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SUMMARY

The purpose of this dissertation is to develop mathematical

models and solution techniques to find optimal tactics for antisubmarine

warfare (ASW) operations. Specifically,\two types of ASW operations

are considered: (1) a hunter-killer force (PI) is searching for a

submarine (P2), and (A) PI is attackin P. Both of these types of

operations are formulated as two-person zero-sum games. These

game formulations distinguish this work from the literature since they

allow P2 as well as P1 to choose tactics.

Both sequential and non-sequential search games are developed. ",

For one of the non-sequential games, the search region is divided into

n cells. In each play of the game, P1 chooses a cell to search and PZ

chooses a cell in which to hide. The resulting paygff is the probability

that P1 detects P2. We assume that P1 atte.hpts to maximize this

probability of detection while P2 attefnpts to minimize it. Ther.;iore,
the game is zero-sum; and fthermore, P2 is thereby given the role

of an evader. We also ntroduce another similar search game, and we

show how-to include econdary objectives and additional information by

extending these games to constrained game formulations.
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Sequential games a -±.i cr.iat=. f r are

also developed. When the players move, they not only determine a

payoff but also the probability that the play terminates.., For the case

of at most a finite number of moves, optimal strategies are found by

solving a recursive sequence of two-person zero-sum g4mes. For the

infinite-move game, we develop an iterative method to alproximate the

solution to within desired accuracy. Finally, we show that the strate-

gies which minimax the expected duration of the game must also

maximin the onese t emination probability ie

//

To study attack operations' foma-n eLwi is a

-~stochastic game due to ShapleyiLIn t~i formulation, a pure strategy

is a tactical plan of action for each possible state of the operation. The

objective is taken to be either-fiinimax the time or the probability for

Pl to kill P2. We derive two methods to find the solution to this

stochastic game; one method iterates on the strategies, and the other

iterates on the payoffs. One special case which is studied is a

Markovian decision process, and one extension is a constrained

stochastic game. -

Finally, 4 iv.stigal multiple contact problems Our modelsA
rely on the assumption that the amount of effort which is required to

accomplish a specified mission is a random variable with a known
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distribution function. Several objective functions are employed, and

one of the models is a chance-constrained distribution model. By using

a zero-order decision rule, we show that the deterministic equivalent

of this model is a distribution model with integer extreme points; and

hence, optimal integer assignments can be obtained with ordinary non-

integer methods.

3(I
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CHAPTER I - INTRODUCTION

1. 1 Problem Setting

In this chapter we delineate the problems studied, survey the

literature, suxrmarize our results, and introduce the elements of

game theory and mathematical programming which are used throughout

this work. This section defines the type of antisubmarine warfare

problems which will be considered. First, we distinguish between

strategy and tactics. Then we examine the tactical environment of a

hunter-killer force and the interaction between it and a submarine.

We close this section by defining the two types of problems which will

be studied.

Tactics and strategy differ in the level of decision making, with

the lowest level of strategic decisions merging into the highest level of

tactical decisions. Furthermore, strategic plans are implemented by

tactical operations. In this way, strategy fixes the environment where

tactical operations will take place. For example, geographic position,

force size, military hardware, and the military mission are usually

fixed tactical factors. Tactics then determine the way in which the

available forces wil1 be ,,',', to achiee - ... e

IEccles [1] for further elaboration on these points.

L
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We study tactical situations which are typically encountered by a

hunter-killer force in antisubmarine warfare (ASW). First, the primary

mission of a hunter-killer force is to seek and destroy submarines.

Second, certain environmental factors in ASW operations are fixed. !

Typical fixed factors for the hunter-killer force (PI) are detection

capability, speed, endurance, operating region, and vulnerability. On

the uther hand, the submarines (P2) also have a mission; and in many

cases, it is desirable for PZ to avoid detection in order to accomplish

its mission. Hence, in many hunter-killer operations Pl and P2 are

in direct conflict, with PI attempting to detect PZ and with PZ at-

tempting to avoid detection. Our models will deal with these situations

of direct conflict, although in some cases we will also allow secondary

objectives.

We separate the tactical problems confronting P1 into search

problems and contact problems, The essential difference between these

problems is the amount of information which is available to Pl. In

search problems PI has not established a contact with P2, and in contact

situations PI has a contact. For search problems we will develop

modele te determine an optimal distribution of search effort, and for

conac problems -.at Ajevel~p mode! o in an o- 4-- -.L- _,

1 5jrni~ll and Thorndike, Cl).



configuration of the forces for each possible state of information.

Let us restrict our attention for a moment to search situations.

Typically. Pl and P2 each have two.modes of search, active and

passive. In the active mode, detection devices are emitting electro-

magnetic radiation and receiving echoes back. The passive mode is

simply a listening mode; no, radiation is emitted. if P1 operates in the

active mode and P2 operates in the passive mode, then P2 can detect

Pl's signal when the range is too great for the echo to return to Pl.

Thus, a passive submarine can detect an active searcher without

divulging its own location. It follows that a submarine may choose

evasive tactics before a contact is established by an active.sear'cher.

Most of the proposed search models in the literature do not alloW .for an

active submarine, but we make this allowance by utilizing game theo-

retic formulations.

Summing up, we model tactical hunter-killer operations and we

separate these operations into search and contact situations. For

search situations, the search region and detection capabilities are fixed.

Under the assumption that the primary objective of P1 is to detect P2

and that P2 attempts to avoid letection, we determine an optimal distri-

bution of search effort. In contact situations, we wish to find an optimal

tactical plan for each state of information. Before outlining our models

of these situations and subsequent results, we survey the unclassified

literature.
4
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.& 1.2 Literature

No papers on contact problems have been found. However, a

Ilarge literature on search problems is available. Three important and

early papers on search, which encouraged further work, are: Koopman

[11 (1946), [ 2], [3], and [4]; Bellman [1] (1957); and von Neumann [1]

(1953). Koopman formulated the first published non-sequential problem

on the optimal distribution of search effort; Bellman forrrulated the

first published sequential search model; and von Neumann formulated

two non-sequential mimimax'search problems.

The classical work of Koopman [1] and [4] can be stated as

follows: Find a function 0 which maximizes

F¢ pI p(x) g ( (x)) dx

(1) Subject to: fR 0(x)dx=A, O(x) O. xR

where 0 is the search density function and F (0) is the probability of

detection, expressed as an integral of the known submarine pro' bility

density p (34 Lnd the conditional probability of detection g (0 (x)).

The constraints require that the total amount of search effort be equal

to A and 0 (x) is non-negative over the search region R. Koopman

developed a graphical method to solve (1) with the exponential detection

function g (0(x)) = 1 - e - 0 ( x ) . In 1958, Charnes and Cooper [7] de-

veloped a method to obtain an analytical solution to a discrete form of

___



5

(1), again with the exponential detection function, Later, de Guenin C1]

(19 61) obtaied an analytic solution to (I) with essentially the require-

ment that g,'t) hae. a decreasing derivative with increasing t (the de-

tection furction exhibits a saturation effect as effort increases).

Finally, "?.i I] (1963) solved (1) with only a continuity restriction on

g. Some results on a sequential version of (1) were obtained by Dobbie

[]. He derived conditions for the optimal distribution of effort

Ei + E Z to be the sum of the optimal distribution of E and the con-
!I

ditionally optimal distribution of E2 given the submarine has not been

found with the effort E.

The following non-sequential search problem was formulated and

solved by von Neurnann [1] (1953). The search region is divided into

n-cells. If P1 (searcher) and P2 (hider) both choose the same cell,

then P1 detects P2 with positive probability; otherwise, the detection

probability is zero. P1 attempts to maximize the probability of de-

tection, while P2 minimizes it. Hence, the theory of two-person zero-

sum gamea applies, von Nuemann went on to formulate another zero-

sum search game which is equivalent to the assignment problem. We

discuss both of these problems in further detail in Chapter 2. Neuts

[1] (1963) extended von Neumann's n-cell search game to an infinite

number of moves, but only a certain type of detection function is per-

mitted. We also discuss this extension in Chapter 2. This completes

Ct



our discussion of basic non-sequential search models and extensions to

Ithe sequential case.

In 1957, Bellman [1] formulated an n-.cell sequential search

problem. He assumed that the searcher has a prior probability distri-

bution on the location of the submarine and that the cost of searching a

cell is also known. The searcher then looks in one cell at a time until

the submarine is found. Bellman found the policy (sequence of cells to

search) which minimizes the total expected cost. Gluss [1] (1961) added

a search cost to Bellman's problem which depends on the distance be-

tween successive looks (moving cost). He found an optimal policy for

several important cases of the prior probabilities.

Various sequential search models have been formulated where

the prior probabilities are transformed to Bayesian posterior proba-

bilities. Neuts [l] extended Bellman'a model to include Bayesian's

updating of prior probabilities. Norris [l] employs a minimax opti-.

mization for the Neuts model, but his results were only cornpet . for

the case of two cells. Finally, Pollock [1] formulated a D.yeian tet

- of hypothesis model. At the beginning of this sequential search, the

searcher estimates the probability p that a stb narine is present in t 't

search region. Each time a search is made, P chaages t the

Bayesian rule. After each search is made, the 4earch.%r tak .e oue ..fI
the following three decisions: (1) make another seo.rch, (Z. accept the

io
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hypothesis Ho that a submarine is present, or (3) reject H o . The

optimal decision depends on the current estimate of p and the costs of

wrong decisions.

The last type of search models which we discuss will only be

mentioned in passing. These are n-cell search models where a subma-

rine arrives in some cell of the search region at a random time during

the search. Such models have been studied by Blackman [1], Blackman

and Proschan ri], and Pollock [I].

BiA
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1.3 Results

Bringing together the discussion of the last two sections, it

becomes apparent that models are required for hunter-killer operations

which allow the submarine as well as the searcher to make tactical de-

cisions. Most authors assume that the submarine maintains a known

stationary probability distribution. We do not make this assumption

and furthermore we allow the probability of detection to be a function of

range. All of the distribution of effort models reviewed in the last

section have assumed a negligible radius of detection, and all of the

models, except the minimax models, assume a stationary submarine.

With these observations in mind, we preview the models and results

obtained in the next four chapters.

We introduce our results by chapter. The first model of Chapter Z

is an n-cell search game. This game is non-sequential but extensions

of it to a sequential game are made in Chapter 3. We assume that PI

attempts to maximize the probability of detection while P2 attempts to

minimize it. In reality there doesn't have to be a submarine present in

the searching region for this model to apply and P2 may consist of one

or more submarines. But, we are assuming that Pl should act as if an

evading submarine was present. Hence, we seek a distribution of effort

for Pl which will maximize the minimun probability of detection

, against all possible hiding strategies that P2 can choose. Our model

L? "I

_________

_______________
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is also formulated to allow the probability of detection to be a function

Qf range.

Now the above model only applies when neither P1 nor P2 have

information on where the other player is searching or hiding. However,

P1 may have intelligence information which can be used to bound the

probability that P2 is located in certain cells or these bounds may arise

from previous searches. If such information is available, then the

optimal distribution of effort obtained from the foregoing model will be

too "conservative". To take into account certain information on hiding

locations we show how to extend the game to a constrained game.

This extension will make PLis strategy less conservative but perhaps

more riskyo. We &i*o sho-W how to include other types of information 4YI

which may arise in searching situations. Finally, we give an example

of this model and obtain an analytic solution for the special case of ii

negligible radius of detection.

We also propose a second model in Chapter 2. This model is

especially suited to search in sweeps of the search region. For example,

search by aircraft. Again the oppoiing objectives of detection and

evasion are assumed, and the searcher seeks to minimax the proba-

bility of detection. The game formulation of this Droblem is reded to

The notion of a constrained game as incorporating "habits" or
other qualitative probabili ic inbforrntior, was introduced by Charnes [1],

SC 1953.

I
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a dyadic model, a generalization of the distribution problem. Special

cases of this game result in a transportation and an assignment

problem. The chapter is completed with tactical examples of this

model. Both of these games are generalization of von Neumann's [1]

search games.

In Chapter 3, we develop a sequential extension of the n-cell

search model of Chapter 2. When the players each choose a cell, they

not only determine a probability of detection but they also determine a

probability that the game is played again. We consider both a finite

and an infinite number of moves. In the finite case, optimal strategies*I

can be found by solving a recursive sequence of two-person zero-sum

games. Substantially less computational effort is required by this pro-

cedure than solution of the normalized form of this game. For the

infinite game, the problem is reduced to finding strategies X and Y

which minimax the form- , where A is the payoff matrix for each
All XtQY

move and Q is the matrix of non-zero stop probabilities. We show how

to find the optimal strategies by solving a linear programming problem

with a parameter in the constraint set. We demonstrate that optimal

strategies are obtained when this parameter is chosen to make the

optimal value of the objective function equal to zern Then we develop

a technique to find such a value of the parameter in a finite number of

s~steps. Chapter 3 is concluded with an example which compares the

1



non-sequential game to both the finite and infinite sequertial search

games.

In Chapter 4 we study the contact problem, However, the models

which are developed may also be applied to some types of Zearch situ-

ations. Briefly, we view the contact problem as a certain game of

pursuit between PI and P2. This game consists of a finite collection

of states and each state corresponds to a possible tactical configuration

of the hunter-killer forces. At each move, the players observe the

state of the game and each playe3 chooses a, t.ctical plan froii a finite

collection. The observed state and the chosen tactical plan5 jointly

determine an immediate payoff and a transition probability d1'tri-

bution over the states, Before the next move is made, the game

transits to one of the states or te-inrinatea according to the chosen

probability distribution. We seek to find an optimal strategy for each

player. An optimal strategy is one of a minimax pair for the total

expected payoff.

This game i3 2 schast.c garne due to Shapley [1]. He defined

a vector value and employed an ingeniots argument to establish its

existence and that of optL zna strategies. In addition, he showed that

the value and optimal etrateeies are characterized by -. non-linear fixed

point problem. We shov iow to approximate the solution to this fixed

point problem by linear prognitaing methods. Two methods are given;

ILi
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one iterates on the etrategies and the other iterates on the payoffs.

To introduce more realism into the game, several variants of

th6 stochastiC game are considered. One of these variants is the ex-

t tension of Charnes' notion of a constrained game to stochastic games.

We also examire a stochastic game with perfect information which is

a terminating Markovian deecision process and we extend some of the

-known results. Finally, we introduce a finite version of the stochastic

game and show how our linear programming methods may be used to

obtain A solution. All of the above models are examined in light of

their tactical consequences and their applications to hunter-killer

operations.

We tuin tb a different type of problem in Chapter 5 than those

cohsidered thus far. Here we are concerned with distributing hunter-

killer forces to multiple contacts. P-our models are formulated start-

ing with zimple situatioii and progressing to a dynamic problem, The

first two models deal with the -i ,c Mtion of a fiyed number of units to

two or more "ontact alreas,. A specified mission is to be accomplished

in each area but the number of units required for dis purpose is a

random variable. This ranom requirement may arise due to insuf-

ficivft intelligence or -__-,¥ capabilities and objectives or ot r

? uncertaintion

,, !n the fir nmodel, we introduce a novel obJectsire function.

[f
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The objective is to maximize the probability that all requirements are

met or equivalently maximize the probability that all missions are

simultaneously accomplished. The constraint set consists of a single

constraint on the total amount of effort available and non-negativity re-

strictions. We develop an algorithm to find the analytic solution when

the requirements are uniformly and independently distributed. The

4 second model is obtained by taking the following objective: minimize

the sum of the expected shortages. The resulting model is a problem

in generalized constrained medians as discussed by Charnes, Cooper,

and Thompson [Z]. We find that the assumption of uniformly and inde-

pendently distributed requirements, in this case, leads to a quadratic

programming problem.

Next, we examine tactical situations where the distribution time

is an important measure of effectiveness. Here we obtain a chance-

constrained distribution (transportation) modei. The availabilities are

known bv4 again the requirements for a specified mission in each contact

area are discrete randonm variables. The deterministic equivalent for

this problem has discrete availabilities and requirements and, therefore,

non-int-eger distribution techniques may be employed to obtain an op-

timal integer solution.

The final model is simply a dynamic two-period version of the

above distribution model. Here, we employ a zero-order decision rule
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for both periods; and a method is given to allow the second period al-

locations to depend on the requirements observed in the first period.

In addition, we indicate how a linear-decision rule can be applied to this

type of model.

Ii

i
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1. 4 A Survey of Mathematical Programming

Relevant topics to this work in mathematical programming are

surveyed. This survey is intended for the well-versed reader and

only an orientation to several important topics is desired. Therefore,

the treatment is brief and no extensive literature citations are included.It
We cover the following topics: the transportation problem; linear.

programming, including duality; and some aspects of chance-constrained

programming. Only the models and the main theorems are prese:ated.

The reader is referred to the literature for a discussion of standard

solution techniques such as th.2 simplex method.

The modern form of the transportation problem was first formu-

lated and studied by Hitchcock [1], although even more general forms of

this problem were studied as early as 1939 (Kantorovich), but were not

available until some years after World War IL1 The transportation

model may be visualized by supposing that there are m shipping points

(origins) with a i units available at origin i (i = 1, ... , m) and r. desti-

nation with bj units required at destination j (j = 1 ... , n). Units can

be shipped from each origin to any destination and a shipping cost of

ci, is incurred when one unit is shipped from origin i to destination j.

The problem is to find a shipping schedule (number of units to be sent

1See Charnes and Cooper [5] for an extensive discussion of
historical developments and early work.

-
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from each or'igin to each destination) which minimizes tot,'l cost.

Accordingly, we let xij be the number of units to be shipped from

origin i to destinatioh j. Then the mathematical problem (model) may

-be stated as follows. Find the values of x.. which3

13

Min B c..x..
i, j 'J J

Subject to: (2a) Z x.. = a
j 1j 1

(2b) x.. = b.

x.. ;O
1j

Constraints (2a) and (2b) require that the total amount sent from each

origin is equal to the amount available there and the total amount sent

to each destination is equal to the requirement.

2The following well-known properties of (2) are inumediately

displayed.

(a) Problem (2) has an optimal solution if and only if

ai= b.

(b) If the ai and b. are all integers, then every basic

1 3
feasible solution to (2) has integer-valued variables.

!The subscripts vary over their entire range when the range is
t-' Inot indicated.

2 See Charnes and Cooper [5] for further elaboration.

3 A basic feasible solution has no more than m + n -I (the number
( of linearily independent constraints) positive variables.

LII
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It follows that at least one optimal solution has integer

valued variables and the optimal integer solutions may

be found by the usual non-integer adjacent extreme

point rAethods.

The above properties are utilized in Chapters 2 and 5. We also en-

counter inequalities in the constraints (2a) and (2b), but we show how

to reduce these inequality forms to the standard form when this re-

du, ion is needed.

The most widely used method to solve (2) consists of three steps.

(a) Find a basic feasible solution (b. f. s.).

(b) Evaluate the current b. f. s. for optimality.

(c) If the b. f. s. is not optimal, move to another b. f. s.

which decreases the value of the objective function and

return to step (b).

If (2) has a feasible solution, then the above method converges to an

optimal solution in a finite number of steps. In terms of geometry, this

method is an adjacent extreme point method; and the key mathematical

property which makes the method work is the equivalence of basic

feasible solutions and extreme points of the convex set of feasible so-

,.o,Z. A more detailed discussion of these ideas would lead us too far

afield from the purpose of this survey. Therefore, we turn to a brief

discussion of linear programming.
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(Next, we define a linear program ahd then give the dual theo-

rem of linear programming, A linear program consists of a linear

objective function which is to be optimized and linear constraints. In

addition, non-negativity restrictions on the variables are usually stated

separitely. Every linear program may be written in the following form

Max ctX

(3) AX 5 b

X 0

where c and X are n-vectors, b is an m-vector, A is an mxn matrix,

and c, b, and A ]all have constant elements. The set S = X AX b,

X z 0 ) is called the set of feasible solutions. The problem is to find

ttan XCS which maximizes ctX over all XCS, If such an X e~&sts and is

finite, then we call N( an optimal solution to (3). Not every linear

program has an optimal solution but exactly one of the following three

cases must occur:

(a) No feasible solution exists.

(b) An optimal solution exists.

(c) ctX is unbounded for some Xc S.} As in the tz-nsportation problem, the methods which are avail-

able to solve a linear program depend on the equivalence of extreme

points and basic feasible solutions, and on the optimality of at least one

basic feasible solution, if an optimal solution exists. Of these adjacent

IW
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extreme point methods, the most widely used methods are the simplex

method of Dantzig [Z] and the dual method of Lemke [1]. The simplex

method consists of the same steps as those outlined for the transpor-

tation problem; however, the means of going from one step to the next

are different in each case. it starts from a basic feasible solution

(b. f. s. ) and several techniques are available to get an initial b. f. s.

With a starting technique and the simplex method, one will arrive at an

optimal solution or case (a) or (c) above in a finite number of steps.

With every linear program there is associated another linear

program called the dual. The dual to problem (3) is defined as

Min Wtb

(4) W'A ct

W: 0

There are certain surprising relations between the solutions to (3) and

its dual (4). These relationships are summed up by the'

dual theorem: Solutions to the primal (3) and dual (4) are related as follows:

(i) Problem (3) has an optimal solution if and only if

(4) has an optimal solution.

(ii) When (3) and (4) have optimal solutions X and W

respectively, then ctX Wtb,

(iii) If either (3) or (4) has an unboUnded solution, then
the other problem has no feasible solution.

f ~,Proof - see Charnes and Cooper [5] for details.

In addition, it is possible for both problems to have no feasible solution.

1
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Therefore, if :t linear program has no feasible solutions, its dual is

either unbounded or infeasible.

The practi'cal significance of duality relationships lie.primarily

in the sensitivity information which is available. It can be shown that

Wi is the change in the primal objective function per unit change in b i .

But, the physical interpretation of W. will depend on the actual physical

process which is modeled. Another important point which should be

made here is that an optimal solution to the dual problem is available

when the primal is solved by the simplex method. Hence, sensitivity

information is immediately available.

.,.1
Next, we give the theorem of the alternative which follows im-

mediately from the dual theorem.

Theorem of the alternative: Suppose X and W are optimal solu-

tions to (3) and (4) respectively. Let X and W s be the slack vectors

for these optimal solutions. Then

Vt -- 0, t  =
5 S

This result is quite useful for analysis and it also provides additional

primal-dual interpretations. We continue now with pertinent topics

from chance -constrained programming.

The idea of chance-constrained programming was first intro-

duced by Charnes, Cooper, and Symonds at the December 1933 meeting

1This theorem is also known as the principle of complementary

slackness.

[-i
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of the Econometric Society. But, four years of refereeing elapsed

until it was published in journal form in [1] 1958). Since then a number

of problems have been treated, but we restrict our discussion to a

definition of chance-constrained programming and the so called "zero-

order decision rule". This rule will be applied to a transportation-type

problem in Chapter 5.

To define chance-constrained programming (ccp), we draw on

the following definition given by Charnes & Cooper [4].

"Chance-constrained programming admits random data
"; variations and permits constraint violations up to specified

probability limits. Different kinds of decision rules and
optimizing objectives may be used so that, under certain
conditions, a programming problem (not necessarily
linear) can be achieved that is deterministic - in that all
random elements have been eliminated. "

The reader may refer to Charnes and Cooper [4] and subsequent papers

for some general formulations of a ccp. We restrict our attention here

to the following problem ("zero-order decision rules"):

(5) Max E (ctX)

(5,) Pr CAX! b} Id

where "E" denotes the expectation operator, c and X are n-vectors, b

and d are m-vectors, and A is an mxn matrix of constants. We assume

that h in a vector of random variaes with a known continuous joint

cumulative distribution function (c. d. f. ). We further assume that c is

a vector of random variables with known and finite means. The double
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inequality in (5. 1) reads as follows: The probability that AX <b is no

less than d. Hence the constraint AX b can be violated but it must be

satisfied with at least joint probability d.

We rewrite (5.1) as

(6) Pr (aiX bi) ; di i= 1, ... m

th thwhere a. is the i row of the matrix A and b. and d. are the i com-

ponents of b and d respectively. Let F i be the marginal c. d. f. of the

random variable bi . Then (6) is equivalent to

(7) 1 - F i (aiX) zd i  i = 1, ... m

1i

provided we are using zero-order decision rules, i. e., X is not a

function of the random variables and A is a constant matrix. Since F.1

is monotone increasing and continuous, F inverse, Fi " , exists. It

follows immediately that X satisfies (7) if and only if X satisfies

a iX r-F i (11 - di) i = 1, ... ,m

Because of this relationship, (5) is equivalent to

Max ctX

(8) aiX-1Fi 1 (1 - di) i = 1, ... m

where c is the vector of mean values of c. The above linear program

is called the deterministic eauivalent of (5). 'rom the linearity of(S),

all of the relationships of linear programming including duality can be

brought to (8) or equivalently to (4).

cI
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In multiperiod models it is often desirable to determine the

optimal value of X adaptively. This is to say, X should depend on the

actual values of b which are observed. This dependence gives rise to

the notion of a decision rule ae defined by Charnes and Cooper [5] and

extensively studied in Charnes and Kirby [1]. The latter prove the

optimality of piece-wise linear decision rules for the E-model. Charnes

and Cooper have particularily studied the class of linear decision rules

X=Db+a

where the elements of the matrix D and the vector a are urknown

constants. These constants are to be determined by reference to (5).

The above relationship for X is substituted into (5) and Charnes and

Cooper [5] then obtain a deterministic equivalent convexprogramming

problem when the random variables b are normally distributed. Solving

this deterministic equivalent yields an optimal D and a which in turn

specifies an optimal X for each observed b, via the above linear rule.

Additional material on chance-constrained programming may be found

in the references listed under Charnes, et. al.

I:I
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1. 5 Elements of Game Theory11±1:We discuss certain elementary concepts from the theory of

games which will be used extensively. The following topics are con-

sidered in turn: definitions for a game, minimax theorem, linear

prograrmning formulation, extensive form, and Kuhn'B theorem of

perfect recall. The first formulation of the modern theory of games

and the nainimax theorem was given by von Neumann [2]. Subsequently,

von Neimann and Morgenstern [1] brought the theory to a high state of

development. Additional contributions are scattered throughout the

literature. However, a large number of these contributions are con-

tained in the Princeton series of "Contributions to the Theory of Games"

and the Proceediv gs of the National Academy of Sciences (U. S. A.). In

addition, several books on the theory of games are: von Neumann and

1' Mnrgenstern [1], Blackwell and Girshick [1], Dresher L], Karlin [I],

Luce and Raiffa [], and McKinsey [ l].

In order to provide a common ground for discussion, it is neces-

sary to introduce several definitions.

i.. A game is defined by the totality of its rules.

Z. A play of the game is one complete execution of the

, eiet of r.,,_le

3. A move is defined as a point in the game when one

Kof the players must choose an alternative.

i I i
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4. An altei3:..tive is one of the choices which a player

may take when it is his move.

The rules of a game distinguish one game from another. They specify

the sequence in which the players move, the amount of information

which is avail able to each player, what the payoffs are, how a play

terminates, and the alternatives which are available. The rules deter-

mine a payoff to each player in the following way: Let M 1, M 2 ... , M
m

represent the sets of alternatives at the moves in a game and let

a = (al, a 2 , t' Iam) be a sequence of alternatives with aicMi (i =,

... , M). Then the sequence a is a play of the game. Suppose there are

n players denoted by P 1 P 2 ' ... , P . Now the rules specify a set of
n

functions ( ( j = , ... , n I for each play a with F. (a) being the pay-

off received by P.. If for some a, F. (a) z 0 then P. receives the amount

F. (a) and if F. (a) < 0 then P pays the amount F. (a). A game is called.1 3 J 3

n
zero-sum if E F (a) = 0 for each a. In the remainder of t'is discussion

j=l
we restrict our attention to two-person (n = 2) zero-sum games. These

games describe situations of conflict between two opposing interests and

they are used exclusively to model the tactical situations under

consideration.

von Neumann and Morgenstern C I] introduced the useful notion

of the extensive form of a game. In this form, a game is viewed as a

tree consisting of nodes and branches. A node corresponds to a move

I

F'
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for a particular player and the branches emanating from a node repre-

sent the alternatives which are available. The origin of the tree

corresponds to the first move and successive nodes correspond to

successive moves. Then each play is represented by a unicursal path

from the origin of the tree to a terminal branch and each te:rminal

branch corresponds to precisely one play of the game. We illustrate

these ideas with the following example:

Example 1

The number beside each node designates which players t move it is. The

dotted lines define information sets. Roughly speaking. an information

set te11- ,, what a player knows at each move. A player will know

which information iet he is in, but not which node he is at. To illustrate

the concept of information, We give the following scenario of the above

game. P1 moves first and chooses one Gf three alternatives. 1 The

information sets for the next move, PZ's niave, tell us if P1 chooses

Frconvenience, ve number alternatives in a clock-wise

direction.

- -. ... -. . .. .
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(" alternative 1; then PZ is informed of this but if P1 chooses alternative

2 or 3, then P2 is not informed of the specific alternative chosen by P1.

Now on Pl's second move, PI is forced tc forget whether he had

chosen alternative 1 or 2 on the first move but Pl remembers whether

he had taken alternative 3 or no+ Further, Pl does not know which

alternative is taken by P2.

We define a pur.! strategy. A pure strategy for a player is a

function from the set of all possible histories of the game into the sets

of alternatives. It is a specification of an alternative at each move for

each possible history up to the move. In example 1, player 2 has eight

pure strat :gies corresponding to the eight ways to map the set ( 1, 2, 3),

into the set ( 1, 2 -. Each of these ways is a specificiti f-1e-al-

ternative P2 should choose (1 or 2) depending on what PI chooses

(1, 2, or 3). .T. a similar way we can enumerate the pure strategies for

P1. Here a pure strategy tells Pl what alternative to choose for both

his moves as a function of the history of the game.

von Neumann and Morgenstern [1] have shown that every finite

two-person zero-sum game can be reduced to normal form. In normal

form the game is represented as an mxn matrix A with each row corre-

sponding to a pure strategy for Pl and each column corresponding to a

pure strategy for P2. If Pl chooses row i and P2 chooses column j then

PI receives aij from P2 and since the game is zero-sum, P2 receives



28

-aij from P1. We refer to these games as matrix games, and A is

called PI's payoff matrix. With the game in normal form, we now

think of it as consisting of one move by each player with the pure

strategies being alternatives. Now either player may move first, and

the second player to move is in ignorance of the alternative chosen by

the first player; or equivalently the players may move simultaneously

in ignorance of the other's move.

The normal form is convenient for a discussion of ralional play

and mixed strategies. von Neumann's [2] concept of rational play re-

quires that each player maximizc his minixfum expected payoff or

simply minimax the expected payoff. To get to the heart of this matter,

we introduce mixed strategies and the minimax theorem of von Neumann

E 2]. A mixed strategy for a player is a probability distribution over the

available alternatives (pure strategies). Accordingly, we assume P1

plays alternative i with probability x. (i = 1, ... , m) and PZ plays his
1

alternative j with probability y. (j 1 1, ... , n). We call the mxi vector

X = (xl, ... ,xm ) and the nxl vector Y = (y 1 , '" 'yn ) mixed strategies

for PI and P2 respectively. Since X and Y are probability distributions,

we must have

m nB X.i= i, x. z0 ; B y . = 1 , yj -0

i=l x 1 j=l

We let E(X, Y) = XtAY, whe -e A is P!Is payoff matrix. Then E(X, Y)

(F

II
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is the expected payoff to Pl when PI chooses X ana P2 chooses Y. The

following remarkable theorem consolidates the theory of matrix games.

Minimax theorem (von Neumann). For every matrix A, there

exists strategies X and Y such that

(9) E (X, Y) - E (X, Y) ! E (X, Y) all strategies X and Y.

The strategies X and Y are called optimal strategies for Pl and P2

respectively, and v = E (X, Y) is termed the value of the game.

We can immediately interpret the meaning of an optimal strategy

and equivalently rational play. From equation (9), if Pl plays X,

then he receives at least v regardless of the strategy PZ employs.

Furthermore, PZ can prevent P1 from getting more than v by playing Y.

Hence, a player can gain nothing by deviating from an optimal strategy

and he can lose more if he does deviate from an optimal strategy. The

minimax theo: em settles important questions of the theory but it does

not tell us how to compute optimal strategies.

Next, we show how optimal strategies may be computed by linear

programming. Consider the following dual pair of linear programs 1

1 This formulation is a variant of the one in Charnes [ 1>

/I
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Max v Min u

m nv- l x' xa.. 0 ; j;1, .. n u Z aijyj Z 0; i=l.... M

j=l

m n

(10) 7 x.=1 (L) -Y.= I

X. 0 i-,.. m yj 0 j-l, .. .n

1

In (10) and (11) the matrix A =(aij is to be interpreted as PI s payoff

matrix and PI is the maximizing player. Charnes [1] has shown that

optim-.l solutions X Y = (1' "'", ' n) and .= .xist

for (10) and (11) and that

XtAy 9 XtAY ! XtAY all strategies X and Y.

Therefore, optimal solutions to (10) and (11) correspond to optimal

strategies in the matrix game A. Further, when either (10) or (11)

is solved the optimal solutions to the other program are available.

: Therefore, the value and optimal strategies may be found by solving

a single linear program.

To avoid confusion later, we emphasize that P2 does not have

to receive the negative of the payoff that P1 receives in order for

zero-sum theory to apply. Indeed, we do not postulate negative pay-

ments later when the payoff is taken to be a probability or a unit of

time. Nevertheless, zero-sum theory applies because one player is

attempting to maximize the expected payoff and the other playez seeks

(_I
1I



31

to minimize it - this is all that is really necessary.

When games are formulated directly in the matrix form, zero-

sum theory requires that each player be in ignorance of the other player's

choice. In most real-world situations and particularly in tactical en-

counters, such total ignorance does not prevail. Some form of intelli-

gence or habits of the opposition are usually known. To incorporate this

type of information and other types, we utilize the constrained game

formulation of Charnes [1]. This approach is employed in Chapter 2,

and we give a complete discussion of it there.

1iS We return to the extensive game form to discuss perfect infor-

mation and perfect recall. A game has perfect information if each

information set contains exactly one node. This means that when each

player moves he must know the complete history of the game including

the other player's moves. Of course, it is well-known that there exist

optimal pure strategies for a game with perfect information. 1 Intui-

* tively speaking, when a game has perfect information, randomizing is

' not necessary to hide a player's choice since it will be disclosed to the

other player in subsequent moves. For example, checkers is a game

with perfect information.

The concept of perfect recall was introduced by Kuhn [1], and

1Refer to von Neumann [2].

I
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it is an extension of the notioni of perfect information. The fundamental

result is that a behavior strategy is optimal in a game of perfect recall.

Vaguely speaking, a game has perfect recall if every player remembers

which alternative he took in all preceding moves. However, he does

not need to be informed of the alternatives which were chosen by the

other players.

To illustrate, we can change example 1 to a game of perfect re-

call by redefining the information sets for P1 on his second move as/

follows: i

u? q3 U4

., ,_ I - , ,

Now on P1's second move he remembers which alternative he has taken

on his first move (Of course, there also are other ways to introduce

perfect recall into this game.).

To define a behavior strategy, we assume that, say Pl, has n

information sets and we let Xi be a mixed strategy over the alternatives

available in information set i(i = 1, ... ,n). Then X =Xl,Xz ..... X n

II
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is a behavior strategy for P1. In the above example, a behavior strat-

egy for P1 is X = XI, X2 , X3 , X4 ) where X i is a mixed strategy over

the information set Ui (i = 1, 2, 3, 4). For e.r-rnple, X3 = (a, 1-a),

where a is the probability of choosing alternative 1 in U3 . Since P2

only has one move, his behavior strategy is the aame as his mixed strat-

egy. It is easy to construct games wl" re one can do better with a mixed

strategy than with a behavior strat. ,y. It has been shown by Kuhn Fl],

on the other hand, that a game of perfect recall always has optimal

behavior strategies.

This concludes our brief discussion of game theory and our

introductory chapter. We turn, to the developmen+ of models aii

tenhodc for ASW tactics.

3



CHAPTER II - NON-SEQUENTIAL SEARCH GAMES

2. 1 Introduction

Two deterministic search games are developed in this chapter.

These games are idealizations of tactical situations which arise in anti-

submarine warfare. We study searching problems where a hunter-killer

force, PI (player 1), and a submarine, P2 (player 2), are in direct con-
I

flict. Specifically, we consider tactical problems where P1 attempts

to detect P2 and PZ attempts to avoid detection. Because of the op-

posing military objectives of detection and evasion, these tactical

problems may be formulated as two-person zero-sum games. An

appropriate payoff function is defined to reflect the objectives of de-

tection and evasion, and we show how optimal strategies correspond to

optimal deployment plans.

We also consider constrained game extensions of the basic search

games and thereby allow secondary military objectives in addition to the

primary objectives of detection and evasion. In addition, these con-

strained games permit the players to choose optimal strategies based

on intelligence or information on the opposing players' tactics derived,

perhaps, from previous attacks. Hence, optimal strategies employed in

a particular play may depend on actual information obtained from

34
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previous encounters.

Examples are given of particular tactical situations which are

encompassed by the games, and these examples serve to illustrate

additional features of the models. Special cases are also treated; and

in section Z. 6, we obtain an analytic solution for a special case of the

first game. Both of the games are shown to be generalizations of

search games introduced by von Neumann [1].

I:I
[i
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* 2. 2 Formulation of the n-Cell Game

The n-cell search game is played within a specified search

region which is apportioned into n cells numbered i = 1, ... n. A pure

strategy for P1 is a cell to search, and a pure strategy for P2 is a cell

in which to hide. Hence, each player has n pure strategies; one cor-

responding to each cell. A play of the game consists of a simultaneous

choice of strategies by the players. Of course, the same game obtains

if the players choose their strategies successively provided that the

second choice is made in ignorance of the first.

Now we define an objective and an appropriate payoff function.

The primary mission of a hunter-killer force is to seek and destroy

submarines, Sternhell and Thorndike [ 1]. We deal here with the seeking

aspect of hunter-killer operations, and focus our attention on tactical

*1' situations where Pl attempts to detect P2 while P2 atterapts to avoid

detection. Hence, a reasonable measure of effectiveness for each pair

of fixed strategies is the probability that Pl detects P2. To formulate

this measure of effectiveness, we postulate the following payoffs. Let

pi" (i, j = 1,... ,n) be the conditional probability that PI detects P2

given Pl searches cell i and P2 hides in cell j; and let P be the n x n

matrixP =(p..). Let thenx I vectors X =(x ..... x ) and
- n'

Y = (Yl .  , yn) be mixed strategies for P1 and P2 respectively. Now

x. is the probability that P1 searches cell i and y, is the probability that
(21
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that PZ hides in cell j. Thus, the probability that F -- 'ects PZ for the

mixed strategies X and Y is simply

(1) XtPY

Equation (1) is the desired measure of effectiveness for the type of

hunter-killer operations under consideration. We assume that Pl is the

maximizing player and PZ the minimizing player.

The celebrated minimax theorem of von Neumann [2] establishes

the exsistence of strategies X and Y and a real number Vr (the value of

the game) which satisfy the equation

(2) xtpY v = X PY !; X py all strategies X and Y

or we may also write - ""I

(3) = max min .tpY min max XtPy = tpy

()V X Y 't =Y X

F rom equation (2), if PI plays an optimal strategy X, then the total pay-

off (probability of detection) is at least as great as regardless of PZ's

strategy. Similarily, if PZ..plays an optimal strategy Y, the total payoff.

-. is no greater than V' regardless of.Pl's strategy. -It foilows that Pl can

choose a strategy to maximize the probability of detection while P2

simultaneously minimizes it. Hence, the conflicting objectives of de-

tection and evasion are embodied in the given two-person zero-sum

game formulation.

An important feature of the n-cell search game is that Pl may

{A
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detect PZ with positive probability from anywhere in the search region.

Thisfeature permits us to consider tactical situations in which the

probability of detection is a function of the range between Pl and PZ.

Variation of detection probability with range is a basic property of de-

tection devices, but none of the search models referenced in the

bibliography permit this variation. They assume either explicitly

or implicitly that the radius of detection is negligible. This assumption

for the n-cell game requires P to be a diagonal matrix, and we ta':e up

this special case in section 2. 6.

SK
I , 'SeMre n ibalC]
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2.3 Solution and Tactical Interpretation

We present a method to compute the solution to the n-cell search

game. No computational advantage is gained from the fact that the pay-

off elements are probabil'ties. Hence, we employ a computational

method developed for a general two-person zero-sum game.

Optimal strategies and the value may be computed and are

charj.cterized by the following dual linear programs due to Charnes [1].

Max v Min u

n n. -iL x i p i j  :r 0; j-l,... n u - l Pijyj> 0 ;i=l .. . n.!

i= 1 j=l 1

n n~(4) ; x.=1() y. =

i=l 1 j=l 2

x i > 0 i=l,...n yj 0 j=l,...n

Let X (" ' xn ) , Y (y' A '"Y ) and UG =be an optimal solution

1 n if n

to problems (4) and (5). Then from Charnes []

XtPY 1 v = XtPY f XtPY all strategies X and Y.

Ience, X and Y are optimal strategies and ^ is the value of the game,

Saation (2)).

We bring together the following assumptions which have been

made and examine t6em in light of their tactical consequences.

.1. Both players know the game is being played.

2. Both players are given the search region and the particular
subdivision of it into cells, i. e., they know what pure
strategies are available,

I
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3. Both players are given the payoff matrix.

4. P1 acts to maximize the probability of detecting
P2 and P2 minimizes this probability.

We study the above assumptions from PlIs point of view when Pl has all

of the information necessary to satisfy the above assumptions and P2

has part or perhaps none of the information. Hence, suppose that Pl

goes out and specifies a search region of interest and divides it into

cells. Now Pl will know the detection characteristics of his own

searching equipment and can therefore construct a payoff matrix.

Further, assume that Pl wishes to minirnaxthe probability of detecting

P2. Then the above assumptions are satisfied for P1. Now, it is

unlikely that P2 will also have all of the information required by as-

sumptions 1 through 4. Thus, due to ignorance of the essentials of the

game, P2 may not play an optimal strategy. Nevertheless, if P1 plays

an optimal strategy, then P2 is detected with probability at least as

great as the value of the game. For practical purposes, it is therefore

immaterial whether PZ has all of the information required by as-

sumptions I through 4. The important point is that when P1 plays an

optimal strategy he is acting as if P2 does have all of the required in-

formation and P2 may, in fact, have a substantial amount of it.

Consider the situation where P1 employs an optimal st ategy for

several plays of the game and his strategy is discovered by P2. 'Then

from equation (2), P2 cannot take advantage of the fact that he has
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discovered Pl's optimal strategy because P1 will detect PZ with proba-

bility at least as great as the value of the game regardless of P2's

strategy. Therefore, P1 can employ the same optimal strateg'r through-

out several plays of the game without risking adverse consequences.

Finally, we given an interpretation of optimal strategies for P1 in

terms of optimal search plans. A search plan, in the sense used here,

I is a specified configuration of the available search effort or equivalently

I the amount of effort which is to be assigned to each cell. If P1 has a

single unit of effort which is indivisible, then he may play th* optimal

strategy X be searching cell i (i = 1, ... , n) with relative frequency x.

1 Of course, these relative frequencies may be realized over several

plays of the game by selecting a pure strategy for each play at random

from the distribution X. Now suppose that Pl has a total amount of

effort E available which is infinitely divisible. For example, E may be

the number of flying hours available for searching which is approxi-

mately infinitely divisible. In this case, P1 may allocate the amount

of effort .E to cell i (i = 1, ... , n), and this allocation is optimal with

respect to the game modol. Hence, a:i optimal search strategy may

correspond to an optimal search plan.

!ic
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2.4 Tactical Examples

We give a tactical example of the n-cell game model. Suppose

that submarines (P2) must pass through a channel to get from their

bases to operating areas. P1 wishes to set up a patrol barrier across

1
the channel to detect submarines as they pass through. The patrol

barrier will consist of a linear array of detection devices across the

channel. Thus, the searching region is a straight line; and P1 divides

this line into 15 cells, as shown in Figure 2. 1. P1 would like to de-

termine an optimal allocation of detection devices to maximin the

probability of detecting P2.

Each detection device has a probability of detection verses range

2
curve as given in Figure 2. 2. The payoff matrix can now be con-

structed from Figure 2. 2. For example, if P1 searches cell 5 and P2

hides in cell 8, then the range is three cells and from Figure 2. 2

P52 - 0. 367. The complete P matrix is given in Table 2. 1.

Now we have all of the information required to solve the n-cell

game. The value and optimal strategies for this example were found by

solving linear program (4) with the data of Table 2. 1. A CDC 1604 com-

puter and a standard linear programming code were used to effect the

I This type of situation was encountered in the Bay of Biscay

during World War II, Sternhell and Thorndike [1].

2 This is a tltypicotl' ' curve according to Morse and Kimball [1].
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computations. Pl has the unique optimal strategy displayed in Table 2.2

and plotted in Figure 2. 3. P2 has two optimal extreme point strategies,

and they also appear in Table 2. 2 and Figure 2. 3.

Let Y, and Y2 denote PZ's optimal extreme point strategies.

Then from linear programming theory, the strategy

(6) Y = )YI + (1 - X) Yz 0 1

is also optimal. From the symmetry of the payoff matrix, we might

expect P1 and P2 to have symmetric optimal strategies about the

middle cell (cell 8). Indeed, Pl's optimal strategy is symmetric about
i 1

cell 8 and for X = - in equation '6); P2 also3 has a symmetric optimal

strategy about cell 8.

Notice that a unit of Pl's effort in cell 1 or 15 has only one-half

the probability of detecting P2 as a unit in cell 8. However, about

sixty-three percent of Pl's effort is assigned to cells near the e- Is of

the search region (cells 2 and 14). Then, in a sense, P1 compensates

for the decreased effectiveness per unit in the end cells by assigning a

large percentage of effort to these cells.

L

j'j(
,I

A



' /

SEARCH REGION

U -

The Search Region and Ccils
Figure 2. 1
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j Yj i Yj X Xj
1 0.258 1 0.274 2 0. 317

5 0.069 6 0.234 6 0.099
6 0. 165 10 0. 165 8 0. 168

10 0.234 11 0.069 10 0. 099
15 0.274 15 0. 258 14 0. 317

all other yj = 0 all other yj = 0 all other x. 0

PZ's Optimal Basic Strategies Pl's Optimal Strategy

Optimal Strategies
Table 2.2

!I

0.3

!; Yj

0.
, ~0.1.

0 2 4 6 8 10 i2 14 15

i CELL NUMBER (j)

P2's Optimal Strategies

0.3 9

0.2

0. 1

2 4 6 8 10 12 14 15
CELL NUMBER (j)

Pl's Optimal Strategy

Plots of the Optimal Strategies
Figure 2. 3
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Other tactical examples which fit the n-cell modct are also im-

mediately available. First, the search region may be a rectangular

array of cells. In this case, an optimal strategy for P1 is likely to re-

quire P1 to play those cells on the edges of the search region with higher

probability than the center cells. Intuitively this would prevent PZ from

hiding in the edge cells where the detection capability is lower than in

the center cells.

We might also study situations where the search region is three

dimensional. The effect of the depth of P2 on the probability of de-

tection can thereby be taken into account. If P1 is using surface de-

* te(tion devices then, of course, Pl's pure strategies would include only

the surface cells, and P2 could choose any cell in the three-dimensional

region. This is a slight variation on the n-cell game where P1 and P2

do not have identical seLs of pure strategies.

Next, we extend the n-cell game to include two or more types of

detection devices for P1. For example, the searcher may have aircraft

and ships available and the probability of detection verses range curve

may differ iignificantly between ships and aircraft. For the sake of dis-

cussion, suppose that only two types of detection devices are to be used.

Call these devices type 1 and type 2. Now the detection probability of

interest is the joint conditional probability p ikj Where pikj is the

probability that P1 detects PZ given type 1 is located in cell i (i= 1, . .. n),

IC
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type 2 is located in cell k (k = 1, ... n) and PZ hides in cell j

(j = 1, ... , n). This game can be placed in the framework of the n-cell

game by simply changing the pure strategies for Pl. Let a pure strat-

egy for P1 be the two-tuple (i, k) where i denotes the location of type 1

and k denotes the location of type 2. Now we may construct the payoff

matrix and solve for the optimal strategies and value by reference to

linear programs (4) and (5). This example may be extended tc handle

more than two types of equipment.

tA
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2. 5 Extension to a Constrained Game

We extend the n-cell game to accon~odate the following types of

situations.

1. A player has information on the cells which his opponent
can choose.

2. A player restricts his own choice of cells.

The above statements are necessarily broad to include a variety of

tactical problems. Some of these problems are outlined below. As we

shall see, cases 1 and 2 are formally embodied by the elegant notion of

a constrained game due to Charnes [ 1).

We discuss 1 for information which P1 may havc on P2's location.

Analogous statements hold when P2 has information on P1. Now

suppcde- P1 obtains a contact with P2 and subsequently loses the contact.

Then Pi knows that P2 must be located in some subset I of the set of all

cells, where I is determined by the position of the last contact and the

elapsed time since the contact. Hence, the following constraints on

P2's strategies are obtained:

y. o for j I

More detailed constraints on iP2's strategies may also be written.

Morse and Kimball [1] give a theoretical probability distribution of PZ's

r location as a function of elapsed time since the last contact. From this

distribution, we can calculate the bounds L. and U. with
r J

i.I

. .
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i [ (7) L.5 y. f.U. j= ,..,n

(7)j J J
The above restrictions may also arise from intelligence reports or Pl's

apriori estimates of PZ's location.

We discuss two extreme cases of information L'.r Pl:

1. perfect information,

2. no information.

In case 1, PI knows the strategy which P2 will employ. Of course, PI

will then have an optimal pure strategy. Furthermore, perfect infor-

mation corresponds to L= U, j = 1, ... ,n, in equation (7). Case 2

is the unconstrained n-cell search game. Here we have L. = 0, U. = 1,
j J

j 1, ... , n, in equation (7). In many ASW situations, the information

which is available will be between these two extremes. These cases

yield to a constrained game formulation.

A situation where P1 may restrict his own choice of cells is

when he has a secondary military objective in addition to the primary

objective of detecting P2. For instance, P1 may wish to provide at

least a certain level of protection for some set of cells I in the search

region because there is a convoy in this set of cells. Then constraints

of the following form arise:

iI

where c is the desired level of minimnn protection.

JoI
$,
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We have discussed a few situations in which constraints on the

players' strategies arise naturally. These situations and others are

included by the following sets of constraints on Pl's and PZ's stra-

tegies respectively

(8) x.c c s 1....S
i=l 1s s

n(9) E brJ j y J r  r = 1. . R

j l

The following constrained formulation due to Charnes [1] is

employed to deal with the types of tactical situations under consideration.

It ;ncludes the formulated constraints (8) and (9).

Max v+ r z b Min u+Z c w
r rr s s

r s

X. C. S c u b . b
ris s j rj YJ r

(10)X. x. w 11 y. = 0

r i Z! 0

Let quantitites with a "hat" over them denote part of an optimal solution

LUt (1 a.. (11). Charnes obtained the following resuits:

(12) v+ E 2 b x+ cr r r Pij Yj = + s
r J 5
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(13) 1; xi Pijpj L iPijYj all strategies X and Y
i j i 13

Equations (12) and (13) establish the existence of a value and optimal

strategies for the constrained game. Of course, thxe value and optimal

strategies may be computed from the above linear programs.

We compare the constrained n-cell game to the unconstrained

game. Suppose that P1 can impose constrair.'G on PZ's strategies but

there are no constraints on Pl s strategies. Then the value of the con-

straineu game is no smailer than the unconstrained value. This fact

follows from problems (10) and (11), since the unconstrained value can

be attained by the objective function of (10) with all zr = 0. Hence, P1

can always increase the probability of detecting P2 if he can determine

constraints on P2's strategies without imposing constraints on his own

strategies. Analogous remarks hold for player 2. See Charnes and

Cooper [51 and Sakaguchi [1], [2], for more details on this subject.

Finally, we discuss an adaptive manner of employing constrained

games. If P1 obtains additional information on PZ's location in a par-

ticular play of the game, then Pl's optimal strategy is likely to change

for the next play. On the other hand, if no additional information is

obtained, then P1 will have the same optimal strategy for the ne't play.

Of course, these remarks also hold for P2's optimal strategies. In Lhc

constrained version of the n-cell game, the players can choose their

optimal strategies adaptively with the optimal strategies for a particular

4.-



53

play depending on the actual information which is obtained in preceding

plays. However, the constrained model does not include the evaluation

of the possible future consequences of a strategy, and thus the game is

non-sequential in nature.

I
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2. 6 A Special eCa ',a,-. of_ Detection

In section . 2 wV fltior t",. yw of ItI ex.'.,ng 'ear,

models assume a negligibtc radius of aotection. This assumption for

the n-cell game requires P to be a diagonal matrix. For then, P1 can

detect PZ with non-zero probability only if PI searches the cell in

which P2 is hiding. This special case was first proposed and solved by

von Neumann [1 ]. We give an alternate derivation which is equivalent

to von Neumann's proof.

We assume that P is a diagonal matrix, i.e. , Pi = 0 for i j.

We also assume without loss of generality that Pii >  ... , n.

For if pii = 0 for some i, then the game has a saddle point in pure stra-

tegies, and we exclude this trivial case. Under the above two as-

sumptions, the dual linear programs (4) and (5) which characterize the

solution become:

,iMax v Min u

v -0 - py.j 0h xiiPiiPj

(14) E xi = 1 (15) . Yj = 1

y~0

. Now we find an analytic solution to (14) and (1 5). Let

v, X =(X' '£n) be an optimal solution to (14). From the inequality

constraints in (14), v must satisfy

'Iv



55

(16 ~ ~min max m i
i x 

i PjX
Notice that for .i to be optimal we must have

(17) p..iX. c I=1. . .u

For if (17) does not hold, then we can construct a strategy which yie-lds

alarger '. From(17)

A Cx. = -- i= ,. . n

n

where c is chosen to insure x. = 1, i.e.,
i=l 1

_ n 1
Ic = L i

1=1 Pii

From (16) and (17) we have

v= c

A similar analysis shows that X is also an optimal strategy for player Z.

Returning to the numerical example of section 2. 4, we find that

if P is a diagonal matrix then X and Y are uniform distributions. This

result clearly points out the limited applicability to ASW of negligible

radius of detection models.

SI
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2. 7 Formulation of the Row-Column Search Game

For the sake of discussion, we call the next search game of

interest the row-column search game. This game is similar to the

n-cell game in that (1) the searching region is divided into cells, (Z)

the payoff is a probability of detection, and (3) it is a two-person zero-

sum game with P1 the maximizing player. The row-column game

differs from the n-cel. game in the manner in which player 1 conducts

the search, and therefore different tactical situations are represented.

Now the game is formulated. As before, a pure strategy for PZ

is a cell in which to hide, but now the cells are doubly indexed (i, j)

i = 1, ... ,m, j = 1,... n. Apure strategy for PI is the choice of an

index i or j. If the cells are thought of as positions in an mxn matrix,

then PZ chooses a position and PI chooses a row or column. These

choices are made simultaneously and constitute a play of the game.

The row-column game is especially useful for studying certain

types of search situations. A typical situation occurs when searching is

conducted in sweeps and the speed of the searching craft is substantially

faster than the speed of the submarine. For then Pl can search an entire

row or column while P2 stays in one cell. One example of the row-

column game is then search in "sweeps'" by aircraft. On the other hand,

the n-cell model is better suited to search by slow craft, such as ships,

because each player only chooses onc -. l in a play of the game.
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As in the n-cell game, the payoff function will be the probability

that P1 detects P2 (the probability of detection). However, for the

present game, the probability of detection is taken to be the product of

the probability that PI contacts P2 (contact probability) and the con-

ditional probability that P1 identifies the contact as P2 given a contact

has been made (identification probability). We could bimply postulate a

detection probability with the understanding that both contact and identi-

fication probabilities are included. However, we postulate the two

probabilities separately to exhibit certain predominant features of this

game.

If PZ hides in cell (i, j), then PI may contact PZ with positive

probability only if P1 searches row i or column j. But, the contact

probability itself may vary along a particular row or column. This

variation may be due to differences in water temperature, salinity,

bottom conditions, and a host of other factors. Now the identification

probability may depend on the row or column searched due to the de-

tection equipment or crew proficiencies of the search craft which are

available for a particular row or column.

To formally write down the payoffs, suppose that P2 hides in cell

(i. il and P1 searches row i. then the contact probability is P.. and the

identification probability is a i and, therefore, the probability that PI

detects P2 is aipij. Similarily, if P2 hides in cell (i, J) and P1
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searches column j, the contact probability is qij and the identification

probability is b.* The conditional.probability of detection is now bjqlj.

Of course, the above probabilities are defined for all i and j.

From the above definitions of the payoff elerents, we construct

player l's payoff matrix, Table 2. 3.

(

(

I
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2. 8 Solution and Reduction to a Dvadic Model

Now that we have the payeff .natrix, tbe game may be readily

solved. Let Yij be the probability that P2 chooses cell (i, j i = 1, ... ,

i= 1, ... ,n. Also, let ui be the probability that P1 chcoses row i

(i = 1 ... , in); and let v. be the probability that P1 chooses column j3

(j = ,.. ,n). Let Ybethemnnxl vector Y = (y 1 1 , Yij' . Yn )

and let U = (u, ... U ) and V = (v I , ... ,Vn). The following dual

linear programs I which characterize the game solution are obtained

directly from the payoff matrix

Max p Min

p - ai Pij i - bj qij vj 0 -" a piP yij 1 0
3

(18) Z u. + E v. 1 (19) - j bq..y.. 0

m n
UP i..-0 7, YijI

Y ij > 0

Let p^, , (U, V), Y be part of an optimal solution to (18) and (19).

Then from Charnes [i], (U, V) and Y are optimal strategies for players

I and 2 respectively and ^ is the value.

To obtain additional insights into the row-column game, we

1 Due to Charnes [1].

i
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tra-.sform problem (19) to a dyadic model. We make the following two

assumptions and show that they do not result in loss of generality.

(i) Pij, qij > 0 all i, j

(ii) a i , b. > 0 alli, j

Now a i and bj are probabilities; therefore, 0 5 ai 1 1, 0 5. bj : 1. Since

the a i and bj are non-negative, the addition of a large positive constant

to every element of the payoff matrix yields a garme with all positive

pij and qi, and the optimal strategies are not altered, von Neumann and

Morgenstern [1]. Therefore, assumption (i) does not result in loss of

generality. Suppose (i) is satisfied and consider assumption (ii). We

exclude the trivial case; all a = b = 0, and assume some a or b. are
1 3 1 3

positive. Every row in the payoff matrix with a. = 0 or b. = 0 is domi-1 3

nated by a row with positive a. or b. Thue, the rows with zero a. or

b. may be deleted from the payoff matrix and assumption (ii) does not3

result in loss of generality. From assumptions (i) and (ii) it follows

immediately that the optimal objective functions for (18) and (19) must

satisfy 4, > 0.

The desired transformation for problem (18) is

a i u. bj vj
(20) u! =-- i 1 m ; vI -n

and for problem (i9)

(1) y - il,...,m ; j=l,...,n
ij

1.
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These transformations yield the following dual pair of linear programs:

I u I
Min -- +V'v' Max B y!.

i j i,j 1

I1
u! .i + v!. q p "Y' a-

1 ij 3 i j 1 i; 1

(22) (23) iul ! ;?.: 0 q~j i bj

,Y 0l

1 b.

Since p, > 0, equations (20) and (21) e.stablish a one-to-one corre-

spondence between optimal solutions to (18) and (22) and (19) and (23).

Let "hats" on the variables denote an optimal solution to (Z2) and (23).

Then from (20) and (21) we have

(24) u.=7-, A b - A 1

(24) U1. 1 b

Ij

1, j

Problem (Z3) is a dyadic model as defined by Charnes and

Cooper [5". Actually, (23) is not the most general dyadic model but it

is substantially more 8 eneral than the distribution (transportation)

model. Special computational techniques are available to solve dyadic

Drobiems but we do not dwell o-,, here. 147h41c .ader is . .eferrd to

Charnes and Cooper [ 5].

(m-
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2.9 Special Cases

Certain tactical situations may be formulated as special cases

of (22) and (23). One of these cases is when

(26) p = q.. all i,

Equation (26) implies that the contact probability for cell (i, j) is inde-

pendent of whether P1 searches row i or column j, i. e., the direction

in which the sweep is made is immaterial. Suppose (26) is satisfied,

and let

(?-7) w P j Yij

then problem (23) is transformed by (27) tc yield the following dual

pair of linear programs:

Min I ui + , v Max, i w..

ai b > j aij 1 bI

4~I
U, I +vi (2a) w

U' u v i; 0 :(29b) w wij b

wij 0

An additional simplification of the distribution problem (29) can

be obtained. Summing out over the constraints (29a) and (29b) re-

spect~vely, we get

1,)1 i,W wi & wij bi, jiij

7 '

J, M0-
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Since - > 0, the same optimal solution obtains if we replace (29a) or
Pij

(29b) by equalities as follows:

(i) IfL 2 < replace (29a) by equalities.

3

(ii) iZ > - replace (Z9b) by equalities.
a. b1 3

(iia) If .a replace both (29a) and (29b) by equalities.

Under the indicated assumption (26), the row-column search game has

been reduced to a distribution model. We give a tactical example of

this model in the next section.

A final simplification of the most general game obtains if, in

addition to (26), we assume that a. = b. = 1 and m = n. Of course,
1 3

these assumptions mean that the identification probabilities are one and

the search region is divided into an equal number of rows and columns.

Now (28) and (29) are reduced to the following dual linear programs.

Min u. + Z v1 Max 1__ w..
",j Pij

(30) uf + v' 1_ (31)
1 3 pW..

j '
Iu. , v. I.

i 1

w..>O
13
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From statement (iii) above, the constraints in (31) are satisfied as

equalities by an optimal solution. But, the equality form of (31) is the

well-known assignment problem. This equivalent assignment problem

was first obtained by von Neumann [1]. Our proof of equivalence is

considerably more direct than his, due to the linear programming

characterization of a matrix game which is now available. This com-

pletes the transformations of the row-column game to dyadic-type

models.

(.
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2. 10 Tactical Example

We conclude this chapter with an example of the row-column

search game. In this example, the search will be conducted by a single

aircraft. The search region of interest is partitioned into four rows

and six columns, and the aircraft searches in row or column sweeps,

We assume that when P2 hides in cell (i, j) the contact probabilities

depend on (i, j) but not on whether P1 searches row i or column j. Thus,

we have pij = qij all i, j, and this game is equivalent to the distribution

problem (29). The contact probabilities and the identification proba-

bilities are given in Table 2. 4.

To apply standard methods to solve (29), we convert it to the

standard equality form. For this example B. > L L , thus the
I J J

inequalities (29b) are automatically satisfied as equalities by the optimal

solution to (29). Therefore, we simply adjoin a dummy column to (29)

to obtain the equivalent standard distribution problem. This standard

form and the optimal solutions are given in Table 2. 5. Finally, the

optimal solutions are converted to strategies and tabulated in Table 2. 6.

t _ __ _
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-Z 2 2.83 3 1.67 1.67 1.67 0 z__
2 2. 5 2 1.67 1.67 1.43 0

0 
10 (Do 0 0 0@

2. 5 3.33 1.67 1.43 1.2Z5 2 0

2 1.43 1.43 1.25 1. 11 1.67 0

1.67 1.67 2 1.43 1.25 1. 67 0
0 _ 0 1 _3

3 3 2 1 1 2
The Distribution Tableau and an Optimal Solution

2 2832 1.67 !._67 i1. 67 0

0 (0D@2

0 _ 02 0
IA - I - II5 1 J ?- 2 I

An Alternate Optimal Solution

Optimal Tableaus
Table Z. 5
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The transformation formulas to obtain optimal strategies

from the optimal solutions of Table 2. 4 are:

1 p 1-- = i V . .7 68
i, j Pij x

y.Pi §

Vit U.vi._ .ui
3 b. 1 i

Optimal Strategies for P2 OptiLmal Strategy for P!

(i, ) Yij Yij

(1,4) 0.060 0.060 u 2 
= 0. 09Z

(1,5) 0.060 0.060 A .217
(2,1 ) 0.181 0.181 v

Z(, 2i 0. 361 361 VZ z 0. 306

(3, 1) 0.073 0. 073
(3,6) 0.120 0.0 60 3 0 , 6
14,3) 0. 145 0. 145 V4  0.060
(4_ ..... vo. -05 -- 0. 060

all other y 0. =0, all other yi. = 0 6 =. 12

all other V 3 . 0

Optimal Strategies
Table 2. 6

69
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CHAPTER III - SEQUENTIAL N-CELL GAME

3.1 Results

In this chapter, we formulate and solve a sequential search game.

This game consists of a sequence of moves, and on each move the

players are faced with an n-cell search game. We consider, in turn,

both a finite and infinite number of moves. In essence, on each move

the players simultaneously choose a shcategy in an n-cell search game

and thereby determine an immediate payoff and, in addition, a proba-

bility that the n-cell game is played again. Hence, a sequence of n-cell

games is played. We show how to find optimal strategies for both the

finite and infinite games which minimax the expected accumulated

payments.

For the finite game, we show how to characterize the value and

optimal strategies in a recursive manner. In this way, we can compute

the solution by linear programming methods.

A characterization of the solution of the infinite game results in a

non-linear programming problem. However, if one variable is treated

as a parameter, the resulting problem is a linear program. We show

program and thereby approximate a solution to the non-linear problem.

70
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We discuss in detail two particular payoffs which are meaningful

for ASW purposes. One of these payoffs reduces our characterization of

the infinite game to a linear programming problem. Finally, examples

are given, and we compare the sequential n-cell game to the non-

sequential n-cell game.
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3. 2 Formulation of the Finite Game

First, we discuss the elements of the finite game, and then we

proceed with the mathematical formulation. A play of the game consists

of, at most, a finite number (N) of moves. On each move, when the

game has not terminated, the players are faced with a two-person zero-

sum game. In our formulation, we shall use the n-cell game as the two-

person zero-sum game for each move. When the players move, they

each choose a strategy which determines a zero-sum payoff from player

2 to player 1 and a pxobability that the game terminates before the next

mova. We wish to find an optimal strategy for each player which mini-

maxes the expected accumulated payments received by player 1,

For ASW purposes, we consider two particular payoffs. As in

the n-cell game, the payoff for each move may be the probability that

Pl detects P2 during the move. Then, as we shall see, the expected

accumulated payment received by Pl is the probability that Pl detects

P2. The other payoff considered is the time taken by one move. Here,

PI receives a payoff of one time unit regardless of the strategies chosen,

and the expected accumulated payment is the expected duration of the

game. In the following formulation, we use the generic term payoff to

accommodate both of the above tactical payoffs and others as well.

The recursive optimization technique which ive will propose

has also been discussed by other authors. Kuhn [l] (1953) gave his

rI
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theorem on games of perfect recall which paved the way for further

work. Shapley [1] (1953) was the first to use a recursive optimization

technique for this type of game, although he did not deal with -he finite

case. Later contributions were made by Bellman U) (1957),

Zachrisson [1] (1964), and Denardo [1] (1965). However, the develop-

ment given here differs in content and detail from t - above cited works.

We assume that a search region is given and that the region is

divided into n cells numbered i = 1, ... , n. We also assume that a pure

strategy for each player on each move corresponds to the choice of a

cell. From a tactical standpoint, a pure strategy for PI (the searcher)

is a cell to search and a pure strategy for P2 (the hider) is a cell in

which to hide. Notice that,..e have assumed that the same set of pure

strategies is available for each player on each move. We have taken

this assumption for notational convenience; it could be relaxed. We

further assume that a play of the game consists of, at most, N moves;

and we number the possible moves r = 1, 2, ... , N. On each move, the

players choose their strategies simultaneously and the moves are made

sequentially. Unless otherwise stated, we assume that Pl is the maxi-

mizing player.

[The payoffs and continuation probabilities are now specified.

Suppose that P1 searches cell i and P2 hides in cell j on move r. Then

the ;.yoff from P2 to P1 is

.I

A i
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{ ~ aij (r) i, i = .. n

Also, when Pl searches cell i and PZ hides in cell j on move r, the

game continues until move r + 1 with probability.

p..(r) i, j = 1 ... n

r =1, , N -I

We let A be the nxn matrixA = (a..(r)) and P the nxn matrix

Pr = (Pij (r)). Hence, Ar is Pl's payoff matrix for move r and P r if

the matrix of continuation probabilities for move r.

Next, we consider strategies for the players. We have assumed

that the continuation probability and payoff depend only on the choices

available for a particular move. It follows that the game is one of per-

!ect recall as defined by Kuhn [1]. Kuhn's theorem for a game of per-

fect recall asserts that an optimal strategy for a particular move does

not depend on preceding .strategies. Hence, an optimal strategy for each

particular move in our game is a mixed strategy over the alternatives

available at that move. Kuhn calls this type of strategy a Obehavior

strategy". We restrict our attention to these mixed strategies without

loss of generality.

Let Xr and Yr be mixed SLraLegies over the altefrnatiVes vail-

able on move r for P1 and PZ respectively. Let X = (X l , ... , X N) be

an N-tuple of mixed strategies for P1, with X_ being the mixed strategy

.........
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for move r. Similarily, let Y = (YI, .... YN) be P2's game strategy.

Now we define the following sets of strategies

" r :Xr)' [Z Yr, I'M= (X), Y= (Y)

From the above discussion, Mland 77 contain optimal game strategies

for PI and P2 respectively. These optimal game strategies are optimal

\vith respect to the set of all possible strategies.

We will write the total expected payoff for Pl in terms of fixed

strategies XeM Y tI and the given information. If P1 chooses the

strategy Xr for move r and P2 chooses Yr' then the payoff to PI for

move r is

XtA Y r=l, ... Nr r r

and the game continues until move r + 1 with probability

Xt P Y r = 1, ... ,N-1
r r r

Now the expected payoff to Pi for move r is the product of the proba-

bility that the game continues until move r and the payoff fo7, move r

r-IXt A Y  11 Xth r = 2, 3, .. N
r r r h=1 XhPh Yh

The expected accumulated payoff for N moves, v, (X, Y), is the sum of

the above expected payoffs for each move.

(1)~~ v(X, Y) =Xt A Y + Xt X~AYr 4hh1 r=2 h=1
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Since the game has a finite number of moves and a finite number of

strategies, it must have a value and optimal strategies, von Neumann

and Morgenstern C 1]. Recall that the sets X and " contain optimal

game strategies. Therefore, the function v 1 (X, Y) has at least one

saddle point over the sets X and T. We propose a recursive optimiza-

tion technique to find the saddle points of v1 (X, Y).

I (.!

i
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3.3 Recursive Solution

In this section, we show how to compute the minimax of equation

(1) by a recursive technique. Let X r and Yr denote the sequences of

strategies

x r =(X X r ... ,xN)r r1 r+

Y =(Y Y  'Y
r r r+l N

Of course, we have X= X, and = Y. We rewrite equation (1) and

define the functiona v (X , Y) by

(2) v (X ,
r ) X r A Y + (Xt P Y ) v (X Y ) r 1...., N

rr r r r r r r r r+l r+!' r+l
VN i

Now. v (X , f I may be interpreted as the expected accumulated pay-

ments received by P! on the last N - r + 1 moves of the game.

I't is intuitively clear from equation (2) that the value and optimal

strategies may be computed recursively. We shall establish this fact.

We define Vl' XrD Y by the following equations
rr

A Max Min

r XrI Y 67 r r r r r rVr+l 1 N 0

Xt A Y + (xPtp r Y r
) vr

r r r r r r r+l

The minimax theorem of von Neumann [2] establishes the existence of

AN

X r Y r' vr for equation (3). The following theorem relates the solutions

V

kI



78

of equation (3) to the solutions of the sequential game.

Theorem 1: V^, is the value of the sequential game, and
A A A A A A

X = (X' ... ' XN), Y = (Y 1, ..... YN) are optimal strategies for PI and

P2 respectively.

Proof - Since v1 (X: Y) is the expected payoff function for the

sequential game, a necessary and sufficient condition for to be the

value of the game and X, Y optimal strategies is

vI (X, Y) < 'l < Vl ( ' Y ) all Xcgand Y¢X

We shall show that this condition is satisfied by ,, X, Y as defined by

(3). From (3) we have

rAYr +(r Pr r r+i r r r r r r'r r+l

all X fs X YrCr

We begin an inductive argument

At
v. A Y al

VN(XN' YN )  XNANYN >  all YN

assume

Vr+ 1 (Xr+l YrJL) a Vr+l for some r

By definition

-
AAV(Xr , Y)X Ar Yr +(XtP Y )vi (Xr Y~-4 all Y

By the inductive assumption and X P Y t 0r r r

At
V (X Y RIXA Y + (X P Y)v all Y

r r r r r r r r r r+l r

It
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From the above equation and equation (4)

V r (X r r )  Vr all Yr

Hence, by induction on r

V . v (X, Y) all Y.I± 1

Similarly, we may establish

v Iv 1 (X, Y) all XIX

therefore

vM(X Y) M Y) all XcX, Y¢6Y

and the theorem is true.

We have established that the value and optimal strategies may be com-

puted by mear's "bf equation (3).

For each fixed r it. (3) we must solve an ordinary matrix game.

The game has the payoff matrix A + A P with V^ known. As in

r r+l r r+l

Chapter 2, we draw on the following linear programming formulation of

this game due to Charnes [ .

L.P. Ir+lf

Max v

v " F x [a.r) + r P (r)] <0 j=l,....n
r ir 'ii r+l ii

n2Z x==1

i= 2:

It >-O ;= I . .
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From Charnes [1], an optimal solution to L. P. (vr+l) solves equation

(3), i. e., it yields an optimal strategy Xr for Pl on move r. Of course,

an optimal solution to the dual of L. P. (v^r+l) also yields an optimal

strategy Yr for P2, and this strategy is available when the primal is

solved.

The value and optimal strategies may be computed by the follow-

ing method.

1. Set =0.

2. Given r+1' solve L.P. (Z^r+l) for an optimal solution y^r'

X r, and also obtain a dual optimal strategy Yr

3. Return to step 2 until ^1 is computed.,

As we have shown., vA1 is the value of the game and X = (X 1 ... N)

A A A

= Y1 .... I Y N) are optimal game strategies for P1 and P2 respec-

tively. In the next section, we give a simple example of the above

method.

Q:
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3. 4 The Negligible Radius of Detection Assun.ption and an Example

We briefly examine the negligible radius of detection assu-nption

for the sequential n-cell garne. in section 2. 6 wFe developed this as-

sumption for the n-cell game and found, the optirnal strategies and value.

Of course, some of the results obtained in section 2. 6 will carry over

directly to the present discussion. Tc take the negligible radius of de-.

tection assumption, we assume that A and P are dional rnatricee
r

(r = 1, ... N). We denote the diagonal elements of A, and P by a.

and P. (i = 1, .... n) 1,especti-vely. Under this assumption, if PI and

PZ both choose cell i on move r then the payoff to PI is a. and the game
ir 9

continues until move r + 1 with probability Pir: otherwvise, the payoff and

continuation probability are zero. In terms of tactics. this model could

be used in situations where PI already has a contact with PZ and Pl may

have a positive probability of maintaining the contact with P2 (the game

may continue) only if P1 Looks in the cell where P2 is hiding. Otherwise,

P2 evades Pl.

in th pre3evt special case, equation (3) is rendered

I- ax Min- r 1,r

r "r i ir ir 'ir ir ir iri rI.

I. N+l
I A a ,uci&.&OA1 "": r = 1N is

IAs in s,*c.on 2. 6. we asse.ne without loss of generality that
air> 0, alli, r.

I3
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.. CN _.._N I
XiN = -i i =1, ... ,n; vN cN; CN £ a-

iN N aiN N i=1 aiN

and, in general, the solution is

Si, i=l,...,n; V =c ;c-- n .

ir~~~~i =+ y iiNFr(I +r r+Pir r r cr i= 1r r1 Pia

For the Nt h rove. the optimal strategies are identical to those of an

x-c--ll game with diagonal payoff matrix A This is to say, P2

choosea a hiding cell with probability which is inversely proportional to

the payoff for that cell. For moves other than the Nth, an optimal

strategy depends on the current payoff and the continuation probability

as shown in equation (5). This seems to be a, "reasonable" optimal

Strategy for P2. On move N, the theory tells PI to look with the highest

probability in the cell with the smallest probability of detection because,

in a sense, PZ is likely to hide in the cell with the lowest probability of

detection,

We close th.e discustion of the finite sequential game with a

e.,-ple example. conslder a game with two cells and the same A and

P matrix for -very move. This fame will have, at most, three moves.

S- Later, we compare this garne with one where an infinite number of

moves iz alliwed. The given information for the game is.

r-l .21 r .8 *71

A= L3.1 .71 =L- 3 J L L.6 .7 J

*1
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We solve this game by a simple graphical method. Starting with

€4 -" 0 in equation (3), we seek to find

max min
3 X Y 3

We find

V X =(3 
3 6' 3 3 3

A I

Using v 3 =;, we must now solve the game with payoff n-atrix

3 = LZ. 4 1. 3

The solution is

V - .286, X 1=(I '1
2 2 lb 1

and to obtain the value of the sequential game and an optimal strategy

for P1 on move 1, we solve the game with payoff matrix

A 3 2 8  .400]

We obtain, the solution

.36Z, l 85II 13'13

As we have sho-w;n, V is~ the value of the sequential game and X'

r = 1, 2, 3, is an optimal strategy for P1 on move r.

1We could also have readily obtained optimal strategies'for P2.
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3. 5 Formulation of the Infinite Sequential Game

In this section, we allow an infinite number of moves in the se-

quential game. Before giving an analytic formulation. we discuss some

of the features of the game. In the infinite sequential game there is no

maximum number of moves. The continuation probabilities alone con-

trol the termination of the game. To obtain a manageable analytic

problem, we must assume that one payoff matrix and one continuation

probability matrix are specified for all moves. We further assume that

the probability of continuing until the next move is strictly less than one

for all pairs of strategies. This assumption guarantees boundedness of

the expected accumulated payments received by P1; and it gu.arantees

that the game terminates with probability one, althoulh the number of

moves may not be bounded. We will discuss these assumptions in more

detail, when we consider a more complicated version of this game, in

the next chapter. Now we turn to a formal definition of the game under

consideration.

We assume that a search region is specified and that it is divided

into n cells. If P1 chooses cell i (i = 1 .... , n) and P2 chooses cell j

(j= 1,... n) on move r (r = 1, 2, ... )then P1 receives from P2 the

payoff

a.oK ~ and the game continues until move r -t 1 with probability
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(6) 0 p pij < I
Let P be the nxn matrix P (pij) and A the nx.n matrix A =(aij). A is

the payoff matrix, and P is the matrix of continuation probabilities for

every move. We further assume that the game is zero sum and that

PI is the maximizing player.

The game which we have defined above is one of "perfect recall";

and by Kuhn's [1] theorem, a "behavior strategy" is optimal. Briefly,

a behavior strategy is defined with reference to the informatio i set

in the game. If a player uses a behavior strategy, he plays the same

mixed strategy over the alternatives in an information set each time the

information set is reached, regardless of the past history of the game.

In the infinite sequential game, there is only oi..3 information set and,

therefore, a behavior strategy is simply a mixed strategy which is used

for every move. We restrict our attention to these strategies.

Let X = (x 1 , x 2 , ... x) and Y = (y y )be behavior

strategies (mixed strategies over the alternatives) for Pl and P2 re-

spectively. For example, Pl chooses alternative i with probability x i

on every move. The expected a.ccumulated payment received by P1,

v (X, Y), is simply the sum over all r of the probability that the game

iai,._ until moVe r times the payment to Pl for move r,

(7) v(X, Y) - (Xtpy)r XAY
r=O

I A

A ,"
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The above sum converges, since (6) implies 0 : XtPY < 1 for all

strategies X, Y. For convenience, we define the matrix Q = (qij)

with Iij = 1 -pij all i, j. Then Q is the matrix of positive termination

probabilities. Equation (7) may be written as

X'AY XtAY
(8) v(X, Y) - -I -XtP Y XtQy

von Neumann 'I] first established the existence of a unique value v and

optimai strategies X and Y for the form in (8), i. e., there exists a

unique real number v and strategies X, Y such that

XtAy Aty

(9) gXt v - all strategies X, YxtQy ̂YtQY

An elementary proof of this fact was subsequently given by Loomis [ I,

and this result is a special case of Shapley's [ 1] more general

"stGchastic same". Neuts [1] formulated and solved a special case of

the infinite sequential game. His P matrix was a diagonal matrix and

his A matrix also had a special form.
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3. 6 Solution by Linear Programming Methods

In the last section, we formulated the game of interest and

noted the existence of a solution (a value and optimal strategies).

However, there are no known methods for computing a solution. In

this section, we develop a computational method to approximate a

solution. The method is based on a linear programming formulation

of the gare with an unknown parameter in the constraints. We sho'l

that this parameter is equal to the value of the game if, and only if,

the optimal objective function of the linear program is zero. The re-

mainder of our discussion is then devoted to a method for approximating

the required value of the parameter.

To begin, we establish Lemma 1 which relates the solution of

the infinite sequential game to the solution of an ordinary two-person

zero-sum game.

Lemma 1 A necessary and sufficient condition for v to be the

value of the infinite sequential game and X, Y optimal strategies is

that the two-person zero-sum game with payoff matrix A - vQ has

value zero and optimal strategies X, Y.

Proof For the game A - vQ to have value zero and optimal

strategeiea 3C. V. it Isnecessary and4 suf-ficien-t that

(10) Xt(A- vQ) Y r 0 • Xt(A vQ) Y all strategies,X, Y

But, XtQY > 0 for all strategies, X, Y. Hence, v, X, Y satisfy (10)

I ~-

I1
4

!.4
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if, and only if,

(10a) xty< v <tAY all strategies X, Y.

Equation (JOa) is a necessary and sufficient condition for v to be the

value of the infinite sequential game and X, Y optimal strategies. Hence,

the lemma is true.

Lemma 1 immediately suggests a method for computing v. The

main idea is to choose a number s and compute the value of the game

A .- sQ. If the value of A - sQ is zero, then s = v and we are finished.

If the value of A - sQ is not zero, then we want to choose a new value

of s, say s, , such that the value of A - S Q is "closer" to zero than the

value of A - sQ. We begin by formulating the game A - sQI as a linear

program.

Consider the linear program

Max uS

t _ t
(11) u e - X (A - sQ) ! 0

S s

Xte
S

X e05

where e is the nxl vector of all "ones", X is an nxl vector, and s5

is a fixed scalar. Let asp X be an optimal solution to (11). Then

from Charnes 1l], X is an optimal strategy for P1 and a is the value5 5

Sof the game A - sP, (s fixed). Of course, an optimal strategy Y for

s
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P2 is part of an optimal solution to the dual )f 11), and YS is available

when (11) is solved by the simplex method.

Next, we examine the variation in Us which results from a

change in s. We consider a perturbation from s to s + § in problem

(11), and we want to relate a to u Accordingly, we add and

subtract the vector §X Q from the constraints of (11) and obtain the

following equivalent linear program

Max u

u et _ Xt (A - (s +) Q) :XtO 0
5 5 5

(12)

Xt e

X >0

We seek to obtain a linear programming formulation of the game
A - (s + C)Qfrom (1Z). Hence, we jet ma - a m i

q= i~ qi'q i~ ij

and then for > 0

(13) get § Xt Q § < et all strategies X s

Now consider the following linear program

Max u'

u' et - Xt (A- (s + §) Q) 5 §e t

(14)
Vte -I

X 0

Problem (14) is "less constrained" than (12). Therefore, the

1'1
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respective optimal ! olutions must satisfy ("hats" on the variables de-

note optimal va]ues)

(1 r) A' A

U u U 5

Notice that the right-hand side of the constraints in (14) is a

constant vector. We bring this vector over to the left-hand side of

the constraints and make the change of variable

(16) u -U -

s

to obtain the program

Max (u +

CSte t - x (A - (s + g) G  0
(17)

Xte= 1

X ;0

But, (17) is the desired linear programming formulation of the game

A - (s + C) Q except for the additive constant + Cq in the objective

function. Hence,

and ftomr. (15) and the above eouation

+ g z s

By using the left-hand side of (13), we get by a similar argument

" s + r

Thus fir > 3

ii

__/
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(18) u -§Cu -+, 5,>o

and for < 0 we can derive the relationship
- (19) -g a -g , < o

s s+ 5 s

Equations (18) and (19) give the desired relationships. We can choose

a starting value of s and then subsequently perturb us towards zero.

Before giving a tactical example, we determine two numbers

m andM(m M) such that CGm . 0 andC M  0. Then since C s is a

continuous function of s, 1 a = 0 for some s in the range m s S M.

Suppose we choose

(20) m 3in aij M= max aij

.ij qij i,j qij

then

mqij I aij, Mqij 2 aij all i, j

From the constraints of (11), we see that

mn n

us = xi(aij - sqij)
i=l1 1 13 1

thus

U !0, u M 0

With certain restrictions on the elements ai, we can derive tighter

bounds than m and M; but for our purposes, the bounds given-here are

IThis fact is clear from the foregoing derivation.
S(

I',4
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adequate. Since the value of the game v satisfies ui = 0, v must be in
v

the range m r v M and we restrict our attention to this range.

t1

ii

I

p '
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3. 7 Tactical Payoffs and an Exainple

Two reasonable objectives for PI in tactical situations are,

1. Minimize the time to detect PZ.

2. Maximize the probability of detecting P2.

Of course, P2 maximizes when P1 minimizes and vice versa.

The first objective is discussed in the next section and the resulting

game can be formulated as a linear program. No iterative solution

technique is required. To obtain objective Z above, we interpret the

a.. as the probability that P1 detects PZ in onc move. We also allo.?..
IJ

the game to terminate by several methods. For example, the game

terminates if Pl detects P2 or PZ sinks P1 or PZ escapes from the

search region. Hence, the probability that the game continues until the

next move is no larger than one minus the probability that PI detects

P2, i.e., pij 1 - aij all (i,j). With this condition, the value v will

satisfy 0 s v 1 1, and v is in fact the probability that Pl eventually de-

tects P2. Also, notice if we require that P1 either detects P2 or the

game continues, then Pij = I - aij (all i, j). From equation (8) v = 1 ,

i. e. , P1 eventually detects P2 with probability one and all strategies

are optimal.

To illustrate the rnethorl eev, , t- 1-4. rection, wo Present

the following example. We assume that the search region consists of

two cells and that Pl wants to maximize the probability of detecting P2.

I

9

£i _______ _. _
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The following payoffs A and stop probabilities Q are given.

1I
A -- 3 .1 .= 4 .3J

With the above data, linear program (11) becomes

Max us

u5 -X (. -. s) - Xs (.3 -.4s) 9 0

(21)
us - Xs (.2 .3s) - xs?(.l -. 3s) 0

X +Xs 2 =

//

xsl x 0

To apply our method, we need an initial value of s. The bounds

from equation (20) for this example are

3 4

We choose our initial value of s bet,,een the above bounds; and for con-
I

venience, we try s = ±. The resulting optimal solution to (21) is

3 1
1 1 - ' 2 ,
2

Now we want to choose s to get uA a 0. From the discussion following L

equation (20), we have u g 0; and for convenience, we select s = . 7.
M

The reaRuting ontir1Al -1,;tion fo ) a

A 13

U. 0.288, X 16' x? T

.1

I
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We use linear interpolation between s = . 5 and s = 7 to approximate

the value of s which gives a = 0, i. e.

s=.5+.2)100
s . 5 + (. 2) i- = 0. 593

215

Now a - 0, we conclude that v I- . 593. We round v off to . 6 and
,593

solve problem (21) with s = . 6 to obtain the following optimal strategies

7 2
x I -, -5 4

Y 1 - ' Y 2  9

In this example, P1 can detect P2 with probability at least

v = . 593 by playing optimally. Of course, P2 can prevent P1 from ob-

taining a larger probability of detection than . 593 by also playing

optimally.

We may compare this solution to the solution of the finite game

with the same payoff matrix and stop probability matrix. (See section

3. 4. ) The probability that P1 detects P2 in at most three steps was

v 1 = . 3o2. Also, when the game lasts one step, we have an n-cell

game of Chapter 2. In this case, the probability of detection is . 167.

This completes the discussion of the example, and we turn to a special

case of tLC iziusL general game.

I ...
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3.8 A Special Case: Minimax the Expected Duration of the Game

We investigate the special case when P1 seeks to minimize the

expected duration of the game and PZ seeks to maximize it. To obtain

this-objective, we must take aij = 1 (all i, j). Then, from equation (7),

the expected accumulated payment received by P1 is the expected

duration of the game. With all ai = 1 , equation (8) becomes

13

v(X, Y) =-
XtQY

We want Pl to be the minimizing player so we Leek to solve the

equation

(nin max 1 1
(22) v X Y xtQY - tQy

Clearly, v, X, and Y satisfy (22) if, and only if, they satisfy

(23) 1 - max m XQY = X tQy

v X Y

Hence, Pl can minimax the expected duration of the game by rnaximining

the probability that the game terminates in one step.

We can solve equation (23) by the following familiar linear

programming fornulation of a matrix game

Max u

uet - xtQ 0
(24)

x 0

I.
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, , X be an optimal solution to (24) and I a dual optimal strategy.

Then

u= XtQY = max Xin xtQY
X Y

and from the equivalence of the optimal solutions to (22) and (23)

1 min max I 1
U X Y xtQy X:Y

This is the desired solution to the infinite sequential game when the ob-

jective is to minimax the expected duration of the game.

We solve the example of the last section when minimax the ex-

pected duration is desired. Here

Q=L 4  3

and problem (24) becomes

Max u

u- x (.2) -x 2 (.4) ; 0

u - (.3) - x ( 3) 0

x + x 2  I

x I , x 2 ; 0

The solution to this simple linear program is

2 1u. =.3, 1 =  2=

Thus, the minimax expected duration is . = - moves. And,
u 3

= (XS x, ) is an optimal strategy for Pl.

-12
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3.9 A Stop Strategy and Dominance

A feature that can easily be included in the sequential games is

a stop strategy for P1, which will allow P1 to terminate the search if

he so chooses. In the finite game, this option can be included by

simply adjoining an additional row (n + 1) to each of the matrices Ar

and Pr' Since row n + I is to be a stop strategy, we require that row

n + 1 of the matrix Pr contains all zeros. By solving this new game,

we find the moves for which P1 chooses row n + 1 with positive proba-

bility or zero probability. In this way, we will have an optimal

atopping rule for the game. We do not pursue this point further, since

the roves for which P1 employs his stop strategy with probability zero

will depend on the specified data (A and P ).

r r

We also apply the idea of a stop strategy to the infinite sequential

game. Again, we adjoin an additional row n + 1 to the A and P matrix,

with row n + I of the P matrix all zeros. We could establish a sufficient

condition for P1 to choose row n + 1 with probability zero. In this case,

P1 will allow the game to terminate by the already specified means and

Pl will not abandon the search at any move. To obtain this sufficient

condition, we would require the notion of dominance for the infinite se-

quential game. Dominance in the sequential game is equivalent to ondi-

nary dominance in the equivalent two-person zero-sum game with payoff

matrix A - vQ. The desired result easily follows from this notion of

dominance.

ri

, ....



CHAPTER IV - TACTICAL STOCHASTIC GAMES1

4. 1 Introduction

(a) The Problem

This chapter is concerned with the development of models and

methods for finding optimal tactics in an idealization of Antisubmarine

Warfare (ASW). We view the ASW problem as a game of pursuit be-

tween the hunter-killer force (player 1) and a possible submarine

(player 2). The pursuit begins with a contact which is an indication of

a possible submarine by the sensors of one or more units of the hunter-

killer force. The pursuit ends when the contact is "caught" or, in some

cases, evades the hunter-killer force. A catch may correspond to the

attainment of one of several military objectives such as positive identifi-

cation that the contact is or is not a submarine or sinking of the sub-

marine. Ln any event, a catch is a specified terminal condition for the

pur suit,

The status of the pursuit at every move t (t = 1, 2, ... ) is taken

to be one of a finite number of possible states. A state summarizes the

tactical information which is available to both players fnr decnin)

iMuch of the work in this chapter is also contained in Charnes
and Schroeder [1].
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making. For example, each state may correspond to one of a finite

number of possible configurations of the hunter-killer forces which may

hold the contact on their sensors. Then, at every move t, each player

determines the state of the pursuit by observing the configuration of

the hunter-killer forces which are holding the contact. Thus, a finite

collection of states numbered i = 1, ... , n is specified. When the pur-

suit has not terminated, it must be in one and only one of these states

at each move.

The structure of the problem also includes a finite collection of

tactical plans (decisions) associated with each state. A plan specifies

the tactics which a player will use until his next move. In the most

general case, we assume that the players simultaneously choose a plan

after the state of the pursuit is obsarved. When the pursuit is in state i,

we number the available plans k = 1, ... , M. and h = 1, ... , N. for
1 1

players 1 and 2 respectively. When the players move, they each choose

a plan and thereby jointly determine an immediate "payoff" from player

2 to player 1 and a transition probability distribution over- the states.

Before the next move is made, the game transits to one of the states or

terminates according to the chosen probability distribution, 1 We

p~tvq'P tAt thet 4-1,ame 40 crG Sul,-.

SEach move which we consider consists of ooth a personal and
chance move in the sense of von Neumann and Morgenstern [1].

-: -
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We consider different payoffs corresponding to different ASW

objectives. Two reasonable ASW objectives for player 1 are:

(1) Minimize the expected duration of the game.

(2) Maximize the probability of a catch.

In case (1), the payoff for every pair of state and plan is the time taken

by one move. Or, the hunter-killer force wishes to catch the submarine

in minimum time. With objective (2), we must have at least two terminal

conditions for the pursuit. For in this case, the hunter-killer force

attempts to maximize the probability of catching the submarine and is

faced with the possibility that the pursuit may terminate with conditions

other than a catch.

In short, the problem consists of a finite collection of states

5 which summarizes the tactical information available to both players. At

each move, the players observe the state of the game and each player

choose& a tactical plan from c- finite collection. The chosen tactical

plans jointly determine an imniediate payoff and a transition probability

distribution over the states. Before the next move is made, the game

transits to one of the states or terminates according to the chosen proba-

bilitr distribution. Our task is to find an optimal strategy for each

player. A strateay ist a eciaio'- (posibly ande-ami) rar each stat ak-

move. An optimal strategy is one of a minimax pair for the total ex-

pected payoff. For convenience, unless otherwise noted, we shall take

I _ !
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player 1 to be the maximizing, and player 2 the minimizing, player.

(b) The Models

To describe the above ASW situation, we consider a basic

model and four variants. The basic model is a stochastic game due to

Shapley [1]. We call this game a Terminating Stochastic Game (TSG)

to distinguish it from the non-terminating variant introduced by

Hoffman and Karp [ 1]. Shapley defined a vector value for a TGS and

employed an ingenious argument to establish its existence and that of

optimal strategies. The methods and representations he employed were

of a nonlinear character. We show, however, that linear programming

can be used to characterize the value of the game and its optimal

strategies as well as to obtain them to within a desired degree of ap-

proximation. In addition, we determine the effect of near-optimal

strategies on the total expected payoff for the TSG.

Next, we discuss two variants of the TSG which lend consider-

ably more realism to the game for ASW purposes. The first involves

a modified assumption on the transition probabilities from that employed

by Shapley. No change in the solution techniques developed for the

basic game is required by this modification although it enlarges ther
class of problems which may be solved. The second variant involves an

L extension of the notion oi a constrained game, Charnes, to stochastic

games a.nid is exemplified in a particular type of "constrained" TGS.

,(I
°I
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Here an implicit restriction on the duration of the game is rendered by

means of constraints on the strategies.

Another description of the ASW situation may be obtained from

a TSG with perfect information. W- discuss its advantages in describing

the ASW problem and exhibit a linear program whose solution yields

the value and optimal strz,, gies :or a general TSG with perfect infor-

mation. The exiL'-nce and uniquez.ess of the value is also established

directly from this linear prograr.

Finally, we introduce a finite version of a TSG. This finite

TSG is applicable to the ASW situation when the pursuit is known to

terminate in, at most, a finite number of steps. This finiteness allows

us to relax certain assumptions which.are required in the infinite case

and, thus, additional realism can be introduced into the model. Again,

however, our basic linear prograInming Pchniques hold good and yield

constructive procedures.
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4.2 Formulation of a Terminating Stochastic Game

In this section, we define the TSG and present two basic theo-

rems due to Shapley. A TSG is played in a sequence of moves. At

each move, the game is said to be in one of a finite number of states

numbered i = 1, . . . ,n. If the game is in state i (i = 1, . . ,n) and

player 1, the maximizing player, chooses alternative k and player 2

chooses alternative h, then the payoff to player 1 from player 2 is

kh k= 1, ... Mia.
1

Since we have assumed the game is zero sum, player 2 receives, of

kh
course, -a i . The choice of alternatives k and h also determines the

transition probabilities:

h=l,...,n.

khh

Pi, 0 k = 1, .. .M~

i

where pkh is the conditional probability that the game will be in state j

on the next move given that it is in state i, and that strategies k and h

are chosen by players 1 and 2 respectively. Hereafter, if the range of

the subscripts i, j, k, h is omitted, their full range is intended.

We assume:

n khnI pi k p. < I all k, h, i

j=l 1 J

\

4
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{Z) (i) [ k h

(2) (ii) ai < M allk, b, i

Under these assumptions, the game terminates with probability one and

the accumulated payments received by either player are bounded. To

kh n kh kh
verify this statement we let si = 1 - E pi > 0, s. is the

j=l '

positive probability of termination given state i and decisions k and h.

Let

(3) min kh
i, k, h 1

Now the probability that the game does not terminate in N moves is not
more than (I - s)N. Since this quantity tends to zero as N increases

.s-

without limit, the game terminates with probability one. The accumu-

lated payments received by either player are bounded by

M+ (1- s) M+ (Ij-)2 M+ ... =

A strategy for a move could depend on the entire previous

history of the game play. Fortunately, it is only necessary to consider

"behavior strategies" (stationary strategies), since the optimal strate-

gies are found in this class, Kuhn [1], Shapley l].

Def. A behavior strategy X for player 1 is an n-tuple of proba-

bility distributions X = (Xi, ... , X), each X= (x, ... x~i .
1 n1

A similar definition holds for player Z.

L" a



106

If player 1 uses a behavior strategy X, he chooses the mixed

strategy Xi whenever the game is in state i regardless of what move

it is or of the manner of arrival at state i.

By choosing a starting state i, we obtain an infinite 1 game G i

(i = 1, ... ,n), A TSG, G, is defined as the collection of games

G= ... ,G ). Let . denote the value of G., the minimax of itsn I I

total expected payoffs. Now we define the value of G to be the vector

W I .. 'W i

We introduce a two-person zero-sum game with payoff matrix

A. (v) where A i (v), i 1, ... ,n. is the MixN i matrix whose k-hth

element is

kh n kh(4) a i = Pij vj3
j=-'

and v is the n-vector of real numbers v - (v I , ... , V ) " Finally, let

Val [B] denote the minimax value of the two-person zero-sum game

with payoff matrix B and let X[B] and YCBJ denote the sets of optimal

mixed strategies for players 1 and 2 respectively. Now we state two

basic theorems due to Shapley [1].

1 The number of moves may not be bounded.
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Theorem I (Shapley): The value of the terminating stochastic

game G is the unique solution W of the nonlinear system of equations

(5) J. = Val [A i (WV)] i = 1, .. n

Theorem Z (Shapley): The behavior strategies X, Y, where

Xi Xi [Ai (W)J Yi Y [ Ai (W) i = 1, n, are optimal for the

first and second players respectively in every game G i belonging to G.

These theorems provide a basis for the results of the following section.

I

1

I

ii
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4.3 Solution of a TSG

In this section, we develop an iterative technique which employs

a contraction mapping whose unique fixed point is the value of the game.

This mapping is applied recursively from a selected starting point,

and each iteration of the mapping is obtained by solving a set of linear

programs. Truncation of the recursive technique yields near-optirnal

strategies of the TSG, and we can determine in advance the effect on

the total expected payoffs when such strategies are to be used.

In order to define the contraction mapping, consider the

n-dimensional real vector space R n with the norm

=Y i = l i n 1 _ I " n

I I . i~n n i Y )

Let T be the mapping from R n into R n defined by

(6; Tv = 8 where Oi = Val [Ai(v)] i = 1, ... n

In the proof of theorem 1, Shapley shows that

(7) 11Tv - Tv I 1 1 (1 - s) ii v2 - v1 ji all v I , v2  nR

whe e s> 0 is given by equation(3). Since 0 s1 - s.< , Tis a con-

traction mapping and, therefore, has a unique fixed point (Kolrn3gorov

and Fomin [1]). Theorem I asserts that V, the value of G, is the

unioue~ fL ved pont of T.

Next, we consider the sequence (v(t) I which is defined recur-

sively for given v (0) by
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(8) v (t + 1) =Tv (t) ,t 0, 1,

Then, by the definition of T

i1l,...,nf

(9) v. (t + 1) = Val [Ai(v(t)) ,
t =0, 1,

By the contraction property of T, the sequence (v(t) J converges to

W for every fixed v(0). (See Kolmogorov and Fonin I]. ) Note that

if we cho-se v()% = 0, then v(N) is the value of the TSG which is

truncated (stopped) after N moves, if it lasts that long. We shall re-

turn to this point later.

Now the sequence (v(t)] may be computed by linear programming.

Indeed, the it h program in the following collection is a linear program-

ming formulation of the game Ai (v(t)), where v(t) is known.I

Accordingly, the optimal solutior ui (t) exists and satisfies

Au(t) = Val[Ai(v(t-)j, i= 1,... ,n.11

i= ,...n
L.P. (i, v(t))

__________-t-0, 1,..

Max ui (t)

Subject to: M; .akh n kh
u (t)- x (t) (a i + G p. v. (t)) 0, h,= I, N.,ui ~k 1 j=l i1 '

1This formulation is a variant of that in Charnes [1] which has
the same advantage that the dual programs correspond precisely to the
play pt2oblems of the respective players.

(.I

~1 I
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M.
x (t)=1

k=l
x k t) 2t0, k- 1, .M

kD1

Given v(t), we compute U(t) =(Ul (t), . .. ' uu(t)) from the above linear

programs and set v(t + 1) = U(t). In this manner, the sequence fv(t))

for given v(0) is generated.

When computing the sequence fv(t)], it is desirable to have a

stopping criterion which insures a desired approximation to W. More

precisely, given arbitrary c > 0, we will find an integer N such that

11W - v(N) I 6. Returning to the contraction mapping T and recalling
A A

that TW = W, we have from equation (7)

(10) 1W - TN+lvl (1 - )11 W - TNv all vRn

Also, by the triangle inequality

ilW"TNvl t TN+lvll + 1TN+I v- TNv ii

Thus 11 - TNvll '(1 -si l W -TNvil + 1 T N  v - TNvII, and

(1) s 11 W - TNvII TN+l v- TNv i all vCRn

But, by definition

Tm v(0) = v(m), m = 0, 1.

Therefore

A

1W - v(N) I- . U v(N+ 1)- v(N)II,
8
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If we compute the sequence (v(t)) until 11 v(N + 1) - v(N)i ; s¢, then
A

w - v(N) e ,. The actual number of iterations required will depend,

in general, on 11 * - v(o)1, e and s.

One may also easily bound by R the maximum number of iter-

ations required after one iteration is computed. For, observe that for

every integer m ; 1

(12) s IW- TmvIII'I Tm+l v Tm vil s m (iIv vI

Now, after v(l) is computed from ,(0), choose R such that

RS

(1 v(l) . v(O) il

Then Wj - v(R)II,.

By the inequalities in (12), R 2 N where N is the stopping point bhtained

by the methods of the preceding paragraph. We conclude that after one

iteration we will have an upper bound on the total number of iterations

required for given accuracy.

Next, we investigate the effect of near-optimal strategies on the

total expected payoff. As before, let i. (N) and X. (N) =(x. (N), "'xi (N))

be an optimal solution to L. P. (i, v(N)) and assume, given i > 0, that

N is ch.,en such that il ,(N) - v(N) II " s, where

U (N) = (G (N), ... ,a.n(N)). Then from equation (11), 11U(N) - W i6.

Let Y (N) be an optimal strategy for player 2 in the game A i (v (N),.
1

Ie
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Then Yi(N) is an optimal strategy in the dual to L. P. (i, v(N)) and is,

of course, at hand when the direct problem is solved. (See Charnes [ 1].)

Let U = (u 1 .... , Un) be the expected payoff in the TSG when the known

AAstrategies X (N) and Y (N) are used in every move of G. We wish to

find the difference in norm between U and the value of G, W. First,

we compute the difference in norm between U and U (N). Let

A k kh -h Ak kh h
p..fx (N) pi. y. (N) and a. x. ' (N) a~ I IN).13 k h k, h 

Then U is given by the solution to the system

n .
(13) u= a + p. i u., i = I... ,nJ=l Ij J

This solution ' unique since 0 : Pij < 1, all i, j. Now U(N) is related

to v(N) by the linear programs L.P. (i, v(N)), i = 1, ... ,n. From

primal-dual considerations

n(14) uilN) " i j ij v.(N) =0 , i = , .. .n.
1 P1 jP 13

Subtracting equation (14) frorn equation (13), we obtain

nu i " ui (N) (jl i u. - v. (N)) i = 1, .. n.

A~ j

u j (N) - v. (N) = sli, j = 1, ... ,n with e¢. €

3 3 3

(?
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A

Then the desired relationship between U and U(N) is

n
u- u(N) j - U p (N) -sc) i= 1, n.1 i=1 1l

Further
n n

Ui - ui.(N)l ^ iju. - U.(N) + ^ ij sij, i= 1 ... n
j=l 'J J j=1 3

n
and since p.A(1 - s), i =.... ,n, we have

j=l

iIU ( U N) Ii - (1 - s)I I U - (N) II + s (I - s),

Iu - I(N)iI (1 s)g

Finally, the difference in norm between U and W is bounded by

IlU - wl] U -UJ (N) i' + iIU(N) - Wjj (1 - s), + = (-s)

From the above equation, we see that one can find a priori an integer N

such that the behavior strategies V(N) and Y(N) can be used in the TSG,

G; and the total expected payoff obtained will be as close to W as

prescribed.

We summarize the results of this section with the following

Theorem 3: Let the sequence fv(t)) be defined by equation (9)

and let W be the value of the TSG. For given € > 0, define N as the

smallest integer for which

iv(N+ 1)- v(N) s s

(
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then

Gi) W w- v(N)il

Also, let Xi (N) and Y. (N) be cptimal strategies for P1 and P2 re-

spectively in the game A. (v(N)), i = 1, ... ,n and let U be the

accumulated payoff received by Pl when these strategies are used

in every move of the TSG, then
(ii) Wl .i ( )

To recapitulate in part, we have defined a nonlinear contraction

mapping T whose unique fixed point is '. We have shown how to re-

place the fixed point problem by optimizing a linear programming formu-

lation. In this way, the successive terms of the sequence (Tnv) were

computed and a stopping criterion was developed which insured the de-

sired approximation to W. Finally, the linear programs L. P. (i, v(t)),

(i = 1, ... , n) yielded a dual pair of optimal strategies X(t), Y (t) and

w' obtained the effect on the total expected payoff when these strategies

are used in the TSG.

I
I':
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4.4 Another Solution Method

In this section, we develop another iterative method to compute

the value and optimal strategies for a TSG. This method is closely

related to one proposed by Hoffman and Karp [1] for ncnterminating

stochastic games, and it is also an extension of Howard's [1] poli cy

iteration method to stochastic games. One iteration of our method

consists of starting with a strategy for Pl and, in a certain way, com-

puting a new strategy for Pl. Thus, the method iterates on strategies

for P1 as opposed to the method of the last section which iterated on the

"state values".

Next, we describe the method and then establish some properties

of the quantities which are generated on successive iterations.

Method II

1. Choose a behavior strategy X(0) =(X 1 (0), X2 ( 0 ) ,Xn(0))

1 2 M
2. Given X(t) with X.(t)= =(x_(t), x .(t), ... ,x '(t)), i=l, ... ,n,

1 1 1 1

find the solution to the system of equations

rain M Il k - h+ n wh t)
(15) w i.(t)= h £A x i (t) a + L k

& -. j=l p. t

(The solution Wr(t) = (wI (t) .... , wn(t)) is unique and may be

found by solving a linear program of the type given in

section 4. 8.)

r
I
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3. Now X(t +1) = (X 1 (t + 1), .... Xn(t + 1)) is determined by

finding an optimal strategy for Pl, Xi (t + 1), in the games

A.(W(t)), i = 1, ... n. Return to step 2.
1

We show that the sequence [X(t)} converges to an optimal strate-

gy, X, for Pl, and that the sequence (W(t)) converges to W, the value

of the TSG. First, we establish the following

Lemma 1: Successive solutions obtained from equation (15)

satisfy

W(t + 1) a W(t)

(The inequality holds component-wise on the above vectors.)

Proof: From equation (15),

(16) w. (t) s. Mi x k{t) 4a kh + n2 Pi" .( h

S k=1 ~ ''

1 2 N
Now, for every strategy Y = lyl, y , ... ,y ) we have

Ni h h
Yi = t Yi 0 .

h=1

h
And, we may multiply both sides of equation (16) by yi and sum over h

to obtain

. Ni M
(i7) wk(t) N M. xk()akh n kh h

i(t)- + p w.() i) L , n
h=l k= 1j= 1

i
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We adopt the simplified notation

Ni Mi k kh h
ai(Xi, Yi ) = L xi ai yi i1... n and

h=1 k=l

a(X, Y) = (a (. I YI) .. . an X n, Y n))

N.iM.
1 1= k kh hPij(X' Yi =  5 x i p i j yi 1,3j=1, ... ,n.

h=1 k=1I

P(X, Y) is the nxn matrix P(X, Y) = (p.. (X., Y.)). With this notation,

equation (17) becomes

(18) W(t) < a(X(t), Y) + P(X(t), Y) W(t) all strategies Y

According to the proposed method, Xi(t + 1) is an optimal strategy for

P1 in the game Ai(W(t)). Let Yi(t + 1) be an optimal strategy for P2

in this game. Then the pair of strategies Xit + 1), Y (t + 1) satisfy the

following saddle point condition

419) a(X, Y(t+ 1)) + P(X, Y (t 1) )W (t) a(X(t+ 1), Y)+ P(X(t+ 1), Y) W(t)

all strategies X, Y

We set Y = Y(t + 1) in equation (18), X = X(t) in equation (19), and

use (18) and (19) together to get

(20) W(t) 5 a(X(t+ 1), Y) + P(X(t+ 1), Y) W(t) all strategies Y

Let Y be a strategy for P2 which yields the solution to

(21) W(t+ 1) = a(X(t+ 1), ?) + P(X(t+ 1), Y) W(t+ 1)

We set Y = Y in (20) and subtract (21) from (20) to get

Ai
I.
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(22) W(t) - W(t+1) < P(X(t+1), Y) [W(t) - W(t+ 1)]

For notational convenience, we let A = W(t) - W(t + 1) and

P = P(X(t + 1), Y), then equation (22) may be written as

(23) A + = PA where C, 0

UI - P) A

Since all the elements of P = (pij) satisfy 0 : pij < 1 , (I -P)

exists and all its elements are non-negative, Hence,

(24) a = -(I -P) 0

we obtain

W(t) ! W(t + 1)

The vectors W(t) are in Euclidean n-space, and the sequence

W(t)) is monotone increasing. 1 We show in section 4. 8 that the

solution W (t) to equation (15) is bounded from above for all t. Hence,

the sequence (W(t)I converges to a limit W*. Now, it is clear from

Method Il that W (w , ... w*) is the solution to
I n

w.* Val A { W
* ) i = 1, .,n

and, therefore, W* is the value of the TSG (theorem 1).

We consider the sequence (X(t)). The vectors X(t) vary in a

One cay verify that if W(t) = W(t+ 1), then W(t) is the value.

Hence, W(t) & W(t+ 1), with strict inequality holding for at least one
component, unless the sequence has converged to its limit.
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compact set, and we may extract a convergent subsequence. Let X be

the limit of such a convergent subsequence. From section 4.8, W(t)

is the optimal solution to a linear programming problem. By the

method used in section 3. 6, we cF.i establish that W (t) is a continuous

function of X(t). Further, X(t + 1) is an optimal strategy for P1 in the

game A. (W(t)). From this fact and continuity, we may assert that X*.
1. 1

is an optimal strategy in the game A. (W ). Then, from theorem 2,
1

x* *X1  X*
X= ... , X*) is an optimal strategy for Pl in the TSG. We sum

I n

up with the following

Theorem 4: The sequence ( W(t)) converges to the value of the

TSG and the sequence (X(t)] converges to an optimal strategy for P1.

This completes our discussion of two methods to approximate

the value and optimal strategies for a TSG. In the remainder of this

chapter, we investigate extensions and special cases.

I

A

I
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4 5 A Modified Assumption

Throughout the diecussion on the TSG, we have been using the

assiunption

n kh
(i) Zp Pij < 1, alli, k, h

j=l

In this section, we consider a slightly weaker assumption than (i);

all other definitions and assumptions remain unchanged. For con-

venience, we shall charge the notation for transition probabilities from

Skh k
pkh to kh We allow

n kh
(25) i -s 1 (equality may hold for some or all i, k, h)

j=l

Thus, we permit a zero probability 'f termination before the next move

when the game is in state i and alternatives k and h are chosen by players

I and 2 respectively. Hcwever, we impose the following regularity con-

kh
dition on the qij

Assumption A: For all behavior strategies X and Y for players 1

and 2 respectively, the game terminates with probability one in finite

number of moves from every state i (i = 1,..., n).

Now, if assumption (i) is satisfied, then assumption A is trivially

1 See also Denardo r 1] and Derman E]. They employ this weaker

assumption for a "terminating Markovian decision precess".

I K
___
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satisfied.

Assumption A asserts that it is possible for every behavior

strategy to find a finite sequence of states leading from' every state i to

termination of the game or, to put it another way, the states i = 1,..., n

r khbehe-sp
are transient for every behavior strategy. Let q.. be the r-step

13

transition probability from state i to state j when decisions k and h are

chosen for state i and an arbitrary behavior strategy is used for states

other than i. Assumption A guarantees that there exists an integer N

such that

n N khL qij < 1I, all i, k, h
j=!

Thus, TN is a contraction mapping and T has a unique fixed point. (See

Kolmogorov and Fomin [ 1]. ) It follows that theorems 1 and 2 are true,

and all of our results of section 4. 3 are valid for transition probabilities

satisfying equation (25) and assumption A.

(

I _ -
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4.6 Interpretation of payoffs in ASW

To place these developments in context, let us return to the ASW

situation with the aforementioned objectives: (1) minimax the expected

duration of the game, and (2) max.min the probability of a catch. We

now seek to exhibit appropriate numerical ralues for the ak h which will

encompass these two objectives.

Consider first objective (1) and assume that player 1 is the

minimizing player. Suppose that the fixed behavior strategies

X '= (Xn, . n) and Y = (YIp .... Yn) are used by players 1 and 2 re-

spectively in G. These fixed strategies X and Y define an absorbing

Markov chain with transition probabi' -.s.

Mi Ni k kh h
(26) Pij (Xi, Yi ) = L Z xi Pij Yi n

k=l h=l

and the probability of absorption in one move given state i is

nI n P ij (X i ' Y ')  >  0 , i 1 , .. n

j=l

Now let w (X, Y) be the expected duration of G. when X and Y are used

1 1in G. Then the following relationbh'ip obtains. 1

SSee Parzen [1]; Pr denotes "probability".
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w. (X, Y) = I • Pr (terminate in one move / state i]

n

L Pr (go to state j/statei] (1 + w. (X, Y))
j=l

n n
Z P ij (X., Y) + j pij (X., Y.) (1 + w. (X, Y))

j;1

n
(27) w. (X, Y) = I + F P' (X., Yi ) w. (X, Y), i= 1 ... n

1 j=1 3

Therefore, setting

kh
a. = 1, all i, k, andh

1

it follows from equations (4), (5), (27) that ' '., the solution to equation

(5), is the minimax expected duration of Gi . We, thus, have formulated

objective 1.

To attain objective (2), a similar analysis shows that we should

define (player 1 is now the maximizing player):

kh

(28) a. = the probability of a catch in one move, given i, k, and h.
1

Then i is the maximin probability of a catch for Gi . Recall that

kh nsi 1 P is the probability of termination in one move given i,
1 j=l

k, and h. The probability of a catch, given i, k, and h, can be no

kh kh kh kh khgreater than skh; thus, 0 : a. 8 s. . In case a. = s. , all i, k, h,
. 1 1 1 1

I -



124

then equation (5) has the tr ial solutionw = 1, i , n, i.e.

the submarine is caught with probability one btcause the game can only

kh kh kh kh.terminate with a catch. If a. < Si , then si - a is the non-zero

probability th t the submarine is not caught in one move, given i, k, h,

and w'i : 1 (i = 1, ... , n) strict inequality holding for at least one i.

With the indicated payoffs (28), the hunter-killer force maximizes and

the submarine minimizes the probability that the submarine iz, caught.

~1
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4.7 A Constrained TSG

This section considers a constrained TSG. See Charnes [I]

for a discussion of two-person zero-sum constrained games and their

reduction to linear programming problems. By a constrained game,

we mean that each player's strategies are implicitly resteicted to a

convex set (usually polyhedral) rather than arbitrarily chosen from- the

unit simplex. For concreteness, suppose that player 1 is to maximize

the total expected payoff subject to a constraint on the expected duration

of the game. Our task is to find a restriction on Pl's strategy which

will guarantee that the expected duration of the game is no greater than

a specified constant, C 1. Of course, other types of constraints can

also be developed by employing the method, which we propose here.

As before, let w i (X: Y) be the expected duration of G. when the
1 1

fixed behavior strategies X = (X I ,... X) and Y = (Y,' " Yn),

are to be used by playurs I and 2 respectively in G. Then, w i (X, Y)

is the unique solution to the following system (see equation (27)).

n
wi ( X, Y) = + P.(Xi' Yi ) w (X, Y), i =,..., n

j=l

i

Li

U
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Let

w (X, Y1, max w. (X, Y)
r l~i~n 1

Then

n n
Wr (X, = 1 + L Prj (Xr' Yr)W j (X, Y) - 1 + E Prj (Xr' Yr)WXr (x, Y)

j=1 j=1

n
Now 0 p (X., Y.)< 1

j=l rj 1 1

thus wr (X, Y)
-. r Y(X Y)

Let

k 1h k k(29) z X i j pk  -- , h 1,... NiZ X: 1, X 0,
j, k i i C k

fixed C>z I} i 1 , ... ,n.

These are the desired constraints.

We now show that wi (X, Y) C for all Xi X i and arbitrary

strategies Yi (i = 1, , n). To substantiate this claim consider an

arbitrary strategy Y. Then for all X. S

n k kh h IE; Pij (Xi' Y i x ij Yi C n

j=l j,kh 1, 1hC

In particular

n 1
SPrj (X r ' Y ) I 

-Cj=l

r r
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Therefore

w i(XI Y) Wr (X ' Y) 1 =C =1...n
1 1

Thus, player 1 can limit the expected duration of G to be no greater

than C by always choosing a strategy from Z i when the game is in state i.

To solve for optimal strategies and the value with the additional

restriction on the expected duration of the game, we adjoin the following

constraints to L.P. (i, v(t)), (i = 1, ... ,n).

(30) x k(t) p kh 1 1 h 1
k, j i i

With these additional constraints, there may be no feasible solution to

L. P. (i, v(t)) for some i. However, from the above development,

infeasibility of the augmented L. P. (i, v(t)) for some i means that

there is no behavior strategy for player 1 which satisfies the reatrictior,

on the expected duration of the game. This holds true for every v(t)

and will, therefore, be evident at the first iteration when t = 0. On

the other hand, if player 1 does not have a behavior strategy satisfying

the requirement on the duration of the game, then, for some i, L. P.

(i, v(O)) will be infeasible. Summing up, the augmented L. P. (i, v(O))

is feasible for each i, if and only if the constrained game has a solution

(a value and optimal strategies), If the solution exists, it may be found

from the augmented L. P. (i, v(t)) and the iterative technique developed

I
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in section 3.

A few comments on the choice of the constant C are in order.

First, we have required C ; I , equation (29). If C < 1, then X i =

(i = 1, ... , n) and the augmented L.. P. (i, v(t)) is infeasible for all i.

This implies that no behavior strategy exists for player 1, which yields

an expected duration less than one -- an obvious fact. Second, we may

also establish an upper bound on C. By assumption (i) and equation (3)

n khE p.. !5 1 - s, all i, k, h

j=I

Thus, for every behavior strategy X,

k kh. kih r i-s, all i, h

j,k

and the constraints (30) are redundant if C -. Intuitively, this means
s

that no behavior strategy for player 1 yields an expected duration greater

than - Therefore, the constraints (30) are nontrivial if C is chosen
5

from the interval

11C<-.

5

ii A
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4.8 A TSG with Perfect Information

We return to our idealization of ASW. In this section, the

hunter-killer force knows or is willing to assume certain behavior of

the submarine. More precisely, we assume that player 2 is playing

some fixed behavior strategy which is known to player 1; thus, the

game is effectively a one-person game. For instance, the hunter-killer

force might assume that the submarine takes evasive action. Another

example is the asbuM ,tion that the submarine takes evasive action but

is moving toward some objective, In practice, one might find optimal

tactics for the hunter-killer force under various assumptions about the

behavior of the submarine and then use the set of tactics for the most

plausible behavior. The merits of this approach are:

1. The analysis is greatly simplified.

2. Less data is required.

3. If the submarine has the assumed behavior, the total ex-
pected payoff will be at least as great as in the two-person
TSG.

4. All of the tactical information available to the hunter-killer
force can be used in the state specification. (In the two-
person case only the information available to both players
can be used.)

5. The hunter-killer force has an optimal pure strategy.

Of course, the main disadvantage of this approach is that the hunter-

killer force must have information on the behavior of the submarine or

be willing to act as if it did and take the attendant risks.(

pIj
~W77777
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Evidently, we are interested in a TSG with perfect information.

Thus, we assume that player 2 uses precisely one strategy (pure or

mn.ixed) which is known to player 1. Accordingly, suppose that player 2

uses the behavior strategy Y = (Y 1 .... Yn). Define

N. N.
k i kh h k kh h

P_ - E p.. y. and a h a. y. " These are now the transition
1i h=l 13 1 1 h=l 1 1

probabilities and payoffs for player 1 in the TSG with perfect information.

In this game with perfect information, the optimal strategies for player 1

are pure strategies (von Neumann and Morgenstern [1]). Thus,

Shapley's functional equation (5) may be rendered as

'31' . ; max a n-i
i l-k<M i  + w , i - n

This functional equation is one of a much larger class that has been

shown by Charnes [Z] to be amendable to linear programming analysis.

By means of a linear program, we establish the existence and uniqueness

of a solution to equation (31). In addition, the optimal pure behavior

strategies and state values, W'i, may be computed directly from the

linear program.

In cnnnpe-irvm with the. -1-C.ureqaon (1)1 arises int -capo

of Markovian decision processes. The first may be called a termi-

nating Markovian decision process. These processes have been
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studied under the modified assumption of section 4 by Derman [l] and

Eaton and Zadeh []. Derman obtained a line.±r fractional program for

a terminating Markovian decision process. This linear fractional

program can be reduced to a linear program by a transformation due to

Charnes and Cooper [ 6]. The 'resulting linear program is precisely

equivalent to the dual to problem I below. Thus, Derman's viewpoint

is, in a sense, "dual" to the approach taken here. A TSG is also

equivalent to a discounted Markovian decision process. For such a

process, one must solve the equations

max n
(3ia) W .a + qi. ,. nM i j=l

k n k
where 0 s 0 < 1 and the q.j are transition probabilities with Z q. = 1.

3j=l

In our notation, we take pk = 8q and we have

= ~ q.. n wehv

j=l1 j~l qi

The.refore, a TSG with perfect information has precisely the same

structure as a discounted Markovian decision process. For studies on

discounted processes see Howard [1], Blackwell [1] and, with particular

reierence to equation (31a) and linear programming, see d'Epenoux

1l], Balinski [2], and Denardo [1].

=(_
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We employ the following linear program to solve equation (31).

Problem I
n

(32) Min wi=l 1

n k k i= 1, .. n
(33) Subject to w. - D p" w. a_

1j=l 13 3 M
j=1 i

As may be noted, the functional of this system serves to drive the

values of wi to be the maximum over k of the right-hand side of (31).

Other functionals serving the same purpose could also be employed. The

following two lemmas and theorem 3 establish that the optimal solution

to problem I exists, satisfies equation (31), and is unique.

Lemma 2: An optimal solution W^ = (w " wn) ' to problem I

exists.

Proof: It is sufficient to show that problem I has a feasible

solution and that iti functional is bounded from below.

Fir.st, Jet wi = C, i = 1, ... ,n, C is a constant. Equation (33)

becomes

n k akC(- L -p) P a-

j=1 I 1

n k
But, 1 - Z pij > 0, all i, k. Thus, we may choose C large enough to

j=l

satisfy all of the above inequalities simultaneously and problem I has a

feasible solution. Let w = (wit ... ,w n ) be a htasible solution to

problem land suppose that w < w., i =,...,n, Then w must
r 1 r

=;I

__ _ _ _ _ _
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satisfy the inequalities

k n k k n k
wr >a + p PrJw a r+ Zp wr j=l r j=l rj r

and

nl k kw (1 - ) p a k= 1 Mr j=l r r

k
ri ___ai

Let Q min I This minimum exists by assumptions (i) and
i, k kPij

3

(ii) on page We now have

kar
w .'w a r Q, A~i .. n.

kI- Prj

Hence, (32) is bounded from below for every feasible solution to

problem 1. By boundedness and feasibility, problem I has an optimal

solution..

Lemma 3: Every optimal solution to problem I satisfies equation

(31).

Proof by contradiction: Let w = (w ... , n) be an optimal
A n

solution and asR.ne for ome ay i,

k n kW ak+ ; j W. k= 1, M r
Wr r P rj rj=l
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W - A, where A > O, i = rLet iw ri i

Wi i /r

We wish to find a A > 0 such that 4,' is a feas Lble solution. Now

.. n k Al k . k A
Wr ,Zr Prj wj Wr -- Prj "'i - Prr (Wr )

j1l

n k . kSWr " Prj wiA - prrr l

Since 1- Prr> 0 we may choose A>0 such that

^/ n k Aj kw-! Prw. za .k .. ,
r j j j ; r r

For i r

A n k Ak k
" E Pij w-Pir r

j=l j~r

n k k kw i "- E P.j - '+j Pir A z ax i k = 1, N4 ,~

1 j=l 1J *J i

Therefore, W! (i = 1 ... , n) is a feasible solution to problem I for
'I

n n
some A>0. We also have w w. < w w. This contradicts the

: i=l il

assumed optimality of ^. Therefore,

max rk n k l
kmax Lai + ZPjj , i=1,... ,n.

wi: =l5kM i  j=l

We sum up with the following theorem.
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Theorem 5: The optimal solution to problem I exists, it

satisfies equation (31), and is unique.

Proof of uniqueness: Assume w = .... ) and

w = (w 1 , ... , wn ) are both optimal solutions to problem I. From

Lemma 3 and this assumption, there exists a set of integers (k(i)),

such that

k (i) n k (i)(34) w. = a" + ij w., i=, ...
j=1

w must be a feasible solution to problem I for the set (k(i)), thus

ak(i) n k(i) .
(35) i 2ta i + 2; Puj w jn.

i= 1

Subtracting (34) from (35), we obtain

4 n k (i) A
(36) 4). - w. L Pij (W j - W n

1 1 j=l

Let (k(i)j be the set of integers which gives

k (i) n k (i)
Wi=.a + n p w.- i=l...,n.

j=l

Then, we also have

(37) . -w. p (3 w i- . n.
J=l
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Consider two cases.

Case (1): Assume W. - w. < 0 for some i (i = 1, ... n).
1 1

Then inequality (36) is not satisfied for all i (i = 1,..., n). Therefore,

w. - w. > 0 (i I ..... n).

Case (2): Assume w - w.> 0 for some i (i = 1, .... n).1 1

Now inequality (37) is not satisfied for all i (i = 1, .... n). Therefore,

"i = Wi Z 0 (i = 1, ... ,n) is the only possibility and, indeed, (36) and

(37) are both satisfied when . - w. = 0 (i = 1, ... n). Hence, . = w.1 1 1 1

(i = 1, ... ,n) and the theorem is true.

Since the solution to equation (31) is unique, we conclude that

equation (31) is solved by problem I. Now, an optimal pure strategy for

the TSG with perfect information is available from the solution to

problem I or its dual. There may be more than one optimal pure

strategy since the right-hand side of equation (31) may be maximized for

more than one k and some i. However, alternate optima for the dual to

problem I correspond to alternate optimal pure behavior strategies and

vice versa. Thus, all of the optimal pure behavior strategies are avail-

able from the solution to problem I or its dual. Finally, one would

normally solve for the optimal strategies from the dual to problem I

since it hae less constraints than problern I and, therefore, less

computational effort is required.

r4
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4. 9 An Example of Optimal Target Approach

We give a tactical exailiple of a game with perfect information.

Consider a situation where the searcher has a datum point of last

contact, but he may or may not hold the contact on his sensors at each

decision point in the pursuit. The searcher wishes to get into attack

position. The states for this pursuit are determined by twe observed

factors, range to the datum and classification of the contact. For our

purposes, range is measured in three increments, 1, 2, 3, and the

classification is either a hold (H) or lost (L) contact. These two factors

determine six states, l1H, 1L, ZH, 2L, 3H, 3L, where for example,

IH means the searcher is at range increment 1 from datum and is

holding the contact. When the pursuit has not terminated, it must be in

one of these six states. In addition, we specify two terminal states, a

permanent lost state (L0 ) and a successful attack state (So). The

searche- wishes to maximize the probability of arriving at state S 0

Now there are four types of decisions: attack (A), decrease the

range by one increment (D), increase the range by one increment (I),

and stay at the present range (S). Not all of these decisions are allowed

for each state. For example, the searcher cannot attack when the con-

and the transition probabilities are given in Figure 3. 1.

(
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FROM TO STATE

State Decision IH IL 2H 2L 3H 3L L S
0 0

1H A .2 .3 .5

S .2 .6 .2
IL

1 .3 .6 .1

D .8 .2
ZH

A .3 .4 .3

D .4 .4 .2

2L S .3 .6 .-

1 .2 .8

D .9 .1
3H

A .3 .6 .1i

D .3 .6 .1

S .3 .7 1

Figure 3. 1

TRANSITION PROBABILITIES

(Blank spaces in the table are zeros.)

I
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We briefly review the theory of section 4. 8 in order to formulate

a model for this example. Recall that pk is the probability of tran-
ij

sition to state j given state i and decision k. We number the non-

terminal states i = 1, ... , 6 and let wj be the probability of termination

in state S starting from state i. From section 4. 8, there is a policy

(a decision for each state) which is simultaneously optimal for all

starting states. Now, for each fixed policy, the probability of

absorption in state S is the probability of transition to S in one step,

plus the probability of going to some state other than So and then being

absorbed from there. The optimal probabiiity of absorption is then

given by
-,

mxk 6(40) w= P + . wij 6- : k iS° =

Notice that the probability of transition to state L does not appear in

:the above equation. Further, equation (40) is equivalent to equation (3Z.)

k
with Pis being the immediate payoff for decision k and state i. Hence,

0

(40) may be solved by the linear program (34) and (35). Less Comnu-

tational effort is required to solve the dual of (34) and (35), and we

exhibit this dual. below.
6 M.

Max 1 Pis X
i= l k=l -

(41)

M2 X. k x Ik 1
--- -i(  ~~k=1 . -i--I k-!- p Xk I , j =I .. -

xik 0

xt "
)°

S.
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An the preceding linear program, the variable xik corresponds to

state i and decision k. As we have shown, the optimal positive vari-

ables Xik will designate an optimal policy. (For each i, exactly one of

the Xik will be positive. ) Also, notice that only the non-terminal states

are included in (41).

The data from Figure 3. 1 is arranged in the following tableau

format for the linear program (41).

k
PiS .1

Xll x x 2 2 X3 1 x 3 2  4 x42 x43 x51 x52 x 6 1 X 6 2

1-.2 -.2 -.8 -.41

-. 3 1-.6 1 -. 2 -.4=1

3 1 1-.3 -. 3 -. 9 -. 3 =i

-.6 -. 4 I 1-.6 1 -. 1 -. 6 =1

-2 1 1-.3 -. 3 =1

.8 -. 6 1 1-.7 =1

Figure 3. 2

The above linear program was solved by a standard code on the CDC 1604

comiputer. The resulting optimal policy and the probability of a successful

attack starting from each state (dual variables) are shown next.

I#

I
v-



141

Optimal Prob of a
State Decision Successful Attack-

!H A .962

IL I .9

2H A I

ZL 1 1

3H D 1

3L S

The optimal policy is then as follows: if the contact is held at range 1

or 2, then attack; if the contact is lost at range 1 or Z, then increase

the range by one unit; if the contact is held at range 3, then decrease

the range by one unit; and if the contact is lost at range 3, then stay at

range 3.

This example demonstrates the utility of the models presented

in this chapter. They may be used to describe tactical situations where

the searcher has some information on the position or status of the

submarine. Of course, the inclusion of the states in the model permits

the use of such tactical information.

We bave used the perfect information model of the last section to

....... bIP OLLUC~t., wlth two Lerminai states. This extension was

1The numbers in this example are somewhat optimistic.

*

__________________________
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possible because we were maximizing the probability of termination in

state So . If, instead, we wished to minimize the time to arrive at

state So, then the model will require some non-trivial modifications,

In the next section, we modify the perfect information model to include

more than one terminal state in general.

I,

K
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4. 10 Two Terminal States

We consider a game with perfect information and two terminz.1

states. One of these terminal states, state 1, is favorable for PI and

the other terminal state, state n, is unfavorable for Pl. When the

pursuit has not terminated, it is in exactly one of the states

i= 2, ... ,n-1. Pi's objective is to ninimize the expected cost of

arriving at state 1. For example, the pursuit may terminate when Pl

catches PZ or when P2 gets away from Pl. Here P1 is interested in

mini.izing the cost of catching PZ. Notice that we cannot achieve this

objective with the model of section 4. 8 because, in general, this model

would simply minimize the cost of termination in either state I or n.

We develop a model with the already indicated objective. A

device first introduced by Derman [1] is used to transform the given

absorbing Markov chain to an equivalent irreducible chain. The cost

of absorption in state 1 can then be expressed in terms of steady state

probabilities. The problem of finding an optimal policy becomes a

linear fractional programming problem, and this program .s reduced

to a line,'r program by the method of Charnes and Cooper []. When

state ;i is deleted, the resulting linear program is precisely the dual of

the ,rngram gi'cw - sect.n 1. 8. HCncc, the appkcacn taken here is,

in a sense, "dual" to the approach used in section 4. 8.

t.
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As before, we define the following parameters for states

ki = (2, n - 1). Let ak be the cost of decision k when the pursuit

is in state i and let p.. be the probability of transition to state
ii

j (j = 1..., n), given state i and decision k (k= 1,... M i ). The pk .

must satisfy

k2, n- Ip. 0  P P..,
j=l k 1 Mi

We will define the transition probabilities and costs for states 1 and n

later.

We introduce the set S of all randomized decision policies

D - [Diki where D is the probability of decision k given state i. We
ik

require
M i

(42) D I
k=1

I

Then, the stationary transition probabilities, pij, and the cost

of passing through state i, ai, for each fixed DGS, is

Mi ,i
(43) P = D p n-l a. D ak i=2, ... ,n-l

2.J k=1 ik k= ik i

I We require the following assumption:

Asunption A: From each state i (i = 2, ... , n - 1) and for all

0 is the probability of transitiqn to state j given state i for
ix

some fixed D*S.
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DeS, state 1 is reached in a finite number of steps with probability one.

We expect Assumption A to hold in practical situations. For,

policies are not permitted which result in (i) cycling between states or

(i) termination in state n only. Policies of type (i) or (ii) yield an

infinite cost of arriving at state 1. Hence, we do not restrict the model

by ruling out these possibilities.

We introduce a device due to Derman [ 1] to transform the

absorbing Markov chain into an equivalent irreducible chain.

Accordingly, for all DOS, we define the following transition proba-

bilities or states 1 and n.
1 n1P- - i=, ... ,n-I

~(44)
(4 i Pni "0 i=l,n

I

The transition probability matrix for each fixed DOS is then

1 n-I n

1 2 1 1

1 Q n-2 n-"2 n-Z n-Z _ 0-

2

n-I Pi

1 1 1 1
n 0 n-2 n-2 n-Z n-2 0

As may be noted, when the pursuit arrives at either state 1 or n, it is

started over again in one of the states i = 2, ... ,n- 1 with uniform

probability.

From Assumption A and equation (44), it is clear that the set

i (
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of states (1, . , n) is irreducible for all DS. We will depend heavily

on this fact to formulate the objective function and the model. Let rp.

be the r-step transition probability from state i to j (i, j .. , n).

Consider a pursuit which lasts exactly m > 1 steps and for fixed DeS

evolves according to the transition probabilities given by equations (43)

and (44). Let MD(m, i) be the expected number of occurrences of

state 1 when such a pursuit starts in state i, and let CD(m, i) be the

expected cost of termination in state 1. When the pursuit starts in

state i, the expected cost of the rth step is

nL rpij a ji ; , n.

j=l

Hence, CD(m, i) is given by

m n
Z r

Pij aj
r=l j=l

CD (n, i) = r
MD(m,

and m is sufficiently large to insure that M i)

Iim
C= CD(m , i) i Is. all DoS

Theorem 6 establishes that the above limit exists and is indepeylident of

the starting state i. Notice that CD is he expect'.r c.at eo terraination

in state I regardless of the starting state is We seek ti find a D S

which minimizes CD over all DES,

Theorem 6: The expected ccat of te~riration in state 1, starting
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from state i and for each fixed policy DeS, is independent of i

(i = 1 .... ,n) and is given by

I n
(45) CD  1 a.

I1j=l

where the 1i are the unique solution to

n
(46) - R Pij =0 j=1, .... n3 i=l 1i1

n

j=l

Proof

m nr

C = m CD (m, i) =li, M r= IJ=Im

m n a
lim M[ limra Pij

m M D(m' ) L m M

provided both of the limits in the above product exist.

But,

m n r m r
lir z z pi a lir Ei

r=l j=1 3 n a i r=l

m m j=

Since the set of states (1, ... ,n) is irreducible for each DeS, the

Mean Ergodic theorem holds, i. e. ,

C
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m
Pij

lir r=l
rn m 3 /

This limit is independent of i (i = 1, .... n) and the fI. are the unique

solution to (46). (These Ij, s also satisfy II. > 0, j = 1 ... ,n)

Now

m n
L E p a,

lir r=1 j=l n

m o m j=l

We also have ]

lir .. 1
m M D(mi) fli

or .L is the mean recurrence time of state 1. This limit is well
II1

defined, since Assumption A guarantees nl > 0.

Putting the above results together, we get

: I n

C E- . a.D = - j=lj

This completes the proof.
.1

ti D*

We want to find a D CS which minimizes CD over all DOS.

From Theorem 6 and eauations (421 and (43) ; 8 n optDimal solution

ISee Parzen 1l].

tS a
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to the following nonlinear programming problem.

I n Mi k
M in Li Z; 11 1 D k a

11lj-l k=1

n= 0 j=1. n
LI - ; Il i D ik Pij 0 1 " 'n

i=l k=l1

n
(47) D 11. = 1

j=1

' Mi

L D ik I j-1, .. ,n

k=1

11.>0, DJk0

We transform problem (47) into a linear fractional programming

problem by means of the following change of variables. Let

(48) X- II. D j= 1, ... ,n; k= l, ... M.
Sjk J

1%j
From (48) and E Dik 1, we get

k"!i

k=!
i n.

Problem (47) becomeq

1For convenience, in the following formulation, we have k = 1

for states 1 and ii and pi, ( = I,) is then given by equation (44).
fo(ttsIan n i.

I
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n Mj kr k
B Z; xjk a .

Min j=l k=l

Mmi

(49) k=l

Mi n Mi kk
Subject to: L X.k - L L xik Pij -0 j=l.... n

k=l i=l k=l

(49a) L 9 Xjk=l
j=l k=l

Xjk 0

Clearly the transformation (48) is one-to-one between optimal solutions

to (47) and (49). Hence, we may solve (47) by solving (49).

We use the method of Charnes and Cooper [6] to transform

problem (49) to an equivalent linear program. To establish this equiva-

lence, we observe that the convex set of feasible solutions to (49) is

Ml
bounded and non-empty. Further, II = L x > 0 for all feasible

k=l 1k

solutions to (49). Hence, the following transformation is one-to-one

between problems (49) and (51).

n Mi
(50) Yjk = txjk E L Yjk t, t L Xlk= 1

j=l k=l k
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Using (50), the equivalent linear program to (49) is

P. M;
0 k

Min L D y. a
j=l k=l J 3

M..Mj n ki

(51) lei D jk i..0 n-;Yjk" % Pi = 0 =.k=1 i=! k=i k ... ,

"Y",Y-. 'k =

I K

ik

We make one fturther reduction of problem (51). Actually, there

are no decisions to be -made wher, the pursuit is in the terminal stats

i = 1 or n. Hence, we eliminate the variables l and v from
va-'blesYlk nk

problem (51). By metana of equatio, I44) and some algebra, problem

(51) is equivalent to

n-1 M

Min Iy; a
J=Z k=l Yjk j

M n- i k k 1
(SF) L v, (pk+ y. 

n 1k=l =Zk= IkC 3 in n-2

n-)
i=? k,- ! PiK

n M j-
IThe cocastraint (45 a) becomes L E yik = t, since this cc.-

j=I k=1
straint is reduidar.' in (51) we have omitted it.

z k ak =0.ZFor conv.uenrce, we have taKen a -
1 n
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From problem 152), we obtain a final result concerning the

nature of the optimal decision policy. The optimal policy is charac-

ter'ized by

( I for k = k.(53}j=2,.. ,n-1
k  = O- for k k. "" n

3

where k. is some decision for state j.

Of course, (53) says that a "pure policy" is optimal, i. e., for

each state pick some alternative with probability one. Equation (53)

follows from the following observations. From the constraints of (52)

an optimal sclution {V' satisfies nj , k(P+Pin )I k k
Jr. S D= Y* k kPj+ i 0 and,44=2 k=l

hence,

(54) y > 0 j Z, n-I
~k=l

F -Now one of the equality constr.pints in (52) is redundant. This may be
-

2 verified by summing -,er the firat n - 2 constraints. Hence, (5Z) has,

at most, a - 2 inea rily inuependent co_;straints (excepting non-negativity

conditiona); and, hence, a basic feasible solution has -t most n.-2

pesitiv variabiet. Further, at leazt one basic feasible aclution must

be optimal. By (54) and the fact that at most n - 2 variables can b^

pos.itive in an optiza.aa solution, we have

-- r. ... . .. ..
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y J > 0 for k k

y* =0 fork k.
jk j

where k. is some decision for state j.
J

Now, by the transformations set up between the D* variables
ik

and the Yk variables, we conclude that our azsertion (53) is correct.

We have shown how to formulate a model for situations involving

two terminal states and the objective of minimizing the cost to arrive

at one of these terminal states. In section 4.9, we gave an example

of a two terminal state situation. If our objective for that problem was

to minimize tha time to complete a successful attack, then the model

k
presented in this section is applicable. All immediate payoffs, al

are taken equal to one to achieve the "time" objective. As may be

noted, the approach taken here results in a linear program which is the

dual of the linear program obtained from the functional equation apprbach.
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4. 11 A Finite Terminating Stochastic Game

We return to our idealization of ASW and introduce the ad-

ditional rule: the pursuit is terminated in a specified finite number
of move.s if it has not already reached a terminal state. In ASW,

this forced termination may be caused by one of a number of factors,

such as resource limitations or submarine endurance time when

submerged. This means we have a finite version of a TSG. It termi-

nates in m moves or a terminal state, whichever occurs first.

The following notation is introduced for the finite TSG. Consider

a collection of mutually exclusive and collectively exhaustive states

numbered i =1 ... , N. Terminal states are included in this collection,

and the finite TSG must be in one and only one of these states at each

move t = 1, m... ,. When the game is in state i, we number thf, avail-

able alternatives for players I and 2 respectively, k = i, ... , M i and

h = 1,..., Ni. If the finite TSG is in state i at move t -qnd players 1

and 2 choose alternatives k and h respectively, then the payoff from

player 2 to player 1 is

kh i=1 ... ,N k= 1... M ia i (t) ,t =1, .. m h 1, .. N

and the game transits to state j with probabili.ty

kh 1, - ,N k=1,... ,M

P , t=1,... ,m h= 1 ... N.I

V
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Since the states, are assumed to be mutually exclusive and collectively

exhaustive, "the pkh (t) must satisfy

n -h kh
L p. (t)= 1 ; also, pi.j (t) - O, all i, j, k, h, t.
j= 13 1

Finally, we assume that the players are informed of both the state and

the move before they choose their strategies.

One will note that the above structure is different from that of

the infinite TSG in the following respects. In the finite TSG:

1. The payoffs and transition probabilities may depend on the
move.

2. There may be a zero probability of termination in one move.

3. The players know the state of the game and the move when
they choose their strategy for the next move.

Thus, if the game is finite; more flexibility may be permitted in the

model, i. e., items 1 and 2 above.

Next, we show how the value and optimal strategies of a finite

TSG may be computed. As will be noted, the methods and represen-

tations developed here are closely related to those of the infinite game.

r1l. N~
Let v i. t i, , rnI be the minimax of the total expected pay-

ments received by player 1 from the remaining m - t moves when the

game is in state i at move t, and let V(t) = (v 1 (t), .. . , vN(t)). Now,

V(m) is the minimax of the total expected payments with zero moves to

go; accordingly, V(m) 0. For convenience, we introduce the M xN.

41
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matrix Ait(a) whose k-hth element is

kh N kh k =1., M i
a. (t) + pi (t) a. i

j=l h -- 1, N. . N.
k~1 M.

The minimax of the expected payments with one move left, V(m - 1), is

clearly given by the following set of equations:

V.(m - 1)= Val [A. (V(m))] =- Val [A. (0)], i = 1, ... ,N.1 im l

Let Xi (m) and Yi (m) be optimal strategies for playez s 1 and 2 re-

spectively in the game Aim (V(m)). Then it follows that

X(m) = X1 (rn), ... , XN(m) and Y(m) are optimal strategies in the

mth move of the finite TSG. Since the payoffs and transition proba-

bilities depend only on the move and the state, which are known to the

players, it may be established by induction that the following relationship

obtains:

(54) V. (t - 1) = Val [Ait (V(t))],

According to equation (54), V(O) is the value of the finite TSG.

Let X. (t) and Yi (t) be opcimal strategies for players 1 and 2 re-

1re

spectively in the game Ait (V (t) { 1,'" N . Then it is clear,
i i

from equation (54), that X(t) = (X (t), .. X (t)) and
A At 1 ' N

) k=i -- k1 k',) ' ". YN(t)) are optimal strategies in move t of the finite

TSG. Note that X(t) and Y (t) depend, in general, on the move of the

game and are, therefore, not behavior strategies. In general,

Ui'
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behavior strategies are riot optimal in a finite TSG.

Returning to the linear program L. P. (i, V(t)), we see that it

is a linear programming formulation of the game Ait (V(t)) with the

payoffs and transition probabilities depending on t. To compute the

value and optimal strategies for the finite TSG, we can start with

V(m) = 0 and compute Xr(m), Y(m), and U (m) from 'L.P. (i, V(M))b

i = 1, ... N. Now, set V(m - 1) = U (m) and compute X(m - 1),

Y(m - I), and U (m - 1), and so on. Thus, the value and optimal

strategies may be computed recursively by linear programming.



CHAPTER V - MULTIPLE CONTACT ALLOCATION MODELS

5. 1 Introduction

We develop models for the allocation of hunter-killer forces to

multiple contact areas. The central problem is to determine an optimal

division of effort, between several contacts, subject to typical con-

straints. To focus attention on the ideas, vve consider hunter-killer

operations which consist of at least two separate contact areas. For the

first model types, we assume that effort is allocated to the contact areas

only once during the planning horizon. We then relax this restriction

and formulate a dynamic allocation model. Now, before introducing

these models, we discuss the predominate features of the tactical sit-

uations which will be considered.

In a wide variety of military problems, the force level required

to accomplish a given military mission is uncertain when the allocation

of forces is made. One of the primary causes of this uncertainity is

due to lack of information on enemy forces and capabilities. To reflect

this uncertainity in the model we assume that the amount of effort

which is required to accomplish a specified military mission in each

Iarea is a random variable with a known joint cumulative distribution

function (c. d. f.). This c. d. f. may be rather difficult to determine in

158
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practice! Nevertheless, we assume that it can be determined and sen-

sitivity studies can then be conducted to de~ermine the effects of esti-

mation errors and data variations. After the models are formulated,

we can also ascertain the effect of treating the random requirements

as deterministic quantities.

Next, we introduce the objective functions which will be em-

ployed. These objectives are oriented toward optimizing a measure

of overall mission success. From the specification of the random re-

quirements, we can readily relate individual mission success to over-

all effectiveness. For we have assumed that the military mission in

each tactical area can be accomplished if the allocated force level

exceeds the ubserved random level. Hence, our objective functions

measure the "difference" between allocated levels and the random re-

quirements. In particular, the following two objectives are used:

1. Maximize the probability that all allocated force levels

simultaneously exceed their random requirements. This is equivalent

to maximizing the probability that all missions are simultaneously

accomplished.

2. Minimize the total expected shortage between allocated and

required levels.

In some situations, time may be an important measure of ef-

fectiveness. For these cases, the following objective is employed:
-g4
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3. Minimize the expected distribution time to achieve a

specified probability that all requirements are met.

Each of the above objectives will be studied for the "one-shot"

allocation models. Objective (3) is the only one which is employed for

the dynamic model.

We have introduced the requirements and objectives which will

be taken for multiple contact situations. Now we discuss a measure

of available effort. We measure the available effort in some meaning-

ful unit such as a ship, surface attack unit, or one flying hour. If

several types of effort are available, then all effort is measured in

terms of a single "standard" uniL. However, the models could be ex-

tended to include different types of effort. Depending on the measure-

ment adopted, effort may be treated as continuous or discrete. For

instance, if a unit of effort is one flying hour, then effort may be

treated as continuous. On the other hand, a unit of one ship will usually

require a discrete treatment. Both discrete and continuous measure-

ments will be studied for most of our models.

I.

i

I
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5.2 The Probability Model

We formulate a model with objective (1) of the last section.

Methods of solving the model are given and the detailed solution for a

uniform distribution is presented. This is to be a "one-shot" alloca-

tion problem; only one allocation is made to each contact area.

We assume that n contact areas are specified and d. is the
3

amount of effort required in area j (j = 1, ... , n) to accomplish the

mission there. Further, each d. is a random variable and the joint

cumulative distribution function (c. d. f. ) of d, d2 , ... d is assumed

known. We let F be this joint c. d. f., then

F (2I Y2 y Pr (d 1YI d2 2 n < n d

where "Pr" denotes probability. Let xi be the amount of effort to be

assigned to area j (j = 1 ... , n) and let "a" be the total amount of effort

available. Now objective (1) of section 5. 1 gives way to the following

optimization problem:

Max F(x ,...,x
12 n(1) n

Subject to: (la) E x a
j=l

x. 1 0

The objective is to maximize the joint probability that all allo-

cations x. exceed their random requirements dj. Of course, the funda-

mental notion that d. is the amount of effort required to accomplish the

' I
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mission in area j leads to the interpretation that we are maximizing the

probability that all missions are simultaneously accomplished. The

restrictions in model (1) are on the total amount of effort available and

on the non-negativity of each individual allocation xi.

The burden of optimization in (1) is placed on the objective

function. Later, we consider models with more complicated con-

straints and a simplier objective function. This model embodies the

essentials of H. A. Simon's [1] satisficing approach. For we maximize

the probability that a specified goal is reached. In addition, this ob-

jective is similar to the one used by Charnes and Cooper [4] in their

so-called "P-model". Next, we discuss methods for solving problem
~(1).

We apply the Kuhn - Tucker conditions of conex programming to

(1). To employ these conditions, we require that F is continuously

differentiable. Without loss of generality, we may replace the inequal-

ity in (1. 1) by equality, since F is a c. d. f. and therefore it is a

monotone non-decreasing function. The Kuhn - Tucker necessary con-

ditions are the following: 1 if X = (x I , x 2 , .... xn) is an optimal solution

to (I), then there exists a scalar t such that X and p satisfy

I.I
IOf course, "constraint qualification" is satisfied by the con-

straints of (1).
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i (z exj °  j - n
1xj

(3) F -o j -- .... n

n(4 ) E x = a , x j > O j 1 , .. n
j-1

If F is a concave function, then the above conditions are also sufficient

for X to be an optimal solution to (1). These equations are rather diffi-

cult to solve in general because (2) and (3) are usually non-linear.

Nevertheless, we will apply these conditions to a special case of (1),

but first we examine model (1) when d1 ... , dn are independently

distributed.

Numerous tactical problems have independent di , d2 , ... , d n .

We would expect independence when an allocation to one area does not

have an appreciable spillover effect on other areas. Indeed, contact

areas are often widely separated and no interaction occurs between

! oareas. Furthermore, independence would probably be required in order

to empirically determine F. With the assumption that d I , ... , dn are

independently distributed, we obtain

(5) F (x, ... ,x n ) = F, (x) F?(x?)... Fn(x)

where F. (x.) = Pr (d. x.)

Now, we may maximize the logarithum of the function in (5),

II:. 
4

'I



since the log is a monotone transformation and (5) is non-negative. With

this transformation, problem (1) become3

n
Max 'rlog Fj (Xj)

j=l

n

(6) Subject to: x. = a
j=l

Sxj 0

Perhaps the most general method which is available to solve (6)

is dynamic programming. It is especially useful when the x- are re-J

quired to be non-negative integers.' Since the application of dynamic

programming to allocation problems has been extensively studied (see

Bellman and Dreyfus [ 1] ), we do not dwelL on this method here. Instead,

we turn to an important special case.

.The special case is studied where the random variables d. arc

independent and uniformly distributed between aj and b. A uniform

distribution implies that the actual requirement occurs at random.

Roughly speaking, no particular requirement is preferred o-er any

? *other requirement.

With the uniform distribution and independence assumption, we

have

!.*
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0 x.<a.

(7) F.(x) x- a. < b

1 x zb
3 3

n
Notice that when D aj 2 a then the maximum in (6) is negative infinity

.j=l

n
and when E b. a then all solutions. with each xj : bj are optimal

j=l

Hence, we restrict our attention to the following non-trivial case:

n n
(8) Z a:<a< E b.

j=l j=l J

For convenience, we introduce the transformation

(9) yj xj aj

~n
and we let c = a - L a.> 0, c- = b. -a 3 > 0

--j-

then, when (8) is satisfied, problem (6) with equation (7) is equivalent

to

n

Max E log yj
j=1

(10) = c

j=l

0 yj c3

:.i
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Now the optimal solution to (10) may be readily obtained by the follow-

ing method. For simplicity, suppose c 1 : c 2 ti; c n Then the

following allocation is optimal

y = min(c,-c
Sn

(11)

L Yi-1 ifYi ci-I

The optimality of (11) can be routinely verified by show.ng that this

solution satisfies the Kuhn - Tucker sufficient conditions. The pro-

cedure given by (11) allocates an equal amount to each activity until

Yl = c 1  Then equal amounts are allocated to the remaining activities

n n
until y = c or y. = c. This process is continued until Z y. c.

2 i=l i=l 1

To illustrate, consider the following simple example:

c I =2, c 2 = 3, c 3 = c4  9, c= 12

The optimal solutior from (11) is

Y 2, y = 3, y = y = 7/2

We examine the tactical consequences of the solution given by

(11). This optimal solution reauirea a maxir .. a-llai n of c. 0

certain areas, namely those areas where a probability of one can be

achieved with the least amount of effort. All other areas which haveV
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not achieved a maximal allocation receive the same amount of effort

which is greater than the largest cj for those areas which have

achieved a probability of one.

This policy is appealing in some aspects but it has drawbacks

introduced by the lin arity of the c. d. f. Is, namely maximal allocation

to some areas. This phenomena would disappear with c. d. f. 's of the

non-linear type such as those of the exponential family. Rather than

pursue these points further here, we turn to the second objective of

minimizing the expected shortages.

.1

.1

:~I
Ii

I
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5.3 Expected Shortage Model

We formulate the expected shortage model and show that the case

of independent uniform distributions is reduced to a quadratic program-
4t

ming problem. The tactical motivation for this model is the same as

for the one of the last section. Hence, we proceed directly with the

formulation of the model.

Our objective will be to minimize the expected excess of demand

over supply (allocation). Therefore, we inLroduce the following

shortage function.

(12) j (x., Z) = J

where as before x. is the amount allocated to area j. Then 0. (x., Z)
3 3

is the shortage in area j, if Z is the actual demand. Let F. be the

marginal c. d. f. of d* and let E. (x.) denote the expected value of

0. (x., Z). Now we assume that each F. is sufficiently well-behaved so

that Stilges integrotion by parts may be performed. Then,

(x. O (x., Z) dF.(Z) - (Z- x) dFZ)

©(Z x. dF. M (Z x. dF.(Z)

J o
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Ex-f Fj(Z) d Z1

x.
P - x - x F.(0)+ F.(Z) dZ

3J 33 I0 J

where k* is the mean of dj.

We have F. (0) = 0, since d. is a non-negative random variable.3 3

Hence,
x.

(13) E.(x.) = I. - x. + F F (Z) dZ
33

] According to our stated objective 2 from section 5. 1 and the

previously indicated constraints, we formulate the following

optimization problem:
n

Min E Xj E (x)

nj=l
n

(14) (14a) E xj T a
j=l

x. 2 0
n

where the X. are specified weighting factors with X. > 0, E . = 1.
j=l

These weighting factors may be used to 'eflect the relative importance

of shortages between various areas.

fl Problems similar to (14) have been investigated by other authors.

For example, Charnes, Cooper, and Thompson [ 2] investigate a general

11

class of problems in "constrained generalized medians" 1and (14)

( 1ee this reference for an extensive list of references.

I

F i
[i
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belongs to this class.

Now E. (xi) is a convex-decreasing function of x. and, therefore,3J 3

the inequality (14a) may be replaced by an equality. There are two

general solution technqiues which may be applied to (14). The first

technique is dynamic programming. Of course, this method is es-

pecially useful when the x. are required to be non-ne vative integers.3

Dynamic programming does not require many special properties of the

function F. and it is an efficient computational technique. (See

Bellman and Dreyfus [1l.) The other technique which may be used to

solve (14) is the Charnes and Lemke [1] minimization technique for

non-iinear separable convex functions. This technique is especially

useful when more constraints are adjoined to (14).

For purposes of comparison with the previous section, we

discuss the special case when the dj are independent and uniformly

distributed. Accordingly, we assume that F. (x.) is given by equation (7).

Then E. (x.) will take the iollov.ing form

E j(X .) -- , 0 :. aj) , a . x < b .jx+(xj _ 3 3 J

J 2 (b- - aj)

O, b ~xi

where .= a + (b. - a.).

As may be noted, E. (x.) is either a linear or quadratic function of
33
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N: (see Figure 5. 1 below).

linear

quadratic

aj b. x.

Figure 5. 1

To reduce our model to a quadratic programming problem, we

introduce the variables v. and w with

x.v.+wj n=l,....n

(16) 0 r. a

O 9 w. :.c. where c. = b. - a.' 0 j 1,...,n.
3 1 . . 3

However, we must require w. = 0 when v. < a.. This is accomplished

by the non-linear conditions

w_. (v. - a)= 0 j =,... ,n

These restrictions can be maintained by restricted basis entry. With

the above changc variabbles, tile expectation oi (15) becomes

(17) (v. + w. w
j a a j Zcj j

I

I

LI
L___
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Problem (14) now gives way to the following quadratic programming

problem. 1

Max 1; X. v. + w. - - w.
J J 2c J

n
(18) Z v.+w.=a

j=l

w.(v. - a.)= 0
J J J

0 v.:5a.J J
o< vc.

J 3

Any of the standard quadratic programming methods can be used to

solve (18). Of course, bounded variable techniques can also b,-

employed to substantiaily reduce the size of the constraint set and

thereby improve computational efficiency.

For the uniform case, we compare the expected shortage model
1

to the probability model. We take X. = - j = 1, ... n in (18),

since the probability model maximizes the probability chat all missions

are simultaneously accomplished and therefore the missions are equally

weighted. Notice that we will have a nontrivial optimal solution for (18)

n
when r a. i a. This was not true for the probability model. To obtain

j=1

The constant E Xjp&j has been dropped from the objective

function and the optimization has been changed to maximization by
multiplying the objective function by - 1. We have also excluded the
trivial case r bj !r a and this permits us to write equality in the second

constraint.

t I
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a direct comparison, we require "a" to satisfy

n n
(19) Z a. a : L b.

j=! l j=1

The optimal solution to (18) will the, have all v. = a., so we delete the3 3

v. variables and the non-linear conditions w. (-r. - a.) = 0 ; then the w.
J3 J

variables of (18) correspoii, directly to the y. variables of (10). When

(19) is satisfied, then (10) and (18) Lscome

n' nMax logy. Max w.

j i ; wj. c. J

(1 Oa) (18a)
n n

Y- = cw.= c. yj = B wj= c

0 ! %yi c. 0 f w. 9 C.

In general, the optimal solutions to (10a) and (18a) will not be

the same. However, they are the same if all c. are equal. This in3

turn is true if and only if every mission has the same variance. In

other cases it is difficult to obtain direct comparisons between (10a)

and (18a) unless the constants c. are known. But, since the constraint

sets of (10a) and (18a) are identical, differences in optimal solutions are

I jattributed to differences in the objective functions. Next, we take up

a different approach to the multiple-contact problem via the constructs

of chance -constrained programming.

'II I.Ii______
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5.4 Chance-Constrained Distribution Model

In this section we introduce a more complicated model of a

multiple contact problem, This model also utilizes the concept of

random demands which are required to accomplish a specified mission.

However, here we explicitly recognize that the units of effort may

come from different origins. The problem is to minimize the ex-

pected distribution time to accoxnpiish each mission with at least a

specified probability. We develop a chance-constrained distribution

model of this problem.

To formulate the model, suppose that a. units are available at
1

some location (origin) i (i = l, ... ,m), where a. is a given non-
1

negative integer. Further, assume that the number of units required

to accomplish the specified mission at some location (destination) j

(j = 1, ... , n) is a non-negative discrete random variable d. with the
J

known marginal c. d. f., F.. Of course, some of the origins and
3

destinations may coincide. Also, F. may be a defenerate distribution

for some destinations, giving rise to a deterministic requirement.

The above assumptions lead directly to distribution type con-

straints, One set of constraints is as follows: the a-mount sent from

any origin cannot exceed the amount available. Then, letting x.. be the

amount sent from origin i to destination j, we get

(t

r4
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n
, ( (20) L x.. a, i=1 . n

j=1 13 1

The second set of constraints is written to reflect the random nature

of the requirements. The value of the random variable d. is observed
J

after the allocations are made. In the face of thi uncertainty, we

employ the ingenious notion of chance-constraints diue to Charnes and

Cooper [2]. These constraints are1

(21) Pr x.. ;d. >c j =,... ,n

where the c are specified constants. The double inequality in (21) reads

as follows: the number of units sent to destination j i n must

exceed the actual requirement at least 100 c. % of the time, Hence,

these constraints guarantee a stipulated level of protection against

shortages at aach destination. In addition, we will place non-negativity

restrictions on the x...

As mentioned previously, our objective will be to minimize the

expected distribution time. Accordingly, we let tij be the time for one
13

unit to travel from origin i to destination j, where the tij are random

variables with known means. Then, our objective is

(22) Mine E t.. X.i i j

1"Pr" denotes probability in the following equation.

i!I
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where "E" is the expectation operator. We let tij be the expected value

of ti. The i, bringing together the above objective and ti:e already

indicated constraints, we obtain the following optimizacion problem. 1

mi 1t 13

(23)
xij ! ai

(23a) Pr{D x..z d.} z c

1x.. O
13

Problem (23) is distribution model with the chance -constraints (23a).

Fortunately, we can solve this model by obtaining ar equivalent distri-

bution model with no random elements, a deterministic equivalent. 2

To proceed, we rewrite equation (23a) in terms of the known

c. d. f. 's, i.e.

(24) F. (x.) > c.

where x. x.
J i IJ

Recall that dj is a discrete random variable and let

P r (d.r.k F.(k) k =0, 1, 2,...
Pjk r J k 1, n

To reduce the objective function, we use the fact that the ex-

pectation of a sum of random variables is the sum of the expectations.
2 The approach used is due to Charnes and Cooper [41.
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( To obtain the deterministic equivalent, wx define the function F.

which is a pseudo inverse of F..
3

F.(y) =fo y

(Z5) 
k

k p j, k -I < y:5p jk  k-=o, 1, 2,

For each j, the relationship between F. and F. is depicted by3 3

Figure S. 2 below.

1
F.(x)y

J

3
Pjz

Pjl2

1

P j0
- I : I I I

0 1 2 3 x p.0  Pj1 p2  1 y

Figure 5. 2

The following lemma provides the wanted reduction of equation

(24).

Lemma : F. (x.) z c. if and only if x. > F. (c.).

Dr A ... .. 4 . 2 . . . . - -- - .- -'- , )
-0f A th. I. f~ *JA JSL . -Q 'CL J, -x O-C X X ~c.

J 3 3 3J

Then, since F. is monotone non-decreasing, x. > k where k is the

3 3unique integer which satisfies
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P j, k-1 'j Pjk
Now, by definition of Fj Fj (cj) k; hence,

x. i F (c.)

To prove the opposite implication, assume for fixed j that xj satisfies

x. k F tc.). Then, x. > k where k is the unique integer which satisfies
J " 2

But, F- is monotone non-decreasing; thus,

F. (x.) : F.(k)

Furthermore,

F.(k) = p c

Hence, F. (x.) z c. and the lemma is proved.

From Lemma 1, problem (23) and the followir g problem are

equivalent

Min Z 'ij xij
ij

(26) L x.. aj 13 1

(Zoa) xi > : (c j

x.. 013

Since problem (26) is a distribution model, the following well-known

properties I of (Z6) or equivalently (23) are immediately available:

1See Charnes and Cooper 5].

I
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i. Problem (26) has an optimal solution if and only if

£ a F.(c)
i iij 33J

2. Since the F. (c.) j = 1, ... ,n are integers and the a.

i= 1, .... n,. are asnumed to be integers, (26) has an optimal integer

extreme point solution.

3. The inequalities in (26a) may be replaced by equalities with-

out cha2.ging the values or the existence of optimal solutions (since all

t. 0).

Property 2 above is especially useful because no special integer

techniques are required to obtain an integer solution.

It is interesting to note that (26) is infeasible if there are not

enough units available to obtain the stipulated confidence levels in (23).

Of course, feasibility may be scured by reducing the value of some cj

or increasing the amounts available. One of the important features of

(Z3) is that its deterministic equivalent (26) has a dual and, tierefore,

dual interpretations can be obtained. The dual evaluators indicate the

change in the objective function per unit change in a. or in F. (c.). This
1 3 1

leads to an immediate evaluation of the effect of a change in cj on the

optimal -olution. Of course, this effect is discontinuous since F. is aj

step function (see Figure 5. 2). In addition to dual evaluation, senitivity

and parametric studies can also be implemented.

We conclude discussion of this model with an example. Suppose



180

that a known number of ships are available at each of four origins and

that specified missions are to be accomplished at each of six desti-

nations during the planning horizon. This ii.tial tactical configuration

is shown in Figure 5. 3.

DD

0 1 02

DZ D 4D0 D4
03 D3

04 D5  D
46

0. denotes origin i and D. denotes destination j.1 3

Figure 5. 3

Some of the above origins and destinations coincide since units

are both available and required at these points. The tactical infor-

mation pertaining to the destinations is given in the following Table 5. 1.

We also have computed F. (c.).

i .
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k=0 k=i [ =1

D 1  0.2 0.6 1.0 .7 2

D 2  0.5 0.8 1.0 .9 2

D3  0.4 0.9 1.0 .8 i

D4  0 0 1.0 1.0 2

D 5  0.7 3.9 1.0 .6 0

D 6  0.7 0.9 1.0 .9 1

Demand r" stributions

Table 5. 1

The mean travel times from each origin to each destination

and the amount available at each origin are given in Table 5. 2 below.

tij D1 D2  D3  D4  D D Avail

01 2 3 4 6 8 10 3

02 2 4 4 3 7 8 2

03 4 3 0 3 3 4 2

04 8 5 3 5 0 3 2

Travel Times and Amounts Available

Table 5.2
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As may be noted from Table 5. 1, some destinations are more "critical"

than others. For, certain requirert* muat be satisfied with higher

probability. In this way, the constants, cj, reflect the relative im-

portance of the missions. Also from Table 5. 1 , a demand already

exists at D4 so that 2 units must be sent there with probability I.

Finally, no units are required at D 5 to attain the stipulated level of

protection against shortages and D 5 is now deleted from the problem.

The data from Tables 5. 1 and 5. 2 is assembled in the following

distribution tableau.

:2 3 14 6 10 0

2  4 4 3 8 0

4 30 3 4  0

8 5 3 5 3 0

Req'd 2 2 1 2 1 1

Optimal expected time 19.

Optimal Tableau

Table S.3

I_______

IC1
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The optimal solution is circled in the preceding tableau. An alternate

optimum is also available. Both optimal solutions are shown bel<,w.

1 1 2 D

010-) 01 021 1'1 1+ + 2

03 D3  D D 3
11 D

04 D 5  1 .. D6  04 D5  6

Optimal Distribution Schedules

Figure 5. 4

As we have mentioned, there are a number of sensitivity studies

which can be conducted. Most of these are well understood, and we do

not dwell on them here. However, we have computed the variation in

c. which is allowed before the requirements F. (c.) change. These

computations are made from Table 5. 1 and they are:

.6< Cl 1.0, .8<c 2 l1.0, .4<c3.9

5<c5. .7, .7< c6 g.9

Because the requirements are discrete random variables, consider-

able variation of the risk coefficients c. is allowed without changing the

requirements in the deterministic equivalent. Nevertheiess, the optimal

€I
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solution is sensitive to changes in c. if c. is near the extremes of the

of the allowable range.

To sum up, the model presented in this section determines an

optimal (minimum expected time) distribution of units from their origi-

nal locations to contact areas. The number of units which will be re-

quired to accomplish the mission in each area is not known in advance,

but these requirements are distributed according to a known c. d. f.

We required that the number of units seig to each contact area must

satisfy the actual requirement with at least a specified probability,

i. e., the mission must be accomplished with at least this specified

p.robability. The model was then reduced to an equivalent distribution

model with no random elements (a deterministic equivalent). Finally,

an example was given to illustrate these ideas.
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5. 5 A Dynamic Distribution Modol

We extend the model of the previous section to two periods.

This extension is dynamic because the two periods are coupled to-

1gether by using the same units in each period. The problem is to

minimize the expected distribution time, subject to constraints on

the amounts available and chance constraints on the requirements.

This model is reduced to a deterministic equivalent by the use of a

zero-order decision rule for each period. A method is also proposed

which allows the decision variables in the second period to be de-

pendent on the actual requirements observed in the first period. The

method only utilizes zero-order decision rules.

To formulate the model, we assume that allocations are made

at the beginning of periods 1 and 2. We number the locations where

units are available and / or required j = 1, ... , n. Because of this

numbering system, some of these locations may have either nothing

available or nothing required. Let dk be the number of units required3

to accomplish the specified mission at location j in period k = 1, 2.

Now di is observed after the first and before the second allocation,% are
3

made, while d. is observed after the second allocations are made.3

k
The d. are discrete random variables with a known joint c. d. f. Let

3

x. . be the number of units sent from location i to j (i, j = 1, ... n) in

period k 1, 2, and let a, be the number of units available at location i

. . .. . . . .. . . ...
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initially. We introduce the following distribution constraints:

j13 1

(28) Pr x..x. d-} +

13E J 3

(30) Pr{ x 2

1 2
(31) thelx, x..O inth ls

:! , where c. and c. are specified constants with 0 ; c. 1.

i .. ~~Constraint (29) is teonly type not encounteredinteas

Sxij cannot exceed the amount available there

a + x 1 x . This constraint couples the distribution models

of each period.

k
:. Let t be the time taken by one unit to go from location i to Jir

in period k (t.k may be a random variable). Our objective is to mini-

mize the total expected distribution time, i. e.,

(32) Min E . J+ ^t-. X.ij 13 13 13 13

where t.il and t. denote the rneens of 1. and t.2 respectively.131 j ij
1 2

We assume that bo.. xij and x2. are determined by zero-order

decision rules; then, by Lemma 1 of the last section, equations (28)



187

and (3) are equivalent to

(33) k -k k

-k kwhere F. (c.) is an integer determined from the marginal c. d. f. of
{k J 3

d. (see equation (25)).
J

From the above discussion, the model with objective (32) and

constraints (27) through (31) is equivalent to the following deterministic

model

Min t.x.. t. x.
i,j j U J .J IJj

xij a iJ

(34) xZ x1 (c

1 1 2Sx.. f xji+ x, a.

13 1

-2 2i ij Jc

Now (34) has an optimal solution if and only if

n -k kaia 2: F (c) k= 1, 2
i j=l

In addition, (34) has special structural features, Indeed, techniqucs

1 This follows immediately from the distribution properties
of (34).
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such as the mixing routine of Charnes and Cooper [ 5] are available to

exploit this special structure and thereby reduce computational effort.

However, for multiple contact situations, 'In" would be on the o-;der

of 10. In this case, (34) is a linear program with 200 variables and

40 constraints. This is not a large problem for modern linear program

codes. Therefore, we do not dwell on special methods of computation,.

We propose a method for implementing (34. An optimal so-

lution to (34) yields optimal x. and x.. . Instead of using both of
,1' 1j

these optimal distribution plans, one can employ the following pro-

cedure. Use the optimal Y1. from (34). The x., which are actually

1j 3J

employed are obtained by solving the one period distribution model oi

section 5.4, with F. being the conditional distribution of d. given the

actual values of d1 which have been observed. To reiterate, the

optimal x from (34) are used. The x. from (34) are not used. Rather,

we determine conditionally optimal x2 given the actual values of d1

which are observed.

This dynamic model can also be formulated with a linear de-

cision rule. Only a verbal description of the procedure is given here,

since no new results are obtained when such a rule is employed. We

would write x2 as an unknown linear combination of the random
13

variables t. . These expressions for z.. are then substituted in (34);

and a deterministic equivalent for the case of normally distributed d

4
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and dj can be obtained by the method of Charnes anti Cooper [4]. The

optimal solution to the resulting model yields an optimal linear decision

rule for the x?.. The x. which are employed will, therefore, depend3 131

-)n the actual values of d. which are observed. Hence, an adaptive
J

~model is obtained by the above procedu~re.

II

3i

I _
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