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ABSTRACT

The aim of this dissertation is to present a new method of

engineering analysis and design for complex control systems „ This

method is the time domain infinite matrix method , The formulation of

the infinite matrix follows from the convolution summation of sampled

data systems The mathematical basis of the time domain matrix for-

mulation is presented in a discussion of the applicable concepts of

infinite matrices and sequence spaces. This method of analysis and

design is applicable to both continuous data and sampled data systems

,

For continuous systems it is necessary to introduce a fictitious sam-

pler and hold of sufficient sampling rate to effect an accurate ap-

proximation

The time domain matrix method is presented and illustrated as a

method of analysis and design of linear, nonlinear, and time varying

systems of the continuous or sampled data class Sampled data
9
time

varying systems may not be conveniently investigated by any other

existing method „ Furthermore the investigation of nonlinear systems

is greatly simplified by the time domain approach „ Multiloop sys-

tems may be treated with ease and the signals at intermediate points

throughout the loops are readily available Also 9 systems with

multiple nonlinearities may be investigated, for which there is not

a presently available method of analysis and design

„

Two methods of design of a discrete compensator for a sampled

data system are presented. These methods are accomplished directly

in the time domain and allow for a compromise of specifications in

the time domain „ Also the response between sampling instants is

ii



accounted for in one of the two design procedures

„

The time domain matrix method may be readily programmed on a

digital computer and therefore provides a rapid analysis and design

technique

„
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CHAPTER I

INTRODUCTION

During the last two decades 9 feedback control systems have become

increasingly important to our technological civilizations, and have par-

ticular3y contributed to national defense Simultaneously, there has

been increased interest and effort in the investigation of automatic

control systems with respect to their analysis and design with various

excitation signals,,

The I R„E defines a feedback control system as a control system

comprising one or more feedback control loops , which combines functions

of the controlled signals with functions of the commands to tend to

maintain prescribed relationships between the commands and the con-

trolled signals Feedback control systems are a large class of sys-

tems which include many subclasses of which a few are linear systems

,

nonlinear systems, multivariable systems, time varying systems, sampled-

data systems , and adaptive systems , The active and dynamic elements

are not limited and may be electronic, electromechanical, hydraulic,

or pneumatic

o

An important subclass of control systems, sampled-data control

systems, is a dynamical system which operates with sampled or quantized

information,, That is, the information is present as a sequence of dis-

crete numbers in time, in contrast to continuous data systems for which

the controlling information is monitored continuously in time „ Ordi-

narily, the information is carried in the amplitude of the samples and

may be considered pulse amplitude modulation The block diagram of a

typical sarapled-data control system is shown in figure 1-1, where the

sampled-controller may be a special or general purpose digital computer,

1
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Figure 1-1, Sampled Data Control System Bloc k-Diagram



The wide use of digital computers today has further stimulated inves-

tigation of sampled-data systems The seemingly unlimited possibilities

of the use of a digital computer as an active element allow the possi-

bility of considering these systems as a beginning towards the realiza-

tion of the much discussed adaptive and learning control systems which

may imitate the human brain and nervous system.

There exist at present three major methods for the analysis and

design of sampled-data systems as follows
°

1. Difference equation approach

2. Frequency response methods

3. Z transform and modified transforms and the use of the root

locus

„

All these methods assume that sampling occurs instantaneously or there-

fore, that the pulses are of negligible width The first method uses

classical methods of difference equations and yields a solution only at

the sampling instants „ Frequency response methods are an attempt to

extend concepts from continuous systems and suffer from the attendant

disadvantages The z transform uses a complex-variable transformation

and determines the performance of the system by location of roots on

loci in the complex z plane, and by inverse transformation

„

It is the purpose of this dissertation to present a method of en-

gineering analysis and design for complex control systems This method

is the use of infinite matrices in the time domain Analysis and de-

sign for this method takes place directly in the time domain and avoids

the necessity of transformations in complex-variable s „ This method has

proven to be potentially useful for the investigation of a variety of

systems



Time domain analysis and design has the important advantage of

affording investigation directly in the domain of interest and direct

evaluation of performance , therefore avoiding use of correlation

theorems which are complex and may be inaccurate,, This method avoids

the difficulty of solution that is present for higher order systems

using the z-transformation In fact, the amount of work necessary for

investigation is approximately the same for a first order as for any

n order system

This method can be applied to many classes of systems which either

do not lend themselves or are not possibly investigated by frequency or

z-transform techniques. Therefore, beyond linear system investigation
9

one may analyze and design nonlinear and time-varying systems „ Also

the investigation of continuous systems is made possible through the

introduction of a fictitious sampler and hold of suitably high sampling

rate „ The error introduced by this approximation of a continuous sys-

tem by a sampled-data system can be reduced to a negligible amount with

an attendant increase in labor of calculation.

This dissertation is presented in three parts The first part

comprising Chapters 2 and 3 presents the mathematical background and

formulation of the time domain matrix equations „ The second part com-

prised of Chapters U and 5 presents the analysis and design methods and

verification of the theory by application to various types of systems

The third part comprised of Chapters 6, 7, and 8 is concerned with the

design and realizibility of the digital compensator in the time domain

„

and the final conclusions and possibilities for future investigation

„



CHAPTER 2

THE TIMF DOMAIN MATRIX

2-1 Introduction

The method of investigation of sampled-data control systems most

commonly used today is the z-transformation, as is correspondingly the

s-transform for continuous systems „ The z-transformation converts the

difference equations to a set of simultaneous algebraic equations which

may be solved for the unknown variable and then by means of the inverse

transform yields the response in the time domain Formulation of the

problem directly in the time domain allows one to avoid this transfor-

mation and inverse transformation

2-2 A Sampled-data System and the z Transform

A block diagram of a simple open loop sampled-data system is shown

-* 1
in figure 2-1. The definition of the z-transform of x (t) is

CO

X(z) = X (-i— In z) = ^> x(nT)z~
n

(2-1)

n=0

-sT
where z=e = u + jv

and T = sampling period

Then it can be shown that the output at the sampling instants Y(z) is°

Y(z) = G(z) X(z) (2-2)

where G(z) is the z transform of G(s)

In order to obtain the response between the sampling instants

2
Jury introduced the modified z-transform where the response between

the samples is°

Y(z 9 m) = G(z 9m) X(z) (2=3)



X(s)

xTty

Synchronized Samplers
with period T

Y(s)
y(t)

»- --'-- Y*(s)
Fictitious Sampler

Figure 2-1 Open Loop Sampled System

(t) T(

Figure 2-2 , An Open Loop Continuous System



In order to obtain the response in the time domain, the inverse

transformation must be utilized of which one form is I

y(nT) =~ ® G(z)
n'1 Az dz (2-A)

where
f"
1 is the path of integration in the z-plane

which encloses all the singularities of the integrand

„

It is found that the usefulness of the transform lies with the use of

the root loci on the z-plane , However, one desires to obtain the res=

ponse directly in the time domain and that will be the subject of the

next section

„

2-3 The Convolution Summation

The time response of a continuous system G(s) as shown in figure

2-2 to a continuous input x(t^ is given by the convolution integral"

y(t) = \ g(t-X) x(X) dX
-co

(2-5)

where X = dummy variable time delay

and g(t-X) = the delayed impulse response of the system G(s)

This method of obtaining the response is usually avoided in favor of the

Laplace transform due to the difficulty of evaluation of the integral

However, for the sampled data system as shown in figure 2-1, the

input signal may be written"

Oo

x*(t) = x(nT) b(t-nT) =

n=0

where [x] is a column

matrix of n elements

where n extends to infinity

7

x,

L

(3-6 I



Now, in contrast to equation 2-5 1 one may write an equation for the con-

tinuous output response as a convolution summation*

n

y(t) = / g(nT -kT) x(kT) (2-7)

k=0

n n

or

k=0 k=0

where g , is often referred to as the weighting sequence

The values at the sampling instants of the impulse response, g , are

related to g(t) the impulse response as°

a * g(nT) = g(t) (2=9)

t = nT

Therefore, when the input is an ideal impulse of unity height, then"

'' fl for k = n

and y = g the weighting sequence a

If equation 2-8 is expanded, one obtains"

n = y = g _ x

n = l y
fl

= g,_o Xq + g,^ x,

n = 2 y 2
= g2„ x + g 2_, x, + g 2„ 2 x 2

! * ! (2-10

:

n - n yn
- gn_ x + gn^ x, + gn_ 2 x 2

+ Sn-n x
n

And equation 2-10 may be written as:

4» o o



yo = go xq

y, = gfl
x + g x,

Yz ~ 8z Xq * g, ^ + g x2

(2-11)

^n
= gn *o + Zn-i *i +

. . . So ^

It can then be seen that this set of equations 2-11 may be written in

matrix form as I

Yo

7i

Yz

v3

Yn

go

gfl go

g2 gi go

g3 g 2 gi go

o o

o o

or

gn Sn-i gn-2 gn-3

Yj = [0]X]

—

o • o~ x

Xg

X 2

C • x 3

e q °gO
.

x
n

(2-12:

where YJ and X
J

are column matrices of order n

and f" G
J

is a square matrix of order n called the system trans=

3
fer matrix.

For the case of a time-varying system one then obtains instead of equa-

tion 2-7 and 2-Bl

y(nT) = g(nT,kTT) x(kT) (2-13)

k=0

and the transfer matrix form for the system -G(s) would be



[.].

g(o,o)

gdtO)

g(2,0)

g(l,D

g(2,l) g(2,2)

o o o

(2-U)

g(n,0) g(n,l) g(n,2) g(n,3) • g(n 9 a)J

For example
(
in order to obtain the output response for a unit

step input to a system which is simply an integrator, we have to de-

termine the X and G matrices. For a unit step input, the input at

the sampling instants is always one orl

}-

To determine the system matrix one must determine the weighting

values at the sampling instants . If the period T is equal to one second

then one simple method of determining the sequence is to find G(z) and

to divide:

G(z) = -~ = 1 + z"
1

+ z~
2

+ z~
3

z - 1
o o o (2-15!

Another, more generally useful method is to determine the impulse

response g(t) and find the values at the sampling instants For an in-

tegrator, G(s) = 1/s ort

g(t) = u(t) a unit step.

Therefore , the system matrix is

[.]-

1 •

1 1

1 1 1 .

1 1

(2=16)

10



Then, the output can be obtained using matrix multiplication!

I]-[G]XJ

<]-

1 1

1 1 1

1 1

1 2

1 = 3

o

1
•

(2-17!

2-4 The Evaluation of the System Transfer Itetrix of a Transfer Function

In order to determine the output response of a system, the system

transfer matrix must be available. This is determined with the most

facility and accuracy by determining the g(t) by taking the inverse trans=

form of G(s). In order to evaluate the matrix values substitute t " nT

This method of evaluation of the matrix is illustrated in Appendix A

and Table A-l gives the values for some representive systems

In many cases, a system has an undetermined G(s) or frequency res=

ponse and the G(s) must be determined experimentally. In this case, it

would be as convenient to determine the impulse response of the system

directly and therefore the g values . For a large percentage of the

sampled systems, a hold circuit filters the output of the sampler as

shown in figure 2-3 . In this case, the unit impulse is converted to a

unit pulse of one sampling pe riod width. Therefore, the z-transform

equation for the output Y(z) la I

Y (z) = G
h
G(z)X(z)

where G
h
G(z) * ^(GjGCs)} (2-1S'

Therefore, we are interested in determining the matrix

Tg^G 1 , and experimentally the values of this matrix may be

determined by exciting the system G(s) with a unit pulse of period T

11



This method has been verified experimentally and yielded values within

three percent of the expected elements of the matrix. This method of

determination of the pulse response of the controlled system is easy to

accomplish, and quite useful in investigating components with unknown

transfer functions.

2-5 Response Between the Sampling Instants

In any but the most well behaved system, the response between the

sampling instants is of interest and must be determined . For this pur=

pose the modified z transform was introduced in the 2 domain, and an

analogous method must be determined for the time domain matrix. Writing

equation (2-9) one has^

gn
- g(nT) = g(t) (2-19)

t = nT

for the values at the sampling instants Therefore , if the values at

half-way between each sample are to be determined (m - 1/2 in the modi=

fied transform) one has"

gn (m = 1/2) = g(nT ~T) = g(t)|
It - nT + -T (2-20

)

The symbol m was chosen to be consistent with the modified z-transform

and is defined as the percentage of th? period from the sample point 9

as shown in figure 2-4. The index m can assume a value to 1 and is

at the n sample when m = and the n-1 sample when m - 1.

For example, if the output between the sampling instants is required

for the system shown in figure 2-5 9 then one writes the equation for the

output as°

I(m)] = [o(m)] x] (2-21)

The impulse response of the system is
°

12



Figure 2-3. Open Loop Sampled System With Hold

1 l

i i

i I

j

k

1 1 T
i i

mT >

mT < i

(n-3> (n-2) (n-l) n

Figure ?-4. The Intersample Response
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g(t) = e

Then, the values of the transfer matrix at the sampling instants

(m =0) is:

-n
5n

and the matrix is I

1

[o] =
e 1

e~
2

e"
1

1

-n

(2-22)

In order to determine the values at half-way between the sample

points one must determine |G(m)J where m = 1/2 „ Therefore

gT,(l/2)=e^
n + 1/2)

. .

5n

and [a (1/2)] =

e'
1/2

(2-23)

Then, the output at the sampling instants and at the mid-point of the

sampling period is I

C =

10
(.3679) 1

(.1353) (.3679) 1

= 1.3679

1.5032

(2-24!

and

C(l/2)

6065

2231 .6065

0g2l .2231 .6065

14

,6065

,S296

,9117

(2-25,



The determination of these values is discussed further in Appendix A

and values are given for the systems considered

.

2-6 The Formulation of the I'ktrix Equation for Closed Loop Systems

Before considering the closed loop system, one must consider the

two block open loop system as shown in figure 2-6 and examine the mat-

rix algebra.

Then, the necessary equations are
°

Bj =
[g,] x] and y] = [g 2 ]

b] (2-26)

Therefore, YJ = [g 2
]

[gJ x] (2-27)

and, in general, since matrix multiplication is not commutative it is

incorrect to write the transfer matrices in the reverse order, that is°

l]-[Q»][0|] *M Gi] |>a] *] (2-26)

Now, for a closed loop control system as shown in figure 2-7 one has°

e(t) = r(t) - (c)t and e* (t) = r* (t) - c* (t)

In matrix form one obtains*

e] = rJ- cj and c] = [g 2
]

[g,1 eJ (2-29)

Therefore, one has*
-1

E] = R] - [g2 ][g,] E] and e] = [[i] + [g 2][g,]| RJ (2-30)

Therefore

•]-WW([»]*WWf R
]

(a-3i:

1 c •

1

c owhere [i] = identity matrix =

1

and [A]~ = inverse of matrix A. Thus, the solution for the output

response involves matrix multiplication, addition, and inversion.

Fortunately, one finds the inversion process is simplified by the fact

15



XCS) = ~± T(s)

Figure 2-5. First Order Sampled System

Figure 2-6. Two Block Open Loop System
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that the matrices are all lower trangular matrices; that is, all the

elements above the diagonal are zero Also, one finds equation 2-31

may be written ast

c] = [k] R] where [ k] =
[
a]([i] + [a jl"

1
(2-32)

where |
A 1 = [g 2 1 \oA - the product of the transmission matrices

in the forward path c

Post multiplying equation 2-32 by [i ] + [a] one obtains"

[k]([i]*[a]} =[A] (2-33)

Adding [i] - [i] = [o] to both sides, then:

[i]{[i] [*]]- [*![!]- W -[ti]*W)-W
Therefore, postmultiplying by the inverse of [i] + [A],one obtains I

[I]-[I]-{[I]*[*^ (2-34)

which substitutes subtraction for more difficult multiplication neces-

sary in equation (2-32)

2-7 The Solution for the Response of a Simple System

In order to evaluate the response of a closed-loop system, the in-

verse of the matrix [i
J
-e-[AJ must be determined. Since a physical system

always is represented by a lower triangular matrix, one powerful method

for inversion is given by Frazer, Duncan, and Collar and presented in

Appendix B„ Consider a simple approximate first order transfer func-

tion system where the sampling period is one second and a» 1, so that

a neglible delay will be introduced, but there will be no output at the

n = sampling instant. The system with a step input is shown in

figure 2-8

.

The system matrix is determined in Appendix A and given in Table

A-l and rewritten here^

17



'3
=

then

W *fo] =

[i] Tg]

Therefore

,

-1

10110
111

1
-1

and

1

1 1,

0,

[I] -{[I\+[G\
l-l

+1

1

1

so that

C =
1

1

1

1

1

1

1

(2-35)

(2-36)

(2-37)

(2-38)

The values between the sampling instants after the first period

would be the same as at the sampling instants , since

[G(m = 0) » [G(m)J for n>l.

18



r(t) _ e(t).e(t)—^O ^— 0,(8)

Figure 2-7. Closed Loop Sampled System

R(s)

Figure 2-g. Closed Loop System with A Step Input
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CHAPTER 3

THE MATHEMATICAL THEORY OF INFINITE MITRICES

3-1 The Mathematical Theory-

It was shown in chapter two that the output time response could

be obtained with the use of a matrix formulation. Furthermore, these

matrices consist of elements whose values are those of a time response

evaluated at discrete instants . For an open loop sampled-data system

the matrix equation 2-12 will be rewritten here"

y] = [g]x] (3-D

The column matrices Yl and X | contain the values of the discrete

response and input respectively. If the response is to be determined

for all time 9 then the order of the column matrix, and the square sys-

tem matrix, is infinite. Of course, even if one does not need to evalu-

ate the infinite number of response values, the system matrix can be

considered as an infinite matrix I that is, of large order. The content

of this chapter is a discussion of infinite matrices and infinite se-

quences, and the calculation of the time response of a sampled-data

system utilizing a matrix formulation in the time domain.

The system matrix G is an infinite matrix since

[A] = A = (a
±j)

(i,j = 1,2,3, • • «n . . * oo ) (3-2)

that is, the matrix A is an array of elements of infinite order. Hence-

forth, in this chapter, let [A J = A and the column matrices Xj = x and

i 5
Yj = y for convenience in notation. Cooke discusses, at length, the

characteristics of infinite matrices , Only the characteristics of

immediate importance shall be mentioned here. In general, the theory

of infinite matrices" is connected with mathematical analysis and the

theory of functions.
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The operations of interest for the infinite matrices are.

A + B = (a,

.

CO

+ b. .

AB •>
k=l

*±k\i

M = >a, .

(3-3)

where X is a scalar.

The input and output time responses are expressed as an infinite

sequence of discrete values. These discrete values constitute the ele«

ments of the column vectors x and y. A vector x may be considered a

5
sequence space. A definition of sequence space is*

A set S of sequences is called a sequence space when it contains

the origin, and is such that, for every x and y in S and for every

(complex) scalar c, x+y and ex are in S.

The sequence space of interest is called g, the space of all se-

quences. Then, the matrix equation

y = Ax

(3-4)
n

or y 3 > a , x,
n X nk k

k=0

is a linear transformation of a on itself, that is, the system with

matrix A transforms the input sequence into another sequence, the out-

put sequence . When

a
nk

= a
n-k <>5)

the system is time invariant as previously discussed in section 2-3

„

The infinite, positive time, matrices for physical systems are al-

ways lower triangular matrices (L.T.M. ), that is*
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a j . = when j > i

.

Also j for time invariant systems the elements are equal along the upper

left to lower right diagonal. This matrix is called a diagonally in-

variant matrix (D.I.M.) and exists when"

a.. = a. . for every i,j. (3-6)

It is important to note, that a matrix multiplication is non-commu-

tative for the class of systems which are time-varying (T.V.) These

time-varying systems, for the operations defined in equation 3-3, are

characterized by a non-Abelian (non-commutative) algebra. The time in-

variant systems may be called a sub-class (T.I.) of the large class T.V.

and are characterized by a Abelian algebra . That is, for time invariant

systems , matrix multiplication is commutative . Thus for linear constant

coefficient systems the order of the matrix multiplication may be re-

versed, while for nonlinear or time varying systems they may not.

Inversion of the infinite matrix A is often necessary and it is

shown in reference 3* that if there is no i where a.. = 0, and A is non=*

singular, then a unique inverse of A exists. The evaluation of the

inverse of the L.T.M. is discussed in Appendix B,

3-2 Convergence and Stability in the Sequence Space .

In an automatic control system it is of great importance to deter-

mine if the overall closed-loop system is stable and therefore the out-

put time response is bounded. The output response is a sequence in the

sequence space and it must be determined if the sequence is bounded

„

Therefore, if a step function test signal is applied to the system it

is necessary to determine if the output sequence converges to a final

value. If the system response diverges, the system is considered unstable
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For a closed loop control system, the output response may be written

y = Ax (3-7)

where A is the closed loop system matrix and

A = G(I * G)"
1

The G is an open loop system matrix as shown in figure 3-1

(3-8)

X(s) Y(s

Figure 3-1., Closed Loop Sampled Data System

Then, given an input signal of a convergent nature, that is, of a

bounded nature, the problem is to determine if the output sequence y is

of a bounded nature. Ifethematically , the problem is, given a convergent

sequence x, under the transformation A, does a convergent sequence y re-

suit ! A theorem of fundamental importance concerning this problem is

5
that of Kojima«Schur

Kojima-Schur theorem* the necessary and sufficient condi-

tions that CO

Ax or
n

k=l

a
nk

x
k

(3=9)

should tend to a finite limit as n -* oo whenever x, is convergent are that

oo

(a) l

nk ^. M for every n-

k=l

(b) lim a
nk

= «, for every fixed k,

n-»ce

(3-10)

(3-11)
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00

(c) lira \ a
nk

=K <3-l2)

n^eo k=l

Moreover, if lim x, = x then the final value is

k-*co

r o

(d) y = lira y
n

« X + y> «
k

(x
k

- 1) (3-13)

n —*> ao k=l

A matrix satisfying a,b,c is called a k-matrix with «. and « for its

characteristic numbers. For, the special condition of «, = in condi-

tion (b), one defines the matrix A as a T matrix. These are the condi-

tions for convergence and clearly define the stability of a control sys-

tem in the time domain. By examination of the impulse response of stable

systems a physical understanding of these conditions results „ Considers,

for an example, a time invariant open loop system with a transfer function

G(s) = -=- and T = 1 as discussed in section 2-3

.

Then a , = a , and a =1,00 where m = n - k. It is obvious that con-nk n-k m

dition (b) yields *, - l e00. Furthermore, it can be seen that this

system does not satisfy conditions (a) and (c). That is, examining condi=

tion (a) one finds for n ,

ce

that y I a k I =*> e& . This result is as expected since the response

K=l

is diverging as was determined in section 2-3, equation 2-17, Therefore

condition (a) requires that the series \. a ,| converge in order for

the system to be stable. For a closed loop system of figure 3-1, it is

important at this point to recall that A = G5I+G| Therefore, A
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may satisfy the condition (a) while G may not.

Theorem: If A is the matrix for a time-varying system (T.V.), the sys-

tem is stable if and only if it is a k matrix

„

Corollary^ If A is the matrix for a time invariant system, then it is

a D.I.M. and A = a. , , and A is stable if and only if A is a

T matrix.

For the large class of time invariant systems, the corollary implies

that for stability it is necessary for

CO

y |
a
n

I < co where n = i - j (3-14)

~n^0

For stable T.I. systems, one finds that «, - 0, that is the matrix

is a T matrix. For condition (c) one obtains « = 1.00 for a type I

servo system. Then, by the use of relation (d) one obtains, as expected 9

the final value as^

y = « X = X (>15)

The transformation on a, accomplished by A as a T matrix is called

a regular transformation. The property of importance is that as in

equation 3-15, the T, matrices have the property of consistency. That

is, every convergent sequence is transfo ta d j such a matrix into another

convergent sequence with the same limit when n approaches infinity. In

addition, T
ft

or k matrices will frequently transform divergent sequences

5
into convergent sequences.. On this point it may be stated.

Corresponding to each unbounded divergent seqaence \ S | and each
n *

bounded sequence \ y 1 , there is a general (square ) T matrix which

carries \S \ into { Y 1

In this chapter, the mathematical basis for the infinite matrices
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has been discussed, and the operations defined. Furthermore 9 the theory

of stability and convergence in the sequence space has been discussed

It is not to detract from this, that usually the conditions a), b) 9 c) 9

d) are investigated simultaneously with the evaluation oF the actual

output sequence for a given system.
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CHAPTER A

ANALYSIS OF CLOSED LOOP CONTROL SYSTEMS

4-1 A Method of Evaluating the Response of a Closed Loop System With-

out Inversion of r-fetrices

Consider the simple, error sampled, closed loop system as discussed

in chapter two and shown in figure 4-1.

r(t)
c(t)

Figure 4.-1, Error Sampled System

It was shown that the output response time sequence may be written as I

0]=[G]([I] .[G])"
1 Ej- [I] -{[I] [d]}"

1
R] U-l)

Therefore, the evaluation of the output response involves the inversion

of[l] + [g] as discussed in Appendix B.

However, there is a simple method of evaluating the output response

which avoids the inversion of a matrix. The output response column ma-

trix may be written as J

C] =[G] E] (4-2)

where Ej = the error sequence in time

.

The error sequence may be written as

E] = R] - C] (4-3)

It can be seen that the error matrix can be easily evaluated by subtrac-

tion. Then the error matrix multiplied by the system matrix will yield

27



the output response. Of course, the error matrix cannot be evaluated

until the output sample values are available. However, it may be seen

that the output sequence may be evaluated in a step by step procedure

by examining the expanded form of equations 4.-2 and 4.-3 for the first

three sampling instants. For a linear, time invariant system, one has;

and

c 2

e,

So ©o

g1 So ©1

Sz gi go e 2

(U-L)

r co

ri - Ci

T\ <=2

(r - o )

= (r, - c, )

(r 2 - c,)

U-5)

Expanding equation 4.-4- with row by row matrix multiplication one obtains

the following results.

For the first sampling instant, the time origin, one has"

c = g ©o
and

eo
= ro "" co

Therefore, solving for e one obtains!

(4-6)

e«
" £0l- (4-7)

1 * go

However, for all physical systems, there can not be an output immediately

£

that is, there is always a time delay of small, but real magnitude There-

fore, g - for systems of interest. Then one has

and
*o

c =

For the second sampling instant one has*

gi e * goei = g, e = gl r

(4-8)

(4-9)
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and
e< = r, - Ci

Since g^ and r are known, then c t may be evaluated and then e, nay be

evaluated „ Now, for the third sampling instant one obtains"

c 2
= g 2e + gie, + g e 2

= g 2e + g, e^

and (4-10)
e 2 - r 2 - c 2

Therefore v it can be seen that one may proceed to evaluate the

time response sample by sample in time. The equations such as 4-10 be-

come lengthy for larger n and it is simpler to use the matrix form The

matrix form may be written, with g = 0, as°

gfl

g 2 gl

gn gn-l gn-2

(r, c, )

(r - c )n n
J

(4-11)

For a linear time invariant system, the system matrix is diagonally in=

variant „ Therefore, multiplication of [ G] e] as a row-column multipli-

cation may be replaced by a column-column multiplication „ This is possi=

ble since, for example, the third row is identical to the first column

rd
from the third element upwards . That is , one may write the 3 multipli=

cation as°

~ [g 2 » g^ 9 go
J

(g2» gl »
°J

e

©1 (4-12)

LH
or alternately as

c 2
s

gi

g2

- g2e + gl e
1

29

(4-13!



Multiplication is accomplished by multiplying the first element of

E] by the last element of[G] of interest.

Then, in general it is possible to write I

[°I

"o

"

e

gl ©1

g 2 e 2

§3 e
3

64 e4
©

o

= c,

J4

(4-14)

If a table of the form of equation 4.-14- is established, a step by step

evaluation procedure may be used as follows'

1) Evaluate e = r , and c =

2) Then for c
fl , multiply the G and E matrices by starting at gfl

in the G matrix. Then one obtains c, = gfl
e Now evaluate

e
fl

= r
fl

- c
1

and fill in c
t

and e 2 in the computation table

3) Now evaluate c 2 by multiplying the G and E matrices by starting

at g 2 . Then one obtains c 2
= g 2e + g., e, . Then evaluate

e 2
= r 2 - c 2 anc^ place the values in the table.

4.) Continue this procedure for each sample point of interest,

typically until the system settles to a final value

An example will best illustrate this procedure. Let the system

matrix of figure 4-1 be:

M =
.4

.8 .4

1.00 .8 .4

1.0 1.0 .8 .4 o . .

(4-15)

Assume a step input signal RJ =[l,l f l, • • • • lj , Then, es-

tablishing a table as in equation 14 one calculates each value of c
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and e step by step as outlined. This method is illustrated for the

first two calculations by use of dashed lines to indicate the flow of

the calculations as follows"

G E C

»]-
Jt

' e = 1.0

e« = r - c, = 1 - .40 = .60 c, = .40

-« --

.4

„8

1.0

Then, the next step is illustrated schematically as.

G E C

cA =

(4-16)

C] -

e = 1.0

8

1.0

4^ e, = .60 c« = .40
..* — __
e 2

= 1 - c 2
=

V -

e 3

.040 1.040

c

(4-17)

J L
" 3

If this procedure is carried on step by step, one obtains for the

response at the first six sample points*

G E C

(4-ie)

To evaluate the intersample response one proceeds as -discussed in

section 2«5<> Rewriting equation 2-21 one has*

C(m)] =[G(m)] e] (4-19)

If the G(m) matrix for the midpoint of the sampling period is found

to be!

1

.4 .6 .4

.8 -.040 = 1.040

1.0 = .46^ 1.464

1.0 -.3824 1.3824
1.0 -.0358 1.0358
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[go]

[,20
.60 .20

o90 o60 .20

1.00 .90 .60 .20
L J

a-20)

Then one may calculate the intersampling response as

G(m) 2 C

.20

o60
C(l/2) - .90

1.00

1 .200

.600 .720
-.040 s 1.252
-.464 1.423
-.3*24 1.209

(4-21)

It is valuable to note at this point, that the calculations in the

case considered in this section were simplified by the unity feedback

condition which yields e] " Rj - Cj. Single loop systems with other

than unity feedback shall be considered in the next section.

4-2 Evaluation of the Response of A Closed Loop System with Other than

Unity Feedback.

In this section the closed-loop system shall be considered with

other than unity feedback as shown for one case in figure 4-2. The

samplers are synchronized and with the same sampling period. Then the

matrix equations may be written as°

c] =
J g] e] (4-22)

E] = r]- b] where b] -[h]cJ

Therefore e] = r] - [h] c] (4-23)

Now 9 to evaluate the output response one uses equations 4-22 and

4-23 and evaluates the c and e step by step as outlined in the previous

section. The only difference is in this case, in order to evaluate EJ,

one must evaluate
j
Hj C and then subs tract b 9 the sample value, from

r to obtain the error e at the particular sample. It must be pointed
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R(s) ^-v E(s) .

"V" * G(b)

C(s)

B(sT~
H(s)

Figure 4-2 . Two Sampler Feedback System

B(s)

C(s)

Figure 4-3 « Error Sampled System
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out that the solution in this case depended on the fact that the trans-

fer blocks G(s) and H(s) were separated by samplers,,

Consider the system shown in figure 4=3 which does not have samplers

separating both transfer blocks. Then one may write"

C] =[g]e] (4-24)

and s'l - RJ - B] (4-25)

But, noting that B(a) = H(s)C(s) = H(s)G(s) E (s), then^

e] = r] = He] (4-26)

= r] - [hg] EJ (4-27)

Therefore, it can be seen that E| is not readily available in equation

4-26 since HCj is not usually available.

Then, rearranging equation 4-27 , one obtains.

I [ij * [HG] j- e] = r] (4-28)

or E] s ([l] [HG]]'
1

R] (4-29)
1

Therefore, in order to evaluate the output response for this system,

inversion of a matrix cannot be avoided.

Finally, if one was analyzing a system such as shown in figure 4-4?

the equations of interest are"

E] a R] - [h] c] (4-30)

and c] - [gJ [G a] e] (4-31)

If the response at an intermediate point in the system is desired, such

as the output of G, (s), it is readily available by writing the following

equation'

E 2] - [g,] e] (4-32)

The response at intermediate points in a system is of great importance

in nonlinear systems which will be discussed in section 4-5

o
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Section 4-3 Analysis of Nfaltiloop Control Systems

The Introduction of more than one feedback loop is necessary or

inherently present in many control systems. The investigation of a

multiloop sampled-data control system is complicated by the presence

of samplers in some loops , and the absence of samplers in others . There*

fore 9 all the feedback signals are not of the same form throughout the

system. Consider at first a two loop system as shown in figure 4-5 9

which has samplers separating all the transfer blocks.

One may write a set of simultaneous sainplfcd-data equations, where

the starred notation indicates a sampled signal or transform, as follows

E* (s) = R* (s) - H* (s)C* (s) - M*(s)

M*(s) =G*(s)E*(s) (4-33)

c"(s) = G*(s)M*(s) = G*(s)G*(s)E*(s)

Solving these equations simultaneously, one obtains for the sampled-

output

°

„ G*(s)G*(s)R*(s)
C (s ) = b a

(4-34)
1 + G*(s) + g;(s)g;(s)H*(s)

The z-transformed equation then follows as.

G.(z)G(z)R(z)
C(z) =

b a
(4-35)

1 * G
ft

(z) + G
b
(z)G

a
(z)H(z)

One may then write the matrix equations directly from equations 4.-34

and 4-35 9 or alternatively one may derive the matrix equations directly

from the system signals. In either case, one obtains*

«* CW] = f[l] fo,1 [oJtoJfHlY
1

[(^W] [0aW] R] (4-38)
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R(s) ^-v E(s) C(s

H(s)

Figure 4-4, Three Sampler Single Loop System

R(s) ^E(s)/E(s) C(s)

Figure 4-5 o Multiloop Sampled System
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If it was desired to avoid the inversion necessary in equations 4.-37 and

4.-38, one may write a set of simultaneous equations which provide a means

of step by step evaluation of intermediate signals. In this case one

would write.

El - r] - M] - [H] C] (4-39)

M]= [gJe] (4-40)

C] = [G
b]

M] (4-41)

In order to evaluate EJ , MJ, and CJ a step by step procedure is

followed similar to that of the single loop method. First, assuming

no immediate o'.tput for either G or G. , one may write I

fflQ s

c * (4-4.2)

and e = r

Then, for the next sample one obtains!

where g, a s the first impulse response value of the G block and
a

g = the n impulse response value of the G block.

Then, continuing, one obtains*

c
« ~ &b "o * gob "4 ~ gib *"o = ° (4-43)

since g b = and m^ = 0.

Therefore, one uses equations 4.-39 9 4=40, 4-41 in that order, step by

step For the next sample one obtains"

e, = r, - m, - (hoc, -e- ^Cq) = r, - g18 r -

(4-44)
since c s Cq =

and m2 = g2a e * g, a e, (4-45)

and finally
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c 2 " ggb ^o * g*b ^ - g*b "^ since n^ =

As is the usual case, it is actually easier and more methodical to use

the matrix form throughout the calculations „ Therefore , one will esta-

blish a table similar to that of section 4-1 using equations 4-39, 4.-4-0,

4-41 o The flow of calculation is from e] to M] to C] and then back

through the feedback loops again to Ej . It is obvious , that actually

one is simply following the signal around the closed loops

Finally, consider a multiloop system which possesses only one samp-

ler in the control loops. The simple sampler typically is placed in the

error channel as is shown in figure 4-6.

M(s) „ U \ C(s)

Figure 4-6. A Multiloop Sampled System

One may write the equations for the signals as follows

E = R - M - B

M - GE
a

C = G, M = G.G E*
b b a

(4-46)

B = HC

Therefore, one obtains for the closed loop sampled error and output"

1 + G * HG, G
a b a

(4-47)
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.*
and x,

G G, R

1 +G; HG
b
G
a .

One may then write the matrix equations directly as"

E
l -f[i]*l>.l K .l}"

a
R
]

(4-49)

The equation for the intersample response is then*

and

a b -I
|
L J L a! L b a'

Therefore, whenever one desires to calculate the intersample response

and the inversion of the matrix I + G + HG, G has been already accom-
a b a

plished, one simply evaluates the G G, (m) matrix and carries out the

multiplication Therefore, multiloop systems with one sampler or samp-

lers separating all transfer blocks may be equally treated by the use

of time domain infinite matrices. The response at any sampler location

is readily available and is usually of interest in the investigation of

multiloop systems, particularly with nonlinearities present. The intro-

duction of nonlinearities into a control loop is treated in section 4-5,

Section 4—4. „ Analysis of Time-varying Control Systems

The analysis of time-varying sampled-data control systems may be

accomplished using the time domain matrix method. A control system

may have as one of the transfer function blocks, a component whose

parameters are changing with time . This effect is present with high

altitude jet aircraft, where the dynamic characteristics of the air-

craft change with altitude , and therefore time

„

Consider the simple open loop system shown in figure 4--7 The

impulse response of the time varying component is changing with time
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r(t)
Time-Varying

Component G

c(t)

Figure 4-7. Sampled Open Loop System

Therefore the matrix equation for the output may be written as in section

2-3, equation 2-13 and rewritten here*

c] = [Gfo,k)] r] (4-52)

where

[G(n,k)]

g(0,0)

g(l,0) g(l,l) o

g(2p0) g(2,l) g(2,2)

o o o

e o o

In order to substitute numbers in the G(n,k) matrix, the time variation

of the system G must be known or determined. As an illustration, consi-

der an abrupt change of

G(s) = *
~S7

*
( from a = 1.0 to a = 2.0 at the third

sampling instant (k - 2) where T = 1 second. Then, using the values of

e from table A-l one has for the system matrix

^

[G(n,k)

.3679

.7675 .3679

.9145 .7675 .2838

.9685 .9145 .4707 .2838

.9884 .9685 .4960 .4707 .2838

o o o

o e o
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Then 9 of course if this component had feedback introduced as shown

in figure 4-£, one would have the following closed loop equation'

(t)

C] . [0<n f k)l fl] * [G(n,k)] I'
1

R]

Time Varying
Component G

(4-53)

c(t)

Figure 4-£. Time varying Closed Loop System

In order to obtain the intersample response, the equation for the output

response may be written I

CM] = [0n(k (ra )] {[I] [Q(n tk)]|-
1

R] C4-54)

Analysis of a feedback system with more than one time varying element

follows the same approach as for the time invariant systems The matrix

equations are found to be the same as for time invariant systems with

the time variation of a transfer function only affecting the system ma=

trix itself „ Therefore, for the system shown in figure 4=9, the follow-

ing equation is obtained

o

c] = [G(n 9k)] 1 [i] + [G(n,k)] [H(n,k)]V1
r] (4-55)

It can be seen that it is not necessary for samplers to separate the

time varying component from all other transfer blocks Therefore, if

H(s) was time invariant, it would not be necessary to have a sampler
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R(s)
I Y- - Time Varying

G(s)

C(s)

Figure 4-9 „ System with Two Time Varying Components

between G(s) and H(s) for the use of the time domain matrices For

the system shown in figure 4-10, one obtains the equation"

C] - [G(n 9k)]([l] + [GH(n,k)]| ^ R] (4-56)

Figure 4-1 o Time Varying System with A Feedback Component

A control system, where one of the components is a time-varying

amplifier is worthy of consideration. Consider the system as shown in

figure 4-11.

The gain a(t; is changing with time and therefore has a different

magnitude at each sampling instant. The equation for the output may

be written

o
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Time-Varying
Amplifier

A = a(t)

M(s)
G(b)

C(s)

Figure 4-11 <, Open Loop Time Varying System

cl - [AG(n 9k)] R]

or

Co

Ci

c 2

c,

a gi

a0S2 ajgl

a0g3 a<g2 a 2gl

aog^ alg3 a 2g2 a 3gl

r

r 2

r 3

r4

a

o or]
a 2

[0 a
:

(4-57)

(4-58)

(4-59)

(4-60)

• • J

Then, the output at the third sampling instant is as expected

C 2
= a g2r + a^r,

It can be seen that equation 4-58 may be written as follows"

To

cj = [g] [a] r] =
I
g< 0.

g2 g, o o

g 3 g2 g1 °

The operation of multiplication of the A and G matrices is not commu-

tative as was previously discussed „ That this is so is obvious from

the form of the matrices c Now, consider an open system identical to

that of figure 4-11 except that a hold circuit immediately follows the

sampler, Thcn 9 if the amplifier changes gain during the sample period $,
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this must be accounted for in the system matrix G, which is a function

of m In most cases it is reasonable to make the simplifying assump=

tion that the gain changes only at the sampling instants. In other words,

the assumption is that if the gain is changing continuously with time

,

the time constant of this change is much greater than the sampling period

„

Therefore, one is approximating the gain by a staircase function as

shown in figure 4-12 „

Gain

a(t)

Figure 4-12. A Time Varying Gain

Then, on this basis, one may analyze closed loop systems with a time

varying gain e For the system shown in figure 4-13, one may write the

equations for the system signals as°

E] = R] - [h] C] (4-61)

and C] = [g] [a] e] (4-62)

Equations 4~6l and 4-62 may be solved by the step by step procedure

previously outlined for the time-invariant systems. Using this step by

step method, the gain change at each interval is clearly displayed to

the investigator Alternately, one may solve for the output response

and error response by means of inversion of the matrix in the following

equations °
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Time-Varying
Gain A

Figure 4-13 System with A Time-Varying Gain

El ={[l]*[H][a][A]J^ Rj

oj = [gKaUCiHhJMIaI}-
1

r]

(4-63)

and „t _ r„i r.ifiVLiviivir.iT-i „i {i/jM

If there was no sampler between the output and the feedback block

H(s), then one obtains the equation for the error sequence in the same

manner as carried out in section 4.-2. Therefore, one obtains for the

error sequence"

(4-65)E] -{[!] [HO] [A]}'
1

R]

As an example, consider a system where H(s) = 1 as shown in figure

- 1- t
4-13 o Let R(s) = 1/s, and the gain function be a(t) = e 2

, with a

sampling period of one second. In this the time constant of the gain

change is only double the sampling period, but the results are instruc-

tive with this marked gain change as shown in figure 4-14

o

Use equations 4-61 and 4-62 where [h] = [l] and one may write!

E] = r] -C] (4-66)

C] =[G][A]E]= [g]p] i (4^7)

where p] = [a] E J the amplified magnitude of the error pulse

and
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Gain
a(t)

1.0

a, =.6065

a 3=.223l

time

Figure 4.-14. . Time Varying Gain Example

G = A
,8 .4

1.0 .8 .4

Then , one obtains

°]

G

0^ "l.O

A E

1

.4 .6065 .600

8 .4 .3679 .0544

1.0 .8 .4 .2231 -.2991

1.0
mm

1.0 .8 .4
- . .

G P
—

1.0

.4 ,3639 .4

.8 .0200 = .9456 (4-68

1.0 -.06673 1.2991

1.0 o 1.3532

o o o

o .

The availability of the amplified magnitude of the error pulse as Pj

is often useful in the investigation of nonlinear systems which shall be

discussed in the next section.
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4-5 • Analysis of Control Systems with Nonlinear Components.

The analysis of sampled-data control systems with nonlinear com-

ponents may be accomplished by the use of time-domain infinite matrices

,

The methods most commonly used for continuous nonlinear systems are the

describing function and the phase-plane. These methods are somewhat

limited in their application to sampled-data control systems. Consider

a single loop nonlinear system as shown in figure 4-15.

Hold Nonlinear
Component

U

P(s)
G(s)

C(s)

Figure 4-15. Single Loop Nonlinear System

Then, it can be seen that the nonlinear component has replaced the varia=

ble gain amplifier of figure 4-13. The nonlinearities considered are

those sensitive to the magnitude of the signal input J that is, they

have a nonlinear amplitude response such as shown in figure 4—16 for a

saturating amplifier

E
in

Figure 4-16. Saturating Amplifier Characteristic
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Therefore, as the input voltage varies in magnitude 9 the gain of the

amplifier changes c Since the input to the nonlinear element is the

held error magnitude , this magnitude determines the gain. However, the

error is evaluated directly in the time domain and therefore a gain cal-

culated for a calculated error input is also known as the gain at the

specific sample instant. Therefore, the nonlinear element may be

treated as a time-varying gain. This statement is true for hysteresis,

a relay servo, and other single nonlinearities following a sampler.

Then the output of the nonlinearity is the sequence Pj . One may write

for the output response and error response*

(4-69)e]-= r]-c]

c] = [g] [u] e] (4-70)

where

Uq

u,

u2

u

The values of u depend upon the error magnitude and are determined in

the step by step solution. As an example, consider a saturating ampli-

fier with a characteristic curve as shown in figure 4-17, which is the

nonlinear component of figure 4-15. If the input signal is a unit step,

then the amplifier is expected to saturate. This amplifier has a maxi-

mum gain of two throughout the linear region. Then, using equation

4-69, at the first sampling instant (n = 0) e = 1.0 and therefore

Uq =1.0, and p =1.0, a gain of one. The G matrix for this example is
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Figure 4-17. Saturating Amplifier Characteristic Example

C»]

.4

.8 .4

1.0 .8 .4

1.0 1.0 .8 .4

Therefore, c, = g1 e - .4-0 and e, = .60. This magnitude continues

to saturate the amplifier and pt =1.0, and u, = 1.667. Continuing in

this manner, one obtains the following matrix solution I

C] = [G] [U] Ej = [G] Pj (4-71)

.4

.8

1.0

1.0

1.0

1

1.667

2

1.56

2

2

1

.6

-.2

-.64

-.28

+ .424.

" 1

.4 1

.8 -.4

1.0 -1

1.0 -.56

1.0 + .828

.4

1.20

1.64

1.28

.576
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The analysis of systems with a nonlinear component which is also

a storage device follows along in the same manner „ For example, if the

nonlinearity was hysteresis in a magnetic amplifier, then the gain is

dependent upon the past value of input voltage to determine which side

of the hysteresis loop is applicable to the present signal. This can

be seen clearly from figure 4—18 which shows a simple hysteresis loop.

If the input was E, , there are two possible output magnitudes depending

upon the magnitude of the input of the previous sample. If the previous

sample had a magnitude of E , then the output magnitude will be E, .

E,

Figure 4--18 c Hysteresis Characteristic

Furthermore, any nonlinearity may be treated in this manner since the

relation

P] = [u] E] (4-72)

applies to any nonlinearities whose characteristics are known or can be

approximated c

The analysis of systems with a nonlinear component which does not

have a sampler immediately preceding it cannot be treated by this method,

However, as an approximation a fictitious sampler may be placed before

the nonlinearity The accuracy of this approximation depends upon the
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sampling rate and the time constants of the system. This approximation

shall be discussed further in the next section.

If there is more than one nonlinearity present in the system and

samplers appear before every nonlinearity, then the investigation of the

system by time domain matrices is entirely possible. In fact, for a

system with many nonlinearities , analysis is possible with the introduc-

tion of samplers with a high sampling rate, wherever a nonlinearity

exists. The necessary sampling rate shall be discussed in the next sec-

tion.

Furthermore, the signal sequence magnitudes are available at inter-

mediate points throughout the system and can aid an investigator in the

analysis of the component requirements. Consider for example the system

of figure 4-1° which has two nonlinearities. Then the equations for the

R(s) /JV Hold D,

Figure 4-19. System with Two Nonlinear Components

error, the output sequence of G, , and the output sequence of G 2 is*

E] a R] - C] (4-73)

M
]

s M Ol E
]

^~7^
" °] = [

Gal[ua] M
]

^-?5)

A phase plane portrait of the error and the derivative of the error

often aids an investigator in the analysis of a nonlinear system. By

the use of the backward difference formulas of numerical methods, the
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derivative of the error may be obtained using the past values of the

discrete error . The derivative of the error may be calculated by use

of the present and one past value as°

where the inaccuracy is of the order of magnitude of the sampling period

T. If the present value and two past values of the error are to be used,

one has.

e
A = "§T

(3e
n - **n-l

+ *nJ * °^ ^77)

Use of three values of error has reduced the inaccuracy of the approxi-

mation to within the order of the sampling period squared. In order for

this calculation to be accurate , the sampling period must be short with

respect to the time constants of the system. This requirement is not
I

restricting since this condition is necessary for stability in a sampled-

data control system.

If it was useful to postulate the phase space and determine the

derivatives of higher orders it is possible to use the following formu-

las, the choice of formula depending on the accuracy required.

n _2 n n-± n=2

///

e, - — (e - 3e , + 3e - e ) + o(T) (4-79)
n _ 3 n n-± n-2 n-j

Formulas for higher derivatives using backward differences are readily

7
available

.

Writing the above formulas in a matrix form results in the follow-

ing matrices with an accuracy of the order of the sample period.
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4 =

1

-1 1

(i) -1 1

-1 1

*] (4-81)

E] * (~L)

1

-2

1

]

1

1

-2

• •

L

*1 (4-82)

The matrices with an accuracy of the order of the square of the sample

period are*

I = £)

3

=4

4

3

-4

4

3

4

A o o o

o • •

E] (4-83)

'«] Hi)

2

5 2

4 -5 2

•1 4 -5 2

-1 4 -5 2

E (4-84)

4-6 Analysis of Continuous Control Systems

The analysis of continuous control systems can be accomplished with

the use of time-domain infinite matrices. This is possible through the

introduction of a fictitious (mathematical) sampler or samplers in the
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continuous closed loop. The approach is basically that of the use of

numerical analysis methods in the solution of a differential equation c

Therefore, the accuracy of this approximation depends upon the sampling

rate of the fictitious sampler. However, the fact that it is not neces-

sary to calculate the closed-loop roots or to invert the closed-loop

response equation in order to obtain the time response, is of great im-

portance o

Consider a continuous system to be investigated, which is a single

loop system as shown in figure 4--20.

R(s) C(s)

Figure 4-20 o Continuous Feedback Control System

The approximation introduced by the fictitious sampler will depend upon'

1) The location of the fictitious sampler

2) The form of the fictitious hold circuit

3) The frequency of the sampling

Since it is important for the sampler frequency to be many times greater

than the highest frequency of the input signal to the sampler, the loca-

tion of the sampler is usually chosen to be in the feedback loop before

the H (0 as shown in figure 4.-21, This location takes advantage of the

filtering of the input signal R(s) by the plant G(s)„
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C(s)

Figure 4.-21 . Location of the Fictitious Sampler

The fictitious hold network is present in order to reconstruct the

continuous signal from the sampled signal. In actual sampled-data sys-

tems a zero-order hold is usually used for its practical realizability

and for stability considerations. However, for a fictitious hold the

possibility of straight line and parabolic approximations should be con-

sidered. Consider a straight line approximation hold which can be

achieved by a triangular hold circuit which has a transfer function I

.2

Ws)

s 2T

The approximation of a time function is shown in figure 4.-22. This hold

is not physically realizable , but is very useful for mathematical appro-

ximations
,

f(t)

time

Figure 4-22. The Approximation of A Time Function
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The sampling frequency determines the accuracy of the mathematical

approximation and must be balanced by the amount of calculation that will

be acceptable to the investigator. As the sampling period approaches

zero 9 the inaccuracy is approaching zero, but the number of calculations

rapidly approaches infinity. Fortunately, it has been determined experi-

mentally that there exists a reasonable sampling rate for closed loop

systems which yields less than 5% error in approximation For a type I,

second order system, this approximation holds when the sampling frequency

is ten times the magnitude of the pole of the plant G(s). As an example,

for a plant with a transfer function'

K

the sampling frequency should be 10 radians per second or the sampling

period is approximately one-half second. The calculations of previous

sections were carried out with a period of one second and a type one sys=

tern. Therefore, the number of calculations necessary to determine the

approximate response to a continuous-data system are not impractical.

The simplest method of determining the necessary sampling rate is trial

and error. One calculates a few points on the output response using a

trial sampling rate, then recalculates these points using twice the

sampling rate. If there is a neglible change in the results, then the

former rate was sufficient for the desired accuracy.

This method of approximation may be used on non-linear or time-

varying systems and therefore all the previously discussed methods of

analysis will apply.
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CHAPTER 5

INTRODUCTION TO THE DESIGN OF CLOSED LOOP CONTROL SYSTEMS

5-1 „ Introduction

The method of time-domain infinite matrices may be used success-

fully for design of closed loop control systems. The design or develop-

ment of control systems for a specific application is a practical pro-

blem of great importance . The designer may readily apply the analysis

methods of the previous chapter to the design problem. They are used

to evaluate the performance of the system under the specified operating

conditions. Also, with the aid of experience in calculating the response

directly in the time-domain, the designer may determine what system

parameters must be adjusted and in what manner.

Given the basic specifications of the system and the performance

requirements, the designer often must determine a compromise between

conflicting requirements. In the design of closed loop continuous sys-

tems, many designers rely on the open and closed loop frequency response

curves of the system to indicate the performance of the system. These

frequency response techniques are not very useful in sampled-data sys-

tems . Correlation of the time response of the system with the frequency

response is not readily achieved since a transformation of the z varia-

ble, into a new complex frequency variable w, is necessary to map the

unit circle of the z-plane into the entire left half of the w plane.

Therefore, the use of frequency response characteristics, such as the

height and frequency of the resonant peak, and the bandwidth, is very

limited. Design by use of the root locus method in the z-plane is

limited since l) the design only considers the response at the sampling
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instants, and the intersampling response may be wholly unacceptable,,

2) Correlation theorems between the time domain and the z-plane are

accurate only under certain conditions.

The time domain performance indices such as rise time , settling

time, ov^r-shoot, and number of oscillations are readily applied to

sarapled-data systems using the time domain matrix method. Furthermore,

this method allows one to design directly in the time domain and deter-

mine the compensator necessary for the specific application,, This method

of design of a digital compensator shall be discussed in chapter 7.

For the design of continuous systems, the designer has all the

standard techniques at his disposal for the selection of a system adjust-

ment or compensator. The methods of Bode, Nichol, and the use of the

root locus all may be applied in the design of the continuous system.

Then, the sampled data approximation may be introduced and the design

evaluated directly in the time domain by means of the time domain matrix

method. Therefore, all the background of previous determined theory and

methods will apply profitably. The designer may use these techniques

to determine the type and location of the compensator, and the parameter

values

The designer may determine the necessary compensator directly in

the time domain by use of the digital compensator design technique dis-

cussed in Chapter 7. If the system is a continuous system approximated

by a sampled-data system, the digital compensator may be converted to a

continuous compensator by time domain network synthesis techniques.

In addition to these design problems, one may consider the design

of adaptive systems. Due to the great interest of these systems, they
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are reserved for discussion in Chapter 6. This chapter shall be con-

cerned with the use of standard design techniques and the use of time

domain matrices to design various typos of control systems such as non-

linear and time varying systems.

5-2 o The Design of A System Utilizing Time Varying Gain Compensation

.

Consider the design of a closed-loop, unity feedback sampled-data

system as shown in figure 5-1 • The basic design steps are„

R(s) .>- E(.)/
Hold Plant

G(s)

C(s)

V
1

Figure 5-1 e Unity Feedback Sampled-Data Control System

(1) Determine the response for the given system G(s) and compare

with the required performance specifications.

(2) If the performance is not satisfactory, adjust the gain or

choose another plant if possible . Otherwise , introduce a compensating

element or block in the closed-loop. Choose the compensating component

on the basis of factors such as design criteria and design experience

and the time response obtained for the uncompensated system.

(3) Evaluate the compensated system response and readjust the sys-

tem parameters if necessary.

Li this section it shall be assumed that 1) and 2) have been accom-

plished and it has been decided to attempt to compensate using a time-
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varying amplifier in the forward transmission path as shown in figure

5-2. The variation of the gain must be chosen to provide the desired

output response performance. Changing the gain of the amplifier does

not alter the system dynamics and therefore the achievable results are

limited. The designer may alter the response, but it is only possible

to compromise between desired performance indexes. For example, it is

possible to reduce the rise time, but only with a resulting increasing

maximum overshoot.

R(s) Y (s)̂
. Hold — Amplifier

A(t)
Plant
G(s)

(He)

f^
i

Figure 5-2. The Compensated Control System

An example will best illustrate the possibilities. Consider a sys-

tem with a transfer function of

G(s) = (5-Ds(s +1

and a zero order hold and sampling period of one second. The input sig-

nal for this example will be a unit step. Then the uncompensated output

at the sampling instants is found to be I

G E C

c] -

1

o3679 .6321 .3679
.7675 ,000 1.00
.9145 -.400 1.40
.9685 -.400 1.40
.9853 -.150 1.15
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Therefore, the uncompensated system has a rise time of two seconds and

an overshoot of greater than 40^ occurring between the third and fourth

sample o If the specifications call for a maximum overshoot of 30% and a

rise time less than four seconds, the required response can be achieved

with a time-varying gain The designer learns, from the experience of

calculating the response directly in the time domain, that the first two

error samples largely determine the magnitude of the maximum overshoot

Therefore, the designer choses an amplifier with a gain of one-half at

the first two samples, and a gain of one thereafter This amplifier can

be practically realized by constructing an amplifier which switches to a

gain of 5 when a step input is applied, and switches to a gain of 1.0

after two seconds ( n = 2). This system will give a more desirable res-

ponse than simply lowering the gain to one-half for all time. This fact

shall be verified later in this section. Calculating the compensated

response one obtains*

0] = [»] W E] = [G] P] (5-3)

and therefore

.5 • •
"

1

.3679 .5 .81606

.7675 1 .

c] = .9H5 1 .

.9685 . e

.9884 .
L. mm

"
I

'
.5 1

.3679 .4080 .1839

.7675 .4662 .5338

•

.9145

.9685

.9884

.9957

.0581

-.2365
-.2733

.9419
1.2365
1.2733
1.1238

(5-4)

(5-5)
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The intersample response is found as follows
*

C(m)] =[G(m)] P] =

.10653 .5 .0533

.6166 .4080 .3517

.8590 .4662 = .7307

.9481 .0581 1.1817

.9809 -.2365 1.2884

.9930 -.2733 1.2137

(5-6)

It can be seen that the maximum overshoot is about 29 k for the compensated

system and the rise time is 3.15 seconds,, The response of the uncompen-

sated, compensated, and the system with a gain of one-half for all time

are shown on figure 5-3. A comparison of the rise time and maximum over-

shoot is given in table 5-1.

System

Uncompensated (Gain = l)

Time-varying Gain

Gain = .5 for all time

Rise Time
(seconds)

2.0

3.15

3.70

Maximum Overshoot
(Percent)

45

29

15

Further discussion of the application of the time domain matrix method

to the design of control systems is presented in the next section.

j

5-3. Application of the Time Domain Matrix Method to the Design of

Various Types of Control Systems.

In this section it is intended to show the great scope of possibi-

lities of design of various types of control systems using the time-domain

matrix method.

A) Single Loop Linear Sampled-Data Control System

When the preliminary analysis of a linear sampled data system reveals

that the overall transient performance is inadequate, compensation techni=

ques must be employed in order to improve the system performance . For

a single loop system, the simplest and most direct step is to change the
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system gain Usually, however, this adjustment alone is not sufficient

to satisfy the design requirements. Therefore, it is necessary to in-

sert a compensating network in the system in order to achieve the desired

response . This compensating network may be cascaded in the forward or

feedback channel or inserted as a minor feedback or feedforward loop

The sampling process in the control loop complicates the choice of the

location for the compensating network. For error sampled systems, it

is found advantageous to operate on the sampled error by a cascade com-

pensator as shown in figure 5-4-.

R(s)
=f <•) /•

"

Hold Coirrnprca +.1 ner Controlled
System
0(e)

c(s)

_J
<*,« Network

c

'

n/..1 sn \o * —

Figure 5-4-. Continuous-Data Compensation

This compensator operates on the sampled and held error and yields con-

tinuous data information to the controlled system. Furthermore* for the

output response one may write"

C] = [G
h
G
c
G] e] (5-7)

where I G.G G is the system matrix for G. (s )G (s)G(s). Investigation

of this form of compensation reveals that it is difficult to stabilize

a sampled-data control system containing higher-order integration with

the use of linear continuous-data networks. The stabilization and com-

pensation of sampled-data systems by means of continuous cascade



compensation is further complicated by the calculations necessary in

order to find the matrix for the overall system for every trial compen=

sator„ This is not a disadvantage peculiar to this method, but also

results when using the z-transform 9 The use of a continuous-data net-

work for compensation is not to be excluded „ These networks are simple

R-C networks coupled with amplifiers and are easy to realize „ Further-

more, for simple systems, they are sufficient and therefore probably

desirable „ However, for more complex systems it is often necessary to

evaluate many trials in order to arrive at a reasonable compensation

design.

Therefore, it often becomes desirable to use a sampled-data network

as a cascade compensator as shown in figure 5-5. Then, for the output

response one obtains
°

R(sL E(s)
Compensating

Network
D(z)

Figure 5-5 «, The Digital Compensator in A Sampled-Data System

°]
=

l>h
G
l [°] E

l = [Gh
G
l

p
] (5-8)

where p] = [d] e] (5-9)

Therefore, the sampled input to the controlled system is the output of

the compensating device which is a result of a transformation of the

error sequence. As was stated in Chapter 3, there is always a [d] which
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will transform a diverging sequence EJ into a stable, converging se-

quence P] „ Furthermore, the design of [d] is relatively easier than

the design of a continuous data compensator since the rG.GJ matrix need

be evaluated only once , The sampled-data compensating network can be

realized as a program of a digital computer or more simply as a data-

processing network , It has been shown, that a digital processing unit

g
may be realized by operational amplifiers and electronic samplers

Therefore , a digital compensator may be part of a large computer program

for missile control, or simply a controller for a DC motor The realiza-

bility and the synthesis of digital compensators shall be discussed

further in Chapter 7„

B) Multiloop Sampled-Data Control Systems,

The design of multiloop sampled-data control systems is more com-

plex and difficult than design of single loop control system,, The use

of linear continuous data compensation networks has the same limitations

as discussed in- the previous paragraph. Therefore, the sampled-data

compensating network is used more often. A fundamental problem in the

design of multiloop systems is the selection of the location of the com-

pensators „ This problem is difficult to solve in continuous systems as

it is in sampled-data systems . One advantage of the time domain matrix

method is the availability, in the calculations, of the response at

intermediate points throughout the multiloops, wherever a sampler exists,

Knowledge of each response allows the designer to use this information

to adjust the parameters of the compensator. If there is only one

sampler present in the multiloop system, then this advantage is not pre-

sent. If a pulsed-data network is used as the compensator, then often
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feedforward control wil] aid in the elimination of disturbance inputs u

Consider figure 5-6 which s>iows a feedback control system with a distur=

bance input and feedforward control. Then the output due to the input

signal C, and that due to the disturbance signal C can be considered

separately as
°

.. —

Du 2

u\8)
i

R(s) E(s)
D, -X-^p%: Hold -^- G, (b)

C(s)
*

N
G (s )=G

?
<k (s)

(5=10)

(5-11)

Figure 5-6. Control System with A. Disturbance Input

C] = [G] P]

C
ul ^W+CDfltG]}-

1
TO]

where p] = [d 2] r] + [d,] r]

Then, the output due to the reference may be written as
°

o] =[g]{[d,] [D Jl]([i]*[n,Ito]}-
1

R] (5-12)

Therefore, the output due to the disturbance may be minimized by means

of D, , and the digital network D 2 used to design the system for the out-

put performance with respect to the signal input. Multiloop systems will

be considered further in the next chapter, especially the conditional

feedback system.

C ) Nonlinear Control Systems

.

The techniques used in analyzing nonlinear systems as presented in

67



the previous chapter are very useful in the design of nonlinear systems

The nonlinear component is considered as a time-varying amplifier in the

system where the gain is dependent upon the input magnitude . The design

of linear as well as nonlinear compensators for the nonlinear systems

is possible Also it is usually an advantage to have available the sig-

nal magnitude at various intermediate points in the system

The first method of compensation to be considered would be the in-

sertion of a linear compensating network at a point in the system located

before the nonlinear element „ If this proved to be unsatisfactory, then

a rulsed "lata network could be inserted before the nonlinearity in the

loop. Also, since the nonlinearity is considered as a magnitude sensi-

tive device and treated as a time varving amplifier, an interesting possi=

bility for compensation would be the use of a time-varying amplifier with

essentially complementary characteristics to that of the nonlinear device

If the amplifier and the nonlinear element were cascaded, then the magni-

tude of the signal into the nonlinear element could be kept within the

linear region of the component. In the case where the nonlinear element

has storage of energy, this could not be achieved by a time-varying am-

plifier. Therefore, in most cases a pulsed-data network is used as a

compensator and designed on the basis of performance criteria and evalua=

tion.

The design of a nonlinear system usually involves some trial and

error steps in order to evaluate effective design changes. The design

of a relay servo, for example, may require a number of trials in order

to arrive at the proper output voltage on the relay and acceptable values

of dead-zone and hysteresis s The use of a nonlinear element as a com-

pensator also may require many design trials in order to arrive at an
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acceptable design for all the desired criteria. If there is a reason for

using a nonlinear device as a compensator, the calculations are as easily

accomplished as for the inherently nonlinear system. Furthermore > the

shape of the nonlinearity necessary to give the required output response

may be determined. There are no general restrictions imposed on the de-

sign of nonlinear compensators . This is a distinct advantage over pre-

sent methods of design of nonlinear compensators , The method may be

applied to the solution of systems with multiple nonlinearities with the

same ease

D) Continuous Data Control System.

The design of continuous data control systems may be achieved by

the use of the time domain matrix by the introduction of the approxima-

tion of the fictitious sampler and hold. The approximation and the atten-

dant error is discussed in section 4-6. Basically, the sampling rate

must be sufficient and a fictitious hold introduced in order to produce

a continuous input to the controlled system. A continuous-data compen=

sation network may be selected by any of the standard design techniques

and then introduced into the feedforward channel and its compensating

effects evaluated by the time domain matrix method . A single loop con-

tinuous system with fictitious sampler and hold is shown in Figure 5-?o

The fictitious sampler and hold are usually inserted in the feedback

loop in order to take advantage of the filtering action of the forward

channel on the input signal. The use of lead and lag networks as com-

pensating filters may be investigated directly in the time domain by this

method.

If it proves desirable to investigate the use of a compensator in
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Figure 5-7 „ Continuous Control System With Fictitious Sampling,,

the feedback channel , the introduction of a second fictitious sampler

and hold will allow for compensation by a D matrix in the matrix equa=

tions. Then the discrete compensator D found to be desirable may be

approximated by a continuous network in the time domain. By techniques

of approximation in the time domain a network can be synthesized to

09
yield a prescribed output for a prescribed input. The time necessary

for the calculation of the digital compensator and evaluation of a suita=

ble continuous network may be considerably less than that for a design

carried out for the continuous data system by standard s-plane or fre-

quency response techniques.

E) Time-Varying Sampled Data Control Systems.

The design of time varying sampled-data control systems is possible

with the use of the method of time domain matrices. The standard me=

thods of analysis and design for non-time-varying systems, that is the

z-transform, and frequency response methods, are not applicable „ The

time varying system is represented by the G(n,k) matrix and allows the

general design procedures of the preceding paragraphs to be applied.

Furthermore, the design of a continuous iata time-varying system is
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possible through the introduction of a fictitious sampler and hold

This approach offers great possibilities to the designer, in the analy-

sis and design of systems of which the dynamics vary with some variable

An important example is the high performance jet aircraft, where the

dynamics of the aircraft vary with altitude and therefore time A com-

pensator may be introduced and a design evaluated. This compensator may

be a continuous data or sampled data network. The limitations, advan-

tages, and purposes of each type of compensator are essentially the same

as those for the non-time varying systems discussed in the pi eceding

paragraphs

If the variation of the time varying element is relatively large,

it often is impossible to compensate with a non-time varying compensator

In this case it is necessary to use a time varying compensator such as

a time varying amplifier, or perhaps a time varying network . The systems

of this class are often termed adaptive systems. It is useful to consi=>

der systems with time varying dynamics (poles and zeros of the system

transfer function), time varying gain, and time varying sampling rate Q

research on these concepts has been carried out. The area of adaptive

sampled-data systems shall be considered further in the next chapter

Finally, it is possible to use a time varying compensator in a non-

time varying system. For example, it is possible to compensate a sys-

tem for specified criteria b3r the use of a time varying amplifier.

This possibility was illustrated by an example in the previous section
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CHAPTER 6

THE ANALYSIS AND DESIGN OF ADAPTIVE CONTROL SYSTEM

6-1. Introduction

An important class of control systems are those for which para-

meter values of the system change as functions of some independent varia-

ble during the period of operation. An important example is the change

in the system dynamics of a supersonic aircraft with altitude Another

example is that of a chemical process where a parameter may change as

a function of the ambient temperature. Usually, a fixed invariable com-

pensator will be adequate over a restricted range of operating conditions,

If the system is expected to operate outside this region, then some other-

form of compensation is necessary. The compensator often used, varies

or adapts to the changed operating conditions.

At the present time there is no widely accepted fundamental defini-

tion of an adaptive system, although several are advanced in the litera-

11 12 13
ture,' ' ' • A system which changes or adapts a parameter of the con-

trolled system to drive the actual performance towards the desired per-

formance shall be considered adaptive. The two basic segments of an

adaptive system are l) the identification of the dynamics of the con-

trolled system, directly or by means of a related variable £ 2) the

generation of an appropriate actuating signal for the controlled system

Identification of the dynamics may be accomplished , for example , by

measuring the impulse response, by measuring the response to white noise
<,

or measuring a related variable such as the output to a known input

signal. The adaptive actuator may be a nonlinear, time-varying, or a

digital device. For complex systems, it is common to use a digital
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computer in which case the system must be treated as a sampled-data

system,

6-2 . The Use of A Itodel in an Adaptive System.

One philosophy of design of adaptive systems incorporates the use

of a system model in the input channel as shown in figure 6-1 „ The

output of the model is then compared with the actual output and the

error used to drive the system towards the desired output. Another form

of a closed loop system using a model is shown in figure 6-2 This con-

figuration has been called a conditional feedback system, the feedback

of a control signal being conditional on the result of the error between

the desired and actual system output. The necessary conditions for the

desired performance are determined by the model and the Adaptive compu-

ter provides the actuating signal „ The model may be a physical simula-

tion or analog of the process or a mathematical abstraction manifested

as a set of equations stored in a computer. The Adaptive computer is

often a special purpose digital computer, but may be a nonlinear or time

varying controller.

The application of time domain matrix methods to the analysis and

design of adaptive systems follows the methods discussed in the previous

chapters The investigation of a sampled-data conditional feedback

system shall illustrate the, basic approach. Consider a basic system

where Gi
= 1, the adaptive computer is a direct connection, and the

feedback H(s) = 2, as shown in figure 6-3. The sampling period will be

one second and the plant is a type I, 2 order system for which the

system matrix is set forth in Appendix A. The goal of the design shall

be to obtain a system output response for shifting system dynamics which
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Figure 6-3. A Sampled-Data Conditional Feedback System

approaches the output response for the desired system. The desired res-

ponse is present in the loop as the output of the model, X(s) This

desired response is compared with the actual and the difference used

to drive the output towards the desired response. For example , if

a = 1 for the unvaried system, then the output for a step input would be^

c] = Column {o, .3679, 1.00, 1.40, 1.40, 1.15, .?94, 798 9
° • »]

where \C\ is the transposed column vector. This response is shown on

figure 6-4 as curve number 1. Furthermore, if the varying system mani-

fests its variation in a shift in the pole a, over the range a s
o 50 to

a = 2.0, the simple single loop system output would vary in the limit

as shown in figure 6-4 as curve 2 and 3. For the conditional feedback

system of figure 6-3, one obtains the following matrix equations"

E] = R] + X] - 2Cj (6-1)

C] = [G] El (6=2)

Then, one may write equation 6-1 as '.
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E0-

1 - 2C

1.3679 - 2C,

2.000 - 2C 2

2.40 - 2C 3 fo_3 j

2.40 - 2C^

2 15 - 2C-
5

1.294 - 2C
6

1.798 - 2C
?

For the system with the model in the limit at a = 2.0, one obtains'

E

0] =

1

.2838 1.226

.4708 .3626

.4961 .0478

,4995 -.1838

.500 -.631

.500 -.3064

.2838

.8187

1.1761

1.2919

1.2625

1.0522

.843

This output response for the system with the model is shown as curve

number 4 on figure 6-4 and the response at the limit for the pole a = o 50

is shown as curve number 5. It can be seen, that the system with the

model gives a response more closely approximating the desired than would

the uncompensated system for either the limiting pole magnitude of a = „50

or a = 2.0. The simple conditional feedback system illustrated here,

yields a definite advantage for varying parameter systems. If it was

necessary to duplicate the desired response more perfectly, it would be

necessary to use an adaptive controller in the feedback loop as shown in

figure 6-2. In a sampled data system this would usually be a digital
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network or D block. The design of digital networks shall be discussed

in the next chapter

6-3 An Adaptive Gain System.

One possible method of adaption for a system is to set a parameter

of the closed loop system dependent on a variable related to a perfor-

mance index „ One proposal advanced in the literature considers the varia=

12
tion of a compensator pole based on a measured figure of merit „ The

calculation of the figure of merit, such as ITAE (integrated Product of

Time and Absolute Error), is usually accomplished by a special purpose

computer and consideration of the signals as sampled-data usually follows,

One form of an adaptive system would use the magnitude of the

sampled error to control the gain of the system. There is no signal

storage involved in a simple gain adjustment system and therefore the

compensation improvement is limited. However, this system illustrates

the possibilities of this approach. Consider the system shown in figure

6-5 The input shall be considered a step function, and the amplifier

gain a function of the error. Then, for the equations or the system

one obtains I

-/ y_ 1 T=i
R(s)- s

o^-

1

1 Hold — Amplifier
A = f (E )

F(s^ Controlled
System

G(s) = k
s (

s '-:

)

Figure 6-5. Adaptive System With A Variable Gain
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-]
= R

a,

]- «] (6-5)

o

a.

a 5 • •

= function of the sampled error

p] = [a] e] (6-6)

C] = [g] P] (6-7)

For a system where K = 1 and the amplifier gain is directly proportional

to the magnitude of the error with a minimum gain of .20, one obtains"

p]=

1

.632 c

.20 c

.2277

.3283
.312

.243 °

1

.6321

.0854
=.2277
-.3283
-.312
-.243

.20 ! -.1684

j
-.1135j

I

.40

.0171

-.0519
= .1078
-.0973
-.059
-.0337
-.0227

(6-8)

and

1

o3679 .40

.7675 .0171

.9145 -.0519

.9685 -.1078

.9884 -.0973

.9957 -.059

.998/ -.0337

.9994 -.0227

« m

.367

.9147
.7-L^_> - .v-' -U-7 1,228

C] = .9685 -.1078 = 1.328
1.312
1.242
1.168

1.113
1.076

The response for the uncompensated system is curve 1 on figure 6-6,

while the compensated response is curve 2. The compensated system has

less overshoots, shorter settling time and also a somewhat greater rise

time. For this type of system, the designer has the choice of the mini-

mum gain and the function of error that controls the gain of the ampli-

fier. If the pole of the plant is expected to change within the range
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a = 1 to a = ,5, then the designer may evaluate the response at a = 5

for the compensated system. The response for the compensated system is

shown on figure 6-6 as curve 3 and the uncompensated response is shown

as curve A, It can be seen that, again, the compensated system will

have a smaller overshoot, less settling time and approximately the same

rise time as the uncompensated system.

The change in the output response effected by this compensation

scheme may not be satisfactory for many purposes , It is not the intent

of this chapter to treat exhaustively adaptive systems, but rather to

illustrate the application of the time domain matrix method to adaptive

systems . Another powerful approach would involve relating the gain of

the amplifier to the derivative of the error. The derivative of the

error can be generated from the error samr>le magnitudes by the method

of backward differences. The use of the error derivatives to control

the gain or any other system parameter will yield a more desirable res=

ponse than that using the error magnitude. A system which uses the

error derivative to control the sampling rate is discussed in the next

section.

6-4-. An Adaptive Samrling Frequency System

Sampled-data control systems usually have fixed sampling frequen-

cies which must be set high enough to give satisfactory performance for

all anticipated conditions. It is useful to reduce the sampling fre-

quency whenever possible in order to extend component life and allow

time sharing of the digital components, particularly the digital compu-

ters. It is usually desired to have an efficient sampler. That is?

over a given time interval, fewer samples are needed with the variable
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frequency system than with a fixed frequency system while maintaining

essentially the same response characteriftics. A study of an adaptive

system which varies the sampling frequency by measuring a system para-

10
meter has been accomplished. It was shown experimentally , that a samp-

ler whose sampling period is controlled by the absolute value of the

first derivative of the error signal will be a more efficient sampler

than a fixed frequency sampler.

Analytical methods of investigation were not available and in order

to compare the experimental results with calculated results, it was neces-

sary to develop a method of investigating sampled systems with varying

sampling rates Fortunately, the time domain matrix method with a time

varying system matrix may be extended to investigation of variable fre-

quency sampling,, Consider the system shown in figure 6-7 The sampling

frequency is controlled by a function of the error, and could be con-

trolled by a function of the sampled error if this was the available

error signal as in a radar system.

R(s)

Sampling
Frequency
Controller

t
;

Hold

Figure 6-7 . Variable Sampling Rate System
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As was shown in the previous section, the derivatives of the error may

be obtained from the sampled error by backward difference formulas The

output response may be written as
*

C(k)] = |_G(n,k)] E(k)] (6-10)

i/here I G(njk)J is the time varying system matrix

and C(k)J and E(k)J are time varying column matrices. That is ? with

the period of sampling changing with time, one cannot correctly writ©

C] = {c ,C, ,C 2 ,C 3
,C^ . . .

]
(6-11)

where the output samples are equally spaced T seconds apart 9 i/tfhen the

sampling rate changes , samples occur at various times and in this case

k equals the number of seconds elapsed from the time origin

As an example, consider a system with two values of sampling period v

T = 1 second and T = 2 seconds. Obviously, it is more efficient to

have a sampling period of two seconds when the error is changing slowly

therefore the first derivative of the error may be used to switch the

sampling period from one second to two seconds. Consider a step input

and a system with a transfer function!

G(s) = jfa (6-12)

Furthermore, for illustration, the sampling rate shall be considered

to switch at the first sample when the derivative of the error is zero,

which is at the first overshoot peak. Considering line A of table 6-1

which is the response for this system with T = 1 second for all time*

one can expect the same values of response for the first three seconds e

At the output peak overshoot the sampling period switches to T - 2

seconds and one obtains for equation 6-10

1
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«].

• • •

g(l,0)

g(2,0) g(2,l)

g(3 > 0) g(3,l) g(3,2l

g(5 9 0) g(5,l) g(5,2) g(5,3)
g(7,0) g(7,l> g(7,2) g(7,3) g(7,5)

e(0)
e(l)
e(2)
e(3)
e(5)
e(7)
e(9)

(6-13)

Therefore 9 using the values for the g piven in appendix A for T = 1

second up to n - 3 and then for T = 2 seconds one obtains the following <,

where the star indicates the T = 2 condition"

00]

o o

3679
.7675 .3679

.9K5 .7675 .3679 „

.9884 .9685 .9145 1.1353

.9984 .9957 .9884 1.8830* 1.1353
,9998 .9994 .9984 1.9842* 1.8830* 1.1353"

1.0
.6321
000

-.400"
-.1465*

*.2917*

(6-14)

Therefore , the output response is

C(0) =

C(l) = .3679

1 0(2) = 1.000
00 = C(3) - 1.400

J
0(5) = 1.1465
C(7) = .7083
C(9) = .8931

It can be seen that there will be fewer samples necessary for this varia-

ble frequency and it is therefore more efficient. The response of the

variable sampling frequency system is given in table 6-1 ? and it is essen-

tially the same as the fixed frequency system with respect to overshoot
$>

time (seconds

)

1 2 3 5 7 9

A Output-Fixed T .368 1.00 1.40 1.15 .802 .994

B Output-Variable

T

.368 1.00 1.40 1.15 .708 ."93

Table 6-1. Response With Fixed and Variable Sampling Period
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rise time, and settling time. This subject is treated further in re-

ference 10, where it was shown experimentally that a reduction in the

number of samples of twenty-five to fifty percent may be accomplished

6-5. The Use of the Time-Domain Matrix for Analysis and Design of Adap-

tive Systems „

Adaptive systems may be treated as time-varying control systems in

almost all cases. Therefore, continuous or sampled-data adaptive sys-

tems may be profitably investigated by the use of time domain matrix

methods. In fact, there may be no other method than can be used except

solution by numerical methods ultilizing the digital computer.

One of the necessary steps in the adaptive process is the identi-

fication of the system, that is, the impulse response or the transfer

function, ./ith the use of time domain matrices it is possible to de-

termine the pulse response when the system is at rest as outlined in

chapter two„ If the system is not at rest at any time, then the iden-

13
tification of the dynamics must be accomplished by some other means '

k nredictor or learning system may be designed by the use of back-

ward and forward differences , The evaluation of a forward difference

equation allows the system to predict its next few values and adjust

for optimum conditions , For example , the Gregory-Newton forward inter-

polation formula may be programmed in a digital network for the pre-

dicted output as
°

C
n+1

=
^n - 3c

n-l
+ c

n-2 ^6"16 ^

using the present value and two past values requiring two storage ele-

ments. The accuracy of prediction increases w^ th an increase in the

number of storage elements and if three rast values were to be used
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in the calculation, then the formula to be programmed would be°

c .,
= 4-c -6c ,+Ac ^ - c _ (6-17)

n+1 n n-1 n-2 n-3

On the basis of the predicted value of the output response, the adap-

tive system may adjust a system parameter or add a signal to drive the

actual output towards the desired output,, The accuracy of this method

improves with an increasing sampling frequency as would be expected

This adaptive system using equation 6-16 and 6-17 may be implemented

by the use of digital logic networks or operational amplifiers and el-

ectronic samplers Equations 6-16 and 6-17 may be written in matrix

form to aid in the calculation of the predicted values

.

The use of a special or general purpose computer in an adaptive

system can be investigated in general by the method of time domain

matrices . One adaptive system uses the integrated Product of Time

and Absolute Error as the figure of merit and obtains the magnitude

of this figure of merit by calculations on the sampled signals „ These

calculations are accomplished by a programmed numerical method and can

be written in matrix form. Furthermore, the method of steepest des-

cent may also be calculated by the matrix approach. In general , the

use of numerical methods in the calculation of the figure of merit and

adjustment necessary in adaptive systems may readily be accomplished

through the use of time domain matrix methods

.
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CTUPTEP. 7

THE DESIGN 07 DISCRETE-DVn COMPENSATORS

7-1 . Introd uc t ion

In the design of control systems it is desired to satisfy a set

of specifications and response requirements. In many cases, this re-

quires the introduction of a compensator in the control loop. The de-

sign process may be carried out by the use of the time domain matrix

for sampled-data systems and for continuous data systems by the intro-

duction of the fictitious sampler.

The introduction of a discrete-data compensator in the control

loop will allow the designer to achieve a required output response.

The compensator operates on the discrete-data input and yields a dis-

crete-data output. Tli is compensator may be realized by a special or

general purpose digital computer, a logic network, or a circuit com-

posed of operational amplifiers and electronic samplers

.

The nrocess to be controlled is usually a continuous process and

therefore it is necessary to investigate the response of the system

between sampling instants while carrying out the design. Design by

z plane or root locus methods does not include this possibility and

often results in unsatisfactory intersample system response . The use

of time domain design techniques has two basic advantages*

1; the design is carried out directly in the time domain

2) the intersample response is accounted for in the design.

A sampled data system with a discrete data compensator is shown

in figure 7-1. The D (s) is the sampled data transfer function of

the compensator.



Figure 7-1, A Sampled-Data System with A Discrete-Data Compensator.

7-?, The Physical Realizability of Discrete-Data Compensators.

Trie digital compensator operates on the input signal and yields

a transformed discrete tine sequence output. The z-transform equation

for this operation may be written for figure 7-1 as*

P(z) = D(z)E(z) (7-1)

Then, it can be seen that this operation may be written as a matrix

equation as follows *.

p] = [d] e] (7-2)

where

[Dj =

*

d« d r

d,

o • .

when the compensator is time invariant.

is time varying, then one may write*

If the digital compensator

p] = [D(n,k)j E]

where

SB



[D(n,k)] =

d(0,0)

d(l,C) d(l,l)

d(2,0)
•

a (2,1) d(2,2). • •

•

•

•

•

•

It is necessary to determine what restrictions are imposed upon the D

matrix by the requirement of physical realizability

.

A system is said to be physically realizable , if the output signal

of the system does not depend upon future information of the input sig-

nal . In the matrix equation 7-1, this is expressed as the requirement

that all the elements of the D rratrix above the main diagonal be zero.

The truth of this statement can be seen from the following matrix equa-

tion.

P] .

d d
a

d,

d,
a

E] (7-3)

Expanding the second row (n = l), one obtains*

p, = d,e + doe, + dae 2 (7-4)

Therefore, p, would depend upon the future input signal e 2 which is not

available at the second sampl5ng instant (n = l). Therefore, it is

necessary for d =0, and all elements above the main diagonal to be
a

equal to zero.

Furthermore, for a stable compensator, it is necessary for'

d
limit

n -» oo

n+1
5

s< 1 (7-5)

If this limit is equal to one then the D block is a steady-state oscil*

lator,
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The discrete data compensators may be realized by!

1) Digital Programming

2) Delay Line Networks

3) Discrete-data RC networks

4.) Analog Computer Elements.

7-3. The Sensitivity Matrix of the Sampled Data System with A Discrete

Compensator

.

A logical quantative measure of the control property of a feedback

system is the sensitivity which is defined as the relative change in

the system transfer function T, divided by the relative change in the

plant G. In the z transform notation, this may be expressed as*

^or figure 7-1, one obtains!

«•> iIWm (7-7>

g^Id'ST
(7"8)

This system possesses two degrees of freedom, which permits indepen-

dent realization of T and S by means of the G and D components. Equa-

tions 7-7 and 7-8 may be written in matrix form as
°

[«] -[0] [Pl{[ll*M [»]]"* (7-9)

[s] -{[1] . [gHd]}-
1

Then the sensitivity specifications fix the sensitivity matrix and

therefore

,

90
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[C][D] = [S]"
1

-[I] (7-10)

The required output specifications fix the T matrix and since
J

[t]=[g|[d]|s] (7-,.

one obtains *

[g] =[t] [s]"
1
^]

-1
(7-.

Therefore, equations 1-17. and 7-10 may be used to obtain the required

system matrices G and D. If the plant G is fixed by power and load

considerations, then a new compensator, D, . must be introduced in the

control loop.

The sensitivity of an uncompensated and the compensated system is

shown in figure 7-2. The uncompensated system is a type one, second

order system with a zero order hold . The compensation reduces the over-

shoot for a step input, to half the uncompensated value while reducing

the rise time by half a sampling period. The magnitude of the sensiti-

vity response of figure 7-2 is greatest during the first three sampling

periods and settles out most rapidly for the compensated system.

The use of the sensitivity matrix or response, aids the designer

in understanding the effects of compensation by a discrete data network

Furthermore, the variation of the system response with a system changing

with time may be studied for -adaptive systems by considering the sensi-

tivity.

7-4-. Design of a Closed Loop Discrete Compensator by Jfeans of An Open

Loop Discrete Compensator.

For the single closed loop samrled-data system shown in figure

7-3» a design of a discrete compensator is usually required in order
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R(s) -v S(s) / D / P(s)
G(s)

?

7-3. Error Samoled System with A Discrete Compensator

for the system to meet the necessary specifications. The output res-

ponse at the sampling instants may be written in a time domain matrix

equation as
*

=]=[»]W(M hm}-1
»] (7-13)

This complex relation involving D causes the investigator to consider

2
the design of an open loop compensator as shown in figure 7-4.

R(s) C(s)

7-4. An Open Loop Discrete Compensator

Then, the matrix equation for the sampled output response may be

written as \

0] =
[ J

[D ] R] (7-U)

If an open loop compensator may be determined , then a closed loop com-

pensator may be found. To find the relation between the open and closed

loop compensator, equations 7-13 and 7-1 h are equated and solved for D
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yielding*.

[D] = [D ]{[l] -[D ][0]}^ (7-15)

It can be seen that this method takes the plant G into consideration in

the determination of the closed loop compensator.

An example wil] illustrate the design procedure. Consider a sys-

tem with a transfer function G(s) = -, a zero order hold,
s(s+l)

and a sampling period of one second. A design of a compensator shall

be accomplished for the best compromise for a step and ramp input. The

open loop compensator is chosen to yield a system output with a final

value of one for a step input. Then, one has"

D (z) = (1 ^z'1
) (1 - z"

1
) ( y^ )

= (

-

IVd ) (1 + (d< - 1)a
*"1

- dlZ
"
?) (7_16)

This compensator will have a minimum complexity since the use of further

-2
delays such as f^

2
z ', increases the complexity of the closed loop com-

pensator. The final value in the time domain, for a step input, yields

a value of unity for the system output as expected . The final value

theorem is written and evaluated as follows *.

[G] [d ] Rj (7-17)
limit
t-» oo

pi _ nm
C
J " t-cc

limit
t -* GO

gi

limit
n-% cc

'n S+l

gn +l * d
< gn

1+d,

1 . •

(d
1
-1)1

-d, (d,-l) -1

-d, (d,-l)

1+d,
L— = 1
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The output response for the sampling instants may be written for a step

inriut as
'

o]- (iJt)1+d,

gl

g 2 gl °

g 3 g2 gl

1

(d,-l) 1

-d, (<W)
-d,

1

1

1 1

(<W)

= (-

• • 1

gi d,

_L„>
g 2 gl o

l+d
1

'
g3
»

g 2 gl • •

•

•
.

(7-13

Therefore, the output at the sampling Instants is*

*n
+ d

' *n-l
c =
n

n >, 1 (7-19)
1 + d,

The response between the sampling instants may be evaluated from"

C(m)] = [o(m)] [d ] r] (7-20)

Then, for half way between the sampling instants (m = 1/2^, one obtains

for the output response*

cn d/2) v
-n-1/2 + ^ gn-1

1 + d,

For a ramp input, the output response may be written as

where r] = column j 0, 1, 2, 3, 4-, " • • 7

Then , one obtains *.

c o
= c

1
= °

(7-21)

(7-22!
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'n 1 + d,
&n-2 &n-3

c = _^irl^ + g.+g_ -,+ ••••! n 2 (7-23)

The output response is then easily evaluated for the step and ramp in-

puts and the results for this example are shown on figures 7-5 and 7-6

.

The designer would be able to choose a value of d on the basis of the

specifications for a step and ramp input. In this case, as a compromises,

the designer might choose d, -• -.60. Then, the matrix for the closed

loop compensator D may be evaluated from equation 7-15. Since the sys-

tem G(s) is second order, the closed loop compensator required will be

third order.

If more control over the output response is desired by the designers,

then one may use a higher order D , For example , a higher order compen-

sator might be I

D (z) =
( 1^ +d

) (1 + d^"1
+ d 2z~

2
) (1 - z"

1
) (7-24)

With this form of compensator, a deadbeat response to a step input is

possible. In general, this method of compensation in the open loop,

gives the designer strong control over the system output response. The

method may be applied to linear sampled-data and continious systems

»

and time varying sampled-data and continuous systems.

7-5. Design of The Closed Loop Compensator By Time Domain Evaluation c

A simple method of the design of the closed loop discrete compen-

sator should not be overlooked
J
that is, the arbitrary choice of a D(z)

and an evaluation of the output response by the use of time domain ma-

trices . The evaluation of the output response between the sampling

instants avoids the possibility of hidden oscillations. The choice of
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the D(z) rr,ay be aided by all the standard z-transform techniques > and

evaluated by the time domain matrix. For the example, of the previous

section, one might choose on the basis of z -plane techniques a compen^

sator as I

„(,, = -Jfr̂ .ttttO (7.25)

Then, evaluating the output response for K = 2, d = .50 and d = .72,

as shown in figure 7-7, the designer would choose the compensator on

the basis of the specifications. It is interesting to note that for

K= 2, d = .72? one obtains

2(z - .3679!

[z * .72'
G(z) D(z) = Lj62il(^r M̂L

(7-26)

This type of compensation in the z plane, commonly called cancellation

compensation is misleading since the z-plane only accounts for the sampl-

ing instants The total response for all time may be evaluated using

the time domain matrix. If K is set equal to 2.718 and one obtains

°

G(z) D(z) = T~iT (7-27)

and the closed loop, z plane response is*

C(z) = z"
1

R(z) (7-28)

The response for this system is shown on figure 7-7 as curve number 3o

It is obvious that it is necessary to considrr the intersample response

in most design problems.

7-6. The General Characteristics of the Closed Loop Discrete Compensator,

It is worthwhile to look at the general form of the discrete compen-

sator D The compensator may be written in the z-transform as ,
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D(z) =
K(z + z, ) (z + z 2 ).

.

,z + p, j(z + p 2
,i°

K [aa+at + a 2 z * ]
, -1 . -2

1 + fy z + b 2 z

= K (l + d^"1
+ d 2 z~

2
+

The time domain matrix is written as

•]
(7-29)

[D]= K

1

di 1

d 2 d, 1

d
3

d 2 di 1

(7-30)

For a first order compensator one has
*

KCz -
D(z) =

[z + b,
(7=31)

where the zero is in the right half of the z plane , almost always the

case . Then , one obtains

°

D(z) = K (l - (a + b)z
=1

* b(a * b)z~
?

- b
2

(a + b)z"
!3

+ •><>} (7-32)

For this compensator, the matrix values are;

d, = -(a+b) , d 2
= b(a+b) , d

3
= -b

2
(a+b) , • •••• (7-33)

Therefore, if the values of d
1

and d 2 are obtained as necessary for com-

pensation,, the necessary D(z) may be realized as equation 7-31 <> If it

is necessary to specify four elements of the D matrix then the compensa-

tor must be second order. That is , if d, , d 2 d
3 , d, are specified, then

D(z) must be of the form'

K (.z-a) lz+c
D(z) = (z-a) (z»c^

(z+b) (z+e
(7-34)

The sampled impulse response of the discrete network weights the

past and rresent values of the input signal, yielding the output signal
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at the sampling instants , There are three possible sampled inpulse

response time series for a stable discrete compensator. These possi-

bilities are illustrated by figure 7-? which also lists the necessary

first order compensator and its z-plane pole and zero locations An

unstable discrete compensator occurs when b > 1 in case c , where then

the alternating series is a diverging time series

It is worthwhile to investigate further, the alternating weighting

series of the compensator of case c „ This discrete compensator would

normally be used to stabilize the system while maintaining a desired

rise and settling time. From equation 7-32 one can observe that if

(a+b) is greater in magnitude than one, the second term of the con-

verging series is greater than the constant term of one, Therefore, it

is actually possible to weigh past sampled informat.' on with a greater

value than present information. This condition may be used, although

usually to weigh past data with the greater value would have an unsta-

bilizing influence . A picture of the sampled impulse response of the

discrete compensator is useful in designing a compensator as shown in

the next section.

7-7. Time Domain Design of A Discrete Compensator

,

The design methods discussed in the previous sections depend either

on standard techniques on the z-plane or on the choice of a trial com-

pensator and evaluation in the time domain. These methods are powerful

and are the ones used predominantly in practice. However, it would be

of value to the designer if one could design the compensator directly

in the time domain, T,ro methods of compensation design in the time do-

main by the use of time domain matrices have been developed by the author
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and are presented in this section.

A. Synthesis at the Sampling Instants.

For the error compensated single loop sampled-data system shown in

figure 7-3, one may write the following time domain matrix equations'

C] = [g] p] (7-35)

P] = [D] E] (7-36)

where
EJ = R] -Gj (7-37)

Also, the equation for the response between the sampling instants may

be written as
°

C(m)] = [gW] p] (7-38)

Therefore, if the designer specifies the values of the C matrix in equa-

tion 7-35 on the basis of the required response, the values of the P

matrix may be determined. Then, with a known input R, and a specified

C matrix, the error matrix may be evaluated from equation 7-37. Since ?

P and E are then known, the required D matrix may be evaluated from

equation 7-35. It must be noted that the designer has no control over

the intersample response when using this method . When the P matrix is

found on the basis of the desired output C at the sampling instants,

the output between the sampling instants C(m) is then calculated from

equation 7-38.

Once the values of the sampled output are specified , the P matrix

may be determined from equation 7-35, or by writing*

p] =[g]""1 c] (7-39)

It is usually convenient to use equation 7-35 and avoid the inversion

of the G matrix. It is possible to specify an output response at the
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sampling instants which the compensated system will be unable to yield 9

in which case the calculated compensator, D(z), will be unrealizable

„

For most design problems, it is sufficient to find the first few ele-

ments of the D matrix and determine a D(z) compensator on this basis

from equation 7-32 or 7-34-.

An example will illustrate the procedure and the possibilities of

compensation. Consider the system of figure 7-9 which has been considered

in the previous sections. The output response of the uncompensated sys-

tem is shown as curve number 1 in figure 7-10.

R(s)=l/s

Figure 7-9. Compensated Sampled Data Control System.

It is desired to lower the rise time (for 90% of the final value)

while lowering the maximum overshoot to 10 percent. Then, on this

basis, set*

c] = column f 0, .50, 1.0, 1.10, • •

«f (7-40)

and using equation 7-35 evaluate the necessary values in the P matrix c

For the first four sampling instants , one may write °
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c Po

°1 .3679 Pi

c 2 .7675 .3679 Pa

c 3 .9145 .7675 .3679 P3

(7-41)

Using this matrix, the p may be evaluated step by step as follows

°

Po
o3679 #3679

J-.^?

Pi

C2"g2Po 1,0 -(.7676) (1.359) =
gi .3679

c 3 "S3Po -SaPi

.1170 (7-42)

P2 =
gi

.1441

Then, the D matrix may be evaluated on the basis of equation 7-36 and

the calculated error values as follows'

p] = [dJe]

1.359

-.1170

-.ua

= K

d, \

1.0

.50

.00

(7-43)

Therefore, the d values are J

Kd = 1.359 , Kd< = -.7965 , Kd 2
= + .2542

and the D matrix may be written as °

k[d] = 1.359

10
-.5861 1

+.1870 -.5861 1

(7-44)

If a first order compensator is used to realize this compensator, equa-

tion 7-31 through 7-33 will apply. Using equation 7-33, the compensator

is found from"

.1870
/

'

' 1
.3191(a+b) = 5?61 , b = /"Try" ~

Therefore, a = .2670 and the compensator D(z) may be written as
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„„) = !.??>(» -.g6TO)
(7.45 ,

z + ,31 ?!

= 1.359 (1 -.^lz'1 + .lP70z~
2

- .0597z~
3

+ .0191z~^ -••«

For this compensator, the total response may be evaluated using equate

7-35 and 7-38 The response of the uncompensated and compensated sys-

tems are shown on figure 7-10, as curves number one and two respectively,

The output response between sampling instants is not directly taken in-

to account in this design approach. Therefore, if too stringent require-

ments are imposed on the response at the sampling instants y the inter-

sample response may become unacceptable. The designer will usually eval-

uate the intersample response for a design choice by using equation

7-3? o For example 9 if the specifications called for a maximum overshoot

of five percent for the previous example, one might attempt to set c 3

equal to unity rather than 1,10 as was previously done. This design

change will not effect the values of p and pt
or d and d, that have

been ""etermined . Therefore I

p = 1.359 , p, = -.1170

c 3 ~g3Po -g 2Pi

ana p 2
=

gi
.4159 (7-46;

Then, the gain and pole and zero of the first order compensator may be

determined as follows \

W 2
= p 2 -.5K2, = -.4159 -.5 (-.7965) = -.01765 (7-47)

where K = 1 & 359 and K3, = -.7965 as previously.

Therefore, from equation 7-33

J

(a+b) = dJ = .5P61

and
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b =
-.01299

.5261
= -.02216 (7-48)

a = .6083

Then, the compensator may be written as
°

D(z) = Lffj-^ CM9)

= 1.359 (1 -.5861Z"
1

-.01299z~
2
-.000287z~3 - • • •)

The output halfway between the sampling instants may be calculated from

equation 7-38 as I

C(l/2)] = [g(1/2)] [d] e] (7-50)

(1/2)] =

.1065

.6166

.859

1.359

-.7965

-.0177

.9481 -.0004

.1447 1 .145

.7531 .5 - .8255

.6744 1.0509

.5933 .9305

This response would have an overshoot of five percent between the sampl-

ing instants and the design would marginally meet the specifications.

This response is shown as curve number 3 on figure 7-10. If the desig-

ner chose to set c 3 equal to 1,050, then the complete output response

for a compensator calculated for this new set of response values at the

sampling instants is shown as curve number 4 in figure 7-1 o The maxi-

mum overshoot for this compensation is 6.5 percent. A comparison of

the rise time, maximum overshoot, and settling time for the uncompensated

and compensated systems is presented in table 7-1. The designer would
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chose the compensation that provided the closest approximation tc the

original specifications. It can be seen that it is a powerful method

of design of discrete compensators. The compensator may be located in

Curve Number
Iteximum Overshoot
90% Rise Time

2.5 % Settling Time

1

45
l.£2

16 ,0

2

10 6

1.65
4.S

3

5.0
1.65

A
6.5 SO
1.65 seconds

5.2 seconds

Table 7-1, Indices of Response For the Compensated and Uncom-
pensated Systems

.

the feedback channel or in one loop in a multiloop system and the design

method loses none of its usefulness. However, if the designer has a

set of stringent specifications, it may be necessary to account for the

intersample response in the design.

B. Synthesis of the Discrete Compensator .'iccounting for the Intersample

Response

„

It is possible to account for the response between the sampling

instants by the use of the time domain matrix equation for the inter-

sample response which may be written as
°

C(m)] = [G(m)][D] e] (7-51)

Then, the designer may chose the first few elements of the D matrix by

considering the sampled output while simultaneously considering the re=

sultant intersample response value. Therefore, for example,, the desig-

ner will chose the Kd value of the D matrix by examining the resultant

c, and c c values at the same time. This process is carried on step by

step until all necessary values of the compensator matrix are determined

„

In this manner j, the next step would involve the determination of Kd.,

by a choice of c, and c-, c . The choice of c and c ., where A isJ <1.5 n n-A
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usually equal to one-half to yield the response midway between samples 9

is facilitated by the determination of an expression relating the two

variables and its graphical presentation. The three basic matrix equa=

tions are I

c] . [g][d]e]-[d][q]e]

C(m)] - [G(m)] [d] e] - [d] [o(m)] e]

e] * r] -c]

(7-52)

(7-54)

where order of matrix multiplication may be interchanged for time in-

variant systems. Then, for the typical system with g = 0, and a unit

step input 9 one obtains
°

c, = Kd g, (7-55)

and
K3 g (7-

.5 ~0& .5

It is usually necessary to choose Kd such that the value of the first

sampled response is less than the final value in order to achieve small

maximum overshoot. In the previous example, for instance, Kd was

set equal to 1.359. Then, one may solve for c ,. in terms of c? , as.

g
.5

gi

(7-57)

Equations 7-55 through 7-57 allow the designer to choose the value of

Kd while taking into account the intersample response. When the value

of Ki is chosen, the value of e
1

is determined and then since

d = 1 by the definition of equation 7=?9 9 one obtains

°

°]

K 1

KJ, gi ei

Kd ? g*
_

(7-58)
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and

(1/2)] =
K

Ki,

B
.5

g1.5

(7-59)

Therefore

,

c 2 = JSA^g
A + K(g 2 + gl e, )

and

c
1.5 " ^^^^l^* 8.^ 5

(7-60)

61)

where the g 9 K 9 and e, are known. Solving for c, ? in terms of c 2

one obtains the general form oft

1.5 (—

)

c 2 + Q (7-62)

where Q is a constant. In general, the linear relation may be wri

as!

Sl-A

'n-A ( n n
(7-6

It is often useful to show this linear relationship in the form of a

graph

„

Consider the example of the previous section A, where the specified

maximum overshoot was five percent „ The gain constant K shall ag:

be set equal to 1.359, so that c 1
= o 50 as in the previous example

The design procedure in section A did not account for the intersample

response and it was found that this resulted in the responses presented

in figure 7~10 o The design of section A to satisfy the overshoot re-

quirement would have a response as in curve number U on figure 7-10 „

Now 9 in order to carry out the design while accounting for the inter-

sample response., one obtains the equations for c 2 and c, c in terms of
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Kd, from;

c]

and

~
1,359 1

Kd, .3679 .50

Kd
2 .7675 e 2

(7-64)

(1/2)]

1.359 .1065 1

ffi^ .6166 .5

Kd 2 .859 e
2

(7-65)

Therefore 9 one has
J

c
2 = .3679K3, + 1.2931

and

c, - = .1065R3, + .910.4

Then c, K
is related to c 2 as I

^ 5
= .2? 96c 2 .5360

(7-66)

(7-67)

(7-68)

and this relation is shown on figure 7=11, Considering the equations

7-66 through 7-62 and the figure 7-11, the designer might choose

c 2
= .980 and c ^

= .8234 as a compromise. Then, one finds Kd^ = -„.-"

and d, = -.626. The next step is to write the equation for c
3
and

c„ » noting that the maximum overshoot for this design will occur- in

this interval. One obtains from equations 7-64- and 7-65$

c 3
= ,3679Kd 2 + .9648

and

c
2

= .1065Kd
2 1.0194

c_ . = .;896c
3

+ .740
2.5 J

(7-69)

(7-70)

(7-71)

Equation 7-71 is plotted on figure 7-11, and this curve shows that the

overshoot may be limited to five percent. If c
3

is chosen as 1.040c.
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then c 2
= l o041 and Kd 2

= + . 204-5. A compensator is then determined

from equation 7-33 as '„

n/ \ - 1.359 (z - .#6)D(z) _ ^^^^Si
(7-72)

The total output response is then determined and is plotted in figure

7-12 as curve 5. The uncompensated system response is again curve

number 1 , and curve 3 is the response for the design of section A

which did not account for the intersample response. The rise time and

overshoot are equal for each design, while the 2 5 A settling time has

been reduced 50 percent and there is no undershoot present

„

As another example, consider the single loop system as shown in

figure 7-9 9 where the sampling period is again one second, the input

is a unit step, and the system has a third order transfer function

„

The transfer function and zero order hold are written as
°

G(s) , ML^£L- (7-73)
s*(s+l)(s*2)

and then the system transfer matrix is given in appendix A, table A-l

section IX. The uncompensated response of this system is unstable,

and the designer might try reducing the gain of the system in order to

achieve stability. If the gain is reduced to two, or one-half of the

unstable gain, the output response is shown in figure 7-13. This system

has a maximum overshoot of 75 percent and a settling time of greater

than 10 seconds. If the designer desired to maintain the same rise

time while reducing the overshoot to 20 percent, it would be necessary

to introduce a compensator. Using the discrete compensator design

procedure, for a system gain of 4- as originally specified, one writes"
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0] =

K

W
o3362

1.1869

1.6736

1.0

?4)

and

(1/2)] =

K

Ki,

.0582

.7845

1 .4789

1.0

J

Choosing K - 1.0 and therefore using the original system of 4* one

obtains t

c, = .3362

and (7-

e, = .6638

Then, one uses equations 7-74. and 7-75 to obtain the equations i

c., c-i and the relation between them, as!

(7-

,1732c 2
+ .5789

c
2

=
°3362d

*
+ 1^10

c
1.5

= .°5*2d, + .8231

"1.5

Equation 7-79 is plotted on figure 7-14 . Now, choosing c a
approximate

equal to l o 9 one might use d, = -1.0, Then, obtaining the relations

for c, and c^ . one nas
°

c
3

=
« 3362d 2

+ 1.0266

c e
= .058 2d a + 1.172

c_ - = .1732c
3

+ .9942
< . j

Equation 7-82 is plotted on figure 7=14 and from this figure one may

choose c 3 approximately equal to c n r at about 17 percent overs.
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Then it is found that d 2 may be set at .5. A first order compens?-

is determined for these values and one obtains"

D(s) = > *
'l\

= (1 - z-
1

u - »5)
* c 5z 25z^ ' ,125z"^

The response for the compensated system is shown in figure 7-13. -•

maximum oversnoot is 20 percent, the rise time is reduced to l c8 seconds ?

and the settling time is reduced to 6.4 seconds

These design methods are equally applicable for other system input

signals e This will be shown by designing a compensator for the system

considered in this section subjected to a unit ramp signal input e Age

the sampling period is one second and the system arid hold transfer f tx

tion is:

G(s) = (1 - e~
S

)

s (b + 1)

(.7-64)

The input signal and the uncompensated system response is shown on

figure 7-l4o The first two samples have a zero value 9 and one may

write for the output response I

c] =
K .3679 1.0

KcL, .7675 e *

B, .9H5 & 3
-

and

(1/2)] =

K .1065

Kd, .6166 1.0

Kd 2 .£59 e 2

86)

Then 3 choosing K = 2 so that c 2
= .735? > one may write for tne next

sample interval I

11?



01* 01 S*H

:_ +
liir^i-^-iizi-iiizin:!- Hill 111 111^ 11 m

1

t
2»*- 1

,,-yj * ij

n ^ T^
7

; « ^.^

1

u-'
_ :^ : -E-

::: : 5 : i :

oi . .... rO t
T

T3 ~T ^?»

-- - O -,-£
- 3 ^^^ i_ .

- ^ -* V
___ It _ ® _ _-,£« I .

'-- * i—
,^i—L

T \^^ -
v-'-

?* - X-
/ ~\

j7
>

y rs
./T ©

-i z-t : ^ :
-Tt

/ CO

V J fl -_ J.
L. . _ © I.i _t- & - - t.

JZ u § -V+ -t o Z -

± ° V .

t -/ -

X it z ^ L

t t /
7

\ /
.__\ /
- ^ * .^ /

•s. 7
"^

s, ,

~v^ /
*»«*,

,

_j_ _ _l_ ^
^•««, 7

^--^_
""^.^

I *'**

\ ^""-.^

C" ""*>,

1

v.

- - -

.1. \

'< _ (- |

: ^^
""'x.^

^^
""»^

»^ ^^
"™ *»^ "^ s.

I "5s., _sz
*>«. ^i.

S£ fc

~

—

"*^
fc s.

^v^ X
"x^ x!

N \
~. V

3
\

T 1

:* -l^ _si_ :

+2

lis

Vr> <J
«

! 1 T *
—

L, ) 1

I;x -r-r • • l 1



-___l_u h _^ H
U+, l___|_ 4— _l_

—-H- -rrt~h- t-H-i- • H- -+-h—h -4-r-
1

*~~ i x " ~ x i
i
—i
—— -— — —

~~

,. . i r
It! '

"

.-—
—

-—
U- —
.--

1

-r» — -=" '

1f
Jg — """

__— ""

,-— -"""

„.--—

'

I

i

__ — —^
---— " c _ vs & c.

i ^ ,«--r 2 «5
7;— iTi^

—

;: c. _ vs„ c,

I r ° 5 '"

'

£ £*- *• » . *3

__.__——*

_:

_^ — ~~

«-— al "'

>e
.^-^^ ="

—*
^.—— -~

.
—

"

T|~

,1. , .... ,
,

/"» ., .

:: it x3 _

T~

lJ_

ft:

ft::~

^__

>
,

,_rr
L-___ /^. ,,,,..,. , .

,_,.,,_. —^_____ . ..

£:: _ j:j_ ^> 5f"> /,ii

c n̂
|L_

i

—

'

I,

j_L
L_

1

Figure 7-14 „ The Relation of. Intersample Response
The Sampled Response

120

i

ISJC



c
3

,3679m, 2.4.65 (7-87)

c
2

= e1065Ka, * 1.50 (7-88)

and
b" = ,2896c 3

> .7977 (7-89)

From these equations and the nature of the response 9 one might set

Kin = "o50. Then repeating these steps for the next intervals one

might let Ki 2
= * .20. The value of Ki2 chosen would depend largely

on the overshoot limitation. In this case, there would be no overshoot

present. The total response is si 7-14- as curve number

two. The steady state error of the compensated system is sixty percent

of the steady state error of the uncocr • d system. The compensator

to yield this response is found to be I

D <*> = -*£-£•$- <7-90 >

If it is required to have a shorter rise time 9 while permitting an

overshoot less than five percent, it eessary to raise the value

of K to three. Then if the usu Led out, one obtains^

K= 3 9 Mi - -1.0 9 m 2
= fr.5

Then j the total response is found to b^ irve number three in figure

7-15. The rise time is greatly reduced,, while the maximum overshoot is

less than two percent. Also, the steady state error is reduced to U2

percent of that for the uncompensated system. The compensator neces-

sary to realize this response is found to be I

If the input signal was expected to alternate between a ramp and step

signal 9 it would be necessary tjp desig .promise compensator with
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respect to the design requirement? „ -ecessary, since a com-

pensator to be optimum f cond- in-

net be expected to be optimum foi set ol operating conditions

and requirements

„

It can be seen that the design approaches presented in this sec-

tion allows the designer a wide latitude cf the choice of specifica-

tions 9 and affords direct control over the output response Furthermore,

the time domain approach gives the dee a. direct picture of the

time response , therefore avoiding Inaccural . tc unwieldy correlation

theorems for the z plane e The thod whi ch accounts for the

intersample response allows the (field control over the total

time response It Is obvious that this Bjn procedure may be pro-

grammed in a digital computer „ the applying the specifica-

tions and system transfer matrix as t . the computer,,

A discrete compensator .may be de a continuous system

which is approximated by a fictit' er and hold as discussed

previously c Then the calculated D(z) may be synthesized by a continue

9
ous compensator in the time domai Therefore 9 this technique Is

not limited to sampled=data systems <, but may be applied to any t

of continuous data system.

The location of the discrete cc I Is not limited tc the

error channel and may be located in any arbitrary loop in the system

as feedback compensation

Therefore 9 two methods cf design „ directly In the time domain 9

have been presented These design pr< i arc entirely flexible

in application, accurate In calcu' nd rapid in solution The

12



design in the time domain gives the designer a complete insight into

the total time response of the system.,, No other existing design pro-

cedure can be carried out directly he time domain, nor can any

existing design procedure provide the flexibility and accuracy of the

time domain matrix method
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CHAPTER 8

CONC LUSIONS

?-l. Summary of Results

The aim of this dissertation was to present a new method of

engineering analysis and design for e@mplex control systems e This

method is the time domain infinite matrix method. The formulation

of the infinite matrix follows from the convolution summation of

sampled data systems The mathematical basis of the time domain

matrix formulation is presented in a discussion of the applicable

concepts of infinite matrices and sequence, spaces c This method of

analysis and design is applicable to both continuous data and sampled

data systems „ Foi continuous systems it is necessary to introduce

a fictitious sampler and hold of sufficient sampling rate to effect

an accurate approximation e

It is possible to analyze and design linear , nonlinear, and

time varying systems of the continuous or sampled data class. Sam-

pled data 9 time varying systems may not be investigated by any other

existing method Furthermore the investigation of nonlinear systems

is greatly simplified by the time domain approach. Multiloop sys-

tems may be treated with ease and the signals at intermediate points

throughout the loops are readily available. Also, systems with

multiple nonlinearities may be investigated, for which there is not

a presently available method of analysis and design.

Two methods of design of a discrete compensator for a sampled

data system are presented. These methods are accomplished directly

in the time domain and allow for a compromise of specifications in
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the time domain Also the response between sampling instants is

accounted for in one of the two design procedures

The time domain matrix method may be readily programmed on a

digital computer and therefore provides a rapid analysis and design

technique

„

8-2 „ Further Conclusions

It is an important advantage that the design and analysis of

systems using the time domain matrix method takes place directly in

the time domain and not in any transformed complex variable domain

This advantage aids the designer in understanding and controlling

the time response of the system under study

„

The availability of the intersample response is also an advan-

tage to the designer 9 so that a design may be accomplished which

accounts for the total time response and not that solely of the sam-

pling instants Therefore, the tine domain matrix method has strong

advantages over the commonly used z-transform on both of these points

Since adaptive systems may be treated as time varying systems

,

the time domain matrix method may be applied in general . Further-

more, a learning control system with a predictor may be realized

and investigated by the use of time domain matrices The investiga-

tion of conditional control systems incorporating a model was also

accomplished,,

For nonlinear systems, the time domain matrices provide a useful

analysis and design technique The characteristic of a deliberately

introduced nonlinear compensator may be determined and investigated J

that is, it may be specified by the design approach e Furthermore,
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the derivatives of the error or- any other desired signal may be

evaluated readily by matrix methods and used to determine the phase

space response to aid the designer ; investigation „ The use of

a fictitous sampler and hold in iata system permits

these techniques of investigate Lgn to be applied

„

The design of the discrete compensator by means of the time

domain matrix method provides the designer direct control of the

time response of the control :: Therefore, the designer may

specify the required system res determine directly, the

necessary discrete compensator 1 \ inability, stability y and

sensitivity of the discrete compe as investigated , to provide

the designer with an insight into th sneral characteristics of the

discrete compensator

„

In comparison with othe

•

investigation and design v

the time domain matrix method is curate due to its numerical

formulation Furthermore, the a ' ease of calculation for

the matrix method remains the same r 1 >ss of the order of the

system transfer function, while the ace ' decreases and the dif-

ficulty of calculation increases f . methods, such as the z-

transform e The time necessary for calculation of the time response

of a control system is ccnsiderabl; than that of standard com-

plex frequency techniques, Actus. time response may be de-

termined as rapidly as the determinat >f Instability or stability

by standard techniques such as Routh's ^^hod„

The transfer matrix of the system may be easily determined by

experimental pulse techniques dracy of at least three
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percent. This method of system characterization may be used for the

identification process in adaptive systems

Therefore, it has been shown that the time domain matrix method

is applicable to a wide range of control system problems „ Techniques

have been developed which permit the solution of problems which are

not solveable by any other method „ Examples of such problems are the

analysis and design of systems containing more than one nonlinear

element, and the analysis and design of time varying systems, for con-

tinuous or sampled data.

A method has been developed which permits the design of a com-

pensator for continuous or sampled data systems , without the use of

trial and error methods „ It also has been determined , that the

difficulty of the application of this method and the labor involved 9

is considerably less than for other known methods when applied to

systems of reasonable complexity „ The advantages inherent in this

method are sufficiently great , that it should find wide application

in the engineering analysis and design of systems

„

?-3. Future Work

The time domain matrix method may be applied to the complete

spectrum of control problems „ Therefore 9 the possibilities for future

investigation utilizing this method are boundless

For all classes of control systems, it would be valuable to in-

vestigate the problem of the location of the discrete compensator in

the control loops, and determine and classify the relocation of the

compensator on the time performance indices

For nonlinear systems, the investigation of the use of the error

12?



derivatives and the signals available at intermediate points through-

out the loops, would be very worthwhile

„

For time varying and adaptive system, this method would bring a

new insight into the very difficult problems It is possible to use

the time domain matrix approach to investigate the method of steepest

descent for adaptive systems, as one example .
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APPENDIX A

THE SYSTEM TRANSFER MATRIX

A-l. Determination of the System Transfer Matrix Using the Z-Transform<

As discussed in chapter two, the determination of the system

transfer matrix G is an important first step in the use of the time

domain matrix method It is necessary to evaluate the values of g

,

the values of the impulse response at the sampling instants . If the

system transfer function is given in the Laplace variable, it is pos-

sible, by standard methods, to transform to the z complex variable

sT
where z = e „ Then the values of the impulse response are obtained

by inverting the z-equation to the time domain. The simplest method

to accomplish this is use of division to yield the response at the

sampling instants. That is, G(z) may be expanded as

°

»B
G(z) = g + g,7,° + g2z

'' * .... gQ
z (a-l)

This series is the constant term and principal part of the

Laurent expansion of G(z) 6 .

As an example, consider a system as shown in Figure A-l

T= 1 second

Figure A-l. Open Loop Sampled System
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The z transform of this system may be written as

G
h
G(2 ) = ^j-^*^—

H

(a~2)
Jill -a"

s 2 (s * 1)

)(l-e'~) K( „i679z''
1

+ a 264.2z~
2

)

z-1 1-.3679
J I 1-3679z

-l "
o3679z°

2

Then dividing we have

G G(z)
1~~~ = ,3679z~~ + .%75» * ,9U5z~J

+ ••• (a-3)

This method is tedious in that one must transform into the z variable

and then divide. It also involves an inaccuracy introduced by the

round-off in division. Jury presents a method of inversion avoiding

division which uses G(z) in. the fori

Po Pi z= + Pa^^ * ••« P s

0(z) =
.2 (-4)

i + qi z + ia& * • • c <%z

where m ^, n e

Then , it can be shown that
°

go
=

Po

gi = Pi - qigo (a~5)

g2
= Pa - qigi = q^g©

and

gn ~ pn ° *a«-i ' qaSn-a = °<< ~q
ng©

Jury's method reduces the inaccuracies introduced by the division

process, but remains inaccurate for a value of n greater than four

due to the roundoff error of multiplication c For a higher order sys-

tem, the use of the z-transform and inversion is unwieldly and inac-

curate .



A-2. The use of the Impulse Response to Evaluate the System Transfer

Itetrix

.

A simple and more direct method of evaluation of the system

transfer matrix is the use of the impulse response of the system

„

If the impulse response g(t) is determined, then the elements of

the system matrix are found by substituting t = nT. That is,

gn
= g(t)| = g(nT) (a-6)

I t=nT

Since, invariably the impulse response is made up of a sum of

time functions, the arithmetic operation involved in the evaluation

is addition instead of division or multiplication. Therefore, the

roundoff error of calculation is reduced as well as the difficulty

of manipulation. Now reconsider the example of the previous section.

The system transfer function is
°

(a-7)G
h
G(s) = 1 - -sT

e

a
2

(.3+1)

and the impulse response is:

g(t) = t"
.1 ,

1
i

s
2
(s+l)

v -1 r .-sT i

—sT
The e " simply implies a delay of one sampling period. Then

u(t-T)

the inverse ±s\

g(t) = t -a - e
-t

) - |(t - T) - (1 - e"
(t " T)

)

where T =? 1 second as on figure A-l. (a-9)

Then the values of interest at the. sampling instants when t = nT ~ n,

are;

_ _ . -nT -(nT - T)
gn

- T + e - e

= 1 f e"
n -e' (n " 2)

n>, 1 (a-10)
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Then, it is found:

go =

gi = «
-1

,36782 (a-11)

g 2
= 1 + e~

2
- e^

1
= „ 76746, etc

Therefore, the values of the system matrix are rapidly and

accurately evaluated using a mathematics table «, This calculation is

a great improvement in accuracy over that of division in equation a-3.

A-3. Evaluation of the System Transfer Nktrix for Intersample Response

Using the Ibdified-z=Transform

In order to determine the response of a system between the sam-

pling instants , it is necessary to obtain the system transfer matrix

for values of time between the samples In order to accomplish this

with standard notation, let m = 1 - a P where A is the percentage de-

lay from the sampling instants as shown in figure A-2

g.

-n+A
i

g. V1

g
'D

»

*n-l

AT
AT

+_jnT

(n-ry n+1

Figure A-2 C Delayed Sampling

Then, writing the transformation t = (n •= a)T one has \

t=(n-A)T=(n-l+ m)T < m < 1

and the modified z transform is
°
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CO

G(z,m) = z raT)z"
=k

(a-12)

k-0

The output response of a system between the samples Y(z,m) may then

be determined for an imput X(z) as°

Y(z,m) = G(z 9m) X(z) (a-13)

G(z,ra) may be determined and inverted by division or an alternate

method to obtain the elements of the system matrix for intersampling

response . Then the intersample output response is
*

Y(m)] = [o(m)] x] (a-H)

where

(m)] =

g (m)

gi (m) g (m)

g a (ra) g, (m) g©(m)

Since G(z) = zG(z,m)
m —

(a-15)

the [ G
J

matrix may be determined by allowing m -*• 0.

As an example of the determination of the modified system matrix

using the modified z-transform consider the previous example „ The

modified z transform of the system is figure A-2 is°

2

,(2fln) = in+S^klsi;- B 3679m^-m - .7358)

z
2
- 1.3679z + „3679

(a-16)

in
where p, = 2.3679 - m (1.3679) =2e

Expansion by the method of section A~l yields

g (m) = p (m) = m + e° - 2

g, (m) = Pi (m) - p (m)q,

g 2 (m) = • p 2 (m) - p, (m)q, • p (m) (q, - q, )

and so on.

(a-17)



A-4. Evaluation of the System Transfer Matrix for Intersample Res-

ponse Using the Impulse Response

The values of the modified matrix are simple to evaluate by the

impulse response method «, One has
°

a

gn
(m) = g(nT + AT) = g(t) I (a-18)

I t = nT + AT

= g(nT + T - mT)

Then, for the example previously discussed one has*

g (m) = (t - 1 + e" ')
I

I t = nT + AT , T = 1

= AT - 1 + e~^
T

(a-19)

= £ <= 1 * e~
A

A = 1 - a

Then, for example when A = 1/4 » n = \'u one has
*

g (3A)= e-
l/4

- 3/4. s
o0268

For n > 1 one has

LW - T e"* -e" (t"l!
I , T = 1

n
I t .

= nT + AT

= 1+e
~ (n*A) _ e

=(n*A=l)
(a_20)

Therefore

,

g1 ^m) = 1 + e - e

g 2
(m) - 1 + e - e

and for » = 1/2 , A = 1/2

g, (1/2) = .61660 = g1>5

g,(l/2) = .P5P95 = g -

(a-2l)

(a-22)



where g is another form of notation,

A-5. The System Matrix for A Type I Second Order System with A Hold.

The system transfer function for a type I second order system

with a hold may be written as ',

GG(s)= KQ-s^Il
h 2, A ,

s (s + a;

(a-23)

Then using the inverse Laplace transform the impulse response is

and

g(t) =

g(t) =»

at - ( 1 *)) for t ( T

[(at - (U.-*)) - (U-T) - (l-e-
a(t-T

j)

Therefore

;

gn
=

2

_K

a u

aT + e
=at t-T)

(a-24)

> t>,T

(a-25)

m -anT
aT + e - e

=aT( t« •1) I

n } 1

and

gn
(A) =

2 L

-aT(n+A) ~aT(n+£-l)

(a-26)

(a-27)

The matrix values for this second order system are tabulated in Table

A-l for three values of the constant aT These matrix values may be

used for any second order system with a hold which possesses the

same aT value, making the proper allowance for the lA factor ap-
a

pearing in equation a- ?6. For example, a second order system with a

pole at 10, a sampling period of „1C second, and a gain of 100 will

possess the matrix given in Table A-l for the aT = 1 system with a

gain of one

.

13?



A-6. The System Matrix for a Type II Second Order System With A

Hold Network.

The transfer function of a type two system of interest may be

written as

"

=sT>

GhG (s) = Kis^^X^e_J

Then using the inverse Laplace transform one obtains'

.2
(t) = K

|
(t K> (t-T) fft-T)' u(t-T)|

Then, at the sampling instants,

a
*n

= K T+
2

(nT)
2

- (in-l)?\
2
\\ n*l

(a-28)

(a-29)

(a-30)

The values for the matrix of this system are given in Table A-l
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TABLE A-l

ELEMENT VALUES FOR THE SYSTEM TRANSFER MATRIX FOR VARIOUS SYSTEM

la Type I Second Order System With A Hold Network

? T = 1 second , aT = 1

G,G (s )

h 1

K
s*(s+l)

n g^ n*A
n (n+A

)

.5 .10653
1 .36788 1.5 O6l660
2 .76746 .85895

3 ,91445 3.5 .94812

4 .96853 4.5 .98091
5 .98842 5.5 .99298
6 .99574 6.5 .OQ741

7 .99843 7.5 .99905
8 .99943

1.00000

W+a; gn+A
uka; gn+A

.25 .0288 .75 ,22237
1.25 .5077 1.75 .7014
2.25 .8189 2.75 .89016
3.25 .9334 3.75 .9596
4.25 .975 4.75 .9852

lb Type I Second Ordrr > th A Hold Network

G
h
G(s)

1 _ e
-sT

___- „ B ~r^^—

—

, T = 2 seconds, aT = 2.0K
s
2

(s + 1)

gn
n^ gn+A

.5 .36788
1 1.13534 1.5 1.6819
2 1.8830 2.5 1.95695
3 1.98416 3.5 1.99417
4 1.99786 4.5 1.99921
5 1.99971

2.0000



Ic Type I Second Order System with a Hold Network

G
h
G(s ) , ~sT

1-e m
K

- _ _

s
2
(s+l)

9 T = .5 secom

n
*n

n+A gn+A

.5 .0288
1 .10653 1.5 .19357
2 .26137 2,5 .31413

3 .35523 3.5 .38727
4 .41221 4.5 .43163
5 .44674 5.5 .45853
6 .46771
7 .48041
8 .48812
9 .49279

10 .49563

aT = .5

II A Type I Third Order System With A Hold Network

'hG(s)

K
s
2
(s+l)(s*2)

T = 1 second

n n^A
'n+A

.5 .05824
1 .33616 1 5 .7845
2 1 .18686 2.5 1.47885
3 1.67364 3.5 1.7983
4 1 .87626

5 1.9540
6 1.9830
7 1.99372
oo 2.0000
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Ilia Type II Second Order System With A Hold Network

Gh
G(s)

T = .05 seconds

n
I)

1 .9375

2 1.3125
3 1.6875
4 2,0625
5 2.4375
6 2.8125

Illb Type II Second Order System With A Hold Network

cyUs)

K

15(s+]0)(WsT )
T = .10 seconds

n g. Wi en+A

1 2.25
2 3.75
3 5.25
4 6.75
5 8.25
n g„_

.5 .9375

1.5 3. COO

2.5 4.500
3 5o •

6.000

+ 1.50
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AFEENDIZ B

A METHOD OF INVI ." 5ULAR MATRIX

The inversion of a lower triangular jatrix is a necessary step

in the evaluation of the resj rem by means of time do-

rnain matrices . It was shown in se 2-6 that the output time

response was given by equation. 2-34 1

',

Cj •!
1

[i]-|.[i]*[g (b-1)

Therefore, it is usually neoessa ^.culate the inverse of

[i] + [g] =[a]. If [a] is written:

[A] =

an Q O O

a 21 a 22
O O

a 3l a 32 *33

Then a matrix equation nay be writ

[a] [&]-
1

I] - h]

The solution for Y is J

*]= [b]h]

where [b] m
\
[a] [

&1"1
}
*X

By the rules of matrix inversion

°

[B] = [bJfAj-
1

(b-2)

(b-3)

Cb-4)

(b-5)

The equation b-2 may written for c &s I



yi
= h«

( —wa
i 1

an

+ y;

3?

22 7z + y^

b.

h,

etc.

Then it can be seen that

~a««

[B].

H1

22

33

lU

and

It-

• a
nn

"(1/a, , )

(l/a„) C

-:.3' . e

(lA.J
nn'

(b-6)

Hence, j_AJ can be obtained by mu] ation of the successive

rows of [Bj by (l/a, , ), (l/a 2a ) 9 etc Then it can be seen that

the elements in the first column of [Bj are the values of YJ when

Hi =

1

fi. 0, » ° o

r

'9 *- S>

The elements in the second column of [b] are the values of y] when

Hi =
| 0, 1, 0, 0, • • • / and so t>i .



When Hj = jl, 0, 0, • • \ one obtains the first column as"

7i = 1

y 2 = [-£]{>}

y 3
" =

a 31 a,
5 2

a
1 1

a 22

1

y
4

=
a11 a 22 a" J 1

5 y 2 » ^3

(b-7)

)

This solution suggests a method of computation which allows these

calculations to be easily carried out The elements of I 6| by

which the rows of f Bj are to be multiplied 9 are recorded on the ex-

treme right. This useful scheme 9 In the form of a table, is shown

below for a 4x4 matrix.

a 21

a1 1

a 3i

-Aai 1

*?

22

L 22 a 33

1

b
31 '32

41 4.2 43

an

-22

33

u

The rules for setting up this table are

i) To form the left-hand array enter blanks in, and to the

right of the principal diagonal Derive the remaining

elements from the A elements as shown,

ii) Commence the right hand array by entering units in the

principal diagonal and zeros to the right of the diagonal
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iii) Calculate the remaining elements of [b] in succession

by the following method To obtain b. . postmultiply

the row of the left-hand array level with b. . by the

part column of [b] stand ove b. . . Blank elements

of the left-hand array are to be disregarded.

iv) To find [a]
l

multiply the rows of [b] by the scalar

factors on the right.

For example, the first column of [b] is completed below'

'21

'31

Ja

•21

Hi iA

<*31

aTT

in

>32

a 22

3

4|
-22

b 2<

a33

(b-9)

21

'31

As an illustration of this method consider the inversion of the ma-

trix f A J given as

:

M
1

-1

3 -11 -36

1 -6 -K 22

(b-10)

One then sets up the computation table following the given rules

-3

-1

-11

-6 _7_
18

1 1

bgt i -1

bjj b32 1 1
" 36

bu b« b
43

1 9
22

i: 7



Then, the b., are calculated as follows'

*21 = [°] =

2

> 31 = [-3 , -11
]

Ja . u. -6

'21

= 3r -11

1

= -3

1

C

*3

(b-ll)

; 32 •3, »11

J

42

43

V -.

1

r i

18

1

-11
~6 •*•

77_

18

-1, -6

Then, one obtains

1

1

[B] =

1 '1

18

1

f

5
and since

M
-1

1

-1

1- 11
12 36

1= il

1

44

C

C

3

is

J

[a]"
1

=[b]"
1

[b] has;

18

(b-12)

(b-13)



For a physical system it was shown in appendix A that invariably

the element g of the system matrix has a value of zero. For these

physical systems one is usually interested in evaluating the inverse

of [i] + l_Gj and therefore the I is simply equal to[lJ

As an illustration consider a type 1 system with a hold that has

the following transfer function

•sT,,

9 where K = 1 and T = 1G
h
G(s) m

ft

s^(s+l)

It was shown in appendix A that the system matrix is

[g]=

.3679

.7675 .3679

.9145 .7675 .367?

.96? 5 .9145 .7675 79 .

.9884 .9685 .9145 .7675 ,3679

(b-14)

Then, one obtains for j_l]+ [Gj 9 the* principal diagonal containing

element values of unity. Completing the table for inversion, one has

— __ -» = =,

.3679 — — «=

.7675 -.3679 — — —

.9145 -.7675 -.3679 =-= «==

.9685 -.9145 -.7675 •=.3679 —

.9884 -.9685 -.9145 -.7675 -o3679

1 1

-.3679 1 1

-.6321 -.3679 1 1

-.400 -.6321 -.3679 . u 1

+ .001 -.400 c=i
o*^ ^fL^ -<,3679 1 1

+.2528 + .001 - 4< -,c . -.3679 1 1

-



Furthermore , for non-time varying systems the [g] matrix always

contains equal values along ft to lower right diagonal.

Therefore, inversion of scomplished for only one

column as is obvious from the example „ This class of matrix called

a diagonally invariant matrix (D I M ) in chapter three, lends it-

self to the use of a recursion formula for the elements of the in-

verse matrix. For the first c the matrix [b] one may write"

b
kl

= " (a
kl

+ a
k-l 9 ]

'
* '" * *2l

b
k2 ] (t-15)

For example , in the previous soli:

b 31
= -(a 31 b 3 3

+ a21|b32 ) (b-16)

Since, the elements are invaria the diagonal, one has!

b33 = b,, =1

(b-17)

and b32 — b 21

Therefore

,

b 31
= -(a 31 + a 21 b2l )

- - ( e7675 * .3679 (-.3679) ) = -.6321

In order to obtain accurate results r it is necessary to use

either a desk calculating machine or an automatic digital computer.

This is necessary in order- to avoid t undoff errors of multiplica-

tion. For the usual requirem >f one percent accuracy, the desk

calculator is completely adequate

.
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