
UNCLASSIFIED

AD NUMBER

AD483281

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Apr 1966.
Other requests shall be referred to Rome
Air Development Center, Griffiss AFB, NY.

AUTHORITY

RADC USAE ltr, 14 Jul 1969

THIS PAGE IS UNCLASSIFIED

RADC-TR-66-37

MATHEMATICAL MODELS OF INFORMATION SYSTEMS
Richard F. Arnold

00 Harvey L. Garner
Richard M. Karp

Eugene L. Lawler

TECHNICAL REPORT NO. RADC-TR-66-37
April 1966

This document is subject to special
export controls and each transmittal
to foreign governments or foreign
nationals may be made only with
prior approval of RADC (EMLI),
GAFB, N.Y. 13440.

Rome Air Developmen. Center
Research and Technology Division

Air Force Systems Command
Griffiss Air Force Base, New York

When US Government drawings, specifications, or other data are used for any purposc other

than a definitely related government procurement operation, the government thereby incurs

no responsibility nor any obligation whatsoever; and the fact that the government may have

formulated, furnished, or in any way supplied the said drawings. specifications. or other

data is not to be regarded, by implication or otherwise, as in any manner licensing the

holder or any other person or corporation, or conveying any rights or permission to manu-

facturer, use, or sell any patented invention that may in' any way be related thereto.

o. ~ py. Ptec.oin or 'J'.-.troiy.

MATHEMATICAL MODELS OF INFORMATION SYSTEMS

Richard F. Arnold
Harvey L. Garner
Richard M. Karp

Eugene L. Lawler

This document is subject to special
export controls and each transmittal
to foreign governments or foreign
nationals may be made only with
prior approval of RADC (EMLI),
GAFR, N.Y. 13440.

:;ýF3,my, !

FOREWORD

This technical report was prepared by Systems Engineering Laboratory,
Department of Electrical Engineering, The University of Michigan, Ann
Arlbor, Michigan under Contract AF30(602)-3546. The work was performed
under Prcject 5581, Task 558109. The RADC program monitor is Mr. Morris
A, Knapp,]•4I1D.

Release of subject report to the general public is prohibited by the
Strategic Trade Control Program, Mutual Defense Assistance Control List
(revised 6 January 1965), published by the Department of State.

This technical report has been reviewed and is approved.

Approved: - J
Chief, Info Processing Branch

24 'ý $ 1

- ROBERT J. QUINN, JR.
Approve& Colonel, USAF

Chief, Intel and Info Processing Div

iii

I1

ABSTRACT

This report is the first interim report of a three year study and
investigation by the University of Michigan. The primary objective of
this effort is the study and development of mathematical models of in-
formation processing systems, The general area of research includes
machine design, automata theory, and the application of mathematical
models to problems in machine design. The areas of research in this re-
port are divided into these four areas (1) Automata Theory and Applica-
tions, (2) Theory of Algorithms, (3) System Analysis, and (4) Combina-
torice and Switching Theory.

iii

Table of Contents

1. Automata Theory and Applications 1

1.0 Introduction 1
1.1 Permanent Malfunctions in Sequential Machines 3
1.2 Temporary Malfunctions in Finite Automata 8
1.3 Formal Languages 20

2. Theory of Algorithms 26

2.0 Introduction 26
2.1 Monotone Congruence Algorithms 27
2.2 Discrete Dynamic Programming 29
2.3 Branch-and-Bound Algorithms 31

3. Systems Analysis 35

3.0 Introduction 35
3.1 Storage Formet Characterization for Random Access Storage 36
3.2 Dynamic Allocation of Storage 45
3.3 Graph Model of Concurrent Computation 47
3.4 Classification of Machines and Problems 52

4. Combinatorics and Switching Theory 56

4.0 Introduction 56
4.1 Covering Problems 57
4.2 Threshold Networks 60
4.3 Cellular Logic 62
4.4 Sequential Circuit Synthesis 64
4.5 Miscellaneous Problems 64

Bibliography
A. Publications by Laboratory Personnel 66

B. Other References 68

v

Preface

This report is a summary of the results obtained from the first

year of research under contract AF 30(602)-3546. In this report many

mathematical details and proofs have been omitted in order to obtain a

short, readable document. Such detail can be found in the recent pub-

lications of the laboratory personnel. These publications are listed

at the end of this report and should be considered as part of the re-

search documentation.

The primary objective of this research is the development of

models of information processing systems or models of the functional

parts of information processing systems. The choice of research areas

is influenced by existing problems in information processing systems

and by the suitability of these problems to abstraction and modeling.

The general area of research includes machine design, automata theory,

and the application of mathematical models to problems in machine de-

sign.

The report is divided into four parts: (1) Automata Theory and

Applications, (2) Theory of Algorithms, (3) Systems Analysis, and (4) 5
Combinatorics and Switching Theory. In some cases the categorization

of a given topic in a particular area is arbitrary. In generaly Auto-

mata Theory and Applications is concerned with the behavioral aspects

of finite state machines in the abstract sense and, in particular

with relations between structure and behavior in the case of circuit

malfunctions. The relationship of abstract machines to programming

language is summarized and comuents are made with respect to the need

for a better understanding of semantics. The Theory of Algorithms is

vii

concerned with the question of the existence and the derivation of optimn

algorithms. The abstract approach is taken. In Systems Analysis models

are presented for the organization of a random access store and for con-

current computation. The results of a simulation study of the storage

allocation problem are presented. Preliminary thoughts on the class-

ification of machines and problems is included. Models of the control

process are being studied but this research is in the preliminary stage

and is not included in this report. Combinatorics and Switching Vieory

is concerned primarily with covering problems and recent results in the

area of threshold networks.

A comprehensive literature survey was undertaken early in the

course of this research. A detailed review of this literature is not

included in this report but mention is made to pertinent references

and other research efforts of interest to this program.

Professor Harvey L. Garner has served as the project director.

The senior research staff has consisted of Professor Richard F. Arnold,

Professor Eugene L. Lawler, and Professor Richard M. Karp. The research

staff has consisted of P. Dauber, J. DiGiuseppe, K. Garrison, R. Gonzalez,

J. Meyer, V. Powers, G. Putzolu, R. Reiter, D. Wood, and R. Zauel.

viii

____ •

1. Automata Theory and Applications

1.0 Introduction

In the decade or so that automata theory has been a recognized

field of study, great strides have been made in the discovery of

theoretical results and in the explication of the interfaces with border-

ing disciplines. Among the notable achievements have been (1) a thorough

analytic treatment of finite-state systems and (2) the development of

I
an elegant and coherent theory of formal languages and of the automata

that can be used to generate, manipulate, and recognize them. These

two bodies of theory seem to have particularly great potential for appli-

cation in the analysis and design of computer systems.

Our main research effort in finite-state systems has been concerned with

error properties (aside from the question of synthesis, discussed in

section 4), and two complementary points of view have been adopted.

Under one point of view a malfunction is considered to be temporary,

leaving the state transition structure of the machine unaltered. A

natural question to ask is: "What is the probability that the system

will be automatically restored to its proper state?" Under the other

point of view, a malfunction is considered to be permanent, changing

the state transition structure in some significant way. Natural ques-

tions to ask are: "How is the new system related to the original? Can

the inputs be modified or coded sc that the desired behavior is realized

in spite of the malfunction? Can the systembe designed in such a way

that malfunctions in the system will produce only tolerable changes?"

A study of the temporary type of malfunctions conducted by P. Dauber

is reported in Section 2. The initial formulation of a study of

21

permanent malfunctions being conducted by J. Meyer are presented in

Section 1.

The theory of formal languages has contributed to a better under-

standing of the necessary properties of programming languages and to

more systematic methods of specification and of processing. Various

unsolved problems, including an inadequate treatment of semantics,

appear to limit further applications in the design and programming of "

computers. These problems are reviewed, and an appraisal of the field

is made in Section 3.

'1

I

1.1 Permanent Malfunctions in Sequential Machines

The particular point of view adopted in treating the subject of mal-

functions, failures or errorsdepends strongly on the class of errors being

considered, where different error classes reflect different interpretations

as to how and where the errors are caused. If the errors are regarded as

arising externally, that is, at the input to the machine, then the inter-

nal structure is not affected by error. Thus, the effects of input error

on the behavior of a particular sequential machine can be classified and

analyzed in terms of its structure (transition function), a structure

which one can assume to be fixed under all possible errors. Represen-

tative of this type of error analysis are the contributions of Neumann

[b311, Winograd [b36], and most recently Harrison [bl8].

Another general class of errors are those which are regarded as

being the result of internal malfunctions. In the case where the cause

of the error is transient or temporary in nature and results in the

machine assuming an erroneous state, the analysis of such errors is close-

iy related to that of the input-error interpretatGion. This class of j
errors can again be related to a fixed, deterministic structure since,

following the disturbance, the operation is assumed to be error free.

Thus, this type of error can equally well be regarded as being caused

externally by some input error. The questions asked differ, however,

since they relate directly to state errors rather than to the nature of

the inruts that might have caused them. This is the point of view adopted

by Hartmanis and Stearns [b20] and Dauber [a4] in their investigations

cf this type of state transition error.

Tiae nature of internallý caused errors has also been studied extensively

from a synthetic point of viewithat is, in terms o. nimitive elements whose

interconnection realizes some sequential network. Here, the primitive ele-

ments (whieb :-.Jve been regarded as logic primitives and neurons at one

extreme and iarge subsystems at the other) are assumed to have a certain

probabilistic behavior. The analysis is then concerned with questions

that relate the probabilistic nature of the primitive elements to that of

interconnected networks of these elements. This was the point of view taken

in the classic contributions of von Neumann [b351 and Shannon and Moore [b28J.

Since their papers appeared, much of the effort devoted to the study of

reliability and redundancy in switching networks and computing systems has

reflected this particular method of analysis (b231.

The reason for introducing this short summary regarding various

classes of errors and methods with which they have been investigated (the

summary is in no sense complete) is to provide a means of comparing the

class of errors we propose to investigate here with certain of those al-

ready studied. The type of errors we wish to consider here can be re-

garded as being due to internal failures which are permanent in nature.

Unlike the class of externally caused errors or the class of internally

caused transient errors, we can no longer assume that the structure

of the machine is invariant. On the other hand, we would like to avoid

restricting ourselves to a particular class of switching elements as is

done in the synthetic approach. This is not to say that a more general

analy.s would have no bearing on synthesis problems. We feel that by

relating the effects of permanent failure directly to structure one can

maintain a certXin degree of generality and yet provide synthesis procedures

that are applicable to various classes of switching networks. We will

/__ __

have more to say in this regard once we have outlined the basic framework

and objectives of our proposed research.

We are given a finite-state sequential machine

M = (Ej •,Q,x, 5)

with inputs Z, outputs t, states Qtransition function 6, and output

function X defined in the usual way. We now suppose that in some physical

system represented by M there is a permanent malfunction which permanently

alters the system but results in a configuration that still behaves as a

sequential machine. We can then represent the result of the failure as

a second machine

M'= (, , Q', 5', 5')

where the states Q', the transition function 5', and the output function

I' of the failed machine are related in some way to the original machine

M. A more precise statement of this relationship depends, of course, on

more detailed knowledge as to how the system failed.

In relating M to MI we choose to restrict our attention here to failures

that occur in the memory portion of the physical system. This restriction

is motivated by the fact that it is memory which distinguishes nontrivial

sequential machines from purely combinational systems. The latter have

been investigated rather thoroughly with regard to error susceptibility

but few of the results apply when memory (with feedback) is introduced.

The restriction also has the advantage that the function of memory is

the same from machine to machine, that is, to store the information pre-

sented at the memory input.

In a sequential machine the transition function represents both

decision and memory processes in that we interpret b(q,o) to be the "next"

6

state given the "present" state is q and the "present" input is a.

To distinguish the functions of memory and decision we can let

= •.p (the functional composition of 6 and 4, first applying •)

where 9(q.a) is the memory input and represents a purely combinational

process and p. is the memory function representing the storage of

6 (q.a). In case the memory operates properly, ýL is simply the identity

function on the set of states Q. Accordingly, if memory inputs are

stored improperly as the result of failure, p. is some function other than

the identity function. To insure that the result of the failure is stable

in the sense that the machine does not oscillate between states, we

require in addition that j. be an idempotent function. We call such func-

tions failures of the machine M and for the failed machine M' we have

= p.(Q), 5' = 5-8 and V' = % restricted to 4(Q). This then is the

basic framework within which we intend to study permanent failures.

Within such a framework a number of interesting questions present

themselves in a rather natural way. In physical situations where one is

unable to or does not choose to repair the system, one is interested in

failures under which the terminal behavior is unaltered by the change in

structure. Thus we want to determine the conditions on a failure p

under which the failed machine is behaviorally equivalent to the original.

Also of practical importance are situations where internal repair is not

feasible but one is able to recode input and output information in an

attempt to re-establish proper operation. This would occur, for example,

with airborne or spaceborne computers that receive from and/or transmit

to, manned installations. In this case we want to know the conditions on

Sunder which M' can simulate M. We may also ask questions about preserving

certain properties of the behavior that correspond in some sense to partial

success of the system.

With regard to failures themselves, we would like to determine those

relations on a set of failures that will connect the known properties of

some given failure with those related to it. For example, if we know

that some failure ýi preserves behavior in one of the above-mentioned ways,

what relation or relations on the set of failures will determine other

failurt:s having the same property? Regarding the failures simply as func-

tions, how do well-known operations and relations correspond to the in-

tended interpretation? What subsets of failures correspond to various

physically motivated restrictions as to how memory elements fail? Can

these subsets be generated in some way from even sm&ller sets? The last

two questions are related directly to the synthesis problem, which we

regard as an important part of the investigation. In the proposed

framework, this problem takes the following form. According to the

assumed nature of the memory elements and how they fail in a memory sys-

tem, one can determine, for a given size memory, the functions corres-

ponding to possible physical failures. This can be done without know-

ledge as to how the remainder of the system is implemented. Then given

a reduced machine which satisfies -he specified behavioral requirements,

the synthesis problem is translated to that of a many-to-one state assign-

ment which satisfies the desired behavioral requirement (e.g. equivalence

or simulation) on machines resulting from failures in the set under con-

sideration. As such an assignment may not always be possible; questions

as to the conditions under which algorithms exist are also important.

In the process of answering these questions we should also obtain a

more thorough knowledge as to general relationships between structure and

behavior, and should be able to relate fa4iures to other aspects of machine

theory, especially decomposition theory. The main objective, however, is

8

to determine, as a function of the complexity of behavior, the complex-

ity of structure needed for a specified degree of error insensitivity.

In the case of permanent failures, such questions have not been answered

by the synthetic approach, whereas we feel they can be answered within

the proposed framework.

1.2 Temporary Malfunctions in Finite Automata

This problem arose from an attempt to make a general study of relia-

bility in computer-like machines. Machines of this type may, due to a

bad input tape, a temporary malfunction of a diode, or for some other

reason, enter an incorrect state. The machine may then under the influ-

ence f' the input tape yield incorrect outputs. However, if the input

tape takes both an incorrect state, entered due to the malfunction, and

the correct state to the same next state, then subsequent outputs will

be correct. This will be called correcting the error.

The classic results of von Neumann b35 I apply only to networks

without feedback. Thus a malfunction only causes the networK to be in

the incorrect state for a bounded length of time. With feedback a mal-

function can cause an error which may persist forever. Fortunately, not

all errors are of this type. Some errors are of the type that can per-

sist only for a bounded time. Some errors, although they can persist

infinitely long, have a probability one of being corrected as the tapes

get longer. Thus "almost all" of the "long" tapes correct the error.

This phenomenon has been studied by Dauber [a5 , a6 J. The results

of this research are summarized here. First the problem is formulated

in terms of the theory of automata. In the formulation which follows we

are concerned only with states and outputs are ignored. This transition

system is sufficient for this study.

Definition 1

A finite automaton M is a triple

M = (Q, Z, s)

where Q is a finite set with elements q. (set of states);

Z is a finite set with elements a (input alphabet);

5 is a function from Q >< Z -4 Q (next state function).

If we are thinking of the finite automaton as a model of a digital

device, we can associate the states of the digital device with the state

set Q, the input symbols of the device with E. Then the manner in

which the device changes states, when it receives an input is associated

with 8.

Definition 2

(a) An error in a finite automaton, M, is a pair of states

(qjqj)

(b) An error (qiq is corrected by a tape t ("tape" is

synonymous with "input sequence") if and only if

(%,t), = 5(qj,t).

We can think of an error (qi,qj) as the situation, when due to a

previous malfunction, the automaton is in state qi and should be in state

qj or vice versa. (It is obvious from the definition "corrected" that

these situations are equivalent.) If, by the above definition, an error

is corrected, then from that time on the output must be correct. However

if an error is not corrected we may still have more incorrect outputs.

10

In this work we will consider a random source, which generates se-

quences and drives the automaton. A random source S is a set [P n) of

probability distributions Pn(X), the probability of the n-length string

x. S has property P if there is a real k > 0 such that P (xa) > k P (x),

for all x and a.

Lefinition 3

Let S be a random source with property P and output symbols Z,

and let M = (E, 5, 5) be a finite automaton driven by S. For

an error

E = (q,qj) we define the following:
S

(a) Y (qi,qj) = probability of the set of tapes of length I

which correct the error (qjq9).

(b) 7 S(qqj) = lim 7 (q.,q.).

Now let us consider the following classification of errors in a

finite automaton M being driven by a source S as above.

Definition 4

An error E = i(,q is

(a) definite if and only if there is an I such that

7 (E) = 1.

(b) finite if and only if 7 S(E) = i.

(e) correctable if and only if 7s (E) > 0.
(d) non-correctable if and only if 7 S (E) .

Intuitively, these classifications have the following meanings. If

an error is definite then there is a fixed length, 1, such that all se-

quences of length I or greater, correct the error. On the other hand, if

t

I

there is not such a fixed length, out as we consider longer and longer

sequences, a larger and larger percentage of sequences correct the er-

ror, and if in the limit one hundred percent of the sequences correct

the error, then we have a finite error.

We will now give some fundamental properties of errors which will

show the connection between the poncepts of correctable and finite errors.

Theorem 1

The set of finite errors in an automaton M driven by a source

with property P induces a partition on the set of states.

That is, there is a partition AF on the states of M so that

E = (qi,q.) is finite if and only if qi = q.('F).

The next theorem will show the strong connection between errors

which are correctable and errors which are finite. We will use the

cross product of sets which has the following meaning:

A >< B = ((ai.,b) a. EA and b -EB).

Theorem 2

Let C C M >< M be the relation: (qi,qj)eC if and only if

(qi,q,) is a correctable error. Then an error E = (qq

is finite if and only if (qi,qj)cC and for all tapes t,

Since the concept of an error being correctable is not dependent upon

the source, the above theorem tells us that as long as we are dealing

with only the class of sources that have property P, the property of an

error being finite is also independent of the source. In the discussion

which follows the term "source" will refer to a source with property P

12

unless we explicitly say otherwise. Thus we will call an error a finite

error if it is finite for some source (hence all sources) with property

F, and we will call •F the finite error partition. Likewise we will

drop the superscript on 7 denoting the source. We will call an error a

nontrivial error if it is not of the form (qi,qi).

Theorem 2 provides a conceptual connection between the relation C

and the partition tF" The next theorem is a stronger characterization

of this connection.

We will use the canonical ordering on partitions. That is,

1i 2! '2 4===> (ql1 '-- 2(2 ql- (i "

Theorem 3

YF is the coarsest partition (i.e. the largest under the

canonical ordering) wi-h the substitution property such

that

qa S qj (AF) (qi'qj)ec.

State behavior realization as defined by Hartmanis and Stearns foi9,b22]

is a very strong type of realization. One meaning is that if one digital

circuit is represented by an automaton M and another by an automaton M2

and if M1 state behavior realizes M2 then no matter what coding of the

outputs we put on the second system there is a coding of outputs of the

first so that they both do the same thing.

13

Definition 5

Let M1 = (Q1, Z, 5), M2 (Q21 Z'") and X QlX

Then the series connection of Mi with M2 with connecting

function 7 is the automaton M = (QI > Q2, Z, 5") where

" is defined as follows:

We will say that a finite automaton M can be state behavior realized
by a series connection of finite automata M1 and M2 if there is a connec-

ting function X such that M is state behavior realized by the series connec-

tion of M1 and M2 with connecting function X.

Again, in terms of digital systems, this means that if Dl, D2 , and

D3 are three digital systems iepresented by finite automata Mi. M2, and

M3 and M1 is state behavior realized by a series connection of M2 and

M1, then instead of building Dl, we can build D2 and D3 and connect

them as follows:

In this case X corresponds to the coding of the outputs of D2 .

The following theorem is a consequence of Theorem 3 and a well-known

result of Hartmanis.

Theorem 4i

If M is a finite automaton with a finite partition "F then

M can be state behavior realized by a series cornection of
two automataM1 and M2, where all errors in M2 are finite,

and M1 has no ncntrivial finite errors.

The following example demonstrates these theorems.

14

Example 1

Let M = ((ab,c,d,e), (0,i], 5) where b is the mapping shown below.

b 0 1
a b d :

•b a d

c a bd b d _
e a d

It is easy to show that

C = ((a,d),(d,a),(b,c),(c,b),(e,a),(a,e),(e,d),(d,e),(b,e),(e,b),

(c,e), (e,c), (a.,a), (b,b), (c,c), (d,d), (e,e) .

There are four equivalence relations with the substitution property

contained in C.

ne)

it3 = (g, 77c, a, e)

The coarsest one is T(4' Thus the only nontrivial. finite errois are

((a, d) , (d, a) , (b, c) , (e,b)) .

The following theorem is another corollary of Theorem 3. It was

first proved in another context by C'ibert and Moore 614].

Theorem 5

All errors in an automaton M are finite if and only if M has

a reset tape. (A tape t is a reset tape if 5(q,,t) is inde-

pendent of q i.)

Let us now look at another example to show the use of this theorem.

~~--i

15

Example 2

Let M = ((a,bc,d], (0,I), 8) where 8 is shown below.

5 0 1

bc db

dl d bala b

It is easy to see that all the errors are correctable, Hence by Theorem

3,... F = (a,-bcd) and all errors are finite. Upon examination it can be

seen that the tape 000 is a reset tape since 6(q,,000) = d regardless of

q * Thus we could have found that all errors are finite by applying

Theorem 5.

In the course of studying errors in finite automata, it became ob-

vious that many of the error properties (as well as other properties) of

finite automata were more easily discussed in terms of the semigroups

of the automata fb25, b21. We summarize some of these results here,

without repeating the exposition of abstract semigroups contained in the

complete report.

Definition 6

Let M E(Q, , 8) be a finite automaton. SM, the semigroup

of the finite automaton M is the semigroup whose elements

are transformations, mapping the set of states Q into itself,

induced by the next state function 5. The multiplication

operation Sl.S2 is the caiposition of s and s

It is clear that the multiplication operation in the above

definition is associative and that the set of its elements is closed

under multiplication. Hence SM is indeed a semigroup, as desired.

I
I

Theorem 6

Let E be an error in a finite automaton M. Then E is

1. correctable if and only if E is corrected by some

minimum idempotent of S.
M

2. finite if and only if E is corrected by every

minimum idempotent of 1

We will now state an immediate corollary to this theorem. We

will use n to indicate the partition induced by the mapping associated
s

with the semigroup element s. That is, two elements are in the same

class of the partition n if and only if the mapping s takes them into$

the same element.

Theorem 7

An error E (qi,q.) in a finite automaton M is

1. correctable if and only if qi q (s. for si, some
1

minimum idempotent of S
M

2. finite if and only if qi q. (n i) where (s i isJ {si}

the set of minimum idempotents of SM

It follows that the partitions associated with the minimum idem-

potents of SM completely characterize the error properties of the

automaton M. If the partitions associated with the minimum idempotents

are known, then we know which errors are correctable, which are noncor-

rectable, and which are finite.

17

Definition 7 (Perles, Rabin, and Shamir, 632])

A finite automaton M = (Q,E,B) has a k-definite move function

if and only if for all sequences a, ... ak of k letters from

Z; 5(qi, a, ... Ok) = 8(qj, a, ... a,,) for all qi,qj in M.

Note that this implies that 5(ql, a, ... Ok) = B(q, J k+l' ...

S, .. Ok). We will informally call a finite automaton

k-definite if its move function is k-definite.

The tie up of definite errors and definite automata is clearer after

the following two theorems which are due to Hartmanis and Stearns 620 1.

Theorem8

A finite automaton M = (QE, 5) is definite if and only if

all its errors are definite.

Theorem 9

If M is a finite automaton, then M can be decomposed into a

series connection of two finite automata M1 and M2 as shown

below with all errors in M2 being definite and no nontrivial

error in M1 being definite. Hence M is a definite automaton.

This theorem follows from the fact that there is a partition with

substitution property AD on the states of M with-the property that an er-

ror E is definite if and only if 'E S 'D' The next two definitions and

theorem give a characterization of the semigroups associated with defi-

nite automata.

18

Definition 8

Let S = (S,.) be a semigroup. Then, an element z of S is

a right zero if and only if for all seS, s.z = z.

Definition 9

We will say that M = (QZ,8) is a union of the finite auto-

mata Mi = Z Z, 86) i=l,...,k if the following conditions

hold:

(1) i~j Qn fl is empty.

(2) u Q =Q.
i

(3) 8i = 5 restricted toQi.

Theorem 10

Let M = (QZ, 5) be a finite automaton. Then the following

two conditions are equivalent:

(1) M is a union of definite automata.

(2) SM contains a universal minimum right ideal U such that

all elements of U are idempotent and all the idempotents

of SM are in U.

Since a finite automaton is a union of definite automata if and

only if all its errors are definite or non-correctable we know a method

of checking for this condition from the semigroup. The next two theorems

which are corollaries of this theorem give us alternate checks.

Theorem 11

M is a union of definite automata if and only if every idem-

potent of' SM is a right zero.

19

Theorem 12

M is a union of definite automata if and only if the set

of idempotents of SM is a minimum right ideal.

Theorems 10, 11, and 12 can be applied to give more results on

definite errors. For e~f-"ple, a finite automaton is such that all its

finite errors are defini,;e errors if and only if there are no idempotent

elements outside its kernel. Also, it can be shown that linear automata

have only errors which are either non-correctable or definite. The

above results tell us something about the structure of semigroups of

linear automata.

The complete paper by Dauber contains a number of extensions of

the theory, which will not be discussed here. However, before conclud-

ing, a few words should be said about the applicability of the model.

There ere three basic points which must be examined: the use of

a finite automaton as an error model for a digital system, the defini-

tion of correctability, and the use of a random source driving the

finite automaton. If we are considering synchronous digital systems

with fixed memory capacity, then finite automata are good models. With

memory which is extendable but bounded, they are still good models.

However, if we consider the memory to be arbitrarily extendable then we

would need a model with an infinite number of states. As was shown in

Dauber (a6], the results given here do not carry over to this case.

The definition of a tape correcting an error also is not a bad

model if we are careful to keep in mind what it means. It does not mean

that all the outputs will be correct. It only says that all the outputs

which occur on inputs after the correcting tape, are correct.

20

The use of a random source driving the automaton may or may not be

appropriate depending upon the application. If we are modeling a digital

coder such as might be used to code information on a space satellite

gathering radiation information, then it is a good model. If, on the

other hand, we are trying to model a digital computing system then it

is a poor model. This is due to the fact that the input is a program

which is not random but is truncated. However, the assumption of a ran-

dom source at least gives us a vay to start dealing with the problem.

It may be possible in later w(k to modify these results for the case

when we are driving the automaton with a structured source.

1.3 Formal Languages

Up to the present time the only aspect of programming languages

which has been treated formally is syntax. The concept of semantics

or 'meaning' which appears to be of fundamextal importance both to the

computer language designer and user has, up to this point, not been

investigated. This omission, it appears, is due mainly to the fact

that there does not exist, in general, a formal definition of the con-

cept. This shortcoming must be overcome before the theory of language

can hope to answer a number of important questions arising in computer

languages.

The general theory of formal languages classifies languages into

several types defined by the grammars which specify them. Chomsky b6]

gives the types numeric designations, with type 0 being the least struc-

tured and type 3 the most structured. Two types have been shown to be

equivalent to known classical structures; type 0 to Turing machines, and

type 3 to finite state machines. Types 1 and 2 are known as context-

21

sensitive and context-free languages, respectively. The most useful

representation in the case of programming languages appears to be con-

text-free languages. The theory of context-free languages, their charao.

terization and properties have been thoroughly studied [b6l . In recent

years there has been an effort made to study programming languages within

the framework of context-free languages.

Any application of the theory of formal languages to programming

languages must differentiate between the reference language and its real-

ization on a computer, or its hardware representation. In order to

define these two we will quote from the ALGOL 60 report Nb30]:

Reference Language

(1) It is the defining language.
(2) It is the basic reference and guide for compiler

builders.
(3) It is the guide for all hardware representations.

Hardware Representation

(1) Each one of these is a condensation of the reference
language enforced by the limited number of characters
on standard input equipment.

(2) Each one of these uses the character set of a partic-
ular computer and is the language accepted by a trans-
lator for that computer.

The reference languages of the common problem oriented languages

such as ALGOL, MAD, and FORTRAN, are context-free [bl63. This property

only implies that there exists a set of rules or specifications defining

the syntax of the individual strings in a problem oriented reference

language which are context-free. 1Lhis set of rules along with the set

of symbols is a gramsar for the reference language. Given this grammar

we know that the process of determining whether a given string is an

element of the language or not is well defined. The theories of automata

and context-free languages provide us with a specification of a machine

22

to implement this process. However any attempt to generalize this notion

of membership to meaningful sequences of strings within the language is

docmed to failure at present because semantics has not been brought in.

Thus the theory gives us a way to check if the individual statements of

the language are well formed but at present does not allow us to determine

if a program is meaningful; that is, if it will execute with a given set

of data.

A second area in which the theory of context-free languages has made

a contribution to prograruming languages is ambiguity. Th6 concept of am-

biguity in the formal theory is associated with grammars. Intuitively,

a grammar is syntactically ambiguous if it generates the same string in

at least two distinct ways. This concept can then be generalized to

languages. A language is inherently ambiguous if every grammar genera-

ting it is ambiguous fb15]. It is obvious that inherently ambiguous

programming languages are to be avoided. However it is undecidable

whether an arbitrary language is inherently ambiguous. This should stim-

ulate attempts to define a large class of languages, rich enough for

programming languages, in which there exist a decision procedure for

inherent ambiguity.

The formal definition of ambiguity, unfortunately, does not encom-

pass all the characteristics of what is, in general, meant by the term

ambiguity in programming languages. The missing element again is seman-

tics. What is needed is a way to determine whether or not a statement

'means' two different things, for if a statement means two different

things the translating program will have to pick one and hence in some

situations gives rise to a programming error. Within the existing for-

mal framework a detailed examination of to what extent ambiguity causes

k

_ _ _

23

programming errors is needed. This would allow a characterization of

types of ambiguity within a programming language.

We next discuss the application of the theory of formal languages

to the translation problem. In formal languages the translation problem

is generally stated in this form: Given a language L1 of type X and a

language L2 of type Y, is there a mapping h of type Z such that h maps

L into (onto, into infinite subset of) L2 [bl7l ?

Unfortunately, in practice a systems programmer is not interested

in the existence of an arbitrary mapping. He is interested in the exist-

ence of a mapping which preserves the meaning. In other words, if

someone writes an ALGOL program he would like it to be translated into

a machine language program which does what he wants it to do. Thus

once again the question of semantics arises.

Programming language designers are primarily interested in the

answer to the following question: For a given language L (viz. a
2

machine language) and a give.. language L1 -(viz. the ALGOL reference lang-

uage) can we find a language L3 which, in some sense, is like L2 such

that there is a "good" algorithm for translating L3 into L1 which pre-

serves meaning.

Work toward answering this question has just begun. So far no work

has been done on translation which preserves meaning or on approximating

one language with another. However there are now many people working

on the question of goad algorithms. The work by Hartmanis and Stearns

is a good example [b2l1. In their paper, they give a classification of'

functions according to their computational complexity. The computational

complexity is a measure of the speed with uhich the function can be cal-

culated by a multi-tape Turing machine. Since there is a strong corres-

pondence between algorithms and multi-tape Turing machines, we then have

24

a measure of for algorithms.

Fortunately, the study of formal languages has aided the systems pro-

grammer. For one thing, by studying the context-free languages and then

translation, the programmer gets a much better feeling of what the trans-

lation process is like and what it should do. For instance, by the study

of push-down automata, programmers have developed a whole new technique

known as the push-down list. This is of great help in many translation

schemes as well as for other programming purposes. The first mention of

a scheme of this type appeared in 1954 in a paper by Burks, Warren, and

Wright [b4]. For a more current theoretical discussion, see the paper

by Schutzenberger [b341, and for a discussion of its use in various appli-

cations, see Evey [bl2 II-

Schutzenberger formally defines a special type of automaton which

is not as powerful as a Turing machine but has more power than a finite

automaton. He calls this automaton a push-down automaton although his

use of this term is not exactly the same as that of other authors. He

then shows that the set of words recognized by these automata are unam-

biguous context-free languages and that there is a weak converse to this

property. Evey's methods, on the other hand, are much less formal. He

defines a class of machines called push-down machines. Then he shows that

for every context-free language there corresponds a push-down machine

that recognizes it, and conversely, the set of strings recognized by

any r.ish-down machine is a context-free language.

This brings us to a consideration cf the hardware representation.

In general, for a given reference language, there will be many compiler

realizations of the lang- age. Furthermore, due to the physical consider-

ations of finiteness, each of the compiler languages is only an approximate

25

realization of the reference language. These approximations, in general,

amount to a truncation, thus giving a finite language. However the full

extent of the restrictions that. a compiler places on a reference language

is not known in general. It is an open question to what degree the theory

of gontext-free languages will be useful for compiler languages. Further

investigation along these lines is certainly called for.

In summary, then, the situation is as follows. The theory of formal

languages today is only of limited use to someone writing compiler

languages. As the theory is extended to more class of languages, par-

ticularly those intermediate between context-free languages and finite

automata languages, it will become more and more useful. Also, if the

syntactic theory were extended to include some of the rudimentary concepts

from semantic theory, there would be even more areas or potential appli-

cation.

26

2. Theory of Algorithms

2.0 Introduction

The theory of algorithms relates to computer programs in the same way

automata theory relates to the structure and the behavior of computers.

(We interpret the word algorithms in a broad sense, without limiting our

attention to formal systems of the Markov type.) The theory of algo-

rithms encompasses such questions as: How should algorithms be formally

characterized? What representations are appropriate? How do the compu-

tational corrmplexity and storage requirements of a given algorithm vary

with the problems in its domain? Does a given algorithm terminate for

all problems in its domain? Is the result of apply'ng an algorithm

unique for all problems in its domain? When does an optimal algorithm

exist (for some reasonable definition of optimality)? How can an optimal

algorithm be determined?

Our program in this :-rea encompasses three projects:

(1) The study of "monotone congruence" algorithms by R.. F.

Arnold and D. L. Richards. A technical report has

been issued and journal publication is expected.

(2) The formalization of discrete dynamic programming algo-

rithms, and the investigation of its connections with

automata theory, by R. M. Karp.

(3) The study of "branch-and-bound" algorithms9 being

carried on by E. L. Lawler and D. E. Wood, under principal

sponsorship of National Science Fou-ndation Grant GP-27T.

27

2.1 Monotone Congruence Algorithms

Given an associative system (semi-group) in which each element is

assigned a cost and in which an equivalence relation obtains between

elements, it is often of interest to ask the question: What is the least

costly word equivalent to a given word? Three examples of such problems

are the travelling salesman problem studied by Dantzig, et al. [b8],

the optimum control problem (cf. Pontrya4J. 1b331), and the problem of

finding the least word which performs a giver, mapping upon the states of

a finite automaton. Algorithms do not exist for all such problems, since

the solution may, in general, require the solution of the word problem

for semi-groups, which is known to be unsolvable (Davis [b9]).

The problems mentioned above involve natural two-sided congruence

relations. Two input words x and y to a finite automaton may be regarded

as equivalent if they perform the same mapping from the set of states of

the automaton to itself; i.e., if M(s,x) = M(s,y) for all states s where

M is the transition function of the automaton. A simplified model of

computer programming can be obtained by reinterpreting the input words as

programs, and the initial state as data upon which the I)grams act; here

the programs are not self-modifying and contain no instructions which

transfer control. Programs P and Q are then equivalent if they reach the

same result for each set of data; in that case the programs RPS and RQS

must also be equivalent, R being run immediately before P (or Q) and S

being run immediately after. Thus the equivalence relation satisfies

the definition of a two-sided congruence.

The programming and automaton problems can be solved by enumeration

if necessary; however, the solution algorithms are often impractical and

may give no intuitive insight into the structur.e of the optimizing process

-i

28

itself. It is hoped that greater insight and more effective algorithms

can be found by studying the general class of associative systems with

two-sided congruence relations, a class which contains prob-ems of all

degrees of difficulty.

The theory of monotone congruence algorithms applies if a two-

sided congruence relation exists and there exists a total order relation ,

on the costs of the words, which hasicertain natural properties. The

properties of this class of algorithms has been investigated [a2) and

a general result concerning order relations on finite alphabets estab-

lished.

A Markov normal algorithm on a set of words Z* is a finite ordered

list of substitutions of Z*. For an order relation and an equivalence

relation, a monotone congruence algorithm is a Markov normal algorithm

A for which:

(1) A(w) is minimal whenever it exists.

(2) for each substitution x - y of A, x > y and x - y.

In terms of computer programming, the words may be programs or

systems of subroutines, the letters of the words, instructions or sub-

routines. The order relation relates the cost of a program, i.e. in terms

of execution time, space required, etc. The equivalence relation equates

programs which perform the same action on the internal states of the com-

puter. A monotone congruence algorithm is then a succession of replace-

ments of a subprogram with a less costly one which computes the same

function.

The first principal result established is that for any monotone

congruence algorithm A and any word w, A(w) exists; i.e., that every

monotone ccngruence algorithm always terminates, The proof depends on

29

a quite general theorem about total order relations on E*, i.e.:

Every total order which is a refinement of the inclusion partial

ordering is a well-ordering.

Auxiliary letters are parts of words which appear only in the inter-

mediate stages of the application of an algorithm. Concluding substitu-

tions of an algorithm are those which terminate the process immediately,

without exhausting all possible other steps. It is proved in [a2 I that

every monotone congruence algorithm is equivalent to one which bas neither

auxiliary letters nor concluding substitutions.

The second principal result is that every class of mutually 2quivalent

monotone congruence algorithms contains a unique minimal algorithm, called

the core algorithm, which can be obtained by applying any member of the

class to itself. The algorithm is unique up to the order of the substi-

tutions and minimal with respect to the number of substitutions. A

uniformly optimal algorithm is one which requires the fevest number of

steps, or applications of the algorithm, to terminate. The study of

optimality reduces to the study of the algorithms which can be produced by

reordering the substitutions of the core algorithm. It has -can shown,

however, that a uniformly optimal ordering of the substi, ons oes not

always exist, and that more than one uniformly optimal ordering may exist.

2.2 Discrete Dynamic Programming

Over the past several years dynamic programming has emerged as an

important computational tool for the solution of multistage optimization

problems. It is, therefore, surprising that the technique has never been

precisely defined, and that the Principle of Optimality, which underlies

dynamic programming, has not been given a precise and general statement.

30

R. M. Karp, together with M. Held of International Business Machines,

Incorporated, has undertaken to construct a mathematical theory encom-

passing the domain of discrete, deterministic dynamic programming.

The two central concepts of this theory are the discrete decision

process and the sequential decision process. A discrete decision process

D = (AS,P,f)

is specified by A, a finite set of primitive decisions, S, a siu-set of

all finite sequences of decisions, P, a space of parameters (i.e., prob-

lem data) and a real-valued cost function f with domain S >< P. The

elements of S represent feasible policies, and the problem is to construct

an algorithm to find, for any given peP, an element seS minimizing f(sp).

A sequential decision process is specified by a finite automaton

with input alphabet A which recognizes the "event" S, a parameter space

P, and a function h with the following interpretation: if the parameter

specification is p, and state q of a has been reached by an input se-

quence x having cost E, then the cumulative cost after the further appli-

cation of inputsa is h(kqap). The process is monotone if h is an in-

creasing function of t.

Thus, a sequential decision process consists of a finite automaton

together with additional cost structure. The minimization problem for

a sequential decision process is that of finding an input sequence in

the set S having minimum cost. A principal result of the theory is that

if the sequential decision process is monotone, this minimization prob-

lem reduces to the solution of a system or recurrence equations of the

type associated with dynamic programming; and, conversely, every such

system of recurrence equations can be associated with the minimization

problem for some monotone sequential decision process. A second princiyal

31

result is the characterization of the possible representations of a dis-

crete decision process by a monotone sequential decision process having

the same minimization problem. This problem is akin to that of relating

behavior to structure in finite automatat and similar methods are used.

Thus, we feel that a useful and novel coupling of automata theory

with optimization theory has been achieved. It is our conviction, based

on the examination of many examples, that any dynamic progranmiing formu-

lation of the optimization problem for a discrete, deterministic process

can faithfully be interpreted as the representation of that process by a

monotone sequential decision process.

2.3 Branch-and-Bound Algorithms

Among the most general and most useful approaches to the solution of

constrained optimization problems is that of "branching-and-bounding" [al4

(or, according to Bertier and Roy [b2], "separation et evaluation

progressives"). Most commonly, this is a technique under which the

space of feasible solution is repeatedly partitioned into smaller and

smaller subsets, and a lower bound (in the case of minimization) is

calculated on the cost of the solutions within each subset. When the

bound for any subset exceeds the cost of a known feasible solution, it

follows that no solution within the subset can be optimal. The parti-

tioning continues until a feasible solution is found such that its cost

is no greater than the bound for any subset.

There has been some recent interest in branch-and-bound methods

for integer linear programming and for the traveling salesman problem.

These algorithms should perhaps be characterized as "meta-algorithms,",

since they represent methods by which known algorithms can be embedded

32

in a higher level procedure which can be applied to solve problems outside

the domain of the original algorithm. For example, suppose we are con-

fronted with a "difficult" constrained optimization problem of the form

minimize c (x)

subject to

g) (x) 2> 0

g9O((x) > o (0)

and xgX (0)

where X(0) denotes the permissible domain of optimization, e.g. the

positive orthant of Euclidean n-space. (We let x denote a vector

(xiJx 2)...,xn).) The problem is "difficult" to solve directly, possi-

bly because the objective function or constraints are nonconvex or

because some or all of the variables are restricted to discrete values.

Under the branch-and-bound approach the original problem is re-

placed by a nunber of "bounding" problems. We refer to the original

problem as problem (0), and denote the bounding problems which replace

it as problems (1), (2), (3), ... etc. The cost function, constraints,

and domain of optimization of problem (j) are labelled with superscript

(j). Thus, problem (j) is of the form

minimize c (x)

subject to

I

33

g91 (x) Ž0

9•J (x) _> 0 (j)

and xCX (j)

A definition of the branch-and-bound process can be given induc-

tively. That is, given a set of bounding problems at some intermediate

point in the calculations, it is specified how a new set of bounding

problems is obtained by "branching".

We let the current set of bounding problems be denoted (1), (2),

(3), ... , (P). In order to be a valid set of bounding problems, it is

sufficient that the following bounding requirement be satisfied:

(B) If x is a feasible solution to problem (0), then there exists

a bounding problem (j) for which x is feasible and c(J)(x) < c(,)(x).

The bounding problems are, by assumption, "easy" problems, and can

be solved by appropriate direct methods. Let the optimal solutions
thereby obtained be denoted x(1) x(2) x(p), respectively. The

thereby x ... • epciey h

solution x (k) is optimal for problem (0) if

(Sl) c ()(k) c (X for J=l,2,...,p

(S2) x(k) is feasible for problem (0)

(S3) c(°)(X~)) (k)). ! -

A solution x(k) which satisfies (Sl), (S2), and (S3) solves the

original problems. "Branching", i.e. replacing one of the existing

bounding problems by two or more new bounding problems, must continue

until a solution which satisfies (S1), (52), and (S3) is found.

The work under this project has encompassed:

(1) A survey of branch-and-bound algorithms as applied to various

34

types of optimization problems.

(2) The development of new branch-and-bound algorithms

for problems of interest.

(3) An investigation of optimal strategies .r branching.

I.e., strategies which minimize the lent .f compu-

tation or the amount of computer storage.

(4) The development of a stochastic model for branching

algorithms. It is hoped that this model can be used

to predict when branch-and-bound methods can be success-

fully applied and when they cannot: i.e., which distri-

butions of costs in the domain of feasible solutions are

favorable, and which are not.

35

3. Systems Analysis

3.0 Introduction

The development of models for the analysis and study of the func-

tional parts of information processing systems and the classification

of information processing systems and problems are the objectives of

this part of the research program. The model of a functional part

of an information processing system should permit comparisons to be

made between known solutions and should suggest new solutions. This

research is abstract but practical problems in information processing

systems dezign have a direct influence on the formulation of the

models and the questions asked.

Major emphasis is given to algebraic models though statistical

models and simulation are not excluded from the study. Automata theory

models are used when applicable. Models have been developed to study

problems associated with storage, multiprocessor assignment, and control.

R. F. Arnold has developed a model for the study of the addressing for-

mat for random access storage. Finite state machines are used in the

formulation but statistical techniques are used in the evaluation. R.

Jump hAs simulated the dynamic allocation of storage. Karp and Reiter

[alZ,al3] have extended and generalized a graph model of concurrent com-

putation due to Karp and Miller [b24).

Control models emphasizing topology and quantity of control infor-

mation have been formulated by H. L. Garner and have shown the need

for a more definitive relationship between the rate of computstioh and

the rate of control information, which is now being studied. Classifi-

cation and complexity studies are still in the formulative stage.

|_

36

3.1 Storage Format Characterization for Random Access Storage

The large random access store or file is an important part of

existing computer systems and will continue to be important in the

future because of the continuing requirement for large quantities of

reference data. Practical problems exist with respect to the efficient

utilization of such a store. In general, it is desirable to minimize

the number of accesses to the store required to obtain a given record

stored in the file and to maximize the number of filed words in the

store. It is not feasible, in general, to set up a one-to-one corres-

pondence between A, the set of hardware addresses of the store and the

K, the set of keys which are the identifying part of each record. The

difficulty stems from the fact that not all keys are active and the

active keys are not usually distributed uniformly over the key set. A

sorted file provides a poor solution to this problem since a file sort

is required whenever new records are added. The open file concept pro-

vides a reasonable solution. In a general open file system there exists

a deterministic algorithm which generates a sequence of store addressesI
a

for each key. The record is stored in the first emnty storage location I

associated with the set of addresses generated by the algorithm. The

algorithm computes f, sometimes called a hash function, which maps K in-

to A. Thus f: K -* A. In general, f is a many-to-one mapping. Ideally,

f should map the same number of keys to each element of A but adjacent

keys should be mapped into separate addresses in order to break up clus-

ters of active keys. An error correcting group code has the property

that any code word is at least a distance d from any other code word. A

decoding function g maps the set of all possible received code words

onto the set of messages; g: R -t M. Two elements of R which map onto

I
37

the same element of M are separated by at least a distance d and an equal

numiber of elements of R are associated with each element of M. Thus g

is a useful hash function and the theory of codes provides the informa-

tion required to design this type of hash function. Number system con-

version algorithms have also been considered for the generation of hash

functions. Hash addressing has been effectively applied [bl] to obtain

a store organization for list processing. Other applications appear

possible but these have not been studied in detail.

A general characterization of the storage format problem for random

access stores has been obtained by R. F. Arnold and some examples anal-

yzed. In the type of system considered, there is a conventional random

access store and a finite automaton which plays the role of "reader-

interpretor".

A random access store is given by a pair of sets A and W.

The "state" of the store is given by an arbitrary function c: A - W

termed the contents function.

A format for the representation of functions from the set X into

the set Y is given by a finite automaton with the state set S, alphabet

W and transition function M: S x W -4 S. The "output" of the automaton

is given by a map (: S -4 A U Y. Also defined is an "initial state"

function *: X - S.

A format determines a mapping from the states of the store (AW)

into the set of partially defined functions from X into Y. Let c be

a contents function; then f : X -tY is defined as follows. We firstc

define a partially defined function X from S into Y.

If *(s) e Y then Xe(S) = P(s).

If p(s) • Y then Xj(S) = 7,(M(sc(T(s)))).

L______~~ __ ____

38

If Xc(s) is not determined by either of the above, then it is left

undefined.

Then f (x)d f'c(,(x)).

In a sense, this is similar to the repeated use of hash functions.

Here, if the output of the automaton is not in the range of the function,

the transition function is applied to obtain a new state whcse output may

be.

One initial problem is that of determining for some given function

from X to Y and a given format, a contents function which "represents"

it. Practical application requires that the representative be easily

computed and that given a representation of one function, a representative

of a "neighboring" function be very easily computed. By a neighbor here

we mean a function whose values differ for only a few arguments. Also of

interest is the obtaining of useful characterizations of the class of func-

tions represented by a given format.

This section gives examples of certain formats where very satisfac-

tory information can be obtained. All of these have the property that

the structure of the automaton is pseudo->ubabilistically determined

which then justifies certain probabilistic arguments as to the existence

of representatives and the computational and information theoretic

efficiency of the formats.

The automata in general "contain" hash functions. In fact, this

entire work can be considered as a certain natural extension of the

hash function technique in which the primary disadvantage of hash

addressing, namely the many-to-one character of the hash function, is

obviated by artificially enlarging the range of the hash functions.

The work to date appears to provide significant improvements in

39

handling a wide variety of content-addressability problems where the read

to write ratio is fairly high.

Of more abstract interest is the relation between the structure of

the automaton and the difficulty of the optimum representative computa-

tion. For certain formats this computation is trivial while for others

it appears to become arbitrarily difficult.

We now consider three examples which are specific realizations of

the general formulation for the random access store.

The linear functional format is the most efficient with respect to

storage space at the expense of requiring extensive computations to com-

pute the appropriate representation of a function.

For this example the range of the function Y = Z2 = (0,1) and a

store with n-bit words is used so W = (Z 2)n. The binary words of

storage are treated as vectors over the mod 2 field.

Let T be an auxiliary "ccy" of (Z2) . The hash functions employed

map frvm, X, the domain of the function, into the product set AxT,

where A is the set of store addresses. For the i-th hash function

hi(x) - (ai(x),ti(x)) i=1,2,...

The contents for c assigns a particular element of W to each store

address aaA; c(a) - w4W. Assume c has been determined. If c(aj) # 0

and c(si) . 0 i < J, then fc(x) W. C(a(x)).tj(x) (dot product)

•w.tj(x) £ 2

If c(a) - 0 for all i, then f(x) is undefined.

For a given function f: X -# Y, we now Consider the process by which

a representative c is ccmput-.d, if it exists.

Consider the subsets in X which are the .Lverse images of all a

under h1. For each location asA, either a w4W exists or it does not such

4o

that w.t(x) = f(x) for all x in the inverse image of a. If no such

w exists c(a) is set equal to zero, and all elements in the inverse

image are assigned new addresses using h2 . It is now necessary to

recheck, for all x, f c(x) = w.t(x) since new x's may have been added

to the image set of any a6A. This will result in more a's being

assigned contents zero, and create certain new "unhoused" x's. If

this process terminates, then clearly, a representative c has been

found, while if it does not, no such c exists. This last statement

has not been proven; however, ti e c derived by the above process can

be shown to be uniformly optimal in the sense that the set of a's

whose contents is zero in any representative c contains the set of a's

set to zero by the above process. Is the probability that a vect3c

exists in (Z 2)n which satisfies m randomly selected linear constraints

the principal information necessary to quantitatively analyze the

feasibility of this storage format? A lower bound for this probability

is given by the probability that m vectors in (Z 2)n are linearly inde-

pendent, which is p(m,n) > 1 - 1/2n-S.

Observe that p(m,n) is dependent only on (n-m). The number of

constraints that can be applied to a given location can be increased

without a decrease in the probability that the constraints can be satis-

fied if n-m is held constraint. Thus a requirement for x additional

constraints require x additional bits per word in store.

If a representative c exists, then there exists an average inverse

image size for each address Incation. Furthermore, if X is large and

the hash functions are well behaved, the probability distributions of

address inverse image si'ýe will be Poisson with mean X. It is then

possible to write equilibrium equations which must hold under the

41

assumption that the computation process terminates.

Let p be the proportion of locations set equal to zero.

n-I 0

I M 2 Zexm
m=O m-=n

An ideal hash function assigns X/A = •, to each location a. We must

also have:

2 = Mý.= + pýL + p2 P + .. Mp

These relations form the necessary basis for study of the process.

The hash format is closely related to the conventional technique

of storing in each location both the x and f(:.) values. The technique

does nothing more than replace x with its hash image, which at once

removes the structure from X and in so doing saves space.

This format is defined as follows. We require an auxiliery set

T, whose size must be decided upon by a consideration of other parameters

of the problem. The set W is interpreted as (TxY) U Q where Q is a set

of one or more elements which are used to indicate that the standard

format interpretation does not apply and the next location in the se-

quence must be examined.

The hash functions used map X inco A X T.

h i(y) . (a i(x), tj(x)).

Let

c(a i(x)) nq ad t (x) = t*(ai)

the * is usc I to indicate values stored. t*(a) designates the tag part

of' the contents of a,, and let i be the least such i for which this

holds. Then

fc(x) - y*(ai)

I

42

where y*(a indicates the portion of the contents of ai from the set Y.

If no such i exists, then fc(x) is left undefined.

More informally, the reading algorithm consists in looking in

successive locations, continuing as long as one finds either a "q" or a

hash tag which does not match.

A computation of representatives for this process is fairly

straight-forward. One "stores" the values one at a time, keeping track

in a separate store, of the set of x's mapping into each address so far.

For each xeX, one computes hI(x) and if nothing yet has been mapped into

al(x), the pair (t*(x), y(x)) is stored there. If some x'eX has already

been mapped into the locations resulting in (T(xl), y(xl)) having been

stored there, compare t*(x') with t(x). If they are different, go on to

h2 (x), repeating the above process. If tI(x) j t*(x') then not only

must one continue onto h 2 (x) but also the contents of a 1 (x) must be set

equal to q and x' must be put back into the set of as yet unassigned x's.

If a 1 (x) already is set to q, go on to h 2.

For a given size store and given X and 7, it is of interest to con-

sider how the stcre should be partitioned so as to yield the fewest num-

ber of seeks per relerence. Clearly, as T is made large, A is reduced

resulting in more references to each address. On the other hand, each

reference that is made is less likely to result in the match of hash

tags for different x's and hence the "loss" of a location a3 a value

storing slot.

In a manner similar to that used in the linear format, a pair of

equations may be written describing the equilibrium state of the writing

process, which must be analyzed numerically to obtain quantitative

information about the proceas and the optimum value of the parsneters

stored.

The multistate reader format technique is of farticular interest

for representing functions with highly unbalanced distributions on their

ranges.

For this example let Y = (ab) and W = (0,1). The hash functions

used map from X to A.

Let c(hi(x)) = 0 and c(h (x)) = 1 j < i.

Then fc(x) = a iff i a 2 mod 3
C

b iff i 2 mod 3.

If c(hi(x)) = 1 for all i, fc(x) is not defined.

The process of computing a representative for a given function is

fairly easy, and closely resembles that used with the linear format.

Start out with all locations set equal to 0. For each xaX in turn,

set equal to 1, those locations necessary for that x to be correctly

mapped. It will be necesse-,y to go through the x's several times until

one gets all the way through without making any changes in c. The re-

sulting c is uniformly best since at each step we only set equal to 1

those locations which must be set to 1 for any representative. Of

course, this process may not terminate in which case no representation

exists.

One generalization of the above foimat is to replace the modulo

three counter with arbitrary n > 2, and map the n congruence classes

arbitrarily into some Y. Any su<i format will have essentially the

cane representative computation procedure as the above.

For large n and all but one congruence class mapped into the same

element y*eY, it is clear that if c were chosen at random, the probability

that f 0 (x)-y* is very large. Hence, "most" of the contents functions

LL

44

represent functions which are highly unbalanced on their range. While

this is not in itself a proof that such a format is appropriate for

representing such functions, it is a necessary condition and hints at

how such a proof might go.

Still further generalization of the above format suggests replacing

the 3 counter with an arbitrary finite automaton. In one such generali-

zation the automaton is a 5-state machine in which two of the states

are terminal and have output labels from Y. Observe that events are

associated with each element of Y

,Iritial State

0,i 0 0,i

ab

E = (iii)* 110
a

= (nll)* (0 U 10)

which represent the first arrivals to states having the respective labels.

In general, any finite automaton having input alphabet W and some of its

states labelled with elements of Y, serves to define a format.

Additional details and extensions can be found in F. F. Arnold (all.

45

3.2 Dynamic Allocation of Storage

A set of procedures for dynamic allocation of storage known to

have been considered for implementation in an important commercial

system, were chosen for evaluation. By means of simulation, it was

found that the procedures were not significantly different in their

performance; hence, the most easily implemented procedure within the

class should be chosen.

It was assumed that the memory is divided into pages, and that the

pages are assigned to, and released from, programs as needed. Each

program requests and releases small blocks of contiguous words within

those pages assigned to it. Blocks being used by a program are called

active blocks, and those blocks that are not being used but which are

within one of the pages assigned to a program are called inactive blocks.

Whnen a page is first assigned to a program, it is considered to be

a single inactive block. As the program uses it, it becomes broken into

smaller blocks, both active and inactive. New active blocks are created

from within old inactive blocks. If there is no inactive block within
any of the pages assigned to the program which is large enough to satisfy

a request for a new active block, a new page is assigned to the program.

When a block becomes inactive, it combines with inactive blocks on either

side to form a single inactive block. When the last (highest numbered)

page to be assigned to the program becomes inactive, it is released

from the program. The object of the allocation procedures is to minimize

the average number of pages assigned to the program.

There ar(two somewhat incompatible heuristics that can be invoked.

One is to fill each new request with the smallest inactive block larger

than the request, without regard to the page in which this block is

located.

46

The reasoning here is that the larger inactive blocks should be con-

served, in order to reduce the probability that a future request can-

not be filled with any existing inactive block. The other heuristic

is to fill each request with the first (lowest numbered) available in-

active block larger than the request, without regard to its size. The

reasoning here is that one should use the lowest numLbered blocks, in

order to increase the probability that the higher-numbered pages can

be released in the near future.

A compromise between these two heuristics is obtained by separating

the pages into two sets. The lower-numbered pages are assigned to the

first set, and the "smallest block" heuristic is applied to them. If

a request cannot be filled within the first set, an attempt is made to

fill it from within the second set, using the "first block" heuristic.

The pages can be separated into the two sets according to a fixed or a

computed proportionality factor.

The simulated programs had block lengths that were determined by

weighted sums of normal distributions, and block lifes that weke expo-

nentially distributed. An efficiency factor was computed, where

mean number of active words
mean number of active words plus inactive words

The results of the simulations showed that efficiences as high as

0.80 can be obtained for some types of programs considered. The average

efficiency for all types of programs simulated was 0.63. More important

is the insignificant difference in efficiencies between the various pro-

cedures for a given program. Hence one concludes that the most easily

implemented procedure is the one to be preferred.

47

Another question of interest is the effect of page size on the

efficiency of these procedures. This was evaluated by simulating

several procedures with a program which had Poisson distributed block

lengths and exponentially distributed block lives. The mean block

length and life were selected so that the average number of active

words was relatively constant.

As the ratio of length to page size approaches zero, the average

efficiency of these procedures stabilizes at approximately 0.85. The

boundaries created by pages do reduce the efficiency when the page size

is less than several times the average request length. However, with

pages as small as two times this average request size, the efficiency

is only reduced by approximately twenty percent.

These results, and extensions, are contained in a forthcoming

laboratory report by J. R. Jump.

3.3 Graph Model of Concurrent Computation

It is necessary to formulate languages in which parallel computa-

tions can conveniently be described and to have methods of determining

how much concurrency the intrinsic structure of such a computation

allows. Karp and Reiter (12] have studied and generalized a model for

a certain class of parallel computations. This model, originated by

Karp and Miller [b24], represents a computational algorithm as a finite

labelled directed graph. Each node represents an operation, and each

branch represents a first-in, first-out queue of data. The sequencing

of the calculation depends on four parameters (each . nonnegative integer)

associated with each branch. For a typical brancl p, directed, let us

say, from node i to node J, the parameters are as follows: A, the number

of data words on the branch at the beginning of the calculation; U the

number of words placed on the queue whenever the operation 0 associated

with node i terminates; Wp, the number of words removed from the queue

whenever the operation 0 initiates; and Tp (Tp W p), a threshold giving

the minimum queue length that must be reached before 0j initiates. Each

node initiates when the number of words on each of its input branches is

at least equal to the corresponding threshold. With each node is asso-

ciated a fixed function specifying the manner in which the inputs deter-

mine the outputs. Because of the first-in, first-out queue discipline and

the absence of conditional transfers, not all calculations can be expressed

as computational graphs. It appears, however, that a large class of

iterative calculations can be so expressed. The computational graph

model is asynchronous, in the sense that the speeds of the operations

associated with the nodes are variable and unspecified. Thus, very

many sequences of operation are consistent with a given graph. Never-

theless, it is shown in [b2 4] that the results computed in all these

sequences are the same; i.e. computation graphs are determinate. Theorems

are also given in [b24] which characterize the computation graphs that

represent terminating computations, and provide an analysis of the growth

of data queues.

A principal goal of the present effort is to extend the above model

as far as possible while preserving determinacy. It is shown that

determinacy is preserved in certain cases even when the operation asso-

ciated with a node, as well as the parameters associated with the branches,

are variable. Also, a c.implete analysis of termination and queue growth

is carried out for the -2rticular case in which the parameters U and W
p p

vary periodically.

I

49

In [a13], a synchronous version of the computation graph model is

studied. An execution time t. is associated with each node i, and a

determination is made of the fastest periodic rate at which a computa-

tion so described can proceed. This rate may be viewed as an absolute

limit on the parallelism possible in a computation.

This generalized model is better suited as a description of cer-

tain classes of computations, particularly iterative ones. As an exam-

ple, the computation graph for matrix multiplication is considerably

simplified under this general model.

The following problems have been considered. (1) Let G be a

strongly connected computation graph in which, for all branches dp, we
p

have Tp = Up = Wp = 1. We wish a proper execution of G which is periodic

in the sense that if a node n. first initiates at time ti, it will
J .

initiate thereafter at times t + i, tj + 21r, ... , where n, the period,

is the same for all nodes of G. Clearly, if the computation is to be

controlled by a clock signal, such a proper execution is desirable.

Such an assignment of times t. to nodes n. is given. Moreover, with theJ J

proper choice of n, the computation proceeds at a maximal asymptotic

rate. (2) Suppose the frequency of the clock signal controlling the

initiations of the nodes of G is a priori specified. Then we wish the

t's, and n of (1) to be integers. It turns out that if a is not an

integer, the schedule of (1) will not yield integer initiation times.

To aid in the investigation of a periodic schedule in this case, the

so-called free running execution has been studied. This is the maximal

rate of execution of a synchronous computation graph (one whose initia-

tion times must all be integers). The major results are as follows:

(a) Let *(t) be the vector of branch weights of G at time t.

50

Then there exist t',X both integers such what for all t > t')

(b) Let Cj be the number of initiations of node nj in the period

(t, t+%], t > t'. Then a j is independent of J, a= a.

(c) = = max (-]
loops of G

where E T is the sum around a loop of G of the execution times

of the loop nodes and Z A is the sum of the initial numbers of

data items on the loop branches.

From these results we infer that each node n, of a synchronous

computation graph under a free running execution initiates ultimately

at times

t , tj + %, t + 2N,

t., t + t. + 2,

a at t + t + 2.X,tj + k t

1 2 a ~ k

ttj j ... < t j < t

(3) For a synchronous computation grapr we sought an assignment of

integer and periodic initiation times to the nodes of G. In the case

that

A= max
loops of G

is not an integer, this is impossible. However, the following assign-

1 2ment is possible. Let n = We can find integers tl, Al A1

such that node ni can initiate at times

51

ti, ti + X, ti + 2•,\..

t + + ...
1 A6 , ti +A 1 + ,tiA IN,

This assignment is such that G computes at the maximal asymptotic rate.

It would be of interest to carry out further studies in which the

computation graph model is generalized to accomodate a wider class of

computations. Consideration should also be given to the problems con-

nected with programming, for a given multiprocessor, a comp- ,ation

specified by a computation graph. In particular, the following ques-

tions arise:

(1) If we view each node of a computation graph as a computer

capable of performing any of the node operations of G, what

is the minimum number of such computers required under the

varicus schedules of the problems (1), (2), and (3) Just

listed? More generally, if we partition the nodes of G as

to their functions, what are the minimum numbers of nodes

of each type required?

(2) The allocation of storage registers for data queues and

their utilization so as to minimize the number required.

(3) Scheduling problems of the following type: Suppose a compu-

tation graph G requires mi nodes of type i, i=l,2,...,n

but only m! < mi are available. How can be constrain G so

as to utilize just mi nodes of type i, i=l,2,...,n in an

optimal fashion; i.e. at a maximal computation rate con-

sistent with the constraints?

(4) Programming for such a computer system.

52

(5) The synthesis of a computation graph given a computation to

be performed.

3.4 Classification of Machines and Problems

It is desirable to have measures of problem complexity and machine

capability which permit relative comparisons bet.ween different machine

algorithm configurations. This is particularly difficult because it

is necessary to determine the proper weighting to be given to the various

performance parameters such as cost, rate of computation, size, con-

venience, etc., which must be considered in the choice of a given machine.

The real world situation is further complicated because it is usually

not possible tc specify a single important problem for a specific machine

since in the usual situation a given machine is assigned many types

of problems. For a specific algorithm it is possible to determine the

maximum degree of parallelism, the minimum number of concurrent time

steps required, the maximum number of time steps required and the maxi-

mum amount of storage required. A differEnt algorithm which computes

the sare problem may have diffeient requirements. For any specific

machine problem configuration there is an optimum algorithm which is

dependent on the machine, the problem, and the weights assigned to

the performance function. Comparison of machines in a real environment

is difficult because the performance function and the optimum algorithm

are poorly defined.

We avoid the specification of any performance weighting function

which is at best a subjective process and cannot be handled in an abstract

study. However the parameters of the performance function can be treated

on an objective basis. This requires that machines be specified in terms

!
II

53

of gross characteristics. If the characterization of the machine is too

fine then it is impossible to obtain a tractable abstraction and if the

characterization is too gross then the abstraction is trivial.

It seems reasonable to first determine the effects of concurrency

and parallelism on the rate of computation. If a single sequence machine

executes a given algorithm in T time units, can m machines execute the

algorithm in less than T/m time units? Further qualifications are neces-

sary before a meaningful answer can be obtained for this question. Con-

sider the usual flow diagram language used to describe algorithms for

digital computation. The flow diagram consists of substitution state-

ments which represent the direct computation and alternation saatements

which effect program control. A step in the computation is defined to

be the time period required to execute a statement. We can now ask

whether a multi-machine configuration can reduce the total number of

statements of steps required to execute a given algorithm. A program

for a multi-machine processor consists of a number of ordered program

segments. The segments are ordered in the sense that a given segment

requires input data computed by other segments. However, unless there

exists a storage or time limitation, each of these segments can be exe-

cuted in some sequence by a single machine. Thus a multi-machine con-

figuration does not reduce the number of algorithm steps required to

specify a given algorithm. A particular example of interest is look

ahead. A second machine can be used at alteration points in the program

to achieve look ahead. This results in an increase in the number of

algorithm steps executed. A single sequence machine, under the assump-

tion of equal probability at n alternation points, will on the average

require n/2 additional look ahead computations. The multi-machine

configuration will compute n look ahead steps, one for each alteration

point.

A reduction in the time required for the computation is obtained by

executing time independent sequences concurrently using a multi-machine

configuration and by reducing the time period required to execute a

given statement by the employment of concurrent or overlapping micro-

operatizns within a given computer. If T1 and T2 are the average times

required for non-look ahead and look ahead computational steps respec-

tivelyand if there are N non-look ahead stepsthen the multi-machine

computation period Tm in terms of the single sequence period T is

nT 2+

T P__1 T T
m nT 2 m m

2NT2

The optimum multi-machine configuration minimizes the time required

for the computation and the number of machines required to obtain the

computation in the minimal time period. It is clear that non-optimal

assignments exist which employ more than the required minimal number of

machines such that the number of machines can be reduced without chang-

ing the time required for the computation. In general, it is not possible

to achieve lO0 percent activity for all machines during the computation

period. The actual number of machines which can be used is a function of

the state of the computation.

The control of the multi-machine configuration adds steps to compu-

tation algorithm. Thus, when no space or time limitations exist it is

not possible, even under the most ideal circumstances, to reduce the

computation period of a multi-computer of m single-sequence machines to

•5

less than 1/m of the period required by a single sequence machine.

The previous discussion suggests the following problems: Studies

of the quantity of control information required for multi-computer

operation. Studies of finite autoia ta with either space or time limi-

tation or both.

4. Combinatorics and Switching Theory

4.0 Introduction

Most of the effort under this contract is being expended on "macro-

scopi.)" systems questions, e.g. problems of organization and control, and

of the utilization of storage. Effort is also being given-to questions

of switching circuit synthesis which are "microscopic" in character.

The justification for carrying on this latter type of research is two-

fold. First, it is not always possible to totally separate the macro-

scopic issues from the microscopic ones. An intelligent evaluation of

the practicality of a new computer organization usually requires an

integrated outlook, which takes into account the fine structure of the

system as well as its larger outlines.

Secondly, switching circuit theory is eclectic, drawing upon such

mathematical topics as graph theory, matroid theory, semi-group and group

theory, linear and dynamic programming, and classical combinatorial anal-

ysis. Techniques which are useful for solving switching circuit synthe-

sis problems are usually sufficiently general to be useful for solving

a variety of other combinatorial problems, including many having to do

with macroscopic systems questions. Examples include combinatorial

problems arising in the scheduling of multi-processor systems, the static

and dynamic allocatioin of storage, and the assignment of capacities to

data channels for maximum performance/cost ratio. It should thus be

clear that our work in this area emphasizes basic "combinatorics" at

least as much as "switching theory."

Our program in this area falls under the following project headings:

(1) Covering Problems, k2) Threshold Networks, (3) Cellular Logic, (4)

Sequential Circuit Synthesis, (5) Miscellaneous Problems. Project (1)

57'

is largely completed, and it is expected that project (2) will be com-

pleted in early 1966. Projects (3) and (4) are still in the formative

stage. A description of each of these projects follows.

4.1 Covering Problems

It is generally acknowledged that the central combinatorial problem

of switching theory is the so-called covering problem [all], which

takes the form:

Minimize

nex = .. cjx (i
i l

subject to

Ax > 1 (2)

and

x. = 0 or 1 (j=l,2,...,n), (3)

where A is a (0,l)-matrix. (Each element aij of A is etcher 0 or 1).

This problem arises in exactly this form in the second phase of the

Quine method of Boolean minimization, and variants of it occur in a

wide variety of other combinatorial contexts.

Research on covering problems has included:

(A) The identification of equivalent problems and special

cases, and of relations between them.

(B) The investigation of the "graphic" covering problem,

in which each column of A contains no more than two

nonzero entries.

(C) The discovery of various duality relations, which

hold for covering problems generally, and of a new

method of solution suggested by these relations.

Results under heading (A) will be contained in a forthcoming report

tentatively entitled, "Coverings, Packings, and Euler Lines." These

include the following:

(i) consider constraints of the form

Ax > b (2!)

and

x. = nonnegative integer (3')

where A and b contain arbitrary nonnegative elements.

Any problem of this apparently more general form is act-

ually equivalent to a covering problem with constraints

of the form (2) and (3).

(ii) For every "covering" problem of the form:

Minimize cx

subject to Ax > b,

x. or ,

there is a complementary "packing" problem;

Maximize cx

Ai<*

x Oorl.

The feasible and optimal solutions of the two problems are

in one-one correspondence under the relation x = 1-1.

(iii) We say that a covering problem or packing problem is "graphic"

if its matrix A contains no more than one nonzero element in

each column, and each nonzero element is 1. There is an ob-

vious connection between these problems and problems which

require that the vertices of a linear graph be covered with

59

its edges (hat at least bi of the chosen edges be incident

to vertex i) or that the graph be packed with its edges (no

more than bi of the chosen edges be incident to vertex i).

Graphical covering problems and packing problems are, of

course, complementary, in the sense of (ii). They are also

equivalent to problems in which it is required to find a min-

imum-length tour which will pass through each edge of the graph

at least once. This latter problem is solved by choosing a

set of edges, such that when duplicated, an Euler line exists.

Edmonds (bill calls this problem the Chinese Postman's Problem.

A special case of the Chinese Postman's Problem is the following.

What is a minimum-length input sequence, such that a given sequential

machine will be forced through each possible state transition at least

once? This is certainly a question of basic importance in the diagnosis

of malfunctions in sequential circuits.

Results under heading (B)--investigation of graphic covering prob-

lems-are mainly in the explication and simplification of certain unpub-

lished solution methods due to Edmonds. Edmonds devised an algebraically

bounded computation for the Chinese Postman's Problem (a computation whose

length grows only algebraically with the number of vertices in the graph)

based on a computational method for packing problems which he calls

"matching" problems.) These methods are, in turn, closely related to

methods for solving the "shortest route" problem. Problems based upon

directed graphs can also be handled without difficulty.

Work under heading (C) -duality relations-has been carried out in

conjunction with National Science Foundation Grant GP 2778, "Partitioning

Methods for Combinatorial Optimization." A few fundamental identities

6o

will serve to Illustrate the duality properties in question. Define

Coy A (the set of cov-rs of A) and Cl A (the closure of A) as follows:

Coy A = [x) A > 1, x 0 or 1)

Cl A = (a'l a' > AI., for some i, and a' = 0 or 1).

Then, for all A,B, such that A = Cl, B = Cl B,

Cov Cov A = A

Cov (A UB) = Cov An Cov B

Coy (A nB) = Cov A U Cov B.

These relations may be compared with involution and DeMorgan's laws for

sets:

. A

(u-B) = f3

(-nB) = f.

Computational methods suggested by these relations have been pro-

grammed for The University of Michigan IBM 7090 computer, and are cur-

rently being tested. A previously issued technical report Call] contains

all theoretical results to date. This report has been accepted for pub-

lication in the SIAM Journal.

4.2 Threshold Networks

Work on networks of threshold elements is being carried out as the

Ph.D. thesis project of R. Gonzalez, and should be ccmpleted by early

1966. This work is significant because of the new insights it contrib-

utes to the theory of linear inequalities, to nonlinear programming, and

to "adaptive" networks of threshold elements, of the general type often

proposed-for pattern recognition problems. Research has included:

61

(i) The investigation of a "dual" method of elimination for

solving systems of linear inequalities.

(ii) The study of minimal synthesis of two-level threshold net-

workz, by an approach analogous to that used in the Quine

method for minimal AND-OR synthesis.

(iii) The synthesis of economical "universal" networks which

are capable of realizing any one of the 2 switching func-

tions of n variables by varying weights and thresholds.

(iv) The synthesis of universal networks for restricted families

of switching functions, e.g. functions for which there are

many "don't cares."

Investigation of the dual elimination method has shown that it is

actually equivalent to the method of "double description" due to Motzkin,

Raiff a, Thompson, and Thrall [b29 1, but much more easily derived. The

importance of the method in the present context is, of course, that it

provides an efficient method for testing the consistency of systems of

linear inequalities, and thereby resolving the issue of linear separa-

bility for a given switching function.

Dual elimination provides the backbone of the synthesis method

mentioned under (ii), and reported by Gonzalez and Lawler (a7]. This

synthesis method is a two-phase method, just like the Quine method for

Boolean minimization. The two phases are:

(M) generate the complete set of "best threshold approximations"

of the switching function.

(b) select a minimal subset of best threshold approximations,

such that they, together with one additional threshold

element, are sufficient to realize the function.

62

Best threshold approximations, of course, correspond to prime implicants,

and týc selection problem (b) corresponds to the ordinary covering prob-

lem, but ic more difficult to solve. Algorithms for two-level synthesis

have been programmed for the IBM 7090 computer, and are currently being

tu~tOd.

The synthesiu of universal networks relies upon the application of

the following theorem obtained by Gonzalez. We say that a subset of veSZ

tices of the n-cube is totally linearly separable if) for every possible

partJtioning of the subset into two parts, there exists a hyperplane

which effects the partition.

Theorem

A given oubset of N,+ 1 vertices (xoX X2 ,...x1) is

totally linearly separable if and only if the V4 vectors

x -xO, xO-Xo, ... I xN -x0 are linearly independent (the

origin xO being chub'n arbitrarily from among the subset

of vertices).

In the case of problem (iv), tho synthesis method requires that

a minimum-rank partition of the "care" vertioes be effected, such that

each equivalence clasa under the partition in totally linearly separable.

The problem thia raduces easentially to a type studied in matroid theory

(blC •, and it appoarn to be ljoaulbla to effect a direct application of

known results.

4. C.l1ular LRic

It hao become a truingn that the emphasis of .witcding circuit uyn-

thesis ohould be changed to conform with the demands of modern integrated

circuit technology; u.9. component Counts mhuuld be do-e-,phauized and

I

63

interconnections should be given primary attention. However, it appears

that there are, as yet, no well-codified design requirements of the

new technology. On the contrary, the situation is still fluid enough

that many manufacturers would probably be willing to design their cir-

cuit layouts and interconnection wiring to accomodate a reasonable method

of logical design.

An interesting and imaginative approach to this problem area is

being taken by Minnick and others at Stanford Research Institute under

the name "cellular logic" (b271. Under this system, switchirn functions

are realized by two-dimensional arrays of cells, where each cell can

realize any one of several different functions of two variables, simply

by cutting the appropriate "cutpoints" in the cell. All connections to

these arrays are made at regular intervals along the edges.

A related approach is due to Canaday [b5], who proposes a two-

dimensional array of 3-input "majority" elements. The cells of Canaday's

arrays are simpler; however, he requires an entirely different-and

probably more difficult-type of interconnection wiring.

Some of the questions which these proposals suggest are: What

growth rates are necessary for the dimensions of these arrays as the

number of switching variables increases? Can exponential growth be

defeated in any way? What trade-offs are possible between the dimen-

sions of the arrays and interconnection complexity? Are there any

advantages to be gained by 3,4, ... ,N-dimensional arrays? (Consider the

N-cube arrangement previously proposed for the Michigan Iterative Circuit

Computer.) How should sequential circuits be realized by these arrays?

(Minnick's cutpoint logic allows each cell to be a flip-flop, but

64

systematic design methods have not yet been proposed.) What techniques

can be used to circumvent the delays induced by many levels of logic?

4.4 Sequential Circuit Synthesis

Recent progress in the decomposition of finite automata includes

the reformulation and simplification of the Krohn-Rhodes theory by

Zeiger [b37], and new results on the reduction of feedback loops by

Friedman [bl3] and Brzozowski fb3l. A few tentative efforts have been

made to apply these and other theoretical results to the synthesis of

sequential circuits from a restricted set of simple modules. It seems

not unreasonable that these efforts may eventually lead to efficient,

systematic design methods for sequential circuits.

As in the case of cellular logic, plans for this project area

are indefinite.

4.5 Miscellaneous Problems

Sonte minor effort has been devoted to combinatorial problems

other than those described above. These include:

(1) Optimal encoding for the discrete noiseless channel with

an alphabet whose symbols have unequal durations. This

work was originally reported on at the International

Conference on Microwaves, Circuit Theory, and Information

Theory, Tokyo, Japan, October, 1964 fag], and has row been

revised and new tables for determining bounds on optimum

encodings have been calculated.

I

65

(2) Optimal deferral scheduling for multiple channels and

linear cost functions. This is an extension of previous

results published in Management Science [alOl. It is

shown that a dynamic programing method of solution exists

and that such an optimal schedule for n jobs and m processors

can be determined by an amount of computation which grows

mas n . This result depends on the linearity of the cost

function.

66

Publications by Laboratory Personnel

[al] Arnold, Richard F. and Richards, Donald L., 'Monotone Reduction
Algorithms," International Conference on Microwaves, Circuit
Theory, and Information Theory, September 1964.

[a2] Arnold, Richard F. and Richards, Donald L., "Monotone Congruence
Algorithms," Technical Report ISL-65-2, Information Systems Lab-
oratory, Department of Electrical Engineering, The University of
Michigan, Ann Arbor, April 1965.

[a3] Arnold, Richard F., "Random Access Storage Organization and Finite
Automata," presented at the Rome Air Development Center-Hughes
Aircr&ft Symposium on Logic, Computability and Automata, Rome,
New York, August 1965, and to be published in the Proceedings,
by Spartan Press.

(a 4] Dauber, Philip S., "An Analysis of Errors in Finite Automata,"
Information and Control, 8 (1965), 295-303.

[a5] Dauber, Philip S., "An AX.alysis of Errors in Finite Automata,"
Technical Report ISL-65-1, Information Systems Laboratory,
Department of Electrical Engineering, The University of Michigan,
Ann Arbor, April 1965.

(a6l Dau'ber, Philip S., "Errors in Finite Automata," Ph.D. thesis,
and Technical Report SEL-65-1, Systems Engineering Laboratory,
Department of Electrical Engineering, The University of Michigan,
Ann Arbor, October 1965.

[a7] Gonzalez, Rodolfo and Lawler, Eugene L., "Two-level Threshold
Minimization," 1965 IEEE Conference on Switching Circuit Theory
and Logical Design, Ann Arbor, October 1965, p. 94.

I 8] Lawler, Eugene L., "An Analysis of Roth's Methods of Synthesis,"
7th Midwest Symposium on Circuit Theory, Ann Arbor (May 1964).

(a9] Lawler, Eugene L., "Combinatorial Aspects of Variable-Length
Encoding," International Conference on Microwaves, Circuit Theory,
and Information Theory, Tokyo, Japan, September 1964.

[alO) Lawler, Eugene L., "On Scheduling Problems with Deferral Costs,"
Management Science, .l, 2 (November 1964), 280-288.

[all] Lawler, Eugene L., "Covering Problems: Duality Relations and a
New Method of Solution," Technical Report ISL-65-3, Information
Systems Laboratory, Department of Electrical Engineering, The
University of Michigan, Ann Arbor, May 1965.

67

(al2] Reiter, Raymond, "A Study of a Model for Parallel Computation,"
Technical Report ISL- 6 5-4, Information Systems Laboratory,
Department of Electrical Engineering, The University of Michigan,
Ann Arbor, July 1965.

[al3] Reiter, Raymond, "A Study of a Model for Parallel Computation IT,
Timing," to appear as a technical report of the Systems Engineering
Laboratory, Department of Electrical Engineering, The University
of Michigan, Ann Arbor.

(al 4] Wood, David E. and Lawler, Eugene L., "Branch and Bound Algo-
rithms," Technical Report, The University of Michigan 1965
Engineering Summer Conference on "Recent Mathematical Advances
in Operations Research and the Management Sciences,".

iI

68

Other References

[bl] Batson, Alan, "The Organization of Symbol Tables," Communications
of the ACM (February 1965).

[b2] Bertier, P. and Roy, B., "Procedure de Resolution pour une Classe
de Problems Pouvant Avoir un Caractere Combinatoire," Cahiers du
Centre D'Etudes de Recherche Operationnelle, 6, (1964) 202-205.

[b3] Brzozowski, J. A., "On Single-Loop Realizations of Automata,"
IEEE Conference Record on Switching Circuit Theory and Logical
Design, New York (October 1965).

b4] Burks, A. W., Warren, P. W., and Wright, J. B., "An Analysis of a
Logical Machine Using Parenthesis-Free Notation," Math. Tables
and Other Aids to Computation, 7 (1954), 53-57.

[b5] Canaday, R. H., "Two-Dimensional Iterative Logic," Report ESL-R-210,
Electronic Systems Laboratory, Massachusetts Institute of Tech-
nology, September 1964.

[b6] Chomsky, N., "Formal Properties of Grammars," in Handbook of
Mathematical Psychology, John Wiley and Sons, Inc., New York,
2 (1963), 323-418.

[b7] Chomsky, N., "On Certain Formal Properties of Grammars," Informa-
tion and Control, 2 (1959), 137-167.

[b8] Dantzig, G. B., Fulkerson, D. R., and Johnson, S., "Solution of
a Large-Scale Travelling Salesman Problem," Journal of Operations
Research Society of America, 2 (1954), 393-410.

b9] Davis, M. D., Cmuabilit and Unsolvability, McGraw-Hill Book
Company, New York (19{6).

[bl0] Edmonds, J., "Minimum Partition of a Matroid into Independent
Subsets," J. Research of the NBS, Section B., Mathematics and
Mathematical Physics 69B, 1,2 (January-June 1965), 67.

[bll] Edmonds, J., "Paths, Trees and Flowers, Canadian J. Math.
(May 1965).

[bl2j Evey, R. J., "Applications of Pushdown-Store Machines," AFIPS
Conference Proceedings, 24 (1963), 215-228.

[b13] Friedman, A. D., "Feedback in Asynchronous Circuits," 1965 IEEE
Conference Record on Switching Circuit Theory and Logical
Design, New York (October 1965), 94.

[bl4] Gilbert, E., and Moore, E., "Variable-Length Binary Encoding,"
Bell Systems Technical Journal, 1, (1959), 933-967.

69

[bl5] Ginsburg, S., A Survey of ALGOL-Like and Context-Free Language
Theory, System Development Corporation, Report No. TM-738/006/00,
March 6, 1964.

[bl6j Ginsburg, S., and Rice, H. G., "Two Families of Languages Related
to ALGOL," Journal of the ACM, 9 (1962), 350-371.

[bl7 Ginsburg, S., and Rose, G. F., "Some Recursively Unsolvable Prob-
lems in ALGOL-Like Lpanguages," Journal of the ACM, _O (1963),
29-47.

[bl8] Harrison, M. A., "On the Error Correcting Capacity of Finite
Automata," Information and Control, 8 (1965), 430-450.

[bl9] Hartmanis, J., "Loop-free Structure of Sequential Machines,"
Information and Control, 5. (March 1962), 25-43.

[b201 Hartmanis, J. and Stearns, R. E., "A Study of Feedback and Errors
in Sequential Machines," TEEE Trans. on Electr. Computers, EC-12,
(1963) 223-232.

[b2l] Hartmanis, J., and Stearns, R. E., "Computational Complexity of
Recursive Algorithms," in Proceedings of the Fifth Annual Sympo-
sium on Switching Theory and Logical Design, Princeton, New Jersey
(1964), 82-90.

/

[b22] Hartmanis, J. and Stearns, R. E., "Pair Algebra and its Applica-
tion to Automata Theory," Information and Contro- -7 -;,ember,
1964).

[b23] Jensen, P. A., "Bibliography on Redundancy Techniques," Redundancy
Techniques in Compuiing Systems (edited by R. H. Wilcox and W. C.
Mann), Spartan Books (1962), 389-403.

[b241 Karp, R. M., and Miller, R. E., "Properties of a Model for Parallel
Computations: Determinacy, Termination, Queueing," IBM Research
Paper RC-1285. (To appear in SIAM Journal).

(b25•] Krohn, K. B. and Rhodes, J. L., "Algebraic Theory of Machines,"
Mathematical Theo of Automata, Polytechnic Press, Brooklyn,
New York (1963).

[b2 6 1 Medvedev, Y, T., "On the Class of Events Representable in a Finite
Automaton," Sequential Machines: Selected Papers (E. F. Moore,
ed.), Addison-Wesley, Reading Massachusetts (194).

[b271 Minnick, R. C., "Cutpoint Cellular Logic," IEEE Trans. on Electr.
Computers, EC-13, 6 (December 1964), 685-698.

[b28] Moore, E. F., and Shannon, C. E., "Reliable Circuits Using Less
Reliable Relays," Journal of the Franklin Institute, 262 (1956)
191-208, 281-297.

70

[b29] Motzkin, T.: Paiffa, S. H., Thompson, G. L, and Thrall, R. M.,
"The Double Description Method," Contributions to the Theory '

of Games, Vol. II (eds., H. W. Kuhn, A. W. Tucker) Princeton a
University Press, Princeton, New Jersey (195?).

[b30] Naur, P., et al., "Revised Report on the Algorithmic Language
ALGOL 60," Journal of the ACM, 9, (1962), 350-371.

[b31] Neumann, P. G., "Error Limiting Coding Using Information Loss-
less Machines," IEEE Trans. on Information Theory, IT-10,
(1964), 108-115.

[b32] Perles, M., Rabin, M. 0., and Shamir, E., "The Theory of Definite
Automata," IEEE Trans. on Electr. Computers, EC-I___2, (June 1963),
233-242.

[b33] Pontryagin, L. S., The Mathematical Theor of Optimal Processes,
Interscience Publishers, New York (192).

Nb341 Schutzenberger, M. P., "On Context-Free Languages and Pushdown
Automata," Information and Control, 6 (1963), 246-264.

(b35] von Neumann, J., "Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Compohents " Automata
Studies (Ed. by C. E. Shannon and J. McCarthy5, Princeton
University Press, Princeton, New Jersey (1956), 43-98.

[b3 6] Winograd, S., "Input Error Limiting Automata," Journal of
the ACM, 11, (1964), 338-361.

(b37] Zeiger, P., "Loop-free Decomposition of Sequential Machines,"
Ph.D. Thesis, Massachusetts Institute of Technology (1964).

El

)

Ii

UtrntASRTIMEL
Secutlty Classification

DOCUMENT CONS !!L DATA - R&D
CS&O.,Ifi clsificaion ofa it ti . ebeef i .t-.? end ,nd.s*# wrnneerion must 6. e,,te.ed ,.4en the onoel I roegoH ca~Is e Mo 10

O.GRIOINATIN a ACTIVITY (Comarett owhaetJ Ie etoCRT 19CUIRITY C LASIFIICATION

Systems Engineering Laboratory Uncla~ssified
Department of Electli±t Engineering lb GRU

The University of M h gan

Mathematical Models of Information Systems

* 4 DESCRIPTIVE NOTES (Typs of report end Ineth..i" dat*e)

Interim I-
£ AUTHOR(SJ (Last smen. firet ,e.. WOW~e)

Richard Arnold Richarl3 Karp -

Harvey Garner Eugene L. Lavier

, ME PORT DATE TO TOTAL NO, or PA26S 76. No. oP map's

*.COTRCT~ April 1()6 84
I ONRC 602 GRANT NO, $8. ORIOINATOR-S REPORT NUMCgftfS)

SPROJ9CT NO.

5581 ________________________I
..Task No0. 66 JT.rERW CORT NO(S) (Any athittntobino shot maey be eceIaned

558109 S
d. RAC-TR-66-37

10. A V A IL AUILITY/LIMITATION NOTICES

This document is subject to special export controls and each transmittal to
foreign governments or foreign nationals may be made only vith prior approval of
RADC_(EMLI)._OAFB,_iW.Y._131d40.___ _______________

IISUPPLEMENTARY NOT"S 12- SPONSORING MILITARY ACTIVITY

Rome Air Development Center (EKIID)
Griffiss Air Force Base, N.Y. 13440O.

1_ _ __ _ ______ _____

IASTRACT report is the first interim report of a three year study and investiga-

tion by the University of Michigan. The primary objective of this effort is the
study and development of mathematical models of information processing systems.
The general area of research includes machine design, automata theory, and the
application of mathematical. models to problems in machine design. The areas of
research in this report are divided into these four areas (1) Automata Theory and
Applications, (2) Theory of Algorithms, (3) System Analysis, and (4.) Combinatorics
and Wvitching Theory.

D D ".""e1473 UNCLASSrIFIE

Security ~ ~ Clsiicto

UIICLAJlqTPT)T7T
Security Classificaltlon

Ls LINK A LINK 9 LINK c
KEYWORDS A01.9noL~e ST ROLE U T ROtLE 11

Data Processuin Systems
Mathematical Analysis
Computer Logic

INSTRUCTIONS

I, ORIGINATING ACTIVITY: Enter the name and address imposed by aecurity classification, using standard statements
of the contractor, subcontractor, grantee, Department of De- such as:
(ense activity or other organixation (corporate author) issling (I) "Qualified requesters may obtain copies of this
the report, repor from DDC."I
2a. REPORT SECURTY CLASSIFICATION: Enter the over- (2) "Foreign announcement asn dissemination of this
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking Is to be in accord- report by DO is nt authorized.
ance with appropriate security regulations. (3) "U. S. Govornment agencies may obtain copies of

this report directly from DDC. Other qualified DDC
2b. GROUP: Autometic down dng is specified inquest through
rective 5200. 10 and Armed Forces Industrial ManuaL E rte.
the group number. Also, when appticab:e, show that optionial , "
markings have been used for Group 3 and Group 4 as author'- (4) "U. S. milItary egeocles may obtein copies of this
tged. report directly from DDC. Other qualified users

3. REP'ORT TITLE: Enter the complete report title in all shell request through
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion. ghow title classification in all capitals in parenthesis (5) "All distribution of this report is controlled. Qual-
immediately following the title, tiled DIC users shall request through

4. DESCRIPTIVE NOTES: If appropriate, enter the type of ."
report, e.g., interim, progress. summary, annual, or final. If the report has been finJshed to the Office of Technical
Give the inclusive dates when a specific reporting period is Services. Department of Commerce, for sale to the public, mndi-
covered. cate this fact and enter the price. If knewn.

S. AUTHOR(S): Enter the name(s) of author(s) as showrn on IL SUPPL.EMENTARY NOTE& Use for additLiomal explans.
or in the report. Ente" last name, first name, middle InltinL tory notes.
If military, show rank end branch of service. The name of
the principal r'thor imi en absolute minimum requIrement, 12. SPONSORING MILITARY ACTIVITY: Enter the name of

the departmental project office or laboratory sponsorngl (paY-
6. REPORT DAT-" Enter the date of the report sa day, ing for) the research and devetopment. Include address.
month, year, or month, year. If more than one dace appeprg
on the report, use date of publication. 13. ABSTRACT: Enter an obstmo i ng a bref and factual

summary of the document Indicative of the report, even though
7.. TOTAL NUMBER OF PAGEf The total Page count It may also appear elsewhere in the body of the technicet re-
should follow normal pagination procedures. Lea. &.otsr the port. If additional space in reqilmd, a continuation sheet shall
number of pages containing information. he attached.

7b NUMBER OF REFERENCES. voter the total number of It is highly desirable that the abattact of classified reports
references cited in the report. be unclassified. Each paragraph of the abstract shall end with
Sa. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-
the applicable number of the contract or grant under which formation in the paragraph, represented as (Ts), (s). (C). or (UJ-
the report was written. There is no Limitation on the length of the abstract. Now-

8b, 8c, & Sd. PROJECT NUMBER: Enter the appropriate ever. the suggested length is from 150 to 22S words.
military department identification, such as project number,subproject number, system numbers, task number, etc, I4. XEY WORDS: Key words are technically meaningful terms

or short phrases that characteriae a report and may be used as
9.. ORIGINATOR'S REPORT NUMBER(S): Enter the ofiS- index entries for cataloging the report. Key words most be
clal report number by which the document will be identified selected so that no security classiflcation Is required. ldento-
and controlled by the originating activity. This number must fiers. such as equipment model designation, trade name. military
be unique to this report. project code name, geographic location, may be used as key

9b. OTHER REPORT NUMBER(S): If the report has been words but will be followed by an indication of technical con-
assigned any other report numbers (either by the oridinetor text. •he asjIgnment of links, rules, and weights is optional.
or by the sponsor). , [so enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

UNCLASSIFIED

Security Classification

tl

SUPPLEMENTAR

INFORMATION

NOTICES OF CHANGES IN CLASSIFICATION, DISTRIBUTION AND AVAILABILITY

69-20 15 October 2.969

IDENTIFICATION FORMER STATEMENT i NEWSTATEMENT AUTHORITY

.D- &]..j No" Foreig-n .i', Lh'~u No limitat~ion RADC, USAk' ltr,
Unive-rsity of KichiCan a',)prova1 c,!' c.,ome ii Jul ("9
Ann Arbor.,ers Air Develo, mc.ni
BŽThu r, ecri~hC],ab, Center, Attn i , I

Ilt. no..rLtriC no.

`5-37
Apr ((A"0 (62Coi3i.>,t. A? 20(6,)-I

35h

