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ABSTRACT

In this study the interaction of electromagnetic and acoustic waves
with moving reflectors in solids was Iinvestigated. The first part of
the study contains theoreticel predictions of the frequency shifts and
amplitude changes of an electromagnetic or acoustic wave after inter-
acting with a moving interface between regions of different character-
istic impedances or a series of such moving interfaces, termed the
"Moving Reflector Theory." The seccnd part contains experimentel re-
sults concerning the diffraction of laser light using kilomegacycle
acoustic waves in solids. The latter is considered as & specific case
of the general theory developed in the first part.

The theory predicts that a high frequency amplification or deampli-
fication of an electromsgnetic wave can probably be obtained more easily
by reflecting from a moving interface or s series of moving interfaces
which are induced by sending an electromagnetic pumping signal into a
nonlinear material (e.g., ferroelectric or ferromagnetic erystals).

The theory also predicts that a frequency shift which oceurs in a wave
(transmitted through a moving nonabrupt interface) is independent of

the width of the interface and the conversion of a longitudinal acoustic
wave to a transverse acoustic wave or vice versa in a ferromagnetic
material. Seversl kinds of Doppler shift experiments are proposed.
Various similarities with and distinctions between the moving reflector
theory and the conventional parametric amplification theory are dis-
cussed.,

Various ways of enhancing the amount of diffraction were employed
to achieve & large diffraction. Using a suitable single crystel (T102)
and a high-efficiency transducer (Zn0 wafer) giving a ribbon-shaped
acoustic beam, it was possible to diffract in the first-order 10% of
the incident light using 15 watts of cw rf power, and 60% diffraction
was achieved with & pulse 60 watts peak power source. The possibility
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of «.!ffracting such a large percentage of the light obvliously has a x

number of possible device applications. In the high power experiments
additional diffracted spots of light (second- and third-order) appeared;
thes2 are also compared with calculated velue. The measured enhancement
of the diffraction intensity due to acoustic resonance was shown to be
in good sgreement with the theoretical prediction, Measured and calcu-
lated diffraction patterns from multiple acoustic beams in one crystal
of SrTiO3 are given. They both show the characteristic shape of a
miltiple~slit diffraction pattern in opties., The measured frequency
shift in the diffracted beam is shown to msgree with botl. the moving
reflector theory and the parametric principle., Finally, two schemes

of using multiple diffraction to shift the laser frequency by integer

multiples of the acoustic wave frequency are analyzed.
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CHAPTER I

INTRODUCTION

This study reports the results of a theoretical and experimental
investigation of the interasction of waves with moving reflectors in
solids. It 1s divided into two parts: The first part contains theoretical
predictions of the frequency shifts and amplitude changes of an electro-
magnetic or acoustic wave after interacting with a moving interface between
regions of different characteristic impedance or a series of such moving
interfaces, and the second part contains experimentsl results concerning
the diffraction of light using high frequency acoustic waves in solids.

The latter can be considered as a specific case of the general theory
developed in the first part.

The frequency shift in any kind of oscillation resulting from the
relative motion between a transmitter and a receiver is generally termed
the "Doppler Effect.” The Doppler effect itself has long played an
interesting and beautiful role in theoretical physics. However, the appli-
cation of this effect has not been explored in detail. The importance of
the Doppler effect in applications is well illustrated by the fact that
any kind of wave, when reflected from a moving reflector (e.g., 8 moving
mirror), is shifted in frequency and changed in amplitude. This phenomena
is termed the "Double Doppler Effect."l In generel, the closer the
velocity of the reflector to that of the wave, the larger the shift in
frequency and the change in amplitude.

Landecker2 first examined the possibility of frequency multiplication
end wave amplification by reflection from a fast electron cloud. He
specifically considered the possibility of genereating e millimeter wave by
reflecting an X-band microwave signal from the relativistic electron beam
of an electron accelerator such as & betatron.

Fainberg and Tkalich3 first discussed the reflection of monochromatic

waves from an electron plasma (nonrelativistic beam) moving in a dielectric
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medium. It was shown that by using a slow-wave structureB’h significant
changes in frequency and amplitude mey be attained even with nonrelativistic
beams. The possibility of further enhencement of the changes of frequency
and amplitude through the use of multiple reflection was pointed out by
2 and Ginzton.6 An experimental demonstration on the effect of
multiple reflection using a plaesma “piston" wes reported a few years 1ater.7
Due to the complexity and high cost inherent in Landecker's approach,
end the uncertainty end difficulty in controlling the plasma involved in
Fainberg and Tkelich's approach, the usefulness and practicality of these
two methods seem limited. A third approach is given in this study., It is
shown that a high frequency amplification or deamplification of an electro-
magnetic wave can probably be obtained more easily by interaction with a
moving interface or a series of moving interfaces which are created by
sending an electromagnetic pumping signal into a nonlineer material
(e.g., ferroelectric or ferromegnetic crystals). This is because both the
pumping signal and the small signal are electromagnetic in nature. With
the sophisticated microwave techniques presently existing, the experimental
technique required for this approach seems simpler than the employment of

Fainberg

an accelerator or plasme. Furthermore, an interesting and simple physical
picture is provided by the third approach.

In Chapter II, vaerious aspects of relativistic and nonrelativistic
Doppler effects for electromagnetic waves are discussed. In addition, a
few applications of the Lorentz transformation, and the consequences of
the transformations, are illustrated. They serve both as the background
and the stimulus for the development of later chapters.

The approach for the derivation of the changes in frequency and
amplitude of an electromagnetic wave interacting with a moving abrupt
interface is outlined in Chapter III for the most general case. The
deteiled calculations are given in the appendix. The rest of Chapter III
contains a detailed derivation of the changes in frequency and amplitude
for the case in which normal incidence and the motion of only the inter-
face is considered. A physical picture for explaining the frequency shifts
and amplitude changes using the transmission line ahalogy and the para-
metric principle is also given in Chapter III. Chapter III extends the
application of the basic results, which are derived for an abrupt
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interface, to the cases of gradual impedance tapers and series of inter-
faces induced by dc and rf pulses or & series of dc and rf pulses. The
effects of frequency dispersion of & medium upon the frequency shifts are
also discussed. Chapter III concludes with the analysis for the compres-
sion of EM waves between two moving conducting plates.

The application of the general theory of Chapter III to the compres-
sion of EM waves in ferroelectric and ferromsgnetic crystals ‘is illus-
trated in Chapter IV. Proposals for experimental configurations and
surveys of promising ferroelectric materials for this purpose are also
contained in this chapter. The conversion of longitudinsl acoustic waves
to trensverse acoustic waves or vice versa, in a ferromagnetic material,
which is an excellent application of the genersl theory developed in
Chapter III for the transmitted wave, is also given., This approach
results in a device termed "Trensmission-type Doppler Frequency Converter."
The feasibility of the various kinds of Doppler shift experiments described
is 1llustrated by giving two examples of the Doppler shift experiments
appearing in the literature,

Chapter V extends the application of the general theory developed in
Chapter III to the case of a semi-infinite periodic struecture. The
distinctions between the moving reflector theory and the conventional
parametric theory are discussed., A moéel for the energy balance between
the pumping signal and the small signal in a nonlinear dielectric is also
given in Chapter V.

The second part of this study starts with a brief survey of the
general theory of light diffraction using high frequency acoustic waves.,
The asgreement between the frequency shift in the diffracted beams, as
determined by the geperal theory of this report (i.e., moving reflector
theory), and that given by the generalized Raman-Nath theory is shown in
ihe beginning of Chapter VI. It is followed by the calculation of the
diffraction intensity using the method of "Rey-Tracing and Cascade

Neiworks,"

After comparing the diffrecting power of various kinds of
crysials which one might use, various ways of enhancing the amount of
diffraction are discussed. A theoretical anslysis which determines the
enhancement of the diffraction due to acoustic resonance (with some

numerical values) 1s also given.




Chapter VII gives the results of various kinds of Bragg diffraction
experiments. Using & suitable single crystal (Tioe) and & high-efficienc
transducer (Zn0) giving a ribbon-shaped acoustic beam, it was possible to
diffrect in the first-order 10% of the incident light using 10 watts of
cw rf power, and 50% diffraction was achieved with a pulsed 60 watts peak
power source. The possibility of diffracting such a large percentage of
the light obviously has a number of posslble device applications. 1In
the high power experiments additional diffracted spots of light (second-
and third-order) appeared; these are also discussed. The measured
enhancement of the diffraction intensity due to acoustic resonance was
shown to be in good agreement with the theoreticel prediction. Measured
and computed diffraction patterns from multiple acoustic beams in one
crystal of SrTio3 are glven. They both show the characteristic shape
of a multiple-slit diffraction pattern in optics. Finally, the measured
frequency shift in the diffracted beam is shown to agree with both the
Doppler shift principle and the parametric principle. Finally, two
schemes of using multiple diffraction to shift the laser frequency by
integral multiples of the acoustic wave frequency are analyzed (in

Chapter VIII).
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PART I

CHAPTER II

LORENTZ TRAN¥(RMATION OF ELECTROMAGNETIC WAVE QUANTITIES

Doppler effects occur due to the relative motion between the trans-
mitter (source) and the receiver (cbserver). If the frames S and S!
are attached to the source and the observer, respectively, the results
of Doppler effects can be easily obtained by the space-time transforma-
tion, i.e., Lorentz transformation, between these two inertial frames,
for the case of a constunt relative motion. The transformation of the
various electromagnetic wave quantities between two inertisl frames can
be most easily obtained by using the four-dimensional vector and the
four-dimensional tensor formulations.8 In the following sections, some
well-known results are illustrated and some less widely known results
which are not available in the literature are derived. They serve both
as the background and the stimulﬁs for the development of later chapters.

2.1 DOPPLER EFFECT EXISTING BETWEEN TWO INERTIAL FRAMES WHICH HAVE
REIATIVE VELOCITY V IN VACUUM

The Lorentz transformation for the coordinates of space and time
between two inertisl frames which have a constant relative velocity V ,

a3 shown in Fig. 2.1 is

%!
x! + Vt? t’+V'—2-
c
x = , Y=y s,z =2, b=
v v
l1-—5 l1-—
c c
(2.1)

where ¢ =1 Ko€o 7 is the velocity of light in vacuum (po is the
permegbility of vacuum, eo is the permittivity of vacuum).




(G

FIG. 2.1--Two inertial frames with constant velocity V parallel to the
x and x' axes.

We now define T to be ict. The vector, with components x , y ,

z , T 1is called the four-dimensional radius vector.  Denoting its

components by x, , where i =1, 2, 3, 4 , so that X=X , Xx=y ,

Xy =2 , X =T=1ict , the systems of Egs. (2.1) pecomes

._-Y_: 3 ~X|
xp = 1cx) ' Xp + 1 e X

X, = sy X, =XxL  , x,=x} sy X =
1 v 2 c 3 3 ,'" v
l-—= l-‘—é-
c c
(2.2)




To express the primed components in terms of the unprimed components
we simply transform V to -V and change the primed to the unprimed,
the unprimed to the primed.

In general a set of four quantities Al s A2 » A3, Ah , which under
transformations of the four-dimensional coordinate system transform like

the components x, in the system of Egs. (2.2), is called a four-

i
dimensional vector Ai .~ Thus, under a Lorentz transformation, the
Ai transform as follows:
\4 v
| -— At J -— Al
Al i 5 Au Ah + 1 5 Al
A, = ; As = AL , A, = Al , A =
1 ” 2 2 3 3 4 W
-3 -3
c c

(2.3)

For a monochrometic electromaggegic wave propegeting in free space

ej(wt-K-r) , where T 1is the space-radius

the wave quantities vary as
vector. Since the phase ¢ =at -K -7 of eny wave is invariaent to a
Lorentz transformation,gwave vector R? and ‘the frequency w form a four-

dimensional wave vector Ki with components

K o= K o, K =K , K=K Kh_=i%..... . (2.4)
Thus, the X, in system (2.4) transform from one inertial frame to
enother like A, in system (2.3)

Now we derive the Doppler effect for the simple and important
configuration shown in Fig. 2 2. A monochromatic electromagnetic wave
of frequency w , with the wave vector K at an angle O with respect
to the x axis and in the x-y plane in the inertial frame S , will
have frequency @' , with the wave vector K' at an angle Q&' respect
to the x' axis ip the inertial frame §' . By substituting (2.l}) into
(2.3), and using the r=lation K& = K cos @ = wfc cos @ , we have the

following exact formulas for the Doppler effect and the aberration. The
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FIG. 2.2--The Doppler effect between two inertial frames.




direction of & light ray depends on the velocity of the light source

relative to the observer. The phenomena is called aberration:

1+ !'cos al
c
o = o (2.5)
\'f
l-=%
c
cos Q' + V/e
cos & 1+ V/e cos Qf (2.6)
]
% sina = %?-sin ot . (2.7)

By using the inverse transformation, Egs. (2.5) and (2.6) can be
replaced by

Vi- v2/cE
w = o (2.8)
1~ V/c cos @

cos & - V/e 2.9)
cos Q' = . 2.9
1 - V/c cos

The advantage of Eq. (2.8) is that the frequency ' measured by an
observer in the inertial frame S' 1is given in terms of the parameters
measured in the inertial frame S

When V/c << 1 and orders higher than the first in V/c are
neglected, Eq. (2.5) becomes

w = o'(l+ V/e cosal) . (2.10)




Expression (2.10) is called the nonrelativistic Doppler effect or classi-

cal Doppler effect. But when V/c is not much smaller than unity, we
have

2 3 4
w=o |1+ Ve cosa'+%—(l) +-2]=(X-) cosa'+%<%) + e (2.11)

J
2
The terms result from (V/c)” or higher in Eq. (2.11) are called the
relativistic Doppler effect.
We further notice that, when Qi = 90o , We have

w = o s (2.12)

and when Q' = Oo

w = (D' v . (2-13)
Ql o
[

Equations (2.12) and (2.13) show the so called "Transverse Doppler Effect 0
and "Longitudinal Doppler Effect,"lo respectively, and that the second
order relativistic Doppler effect is independent of &

It is important to emphasize that the velocity of macroscopic objects
is much smaller than the velocity of light, so that the relativistic Doppler

effect is hard to observe.
2 2 MIRROR EFFECT IN VACUUM

As an illustration for the Doppler principle given in the first section,
the well-known mirror effect will be derived here by a double application of
the four-dimensional wave vector transformation between two inertial frames.

Consider a perfect mirror moving with a velocity V in vacuum as

shown in Fig. 2.3. A plane light-wave of frequency Wy whose propagation
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Moving mirror
Y ¥y ‘/‘/—

N

FIG. 2.3--The configuration showing the mirror effect.

direction makes angle ai with the x-axis and on the x-z plane is
incident upon this mirror. We imegine an inertial 'frame attached to
the moving mirror S' . By transforming W, and ai to the frame
S' [from Egs. (2.7) and (2.8)], we have

Vi - Ve/c2

w, = (2.14)
1 iy, V/c cos o

1
and
1
! !
—sin@, = -=sina} . (2.15)
c c
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Secondly, by transforming wi and ai to the frame

reflected wave, we have

V1-vP/e? Vi - Ve

©w, = o = !
i

*'1-v/c cos(x - a,) 1+ V/e cos o

and

w w!
T i . 1
—sina, = —sinaQ, »
. T i
‘ ¢ c

using Snell's law. By combining (2.14) — (2.17) we have

<:>£ _ 1- V/c cos Oti
w; 1+ V/e cos @
and
wr sin Otr = wi sin ozi

S for the

(2.16)

(2.17)

(2.18)

(2.19)

Equations (2.18) and (2.19) can be combined to find wr/a)i in

terms of ozi only. After some algebraic manipulation, the well-known

results are obtained as follows:

w, 1 - 2V/c cos @, + V2/c2
— = 2, 2
Wy 1-V/e
2
cos @, - 2v/ec + (V/e)” cos o,
cos Otr = - )
1 - 2V/e cos Q + (v/e)

- 12 -
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and

[1- (V/c)2] sin @,
sina, = — s (2.22)
1 - &V/e cos ; + (V/c)

For the case V/c <1 , Egs. (2.20) — (2.22) have the following

approximate forms:

o
L~ (1 - 2v/c cos ai) (2.23)

w

i

2
cos &, = - cos &, + 2V/c sin” @, (2.24)
and

sina, = (1 + 2v/e cos ai) sin o, . (2.25)

Finally, for the case of normal incidence (ai = 0) , Egs. (2.20) -
(2.22) reduce to the following simple relations:

i\ 1-V/e
Lo e (2.26)
Wy 1+ V/e
and
@ = s (2.27)

and o, =o(1 - 2V/c) when V/e <<l .

It is important to notice that the results given in this section are
for the case when the mirror recedes from the incident wave. The frequency
of the reflected wave is down-shifted. When the mirror approaches the
incident wave the appropriate results are obtained simply by changing V
to -V 1in all of the expressions given in this section. The frequency

of the reflected wave will be up-shifted in Lhis case. We further notice
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the velocity of a real material mirror will in practice be much smaller
than the velccity of light so that the frequency shift of the reflected
wave will be extremely small. In contrast to this, in & meterial medium
such as we shall analyze herein the moving reflector is considered to be
induced through nonlinearity by a pumping electromagnetic wave or elastic
wave. We shall see that the velocity of the moving reflector can be
either smaller, or approximately equal to, or larger than the phase
velocity of the small-signel electromagnetic or elastic wave concerned.
Thus the "Double Doppler Effect'" (or the Mirror Effect) in e material
medium can in principle be large in a nonlinear maeterial medium.

To conclude this section we mention that the mirror effect can be
more eusily and directly derived by the principle of "equality of phases,”

as will be shown in the next chapter.
2.3 DOPPLER AND MIRROR EFFECTS IN MATERTIAL MEDIA

We have discussed the Doppler and mirror effects in vacuum in the
previous two sections. Ve shall describe briefly in this section these
same elfects in a material medium. For a monochromatic electromagnetic
wave propagating in a continuous meterial medium with permitgigity €

and permeability p , the wave quantities vary as ea(wt - K1) » where
; is the space-radius vector. The wave vector K and the frequency o

again form a four-dimensional wave vector2’8 Ki with components
. D
K = K ) K2 = K F} K3 = K E KLI- = 1 E' . (2.28)

Thus the K, in system (2.28) also tranform like A, in system (2.3)
under Lorentz transformation. To derive the Doppler effect existing
between two coordinate frames such as Fig. 2.2, we simply substitute
(2.28) into (2.3) and use the relation K = K cos & = w\ue cos &

We give only the frequency transformation here:

(L+V *Ype cos a')
» = o . (2.29)

\/1 - (Vz/cef

-1 -
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Using the sbove formula for frequency transformation twice, the
mirror effect in a material medium can be found in the same way as in
the vacuum case. For s monochromatic electromsgnetic wave normally
incident on a perfect moving reflector with velocity V in a material

medium, the frequency in the reflected wave is

o, L+nad 1+

1-VVgue 1- V'/vp

(2.30)

where v_= is the phase velocity of the electromagnetic wave in

the material ggia. Equation (2.30) is for the case when the reflector
moves against the incident wave. Since the phase velocity of an electro-
magnetic wave is reduced by a factor (the index of refraction) in a
material medium, we immediately see from Eq. (2.30) that a larger fre-
quency shift can be obtained in a material medium than in vacuum for

the same reflector velocity.

In Chapter III we will glve a detailed derivation, using the
principle of "equality of phases,” for the frequency shifts in the
reflected and transmitted waves due to a pertial reflector in a material
medium.

Another kind of Doppler and mirror effect which is of interest for
this investigation is that for the case of elastic waves. The four-
dimensional wave vector approach is applicable in the case of elastic
wayes as well as in the case of electromagnetic waves.ll Thus the
frequency of a harmonic elastlc wave transforms according to Eq. (2.31)

under Lorentz transformations (i.e., Doppler effect):

Y cos ar)

(1 +=
¥
w = o' . (2.31)
v
1-=
c
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The notation used in the case of electromagnetic waves is carried
over to the case of elastic waves. We note particularly that v
denotes the velocity of the elasti: wave in the medium. The corresponding
mirror effect for elastic waves can be easily obtained using the principle

of "equality of phases" as will be demons.rated in Chapter III.

2.4 LORENTZ TRANSFORMATION OF THE ELECTRIC AND MAGNETIC FIELD
INTENSITIES

According to the "Principle of Relativity," Mexwell's equations must

have the same form in all inertial frames. Therefore, the electric field
-

intensity E and magnetic field intensity H must transform in such a
way that Maxwell'’s equations remain invariant under the Lorentz trans-

formation.
It is known that the component ol the electric and megnetic field

intensities are the components of four-dimensional tensors of the second

8,12

rank F, and Gik and that Maxwell’s equations can be vurilten in

ik
the four-dimensional form

OF k OF Xt oF, i

+ + = 0 (2.32)
a&a bxi ox

and

ik _ 4 . (2.33)

Thus, the components of the electric and magnetic field intensilics
transform, under the Lorentz transformation, like the products of tie

corresponding coordinates of the sys!em (2.2) i1 Section I2.1. The




transformations are’ (in M.K.S. system):

1
1 _ ] _ -3 -
Bl = B , B = = (B-—§VxE) )
v c l
1-=3
c
1 {2.3k)
' t "! - -
E”=B” , EJ_= (E+VXB>
v 1
1-—3
c
1
B = H H| -V 3)
= ) = - x
-2
c
1 (2.35)
Dj = D D! B Tx?
= -~ ov—— )
f ol 2 1
1-3
c
where ” denotes components parallel, and l components perpendicular

to the axis of translation.
For the case V/e << 1 , (2.34) and (2.35) reduce to the approxi-

mate formulas:

B = By , B| = B
I I 1 1 (2.36)
EI'I = E” ’ E_l. = E.J. + (V X B).L
Hn = H” ’ H.|. = H.]. - (V x D)J.
and (2.37)
o I R

17 -




o

-5 TRANSFORMATION OF TEM WAVE FIEID COMPONENTS; PERMITTIVITY;
PERMEABILITY; IMPEDANCE; POYNTING VECTOR UNDER LORENTZ
TRANSFORMATION

Considar a uniiorm TEM wave propageting in an infinite medium with
permittivity € and permeability By o Since i?- i;== O in the
inertial frame S , we have- E' .- H' = 0 in the inertial frame &'
From Egs. (2.36) and (2.37), we see that the field components are not
rotated in the inertial frame S' . Thus the orientation of the field

components is as chown in Fig. 2.k,

y Y
K4 ¢ ’, ’
Ey# W & 2y Ey? by € 27
]

S Frame S’ Frame

Hz Hi

» X "X
Z z'

FIG. 2.4~-The field components of a uniform TEM wave measured in two
inertial frames,
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Now, we have the following relations in the S frame:

= = 2.
Dy elEy » B, N8 (2.38)
E H
Zl = L = X - Impedance
Hﬁ el
W = Energy Density = 1 E2 ;
= Energy Density = 3 €. v
2
g - = A E:X
P, = Poynting Vector = E x H = SEEyHZ =X
Z
i

Substituting the material equations (2.38) into Egs. (2.34) and (2.35),
we have the transformed field components

1
\ B
ot - _ / . 1
B, ‘\7:'_'“7 \“1+'2.\/—" i
; v c €
l-—e- 1
1
2
B! = ﬁ+Vpl H
v € z
1. — 1
-
¢
ﬁ (2.39)
1

1 = ————
Dy VHi& * 2 H,
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Combining Eqs. (2.37) and (2.39), the following transformations in permit-

tivity, permeability, impedance, energy density and Poynting vector are
obtained

! 2
EI _ \/ulel + V/c

(e!) = = (2.40)
1 -1
¥y E; Vi fe + Vg
V [u
1
, B, MTEAVE
(l»’-l)zz = ;{T = (2.11-1)
1
2 1+ V “lel
[ M1
-+ Vu
E! € 1 p! N
Zig_%.;..___l_-._______ _%__ = =z (2.42)
Hz 1+V €y € €
1+ 7V “lel
e -’t e Av 1! ) EH
! = = =
124 E' x H X Esz X v vz
Z
1 +V “161
| —] (2.43)
v
1--3
c
and
Y/ e+ v/c? 1+ Vafp €
H1& 171
1 2 2
W' = = elE! = - E
2 "1y TG? Ve J
-~ + Vul l- :5
‘1
2
(w/plei + v/eT)(1 + V\Julel)
- W . (2.44)
V2

Ve (1-2

C
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From Egqs. (2.40) — (2.44), we conclude that only the impedance of
the TEM wave is invariant under the Lorentz transformation, while the
permittivity, permeability, energy density and the Poynting vector are
not. The invariant nature of the ilmpedance should imply a special
importance of the impedance concept in the field of moving electro-
dynemics. It is obvious that when V -0 , Egs. (2.40) ~ (2.44) all

reduce to well known results.
2.6 ELECTRODYNAMICS OF MOVING MEDIA

As indicated in Section 2.4, the form of Maxwell's equations is
invariant under the Lorentz trensformation, according to the principle
of relativity. Thus, the form of Maxwell’s equations in a moving medium
remains the same as in the medium at rest. But, as illustrated by the
simple example in the preceding section, the macroscopic parameters ¢
and p are subject to transformetion under the Lorentz transformation.
This mey be ascribed to an actual change in the structure of matter in
13
motion.

- - - —
The components of E and B , and that of D and H separately

constitute four-dimensional tensors F, and Gi . We define the

8 ik k
velocity four-vector of the medium Ui as
V' Vv \'J i
X y z :
U = ) U = B U = » U, =
1 2 3 \'l 4 v
l-—§ l-- 1--
c c ¢
(2.45)
Twe a ccowirabio o FLU and Giqu 2a. e pade wo ¢Hiel Le o oo

relations between D and E » B and H ina moving medium which
- - - -
generalize the relations D= ¢E and B = pH +valid in a medium at rest.
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The results are as follows;

1
D+—5VxE = eE+7xB5) (2.46)
C
and
-_ l—-) - -3 —y -,
B-—VXE = p(E -V xD) . (2.47)

These formulae were first derived by Minkowski. Notice that these
formulae can also be obtained directly from Egqs. (2.34) and (2.35). They
show the most distinctive nature of the relativistic electrodynamics of a
moving media and should be coupled to the Maxwell's equations in solving
the problem. We note that V? denotes either the constant velocity of
the moving medium or the relative velocity of the inertial frame for the
Lorentz transformation. Thus we cannot distinguish between motion of the
inertial frame and motion of the medium. .

From Eqs. (2.46) and (2.47) we note that a medium which is isotropic
in its electromagnetic properties acquires anisotropic properties when it
moves. This is why the permittivity and permeability in Eq. (2.40) and
(2.&1) were written as components of a tensor. The degree of anisotropy
depends on the direction of the velocity of the medium with respect to
that of the field components. Also, the higher the velocity the larger
the degree of anlisotropy.

Notice that Egs. (2.46) and (2.47) can be combined and written in a

simpler form:

Dy = B By = uH
|| I |

v 1
(1 - ) B’l = €<1-_§)El+eu -— |Vx & (2.48)
c c
v\ 1
Blil-—=5 H.I.+ - - e VxE
c c

(1 - ewv®) 1'31
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2
When V/e << 1 , eV <<1 , and ep does not much differ from
€oto these become, retainilug only the first order in V/c )

g —
D= <)
- -
B = vy
51 o~ 6514' ep.( - 12 -\?Xﬁ) (2.49)
€ue .
7 = pﬁ’l-ep(l ! )w‘r’xﬁ’
- —— .
€pe

For a medium with high eu , the term l/c-:uc2 can be ignored.
Another distinctive feature of the moving electrodynamics is the
change in boundary conditions on Maxwell's equations. From the equations
div B =0 and div E) =0 , the continuity of the normal components of
g and ]—)) is seen to be the same as for the case of & boundary at rest,

i.e.,

Dnl - Dn2 ? Bnl = Bp ) (2.50)
By contrast the tangential boundary conditions are different at a moving
boundary. In this case the tangential components of E)+ V X E and
f{’ - -\7 X B are continuous. This can be easily demonstrated by trans-
forming E s -}-I) ; 5) s E) into an inertial frame which is att- hed to the
moving boundary. The tangential electric and magnetic field intensity

measured in this inertial frame are

(E + V x B)
1
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and

1

—

—= (H
____;2_
Tz

- -,
'VXD)-L F}

respectively, and they are continuous in this inertial frame. Thus, we

have

[

E+VxXB E+ 7V §)
( VX B)l tangential ( X Blp tangential

(2.51)

(E-VxD E-VxD)
VX )l tangential (H - V x D), tangential .
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CHAPTER 1III

WAVE INTERACTIONS WITH MOVING BOUNDARIES

When a wave, elther electromagnetiec or elastiec, impinges upon a
moving boundary or interface separating two different media, an inter-
action will occur. Both the fregquency and amplitude of the reflected
and transmitted waves are changed., This 18 just the double Doppler
effect described in Chapter II. The double Doppler effect will be
anglyzed, using electromegnetic waves and the effect extended to include
elastic waves, in the following chapters.

There are several physical configurations in which a moving boundary
or interface separates two different media. The most general case is the
one in which the medium behind the interface is also in motion and its
velocity differs from that of the interface, The shock wave formation
in & gas or fluid is a typical example of this general case. A moving
plasma or beam of charged particles in free space is an example in which
the medium behind the interface moves with the same velocity as the inter-
face. The simplest case is the one in which the medium behind the inter-
face is at rest, This is the case, ss will be shown, of most interest
in this study.

After solving the general case in Section 3.1, the investigation
is concentrated on the simplest case. A moving interface separating two
media at rest might be induced by applying a step function electric or
magnetic field to a nonlinear dielectric or magnetic medium. The case
in which the medium behind the interface is moving with & nonrelativistic
velocity equal to that of the interface 1s also treated briefly. There
may be a number of applications of this model (e.g., the plasma piston,
referred to in Chapter I).
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3.1, REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES AT A MOVING
BOUNDARY OR INTERFACE -- — GENERAL CASE

Pirst, consider Fig. 3.1. The abrupt interface, which is in the
y-z plane, divides the unbounded space into two regions. Medium 1 is
stationary, homogeneous, dispersionless and has permeability Ky and

pernittivity S while medium 2 moves with velocity V., and has

2
vermeab lity Ko and permittivity €5 in its own frame of reference,
I. is also assumed tha' medium 2 is homogeneous and dispersionless in
ils own frame of reference. "The abrupt interface is assumed Lo move
with velocity V .

Consider a uniform TEM wave of freduency @, and wave vector Ki
incident upon the moving interface. The freguency and wave vector of

-> ->
'he reflected and transmitted wave are ® Kr end o, , K, , re-

£
-> >
speciively, Let O& R 0} 5 at be the angles between Ki , Kr » K,
> > > v
and the normal to the interface n , respeetively; Ki B Kr and Kr

are all in the x-z plane. All of these wave parameters are measured
in the laborsiory frame, We now seb forth to determine :he freguency

shif.c and amplitude changes in the reflected and transmitted waves,

3.1.2. Frequeancy Shifis in the Reflected and Transmitted Waves

2%t us write Lhe incident, reflected and transmitted waves as

[

i(w, t-K, 1)
A, e = 1
i . )
i t-K 7). .
A e T T i
r 3
and
Y
o vK,.7)
A e 7 i
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Medium 1

By o &

Medium 2
o ge'(in'the freme V,)

FIG. 3.1--Configuration of a uniform TEM wave interacting with a

moving boundary — general case.,
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respectively, where A Ar and At designate the corresponding

2
field amplitudes. To iatisfy the boundary condition on the interface
at all times, the phases of the three waves are reguired to be equal at
all points on the interface and at all times. (This is the principle
of "equality of phases" which has been referred to in the previous

chapter.) This condition leads to Eqs. (3.1) and (3.2),

n X K n X K n XK
pXfy =i, = AR ’
i.e.,
Ki sin Oi = Kr sin a} = Kt sin O% = Il H
(3.1)
K .V K .V K .V
S A - L M
i.e.,
W, + KiV cos O& a3 wr - K}V cos Q} = W + Ktv cos Q% E . 12
(3.2)

In terms of the mks system, the w and X for each wave are further-

14

more related by

“§ (e ﬁﬁ ) 61)2
- K? + Xi * ) = 0 ’ (3-3)
c 1 - (Vi/c)
where 1
Xi = Giui "—é' 9 1 =l,2
e
¢ = velocity of light in vacuum = 1
Hoo
V. = velocity of the medium 1 .
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. Since medium 1 is stationary, and medium 2 is in motion, Eg. (3.3)

glves

for i =1 ,

Ki = p,l€l (l)i (3.21-)
Kr = K1 @ (3.5)
for 1 =2 ,
2 2
w (w, + cK,_ B, cos @ )
-—;’...Kz-*-x . t t 2 t = O [} (306)
. t 2 2
c 1l- 52
where
5, = 2
2 .
c

We notice that the relation given by Eq. (3.6) agrees with that given by
Egs. (2.46) and (2.47). Both show that a medium which is isotropic in
its electromagnetic properties acquires anisotropic properties when it
moves. From Egs. (3.1), (3.2) and (3.4), we have

L = o \[He sina (3.7)
' I, = - wi(l + Be v/ plell cos Oi) (3.8)
where
- oy
ﬁ = E .
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After some algebraic manipulations _combining the first set of
equations of (3.1) and (3.2), see Appendix A.], w, and K (normal

component of Kr with respect to the interface) are obtained:

2.2\ .
(1 + Hy€,C P ) + 28c hp€y! cos o

H1%1
\ M€ (1 + p, e 0252) cos Q, + 2u.e,cB
K - K151 H1%1 s A A
rx i 22 *
1l - ul(_lc B
(3.10)

Similarly, by combining the second set of equations of (3.1) and

(3.2), w, and K (normal component of K, with respect to the
inter.ace) sre obtained:

i, i I ARSI, AR

L ns P Sy G, S AN 7€

war

2 .

2 ,
1+ X2c 62 —3 - B\ /1 + Xec +H— 5 - (L -8

1-p I 1-8
o = - (1 2 2

5)
1 - %) - xXe? . —2

(3.11)

tx

(3.12)
- 30 ~




It is obvious that the expressicns for C U er , end CHE fo
become very complicated when the medium behind the interface is in motion.

Finally, it 1s important to note that the principle of equsality of
vhases for ell waves on the interrace, &s used in this section for de-
termining the frequency shifts, also appiies for the elastic case,15

Consider the configuration shown in Fig. 3.2. A monochromatic
acoustic wave 1s obliquely incident upon a moving discontinuity or abrupt-
interface such as the one induced by shock waves in an infinite acoustic
medium. We consider the simple case in which both medium 1 and 2 are
stationary. As a consequence of the interaction bLelween the acoustic
waves and the moving interface, the reflected and transmitted waves are
shifted in frequency and changed in smplitude. We assume that all of the
wave vectors lie in the same plane (x-z plane) and K is the unit
normal of the interface. The notations for the frequencies, wave vectors,
angles of incldence, reflection and refraction are as shown. They are
all measured in the laboratory frame, Furthermore, V , vy and v, are
the veloelity of the interface, acoustic wave velocity in medium 1 and 2,
respectively.

From the principle of "equality of phases", we have the relations

K -7 E .7V g .V (3.13)
®; =%y = O =R =0 =Byt 3.13
and

- > > > > >

nXKi = nXKr = nXKt s (3.1k)

at &ll points on the interface and at all times. Solving the first set
of equations in Egs. (3.13) and (3.14), we have

o 1+ (V/vl) cos 6, (3.15)
W,y it (\l/vl) cos &

-3 -




hadat . |

FIG.

3.2--The configuration of a monochromatic acoustic wave
interacting with a moving boundary.
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and

14+ (V/v.) cos 6 1+ {7/v,) cos 6
1 i = 1 Ir . (3.16)
sin 61 sin €
r

Similarly, solving the second set of equations in Egs. (3.13) and
(3.14), we have

w 1+ (V/v,) cos 8
L. = 2 (3.17)
w; 1+ (V/Vé) cos 6,
and
1+ (V/vl) cos 6, _ 1+ (V/vz) cos 6, (5.18)
sin 61 sin et

Equations (3.15) and (3.17) determine the frequency shifts in the reflected

and transmitted waves, respectively, wheareas Egs. (3.16) and (3.18) de-
termine the angles of reflection and refraction, respectively.

3.1.2. Amplitude Changes in the Reflected and Transmitted Waves

Let B , £, and E_ be the electric field intensities for the

incident, reflected and transmitted waves, respectively. The correspond-

ing 5 s § ,,é are designated in the same way. The procedures for cal-
culating ﬁ; “and Et , and hence the reflection and transmission coef-

ficients, are summarized here, while the detailed menipulations are shown

in Appendix A.




v v yT=—

—or

ti: write down sll of the field components in medium 1. Since
acdiam . 15 at rest, the well known relations of D = elE , B= le
nol.

Wi «wine down all of the {i:1d components in medium 2. Since

T-dzum 2 i1s in motion, the relations D = €¢E and B = pyH do not hold.

‘ney are replaced by the Minkowski relations:

- - - ;_) {-V - >
X i = 9
D, + ¥, i /e ¢, (E, + Vy X B)
};+I_:><\_}‘/c2 (I; 4-5)(\7)
7t 2 - t, 2 '

(3) Transform all of the field components to the frame which is
al..ached bo the moving interface, and apply the boundary condition as
srhosn in Chapter 11 on the interface, i,e., the tangential components

¥ -» g -»
o B+ V x2 and H - ¥V XD are continuous on the interface.

- > >
(4, Two equations relsting Ei 2 Er and Et will result from
. N > g .
celds ¢ (3), and Er ’ Et can be solved in terms of E1
> -> ° ->
~.. two simultaneous equations relating Ei , E and E, are as

r 1
foli> 2

. K - lf" \ N - - K ] - s =
lli'\;" , L,)‘br(l\“( .:_ 1] Ei + [_(Li(l)r C&bi(KtX I(I'X)J Er LDiUJ

i 1 % rt
(3.19)
: lua(Keo v cpe B )(1 - BE cos 0)
TopteelBix 7T 2 t
) 22 _ 2 N
Coem, (K eu 2 Bo ) ( 82 s o) (3.20)
oA R TR R N 2 7t '
22 . 2 Y1
. x(l " yiaPaeT cos ) 552p2€20 552/] B
. 1uif.p3p2;?sg o B(ER, gt 1) cos at] E, = O

[
&
[}

b 48 o B 1 4
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3.2. REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES AT A MOVING
INTERFACE — NORMAL INCIDENCE, MOVING MEDIUM (NONRELATIVISTIC)

The Intersction of & uniform TEM wave at the boundary of a non-

relativistic moving medium will be discussed in thils section.

in Fig. 3.3, the velocity of the boundary is equel to that of the medium,

The case of normel incidence is considered.

3.2.1, Frequency Shifts in the Reflected and Transmitted Waves

Imposing the equality of the phases for the inecident, reflected and

transmitted waves on the boundary at all

The relations between the freguency

three waves are

1

=
Narcy

1

Ky

K16

® = ————K

Ir r
V k€

2

w 1 (a_)-

% ey - )

For the case of interest, V/e << 1 and

2
2Vlip,e, ~(1/c%))
w2 - 22 Kw -
t tt
Hafo

time, we have

> >
= o ~-K -V . (3.21)

and the wave vector for the

= VK (3.22)
i

= VPEK} (3.23)
Ktv)g

5 = 0 (3.24)
\'
7z

C

Eq. (3.24) reduces to

K

t

) (3.25)

€

Moo

As shown

F

IR T W W MR S

W Ao o At




Medium 1 stationary

“l) el

5

Medium 2 Moving with n V
ko 5 € (in the frame V)

FIG. 3.3--Configuration showing a uniform TEM wave interacting with
a moving medium of nonrelativistic velocity.
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or

1 [h.c, -(1/c2)
©, o~ » 22 / vl k., ,  (3.26)

t - t
\higes! Ho€s

for propagation in the positive x~direction, and

1 lupe, -1/
o, = |- + bote @/e") V] K , (3.26°)

t t
Voo Hots

for propagation in the reverse direction, Notice that {l/m
+ [“2 o " /c )/]pe 5 V} 1is just the effective phase velocity in the
moving medium.

By combining Egs. (3.21) - (3.23) and (3.26), the frequencies of
the reflected and transmitted waves are obtained:

’r f_i;fffzz (3.27)
(i}]

X 1- v/vpi

2
~-(1/c%)
1+ hgp - /e ]. v+ v/vp )
1

2.  bo% (3.28)
wi 1 [2P2€2 - (‘L/c?)]
+ s

V Ros!
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2
For the case u,¢, >> 1/c® but 2 \/paeel V<1l , Eg. (3.28) reduces
to

ct

1+ V/Vpi

W
—— 1 V-/V_. . ) (3.29)
w, + pt

where

For the case of prectical interest such as a plasma piston or beam
of charged particles, medium 1 will be free space, so that VPi = ¢ and
Egs. (3.27) - (3.29) reduce to

w 1+ V/e

- = — , (3.30)
w; 1-V/e
and
2
(luye, = @/c7))
14 222 / v | @+ V/e)
i - (3.31)
- 5 .
o [2u,e, =(1/c7)]
1 1+ 22 « vV
V Hof2
w, 1+ 7V/e
— — . (3.32)
w; 1+ V/th




Notice that Eg. (3.30) is just the well known mirror effect, and Egs. (3.30)-
(3.32) give the mirror effect of a partial reflector.

3.2.2. Amplitude Changes in The Reflected and Transmitted Waves

Refer again to Fig. 3.3. The field components for the incident,
reflected and trensmitted waves are given in Egs. (3.33), (3.34) end
(3.35), respectively:

f
Di = €1Ei'
By = wyHy
{ " (3.33)
1
H = = E;
Hy
By = Vme& B
N
4
Dr = elEr
Br = ulHr
L] h
( oy (3.34)
H. = —E,
Hy
Br = H1& Er
N
D, = e, + (e, -1/c) T xH
t Cot o2 t
. (3.35)
( l/ 2) > >
Bt = “2Ht + ety - 1/c Et XV




By substituting Egs. (3.33) - (3.35) into the boundary conditions
(3.36) and (3.37), the amplitudes of the reflected and transmitted waves

can te obtained.

> > >

Enedium 1 " Epediun 2] X (Beatum 2 ~ Bneatum 1/ 1 (3.36)

-> > > .
edium ll " Hredium El - v X (Dmedium 1~ Phedium 2) 1 ?

(3.37)

where l denotes components tangentiasl to the interface. We omit the

detailed calculations of the amplitudes.

3.3. REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES AT A MOVING
INTERFACE - WORMAL INCIDENCE, STATIONARY MEDIA

In this section we treat the case of great interest in which both
the media in front of and behind the interface are stationary, homo-
geneous and dispersionless (see Fig., 3.4). This will be the case when
a steu function electric or magnetic field is applied to a nonlinear
ferroelectric or fé?romagnetic material,

To obtain the frequency shifts and amplitude changes in the reflected

and transmitted waves for a uniform TEM wave, we could simply set B, = C

2
and O& = 0 1in the expressions in the first section; but in order to
illustrate again the procedures involved in solving this type of boundary

value problem, we give the derivation in detail.
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Moving interface

Medium 1 stationary Medium 2 stationary

. M s & o s €
—)
n b
Dt
4
‘——-——-wr ) K
e
BV
e
——-*(Di 3 7/ p— wt F Kt
» X

FIG, 3.4--The configuration showing a uniform TEM wave normally
incident upon a moving interface separating two media
at rest.
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3.3.1 Fregquency Shifts in The Reflected and Transmitted Waves

From the equality of phases for all waves on the interface at all

times, we have

> > > - > >
w -K -V = o -K -V =o0a0-K' 'V |, (3.38)
but
4 w
- e | A
Ky = oy(kye) =
Py
_ 2 _ %
< K, QE(“lel) = . (3.39)
1 T
1/2 Q4
K = o/(se,) = —
Lt )y \Ho€o ; ’
Py

where Vp P Vb and th are the phase velocities of the incident,

i T
reflected and transmitted waves, respectively.
Combining Eqs. (3.38) and (3.39), the frequencies of the reflected

and trensmitted waves are obtained:

w 1+ V/V
L= __._.Z.Ei (3.40)

Wy 1 - V/Vpi

% L.‘i/"m , (3.41)
w 1+V/V
i Py

From Eqs. (3.40), (3.41) and (3.27) — (3.29) we see that for the
reflected wave the same amount of frequency shift will occur in the cese
of a moving medium as in the case of a moving interface, while for the

transmitted wave, different amounts of frequency shift will occur in
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generel. For the speciel case, M,é, > l/c2 but EWJEEE;1V'<< 1,
the amount of frequency shift in the transmitted wave will be the same
whether the medium behind the interface moves or not. .

Notice that when the interface moves with a velocity compareble to
the phase velocity of the wave in medium 1, the frequency up-shift in
the reflected wave - .21 be large, and that unless the phase velocities
of medium 1 and med? wm 2 differ greatly, the frequency shift in the
transmitted wave will be small. When the interface moves in the same
direction as the propagation of the incident weave, the frequency shifts
in the reflected and transmitted waves are obtained by changing V dinto
-V in Egs. (3.40) and (3.41),

o 1V (342)
1+W%1 ’

W, i-v/wv
LT ....___L?.i. . (3.43)
1-V/V

Py

We further notice that Eqs. (3.40) and (3.42) are analogous to the
mirror effect of Chapter II, and we may say that Eas. (3.40), (3.42),
(3.41) and (3.43) describe the mirror effect for a partial reflector.
Finally, we point out the conditions for the existence of the
reflected or transmitted wave, or both, for the nondispersive media
considered. For the reflected wave to exist the group velocity (in this
case the same as the phase velocity) of the reflected wave must be
greater than the velocity of the interface when the interface moves

- 43 -




against the incident wave; otherwise the waves cannot "breek awey* from

17

the interface and therefore are not reflected. This criterion elso
applies for the case of incident wave and interface moving in the same
direction as long as the velocity of the incident wave is greater than
that of the interface. When the interface moves egainst the incident
wave, a transmitted wave always exists regerdless of interface velocity.
On the othgr hand, when the interface and incident wave move in the

same direction for instance, from left to right, the existence of a trans-
mitted wave requires that the velocity of the interface be less than the
group velocity (or phase velocity, in this example) in thre medium to

the right of the interface.

3.3.2 Amplitude Changes in The Reflected and Transmitted Waves

Using the designations for the various field components as shown
in Fig. 3.4 end the fact that both medium 1 and medium 2 are stationary,
we have the following relations:

f
D; = &8
By = Wiy
{ (3.44)
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e PR e 7 e T

and

ﬁ By ‘\/(-WEt

Bt = /'.1.262l Et . R
\

(3.45)

(3.46)

The boundary conditions on the interface as shown in Eq. ( 2.51)

can be rewritten in the following form:

> > >
VX (B

E medium 2 ~ Preatum 170 |

medium ¥l - B dtum ?l =

> ->

>
VX (D eatun 1 = Credtum 279

Hmec'lium 11 - Hmedium 21 =

where l denotes components tangential to the interface.
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1
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Ao

Now, in our case we have

Emedium 1 ° Ei + Er
Emedium 2 = Et
(3.49)
Hmedium 1 ° Hi - Hr
Hmedium 2 = Ht *

Substituting Egs. (3.4%) - (3.46), and (3.49) into Egs. (3.47) and
(3.48), two equations relating E, , E,  and E, are obtained:

(1 - Ve V) E, - (1 + I V) B, = -(1+ ey V) E,
(3.50)
Vi) (L - V) B+ i (L + i V) B
[(3.51)

- VTG VEE 5

The reflection coefficient p and transmission coefficient T are
obtained by solving Egs. (3.50) and (3.57), yielding

E:}‘. = b = (l + “lel V) ) ( v l-‘-ael - V |-11€2 )
Ey @ =i’ V) (Ve - Ve )
(3.52)
1+ V/vp, Z, - 2y
- v/vPi Z, + Z,

[




r o

and

.E.E . (1 + -\/plel'v) 2 /i€
<1
E, (1 + W/“eeelv) (\['uleél+ Vorges")
1+ Vg, 2z, (5.5
= st et . ———————— 3 .
1+ V/Vpt Zy + 2,

where Zl = W’“17€l‘ » 22 = ]/u;7e2' s are the impedances of medium 1
and 2, respectively. As indicated in Chapter II, it is proper to use the

stationary impedances as commonly defined, because the quantity \/ u?e'

is an invariant under the Lorentz transformation for the case of normal
incidence.

From Eqs. (3.52) and (3.53), we see that the reflection and trans-

mission coefficlents are those of a stationary interface multiplied by
the relativistic factors:

1+ V/vp,

1- v/vpi

and

1+ V/vp,

1+ V/th

respectively. We also note that these same relativistic factors appeared
in the expressions for the frequency shifts.
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These are the most remarkable results of a wave interaction with
a moving interface. The appearence of the factors

1+ v/vpi

1 -v/V
/loi
end

1+ V/VPi

1+ V/Vpt

implies a transfer of power to the reflected and transmitted waves from
a step-function field which generates & moving interface in & nonlinear

medium. When the interface moves sgainst the inpident wave with a velocity

compareble to Vpi & large frequency shift and power amplification in
the reflected wave will be expected, If V and the Vpi of the medium
are not comperable, an appropriate slow-wave structure might be employed
in order to reduce the phase velocity of the incident wave and thereby
increase the frequency shift and amplification., The transformation of
power between the pumping step-function and the reflected and transmitted
waves will be related to the parametric dPrinciple in the latter part of
this chapter, and also in Chapter V.

Finslly, the power densities (Poynting vector) are glven as follows:

2
§=+x+ +> 1
g 5 Bg XH o= x —
1
> _ > > +E§
P = E XH = -x — (3.54)
r r r 7,
1
2
3 = B oxi .3
g T Bty =X — .
Zp
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Combining Egs. (3.52) - (3.5L4), we have

2 2 2
B :E}:) _ <1 + v/vpi) (% - zl>
P E, 1 -vip, Z + 2,

(3.55)
2 2
i <_> . (Za'ﬁ)
w, Zl + 22
P £, \? z 1+ VN RVEAA
%o _3) AN n) [2V B%
P E, Z, 1+ V/vp, Z, + 2,
(3.56)
2 2
o, 2 lea
= e— L4 ’
1 Z * 2
or
2 2
Z, - % 2 z.2
P:P :P = (w )2 o | 22>t w 12
i r t i Nog 47 t
1 2 Zl + 22
(3.57)

Using Egs. (3.40), (3.41), (3.55), (3.56) we consider the following
speclal cases:

(a) Perfect trensmission: Z, =2, , and Vpi = th , that is,
Hy Ha
1 €2
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snd

1 1
= »
H1€1 Ha€p
then
f
Pt - P:!. wt = wi
ﬁ (3.58)
P, =0 , P =P ,
\

and since there is no interface the incldent weve is not affected,

(b) Perfect transmission: Z, = Z, , but Vpi * th ’

i.e., i A By}
el 62
but
1 1
$
H1€y Moo
then
1+ V/Vpi
[43) = s [iV]
t 1
1+ v/vIJt
(3.59)
2
1+ Vfip
P =0, P = |——=P .
14+V/V
/ Dy
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Thus the moving interface in this case causes the conversion of
frequency and power only in the transmitted wave:

(e) A perfect reflection: ze/zl -0 or -« , then

1+ v/vpi
[4V] = ———— D
d 1-Vfig [
1+ Vv, 2
P » [——2d) P , P =0 . (3.60)
r i t
1 - V/p,

Thus the moving interface in this case causes conversion of freguency
and power only in the reflected wave.

3.4, WAVE INTERACTIONS WITH MOVING SLABS

For the following analysis, a moving sleab or series of slabs is
considered to be induced by sending a strong electric and magnetic pulse
or series of pulses through a nonlinear ferroelectric or & nonlinear fer-
romagnetic crystal. Thus the slab will not be moving physically, but is
defined by & pair of moving interfaces.

The frequency shifts and field amplitude changes due to the moving
interfaces which make up the moving slab or series of slebs will be given
for the case of normsl incidence of a uniform TEM wave,

3.4,1. Frequency Shifts for a Single Moving Slab

For convenience, we assume that the two moving interfaces which
make up the moving slab are sbrupt. The effect of nonabruptness will be
discussed later in the section, The designation of the material constants,
the frequencies, and the amplitudes of the waves in the three regions are
as shown in Fig., 3.5,
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FIG. 3.5~-The configuration showing a uniform TEM wave normally
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. The equality of phases of the waves at the interfaces 1-2 and 2-3
lead separately to the relstions

> > -+ > + Sy -+ - P >
) wi—Ki°V=wr-Kr'Vna)m-Km~Vacnm-Km-V (3.61)
- + oy 8 > - »e > > >
wm-Km V-wm--Km-Vna)t-Kt-V . (3.62)
Solving Eqs. (3.61) and (3.62), we have
w 1+ v/iv
- "'I: = pl (3063)
oy 1- v/vpl
i +
w 1+ V/vp,
2 s —3 (3.64)
o, 1+ v/vpe
and
W 1+ VN
. oo 2! (3.65)
a 1- V/Vpa
® 1+ VN
+ b
~ o ——t (3.66)
“ w, 14+ V/Vp3
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Notice that when medium 3 is identical to mediuml, o fw, =1 ,
and there is no frequency shift in the transmitted wave. In practice,
the frequency shift in the transmitted wave might be more easily observed
than that of reflected wave, as the transmission coefficient will be
large except when the transition region is nearly an odd multiple of a
querter wavelength thick,

3.4.2, Wave Matrix for a Single Moving Interface

The method of wave matricesl9 is a powerful analytical tool for the
study of multiple slabs. This powerful wave matrix method, which is
analogous to the scatitering matrix of gquantum mechanics, leads to &
straightforward calculation of reflection and transmission coefficients
in the case of moving periodic structures (or a series of moving inter-
feces), involving merely matrix multiplication. As ® preliminary it will
be used in this subsection for calculating the reflection and transmission
coefficients at a single interface. The wave matrix [W] is a matrix
which relates the amplitudes of the forward- and backward-propagating
waves on the output side to those on the input side. For example, con-
sider the stationary system of single discontinuity shown in Fig. 3.6,
with & TEM wave propagating from the left side, where A{ 9 Ai and A; 5
A; designate the electric field amplitudes of the incident and reflected
waves at the planes just left and right of the interface, respectively,
The wave matrix for this case can be easily obtained by imposing the
continuity of tangential components of electrle and msgnetic fields at
the interface. Thus we have

r
A{ + Ai = Ag + Aé (3.67)
+ - + -
A A A A
1 2 2
— ..-—]: B e e —— . (3'68)
Zl Zl Z2 Z2
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Equations (3.67) and (3.68) can be written in & matrix form

where the matrix (W’

(w] =

The elements of the wave matrix can also be written in terms of various
reflection and transmission coefficients as

r++

[w]

]

o=t

VT

-

-

pm-

(w’]

] is found to be

l:u
[ adiEN

=3
| g

o 56'-

Z
1.2
Z2
Z
1+ S
Zp

(3.69)

(3.70)

(3.71)




Tie , Tél = the transmission coefficients from medium 1 to
2 and medium 2 to 1, respectively,
Ri s Ré = the reflection coeffieients in medium 1 and 2,

respectively.

This indicates that the reflection and transmission coefficients can be
determined from the wave matrix directly:

o . 2Ly o 2Zy
12 s 2 -
Zl + 22 z2 + Z1
(3.72)
, Zy - 2 , 2 -2
Rl L J ’ R2 = .
Z, + 2, By + 2y

Similarly, the wave matrix [W] for a TEM wave intefacting with &
moving interface can be obtained by imposing the continuity of tengentisl
components of ﬁ + § x B and ﬁ -‘V X 3 on the interface (see Fig. 3.7):

Y4 N+ v .....1-._.:1
(Al Al) Hy Zl 7

]

= (A; + A) + Vuy (3.73)

NN ,'\)>+
RN

[

+ Vel(A*l‘ + A7)

T

N

+ Vea(A; +A). (3.74)

N ™

]
St N




IR T L

After some manipulations, the wave matrix [W] for the moving interface,

i1s found to be

-

(W] =

s

W

1+ v/vp2 1
1+ V/VPl 2z
1+ V/VPa 5
1- v/vpl 27,

As in Eq. (3.71),

W] =

where the unprimed parameters designate

wtoowt
wtow

(w]

=

1

T2
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1- v/vpa Zy - 2y

’ (3.75)

1+ v/vpl 2z,

1 'V/vPa 2, + 2

(W] can be written as

2 T
1 - v/vpl 22,
(3.76)
-
-
T
’ (3.77)
R.R
152
Ty - z
12

the case of a moving interface,




By comparing Eq. (3.76) with (3.75), ve have the reflection and
transmission coefficients for the moving interface:

12

A

21

1 (1+vfip 2z, 1+vfp \ |
= - = T12
W 1+ V/VPa Z, + Z, 1+ V/VPa
S 1+ v/vp:L Zy - 2, 1+ /g a’
1- v/vpl Z, + 2, 1- v/vpl
1-VN Z, -2 1-v/vp
1+ V/vPa Z, + 2, 1+ v/vp2
.. RR, [1-V/y 2z, 1-v/vg
W+ = -2 - —2 T/
T)p 1- V/VPJ. Z, + 2, 1- v/vpl

These check with Eqs. (3.52) and (3.53), as expected. Note that R

and T

R, and T

1

2l

can be obtained by transforming 1 to2end V to -V in

12 * respectively.
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3.4.3., Reflection and Transmission Coefficlents for a Single Moving Slab

Referring to Fig. 3.8 and using the "wave matrix" method as illustrated
in the last subsection, we have

p— + - p— +-
A Ay
= (W] (3.79)
b by
L L
ad -1 = P
+ +
Ay by
= ['w2] (3.80)
| 2 | |2 _
[ 4] [+
i .
= [W3] }J (3»81)
2’ 0
hows 2 - L' -

- 60 -




FIG.
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“l’el’vpl’ Zl ualeelvpeiza U»B) 63’vP3’z3
a* V - VA:-’_
1 - 2
— -4, o .
> A, P
e d >
1-2 2-3
(W, ] (W, ] [W,]

3.8--Configuration showing the scattered waves resulting
from a uniform TEM wave incident upon a moving slab,
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and

[ aF T R ™+ ]
g A3 A3
= (] w5 (W] = [u,] » (3.82)
AS o
Rl | ° R
where [Wi] , [Wé] , [W3] are:
™ -
1+ v/vpé Z, + 2, 1- V/Vpg Zy - 2,
1+ v/vpl 2z, 1+ v/vpl 2z,
(W, ] =
1+V/ip,\ (2, - 2 1- V/VP2 Zy + 2
1 - v/vpl 2z, 1- V/VPJ. 22,
- .J
(3.83)
3BT a
e 12 0
(W] = (3.84)
\
-3B- .
0 o 12
L i
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1+ v/vp3 % + Ly 1- v/vp3 Zy - %
1+ v/vp2 2z, 1+ v/vp2 2z,
(W, =
1+ v/vp3 Zy - Zp 1 - v/vp3 Zy+ 2,
d 1- v/vpa 22, 1- v/vp2 2z,
_ J
(3.85)
and
N 1+ V/p | o i} 1+Vfvp | o
EEI P Vo | v SR v, | v
P2/ P Y e >
(3.86)

Combining Egs. (3.82), (3.83), (3.84) and (3.85), we have
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From the wave matrix of Eq. (3.87), the reflection end transmission

coefficients are:

Reflection coefficient

+ -
. ﬁl i 1+ V/VPl (z, - 2.)(2, + Z3)e + (2, + zl)(z3 - Zy)e
+ + -
A 1-v/v 3B, o =3B, a4
1 j . 12 12
1 (2, + Z,)(2, + ZB)e + (2, - zl)(z3 - Z,)e
(3.88)
Transmission coefficient
+
o= 53 _ 1+ Vfvp, hzez3
+ + -
A 1+ v/vp3 3B 4 -3By 8

(zl + 22)(z2 + Z3)e 12", (ZE - zl)(z3 - 22)e

(3.89)

Notice that the relativistic factors, [(1 + v/vpl)/(l - V/Vpl)] and
f(1+ V/Vpl)/ (1 + V/VP3)] , again appear only as multiplicative factors
in the reflection and transmission coefficients, respectively. However,
from Eq. (3.86) the internal phase shifts also depend upon the motion,

It is interesting to see that as V approaches zero, Bze = Bi =‘°1/VP2 s
and the expressions (3.88), (3.89) reduce to those for the stationary slab.’>
Finelly, it is of interest to determine the width of the moving slab,

d , for maximum reflection and minimum reflection with fixed values of

Zl 3 22 and Z, . Maximum reflection will occur when the waves E; and

1 3
Em add in phase on the first interface 1-2, Thus, the width d for
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meximum reflection will be determined by the condition,

Bid+Bd = 2x  , n=0,1,2 ...

i,e.,
1+ V/Np, \ ® 1+ VN, \ o
l i d+ pl i d=2nﬂ ’ n=0, l, 2, s 0
1+ v'/vpe VP2 1 - v/vp.2 vp2
end
nap,(1 - v2/v§a)
= ’ n= O, l, 2’ es e (3.90)
w; (1 + V/vp)
1+ V/fvp Z, - 2
uax = / ol ; (3.91)
\1 - v/vpl 2y + 2,
as
v-0 |,
nav n 2n n
qa — P2 = = —ke » n=0, l’ 2, se s
wy 2 ofip, 2
Z, -2
Ry~ 2 1 ]
Z) + Zy

This checks with the result for a slab at rest, as it should.
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Similarly, minimum reflection will occur when waves E; and E;
add out of phase on the first interface 1-2, Thus, the width 4 for
minimum reflection will be determined by the condition

B;2d+t3]'_2d = nn , n=1l 3 5 ....

and hence
-
nﬂsz(l -v /vpa)
= ) n=1, 3, 5, .... (3.92)
aw, (1 + V/VPJ.)
1+ Vv z, - 22
p1 | (%423 = % ,
Rmin - 2 3 (3'93)
1 - V/Vpl Zy%4 + Zg
as

d_’%}\ » n=1,3,5’oono

2.2, - Z2

R, —-|Xx3 2

min 2 *
2123 + Ze

Again, this result checks with that for a slab at rest, as it should.

3.4.4k, Prequency Shifts and Amplitude Changes for a Series of Moving
Slabs

Consider & transition region consisting of N discontinuities

moving with velocities Vl s V2 s e Vn-l 3 with My s € 5 Hp s €

vee § Bp1 2 en-l H By o en as the parameters of the media as shown
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in Fig. 3.9. The results of Section 3.%.1 for two moving discontinuities
can be extended by induction to this more complicated case,

®, 1+ V/vp,

- = ——= (3.9%)
Wy L~ V/Vpl g
[}
and
@ 1+ Vl/VP:L 1+ v2/vp2 N 1+ vn.e/vpn.2 1+ Vn_l/vpn_:L
@, 1+ vl/vp2 1+ ve/vp3 1+ vn_z/an-1 1+ vn_l/vpn
t
(3.95)

For the case in which all of the interfaces move with the same velocity
v, wt/a.)i in Eq. (3.95) reduces to

® 1+ v/vpl

— = , (3.96)
1+ v/vp
n

and the freguency shift in the transmitted wave depends only on the para-
meters of the first and last media. From Eqs. (3.95) and (3.96) w2 notice
that a significant frequency shift can occur in the transmitted wave if

Vl,Va, " 0e vn-g’vn-l ; Vpl’vp2 onlov
properly.

3 Vp cen be adjusted

pn--l n

Finally, with the wave matrix method described in Section 3.4.2, the
problem of calculating the reflection end transmission coefficients for

a series of moving slabs reduces to & straightforward matrix multiplicatiion,
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FIG. 3.9--The configuration showing a series of
moving interfaces.
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This method will be especially powerful when the number of moving slabs
is small, 1In Chapter V, this method will be employed to calculate the
reflection and transmission coefficients for a semi~infinite moving
periodic structure. Here we only indicate the applicability of this
techniques to & ramp-type moving interface or a trapezoid-type moving
slab as shown in Figs. 3.10.- 3.12.

3.4.5. The Effects of a Nonabrupt Interface

In a1l of the previous treatment, an abrupt moving interface was
assumed, The abruptness of an interface is, of course, a relative
concept, An interface is said to be abrupt if the width of the inter-
face is much smaller than the wavelengths of the waves concerned.

For the field-induced moving interface we considered, e.g., in a

nonlinear ferroelectric, an ebrupt moving interface requires that three

conditions be meti{ a short rise~time, sufficiently large amplitude voltage
step-function, and that the polarization of the mediur can follow-the step-
funection, For example, a strontium titanite single crystal has a large dielec-

tric nonlinearity in the vicinity of its Curie temperature, 37°K. At liquid
nitrogen temperature a 12% change of dielectric constant can be produced

at an electric field strength of 10 kV/cm. If we assume the velocity of
the interface to be of the order of the phase velocity of the material,
then for a voltage step-function with tyrical rise time of one nanosecond
the width of the interface will be several wavelengths at S band, and
we have & nonabrupt moving interface. A survey of the limitations of
nonlinear materigls in this respeet will be given in Chapter IV,

The results of the frequency shifts in the reflected and transmitted
waves obtained for an abrupt moving interface are also valid for a non-
sbrupt moving interface, This is because a nonabrupt interface can be
considered as a series of abrupt interfaces between thin slabs and the
principle of equality of phase cen be applied to each one. The reflezc-
tion and transmission coefficients should however, be modified, as s
considerable reduction in the reflection is expected for a nonabrupt
interface, These conclusions will be elaborated in more detail in the

following analysis.
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FIG., 3.10--The configuration of a moving ramp-type interface.
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FIG. 3.11--The configuration of a moving "Kinked Ramp" interface.
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Consider & ramp-type moving interface or moving slab, such as shown
in Figs. 3.10 - 3,12, We divide the trensition region d into a suf-
ficiently large number of layers such that in each individual layer the
materisl constants p and € are almost homogeneous. Then, for the
configuration of Fig. 3.10 the results in Eqgs. (3.94) and (3.96) are
valid, because all interfaces move with the same velocity. For the
configuration of Fig. 3.1l, we again have wr/wi = (1 + Vl/Vpl)/(l - Vl/Vpl)
and wt/mi = (1 + Vl/Vpl)/(l + Ve/Vpn) . This shows that the frequency
shift is independent of the ramp profile, Similarly, the frequency shifts
in the configuration of Fig. 3.12 ¢an be determined., By dlyiding the
traensition region 4 to & proper number of layers such that the width of
each layer is considerebly smasller than the wavelength of the waves we are
interested in, the amplitudes of the reflected and transmitted waves can
be easily calculated by multiplying 8ll of the corresponding wave matrices
for the interfaces and layers. It would be interesting to carry out a
numerical example for & moving ramp-type interface using the weave matrix
method and compare the results with that of a stationary ramp-type inter-
face,20 It appears physically obvious that the reflection must go to zero

as the gradient of the ramp approaches zero.

3.5, A TRANSMISSION LINE MODEL FOR FREQUENCY CONVERSION AND AMPLIFICATION
AT A MOVING INTERFACE IN A STATIONARY MEDIUM

The freguency shifts and amplitude changes for a uniform TEM wave
interacting with a moving interface have been claculated in detail in
Section 3.3, In this section, the same results will be derived for the
nonrelativistic case using a more intuitive and less mathematical approach,
by way of a transmission line analogy. This approach serves to illustrate
in more deteail how a wave interaction with a moving interface leads to

changes in frequency and amplitude.
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3.5.1., Freguency Shifts in the Reflected and Transmitted Waves

We consider (see Fig. 3.13) a lossless transmission line, originally

1 where L1

is the capacitence per unit length. Imagine that

uniform with parameters Ll and C is the inductance per
unit length and Cl
the inductors and capacitors are nonlinear and that a pumping step-func-
tion of voltage is applied to the line from the right terminal. This

creates an interface between regions of different lnductance and capacitance;
the interface moving with veloecity V , as shown, The parameters for

the porticn of the line behind the interface are L2 and 02 . We
specifically consider the nonrelativistic case, i.e.," v/vp <1,

i
v/vpt <1 , where Vp, = 1/4/ LG » Vp = 1/ V L2C2' .” When the
impedances in the two parts of the line are not equal, both reflection
and transmission will be expected.

v |
b e
L, I L L L, Ly L, I
PN, o Wy WP, > WY, W I — P~ —
|
.= cL ol ol | C el © c oL
~ 1= I R 1 | = C 2=s =
|
Lo - _: - -
| |
| ] | | ‘
[ ] ] | I
! ! I | |
' | n ! | .
X - X = -xl X = <V X =0 X =X %

FIG. 3.13--A lossless transmission line with a moving discontinuity.
(The coordinate origin is chosen such that at t = O the
moving junction is at x = O as shown.)
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A frequency shift in the reflected voltage is expected, as the phase

difference between the reflected voltage and the incident voltage varies
linearly with respect to time, because of the motion of the junction,
Likewise there will be a frequency shift in the transmitted voltege.

Let the incident voltage from the left terminsl be

,j(wit-l(ix)

V,(x,t) = Vo e ’ (3.97)

i (

where Kﬁ = 4 Llcl = (wi/vpi) = the propagation constant in the left-
hend part of the line, Then, for lossless case, the incident voltage
st the moving junction will be

J(a)it-Kix) j(w1+KiV)t

x==vt = Vo © =Vt = Vo € . (3.98)

v, (x,t)

The reflected and transmitted voltages at the moving junction are

j(aoi+KiV)t
RVO e (3099)

RV, (x,t) |x=_Vt

"

Vr(x’t)'x:—‘Vt

,j(a)i+KiV)t
TV, e , (3.100)

Vet gy = T (00 e

where

w
= o VIOE) = = .
Kt = o, L2C2 = = the propagation constant to the

th right of the interface
R = 1{he reflection coefficient
T = +the transmission coefficient .,

Here, R and T are not necessarily the same as for the stationary
Junetion,

- Th -
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Let the observation points for the reflected and trensmitted voltages
be at x = - x’ and x = x” , respectively, then

,j(wi+KiV)t JKi(x'+Vt)
Vr(x',t) = RV e e

[ (w +2K V) t+K, x ]

= RVO e

J[wi(l+2V/Vpi)t+Kix']

= RV, e

0 ,  (3.201)

and

J(wi+Ki)t e-,jKt(x”-i-Vt)

1
Vt(x,t) TV, e

ej {[og+(K, K IVIE-K x ™)
0

v

§ loog [147(2/Vp, -1/vpt) Jt-K.x“ )
e

v, (3.102)

From Egs. (3.101) and (3.102), the frequencies of the reflected and trans-

mitted voltages are identified as w,[1+ 2 (V/V, J] end w, [14V(1/Vp, -1/Vp, )]

respectively. These agree with Egs. (3.40) and (3.41) for the non-
relativistic case.

3.5.2, Calculation of Doppler Amplification from the Principle of
Conservation of Energy .

In Subsection 3.3.2, 1t wes ~.own that a moving interface can produce
rower amplification in the reflected or transmitted waves, or both. One

naturally may ask where does this power come from. In this subsection, a
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detailed csalculation of the power transfer from.the moving interface to
the transmitted wave will be made for the nonrelativistic case, using
the transmission line analogy.

Referring to Fig., 3.14, we imegine that an external mechanical force
F 1is applied to change the spacing of the capacitor plates. For con-
venience, we consider a nonmpbrupt interface, e.g., ramp-type transition
for which there is no reflected wave, Let the transition move along the
line with velocity V . For the direction cf motion shown in the figure,
the plate spacing increases with time., From the lew of conservation of
energy the increase in energy of the transmitted wave must equal the
mechanical work done on the capecitors,

To illustrate the energy balance, we consider an infinitesimal sec-
tion of the line Ax as shown in Fig. 3.15, Then we have

@]

The power flow P =

S |
.v2 = -cvav . (3.103)
5 P

1.2 1 SQ?
The capacitive energy density U per unit length = 5 V™ = 5T .
0]
(3.10%)
The externsl force applied per unit length is
QE-BU-}_QE__}.QV_E. (3105)
dx‘5§'2eoA‘es’ ‘
- 76 -

B

O

o AT e Feaen w3 te wa



L L L L L

PRy ) WS g | ) WY g, ) Wy g A SVSW Ok
F
¥
v
ol o A
I,
F F
-—-w-——-..!
Pio
i
1
X =X

FIG. 3.1k4--The configuration showing the conversion of power between
the pumping source and the transmitted wave using the pera-
metric principle.
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FIG, 3.15--7:0 configuration showing the energy balance for an infini-
tesimal section of the transmission line, -
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where

V = 1line voltage

I = 1line current
C = capacitance per unit length
L = inductance per unit length
VP = 1/1/561 = phase velocity of the wave
Q@ = charge per unit length
A = area of the capacitor plate per unit length

wn
[}

spacing at the capacitor plates .

From Egs. (3.105), the externel force applied for the infinitesimal
section Ax 1s

2
1l Cv
d.F = '2- —‘S‘_ dx . (30106)

Thus, the mechanical power input to the infinitesimal section Ax
is

@ = aF.8 = zEcvax (3.107)

where é is the transverse velocity of the capacitor plate., Combining
Egs. (3.103) and (3.107), we have

dP =

win.
wmjuv»

\1clpax =

dx (3.108)

’d<1l*'d
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but

<
&16

= '\/LC' = '\/LeOA's'l/e ,

<

where dS/dx 1s the slope of the ramp (Fig, 3.1%); therefore
as |
aF = \fIe AV =375 . !
FANA 372 ‘

Integration yields

K+ 1P = -2 Teh Y g— , (3.109)
P

where K 1s an integration constent. Now, at x = x

s We have VP =V
and P =P, ; therefore K = - I1nP, -2 (V/Vpi) and

i IS

resulting in

V(1 /vp ~1/Vp)

P=P e . (3.110)
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For V/VP <1l , we have

P P |Ll+ev vl— - %— .
Dy b

At the output terminal x = Xq s Vp = th , P= Pt » and we have

1.1

P ~ P 14+ 2v -
vpi Vpi

A i . (3.111)

This power relation agrees with Eq. (3.59) for the nonrelativistic case.

3.6, THE EFFECTS OF DISPERSION

A medium is said to be spatially dispersive at a ‘given frequency

J

if the properties of the medium depend on the magnitude of the wave~vector,

Cn the other hand, it is said to be anisotropic if the properties depend
upon the direction of the wave~vector. This may occur without spetial
dispersion, Acoustic weve propagation in & quartz crystal is an example.
Spin wave propagation in a ferromsgnetic material is an exampie of both
anisotropy and spatial dispersion., Notice that in above treatment, it
has been assumed that the medis are spatially dispersionless in their
rest frames. But from the Minkowski's relations [Egs. (2. 46) and

(2,47 )) and Maxwell's equations, it s evident that a medium which is
not spatislly or frequency dispersive in its own rest frame will become
anisotropic when it moves. On the other hand if a medium has frequency
dispersion property in its own rest frame, then due to the Doppler effect
it will also become spatially dispersive when it moves, i,e., the pro-
perties of the medium will depend on the direction of wave propagetion

at a given frequency. These facts are important for the general case
considered in Section 3.1. It is a difficult matter to take these dis~-

persion properties into account for the treatment of wave interactions
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with moving medium.el For the cases we are specially interested in, only
the interface moves and this kind of difficulty will not occur. Thus,
within the frequency range for which the materiel is nondispersive, all
of the results on frequency and amplitude obtained previously are valid.
At freguencies above this range, the maximum frequency shift in the
reflected wave will be limited.

We recall (see Section 3.3.1) that in a nondispersive stationary
medium it is the relative velocity of the interface with respect to the
group velocity (equal to the phase velocity in this case) which determines
the existence of the reflected or transmitted waves., In & dispersive
stationary medium the group velocity differs from the phase velocity and
may become very small. In this case the reflected wave may vanish over
a certain range of freguencies.

In Chapter IV the intrinsically dispersive nature of a ferromsgnetic
material will be taken into account in calculating the fregquency shifts
due to a moving interface. It will be found that the meximum frequency
shift 1n the reflected wave is limited by the condition that the group
velocity of the reflected wave should be larger than or equel to the
velocity of the interface. Furthermore, due to dispersion, the trans-
mitted wave might not exist under certain conditions, and hence total

reflection would occur,
3.7. COMPRESSION OF ELECTROMAGNETIC WAVES

It is obvious from the results of Chapter II that the double-Doppler
effect produced when an electromsgnetic wave is reflected once from &
moving reflector is significant only when the velocity of the reflector
is c¢lose to the phase velocity of the wave in the medium, This is
particularly so when the reflector moves with a nonrelativistic velocity.
Although & single reflection from & nonrelativistic moving reflector
will in general give & smell double-Doppler effect, a considersble enhance-
ment can be obtained by multiple reflection. Thus, it is interesting to
know how an electromegnetic wave which is contained by two infinite parallel

reflectors changes its frequency and amplitude during the course of. multiple
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reflection resulting from the motion of the reflectors toward each other.
This is essentially the compression of an electromagnetic field, As a
consequence of the motion of the reflectors, the frequency of the waves
will vary in time. The amplitude of the waves (assuming the lossless case)
will also increase in the course of compression due to the reduction of
the volume occupied by the waves and the external work done on the waves
by the reflectors ageinst the radiation pressure of the waves,

For simplicity, we consider the case of & uniform TEM wave with electrie
field in the y-direction and magnetic field in the z-directions see Fig. 3.16.
Consider the case where the separation of the two conducting plates {perfect
reflectors) is L at t =0 , and the second plate starts to move with
the velocity V in the direction shown at t =0+ ., This is an initial
and boundary value problem for the Maxwell's Egs. (3.112) and (3,113) with
a moving boundery. For the case of TEM wave considered, Egs. (3.112) and
(3.113) reduce to Egs. (3.11k) and (3.115), where € and p are the
permittivity and the permeability of the medium, respectively:

vxE - - & (3.112)
Ux 3 N3
XH = ¢ 3t (3-113)
3E (x,t) OH_(x,t)
. (3.114)
ox ot
OH (x,t) OE_(x,t)
A Al . (3.115)
ox ot

Combining Egs. (3.11%) and (3.115), the wave equation for Ey(x,t)
is obtained:
BQEy(x,t) beEy(x,t)
— 3 - HE — 5 = 0 . (3.116)
Ox ot

- 32 -

= e eSS A

AT A BT RS AT P RS A T oA MK 8 4

e

Tanr e YAV T o T e A SRR S At d




Y y
4
Stationary medium v
Conducting M, € 2 <«+——4 Conducting plate 2
plate 1 E (moving)
(fixed) y B’
Y
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Z’

FIG, 3.16--The configuration showing the compression of & uniform
TEM wave between two conducting plates (one fixed, one
moving).
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Since the freguency w and the amplitude A are functions of time,
the field will have the following time dependence:

/
Ey(x,t) = A(t)\sinfw(t) at] g(x) , (3.117)

where o(t) and A(t) are slowly-varying functions of time compared
with the term sin [ w(t)dt , and

%—t—l<<w(t) , %C@« A(t) .
Thus, we have
O, (x,t
—-ng——l = A(t) o(t) cosfa)(t) at | g(x)
ot
+ A(t) sinfw(t) at | g(x) "
or
OE_(x,t)
—~L—— ~ A(t) oft) cosfw(t) at} g(x) (3.118)
ot
and
3°g (x,t)
———%—5———- = - A(t) o (t w(t) at) g(x)
t

o(t) d’c) g(x)

+ A(t) ot (cos o(t) at] al(x)
(cos
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or

3% (x,t
—BL(;L—Z ~ - A(t) mz(t) sinfw(t) dt | g(x) ;0 (3.119)
t
furthermore,
3%E, (x,t)
7 = A6 [stn [ole) ot | 80 (3.120)
ox”

Substituting Egs. (3.119) and (3.120) into Eq, (3.116), we have

{'g’(x) + pe wg(t) g(x)} A(t) sinfw(t) dt = 0 . (3.121)

Thus, the solutions of g(x) can be obtained from the differential
eguation

o?(t)
Ex) + —— g(x) = 0o (3.122)
Vg

The solutions of g(x) are sin [w(t)/v ]Jx and cos [w(t)/v ,
where vp = ( l/ '\/ ) s 1s the phase velocity of the wave in the medium,
In order to satisfy the boundary condition on the surface of the fixed

reflector 1, i.e., Ey(O,t) =0 , sin w(t) \/Jé" X must be chosen for
g(x) . Then we have

Ey(x,t) = A(t) sinfa)(t) at sin%;-(:—)x . (3.123)



From Eq. (3.115), we have

Hz(x,t) = éﬁzil cosfw(t) at | cos %@ y (3.124)
P
vhere 2 = \/;Je ' is the wave impedance of the medium,

(a) Frequency Variation o(t) :

Using the Lorentz transformation, the electric field measured in a

frame attached to the moving conducting plate 2, E}:(x',t') , is
1
’ "t’ - E + VB
Ey(X, ) > ( v Z)
1 - (v¥/e)
A(t) w(t)
= sinfw(t) dt | sin x
/1 - (V3 E) Vp
Vi ~ o(t)
+ — cos] w(t) dt | cos X ,
Z Vp.
or
Alt) aft)
B(x%,t°) = sinfw(l;) dt| sin X
1 - (v¥/=%) o
w(t)
4 —— cosfw(t) dt | cos x . (3.125)
Vp Vp
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Now since E;(x',t') =0 at x’ =0 (i.e., at x =1L - V&) we have,
from Eq. (3.125),

sinfw(t) dt | sin "T;-Sl (L - Vt) + v/v.p cos/a)(t) dt | cos ‘%ﬂ (L-Vt) =0
(3.126)

Notice that the second term is a small perturbation for the nonrelativistic
case, in which V/’Vp << 1 . Thus the frequency variation in the zero-
order approximation, u)o(t) , for the nonrelativistic case will be de~
termined by Eq. (3.126),

0
sinfmo(t) at | sin %Sl (L-Vt) = 0 . (3.127)

When sin fa)o(t) dt = 0 , we have

This cannot hold for sll times and the frequency condition i«

sin [wo(t)/vp. L -Vt) =0 , or

0
a‘-—)v—(—‘ti (L - Vt) = hﬂ ] n= O, l, 2, - (3‘129)
b
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“rom Eq. (3,129) we obtain

wo(t) _ nw v, _ (nx vp_)/L i} ____fil____ (3.150)
(L - vt) 1 - (V/L)t 1 - (V/L)t

where Wy = nx vp /L is the initial frequency of the fields.

The frequency variastion in the zero-order approximation es given
by Eq. (3.130) can be simply interpreted by considering that the linear
motion of the conducting plate 2 causes the wave number of the resonant
system and hence the frequency to increase. As +t -+I/V (i.e., when
the second plate almost touches the first one), the frequency will increase
to a very high value (see Fig. 3.17). The increase in frequency is slso
explainable by the principle of conservation of the number of photons in
the resonant system during the course of comperison while the energy of
the resonant system increases due to the work done by the moving conducting
plate 2,

To take the perturbation term in Egq, (3.126) into account, we could
carry out a first-order aspproximation by letting

wl(t) = wo(t) + A(t) . (3.131)

Substituting Eq. (3.131) into Eg. (3.126) we could, in principle,
determine A(t) . Since we are particularly interested in the non-
relativistic case, the perturbation A(t) will be very small and we omit
the calculation.

It is worth noting that the frequency variation obtained by the
approach used here checks with that obtained by Kurilko,22 who treated
the same problem in a slightly different way,

Kurilko treated the prcblem as a transient process by tracing the

multiple reflections one by one, The frequency variation of the fields

[ R

S DA I

b O e I S




0 Lf2v =L/V

FIG, 3.17--The frequency variation of a uniform TEM wave during the
course of compression by two moving conducting plates,




is given as

0
© ©
2a .m-1
}: Atm - E: S +V 5 ’
m=1 m=1
where
m = the number of reflections
Wy = the frequency of the fields at t =0

= 1-BL+B=8-Vf6+V , B=V/s5<1

S = +the phase veloclty of the waves

(3.132)

(3.133)

Eiét = the sum of the time intervals between two successive reflections, -

m=1
2a = the separation of the two conducting plates at t = O
m = the number of reflections .

From Eq. (3.133), we have

00 00

_ 28 m-1  2a 2 3
t:ZAtm-Z——-S+V6 =g (1+8+8 +87+...)
m=1 m=1

or
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hence

m v
8" = 1-5t . (3.135)

Substituting Eq. (3.135) into Eq. (3.132), we have the frequency
variation,

1
wlt = W
a(t) %1 - (2v/2a)t

. (3.136)

By noticing that 2a corresponds to L and 2V corresponds to V

(Kurilko comsidered the case in which both conducting plates move with
velocity V) in our case, we see that the result of Eq. (3.136) checks
with that of Eq. (3.131).

(b) Energy Density Variation:

If we adopt the usual definitions of the time aversge electric energy
density U, and the time average magnetic energy density EM » we have

B
in zero order

P 2
0
T, = .;. (D - B) =§% fA2(t) sinfwo(dt) at | stn® {2LE) 4] gt
VP.
0
(3.137)
LI 2 0
"U'ME % (ﬁ . ﬁ) = ——— fA2(t) cosfwo(t) at | cos® (2 (t) xjdt ,
2z, p
0
(3.188)

where T = 2x/w(t) 4is the period of the fields,
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As the period T is much smaller than the total compression time
L/V , 1t is appropriate to assume that during the time period T the
frequency wp(t) is a constant, With this assumption, Egs. (3.137) and
(3.138) reduce to the following forms:

0

= 1 2 2 [ 2t) .
UE = T €A (t) sin . V; ) X (30139)
and
= 1 2 2 woft)
U, = 7 €A°(t) cos x . (3.140)
M I i
ioy
Thus, the average total energy density per unit crossectional area,
ﬁ& s 1s
_ L-Vt _
A % eA2(t) f ax = 11{ e - (L -Vt) A2(t) . (3.141)

0

Now, as the average radiation pressure,

? fg , upon the moving

conducting plate 2 is B/Bx(ﬂE) , the average external power per unit

crossectional aree spplied to the plate 2 in order to keep it moving at
the velocity V will be

P, = v?rx('ﬁT) = llIeAz(t) .V . (3.142)

Finally, the spatial average power loss per unit crossectional ares
due to the dielectric loss of the medium is

——

P, = oE? = )J-;- o (L - Vt) F(t) s (3.143)

where o© is the conductivity of the medium.
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If we neglect the conduction losses of the plates, we have the
following energy belance equation by the law of conservation of energy:

or
%.;5 [,11 e(L - Vt) Xé(t):l - %‘e vAZ(t)
(3.14k)
- 111 o (L - Vt) A2(t)
ize.,
d ;é(t) v o
= -— ] at . (3.145)
;\—(t) L -Vt €
Thus, we have
1
By = B(0) —a—ps (3.146)
(1 - T t)

and the average total energy density per unit crossectionel area is

1
A S /DL . 147
T 3 ¢ 1 - % 0 (3.147)

Notice that the average of the electric fleld amplitude squared is
strongly dependent upon the dielectric loss of the medium (see Fig. 3.18),
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FIG,

0 =L/V

3.18--Energy density variation of a uniform TEM wave during the
course of compression between two conducting plates (one
fixed, one moving).
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A metallic transition can be induced by a pressure shock wave in some
ionic and molecular cystals.23 An increase in conductivity by a factor of

lO6 to lO20 from the uncompressed to the compressed state has been ob-

served~23’2u

Thus the simulation of a moving reflector by a pressure
shock wave in & proper solid is feaslble, 1In view of this possibility,
the assumption of & perfect reflector in the analysis of the compression
of electromegnetic waves given in this section is a good approximetion,
although the anaiysis for the case of & partial reflector requires only
the slight modification of taking the transmission loss into account.
Finally, we notice that & large mechanical pressure can be obtained by
using piezoelectric ceramic25 PZT - 4 es a transducer. By operating in
the thickness mode and with electric field strength 100 kV/cm, 8 pressure

of the order of 30 X 10° Pounds/in? can be obtained.
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CHAPTER IV

THE REALIZATION OF DOPPLER INTERACTIONS IN REAL MATERIALS

In the previous theoretical analysis of wave interactions with a
moving interface or a series of moving interfaces in solids, we have
assumed that the moving interfaces are induced in a nonlinear nmaterial
such as ferroelectrics (or ferromagnets) by applying a large amplitude
electric (or magnetic) field step function or a series of pulses through
the materials,

The general theory developed in Chapter III for the interaction of
electromagnetic waves with moving boundaries, specifically that given in
Section 3.3, will be applied to the case of ferromegnetic and ferrcelectric
materials in this chapter. First, wave interaction with s moving inter-
face in a ferromagnetic msterial is analyzed with the dispersive property
taken intu account., We omit the corresponding calculation for the dispersive
ferrcelectrics, however. An illustration is given for the case of 4
ferr uignet, followed by a survey of the existing potentially useful
ferr.electric materials. The ccnversion between the transverse acoustic
wave and the longitudinal acuvusti. wave in a ferromagnetic material using
the Duppler shift principle is then discussed. Several poszible arrangements
for D.ppler shift experiments are briefly described. Finally, two exampies

of Doppler shift experiments appearing in the literature are given.

4.1 REFLEZCTION AND TRANSMISSION OF AN ELECTROMAGNETIC WAVE AT A LARGE
MAGNETIC FIELD STEP FUNCTION OR PULSE

A moving reflector and hence the compression of electromagnetic
waves can be realized, at least in principle, by applying a magretic field
step functinn or pulse to a ferromagnetic material. This is due to the
fact that the permeability tensor elements of a ferromagnetic material

are functions of the dc magnetic field, and consequently so is the
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impedance of the medium, This scheme appears even more promising when

we consider the feasibility of creating an abrupt moving interface or
series of moving interfaces, or electromagnetic shock waves in gyromagnetic
26 Hatfield and Auld;>lete.,) and
the generation of nigh amplitude, fast rising pulsed magnetic fields

Il
(Elliott,gg Heiter,‘9 etc. ).

media (see work by Gaponov and Freidman;

We now anpalyze the problem of an electromagnetic wave interacting
with such a moving interface, taking the dispersive proverty of the
ferromagnetic medium into account. Consider an infinite ferrite medium
traversed by a zero rise-time magnetic field step function as shown in
Fig. 4.1. A small-signal TEM wave comes in from the left end to interact
with the moving interface created by the step function. The difference
in the resultant magnetic fields in front of the interface and behind
the interface leads to the change in frequency and amplitude for the
reflected and transmitted waves. The general results given in Section
3.2 will be applicable here when the dispersion property of the medium

is taken into account. The equality of phases for all waves on the

H step function

Moving interface

Medium 1
i \i V i
My & Hey Medium 2
oy € Hoyp
Ops hr
'i)i, hi * e *wt s h‘t

FIG. 4.1.-The coufiguration of a uniform TEM wave interacting with .
moving boundary in a ferromagnetic medium.
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interface at all time leads to

w + Ki(wi) Vo o - Kr(a)r) vV =

To solve for wr

K = f(w) must be known.

and wt

w, + Kt(wt) v

(b.1)

in Eq. (4.1), the dispersion relation

The general form of the dispersion relation

30

in an infinite medium is given in Eq. (4.2) and the dispersion diagram

shown in Fig. L4.2:

‘e

ERTpp—

e

s e e a i s

e v ern

SR £

(wraypmy

, K
l
0 | \S ' .
- MEom;e 'l“-——"_ Magnetostatic mode —5'4- Spin-wave mode K , cm-l
>

0 ~2 ~10
FIG, L.z--The complete dispersion diagram for an infinite ferrocuagnetic
medium, The dashed lines are for the ordinary waves and the
solid curves for the extraordinary waves.,
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where
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o
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F F e

€
* oF R

For the electromagnetic mode,

(u°

- K2) sin29K + 2y t [(p.2 -n - K2) sinhe + hxa c082 1/2

- W K Gk]

2[(p - 1) sinzeK + 1]

(%.2)

the permittivity of the medium
the permeability of free space
the gyromagnetic ratio

the
the saturation magnetization
the exchange field

the atomic spacing

de magnetic field

the angle between the wave vector and the dc magnetic field
the radian frequency

a? € Hy

hnyMo

7H,

Hex

@ +a_ a® K
0 ex , >
l+oa/o - o

anh/u% - o

K 1is very small, By letting K -0 s

The following approuximate dispersion relations are obtained:

w
a? = 0 K2 lower branch (%.3)
ey, + @)
2 2 2
® (ab + ah) + = upper branch. (4.4)
0
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Thus, if we are operating along the linear portion of the lower
branch of the electrumagnetic mode, the frequency shifts in the reflected

and transmitted waves will be obtained by combining Egs. (%.1) and (&.3):

1+ v
w (V)
X : 0L 7 (4.5)
W, ep {w., +
S s hi 2 My 11 v
o

euglag) +qy) HE

Dy o1

L.6)
l 2 2 (
eno{s + @) i v

©o2

where

[4}) =

01 Moy » % = 7H

02

Similarly, if we operate along the upper branch of the eleci.oumagnar.:

mode, we have the following simultaneous equations relating @y a& and
¢

2 2 1/2
o+ Loy - oy +qn)7] ey v

o {18 oy g a) o
T r 0l u}«Il “O -
2 2 e
@y - {Wpp + 4yyo)7] F“*o} v

I
8‘.
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and a&/ﬁh and w, /o, can be solved graphically or numerically. This
can be done by plotting the function of Eq. (L4.7), denmoted by o' ,
as functions of @ a% and CV respectively.l7

As indicated in Section 3.6, the necessary condition for the existence
of a reflected wave (when the interface moves towards the incident wave)
is that the group velocity of the reflected wave be larger than the
interface velocity. Otherwise, the waves carnot "break away" from the
interface, and hence no reflection can occur. Therefore, the maximum
frequency shift available in the reflected wave is determined by the

condition

aw .
v Vg(wrmax) T =W, ’ (48)
T
mex

where Vg(u&hax) is the group velocity of the reflected wave at the
maximum frequency w, .
max
Thus, maximum frequency shifts in the reflected waves, when
operating along the lower branch of the dispersion diagram of the electro-
magnetic mode will. occur at

(i)
U)r = % . 01 .
max oltpy *+ Gy )

We note that on the lower branch there is an upper limit to the frequency
vhere the group velocity approaches zero. Consequently for reflection
to occur at this frequency, the velocity of the interface must approach
Zero.

On the contrary, when operating along the upper branch there exists
no limit for the meximum frequency shifts in the reflected waves as the
group velocity increases with increasing frequency on this branch.
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4,2 A SURVEY OF POTENTIAL FERROELECTRIC MATERIALS FOR THE DOPPLER SHIFT
EXPERIMENT

In the previous section it was shown that there are some limitations
to the use of ferromagnetic materials for Doppler shift experiments.
The difficulty, due to the high dispersion of the médium, is not present
in ferroelectrics. Ferroelectric materials are those which, for some
range of temperatures (at and below the Curie temperature Tec ), show
spontaneous polarization, the direction of which may be reversed by an
31,32 Many ferroelectrics have high dielectric
constants. The fact that ferroelectrics have high dielectric constants
mekes them exhibit a high degree of dielectric nonlinearity at electric
field strengths which are safely below the breskdown limit and easily
obtainable. Consequently, ferroelectrics are by far the most important

external electric field.

nonlinear dielectrics. Thus, it is important to give a brief description
of the outstanding properties and also the unfavorable properties of the
Perroelectrics for the frequency range of interest (microwave range)

and in particular for application in the Doppler shift expériment.
Relevant parameters of a few most potentially useful ferrcelectrics for
this experiment will also be given at the end of this section.

The most lmportant property for the Doppler shift experiment of
many ferroelectric materials is that there exists a phase transition
between the various states, e.g., paraelectric to ferroelectric state,
antiferroelectric to ferroelectric state, ... etc, and that this phase
transitior can be induced in various ways: an electric field, a mechanical
pressure, a temperature change, ete. This phase transition will be
accompanied by a change in structure of the material and hence in the
physical properties.

It is worth noting in passing that an analogous phase transition
may also occur in some ferromagnetic materials. A possible transition
between ferromagnetic state and antiferromagnetic state for the inter-

o at 73°K has been suggested.33
That a phase transition between various states may be induced by

metallic compound MnSn

electric field or mechanical pressure is well demonstrated by the fact
that the Curie temperature for many ferroelectrics can be shifted by
applying an electric field or mechanical pressure. For example, the
change of the Curie temperature per unit electric field strength,
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o [ok 3 fgﬁ ;;ngle-crystal BaT10, 1s in the order of +1.3 x 10-3 °¢/
Volt cm ~ ,” 7’ and the change of the Curie temperature per unit
pressure, Amc/Ap , for (Ba, Sr) Tio3 ceramic is in the order of
+ 4.0 x 1073 ¢ cnfkg .20

In the first-order phase transition32 the temperature dependence
of the permittivity will have a finite jump at the transition temperature
32 the permittivity has a

sharply defined peak around the Curie temperature,

while for the second-order phase transition,

The second important property of the ferroelectric materials is
that in the ferroelectric state the direction of the spontaneous
polarization in the form of domain structure can be changed and new domains
can be formed by an external electric field, while in the paraelectric
state a very large field-dependent polarization can be induced by an
external electric field. These properties lead to a large nonlinear
relationship between the permittivity of the material and the amplitude
of the electric field37 in both the ferroelectric and paraelectric states.
kS of the ferroelectrics in comparison with the
variable-capacitance diode are the high breakdown field strength. the
independence of loss on power level at small signal, and that they can

Other advantages

be treated both as distributed elements as well as lumped elements.
Furthermore, unlike the ferromagnetic materials, the ferroelectrics require
relatively simple, inexpensive blasing equipment and small amounts of

dc control power. The response time of the rf dielectric properties to
changes in dc bias will be short compared to that of ferromagnetic
materials.38

Although the ferroelectric is one of the most promising materials
for the Doppier shift experiment, there exist several tinfavorable
properties which will iimit the extent of application.

First, the high nonlinearity in the dielectric constant at the
range of temperatures around the Curie point is often accompanied by
nigh loss atv the microwave frequency. For example, single-crystal
BaTiO3 has high loss as well as high nonlipearity in the dielectric
constant at the range of temperatures around the Curie point of 120°%¢
over the frequency range of 0.5 Gc/s to 24 Cc/su39°L2 Thus the loss
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and the dielectric constant nonlinearity often go together. and the high
dielectric constant nonlinearity can hardly be utilized to the utmost
extent.

Secondly, many ferroelectric materials have the frequency of dieleciric

43

relax.tion in the microwave range or lower, ~ and this sets an upper
bound on the frequency of operation. For example, TGS crystal has a
relaxation frequency of 0.5 Gec at the Curié point.

Lastly, ferroelectric materials have temperature deperdent, high
dielectric constants which require a temperature control system on ore
hand, and make the matching problem difficult on the other hand.

Before we give a list of the potential ferroelectrics for the Doppler
shift experiment, it is most important to emphasize the difference between
the rf dielectric constant and the reversible dielectric constant,hL
and consequently the difference between the rf dielectric constant
nonlinearity and the reversible dielectric constant nonlinearity. The
rf dielectric constant is by definition the dielectric constant measured
by sn rf signal alone, while the reversible dielectric constant is the
one measured by a small amplitude rf signal with a de¢ biaz  The rf
dielectric constant nonlinearity is determined by the noalinear dependence
of the dielectric constant on rf signal amplitude. while the reversitie
dielectric constant nonlinearity is determined by the nonlinear dependence
of the small signal dielectric constant on de¢ bias amplitude.

The nonlinearity of the rf dielectric constant in the ferroeleitr.c
state depends mainly on whether the domain polarizations can follow the
rf field variation,while in the paraelectric state it depends on the
nonlinear relation between the induced polarization and the amplitude
of the rf field. The nonlinearity of the reversible dielectric constant
in the ferroelectric state, on the other hand, can persist to a higher
frequency as the nonlinearity is mainly due to domain orientation by
the dc bias field.

Thus, a significant nonlinearity of the reversible dielectric
constant at the microwave frequency does not necessarily mean a significant

nonlinearity of the rf dieleciric constant at the same frequency.
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In view of the favorable and unfavorable properties of the ferro-
electrics at microwave frequencies, one must consider the following
factors in chosing a given ferroelectric for a Doppler shift experiment:

1. As both the nonlinearity of the dielectric constant and the
loss have a peak at the Curie temperature and decrease from there, a
compromise in the operating temperature must be made.

2. As there might be a big difference betweern the reversible
dielectric constant nonlinearity and the rf dielectric constant non-
linearity, the reversible dielectric constant nonlinearity data should
be used when an electric step function or a series of dc pulses are
used to induce a single moving interface or a series of moving interfaces;
while the rf dielectric constant nonlinearity data should be used when
large amplitude microwaves, sinusoidal or rectangular,are used to induce
a series of wave-packet type interfaces or the semi-infinite moving
periodic structure fvhich will be considered in Chapter V).

In the following list of potential ferroelectrics (Table 4.I), the
numerical values of the dielectric constant nonlinearity are estimated
using the experimental data in the literature.

Although the parameters of some of the ferroelectrics which are
currently available, as illustrated in the table, are not as we desire,
the ferroelectrics show the greatest promise for Doppler shift experiments
in view of the increasing number of new ferroelectric materials and
the progress in the technology of controlling the physical properties of

a material.

4,3 CONVERSION OF A LONGITUDINAL ACOUSTIC WAVE TO A TRANSVERSE ACOUSTIC
WAVE IN A FERROMAGNETIC MATERIAL

So far in this discussion the reflected component of an electro-
magnetic wave interacting with a moving interface has been emphasized.
In this section we discuss a specific application of the general theory
of the transmitted component developed in Chapter III. As indicated
previcusly, the frequerncy shift in the transmitted component of an

electromagnetic wave wiil be in practice more easily observed than
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that of the reflected component, since it dovs not require an abrupt inter-
face. In fact, the frequency shift is independent of the steepness of

the transition. We consider specifically the conversion of a longitudinal
acoustic wave to a transverse accustic wave Oor vice versa, in a ferro-
magnetic material. In view 0f the fact that ferromagnetic materials

such as YIG are known to have small microwave acoustic losseg, this is

a problem of practical interest.

Befure entering the main discussion, we describe briefly the problem
of a spirn-wave interaction with a moving interface in a ferromagnetic
material. Consider the configuration shown in Fig. 4.3. A spin-wave
interacts with an abrupt moving interface induced by a magnetic step-
functizn in a ferromagnetic material. The direction of the magnetic
step~function ﬁp is perpendicular to the dc field ﬁb . The spin-wave
dispersion curves are shown in Fig. 4.4 for medium 1 and 2, where Ok
designates the angle between the wave vector and the resultant dc field
ﬁo + ﬁp . In medium 2, GK may also be equal to zero as a special case
where the step field is parallel to Ho .

Since the velocity of the interface V is of the order of electro-
magnetic wave velocity. it is therefore larger than the spin-wave velocity.
Following the same argument for the existence of reflected wave as
described previously, we conclude that only the transmitted wave exists.

From the gerneral resulws of Chapser III, we have

o, 1+ V/vPi

— = (4.9)
w

1

where @ and W, are the frequencies of the incident and transmitted
spin-waves, respectively, and Vp. and th are the phase velocities

of the spin-waves in medium 1 and 2. respectively.
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V ] Magnetic step function

Vv

Medium 1 Medium 2

y——-—bHO

. — Ab-a%
1
[ncident spin-wave | Transmitted spin-wave

FIG. L4.3--The configuration showing a spin-wave interacting with a moving
interface.

Dispersion curve for
| medium 2 (eK;lo)

Dispersion curve for
medium 1 (OKfO)

vz, 4. 4--The spin-wave manifold.
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Since V >>‘vp s, V> Vy Eq. (4.9) reduces to

i t
w Vp
t . =t (4.10)
w, Vv
i Py
w w,
ie., 2 = = (4.11)
v \'
Py pl
or
K, = K , (L,12)

where, X, and K are the wave numbers of the spin-wave in medium
1 and 2, respectively. Thus, it is seen that the wave number of the
spin-wave is approximately conserved, while the frequency of the spin-
wave changes in the interaction process. In other words., the momentum
of the spin-wave is approximately conserved, while the energy is not.
during the interaction process. .

Now we proceed the main topic of this section Ko, 4T Consider the

configuration shown in Fig. 4.5. The 'w- K diagrams for the acoustic

waves and spin-wave alone are shown in Fig. 4.6 and Fig. U.k.respectively.

The combined w - K diagramb'8 showing the coupling between the spin-wave
and the acoustic waves is given in Fig. 4.7. Transverse acoustic waves
are excited at the left end of the YIG rod using conventional technigues.

The transverse acoustic wave traveling into the rod has frequency W,

and wave number Ki , as shown in Fig. 4.7. After the rod is essentially

filled with the acoustic energy, a nonabrupt magnetic step is sent
through the rod from the right end. The direction of the magnetic step
ﬁp is orthogonal to the original dc field ﬁb . As the magnetic-step
function propagates through the rod, the angle of the resultant dc
magnetic field ﬁo + ﬁp rotates with respect to the acoustic wave

vector, 8, . From Fig. 4.4 we know that a new dispersion diagram
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b
v Nonabrupt magnetic
step function
Transverse acoustic
<:;Q3:f transducer
\
N N
N N
Transverse +-— e HO » Longitudinal acoustic
acoustic \ \ wave (wt)
wave (wi) N \\—
: Longitudinal acoustic

:? wave transducer
Y1G Rod

FIG. U4.5--The coniiguration showing the conversion of a transverse
acoustic wave to a longitudinal acoustic wave using a nonabrupt
magnetic step function.

w4

Longitudinal acoustic wave

Transverse acoustic wave

Flu. 4.6--The w - K disgram of the longitudinal and transverse acoustic
waves.
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corresponding to a new 6_ results, as shown in the broader curves in

K
Fig. 4.7, and the transverse acoustic wave is transformed into a longi-

tudinal acoustic wave with a higher frequency W, and wave number K = Kﬁ

t
The fact that the wave number is approximately conserved in the

conversion process can be derived in the same way as done in the first

part of this section, i.e . from

w L +V/v
t / Py
- = . L] (h°9)
w, 1+ V/V
i Py
)\
Since V >> Vpi , V>> th , Bq. (4.9) reduces to
o, o
% L% (h.23)
V V.
Py Py
or
K, = Ki . (4.14)

In most acoustic materials, the longitudinal acoustic wave velocity
is approximately twice that of transverse acoustic wave, and therefore
the frequency of the longitudinal acoustic wave is approximately twice
that of the incident transverse wave. Since the velocity of the inter-
face is much larger than that of the acoustic or spin-waves, no reflected
wave can exist. To aveld spin-wave losses, the conversion should be
made in a time short compared with the spin-wave relaxation time. When
the losses are ignored the conversion gain can be obtained from the result

given in Section 3.3.2,

Py 14 v/vp é v, 2 w, 2
—_ ) =) 4 — . (4.15)
P, 1+V v w

i /th Py i
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Thus, a conversion gain of approximately 6 dB will be produced in this
conversion process. The transmitted longitudinal acoustic wave could be
easily coupled out from the right end of the rod by & conventional
longitudinal wave transducer.

Similarly, a longitudinal acoustic wave can be converted into a
transverse acoustic wave using the configuration of Fig. 4.5 with slight
modification. In this case, the directions of ﬁo and ﬁp should be
interchanged. The transmitted transverse wave is dawn-shifted in freguency,
and attenuated in amplitude.

Notice that the conversion process stops when the magnetic step-
function completely fills the YIG rod. In medium 2 there is rv coupling
of the incident acoustic wave to the spin wave, for now the relevant
part of the w - K diagram is that of the upper (not lower) cruss-over
K 3 0 (see Fig. 4.4). Thus the magnetic field needs to be

pulsed. Furthermore we notice that the same conversion process will

region 6

occur when the magnetic step propagates in the same direction as the
incident acoustic wave. In this case the step overtakes the acoustic
wvave. We also note that it is possible, by applying a magnetic pulse
of finite length to achieve a varigble rf delsy. We can control the
timing of the magnetic pulses which mode-convert the acoustic wave by
conventional pulse delay circuits. One hardly needs to point out that
what the world needs is a $10 variable delay line.! (cf.Ford).

4,4 POSSIBLE CONFIGURATIONS FOR DOPPLER SHIFT EXPERIMENTS

It has been indicated previously that an abrupt interface is required
to produce a large reflection coefficient in the Doppler shift experiment
considered, and consequently a fast.rise time high voltage step-function
or pulse generator is required. This requirement seems, at least in
principle, not diffiuclt to achieve since a subnanosecond risetime
multikilovolt pulse generator16 has been developed.

A few possible experimental configurations for the observation of
the frequency shifts and amplitude changes predicted both in Chapter III
and this chapter will be briefly described in this section.
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To observe the frequency and amplitude changes resulting from a
single reflection from a moving interface or a moving slab we may use a
strip line filled with a nonlinear ferroelectric material, a strip line
loaded with variable-capacitance diodes, or a coaxial line filled with a
ferromagnetic material. A possible arrangement is shown in Fig. 4.8,
where we specifically consider the case in which a nonlinear ferroelectric
material is contained between the two parallel conducting planes. The
advantages of this structure operating in the dominant TElO mode have
been exp].ored..b"9 A voltage step-function (or pulse) applied to the
strip line at one end induces a moving interface (or a moving slab)
inside the ferroelectric material. A small microwave signal is applied
to the strip line at either the same end or the other. That is, to
produce a reflected signal up-shifted in frequency, the pump should
be applied at the other end; while to produce a reflected signal down-
shifted in frequency, both the pump and the small signal should be
applied at the same end. For detecting the frequency shifts of the
reflected and transmitted signals, a conventional superheterudyne
receiver can be used. We note that the metal strip line shown in Fig.

4,6 can also be employed for inducing a moving periodic structure in which
a rectangular or more practically a sinusoidal pump is used.

When a ferromagnetic material is used, the strip line in Fig. 4.8
would be replaced by a coaxial line filled with the ferromagnetic material,
and the voltage step-function would be replaced by a current step-function.

The advantage of strip line loaded with variable-capacitance diodes
over strip line filled with nonlinear ferroelectric is that the former
requires a much smaller voltage pulse than the latter. The sharpening
of the wavefront, and consequently the formation of an electromagnetic
shock wave, has been theoretically predicted and experimentally observed
(in & transmission line loaded with variable-capacitance diodeasl@.52
and also in ferromagnets).

For the otservation of frequency and amplitude changes due to
multiple reflectior from a moving interface or the compression of
electromagnetic waves, a rectangular or cylindrical cavity filled with

nonlinear material can be employed., A typical configuration is shown
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Matching Receliver 2

Network
wy wr a)t )
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Nonlinear
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i Receiver 1
filter w
. r
Signal ‘
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(o)

FIG. 4.8--Possible arrangement for the Doppler shift eXperiment utilizing
single reflection.
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in Fig. 4.9. Notice that a structure in which a dielectric resonmator is
inserted inside a waveguide can also be used. A superheterodyne receiver
can also be employed in this experiment for the observation of the
frequency shift in the compressed waves.

When s pressure step-function or pulse is used to induce the moving
interface, it is necessary to install a piezoelectric transducer at the

open end of the cavity.

4,5 EXAMPLES OF FREQUENCY CONVERSION AND AMPLIFICATION USING DOPPLER
SHIFT METHODS.

To demonstrate the feasibility of the various kinds of Doppler
shift experiments described in the last section, we give, in this section,
two examples of the Doppler shift experiments which are closely related
to the models and theoretical predictions given in the previous chapters.

(a) Frequency Multiplication With A Plasma "Piston"7

This is an example of the compression of electromagnetic waves
analyzed in Chapter III. A pulsed electromagnetic field (from a magnetron)
which has an initial wave length of 10 cm is compressed in a rectangular

metal waveguide (in the H.., mode). One end surface of the waveguide

is a moving plasma piston,oiiile the second end forms a smooth transition
into a waveguide with a cutoff wavelength of 4.6 cm. The plasma piston
is formed by means of a condenser discharge. The plasma bunch is set

to enter the waveguide 2-3 psec after the rf pulse from the magnetron

is turned on. Dyg to the compression by the plasma bunch, the frequency
of the electromagnetic field is increased. Although the plasma bunch
moves with a nonrelativistic velocity (~2.0 x 107 cm/sec), by virtue of
multiple reflection, a signal of much higher frequency (A = 3cm) is
generated and detected at the output terminal of the second waveguide.

(b) Doppler Effect-Like Phenomenon53

This is an example of frequency conversion and umplitude amplification
due to moving interface in real materials as most of the examples considered

in this study. The theuretical results and the simulated experiment
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Z{ Cavity filled with
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¥IG. 4,9--Typical arrangement for the Doppler shift experiment utilizing
multiple reflection - the compression of electromagnetic waves,
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Moving boundary
Medium 2 ’//f-—

Medium 1
— ——
2 1
Signal pulse ‘ 0
after interaction Signal pulse before
interaction

FIG. 4.10--Configuration showing a moving boundary interacting with a
video pulse.
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reported in reference 53 are very closely related to those considered in -
Chapter ILT. A moving boundary (interface) separating two stationary
media with different phase velocity and impedance is simulated by sending
a control pulse into a parametric distributed amplifier, The distributed
lines for the signal pulse and the control pulse are coupled by the
variatble reactance diodes. The video control pulse is fed into the con-
trol line a few microseconds after a video signal pulse is fed into the
signal line. The front edge of the control pulse changes the permeability
of the parametron from My to Ho o Due to the permeability change,

the inductance of the signal line and hence the phase velocity of the

wave in the signal line changes accordingly from Vl to V2 . The
length of the control pulse used is long, and the case Hy > Ho is
considered. Thus the phase velocity Vl corresponding to Hy is

smaller than the phase velocity V2 cOrresponding to TP On the

other hand, the velocity of the control pulse and hence the velocity of
the interface, Vo , remgins almost unchanged and larger than Vé and

Vl . because the inductance in the control line is much larger than the

nductance change in the parametron. Thus a configuration as shown in N
Pig. 4,10 1is simulated. An input pulse of amplitude 1 volt and length

~3 usec, after being over-run by the moving boundary induced by a control

pulse of amplitude 5 volts and long length, results in an output pulse

of ampiitude 100 volts and length ~1 usec.
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CHAFIER V

WaVE INTERACTLONS WITH A MOVING PERIODIC STRUCTURE

In the first se~tion ot this chapter the laws of conzervation of
energy and momentum are used to give a further proof that the frequency
and power ot a plane ele-tromagnetic wave, after interacting with a
single perfect moving reflector or a single moving "nonreflecting
interface,” change according to the formulas given in Section 3.3.

In Section 5.2, the model of a nonlinear spring is employed to
illustrate the transter of power between the pumping field and the
small gignal in a nonlinear dielectric or elastic material.

The general theory developed in Chapter I1I is extended to moving
periocdic structures of semi-infinite and infinite lengths in Sections 5.3
and %.%. The frequency components existing in these kinds of structures
are found, and the method of determining the various wave amplitudes is
briefly described. Various similarities with and distinctions between
the electromagnetic wave interaction with a train of moving reflectors
(i.e., using a square-wave pump) and that of conventional parametric
amplificatlion ucing a sinusoidal pump are discussed,

Finally, an electrically or mechanically tunable filter using an

electromagnetic or elastic rf pulse ig described in Section 5.5.

S
—

DERIVATIONS <1 THE P WER REIATTONS FOR THE CASES OF A SINGLE,
PERFECT M v NG RRPIECTOR AND A SINGLE MOVING "NONREFLECTING INTERFACE"
"SINJ THE [AWS ¥ " NSERVATION OF ENERGY AND MOMENTUM

The power relation for the case of a nonrelativistic perfect non-
reflecting interfamce wag found in Section 3.5, using the transmission
line analogy and the principle of congervation of energy.

We derive in thiz gection, using the laws of conservation of energy

and momentum, the power relations which are valid for both the nonrela-
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tivistic and relativistic cases for a perfect moving reflector and a

moving “nonreflecting interface."

This approach has been employed in
deriving the power relation for a plane electromegnetic wave interacting

with a moving reflector in free space.

5.1.1 A Perfect Moving Reflector »

Consider the configuration shown in Fig. 5.1. A plane electromagnetic
wave of frequency wi and power Pi traveling in a material medium
impinges upon a perfect reflector moving with a velocity V , and as
a result a wave of frequency w, and power Pr is reflected. As
previcusly demonstrated, a moving reflector separating two stationary
media can be simulated by applying a voltage step to a proper nonlinear
ferroelectric material. An arbitrary reference plane is chosen as shown.
We consider the region bounded by the reference plane and the reflector
as a system,

For a plane electromagnetic wave, the momentum per unit length is
EVVi and the momentum transfer per unit time (energy density) is P'/Vp ’
where P and Vp are the power and phase velocity of the wave in the
nondispersive medium, respectively. Assuming that the momentum flow in
the positive x direction is positive, the rate of momentum flow out

of the system is
— (-P_-P) . (5.1)

The total momentum of the system is

X
5 (Pi - Pr) . (5.2)

Py
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— Reference plane

Perfect moving reflector

w, , P . e .
T r v . / ’ N \ )
B “ ,’ N N

FIG. 5.1--A perfect moving reflector in a material medium. The
region bounded by the reflector and the reference plane is
congidered as a system,

Reference planes
“<T—-——-Moving "Non-Reflecting Interface

/,/, /// ",/7' \ \\\\\\\ N .
. S AN

\

P Pt
y :\\\ N
j e T S,

FIG. ».2--A moving "conrellecting interface" in a material medium. The
regicu bounded by the two reference planes is considered as
8 cystem,
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Since dx/dt = -V , the rate of increase of the total momentum of

4.

the g'stem is

da X v
— |= (B, - )| = - (p,-B) . (5.3)

If F is the force the reflector exerts on the waves, then by the law
of conservation of momentum the total rate of incrzase of momentum must
be equal to F , yielding

1 v

F o= -— (B, +P)+— (P -P) . (5.%)
v V.
P p1

Next, we consider the energy of the system. The total rate of

energy flow out of the reference plane is

— (3, +P) (5.6)

and the ratz or change of the total energy stored is

v

-— (P, +P) : (5.7)
\
Py
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e oo = e =

By the law of conservation of energy, we have

v
F 'V = (Pr - Pi) - v—-— (Pi + Pr) . (5.8)
by

Combining Eqs. (b.4t) and (5.8), we have the power relation for a
perfect reflector:

P -
—— = . (5'9)
P,
1
Since from Eq. (3.60)
1+ V/V
©p Py
= = | —— , (5.10)
W
i 1-V/V
/ P
we have, furthermore,
2
P W
S = [ £ . (5.11)
P, w,
L 1

This power relation agrees with that given in Section 3.3 for a perfect

moving reflector and is what we set out to prove.

5.1.2 A Perfect Moving "Nonreflecting Interface"

We consider the case of a perfect transmitter as shown in Fig. 5.2.
The two media separated by the moving interface have the same impedance

Zi = Zt , hence no reflectiong will occur; but the wave numbers Ki
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and Kt are different so that the transmitted wave has a frequency
shift, and hence there is a transfer of energy between the interface
and the transmitted wave.

Consider the region bounded by the two reference planes as a system;
then, following the same approach as given above, the rate of flow of
momentum out of the system is

Pt Pi
-t _ (5.12)
\' v
The total momentum of the system isg
X X,
\—r_é— Pi + -\;'2-— P‘b . (5.15)
Py Py
The rate of increase of the totel momentum in the system is
d xi X, v v
— |—==P, 4+ =P | = =P, 4+ =P . (5.14)
dt v2 i v2 t V2 i V2 t
Py Py Py Py

Combining Eqs. (5.12) and (5.14), we have the total rate of increase
of momentum in the system. From the law of conservation of momentum,

this must equal to the force the interface exerts on the waves F

P, P v v
P = -‘-,-—- - ;——- + - ;‘2—"' Pi + ‘\""2_“ P't: . (5 015)

Next, the total rate of energy flow out of the system is

P, - P . (5.16)




The total energy stored in the system is

P, P,
X; ==+ x = , (5.17)
' \'
Py Py

d P, P v V'
—n—— X. ..._1_ + x -—L = - v— Pi o m—n— Pt (5018)
dt \ v \ V'

P, D, Py Py

By the law of conservation of energy, we have

v v
ﬁ.v*=(Pt-P.)+ -— P, +—P : (5.19)
i v i v t
Py Py

Finally, combining Egs. (5.15) and (5.19), we have the power relation
for & perfect "nonfeflecting interface:"

p 1+ Vv 2
t Py
LU S /5.20)
P 1+ vy
Py
Since, from Eq. (3.59),
o, 1+ v‘/vPi
.y = e ——————————— ’ (5 '21)
] 1+ V/v
Py
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we have, furthermore,

p 1+ V/V 2 é
t Py ©g
-~ = = — . (5.22)
P, ,
i 1+ V/th w,

Again, this power relation agrees with that given in Section 3.3 for

a moving interface with perfect transmission.

5.2 THE POWER TRANSFER BETWEEN THE PUMPING WAVE AND THE SMALL SIGMAL
WAVE IN A NONLINEAR MATERIAL

In most of the previous analysis, we have assumed that a moving
interface or a series of moving interfaces is induced in a nonlinear
material by a (large-amplitude) pumping field. Thus the change in the
power of the reflected and transmitted waves after interacting with
the moving interface or series of moving interfaces necessarily implies
a transfer of power between the pumping field and the small signal waves.

We demonstrate the physical mechanism of this conversion by using
the model of a "nonlinear spring" for a nonlinear elastic material and
also for a nonlinear dielectric material, This calculation will follow
the method used for the transmission line model of Section 3.5.2.
Consider & nonlinear spring as shown in Fig. 5.5. Assume the force-

displacement law of the nonlinear spring is represented by

F o= gx+ 02x2 ) (5.22)
where
F = force exerted on the spring
x = displacement of the spring from the quilibrium position
Ql = linear spring constant
Q2 = nponlinear spring constant. .
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= a sin wt

Sf
A e

Y = 2
F le + Q2x

PIG, 9.3--The nonlinear spring used to illustrate the power transfer
between the pumping wave and the small signal wave in &
nonlinear material.

A static force FO and a sinusoidal force B&f = & sin wt , where

a 1s much smaller than FO , are simultaneously applied to the spring.

From Fg. (%.22), we have
F.+6f = F_+asgin ot = 9.x+ Q X (5.23)
0 0 1 2 ' )

To solve for x in Eq. (5.25), we let

X = X, 4+ 05X , (5.2h)
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and carry out a perturbation calculation; Xy and 5x designate the

static and sinusoidal displacements, respectively. Substituting Eq. (5.24)

into Eq. (5.23), we have the following equations of harmonic balance:

2 2
o Ay ¥y + Op%y + Q2(8x) (5.25)

8f

(Ql + 2Q2xo) &x , (5.26)

where (6x)2 denotes the time average of the square of the perturbation
displacement, (ax)2 .

Now, if FO is a glowly-varying function of time such that it has
no frequency component at « or higher, Egs. (5.25) and (5.26) remain
valid when the average of (Bx)2 is taken over only a_fey cycles of
si.. wt . Let us denote this short time average as 25252 + Then
Eqs. (5.29) and (5.26) become

Folt) = 0y%(t) + Qx(4y 4 o (ox(t))? (5.27)

5f

(al + 2Q2xo(t)) 5x(t) . (5.28)

Now, consider the short time average power delivered to the system
(the nonlinear spring) by the forces Fo(t) and 5f

’

P (6) () (6) + 54(8)) & F(8) Ho(8) = (%) + auea (1)) #g(8) + a,(x(E))E %, (t)

(5.29)

af(ko(t) + 5%(t)) = of ax(t) = (Ql + 202x0(t)) ox(t) 3x(t) .

(5.30)
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From the law of conservation of energy, the sum of Eqs. (5.29)
and (5.30) must equal the average rate of increase of the stored energy
in the spring., This is given by expression (5.31) if the loss is ignored:

(0,%0(8) + 055(8)) %o(8) (5.31)
yielding
02(6X(t))2 %, (t) = - BFox(t) . (5.32)

The right hand term represents the average power delivered to the
force bdf by the spring, while the term on the left hand side represents
the average power supplied to the spring, over and above the amount
required to increase the stored energy as the spring is stretched.

Thus, Eq. (5.32) states that an extra power OP = - 5f ox(t) is
delivered to the oscillating force &f . If &f is the inertial force
due to an oscillating masss, then this extra power goes into the oscilla-
tion, increasing its amplitude. This transfer of power is what we set
out to show.

Similarly, for & nonlinear dielectric, we assume the nonlinear
relation between the polarization P and the electric field E as
giveu by

E = 1P+ 0,5 , (5.33)

where Ul and 1, are the linear and nonlinear inverse polarizabilities,
regpectively.

By using Egs. (5.34) and (5.35), with a <'EB, , we may proceed in
the same way as before and obtain Eq. (5.35) for the power conversion
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in the lossless case:

E(t) = Eo(t) + de(t) = Eo(t) + a sin wt (5.34)
P(t) = Py(t) + op(t) (5.35)
2; YN
no(3p(t)) "B () = - ve &B(t) . (5.36)
The right- hand term represents the average power gein of the Jl-

signal wave %e , while the term on the left hand side represents the
corresponding average power lost by the pumping field Eo(t) . Again,

this transfer of power is what we set out to prove.
5.5 WAVE INTERACTION WITH A SEMI-INFINITE MOVING PERIODIC STRUCTURE

Consider that a plane electromagnetic wave is incident upon a
semi-ififinite moving periodic structure as shown in Fig. 5.4, The
moving periodic structure is considered to be induced in a nonlinear
material by a rectangular pumping wave. The notation appearing in this
figure is the same as used previously.

Applyinrg the principle of "equality of phases" on all moving inter-
faces, we easily obtain the following four frequency components:

é 1+ V/V
Py
wr = —_— (.Di
1-V/V
P,
1+ v/
+ / Py
w = w,
m 1y v/vp *
1
¢ . (5.37)
1+ V/v
- P,
w = ———— a)i
1-v/v
/ o,
+ —
(.Dt = d.)i
. Op = &




f<.'

To + »

- - - -
- o —

To + o

(b)

FIG. 5.h—-(a§ A semi-infinite moving periodic structure.
(b) The rectangular pumping wave used to induce the moving
periodic structure (&) in a monlinear material.

To calculate the reflection and trarcmission coefficients for the
semi~infinite moving periodic structure, we first use the wave matrix
echnique introduced in Chapter III to determine the equivalent wave
matrix for a single period, [W] . The wave amplitudes at the input
terminal of & period, A: and A; s are related to the wave amplitudes

3 . o~ : |+ 1=
at the output terminal of the same period, A D and A 2 by

~ - r— - -~ - - o
+ .+ +F + 4
An An—!—2 w W An-¥-2
A 810 vtooowT | 400
{n 12 L B n+2
n=1,2,3 ... , (5.38)
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where W'T , W - , W' and W~ are the components of the wave

matrix [W)
To solve Eq. (5.38), we let

4] ™+ ]
An A5+2
= ¢ ; (5.39)
- U
A
_nd _n+2J

then Eq. (5.38) reduces to

B 7 ~ —
+ ++ + -] .t ]
Ao W W Ane
g = . (5.40)
1= -+ == [
An+2 W W An+2
L . L _J L .

Thus, the problem of determining the wave amplitudes reduces to an
eigenvalue problem for determining the constants & (eigenvalues) .55

From Eq. (b.h0), the eigenvalues are found by solving the following
equation:

Wk W
= 0 (5.41)
wt WS-
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After the eigenvalues £ are found, the wave amplitudes can be
easily determined by substituting & into Egs. (5.39) and (5.40),
The reflection coefficient R and transmission coefficient T will

be given by the following equations:

- - ++
A A’ E - W
R = - = —--—-n+2 S e (5°h3)
At oart W
n 2
o+
Po= n+2 = . (S.hh)
A+
n
. et + -
Due to the extremely complicated espressions for W y W )
- -
W and W , ho analytical method for determining the constants

£ has yet been found. Nevertheless, numerical calculation can be
carried out. We omit this numerical calculation and pursue a more

interesting topic in the next section.
5.4 APPLICATION OF THE GENERAL THEORY TO THE FREQUENCY CONVERTERS

Consider that a square-wave pumping signal induces changes in the
permittivity e of a nondispersive nonlinear material as shown in
Fig. 9.5 and Fig. 5.6 for the cases of infinite and semi-infinite

structures, respectively. The general theory predicts that there will
+

be four frequency components present in both structures: wl B w% B
u& and w, , plus the repetition rate or the fundamental pumping
signal frequency ;= eny/g . They are as follows:
1+ v/vP
N e (5.45)
1-v/v
5)
1+ v/v
+ Py p
w, = —] (5.45)
1+V/V
by
1+ V/v
- A (5.47)
w = w s 54
m 1- VNV L
P2
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’4

FIG. 5.5--An infinite moving periodic structure induced in & nonlinear

material using a square-wave pump.

v Vv v Vv Vv
L - -] -
A V. 2
Vi %1 Yp2 % | Vm 2y | V%2 | 'L "1
- - - = =
V) w o w
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One period

v
Ay
2 Vpl

-
To + »

FIG. 5.5--A semi-infinite moving periodic structure induced in a nonlinear
material using a square-wave pump. .
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and

W, = W) (5.48)
w; = W, (5.49)
wp = g‘;‘;! . (5050)

The smaller number of frequency components resulting from a square
wave pump is a remarkable result of this analysis. This is in contrast
with the sinusoidal pump case, where there is an infinite number of
frequency components:%’57

Consider more specifically the case of a semi-infinite structure

in which the frequency component w, can be utilized (see Fig. 5.6).

2
In order to have a maximum amplitude for the frequency component Wy s
the separation 2/2 and hence the pumping pulse width must be properly

adjusted so that reflections from the various periods will add in phase.

This can be achieved by imposing the following conditions::

£ o 2
e o+ B o o
2 v 2

n=1,2, ... . (5.51)

Substituting Egs. (5.45) - (5.49) into Eq. (5.51), we obtain the
length £ for optimum reflection:

2nn

1 (L+v/v.)

Py
1 ) + 2
Jpl(l - v/vpl) Vp2[1 - (V/Vpg) ]

n=1,2,3 ... . (5.52)
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For the case V_ = V = V_ , which will be discussed in detail
P, Dy P
later, Eq. (5.52) reduces to

(5.53)

n=1,2,3 ... .

Notice that when V -0 , £ —»nx/2 as it should, and we can interpret
the large reflection as due to the stop-band of a moving periodic

structure.

When the change of dielectric constant induced by the pumping signsl
is small, as in the case of conwentional frequency converters,58’59
the following approximation for the phase velocity is valid:

v = V =V . (505)4)

Using Eq. (5.54), Eqs. (5.45), (5.46) and (5.47) reduce to

" + +
o o= oo = (5.59)
< a% = w; = w, (5.56)
.2
©, = = . (5.50)
\.

Thus, the system reduces to one containing only the three frequency

components w5 W

5 and wp ;, when V. = V .

1 Pp
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We continue to consider the case V_ = Vp . In order to have a
strong interaction and hence a large ref}ectio%, we impose the following

condition go that all reflections add in phase:

P P (5.57)

But from Eq. (5.45) (the pumping wave and the incident wave are contra-

directional), we have

Vv v W, - W
—_— - — = 21 (5.58)
Vpl Vp u)2+a)l

Combining Egs. (5.50), (5.56) and (5.58), we have the following

frequency relation for large reflection:

Wy = O + nnp ) n= 12,3 ...
(5.59)
For n=1 , we have
W, = u.)l +a.)p (5.60)

If we define the wave number of the pump signal K, @s wp/v , then
Egs. (5.59) also leads to

Ky = K - K
> K, = nK +¥ 6
Ky = K +K (5.61)
and
Kk = Kp - Kl
—> -
K, = Kp+i’l (5.62)
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for n=1 , It is interesting to notice that the frequency relations
(5.60) and the wave number relation (5.63) are just that of the conditions
for optimum interaction in a conventional frequency converter (up-
conversion) using a sinusoidal pump, where W “@ and wp are,
respectively, the signal, idler and pump frequencies.58 Figure 5.7a

shows the frequency and wave number relations for up-conversion,

Eimon 0 congiders this circuit and obtains the same frequency shift
in the reflected wave for n = 1 for a sinusoidal pumping wave. Simon
calls this a case of Bragg interference of the first order and attributes
the frequency shift in the reflected wave to the Doppler effect, as we do.

.For n>1 , Egs. (5.59) and (,.61) predict the existence of higher
order sidebands with higher frequencies. This also has bewen predicted
for the case of the conventional frequency converter using a nondispersive

56,57

medium, Following Simon, we designate these ag Bragg interference
of higher orders. It is important to remember that we have been con-
gidering the case in which the pump signal propagates in the direction
against the signal wave.

Similarly, for the case in which both the pump and signal propagate
in the same direction, with the same assumption Vpiz Vp =V_ , the
system also reduces to one containing only three fré&quencies wl > Wy

and wy . They are as follows:

(
+ +
o o= oo = o (5.55)
1 -V/v
o7 ~ o] 2 (5.63)
w = o =W, = ——————— WD .
m K 2 1+ V/V 1
D
L
2ny
wp = = (5.50)
\
From Eq. (5.53), we have
v A w, =~ ®
— e — = 2 . (5.64)
Vpl Vp wl + Wy
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Combining Eqs. (5.50), (5.56) and (5.64), we have the frequency relation
for strong interaction:

(D2 = wl-IIDP » n=1,2,3 ... .
(5.65)
For n=1 , Eq. (5.65) becomes
Wy = W) - (5.66)

If Kp is defined as previously, i.e., Ki = mp/V , then Eq. (5.54)

also leads to

Ké = nKp - Kl
or R; = -ni; + i& (5.67)
and

Ké = Kp h Kl
or

-R; +K (5.68)

K
for n=1 ,
Again, we notice that Egs. (5.66) and (5.68) are the frequency and
wave number relations of a conventional frequency converter (down-
conversion) using a sinusoidal pump, where o w

1’ 2
signal, idler, and pump frequencies, respectively. Figure 5.7b shows

and wp are the

the frequency and wave number relations for down conversion. When
n>1 , Eq. (5.67) indicates the possibility of higher-order parametrir
interaction.

It is important to note that although higher~order interactions for
both the square-wave pump assumed in this analysis and the sinusoidal-
wave pump used in the conventional frequency converter or parametric
amplifier, the higher order interactions will be larger in the case of
square-wave pump because of its harmonic content.

Finally, we proceed to discuss another important aspect of this

analysis of wave interaction with a series of moving interfaces, namely,
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FIG, 5.7--Frequency and wave number relations for freque. . couverters:

(a) up-conversion; (b) down-conversioi.
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58,61

to see if the Manley-Rowe power relations are satisfied. The
Manley-Rowe power relations involving frequency conversion for a purely

reactive system are

p P P p
'-]; = -—2’ = "—5‘ v e 0 s o e = -—'n 2 (5 '69)
wy W, w3 W,
where Pl , P2 , P5 5 e e Pn are the net input or output
powers, and W, Wy ,03 ¢+ . are the corresponding frequencies.

From the results of Section 3.3 and Section 5.1, the power relations
for a perfect moving reflector, a perfect moving "nonreflecting interface,”
and a moving interface separating two dielectric media are given by
Egqs. (5.70), (5.71) and (5.72), respectively:

P, P,
< = 3 (5.70)
w, w
1 r
P P
%
= = =5 , (5.71)
(Di w
and t
fl - Pr Pt
2 = 5 2
w0y 2 (%o = 2y 2 (2 V2%,
w, Wy (5.72)
2y * 2 2y * 2,

Obviously, the simple Manley-Rowe relationships are not satisliea in
any of the three cases considered. This conclusion should not be con-
sidered surprising, since the stored energy of the system (bounded by
the reference plane and the reflector or by the two reference planes
as shown in Figs, 5.1 and 5.2 has a steady decrease, while the Manley-

Rowe relationship is derived for a stationary process in which the stored
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energy does not steadily increase or decrease with time.

In order to see whether the Manley-Rowe power relations are satis-
fied in the infinite or semi-infinite moving periodic structures in-
duced by the rectangular-pumping wave or more specificially the square-
pumping wave, we have to carry out the calculations for the wave
amplitudes as indicated in Section 5.3. Here we consider a special
case in which a train of short pulses is used to induce & train of
moving discontinuities or "moving pa.ddles"55 (see Fig. 5.8). The
spacing of the paddles is such that all reflections from the paddles
add in phase.

Since the moving periodic structure considered is infinite, the
stored energy and momentum can be assumed to be constant for steady-
state operation. Applying the principles of conservation of energy and
momentum employed by Pierce55 and also illustrated in Section 5.1 for
plane electromagnetic waves,the rate of momentum (force F ) in the

system is
1
— —— [=
P o= (P2+Pl) ) ()075)
Vv
Py
= .
and the rate of increase of energy (F - 73 in the system is
Fv = (P

-B) . (5.74)

Solving Eas. (5.73) and (5.74), we have

1
P, + V/Vpl
—— = R [ (5 075)
P 1 - V/vpl
But, from Eq. (5.45), we have
1+ V/v
®s Py
— = R —— . (5 076)
w, 1- v/vpl
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FI1G. 5.8(a
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)--A semi-infinite "moving paddles" structure.
)--A semi-infinite train of short pulses used to induce
the structure of (a) in nonlinear materials.




Finally, we have the Manley-Rowe relation

Ins®
In®

. (5.77)

e
£

It is important to emphasize again that for this to occur, the

frequency of the incident, reflected, and pump waves must satisfy a

relation of the following form: ’
wy = @)+ R s n=1,2, ... (5.78)
k’e = R’l+ nl‘{’P n=1,2, . .. . (5.79)

Furthermore, if we consider the pumping power Pb to be equal to TV
we have the following Manley-Rowe power relations by combining Eqs. (5.74),

(5.77) ard (5.78):

P P
-—2: = -—2‘ = “"'E ] n= l, 2’ « o » .
w, 1w (5.80)

g

5.5 DOPPLER SHIFT FREQUENCY CONVERTER AND ELECTRICALLY OR MECHANICALLY
TUNABLE FILTER. >

From the analysis given in Section 5.4, it ic conceivable that a
device can be constructed to convert an input frequency and power to
a higher output Irequency and power by using an electromagnetic or
elastic rf pulse. The pulse will induce in a nonlinear material a
series of moving periodically-spaced regions of differing impedance
(see Fig. 5.9). The advantage of using an rf pulse is that a large
reflection, if the periodicity is adjusted according to Egs. (5.52) or
(5..3), can be achieved even if the rf pulse builds up slowly over a
large number of wavelengths. Thus this device could be used for fre-

quency conversion of z2ither electromagnetic or elastic waves. By
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FIG. 5.9(a)--An rf pulse.
(b)--A moving periodic structure induced by the rf
pulse in a nonlinear material.
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using a semi-infinite periodic medium, one obtains better than a
Manley-Rowe power couversion, according to Egqs. (5.70) - (5.72).
Similarly, by using the same prirciple a spatial periodicity in
dielectric constant can be induced by setting up a standing electro-
magnetic or elastic wave in a material which has an electric field,
pressuce-dene-Je t dielectric constant, The medium which has
a spatial periodicity in dielectric constant behaves as a filter
structuwre, with stop~band frequencies determined by the periodicity and
stop-band widths determined by the degree of dielectric modulation.
Thus an electrically or mechanically-tunable filter can be constructed
by adjusting the frequency and amplitude of the modulating electro-

. . 62,53
magnetic or elastic wave.
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CHAPTER VI

A NONRELATIVISTIC CASE: LASER LIGHT INTERACTIONS WITH
HIGH FREQUENCY ACOUSTIC WAVES

6.1 INTRODUCTION

In the first part of this study a theoretical analysis of the fre-
quency shifts and amplitudes changes of an electromagnetic wave interacting
with a single moving interface or a series of moving interfaces in non-
linear solids was given. The results suggest many Doppler shift experiments
provided that appropriate materials are available. Specifically
considering the case of a semi-infinite periodic structure such as that
discussed in Section 5.3 and 5.4, an example of electromagnetic wave —
electromagnetic wave interaction at a microwave frequency is that of a
microwave EM wave interacting with a moving periodic structure induced by
a second (large amplitude) microwave EM wave. For this case the K.TaO3
single crystal at liquid-helium temperature shows the greatest promise.

Unfortunately, reasonably large KTaO, single crystals are not available

at present. For the case of a light3wave-light wave interaction, i.e.,
a laser light interacting with a moving periodic structure induced by a
giant pulse laser, LiNbO3 and KDP cggstals at room temperature are among
the potential materials to be used. This experiment, although feasible,
seems to require an extremely large amount of laser power. A similar
experiment is also possible for acoustic waves at microwave frequency
using nonlinear crystals such as MgO and SiOE.

As a result of the availability of CW laser sources such as helium-
r.eon gas lasers and the development of experimental techniques for
generating high-frequency acoustic waves, there has been a renewed and
active interest in the topic of light interaction with acoustic waves.
It will be shown in this chapter that this subject can be considered as

a nonrelativistic case of the general theory developed in the previous
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chapters. Various experiments involving laser light interactions with
high frequency acoustic waves in solids have been carried out, and some
results are considered in the experimental part of this study . That the
interaction of laser light with acoustic waves in solids can be treated
by analogy with the problem of an electromagnetic wave interacting with
a large number of nonrelativistic moving interfaces can be explained
by the following intuitive argument. An acoustic wave will excite density
modulation which varies periodically in time and in space in solids.,
Since the refractive index or dielectric constant of a solid is a function
of its density, it will vary periodically in time and in space according
to the density mcodulation. That the scattering from a medium with
refractive index varying periodically in time and in space can be treated
using an equivalent “series of moving interfaces" is shown in Section 6.4.

.us an acoustic wave can be considered to induce a series of moving
interfaces. A light wave will encounter diffraction or scattering (or
reflection, following the language used previously) When propagating
through such a series of moving interfaces. The frequencies present in
the diffracted and transmitted light are expected to be shifted from that
of the incident light, due to the Doppler effect.

The frequency shifts of the diffracted light (predicted according

to the Doppler principle as discussed in the previous chapters) are shown

to agree with these obtained by the Raman-Nath theory and the experimental

results. Due to the small value of the ratio of the acoustic wave velocity

to the light velocity in the crystal, the frequency shifts in the diffracted

and transmitted light are very small compared with the frequency of the
incident light.

A brief description of the Raman-Nath theory and some extended
theories which successfully interpret the experimental results of light
diffraction using ultra high frequency acoustic waves in liquids are
given in Section 6.2. The frequency shifts in the diffracted and trans-
mitted light and the conditions for strong diffraction are derived in
Section 6.3 using the moving reflector theory. Section 6.4 gives the
derivation for the diffraction intensity using the "Ray-Tracing and

Cascade Network" method. The diffracting power of various crystals is
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also predicted in this subsection. An alternative method for calculating
the diffraction intensity using the parametric principle and coupled-mode
theory is briefly described in Section 6.5. The dependence of the
diffraction intensity on the acoustic wave frequency, when the Bragg
condition is not satisfied exactly, is given in this subsection. Section
6.6 describes means for diffracting a large portion of laser light. Finally,
in Section 6.7 an analysis of the enhancement of diffraction due to

acoustic resonance is given.
6.2 THE RAMAN-NATH AND THE RELATED THEORY

We first give a brief survey of the theory of light diffraction
using high frequency acoustic waves. The diffraction of light by ultra-
sonic waves, commonly known as Brillouin scattering, was the subject of
extensive experimental and theoretical research in the 1930's and 1940's.
BrillOuin66 was first to predict thesediffraction phenomena, and Debye,
Sears;67 Lucas, Biquard,68 gtc., experimentally observed this diffraction

9

phenomenon in 1932. R. Bar ~ also carried out various kinds of experiments
and theoretical interpretations in the 1930's. During this period the
acoustic waves were almost exclusively generated in liquids and at
frequencies below 50 Mc/sec.

Probably the most complete theory for the diffraction of light by
ultrasonics is the one developed by Raman and Nath7o in 1935 and 1936.
Raman and Nath, in parts 1, 2 and 3 of their theories, considered that
the phase of the light is corrugated after traversing through the medium
due to the presence of an acoustic wave which induces a sinusoidal change
of index of refraction in the medium. The corrugated wave-front then
causes the diffraction. Thus the acoustic wave acts as a phase grating.
Consider the configuration of rig. 6.1 in which the change of index of
refraction n(x) is expressed by Eq. (6.1). The directions for the
maximum diffracted light, i.e., the orders of diffraction, en , are
determined by Eg. (6.2) and the diffraction intensities I, » I, are
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FIG. 6.1--The configuration for the diffraction of light by ultrasonics
(oblique incidence).
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determined by Eq. (6.3):

and
where
o
ony
A
s
F
8
n
L
Im,In
Jm b Jn

the
the

7(x) = o - & sin == (6.1)
]
Ay
sin(} + en) -sinf = +t—= , n=0,1, 2, ... (6.2)
)\S
I Jﬁ(r)
= = = , mn = 0, £1, 2, ... (6.7)
I, Jn(r)

row BN g

1 (fL tan Q
A
s

index of refraction of the uperturbed medium

maximum change of index of refraction of the medium due

to the acoustic waves

the
the
the
the
the
the

wavelength of the acoustic wave in the medium
wavelength of the light wave outside of the medium
incident angle of the light wave outside of the medium
angle of the inth -order diffraction outside the medium
acoustic beam width

diffraction intensities of the imth- and tnth - orders.

respectively

the

Bessel functions of orders m and n , respectively.
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For normal incidence (see Fig. 6.2) from Egs, (6.2), (6.3) and
(6.4) with § = 0, we have

sing = y —2% , n=0,1, 2, ... (6.5)
Ks
I Ji(r) :
._..19. -;2—1-—-' Iy m,n = O, il, i‘2, e (606)
I Jn\r)
etk
r = ——5\-3— . (6.7)

We note that for normal incidence, the Raman-Nath theory predicts
symmetrical equally-spaced diffracted spots and that the diffraction
intensities depend on the incident light wave-length, the interaction
length and the ultrasonic intensity. We further notice that for oblique
incidence the diffraction intensities among the orders vary and an
asymmetry occurs when ¢ varies from ©O .

There exist frequency shifts in the diffracted light. The frequency
shift in the inth order diffraction is inag when a traveling acoustic
wave is used (see Fig. 6.3). When a standing acoustic wave is used, the

frequency shifts in all even orders diffractions are i2nw% « Inall

odd orders, diffractions are *(2n + 1) CI where n is positive integer

(see Fig. 6.4).

In the case of a traveling acoustic wave, the relative intensities
of the W, * nw, components are given by Eq. (6.6), while for the
case of a standing acoustic wave, the relative intensity of the W, * 2nag
sub-components in the 2P order is given by Jﬁ_n(r/Q) J§+n(r/2), and
the relaZive intensity of the gi %+ (on +21) W, sub~-components in the
(2N + 1) order is given by Jﬁ_n(r/E) JN+n+l(r/2) .

It is important to remember that in the above-quoted results only
the phase changes in the light beam due to acoustic waves are considered.

In parts 4 and 5 of the series of papers by Ramcn and Nath both the
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FIG. 6.2--Configuration for the diffraction of light by ultrasonics
(normal incidence).
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FIG. 6.3--The frequency shifts in the diffracted light using traveling

acoustic waves.
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FIG. 6.4--The frequency shifts in the diffracted light using standing

acoustic waves.
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amplitude changes and the phase changes in the light beam due to acoustic
waves are taken into account. This is called the generalized Raman-Nath
theory. The conclusions on the angles of diffraction and the frequency
sub-components in all orders given previously remain valid, but the
relative intensities of various orders |¢nl2 are determined by the
differential-difference equations [(6.8), (6.9)] for traveling and

standing acoustic waves, respectively:

0 d2¢n ao nzki
(2n) - 2inghn — - ¢
as a2 B
8
= - i'qu'q(On_l - ¢n+l) (68)
and
5% o nexa
(An)2 g - 2in A 2. 21 o
3 3% A n
)
= -indysinat (¢, - ¢n+l) , (6.9)
where

vw
m

21l z/kl and n = 0, 1, 2, ...

The validity of the Raman-Nath theory was confirmed for acoustic
waves of comparc.’ively lower frequencies by the experimental results of
Debye and Seelrs,“:7 Lucas and Biquard,68 Baf,69 Sanders,71 Parthasa.rathy"72
etc. When the frequency of acoustic wave becomes higher or the acoustic
beam width becomes wider, or both, a strong Bragg-type diffraction occurs
and the Raman-Nath theory (partsl, 2, 3), which does not include the
effect of amlitude change, can only qualitmtively explain the experimental
results. Nath,73 Extermann and Wannier,7 etc., later developed a theory
taking into account amplitude changes, but these theories involve
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complicated expressions and are valid only for a certain range of
parameters. Various theories ignoring orders higher than the second
were developed by Rytov,75 David76 etc., which give the expressions for
the intensities of the various lowest orders, especially for the incident
angle close to the Bragg angle.

Related to the generalized theory of Raman and Nath (Parts 4 and 5
of reference 7@ is a separate theory developed by Brillouin.77 He starts
from the partial differential equation governing the propagation of light
in & quasi-homogeneous medium, as did Raman and Nath. The emerging wave-
front is then considered to be equivalent to a set of plane waves traveling
in the same direction as the incident light, but with an amplitude grating
on each one of them given by a multiple of a Mathieu Function. The
diffraction in any particular direction is determined by the plane wave
traveling in that direction. This approach, though exact, leads to
complicated calculations.,

Finally, as pointed out by Aggarwal,78 the results of Brillouin,
Rytov and David are all special cases of the generalized theory of
Raman-Nath.YO

6.3 MOVING REFLECTOR THEORY

An acoustic wave will excite density modulation and hence induce
ixbernating layers of higher and lower refractive index than the un-
perturbed value., An acoustic wavelength contains one dense and one
rare layer. Since these layers are induced by the propagation of the
acoustic wave, they act as a series of moving reflectors or moving paddles.
This fact indicates, at least in terms of frequency, the validity of
using the general theory developed in the previous chapters. For
convenience, the medium will be considered to be isotropic and lossless
for the light waves. Anisotropy in the photo-elastic effect will be
discussed later,

Let 1, be the index of refraction of an unperturbed medium. Then

(1]0 - 1) is proportional to the density of the medium p o Pore On

;
§
H
i




i

- and lp are respectively the small increment of the index of refraction

and density due to acoustic waves, we have

2D . . (6.7)

The maximum values of Ap/po in solids are &f the order of 10'“ or
lower for acoustic waves of moderate amplitude. Thus we are considering
a very small variation in refractive index, and have a moving periodic
structure as shown in Fig. 6.5. Since 1, ~n, and VS/Vb <1 ,

following the argument given in Section 5.4 , we have, for the co-linear

case,
-
L+ V. /v
w, & —————EZ—B w ~ (1+2 VS/V ) @
1~V /v P
s''p
PN EEA) X
. 1+ v [u E
ey
1+ v /v
. - S
w = ~(1+2av /v) . (6.8)
ﬁ m L -V e} s/ 'p’ 4

O = @
K (‘\)‘t‘-:(l.)2

Thus we have two frequency components for the light wave: ai and

wy The frequency component W, is the scattered or diffracted wave.
. Depending on whether the incident light wave and the acoustic wave are
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FIG. 6.5--The moving periodic structure induced by a traveling acoustic
wave,
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codirectional or contradirectional the frequency of the diffracted wave
is down-shifted or up-shifted by the amount 2(VS/VP) @ . The number
of frequency components and the amount of frequency shift, of course,
agree with the conventional parametric theory as shown in Section 5.4,
and this agreement will be explored in more detail in the following
analysis. From Eq. (5.53) the period or the acoustic wavelength ks

for maximum first-order diffraction is

(6.9)

where AI is the light wavelength in the medium. This corresponds to
the Bragg condition.

Now, we consider the case of most interest, in which an oblique
light wave is incident at an angle with respect to the acoustic wave
front such that all scatterings or reflections from the acoustic wave
front (or moving interfaces) add in phase (i.e., Bragg diffraction).
This coherent effect is illustrated in Fig. 6.6. According to the
Doppler principle, the frequencies for the reflected and transmitted
waves W, and w3 are obtained as follows from the general expressions
(3.9) and (3.11) by letting B,=0,p= Vs/c ) 1€ = uyE, and ignoring
the second -order terms 62 . ulelB s veesy ete,

w, ¥ @y (1 + evs/vp * sin el) R (6.10)

and

I

2 2.2
3 - (I, - B\/IQ(l + x2) - eIy

,l

2
- (I, - Bu I & /1 + 2B4fi €] sin 6, - cos” 6, )

w [1 + /i€ sin 6, - Byfie]! (sin 6, + B\[W €] sin 6, )]

ne
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FIG. 6.6--The configuration showing the reflecticn and transmission from

a series of moving interfaces,
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w, ¥ o [1- Bzulel sin el]
(6.11)
=~ wl .

Furthermore, the angles of reflection and refraction 92 and 93 s

respectively, can be obtained from Eq. (3.1):

I § = =1
cos 62 = " cos 61 = R cos el
2 2
i.e.,
1
cos 6, = cos 6, (6.12)
(1 + 2vs/vp « sin 91)
and
Kl
cos 93 = -}-{-— cos 91 = :D- cos el
3 3
i.e.,
cos 63 = cos 6 . (6.13)
Since VS/VP is in the order of 107 or lower, we have
6, = 6, = 6 . (6.14%)

2 1 3

To have all scattering from the acoustic wave fronts add in phase,
the well-known Bragg condition of Eq. (6.15) is required from a simple

geometrical consideration:

= £ 2] = 5. 15
A 2rg sin 6, 2\, sin 65 . (6.15)

Notice that this is analogous to the Bragg condition of first-order
X-ray diffraction from crystal planes.
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Substituting Eq. (6.15) into Eq. (6.10), we have the following

frequency relation:

2 B
v
p
ex .
= o + 2 ll \') sin QB
vs
=(A.L42ﬂ“—"
)\S
i,e.,
w, T oo+ . (6.16)

In accordance with the frequency relation (6.16), the wave-vector
relation (6.17) is satisfied. This is illustrated in Fig. 6.7 using the
> ->
fact that w% << wi or Ki A= K2

Ee = El + ﬁs (6.17)

or

K, = K siney +K, sing (6.18)

s B

Equations (6.16) and (6.17) are just the frequency and phase
constant relations for strong interaction in the conventional frequency
converter.Bo Thus the frequency and phase constant relations using the
Doppler principle agree with those of the parametric coupling principle
when the Bragg condition is satisfied.

If we consider ﬁwl s ﬁwb and ﬁwé as the energy of the incident,
scattered photons and the scattering phonons hKl ) hK2 and hKS as the
momentum of the incident, scattered photons and the scattering phonons,
we have Eqs. (6.16) and (6.17) as the conditions of conservation of

energy and momentum,
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FIG. 6.7--The wave-vector relation for Bragg diffraction.

6.4 THE CALCULATION OF DIFFRACTION INTENSITY USING THE RAY-TRACING
METHOD

In order to comwrpute the intensity of light diffraction from an
acoustic wave, or in the language of our analysis the reflections from
a series of moving interfaces, we compute the reflection coefficient for
oblique incidence from a single nonrelativistic moving interface first.
Then we use Tien's Rey-Tracing Method81 to calculate the resultant
intensity of diffraction. Consider Fig. 6.8. A light wave which is
polarized in the direction normal to the plane of incidence impinges on
a moving interface. The reflection coefficient ¢ can be obtained by
solving Eqs. (3.13) and (3.1%) with B, = 0 and ignoring the second-
order terms 52 , plelB2 and p2€252 « The reflection coefficient
calculated by this approach will take the motion of the interface into
account to the first-order in B . Since P is in the order of lO-h
or smaller, the effect of motion on the reflection coefficient will be
very small. Thus it is proper to use the reflection coefficient of a

stationary interface for our purpose. From the well-known Fresnel's law
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FIG. 6.8--The reflection and refraction of a light wave from a single
nonrelativistic moving interface.

of reflection, the reflection coefficlent is

¢ = ?g . sin(el - 93)

. (6.19)
sin(el + 93)

Since A9 = 61 - 93

mations are valid:

is a very small quantity, the following approxi-

sm(el - 93) = sin & = A6
(6.20)
cos 6, = cos(e3 + ) B cos 93 - /A9 sin 63 s
cos 6., - cos @ cos 6, - cos 6
o g . —2t 3z . L 3, (6.21)
sin 63 sin 9l
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Using the approximation of Eq. (6.21) and the Snell's Law given in

cos @ N, )
L. 2 , (6.22)
cos 93 Uiy

Eq. (6.19) reduces to the useful expression

JAY:] cos @, - cos @

C = - = 4 )
2 sin 91 cos el 2 sin 61 cos 61
1 Tp = Ty
z 4 5
2 sin el Mo
i.e.,
5 1 On
g F~ 4 2 o — P (6023)
sin 91 1

where An & 1, - ul and 7 ¥ n % o - It is important to note that
the reflection coefficient for a single interface is inversely proportionul
to the square of the sine of the incident angle.

From the continuity relation the transmission coefficient + 1is

obtained:

E
Ta =2 = 1+-2 =14¢ . (6.21)

We now follow very closely Tien's ray-tracing and cascade networks
method to calculate the resultant reflection for the case when the Bragg
condition is satisfied. We return to Fig. 6.6. Consider that there is
a total of 2N layers, or N acoustic wavelengths. The first layer
starts at z = O and the last layer ends at 2z = 4 . The layers are
considered to be infinite in the x and y directions.

Consider a typical section which contains two layers or one acoustic

wavelength as shown in Figs. 6.9a,b. A unit amplitude incident light
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FIG. 6.9--a., Configuration showing the multiple reflection of light between
the interfaces of two layers (light incident from left)

b. Configuration showing the multiple reflection of light between
the interfaces of two layers (light incident from right)
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ray is reflected back and forth between the interfaces of the two layers.
In Fig. 6.9a with the Bragg condition satisfied, the resultant amplitude
of the reflected rays at the plane a - a' is

2t

ro= t+t(l-t -2 ;“ “eee) = s 5 (6.25)
1+¢

and the resultant amplitude of the transmitted rays at the plane b - b’
is
1. ¢8

1+ §2

£ = (-t -2et ) = - (6.26)

Similarly, in Fig. 6.9b with the Bragg condition satisfied, a unit
amplitude incident light ray will have a resultant reflection at the
plane b - b' ,

a¢
1+t

r’ = -

) (6.27)

and the resultant amplitude of the transmitted rays at the plane a - a'

1-¢?

' = - . (6.28)

1+ ;2

Knowing the reflection and transmission coefficients of one sectiun,
we now consider the system of N sections as shown in Fig. 6.10. As
H Tr+l and Sr+l be respectively the reflection
and transmission coefficients at the two reference planes a - a' and

shown, let T and S
r r

b - b' of the r’} section. By superimposing Eqs. (6.25) - (6.28) we
have the following set of equations:

e 2
2t l-¢ ( )
S = T - S 6.29
r 1+ §2 ro . §2 r+l
< 1 - ¢f 2t (6.50)
T = - T « —= 8 . .
r+l 1+ §2 roq, §2 r+l




moving interfaces.

7.7,

r+1

r+l
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. After rearangement, this becomes

o
+
H
"

- (s, v ,) (6.31)

2§(s -7 ) . (6.32)

r+l r+l

w
'
L=
|

- e

Let TO and So be the incident and reflected amplitudes at z = 0 ;

correspondingly TN and SN st z=4 . By induction and using Egs.

(6.31) and (6.32), we have

S+ Ty = (-1)" eamg(SN + Ty) (6.33)
S5 - Ty = (-1 e'ENC(sN ). (6.34)
Since Sy = O , we have, from Egs. (6.33) and (6.34),
s, = (-1)" T, sinn(ent) (6.35)
- N .
T, = (-1) Ty cosh(2Nt) (6.36)
giving
5 = T tanh(2N¢) . (6.37)

Equation (6.37) gives the resultant amplitude of reflection in terms

of the incident amplitude T, , the numwber of sections N , apd the

2 reflection coefficient of a 2ingle interface ¢
It is importent to remember that we have been considering a square
| acoustic wave of wavelength (or more correctly, period) xs « In practice,
' a sinusoidal acoustic wave is used, For a sinusoidal acoustic wave, the
E amplitude of the equivalent square wave will be taken n/h times that
: s of the sinusoidal wave. This is justified from the fact that when the
l factor r/h is chosen, the solution obtained by using the cascade-
|

. nelsork method agrees with the exact solution obtained by using Mathieu's
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equation.81 The reason we employ the "Ray-Tracing and Cascade Network"
method instead of the Mathieu's method is that the former is much more
closely related to the model we employ for a moving periodic structure
in Chapter V. Consequently, for the case of sinusoidal acoustic wave

we have the following expression for {

T 1 An
Cg-—°—j~—é——."—'— . (6.38)
4 sin 6, 1
We now go back to Eq. (6.37). Since an unit amplitude incident
light wave is considered, T, = 1 , and the resultant intensity of the

0
reflected or diffracted light is

sg = tanh2(2N§) ’ (6.39)
where { is given by Eq. (6.38). For the region 2N¢{ < 0.5, Eq. (6.39)
reduces to

55 ~ (ame)® . (6.%)

When 2N¢ >> 1 , Sg approaches to unity and a total diffraction will'
occur. The saturation of the diffraction intensity inherent in the
function of hyperbolic tangent is depicted by the plots shown in Fig. 6.11.

In order to compare the diffracting efficiencies of various crystals,
we extend this calculation and express the intensity of diffracted light
Sg in terms of the index of refraction of the crystal =n , the strain
induced in the crystal S , the acoustic beam widta d and the wave-
length of the light in vacuum M (see Fig. 6.12). Using the Lorentz-
Lorentz formula82 connecting the strain and the change of index of

refraction and the Bragg condition, we have

2
s 1 G5 -1 +2)
__ = g' 5 S (6.41)
, n
M = 2 sine ’ (6.42)
- S Bi
0

’
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FIG. 6.12--Configuration showing the diffraction of light from an accustic
column.

#« vre 6p denotes the Bragg angle inside the crystal. Furthermore,

i
T 1 reasonably small 6g s We have
i

~ L -
A A
S S
giving
1 d [')
2 2 5% = tenn®(emt)
fo 2 >
d sin by b 1 (n” - 1)(n" +2)
= tanh® [-2 ¢+ —2 . . . s\,
2 2
Ag b sin 6y 6n

(6.44)
-17h -

P,




i’ei,

o xa(n’ - 1)(n° + 2) ,
= tanh S . (6.45)
6kln

o]
(v

|

a
o

The saturation of the diffraction intensity, well 1illustrated by the
hyperbolic tangent variation appears,in the expression of diffraction
intensity. For the region 2N{ < 0.5, Eq. (6.45) reduces to

2
I wa(n? - 1)(n° + 2)
S

I, 6xln

(=]

o
=~

(6.46)

For convenience, we express the strain S in terms of the acoustic

power density PS ,

T2' 0282
o= — = — (6.47)
2ZO EZO
or
27
2 .
s = L0 p1/2 (5.46)
S
C
where
T = +the stress
ZO = +the mechanical impedance
C = the related elastic modulus,

and Eq. (6.44) becomes

I, - ﬁd(qe - l)(q2 + 2) 27
— = tanh .

IO 6kln C

0 pt/2 ] (6.49)

)
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For the region 2N{ < 0.5, it reduces to

2
2 2
I, nd(n - 1)(q" + 2)1/2z07

— R P

I, 6xlnC

(6.50)

s
As an alternative to the Lorentz-Lorentz formula, the photoelastic constants83
can be used in connecting the change of index of refraction (or dielectric
const.) and the strain. For cubic crystals, the relations between the
change of dielectric constant and the stress due to the propagation of

a longitudinal acoustic wave along the axis 1 are

—— = - ——— 1 T ) (6‘51)
for light polarized in the plane of incidence along the axis 1 and

A € .
25 = - ES L% (6.52)

for light polarized normal to the axis and parallel to the acoustic w.ve

fronts. Here = and = are the photo-elastic constants for the

1l 12

corresponding light polarization; € and €, are the dielectric constants

0
of the crystal and the free space, respectively.

Since
Lg _ Lle - 1/2
ﬂ 5o end T (2PSZO) ,
we have
d, o nd € 1/2 :
(oNg) . = -8 = (2 2) (6.53)
S Ve A 2e, M1t s
.o, oy ., € 1/2 -
e N R W - ) 2(2RZ0) » (6.5)
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and

I €
—D . tapn®(ant).. = tamn® | M. — x (2P z )l/2l (6.55)
11 11 s 0
IO xl 2eo
11
I €
2
D . tamn®(ant), = tamn” | M. — x (2P 2 W2 (6.56)
1 o 12¥ 7 s70
IO kl ed
1
For the region 2N{ < 0.5, these reduce to
ID ZO 7 2 € 2 >
—_— & = —=}[—x d"p (6.57)
11 s
IO 2 \ A eo
11

ID ZO b1 2 € 2 o
—_— A ——] — —"'"1(12 d PS . (6-58)
IOl 2 xl GO

The difference in diffraction intensity due to the anistropy of the photo-
elastic constants is seen b0 be (xll/ﬂla)2 .

If we keep Y and d constant and assume that An/n is independent
of the acoustic wave frequency, then Egs. (6.55) or (6.56) show that
the diffraction intensity is independent of the acoustic wave frequency.
Equations (6.55) and (6.56) also indicate that the diffraction intensity
can be increased by increasing the acoustic beam width, the acoustic power
density or using a light source of shorter wavelength. For the region
2N¢ < 0.5, the diffraction intensity is a linear function of the acoustic
power density and a square function of the acoustic beam width. Finally,
it is important to pdéint out that in order to obtain the maximum diffraction
for a constant input acoustic power, a nonsymmetrical acoustic beam
cross~-section such as a ribbon-shape should be used.

Related data for various potential diffracting crystals are given
in Table 6.1, and the relations between the strain and the acoustic power

density for various crystals are plotted in Fig. 6.13. Using the data
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as given in Table 6.I and the plots of Fig. 6.13, the diffraction intensity
for a He-Ne laser light ID/Io in 4B for an acoustic beam width of 1.0 mm
and 1 mw/mm2 acoustic power density is calculated as shown in Table 6.1,
using both the Lorentz-Lorentz formula and the known photo-elastic
constants. It will be shown in next chavter that tt experimental value
agrees with the calculated value using the Lorentz-Lorentz formula in
some cases and the calculated value using the photo-elastic constants in
other cases.

The diffraction intensity ID/IO in 4B for an acoustic beam width
2 1.0 mm and 1 mW/mm2 acoustic power density is a very useful figure of
merit for the diffracting power of a crystal., It can be used to estimate
the input rf power required in order to diffract a certain amount of light
when the acoustic beam cross-section and the transducer conversion

efficiency are known.
6.5 PARAMETRIC THEORY

In parallel with the method of ray-tracing and cascade-network
which was treated in detail in the last section, there are two other
mevheds which give the same results for the Bragg diffraction intensity.
The first one81 is to solve exactly the Mathieu equation which arises
from the modulation of the dielectric constant due to the acoustic waves.

61,64

The second one is to solve the Maxwell equations with a dielectric
constant which varies in the form of Eq. (6.60) due to the acoustic

waves, using conventional parametric principles and coupled mode theory.
The incident light wave is considered as the signal wave, the diffracted

iight wave as the idler wave and the acoustic wave as the pump wave:

FE 1 (e, )F |
—_— bt ——a— = 0 (6.59
a2 P 32

e(z,t) = eo[l + 2 %? cos(agt + Ksz)] . {(6.60)
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The incident and diffracted light waves are coupled to each other
through the time-and space-variable dielectric constant e(z,t) . 1In
reference 82, the photo-elastic constant is specifically used to relate
the change of dielectric cunstant and the amplitude of acoustic waves.

In order to show the variation of the diffracted light intensity
with respect to the acoustic wave frequency when the Bragg condition
is not satisfied exactly, we describe briefly the parametric mode coupling
involved. By imposing the parametric conditions for frequency and wave

vector, we have

B = @ + “E
K, = K +K +aK (6.61)
i.e.,
Oy = G - @
K +0K = (Ki + K2) cos 65 (6.62)

Combining Eqs. (6.59), (6.60), (6.61) and (6.62), a set of coupled-mode
equations relating the amplitudes of the incident light Al and that

of the diffracted light A2 will be obtained. The higher-order terms
52Al(z)/8z2 and 62A2(z)/6z2 are neglected. After solving the coupled-
mode equations with the boundary condition taken into account, the

diffracted light intensity is obtained as follows:81
*
EQ . A2(O) AQ(O)
*
I, Al(O) Al(O)
1
K sinh2 -t
2 2 e (6.63)
Kﬁ AK? 2f 1 Axs
1 -~ —=+sinh| =tdq /1 - —
-€2 2 ;2
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for &K < ;2 » and

I . A,(0) A;(O)
I,  4,(0) AI(O)
K sinz( tL/
- .2, . (6.64)
K, A“i 2
_ZE -
for oK 2 §2 » Wwhere
2
an) g x
o (8] ure oo
sin @

B

For small values of 1/2 Q‘ﬂ (which is the case in practice), Eg.
(6.64) can be approximated as follow:

I 1 sin
D ox Z ) (6.66)
To
sin2<% N
1 2 .
= - (t4) . (6.67)

Thus for small values of (1/2 ¢ 4) , the bandwidth of the diffraction
intensity in AKS is independent of { or the acoustic wave amplitude.
But as (1/2 ¢ 4) approaches to a few tenths, the bandwidth of the
diffraction intensity in AKS becomes broader and eventually increases
linearly with { . Using the relation &K /K = Mo /o and Eq. (6.67)
the bandwidth of the acoustic wave frequency, Ams , defined by a 3 dB
decrease in the diffraction intensity from the maximum point is

KS ws %N



or

1.39 .
by = ot . (6.68)
nt N

For the experiment which will be described in Chapter VII, An% is
much larger than the * ndwidth of the coaxial cavity and also that of the

transducer.
6.6 ILARGE DIFFRACTION OF LIGHT

Many applications are inherent in the field of laser light diffraction
using high frequency acoustic waves in solids. Frequency and amplitude
mcdulation of the laser in optical copmunications, display devices, and
the generation of laser light with frequency shifted by an integer multiple
of the acoustic wave frequency are only some of the examples. But these
applications are practical only if a large portion of the laser light can
be diffracted with a moderate amount of rf power. Thus it is important
to diffract as much light as possible by using a proper crystal and
optimizing the various factors affecting the amount of diffraction, and
to find out the practical limitations involved. For the various kinds of
experiments which will be discussed in detail in the next chapter, a
He-Ne gas laser (kl = 6238 X) is used for the light source. In order
to diffract a large portion of light using a woderate amount of rf power,
the following important factors should be considered.

6.6.1 Choice of a Proper Crystal for Diffraction

From Table 6.1, in principle, the crystals with large photo-elastic
constants such as ADP is more efficient diffracting crystal
than the others. But, due to the high acoustic loss and comparatively
inferior mechanical quality, ADP is not as desirable as the other
crystals. For the various kinds of experiments discussed in the next
chapter, 'I‘:LO2
have reasonsbly large photo-elastic constants (diffracting power) as well

and SrTiO3 are most frequently used. These two crystals

as excellant mechanical properties. The crystal ‘I‘iO2 has low acoustic
loss at microwave frequencies and is one of the best for acoustic wave
frequencies above 1 GC/s .
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6.6.2 The Requirement of a High Efficiency Transducer

In order to reduce the amount of rf power required for large
diffraction and hence avoid many difficulties resulting from high input
power (such as cavity voltage break-down), a reasonably high transducer
efficiency is essential., For the various kinds of experiments described
here 2Zn0 wafer transducers are used. This newly discovered transducer
has reasonably high efficiency (-1l @B to -17 dB at L-band) and can
sustain high power. The CdS film transducer can have conversion efficiency
higher than -10 dB but lacks high power capability.

6.6.3 Generation of a Ribbon-Shaped Acoustic Beam

To utilize the acoustic power more economically, and hence reduce
the rf power requirement, a ribbon-shaped acoustic beam is essentisl.
This is obvious from the expressions for diffraction intensity Egs. (6.57)
and (6.58) for the region 2N { < 0.5 , as the diffraction intensity is
approximately proportional to the square of the acoustic beam width., 1In
the next chapter, the advantage of a ribbon-shaped beam over a circular
beam will be analyzed quantitatively and the technique of generating a
ribbon-shaped beam is described.

6.6.4 Acoustic Resonance

So far, we have been considering the case of a travellng acoustic
wave. If the crystal 1s resonated acoustically by making the end faces
of the rod flat, parallel and unterminated, a larger diffraction will be
obtained with the same amount of rf power. The detailed analysis and
numerical values are given in next subsection. Here we simply point out
that the enhancement in diffraction intensity due to acoustic resonance
is small when the acoustic loss is high and the length of the crystal
rod is long.

To conclude this subsection, we estimate the rf power required for
diffracting 50% of the light from a He-Ne gas laser (beam diameter
~ 0.6 mm at the crystal surface) using a Ti0, crystal. From Table 6.1,
ID/Io ford = lmm , and p =1 mW'/mm2 is -40 dB . TFor an acoustic

- 184 -




beam cross-section of L mm x 6 mm with 4 = 6 mm and assuming the
transducer conversion efficiency to be -10 dB , the total input rf power

required can be estimatad as follows:

10‘h . d2 PS = 0.5
and
0.5 139 ui/ 5
P = —F 3 ° 9 mW/mm .
® 107 . (6)°

Then the total rf input power is

Acoustic Beam Cross-sectional Area °* Ps

rf Transducer Conversion Efficiency

139 - 6
2 —— = 8k Watts
0.1

6.7 ENHANCEMENT OF DIFFRACTION DUE TO ACOUSTIC RESONANCE

By letting the end of the crystal be acoustically unterminated, the
amount of diffraction will be increased from that obtained when it is
terminated, for the same amount of input rf power. This is because, for
same amount of rf power, the resultant strain, Sr , due to acoustic
resonance and hence standing waves is larger than that due to traveling
waves.

Consider a crystal rod of length L and unit cross-sectional area
(Fig. 6.1%). Using the common definicion of quality factor Q |,

Q= = , (6.69)

where w 1is the radian frequency, U +the stored energy density, P
the rate of power loss in the acoustic standing wave, then we have

U = %CBB(Sr)Q ‘L = 3‘% (6.70)
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TABIE 6.TI

Crystal [ Measured S, \e Sy ’ S__ )
Acoustic (—S— ) in dB — = [ ~=—] in dB
Attenuation S S
a at 800 Mc/s
(neper / em) | L=0 k4 em|{L=1.0cm L=0.%cm|[L = 1.0 cm
SrTio3 0.228 7.4 3.4 1.4
810,
(z-cut ) 0.284 6.4 2.4 0.4
T102 0.225 7.4 3.4 1.4
A1203 0.113 10.4 6.4 by 0.4
LiF 0.900 1.4
ADP 1.125 0.4

- 187 -




o e ey e

or

2 2PQ
(sr)° & —— (6.71)

C33Lw

For a traveling acoustic wave with power density P , the assoclated
strain S 1is determined by the following relation,

L
P =z —¢— = —033 v{’Se (6.72)
2 Z 2
0
or
2P
S2 = . (6073)
033V£

Here 033 is the elastic modulus and vp the velocity of longitudinal
acoustic wave propagation.

For o , the attentuation per unit distance, we have85
w .
a = . (6.7h)
2Qv 2,

To compare the resultant strain Sr due to a standing acoustic wave
with the strain S due to a traveling acoustic wave with the same
input power, we combine Egs. (6.71), (6.73) and (6.74). Thus we have

2
Sr 1 .
(%é) ) (6.75)
Finally, the resultant strains, Sr+ and Sr-’ for the forward-wave

or backward-wave components are

s 2 3 2 %Z .2 1
-r—:*.» = "r; = ——— = = . (6.76)
S 8 S 8ol

Table 6.II gives the numerical values of the enhancement of strain and
hence of diffraction intensity due to acoustic resonance in various crystals
for an acoustic wave frequency of 80 Mc/sec. The experimental value
(which agrees with the thecretical value) will be given in next chapter.
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CHAPTER VII

LIGHT DIFFRACTION USING KILOMEGACYCLES ACOUSIIC WAVES IN SOLIDS

7.1 EXPFRIMENTAL TECHNIQUE AND PRELIMINARY EXPERIMENTAL RESULTS
OF BRAGG-DIFFRACTION

The experimental a.rrza.ngementglF for the measurement of Bragg
diffraction is as shown in Fig. 7.1l. It permits measurément of the
following: (1) Intensity of diffraction as a function of rf power level,
(2) 1Intensity of diffraction as a function of incident angle, i.e.,
diffraction pattern; (3) Enhancement of diffraction intensity due to
acoustic resonance; (%) Acoustic beam cross-section; (5) Frequency
shift in the diffracted beam using a Fabry-Perot etalon. The light
beam from a He-Ne gas laser (A = 6328 K) passes through a focusing
lens and hag a beam diameter of about 25 mils at the front face of the
interacting crystal rod. The faces of the crystal are polished. To
generate the high frequency acoustic wayes propagating through the rod,
a piezoelectric transducer is bonded on one end face and inserted into
the high-field gap of a re-entrant coaxial cavity. On the end opposite
the transducer a mercury pool is attached for terminating the acoustic
waves. For convenience, the variation of the laser incident angle is
accomplished by rotating the crystal, which is mounted on a rotary table,
The intensity of the diffracted beam is measured by & photo-multiplier

located at an angle of 26_ from the main beam (transmitted beam).

The diffracted light beam ?s modulated because of the lke/s acoustic
modulation, For calibration purposes the same modulation is induced =
in the main beam by means of a mechanical chopper. The diffraction
pattern (Section 7.4) is plotted by an X-Y recorder. The output of the
photo-multiplier is, after passing through & log converter, connected

to the Y-axis of the recorder while a calibrated potentiometer, attached

to the rotary table, ig connected to the X-axis of the recorder.
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FIG, T7.1--The experiment arrangement for the measurement of Bragg
diffraction.




We now give some experimental resul’cs&L which are preliminary to
one of the main experiments described in this report, large diffraction
An X-cut disk (0.005 in. thickness and 0.100 in,

diameter) was used as a piezoelectric transducer,

of laser light.
The transducer was
bonded with an indium film to various kinds of diffracting crystals.
The best conversion efficiency (acoustic power/rf power) of the quartz
transducer used was -20 dB. The dimensions of the crystals are nomin-
ally 6 mm X & mm X 20 mm, A circular cross-section acoustic beam

(2 mm diameter) was generated in the crystals using a circular center
post of this dimension in the coaxial cavity. The frequency used varied
from 400 Mc/sec to 3000 Mc/sec; ADP was found to be the most efficient
diffracting crystal, and then in the order of decreasing efficiency
they are SrTiO,, SiOe, Ti02, A1205’ LiF. Both the calculated and
measured d*ffracting powers for 1 mw acoustic power for various crystals
are listed in Table 7.1, Note that the converted values of ID/I0

for a square cross-section acoustic beam of width d = 1 mm (listed in
the second column of the table) are obtained by multiplying the measured
values of ID/Io for 1 mW acoustic power and 2 mm diameter circular
acoustic beam by the factor #/4 which results from the difference in

cross-sectional area involved.

TABIE T.I
ID/I in dB for 1 mW | I /I. in dB for ID/I in dB for square,.beam
0,. 9 2

Crystal acoustic power square beam @°=1mm, Ps = 1 mi/mm

with 2 nm diemeter |d = 1 mm Ps=1 ni/mm (calculated)

acoustic beam (converted from Using photo- Using Lorentz-

(measured) column 1) elastic constant | Lorentz formula
ADP -30 -31 -30 -l
s»:mo5 -b1 -b2 -50 -4o
810, -b2 -3 -52 -46
Ti0, 49 ~50 -ho
A1203 -51 -52 ~-51
LiF -51 -52 61 =49
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7.2 I1ARGE DIFFRACTION OF IASER LIGHT USING RUTILE CRYSTAL

For the purpose of diffracting & large portion of laser light, a
rutile crystal is used. This is due to the excellent optical and
mechanical properties of the rutile crystal (such as the optical
transparelcy, the hardness and especially a low acoustic loss at L-band ).
Although ADP, amons; the crystals considered, has the highest measured

divfracting power, this advantage is cancelled by the high acoustic

loss at L-bard {requenzy. (The measured acoustic loss ior longitudinal .
k waves at 800 Mc/sec along the z-axis is 10 aB/em for ADP. Thus the
extrapolated loss using the f2 law will be 20 dB/cm at 1.1 Gc/s.)

(a) Generation of Ribboxn-Shaped Acoustic Beam '
r As indicated previously, a ribbon-shaped acoustic beam will utilize
the acoustic power more economiczally than a circular acoustic beam.
By uging a ribbon-shaped center post with cross-section 1.0 mm X 5.5 mm
in a coaxial cavity, we were able to generate a 1.1 Gc/s acoustic
column or ribbon-shaped cross-section ( ~ 1.0 mm X 3.5 mm as determined
by scanning the acoustic beam with the light beam). The dimensions of
the crystal are 12 mm X 10 mm X 5 mm, in which the last number is the
length along the optical axis. A lithium-doped Zn0 wafer of T mils
thickress and 3 mm X 5.5 mm cross-~section is use? as a longitudinal
acoustic wave transducer. The gap between the surface of transducer
and that of the center post is 1 mil (see Fig. 7.2). The loaded @ of
e casity is 000. The peai :cuversiou eciiciency of the transducer is
-13 4B a.,.1 the irequenzy ceparation vetween two cousecutive conversion
eaks is 40 Mc/sez. Figures 7.3 and 7.: show the acoustic echoes
ootai.ed witi, the co.wventioral super-lieterodyne techrnigue. The acoustic
lcss is 4 dB/em.

(b) The Probing of Acoustic Beam

The acoustic beam crogs-section is determined by scanning the acoustic
beam wici ti.e light beam and measuriiz the diffraction intensity at an
incidenrt augle of 63 . The dar.raccion ditersly s " .Lios of the .

Tocabio . os” the lieide;t 1i Wit beam o. the zrystal Ma:e 1s shcwn in

L. L. 0T whe Ue 1i i veam traverses e wider ard rarrower
e it £ . w2ausi.z 2.'u. . cesypecsl el; . From tlese plcig, Ve




Coaxial cavity

ibbon~shaped center post

RF __J Rutile crystal
L
12 mm

- C-axis

6 mm__4

Zinc oxide transducer ~ T mils

{ thickness
A

ir gap ~ 1.0 mil

FIG, 7.2--Configuration showing the dimensions of cavity center post,
rutile crystal, ZnO transducer and air gap.

acoustic beam cross-section defined by the 10 dB points is about
1.0mm X 3.5 mm., We thus see that the acoustic beam width is not as
long as the design value and that the two ends of the Zn0O wafer do not
perform satisfactorily. Nevertheless, an approximately ribbon-shaped
acoustic beam is generated.

(¢) Diffraction Pattern Versus Crystal Rotation

The diffraction patterns for the first, second and third order,
cbtained by rotating the rutile crystal with the photomultiplier and
laser axes fixed at intersection angles of ZOB s heB and 69B ,
respectively, are shown in Figs. 7T.6a,b,c. The mgximum diffraction in-
tensity wanders among the orders as the incident angle varied from
-h oy to +h4 8 . We note that the peaks of the diffraction intensity

for the first-, second-, and third-order are at the incideit angle of

8, » 26, aud 59%’, respectively, T.us, ¢'e may e ‘ere =~ U2 S
J o .

zecui'- a L civd-teder Ja v odiowracoic.y wpeLoa.el, . Firrwe .

Laows wee photozraphs of the diifraction sp-.: or various augles o,

incide::ce,
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FIG. 7.)c==Third-order diffraction pattern.

-9 -




FIG. 7.7--Photographs of
the diffraction
spots for various
angles of incidence.




(d) RF Power Dependence of the First-Order Diffraction Intensity
at 0 = eR g

When the laser light was sent through the wider dimension of the
acoustic beam the diffraction intensity was found to be 10 dB greater
than for transmission through the narrow dimension of the beam., To . .
determine the intensities of the zero - first- and second- order diffrac-
tion, the incident light, after passing through the crystal, was cali-
brated using a 1 kc/sec mechanical chopper., The rf power dependence
of the first-order diffraction intensity is shown in Fig. 7.8, giving -
both measured and calculated ‘values. The calculated values are obtained
by the extended theory of Tien using the Lorentz-Lorentz formula as
shown in the last chapter. Assuming that the effective beam width id,
defined by the 10 dB points in Fig. 7.5 (d ~ 5.5 mm), the acoustic
power density dependence of the first-order diffraction intensity is

as follows:

ID . - 1/2

¥ tann® |3.72x 0% ps | - (7.1)
1
0

As the conversion efficiency of the transducer is known (~ -14 dB) ,

the rf power dependence of the first-order diffraction intensity is
determined immediately from Eq. (7.1). From Fig. 7.8 the difference
between the measured and the calculated values is about 4 dB. 1In

Fig. 7.8, the experimental curve for the first-order diffraction intensity
(marked with terminated) is obtained using a square-wave modulated rf
signal generator at 1.1 Gc/s with modulation frequency of 1 kc/sec and
with a mercury termination. The experimental curve for the first-order
diffraction intensity (marked with unterminated) is obtained using a
pulse-modulated rf signal gererator at 1.1 Gc/s and without mercury
termination. We have achieved a 10% first-order diffraction using a
square-wave modulated rf input signal at 1.1 Ge/s with modulation
frequency of 1 kc/s and peak power of about 15 watts,and about 60%
first-order diffraction using pulsed modulated rf input signal with
about 50 watts peak power. In the former case the crystal is terminated

with mercury and in the latter there is no termination., The difference
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in the diffraction intensity between the terminated and unterminated
cagses was measured as about 2 4B (sée Fig. 7.8). 'From Eq. (&.75)
the calculated value is 2dB.

The difference in the diffraction intensity for a perfect traveling
wave and the non-perfect traveling wave (as we actually had, see Fig. T7.4)
was estimated to be less than ¥ 1 dB. This number was obtained by de-
termining the amplitude of the first echo, at the position of laser
light incidence, by comparing the acoustic echoes for the terminated and
unterminated cases (see Figs. 7.3 and 7.4). If we take the fourth echo
in the terminated case (Fig. 7.4) as a reference, we see that there are
approximately 5.5 more echoes in the unterminated case. (Fig. 7.3) than
in the terminated case. The acoustic loss is 5 dB for & round-trip.

The laser light is incident at the middle of the crystal rod (see -

Fig. 7.9). Assume the incident &coustic power dt the point of laser in-
ride..ce, the i.cident acoustic power at tlie mercury pool, the reilected
acoustic power at the crystal-mercury interiabg and the reflected acousti-

power at the poiut o. laser i.:idei:ie are Pi Pt B Pr m and Pf_ respec-

tively, theu, Pr 1
b x (10 log =) = - 5.5x5 dB
P
t
i.e.,
P
r
10 log —=-T4B .
Pt
Thus we have
Pr Prl Pr Pt
10 log =~ = 10 log—= * — ' —
Pi Pr Pt Pi
- -%dB-'(dB-;i—dB
= "9:5dB k)
or
Pr
L om ,
P,




B A

Rutile crystal

. Transducer
ercury pool

;\\\\\\

.

—~ >m

| SR | Q——
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laser incidence

Crystal-mercury
interface

F1G. T7.9~--Configuration for estimating the difference in the
diffraction intensity between a perfect traveling
’ wave and & non-perfect traveling wave.
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giving, finally,
+
IRy £ B ) (1% 0.11)
= 10 log ————— <t 1dB .
ID(Pi) 1

10 log

(e) RF Power Dependence of the Second-Order Difrraction Intengity at
6 = GB and © = ZBB

Included in Fig. 7.8 are the measured and calculated values of the

p &nd 8= aeB) as

a function of the rf power level. The difference between the measured

and the cglculated values is about 3 4B (8 = GB) and 2 dB (6 = 293)

The calculated values are obtained by extending the theory of Pharigseaui

second-order diffraction intensity (both for 6 = ©

We give the calculation here. Using the same notation as in reference
87, the expressions for the second-order diffraction intensity when the
incident angle is the Bragg angle and twice the Bragg angle (or ¢ = ¢B
and ¢ = 2, in Phariseau's notation) are given by Egs. (7.2) '
and (7.3), respectively:

Bal.

3
I,= sin” - (7.2)
2 2

-2

=
[T 3

’ (7.3)

where

g = o- Pt
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A¥ = wa.2le. th o1 ohe acoustic wa.eg 3 ..e .edium.
“o = relraztive i:dex of the uncisturbed medium.
”l = d.anua Jariatio. o a2 re.raciive il.dex.
Zz = distance .raveled by the light beam through the unltrasonic field.

v = 1inecidert anvle of the light inside the medium.

The square-law dependence of the second-order diffraction intensity
with rf peak power at g = g, is obvious from Eq. (7.2) for small ¢
Similarly at g = 2¢B the square-law dependence of the second-order
diffraction intensity on rf peak power as shown in the measured curve,
is also predicted from Eq. (7.3).

Since o >> 1 (as will be seen later in this subsection) we have

o L on e
K, ®20 = 3 (¢ - 2a sin 2¢B)
1 A py
= 5—% (— - 2 sin 2¢B)
HIX HOX
(7.4)
but
g = p
B *
2\ “O
so Eq. (7.4) becomes
1 A A 1 x.g/aﬂz
27 3 . x*-g T T W e
it Vo Mo Ho \ (7.5)
Substituting Eq. (7.5) into (7.3), we have
Mok* 2 L
T~ . (7.6)
-2 = \hm\g

2
As & depends linearl; on peak acoustic power density and hence peak

r€ power, so £ depends on (peak rf power)2 .
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The numerical data for the experiment follows:

L

=268 , A=0.53%28x10 cm , 2 = 9.45 x lO-hcm s

Ho
By = 0.0125 radian . 2¢B = 0.0250 radisan , z £ 0.35 cm .

At 41 dBm of rf peak power, the acoustic power density Ps is about
18 dBm/mm? . From Fig. 5.13 and using the Lorentz-Lorentz formula
[Eq. (6.40)], the strain corresponding to this power density is about
0.5 X 1077 » and p ~1.75 x 107 . Thus we have

£E=061 , a=38x10° , ¢

L

95
and at ¢ = 2¢B »

q
]

-23.7 s K2 -47.5

Then, at ¢ = ¢B s we have

1 0.51
Ip% —p sind - 7x107°
b x(95) 2
or
1o
10 log —== = .51.6 @B ;
T
also, at g = 2¢B s
1
I,% ———— (0.61)2 = 1077
or I_2
10 log —= = - 50 dB .
To

These two calculated values are used for plotting the calculated curves
in Fig. 7.8.
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(f) RF Power Dependence of the First-Order Diffraction Intensity
at Normal Incidence (6 = 0O)

The rf power dependence of the first-order diffraction intensity
(both right and left orders) at normal incidence is shown in Fig. 7.10
for both measured and cadlculated valuas. Both the right and left hand
side first-order diffractions appeared with equal intensity, but about
30 4B lower than the calculated value using the normal Raman-Nath theory,
i.e., Bq. (6.6). A disagreement between the measured values and the
calculated values is of course expected following the argument described

in Section 6.2, but such a big difference is not expected.

7.3 MEASURED ENHANCEMENT OF THE DIFFRACTION INTENSITY DUE TO ACOUSTIC
RE ONANCE

In measuring the effect of acoustic resonance on the diffraction
intensity, a rutile crystal with dimensions b ym x % mm x 12 mm was used.
The length of the rod along the C-axis was 12 mm. A Zn) transducer
was bonded on one end face (4 mm x 4 mm) and the other end face polished
flat. .The acoustic frequency was 810 Mc/sec and the one-way acoustic
loss at this frequency is 1.5 aB/cm . The conversion efficiency of
the transducer at this frequency is <11 dB . A typical acoustic echo
is shown in Fig. T7.11l. The Q-curves of the cavity with the erystal are
Shawn in Figs., 7.12 and 7.13. The frequency between two consecutive
frequency markers in Fig. 7.13 is 1 Mc/sec . We note that the acoustic
regsonance of the crystal shows up on the @-curve due to the high con-
version efficiency of the transducer. At the incident angle of eB )
the diffraction spectrum was obtained by sweeping the acoustic wave
frequency, as shown in Figs. 7.14% and 7.15 for the terminated and
unterminated cases, respectively. The sharp peaks in the diffraction
spectrum are due to the acoustic resonance (when the acoustic wave
frequency is such that the length of the rod is an integer number of
half-acoustic wave-length). The frequency separation between two con-
secutive peaks is about 0.40 Mc/sec as measured by a frequency marker.
The calculated value V£/2L is 0.42 Mc/sec . The envelope along the
sharp peaks depicts the Q-curve of the cavity. The band-width is about
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FIG. 7.11--The acoustic echoes at 810 Mc/s with no mercury termination.

| }"
” ‘

FIG. 7.12-~-The Q-curve of the cavity with the acoustic delay line
(no frequency marker).

FIG. 7.13-~The Q-curve of the cavity with the acoustic delay line.
(The frequency between two consecutive frequency murkers is 1 Mc/s.
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is about 1.5 Mc/sec. We note that due to & nonperfect termination, weak
peaks appear in the diffraction spectrum for the terminated case. Using
neutral density filters for calibration, the difference between the
diffraction intensity with mercury termination and that without is mea-
sured at 5 d@B . From Eq. (6.79) the calculated value

10 log 1/20L = 10 log 8.9/2 x 1.5 x 1.2 is about 4 dB

‘(.4 DIFFRACTION PATTERN

It is of interest to see how the diffraction intensity vaeries when
the incident angle of the lasger light deviates from the Bragg angle by
rotating the crystal, with the photomultiplier fixed in position. The
diffraction pattern is found to be the Fourier transform of the amplitude
distribution of the traveling acoustic waves in the plane of the wave
front., This fact hag been demonstrated by Cohen und Gordon.88 We
simply quote the results here.

Figure 7.16 depicts the configuration involved. The acoustic
wave with frequency W, and wave number KS propagates along the
X~axis, while the incident light with frequency w, and wave number

1
Kl impinges at an angle eo with respect to the acoustic wave front.
The acoustic wave amplitude varies along the Y-axis, !ith no variation
in the Z direction., The amplitude of the first-order diffracted

beam Vl(eo) with an acoustic beam distribution function &(y) is

+ 1Ks(90- SB)y

™~ 1 S
vl(eO) = - 5 iV, exp
A ~iK (8.~ 0 )y’
X f ay’ t(y) exp 5 O B (7.7)
1 Ae JAYS
ty) = 3 (feos ag) ([ wajesdd) )
(7.8)
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FIG. 7.16--Configuration showing the directions of propagation of the
laser light and the acoustic wave.

where

VO = amplitude of the incident light before interaction,

GB = Bragg angle,

t(y) = a function proportional to the change of the dielectriz
constant [Ae(y)/e] due to the traveling acoustic waves
and is, hence, proportional to the distribution of the
acoustic waves,

¥y’ = integration variable,

and ¥ denotes complex conjugation,

Thus IVl(eo)l2 determines the diffraction pattern versus the angle
of crystal rotation and IVl(eo)/VO]2 determines the relative intensity
of the diffraction pattern.
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For a single acoustic beam of rectangular cross-section such that
t(y) =& = constart in the region -(1/2)d <y <(1/2)d and zero else-

where, the diffraction pattern reduces to

2 Ks
N sin ['2—(90 - eB)d]
e )‘2 . gzdzva .
1°70 L 0 K, 5
[—= (eO - 8. )d]
- B

(1.9

The diffraction pattern is the same as ths. for a single-slit Fraunhofer

[ =g and tre angular
0 B ’

deperdence of the diffraction intensity is symmetric with respet to

diffraction, The maximum intensity occurs at 8

QB . The zeros on either side of eB occur at

%K(e ’9 d = nﬂ ) n=l’2,5, 3 ve bl

g+ 0 B)

or at incident angles

2nT + szeB
eo = |e— , n=1,2,3, ... s
dK
" (7.10)
and the angle between the first zeros on either side of eB s Aeo B
is
hn 2n
2o, = -— = = . (7.11)
K d d

The auxiliary peaks of the diffraction intensity on either side of

c
eB occur at
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or at incident angles

%
(n+2)% + dK 6y

8, = , n=1,3,5, ... .
K (7.12)

The intensities of the auxiliary peaks are -13.4 4B , -17.9 dB

and -20.8 dB , respectively, below that at 8y = eB .

H

7.5 LIGHT DIFfRACTION USING MULTIPLE ACOUSTIC BEAMS IN SrTiO5 CRYSTAL

For this experimgnt a SrTiO3 crystal with dimensions
8 xmm X 11l mm X & mm was used. The length of the crystal along the
C-axis was 8 mm. A ribbon-shaped 2Zn0 wafer transducer with dimensio: s
~2.5mm X 5.5 m X 0.175 mm was banded on one end face (11 mm X 4 mm)
of the crystal and inserted in the high field gap of the previously used
coaxial cavity. The cross-section of the center post of the cavity was
1mn X 5.0 mm . The experimental arrangement is the same as the one

employed before.

2. Generation of Multiple Acoustic Beams

In this experiment the 2Zn0 wafer was wedge shaped as shown in
Fiz. 7.17a, and multiple acoustic beams generated. The generation of
multiple acoustic beams uring a wedge-shaped transducer is obvious from
the fact that when the thickness of the transducer is an odd integer
multiple of half acoustic wavelength the amplitude of the acoustic wave
is a maximum; and when the thickness of the transducer is an even integer
multiple of half acoustic wavelength the amplitude of the acoustic wave
ig a minimum. The profile of the acoustic column across its wide di-
mension was gcanned by observing the diffracted light intensity as the
laser beam was shifted acrecss the column (Fig. 7.18). The acnustic
profile along the narrow dimension is shown in Fig. 7.19., Notice that
the maximum difference in diffraction intensity i¢ seen to be about
13 dB. The decrease in the peaks of the diffraction intensity along

the direction of the wide dimension is attributed to the variation in
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crystal

~59mMV /S ]~ k2w
}.__. 5.5 mm '

| |

| [ SrTi0;
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Zqo coupler

(a)

SrTio0
crystal

n 0 trausducer
Y, 77 L I Zn
/// ~ ——— Air gap spacing

Cavity
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(b)

FIG. 7.17(a)--The dimensions and the orientation of the wedge-shaped
transducer,

(b)--The variation of the air gap spacing between the trans-
ducer and the center post.
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the air gap spacing between the wedge-shaped transducer and cavity
center post. The diffracted intensity was measured to be less at the
edge of the beam when the air gap was largest.

That we actually had a wedge-shaped transducer, and consequently
the generation of multiple acoustic beams,is verified by two means:
First, the thickness of the wafer transducer was measured by a micro-
scope; the dimensions are shown in Fig. 7.17(a). Second, the positions
of the peaks of the diffraction intensity moved as the rf frequency was
swept (Fig. 7.20). The difference in thickne.s as determined by the
method of sweeping the rf frequency agress with that measured by the
microscope (Fig. 7.21) within 8%,

From the acoustic beam mappings shown in Fig. 7.20a,b,c, we see
that as the rf frequency increases the peaks of the diffraction intensity
move in the direction towards the end of narrow thickness. If we compare

he first peak (point 1) in Fig. 7.20a with the first peak (point 2) in

Fig. 7.20c, we see that the peak moved by about 0.25 mm (see Fig. 7.21)
while the r{ frequency was swept by 14%.5 Mc. From the dimensions shcwn

in Fig. T7.21, we have.

d, - d, (v.2+ LEXIE0) (1 04 23250
( ) X 100 = 222 1 T P = l.%
d (b2 + 22 X 2:20y
1 5.5

Furthermore, when we utilize the fact that the acoustic transmission is

a maximum when the transducer thickness is an odd integer of hall acoustic

] th
wa/elength, we have, Tor the n mcde,
e )"”
-1
dl = n-—==
2
< IS
2
d2 = n
g 2
( =044 irterer ‘v resp L En 27 L. il expesime L.)
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Since f, = 1100.5 Mc/sec, £, = 1115.0 Mc/sec, we have

2

The excellent agreement in the value &f (dl- d2)/dl X 100 using these

two means supports the statement made above.

b. Diffraction Pattern Due to Multiple Acoustic Beams

The diffraction patter:: for the first--order as obtained by rotating
the curystal and with the photomultiplier fixed at a deflection angle of
2 eB is shown in Fig. T.22a, The acoustic wave was terminated with a
mercury pool for this measurement. Notice that there are many peaks in
the diffraction pattern and that the angular spread of the envelope of
the peats is very broad. This is analogous to the diffraction pattern
cf .ltiple slits in optics and agrees with the concepts of Fourier
transformation of the acoustic wave distribution described in the
previous section.

Using Eqs. (7.7) and (7.8) in which the distribution o. E(Y)
is given by Fig. 7.13 and KS= 20 per mil , eB (putside the cx - “al)
= O.OLLra'd = 2.280 s the diffraction pattern obtained by compute cal-
culation is as shown in Fig. 7.22b. The existence of many intensity
peaks and broad angular spread in the envelope of the peaks agrees
qualitatively with that obtained by an X-Y recorder (see Fig. 7.22a).

The diffraction pattern for the second-order as obtained ty rotating
the crystal and with the photomultiplier fixed at a deflection angle of
4 eB is shown in Fig. 23, We note that the peak intensity of the
second-order diffraction at 6 & 2 eB is about 8 dB below that of .the
first-order diffraction at 6 = eB and that one satellite peak appears
at both sides of the main peak. Figure 7.2} shows the photographs of

the diffraction spots for various angles of incidence.
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FIG. 7.22b- First-order diffraction pattern (calculated).
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(a)

(b)

FIG. T7.25-~Fabry-Perot patterns of (a) the undiffracted beam; (b) the
diffracted beam with up-shifted frequency; and (c¢) the diffracted
beam with lown-ghifted frequency..
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7.6 THE MEASUREMENT OF FREQUENCY SHIFT IN T:E DIFFRACTED BEAM USING
FABRY-PEROT ETALON

Figure 7.25 shows the fringes obtained from a 5 cm etalon for the
(a) undiftracted, (b) right-hand side first order and,(c) left-band side
first order diffracted beams, respectively. The acoustic wave is at the
frequency of 1.07 Ge/s and terminated with a mercury pool. The frequency
spacing between two consecutive fringes in the 5 cm etalon is 3 Gc/s.
The fringes in Fig., 7.2%b are obtained when the acoustic wavefronts are
approacninhg the incident laser beam. By measuring the increase in the
diameter of the innermost fringe, the frequency of the diffracted beam
ig found to be shifted up by ~ 1.05 Gc/s . This result agrees with both
the Doppler shif't principle and the parametric condition involved.
Similarly, the fringes in Fig. 7.25c are obtained when the acoustic
wavelronts are receding from the incident laser beam. By measuring the
decrease irn the diameter of the innermost fringe, the frequency of the
diffracted beam is found to be shifted down by ~ 1.1 Ge/s . Again,
this result agrees with both the Doppler shif't principle and the para-

metric condition involved.




CHAPTER VIII

MULTIPLE DIFFRACTION TECHNIQUES

With the success of diffracting and Doppler-shifting a large portion
of laser light with a moderate amount of rf power, frequency shifting of
laser sources using acoustic waves at microwave frequencies in crystals
such as Tioe, SrTiOB, Si02, ++. etc., becomes feasible.

We analyze in this chapter two schemes of using multiple diffraction
to shift the laser frequency by inleger multiples of the acoustic wave
frequency. One scheme uses a pair of Porro prisms in order 1o pass the
laser beam repeatedly through the acoustic column. The other scheme uses
2 pair of overlapping optical cavities with their axes tilted by twice the
first-order Bragg angle. Laser light 1s scattered alternately from one
cavity to another, the mode spacing of the cavity being set equal to the

acoustic wave frequency in order to provide reinforcement.

8.1 SIMULTANEOUS GENERATION OF THE UPPER AND LOWER SIDEBANDS USING A
PAIR OF PORRO PRISMS

Consider the configuration shown in Fig. 8.1. Two Porro prisms, 1
and 2, are arranged in a position such that the diffracted light passes
successively through them. Two photo-detectors 1 and 2 can be employed
to monitor the various upper sidebands in the diffracted light. It is
obvious that the sidebands with frequencies shifted by even multiple of
acoustic wave frequency come out from one side and the sidebands with
{requencies shifted by odd multiple of the acoustic wave frequency come
out from the other side. To generate the various lower sidebands, we
simply reverse the direction of propagation of the acoustic wave.

If we ig‘.lore the acoustic loss and the optical loss due to the

crystal and the prisms, the light intensities for the sidebands are
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FIG. 8.1--Configuration for simultaneous generation of the upper
and lower sidebands using a pair of Porro prisus.

given hy
n
ID(wi + nwé) IDl I - IDl
== 5 _ (8.1)
I,(w;)
01 IO I0
where
n = oréder of the sidebands,
ID(wl + nws) = intensity of the n®® order sideband,
Io(wl) = intensity of the incident light,
ID /IO = the ratio of the diffracted light intensity and
1

the incident light intensity for a single
interaction.
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As an example, consider (ID /IO) ~ 0.5 , as was described in Chapter
VII; we have then !

Iplw, + m ) (0.5)+(n+1)

Io(wi)
the light intensity for the fifth-order sideband is of the order of 1.%%.

8.2 SIMULTANTOUS GENERATION OF THE UPPER AND LOWER SIDEBANDS USING
A PAIR OF OPTICAL CAVITIES

8.2.1 Irtroduction

Consider the configuration shown in Fig. 8.2. A suitable crystal
containing an acoustic column for Bragg diffraction is inserted in a
pair of optical cavities (i.e., Fabry-Perot etalon). The axes of the
overlapping optical cavities are tilted by twice the first order Bragg
angle. The separation of the etalon is adjusted so that the axial mode
spacang of the etalon, C/2L , is equal to the acoustic wave frequency
fs . We assume that the cavities consist of four identical, partially
reflecting mirrors with sufficiently large area. The laser light couples
into the system from one end of the cavity 1.

The propagation of an acoustic wave in an elasto-optic crystal
produces 2 spatial and time-varying perturbation in the dielectric
constant (or the index of refraction). The relations between the change
in dielectric constant and acoustic power density, and the resonance
effect for various kind of crystals have been treated in Chapter VI. The
sidebands or the diffracted components are generated by the perturbed
part of the dielectric constant induced by the acoustic waves. Since the
frequency shifts of the sidebands are equal to the mode spacings of the
optical cavities, reinforcement in the intensities of the sidebands due
to multiple diffraction will occur. For example, from Fig. 8.2, the
incident light in cavity 1 first mixes with the acoustic waves to excite
the first-order sideband (the first-order diffraction) in cavity 2, waile

the trancmitted light, after reflecting back from the mirror, mixes with
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FIG. 8.2--Configuration for the simultaneous generation of the upper
and lower sidebands using & pair of optical cavities.

the acoustic waves again to excite the first-order sideband in cavity 2.
The first-order sideband is strongly excited in cavity 2 because of
resonance, and by mixing with the acoustic waves again, the second-order
sideband is excited in cavity 1. The second-order sideband excited in
cavity 1 is also resonated. This mixing process continues to develop
so that we have a system with many modes or sidebands (both upper and
lower sidebands) coupled together.

The formulation of the "harmonic-oscillator-like"” linear dif-
ferential equations for the mode amplitudes is given in Section 8.2.2,

and Section 8.2.3 gives their solutions and numerical results.
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8.2.2 Derivation of the “Harmonic-Oscillator-like" Linear Differential
Equation for the Expansion Coefficients of the Optical Fields

The technique of normel mode expansion given by Slater85

is used in
the following anelysis. The expansion coefficients of the optical fields
within the cavities are time dependent and satisfy "harmonic-oscillator-
like" linear differential equations. They are coupled by the perturbed
part of the dielectric constant which is induced by the acoustic waves.
Figure 8.2 shows the configuration involved. For the case in which the
volume of the crystal is only & small portion of ihe cavity volume, we
ignore the effect of the crystal upon the normal modes of cavity 1 and

2, i.e., we use the normsl modes corresponding to those without any
crystal present in the cavity; while for the case in which the volume of
the crystal is a large portion of the cavity volumn, we use the normal
modes corresponding to those with crystal completely filling the cavity.
In the filled cavity the waves will travel with velocity c/Ve and

in the empty one with velocity e ; otherwise the normal mode’ expansions
are the same. We consider the first case here. This is approximately
iuhe case when an L-band acoustic wave is employed as can be seen from the
example given in Section 8.2.3. Thus we assume €' = ¢. + D€ , where

0

€. 1is the permittivity in vacuum and &€ the change of permittivity

0
due to the acoustic waves.

The acoustic waves induce perturbed displacment currents

- -
a(aeEl) O(8¢eE,)
—_— and ————

ot ot

in cavities 2 and 1, respectively. Thus ignoring both optical and
acoustic losses in the crystal, we have the following two sets of Maxwell
equations for cavity 1 and 2, respectively:

3
= 1
VXE = ~-pn —= (8.2)
1 0 5t
- -
JE d(5¢E,)
VXE = ey —=+ 2 (8.3)
ot ot
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v xE, % (8.4)
X = - lJ, —— .
2 0 5
- -
5 O, O(8eE,)
VXH, = € + . (8.5)
ot ot

The terms B/Bt(ﬁeEl) and a/at(ﬁeEe) have been neglected in Eg.
(8.2) and Eq. (8.5), respectively, because, as will be seen, the
frequencies of these terms are nonresonant.

Following Slater's cavity perturbation theory, the fields are

expanded as follows: (l)

.
:E)l(zl)t) = z ebl(t) Ebl(zl)
oy
By(it) = ) o, (8) 5, (3,)
by
ﬁ (8.6)
H (2,,t) = (t) E_(z,)
1% A By (81 5, (%)
1
HQ(ZQ:t) = hbg(t) Hb2(z2)
by

(1)

Jdealized one-dimensional cavities are assumed.
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and

( 5
VXE, = Z B [kb ey +f (anz) i ds]
B 2 2 2-S 2
2 s2
- ' - -
VxH, = Eb[kbhb + (ang) EbdsJ
B 2 2 72 3 2
é 2 02
(8.7)
-
VXE, = B [kb ey +\/~ (n x El) B ds]
B 1 171 s 1
1 sl
VxEH = E
XH = E |k b +\ (anl)‘Eb ds .
. 5 1 171 5 1
1 ol
The orthogonality relations are
= = - =
\[ Em En av = \/‘ Hm . Hn av = amn
v 1 1 v 1 1
1 1
|
[E’ B av = f’ﬁ’ E av = 5
Y p Mo V.2 e mn
2 2

The mode amplitudes e.bl(t) , ebz(t) s hbl(t) and hbz(t) are given
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by the following volume integrations:

(e, (1) = [ Bapt) - E () a
1 v 1
1
‘ (t) - [ 2zt 8, () av
{ " (6.8)
n (0) = [ Baye) - B () av
1l v 1
1l
by (¢) = f Hy(z,,t) -ﬁ’bg(zg) av
\ V2

In the above representation, the subscripts 1 and 2 associated with
the fields designate cavity 1 and 2, respectively; kbl and kb2 are
the eigenvalues or the wave numbers of the mode bl and b2 , respectively;
T is a unit vector normel to the outer surface of the cavity volume V ;
Ss and SO are the short-circuit and open-circuit parts of the boundary
surface 2 for the eigenvalue problem. Note that in the following analysis
the dielectric loss corresponding to the volume conductivity of the crystal
o 1s neglected. However, this effect can be taken ir*o account easily by
modifying the Q of the optical cavity.

The "harmonic-oscillator-like" linear differential equations for the
expansion coefficients will be derived in deteil for cavity 2, then can be
written down easily for cavity 1. Substituting Egs. (8.6) and (8.7) into
Egs. (8.4) and (8.5), dotting with E; , E; , respectively, and inte-

grating with respect to the volume, weghave

e Bha

k e +pu 2 . -/‘(gxﬁ)z)ﬁ’ ds (8.9)

8.2 ae (0] . 8.2

3t s
s2
de 3
e —2 [ (n x &,) - § as+ Z(E’ Iaelﬁ’b e, =0
- - . —— = y

L ° 8y B &2 3t 8 10

(8.10)
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where

(Ell-—))=/"-—) -

5, de Ebl = Ea2 8¢ Ebl av
v
(¢

Here VC is the volume of the acoustic column.
Now, by taking time derivative of Eq. (8.10) and eliminating h,
from Eqs. (8.9) and (8.10), we have the following differential

equation for the mode amplitude €y in mode &,

2

2
2
Je 2
1 a2+k2e +1az<§, 8€Eb>
- -~ — e
c” 3¢l 8y By 2 52 8l ¢ A
b, 0

o
= By T (/~ (@ x ﬁ;) . ﬁ;g dﬁ? -k k/w (E)x ﬁ;) . ﬁ; as ,

2
02 Sg2
(8.11)

Where c- = (”Oeo)-l

A similar type of differential equation for hao can be obtained by
eliminating e, ~ . The surface integrals appearing” in Egs. (8.9) and
(8.10) contain 2 o types of terms: (a) those accounting for energy
lost by radiation, in particuler by the transmitted light, and (b) those
accounting for external optical fields incident on the cavity, which serve
to excite the cavity modes as they appear on the inside boundary wall of
the reflector. It is important to point out that in cavity 2 there is no
surface integral term which results from an external optical fields
incident on the cavity; but there does exist such a term in cavity 1.

We assume the reflecting surfaces of the cavities to be sufficiently
large so that the axial modes are essentially TEM waves without diffraction
loss and the reflecting surfaces to be of "short-circuit" type for the

normal mode problem. The actual system can be characterized by a reflection
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coefficient, I' , for the field amplitude. Then, the electric and

magnetic fields on the inside surface of the reflectors are related as

- = 1l -
n X EE = Cp'O(iT%) ﬁg . (8.12)

Substituting Eq. (8.12) into (8.11), we have

(8.13)

This illustrates the coupling of modes a5 and b2 through the wall
losses. Using Eq. (8.10) for b, , Eq. (8.13) vecomes
2

5¢|_,

SR (ii?)Zkb <Eb

5% By

S
=

(8.1k)

We note that the normal mode boundary conditions have been assumed to be
short-circuit. Thus, the open-circuit surface integrals vanish in Eq.
(8.10) and in Eq. (8+11).

Using the coordinate systems as shown in Fig. 8.2, we have the
following normalized eigenfunctions (or the normal modes):

(L
5

(i%) sin k2, = ( ) sin ka (- x sin Oy *+ 2 cos GB)

1 1
8, = even, 2,4,6, ....
= 8'1
B, = ¢ (8.15)

1
2 2

(KE) cos kalzl = ( ) cos kal(- x sin 65 + z cos GB)

\ 8 = odd, 1,3,5, ....
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and

where

(T

(AL

)

[V

1
. 2,2
sin kaez2 = (AL) sin kaa(x sin 65 + z cos GB)
a, = even, 2,h,6, ....
s (8.16)
1
2
cos ka222 = QEE cos kae(x sin 6, + z cos eB)
a, = odd, ,3,5, «...
cos kalzl s a, = even, 2, b, 6, .....
(8.17)
sin kalzl s 8, = odd, 1, 3, 5, .....
cos ka222 s a, = even, 2, L, 6, .....
(8.18)
sin ka222 ’ 8, = odd, 1, 3, 5, .....

cross~sectional area of the cavity,

separation of the reflecting surfaces of the cavity,
an .

T s i, ko= (aln/L) » k= (apn/L) , ...ete.
integers designgte the number of half-wavelength in

mode a and mode b , respectively.
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From the given normalized eigenfunctions, the scalar products between
the eigenfunctions over Ss » Which represents the loss terms due to
transmission in Eq. (8.1k4), are obtained and tabulated in Teble 8.I We
note that the loss terms couple only between even modes and even modes
of between odd modes and odd modes. The commonly defined89 mode quality
factors Qa P Qb in & cavity are

21 l1+T _ 1 1+71 '
Qa2 = g relf o) Q’b2 = ppf—) - (8.29)
TABLE 8.1
Mod f” E as
es .
s Hba g2
5
a, = odd 4 for la, - b,| = bn
2 L °? 2 2 ?
n = 0,1,2,..
"
b, = odd -5 for la, - by| =kn+ 2,
8y = odd o ,
b2 = even o ,
a, = even o,
b2 = odd o ,
= even - for |a, - b,| = 4n
8.2—ev L o 2 P
n = 0,1,2,..
4
b, = even -5 » for |a2 - b2| =kn+ 2,
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Using Eq. (8.19) and the results of Table 8.I, Eq. (§.14%) becomes

K [a ﬁ) -
- 5. (n x 2) H ds
Ss2

2
— 1 aeb de
) AN - P2 ) O i
T e, Z %, +EZ <Eb2 ¢ Eb1>eb1 ’ (6-20)
by ot bl 0

where the summation %; is taken over all values of b2 such that

a, + by 1is even. When we substitute Eq. (8.20) into Eq. (8.11), we see
that the second term in Eq. (8.20) is much smaller than the third term
of the left-hand side in Eq. (8.11) and hence can be neglected.
Furthermore, in the high-Q approximetion, we might assume that eny

driving trems at frequencies outside the passband of a given mode have

negligible effect on that mode, hence, for any of the modes 8, , we
have
de de
Th o P2
Q ~Q
2 2
b, ot ot
Finally, Eq. (8.20) becomes
Bea
- - - - -
-k [(an).H ds = -k lel—-—-e- . (8.21)
85 2 a5 8, 8y
S, ot

Finally, from Eq. (8.11), we have the following "harmonic-oscillator-like"
linear differentisl equation for the mode amplitude eaé in cavity 2:

-[%)
—_— e =O ’
€0 Ebl bl

(8.22)

8 de, Ch
2+ wﬁ e, *a, Q;l —2 }Z <:ﬁ;
2 22 2 2 3t at2 bl 2
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where o, = ky c . Note that in Eq. (8.22) the last term is due to

the coupl%ng between mode 8, in cavity 2 and modes b, in cavity 1.

1
In the later analysis, we show that only two modes in cavity 1 are
coupled strongly to any mode 8, in cavity 2.

Following a similar approach, the "harmonic-oscillator-like" linear

differential equation for the mode amplitude by in cavity 1 is obtained

as follows:
2
) ey
l+mt2)e +u)bQ-l —e-—E-)é>e
at2 lbl lbl a a

IEETNCGE - (8-23)

171

where ay =1lk, ¢ . The term in the right-hand side of Eq. (8.23) is
due to the incident external field transformed to the inside surface of
the reflector. Here e(wt) the electric field of the incident external
field appears on the surface of the reflector; and the factor 1/2
appears due to the fact that only one surface of the cavity 1 is subjected
to external excitation.

Now, we come to evaluate the coupling terms (E 2|5€lEb Y . It is

assumed that the acoustic wave is resonant and

be Ae stt
— = AesinKx cos ot = sin K x (—— e + c.c.) , (8.24)
s s S 2

€

0
where

w, = frequency of the acoustic wave,
Kg = ws/v£ = wave number of the acoustic wave,

vp = veloclity of the longitudinal acoustic wave,
Ae = amplitude of the permittivity perturbation due to acoustic

waves.
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We furthermore designate the spatial part of 5€/e0 as

d€

op—

€

ols®

and we have

de

€y Is.p

= sinst .

Using the eigenfunctions given in Egs. (8.15) and (8.16), we have for
the case b, = even , ey = odd ,

1
Culola®
) s.p 1

\/‘(Agﬁ) [cos kae(x sin g + z cos §)] - Isin K x]
v

Be

€

. [sinkb (- x sin g, + z cos QB)} av
1l

. ple
= -3 . cos-{(Ks + ka2 sin Gu - kbl sin GB)X
Y

+ (ka2 cos & + kbl cos eB)z}
+ cos'{(--Ks + k sin g + ka2 sin eB)x
1
+ (ka2 cos & - kbl cos GB)Z}
¢
- cosi(Ks + ka2 sin g + kbl sin eB)x
+ (- kbl cos & + k&:2 cos eB)z}
- cos{(-Ks - Iy sin g+ ka2 sin aB)x
1
+ (kbl cos g + ka2 cos GB)Z} dz , (8.25)
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where the relation dV = Adz 1is used. To have strong interaction, the
Bragg condition must be satisfied:

kb sin eB+ka sineB = Ks

1 2

cos = k cos
o, % s, °° B

(8.26)

Thus only the second term in Eq. (8.25) is independent of x and 2z ,

and hence will contribute dominantly; others can be neglected. We have

£/2

de

o - 1 {

<E8.2 — Eb)> & - 5T \/" dz = - 3 . (8.27)
€ s.p 2/2

The integration can be carried out similarly for other cases. The results

are given in Table 8.II.

TABIE 8.II
LR
Mode 2, c 1
0
b, = even L
1 =~ - 3%
a2 = odd
bl = even ~ 0
a, = even
b, = odd 1
B - 2L
a, = even
bl = odd =0
a2 = odd
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With (Ea2|6e/eols.p i}_)bl‘/ evaluated for various cases, they cen be
put into Eqs. (8.22) and (8.23), and the summation performed with respect
to bl and & respectively. Since the coupled frequencies are
specified by

waz = a.)bl tw,  for cavity 2 (8.28)
wbl = a)az o for cavity 1 , (8.29)

we see that only two modes of w, couple strongly to each mode of w ,

1 a
and only two modes of %2 couple to each mode of a>bl , 1l.e., e
b, = a,*1 (8.30)
ay = by *1 , (8.31)
since the spacing of the resonator modes is assumed to be O Finally,
Eq. (8.22) becomes
2
e, » 5 1%, 5 ( a*ﬂ ae{ﬁe ( "
——+ we QT =t (-1) — s — e + e )JL=O ’
&2 a a,2 aa oL 5’02 c atl,l a-1,1

0't.p
(8.32)

where de/e designates the time-varying part of 6(—:/6o in Eq. (8.24),

Ol&.p
and for convenience we replace the notation a5 by 8,2
To take the dielectric loss into account, we simply replace Qa by
. -1 _ -1 -1 .
the loaded Q of the cavity, QaL , Where QaL = Qa + Qad H Qad is
the equivalent material @Q of the crystal, taking the volume ratio of the

crystal and the cavity into account.
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To conclude this subsection, we write down the differential equation
corresponding to Eq. (8.23) for the mode ampiitude ep; 1in cavity 1

5 2
3% de £ 3 be
b,1 . 2 -1 Tp,1 a
B R =T b (IO PRL YY),
Ot.p

= - Lot (8.33)

8.2.3 Recursion Formuls for The Pertinent Mode Amplitudes and Their

Solutions

In order to simplify the manipulation, we modify the notation for the
cavity modes in the following analysis. We assume that the frequency of the
exciting laser (drive frequency), @y » corresponds to thet of the mode
b=4a in cavity 1, i.e., “ﬁ,l , and designate the order of sidebands
from oy by the letter n . Using this modified notation, the pertinent
mode amplitudes in cavities 1 and 2 are defined as follows:

r

Jlwy + mo_)t

eb 1 = Eb 1 exp d 8 + ¢c.C. (8'3)"')
) )

( n even)

Ho, + oo )t
€a,2 = Ea,2 exp d 57+ c.e. (8.35)

< (n odd )
Jo.t

eg = Eq exp ¢ 4 c.c. (8.36)
de A€ Jo t
— = -— exXp s + c.C. . (8-37)
eO t.p 2

.

The conditions on n in Egs.(8.34%) and (8.35) are clear from the coupling
selection rules in Eqs. (8.32, and (8.33) or from the physical considera-
tione of Section 8.2.1. Upper sidebands are denoted by positive values
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of n and lower sidebands by negative values; E., designates the

amplitude of the driving field; Eb,l and Ea,2 ddesignate the mode
amplitudes in cavity 1 and 2, respectively. As a matter of convenience
the mode amplitudes will be labeled only with the sideband subscript,
i.e., En . There is no embiguity; n even indicates cavity 1,
n o. ¥ indicates cavity 2.

Substituting Eqs. (8.35) and (8.37) into Eq. (8.34), we have the
following recursion formula:

*.

XE _, + X E, +*JE, = 0 . (8.38)

\n oaa)

For the cases of interest, o, < Wy and the following approxi-

mations have been used:

Q, ~Q, (8.39)
and
2et 2el,
X = —;; Q = —;; Qs (8.%0)
for all n and n' . Equation (8.38).applies when w; corresponds

to an odd mode in cavity 1, i.e., d = even ; when the drive is applied
to an even mode we have to replace X and X¥ by -X and -x¥*
[Eq. (8.32)].

Similarly, substituting Eqs. (8.34%) — (8.36) into Eq. (8.33) and
using the approximations given in Eqs. (8.40), we have the following

recursion formula for the pertinent mode amplitudes in cavity 1:

S
K1 * X*En+l *JE, = -3 dE, ) (8.41)

( n even)

Agein we have to replace X and x* by -X and -X* when the drive

frequency Wy corresponds to an even mode in cavity 1.

- 2hh -




To obtain recursion relations between the mode ampiitudes of cavity
1 only, we substitute Eq. (8.38) into Eq. (8.41). The substitution
results in the following recursion relations:

X°E + X E_n+2+(1+2lX| JE, = -3Ep . (8.42)

“ne2 2 "d'n0

( n even)

To solve Eq. (8.42) for the mode amplitudes, we define the normalized
89,90
a

mode amplitudes s

1 E n
g. =|% = p)
n 1
x = Ed.
or
. !._ L 1% ¢ ]4’
2= ip (e (8.43)

Substituting Eq. (8.43) into Eq. (8.42), and utilizing the fact that
E = (-1)"E¥ [from Eqs. (8.40) end (8.41)], ve have

2]x|LF Re g, + (1 + 2|x]2) g, = -1 (8.4k)
L 2 B 8.1
X" g o+ (L+2[X|7) g +g, 5 = 0 , (8.45)

where Re designates the real part. lLet g = q" , then Eq. (8.45)
leads to

Kt gt @r2x®a®e1 = 0 . (8.146)

The roots for Eq. (8.46) are

2y of7 . %2
5 (1 +2%]|%) af1+ bx|

2|x|*

(8.47)
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and

(1 + 2|X|2) +V1 + l+|>(|a

2
q, = =~ . 8.48
2 2|x|1* ( )

Since

E
-n ¥\
= g (X" = ¢(X")

[V
=1

must approach to zero as x* approaches to zero, only the root qi is

valid. Furthermore, there are two roots for a9 in Eq. (8.47) and in
m
lql + Al 1 . Since n is even, we have

qg = qin » end g can be written as Aq? , Ll.e.,

1+ 2[x[%) -y +a[x|®

g = Aqn = A J)n . 8.’49
n 1 ( 21" (8.49)

general we shall have g, = A

The constant A is determined by Egs. (8.44) and (8.49) with n=0

and n=2

-1
VAT : (8.50)

Finally, from Egs. (8.43) and (8.49), the mode amplitudes in cavity 1

are obtained:

(n = 0,2,4,...)

et s i A e L

n/2
E_ oy Gy {(x + 2x]?) Y1+ u|x|§}/
= 8 = -0 8.
E i (V1 + 1 x Py (v R (e

[V
[o )
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and for n=0 ,

o . (V1 + z+|x|2)'l : (8.52)

$ 5,

Equetion (8.52) shows that as the coupling persmeter |X| increases, the
exceiting mode or carrier mode EO decreases:

For large [X| ,

n
- . X[y
- -»=-) — - |— (8.53)
3 Ey 2]x| X
or
fy o [
— = (3) < ; (8.54)
o
for small |X| ,
E n #\B
—B - ()" - () (8.55)
2 By
or
E-—n n * n
— - (3) - (X7) . (8.56)
By

From Eqs. (8.53) and (8.54), we see that as |X| becomes large, all of
the sideband amplitudes are inversely proportional to |X| , and have
the same amplitude. Furthermore, from Egs. (8.55) and (8.56) we see

that as |[X| becomes small, the amplitude of the nt? sideband is smaller
than that of the carrier mode by a facter (X*)n .
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Finally, combining Eqs. (8.38) and (8.51), the mode amplitudes in
cavity 2 can be obtained:

E Y1+ s x BN + 2[x[3) V 4|X 1<) e
J .
3, (Y1 +ux| 5)(\['5_' x)*t 2 (8.57)

= odd, 1,3,5,...
For large (X| ,
i lxl n-1
=25 () 5 (8.58)
2E4
or
E_, o | X
— =) |— . (8.59)
E, X
For small |X|,
E_ n ,oxD
== o ()" () (8.60)
1
24
or
N E Dl C o . (8.61)
Ey

The description given by Eqs. (8.58) — (8.61) is similar to that given

by Egs. (8.53) — (8.56). They indicate that there exists some value of

X for maximum intensity in a particular sideband. The optimum values

of X are obtained by meximizing E_n/%:Ed in Eq. (8.51) if we are
interested in the modes of cavity 1; and maximizing E_n/%Ed in Eq. (8.57)

if we are interested in the modes of cavity 2.
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Taking the derivative of E_n/%Ed with respect to [X| , we have
the following values of |X| for maximum sidebands intensity in cavity 2:

16 X% - 4(m)? X% - (@) = o (8.62)
n = odd, 1,3,5 ,

“« )

or

() A+ @21
x| = 3 - : (8.63)

The first sideband corresponds to n =1 ; the first sideband has mexi-
mun intensity when

1+ 5
x| =

)=

~ 0.636 ,

and from Eq. (8.57) the intensity is

2
1-1.62
V” (T2)(z x 0.638)| =%

Thus the first sideband in cavity 2 has a meximum intensity of 9. For

-2(n-l)% in cavity 2.

The corresponding n-1 sidebands intensity of the even modes in cavity 1

are determined from Eq. (8.51) as 38 x h.5-(n'l)% for n = 3,55.0. .
Similarly, taking the derivative of E_n/%Ed with respect o [X| ,

n = 3,5..., the sidebands intensity are 9 X 2

we have the following values of |X| for maximum sideband intensity in
cavity 1:
2| |2 2

16 [x|* - sl x| - 02 = o (8.6%4)

(n=2,4,6,...) .
The problems of inducing IXI by means of acoustic waves are treated

in Chapters VI and VII; here we simply point out the possibility of
inducing IXI of the order of 0.636 or larger. Using a He-Ne laser
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(N = 6328 R, Wy = 1 X lO15 rad/sec), SrTiO3 crystal, acoustic waves of
800 Mc/sec and reflectors with reflection coezificlent I = 0.95, we have

kb:T=105r:m-l

L = — = 18.8 en

2

Qb,l - Q-b,l - Qa,2 - Q-a,?. = &, T % 2.8 x 10" .
For Sr'l’io3 crystal, we have Ac = 2.3 S (S is strain). With strain in
the order of 5 X lO“5 , which requires only 10 watts of rf power
(assuming an acoustic beam with £ = 0.2 cm and a Zn0 transducer with

-11 dB conversion efficiency, see Section 7.3), 2A¢ is in the order of
11.5 X 10, Thus we have
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APPENDIX A

1. Frequency Shifts in The Reflected and Transmitted Wave

K, sinq = K sina = K sinq = I, (A.1)
Wy + KiV cos oti = wr - KrV cos ar = + KtV cos at
= - I, . (A.2)

From the first set of equations of (A.l), we have

w, 2 o !
cos Q_ = 1 - (—) sin "o . (A.3)
T o i

T

Substituting (A.3) into the first set of equations of (A.2) gives

~—y

2
! 2
1l- Bc\{plel 1-{—) s8in ai
(i)
T

l + Bc”“lel‘ cos czi
Sulving for ® fo, , we have

2.2
(1 + M€ C B ) + EBchlel' cos ot

H& lpe
]
S
=
o

= o A.
@, w; - , (A.5)
l - p.lelc B
and
er = - Kr cos ar = - "[_”l-e-l-' w,, COS ar
i.e.,

2.2
m (L + p,e,cB") cos a, + 2u.€,cP
s L YRS 161 1 Ma% L6

2.2
l- plelc B

- 251 -




ik ]

Similarly, substituting the second set of equations of (A.l) into
the second set of equatims of (A.2), we have

2

I.+w
o e (A.7)
ch
and furthermore,
2 2
w (w, + cK, B, cos ¢, )
£ xﬁ + %, Lt e t .o, (A.8)
d2 (l = BQ)

Combining Eq. (A.7), (A.8) and the second set of equations of (A.2), we
have

[(x - 82)(8% - 1) + %e%(p - 8)%1 o
- 21, [(1 - B3) + %e7B,(B - B)] o, (A.9)

- [(r - sﬁ)(xi&a + IS) - XecelgﬁgJ = 0 '

b

giving
2 2
p-8 1.\2[c“%X,(B-B,)
1+ X.eop, » 2 I B+ X2 +<—i> a2 _a-@
2% Bp 2 2 5
1-6,, I, 1- 8
(@) o = (1) ( 5
2 2 (B-8)
(1 - B7) - xpe™ ¢ ——5—
(A.20).

The root corresponding to the upper sign will be chosen, as this
corresponds to transfer of energy from the interface.

Substituting (4.10) into the second set of equations of (A.2),

K%x
is obtained: -
2r 2 2 '
B-8 I c“X,(B-B,)
- 1B+ )(202 g +4 /1 + X2c2 + - -—i—é‘—g—- - (1- Be)
. 1-32 12 1-62
K = - I . 2 .
x 2 2 2 (B - Ba)
(1 - 8%) - %ye® » ——3
(1 - 62)
(a.11)
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2. Amplitude Changes in The Reflected and Transmitted Waves

In medium 1, the following

\

Recalling that X <= K, cos ¢

i
we have

B
r

b

iz

ix

iz

ix

relations hold:

"

1)

"
kS
|_a
’—lj
‘_‘l’.’

- o)
Kr cos ar and

(A.12)

(a.13)

Ktx = Kt cos

(a.14)

at,




and

rz r

rx r

2

rz ® r
r“l

I
H —2 g
. X . r
rl

In medium 2, the MinKowski relations reduce to:

1
Dt + ” Bzﬂt cos o% = & E, + ce2B2 Bt cos

t

1
By + T BBy = wmpfly +enB, Dy

The boundary conditions are

Bx medium 1 Bx medium 2
Dx medium 1 Dx medium 2
E E {7 x (3 3
y medium 1 y medium 2 X Bhedium 2 ~ Bmedium 1
> > >
H pedium 1~ %2 medium 2 = {} X (Dmedium 1" Ppedium 2

- 2bb -

Qa

t

=N

2

(A.15) "

(4.16)

(A.17)

(A.18)

(a.29)
(A.20) !

(A.21)




In this case, we have

Ey medium 1 E, + E (A.22)
Ey medium 2 © Et (a.23)
> >
{V X Bmedium 2}y = B B, cos o (A.24)
Vx3B 2
X B eatum 1 , cB (Bi cos @& - B_ cos ozr) (A.25)
&>
V x Dmediuln 1}y -ce, BE - ce, BE, (A.26)
VxD D 27)
X Pnedium 2 y - B t (a.27
Kix er
Hz medium 1 Hiz + Hrz = ® Ei + ® Er (4.26)
1My P
" medtum2 = Hy = Hycosaq . (4.29)
From (A.18), we have
Ei Er
B, = B, cos G = K w— + w— . (A.30)
i r
Substituting (A.30) into (A.16) » (A.17) and solving for D, and H,

in terms of Ei s

Er s and Et s> &lves

i

2
Bo(1 - KaExC ) cos o J

E
txc—o'-f

Rumhatabint . |

E .
r 2,2
w——r) (1 - Ha€sc ﬁ2 cos at)

H cosC

2
b2 cp, (1 - B, cos at)

2 2 2
(“2€2° - B, cos at) s . KthQ(”zezc - 1)

Dt—

2 2 2
c ua(l - B, cos Ott) epy(l - B, cos cxt)
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(A.31)
wi wr
(A.32)

2
H2(l - By cos Ol.L)




B,

(3.20).

(A.20) and (A.21), two simultaneous equations relating E, , E

Finally, substituting (A.22) — (A.29) and (A.31) ~ (A.32) into

and
T

are obtained. They are given in the main text as Egs. (3.19) and
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