5 and Ginzton.6 An experimental demonstration on the effect of

multiple reflection using a plasma "piston" was reported a few years later.
7

Due to the complexity and high cost inherent in Landecker's approach,

and the uncertainty and difficulty in controlling the plasma involved in

Fainberg and Tkalich's approach, the usefulness and practicality of these

two methods seem limited. A third approach is given in this study' It is

shown that a high frequency amplification or deamplification of an electro-

magnetic wave can probably be obtained more easily by interaction with a

moving interface or a series of moving interfaces which are created by

sending an electromagnetic pumping signal into a nonlinear material

(e.g., ferroelectric or ferromagnetic crystals). This is because both the

pumping signal and the small signal are electromagnetic in nature. With

the sophisticated microwave techniques presently existing, the experimental

technique required for this approach seems simpler than the employment of

an accelerator or plasma. Furthermore, an interesting and simple physical

picture is provided by the third approach.

In Chapter II, various aspects of relativistic and nonrelativistic

Doppler effects for electromagnetic waves are discussed. In addition, a

few applications of the Lorentz transformation, and the consequences of

the transformations, are illustrated. They serve both as the background

and the stimulus for the development of later chapters.

The approach for the derivation of the changes in frequency and

amplitude of an electromagnetic wave interacting with a moving abrupt

interface is outlined in Chapter III for the most general case. The

detailed calculations are given in the appendix. The rest of Chapter III

contains a detailed derivation of the changes in frequency and amplitude

for the case in which normal incidence and the motion of only the inter-

face is considered. A physical picture for explaining the frequency shifts

and amplitude changes using the transmission line analogy and the para-

metric principle is also given in Chapter III. Chapter III extends the

application of the basic results, which are derived for an abrupt

-2-



interface, to the cases of gradual impedance tapers and series of inter-

faces induced by dc and rf pulses or a series of dc and rf pulses. The

effects of frequency dispersion of a medium upon the frequency shifts are

also discussed. Chapter III concludes with the analysis for the compres-

sion of EM waves between two moving conducting plates.

The application of the general theory of Chapter III to the compres-

sion of EM waves in ferroelectric and ferromagnetic crystals is illus-

trated in Chapter IV. Proposals for experimental configurations and

surveys of promising ferroelectric materials for this purpose are also

contained in this chapter. The conversion of longitudinal acoustic waves

to transverse acoustic waves or vice versa, in a ferromagnetic material,

which is an excellent application of the general theory developed in

Chapter III for the transmitted wave, is also given. This approach

results in a device termed "Transmission-type Doppler Frequency Converter."

The feasibility of the various kinds of Doppler shift experiments described

is illustrated by giving two examples of the Doppler shift experiments

appearing in the literature.

Chapter V extends the application of the general theory developed in

Chapter III to the case of a semi-infinite periodic structure. The

distinctions between the moving reflector theory and the conventional

parametric theory are discussed. A model for the energy balance between

the pumping signal and the small signal in a nonlinear dielectric is also

given in Chapter V.

The second part of this study starts with a brief survey of the

general theory of light diffraction using high frequency acoustic waves.

The agreement between the frequency shift in the diffracted beams, as

determined by the geperal theory of this report (i.e., moving reflector

theory), and that given by the generalized Raman-Nath theory is shown in

he beginning of Chapter VI. It is followed by the calculation of the

diffraction intensity using the method of "Ray-Tracing and Cascade

Networks." After comparing the diffracting power of various kinds of

crys~als which one might use, various ways of enhancing the amount of

diffraction are discussed. A theoretical analysis which determines the

enhancement of the diffraction due to acoustic resonance (with some

numerical values) is also given.

- 3



Chapter VII gives the results of various kinds of Bragg diffraction

experiments. Using a suitable single crystal (Tio2 ) and a high-efficiency

transducer (ZnO) giving a ribbon-shaped acoustic beam, it was possible to

diffract in the first-order 10% of the incident light using 10 watts of

cw rf power and 50% diffraction was achieved with a pulsed 60 watts peak

power source. The possibility of diffracting such a large percentage of

the light obviously has a number of possible device applications. In

the high power experiments additional diffracted spots of light (second-

and third-order) appeared; these are also discussed. The measured

enhancement of the diffraction intensity due to acoustic resonance was

shown to be in good agreement with the theoretical prediction. Measured

and computed diffraction patterns from multiple acoustic beams in one

crystal of SrTiO3 are given. They both show the characteristic shape

of a multiple-slit diffraction pattern in optics. Finally, the measured

frequency shift in the diffracted beam is shown to agree with both the

Doppler shift principle and the parametric principle. Finally, two

schemes of using multiple diffraction to shift the laser frequency by

integral multiples of the acoustic wave frequency are analyzed (in

Chapter VIII).
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PART I

CHAPTER II

LORENTZ TRAI\ (kMATION OF ELECTRMGNETIC WAVE QUANTITIES

Doppler effects occur due to the relative motion between the trans-

mitter (source) and the receiver (observer). If the frames S and S'

are attached to the source and the observer, respectively, the results

of Doppler effects can be easily obtained by the space-time transforma-

tion, i.e., Lorentz transformation, between these two inertial frames,

for the case of a constant relative motion. The transformation of the

various electromagnetic wave quantities between two inertial frames can

be most easily obtained by using the four-dimensional vector and the

four-dimensional tensor formulations.8  In the following sections, some

well-known results are illustrated and some less widely known results

which are not available in the literature are derived. They serve both

as the background and the stimulus for the development of later chapters.

2.1 DOPPLER EFFECT EXISTING BETWEEN TWO INERTIAL FRAMES WHICH HAVE

RELATIVE VELOCITY V IN VACUUM

The Lorentz transformation for the coordinates of space and time

between two inertial frames which have a constant relative velocity V

as shown in Fig. 2.1 is
X1

x' + Vt' t + V
C

x T79  , y y' Z z t

c c

(2.1)

where c = if , is the velocity of light in vacuum (V0 is the

permeability of vacuum, e0  is the permittivity of vacuum).
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y y

V

S S.

z/ z

FIG. 2.1--Two inertial frames with constant velocity V parallel to the
x and x' axes.

We now define T to be ict. The vector, with components x , y

Z , T is called the four-dimensional radius vector.8  Denoting its

components by x , where i = l, 2, 3, 4 , so that x1 = x , x = y

x 3  z x4 = = ict , the systems of Eqs. (2.1) becomes

c 4c4Xc

-1 X X11X X

c c

(2.2)
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To express the primed components in terms of the unprimed components

we simply transform V to -V and change the primed to the unprimed,

the unprimed to the primed.

In general a set of four quantities A1 , A2 , A3 , A4 , which under

transformations of the four-dimensional coordinate system transform like

the components x i  in the system of Eqs. (2.2), is called a four-8
dimensional vector Ai  . Thus, under a Lorentz transformation, the

A transform as follows:
i i

Al - i At A' + i A
1 4  4 c 1

A1  = A 2  At A 3 = A A

c c

(2.3)

For a monochromatic electromagne~ic wave propagating in free space

the wave quantities vary as eJ(wt Kr) , where r is the space-radius

vector. Since the phase 0 = Wt - K r of any wave is invariant to a

Lorentz transformation,9wave vector and the frequency w form a four-

dimensional wave vector K. with components
8

1

K, -K K2.. = K K3.. K , K4 i- ..... (2.4)
1 x 'y ' ~z 4c

Thus, the K. in system (2.4) transform from one inertial frame to1

another like Ai  in system (2.3)

Now we derive the Doppler effect for the simple and important

configuration shown in Fig. 2 2. A monochromatic electromagnetic wave

of frequency w , with the wave vector K at an angle a with respect

to the x axis and in the x-y plane in the inertial frame S , will

have frequency oD' ,with the wave vector K at an angle a' respect

to the x' axis in the inertial frame S' . By substituting (2.4) into

(2.3), and using the relation K = K cos a = o/c cos a , we have thex
following exact formulas for the Doppler effect and the aberration. The
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Y yd

I ZI

xx Kj
x

FIG. 2.2--The Doppler effect between two inertial frames.



direction of a light ray depends on the velocity of the light source

relative to the observer. The phenomena is called aberration:

1 + V cos a'
c

C, ', (2.5)

cos a' + V/C (2.6)cos a = 1 +V/ccos a'

C 1

-sin a = -sin a' (2.7)
c c

By using the inverse transformation, Eqs. (2.5) and (2.6) can be

replaced by

41 -v/c
CO1--2 

(2.8)
1 - V/c cos a

cos a - V/c (2.9)cos a' = (2.9)___

1 - V/c cos a

The advantage of Eq. (2.8) is that the frequency w' measured by an

observer in the inertial frame S' is given in terms of the parameters

measured in the inertial frame S

When V/c << i and orders higher than the first in V/c are

neglected, Eq. (2.5) becomes

c a C'(l + v/c cos a') • (2.10)
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Expression (2.10) is called the nonrelativistic Doppler effect or classi-

cal Doppler effect. But when V/c is not much smaller than unity, we

have

W=1' V/c cosa' + 2+ 3 cosa,'+ 3 4 + (2.11)

2
The terms result from (V/c) or higher in Eq. (2.11) are called the

relativistic Doppler effect.
0We further notice that, when CO = 90 , we have

1

= a' ,(2.12)

c

and when a' = 00

1 + V/c

Yu ' (2.13)

c

Equations (2.12) and (2.13) show the so called "Transverse Doppler Effect"10

and "Longitudinal Doppler Effect,"1 0 respectively, and that the second

order relativistic Doppler effect is independent of a'

It is important to emphasize that the velocity of macroscopic objects

is much smaller than the velocity of light, so that the relativistic Doppler

effect is hard to observe.

2 2 MIRROR EFFECT IN VACUUM

As an illustration for the Doppler principle given in the first section,

the well-known mirror effect will be derived here by a double application of

the four-dimensional wave vector transformation between two inertial frames.

Consider a perfect mirror moving with a velocity V in vacuum as

shown in Fig. 2.3. A plane light-wave of frequency w i whose propagation

- 10 -



~~Moving mirror

V

SW .

FIG. 2.3--The configuration showing the mirror effect.

direction makes angle a i with the x-axis and on the x-z plane is

incident upon this mirror. We imagine an inertial'frame attached to

the moving mirror S' . By transforming 01, and a 1  to the frame

S' [from Eqs. (2.7) and (2.8)), we have

/2

CU (2.1)4)
1 i V/c Cos a

and

sin a = isin a' (2.15)

c c



Secondly, by transforming w! and a! to the frame S for the
I I

reflected wave, we have

~~/77~72 __ _ _

"") 1 - /C

r lV o= ± (2.16)
1 -v/c cos( -a 1 + V/c cosar r

and

- sina sin a (2.17)r 2rc c

using Snell's law. By combining (2.14) - (2.17) we have

G)r  1 - V/c cosa, (2.18)

Cr 1 + V/c cosa r

and

Wr sin a r = W, sin ai (2.19)

Equations (2.18) and (2.19) can be combined to find w r/ei in

terms of ai only. After some algebraic manipulation, the well-known

results are obtained as follows:

w i  1 - V/ /Cos +2  /

22

Cos C"2V/c + (V/c) cos (Csar 212.1

1 - 2V/c cos ai + (V/c)
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and

sin a r 1. - (V/c) 2 sin a1 (2.22)
r 1- 2V/ cos i + (V/c)2

For the case V/c << 1 , Eqs. (2.20) - (2.22) have the following

approximate forms:

(l_ - 2V/c Cos ai) (2.23)

cos a r- cos a i + 2V/c sin2 a i  (2.4)

and

sin a r = (l + 2V/c cos ai) sin a (2.25)

Finally, for the case of normal incidence (a i = 0) , Eqs. (2.20)

(2.22) reduce to the following simple relations:

r = 1 - V/c (2.26)

-i i + V/c

and

a r (2.27)
r

and r - Di (1 - 2V/c) when V/c << 1.

It is important to notice that the results given in this section are

for the case when the mirror recedes from the incident wave. The frequency

of the reflected wave is down-shifted. When the mirror approaches the

incident wave the appropriate results are obtained simply by changing V

to -V in all of the expressions given in this section. The frequency

of the reflected wave will be up-shift d in Lhis case. We further notice
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the velocity of a real material mirror will in practice be much smaller

than the velocity of light so that the frequency shift of the reflected

wave will be extremely small. In contrast to this, in a material medium

such as we shall analyze herein the moving reflector is considered to be

induced through nonlinearity by a pumping electromagnetic wave or elastic

wave. We shall see that the velocity of the moving reflector can be

either smaller, or approximately equal to, or larger than the phase

velocity of the small-signal electromagnetic or elastic wave concerned.

Thus the "Double Doppler Effect" (or the Mirror Effect) in a material

medium can in principle be large in a nonlinear material medium.

To conclude this section we mention that the mirror effect can be

more easily and directly derived by the principle of "equality of phases,"

as will be shown in the next chapter.

2.3 DOPPLER AND MIRROR EFFECTS IN MATERIAL MEDIA

We have discussed the Doppler and mirror effects in vacuum in the

previous two sections. Ie shall describe briefly in this section these

same effects in a material medium. For a monochromatic electromagnetic

wave propagating in a continuous material medium with permittivity e

and permeability ' , the wave quantities vary as ej(wt K r , where

r is the space-radius vector. The wave vector K and the frequency w

again form a four-dimensional wave vector '8 Ki with components

K 1  , K2 = K K , K =i . (2.28)

Thus the K. in system (2.28) also tranform like A. in system (2.3)

under Lorentz transformation. To derive the Doppler effect existing

between two coordinate frames such as Fig. 2.2, we simply substitute
(2.28) into (2.3) and use the relation K = K cos Q Z 7 cos a

We give only the frequency transformation here:

(i + V "P/Ccos a')
W= 1 2 (2.29)

1 l-(V/c)
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Using the above formula for frequency transformation twice, the

mirror effect in a material medium can be found in the same way as in

the vacuum case. For a monochromatic electromagnetic wave normally

incident on a perfect moving reflector with velocity V in a material

medium, the frequency in the reflected wave is

1= V (2.30)

S l- Vf- V/vP

1

where v = - is the phase velocity of the electromagnetic wave in

the material hedia. Equation (2.30) is for the case when the reflector

moves against the incident wave. Since the phase velocity of an electro-

magnetic wave is reduced by a factor (the index of refraction) in a

material medium, we immediately see from Eq. (2.30) that a larger fre-

quency shift can be obtained in a material medium than in vacuum for

the same reflector velocity.

In Chapter III we will give a detailed derivation, using the

principle of "equality of phases," for the frequency shifts in the

reflected and transmitted waves due to a partial reflector in a material

medium.

Another kind of Doppler and mirror effect which is of interest for

this investigation is that for the case of elastic waves. The four-

dimensional wave vector approach is applicable in the case of elastic
11

waves as well as in the case of electromagnetic waves. Thus the

frequency of a harmonic elastic wave transforms according to Eq. (2.31)

under Lorentz transformations (i.e., Doppler effect):

V(l + - cosv

CU = u I _ '0(2.31)

c
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The notation used in the case of electromagnetic waves is carried
over to the case of elastic waves. We note particularly that v

denotes the velocity of the elasti.. wave in the medium. The corresponding

mirror effect for elastic waves can be easily obtained using the principle

of "equality of phases" as will be demonstrated in Chapter III.

2.4 LORENTZ TRANSFORMATION OF THE ELECTRIC AND MAGNETIC FIELD

INTENSITIES

According to the "Principle of Relativity," Maxwell's equations must

have the same form in all inertial frames. Therefore, the electric field

intensity 9 and magnetic field intensity H must transform in such a
way that Maxwellts equations remain invariant under the Lorentz trans-

formation.

It is known that the component of he electric and magnetic field

intensities are the components of four-dimensional tensors of the second

rank8'12 Fik and Gik and that Maxwells equations can be vritten in

the four-dimensional form

+ Ft +ot (2.32)
6x xi  2"k

and

6G ik
-- :k 0 (2.33)

Thus, the components of the electric and magnetic field intensi~ics

transform, under the Lorentz transformation, like the products of tl.e

corresponding coordinates of the sys-4em (2.2) i Section 121.. The



transformations are5 (in M.K.S. hystem):

El2 c 2II EE = 1

1

HI = HI, Hi =- - V X D

1(2.35)

1

where II denotes components parallel, and J components perpendicular

to the axis of translation.

For the case V/c << , (2.34) and (2.35) reduce to the approxi-

mate formulas:

i i B' I (2.36)
=l Ell, Ej = El+ (V x

= HII =

and (2.37)

D, DI, Di  Di
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2.5 TRANSFORMATION OF TEM WAVE FIELD COMPONENTS; PERMITTIVITY;

PERMEABILITY; IMPEDANCE; POYNTING VECTOR UNDER LORENTZ

TRANSFORMATION

Consit-' r a uniform TEM wave propagating in an infinite medium with
-4 -4

permittivity e1 and permeability jl 1 Since E . H = 0 in the

inertial frame S , we have8 E HI = 0 in the inertial frame S'

From Eqs. (2.36) and (2.37), we see that the field components are not

rotated in the inertial frame S' . Thus the orientation of the field

components is as shown in Fig. 2.4.

y y
y 111l z111

V

S Frame S Frame

H

Z z

zz

FIG. 2.4--The field components of a uniform TEM wave measured in two
inertial frames.
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Now, we have the following relations in the S frame:

D y e 1E , B z = (-8

Z, _ Y = Impedance
H z 

1 7

W Energy Density = 1

P1  Poynting Vector = E × H = 2EyHz =
zi

Substituting the material equations (2.38) into Eqs. (2.34) and (2.35),

we have the transformed field components

1

yV2

c (2.39)

1

HI 7=Z

H - 4)l( +gH~

z 1 + l )

D' + H
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Combining Eqs. (2.37) and (2.39), the following transformations in permit-

tivity, permeability, impedance, energy density and Poynting vector are

obtained

D + V/c2

(CI) + (2.4o)YY y E -116 VPl

y

B P + V

(I.L=)- Z C(2.41)
zz HI

r-' 2

ZZ Hz 1i+ VV -gl

E ) ~ ~+ Vgl t

z =I : == z (2.42)
z 1 + V Vl 1

-,~~~ -- ^^l+ Vgj ll 2

E' x H' X EtHy = (+ x' V) EyHzPI yz V / 1 V z

1- - -2

V-2cc

and

~ +V/c 2 I1+ V-57~

W 1 lyl (j2~ )(E2 2

(V-7- l+ V/c2)(l + VVPT1)

w . (2.44)
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From Eqs. (2.40) - (2.44), we conclude that only the impedance of

the TEM wave is invariant under the Lorentz transformation, while the

permittivity, permeability, energy density and the Poynting vector are

not. The invariant nature of the impedance should imply a special

importance of the impedance concept in the field of moving electro-

dynamics. It is obvious that when V -O , Eqs. (2.40) - (2.44) all

reduce to well known results.

2.6 ELECTRODYNAMICS OF MOVING MEDIA

As indicated in Section 2.4, the form of Maxwell's equations is

invariant under the Lorentz transformation, according to the principle

of relativity. Thus, the form of Maxwell's equations in a moving medium

remains the same as in the medium at rest. But, as illustrated by the

simple example in the preceding section, the macroscopic parameters c

and V are subject to transformation under the Lorentz transformation.

This may be ascribed to an actual change in the structure of matter in

motion.
13

The components of E and B , and that of D and H separately

constitute four-dimensional tensors Fik and Gik . We define the

velocity four-vector 8 of the medium Ui as

V V Vx y z

U 1 m 7 , U 32 U 4_ __ 7 
1- _ 2-2 U2 l2

cc c

(2.45)

T'.e a atilu F .U. an~d G U. ca. lie miade 1A' c , . e~~ ik:
relations between D~ and , and in a moving medium which

generalize the relations D =eB and B p~H valid in a medium at rest.
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The results are as follows:

~1
D+ -VxH = + VX (2.46)

C

and

B - -2 V x E (H - vxD) . (2.47)

These formulae were first derived by Minkowski. Notice that these

formulae can also be obbained directly from Eqs. (2.34) and (2.35). They

show the most distinctive nature of the relativistic electrodynamics of a

moving media and should be coupled to the Maxwell's equations in solving

the problem. We note that V denotes either the constant velocity of

the moving medium or the relative velocity of the inertial frame for the

Lorentz transformation. Thus we cannot distinguish between motion of the

inertial frame and motion of the medium.

From Eqs. (2.46) and (2.47) we note that a medium which is isotropic

in its electromagnetic properties acquires anisotropic properties when it

moves. This is why the permittivity and permeability in Eq. (2.40) and

(2.41) were written as components of a tensor. The degree of anisotropy

depends on the direction of the velocity of the medium with respect to

that of the field components. Also, the higher the velocity the larger

the degree of anisotropy.

Notice that Eqs. (2.46) and (2.47) can be combined and written in a

simpler form:

DII = ,11 ' B11 = "HII

2)

(1 -2 V + - (2.48)

(1-gV 2) B -- g 1- + -- C X
C C
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When V/c «< i , 6V 2 «< 1 , and eg does not much differ from

CO" 0 these become, retainiag only the first order in V/c ,

D11 = ea ll
-4 -

B11  = eIj

Di  CE (1 - - 2) ex (2.49)

B. 1 HI e ec / I

For a medium with high eg , the term i/gc2  can be ignored.

Another distinctive feature of the moving electrodynamics is the

change in boundary conditions on Maxwell's equations. From the equations-4 -4

div D = 0 and div B = 0 , the continuity of the normal components of

B and D is seen to be the same as for the case of a boundary at rest,

i.e.,

Dnl = D ,n2 Bn, Bn2  (2.50)

By contrast the tangential boundary conditions are different at a moving

boundary. In this case the tangential components of E + V x B and

H - V x D are continuous. This can be easily demonstrated by trans-- - - -4 -4

forming E , H Y D , B into an inertial frame which is att- hed to the

moving boundary. The tangential electric and magnetic fiel. intensity

measured in this inertial frame are

1

.. .. (E+ V ×B) i
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and

1

respectively, and they are continuous in this inertial frame. Thus, we

have

+ V x B)l tangential = + V x B)2 tangential

- V x D)I tangential = - V 2 tangential .
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CHAPTER III

WAVE INTERACTIONS WITH MOVING BOUNDARIES

When a wave, either electromagnetic or elastic, impinges upon a

moving boundary or interface separating two different media, an inter-

action will occur. Both the frequency and amplitude of the reflected

and transmitted waves are 6hanged. This is just the double Doppler

effect described in Chapter II. The double Doppler effect will be

analyzed, using electromagnetic waves and the effect extended to include

elastic waves, in the following chapters.

There are several physical configurations in which a moving boundary

or interface separates two different media. The most general case is the

one in which the medium behind the interface is also in motion and its

velocity differs from that of the interface. The shock wave formation

in a gas or fluid is a typical example of this general case. A moving

plasma or beam of charged particles in free space is an example in which

the medium behind the interface moves with the same velocity as the inter-

face. The simplest case is the one in which the medium behind the inter-

face is at rest. This is the case, as will be shown, of most interest

in this study.

After solving the general case in Section 3.1, the investigation

is concentrated on the simplest case. A moving interface separating two

media at rest might be induced by applying a step function electric or

magnetic field to a nonlinear dielectric o; magnetic medium. The case

in which the medium behind the interface is moving with a nonrelativistic

velocity equal to that of the interface is also treated briefly. There

may be a number of applications of this model (e.g., the plasma piston,

referred to in Chapter I).
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3.1. REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES AT A MOVING

BOUNDARY OP INTERFACE - - GENERAL CASE

First, consider Fig. 3.1. The abrppt interface, which is in the

y-z plane, divides the unbounded space into two regions. Medium 1 is

stationary, homogeneous, dispersionless and has permeability il and

permLttivity €i , while medium 2 moves with velocity V2  and has

permeability t_ and permittivity E2  in its own frame of reference,

I., is also assumed that. medium 2 is homogeneous and dispersionless in

its own frame of reference. The abrupt interface is assumed to move I
with velocity V .

Consider a uniform TEM wave of frequency Ti and wave vecLor Ki

incident upon the moving interface. The frequency and wave vector of

,he reflected and transmitted wave are w , K and w ,K re-
r .

spe normively. Let " ar , C1 t be the angles between K. , Kr , Kt
and the normal to the interface n , respectively; Ki , Kr and K
are all in the x-z plane. All of these wave parameters are measured

in the laboretory frame. We now set forth to determine ,he frequency

shifs and amplitude changes in the reflected and transmitted waves.

3.1,- F reguencyShifts in the Reflected and Transmitted Waves

Let us write he incident, reflected and transmitted waves as

A. t-Kr)1

j(w t-K -r).
A er

and

t(1-Kf.#r) ,

At e
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Medium 1 m V Medium 2

Ll el P2 ' 62 -(in'the frame V2 )
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/~ ttt,

' /

lei

z

FIG. 3.1--Configuration of a uniform TEM wave interacting with a
moving boundary - general case.
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respectively, where Ai , Ar and At designate the corresponding

field amplitudes. To satisfy the boundary condition on the interface

at all times, the phases of the three waves are required to be equal at

all points on the interface and at all times. (This is the principle

of "equality of phases" which has been referred to in the previous

chapter.) This condition leads to Eqs. (3.1) and (3.2),

n xK = n XK = n X Ki r t

i.e.,

K sin a, = K sinr = K sinct I
i i r r t at 1,

(3.1)

+ 4. + + 4. 4
"Ki "V = W -K r V t - Kt *V

I.e.,

w. + K.V cos a, L-.r - KrV cos = W + KtV cos t "
1ir r t t 't '2

(3.2)

In terms of the mks system, the w and K for each wave are further-

more related by
4

2 2

i + ( i K i . V i)
K + X 'o(3.3)

c 1- (Vi/c)2

where 1
Xi  = Eig i -- i = 1,2

c
1

c = velocity of light in vacuum -
90C0

V. = velocity of the medium i

1
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Since medium 1 is stationary, and medium 2 is in motion, Eq. (3.3)

gives

for i = 1

Kr v'rE r  (3.5)

for i=2 ,

2 )
CU 2 +2  * ( + cKt P2 cosat,

t 1t- 2 = , (3.6)

where

P2 -

C

We notice that the relation given by Eq. (3.6) agrees with that given by

Eqs. (2.46) and (2.47). Both show that a medium which is isotropic in

its electromagnetic properties acquires anisotropic properties when it

moves, From Eqs. (3.1), (3.2) and (3.4), we have

= W V72.6 sin ai (3.7)

2 =  - i(l + Pc cos a,) (3.8)

where

P 29V
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After some algebraic manipulations .combining the first set of

equations of (3.1) and (3.2), see Appendix A.], wr and K (normal

component of K with respect to the interface) are obtained:
r

(i + PJcl 2 32 ) P + 2c V-1 1 cos
2 .2 (3,9)

K+ c c2 ) cos ai + 24tilCPKr
1-1

(3.10)

Similarly, by combining the second set of equations of (3.1) and

(3.2), w t and Ktx (normal component of Kt with respect to the

interface) are obtained:

X c 2xc (f3 2
2 Xc 2 "(-2j 2  " 2) 2

1 + X2 c 2  2 1+ 2 Il- ([ -

1(1 - 2

2 2

(3.12)
P - 30
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It is obvious that the expressions for wr I Krx , and wt . Ktx

become very complicated when the medium behind the interface is in motion.

Finally, it is important to note that the principle of equality of

phases for all waves on the interface, as used in this section for de-

termining the frequency shifts, also applies for the elastic case.
1 5

Consider the configuration shown in Fig. 3.2. A monochromatic

acoustic wave is obliquely incident upon a moving discontinuity or abrupt-

interface such as the one induced by shock waves in an infinite acoustic

medium. We consider the simple case in which both medium 1 and 2 are

stationary. As a consequence of the interaction beLween the acoustic

waves and the moving interface, the reflected and transmitted waves are

shifted in frequency and changed in amplitude. We assume that all of the

wave vectors lie in the same plane (x-z plane) and n is the unit

normal of the interface. The notations for the frequencies, wave vectors,

anles of incidence, reflection and refraction are as shown. They are

all measured in the laboratory frame. Furthermore, V , v1  and v2  are

the velocity of the interface, acoustic wave velocity in medium 1 and 2,

respectively.

From the principle of "equality of phases", we have the relations

4. 4. 4. 4. + 4. -0
ci - Ki V = r - K ". V - Kt " V (3.13)

and

-1 4. +. + +4.+
n XKi = n xK r  = n xK t  (3.14)

at all points on the interface and at all times. Solving the first set

of equations in Eqs. (3.13) and (3.14), we have

W r 1 + (V/v,)Co 1° o (3.15)
c1+ (V/V,) Cos 9r
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y

Medium 1 ].V Medium 2 (moving with velocity V)

/

x

z/

FIG. 3.2--The configuration of a monochromatic acoustic wave
interacting with a moving boundary.
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and

(1 + (V/:I) Cos oi + sinel (3.16)= (3 16)
sin 0 i  sin 0r

Similary, solving the second set of equations in Eqs. (3.13) and

(3.14), we have

-- v (3.17)
S 1+ (V2 )Cos t

and

S+ (V/v1) cs ei\ - 1 + (V/v2) Cos et\ '3'8)

sin ei sin et )
Equations (3.15) and (3.17) determine the frequency shifts in the reflected

and transmitted waves, respectively, wheareas Eqs. (3.16) and (3.18) Oe-

termine the angles of reflection and refraction, respectively.

3.1.2. Amplitude Changes in the Reflected and Transmitted Waves

Let Ei , Er  and Et  be the electric field intensities for the

incident, reflected and transmitted waves, respectively. The correspond-

ing D , B,1 are designated in the saw way. The procedures for cal-

culating Er  and Et  , and hence the reflection and transmission coef-

ficients, are summarized here, while the detailed manipulations are shown

in Appendix A.
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i; rite down all Dof the field components in medium 1. Since

modi am , s at rest, the well known relations of D = EIE , B = PiH

I0.di.

,) .'i,,e do'4,n all of the fi-ld components in medium 2. Since

m-d:-.j, 2 is in motion, the relations D = cE and B = ll do not hold.

rn '/ are replaced by the MinKowski relations.

-. .. -~4.

Dt  V2 - XHt/c- E2(Et +V 2 X Bt)

2t t
Bt + × :1xV 2c -- i ,.Dt x v 2

(3) Transform all of the field components to the frame which is

aL ,ached to the moving interface, and apply the boundary condition as

,;nodn in Chapter LI on the interface, ie., the tangential components

F + x and H- V x D are continuous on the interface.
' Tsreatng E and E will result from

'. ,oeqa-Ansreain i ?r t
oc~d' (3), and E , E, can be solved in terms of F.

r 4. *

t.io simltaneous equations relating Ei , Er  and E are as

fol1 3

. x' i (.- l ] + [(imr x Er1it - Krx)] Er - wiWr"t 0

(3.19)

'~2P ixC c Cos1 2 c( t

- 2 22 t 2'cc P)

CW rx J. 1 ' 2' t

-.,1K, (i p2 2 2c cos t 2 4 2 e 2 c - 32) '1
- .,].}.:,x( "2 2 o' 2 r

,..',c r.. o62 i2( 2  2,.2 2  1) Cos a~t Et  0
1 2' .. ," 2,-

IJ-



3.2. REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES AT A MOVING

INTERFACE - NORMAL INCIDENCE, MOVING MEDIUM (NONRELATIVISTIC)

The interaction of a unilform TEM wave at the boundary of a non-

relativistic moving medium will be discussed in this section. As shown

in Fig. 3.3, the velocity of the boundary is equal to that of the medium.

The case of normal incidence is considered.

3.?.l. Frequency Shifts in the Reflected and Transmitted Waves

Imposing the equality of the phases for the incident, reflected and

transmitted waves on the boundary at all time, we have

W K.V=Wr Kr • V - Kt (3.21)i i r rt t

The relations between the frequency and the wave vector for the

three waves are

1
CU -K V K (3.22)~p ii

1

c K V .Kr (3.23)r r r

Wt 2 (wt "Kt V ) P

t0 (3.2)

2 2v( 2e2 -(1/c )]

W2 -(KKt - - = 0 , (3.25)

2 e 2 3 252
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y
Medium 1 stationary Mdu 2Moig ith V

/ ~ ' c(in the frame V)

FIG. 3.3-.-Configuration showing a uniform TEM wave interacting with
a moving medium of nonrelativistic velocity.

-36



or

CU+V K t (3.26)

for propagation in the positive x-direction, and

( 1g C -(/c 2 A

for propagation in the reverse direction. Notice that (11/-72e-21

+ [ 2 2 -Lc)ai 2  V is just the effective phase velocity in the

m~oving medium. 1
6

By combining Eqs. (3.21) - (3.26) and (3.26), the frequencies of

the reflected and transmitted waves are obtained:

W 1 + V pij (.7

W,) 1 V/V P

/ P 2
2  

- @/c 2 f
1+ V +V P
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For the case 22 >> 1/c 2  but 2 \ V << 1 , Eq. (3.28) reduces -!

to

W t  1 + V/Vp:L

.1 += , (3.29)
W 1 + V/Vpt

where

1
V =Pt

For the case of practical interest such as a plasma piston or beam

of charged particles, medium 1 will be free space, so that Vpi = c and

Eqs. (3.27) - (3.29) reduce to

Wr 1 + V/c-L Y (3.30)
Ci . - V/c

and

2
-2E2 (1/c )]

t (1 + V 97 27_ V (1 + v/c)_(3_31)

i( [2V22 -(1/c 2 ) v

1t _ 1 + V/c
- 1(3V32)i 1 + V/Vpt



Notice that Eq. (3.30) is Just the well known mirror effect, and Eqs. (3.30)-

(3.32) give the mirror effect of a partial reflector.

3.2.2. Amplitude Changes in The Reflected and Transmitted Waves

Refer again to Fig. 3.3. The field components for the incident,

reflected and transmitted waves are given in Eqs. (3.33), (3.34) and

(3.35), respectively:

D = E

B i =IH i

~(3-33)

Hi = 1Ei

Bi =E

Dr = lr

B = Ir

Hr = lr(.)

r r

B E

D Dt  = E 2Et + (C 212 - 1/C ) V x H t  (.

rDt = EEt +(c2 2 " l/c2) t ×

- 39 -
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By substituting Eqs. (3°33) - (3°35) into the boundary conditions

(3.36) and (3-37), the amplitudes of the reflected and transmitted waves

can be obtained.

E medium edium 2 X (Bmedium 2 - Bmedium 1)1 (3°36)

Hmedium li Hmedium 21 = VX (Dmedium 1 D medium 2

(3.37)

where i denotes components tangential to the interface. We omit the

detailed calculations of the amplitudes.

3.3. REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES AT A MOVING

INTERFACE - NORMAL INCIDENCE, STATIONARY MEDIA

In this section we treat the case of great interest in which both

the media in front of and behind the interface are stationary, homo-

geneous and dispersionless (see Fig. 3.4). This will be the case when

a step function electric or magnetic field is applied to a nonlinear

ferroelectric or ferromagnetic material.

To obtain the frequency shifts and amplitude changes in the reflected

and transmitted waves for a uniform TEM wave, we could simply set 2 = C

and (. = 0 in the expressions in the first section; but in order to
1

illustrate again the procedures involved in solving this type of boundary

value problem, we give the derivation in detail.
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Moving interface

Medium 1 stationary Medium 2 stationary

n V t /

D
E- Er

, K
D r

H, 
CXj; K

Hit B]tHtt

z

FIG. 3.4.--The configuration showing a uniform TEM wave normally
incident upon a moving interface separating two media
at rest.



3.3.1 Frequency Shifts in The Reflected and Transmitted Waves

From the equality of phases for all waves on the interface at all

times, we have

-11 4 + 4.
-K *V Kw' -K V - K (3.38)

but

Ki  1i6 l)I/2 -

V
P i

K W(I %( 1 /2 W1 r- / r (3.39)

V

Pr

tt : (g2e) 1/2

tt

where V , V and V are the phase velocities of the incident,P1  Pr Pt

reflected and transmitted waves, respectively.

Combining Eqs. (3.38) and (3.39), the frequencies of the reflected

and transmitted waves are obtained:

1 + V/Vpt (3.4o)
c 1 -V/V

1 pi

-)t l+V/V i

1+ v/Vp(3.41)

From Eqs. (3.40), (3.41) and (3.27) - (3.29) we see that for the

reflected wave the same amount of frequency shift will occur in the case

of a moving medium as in the case of a moving interface, while for the

transmitted wave, different amounts of frequency shift will occur in

42



general. For the special case, 92C2 > 1/c 2 but 21g72"V << 1 ,

the amount of frequency shift in the transmitted wave will be the same

whether the medium behind the interface moves or not.

Notice that when the interface moves with a velocity comparable to

the phase velocity of the wave in medium 1, the frequency up-shift in

the reflected wave -l be large, and that unless the phase velocities

of medium 1 and med a 2 differ greatly, the frequency shift in the

transmitted wave will be small. When the interface moves in the same

direction as the propagation of the incident wave, the frequency shifts

in the reflected and transmitted waves are obtained by changing V into

-V in Eqs. (3.40) and (3.41),

CO 1 V/Vpr (3-.42)

V/VP1

tot - V/Vp1 
(3.43)

I - V/Vpt

We further notice that Eqs. (3.40) and (3.42) are analogous to the

mirror effect of Chapter II, and we may say that Eqs. (3.40), (3.42),

(3.41) and (3.43) describe the mirror effect for a partial reflector.

Finally, we point out the conditions for the existence of the

reflected or transmitted wave, or both, for the nondispersive media

considered. For the reflected wave to exist the group velocity (in this

case the same as the phase velocity) of the reflected wave must be

greater than the velocity of the interface when the interface moves

- 43 -



against the incident wave; otherwise the waves cannot "break away" from

the interface and therefore are not reflected. 17 This criterion also

applies for the case of incident wave and interface moving in the same

direction as long as the velocity of the incident wave is greater than

that of the interface. When the interface moves against the incident

wave, a transmitted wave always exists regardless of interface velocity.

On the other hand, when the interface and incident wave move in the

same direction for instance, from left to right, the existence of a trans-

mitted wave requires that the velocity of the interface be less than the

group velocity (or phase velocity, in this example) in tl'e medium to

the right of the interface.

3.3.2 Amplitude Changes in The Reflected and Transmitted Waves

Using the designations for the various field components as shown

in Fig. 3.4 and the fact that both medium 1 and medium 2 are stationary,

we have the following relations:

Di I E1

Bi 1 Hi

(3.44)

Bi =fTi/7 Ei
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and

Dr ir

Br I 1Hr
(3.45)

H = (el/±l Errr

Br r

Dt = e2Et

Bt - 12Ht

(346)

Ht 2 Et

The boundary conditions on the interface as shown in Eq. (2.51Y)

can be rewritten in the following for*:

meiu 1j me eimju 21 X (Ba± 2- Bediu.(47

i4

Emedium il medium 21 § (medium 1 "medium 27.1.

(3.48)

where J denotes components tangential to the interface.
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Now, in our case we have

Emediumi 1 E + Er

Emedium 2 = Et

(3.-49)
Hmedium 1 H i H r

Hmedium 2 = Ht

Substituting Eqs. (3.44) - (3.46), and (3.49) into Eqs. (3.47) and

(3.48), two equations relating Ei , Er  and Et  are obtained:

rl t)
(1 - V) Er - (1 + - 77V) Et = - (V +f lV) Ei

(3-50)

(1 - V) E, + V--77(1 + V7--1V) Et

,(3.51)

= ~ + (+ -j v) Ei

The reflection coefficient p and transmission coefficient T are
obtained by solving Eqs. (3.50) and (3.57), yielding

EI
Er  (1 + - 1V) g -- )

Ei(1 7Jjjv 2-~ j' -1
(3.52)

1 + V/Vp) Z +
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and

Et  (1 + V TfIv) 2

E T

(1 + V) (V 72+ VA 2

1 +V/Vpi) 2Z2'
I + I/V -)0(l+Z)(-3

where ZI  , Z2  V, are the impedances of medium 1

and , respectively. As indicated in Chapter II, it is proper to use the

stationary impedances as commonly defined, because the quantity V 7e'
is an invariant under the Lorentz transformation fo. the case of normal

incidence.

From Eqs. (3.52) and (3.53), we see that the reflection and trans-

mission coefficients are those of a stationary interface multiplied by

the relativistic factors:

(1 + V/Vpi
1- v/V i

and

( + v/vpi
4~ + v/vpt/

respectively. We also note that these same relativistic factors appeared

in the expressions for the frequency shifts.
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These are the most remarkable results of a wave interaction with

a moving interface. The appearence of the factors

1 /Vpi

and

1 + V/Vpi )

1 + V/Vpt

implies a transfer of power to the reflected and transmitted waves from

a step-function field which generates a moving interface in a nonlinear

medium. When the interface moves against the intident wave with a velocity

comparable to Vpi a large frequency shift and power amplification in

the reflected wave will be expected. If V and the Vpi of the medium

are not comparable, an appropriate slow-wave structure might be employed

in order to reduce the phase velocity of the incident wave and thereby

increase the frequency shift and amplification. The transformation of

power between the pumping step-function and the reflected and transmitted

waves will be related to the parametric principle in the latter part of

this chapter, and also in Chapter V.

Finally, the power densities (Poynting vector) are given as follows:

4. 
E 2

P E XH =

r r r - Zl ~(34E2

. 4. + r B
P r X H r x -t3-4

Pt E t x Ht z 2  0
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Combining Eqs. (3.52) - (3.54), we have

r (r 'V2  2 2

P i \Ei v/vpi Z Z2

(3.55)

P il/+v/ zJ.+z

Pi iJ 1 (/V)t( ZI+ 2 ) 2

or

Pt (Et L Z ( 1 + )Yv [(2 V'Z-1 )J2

(3.57)

* ~Using Eqs. (3.40), (3.41), (3.55), (3.56) we consider the following

special cases:

(a) Perfect transmission: Z +Z2 , and Vp=Vp , that is,

2 2
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and

1 1

U

262

then

Pt i t i

(3.58)

Pr W 0 Pt Pi

and since there is no interface the incident wave is not affected.

(b) Perfect transmission: Z1  , but Vpi * Vpt

i.e., 52

but

1 1

then
1I+ V/VPi 

i

Wt a 1 + V/Vpt

(3.59)

Pr =0, Pt = ( +:$V9 P
+ V/Vpt
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Thus the moving interface in this case causes the conversion of

frequency and power only in the transmitted wave:

(c) A perfect reflection: Z,/Zl-*0 or - , then

C = (DiI

p~~ V/Vpi (.0

(1 /v 2 P (3.60)

Thus the moving interface in this case causes conversion of frequency

and power only in the reflected wave.

3.4. WAVE INTERACTIONS WITH MOVING SLABS

For the following analysis, a moving slab or series of slabs is

considered to be induced by sending a strong electric and magnetic pulse

or series of pulses through a nonlinear ferroelectric or a nonlinear fer-

romagnetic crystal. Thus the slab will not be moving physically, but is

defined by a pair of moving interfaces.

The frequency shifts and field amplitude changes due to the moving

interfaces which make up the moving slab or series of slabs will be given

for the case of normal incidence of a uniform TEM wave.

3.4.1. Frequency Shifts for a Single Moving Slab

For convenience, we assume that the two moving interfaces which

make up the moving slab are abrupt. The effect of nonabruptness will be

discussed later in the section. The designation of the material constants,

the frequencies, and the amplitudes of the waves in the three regions are

as shown in Fig. 3.5.
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Medium 2
Medium 1 L2' 62,p2~z2  Medium 3

I.IplElJZl v V I00- 3 3 :vp 3,'Z3

r Wr E- ,a)s
M) m

d

FIG. 3.5--The configuration showing a uniform TEM wave normally
incident on two moving interfaces which make up a moving
s lab.
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The equality of Phases of the waves at the interfaces 1-2 and 2-3
lead separately to the relations

-4~~~ - 4 .' + " *- 4 ~K xWm i (.3.61)

+ ++ - . -). -I-.co-K -V = I a) * 0V = cut K- (3.62)m in in in t

Solving Eqs. (3.61) and (3.62),. we have

as) VV1 (3.63)

(0_ 1 + V/Vpj 2 (3.64i)

and

cum 1 + v/vp1  (3.65)

__ )+V/p (3.66)

01 1I 1+ v/vp3
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Notice that when medium 3 is identical to medium 1, (t/i = 1

and there is no frequency shift in the transmitted wave. In practice,

the frequency shift in the transmitted wave might be more easily observed

than that of reflected wave, as the transmission coefficient will be

large except when the transition region is nearly an odd mltiple of a

quarter wavelength thick.

3.4.2. Wave Matrix for a Single Moving Interface

The method of wave matrices1 9 is a powerful analytical tool for the

study of multiple slabs. This powerful wave matrix method, which is

analogous to the scattering matrix of quantum mechanics leads to a

straightforward calculation of reflection and transmission coefficients

in the case of moving periodic structures (or a series of moving inter-

faces), involving merely matrix multiplication. As a preliminary it will

be used in this subsection for calculating the reflection and transmission

coefficients at a single interface. The wave matrix [W] is a matrix

which relates the amplitudes of the forward- and backward-propagating

waves on the output side to those on the input side. For example, con-

sider the stationary system of single discontinuity shown in Fig. 3.6,

with a TEM wave propagating from the left side, where 1J j A1  and A2

+A2  designate the electric field amplitudes of the incident and reflected

waves at the planes just left and right of the interface, respectively.

The wave matrix for this case can be easily obtained by imposing the

continuity of tangential components of electric and magnetic fields at

the interface. Thus we have

A + A, = A2  (3.67)

AI A A A
1 -1 2 2 (3.68)

z1  z 1  z 2  z2
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*Stationary interface

Medium 1 V 0 / Medium 2

9i Eli Zl A 2 C 2 ' Z2

A1  A2

A1  Do2

FIG. 3.6--The configuration showing a stationary interface separating
two media.

V not equal to zero

Moving interface

Medium 1 V A 0 Medium 2

Il' el 'Zl P 2 ) 62 'Z2

+ +

A2

12

FIG. 3.7--The configuration showing a moving interface separating
two media at rest.
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Equations (3.67) and (3.68) can be written in a matrix form

- [wIl (3.69)

SA 1  A2

where the matrix [W'] is found to be

[w ( + ) . (3.70)

-, 1 +z,

The elements of the wave matrix can also be written in terms of various

reflection and transmission coefficients as

++ W.-+ "  1 2

T T 2

[W*]- = . (3.71)

W"-- T I 1 --

12 12
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where

TI 2  , TI_ the transmission coefficients from medium 1 to

2 and medium 2 to 1, respectively,

R , R the reflection coefficients in medium 1 and 2,
1 2

respectively.

This indicates that the reflection and transmission coefficients can be

determined from the wave matrix directly:

T 22 2 T' 2Z 1
zl+Z z2 + 

(3.72)

z~~ -z Z2J Z2 1 lZ- " = -%
Zi +Z 2  Z2 +z 1

Similarly, the wave matrix [W] for a TEM wave interacting with a

moving interface can be obtained by imposing the continuity of tangential

components of E + V X B and H - V X D on the interface (see Fig. 3.7):

4+

(j 2  .. 1  (+7,1

Z Z-

-A + 27 -)



After some manipulations, the wave matrix [WI for the moving interface,

+ +

A2

[w] (3.75)

A A 2

is found to be

1___ +__ _____+_ 1- Z2  Z1,

2Z2 + 2Z2  )
[W] =

/'i, / vvv)\ zI )(2 1~ ( 2 ~
-/p 2z/ ~ 1 -V/Vp 2Z2 /

(3.76)

As in Eq. (3.71), [W] can be written as

1

[wI = = , (3.77)

RI ~ RIR2

W W 1 T --
T22 T12

where the unprimed parameters designate the case of a moving interface.
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By comparing Eq. (3.76) with (3.75), we have the reflection and

transmission coefficients for the moving interface:

T 1 +VVp1  2Z2  I+v/vp1  7
R = TI2W'+ = 1 ....

-v/v~l Z + Z2 v/pi) '

(3.78)

w+=-4  - V z 1 2 @ V VP2

12 (1+ V$;P) ( Z ) ( 2 1 + v/vp2

T 2 1-VVp 1 zl +Z2 1 -v/vp2

H,. = " T12W+"" v/m

T- 1

These check with Eqs. (352) and (3.53), as expected. Note that R2

and T21 can be obtained by transforming 1 to 2 and V to -V in

RI  and TI2 , respectively.
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3.4.3. ReflecLion and Transmission CoeffI.-rfents for a Single Moving Slab

Referring to Fig. 3.8 and using the "wave mtrix" method as illustrated

in the last subsection, we have

= [W13 (3 .79)

A 
A2

A+ A+
A2  2

= [.W2] (3.80)

A2  A2'

A2  A

A 2A

A2  0
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Medium 1 Medium 2 Medium 3
91EJ, plz V 2 12 p2 , z 2  I 3 63"v1 3,z3

+ V V:"*

A++1j A 3

d

1-2 2-3

EW1) (W2 ] [W 3

FIG- 3.8--Configuration showing the scattered waves resulting
from a uniform TEM wave incident upon a moving slab.
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and

S+A 3  A3

= [w1 ] W: [w3] [wT] , (3.82)

A1  0 0A .o

where [W1 ) , [W2 ] , [W3 I are:

('+ V/VP Zl + Z2 ______ Z2 Z

+VV 2Z2  ( /VP 2)
[w1] =

1 + V/VP (2- l1 -V/VPP Z2 + Z

pii

(3.83)

ej el 2 d  0

W2] = (3.84)

0 e- d
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[1w3] =

* 
L : 2 ( zv1 

/ , ( zj)

(3.85)

and

+ v / v p +P z v / v p z z

12( 1 + V V 2 V V2

(3.86)

b. 3 
Z3 

an (



TuCo
ca_ __ _-

t~p cn W0c
N + Ilc

I- N 0)c

f) 0)() r

cu 1,H -i.
+~~~ NI NNI Ncd

N cn N mu~ tic

+ +

Cuj Ij uIMcu NH

Nba INI Nm

ojCk u i

+ +

HI

-64-



From the wave matrix of Eq. (3.87), the reflection and transmission

coefficients are:

Reflection coefficient

A 1+ v/vp (z2 - z9(z2 + Z3)e 12 + (z2 + Zl)(Z - z2)e 12

p) + + (Z2 - Zl)(Z 3 - z2)e

(3.88)

Transmission coefficient

A +VVl 4z2 31JV ) 1O2d  " J P12d

V/VP3) (Z + Z2)(Z2 + Z3 )e + (Z2 - Zl)(Z S - Z2)

(3.89)

Notice that the relativistic factors, ((l + V/Vpl)/(I - V/Vpl) and

F (i + V/Vpl)/(l + V/Vp3)] , again appear only as multiplicative factors

in the reflection and transmission coefficients, respectively. However,

from Eq. (3.86) the internal phase shifts also depend upon the motion.

It is interesting to see that as V approaches zero, +12 i

and the expressions (3.88), (3.89) reduce to those for the stationary slab.-3

Finally, it is of interest to determine the width of the moving slab,

d , for maximum reflection and minimum reflection with fixed values of

, Z2  and Z Maximum reflection will occur when the waves + andZ Z23 m.
E; add in phase on the first interface 1-2. Thus, the width d for
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maximum reflection will be determined by the condition,

012 + d 12 d = 2nA , n = O, 1, 2, ...

i.e.,

1 +- d + - --_ d = 2ni n =0, 1, 2,

K1+ V/Vp VP2  V/VP2/ Vp2

and

n VP2(l - v2 /V 2)

d = n = O, 1, 2, (390)
Wi(l + v/vpl)

Rx = +V/Vpj ( i z 1 (3.91)
I- v/vp) Z K + z3}

as

v -+0 y

nnVP2  n 27 nd -+ - .=- X 2  J n =O, I, 2,y..
W i 2 wi/VPp 2

Rmax
S wi

This checks with the result for a slab at rest, as it should.
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Similarly, minimum reflection will occur when waves E+ and E-m madd out of phase on the first interface 1-2. Thus, the width d for

minimum reflection will be determined by the condition

i212d0+- d n , n -i, 3, ), ....

and hence

nffVp 2 (1 - 2 2

d = - /n- 1, 3, 5, .... (3.92)
Mi(l + V/Vp )

RH = 1 VVl ji3 2 (3-93)
n 1 - /VP z+ z2/

as

nd - 2  Y n 1 I, 3., 5, ..

n 2~"m "-+ zlz + z

Again, this result checks with that for a slab at rest, as it should.

3.4.4. Frequency Shifts and Amplitude Changes for a Series of Moving

Slabs

Consider a transition region consisting of N discontinuities

moving with velocities V1 ,V 2  ... Vn.1  ; with jil , l ; 42 ' 2

S" n-1 ' 6n-l ; 'n ' 6n as the parameters of the media as shown
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in Fig. 3.9. The results of Section 3.4.1 for two moving discontinuities

can be extended by induction to this more complicated case,

1 + V/Vpl- (3.94)
1 -V/VP1

and

t 1 + VI/VPl 1 + V2/Vp2  1 + Vn-2/VPn-2\ i + Vn-I/VPn-I

(Di + Vl/VP2j\ + V2/Vp3  + V n 2/Vpn. ) 1+ Vn-i/Vpn /

(3.95)

For the case in which all of the interfaces move with the same velocity

V , wt/wi in Eq. (3.95) reduces to

Wt i + V/Vpl
(3.96)

W+V/Vpn

and the frequency shift in the transmitted wave depends only on the para-

meters of the first and last media. From Eqs. (3.95) and (3.96) v notice

that a significant frequency shift can occur in the transmitted wave if

V1 , V2 , ... Vn 2 I Vn 1  ; Vpl , VP2 .... VPn-1 ' VPn can be adjusted
properly.

Finally, with the wave matrix method described in Section 3.4.2, the

problem of calculating the reflection and transmission coefficients for

a series of moving slabs reduces to a straightforward matrix multiplication.
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V1 V 2  V n-1

E, W Et ,,t

d 1  d 2 dn

FIG. 3.9--The configuration showing a series of
moving interfaces.
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This method will be especially powerful when the number of moving slabs

is small. In Chapter V, this method will be employed to calculate the

reflection and transmission coefficients for a semi-infinite moving

periodic structure. Here we only indicate the applicability of this

techniques to a ramp-type moving interface or a trapezoid-type moving

slab as shown in Figs. 3.10,- 3.12.

3.4°5. The Effects of a Nonabrupt Interface

In all of the previous treatment, an abrupt moving interface was

assumed. The abruptness of an interface is, of course, a relative

concept. An interface is said to be abrupt if the width of the inter-

face is much smaller than the wavelengths of the waves concerned.

For the field-induced moving interface we considered, e.g., in a

nonlinear ferroelectric, an abrupt moving interface requires that three

conditions be met4 a short rise-time, sufficiently large amplitude voltage

step-function, and that the polarization of the mediurm can follow.the step-

function. For example, a strontium titanite single crystal bas a large dielec-

tric nonlinearity in the vicinity of its Curie temperature, 37°K. At liquid

nitrogen temperature a 12% change of dielectric constant can be produced

at an electric field strength of 10 kV/cm. If we assume the velocity of

the interface to be of the order of the phase velocity of the material,

then for a voltage step-function with typical rise time of one nanosecond

the width of the interface will be several wavelengths at S band, and

we have a nonabrupt moving interface. A survey of the limitations of

nonlinear materials in this respect will be given in Chapter IV.

The results of the frequency shifts in the reflected and transmitted

waves obtained for an abrupt moving interface are also valid for a non-

abrupt moving interface. This is because a nonabrupt interface can be

considered as a series of abrupt interfaces between thin slabs and the

principle of equality of phase can be applied to each one, The reflec-

tion and transmission coefficients should however, be modified, as a

considerable reduction in the reflection is expected for a nonabrupt

interface, These conclusions will be elaborated in more detail in the

following analysis.
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MeimZ (Impedance) Medium n

P.l el.,v pVzl1 V 9Ln)E ,V n) ,Zn

E ),w

FIG. 3.10--The configuration of a moving ramp-type interface.

z
Medium 1 Medium n

Ii1,el_,Vpl11n.V C ,e V ,ZP~ n pn n

Er Wr

Ei ,i

2

FIG. 3.11--The configuration of a moving "Kinked Ramp" interface.

Mediumi1 Z Medium n

PJCi' l.Z ti~n' )e nPV.pnl n

V V

wt Et
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Consider a ramp-type moving interface or moving slab, such as shown

in Figs. 3.10 - 3.12. We divide the transition region d into a suf-

ficiently large number of layers such that in each individual layer the

material constants p. and e are almost homogeneous. Then, for the

configuration of Fig. 3.10 the results in Eqs. (3.94) and (3.96) are

valid, because all interfaces move with the same velocity. For the

configuration of Fig. 3o11, we again have wfr/Wi = (1 + V1 /VP )/(l - V1/vpl )

and wt/wi = (1 + V1/Vpl)/(1 + V2/VPn) . This shows that the frequency

shift is independent of the ramp profile. Similarly, the frequency shifts

in the configuration of Fig. 3.12 pan be determined. By diyiding the

transition region d to a proper number of layers such that the width of

each layer is considerably smaller than the wavelength of the waves we are

interested in, the amplitudes of the reflected and transmitted waves can

be easily calculated by multiplying all of the corresponding wave matrices

for the interfaces and layers. It would be interesting to carry out a

numerical example for a moving ramp-type interface using the wave matrix

method and compare the results with that of a stationary ramp-type inter-
20

face. It appears physically obvious that the reflection must go to zero

as the gradient of the ramp approaches zero.

3.5. A TRANSMISSION LINE MODEL FOR FREQUENCY CONVERSION AND AMPLIFICATION

AT A MOVING INTERFACE IN A STATIONARY MEDIUM

The frequency shifts and amplitude changes for a uniform TEM wave

interacting with a moving interface have been claculated in detail in

Section 3.3- In this section, the same results will be derived for the

nonrelativistic case using a more intuitive and less mathematical approach,

by way of a transmission line analogy. This approach serves to illustrate

in more detail how a wave interaction with a moving interface leads to

changes in frequency and amplitude.
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3.5.1. Frequency Shifts in the Reflected and Transmitted Waves

We consider (see Fig. 3.13) a lossless transmission line, originally

uniform with parameters L1  and C1  , where L is the inductance per

unit length and C is the capacitance per unit length. Imagine that

the inductors and capacitors are nonlinear and that a pumping step-func-

tion of voltage is applied to the line from the right terminal. This

creates an interface between regions of different inductance and capacitance,

the interface moving with velocity V , as shown. The parameters for

the portion of the line behind the interface are L2  and C2  . We

specifically consider the nonrelativistic case, i.e., V/Vp 1 

V/Vpt << 1 , where Vp, = 1/ 7 17 1  Vpt = 1/) L2C2  . When the

impedances in the two parts of the line are not equal, both reflection

and transmission will be expected.

V

L L L '- L2  L2  L2  L2

i

101

X =  X =-Xl X =-Vt x 0 Ox= x X

FIG- 3-13--A lossless transmission line with a moving discontinuity.
(The coordinate origin is chosen such that at t = 0 the
moving junction is at x 0 as shown.)
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A frequency shift in the reflected voltage is expected, as the phase

difference between the reflected voltage and the incident voltage varies

linearly with respect to time, because of the motion of the junction.

Likewise there will be a frequency shift in the transmitted voltage.

Let the incident voltage from the left terminal be

Vi(x,t) = V0 e , (3.97)

where K, M ciV l = (ci/Vpi) = the propagation constant in the left-

hand part of the line. Then, for lossless case, the incident voltage

at the moving junction will be

SJ (Wit-Kix) [ J (w+K iV) t

Vi(xtl)x=-vt = V0 e X=-Vt = V0 e (3.98)

The reflected and transmitted voltages at the moving junction are

Vr(Xt) Ix=_Vt = RVi(x,t)Ix...Vt = RV0 ei(Wi+KiV)t (3.99)

Vt(xt) Ix=.Vt = TVi(xt)Ix=.Vt = TV0 e J(w+KiV)t (3.100)

where

C t_

Kt t V = -the propagation constant to the
t V Pt right of the interface

R the reflection coefficient

T the transmission coefficient

Here, R and T are not necessarily the same as for the stationary

junction.
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Let the observation points for the reflected and transmitted voltages

be at x = - x' and x x" respectively, then

J(wi+KiV)t JKi(x'+Vt)
V(x',t) = RV0 e e

= RV0 [ ( (Ci+2KiV) t+K ix']
= RV0 e

a [lc ( +2V/V p ) t+Kix "]
- v e ±, (3.2.o1)

and

J(Wi+Ki)t -jKt(x" +Vt)Vt  " T 0

0

= TV0 e v (3.102)

From Eqs. (3.101) and (3.102), the frequencies of the reflected and trans-

mitted voltages are identified as w (l + 2 (V/Vpi)] and cnjl+V(1/Vpi-i/Vpt)]

respectively. These agree with Eqs. (3.40) and (3.41) for the non-

relativistic case.

3.5.2. Calculation of Doppler Amplification from the Principle of

Conservation of Energy

In Sihsection 3.3.2, it was -.own that a moving interface can produce

power amplification in the reflected or transmitted waves, or both. One

naturally may ask where does this power come from. In this subsection, a
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detailed calculation of the power transfer from the moving interface to

the transmitted wave will be made for the nonrelativistic case, using

the transmission line analogy.

Referring to Fig. 3.14, we imagine that an external mechanical force

F is applied to change the spacing of the capacitor plates. For con-

venience, we consider a nonabrupt interface, e.g., ramp-type transition

for which there is no reflected wave. Let the transition move along the

line with velocity V . For the direction of motion shown in the figure,

the plate spacing increases with time. From the law of conservation of

energy the increase in energy of the transmitted wave must equal the

mechanical work done on the capacitors.

To illustrate the energy balance, we consider an infinitesimal sec-

tion of tie line 6x as shown in Fig. 3.15y Then we have

1 1 c 2 CV2V
The power flow P = -IV = - --- = - . (3.103)

2 2 fC 2

21 2 1 SQ
The capacitive energy density U per unit length = 2 =V2 2 eoA

(3.lO4)

The external force applied per unit length is

2 2

dF 6U 1 l CV
dx : =: 2 G0A 2 s (3.105)
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F F

C1 i 
=

IFI I T T

P I

x x x=x x

FIG. 3.14--The configuration showing the conversion of power between

the pumping source and the transmitted wave using the para-

metric principle.

L ?/ L

S F

xX+&

FIG. 3.15--i e configuration showing the energy balance for an infini-

tesimal section of the transmission line.
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where

V = line voltage

I = line current

C = capacitance per unit length

L = inductance per unit length

V = = phase velocity of the wave

Q = charge per unit length

A = area of the capacitor plate per unit length

S = spacing at the capacitor plates .

From Eqs. (3.105), the external force applied for the infinitesimal

section Ax is

1 CV 2
dF= 2 dx . (3.106)

Thus, the mechanical power input to the infinitesimal section Ax

is

CV2 d

dP = dF. = C dx (3.107)
2S

where S is the transverse velocity of the capacitor plate. Combining

Eqs. (3.103) and (3.107), we have

1Pdx dx (3108)
p

a
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but

v dS
dx

where dS/dx is the slope of the ramp (Fig. 3.14); therefore

dS
dP = -L,-A1V-

Integration yields

K + lnP = - 21T P VS-1 / 2 = Y (3109)
V
p

where K is an integration constant. Now, at x = xi , we have Vp = Vpi

and P P ; therefore K = lnPi - 2 (V/Vp,) and

P
i

resulting in

2V(i/Vp /Vp)(.1
P=P- e  (3.110)
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For V/Vp << , we have

P = +2

At the output terminal x =x 0  ; Vp Vpt P =Pt, and we have

t 1 +2(3.111)

This power relation agrees with Eq. (3.59) for the nonrelativistic case.

3.6. THE EFFECTS OF iISPERSION

A medium is said to be spatially dispersive at a 'given frequency

if the properties of the medium depend on the magnitude of the wave-vector.

On the other hand, it is said to be anisotropic if the properties depend

upon the direction of the wave-vector. This may occur without spatial

dispersion. Acoustic wave propagation in a quartz crystal is an example.

Spin wave propagation in a ferromagnetic material is an exampIe of both

anisotropy and spatial dispersion. Notice that in above treatment, it

has been assumed that the media are spatially dispersionless in their

rest frames. But from the Minkowski's relations [Eqs. (2. 46) and

(2.4? )] and Maxwell's equations, it is evident that a medium which is

not spatially or frequency dispersive in its own rest frame will become

anisotropic when it moves. On the other hand if a medium has frequency

dispersion property in its own rest frame, then due to the Doppler effect

it will also become spatially dispersive when it moves, i.e., the pro-

perties of the medium will depend on the direction of wave propagation

at a given frequency. These facts are important for the general case

considered in Section 3.1. It is a difficult matter to take these dis-

persion properties into account for the treatment of wave interactions
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with moving medium. For the cases we are specially interested in, only

the interface moves and this kind of difficulty will not occur. Thus,

within the frequency range for which the material is nondispersive, all

of the results on frequency and amplitude obtained previously are valid.

At frequencies above this range, the maximum frequency shift in the

reflected wave will be limited.

We recall (see Section 3.3.1) that in a nondispersive stationary

medium it is the relative velocity of the interface with respect to the

group velocity (equal to the phase velocity in this case) which determines

the existence of the reflected or transmitted waves. In a dispersive

stationary medium the group velocity differs from the phase velocity and

may become very small. In this case the reflected wave may vanish over

a certain range of frequencies.

In Chapter IV the intrinsically dispersive nature of a ferromagnetic

material will be taken into account in calculating the frequency shifts

due to a moving interface. It will be found that the maximum frequency

shift in the reflected wave is limited by the condition that the group

velocity of the reflected wave should be larger than or equal to the

velocity of the interface. Furthermore, due to dispersion, the trans-

mitted wave might not exist under certain conditions, and hence total

reflection would occur.

3.7. COMPRESSION OF ELECTROMAGNETIC WAVES

It is obvious from the results of Chapter II that the double-Doppler

effect produced when an electromagnetic wave is reflected once from a

moving reflector is significant only when the velocity of the reflector

is close to the phase velocity of the wave in the medium. This is

particularly so when the reflector moves with a nonrelativistic velocity.

Although a single reflection from a nonrelativistic moving reflector

will in general give a small double-Doppler effect, a considerable enhance-

ment can be obtained by multiple reflection. Thus, it is interesting to

know how an electromagnetic wave which is contained by two infinite parallel

reflectors changes its frequency and amplitude during the course of. multiple
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reflection resulting from the motion of the reflectors toward each other.

This is essentially the compression of an electromagnetic field. As a

consequence of the motion of the reflectors, the frequency of the waves

will vary in time. The amplitude of the waves (assuming the lossless case)

will also increase in the course of compression due to the reduction of

the volume occupied by the waves and the external work done on the waves

by the reflectors against the radiation pressure of the waves.

For simplicity, we consider the case of a uniform TEM wave with electric

field in the y-direction and magnetic field in the z-directionA see Fig. 3.16.

Consider the case where the separation of the two conducting plates (perfect

reflectors) is L at t = 0 , and the second plate starts to move with

the velocity V in the direction shown at t = 0 + . This is an initial

and boundary value problem for the Maxwell's Eqs. (3.112) and (3.113) with

a moving boundary. For the case of TEM wave considered, Eqs. (3.112) and

(3.113) reduce to Eqs. (3.114) and (3.115), where c and i are the

permittivity and the permeability of the medium, respectively:

V×E = - H (3.112)

VXH = (3.113)

Ey(x,t) Hz(X.,t)

(3.114)

6Hz(X~t)  6Ey (x,t),
z y
x 6t .

Combining Eqs. (3.114) and (3.115), the wave equation for E (x,t)

is obtained.-,

2Ey(Xt) 62Ey(xt)

2 22= 0 (3.116)
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X= 
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FIG. 3.16--The configuration showing the compression of a uniform
TEM wave between two conducting plates (one fixed, one
moving).
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Since the frequency w and the amplitude A are functions of time,

the field will have the following time dependence:

Ey(x,t) = A(t).sinfco(t) dt) g(x) P (3.117)

where w(t) and A(t) are slowly-varying functions of time compared

with the term sin f w(t)dt , and

S<< w(t) , A(t) << A(t)
dt dt

Thus, we have

6E (x.,t)(
y A(t) CUt) coslfw(t) dt) g(x)

+ A(t) in fa(t) dt g(x)

or

6E (x,t)y_ A(t) cu(t) os co(t) d g(x) (3.118)
6t (Ct

and

= - A(t) c2 ) gwx

+ A(t) cb(t) (Cos fw(t) at) g6c)

+ A(t) CU(t) (cos fcn(t) dt ) g(x)
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or

2E (x.,t)2
6t - A(t) W 2(t) (sin w(t) dt) g(x) (3.119)

furthermore,

2 Ey(x't) I
2 E A (x) (t) in f (a ) dt 9(x) 

(3120)6x2

Substituting Eqs. (3.119) and (3.120) into Eq. (3.116), we have

(9(x) + E 2(t) g(x) A(t) sinfw(t) dt = 0 . (3.121)

Thus, the solutions of g(x) can be obtained from the differential

equation

W (t)
g(x) + -7- g(x) = 0 . (3.122)

The solutions of g(x) are sin'[w(t)/v P Ix and cos [w(t)/v ]x ,
where Vp = (i/) , is the phase velocity of the wave in the medium.

In order to satisfy the boundary condition on the surface of the fixed
reflector 1, i.e., E y(Ot) = 0 , sin w(t) 7 'x must be chosen for
g(x) . Then we have

Ey(x~t) = A(t) (sinfa)(t)) dt sin ~)x ( 3.123)
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From Eq. (3.115), we have

Hz(Xt)= At) (os fw(t) dt Cos V2 (3.124)

where Z - is the wave impedance of the medium.

(a) Frequency Variation w(t)

Using the Lorentz transformation, the electric field measured in a

frame attached to the moving conducting plate 2, E'(x',t) , is

y
1

E (x t (E + V
1 - (V2 /, 2 ) (, B)

A(t) W(t)
+in (t) dt sincosx

V/I -(V2/ 62)1 v

or

A( t)4 O(t
E (x',t = inf() d sin - xV , V/c 2 ) (S ,t) ] ,

V W( t)
SCos fw(t) dt cos - x (3.125)

Vp VP i
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Now since E'(x',t') = 0 at x' - 0 (i.e., at x = L - Vt) we have,I y
from Eq. (3.125),

(in w(t) d sin w (L - Vt) + V/Vp os w(t) (L - Vt) =0

(3.126)

Notice that the second term is a small perturbation for the nonrelativistic

case, in which V/Vp << 1 . Thus the frequency variation in the zero-

order approximation, w (t) , for the nonrelativistic case will be de-

termined by Eq. (3.126),

(sin fw0(t) dt)sin wO(t) (L - Vt) = 0 . (3.127)

When sin f O(t) dt =0 , we have

I 0 (t) dt - nn , n =, 1, 2, - (3.128)

This cannot hold for all times and the frequency condition i.

sin [wO (t)/v ](L - Vt) 0 or
p

(L - Vt) = h , n = 0, 1, 2, . (3.129)
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'om Eq. (3.129) we obtain

0 n(t v (nn v )/L W0

(t)- P (3.130)
(L - Vt) 1 - (V/L)t 1 - (V/L)t

where coo nA vp /L is the initial frequency of the fields.

The frequency variation in the zero-order approximation as given

by Eq. (3.130) can be simply interpreted by considering that the linear

motion of the conducting plate 2 causes the wave number of the resonant

system and hence the frequency to increase. As t -+L/V (i.e., when

the second plate almost touches the first one), the frequency will increase

to a very high value (see Fig. 3.17). The increase in frequency is elso

explainable by the principle of conservation of the number of photons in

the resonant system during the course of comparison while the energy of

the resonant system increases due to the work done by the moving conducting

plate 2.

To take the perturbation term in Eq. (3.126) into account, we could

carry out a first-order approximation by letting

lt = CO(t) + A(t) . (3.131)

Substituting Eq. (3.131) into Eq. (3o126) we could, in principle,

determine A(t) Since we are particularly interested in the non-

relativistic case, the perturbation A(t) will be very small and we omit

the calculation.

It is worth noting that the frequency variation obtained by the
22

approach used here checks with that obtained by Kurilko, who treated

the same problem in a slightly different way.

Kurilko treated the problem as a transient process by tracing the

multiple reflections one by one. The frequency variation of the fields
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FIG. 3.17--The frequency variation of a uniform TEM wave during the
course of compression by two moving conducting plates.
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is given as

W(t) = W08 m (3.132)

ZAtm =2a 6m - (3.133)

m=1 m=l

where

m = the number of reflections

W 0  = the frequency of the fields at t = 0

= -+ =S-V , V/S < 1

S = the phase velocity of the waves

zllt = the sum of the time intervals between two successive reflections.

m=l

2a = the separation of the two conducting plates at t = 0

m = the number of reflections

From Eq. (3.133), we have

00 00

=2a =m- 2a (1 + + b2 +3t = Atm S +' V =S + V ..."

m=l m=l

or

- 2a 1__ (3-134)
S + V 9 1
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hence

2V1m  L t (3.1,35)
2a 3 )

Substituting Eq. (3.135) into Eq. (3.132), we have the frequency

variation,

1

1 - (2V/2a)t (3.136)

By noticing that 2a corresponds to L and 2V corresponds to V

(Kurilko coasidered the case in which both conducting plates move with

velocity V) in our case, we see that the result of Eq. (3.136) checks

with that of Eq. (3.131).

(b) Energy Density Variation:

If we adopt the usual definitions of the time average electric energy

density U and the time average magnetic energy density U we have

in zero order

T

-UE ( ) 1 f A2(t) in O(dt) dt sin 2  dt
0 (sVp.

(3.137)

T2

(B H) 2 f A2(t) (os fW(t) dt Cos2(0(t) ) dt0 X)

(3.18)

where T 21t/w(t) is the period of the fields.
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As the period T is much smaller than the total compression time

L/V , it is appropriate to assume that during the time period T the

frequency coO(t) is a constant. With this assumption, Eqs. (3.137) and

(3.138) reduce to the following forms:

E °t(t) sin2  (3.139)
UE  = tsn 2  Vp

and

M A 2(t) cos2 W t) x) (3.140)

Thus, the average total energy density per unit crossectional area,

UT , is

L-Vt1 1%

UTA(t J dx = • (L - Vt) Af(t) . (3.141)

0

Now, as the average radiation pressure, , upon the moving

conducting plate 2 is 6/6x(UT) , the average external power per unit

crossectional area applied to the plate 2 in order to keep it moving at

the velocity V will be

P =V x(UT) 1A2(t) . V (3.142)
a rxA 7

Finally, the spatial average power loss per unit crossectional area

due to the dielectric loss of the medium is

P a 2  1 1
P a Ey = IT a (L - Vt) A (t)" (3-43

where a is the conductivity of the medium.

- 92 -



If we neglect the conduction losses of the plates, we have the

following energy balance equation by the law of conservation of energy:

d (U) p

or

"d't 1 ;2" = 1 V2(t)
SVt) E)] V (t (3.144)

1
- ~a (L- Vt) A (t)

. . .. dt . (3.145)

A (t) L -V

Thus, we have

=(t) A(O) e (3.146)
(1 Vt)

2

and the average total energy density per unit crossectional area is

1 i (a/E)t

UT = e eL" 1 e.(3.147)
2 (l - Vt)

Notice that the average of the electric field amplitude squared is

strongly dependent upon the dielectric loss of the medium (see Fig. 3.18).
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FIG. 3.18--Energy density variation of a uniform TEM wave during the 3
course of compression between two conducting plates (one
fixed, one moving).
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A metallic transition can be induced by a pressure shock wave in some

ionic and molecular cystals.2 3 An increase in conductivity by a factor of

106 to 1020 from the uncompressed to the compressed state has been ob-

served,2 3 ,'2  Thus the simulation of a moving reflector by a pressure

shock wave in a proper solid is feasble. In view of this possibility,

the assumption of a perfect reflector in the analysis of the compression

of electromagnetic waves given in this section is a good approximation,

although the analysis for the case of a partial reflector requires only

the slight modification of taking the transmission loss into account.

Finally, we notice that a large mechanical pressure can be obtained by

using piezoelectric ceramic2 5 PZT - 4 as a transducer. By operating in

the thickness mode and with electric field strength 100 kV/cm, a pressure

of the order of 30 X Pounds/in2 can be obtained.
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CHAPTER IV

THE REALIZATION OF DOPPLER INTERACTIONS IN REAL MATERIALS

In the previous theoretical analysis of wave interactions with a

moving interface or a series of moving interfaces in solids, we have

assumed that the moving interfaces are induced in a nonlinear material

such as ferroelectrics (or ferromagnets) by applying a large amplitude

electric (or magnetic) field step function or a series of pulses through

the materials.

2he general theory developed in Chapter III for the interaction of

electromagnetic waves with moving boundaries, specifically that given in

Section 3.3, will be applied to the case of ferromagnetic and ferroelectric

materials in this chapter. First, wave interaction with a moving inter-

face in a ferromagnetic material is analyzed with the dispersive property

taken inti account, We omit the corresponding calculation for the dispersive

ferroelectrics, however. An illustration is given for the case of a

ferr trignet, followed by a survey of the existing potentially useful

ferrelectric materials. The conversion between the transverse acoustic

wave and the longitudinal acuusti, wave in a ferromagnetic material using

the Doppler shift principle is then discussed. Several possible arrangements

for D.ppler shift experiments are briefly described. Finally, two examples

of Doppler shift experiments appearing in the literature are given.

4.1 REFLECTION AND TRANSMISSION OF AN ELECTROMAGNETIC WAVE AT A LARGE

MAGNETIC FIELD STEP FUNCTION OR PULSE

A moving reflector and hence the compression of electromagnetic

waves can be realized, at least in principle, by applying a magnetic field

step function or pulse to a ferromagnetic material. This is due to the

fact that the permeability tensor elements of a ferromagnetic material

are functions of the dc magnetic field, and consequently so is the
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impedance of the medium. This scheme appears even more promising when

we consider the feasibility of creating an abrupt moving interface or

series of moving interfaces, or electromagnetic shock waves in gyromagnetic

media (see work by Gaponov and Freidman;2 6 Hatfield and Auld; 27etc.,) and

the generation of nigh amplitude, fast rising pulsed magnetic fields
28 29

(Elliott, 28 Heiter, etc.).

We now analyze the problem of an electromagnetic wave interacting

with such a moving interface, taking the dispersive property of the

ferromagnetic medium into account. Consider an infinite ferrite medium

traversed by a zero rise-time magnetic field step function as shown in

Fig. 4.1. A small-signal TEM wave comes in from the left end to interact

with the moving interface created by the step function. The difference

in the resultant magnetic fields in front of the interface and behind

the interface leads to the change in frequency and amplitude for the

reflected and transmitted waves. The general results given in Section

3.2 will be applicable here when the dispersion property of the medium

is taken into account. The equality of phases for all waves on the

H step function
Medium 1 Moving interface

01 Medium 2

e H02

Cl, hr
r' r

'Oi' h' i 0 co t ht

FIG. 4.1--The configuzation of a uniform TEM wave interacting with
moving boundary in a ferromagnetic medium.
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interface at all time leads to

w. +K K(a) V. V - K = t + Kt(w)t V (4.1)

To solve for w) and ot in Eq. (4.1), the dispersion relation
rt

K f(w) must be known. The general form of the dispersion relation30

in an infinite medium is given in Eq. (4.2) and the dispersion diagram

shwn in Fig. 4.2:

K

/1 0
0 K =90

0

2 1/"'

O-)- --- -"-

0 0 00

I p.

I _ L - 1.,-Magnetostatic mode Spin-wave mode K , cm
Mode

0 -2 ~io

FIG, 4.L--The complete dispersion diagram for an infinite ferro:agnetic
medium. The dashed lines are for the ordinary waves and the
solid curves for the extraordinary waves.
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K2 (2 K2 sin2eK + 2 K 2 sin4eK + 42 cos2k 1/2

K2  2[(p - l) sineK + 1]

(4.2)

where

S= the permittivity of the medium

0 = the permeability of free space

y = the gyromagnetic ratio

H0  = the dc magnetic field

M0  = the saturation magnetization

Hex = the exchange field

a = the atomic spacing

e K = the angle between the wave vector and the dc magnetic field
c = the radian frequency

N = 41rymO

= yH0

C = H
ex ex+w a2 K2

Cr = ex 2 2

+ CO/O) - 2)

K % l - (02

r

For the electromagnetic mode, K is very small. By letting K -0 ,
the following appruximate dispersion relations are obtained:

2 W0 2 lower branch (4.3)
C4o(WO + %

2 (CO +%) 2 +K upper branch. (4.4)Co
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r|

Thus, if we are operating along the linear portion of the lower

branch of the electromagnetic mode, the frequency shifts in the reflected

and transmitted waves will be obtained by combining Eqs. (4.1) and (4.3):

_ _1+) 1/2
1+ l) v

1+ -- V

where

_O 
(= 0 + "k ) 0/2 

(4.5)

2.~Mj 
1-/2-~vl

( 01)

1i + ( O( Ol + '1) l]  1 V

'.+ 1 0 0 2 )2)  
'

1 4- -

where

'0 '01 ' 02 "0

Similarly, if we operate along the uppe branch of the elec-..-o-magn'-". c

mo~de, we have the following simultaneous equations relating c. , a) and

.1/2

2~ +a + I)1/

W0 r (CUr -J2 E 1 1/2 V

Wt - L0 2  + u k 0j 1 /2
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and wrbi, and zt/wi can be solved graphically or numerically. This

can be done by plotting the function of Eq. (4.7), denoted by w' ,

as functions of co, ) ar and ct , respectively. 1 7

As indicated in Section 3.6, the necessary condition for the existence

of a reflected wave (when the interface moves towards the incident wave)

is that the group velocity of the reflected wave be larger than the

interface velocity. Otherwise, the waves cannot "break away" from the

interface, and hence no reflection can occur. Therefore, the maximum

frequency shift available in the reflected wave is determined by the

condition

V g( ) , (.8)
max d

r

where Vg(a..) is the group velocity of the reflected wave at the

maximum frequency Ix

Thus, maximum frequency shifts in the reflected waves, when

operating along the lower branch of the dispersion diagram of the electro-

magnetic mode will. occur at

K 01W
rD -ma V go( 0 + iu l)

We note that on the lower branch there is an upper limit to the frequency

where the group velocity approaches zero. Consequently for reflection

to occur at this frequency, the velocity of the interface must approach

zero.
On the contrary, when operating along the upper branch there exists

no limit for the maximum frequency shifts in the reflected waves as the

group velocity increases with increasing frequency on this branch.
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4.2 A SURVEY OF POTENTIAL FERROELECTRIC MATERIALS FOR THE DOPPLER SHIFT

EXPERIMENT

In the previous section it was shown that there are some limitations

to the use of ferromagnetic materials for Doppler shift experiments.

The difficult, due to the high dispersion of the mddium, is not present

in ferroelentrics. Ferroelectric materials are those which, for some

range of temperatures (at and below the Curie temperature Tc ), show

spontaneous polarization, the direction of which may be reversed by an

external electric field.31'32 Many ferroelectrics have high dielectric

constants. The fact that ferroelectrics have high dielectric constants

makes them exhibit a high degree of dielectric nonlinearity at electric

field strengths which are safely below the breakdown limit and easily

obtainable. Consequently, ferroelectrics are by far the most important

nonlinear dielectrics. Thus, it is important to give a brief description

of the outstanding properties and also the unfavorable properties of the

ferroelectrics for the frequency range of interest (microwave range)

and in particular for application in the Doppler shift experiment.

Relevant parameters of a few most potentially useful ferroelectrics for

this experiment will also be given at the end of this section.

The most important property for the Doppler shift experiment of

many ferroelectric materials is that there exists a phase transition

between the various states, e.g., paraelectric to ferroelectric state,

antiferroelectric to ferroelectric state, ... etc, and that this phase

transition can be induced in various ways: an electric field, a mechanical

pressure, a temperature change, etc. This phase transition will be

accompanied by a change in structure of the material and hence in the

physical properties.

It is worth noting in passing that an analogous phase transition

may also occur in some ferromagnetic materials. A possible transition

between ferromagnetic state and antiferromagnetic state for the inter-
0 3metallic compound MnSn 2 at 73 K has beon suggested.3

That a phase transition between various states may be induced by

electric field or mechanical pressure is well demonstrated by the fact

that the Curie temperature for many ferroelectrics can be shifted by

applying an electric field or mechanical pressure. For example, the

change of the Curie temperature per unit electric field strength,

- l:1 .



4Tc/LE , for single-crystal BaTiO3 is in the order of + 1.3 x 10- 3 0
Vocm "  34,35 C

Volt cm and the change of the Curie temperature per unit

pressure, a T/Ap , for (Ba, Sr) TiO3 ceramic is in the order of

+ 4 .o x lO 3 6C cm2/Kg .26

In the first-order phase transition 3 2 the temperature dependence

of the permittivity will have a finite jump at the transition temperature

while for the second-order phase transition, 3 2 the permittivity has a

sharply defined peak around the Curie temperature.

The second important property of the ferroelectric materials is

that in the ferroelectric state the direction of the spontaneous

polarization in the form of domain structure can be changed and new domains

can be formed by an external electric field, while in the paraelectric

state a very large field-dependent polarization can be induced by an

external electric field. These properties lead to a large nonlinear

relationship between the permittivity of the material and the amplitude

of the electric field3 7 in both the ferroelectric and paraelectric states.

Other advantages38 of the ferroelectrics in comparison with the

variable-capacitance diode are the high breakdown field strength, the

independence of loss on power level at small signal, and that they can

be treated both as distributed elements as well as lumped elements.

Furthermore, unlike the ferromagnetic materials, the ferxoelectrics require

relatively simple, inexpensive biasing equipment and small amounts of

dc control power. The response time of the rf dielectric properties to

changes in dc bias will be short copared to that of ferromagnetic
38

materials.

Although the ferroelectric is one of the most promising materials

for the Doppler shift experiment, there exist several infavorable

properties which will limit the extent of application.

First, the high nonlinearity in the dielectric constant at the

range of temperatures around the Curie point is often accompanied by

high loz at the microwave frequency. For example, single-crystal

BaTiO 3 has high oss as well as high nonlinearity in the dielectric

constant at the range of temperatures around the Curie point of 1200C

over the frequency range of 0.5 Gc/s to 24 Cc/s.39 4 2 Thus the loss
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and the dielectric constant nonlinearity often go together, and the high

dielectric constant nonlinearity can hardly be utilized to the utmost

extent.

Secondly, many ferroelectric materials have the frequency of dielectric

relax.tion in the microwave range or lower,43 and this sets an upper

bound on the frequency of operation. For example, TGS crystal has a

relaxation frequency of 0.5 Gc at the Curft point.

Lastly, ferroelectric materials have temperature dependent, high

dielectric constants which require a temperature control system on one

hand, and make the matching problem difficult on the other hand.

Before we give a list of the potential ferroelectrics for the Doppler

shift experiment, it is most important to emphasize the difference between

the rf dielectric constant and the reversible dielectric constant

and consequently the difference between the rf dielectric constant

nonlinearity and the reversible dielectric constant nonlinearity. The

rf dielectric constant is by definition the dielectric constant measured

by an rf signal alone, while the reversible dielectric constant is the

one measured by a small amplitude rf signal with a dc bias The rf

dielectric constant nonlinearity is determined by the nonlinear dependence

of the dielectric constant on rf signal amplitude, while the reversible

dielectric constant nonlinearity is determined by the nonlinear dependence

of the small signal dielectric constant on dc bias amplitude.

The nonlinearity of the rf dielectric constant in the ferroeie,tr-.

state depends mainly on whether the domain polarizations can follow the

rf field variation,while in the paraelectric state it depends on the

nonlinear relation between the induced polarization and the amplitude

of the rf field. The nonlinearity of the reversible dielectric constant

in the ferroelectric state, on the other hand, can persist to a higher

frequency as the nonlinearity is mainly due to domain orientation by

the dc bias field.

Thus, a significant nonlinearity of the reversible dielectric

constant at the microwave frequency does not necessarily' mean a significant

nonlinearity of the rf dielectric constant at the same frequency.
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In view of the favorable and unfavorable properties of the ferro-

electrics at microwave frequencies, one must consider the following

factors in chosing a given ferroelectric for a Doppler shift experiment:

1. As both the nonlinearity of the dielectric constant and the

loss have a peak at the Curie temperature and decrease from there, a

compromise in the operating temperature must be made.

2. As there might be a big difference betweeL the reversible

dielectric constant nonlinearity and the rf dielectric constant non-

linearity, the reversible dielectric constant nonlinearity data should

be used when an electric step function or a series of cc pulses are

used to induce a single moving interface or a series of moving interfa'ces;

while the rf dielectric constant nonlinearity data should be used when

large amplitude microwaves, sinusoidal or rectangular, are used to induce

a series of wave-packet type interfaces or the semi-infinite moving

periodic structure (hich will be considered in Chapter V).

In the following list of potential ferroelectrics (Table 4.1), the

numerical values of the dielectric constant nonlinearity are estimated

using the experimental data in the literature.

Although the parameters of some of the ferroelectrics which are

currently available, as illustrated in the table, are not as we desire,

the ferroelectrics show the greatest promise for Doppler shift experimentb

in view of the increasing number of new ferroelectric materials and

the progress in the technology of controlling the physical properties of

a material.

4.3 CONVERSION OF A LONGITUDINAL ACOUSTIC WAVE TO A TRANSVERSE ACOUSTIC

WAVE IN A FERROMAGNETIC MATERIAL

So far in this discussion the reflected component of an electro-

magnetic wave interacting with a moving interface has been emphasized,

in this section we discuss a specific application of the general theory

of the transmitted component developed in Chapter III. As indicated

previously, the frequen cy shift in the transmitted component of an

eLectromagnet Q wave wi.l be in practice more easily observed than
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that of the reflected cozponent, since it does not require an abrupt inter-

face. In fact, the frequency shift is independent of the steepness of

the transition. We consider specifically the conversion of a longitudinal

acoustic wave to a transverse acoustic wave or vice versa, in a ferro-

magnetic material. in view of the fact that ferromagnetic materials

such as YIG are known to have small microwave acoustic losses, this is

a problem of practical interest.

BefY.re entering the main discussion, we describe briefly the problem

of a spin-wave interaction with a moving interface in a ferromagnetic

material. Consider the configuration shown in Fig. 4.3. A spin-wave

interacts with an abrupt moving interface induced by a magnetic step-

functisn in a ferromagnetic material. The direction of the magnetic

step-function H is perpendicular to the dc field H0  . The spin-wave

dispersion curves are shown in Fig. 4.4 for Tedium 1 and 2, where K

designates the angle between the wave vector and the resultant dc field

H + H . In medium 2, 0K may also be equal to zero as a special case

where the step field is parallel to H0

Since the velocity of the interface V is of the order of electro-

magnetic wave velocity, it is therefore larger than the spin-wave velocity.

Following the same argument for the existence of reflected wave as

described previously, we conclude that only the transmitted wave exists.

From the general resulis of Chapter III, we have

1 + V/V(
Pi (4.9)

Ci l + V/Vp

where and are the frequencies of the incident and transmitted

spin-waves, respectively, and Vp. and V are the phase velocities

of the spin-waves in medium 1 and 2. respectively.
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FTG. 4.3--The configuration showing a spin-wave interacting with a moving
interface.
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Since V >> , V >> , Eq. (4.9) reduces toVpi pt

V
cOt Pt (4.1)

Co. Vi

i .e ., -- - (4 .1 1 )

V V
Pt Pi

or

Kt  K.i  (L,12)
Kt K,

where, Ki and Kt are the wave numbers of the spin-wave in medium

1 and 2, respectively. Thus, it is seen that the wave number of the

spin-wave is approximately conserved, while the frequency of the spin-

wave changes in the interaction process. In other words, the momentum

of the spin-wave is approximately conserved, while the energy is not.

during the interaction process.
46,,47

Now we proceed the main topic of this section Consider the

configuration shown in Fig. 4.5. The '- K diagrams for the acoustic

waves and spin-wave alone are shown in Fig. 4.6 and Fig. 4.o.respectively.
48

The combined a) - K diagram showing the coupling between the spin-wave

and the acoustic waves is given in Fig. 4.7. Transverse acoustic waves

are excited at the left end of the YIG rod using conventional techniques.

The transverse acoustic wave traveling into the rod has frequency W.1

and wave number K. , as shown in Fig. 4.7. After the rod is essentially1

filled with the acoustic energy, a nonabrupt magnetic step is sent

through the rod from the right end. The direction of the magnetic step

Hp is orthogonal to the original dc field H0  . As the magnetic-step

function propagates through the rod, the angle of the resultant dc

magnetic field H + H rotates with respect to the acoustic wave0 p
vector, eK " From Fig. 4.4 we know that a new dispersion diagram
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FIG. 4.5--The configuration showing the conversion of a transverse
acoustic wave to a longitudinal acoustic wave using a nonabrupt
magnetic step function.
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Fiu. 4.6--The , - diagram of the longitudinal and transverse acoustic
wgves.
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corresponding to a new eK results, as shown in the broader curves in

Fig. 4.7, and the transverse acoustic wave is transformed into a longi-

tudinal acoustic wave with a higher frequency t and wave number K = K.

The fact that the wave number is approximately conserved in the

conversion process can be derived in the same way as done in the first

part of this section, i.e . from

ct 1 + V/V- Pi (4.9)

U. l v/vpt

Since V >> V , V >>V , Eq. (4.9) reduces to

U) U~i.(4.13)

Vt VPi

or

Kt = K . (4.1)

In most acoustic materials, the longitudinal acoustic wave velocity

is approximately twice that of transverse acoustic wave, and therefore

the frequency of the longitudinal acoustic wave is approximately twice

that of the incident transverse wave. Since the velocity of the inter-

face is much larger than that of the acoustic or spin-waves, no reflected

wave can exist. To avoid spin-wave losses, the conversion should be

made in a time short compared with the spin-wave relaxation time. When

the losses are ignored the conversion gain can be obtained from the result

given in Section 3.3.2,

(- / - -(4.15)
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Thus, a conversion gain of approximately 6 dB will be produced in this

conversion process. The transmitted longitudinal acoustic wave could be

easily coupled out from the right end of the rod by a conventional

longitudinal wave transducer.

Similarly, a longitudinal acoustic wave can be converted into a

transverse acoustic wave using the configuration of Fig. 4.5 with slight
4 4.

modification. In this case, the directions of H0 and H should be

interchanged. The transmitted transverse wave is down-shifted in frequency,

and attenuated in amplitude.

Notice that the conversion process stops when the magnetic step-

function completely fills the YIG rod. In medium 2 there is ro coupling

of the incident acoustic wave to the spin wave, for now the relevant

part of the w - K diagram is that of the upper (not lower) cross-over

region eK * 0 (see Fig. 4,4). Thus the magnetic field needs to be

pulsed. Furthermore we notice that the same conversion process will

occur when the magnetic step propagates in the same direction as the

incident acoustic wave. In this case the step overtakes the acoustic

wave. We also note that it is possible, by applying a magnetic pulse

of finite length to achieve a variable rf delay. We can control the

timing of the magnetic pulses which mode-convert the acoustic wave by

conventional pulse delay circuits. One hardly needs to point out that

what the world needs is a lO variable delay line.' (cf.Ford).

4.4 POSSIBLE CONFIGURATIONS FOR DOPPLER SHIFT EXPERIMENTS

It has been indicated previously that an abrupt interface is required

to produce a large reflection coefficient in the Doppler shift experiment

considered, and consequently a fast.rise time high voltage step-function

or pulse generator is required. This requirement seems, at least in

principle, not diffiuclt to achieve since a subnanosecond risetime

multikilovolt pulse generator4 5 has been developed.

A few possible experimental configurations for the observation of

the frequency shifts and amplitude changes predicted both in Chapter III

and this chapter will be briefly described in this section.
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To observe the frequency and amplitude changes resulting from a

single reflection from a moving interface or a moving slab we may use a

strip line filled with a nonlinear ferroelectric material, a strip line

loaded with variable-capacitance diodes, or a coaxial line filled with a

ferromagnetic material. A possible arrangement is shown in Fig. 4.8,

where we specifically consider the case in which a nonlinear ferroelectric

material is contained between the two parallel conducting planes. The

advantages of this structure operating in the dominant TE mode have

been explored.49 A voltage step-function (or pulse) applied to the

strip line at one end induces a moving interface (or a moving slab)

inside the ferroelectric material. A small microwave signal is applied

to the strip line at either the same end or the other. That is, to

produce a reflected signal up-shifted in frequency, the pump should

be applied at the other end; while to produce a reflected signal down-

shifted in frequency, both the pump and the smdll signal should be

applied at the same end. For detecting the frequency shifts of the

reflected and transmitted signals, a conventional superheterodyne

receiver can be used. We note that the metal strip line shown in Fig.

4.8 can also be employed for inducing a moving periodic structure in which

a rectangular or more practically a sinusoidal pump is used.

When a ferromagnetic material is used, the strip line in Fig. 4.8

would be replaced by a coaxial line filled with the ferromagnetic material,

and the voltage step-function would be replaced by a current step-function.

The advantage of strip line loaded with variable-capacitance diodes

over strip line filled with nonlinear ferroelectric is that the former

requires a much smaller voltage pulse than the latter. The sharpening

of the wavefront, and consequently the formation of an electromagnetic

shock wave, has been theoretically predicted and experimentally observed
(in a transmission line loaded with variable-capacitance diodes 

49 5 2

and also in ferromagnets).

For the otservation of frequency and amplitude changes due to

multiple reflection From a moving interface or the compression of

electromagnetic waves, a rectangular or cylindrical cavity filled with

nonlinear material can be employed. A typical configuration is shown
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FIG. 4.8--Possible arrangement for the Doppler shift experiment utilizing
single reflection.
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in Fig. 4.9. Notice that a structure in which a dielectric resonator is

inserted inside a waveguide can also be used. A superheterodyne receiver

can also be employed in this experiment for the observation of the

frequency shift in the compressed waves.

When a pressure step-function or pulse is used to induce the moving

interface, it is necessary to install a piezoelectric transducer at the

open end of the cavity.

4.5 EXAIPLES OF FREQUENCY CONVERSION AND AMPLIFICATION USING DOPPLER

SHIFT METHODS.

To demonstrate the feasibility of the various kinds of Doppler

shift experiments described in the last section, we give, in this section,

two examples of the Doppler shift experiments which are closely related

to the models and theoretical predictions given in the previous chapters.

(a) Frequency Multiplication With A Plasma "Piston"
7

This is an example of the compression of electromagnetic waves

analyzed in Chapter IIl. A pulsed electromagnetic field (from a magnetron)

which has an initial wave length of 10 cm is compressed in a rectangular

metal waveguide (in the HO1 1 mode): One end surface of the waveguide

is a moving plasma piston, while the second end forms a smooth transition

into a waveguide with a cutoff wavelength of 4.6 cm. The plasma piston

is formed by means of a condenser discharge. The plasma bunch is set

to enter the waveguide 2-3 sec after the rf pulse from the magnetron

is turned on. D e to the compression by the plasma bunch, the frequency

of the electromagnetic field is increased. Although the plasma bunch

moves with a nonrelativistic velocity (-2.0 x lO7 cm/sec), by virtue of

multiple reflection, a signal of much higher frequency (X = 3cm) is

generated and detected at the output terminal of the second waveguide.

(b) Doppler Effect-Like Phenomenon
5 3

This is an example of frequency conversion and amplitude amplification

due to moving interface in real materials as most of the examples considered

in this study. The theocetical results and the simulated experiment
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FIG. 4.9--Typical arrangement for the Doppler shift experiment utilizing
multiple reflection - the compression of electromagnetic waves.
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FIG. 4.10--Configuration showing a moving boundary interacting with a
video pulse.
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reported in reference 53 are very closely related to those considered in

Chapter M. A moving boundary (interface) separating twon stationary

media with different phase velocity and impedance is simulated by sending

a control pulse into a parametric distributed amplifier. The distributed

lines for the signal pulse and the control pulse are coupled by the

variable reactance diodes. The video control pulse is fed into the con-

trol line a few microseconds after a video signal pulse is fed into the

signal line. The front edge of the control pulse changes the permeability

of the parametron from Vl to P2 . Due to the permeability change,

the inductance of the signal line and hence the phase velocity of the

wave in the signal line changes accordingly from V1 to V, . The

length of the control pulse used is long, and the case 9l > 92 is

considered. Thus the phase velocity V1 corresponding to g, is

smaller than the phase velocity V2 corresponding to 92 " On the

other hand, the velocity of the control pulse and hence the velocity of

the interface, V0  , remains almost unchanged and larger than V2 and

V1 , because the inductance in the control line is much larger than the

:nductance change in the parametron. Thus a configuration as shown in

Fig, 4,2l is simulated. An input pulse of amplitude 1 volt and length

-3 psec, after being over-run by the moving boundary induced by a control

pulse of amplitude 5 volts and long length, results in an output pulse

of amplLItade 100 volts and length -1 sec.

- 120-



CHAPTER V

WAVE rNT ?RACTIONS Wih A MOVING PERIODIC STRUCTURE

In the first se'-ion of this chapter the laws of consegrvation of

energy and momentum are used to give a further proof that the frequency

and power of a plane ele, tromagnetic wave, after interacting with a

single perfect moving reflector or a single moving "nonreflecting

interface," change according to the formulas given in Section 3.3.

in Section 5.2, the model of a nonlinear spring is employed to

illustrate the transfer of power between the pumping field and the

small signal in a nonlinear dielectric or elastic material.

The generaL theory developed in Chapter III is extended to moving

periodic structures of semi-infinite and infinite lengths in Sections 5.3
and 5,34. The frequency components existing in these kinds of structures

are found, and the method of determinig the various wave amplitudes is

briefly described. Various similarities with and distinctions between

the electromagnetic wave interaction with a train of moving reflectors

(i.e., using a square-wave pump) and that of conventional parametric

amplification using a sinusoidal pump are discussed.

SFinally, an electrically or mechanically tunable filter using an

electromagnetic or elastic rf pulse is described in Section 5.5.

5.1 DERPVATJINS ,,F IHE kQWER REIATIONS FOR THE CASES OF A SINGLE,

PERFECT Y ) IN EF? ECTOR AND A S INGLE MOVING "NONREFLECTING INTERFACE"

; iNi TiE [AWS )F (,F rERVA TI ON OF ENERGY AND MOMENTUM

Th( prwcr relation for the case of a nonrelativistic perfect non-

reflecting interface was found in Section 3.5, using the transmission

line analogy and the principle of conservation of energy.

We derive in thi1i s.ction, using the laws of conservation of energy

arid momenturf, thc power relations which are valid for both the nonrela-
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tivistic and relativistic cases for a perfect moving reflector and a

moving "nonreflecting interface." This approach has been employed in

deriving the power relation for a plane electromagnetic wave interacting
54

with a moving reflector in free space.

5.1.1 A Perfect Moving Reflector

Consider the configuration shown in Fig. 5.1. A plane electromagnetic

wave of frequency w.. and power P. traveling in a material medium1 1

impinges upon a perfect reflector moving with a velocity V , and as

a result a wave of frequency w and power P is reflected. Asr r

previously demonstrated, a moving reflector separating two stationary

media can be simulated by applying a voltage step to a proper nonlinear

ferroelectric material. An arbitrary reference plane is chosen as shown.

We consider the region bounded by the reference plane and the reflector

as a system.

For a plane electromagnetic wave, the momentum per unit length is

P/V 2 and the momentum transfer per unit time (energy density) is P/V
p p

where P and V are the power and phase velocity of the wave in theP
nondispersive medium, respectively. Assuming that the momentum flow in

the positive x direction is positive, the rate of momentum flow out

of the system is

1
- (-P r P.i)(51

1 r 1V
pi

The total momentum of the system is

x
(Pi Pr d(5.2)

pi
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FIG. 5.1--A perfect moving reflector in a material medium. The

region bounded by the reflector and the reference plane is
considered as a system.
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FIG. x.2--A inovi-dg "%on,efilecting interface" in a material medium. The

region, nounded by the two reference planes is considered as

a sys tern..
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Since dx/dt = - V , the rate of increase of the total momentum of

the s-'stem is

d x  v

dt (Pi - Pr _- (Pr P5.3i
iPi

If F is the force the reflector exerts on the waves, then by the law

of conservation of momentum the total rate of increase of momentum must

be equal to F , yielding

1 V

F - (P + P + (Pr P  (5.4)
V r Vpi r
Pi P

Next, we consider the energy of the system. The total rate of r
energy flow out of the reference plane is

P - P 1 (5.5)
r i

The total energy stored in the system is

x
(Pi + P (5.6)

and the rate or change of the total energy stored is

V
" - 7 (Pi + Pr (5.7)

Pi
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By the law of conservation of energy, we have

V

' . = (Pr " Pi )  - (Pi + Pr) " (5.8)
V
Pi

Combining Eqs. ().4) and (5.8), we have the power relation for a

perfect reflector:

1D + /
Pr (3 pi,___

Pr • (5.9)

P.

Pi

Since from Eq. (3.6o)

r 1+ V/V P

_-- (510

we have, furthermore,

T p r ' P ( r (5.11)
P i 

/ V P

This power relation agrees with that given in Section 3.3 for a perfect

moving reflector and is what we set out to prove.

5.1.2 A Perfect Moving "Nonreflecting Interface"

We consider the case of a perfect transmitter as shown in Fig. 5.2.

The two media separated by the moving interface have the same impedance

Z. = Zt , hence no reflections will occur; but the wave numbers' K.
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and Kt  are different so that the transmitted wave has a frequency
shift, and hence there is a transfer of energy between the interface

and the transmitted wave.

Consider the region bounded by the two reference planes as a system;

then, following the same approach as given above, the rate of flow of

momentum out of the system is

t (5.12)

The total momentum of the system is

X xt

V Pi + V- Pt 
(5.13)

Pi Pt

The rate of increase of the total momentum in the system is

d Ix. xt V V

- IP+IP- P + -Pt - (5.14)

Pi Pt Pi Pt

Combining Eqs. (5.12) and (5.14), we have the total rate of increase

of momentum in the system. From the law of conservation of momentum,

this must equal to the force the interface exerts on the waves F

F =~ t v:) + P +. (5.15)

t i Pt

Next, the total rate of energy flow out of the system is

Pt - Pi (5.16)

- 126 -



The total energy stored in the system is

1Pt

xiP-t + x Vt - (5.17)
Pi Pt

and the rate of change of the total energy stored in the system is

-- I + xt - P i + - (.518)dt i Vp) V pi  V Pt

t

By the law of conservation of energy, we haveIv v
F = (Pt - Pi ) +  - i +  P  (5.19)

Pi Pt

Finally, combining Eqso (5.15) and (5.19), we have the power relation

for a perfect "nonteflecting interface:"

2

P = +  i (5.20)
P 4. V/V pt

Since, from Eq. (3.59),

t Pi (5.21)

Wi + V/Vpt)
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we have, furthermore,

p w 1 (1V::; p 2 t 2 (5.22)

Again, this power relation agrees with that given in Section 3.3 for

a moving interface with perfect transmission.

5.2 THE POWER TRANSFER BETWEEN THE PUMPING WAVE AND THE SMALL SIGNAL

WAVE IN A NONLINEAR MATERIAL

In most of the previous analysis, we have assumed that a moving

interface or a series of moving interfaces is induced in a nonlinear

material by a (large-amplitude) pumping field. Thus the change in the

power of the reflected and transmitted waves after interacting with

the moving interface or series of moving interfaces necessarily implies

a transfer of power between the pumping field and the small signal waves.

We demonstrate the physical mechanism of this conversion by using

the model of a "nonlinear spring" for a nonlinear elastic material and

also for a nonlinear dielectric material. This calculation will follow

the method used for the transmission line model of Section 3.5.2.

Consider A nonlinear spring as shown in Fig. 5.3. Assume the force-

displacement law of the nonlinear spring is represented by

F .1x + o2 x2  , (5.22)

where

F = force exerted on the spring

x = displacement of the spring from the quilibrium position

Q1 = linear spring constant

= nonlinear spring constant.
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F0

bf a sin wt

F Q1 + Q2 x 2

FIG. )-3--The nonlinear spring used to illustrate the power transfer
between the pumping wave and the small signal wave in a
nonlinear material.

A static force F. and a sinusoidal force 5f = a sin cnt , where

a is much smaller than F0 , are simultaneously applied to the spring.

From Fq. (5,22), we have

F 0+ bf = + asin wot = l Qx + 2x 2(5.23)

To solvre for x in Eq. (5.235), we let

X X0 4 5,X , (5.24*)
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and carry out a perturbation calculation; x0  and 5x designate the

static and sinusoidal displacements, respectively. Substituting Eq. (5.24)

into Eq. (5.23), we have the following equations of harmonic balance:

F (5.25)
0= Qlx0 + "

6f = (Q1 + 2Q2 xo) 5x , (5.26)

where (6x)2 denotes the time average of the squareof the perturbation
2

displacement, (5x)

Now, if F0  is a slowly-varying function of time such that it has

no frequency component at w or higher, Eqs. (5.25) and (5.26) remain

valid when the average of (Sx)2  is taken over only a_ cycles of

si_ wt . Let us denote this short time average as (5x) • Then

Eqs. (5.25) and (5.26) become

FO(t) = 01Xo(t) + Q2x(t) + 02(bx(t))2  (5.27)

5f = (o + 2 x (t)) bx(t) . (5.28)

Now, consider the short time average power delivered to the system

(the nonlinear spring) by the forces Fo(t) and 5f :

Fo(t)(*o(t) + bk(t)) - Fo(t) ko(t) = (0lXo(t) + Q2Xo(t)) ko(t) + o(5x(t)) ot

(5.29)

bf( 0 (t) + bk(t)) 5f bk(t) (QI + 202 Xo(t)) bx(t) bi(t) •

(5.30)
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From the law of conservation of energy, the sum of Eqs. (5.29)

and (5.30) must equal the average rate of increase of the stored energy

in the spring. This is given by expression (5.31) if the loss is ignored:

2

(OlXo(t) + 0Xo(t)) ko(t) (5.31)

yielding

02 (bx(t))
2 ko(t) - 5f bx(t) . (5.32)

The right hand term represents the average power delivered to the

force 5f by the spring, while the term on the left hand side represents

the average power supplied to the spring, over and above the amount

required to increase the stored energy as the spring is stretched.

Thus, Eq. (5.32) states that an extra power 5P - - 5f bk(t) is

delivered to the oscillating force bf . If bf is the inertial force

due to an oscillating mass, then this extra power goes into the oscilla-

tion, increasing its amplitude. This transfer of power is what we set

out to show.

Similarly, for a nonlinear dielectric, we assume the nonlinear

relation between the polarization P and the electric field E as

giveiL by

E = I? + 12, (5.33)

where Ti and '2 are the linear and nonlinear inverse polarizabilities,

respectively.

By using Eqs. (5.34) and (5.35), with a <<'E0  , we may proceed in

the same way as before and obtain Eq. (5.36) for the power conversion
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in the lossless case:

E(t) = E0 (t) + be(t) E0 (t) + a sin wt (5.34)

P(t) - PO(t) + 5p(t) (5.35)

S2(-p(t)) %(t) 6e bb(t) (5.36)

The right hand term represents the average power gain of the ill-

signal wave be , while the term on the left hand side represents the

correspon4ing average power lost by the pumping field E0 (t) . Again,

this transfer of power is what we set out to prove.

5.3 WAVE INTERACTION WITH A SEMI-INFINITE MOVING PERIODIC STRUCTURE

Consider that a plane electromagnetic wave is incident upon a

semi-ifinite moving periodic structure as shown in Fig. 5.4. The

moving periodic structure is considered to be induced in a nonlinear

material by a rectangular pumping wave. The notation appearing in this

figure is the same as used previously.

Applyirg the principle of "equality of phases" on all moving inter-

faces, we easily obtain the following four frequency components:

Ar V/V

1+V/Vp
+ pim = + V/i

S i(537)

m V/Vpt)

Wt = i
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FIG. 5.4--(a A semi-infinite moving periodic structure.
(b) The rectangular pumping wave used to induce the moving

periodic structure (a) in a ronlinear material.

To calculate the reflection and traromission coeffic~ents for the

semi-infinite moving periodic structure, we first use the wave matrix

echnique introduced in Chapter III to determine the equivalent wave

matrix for a single period, [W] . The wave ampaitudes at the input

terminal of a period, A+  and A- , are related to the wave amplitudesSI n
at the output terminal of the same period, An+2  andAn+2  by

A, t+ w ,+ - w +  A ---+ n+2

[W
A - [w] A~j = w+A 2

A A'+ W"  W A'
n .n+21 n+2

n =1,2,3 . . . (5.38)
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where W ,+ W +- W -+ and W are the components of the wave

matrix [W]

To solve Eq. (5.58), we let

A +A I
n n+2

then Eq. (5.58) reduces to

At + +A
n+2 n+2

- - -- . (5.4o)

n+2 ;1+2

Thus, the problem of determining the wave amplitudes reduces to an

eigenvalue problem for determining the constants (eigenvalues). 55

From Eq. (5.40), the eigenvalues are found by solving the following

equation:

W+ W

=0 (5.41)

++ 2w± t+JWW

(5.42)
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After the eigenvalues g are found, the wave amplitudes can be

easily determined by substituting g into Eqs. (5.39) and (5.40).

The reflection coefficient R and transmission coefficient T will

be given by the following equations:

A- AI-_ W+ +

R n _ n+2 _ (5.43)A +  Aft W+ -
n n+2

T n+2 (5.44)

A
+

Due to the extremely complicated espressions for W++ , W+

W" +  and W , no analytical method for determining the constants

t has yet been found. Nevertheless, numerical calculation can be

carried out. We omit this numerical calculation and pursue a more

interesting topic in the next section.

5.4 APPLICATION OF THE GENERAL THEORY TO THE FREQUENCY CONVERTERS

Consider that a square-wave pumping signal induces changes in the

permittivity e of a nondippersive nonlinear material as shown in

Fig. 5.5 and Fig. 5.6 for the cases of infinite and semi-infinite

structuresrespectively. The general theory predicts that there will

be four frequency components present in both structures: W +

w m and w2 , plus the repetition rate or the fundamental pumping

signal frequency w = 29V/1 . They are as follows:

2 =~ - V/Vp l(.)
ppl

+ a)1 ( .4)
= + V/Vp W(5.4

_ - + vlv P1 W(.7

1 (i V/2P2 1
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FIG. 5.5--An infinite moving periodic structure induced in a nonlinear
material using a square-wave pump.
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FIG. 5.6"--A semi-ir.finite moving periodic structure induced in a nonlinear

material using a square-wave pump.



and

Wt + (5.48)

W t -- 2 (5.49)

S 2v (5.50)

The smaller number of frequency components resulting from a square

wave pump is a remarkable result of this analysis. This is in contrast

with the sinusoidal pump ease, where there is an infinite number of
56,57

frequency components :

Consider more specifically the case of a semi-infinite structure

in which the frequency component w2  can be utilized (see Fig. 5.6).

In order to have a maximum amplitude for the frequency component w2  '

the separation 2/2 and hence the pumping pulse width must be properly

adjusted so that reflections from the various periods will add in phase.

This can be achieved by imposing the following condition:

+ + t 2 W - .9
m + t. +t _+m = 2n

V 2 V 2 V 2 V 2
P2 Pi Pl P2

n = 1,2, ... . (5.51)

Substituting Eqs. (5.45) - (5.49) into Eq. (5.51), we obtain the

length 2 for optimum reflection:

2nA
2=

I
(1 + V/V )

Wo +

Vpl( V/V pl) V2[1 P2 V 2

n = 1,2,3, . . . (5.52)
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For the case V P V = V , which will be discussed in detailP p2  p

later, Eq. (5.52) reduces to

nAV (1 - V/Vp)

0)1

n = 1,2,3, .

Notice that when V - 0 , 2 - nk/2 as it should, and we can interpret

the large reflection as due to the stop-band of a moving periodic

structure.

When the change of dielectric constant induced by the pumping signal

is small, as in the case of conwentional frequency converters,
58 59

the following approximation for the phase velocity is valid:

V P V P v . (5.54)Pl p2  P

Using Eq. (5.54), Eqs. (5.45), (5.46) and (5.47) reduce to

+ 
+

0 -Wt 2 (5.56)

2ITV
-= (5.5o)

Thus, the system reduces to one containing only the three frequency

components wl ' 2 and wp , when Vpl P2
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We continue to consider the case V V In order to have a

strong interaction and hence a large reflection, we impose the following

condition so that all reflections add in phase:

-2 I +- = 2n , n = 1,2,
V V
p p (5.57)

But from Eq. (5.45) (the pumping wave and the incident wave are contra-

directional), we have

V V w2 "l-- t - = (5.58)
Vp1  Vp w2 '1

Combining Eqs. (5.50), (5.56) and (5.58), we have the following

frequency relation for large reflection:

w2  = wl + m , n=,2,3,

(5.59)
For n = 1 , we have

cu2  
=  l + w (5.6o)

If we define the wave number of the pump signal K as wp/V ,then

Eqs. (5.59) also leads to

K2  = - K1

or
K2 = ni+ K (5.61)

and K2  = K- K1

K2  = K + (5.62)
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for n = 1 . It is interesting to notice that the frequency relations

(5.60) and the wave number relation (5,63) are just that of the conditions

for optimum interaction in a conventional frequency converter (up-

conversion) using a sinusoidal pump, where wl , c 2 and w are,
58 P

respecti':reLy, the signal, idler and pump frequencies. Figure 5.7a

shows the frequency and wave number relations for up-conversion.
6o

Simon considers this circuit and obtains the same frequency shift

in the reflected wave for n = 1 for a sinusoidal pumping wave. Simon

calls this a case of Bragg interference of the first order and attributes

the frequency shift in the reflected wave to the Doppler effect, as we do.

For n > 1 , Eqs. (5.59) and (,.61) predict the existence of higher

order sidebands with higher frequencies. This also has been predicted

for the case of the conventional frequency converter using a nondispersive

medium. 56,57 Following Simon, we designate these as Bragg interference

of higher orders. It is important to renember that we have been con-

sidering the case in which the pump signal propagates in the direction

against the signal wave.

Similarly, for the case in which both the pump and signal propagate

in the same direction, with the same assumption V p V = V , the
Pl P2. p

system also reduces to one containing only three frequencies Cl ' 2

and c2  " They are as follows:

Wm Wi t A--i (5.55)

1 - V/Vpj

t - I CO. (5.63)1+ V/Vp

27tV
= --V (5.50)p I

From Eq. (5.63), we have

V V (I" 2V - CD ~(5.64)

VP1  p + w2
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Combining Eqs. (5.50), (5.56) and (5.64', we have the frequency relation

for strong interaction:

ax. 0 -rxn~p n=l,2,5, ..

(5.65)

For n = 1 , Eq. (5.65) becomes

w2 = W I' 0P (5.66)

If K is defined as previously, i.e., K = UV then Eq. (5.54)

also leads to

K2  = nK p- K,

or 1 --- % + it, (5.67)

and
K2= K - Kp-1

or 
1 - + , (5.68)

for n 1

Again, we notice that Eqs. (5.66) and (5.68) are the frequency and

wave number relations of a conventional frequency converter (down-

conversion) using a sinusoidal pump, where wI , w2  and w are the

signal, idler, and pump frequencies, respectively. Figure 5.7b shows

the frequency and wave number relations for down conversion. When

n > 1 , Eq; (5.67) indicates the possibility of higher-order parametr-

interaction.

It is important to note that although higher-order interactions for

both the square-wave pump assumed in this analysis and the sinusoidal-

wave pump used in the conventional frequency converter or parametric

amplifier, the higher order interactions will be larger in the case of

square-wave pump because of its harmonic content.

Finally, we proceed to discuss another important aspect of this

analysis of wave interaction with a series of moving interfaces, namely,
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to see if the Manley-Rowe power relations58 )61 are satisfied. The

Manley-Rowe power relations involving frequency conversion for a purely

reactive system are

P1 P P Pn
. .2 . ...... ..... (5.69)

o l (2 (13 "n

where P1  , P2  , P3  . . . Pn are the net input or output

powers, and l c 2 ,w3 . . . cion are the corresponding frequencies.

From the results of Section 3.3 and Section 5.1, the power relations

for a perfect moving reflector, a perfect moving "nonreflecting interface,"

and a moving interface separating two dielectric media are given by

Eqs. (5.70), (5.71) and (5.72), respectively:

P. P
1 r (5.70)

2 2CU i Wr

P" Pt
2 - (5.71)2 '2

and i t

P. P Pta rt

2 2 Z 2 2
t 2 _ _ (5.72)

r t ZI + Z2

Obviously, the simple Manley-Rowe relationships are not satisfiea in

any of the three cases considered. This conclusion should not be con-

sidered surprising, since the stored energy of the system (bounded by

the reference plane and the reflector or by the two reference planes-

as shown in Figs. 5.1 and 5.2 has a steady decrease, while the Manley-

Rowe relationship is derived for a stationary process in which the stored
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energy does not steadily increase or decrease with tie.55

In order to see whether the Manley-Rowe power relations are satis-

fied in the infinite or semi-infinite moving periodic structures in-

duced by the rectangular-pumping wave or more specificially the square-

pumping wave, we have to carry out the calculations for the wave

amplitudes as indicated in Section 5.3. Here we consider a special

case in which a train of short pulses is used to induce a train of

moving discontinuities or "moving paddles" 5 5 (see Fig. 5.8). The

spacing of the paddles is such that all reflections from the paddles

add in phase.

Since the moving periodic structure considered is infinite, the

stored energy and momentum can be assumed to be constant for steady-

state operation. Applying the principles of conservation of energy and

momentum employed by Pierce 55 and also illustrated in Section 5.1 for

plane electromagnetic waves,the rate of momentum (force F ) in the

system is |

1

F = - ( + Pl) 1 (5.73)
V
P1

and the rate of increase of energy (. V) in the system is

FV = (P -P) P (5.74)

Solving Eqs. (5.73) and (5.74), we have

P 1 + V/V
2 _ 1

P 1 - v/v
1 

)
But., from Eq. (5.45), we have

2 + V/Vp (5.76)

1 -'p 1 /
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FIG. 5.8(a)--A semi-infinite "moving paddles" structure.
(b)--A semi-infinite train of short pulses used to induce

the structure of (a) in nonlinear materials.
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Finally, we have the Manley-Rowe relation

P2
2 _ '2 (577)

PP1 1l

It is important to emphasize again that for this to occur, the

frequency of the incident, reflected, and pump waves must satisfy a

relation of the following form:

...2 = CUi + rw , n = 1,2, . . . (578)

= + ni n = 1,2, ... (5.79)

Furthermore, if we consider the pumping power P to be equal to FVp
we have the following Manley-Rowe power relations by combining Eqs. (5.74),

(5.77) and (5.78):

P1  P2 P n2
- - --- ] , n=li, 2,. . -

CU w2 p (5.80)

5.5 DOPPLER SHIFT FREQUENCY CONVERTER AND ELECTRICALLY OR MECHANICALLY

TUNABLE FILTER.
6 2

From the analysis given in Section 5.4, it i: conceivable that a

device can be constructed to convert an input frequency and power to

a higher output frequency and power by using an electromagnetic or

elastic rf pulse. The pulse will induce in a nonlinear material a

series of moving periodically-spaced regions of differing impedance

(see Fig. 5.9). The advantage of using an rf pulse is that a large

reflection, if the periodicity is adjusted according to Eqs. (5.52) or

(5.>5), can be achieved even if the rf pulse builds up slowly over a

large number of wavelengths. Thus this device could be used for fre-

quency conversion of aither electromagnetic or elastic waves. By
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FIG. 5.9(a)--An rf pulse.
(b)--A moving periodic structure induced by the rf

pulse in a nonlinear material.
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using a semi-infinite periodic medium, one obtains better than a

Manley-Rowe power conversion, according to Eqs. (5.70) - (5.72).

Similarly, by using the same principle a spatial periodicity in

dielectric constant can be induced by setting up a standing electro-

magnetic or elastic wave in a material which has an electric field,

pressue-depe-kle t dielectric constant. The medium which bas

a spatial periodicity in dielectric constant behaves as a filter

structure, with stop-band frequencies determined by the periodicity and

stop-band widths determined by the degree of dielectric modulation.

Thus an electrically or mechanically-tunable filter can be constructed

by adjusting the frequency and amplitude of the modulating electro-
62,63magnetic or elastic wave.
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CHAPTER VI

A NONREIATIVISTIC CASE: LASER LIGHT INTERACTIONS WITH

HIGH FREQUENCY ACOUSTIC WAVES

6.1 INTRODUCTION

In the first part of this study a theoretical analysis of the fre-

quency shifts and amplitudes changes of an electromagnetic wave interacting

with a single moving interface or a series of moving interfaces in non-

linear solids was given. The results suggest many Doppler shift experiments

provided that appropriate materials are available. Specifically

considering the case of a semi-infinite periodic structure such as that

discussed in Section 5.3 and 5.4, an example of electromagnetic wave-

electromagnetic wave interaction at a microwave frequency is that of a

microwave EM wave interacting with a moving periodic structure induced by

a second (large amplitude) microwave EM wave. For this case the KTaO3

single crystal at liquid-helium temperature shows the greatest promise.

Unfortunately, reasonably large KTaO3 single crystals are not available

at present. For the case of a light wave-light wave interaction, i.e.,

a laser light interacting with a moving periodic structure induced by a

giant pulse laser, LiNbO and KDP crystals at room temperature are among
3 6

the potential materials to be used. This experiment, although feasible,

seems to require an extremely large amount of laser power. A similar

experiment is also possible for acoustic waves at microwave frequency

using nonlinear crystdls such as MgO and SiO2.

As a result of the availability of CW laser sources such as helium-

ineon gas lasers and the development of experimental techniques for

generating high-frequency acoustic waves, there has been a renewed and

active interest in the topic of light interaction with acoustic waves.

It will be shown in this chapter that this subject can be considered as

a nonrelativistic case of the general theory developed in the previous
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chapters. Various experiments involving laser light interactions with

high frequency acoustic waves in solids have been carried out, and some

results are considered in the experimental part of this study. That the

interaction of laser light with acoustic waves in solids can be treated

by analogy with the problem of an electromagnetic wave interacting with

a large number of nonrelativistic moving interfaces can be explained

by the following intuitive argument. An acoustic wave will excite density

modulation which aries periodically in time and in space in solids.

Since the refractive index or dielectric constant of a solid is a function

of its density, it will vary periodically in time and in space according

to the density modulation. That the scattering from a medium with

refractive index varying periodically in time and in space can be treated

using an equivalent "series of moving interfaces" is shown in Section 6.4.

.as an acoustic wave can be considered to induce a series of moving

interfaces. A light wave will encounter diffraction or scattering (or

reflection, following the language used previously) when propagating

through such a series of moving interfaces. The frequencies present in

the diffracted and transmitted light are expected to be shifted from that

of the incident light, due to the Doppler effect.

The frequency shifts of the diffracted light (predicted according

to the Doppler principle as discussed in the previous chapters) are shown

to agree with these obtained by the Raman-Nath theory and the experimental

results. Due to the small value of the ratio of the acoustic wave velocity

to the light velocity in the crystal., the frequency shifts in the diffracted

and transmitted light are very small compared with the frequency of the

incident light.

A brief description of the Raman-Nath theory and some extended

theories which successfully interpret the experimental results of light

diffraction using ultra high frequency acoustic waves in liquids are

given in Section 6.2. The frequency shifts in the diffracted and trans-

mitted light and the conditions for strong diffraction are derived in

Section 6.3 using the moving reflector theory. Section 6.4 gives the

derivation for the diffraction intensity using the "Ray-Tracing and

Cascade Network" method. The diffracting power of various crystals is
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also predicted in this subsection. An alternative method for calculating

the diffraction intensity using the parametric principle and coupled-mode

theory is briefly described in Section 6.5. The dependence of the

diffraction intensity on the acoustic wave frequency when the Bragg

condition is not satisfied exactly, is given in this subsection. Section

6.6 describes means for diffracting a large portion of laser light. Finally,

in Section 6.7 an analysis of the enhancement of diffraction due to

acoustic resonance is given.

6.2 THE RAMAN-NATH AND THE RELATED THEORY

We first give a brief survey of the theory of light diffraction

using high frequency acoustic waves. The diffraction of light by ultra-

sonic waves, commonly known as Brillouin scattering, was the subject of

extensive experimental and theoretical research in the 1930's and 1940's.

Brillouin66 was first to predict thesediffraction phenomena, and Debye,

Sears; 6 7 Lucas, Biquard,68 etc., experimentally observed this diffraction
* in1932 R. .69

phenomenon in 1932. R. Bar also carried out various kinds of experiments

and theoretical interpretations in the 1930's. During this period the

acoustic waves were almost exclusively generated in liquids and at

frequencies below 50 Mc/sec.

Probably the most complete theory for the diffraction of light by

ultrasonics is the one developed by Raman and Nath7 0 in 1935 and 1936.

Raman and Nath, in parts 1, 2 and 3 of their theories, considered that

the phase of the light is corrugated after traversing through the medium

due to the presence of an acoustic wave which induces a sinusoidal change

of index of refraction in the medium. The corrugated wave-front then

causes the diffraction. Thus the acoustic wave acts as a phase grating,

Consider the configuration of Fig. 6.1 in which the change of index of

refraction q(x) is expressed by Eq. (6.1). The directions for the

maximum diffracted light, ioe., the orders of diffraction, e , aren
determined by Eq. (6.2) and the diffraction intensities I , I are

m n

- 151 -



x

(1)s K Ks

Ini

FIG. 6.1--The configuration for the diffraction of light by ultrasonics
(oblique incidence).
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determined by Eq. (6.3):

(x) - 2x (6.1)
s

nX1
sin(Q6 + en) - sin = ± , n = 0, 1, 2, ... (6.2)

n
S

and

J(r)

- m,n = 0, ±1, ±2, ... (6.:)
n n

where

sin (2tL ),tan

r a 2--L sec •s (6.4)
1 ([Ltans

IO = the index of refraction of the uperturbed medium

= the maximum change of index of refraction of the medium due

to the acoustic waves

k = the wavelength of the acoustic wave in the medium
s

= the wavelength of the light wave outside of the medium
= the incident angle of the light wave outside of the medium

n = the angle of the ±nt h -order diffraction outside the mediumn

L = the acoustic beam width

ImIn = the diffraction intensities of the ±mt h - and ±nth - orders.

respectively

J ,J the Bessel functions of orders m and n , respectively.

m n
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For normal incidence (see Fig. 6.2) from Eqs. (6.2), (6.3) and

(6.4) with 0 , we have

nl
1

sin e = ± , n = 0, 1, 2, ... (6.5)

Im  J(r)

= 2 , m,n = 0, ±1, ±2, ... (6.6)
I n  Jn~r)
n fl

r 2 • (6.7)x1

We note that for normal incidence, the Raman-Nath theory predicts

symmetrical equally-spaced diffracted spots and that the diffraction

intensities depend on the incident light wave-length, the interaction

length and the ultrasonic intensity. We further notice that for oblique

incidence the diffraction intensities among the orders vary and an

asymmetry occurs when 0 varies from 0

There exist frequency shifts in the diffracted light. The frequency
th

shift in the ±n order diffraction is ±nw when a traveling acoustics

wave is used (see Fig. 6.3). When a standing acoustic wave is used, the

frequency shifts in all even orders diffractions are ±2nw . In all

odd orders, diffractions are ±(2n + 1) cu , where n is positive integer

(see Fig. 6.4).

In the case of a traveling acoustic wave, the relative intensities

of the al ± nas components are given by Eq. (6.6), while for the

case of a standing acoustic wave, the relative intensity of the al ± 2nw

sub-components in the 2Nth order is given by J.(r/2) J+(r/2), and

the relative intensity of the a_ ± (2n + 1) us sub-components in the

(2N + 1 )th order is given by J2 (r/2) J2+n+(r/2)

It is important to remember that in the above-quoted results only

the phase changes in the light beam due to acoustic waves are considered.

In parts 4 and 5 of the series of papers by Raman and Nath both the
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FIG. 6.2--Configuration for the diffraction of light by ultrasonics
(normal incidence).
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FIG. 6.3--The frequency shifts in the diffracted light using traveling

acoustic waves.

Standing Acoustic Wave

x
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FIG. 6.4--The frequency shifts in the diffracted light using standing

acoustic waves.
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amplitude changes and the phase changes in the light beam due to acoustic

waves are taken into account. This is called the generalized Raman-Nath

theory. The conclusions on the angles of diffraction and the frequency

sub-components in all orders given previously remain valid, but the

relative intensities of various orders 10 n 12 are determined by the

differential-difference equations [(6.8), (6.9)] for traveling and

standing acoustic waves, respectively:

2~ 2X2

' 2 ' 0X 2 n
s

= - in 0 (n. 1 - n+l) (6.8)

and

(An)2 n -21IoAn n n 0x6t 2 2  n

~ s

= - inoAn sin ct ( n-i " Cn+l )  (6.9)

where

t-a 2vAn z/XI and n = 0, ±1, ±2,

The validity of the Raman-Nath theory was confirmed for acoustic

waves of comparatively lower frequencies by the experimental results of

Debye and Sears, 7 Lucas and Biquard,68 Bai , 
6 9 Sanders,7 1 Parthasarathy

7 2

etc. When the frequency of acoustic wave becomes higher or the acoustic

beam width becomes wider, or both, a strong Bragg-type diffraction occurs

and the Raman-Nath theory (partsl, 2, 3), which does not include the

effect of amllitude change, can only qualit~tively explain the experimental

results. Nath,7 3 Extermann and Wannier,7 4 etc., later developed a theory

taking into account amplitude changes, but these theories involve
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complicated expressions and are valid only for a certain range of

parameters. Various theories ignoring orders higher than the second
75 76

were developed by Rytov, David etc., which give the expressions for

the intensities of the various lowest orders, especially for the incident

angle close to the Bragg angle.

Related to the generalized theory of Raman and Nath (Parts 4 and 5

of reference 70) is a separate theory developed by Brillouin.7 7 He starts

from the partial differential equation governing the propagation of light

in a quasi-homogeneous medium, as did Raman and Nath. The emerging wave-

front is then considered to be equivalent to a set of plane waves traveling

in the same direction as the incident light, but with an amplitude grating

on each one of them given by a multiple of a Mathieu Function. The

diffraction in any particular direction is determined by the plane wave

traveling in that direction. This approach, though exact, leads to

complicated calculations.

Finally, as pointed out by Aggarwal,7 8 the results of Brillouin,

Rytov and David are all special cases of the generalized theory of

Raman-Nath.70

6.3 MOVING REFLECTOR THEORY

An acoustic wave will excite density modulation and hence induce

ilternating layers of higher and lower refractive index than the un-

perturbed value. An acoustic wavelength contains one dense and one

rare layer. Since these layers are induced by the propagation of the

acoustic wave, they act as a series of moving reflectors or moving paddles.

This fact indicates, at least in terms of frequency, the validity of

using the general theory developed in the previous chapters. For

convenience, the medium will be considered to be isotropic and lossless

for the light waves. Anisotropy in the photo-elastic effect will be

discussed later.

Let n be the index of refraction of an unperturbed medium. Then

(no - 1) is proportional to the density of the medium pO .79 If AL



and 6p are respectively the small increment of the index of refraction

and density due to acoustic waves, we have

I_ 10 ___ 1 (6.-. (67)

The maximum values of Lo/p 0  in solids are tf the order of 10
- 4 or

lower for acoustic waves of moderate amplitude. Thus we are considering

a very small variation in refractive index, and have a moving periodic

structure as shown in Fig. 6.5. Since n1 - 12 and Vs/V p  1 ,

following the argument given in Section 5.4 we have, for the co-linear

case,

*2 S / (1+2 V/V )

1 V Vs/Vp <%

1+ Vs/V

W -Vs~/ (1 + 2Vs/V) (6.8)U,-

m

+

Thus we have two frequency components for the light wave: "I and

' The frequency component w. is the scattered or diffracted wave.

Depending on whether the incident light wave and the acoustic wave are
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FIG. 6.5--The moving periodic structure induced by a traveling acoustic

wave.

- o - •



codirectional or contradirectional the frequency of the diffracted wave

is down-shifted or up-shifted by the amount 2(Vs/V ) wl . The number

of frequency components and the amount of frequency shift, of course,

agree with the conventional parametric theory as shown in Section 5.4,

and this agreement will be explored in more detail in the following

analysis. From Eq. (5.53) the period or the acoustic wavelength XS

for maximum first-order diffraction is

s - (l -v/v) - (6.9)
2 2

where X is the light wavelength in the medium. This corresponds to

the Bragg condition.

Now, we consider the case of most interest, in which an oblique

light wave is incident at an angle with respect to the acoustic wave

front such that all scatterings or reflections from the acoustic wave

front (or moving interfaces) add in phase (i.e., Bragg diffraction).

This coherent effect is illustrated in Fig. 6.6. According to the

Doppler principle, the frequencies for the reflected and transmitted

waves u2 and w3 are obtained as follows from the general expressions

(3.9) and (3.11) by letting P2 = 0 = V / ,11 2'2 and ignoring
2 2

the second-order terms 2 1 . , etc.

w2 a (1 + 2Vs/V sin el) , (6.o0)

and

W 3  2 - 2(1+ X 2  -

- [1 /l + 2pmVv-I.7, sin el - cos 2 eI )

a w1 + c'sine - P (sin el + VT1q sin el)]
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FIG. 6.6--The configuration showing the reflection and transmission froma series of moving interfaces.
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i.e.,

0'3 = % [l- e sin 01

(6.11)

Furthermore, the angles of reflection and refraction e2 and e 3

respectively, can be obtained from Eq. (3.1):

cos e2 = Cos 1 = 1cos e
K2 0'2

i.e.,
1

cos e2  ( cos el (6.12)(1l+ 2v/v • sin e) 1

and

cos 9 = - cos eI  - cos e
K3  3

i.e.,

Cos a3 = Cos 01 (6.13)

Since is in the order of 10- 4 or lower, we have

e2  e= e3  . (6.14)

To have all scattering from the acoustic wave fronts add in phase,

the well-known Bragg condition of Eq. (6.15) is required from a simple

geometrical consideration:

xI = 2ks sin ei = 2X sin B (6e B5)

Notice that this is analogous to the Bragg condition of first-order

X-ray diffraction from crystal planes.
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Substituting Eq. (6.15) into Eq. (6.10), we have the following

frequency relation:

CD2  w1+2- V.s ne+ 2 V• sin eB

V
p

2 2 V • sin 0v B
V

s 2

i.e.,

CD D+C . (6.16)

In accordance with the frequency relation (6.16), the wave-vector

relation (6.17) is satisfied. This is illustrated in Fig. 6.7 using the

fact that a) a), or K, K2

K2 K + Ks  (6.17)

or

K s K, sin B + K2 sin eB (6.18)

Equations (6.16) and (6.17) are just the frequency and phase

constant relations for strong interaction in the conventional frequency
8o

converter. Thus the frequency and phase constant relations using the

Doppler principle agree with those of the parametric coupling principle

when the Bragg condition is satisfied.

If we consider iij) , 2 and Yco as the energy of the incident,

scattered photons and the scattering phonons bKI , f2 and hK as the

momentum of the incident, scattered photons and the scattering phonons,

we have Eqs. (6.16) and (6.17) as the conditions of conservation of

energy and momentum.
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r2 1

FIG. 6.7--The wave-vector relation for Bragg diffraction.

6.4 THE CALCULATION OF DIFFRACTION INTENSITY USING THE RAY-TRACING

METHOD

In order to cowpute the intensity of light diffraction from an

acoustic wave, or in the language of our analysis the reflections from

a series of moving interfaces, we compute the reflection coefficient for

oblique incidence from a single nonrelativistic moving interface first.

Then we use Tien's Ray-Tracing Method8 1 to calculate the resultant

intensity of diffraction. Consider Fig. 6.8. A light wave which is

polarized in the direction normal to the plane of incidence impinges on

a moving interface. The reflection coefficient t can be obtained by

solving Eqs. (3.13) and (3.14) with P2 = 0 and ignoring the second-
2 2 2

order terms P , gll and g2620 . The reflection coefficient

calculated by this approach will take the motion of the interface into

account to the first-order in 6 . Since 0 is in the order of lO

or smaller, the effect of motion on the reflection coefficient will be

very small. Thus it is proper to use the reflection coefficient of a

stationary interface for our purpose. From the well-known Fresnel's law
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el

FIG. 6.8--The reflection and refraction of a light wave from a single
nonrelativi~tic moving interface.

of reflection, the reflection coefficient is

E2 __sin(e 1 - e 3)(.)
El sin(e1 + e 3)

Since 6eO a e 1 e 3is a very small quantity, the following approxi-
mations are valid:

sin(e1 -e) s in 6e L
3

(6. 20)

Cos el cos(e 3 +t c' co se3  W asine 3

cos e -cos e 3cos e -cos e
- 1 1 3 (6.21)

sin e3sin e
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Using the approximation of Eq. (6.21) and the Snell's Law given in

cos e(6.22)

cos e3  ni

Eq. (6.19)-reduces to the useful expression

_ W + cos el - cos e3-+ 2
2sin el cos el 2 sin 2 el cos e1

1 n2 -

2 sin el T2

i.e.,

1 a
i+ n2 l (6.23)

where 1 ,2 - and T l = 2 " It is important to note that

the reflection coefficient for a single interface is inversely proportional

to the square of the sine of the incident angle.

From the continuity relation the transmission coefficient T is

obtained:

E ET 1 + (624)
E1  E1

We now follow very closely Tien's ray-tracing and cascade networks

method to calculate the resultant reflection for the case when the Bragg

condition is satisfied. We return to Fig. 6.6. Consider that there is

a total of 2N layers, or N acoustic wavelengths. The first layer

starts at z = 0 and the last layer ends at z = t . The layers are

considered to be infinite in the x and y directions.

Consider a typical section which contains two layers or one acoustic

wavelength as shown in Figs. 6.9a,b. A unit amplitude incident light
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(a%

''S

(b)

FIG. 6.9--a. Configufztion showing the multiple reflection of light between
the interfaces of two layers (light incident from left)

b. Configuration showing the multiple reflection of light between
the interfaces of two layers (light incident from right)
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ray is reflected back and forth between the interfaces of the two layers.

In Fig. 6.9a with the Bragg condition satisfied, the resultant amplitude

of the reflected rays at the plane a - a' is

r(1 - 2)(1 - 2 + t 4 = 2 (6.25)
i+ t

and the resultant amplitude of the transmitted rays at the plane b - V

is

t - (1 )(l - t 2 + t t (6.26)

Similarly, in Fig. 6.9b with the Bragg condition satisfied, a unit

amplitude incident light ray will have a resultant reflection at the

plane b - b'

2r = -, (6.27)

and the resultant amplitude of the transmitted rays at the plane a - a'

ti _ t2 (6.28)
1+ t

2

Knowing the reflection and transmission coefficients of one sectiun,

we now consider the system of N sections as shown in Fig. 6.10. As

shown, let T- and S ; T and S be respectively the reflection
r r r+l r+l

and transmission coefficients at the two reference planes a - a' and
th

b - b' of the r section. By superimposing Eqs. (6.25) - (6.28) we

have the following set of equations:

S2 r 2 Sr+l (6°29)

S 2 2(630)
r+l + t2 r r+l
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FIG. 6.10--Configuration showing the cascade network for a series of
moving interfaces.
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After rearangement, this becomes

Sr + Tr = - e2 (Sr+l + T r+l) (6o31)

Sr - T, = - e r+l Tr+l (6.32)

Let T and S be the incident and reflected amplitudes at z = 0 ;

correspondingly TN and SN at z = - . By induction and using Eqs.

(6.31) and (6.32), we have

S 0 + T0 = (-1 )N e2Nt(SN + TN) (6.33)

S - = ("1)N e
2Nt(SN - TN (6.34)

Since SN  0 , we have, from Eqs. (6.33) and (6.34),

N

S - (-1) N TN sinh(2N ) (6°35)

(- 1 )N TN cosh(2Nt) (6.36)

giving

S0 = TO tanh(Nt) (6.37)

Equation (6.37) gives the resultant amplitude of reflection in terms

of the incident amplitude To  , the number of sections N , and the

reflection coefficient of a single interface .

It is important to remember that we have been considering a square

acoustic wave of wavelength (or more correctly, period) X. . In practice,

a sinusoidal acoustic wave is used. For a sinusoidal acoustic wave, the

amplitude of the equivalent square wave will be taken 7r/4 times that

of the sinusoidal wave. This is justified from the fact that when the

factor /4 is chosen, the solution obtained by using the cascade-

network method agrees with the exact solution obtained by using Mathieu's
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equation.81 The reason we employ the "Ray-Tracing and Cascade Network"

method instead of the Mathieu's method is that the former is much more

closely related to the model we employ for a moving periodic structure

in Chapter V. Consequently, for the case of sinusoidal acoustic wave

we have the following expression for :

- - . (6.38)
4 sin 2 e1

We now go back to Eq. (6.37). Since an unit amplitude incident

light wave is considered, T. = 1 , and the resultant intensity of the

reflected or diffracted light is

2 2
SO0 = tanh (2Nt) , (b.39)

where is given by Eq. (6.38). For the region 2Nt < 0.5, Eq. (6.39)

reduces to

so 2 (6.40)

2

When 2N >> 1 , S2 approaches to unity and a total diffraction will'.

occur. The saturation of the diffraction intensity inherent in the

function of hyperbolic tangent is depicted by the plots shown in Fig. 6.11.

In order to compare the diffracting efficiencies of various crystals,

we extend this calculation and express the intensity of diffracted light
2
S in terms of the index of refraction of the crystal T , the strain

induced in the crystal S , the acoustic beam widta d and the wave-

length of the light in vacuum X1  (see Fig. 6.12). Using the Lorentz-

Lorentz formula82 connecting the strain and the change of index of

refraction and the Bragg condition, we have

1 (q1 - 1)(n 2 + 2)
2 (6.41)

6

_ ) 2Xs sine ,B (6.42)

-s B.
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i.e.,

zD  I~a( 2- l)(r 2 + 2) s
-D = tanh2( 1 + 2 (6.45)
I0  6),l

The saturation of the diffraction intensity, well illustrated by the

hyperbolic tangent variation appears, in the expression of diffraction

intensity. For the region 2N S 0.5, Eq. (6.45) reduces to

I D d(Q 2  -1 )(T
2  + 2) 2y (6.46)

For convenience, we express the strain S in terms of the acoustic

power density P ,s

T2 C2S2

p - - (6.47)s 2Z0  2Z0

or

= P1/2 (6.48)

C S

where

T = the stress

Z0 = the mechanical impedance

C = the related elastic modulus,

and Eq. (6.44) becomes

~~~ (D~~ 2 Vi)(I +2 1/2 (.)
0 tanh ' (6.49)

1o 0- 
C
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For the region 2N < 0.5, it reduces to

2
ID Ad( 2 - 1)(q 2 + 2 ) 2 0-- P • (6.5o)
io 6xlqc  I

As an alternative to the Lorentz-Lorentz formula, the photoelastic constants
8 3

can be used in connecting the change of index of refraction (or dielectric

const.) and the strain. For cubic crystals, the relations between the

change of dielectric constant and the stress due to the propagation of

a longitudinal acoustic wave along the axis 1 are

- T , (6.51)
0

for light polarized in the plane of incidence along the axis 1 and

AC 6 (6.52)

for light polarized normal to the axis and parallel to the acoustic w0 ve

fronts. Here i1 1  and A 1 2  are the photo-elastic constants for the

corresponding light polarization; e and e0 are the dielectric constants

of the crystal and the free space, respectively.

Since

and T = (2PsZol/2

we have

n*)jd .d cA ( 2PsZ)1/2
11 21'li6, 11 SO0

(2Nt) _ Id L = Ad e i2(2PsZ0)1/2
12 ) 1  - -..- ,tI (6.54)
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and

ID - tanh2 (2Nt)li = tanh2  . _ 11(2PsZ 0)1/21 (6.55)

IOil X1  2C0

ID 2 d~ /2,

D - tanh (2Nt)1  = tanh . - A 12 (2PsZoli 0 (6.56)

1 0 1 0e

For the region 2Nt < 0.5, these reduce to

0"I 
it 1 d2Ps (6.57)

I 2 2(D ( i(2 d2P .
1I01 2 s

The difference in diffraction intensity due to the anistropy of the photo-

elastic constants is seen to be (ill/ 12 ) 2

If we keep X1 and d constant and assume that Aq/1  is independent

of the acoustic wave frequency, then Eqs. (6.55) or (6.56) show that

the diffraction intensity is independent of the acoustic wave frequency.

Equations (6.55) and (6.56) also indicate that the diffraction intensity

can be increased by increasing the acoustic beam width, the acoustic power

density or using a light source of shorter wavelength. For the region

2Nt : 0.5, the diffraction intensity is a linear function of the acoustic

power density and a square function of the acoustic beam width. Finally,

it is important to p6int out that in order to obtain the maximum diffraction

for a constant input acoustic power, a nonsymmetrical acoustic beam

cross-section such as a ribbon-shape should be used.

Related data for various potential diffracting crystals are given
in Table 6.1, and the relations between the strain and the acoustic power

density for various crystals are plotted in Fig. 6.13. Using the data
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as given in Table 6.1 and the plots of Fig. 6.13. the diffraction intensity

for a He-Ne laser light IJI O  in dB for an acoustic beam width of 1.0 mm

and 1 mW/mm acoustic power density is calculated as shown in Table 6.1,

using both the Lorentz-Lorentz formula and the known photo-elastic

constants. It will be shown in next chapter that t experimental value

agrees with the calculated value using the Lorentz-Lorentz formula in

some cases and the calculated value using the photo-elastic constants in

other cases.

The diffraction intensity I /I0  in dB for an acoustic beam width

)f 1.0 mm and 1 mW/mm2 acoustic power density is a very useful figure of

merit for the diffracting power of a crystal. It can be used to estimate

the input rf power required in order to diffract a certain amount of light

when the acoustic beam cross-section and the transducer conversion

efficiency are known.

6.5 PARAMETRIC THEORY

In parallel with the method of ray-tracing and cascade-network

which was treated in detail in the last section, there are two other

methods which give the same results for the Bragg diffraction intensity.

The first one is to solve exactly the Mathieu equation which arises

from the modulation of the dielectric constant due to the acoustic waves.

The second one81)8 4 is to solve the Maxwell equations with a dielectric

constant which varies in the form of Eq. (6.60) due to the acoustic

waves, using conventional parametric principles and coupled mode theory.

The incident light wave is considered as the signal wave, the diffracted

light wave as the idler wave and the acouszic wave as the pump wave:

2+ (6.59)8z c ht

6(z,t) e 0[1 + 2 cos(wt + Ksz) 1  (6.6o)
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The incident and diffracted light waves are coupled to each other

through the time-and space-variable dielectric constant e(z,t) . In

reference 82, the photo-elastic constant is specifically used to relate

the change of dielectric constant and the amplitude of acoustic waves.

In order to show the variation of the diffracted light intensity

with respect to the acoustic wave frequency when the Bragg condition

is not satisfied exactly, we describe briefly the parametric mode coupling

involved. By imposing the parametric conditions for frequency and wave

vector, we have

0'2 a' %+%

(6.61)K 2 K, + K s + AkKs (.1

i.e.,

IK 5 +AK s = (K1 + K2 ) cos eB  (6.62)

Combining Eqs. (6.59), (6.60), (6.61) and (6.62), a set of coupled-mode

equations relating the amplitudes of the incident light A1  and that

of the diffracted light A2 will be obtained. The higher-order terms

&2Al(Z)/6z2 and 62A2 (z)/z
2  are neglected. After solving the coupled-

mode equations with the boundary condition taken into account, the

diffracted light intensity is obtained as follows:
8 1

ID  A2(0) A2(o)

I A1(0) A*(O)

K ___ ___ ___(2_22 2(6.63)= 2M 2 ....
sd¢ 21

l + -sinh 2 -
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for 6Ks <2 ,and

* A2 (O) A*(O)

Io  AI(O) Al(O)

K sin -,t

-a . - - 2(6.64)
K.in~ AO--s + sin -1

for &K >2
_ , where

2

2 a n 2 (6.65)
sin eB

For small values of 1/2 tt (which is the case in practice), Eq.

(6.64) can be approximated as follow:

2I D  1 2 sinD Q ( 0 (6.66)
1 (s0 4 l(216S-2

tKsin2

= -( )2 • (6.67)

4

Thus for small values of (1/2 .) , the bandwidth of the diffraction

intensity in AK is independent of t or the acoustic wave amplitude.

But as (1/2 -C,) approaches to a few tenths, the bandwidth of the
diffraction intensity in AKs  becomes broader and eventually increases

linearly with . Using the relation &Ks/Ks = a s/%s  and Eq. (6.67)
the bandwidth of the acoustic wave frequency, t , defined by a 3 dB

decrease in the diffraction intensity from the maximum point is

AK L 1.39
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or

1.39

= CUB . (6.68)
S N

For the experiment which will be described in Chapter VII, % is

much larger than the 'ndwidth of the coaxial cavity and also that of the

transducer.

6.6 LARGE DIFFRACTION OF LIGHT

Many applications are inherent in the field of laser light diffraction

using hi frequency acoustic waves in solids. Frequency and amplitude

modUation of the laser in optical copmunications, display devices, and

the generation of laser light with frequency shifted by an integer multiple

of the acoustic wave frequency are only some of the examples. But these

applications are practical only if a large portion of the laser light can

be diffracted with a moderate amount of rf power. Thus it is important

to diffract as much light as possible by using a proper crystal and

optimizing the various factors affecting the amount of diffraction, and

to find out the practical limitations involved. For the various kinds of

experiments which will be discussed in detail in the next chapter, a

He-Ne gas laser (xI = 6238 ) is used for the light source. In order

to diffract a large portion of light using a moderate amount of rf power,

the following important factors should be considered.

6.6.1 Choice of a Proper Crystal for Diffraction

From Table 6.I, in principle, the crystals with large photo-elastic

constants such as ADP is more efficient diffracting crystal

than the others. But, due to the high acoustic loss and comparatively

inferior mechanical quality, ADP is not as desirable as the other

crystals. For the various kinds of experiments discussed in the next

chapter, TiO 2 and SrTiO 3 are most frequently used. These two crystals

have reasonably large photo-elastic constants (diffracting power) as well

as excel] nt mechanical properties. The crystal TiO 2 has low acoustic

loss at microwave frequencies and is one of the best for acoustic wave

frequencies above 1 GC/s .
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6.6.2 The Requirement of a High Efficiency Transducer

In order to reduce the amount of rf power required for large

diffraction and hence avoid many difficulties resulting from high input

power (such as cavity voltage break-down), a reasonably high transducer

efficiency is essential. For the various kinds of experiments described

here ZnO wafer transducers are used. This newly discovered transducer

has reasonably high efficiency (-ll dB to -17 dB at L-band) and can

sustain high power. The CdS film transducer can have conversion efficiency

higher than -10 dB but lacks high power capability.

6.6.3 Generation of a Ribbon-Shaped Acoustic Beam

To utilize the acoustic power more economically, and hence reduce

the rf power requirement, a ribbon-shaped acoustic beam is essential.

This is obvious from the expressions for diffraction intensity Eqs. (6.57)

and (6.58) for the region 2N t < 0.5 , as the diffraction intensity is

approximately proportional to the square of the acoustic beam width. In

the next chapter, the advantage of a ribbon-shaped beam over a circular

beam will be analyzed quantitatively and the technique of generating a

ribbon-shaped beam is described.

6.6.4 Acoustic Resonance

So far, we have been considering the case of a traveling acoustic

wave. If the crystal is resonated acoustically by making the end faces

of the rod flat, parallel and unterminated, a larger diffraction will be

obtained with the same amount of rf power. The detailed analysis and

numerical values are given in next subsection. Here we simply point out

that the enhancement in diffraction intensity due to acoustic resonance

is small when the acoustic loss is high and the length of the crystal

rod is long.

To conclude this subsection, we estimate the rf power required for

diffracting 50% of the light from a He-Ne gas laser (beam diameter

- 0.6 mm at the crystal surface) using a TiO2 crystal. From Table 6.1,

II 0  for d = 1 mm ,and ps = 1 mW/mm2 is -40 dB . For an acoustic
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beam cross-section of 1 mm x 6 mm with d = 6 mm and assuming the

transducer conversion efficiency to be -10 dB , the total input rf power

required can be estimated as follows:

10-4 . d 2 P = 0.5S

and

0.52

-4 2 -- 139 mW/mm2

10 (6)

Then the total rf input power is

Acoustic Beam Cross-sectional Area P

rf Transducer Conversion Efficiency

139o 6
~ 8.4 Watts

0.1

6.7 ENHANCEMENT OF DIFFRACTION DUE TO ACOUSTIC RESONANCE

By letting the end of the crystal be acoustically unterminated, the

amount of diffraction will be increased from that obtained when it is

terminated, for the same amount of input rf power. This is because, for

same amount of rf power, the resultant strain, Sr , due to acoustic

resonance and hence standing waves is larger than that due to traveling

waves.

Consider a crystal rod of length L and unit cross-sectional area

(Fig. 6.14). Using the common definition of quality factor Q

Q = CL , (6.69)
P

where w is the radian frequency, U the stored energy density, P

the rate of power loss in the acoustic standing wave, then we have

U C (Sr)2  
A (6.70)

2 33
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FIG. 5.l14-Configuration showing the system of acoustic resonance.
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II

TABLE 6.11

Crystal Measured fs\2 2 2

Acoustic in dB
Attenuation
a at 800 Mc/S
(neper / cm) L = 0.4 cm.L 1.0-cm L 0.4 cm L = 1.0 cm

SrTiO 3  0.228 7.4 3.4 1.4

8102(z.-cut 0°284 64 2.4 0.4

TiO 2  0.225 7.4 3.4 1.4

Al203 0.113 10.h 6.4 4.4 o.4

LiF 0.900 1.4

ADP 1.125 o.4

- 187 -



or

(Sr)2  2PQ (6.71)
c33 1

For a traveling acoustic wave with power density P , the associated

strain S is determined by the following relation,

1 T2  1
P 2 Z 2 C3 3 vtS (6.72)

or

2 2P
s = . (6.73)

C33vt

Here C33 is the elastic modulus and vt the velocity of longitudinal

acoustic wave propagation.

For a , the attentuation per unit distance, we have
85

a = - . (6.74)2qvt

To compare the resultant strain Sr due to a standing acoustic wave

with the strain S due to a traveling acoustic wave with the same

input power, we combine Eqs. (6.71), (6.73) and (6.74). Thus we have

(6.75)
k/IL

Finally, the resultant strains, Sr+ and Sr- for the forward-wave

or backward-wave components are

( 2 S 2 S st2 1

r : : ) =s _-  -(6.76)

Table 6.11 gives the numerical values of the enhancement of strain and

hence of diffraction intensity due to acoustic resonance in various crystals

for an acoustic wave frequency of 800 Mc/sec. The experimental value

(which agrees with the theoretical value) will be given in next chapter.
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CHAPTER VII

LIGHT DIFFRACTION USING KILOMEGACYCLES ACOUSTIC WAVES IN SDLIDS

7.1 EXPERIMENTAL TECHNIQUE AND PRELIMINARY EXPERIMENTAL RESULTS

OF BRAGG-DlFFRACTION

The experimental arrangement8 4 for the measurement of Bragg

diffraction is as shown in Fig. 7.1. It permits measurement of the

following: (1) Intensity of diffraction as a function of rf power level,

(2) Intensity of diffraction as a function of incident angle, i.e.,

diffraction pattern; (5) Enhancement of diffraction intensity due to

acoustic resonance; (4) Acoustic beam cross-section; (5) Frequency

shift in the diffracted beam using a Fabry-Perot etalon. The light

beam from a He-Ne gas laser (% = 6328 R) passes through a focusing

lens and has a beam diameter of about 25 mils at the front face of the

interacting crystal rod. The faces of the crystal are polished. To

generate the high frequency acoustic waVes propagating through the rod,

a piezoelectric transducer is bonded on one end face and inserted into

the high-field gap of a re-entrant coaxial cavity. On the end opposite

the transducer a mercury pool is attached for terminating the acoustic

waves, For convenience, the variation of the laser incident angle is

accomplished by rotating the crystal, which is mounted on a rotary table.

The intensity of the diffracted beam is measured by a photo-multiplier

located at an angle of 20B  from the main beam (transmitted beam).

The diffracted light beam is modulated because of the lkc/s acoustic

modulation. For calibration purposes the same modulation is induced

in the main beam by means of a mechanical chopper. The diffraction

pattern (Section 7.4) is plotted by an X-Y recorder. The output of the

photo-multiplier is, after passing through a log converter, connected

to the Y-axis of the recorder while a calibrated potentiometer, attached

to the rotary table, is connected to the X-axis of the recorder.
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FIG. 7.1--The experiment arrangement for the measurement of' Bragg
diffraction.
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We now give some experimental results84 which are preliminary to

one of the main experiments described in this report, large diffraction

of laser light. An X-cut disk (0.005 in. thickness and 0.100 in.

diameter) was used as a piezoelectric transducer, The transducer was

bonded with an indium film to various kinds of diffracting crystals.

The best conversion efficiency (acoustic power/rf power) of the quartz

transducer used was -20 dB. The dimensions of the crystals are nomin-

ally 6 mm x 6 mm x 20 mm. A circular cross-section acoustic beam

(2 mm diameter) was generated in the crystals using a circular center

post of this dimension in the coaxial cavity. The frequency used varied

from 400 Mc/sec to 3000 Mc/sec; ADP was found to be the most efficient

diffracting crystal, and then in the order of decreasing efficiency

they are SrTiO3, SiO2, T.02 , A12 03, LiF. Both the calculated and

measured d-*ffracting powers for 1 mw acoustic power for various crystals

are listed in Table 7.1. Note that the converted values of ID/ O0

for a square cross-section acoustic beam of width d = 1 mm (listed in

the second column of the table) are obtained by multiplying the measured

values of ID/IO  for 1 mM acoustic power and 2 mm diameter circular

acoustic beam by the factor n/4 which results from the difference in

cross-sectional area involved.

TABLE 7.1

ID/I0 in dB for 1 mW ID/I 0 in dB for ID/I in dB for square2beam
acoustic power square beam d mm, Ps = 1 ra/mm

Crystal with 2 mm diameter d = 1 mm Ps=l mm,/M (calculated)

acoustic beam (converted from Using photo- Using Lorentz-

(measured) column 1) elastic constant Lorentz formula

ADP -30 -31 -30 -44

SrTIO3  -41 -42 -50 -40

SiO2  -42 -43 -52 -46

TiO2  -19 -50 -40

23A12 0 3 -51 -52 -51

LiF -51 -52 -61 -49
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7.2 LARGE DIFFRACTIOU OF LASER LIGHT USING RUTILE CRYSTAL
g-

For the purpose of diffracting a large portion of laser light, a

rutile crystal is used. This is due to the excellent optical and

mechanical properties of the rutile crystal (such as the optical

transparei.cy, the hardness and especially a low acoustic loss at L-band).

Although ADP, among the crystals considered, has the highest measured

dii'fractin, power, this advantage is cancelled by the high acoustic

loss at L-band frequency. (The measured acoustic loss ior longitudinal.

waves at 800 Mc/sec along the z-axis is 10 dB/cm for ADP. Thus the
2

extrapolated loss using the f law will be 20 dB/cm at 1.1 Gc/s.)

(a) Generation of Ribbon-Shaped Acoustic Beam

As indicated previously, a ribbon-shaped acoustic beam will utilize

the acoustic power more economically than a circular acoustic beam.

By using a ribbon-shaped center post with cross-section 1.0 mm X 6.5 mm

in a coaxial cavity, we were able to generate a 1.1 Gc/s acoustic

column oif ribboin-shaped cross-section ( - 1.0 mm X 3.5 mm as determined

by scanning the acoustic beam with the light beam). The dimensions of

the crystal are 12 mm x 10 mm x 6 mm, in which the last number is the

length along the optical axis. A lithium-doped ZnO wafer of 7 mils

thicki.ess and 3 mm x 6.5 mm cross-section is usel as a longitudinal

acoustic wave transducer. The gap between the surface of transducer

and that of the center post is 1 mil (see Fig. 7.2). The loaded Q of

the carity is ;00. The peak _..;.ersion eficiency of the transducer is

-13 n.D a,_1 the irequency separation between two consecutive conversion

eaks is 40 Mc/sec . Figures 7.3 and 7.): show the acoustic echoes

obtai..ed wit' the co.±ventioi.al super-heterodyne technique. The acoustic

less is 1i dB/cm.

(b) The Probing of Acoustic Beam

The acoustic beam cross-section is determined by scanning the acoustic

beam with the light beam and measuri.g the diffraction intensity at an

incident angle of 8 B . Tie d irac ;ioi. ii.1;ers2. : :.s L, 'Jio. of the

ocatio. o the iL.ciie: t li 'ht bea,. o. ' Ie crs Gal "a :e is shown in

J. Zi e 1 ;"e beam traverses " e wider and rarrower
e ." . es-La:;i el: Frowm t-.ese plc'I-s,



Coaxial cavity

ibbon-shaped center post

RF Rutile crystal
input*' /

~12 mm

6• 5 'm=i- C-axis

Zinc oxide transducer 7 mils
thickness

Air gap - 1.0 mil

FIG. 7.2--Configuration showing the dimensions of cavity center post,
rutile crystal, ZnO transducer and air gap.

acoustic beam cross-section defined by the 10 dB points is about

1.0 mn X 3.5 m. We thus see that the acoustic beam width is not as

long as the design value and that the two ends of the ZnO wafer do not

perform satisfactorily. Nevertheless, an approximately ribbon-shaped

acoustic beam is generated.

(c) Diffraction Pattern Versus Crystal Rotation

The diffraction patterns for the first, second and third order,

obtained by rotating the rutile crystal with the photomultiplier and

laser axes fixed at intersection angles of 2eB , 4eB and 6eB )

respectively, are shown in Figs. 7.6a,b,c. The miximn diffraction in-

tensity wanders among the orders as the incident angle varied from

-4 eB to +4 eB  . We note that the peaks of the diffraction intensity

for the first-, second-, and third-order are at the incidett angle of

e, , a%(IL 36 ', rbspectivel,'. T..us, 6' e ina.- e , .e
e C~~~f,,'~' -aL , L': ,: ) .-,r , 6, .. L. e , ~" e

~ .H- a . >a r~i Lrac,. " . *

L,,vws ,e pkoto;rraphs of the diifractiob sp. , r various anigles oj

inciden-ce.
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(d) RF Power Dependence of the First-Order Diffraction Intensity

at e = eB
When the laser light was sent through the wider dimension of the

acoustic beam the diffraction intensity was found to be 10 dB greater

than for transmission through the narrow dimension of the beam. To

determine the intensities of the zero-first- and second- order diffrac-

tion, the incident light, after passing through the crystal, was cali-

brated using a 1 kc/sec mechanical chopper. The rf power dependence

of the first-order diffraction intensity is shown in Fig. 7.8, giving

both measured and calculated *values. The calculated values are obtained

by the extended Lheory of Tien using the Lorentz-Lorentz formula as

shown in the last chapter. Assuming that the effective beam width id,

defined by the 10 dB points in Fig. 7.5 (dz 3.5 mm), the acoustic

power density dependence of the first-order diffraction intensity is

as follows:

I D  21- s1/2
- = tanh2 13.72 x 102 (7.1)

1 0

As the conversion efficiency of the transducer is known (- -14 dB) ,

the rf power dependence of the first-order diffraction intensity is

determined immediately from Eq. (7.1). From Fig. 7.8 the difference

between the measured and the calculated values is about 4 dB. In

Fig. 7.8, the experimental curve for the first-order diffraction intensity

(marked with terminated) is obtained using a square-wave modulated rf

signal generator at 1.1 Gc/s with modulation frequency of 1 kc/sec and

with a mercury termination. The experimental curve for the first-order

diffraction intensity (marked with unterminated) is obtained using a

pulse-modulated rf signal gerierator at 1.1 Gc/s and without mercury

termination. We have achieved a 10% first-order diffraction using a

square-wave modulated rf input signal at 1.1 Gc/s with modulation

frequency of 1 kc/s and peak power of about 15 watts, and about 60%

first-order diffraction using pulsed modulated rf input signal with

about 50 watts peak power. In the former case the crystal is terminated

with mercury and in the latter there is no termination. The difference
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in the diffraction intensity between the terminated and unterminated

cases was measured as about 2 dB (see Fig. 7.8). 'From Eq. (6.15

the calculated value is 2dB.

The difference in the diffraction intensity for a perfect traveling

wave and the non-perfect traveling wave (as we actually had, see Fig. 7.4)

was estimated to be less than ± I dB. This number was obtained by de-

termining the amplitude of the first echo, at the position of laser

light incidence, by comparing the acoustic echoes for the terminated and

unterminated cases (see Figs. 7.3 and 7.4). If we take the fourth echo

in the terminated case (Fig. 7.4) as a reference, we see that there are

approximately 5.5 more echoes in the unterminated case.(Fig. 7.3) than

in the terminated case. The acoustic loss is 5 db for a round-trip.

The laser light is incident at the middle of the crystal rod (see

Fig. 7.9). Assume the incident a oustic power dt the point of laser in-

Cide..ce' the i.'iident acousLic power at te mercury pool, the reflected

acoostic poer at the crystal-mercury interface and the reflected acous ti

power at the pointL o.. laser i:-idei2e are Pi P , P m and P - respec-

tively, thei., P
4x(l0 log-r) = -5.5x5 dB

Pt

i.e.,

r
10 log - = - 7 dB

Pt

Thus we have

P P P Plrl r t
i0 log = 0 log- - "

Pi Pr Pt Pi

IT - dB -7dB- dB

= - 9.5 dB

or
PrI 1
- = 0.11

P.
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Rutile crystal

Transducer
ercury pool

p 

pr

I 
ZP P rP

3 Crystal-mercury

6 mm interface

Position of

laser incidence

FIG. 7.9--Configuration for estimating the difference in the

diffraction intensity between a perfect traveling
wave and a non-perfect traveling wave.
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giving, finally,

I ±D (Pri + Pr )  (1 0.11)

10 log = 10 log < ± 1 dB
ID(Pi)

(e) RF Power Dependence of the Second-Order Diffraction:Intensity at

0 = eB  and e = 2eB

Included in Fig. 7.8 are the measured and calculated values of the

second-order diffraction intensity (both for e = eB and e = 20B) as

a function of the rf power level. The difference between the measured

and the cqlculated values is about 3 dB (0 = eB) and 2 dB (e = 2B) 6

The calculated values are obtained by extending the theory of Phariseau'

We give the calculation here. Using the same notation as in reference

87, the expressions for the second-order diffraction intensity when the

incident angle is the Bragg angle and twice the Bragg angle (or 0 = 0 B

and 0 = 24B in Phariseau's notation),are given by Eqs. (7.2)

and (7.3), respectively:

2 - sin - (7.2)
2

1- 92(7.3)16

where

2K2

4a ; 2a sine0

2

* 2
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a. d

X* = wa, e,.th e a.-oustic waes .. ,e .. sia lu.

Ao =  refra tive i:,-Lex of" the uno.isturbed mnedium.

ii I  = d. LWII ,ariatio. 01 t.,3 L-e.,ractive i,dex.
= w 'iance -raveled by the light beam through the ultrasonic field.
= incidei.t anidle of the light inside the medium.

The square-law dependence of the second-order diffraction intensity
with rf peak power at 0 = 0B is obvious from Eq. (7.2) for small .
Similarly at 0 = 20B the square-law dependence of the second-order

diffraction intensity on rf peak power as shown in the measured curve)
is also predicted from Eq. (7.3).

Since a >> 1 (as will be seen later in this subsection) we have

K2 = cr ( 2a sin 2B)

2 2 sin 2(4B)
Ill 40 x(7.4)

but

20 BM

so Eq. (7.4) becomes

2 _ i*i2.L* Q\g 7

Substituting Eq. (7.5) into (7.3), we have

22

As g2 depends linearlj on peak acoustic power density and hence peak
4 2

rC power, so 9 depends on (peak rf power)
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The numerical data for the experiment follows:

0 =2.68  ,'X = 0.6328 X 10 cm , *10 cm

B= 0.0125 radian .. 2B = 0.0250 radian , z Z 0.35 cm

At 41 dBm of rf peak power, the acoustic power density P is about

18 dBm/mm . From Fig. 6.13 and using the Lorentz-Lorentz formula

[Eq. (6.40)], the strain corresponding to this power density is about

0.5 X 10 5 , and g 1 1.75 x 10 5  Thus we have

= 0.61 , a = 3.8 xl , 95

and at 0 20B ,

a= -23.7 , K2 = -47.5

Then, at 0 = 0 B ' we have

121 sin . o.61 7 x 10-6

4 X(95)2  2

or

I_
l0 log-2 = -51.6 dB

10
also, at 0 20B

1 
2-

1-2 - )2 (0.61) 1016 x (47.5)

o r I -

10 log = - 50 dB

1 0

These two calculated values are used for plotting the calculated curves

in Fig. 7.8.
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(f) RF Power Dependence of the First-Order Diffraction Intensity

at Normal Incidence (0 = 0)

The rf power dependence of the first-order diffraction intensity

(both right and left orders) at normal incidence is shown in Fig. 7.10

for both measured and calculated values. Both the right and left hand

side first-order diffractions appeared with equal intensity, but about

30 dB lower than the calculated value using the normal Raman-Nath theory,

i.e., Eq. (6.6). A disagreement between the measured values and the

calculated values is of course expected following the argument described

in Section 6.2, but such a big difference is not expected.

7.3 MEASURED ENHANCEMENT OF THE DIFFRACTION INTENSITY DUE TO ACOUSTIC

RE ONANCE

In measuring the effect of acoustic resonance on the diffraction

intensity, a rutile crystal with dimensions 4 mm x 4 mm x 12 mm was used.

The length of the rod along the C-axis was 12 mm. A ZnQ transducer

was bonded on one end face (4 mm x 4 mm) and the other end face polished

flat. .The acoustic frequency was 810 Mc/sec and the one-way acoustic

loss at this frequency is 1.5 dB/cm . The conversion efficiency of

the transducer at this frequency is -11 dB . A typical acoustic echo

is shown in Fig. 7.11. The Q-curves of the cavity with the crystal are

.shqwn in Figs. 7.12 and 7.13. The frequency between two consecutive

frequency markers in Fig. 7.13 is 1 Mc/sec . We note that the acoustic

resonance of the crystal shows up on the Q-curve due to the high con-

version efficiency of the transducer. At the incident angle of eB,

the diffraction spectrum was obtained by sweeping the acoustic wave

frequency, as shown in Figs. 7.14 and 7.15 for the terminated and

unterminated cases, respectively. The sharp peaks in the diffraction

spectrum are due to the acoustic resonance (when the acoustic wave

frequency is such that the length of the rod is an integer number of

half-acoustic wave-length). The frequency separation between two con-

secutive peaks is about 0.40 Mc/sec as measured by a frequency marker.

The calculated value V9/2L is 0.42 Mc/sec . The envelope along the

sharp peaks depicts the Q-curve of the cavity. The band-width is about

- 205 -



-10
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2As RIGHT HAND ORDER

w CALCULATEDo
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FIG. 7.10--The rf powe:' dependence of the right-and ef,-n:a
slide first-order clffraction iitensities at vormai.
incidence.
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FIG. 7.11--The acoustic echoes at 810 Mc/s with no mercury termination.

FIG. 7.12--The Q-curve of the cavity with the acoustic delay line
(no frequency marker).

4

FIG. 7.13--The Q-curve of the cavity with the acoustic delay line.
(The frequency between two consecutive frequency markers is 1 Mc/s.

- 207 -



CH,0

H

02

rd4

Oo.1

4-.

E

H

4

0

HN

- 2O~ -



is about 1.5 Mc/sec. We note that due to a nonperfect termination, weak

peaks appear in the diffraction spectrum for the terminated case. Using

neutral density filters for calibration, the difference between the

diffraction intensity with mercury termination and that without is mea-

sured at 5 dB . From Eq. (6.75) the calculated value

10 log 1/2aL = 10 log 8.9/2 X 1.5 x 1.2 is about 4 dB

(.4 DIFFRACTION PATTERN

It is of interest to see how the diffraction intensity varies when

the incident angle of' the laser light deviates from the Bragg angle by

rotating the crystal, with the photomultiplier fixed in position. The

diffraction pattern is found to be the Fourier transform of the amplitude

distribution of the traveling acoustic waves in the plane of the wave

front. This fact has been demonstrated by Cohen und Gordon. 8 8 We

simply quote the results here.

Figure 7.16 depicts the configuration involved. The acoustic

wave with frequency w and wave number K propagates along the

X-axis, while the incident light with frequency w1  and wave number

K1  impinges at an angle e0  with respect to the acoustic wave front.

The acoustic wave amplitude varies along the Y-axis, rith no variation

in the Z direction. The amplitude of the first-order diffracted

beam V 1 (e 0 ) with an acoustic beam distribution function (y) is

1 + iK s(oe0- By
vl(e0 ) - 2 exp

00 -iK (0O 0 9B)Y 1

dy t (y')* exp ( (7,7)
CO

2 ( e) l/ L[ sj (;.8)
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Y

K,

IAcoustic wave front

laser light and the acoustic wave.

whe re

V0  = amplitude of the incident light before interaction,

eB  = Bragg angle,

(y) = a function proportional to the change of the dielectric

constant [A(y)/6] due to the traveling acoustic waves
and is, hence, proportional to the distribution of the

acoustic waves,

y integration variable,

and * denotes complex conjugation.

Thus IV1(eO) 2 determines the diffraction pattern versus the angle

of crystal rotatioii and IV1(e0)/Vo12  determines the relative intensity

of' the diffraction pattern.
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I

For a single acoustic beam of rectangular cross-section such that

t(y) = t = constant in the region -(1/2)d < y <(1/2)d and zero else-

where, the diffraction pattern reduces to

K
1(E 0 - eB)d]

lO2 2 2 2
-v (8Ol d V0  K 2(79

[-! (e0 - eB)d]
2

The diffraction pattern is the same as the.; for a single-slit Fraunhofer

diffraction. The maximum intensity occurs at e0 = eB and te angular

dependence of the diffraction intensity is symmetric with respct to

e B  . The zeros on either side of eB occur at

1 K(e0  eB) d = nA n = 1, 2, 3,

or at incident angles

80 n (=i~~e\ 1, nl 2, 3, ..

dK / (7,10)

and the angle between the first zeros on either side of eB ,O 0

is

4At 2X.
= - = --. (7.11)

K d dS

The auxiliary peaks of the diffraction intensity on either side of

B  occur at

S(e-8)d =(~n +2)0 B o + 2 B n= l, 3, 5, ... ,
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or at incident angles

(n + 2)9 + dK seB
0  sB , n = 1, 5, 5, ... .

dKs (7.12)

The intensities of the auxiliary peaks are -13.4 dB , -17.9 dB

and -20.8 dB , respectively, below that at 0 = eB

7.5 LIGHT DIFf'RACTION USING MULTIPLE ACOUSTIC BEAMS IN SrTiO3 CRYSTAL

For this experimqnt a SrTiO3  crystal with dimensions

8 x mm x 11 mm x 4 mm was used. The length of the crystal along the

C-axis was 8 mm. A ribbon-shaped ZnO wafer transducer with dimensio: s

2.5 mm X 5.5 mm x 0.175 mm was b,.ondd on one end face (l mm x 4 mm)
of the crystal and inserted in the high field gap of the previously used

coaxial cavity. The cross-section of the center post of the cavity was

1 mm x 6.0 mm . The experimental arrangement is the same as the one

employed before.

a. Generation of Multiple Acoustic Beams

In this experiment the ZnO wafer was wedge shaped as shown in

Fig. 7.17a, and multiple acoustic beams generated. The generation of

multiple acoustic beams using a wedge-shaped transducer is obvious from

the fact that when the thickness of the transducer is an odd integer

multiple of half acoustic wavelength the amplitude of the acoustic wave

is a maximum; and when the thickness of the transducer is an even integer

multiple of half acoustic wavelength the amplitude of the acoustic wave

is a minimum. The profile of the acoustic column across its wide di-

mension was scanned by observing the diffracted light intensity as the

laser beam was shifted acrcs the column (Fig. 7.18). The acoustic

profile along the narrow dimension; is shown in Fig. 7.19. Notice that

the maximum difference in diffraction intensity is seen to be about

13 dB. The decrease in the peaks of the diffraction intensity along

the direction of the uide dimension is attributed to the variation in
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I I ZriJ coupler

S rTiO3

crystal

(a)

SrTiQ5

V ZnO trai,8ducer

~~-Air gap spacing

Cav'}y

center post

FIG. 7.17(a)--The dimensions and the orientation of the wedge-shaped
transducer,

(b)--The variation of the air gap spacing between the trans-
ducer and the center post.
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the air gap spacing between the wedge-shaped transducer and cavity

center post, The diffracted intensity was measured to be less at the

edge of the beam when the air gap was largest.

That we actually had a wedge-shaped transducer, and consequently

the generation o1 multiple acoustic beams, is verified by two means:

First, the thickness of the wafer transducer was measured by a micro-

scope; the dimensions are shown in Fig. 7.17(a). Second, the positions

of the peaks of the diffraction intensity moved as the rf frequency was

swept (Fig. 7.20). The difference in thickne.s as determined by the

method of sweeping the rf frequency agress with that measured by the

microscope (Fig. 7.21) within Mlo.

From the acoustic beam mappings shown in Fig. 7.20a,b,c, we see

that as the rf frequency increases the peaks of the diffraction intensity

move in the direction towards the end of narrow hickness. If we compare

the first peak (point 1) in Fig. 7.20a with the first peak (point 2) in

Fig. (.20c, we see that the peak moved by about 0.25 mm (see Fig. 7.21)

while the rf frequency was swept by 14.5 Mc. From the dimensions shcwn

in Fig. 7.21, we have-

d!- d2  (4.2 + 1.5 x 5.2) 4.2 1.5 x 5.0

1 ) × 1 5 1.5x.2+ 5.5 - 1.2%
d(4.2 + 1.5 5-x5525 )

d1 (42+ 5.5

Furthermore, when we utilize the fact that the acoustic transmission is

a maximum when the transducer thickness is an odd integer of half acoustic
th

wa.,elengrh, we have, for the n mode,

x
: 1

=n

2

s2
d 2 = n--

1 2

= Odd ihte,'er .,resk, - o 2 ' ;,' s expe,'.Lme
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Since fl = 1100.5 Mc/sec, f2 = 1115.0 Mc/sec, we have

1l 2 XMc/0 = e1 . ,

dl 1
The excellent agreement in the value 6f (dl- d2)/d 1 x 100 using these

two means supports the statement made above.

b. Diffraction Pattern Due to Multiple Acoustic Beams

The diffraction pattern for the first order as obtained by rotating

the c-rystal and with the photomultiplier fixed at a deflection angle of

2 eB  is shown in Fig. 7.22a. The acoustic wave was terminated with a

mercury pool for this measurement. Notice tnat there are many peaks in

the diffraction pattern and that the angular spread of the envelope of

the peals is very broad. This is analogous to the diffraction pattern

oI ..ultiple slits in optics and agrees with the concepts of Fourier

transformation of the acoustic wave distribution described in the

previous section.

Using Eqs. (7.7) and (7.8) in which the distribution o t(Y)

is given by Fig. 7.13 and K = 20 per mil , eB (Putside the cr,, 'al)radive oyFg .8adK

= 0.04 ta d = 2.28 ° , the diffraction pattern obtained by compute cal-

culation is as shown in Fig. 7.22b. The existence of many intensity

peaks and broad angular spread in the envelope of the peaks agrees

qualitatively with that obtained by an X-Y recorder (gee Fig. 7.22a).

The diffraction pattern for the second-order as obtained by rotating

the crystal and with the photomultiplier fixed at a deflection angle of

SeB  is shown in Fig. 23. We note that the peak intensity of the

second-order diffraction at e 2 eB is about 8 dB below that of.the

first-order diffraction at e = eB and that one satellite peak appears

at both sides of the main peak. Figure 7.24 shows the photographs of

the diffraction spots for various angles of incidence.
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FIG. 7.24--Photographs of the diffraction spots for various a.,gles of incidence.
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(a)

(b)

(c)

FIG. 7.25-.-Fabry-Perot patterns of (a) the undiffracted beam; (b) the
diffracted beam with up-shifted frequency; and (c) the diffracted
beam with iown-shif Led 'frequzency.-.
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7.6 THE MEASUREMENT OF FREQUENCY SHIFT IN ThE DIFFRACTED BEAM USING
FABRY-PEROT ETALON

Figure 7.25 shows the fringes obtained from a 5 cm etalon for the

(a) undifcracted, (b) right-hand side first order and,(c) left-hand side

first order diffracted beams, respectively. The acoustic wave is at the

frequency of' 1.07 Gc/s and terminated with a mercury pool, The frequency

spacing between two consecutive fringes in the 5 cm etalon is 5 Gc/s.

The frincges in Fig. 7.2>b are obtained when the acoustic wavefronts are

approachi-ng the incident laser beam. By measuring the increase in the

diameter of the innermost fringe, the frequency of the diffracted beam

is found to be shifted up by - 1.05 Gc/s . This result agrees with both

the Doppler shift principle and the parametric condition involved.

Similarly, the fringes in Fig. 7.25c are obtained when the acoustic

wavefronts are receding from the incident laser beam. By measuring the

decrease in the diameter of the innermost fringe, the frequency of the

diffracted beam is found to be shifted down by - 1.1 Gc/s . Again,

this result agrees with both the Doppler shift principle and the para-

metric condition involved.
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CHAPTER VIII

MULTIPLE DIFFRACTION TECHNIQUES

With the success of diffracting and Doppler-shifting a large portion

of laser light with a moderate amount of rf power, frequency shifting of

laser sources using acoustic waves at microwave frequencies in crystals

such as TiO2, SrTiO3, Sio 2, ... etc., becomes feasible.

We analyze in this chapter two schemes of using multiple diffraction

to shift the laser frequency by integer multiples of the acoustic wave

frequency. One scheme uses a pair of Porro prisms in order to pass the

laser beam repeatedly through the acoustic column. The other scheme uses

a pair of overlapping optical cavities with their axes tilted by twice the

first-order Bragg angle. Laser light is scattered alternately from one

cavity to another, the mode spacing of the cavity being set equal to the

acoustic wave frequency in order to provide reinforcement.

8.1 SIMULTANEOUS GENERATION OF THE UPPER AND LOWER SIDEBANDS USING A

PAIR OF PORRO PRISMS

Consider the configuration shown in Fig. 8.1. Two Porro prisms, 1

and 2, are arranged in a position such that the diffracted light passes

successively through them. Two photo-detectors 1 and 2 can be employed

to monitor the various upper sidebands in the diffracted light. It is

obvious that the sidebands with frequencies shifted by even multiple of

acoustic wave frequency come out from one side and the sidebands with

frequencies shifted by odd multiple of the acoustic wave frequency come

out from the other side. To generate the various lower sidebands, we

simply reverse the direction of propagation of the acoustic wave.

If we igiore the acoustic loss and the optical loss due to the

crystal and the prisms, the light intensities for the sidebands are

- 226 -



- Traveling acoustic wave

Photo~detec r 3.____
-Transducer

FIG. 8.1--Configuration for simultaneous generation of the upper
and lower sidebands using a pair of Porro prisms.

given by

.......... +3S + S ID(o IDj81

1 0 (w.1)

where

n = order of the sidebands,
ID(W I + ns) = intensity of the n order sideband

Io(wl) =intensity of the incident light,

ID10 =the ratio of the diffracted light intensity and
1 the incident light intensity for a single

interaction.
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As an example, consider (ID /Io) z 0.5 , as was described in Chapter
1

VII; we have then

ID (Ul +rx)s(nl

I~(w~) =(0.5)T nl

the light intensity for the fifth-order sideband is of the order of 1.5%.

8.2 SIMULTAI\EOUS GENERATION OF THE UPPER AND LOWER SIDEBANDS USING

A PAIR OF OPTICAL CAVITIES

8.2.1 Irtroduction

Consider the configuration shown in Fig. 8.2. A suitable crystal

containing an acoustic column for Bragg diffiaction is inserted in a

pair of optical cavities (i.e., Fabry-Perot etalon). The axes of the

overlapping optical cavities are tilted by twice the first order Bragg

angle. The separation of the etalon is adjusted so that the axial mode

spacing of the etalon, C/2L , is equal to the acoustic wave frequency

f We assume that the cavities consist of four identical, partially
s

reflecting mirrors with sufficiently large area. The laser light couples

into the system from one end of the cavity 1.

The propagation of an acoustic wave in an elasto-optic crystal

produces a spatial and time-varying perturbation in the dielectric

constant (or the index of refraction). The relations between the change

in dielectric constant and acoustic power density, and the resonance

effect for various kind of crystals have been treated in Chapter VI. The

sidebands or the diffracted components are generated by the perturbed

part of the dielectric constant induced by the acoustic waves. Since the

frequency shifts of the sidebands are equal to the mode spacings of the

optical cavities, reinforcement in the intensities of the sidebands due

to multiple diffraction will occur. For example, from Fig. 8.2, the

incident light in cavity 1 first mixes with the acoustic waves to excite

the fiist-order sideband (the first-order diffraction) in cavity 2, while

the tran-mitted light, after reflecting back from the mirror, mixes w.ith
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FIG. 8.2--Configuration for the simultaneous generation of the upper
and lower sidebands using a pair of optical cavities.

the acoustic waves again to excite the first-order sideband in cavity 2.

The first-order sideband is strongly excited in cavity 2 because of

resonance, and by mixing with the acoustic waves again, the second-order

sideband is excited in cavity 1. The second-order sideband excited in

cavity 1 is also resonated. This mixing process continues to develop

so that we have a system with many modes or sidebands (both upper and

lower sidebands) coupled together.

The formulation of the "harmonic-osc!.llator-like" linear dif-

ferential equations for the mode amplitudes is given in Section 8.2.2,

and Section 8.2.3 gives their solutions and numerical results.
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8.2.2 Derivation of the "Harmonic-Oscillator-like" Linear Differential

Equation for the Expansion Coefficients of the Optical Fields

The technique of normal mode expansion given by Slater85 is used in

the following analysis. The expansion coefficients of the optical fields

within the cavities are time dependent and satisfy "harmonic-oscillator-

like" linear differential equations. They are coupled by the perturbed

part of the dielectric constant which is induced by the acoustic waves.

Figure 8.2 shows the configuration involved. For the case in which the

volume of the crystal is only a small portion of the cavity volume, we

ignore the effect of the crystal upon the normal modes of cavity 1 and

2, i.e., we use the normal modes corresponding to those without any

crystal present in the cavity; while for the case in which the volume of

the crystal is a large portion of the cavity volumn, we use the normal

modes corresponding to those with crystal completely filling the cavity.

In the filled cavity the waves will travel with velocity c/ I" and

in the empty one with velocity c ; otherwise the normal mode, expansions

are the same. We consider the first case here. This is approximately

-,he case when an L-band acoustic wave is employed as can be seen from the

example given in Section 8.2.3. Thus we assume E1 = C0 + be , where

C0  is the permittivity in vacuum and be the change of permittivity

due to the acoustic waves.

The acoustic waves induce perturbed displacment currents

and

36t

in cavities 2 and 1, respectively. Thus ignoring both optical and

acoustic losses in the crystal, we have the following two sets of Maxwell

equations for cavity 1 and 2, respectively:
-4

t x E = 0 (8.2)

1- (8.3)
6t 23 t
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V xE2  = t (8..4)= - LO --

V H2 = eo + -(86t)(8.5)

The terms 6/t(BeE1 ) and /at(BCE2 ) have been neglected in Eq.

(8.2) and Eq. (8.5), respectively, because, as will be seen, the

frequencies of these terms are nonresonant.

Following Slater's cavity perturbation theory, the fields are

expanded as follows:(1)

E -(z - (t)
11

(8.6)H2 (Z2 ,t) h ~ (t) H 2  (8.6)

b 1
b1

= zh (t) H22
H2z,)=b 2  b 2(2

(')Idealized one-dimensional cavities are assumed.
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and

TX Ee2 = Z 2 [kb f ( X%) :2dsj
b2 Ss X

H 2 J 21 k2h2 + ( H2)Eb 2dsj

2 S02

(8.7)

V 1 
1

1 sl

-H E k h (n x dH) )
101

The orthogonality relations are

E. dV - m 1  H.n dV = Mn

E En dV H H dV =
2 m2  n2

V2  V2

The mode amplitudes eb (t), eb 2(t) , b 1(t) and hb 2(t) are given
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by the following volume integrations:

" (t) = f E1(zlt) . (z9 dV
v 1

eb 2(t) = 2 (z2 ,t) • E2(z2 ) dV

2 2 (8.8)

h (t) = H(Zl,t) l(Z) dV
1 v

hb2 (t) H , 2 (z2,t) " _b2 (z2 ) dV

V2

In the above representation, the subscripts 1 and 2 associated with

the fields designate cavity 1 and 2, respectively; kb and kb2 are

the eigenvalues or the wave numbers of the mode b1 and b2  , respectively;

n is a unit vector normal to the outer surface of the cavity volume V ;

Ss and S are the short-circuit and open-circuit parts of the boundary

surface for the eigenvalue problem. Note that in the following analysis

the dielectric loss corresponding to the volume conductivity of the crystal

a is neglected. However, this effect can be taken ir4o account easily by

modifying the Q of the optical cavity.

The "harmonic-oscillator-like" linear differential equations for the

expansion coefficients will be derived in detail for cavity 2, then can be

written down easily for cavity 1. Substituting Eqs. (8.6) and (8.7) into

Eqs. (8.4) and (8.5), dotting with H , E , respectively, and inte-
a2  a2

grating with respect to the volume, we have

k a ea +1 P0 a f (nE) dS (8.9)

t S02

(8.10)
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where

(Ea2 Th Eb1 Ea2 b 1
V

c

Here V is the volume of the acoustic column.c
Now, by taking time derivative of Eq. (8.10) and eliminating ha2

from Eqs. (8.9) and (8.10), we have the following differential

equation for the mode amplitude ea2  in mode a2

1 2a 2 + k2 e 1 - -2 E 5I l

2 et2 + 2 e c2  2 *0 e
c b 1  0

-~= oi• ,4 X dS - k f (X a d

t 02 Ss2

(8.11)

where c2 ( Oe0)

A similar type of differential equation for h can be obtained by

eliminating e . The surface integrals appearingL in Eqs. (8.9) anda2

(8.10) contain two types of terms: (a) those accounting for energy

lost by radiation, in particular by the transmitted light, and (b) those

accounting for external optical fields incident on the cavity, which serve

to excite the cavity modes as they appear on the inside boundary wall of

the reflector. It is important to point out that in cavity 2 there is no

surface integral term which results from an external optical fields

incident on the cavity; but there does exist such a tcrm in cavity 1.

We assume the reflecting surfaces of the cavities to be sufficiently

large so that the axial modes are essentially TEM waves without diffraction

loss and the reflecting surfaces to be 'of "'short-circuit"-type for the

normal mode problem. The actual system can be charactetized by a reflection
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coefficient, r , for the field amplitude. Then, the electric and

magnetic fields on the inside surface of the reflectors are related as

n x E2 = Co l 0g (8.12)

Substituting Eq. (8.12) into (8.11), we have

k-dS k acp h •" dS
a2 20 r)l J b2J 2 a22S s 22 Y- b 2 Ss

(8.13)

This illustrates the coupling of modes a2  and b2  through the wall

losses. Using Eq. (8.10) for hb2 , Eq. (8.13) becomes

- f(n × 
2 ) " H dS

Ss

P~eb 2 5 S

-ka C (I7'.) 1 1b + XI kb el b Hb" Ha - dS
2 \1b J 2 [- \T2I 1 Th1/ ) '2 a.

b 2  6t It 1 s

(8.14)

We note that the normal mode boundary conditions have been assumed to be

short-circuit. Thus, the open-circuit surface integrals vanish in Eq.

(8.10) and in Eq. (8.11).

Using the coordinate systems as shown in Fig. 8.2, we have the

following normalized eigenfunctions (or the normal modes):

1 1
22 2 _f

sin k a  sin kal(- x sin e + z cos B
ALa1 1

a1 = even, 2,4,6,.

Ea1  (8.15)aI

3

cos = (2) cos kl(- x sin OB + z cos eB)

a1 = odd, 1,3,5,.
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22 n ,2z 2 e)
4) sin ka 2 sink (x sine +zcosBALa2a2 B B

a2 = even, 2,4,6,.

Ea = , (8.16)
a 2

1 1

( T) 2 2
cos k z 2 =( ) cos k (x sine +zcos e)

ALa 2 22 O o B

a2 = odd, 1,3,5,.

and

I

(2) cos k z, a = even, 2, 4, 6, .....
AL a1 11 evn2I, .

H (8.17)
a1  1

-) sin k z a = odd, 1, 3, 5. .....

1

A cos 2 2 2 even, 2, 4, 6, .....

H (8.18)a 2

1
22

(_) sin kaZ 2  a2 = odd, 1, 3, 5 ......

where

A = cross-sectional area of the cavity,

L = separation of the reflecting surfaces of the cavity,

k a- , i.e., k (al/L) , ka (a2n/L) , ...etc.
a L i . ka1  aa L 2

a,b = integers designate the number o half-wavelength in

mode a and mode b , respectively.
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From the given normalized eigenfunctions, the scalar products between

the eigenfunctions over S , which represents the loss terms due tos

transmission in Eq. (8.14), are obtained and tabulated in Table 8.1 We

note that the loss terms couple only between even modes and even modes

oi between odd modes and odd modes. The comaonly defined8 9 mode quality

factors Qa ' Qb in a cavity are

Q i ,ta , 1 i.b,(L+r) (8.19)
Qa2 2T1-pr I %2 r2l-

TABLE 8. 1

Modes J H dS
S H2 2

a = odd 4 for ja2 - b2 1 4 n

n = 0,1,2,..

b 2 =odd 4: - , for l a 2 -b 2 H'In+2,

a2 = odd 0 )

b2 = even 0

a2 = even 0

b 2 = odd 0

4
a2  even , for a 2 -b 2 = 4n

n = Oi,2,..

= even ,for a2 - b2I = 4 n + 2
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Using Eq. (8.19) and the results of Table 8.1, Eq. (.l14) becomes

- kf'(n X 2 ) Ha dS

Sas2

- Fl~ [.. \b (8.20)
b21 1 2 +t6 1) eb]2 1b21b2  b I1 0

where the summation El is taken over all values of b2  such thatb22

a2 + b2  is even. When we substitute Eq. (8.20) into Eq. (8.11), we see

that the second term in Eq. (8.20) is much smaller than the third term

of the left-hand side in Eq. (8.11) and hence can be neglected.

Furthermore, in the high-Q approximation, we might assume that any

driving trems at frequencies outside the passband of a given mode have

negligible effect on that mode, hence, for any of the modes a2  , we

have

1b2  a2

b2  2 t a t

Finally, Eq. (8.20) becomes

.)e

ka2j In x 2 ) ' H dS k - c Qa2 (8.21)

Finally, from Eq. (8.11), we have the following "harmonic-oscillator-like"

linear differential equation for the mode amplitude ea in cavity 2:

223 e 3e 32

a2 2 -1l 2- + w e + u a Q E -- = 02  a2  2  a2  2 2 b1 \1a 2
1  |b ebl

3t t b 0

(8.22)
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where wa = ka c . Note that in Eq. (8.22) the last term is due to

the coupling between mode a2 in cavity 2 and modes bI in cavity 1.

In the later analysis, we show that only two modes in cavity 1 are

coupled strongly to any mode a2  in cavity 2.

Following a similar approach, the "harmonic-oscillator-like" linear

differential equation for the mode amplitude ebl in cavity I is obtained

as follows:

2 eb1  2 6e bl 2L -,1 [A i 2 )
+ eb UQb - + +- E

at 2 b 1 1lb1 -- 6t2 aa a

1 -1 e~wt)(8.23)

2t -b ;7t

where =o kb c • The term in the right-hand side of Eq. (8.23) is
I

due to the incident external field transformed to the inside surface of

the reflector. Here e(wt) the electric field of the incident external

field appears on the surface of the reflector; and the factor 1/2

appears due to the fact that only one surface of the cavity 1 is subjected

to external excitation.

Now, we come to evaluate the coupling terms (Ea 86 ) • It is

assumed that the acoustic wave is resonant and 2 0 1

A sin x cos t = sin Kx -- e + c.c. , (8.24)

where

= frequency of the acoustic wave,

Ks  = wave number of the acoustic wave,

vt = velocity of the longitudinal acoustic wave,

Ae = amplitude of the permittivity perturbation due to acoustic

waves.
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We Vurthermore designate the spatial part of 6e/eO as

e 0 s.p

and we have

sin K x

I0 s.p

Using the eigenfunctions given in Eqs. (8.15) and (8.16), we have for

the case b I = even , a 2 = odd ,

Ka2 0 J~ 1b)
2 f(os k k(x sin eB + z cos VI [sin KxJ

[sin kb(- x sine + z cos %) dV

= - Z/2  o{ + k sin e -k sin %)x

+ (ka cos % +k COl eos)z }

+ cos(-K+% sin %+k sin 3)

+ (k cos eB - kb cos2 1

- cos(K + ka sin + ki sin %)x

2 2

+ (-k cos k co
1 2 OB Z

"COSA('Ks + k al sin eB + kb12 sin OB)x

-cosf(-Ks - 1%1sin eB+ k a2sinx

+ (kb cos B + k 2 cos B)z}I dz (8.25)
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where the relation dV = Adz is used. To have strong interaction, the

Bragg condition must be satisfied:

Rb sin eB + k a2 sin eB = K s( .6fkb en sis=K (8.26)

kbcos % = k cos qb a2 B

Thus only the second term in Eq. (8.25) is independent of x and z ,

and hence will contribute dominantly; others can be neglected. We have

-F* T dz(8.27)

a 0 S .P -L/2

The integration can be carried out similarly for other cases. The results

are given in Table 8.11.

TABLE 8.11

Mode Ka2 bK>
0

bI = even -

a 2 = odd

b I = even -0

a2 = even

b I = odd
- 2L

a2 = even

bI = odd -0

a2 = odd

- 241 -



With (' 2EI/els Eb, evaluated for various cases, they can be

put into Eqs. (8.22) and (8.23), and the summation performed with respect

to b and a2 , respectively. Since the coupled frequencies are

specified by

±a2  = mbI 1 ±s for cavity 2 (8.28)

= CU + W for cavityi , (8.29)
1 2 s

we see that only two modes of % couple strongly to each mode of wa2

and only two modes of %a2 couple to each mode of ,bl I i.e.,

b I  = a 2 - 1 (8.30)

a 2  = b 1 ±1 , (8.31)

since the spacing of the resonator modes is assumed to be w . Finally,

Eq. (8.22) becomes

2 2e ( ,-e ea2 2 -1 3e 2 be8~

2 + Caea,2 + + 2(et2L t e0t .P

(8.32)

where We/ 01t.p designates the time-varying part of be/e0  in Eq. (8.24),

and for convenience we replace the notation a2  by a,2

To take the dielectric loss into account, we simply replace Qa by
-1 = ~ l -l

the loaded Q of the cavity, Q where Qa1 =  + Qad ; Q is
aLaL a ad ~ad i

the equivalent material Q of the crystal, taking the volume ratio of the

crystal and the cavity into account.
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To conclude this subsection, we write down the differential equation

corresponding to Eq. (8.23) for the mode amplitude ebl in cavity 1:

2 e 2 - l +b,+ ( )a ( + bl

1 ~ a%% (8.33)

8.2.3 Recursion Formula for The Pertinent Mode Amplitudes and Their

Solutions

In order to simplify the manipulation, we modify the notation for the

cavity modes in the following analysis. We assume that the frequency of the

exciting laser (drive frequency), wd  , corresponds to that of the mode

b = d in cavity 1, i.e., (d,1 , and designate the order of sidebands

from cd by the letter n . Using this modified notation, the pertinent

mode amplitudes in cavities 1 and 2 are defined as follows:

j(wd + ~

%,i= Ebl exp + c.c. (8.34)

( n even)

ea,2 = Ea,2 expi(wd + rws)t + c.c. (8.35)

(n odd)

JVd

ed Ed expd + c.c. (8.36)

be Ae jW st
= - exp + c.c. • (8.37)

Ot.p 2

The conditions on n in Eqs.(8.34) and (8.35) are clear from the coupling

selection rules in Eqs. (8.32' and (8.33) or from the physical considera-

tions of Section 8.2.1. Upper sidebands are denoted by positive values
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of n and lower sidebands by negative values; Ed designates the

amplitude of the driving field; Eb, 1 and Ea,2 designate the mode

amplitudes in cavity 1 and 2, respectively. As a matter of convenience

the mode amplitudes will be labeled only with the sideband subscript,

i.e., E . There is no ambiguity; n even indicates cavity 1,n

n o, l indicates cavity 2.

Substituting Eqs. (8.35) and (8.37) into Eq. (8.34), we have the

following recursion formula:

En-1 + ×*En+ 1 + JE n 0 • (8.38)

kn oaa)

For the cases of interest, ncos << , and the following approxi-

mations have been used:

Qn - Q n' (8.39)

and

X = - n Q- - nt (8.4o)

4L 4L

for all n and n' . Equation (8.38) applies when cud corresponds

to an odd mode in cavity 1, i.e., d = even ; when the drive is applied

to an even mode we have to replace X zand X* by -X and -X*

[Eq. (8.32)).

Similarly, substituting Eqs. (8.34) - (8.36) into Eq. (8.33) and

using the approximations given in Eqs. (8.40), we have the following

recursion formula for the pertinent mode amplitudes in cavity 1:

XE + X*E JE = 1 (8.41)
n-i n+1 + n 2 iE8nO

( n even)

Again we have to replace X and X* by -X and -X* when the drive

frequency w d corresponds to an even mode in cavity 1.
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To obtain recursion relations between the mode amplitudes of cavity

1 only, we substitute Eq. (8.38) into Eq. (8.41). The substitution

results in the followiing recursion relations:

X2 E_ + 2E- + (i* + 2 1X12 ) En 1 8n (8.42)
n-E2  n+2 2 ~8

( n even)

To solve Eq. (8.42) for the mode amplitudes, we define the normalized

mode amplitudesoy9)90 as

or

E 2 E(*X*)nl (8.43)
-n 2 dn

Substituting Eq. (8.43) into Eq. (8.42), and utilizing the fact that

E n= (-1 )nE1 n from Eqs. (8.4o) and (8.41)], we have

21XI Re g.+ (l + 21IX1 2) go - (8.44)

1%~xi 4 n + (1 + 21X 12) g1.n + gn-2 -0 , (8.45)

where Re designates the real part. Let g n qn ,then Eq. (8.45)

leads to

1 4q 4+ (1 + 2 1X12 ) q 2 + 1 0 .(8.46)

The roots for Eq. (8.46) are

q2 /(1 + 21XI ) ; -4IX'(.7
1 2~ 2 X 1)(.7
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and

q2 ( + 2X1) +Nl+4I2 (8.48)

Since

E-n (,*)n = q n(*)n

E d

must approach to zero as X* approaches to zero, only the root q 2 is

valid. Furthermore, there are two roots for q in Eq. (8.47) and in
n ., n Sneni vn ehv

general we shall have gn = A1q1 + Alqln . Since n is even, we haveqn = 'nl,~.
q l n = and g can be written as Aq n i.e.,

(( + lx×i) -Z/ i+ 4×i
= Aq = A(j)n 2 2 4 /2 (8.49)

The constant A is determined by Eqs. (8.44) and (8.49) with n = 0

and n = 2

A (Y/l + 41 1  (8.50)

Finally, from Eqs. (8.43) and (8.49), the mode amplitudes in cavity 1

are obtained:

(n 0,2,4,...)

(( X 21 2) n/2
= gn(X*)n = (j)n (85+ 1) -I18+)

Ed ( 24
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and for n = ,

0- - _ - ( + 41x ')-  (8.52)
Ed

Equation (8.52) shows that as the coupling parameter lXI increases, the
exciting mode or carrier mode E0  decreases:

For large lXI ,

E -_n _( )n 1 . ( .5
(8.53)Ed21XI XSEd

or

E-_ l (j)n (8.54)
Eo

for small jXI ,

E-n (J)n (X) n  (8.55)

SEd

or

E n- (j .n (×*) .(8.56)
Eo

From Eqs. (8.53) and (8.54), we see that as IxI becomes large, all of

the sideband amplitudes are inversely proportional to IXI , and have

the same amplitude. Furthermore, from Eqs. (8.55) and (8.56) we see

that as IXI becomes small, the amplitude of the nth sideband is smaller

than that of the carrier mode 
by a factor (X*)n
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Finally, combining Eqs. (8.38) and (8.51), the mode amplitudes in

cavity 2 can be obtained:

n )n ( 1 - - 1' + 4 1 "X ) &( 1 + 2 1 _I2 ) - + 4 1 . ) (n -

_lEd =  (j Xn (V) q-2 X) n - l 2X57

n = odd, 1,3,5,...

For large lXI

E -n ( n 1 X - l (8.58)
lEd 2X

or

n

EoEfl 4(j (8.59)

n - (j)n (X)I(.0
For small lxi

E n
-n (j)n (X) (8.6o)

I-Ed

or

E
E0

The description given by Els. (8.58) - (8.61) is similar to that given

by Eqs. (8.53) - (8.56). They indicate that there exists some value of

X for maximum intensity in a particular sideband. The optimum values

of X are obtained by maximizing E n/ Ed in Eq. (8.51) if we are

interested in the modes of cavity 1; and maximizing E n/ Ed in Eq. (8.57)

if we are interested in the modes of cavity 2.
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Taking the derivative of En/ Ed with respect to lXI , we have

the following values of IXI for maximum sidebands intensity in cavity 2:

16 xI 4- 4(n)2 xI 2- (n) 2  = o (8.62)

n = odd, 1,3,5 . . .

or

I×I : (n) [(n) +-q4 + (n)] •8.3

lx I=2-2 (8.63)
2

The first sideband corresponds to n = 1 ; the first sideband has maxi-

mum" intensity when

XI+ o.636

and from Eq. (8.57) the intensity is

1-626) 12

(i) (1.62(2 x 0.636) 0.09

Thus the first sideband in cavity 2 has a maximum intensity of 9%. For

n = 3,,..., the sidebands intensity are 9 x 2 "2(nl) in cavity 2.

The corresponding n-i sidebands intensity of the even modes in cavity 1

are determined from Eq. (8.51) as 38 x 4 .5- (n-i) for n = 3,5 ....

Similarly, taking the derivative of En/:Ed with respect to IXI

we have the following values of lxi for maximum sideband intensity in

cavity i:

4 22 2

16 I×1 - 4n 21xi2 -n 0 (8.64)

(n : 2,4,6,...)

The problems of inducing lIx by means of acoustic waves are treated
in Chapters VI and VII; here we simply point out the possibility of

inducing lXI of the order of 0.636 or larger. Using a He-Ne laser
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(x = 6328 R, cd = i x l10 rad/sec), SrTiO 3 crystal, acoustic waves of

800 Mc/sec and reflectors with reflection coefficient P = 0.95, we have

231 l5 m- 1
- -l

c

L - = 18.8 cm
2f

S vk T - _ 2.8 x 1o0
Qb i -- Q-b , 1 = Qa,2 =t Q-a,2 r

For SrTiO 3 crystal, we have 6e = 2.3 S (S is strain). With strain in

the order of 5 x l05 , which requires only 10 watts of rf power

(assuming an acoustic beam with Z? = 0.2 cm and a ZnO transducer with

-11 dB conversion efficiency, see Section 7.3), Ac is in the order of

11.5 x 10"5. Thus we have

x o.86
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APPENDIX A

1. Frequency Shifts in The Reflected and Transmitted Wave

K, sin ai = J sin r = Kt sin 1 a I (A.1)

+ + KV cos a, = r Vcosa r= + KtV cos a

1 -2 . (A.2)

From the first set of equations of (A.1), we have

cos ar sin 2ai (A.3)

Substituting (A.3) into the first set of equations of (A.2) gives

1- P- sin 2 i

= r (A.4)

(r I + PC Cos a

Solving for wr/ i , we have

(l + e c2 P + 2pc cos a
(0 a) 1 (A.5)r 2- glc

and

1% = -~K cosa = fW7 co rYx r r Cos %

i.e.,

+ glCelc 2 2 ) cos cl + llC (A.6)
Krx r i -2lelc 2(2
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Similarly, substituting the second set of equations of (A.1) into

the second set of equaticns of (A.2), we have

= + 12 +Wt (A.7)
co

and furthermore,

2 (a t + 2 co 2't-.2 t + X2 (t + i-P2 cos )2t)

=o ) 0 . (A.8)

.2 t 2 (
c

Combining Eq. (A.7), (A.8) and the second set of equations of (A.2), we

have

- )(P2. 1) + X2c2(P - P)2] 2
-2 2 t

- 212 [(1 - 2 + xc 2
2( - )] W (A.9)

2)(12 2 +2 ~ ~2 2 2) = 02 1 (r +2) ×2c 2 2- (L- +2/- # 2 2 . --

giving

(2)1,2 - 2)  2. 22 2.

(1 - p2) - c2  (P )0
2

(A.10).

The root corresponding to the upper sign will be chosen, as this

corresponds to transfer of energy from the interface.

Substituting (A.10) into the second set of equations of (A.2), Ktx

is obtained:
2 2L+ X2c2  X 2c2  1 -cX2 0 2 ) -

x(1 - 02) 2 -2)

2 c2)

(A.n)
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2. Amplitude Changes in The Reflected and Transmitted Waves

In medium 1, the following relations hold:

(A.12)

H

B1  =

D r

(A.13)

Br 41r

Recalling that Kx = K cos i Kr x K cos Cr and Kx =Kt cos at

we have

Bi El

Biz = I
I1

B iix - i

i (A.14)

H =Kix E

1z

Hix
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and

K
B -Srz U) r

rx r

H z rx Er
rz 1

H I=
rxr

In medium 2, the MinKowski relations reduce to:

Dt+1 Ht cos at = G2 Et + cc p2  c6s at (A.16)

Bt 1 (A.17)

The boundary conditions are

Bx medium I2. x medium 2 (A. 18)

D =D
medium I x medium 2 (A.19)

medium 1 E y~ medium 2 X (Bmedium 2 - B medium 1)> (A.20)

Hzmediu 1 H z medium 2= Cv (5 medium 1 D medium 2. (A.21)
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In this case, we have

Ey medium = Ei + Er (A.22)

Ey medium 2 = Et (A.23)

r= Bmedi2Jy cpBt cos at (A.24)

Sedium C(BCosa r Cos ) (A.25)

( Xmedium = C 1Ei - c 1 p Er (A.26)

(V medium 2)y = c3 Dt (A.27)

Ki K
Hz medium 1 = Hiz + H = K Ei + rx Er (A.28)

HZ medium 2 = Htz = Ht Cos a t (A.29)

From (A.18), we have

Btz = Bt cos a = Ktx + . (A.30)
Substituting (A.30) into (A.16), (A.17) and solving for Dt and Ht

in terms of Ei , Er , and Et  , gives

E i ,givesP

2 Ktx + E ( Cos
H ) os 2 - 2 C os a t 7 ) 1w 2 2 t 2 C at)Htz -Ht costt 2 'E t + i / r-2(l - C t 2 (l - P2 cos a)

(A.31)
COB ac

2
) Ktx 2(±2e2 c - ) (Ei Er

Dt ("2 2 Et + 2
p Cos a) t cp2 (l - P2 cos att)
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Finally, substituting (A.22) - (A.29) and (A.31) - (A.32) into

(A.20) and (A.21), two simultaneous equations relating Ei ) Er and

Et are obtained. They are given in the main text as Eqs. (3.19) and

(3.20).

2.
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