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SUMMARY

The purpose of this dissertation is to develop mathematical
models and solution techniques to find optimal tactics for antisubmarine
warfare (ASW) operations. Specifically,\;wo types of ASW operations
are considered: ({) a I;)mter-killer force (Pl) is aearching\i’or a
submarine (P2), and () Pl is attacking P2. Both of these types of
operations are formulated as two-person zero-sum games. These
game formulations distinguish this work from the literature since they
allow P2 as well as Pl to choose tactics.

Both sequential and non-sequential search games are developed. ~
For one of the non-sequential games, the search region is divided into
n cells. In each play of the game, Pl chooses a cell to search and P2
chooses a cell in which te hide. The resulting payoff i; the probability
that Pl detects P2, We assume that Pl attempts to maximize this
probability of detection while P2 attempts to minimize it. Ther<iore,
the game is zero-sum; and/fmﬁermore, P2 is thereby given the role

Ve
dine taes Lu &l'/<

P
of an evader, We a?(ntroduce another similar search game, and we
econdary objectives and additional information,by

\

show how-to include s

extending these games to constrained game formulations,
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Sequential gamesw—oﬁmmd are
also developed. When the players move, they not only determine a
payoff but also the probability that the play terminates.. For the case
of at most a finite number of moves, optimal strategies are found by
solving a recursive sequence of two-person zero-sum games. For the
infinite-move game, we develop an iterative method to a;Slproximate the
\

solution to within desired accuracy. Finally, we show that the strate-
gies which minimax the expected duration of the game must also
maximin fhe one-step termination probability.
N s
N _'fo study attack operatxonngoddxbmhas a
. \M \
stochastic game due to Shapley,*In this formulation, a pure strategy

is a2 tactical plan of action for each pos/sible state of the operation. The

g

-
objective is taken to be eithgx»rﬁinimax the time or the probability for
Pl to kill P2, We derive two methods to find the solution to this
stochastic game; one method iterates on the strategies, and the other
iterates on the payoffs. One specizl case which ig studied is a
Markovian decision process, and one extension is a constraired
. Lo

stochastic game. AR

: N AR ~
\ Finally, we-investigate multiple contact problems/‘ Our models

rely on the assumption that the amount of effort which is required to

accomplish a specified mission is a2 random variable with a known
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distribution function. Several objective functions are employed, and
one of the models is 2 chance-constrained distribution model. By using
a zero-order decision rule, we show that the deterministic equivalent
of this model ie a distribution model with integer extreme points; and
hence, optimal integer assignments can be obtained with ordinary non-

integer methods,
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CHAPTER I - INTRODUCTION

1.1 Problem Setting

In this chapter we delineate the problems studied, survey the
literature, swmmarize our results, and introduce the elements of
game theory and mathematical programming which are used throughout
this work. This section defines the type of antisubmarine warfare
problems which will be considered. First, we distinguish between
strategy and tactics. Then we examine the tactical environment of 2
hunter -killer force and the interaction between it and a subraarine.

We close this section by defining the two types of problems which will
be studied.

Tactics and strategy differ in the level of decision making, with
the lowest level of strategic decisions merging into the highest level of
tactical decisions. Furthermore, strategic plans are implemented by
tactical operations. In this way, strategy fixes the environment where
tactical operations will take place. For example, geographic position,
force size, military hardware, and the military mission are usually
fixed tactical factors. Tactics then determine the way in which the
available forces will he

ged A arhiaca
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Eccles [1] for further elaboration on these points,
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We study tactical situations which are typically encountered by a
hunter -killer force in antisubmarine warfare (ASW), First, the primary
mission of 2 hunter-killer force is to seek and destroy :submarines.1
Second, certain environmental factors in ASW operations are fixed, } )
Typical fixed factors for the hunter-killer force (P1l} are detection
capability, speed, endurance, operating region, and vulnerability. On
the vther hand, the submarines (P2) also have a mission; and in many
cases, it is desirable for P2 to avoid detection in order to accomplish
its mission. Hence, in many hunter-kilier operations Pl and P2 are
in direct conflict, with Pl attempting to detect P2 and with P2 at-
tempting to avoid detection. Qur models will deal with these situations
of direct conflict, although in some cases we will also allow secondary
objectives.

We separate the tactical prcblems confronting Pl into search
problems and contact problems. The essential difference between these
problems is the amount of information which is available to P1. In
search problems P1 has not established a contact with P2, and in contact
situations P1 has a contact. For search problems we will develop

modeis ic determine 2n optimal distribution of search effort, and for

contact problems we develop models to fin

(2N
v
33
[$]

ISternt.elt and Thorndike, [1].
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configuration of the forces for each possible state of information.

Let us restrict our attention for a moment to search situations.
Typically. Pl and P2 eachk have two.modes of search, active and
passive. In the active mode, detection devices are emitting electro-
magnetic radiation and receiving echoes back. The passive mode is
simply a listening mode; ng radiation is emitted. If Pl operates in the
active mode and P2 0perates:in the passive mode, then P2 can detect
Pl's signal when the range is too great for the echo to return to Pl.

Thus, a passive submarine can detect an active searcher without
divulging its own location. It follows that a submarine may choose
evasive vactics before a contact is established by an active.searcher.
Most of the proposed search models in the literature do not allow for an
z.tctive submarine, but we make this allowance by utilizing game theo-
retic formulations.

Summing up, we model tactical hunter-killer operations and we
separate these operations into search and contact situations. For
search situations, the search region and detection capabilities are fixed.
Under the assumption that the primary objective of Pl is to detect P2
and that P2 attempts to avoid iletection, we determine an optimal distri-
bution of search effort. In contact situations, we wish to find an optimal
tactical plan for each state of information. Before outlining our models
of these situations and subsequent results, we survey the unclassified

literature,.
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1.2 Literature

No papers on contact problems have been found. However, a
large literature on search problems is available. Three important and
early papers on search, which encouraged further work, are: Koopman
[1] (1946), [2], [3], and [4]; Bellman [1] (1957); and von Neumann [1]
(1953). Koopman formulated the first published non-sequential problem
on the optimal digtribution of search effort; Bellman formulated the
first published sequential search model; and von Neumarin formulated
two non-sequential mimimax’'search problems.

The classical work of Koopman (1] and (4] can be stated as

follows: Find a function ¢ which maximizes

F(9) =jR p(x) g ((x)) dx
(1)  Subject to: ‘[ $(x) dx = A, 8(x) 20 x®
R

where ¢ is the search densi'ty function and F (¢) is the probability of
;ietection, expressed as an integral of the known submarine pro* bility
density p (3 =nd the conditional probability of detection g (¢ (x)).

The constraints require that the total amount of search effort be equal
to A and ¢ (x) is non-negative over the sear:h region R. Koopman
developed a graphical method to solve {1) with the exporential detection
function g (¢(x)) =1 - e~®{® 101958, Charnes and Cocper [7] de-

veloped a method to obtain an analytical solution to a discrete form of
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(1), again with the exponential detection function, Later, de Guenin [1]
(1961} obtaired an analytic solution to (1) with essentially the require-
ment that g-t) haz a decreasing derivative with increasing t (the de-

tection function exhibits a saturation effect as effort increases),

Finally, Za21 (1] (1963) solved (1) with only a continuity restriction on
g. Some results on a sequential version of (1) were obtained by Dubbie
[1]). He derived conditions for the optimal distribution of effort

E; + E, to be the sum of the optimal distribution of El and the con-

T e earer e, mm—

ditionally optimal distribution of E, given the submarine has nct been

found with the effort El .

The following non-sequential search problem was formulated and
; solved by von Neumann (1] (1953). The search region is divided into
n-cells, If Pl (searcher) and P2 (hider) both choose the same cell,

‘ then P1 detects P2 with positive probability; otherwise, the detection

probability is zero. Pl attempts to maximize the probability of de-

&” tection, while P2 mirimizes it. Hence, the theory of two-person zero-
i sum game3a applies. von Nuemann went on to formulate another zero-

sum search game which is equivalent to the assignment problem., We

%0

‘discuss both of these problems in further detail in Chapter 2. Neuts

!
} [1] (1963) extended von Neumann's n-cell search game to an infinite
] number of moves, but only a certain type of detection function is per-

mitted. We also discuss this extension in Chapter 2. This completes
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our discussion of basic ncn-sequential search models and extensions to
the sequential case,

In 1957, Bellman [1] formulated an n-cell sequential search
problem. He assumed that the searcher has a prior probability distri-

bution on the location of the submarine and that the cost of searching a

cell is also known. The searcher then looks in orne cell at a time until

the submarine is found, Bellman found the policy (sequence of cells te
search) which minimizes the total expected cost. Gluss [1](1961) added

a search cost to Bellman's problem which depends on the distance be-

tween successive looks {moving cost). IHe found an optimal policy for
several important cases of the prior probabilities,

Various sequential search models have been formulated where
the prior probabilities are transformed to Bayesian posterior proba-
bilities. Neuts (1] extended Bellman's model to include Bayesian's
updating of prior probabiliti;zs. Norris [1] employs a minimax apti-
mization for the Neuts model, but his results were only compleiz for
the case of two cells. Finally, Pollock [1] formulated a Bavyesgian 422t
of hypothesis model. At the beginning of thiz sequential ssazch, the

searcher estimates the probability p that a submarine is present in the

search region. Each time a search is made, p changes acenrgdi

e
[ES

Bayesian rule, After each search is made, the svaxchsr takes o

the following three decisions: (1) make another search, (2) accept ine

A A Py AN

I

I

AL L 0 4 WA N

TP A RVRg )

RO

S e

~
N

O AMRLNG




(RTINS

DAV AL Wi sy

344

» N AR

INPSA

e L e A I+ PR LR BRSNS 1Y

hypothesis H, that a submarine is present, or (3) reject H,. The
optimal decision depends on the current estimate of p and the costs of
wrong decisions.

The last type of search models which we discuss will only be
mentioned in passing, These are n-cell search models where 2 subma-
rine arrives in some cell of the search region at a random time during
the search. Such models have been studied by Blackman (1], Blackman

and Proschkan [1], and Poliock [1].

A

S AR A e AL S s ML 2 e aeer T Y BRI

[




l

H
1
!
t
]

i
N

sy dnve ~

1.3 Results

Bringing together the discussion of the last two sections, it
becomes apparent that models are required for hunter-killer operations
which allow the submarine as well as the searcher to make tactical de-

cisions., Most authors assume that the submarine maintains a known

stationary probability distribution. We do not make this assumption

and furthermore we allow the probability of detection to be a function of
range. All of the distribution of effort models reviewed in the last
section have assumed a negligible radius of detection, and all of the
models, except the minimax models, assume a statiorary submarine,
With these observations in mind, we preview the models and results
obtained in the next four chapters.

We introduce our results by chapter. The first model of Chapter 2
is an n-cell search game. This game is non-sequential but extensions
of it to a sequential game are made in Chapter 3. We assume that Pl
attempts to maximize the probability of detection while P2 attempts to
minimize it. In reality there doesn't have to be a submarine present in
the searching region for this model to apply and P2 may consist of one
or more submarines. But, we are assuming that P1 should act as if an
evading submarine was present. Hence, we seek a distribution of effort
for P1 which will maximize the minimum probability of detection

against all possible hiding strategies that P2 can choose. Qur model

{
1
3
M
2
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is also formulated to allow the probability of detection to be a function
of range.

Now the above model only applies when neither P1 nor P2 have
information on where the other player is gearching or hiding. However,
Pl may have intelligence information which can be used to bound the
probability that P2 is located in certain cells or these bounds may arise
from previous searches, If such information is available, then the
optimal distribution of effort obtained from ‘he foregoing model will be
tco '‘conservative''. To take into account certain information on hiding
locations we show how to extend the game tc 2 constrained game, 1
This extension will make Pl's strategy less conservative but perhaps
mere risky. Wa aiso show how to include other types of information
which may arise in searching situations. Finally, we give an example
of thia model and obtain an analytic sclution for the special case of &
negligible radius of detection,

We also propose a second model in Chapter 2. This model is

especially suited to search in sweepe of the search region. For example,

search by aircraft. Again the opporing objectives of detection and
evasion are assumed, and the searcher seeks to minimax the proba-

bility of detection. The game formulation of this problem is reduced to

I The notion of a constreined game as incorporating "habits" or

other qualitative probabilistic infsrmation was introduced by Charnes [1],
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a dyadic model, a generalization of the distribution problem. Special
cases of this game result in a transportation and an assignment
problem, The chapter is completed with tactical exampies of this
model. Both of these games are generalization of von Neumann's (1]
search games.

In Chapter 3, we develop a sequential extension of the n-cell
search model of Chapter 2. When the players each choose a cell, they
not only determine a probability of detection but they also determine a
probability that the game is played again. We consider both a finite
and an infinite number of moves. In the finite case, optimal strategies
can be found by solving a recursive sequence of two-person zero-sum
games, Substantially less computational effort is required by this pro-
cedure than solution of the normalized form of this game. For the

infinite game, the problem is reduced to firding strategies Xand Y
XAy
xXtQy
move and Q is the matrix of non-zero stop probabilities. We show how

which minimax the form

, where A is the payoff matrix for each

to find the optimal strategies by solving a linear programming problem

‘with a parameter in the constraint set, We demonstrate that optimal

strategies are obtained when this parameter is chosen to make the
optimal value of the objective function equal to zero., Then we develep

a technique to find such a value of the parameter in a finite number of

steps, Chapter 3 is concluded with an example which compares the

o e ———
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non-sequential game to both the finite and infinite seguentizl ggarch
games.

In Chapter 4 we study the contact probiem, However, the modeis
which are developed may also be applied io some types of search sity-
ations, Briefly, we view the contact probiem a2 & certain game of
pursnit between Pl and P2, This game conasists of a finite collection
of states and each state correzponds {5 a possible tactical configuration
of the hunter-killer forces. At each mcve, the players obssrve the
state of the game and each piayss cheosés 3 tactical plan froin a {inite
collection. The observed etate and the chosen tactical plans jointly
determine an imms=diate payoff and a transition probabiiity divtri-
bution over the states, Before the next meve is made, the game
transits to one of the stat2s or teFmingtes az:cc;z'ding to the chosen
probability distribution. We seek to find an optimal strategy for each
player. An optimal strategy is one of a minimax pair for the total
expected payoff.

This game iz 2 s/ochastic game due to Shapley [1]. He defined
a vector value and employed an ingenions argument to 2stablish its
existence and that of optimal strategies. In addition, he showed that
the value and optimal eirategies are characterized by 2 non-linear fived
point problem. We show stow to spproximate the sclution to this fixed

point problem by linear pregromming methads, Two methods are given;
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cnc iterates on the strategies and the other iterates on the payoffs.

IR T

To introdice mere realism into the game, several variants of

bt i Dbt ot gL CUR LS il
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the stochasiic game ars considered. One of these variants is the ex-

[

ﬁ tension of Charnes' notion of a constrained game to stochastic games.
= 3

E 3 We alse egamine 2 stochasiic game with perfect information which is

§

= 3 t= .rmmdtmg Markovian dec¢ision process and we extend some of the

kacwn results. Finally, we introduce a finite version of the stochastic

il
S tiyendibe bt

game and show how our linear programming methods may be used to
obtsin 4 solution. All of the above models are examined in light of

their tactical consequences and fheir applications to hunter-killer
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We tuin tc a different type of problem in Chapter 5 than those

‘
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considersd thus far. Here we are conceérned with distributing hunter-

£
-

killer forces to multiple contacts, Four models are {ormulated start-
ing with simple situations and progressing to a dynamic problem. The

firat two models deal with the 3live

\.’?‘
'¢>

zn of a fired number of units to

two or more contaci arezs, A specified mission is to be accomplished

in each area but the number of units reguired for vhis purpose is a

- ;.

E random varizble, This rzndom requirement may arigse due fo insuf-
2 ¥

£

£ s eiaitd . )

E: ficieni inteliigence on enzmy capakilities znd objectives or ather

!

E; unicertaintiss,

[

E

In the f£irst model, we introduce 2 aavsl osbjective functiosn.
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The objective is to maximize the probability that all requirements are
met or equivalently maximize the probability that all missions are
simultaneously accomplished. The constraint set consists of a single
coustraint on the total amount of effort avaiiable and non-negativity re-
strictions. We develop an algorithm to find the analytic solution when
the requirements are uniformly and independently distributed. The
second model is obtained by taking the following objective: minimize
the sum of the expected shortages. The resulting model is a problem
in generalized constrained medians as discussed by Charnes, Cooper,
and Thompson [2]. We find that the assumption of uniformiy and inde-
pendently distributed requirements, in this case, leads to a guadratic
programming problem.

Next, we examine tactical gituations where the distribution f.z_t_x}__e_
is ar impertant measure of effectiveness. Here we obtain a chance-
cornstrained distribution (transportation) mode:s. The availabilities are
known bu? again the requirements for 2 specified imnission in eack contact
area are discrete random variables. The deterministic equivalent for
this problem has discrete availabilities and requirements and, therefore,
non-integer distribution technigques may be employed to obtain an op-
tiznal integer solution,

The final model is simply a dynamic two-period version of the

above distribution model. Here, we employ & zero-order decision rule .
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for both periods; and a method is given to aliow the second period al-
locations to depend on the requirements observed in the first period.
In addition, we indicate how a linear-decision rule can be applied to this

type of model.
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1.4 C A Survey of Mathematical Programming

Relevant topics to this work in mathematical programming are
surveyed., This survey is intended for the well-versed reader and
only an orientation to several important topics is desired. Therefore,
the treatment is brief and no extensive literature citations are included.
We cover the following topics: the transportation problem; linear,
programming, including duality; and somé aspects of chance-constrained
programming. Only the models and the main theorems are preseuted.
The reader is referred to the literature for a discussion of standard
solution techniques such as th.: simplex me:hod.

The modern form of the transportation problem was first formu-
lated and studied by Hitchcock [1], although even more general forms of
this problem were studied as early as 1939 (Kantorovich), but were not
available until some years after World War II.1 The transportation
model may be visualized by supposing that there are m shipping points
(origins) with a; units available at origini(i=1,...,m) andn desti-
nation with bj units required at destination j(j =1, ... ,n). Units can
be shipped from each origin to any destination and a shipping cost of

Ci; is incurred when one unit is shipped from origin i to destination j.

‘The probiem is to find a2 shipping schedule (number of units to be sent

lsee Charnes and Cooper [5] for an extensive discussion of

historical developments and early work.
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from each origin to each destination) which minimizes totx:l cost.
Accordingly, we let x43 be the number of units to be shipped from
origin i to destination j. Then the mathematical problem (model) may

.be stated as follows. Find the values of xij which)

Min C.,X..
i,Ej 1] 1}
Subject to: (2a) 3§ x  =a,
FRY 1
2b .. = b,
(2) (20) 2 x5 = by
x,. 20
1j

~

Constraints (2a) and (2b) require that the total amount sent from each
origin is equal to the amount available there and the total amount sent
to each destination is equal to the requirement.

The following well-—known2 properties of (2) are immediately
displayed,

{a) Problem (2) has an optimal solution if and only if

=9

a. =5 b.
i~ 4
j J

(b) If the a and bj are all integers, then every basic

feasible golution to (2) has integer-valued variables. 3

lThe subscripts vary over their entire range when the range is

not indicated,

2See Charnes and Cooper (5] for further elaboration.

3A basic feasible sclution has nc more than m+n -1 (the number
of linearily independent constraints} positive variables,
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It follows that at least one optimal solution has integer

valued variables and the optimal integer solutions may

be found by the usual non-integer adjacent extreme

point qu:thods.
The above properties are utilized in Chapters 2 and 5. We also en-
counter inequalities in the constraints (2a) and (2b), but we show how
to reduce these inequality forms tc the standard form when this re-
duc “ion is needed.

The most widely used method to solve (2) consists of three steps,

(a) Find a basic feasible solution (b. {. s.).

(b) Ewvaluate the current b, f, s. for optimality.

(c) If the b.f. 8. is not optimal, move to another b, {, s,

which decreases the value of the objective function and

return to step (b).
If (2) has a feasible solution, then the above method converges to an
optimal solution in a finite number of steps. In terms of geometry, this
method is an adjacent extreme point method; and the key mathematical
property which makes the method work is the equivalence of basic
feasible solucions and extreme points of the convex set of feasible so-
lut.ons., A more deiailed discussion of these ideas would lead us too far
afield from the purpose of this survey. Therefore, we turn to a brief

discussion of linear programming,

w
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Next, we define a linear program ahd then give the dual theo-
rem of linear programming, A linear program consists of a linear
objective function which is to be optimized and linear constraints. In
addition, non-negativity restrictions on the variables are usually stated
separztely, Every linear program may be written in the following form

Max X
(3) AX<b
Xz20
where ¢ and X are n-vectors, b is an m-vector, A is an mxn matrix,
and ¢, b, and A kll have constant elements. The set S = {XI AX <b,

X201} is called the set of feasible solutions. The problem is to find

an ;(CS which maximizes c*X over all XS, If such an 5( exists and is
finite, then we call I‘E an optimal solution to (3). Not every linear
program has an optimal solution but exactly one of the following three
cases must occur:

{(a) No feasible solution exists,

(b) An optimal solution exists,

{c) ctX is unbounded for some X& S.

As in the tr.nasportatioa problem, the methods which are avail-
able to solve a linear program depend on the equivalence of extreme
points and basic feasible solutions, and on the optimality of at least one

basic feasible solution, if an optimal solutior exists. Of these adjacent

. e e
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extreme point methods, the most widely used methods are the simplex
method of Dantzig (2] and the dual method of Lemke [1]. The simplex
method consists of the same steps as those outlined for the transpor-
tation problem; however, the means of going from one step to the next
are different in each case, it starts from a basic feasible solution
(b. f. s.) and several techniques are available to get an initial b. £, s,
With a starting technique and the simplex method, one will arrive at an
optimal solution or case (a) or (c) above in a finite number of steps.

With every linear program there is associated another linear
program called the dual. The dual to problem (3) is defined as

Min W'
(4) wéa = ot
Wz0

There are certain surprising relations between the solutions to (3) and

its dual (4). These relationships are summed up by the

dual theorem: Solutions to the primal (3) and dual (4) are related as follows:

{i) Problem (3) has an optimal solution if and only if
(4) has an optimal solution,

(ii) When (3) and (4) have optimal solutions X and W
respectively, then ctX = Wb,

(ii1) If either (3) or (4) has an unbounded solution, then
the other problem has no feasible solution,

Proof - see Charnes and Cooper {5] for details.

In addition, it is possible for both problems to have no feasible solution.
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Therefore, if a linear program has no feasible solutions, its dual is
either unbounded or infeasible,

The practical significance of duality relationships lie primarily
in the sensitivit» information which is available, It can be shown that
';Vi is the change in the primal objective function per unit change in b;.
But, the physical interpretation of \;Vi will depend on the actual physical
process which is modeled, Another important point which should be
made here is that an optimal sclution to the dual probiem is avaiiable
when the primal is solved by the simplex method. Hence, sensitivity
information is immediately available,

F'Iext, we give the theorem of the alternativel which follows im-
mediately irom the dual theorem:.

Theorem of the alternative: Suppose X and W are ootimzl solu-

tions to (3) and (4) respectively. Let }Es and ﬁ’s be the siack vectors

for these optimal solutions. Then

WX =0, WS X=0
This result is quite useful for analysis and it also provides additional
primal-dual interpretations, We continue now with pertinent topics
from chance-constrained programming.

The idea of chance-constrained programming was first intro-

duced by Charnes, Cooper, and Symonds at the December 1953 meeting

1This theorem is also krown as the principle of complementary
slackness.
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of the Econometric Society. But, four years of refereeing elapsed
until it was published in journal form in [1] 1958}, Since then a number i
of problems have been treated, but we restrict our discussionto a

definition of chance-constrained programming and the so called '"'zero-

order decision rule'. This rule will be applied to a transportation-type

e ks e s

problem in Chapter 5.
To define chance-constrained programming (ccp), we draw on

the iollowing definition given by Charnes & Cooper [4].

Y A pod i AR IR Thcbomd s W

""Chance-constrained programming admits random data
variations and permits constraint violations up to specified
probability limits., Different kinds of decision rules and
optimizing objectives may be used so that, under certain
conditions, a programming problem (not necessarily
linear) can be achieved that is deterministic - in that all
random elements have been eliminated. "

. -

The reader may refer to Charnes and Cooper [4] and subsequent papers
for some general formulations of a ccp. We restrict our attention here
to the following problem (''zero-order decision rules'):
(5) Max E (ctX)
. (5. 1) Pr (AXsb]}zad
where '"E'" denotes the expectation operator, c and X are n-vectors, b
and d are m-vectors, and A is an mxn matrix of constants. We assume

that b ig 2 vector of random variables

€

tth @ known continuous joint
cumulative distribution function (c.d.f.). We further assume that c is

a vector of random variables with known and finite means. The double
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inequality in (5. 1) reads as follows: The probability that AX <b is no
less than d. Hence the constraint AX £b can be violated but it must be
satisfied with at least joint probability d.

We rewrite (5.1) as

(6) Pr(a;X=bj)2d; i=1,...,m

where a; is the ith row of the matrix A and bi and di are the ith com-~

ponents of b and d respectively. Let Fi be the marginal c, d. f. of the
random variable b;. Then (6) is equivalent to

(7) l'Fi(aix)Zdi i=l,...,m

provided we are using zero-order decision rules, i.e., X is not a

function of the random variables and A is a constant matrix. Since F.1

is ‘monotone increasing and continuous, F inverse, Fi"}L , exists, It

follows immediately that X satisfies (7) if and only if X satisfies
a.iXSFi'1 (1 - d)i=1,...,m

Because of this relationship, (5) is equivalent to

Max ctXx

(8) .
a,XsF."'(1-d)i=1,...,m
1 1 1

where c is the vector of mean values of c. The above linear program
is called the deterministic equivalent of {5). From the linearity of {8}

all of the relationships of linear programming including duality can be

brought to (8) or equivalently to (4).
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In multiperiod models it is often desirable to determine the
optimal value of X adaptively. This is to say, X should depznd on the
actual values of b which are observed. This dependence gives rise to
the notion of a decision rule az defined by Charnes and Cooper [5] and
extensively studied in Charnes and Kirby [1]. The latter prove the

optimality of piece-wise linear decision rules for the E-model. Charnes

_and Cooper have particularily studied the class of linear decision rules

- X=Db+ a
where the elements of the matrix D and the vector a are urknown
constants. These constants are to be determined by reference to (5).
The above relationship for X is substituted into (5} and Charnes and
Cooper [5] then obtain a deterministic equivalent convexprogramming
problem when the random variables b are normally distributed. Solving
this deterministic equivalent yields an optimal D and a which in turn
specifies an optimal X for each cbserved b, via the above linear rule.
Additional material on chance-constrained programming may be found

in the references listed under Charnes, et, al.
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1.5 Elements of Game Theory

We discuss certain elementary concepts from the theory of

games which will be used extensively. The following topics are con-
-,

sidered in turn: definitions for a game, minimax theorem, linear

programuming formulation, extensive form, and Kuhn's theorem of

; perfect recall. The first formulation of the modern theory of games

S

ang the minimax theorem was given by von Neumann [2]. Subsequently,

] von Neamann and Morgenstern [1] brought the theory to a high state of

development. Additional contributions are scattered throughout the
literature, However, a large number of these contributions are con-

t tained in the Frinceton series of "Contributions to the Theory of Games"

and the Proczedings of the National Academy of Sciences (U.S. A.). In

A A e

addition, severai books on the theory of games are; von Neumann and

| MM e

Morgenstern [1], Blackwell and Girshick [1], Dresher {1], Karlin [51] )

- Luce and Raiffa [1], and McKinsey [1].

In order to provide a common ground for discussion, it is neces-
sary to introduce several definitions,

o 1. A game is defined by the totality of its rules.

Z. A play of the game is one complete execuvion of the

gt of ruleg,

LN as—

3. A move i3 defined as a point in the game when one

' of the players must choose an alternative,
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4. An alteinative is one of the choices which a player

may take when it is his move.
The rules of a game distinguish one game from another. They specify
the sequence in which the players move, the amount of information
which is available to each player, what the payoffs are, how a play
terminates, and the alternatives which are available. The rules deter-
mine a payoff to each player in the following way: Let M, M,,..., Mm
represent the sets of alternatives at the moves in 2 game and let
g = (al, Tps onv- ,cm) be a sequence of alternatives with o'iCMi (i=1,

.. yM). Then the sequence g is a play of the game. Suppose there are

n players denoted by P.,, P_, ..., Pn. Now the rules specify a set of

' "2
functions {Fj () j=1,...,n} for eachplay ¢ with Fj (o) being the pay-

oif received by Pj . If for some g, Fj (o) =z 0 then Pj receives the amount

F.{(c) and if Fj {c) < 0 then P, pays the amount Fj (c). A game is called
J v

n
zero-sum if £ F (g) = 0 for each g. In the remainder of this discussion

j=1

we restrict our attention to two-person (n = 2) sero-sum games., These
games describe situations of conflict between two opposing interests and
they are used exclusively to model the tactical situztions under
consideration.

von Neumann and Morgenstern [ 1] introduced the useful notion
of the extensive form of a game. In this form, a game is viewed as a

tree consisting of nodes and branches. A node corresponds o a move
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for a particular player and the branches emanating from a node repre-
sent the alternatives which are available. The origin of the tree
corresponds to the first move and successive nodes correspond to
successive moves. Then each play is represented by a unicursal path
from the origin of the tree to a terminal branch and each terminal
branch corresponds to precisely one play of the game. We illustrate

these ideas with the following example:

Example 1

The number beside each node designates which players' move it is. The
dotted lines define information sets. Roughly speaking. an information
set tells-us what a player knows at each move, A player will know
which information <et he is in, but not which ncde he is at. To illustrate
the concept of information, we give the following scenario of the above
game, Pl moves first and chooses one cf three alternatives.! The

information sets for the next move, P2's mave, tell us if Pl chooses

1 . . . . .
For convenience, we number alternatives in a clock-wise
direction. "
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alternative 1; then P2 is informed of this but if Pl chooses alternative
2 or 3, then P2 is not informed of the specific alternative chosen by Pl.
Now on Pl's second move, Pl is forced tc forget whether he had
chosen alternative 1 or 2 on the first move but Pl remembers whether
he had taken alternative 3 or no* Further, Pl does not know which
alternative is taken by P2,

We define a pur: strategy. A pure strategy for a player is a
function from the set of all possible histories of the game into the sets
of alternatives. It is a specification of an alternative at each move for
each possible history up to the move. In example 1, player 2 has eight

pure strat :gies corresponding to the eight ways to map the set {1, 2, 3},

into the set {1, 2]. Each of these ways is a specification of the al-
ternative P2 should choose (1 or 2) depending on what P1 chooses
(1, 2, or 3). ™ a similar way we can enumerate the pure strategies for
Pl. Here a pure strategy tells P1 what alternative to choose for both
his moves as a function of the history of the game.

von Neumann and Morgenstern [1] have shown that every finite
two-person zero-sum game can be reduced to normal form. In normal
form the game is represented as an mxn matrix A with each row corre-
sponding to a pure strategy for Pl and each coiumn corresponding to a
pure stcategy for P2, If Pl chooses row i and P2 chooses column j then

Pl receives 3y trom P2 and since the game is zero-sum, P2 receives
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'aij from P1. We refer to these games as matrix games, and A is
called Pl's payoff matrix. With the game in normal form, we now
think of it as consisting of one move by each p:layer with the pure
strategies being alternatives, Now either player may move first, and
the second player io move is in ignorance of the alternative chosen by
the first player; or equivalently the players may move simultaneously
in ignorance of the other's move.

The normal form is convenient for a discussion of ra’ional play
and mixed strategies. von Neumann's [2] concept of rational play re-
quires that each player maximizc his minimum expected payoff or
simply minimax the expected payoff. 7To get to the heart of this matter,

we introduce mixed strategies and the minimax theorem of von Neumann

- - -

[2]). A mixed strategy for a player is a probability distribution over the
available alternatives (pure strategies). Accordingly, we assume Pl
plays alternative i with probability xi (i=1,...,m)and P2 plays his
alternative j with probability yj {3j=1,...,n), We call the mx] vector
X-= (xl, ey xm) and the nxl vector Y = (yl, cees yn) mixed strategies
for Pl and P2 respectively. Since X and Y are probability distributions,

we must have

v/}
b
"

i, x.20;
i=1 ! j

. =1, .20
IYJ YJ

IRYL

We let E(X, Y) = XtAY, where A is P1l's payoff matrix. Then E(X, Y)
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is the expected payoff to Pl when Pl chooses X ana P2 chooses Y. The
following remarkable theorem consolidates the theory of matrix games,

Minimax theorem (von Neumann), For every matrix A, there

exists strategies ¥ and ¥ such that
(9) EX V)<sE(X, ) <E(X, ¥) all strategies X and Y.
The strategies X and ¥ are called optimal strategies for Pl and P2
resgpectively, and v = E()E, ?) is termed the value of the game,

We can immediately interpret the meaning of an optimal strategy
and equivalently rational play. From equation (9), if Pl plays }2,
then he receives at least v regardless of the strategy P2 employs.
Furthermore, P2 can prevent Pl from getting more than v by playing Y.

Hence, a player can gain nothing by deviating from an optimal strategy

O

and he can loé-e more< 1f;1e does deviate from an optimal strategy. The
minimax theoxem settles important questions of the theory but it does
not tell us Low to compute optimal strategies.

Next, we show how optimal strategies may be computed by linear

programming. Consider the following dual pair of linear programsl

1This formulation is a variant of the cne in Charnes [1].
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Max v Min u
s $0; j=1 5 0; i=l
v-5 xa,. ; j=l,...,n u- a,y.z20; i= , m
=1 b & : 2
m n
(10) z %=1 (11) P> yjzl
i=1 j=1
x x0 i=1, ,m y.z0 j=1, IS o}

In (10) and (11) the matrix A = (a.ij) is to be interpreted as Pl's payoff
matrix and Pl is the maximizing player. Charnes [1] has shown that
optim~1 solutions X =(i1, cees ?cm) , Y = (?1, cees ?n) and 4 = ¥ «.xist
for (10) and (11) and that

XtAY < XAV < RtAY  all strategies X and Y.
Therefore, optimal solutions to (10) and (11} correspond to optimal
strategies in the matrix'game A. Further, when either (10) or (11)
is solved the optimal solutionc to the other program are available,
Therefore, the value and optimal strategies may be found by solving
a singie linear program.

To avoid confusion later, we emphasize that P2 does not have
to receive the negative of the payoff that Pl receives in order for
zero-sum theory to apply. Indeed, we do not postulate negative pay-
ments later when the payoff is taken to be a probability or a unit of

time. Nevertheless, zero-sum theory apnlies because one player is

attempting to maximize the expected payoff and the other playe: seeks
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to minimize it - this is all that is really necessary.

When games are formulated directly in the matrix form, zero-

sum theory requires that each player be in ignorance of the other player's

choice, In most real-world situations and particularly in tactical en-

counters, such total ignorance does not prevail. Some form of intelli- '

gence or habits of the opposition are usually known. To incorporate this

type of information and other types, we utilize the constrained game
formulation of Charnes [1]. This approach is employed in Chapter 2,
and we give a complete discussion of it there,

We return to the extensive game form to discuss perfect infor-
mation and perfect recall. A game has perfect information if each
information set contains exactly one node, This means that when each
player moves he must know the complete history of the game including
the other player's moves., Of course, it is well-known that there exist
optimal pure strategies for a game with nperfect information. 1 ntui-
tivily speaking, when a game has perfect information, randomizing is
not necessary to hide a player's choice since it will be disclosed to the
o‘her player in subsequent moves. For example, checkers is a game
with perfect information.

The concept of perfect recall was introduced by Kuhn (1], and

1Refer to von Neumann 2].
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it is an extension of the notion of perfect information, The fundamental
result is that a behavior strategy is optimal in a game of perfect recall.
Vaguely speaking, a game has perfect recall if every player remembers
which alternative he took in all preceding rmoves, However, he does

not need to be informed of the alternatives which were chosen by the

A

other players.
To illustrate, we can change example 1 to a game of perfect re-
call by redefining the information set7 for Pl on his second move as

follows:

Now on Pl's second move he remembers which alternative he has taken
on his first move (Of course, there also are other ways to introduce
perfect recall into this game.).

To define a behavior strategy, we assume that, say Pl, has n
inforration sets and we let X; be a mixed strategy over the alternatives

available in information seti(i=1,...,n). Then X = {XI,XZ, coea X
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is a behavior strategy for Pl. In the ahsve example, a behavior strat-
egy for Pl is X = { X, X5, X3, X4} where X; ie a mixed strategy over
the information set Ui (i=1,2,3,4). For e.ample, X3 = (a, 1-a),
where a is the probability of choosing alterpative 1 in U3 . Since P2
only has one move, his behavior strategy is the same as his mixed strat-
egy. It is easy to construct games wb- re one can do better with a mixed
strategy than with a behavior strat:gy. It has been shown by Kuhn[1],
on the other hand, that a game of perfect recall always has optimal
behavior strategies,

This concludes our brief discussion of game theory and our
introductory chapter. We turn to the development of models an‘ﬁ

me‘hods for ASW tactics.
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CHAPTER II - NON-SEQUENTIAL SEARCH GAMES

2,1 Introduction

Two deterministic search games are developed in this chapter.
These games are idealizations of tactical situations which arise in anti-
submarine warfare. We study searching problems where a hunter-killer
force, Pl (player 1), and a submarine, P2 (player 2), are in direct con-
flict. Specifically, we consider tactical problems where Pl attempts
to detect P2 and P2 attempts to avoid detection. Because of the op-
posing military objectives of detection and evasion, these tactical
problems may be formulated as two-person zero-sum games, An
appropriate payoff function is defined to reflect the objectives of de-
tection and evasion, and we show how optimal strategies correspond to
optimal deployment plans.

We also consider constrained game extensions of the basic search
games and thereby allow secondary military objectives in addition to the
primary objectives of detection and evasion. In addition, these con-
strained games permit the players to choose optimal strategies based
on intelligence or information on the opposing players’ tactics derived,
perhaps, from previous attacks. Hence, optimal strategies employed in
a particular play may depend on actual information obtained from

34
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previous encounters.

Examples are given of particular tactical situations which are
encompassed by the games, and these examples serve to illustrate
additional features of the models. Special cases are also treated; and
in section 2, 6, we obtain an analytic solution for a special case of the
first game. Both of the games are shown to be generalizations of

search games introduced by von Neumann [1].
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2.2 Formulation of the n-Cell Game

The n-cell search game is played within a specified gearch
region which is apportioned into n cells numberedi=1,... ,n A pure
strategy for Pl is a cell to search, and a pure strategy for P2 is a cell
in which to hide. Hence, each player has n pure strategies; one cor- |
responding to each cell. A play of the game consists of a simultaneous
choice of strategies by the players. Of course, the same game obtains
if the players choose their strategies successively provided that the

second choice is made in ignorance of the first.

Now we define an objective and an appropriate payoff function.

S & ey

The primary mission of 2 hunter -killer force is to seeck and destroy
submarines, Sternhell and Thorndike [1]. We deal here with the seeking
aspect of hunter-killer operations, and focus our attention on tactical
situatiors where Pl attempts to detect P2 while P2 atterapts to avoid
detection, Hence, a reasonable measure of effectiveness foy each pair
of fixed strategies is the probability that Pl detecte 2. To formulate
this measure of effectiveness, we postulate the following payoffs, Let
pij (i, j=1, ... ,n) be the conditional probability that Pl detects P2
given Pl searches cell i and P2 hides in cell i; and iet P be the nxn
matrix P = (pij)' Let the n x 1 vectors X = (xl. ces .xn) and

Y= (yl, cen s y‘n) be mixed strategies for Pl and P2 respectively. Now

x. is the probability that P1 searches cell i and v, is the probability that
1 J
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that P2 hides in cell j. Thus, the probability that F A-“ects P2 for the
mixed strategies X and Y is simply
(1) Xtpy

Egqguation {1) is the desired measure of cifectiveness for the type of

hunter -killer operations under consideration. We assume that Pl is the

maximizing player and P2 the minimizing player.

R MO ST

The celebrated minimax theorem of von Neumann [2] establishes

I

the exsistence of strategies X and ¥ and a real number ¥ (the value of

the game) which satisfy the equation

(2) . XtPY < ¥ = XPY < XtPY a1l strategies X and Y
or we may also write - -
(3) $ = Max min pt,e  min max ptn. Rtp¥

X Y Y X

From equation (2), if P"l plays an optimal strategy X, then the total pay-
off (proﬁabllity of detectic;n) is at least as great as ¥V regardless of P2's
strategy. Similarily, if P2.plays an optimal strategy ¥, the total payoff . .
. is no greater than ¥ regardless of..Pl's strategy. ‘It foilows that P1 can
choose a stratzgy to maximize the probability of detection while P2
simultaneously minimizes it. Hence, the conflicting objectives of de-
tection and evasion are embodied 1n the given two-person zero-sum

game formulation. |

An important feature of the n-cell search game is that Pl may
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detect P2 with positive probability from anywhere in the search region.
This feature permits us to consider tactical situations in which the
probability of detection is a function of the range between Pl and P2.
Variation of detection probability with range is a basic property of de-
tection devices, ! but none of the search models referenced in the
bibliégraphy permit this variation. They assume either explicitly

or implicitly that the radius of detection is negligible. This assumption
for the n-cell game requires P to be a diagonal matrix, and we talie up

this special case in section 2. 6.

lsee Morse and Kimball [1].
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2.3 Solution and Tactical Interpretation

We present a method to compute the solution to the n-cell search
game. No computational advantage is gained from the fact that the pay-
off elements are probabilities, Hence, we employ a computational
method developed for a general two-person zero-sum game.

Optimal strategies and the value may be computed and are

charicterized by the following dual linear programs due to Charnes [1].

Max v Minu
n ) . n )
v-'{,‘ xipij$0;3=1,...,n u--z;pijyjzo;l:l,. B o}
i=] j=1
n n
(4) Zox =1 (5) Ly =1
i=1 j=1
xizO i=l,...,n ijO j=1,...,n
Let X = (il, . ,in), Y= (?1, e ,?n): and 4 = Vv be an optimal solution

to problems (4) and (5). Then from Charnes [1]
XtPY £ ¥ = XtPY < XPPY  all strategies X and Y.
Fence, X and ¥ are optimal strategies and ¥ is the value of the game,
jer  yuation (2)).

We bring together the following assumptions which have been
made and examine tiem in light of their tactical consequences,

1. Both players know the game is being played, -

2, Both players are given the search region and the particular

subdivision of it into cells, i, e., they know what pure
strategies are availabie,
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3. Both players are given the payoff matrix.

4. Pl acts to maximize the probhability of detecting
P2 and P2 minimizes this probability.

We study the above assumptions from Pl's point of view when P1 has all
of the information necessary to satisfy the above assumptions and P2
has part or perhaps none of the information. Hence, suppose that P!
goes out and specifies a search region of interest and divides it into
cells. Now Pl will know the detection characteristics of his own
searching equipment and can therefore construct a payoff matrix,
Further, assume that Pl wishes to minimaxthe probability of detecting
P2. Then the above assumptions are satisfied for P1. Now, it is
unlikely that P2 will also have all of the information required by as-
sumptions 1 through 4, Thus, due to ignorance of the essentials of the
game, P2 may not play an optimal strategy. Nevertheless, if Pl plays
an optimal strategy, then P2 is detected with probability at least as
great as the value of the game. For practical purposes, it is therefore
immaterial whether P2 has all of the information required by as-
sumptions 1 through 4. The important point is that when Pl plays an
optimal strategy he is acting as if P2 does have all of the required in-
formation and P2 may, in fact, have a substantial amount of it.
Consider the situation where Pl employs an optimal strategy for
several plays of the game and his strategy is discovered by P2. 'Then

from equation {2), P2 cannct take advantage of the fact that ke has

rery o




e A R SR, s WA A M T AN N T VM e e e A e WA Ak, et A X

,,
. . v
P -

» swee

41

discovered Pl's optimal strategy because Pl will det.:e».:t P2 with proba-
bility at least as great as the value of the game regardless of P2's
strategy., Therefore, Pl can employ the same optimal strateg:r through-
out several plays of the game without risking adverse consequences.
Finally, we given an interpretation of optimal strategies for Pl in
terms of optimal search plans., A search plan, in the sense used here,
is a specified configuration of the available search effort or equivalently
the amount of effort whick is to be assigned to each cell. If Pl has a
single unit of effort which is indivisible, then he may play the optimal
strategy X be searching cell i (i = 1, ..., n) with relative frequency ii .
Of course, these relative frequencies may he realized over several
plays of the game by selecting a pure strategy for each play at random
from the distribution X. Now suppose that P1 has a total amount of
ef{ort E available which is infinitely divisible. Fc;r example, E may be
the number of flying hours available for searching which is approxi-
mately infinitely divisible. In thig case, Pl may allocate the amount
of effort ;‘iE tocelli(i=1,...,n), and this allocation is optimal with
respect to the game model. Hence, an optimal search strategy may

correspond to an optimal search plan.
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2.4 Tactical Examples

We give a tactical example of the n-cell game model. Suppose
that submarines (P2) must pass through a channel to get from their
bases to operating areas. Pl wishes to set up a patrol barrier across
the channel to detect submarines as they pass through. ! The patrol
barrier will consist of a linear array of detection devices across the
channel. Thus, the searching region is a straight line; and Pl divides
this line into 15 cells, as shown in Figure 2.1. Pl would like to de-
termine an optimal allocation of detection devices to maximin the
probability of detecting P2.

Each detection device has a probability of detection verses range
curve as given in Figure 2, 2, 2 The payoff matrix can now be con-
structed from Figure 2,2. For example, if Pl searchez cell 5 and P2
hides in cell 8, then the range is three cells and fromn Figure 2.2
Pgp = 0. 367. The complete P matrix is given in Table 2.1,

Now we have all of the informaticn required to solve the n-cell
game. The value and optimal strategies for this example were found by
solving linear program (4) with the data of Table 2,1, A CDC 1604 com-
puter and a standard linear programming code were used to effect the

1This type of situation was encountered in the Bay of Biscay
during World War II, Sternhell and Thorndike [1].

2'Thins is a "typici!' curve according to Morse and Kimball [1].
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computations. Pl has the unique optimal strategy displayed in Table 2, 2

and plotted in Figure 2,3, P2 has two optimal extreme point strategies,
and they also appear in Table 2.2 and Figx;re 2,3,

Let Y| and Y, denote P2's optimal extreme point strategies.
Then ;'rom linear programming theory, the strategy
(6) Y:kY1+(1-}\)YZ 0sAas1
is a..lso optimal. From the symmetry of the payoff matrix, we might
expect Pl and P2 to have symmetric optimal strategies about the
middle cell {cell 8}). Indeed, Pl's optimal strategy is symmetric about
ceil 8 and for A = -;— in equation {6); P2 also has a symmetric optimal
strategy about cell 8.

Notice that a unit of Pl's effort in cell 1 or 15 has only one-half
the probability of detecting P2 as a unit in cell 8. However, about
sixty-three percent of Pl's effort is assigned to cells near the.e' {s of
the search region (cells 2 and 14). Then, in a sense, Pl compensates

for the decreased effectiveness per unit in the end cells by assigning a

large percentage of effort to these cells.
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Other tactical examples which fit the n-cell modet are also im-
mediately available, First, the search region may be a rectangular
array of cells. In this case, an optimal strategy for Pl is likely to re-
quire Pl to play those cells on the edges of the search region with higher
probability than the center cells, Intuitively this would prevent P2 from
hiding in the edge cells where the detection capability is lower than in
the center cells.

We might also study situations where the search region is three
dimensional. The effect of the depth of P2 on the probability of de-
tection can thereby be taken into account, If Pl is using surface de-
tection devices then, of course, Pl's pure strategies would include only
the surface cells, and P2 could choose any cell in the three-dimensional
region. This is a slight variation on the n-cell game where Pl and P2
do not have identical seis of pure strategies,

Next, we extend the n-cell game to include two or more types of
detection devices for P1. For example, the searcher may have aircraft
and ships available and the probability of detection verses range curve
may differ significantly between ships and aircraft. For the sake of dis-
cussion, suppose that only two types of detection devices are to be used.
Call these devices type 1 and type 2. Now the detection probability of
interest is the joint conditional probability pikj . Where Piri is the

J
probability that Pl detects P2 given type 1 is located in cell i (i=1}, ... ,n),
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type 2 is located in cell k (k= 1, ... ,n) and P2 hides in cell j
(j=1,...,n). This game can be placed in the framework of the n-cell
game by simply changing the pure strategies for P1. Let a pure strat-
egy for Pl be the two-tuple (i, k) where i denotes the location of type 1
and k denotes the location of type 2. Now we may construct the payoff
matrix and solve for the optimal strategies and value by reference to
linear programs (4) and {5), This example may be extended tc handle

more than two types of equipment,
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2.5 Extension to a Constrained Game

We extend the n-cell game to accon.odate the following types of
situations.

1. A player has information on the cells which his opponen
can choose,.

2. A player restricts his own choice of cells.
The above statements are necessarily broad to include a variety of
tactical problems. Some of these problems are outlined below. As we
shall see, cases 1 and 2 are formally embodied by the elegant notion of

a constrained game due to Charnes [1)].

We discuss 1 for information which Pl may have on P2's location.

Aralogous statements hold when P2 has information on Pl. Now
suproce Pl obtains a contact with P2 and subsequently loses the contact.
Then Pl knows that P2 must be located in some subset I of the set of all
ceils, where I ig determined by the position of the last contact and the
elapsed time since the contact. Hence, the following constraints on
P2's strategies are obtained:
y. =0 for j§I

J
More detailed constraints on P2's strategies may also be written,
Morse and Kimball [1] give a theoretical probability distribution of P2's
location a8 a function of elapsed time since the last contact., From this

distribution, we can calculate the bounds Lj and Uj with
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(7) L<ys<U j=1,...,n
JoJ

The above restrictions may also arise from intelligence reports or Pl's

apriori estimates of P2's location.

We discuss two extreme cases of information icr Pl:

1. perfect information,

2. no infcrmaticn.
In case 1, Pl knows the strategy which P2 will employ. Of course, Pl
will then have an optimal pure strategy. Furthermore, perfect infor-
mation corresponds to Lj =U., j=1,...,n, in equation (7). Case 2

J

is the unconstrained n-cell search game. Here we have Lj =0, Uj =1,
j=1,...,n, in equation (7). In many ASW situations, the information
which is available will be between these two extremes., These cases
yield to 2 constrained game formulation. !

A situation where P1 may restrict his own choice of cells is
when he has a secondary military objective in addition to the primary .
objective of detecting P2. For instance, Pl may wish to provide at
least a certain level of protection for some sei of cells I in the search

region because there is a convoy in this set of cells, Then constraints

of the following form arise:
Z x 2c¢
el 1

where cI is the desired level of minirniam protection.

v =

P s
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We have discussed a few situations in which constrairts on the
players' strategies arise naturally, These situations and others are
included by the following sets of constraints on Pl's and P2's stra-

tegies respectively

(8) E}x_c, <c s=1,...,S
i=1 1 18 8
* b b =1 R
(9) .El erjz r r=14,...,
J:

The following constrained formulation due to Charnes [1] is

employed to deal with the types of tactical situations under consideration,

It includes the formulated constraints (8) and (9).

Max v+ 5 z b Min u+ £ ¢ w
s I T s 8 8

. - ‘ -
vtZ oz b oD xp;s0 UL oW - T pyyy;20
r i s j
(10) Zox =1 (11) Zy;=1
i J
L x.c, sc Zb_.y.2hb
3 118 ] j Tl r
Z. Xy 20 W yj 20

Let quantitites with a '"hat" over them denote part of an optimal solution

- N

to {(10) and {11). Charnes obtained the ioliowing resuits:

(12) v+ Ezrbr = ? }:} X;Pi5Y;

-

~ -~
=u+ c W
Z ¢y ¥,
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(13) 21',' 2;} xipij;;js 21: ? ;‘ipijf'j < }i‘, ? ’A‘ipijyj all strategies X and Y

Equations (12) and (13) establish the existence of a value and optimal
strategies for the constrained game. Of course, the value and optimal
strategies may be computed from the above linear programs.

We compare the constrained n-cell game to the unconstrained
game. Suppose that Pl can impose constrain’'s on P2's strategies but
there are no constraints on Pl's strategies, Then the value of the con-
strained game is no smaller than the unconstrained value. This fact
follows from problems (10} and (11}, since the unconstrained value can
be attained by th.e objective function of (10) with all z, = 0. Hence, Pl
can always increase the probability of detecting P2 if he can determine
constraints on P2's strategies without imposing constraints on his own
strategies. Analogous remarks hold for player 2. See Charnes and
Cooper [5] and Sakaguchi (1], [2], for more details on this subject.

Finally, we discuss an adaptive manner of employing constrained
games, If Pl obtains additional information on P2's location i1n a par-
ticular piay of the game, then Pl's optimal strategy is likely to change
for the next play. On the other hand, if no additional information is
obtained, then Pl will have the same optimal strategy for the next play.
Of course, these remarks also hold for P2's optimal strategies. In the
constrained version of the n-cell game, the playe’rs can choose their

optimal strategies adaptively with the optimél strategies for a particular

§
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play depending on the actual information which is obtained in preceding
plays. However, the constrained model does not include the evaluation
of the possible future consequences of a strategy, and thus the game is

non-sequential in nature.
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2.6 A Special Caur:  er:irible Radivs of Detection

— e N

In section 2,2 we intiorea tiwe . of the ex.zling eyl

models assume a negligible radius of a»tection. This assumption for

the n-cell game requires P to be a diagonal matrix. For then, Pl can
detect P2 with non-zero probability only if Pl searches the cell in
which P2 is hiding. This special case was first proposed and solved by
von Neumann [1]. We give an alternate derivation which is equivalent

i to von Neumann's proof.

; We assume that P is a diagonal matrix, i.e., Py = 0 fori £3.

We also assume without loss of generality that P;; > 0, i=1,...,n,

st v

For if Py =0 for some i, ‘hen the game has a saddle point in pure stra-

tegies, and we exclude this trivial case, Under the above two as-

sumptions, the dual linear programs (4) and (5) which characterize the

LiAee s e ae e e

solution become:

i
¢ E Max v Min u
i
!
5 . - X.p.. & - P..VY.
*% V- X.P.s 0 u pJJ y‘I 20
!&
i (14) 5 ox =1 (15) Zvy;=1
j
x.2 0 y'j =20
i Now we find an anaiytic soiution to (i4) and {i5). Let
. 5, X = (%, ... ,% ) be an optimal solution to (14). From the inequality
3
b A
f : constraints in {14), vmust satisfy
:
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\ s . min max - min »
(16} v i x X Py i %Py

Notice that for ;‘i to be optimal we must have

¥

.

(17) p.%X. =c i=1,...,n

k-
For if (17) does not hold, then we can construct a strategy which yields

alarger V. From (17)

i=1
1.2l
¢ =1 Pii
From (16) and (17) we have
v=c

A similar analysis shows that X is also an optimal strategy for player 2.
Returning to the numerical example of section 2, 4, we find that

if P is a diagonal matrix then X and Y are uniform distributions. This

result clearly points out the limited applicability to ASW of negligible

radius of detection models,
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2.7 Formulation of the Row-Column Search Game

For the sake of discussion, we call the next search game of

" interest the row-column search game, This game is similar to the

n-cell game in that (1) the searching region is divided into cells, (Z2)
the payoff is a probability of detection, and (3) it is a two-person zero-~
sum game with Pl the maximizing player. The row-column game
differs from the n-ce]l game in the manner in which player 1 conducts
the search, and therefore diffe;rent tactical situations are represented.

Now the game is formulated. As before, a pure strategy for P2
is a cell in which to hide, but now the cells are doubly indexed (i, j)
i=1,...,m, j=1,...,n. A pure strategy for Pl is the choice of an
index i or j. If the cells are thought of as positions in an m xn matrix,
then P2 chooses a position and Pl chooses a row or column. These
choices are made simultaneously and constitute a play of the game.

The row-column game is especially useful for studying certain
types of search situations. A typical situation occurs when searching is
conducted in sweeps and the speed of the searching craft is substantially
faster than the speed of the submarine. For then Pl can search an entire
row or column w.hile P2 stays in one cell. One example of the row-
column game is then search in ""sweeps' by aircraft. On the other hand,
the n-cell model is better suited to search by slow craft, such as ships,

because each pla:yer only chooses one¢ 2!l in a play of the game,
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As in the n-cell game, the payoff function will be the probability
that P1 detects P2 (the probability of detection), However, for the
present game, the probability of detection is taken to be the product of
the probability that Pl contacts P2 (contact probability) and the con-
ditional probability that Pl identifies the contact as P2 given a contact
has been made (identification probability). We could simply postulate a
detection probability with the understanding that both contact and identi-
fication probabilities are included. However, we postulate the two
probabilities separately to exhibit certain predominant features of this
game,

If P2 hides in cell (i, j), then Pl may contact P2 with positive
probability only if Pl searches row i or column j. But, the contact
probability itself may vary along a particular row or coclumn, This
variation may be due to differences in water temperature, salinity,
bottom conditions, and a host of other factors. Now the identification
probability may depend on the row or column searched due to the de-
tection equipment or crew proficiencies of the search craft which are
available for a particular row or column.

To formally write down the payoffs, suppose that PZ hides in cell
(i, i) and P1 searches row i, then the contact probability is Py and the
identification probability is a, and, therefore, the probability that Pl

detects P2 is aipij . Similarily, if P2 hides in cell (i, ;) and P1i

£
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searches column j, the contact probability is qij and the identification

probability is bj . The conditional probability of detection is now bj qu.

Of course, the above probabilities are derined for all i and j.

From the above definitions of the payoff elerments, we construct

player 1l's payoff matrix, Table 2. 3.
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Solution and Reduction te a Dvadic Model

Now that we have the paycff matrix, the game may be readily
solved, Let yij be the probability that P2 chooses cell {i, ji i=1,...,m,

i=1,...,n Also, let u, be the probabiiity that Pl chceoses row i

(i

1, ...,m); and let vj be the probability that Pl chooses cclumn j

(=1, ...,n). LethethemnxlvectorY:(yll,...,y., YY)

ij’ "7 " "mn
and let UJ = (ui, cees um) and V = (vl, e vn). The following dual

1

linear programs® which characterize the game solution are obtained

directly from the payoff matrix

Max p . Min g

P - 2P - quijvj £0 §-2 3Pjj¥i;j 0
.+ . =1 -Z b.q.y..20

(18) oy Z v (19) & - T byq;5y;4
0 nll? % 1

u.,, v. 2 Vi: =

i inij=1 Y

yij>.0

Let p, €, (ﬁ, '\7’), ¥ be vart of an optimal solution to (18) and (19).
Then from Charnes [1], (73, \7) and {; are optimal strategies for players
1 and 2 respectively and § i& the value,

To obtain additional insights into the row-column game, we

I Due to Charnes (1].
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tra-.sform problem (19) to a dyadic model. We make the following two
assumptions and show that they do not result in loss of generality.

(i) Pij: 95> 0 alli,j

(ii) a,, bj > 0 alli,j
Now a; and bj are probabilities; therefore, 0 < 2;s1, 0s bj < 1. Since
the a; and bj are non-negative, the addition of a large positive coastant
to every element of the payoff matrix yields a game with all positive
Pij and 9ij and the optimal strategies are not altered, von Neumann and
Morgenstern [1]. Therefore, assumption (i) does noi; result in loss of
generality. Suppose {i) is satisfied and consider assumption (ii). We
) exclude the trivial case; all a.i = b.i = 0, and assume some ai or bj are
positive, Every row in the payoff matrix with a; = 0or bj = 0 is domi-
nated by a row with positive a, or bj . Thua, the rows with zero a, or
bj may be deleted from the payoff matrix and assumption (ii) does not
result in loss of generality, From assumptions (i) and (ii) it follows:
immediately that the optimal objective functions for (18) and (19) must

" satisfy p, é > 0,

The desired transformation for problem (18) is

a: u: b;: v:
(20) e =22 j=1,...,m ; v',=-J—-'!- j=1,...,n
-
1 P J p

and for problem {19)

(21) y! === i=1...,m; j=1,...,n
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These transformations yield the fellowing dual pair of linear programs:

1 1
Min & - ul+ T ¢ V! Max ¥ y!

S SR R i,j U
u'p..+viq. 21 Zp ’y'S'l—
iPij " V3% FERETRE

{22) (23) 1
u', v 20 Lq,.v. %%

i 1 9y j

y! 20

Since p, é > 0, equations (20) and (21) establish a one-to-one corre-
spondence between optimal solutions to (18) and (22) and (19) and (23).

Let '"hats'" on the variables denote an optimal solution to (22) and (23).

pu!1 pv! 1
~ ~ = J A=
(24) HE Y b PE aez L o
& T U, vl
a1 b bJ J
" PN ~ 1
(25) V.. =E¥ . , &= —
1j i p y'.
L,j Y

Problem (23) is a dyadic model as defined by Charnes and
Cooper [5]. Actually, (23) is not the most general dyadic model but it
is substant:ally more general than the distribution (tvansportation)
model, Special computational techniques are available to solve dyadic
probiems but we do not dwelil on them here, The xcader is veferred to

Charnes and Cooper [ 5].
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2.9 Special Cases

Certain tactical situations may be formulated as special cases
of (22) and (23). Omne of these casesg is when

(2€) P..=q. allij;
ij i

Equation (26) implies that the contact probability for cell (i, j) is inde-
pendent of whether Pl searches row i or column j, i, e., the direction

in which the sweep is made is immaterial. Suppose {26) is satisfied,

and iet

4

ij Yij

(27} W.. = P..

’
V..
2 11 4

then provlem (23) is transformed by (27) tc yield the following dual

pair of linear programs:

. 1 | i

Mlnz —_—u, + Y —vV. Max 2 — w..

3 T by RTINS

b, e 1 . 1

U V2 — {29a) T wi;S$—

Pij j )34

(28) (29} 1
4 I R

u,, vj =20 ; (29b) z wij s_b_.-

1 J

w..2 0

An additional simplification of the distribution problem (29) can
be obtained. Summing out over the constraints (292) and (29b) re-

spect.vely, we get

R Vi

i, i % i,

9")—~
4
&
"
. b4
o
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Since -1— > 0, the same optimal solution obtains if we replace (29a) or

pij
(29b) by equalities as follows:

(iy If -al- < z b—l- rernlace (29«) by equalities.
i

‘e 1
(ii) I )5 ;:.>

-bL replace (29b) by equalities.
i .

J

. ™

(i) If B
1

I

b,

1 J

= § = replace both (29a) and (29b) by equalities.
J

Under the indicated assumption (26), the row-column search game has

been reduced to a distribution model. We give a tactical example of
this model in the next section.
A final simplification of the most general game obtains if, in

addition to (26), we assume that a, = bj =1 andm =n. Of cource,

these assumptions mean that the identification probabilities are one and

the search region is divided into an equal number of rows and columns.

Now (28) and (29) are reduced to the following dual linear programs.

Min § u/ + & v/ Max T .L. w..
) ’ ij Py Y
(30) uf + vi= R {31)
pij E Wij <1
' j
4 ' ~
u,, vj 20
T wy =t
1
wij 20
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From statement (iii) above, the constraints in (31) are satisfied as
equalities by an optimal solution. But, the equality form of (31) is the
well-known assignment problem. This equivalent assignment problem
was first obtained by von Neumann [1]. Our proof of equivalence is
considerably more direct than his, due to the linear programming
characterization of a matrix game which is now available. This com-
pletes the transformations of the row-column game to dyadic-type

models,

TSNS
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2.10 Tactical Example

We conclude this chapter with an example of the row-column
search gaine. In this example, the search will be conducted by a single
aircraft. The search region of interest is partitioned into four rows
and six columns, and the aircraft searches in row or column sweeps,

We assume that when P2 hides in cell (i, j) the contact probabilities
depend on (i, j}) but not on whether Pl searches row i or column j. Thus,

we have pij = q,. alli, j, and this game is equivalent to the distribution

ij
problem (29). The contact probabilities and the identificatian proba-
bilities are given in Table 2, 4.

To apply standard methods to solve (29), we convert it to the

standard equality form. For this example § ;— > X }1)— , thus the
i i3
inequalities (29b) are automatically satisfied as equalities by the optimal

solution to (29). Therefore, we simply adjoin a durnmy column to (29)
to obtain the equivalent standard distribution problem. This standard
form and the optimal solutions are given in Table 2. 5. Finally, the

optimal solutions are converted to strategies and tabulated in Table 2. 5.
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The transformation formulas to obtain optimal strategies
from the optimal solutions of Table 2,4 are:

UA]

Optimal Strategies for P2

1 ~
= -~ w..=27.6
.2. P.. le 8
I,J IJ

(i, §) % ¥ij
(1, 4) 0. 060 0. 060 a,
(1,5 0.060 0,060 y
(z,1) 0. 181 0.181 Mt
(Z.5) 0. 361 0. 361 vy
3, 1) 0.073 0.073 o
(3, 0) 9.120  0.060 3
4,3) 0. 145 0.145 V4
(4, 6) N 9. 060 35
all other §ij =0, ail other S;i,j =0 g
all other

-

Optimal Strategies
Table 2. 6
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CHAPTER III - SEQUENTIAL N-CELL GAME

3.1 Results

In this chapter, we formulate and solve a sequential search game.
This game consists of a sequence of moves, and on each move the
players are faced with an n-cell search game, We consider, in turn,
both a finite and infinite number of moves, In essence, on each move
the players simultaneously choose a stvategy in an n-cell search game
and thereby determnine an immediate payoff and, in addition, a proba-
bility that the n-cell game is played again. Hence, a sequence of n-cell
games is played. We show how to find optimal strategies for both the
finite and infinite games which minimax the expected accumulated
payments,

For the finite game, we show how to characterize the value and
optimal strategies in a recursive manner. In this way, we can compute
the solution by linear programming methods.

A characterization of the solution of the infinite game results in a
non-linear programming problem, However, if one variable is treated

as a parameter, the resulting problem is a linear program. We show

Lnses ba al
EdWF TY VW

program and thereby approximate a solution to the nen-linear problem.
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We discuss in detail two particular payofis which are meaningful
for ASW purpcses, One of these payoffs reduces our characterization of
the infinite game to a linear programming problem. Finally, examples
are given, and we compare the sequential n-cell game to the non-

sequential n-cell game,
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3.2 Formulation of the Finite Game

First, we discuss the elements of the finite game, and then we
proceed with the mathematical formulation. A play of the game consists
of, at most, a finite number (N) of moves. On each move, when the
game has not terminated, the players are faced with a two-person zero-
sum game. In our formulation. we shall use the n-cell game as the two-
person zero-sum game for each move. When the players mcve, they
each chocse a strategy which determines a zero-sum payoif from player
2 to player 1 and a probability that the game terminates before the next
move. We wish to find an optimal strategy for each player which mini-
maxes the expected accumulated payments received by player 1,

For ASW purposes, we consider two particular payoffs. As in
the n-~-cell game, the payoff for each move may be the probability that
Pl detects P2 during the move, Then, as we shall see, the expected
accumulated payment received by Pl is the probability that Pl detects
P2. The other payoff considered is the time taken by one move. Here,
Pl receives a payoff of one time unit regardless of the strategies chosen,
and the expectad accumulated payment is the expected duration of the
game, In the following formulation, we use the generic term payoff to
accommodate both of the above tactical payoffs and others as well.

The recursive optimization technigue which we will propose

has also been discugsed by other authors. Kuhn [1] (1953) gave his

P SN UL RN
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theorem on games of perfect recall which paved the way for further
work. Shapley [1] (1953) was the first to use a recursive optimization
technique for this type of game, although he did not deal with :he finite
cage, Later contributions were made by Bellman {1] (1957},

Zachrisson [ 1] (1964), and Denardo {1] {1965). However, the develop-

ment given here differs in content and detzil from t! z alove cited works.

We assume that a2 search region is given and that the region is
divided into n cells numberedi =1, ... ,n. We also assume that a pure
strategy for each player on each move corresponds to the choice of a
cell, From a tactical standpoint, a pure strategy for Pl (the searcher)
is 2 cell to search and a pure strategy for P2 (the hider) is a cell in
which to hide, Notice that we have assumed thar the same set ;7f pure
strategies is available for each player on each move. We have taken
this assumption for notational convenience; it could be relaxed. We
further assume that a play of the game consists of, at most, N moves;
and we number the possible rnoves r =1, 2, ... ,N, On each move, the
players choose their strategies simultaneously and the moves are made
sequentially, Unless otherwise stated, we assume that Pl is the maxi-
mizing player,

The payoffs and continuation probabilities are ncw specified,
Suppcse that Pl searches cell i'and P2 hides in cell j on move r., Then

the -~yoff from P2 to Pl is

(- A VNN




74

a.ij(r) i,j=1,...,n

r=1,...,N
Also, when Pl searches cell i and P2 hides in cell j on move r, the

game continues until move r + 1 with probability.

P(r) I:J 1,...,n

1

r

I, ..., N~}
We let Ar be the nxn matrix Ar = (aij(r)) and Pr the nxn matrix

P_ = (pij(r)). Hence, Ar is P1's payoff matrix for xove r and Pr if

the matrix of continuation probabilities for move r.

Next, we consider strategies for the players. We have assumed
that the continuation probability and payoff depend only on the choices
available for a particular move, It follows that the game is one of per-
fect recall zg defined by Kuhn [1]. Kuhn's theorem for a game of per-
fect recall asserts that an optimal strategy for a particular move does
not depend on preceding .strategies. Hence, an optimal strategy for each
particular mcve in our game is a mixed strategy cver the alternatives
available at that move. Kuhn calls this type of strategy a “‘behavior
strategy!'. We restrict our attention to these mixed strategies without
loss of generality. .
able on move r for P1 and P2 respectively, Let X = (X

» X,.) be

| SO &

an N-tuple of mixed strategies for P1, with X_being the mixed strategy
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for move r, Similarily, let Y = (Yl' C ey YN) be P2's game strategy.
lIhw we define the following sets of strategies

Xr = (Xr}, Yr = {Yr}, X={X}, ¥T={Y}
From the above discussion, Zand T contain optimal game strategies
for Pl and P2 respectively. These optimal game strategies are optimal
with respect to the set of all possible strategies.

We will write the total expected payoff for Pl in terms of fixed
strategies Xe¢X, Y ¢X and the given information. If Pl chooses the
strategy Xr for move r and P2 chooses Yr , then the payoff to Pl for
move r is

XXA Y, r=1,...,N
and the game continues until move r + 1 with probability
XXP Y r=1,...,N-1
r r'’r )
Now the expected payoff to Pl for move r is the product of the proba-

bility that the game continues until move r and the payoff fox move r

r-l
t t -
xrA.rYr hlzl XhPth r=2,3...,N

The expected accumulated payoi.'f for N moves, Vi (X, Y), is the sum of
the above expected payoffs for each move.

¢ N ¢ r-1 .
(1) vy (X, ¥) = X1 A1 Y1 + ,fz XrAr Yr hIII XhPh Yh

S
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Since the game has a finite number of moves and a finite number of
strategies, it must have a value and optimal strategies, von Neumann
and Morgenstern [ 1]. Recall that the sets X and ¥ contain optimal
game strategies. Therefore, the function vy (X, Y) has at least one
saddle point over the sets X and Y. We propese a recursive optimiza-

tion technique to find the saddle points of vy (X, Y).

WL W YRR A wae WAy Y
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3.3 Recursive Solution

In this section, we show how to compute the minimax of equation

(1) by a recursive technique, Let -}-{—r and ?r denote the sequences of

strategies

Of course, we have 3(_1 =X, and "171 =Y. We rewrite equation (1} aad

[P

define the functicnz v (.}E , ¥ )by
r r» z

2 v X, ¥3=xta Yy + ¢t vY)vy (X ,Y¥ ) r=1.....N
r » T r r r r r v v+l r+l  r+l
! N1 50
Now. v, (-}-{'3,, ?ﬁ may be interpretsd as the expected accumulated pay-~

ments received by P1 on the last N - r + ! moves of the game.
It is intuitively clear from equation {2) that the value and optimal
%/, strategies may be computed recursively, We shall establish this fact.

We define \71, ir’ ‘f’r by the following equations

ban &
-

A _ Max Min t t "
(3) ¢ = X_€X_ ¥ T, [xr AY +(xfp Y)9 }

r=1,...,N
YN+ 1=zo0
SRA? s (PTG

r r T r'r r "r+l

The minimax theorem of von Neumann [2] establishes the existence of

" ?r‘ Gr for equation (3), The following theorem relates the solutions

."-\
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of equation (3) to the solutions of the sequential game.

Theorem 1: ¥ is the value of the sequential game, and

n " ~ ~ a ~

X= (Xl' cee s XI\') y Y = (Yl’ cee YN) are optimal strategies for Pl and
P2 respectively.

Proof - Since v, (X, Y) is the expected payoff function for the
sequential game, a necessary and sufficient condition for 01 to be the
value of the game and }E, \} optimal strategies is

v (X, ¥) ¥ sy, (X, Y) all XeXand Ye¥

We shall show that this condition is satisfied by Gl , }2, Y as defined by

(3). From {3) we have

t o R 4 > - v
(4) X AY_ +{X P Y)% <3 sY AY_ ¢ (xt CP Y v

a'\ e r s
il Xr Xr, ¥ 'Ir
We begin an inductive argument

L ~
vN(XN, YN) = ‘{NAN iNZV all YN

assume

wr-

Vol (Xr+1 . Yr-!-}.) 2V for some r

By definiticen

~

- ot kv vy pey
v(‘{ Y) XAY+(XPY)v X+1’ Yoo aler
3y the inductive assumption and }:I; P’r Yr 20
-— ~nm 2t at -~ -\;
vr(Xr, Yr)erArYr+(XrPrYr) Vil all Y.

By R T S P ~

¥
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From the above equation and equation (4)
vr(fc'r, Y= v all Y
Hence, by inductionon r
b (X, Y) all YeX¥
Similarly, we may establish
$,2v, (X ¥) all X
therefore
v (X, V¥ s, (X, Y) all XeX, Y¢¥
and the theorem is true.
We have established that the value and optimal strategies may be com-
puted by -meax;i:s ‘of equation (3}.
For each fixed r ir. (2) we must solve an ordinary matrix game,
The game has the payc;ff matrix A_+ Gr+1 P_with Gr-!-l known. As in

Chapter 2, we draw on the following linear programming formulaticn of

this game dus to Charnes [ 1],
L.P. (Gr-!-l) r=1,...,H
Max v
r
v - ?:‘ x, Ta } v )1 <0 =1 n
r i_‘_‘, ir 1_,( ! r+1p1J( '] J ’ !

ko Cakan N
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From Charnes [1], an optimal solution to L. P. (0r+1) solves equarion
(3), i.e., it yields an optimal strategy }Air for Pl on move r. Of course,
an optimal solution to the dual of L. P. (?/r“) also yields an optimal
strategy {;r for P2, and this strategy is available when the primal is
solved,

The value and optimal strategies may be computed by the follow-
ing method.

1. Setv = 0.

N+1

2, Given v solve L. P. (0r+1) for an optimal solution ?’r’

r+l’
~

Xr, and also obtain a dual optimal strategy Yr .

3. Return to step 2 until x'}l is computed.

As we have shown, Gl is the value of the game and X = (X}, ..., X\),

<>

¥ = RRRE ?N) are optimal game strategies for Pl and P2 respec-
tively. In the next section, we give a simple example of the above

method,

o Gtz 24 S




3.4 The Negligible Radius of Detection Assumption and an Example

We briefly examine the negligibie radius of detection assumption
for the sequential n-cell game. In section 2,6 we developed this as-
sumption for the n-cell game and found the optimal strategies and value.
Of course, some of the results obtained in section 2. 6 will carry aver

directly tc the present discussion. Tc take the negligible radius of de.

tection assumption, we assume that A_ and Pr are dizgonal rnatrices
(r=1,...,N). We denote the diagonal elements of A_ and Pr by a._
- 2z

™

v

; and P;, {i=1,...,n} respectively. Under thiz agsumption, if Pi and
P2 both choose celi i on move r then the payoff to Pl is a. and the game

.

continues until move v + 1 with probability i’ir; otherwise, the paysfi and

.

continuatien probability are zera, In terms of tactics, this model could

ES S

iy

be used in situations where PI already has a contact with P2 and Pl may

Sipeeem n

have a positive probability of maintaining the contact with P2 {the game
may continue) only if Pl loocks in the cell where P2 is hiding., Otherwise,

il P2 evades Pl,

S

in the present special case, equation {3) is readered

o~ e amal A

PR L [
& znuation Wit r = N 1s

S T AT e

Py,

% 1As in secion 2, 6. we assume without 1oss of generality that
F ( a;,.>0, alli, r.
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” ~ CN . a 1 N 1
X, = ‘}', y T 1= 1, R H v = C, ) — z —
N iN . N N i
l iN °N  i=1 3N

and, in general, the solution is

(5 % ~ T i=1 " i % i
8 x. =y, s i=l,...,n; v_=c¢C_; == = x

ir TAF &, TV Pir ToTer 21 %t Ve Pir
¥or the Nth move, the optimal strategies are identical to those of an

n-c2ll game with diagonal payoff matrix AN. This is to say, P2
chooses a hiding cell with probability which is inversely proportional to
the payoff for that cell. For moves cother than the Nth, an optimal
strategy depends on the current payoff and the continuation prebability
as shown in equation {5}, 71his seeme to be 3 ''reasonable't optimal
strategy for P2. On move N, the theory teils Pl to look with the highest
probability in the cell with the smallest probability of detection because,
in 3 sense, PZ is likeiy to hide in the cell with the lowest probability of

detsction,

We close the discussion of the finite sequential game with 2

W

impie gxample. “onsider a game with twe cells and the same A and
P matrix for svery move. This same will have, at most, three moves,
lager, we compare this game with en® where an infinite number of

moves iz ailowed. The given iniormation for ths game is

r",i.Z"‘i £.8 .71
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We solve this game by a simple graphical method. Starting with

04 = 0 in equation (3), we seek to find

_ max min

- t
vy % v }(3AY3
We find
~ 1 A 21
= =, X =(=, =
V37 % 37(3:3)

. A 1 . :
Using V4=, we must now solve the game with payoff matrix

. !‘1.4 1.9
A+v,P = {24 1.3
The solution is
~ o 11 s
= .,2 6' X = (=, ==
Y2 8 2~ 35 18!

and to obtain the value of the sequential game and an eptimal strategy

for Pl on move 1, we solve the game with payoff matrix

- 328 . 400
A+ voP =1 4517 300

We obtain the solution

2.3

M 3' 13

12.362, Xl=(

As we have shown, {'l is the value of the sequential game and Xr ,

1

r=1,2,3, is an optimal strategy for Pl on move r.*

o

1We could also have readily cbtained optimal strategiesfor P2.
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3.5 Formulation of the Infinite Sequential Game

In this section, we allow an infinite number of moves in the se-
guential game, Before giving an analytic formulation. we discuss some
of the features of the game. In the infinite sequentiai game there is no
maximum number of moves, The continuation probabilities alone con-
trol the tern:ination of the game. 7o obtain 2 manageable analytic
problem, we must assume that one payoif matrix and one continu;a.tion
probability matrix are specified for all moves, We further assume that
the probability of continuing until the next move is strictly less than one
for all pairs of strategies. This assumption guarantees boundedness of
ihe expected accumulated payments received by P1; and it guarantees
that the game terminates with probability one, although the number of
moves may not be bounded. We will discuss these assumptions in more

detail, when we consider a more complicated version of this game, in

‘the next chapter. Now we turn to a formal definition of the game under

consideration.

We assume that a search region is specified ard that it is divided

into n cells, If P] chooses celli{(i=1,...,n) and P2 chooses cell j
(j=1,...,n)onmover(r=1,2,...) then Pl receives from P2 the
payoff

aij

and the gamea continues until move r + 1 with prebability

1§
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s »
(6) 0 pij <1
Let P be the nxn matrix P = (pij) and A the nxn matrix A = (aij)' Ais
the payoff matrix, and P is the matrix of continuation probabilities for

every move. We further assume that the game is zero sum and that

Pl is the maximizing player,

The game which we have defined above is one of ''perfect recall';

and by Kuhn's [1] theorem, a '"behavior strategy'' is optimal. Briefly,
a behavior strategy is defined with reference to the informatio 1 sets

in the game. If a player uses a behavior sirategy, he plays the same
mixed strategy over the zlternatives in an information set each time the
information set is reached, regardless of the past history of the game.
In the infinite sequential game, there is only o2 information set and,
therefore, a behavior strategy is simply a mixed strategy which is used
for every move. We restrict our attention to these strategies.

Let X=(x_, x .,2x)and Y=({y., ...,y ) be behavior
1 n 1 n

AR
strategies (mixed strategies cver the alternatives) for Pl and P2 re-
spectively. For example, Pl chooses alternative i with probability x;
on every move. The expected accumulated payment received by Pl,
v{X, Y), is simply the sum over all r of the probability that the game

1= o
Aazl

s uniil move r tirnes the payment to Pl for move r,

w
(7) viX, Y)= Z (xtpy)’ X*AY
r=o0

A e

whon
N e et et
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The above sum converges, since (6) implies 0 < X'PY <1 for all
strategies X, Y. For convenience, we define the matrix Q = (qu.)

with qij =1 - p,

ij alli, j. Then  is the matrix of positive termination

probabilities. Equation {7) may be wriiten as

(8) (X, Y) = ——- =

von Neumann [3] first established the existence of a unique value v and
optimais strategies X and ¥ for the form in (8), i.e., there exists a

unique real number v and strategies X, Y such that

xtAy xXtay
(9) — S v S - all strategies X, Y
xtQy xtQy

An elementary proof of this fact was subsequently given by Loomis [1],
and this result is a special case of Shapley's [ 1] more general
"gtochastic zame', Neuts [1] formulated anrd solved a special case of
the infinite sequential game. His P matrix was a diagonal matrix and

his A matrix also had a special form.
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3.6 Solution by Linear Programming Methods

In the last section, we formulated the game of interest and

noted the existence of a solution (a value and optimal strategies),

\

Howevdr, there are no known methods for computing a solution. In

this section, we develop a computational method to approximate a
solution. The method is based on a linear programming formulation
of the game with an unknown parameter in the constraints. We shov
that this parameter is equal to the value of the game if, and only if,
the cptimal objective function of the linear program is zero. The re-
- mainder of our discussion is then devoted to a method tor approximating
the required value of the parameter.

To begin, we establish Lemma 1 which relates the solution of

the infinite sequential game to the solution of an cordinary two-person

zero-sum game.

Lemma 1 A necessary and sufficient condition for v to be the

1 value of the infinite sequential game and X ¥ optimal strategies is
that the two-person zero-sum game with payoff matrix A - vQ has

value zero and optim'él strategies X, 1.

Proof For the game A - v(Q to have value zero and optimal

~ ~
¥ stratagiee X, V, it i necessary and sufficient that
A A
(10) XA -vQ) T s0s XA - vQIY all strategies X, Y

But, X'QY > 0 for all strategies, X, Y. Hence, v, }2, ¥ satisfy (10)

R O L I}
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if, and only if,

~ l\t
XCAYS XAy

(10a) : S VS
xtQy xtQy

al]l strategies X, Y,

Equation (10a) is a necessary and sufficient condition for v to be the

value of the infinite sequential game and X, Y optimal strategies. Hence,
the leranma is true,
Lemma 1 immediately suggests a method for computing v. The

maijn idea is to choose a number s and compute the value of the game

A .- aQQ. If the value of A - 8Q is zero, then 8 = v and we are finished.

'
»

If the value of A - sQQ is not zero, then we want to choose a new value

of 8, say s such that the value of A - le is '"closer" to zerc than the

1 H
value of A - 8Q. We begin by formulating the game A - sQ'as a linear

program,

Consider the linear program

Max u
8
t Lt
(11) ue -X (A-8Q)<0
8 8
xte=1
-
X 20
8

where e is the nx1 vector of all '"ones?, Xs is an nxl vector, and s
is a fixed scalar. Let ﬁs, X be an optimal solution to (11). Then
from Charnes [1], 5(5 is an optimal strategy for Pl and ﬁs is the value

of the game A - 8P, (s fixed). Of course, an optimal strategy ’;'s for

Ty O
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P2 is part of an optimal solution to the dual uf (11), and i;s is available
when (11) is solved by the eimplex method.
Next, we examine the variation in ﬁs which results from a

change in 8. We consider a perturbation from s to s + £ in problem

(11), and we want to relate 1'5.‘R to ﬁs+§' Accordingly, we add and

subtract the vector §X§Q from the constraints of (11) and obtain the
following equivalent linear program :
{

Max u s . i

uet-X(A-(s+E) Q) -ExXtQs0
8 8 8

| (12)
ﬁ ' Xte =1
8

F X =20
;'? s,

We seek to obtain a linear programming formulation of the game

A - (8 +E)Q from (12). Hence, we iet 3 = rxixa:ix qij’ g= n;n;x qi.i

T o o il A e

and then for € > 0

(13) eget <€Xt Q< gFet  all strategies X

O ———————
L Ve e

T O A W3 eerr,

Now consider the following linear program

g

Zf: Max u!

utet - Xt (A - (s+E)Q) s et

f (14)

[ ¥te 21
X=20

Problem (14) is "less constrained' than (12). Therefore, the

.
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respective optimal colutions must satisfy ("hats'' on the variables de-
note optimsil values)

. ~t A~
(15) u = ug
Notice that the right-hand side of the constraints in (14) is a

constant vector. We bring this vecter over to the left-hand side of

the constraints and make the change of variable

, ot
{16) us+§ =u' -E€&

to obtiin the program
Max (""g-;.g + £q)

e et -X(A-(s+E)Q <0

+
(17) =+

Xte=1

X =20
But, (17) is the desired linear programming formulation of the game
A - (‘s + £) Q except for the additive constant +§q in the objective

function. Hence,

f

(o3 ]
+
u%n
(el

s+ 8

and {rom (15) and the above ecuation
dg se ¥ € 2 U

By using the left-hand side of {13}, we get by a similar argument
Ys 4 £ +8gs Us

Thus for § > J

WA O T < o pud b




91

(18) G -€qsd <G -€7, €>0

and for § < 0 we can derive the relationship

(19) ﬁs'g-q.sﬁs,*,gsﬁs"ga:s §< 0

Equations (18) and (19) give the desired relationships, We can choose
a starting value of s and then subsequently perturb ﬁs towards zero.

Before giving a tactical example, we determine two numbers

-~

m and M (m $ M) such that ﬁrn > 0 and GM < 0. Then since ﬁs is a
continuous function of s,1 ﬁs = 0 for some s in the rangem S s < M.

Suppose we choose

PRSNEIGPRIIN L e

. (20) m = min i M = max 2
.f?, i,J qlJ L, ql_]
( then

mqij < aij s Mqij 2 aij all i, j

From the constraints of (11), we see that

o>
"
)
>
)
]
0

thus

With certain restrictions on the elements aij’ we can derive tighter

bounds than m and M; but for our purposes, the bounds given-here are

F 1 This fact is clear from the foregoing derivation.
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adequate. Since the value of the game v satisfies ﬁv = 0, v must be in

the range m £ v £ M and we restrict our attention to this range.

LK
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3.7 Tactical Payoffs and an Exampile

Two reasonable objectives for Pl in tactical situations are:

1. Minimize the time tc detect P2,

2. Maximize the probability of detecting P2.

Of course, PZ maximizes when Pl minimizes aad vice versa,
The first objective is discuesed in the next section and the resulting
game can be formulated as a linear program. No iterative solution
technique is requi..red. To obtain objective 2 above, we int2rpret the
aij as the probability that P1 detects PZ in onc move. We also allow
the game to terminate by several methods. For example, the garae
terminates if Pl detects P2 or P2 sinks Pl or P2 e¢scapes from the
search region. Hence, the probability that the game continues until the
rext move is no larger than one minus the probability that P1 detects
P2, i.e., Pij <1 - aij all {i, j). With this condition, the value v will
satisfy 0 £ v <1, and v is in fact the probability that Pl eventually de-
tects P2, Also, notice if we require that Pl either detects P2 or the
game continues, then pij =1 - aij (all i, j). From equation (8) v=1,
i. e., Pl eventually detects P2 with probability one and all strategies
are optimal.

To illustrate the methao

[N
2
]
<
9
|t
[

the following example. We assume that the search region consists of

two cells and that P1 wants to maximize the probability of detecting P2.
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The following payoffs A and stop probabilities Q@ are given,

Xk v s Rl 1) M

1.2 .2 .37
A=[.3 .1] =[5 3]
With the above data, linear program {11) becomes

Max u_
D

uy - Xy (.1 -.Zs)-xsz(.3 -.48)s 0

(21}
ug - Xy (.2-.33)-xsz(.1 -.38)s0

Xg1 + X0 =1

/

To apply our method, we need an initial value of s. The bounds

from equation (20) for this example are

=msvsEM-=

5} e
ww

We choose our initial value of .;s bet¥een the above bounds; and for con-

3
venience, we try s = -;: The resulting optimal solution to (21) is
~ _ "~ _ 3 Py = 1
ul-0.0ZS, xl = Z, xz—-4—
2
Now we want to choose s to get Ug £ 0, From the discussion following L

”~

equation (20}, we have Uys £ 0; and for convenience, we select s = , 7,

The resulting ontimal aolution to {21) is
- - [ B o \ 7
a N 13 o 3
u = -0,288, x = —= X, = —
L7 116" "2 16

AT WL PP




T —

R e o

~—

TTAvew TR Teeas o

95

We use linear interpolation between s = .5 and s = . 7 to approximate

the value of & which gives ﬁs =0, i.e.,

100
s=.5+(.2) — =0.593
(.2) 315 59
Now 1 593 % 0, we conclude that v ¥, 592, We round v off to . 6 and
solve problem (21) with s = , 6 to obtain the following optimal strategies
% =L % =2
19 29
s 5 . 4
Y125 Y273

In this, examp;e, Pl can detect P2 with probability at least
v = . 593 by playing optimally. Of course, P2 can prevent Pl from ob-
taining a larger probé.bility of detection than . 593 by also playing
optimally. |

We may compare this solution to the solution of the finite game
with the same payoff matrix and stop probability matrix. (See section
3.4.) The probability that Pl detects P2 in at most three steps was
vy = 302. Also, when the game lasts one step, we have an n-cell
game of Chapter 2. In this case, the probability of detection is . 167.

This completes the discussion of the example, and we turn fo a special

case of the mosi general game,

Voaae o
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3.8 A Special Case: Minimax the Expected Duration of the Game

We investigate the special case when Pl seeks to minimize the
expected duration of the game and P2 seeks toc maximize it. To obtain

this* objective, we must take aij =1 (all i, j). Then, from equation (7),

the expected accumulated payment received by P1 is the expected
duration of the game. With all aLij =1, equation {8) becomes

v(X, Y) = 1

Xty
We want Pl to be the minimizing player so we ceek to solve the
equation

min max 1 1

(22) v = .
X Y xtoy %ty

Clearly, v, f(, and Y satisfy (22} if, and only if, they satisfy

1 max min ; &S
23 L= XiQy = XtQy
(23) v b A Y Q Q

Hence, Pl can minimax the expected duration of the game by maximining

the probability that the game terminates in one step.

We can solve equation (23) by the following familiar linear

programming fornwlation of 2 matrix game

Max u
net - XtQ <0
(24)
Xte =1
X220




—

97

Lt Q, X be an optimal solution to {24} and % a dual optimal strategy.

Then

4= '}?itQ‘f . max min XtQY
X Y

and from the equivalence: of the optimal solutions to (22) and (23)

_minmax 1 _ 1
X Y xtoy ZX'a¥

giof

This is the desired solution to the infinite sequential game when the ob-
jective is to minimax the expected duration of the game.
We solve the example of the last section when minimax the ex-

pected duration is desired. Here

’ .2 .3
o=} .3]
and problem (24) becomes
Max u
u - x (.2) -xz(.4)$0
u~;<1 (.3)—x2(‘3)50

+ x =1

X 2

1
xl, xzzO

The solution to this simple iinear program is
- 5 1
uvs=.,3, xl-—z-, xZ"

Thus, the minimax expected duration is 71‘- = 1—39 moves, And,
1
A= (?{1, 3‘:2) is an optima} strategy for Pl.
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3.9 A Stop Strategy and Dominance

A feature that can easily be included in the sequential games is
a stop strategy for P1, which will allow P1 to terminate the search if
he so chooses. In the finite game, this option can be included by
simply adjoining an additional row (n + 1) to each of the matrices Ar
and Pr' Since rcw n + 1 is to be a stop strategy, we require that row
n + 1 of the matrix P contains all zeros. By solving this new game,
we find the moves for which Pl chooses row n + 1 with positive proba-
bility or zerov probability. In this way, we will have an optimal
stopping rule for the game., We do not pursue this point further, since
the moves for whkich Pl employs his stop strategy with probability zero
will depend on the specified data (Ar and P_ ).

We also apply the idea of a stop strategy to the infinite sequential
game. Again, we adjoin an additional row n + 1 to the A and P matrix,
with row n + 1 of the P matrix all zeros, We could establish a sufficient
condition for Pl to chonse row n + 1 with probability zero. In this case,
Pl will allow the game to terminate by the already specified means and
P1 will not abandon the search at any move. To obtain this sufficient
condition, we would require the notion of dominance for the infinite se-
quential game, Dominance in the sequential game is equivalent to nvdi-
nary dominance in the zquivalent two-person zero-sum game with payoff
matrix A - vQ. 'The desired result easily follows from this notion of

dominance,

- e

[P RN}




as

Whna ks o

CHAPTER IV - TACTICAL STOCHASTIC GAMES!

4,1 Introduction

(a) The Problem

This chapter is concerned with the development of models and
methods for finding optimal tactics in an idealization of Antisubmarine
Warfare (ASW). We view the ASW problem as a game of pursuit be-
tween the hunter-killer force (player 1) and a possible submarine
(player 2). The pursuit begins with a contact which is an indication of
a possible submarine by the sensors of one or more units of the hunter-
killer force. The pursuit ends when the contact is '"caught' or, in some
cases, evades the hunter-killer force, A catch may correspond to the
attainment of one of several military objectives such as positive identifi-
cation that the contact is or is not a submarine or sinking of the sub-
marine., In any event, a catch is a specified terminal condition for the
pursuit,

The status of the pursuit at every move t (t = 1, 2, ..,) is taken
to be one of a finite number of possible states, A state summarizes the

tactical information which is available to both plavers for decision

IMuch of the work in this chapter is also contained in Charnes
and Schroeder [1].
99
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making. For example, each state may correspond toc one of a finite
number of possible configurations of the hunter-killer forces which may
hold the contact on their sensors. Then, at every move t, each player
determines the state of the pursuit by observing the configuration of

the hunter-killer forces which are holding the contact. Thus, a finite
collection of states numberedi =1, ... ,n is specified. When the pur-
cuit has not terminated, it must be in one and only one of these states
at each move,

The structure of the problem also includes a finite collection of )
tactical plans (decisions) associated with each state. A plan specifies
the tactics which a player will use untii his next move. In the most
general case, we assume that the players simultaneously choose a plan
after the state of the pursuit is observed. When the pursuit is in state i,
we number the available plans k=1, ..., Mi andh=z1, ..., Ni for
players 1 and 2 respectively, When the players move, they each chcose
a plan and thereby jointly determine an immediate ''payoff" from player
2 to player 1 and a transition probability distribution ove: the states.
Before the next move is made, the game transits to one of the states or

1

terminates accvording to the chosen probability distribution. We

aggume that the game ig zers sum.

1Each move which we consider consists of poth a personal and
chance move in the sense of von Neumann and Morgenstern [1].

SO
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We consider different payoffs corresponding to different ASW
objectives, Two reasonable ASW objectives for player 1 are:

(1} Minimize the expected duration of the game,

(2) Maximize the probability of a catch,

In case (1), the payoff for every pair of state and plan is the time taken
by one move. Or, the hunter-kiiler force wishes to catch the submarine
in minimum time. With objective (2), we must have at least two terminal
conditions for the pursuit. For in this case, the hunter-killer force
attempis to maximize the probability of catching the submarine and is
faced with the possibility that the pursuit may terminate with conditions
other than a catch.

In short, the problem consists of a finite collection of states
whichk. summarizes the tactical information available to both players., At
each move, the players observe the state of the game and each player
chooses a tactical plan from < finite collection. The chosen tactical
plans jointly determine an immediate payoff and a transition probability
distribution over the states, Before the next move is made, the game
transits to one of the states or terminates according to the chosen proba-
bility distribution. Our task is to find an optima..l strategy for each
plaver. A strategy is a decigion |
move, An optimal strategy is one of a minimax pair for the total cx-

pected payoff, For convenience, unless otherwise noted, we shall take
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player 1 to be the maximizing, and player 2 the minimizing, player.

(b) The Models

To describe the above ASW situation, we consider a basic
model and four variants., The basic model is a stochastic game due to
Shapley [1]. We call this game a Terminating Stochastic Game (TSG)
to distinguish it from the non-terminating variant introduced by
Hoffman and Karp [1]. Shapley defined a vector value for a TGS and
employed an ingenious argument to establish its existence and that of
optimal strategies, The methods and representations he employed were
of a nonlinear character, We show, however, that linear programming
can be used to characterize the value of the game and its optimal
strategies as well as to obtain them to within a desired degree of ap-
proximation. In addition, we determine the effect of near-optimal
strategies on the total expected payoff for the TSG.

Next, we discuss two variants of the TSG which lend consider -
ably more realism to the game for ASW purposes. The first involves
a modified assumption on the transition probabilities from that employed
by Shapley. No change in the solution techniques developed for the
bagic g.me is required by this modification although it enlarges the

class of problems which may be solved, The second variant involves an
extension of the notion of a constrained game, Charnes, iz stochastic

games and is exemplified in a particular type of '"constrained" TGS,




103

Here an implicit restriction on the duration of the game is rendered by
means of constraints on the strategies,

Anaother description of the ASW situation may be obtained from
a TSG with perfect information. W~ discuss its advantages in describing
the ASW problem and exhibit a linear prograra whose solution yields
the value and optirnal stri. gies for a general TSG with perfect infor-
mation. Thke exit*.nce and uniquer 2ss of the value is also established
directly from this linear program.

Finally, we introduce a finite version of a TSG. This finite
TSG is applicable to the ASW situation when the pursuit is known to
terminate in, at most, a finite number of steps., This finiteness allows
us to relax certain assumptions which are required in the infinite case
and, thus, additional realism can be introduced into the model. Again,
however, our basic linear prograimming techniques hold good and yield

constructive procedures,
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4,2 Formulation of 2 Terminating Stochastic Game

In this section, we define the TSG and present two basic theo-
rems due to Shapley. A TSG is played in a sequence of moves., At
each move, the game is said to be in one of a finite number of states
numbered i =1, ...,n, Ifthe game is in statei(i=1,...,n) and
player 1, the maximizing player, chocses alternative k and player 2
chooses alternative h, then the payoff to player 1 from player 2 is

k=1,..., M
R
h

n
2

Since we have assumed the game is zero sum, player 2 receives, of
kh . . :
course, -a, . The choice of alternatives k and h also determines the

transition probabilities:

j =1, , I
kh
pijZO k=1, » My
h=1, s N

where pli(jh is the conditional probability that the game will be in state j

on the next move given that it is in state i, and that strategies kand h
are chosen by players 1 and 2 respectively., Hereafter, if the range of
the subscripts i, j, k, h is omitted, their full range is intended.

We assume:

(1) (1) E pkh <1 allk h,i

j

Cheh NS s T
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(2) (i) |ali‘h| <M allk, b, i

Under these agsumptions, the game terminates with probability one and

the accumulated payments received by either player are bounded. To

kh kh .
p.. > 0, si is the

kh
verify this statement we let 5, =1 - .
1)
1

1

I g

J
positive probability of termination given state i and decisions k and h.

Let

i kh
3 g = min i
(3) i, k, h 1
Now the probability that the game does not terminate in N moves is not
more than (1 - s)N. Since this quantity tends to zero as N increases

without limit, the game terminates with probability one, The accumu-

lated payments received by either player are bounded by

M+(1-8)M+(1-82M+... =

mlg

A strategy for a move could depend on the entire previous
history of the game play, Fortunately, it iz only necessary to consider
"behavior strategies'' (stationary strategies), since the optimal strate-
gies 2re found in this class, Kuhn [1], Shapley [1].

Def. A behavior strategy X for player 1 is an n-tuple of proba-
bility distributions X = (X,, ... ,X_), each X, = (%7, ..o %),

A similar definition holds for player 2.
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If player 1 uses a behavior strategy X, he chooses the mixed
strategy X, whenever the game is in state i regardless of what move

it is or of the manner of arrival at state i,

By choosing a starting state i, we obtain an infinite 1 game G,

(i=1,...,n), A TSG, G, is defined as the collection of games
G= (Gl’ v Gn)' Let v'fri denote the value of G, the minimax of its
i

total expected payoffs, Now we define the value of G to be the vector

bl

w (W, eor , W ).
l n

We introduce a two-person zero-sum game with payoff matrix
Ai {v} where Ai {v), i=1,...,n, is the MixNi matrix whose k - hth

element is

kh o kh
(4) a, = 2 Pij VJ
j=1
and v is the n-vector of real numbers v = (vl, «.. v ). Finally, let
n

Val [B] denote the minimax value of the two-person zero-sum game
with payoff matrix B and let X[ B] and Y{B] denote the sets of optimal

mixed strategies for players 1 and 2 respectively. Now we state two

basic theorems due to Shapley [1].

 ———

l‘I‘he number of moves may not be bounded.
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Theoxrem 1 (Shapley): The value of the terminating stochastic

»~

game G is the unique solution W of the nonlinear system of equations
(5) v?,i=Va1[Ai(W)] i=1l,...,n

Theorem 2 (Shapley): The behavior strategies X, w}, where

iis X, [A (W], T.¢ Y, [A;(W)] i=1,...,n, are optimal for the
first and second players respectively in every game Gi belonging to G.

These theorems provide a basis for the results of the following section,
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4.3 Solution of a TSG

In this section, we develop an iterative technique which ernploys
a contraction mapping whose unique fixed point is the value of the game,
This mapping is applied recursively from a selected starting point,
and each iteration of the mapping is obtained by solving a set of linear
programs. Truncation of the recursive technique yields near -optirnal
strategies of the TSG, and we can determine in advance the effect on
the total expected payoffs when such strategies are to be used.

In order to define the contraction mapping, consider the
n-dimensioral real vector space R" with the norm

i . Mmaxyj - ¢r™
il 1eign ® Y (Yl....,yi,...,yn) R

Let T be the mapping from R" into R" defined by
(6, Tv = B where Bi = Val [Ai(v)] i=1,...,n
In the proof of theorem 1, Shapley showe that

(7) iTv, - Tv, i (1~ 9) i v, - v, i an vy vy @ K"

whe e 8> 0 is given by equation (3). Since 01 -s< 1, Tis a con-
traction mapping and, therefore, has a unique fixed point (Kolmogorov
and Fomin [1]). Theorem 1 asserts that \;J, the value of (5, is the
unique fixed point of T,

Next, we consider the sequence {v(t)} which is defined recur-

sively for given v (0) by
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(8 vit+1) = Tv(t), t=0,1,...
Then, by the definition of T
(9) Vi(t + 1) = Val [Ai(v(t))_] ,

t=0,1,...
By the contraction property of T, the sequence {v(t)} converges to
W for every fixed v(0). (See Kolmogorov and Fomin [1].) Note that
if we cho~se v(M = 0, then v{N) is the value of the TSG which is
truncated (stopped) after N moves, if it lasts that long. We shall re-
turn to tnis point later.

Now the sequence { v(t)} may be computed by linear programming.
Indeed, the i"lh program in the following collection is a linear program-
ming formulation of the game A; (v(t)), where v(t) is known, 1
Accordingly, the optimal solutior ﬁi(t) exists and satisfies

8(t) = val [A (v(gi3], i=1,...,n.

i=]l,...,n

L.P. (i, v(t))

t = 0’ 1, R
Max u; (t)
Subject to: M,
i n h
ui(t) - E xi((t) (aikh + z plic. V. (t)) S 0, h = ]'l L § Ni
k=1 =1 9
3

This formulation is a variant of that in Charnes [1] which has
the same advantage that the dual programs correspond precisely to the
piay piroblems of the respective players.

N
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M,
5 xl;(t) =1
k=1

()20, k=1,..., M.
1 1

Given v (t), "we compute t}(t) =(1'i1 (ty, ..., ﬁn(t)) from the above linear
programs and set v(t+ 1) = T:I(t). In this manner, the sequence {v(t}}
for given v(0) is generated.

When computing the sequence {v(t)}, it is desirable to have a
stopping criterion which insures a desired approximation to \;f More
precisely, given arbitrary ¢ > 0, we will find an integer N such that

| W - v(N) || £ e. Returning to the contraction mapping T and recalling

that TW = W, we have from equation (7)

(10) | w-Tols(1-8)j] W-TNv||, all ver®.

Alseo, by the triangle inequality
Iw - TNl <l w- e v s o™y - oV

Thus Hw-TNyls -8l Ww-TNvl+ || Ty . Ny, and

a1y sflw-mNvijs | T - TNV, all veR™,
But, by definition
T™ v(0) = v(im), m=0,1,.,

Therefore

Iw-vo s L vewen - vou il

L
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If we compute the sequence {v(t)] until || v(N + 1) - v(N) || s s¢, then
H \;V - v(N) II < ¢. The actual number of iterations required will depend,
in general, on || W - v(0) ||, ¢ and s.

One may also easily bound by R the maximum number of iter-
ations required after one iteration is computed. For, observe that for
every integer m 2 1

m+1

(12) sl w- T siT™ v T v s - 9T i Tv - vl

Now, after v(1) 18 computed from +(0), choose R such that

- R 0
L= vy - vio il e

Then || \;f - v(R) || <.

By the inegualities in (12), R = N where N is the stopping point ohtained
by the methods of the preceding paragraph, We conclude that after one
iteration we will have an upper bound on the total number of iterations
rvequired for givean accuracy.

Next, we investigate the effect of near-optirnal strategies on the
total expected payoff. As before, let ﬁi(N) and i’i(N) =(§i1(N), cees S’c?di(N))
be an optimal solution to L. P. (i, ¥v(N)) and assume, given ¢ > 0, that
N is cl~sen such that Il G(N) - v(N) || < s8¢ where
U (N) = (&, (N), ... ,&_(N). Then from equation (11), [U(N} - W jise.

Let ‘;i(N} be an optimal strategy for player 2 in the game A, (v(N);.

S bbbt
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Then Y, (N} is an optimal strategy in the dual to L. P. (i, v(N)) and is,

of course, at hand when the direct problem is solved. (See Tharnes [1})

Let U = (ul, cees un) be the expected payoff in the TSG when the known

strategies }E(N) and ';'(N) are used in every move of G. We wish to

find the difference in norm betweea U and the value of G, W. First,

we compute the difference in norm between U and U(N). Let

A ak kh ~h a ~k kh ~h
Py = L % (N) Pj; y; (N)anda, = 5 Xx'(N) a,” y; {N).
k, h k, h
Then U is given by the solution to the system
13 =5+ 3 B '
(13) u,=a + g pijuj’ i=1,...,n.

J=1
This solution = unique since 0 < ﬁij <1, alli, j, Now U(N) is related
te v(N) by the linear programs L. P, (i, v(N)}), i=1,...,n. From

primal-dual considerations

n
(14) & (N) - &, -J_‘;::l By vi(N) =0, i=1,...,n.

Subtracting equation (14) fror equation (13), we obtain

n
u, -4 (N) = }2 Bj; (uj - Y (N)), i=1,...,n,
Jj=1
From ouF assumpiion || G{N) - v{N} || $ s¢, we may write

a, (N) -v.(N)=8s¢., j=1,...,n with je.| < ¢
8, (N) - v, (N) i 3 iJI

i 2
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Then the desired relationship between U and U{N) is

p..(u, -G (N)+se), i=1,...,n.
iy j

Further

n n
]ui-ui(N)l $j§1 pijluj -uj(N)l +j§1 pijsltjl, i=1,...,n

n

and since I ﬁi,s(l -8y, i=1,...,n, we have
s J
j=1

., iU -UM2(1-8s)U-0M)fi+s(l-s)e

) iU - (N1 -s)e

Finally, the difference in norm between U and {V is bounded by

lu-wilsho -0+ 100 -Wiisg(-se+e=(2-s)e.

From the above equation, we see that one can find a priori an integer N
such that the behavior strategies }?{(N) and {'(N) can be used in the TSG,
- G; and the total expected payoff cbtained will be as close to W as
prescribed.

We summarize the results of thiz section with the following
f Theorem 3: Let the sequence {v(t)} be defined by equation (9)
and let \7\' be the value of the TSG. For given ¢ > 0, define N as the

smallest integer for which

ey

IvIN+1) - v(N)] s se

e
R
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then

(1) lw - v s e
Also, let ;{i (N) and ’;'i (N) be cptimal strategies for Pl and P2 re-
spectively in the game Ai (v(N)}), i=1,...,n, and let U be the
accumulated payoff received by P1 when these strategies are used
in every move of the TSG, then

(i) lu-Wwils (-9

To recapitalate in part, we have defined a nonlinear contraction

mapping T whose unique fixed point is W. We have shown how to re-

place the fixed point problem by optimizing a linear programming formu-

lation. In this way, the successive terms of the sequence [Tnv} were
computed and 2 stopping criterion was developed which insured the de-
sired approximation to \;‘V Finally, the linear programs L. P. (i, v(t)),
(i=1,...,n)yielded a dual pair of optimal strategies }E(t), ’;(t) and
w~ obtained the effect on the total expected payoff when these strategies

are used in the TSG.

L F I R RN
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4.4 Another Solution Method

In this section, we develop another iterative method to compute

the value and optimal strategies for a TSG. This method is closely

related to one proposed by Hoffman and Karp [1] for ncnterminating
stochastic games, and it is also an extension of Howard's [1] policy
iteration method to stochastic games. One iteration of our method
consists of starting with a strategy for Pl and, in a certain way, com-
puting a new strategy for Pl. Thus, the method iteraies on strategies

. for Pl as opposed to the method of the last section which iterated on the
"state values',

Next, we describe the method and then establish some properties

b ’ of the quantities which are generated on successive iterations.
Method IT
. 1. Chovuse a behavior strategy X(0) =(X1 {0), XZ(O)’ ceey Xn(O)).

ek
[y ¥

. . 1 2 M; :
Given X (t) with Xi(t)=(xi(t)’ xi(t), ,xi (t)), i=1, ... ,n,

find the sclution to the system »f equations

.M
min M n
(15) w0 = Tp" L K [akhe B pklw o) ]
k=1 j=1 8
{The solution W{(t) = (w1 (ty. ..., wn(t)) is unique and may be

found by solving a linear program of the type given in

section 4, 8.)
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3. Now X(t+1) = (X {t+ 1), ..., X_(t + 1)) is determined by

finding an optimal strategy for P1, X, (t + 1), in the games

Ai(W(t)), i=1,,..,n. Return to step 2.

We show that the sequence { X(t)} converges to an optimal strate-
gy, }2', for P1, and that the sequence { W(t)} converges to \;I, the value
of the TSG, First, we establish the following

Lemma l: Successive sslutions obtained from equation (15)
satisfy

Wi(t+ 1) 2 W(t)
(The inequality holds component-wise on the above vectors.)

Proof: From equation (15),

(19  w (t)s M. x5 (t) +§p‘.‘."w.(t)] h=l,...
k-l . 5=1 ij i=1,...

L
=]

.12 Nj
Now, for every strategy ¥ ={y , y ,...,¥ ) we have

N.

! h h

z Y3 =1, Y; z 0.
h=1

And, we may rnultiply both sides of equation (16} by y}; and sum over h

to obtain
N; M

(i7) Wy (t) < Z 2 X, (t)[‘(h+ n p1.<.hw.(!:)] y}.1 i=1, ,
h=1 k=1 =1 9 .

e A

e
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We adopt the simplified notation

N; M;
ai(xi, Yi) = 2 X. a. yi i
1 k=1

[
"
p—
-

.,n and

<2
n

a(X, Y) = (al (. 1’ Y ) ... :an (Xn: Yn))

1

i k kh h ., .
lkipij y. i,

N; M
P..(X.,Y) =
i e ¥ h§11§_-

S

Cu
]
p—
-

1

P(X, Y) is the nxn matrix P(X, V) = (p, . (X., Y.)). With this notation,
ijoi i

equation (17) becomes

-

(18) W(t) < a(X(t), Y) + P(X(t), Y) W(t) all strategies Y

According to the proposed method, Xi(t + 1) is an optimal strategy for
Pl in the game A (W(t)). Let Y (t+ 1) be an optimal strategy for P2
in this game. Then the pair of stratégies X{t+ 1), Y(t+ 1) satisfy the
. following saddle point condition
{19) a(X, Y(t+1)) + P(X, Y(t+1))W(t) < a(X(t+1), )+ P(X(t+1),Y) W(t)
"all strategies X, Y
We set Y = Y{t + 1) in equation (18), X = X(t) in equation (19), and
use (i8) and {19) together to get
(20) W(t) s a(X(t+1), Y)+ P{X(t+1), Y) W(t) all strategies Y
Let Ybe a strategy for P2 which yields the solution to
(21) W(t+l) = a(X(t+1), T) + P(X{t+1), ¥) W(t+1)

- We set Y = ¥ in (20) and subtract {21) from (20) to get

~~

TRRR IR o e o«
s NPT SRS« HSTNN, 5 10 e =
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(22) Wi{t) - W(t+1) s P(X(t+1), Y) [W(t) - W(t+1}]
For notational conwvenience, we let A = W(t) - W(t + 1) and
P = P(X(t+ 1), ¥), then equation (22) may be written as
(23) A+§=PA where€ 20
(I-P)a=-¢
Since a.11 the elements of P = (pij) gatisfy 0 < pij <1l,{l-P)" 1

exists and all its elements are non-negative, Hence,

(24) =-1-P)"teso
we obtain
W(t) € W(t+1])
The vectors W(t) are in Euclidean n-space, and the sequence
{ W(t)} is monotone increasing. 1 we show in section 4. 8 that the
solution W(t) to equation (15) is bounded from above for all t. Hence,
the sequence { W(t)} converges to a limit W*. Now, it is ciear from

Method II that w* = (w’i" s ey w;-"l) is the solution to
wk=val A (W i=1,...,n

and, therefore, W* is the value of the TSG (theorem 1).

We consider the sequence {X(t)}. The vectors X(t) vary ina

1One cay verify that if WIt) = W(t+ 1), then W(t) is the value.
Hence, W(t) £ W(t+1), with strict inequality holding for at least one
component, unless the sequence has converged to its limit.
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compact set, and we may extract a convergent subsequence, Let X* be
the limit of such a convergent subsequence. From section 4.8, W(t)
is the optimal solution to a linear programming problem. By the
method used in section 3. €, we c7. establish that W(t) is a continuous
function of X(t). Further, X(t + 1) is an optimal strategy for P1 in the
game Ai(W(t)). From this fact and continuity, we may assert that X’:

is an optimal strategy in the game A, (W*). Then, from theorem 2,
1

¥* *

TEERE Xi) is an optimal strategy for Fl in the TSG. We sum

up with the following
Theorem 4: The sequence { W(t)} converges to the value of the
7'SG and the sequence { X (t)} converges to an optimal strategy for P1,
This completes our discussion of two methods to approximate
the value and optimal strategies for a TSG. In the remainder of this

chapter, we investigate extensions and special cases,

- resd( W
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45 A Modified Assumption

Throughout the diccussion on the TSG, we have been using the

assumption

Pk.h< 1, alli, k, h

(i) .
1 Y

Mo

J
In this section, we consider a siightly weaker assumptionl than (i);
all other definitions and assumptions remain unchanged. For con-

venience, we shall charge the notation for transition probatilities from

kh to qkh We allow

ij ij

(258} ¢ q;‘j“ $ 1 (equality may hold for some or all i, k, h)
j=1

Thus, we perrmit a zero probability »f termination before the next move
when the game is in state i and alternatives k and h are chosen by players

1 and 2 respectively, Hcwever, we impose the following regularity con-

dition on the ql;jh .

Assumption A: For all behavior strategies X and Y for players 1

and 2 respectively, the game terrninates with probability one in & finite
number of moves from every statei {(i=1,...,n).

Now, if assumption (i) is satisfied, then assumption A is trivially

1See alsc Denardo [ 1] and Derman [1]. They employ this wesaker
asgsumption for a ''terminating Markovian decision precess''. '

SURIED AR A mce o V3w fot 0
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satisfied,

Assumption A asserts that it is possible for every behavior
strategy to find a finite sequence of states leading from every state i to
termination of the game or, to put it another way, the statesi=], ... ,n

are transient for every behavior strategy. Let rqlz? be the r-step

transition probability from state i to state j when decisions k and h are
chosen for state i and an arbitrary behavior strategy is used for states
other than i. Assumption A guarantees that there exists an integer N

such that

z a <1, alli, k h
=1

J
Thus, TN is a contraction mapping and T has a unique fixed point, {See
Kolmogorov and Fomin [1].) It follows that theorems 1 and 2 are true,
and all of our results of section 4. 3 are valid for transition probabilities

satisfying equation (25) and assumption A,
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4.6 Interpretation of payoffs in ASW

To place these developments in context, let us return to the ASW
situation with the aforementioned objectives: (1) minimax the exgected
duration of the game, and (2) maximir the probability of a catch. We
now seek to exhibit appropriate numerical wvalues for the alfh which will
encompass these two objectives,

Consider first objective (1) and assume that player 1 is the
minimizing player. Suppose that the fixed behavior strategies
X = (Xl, ee s Xn) and Y = (Yl’ coo s Yn) are used by players 1 and 2 re-
spectively in G, These fixed strategies X and Y define an absorbing

Markov chain with transition probabi*’ "=s,

My
(26) p1 (X, Y) = 2 X, Pi: YVis i, J =1,... ,n
) 1 1 i
k=1
and the probability of absorption in one move given state i is

n .
1 -.Elpij (Xi,Yi)>o, 1"1, Ty ,n
J:.'

Now let w_(X, Y) be the expected duration ¢f G, when X and Y are used
i i

in G. Then the following relationship obtains. *

lSee Parzen [1]; Pr denotes ''probability",
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w, {X, Y} = 1« Pr {terminate in one move / state i}
3

+ 2} Pr {go to state j/state i} (1 + wj (X, Y)
j=1

n n
= - X, Y, ’ . 1 (X%,
L B ey O Y By (% ) 0w (6 )

n

27 ’ = . ) Y. s s i= 3 o e 0 g

(27) wi(X Y) 1+E; pl:’(x1 1) wj(X Y) i=1 n
j=1

Therefore, setting

al;h =1, alli, k, andh

it follows from equations (4), (5), (27) that v?li, the solution to equation

(5), is the minimax expected duration of Gi . We, thus, have formulated

objective 1,
To attain objective (2), a similar analysis shows that we should

define (player 1 is now the maximizing player):

(28) ali<h= the probability of a catch in one move, giveni, k, andh.

Then \Gi is the maximin probability of a catch for G;. Recall that
is the probability of terrination in one move given i,

k, and h. The probability of a catch, given i, k, and h, can be no

kh kh kh kh

greater than s?h; thus, 0 < a; < s, . In case aLi =8, all i, k, h,

- e o - ——— L I R T T 7

mw-:w

B I P Al 7 7




cre T TP Y TR Y b T v oy

124

then equation {5) has tha tr .ial snlution w, = 1, i=! .,..,n, i, e,,

the submarine i8 caught with probability one because the game can only

1
terminate with a catch, If a‘;h < sli(h, then s?h - ai(h is the non-zero

probability th- t the submarine is not caught in one move, given i, k, h,
and \'x}i £ 1(i=1,...,n) strict inequality holding for at least one i.
With the indicated payoffs (28), the hunter-killer force maximizes and

the submarine minimizes the probability that the submarine iz caught,

[T LY T AR
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4.7 A Constrained TSG

This section considers a constrained TSG. See Charnes [1]
for a discussion of two-person zero-sum constrained games and their
reduction to linear programming problems. By a constrained game,
we mean that each player's strategies are implicitly restsicted to 2
convex set {usually polyhedral) rather than arbitrarily chosen from the
unit simplex. For concreteness, suppose that player 1 is to maximize
the total expected payoff subject to a constraint on the expected duration
of the game, Our task ig to find a restriction on Pl's strategy which
will guarantee that the expected duration of the game is no grester than
a specified constan:, C21. Of course, other types of constraints can
also be developed by employing the method which we propose here,

As before, let w, (X, ¥) be the expected duration of Gi when the
fixed behavior strategies X = (X1 y e ey Xn) and Y = (Y1 s e s Yn) ,

are to be used by players | and 2 respectively in G. Then, Wy (X, Y)

is the unique solution to the following system (see equation (27)).

n
wi(x, Yy=1 + j}__“,lpij(xi, Yi)wj(X, Yy, i=1,...,n




™
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Let

max
X, Y = (X, Y
wr( ! lsiSnwl( )

Then

. n n
WK YD =14 B opg (X, Y wi(X V) S1+ T op (X, Y)w, (X, Y)

j=1 j=1
n
Now 0 I p.(X,¥Y)<l
. rj i i
j=1
thus w.(X, ) 5 L S
-Z.“ prj( r’ r)
j
Let
_ k_kh 1 _ k _
(29) X].L-{xi].y,;< X; Pij Sl"é' h=1,... N, £Xi =1, x 20,
js

fixedC21} i=1,...,n.
These are the desired constraints,
We now show that w; (X, Y) £ C for all X; ¢ X; and arbitrary

strategies Yi’ (i=1,...,n). To substantiate this claim consider an

avbitrary strategy Y.. Then for all X ¢ Xi

n
Ep (X, Y)= I xpryrsl-z, i=l,...,n
=1 ULl TR T
In particular
2 p . (X,Y)st-
,zlprj r’ r)’ T
j=

B S 7
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Therefore

Wi(xy Y)SWr(X, Y) s ‘—'—""'l-"*-l—— = C, i=1,...,n,
1-(1- )

Thus, player 1 can limit the expected duration of G to be no greater
thar. C by always choosing a strategy from X, when the game is in state i.
To solve for optimal strategies and the value with the additional

restriction on the expected duration of the game, we adjoin the following

constraints to L. P. (i, v(t)), (i=1,...,n).
k kh 1
30 t €l ee=, hkrl,...,
(30) B ox@pgielg L....N,
+J

With these additional constraints, there may be no feasible solution to
L.P. (i, v(t)) for some i. However, from the above deveiopment,
infeasibility of the augmented L. P, (i, v(t)) for some i means that
there is no behavior strategy for player 1 which satisfies the restriction
on the expected duration of the game. This holds true for every v(t)
and will, therefore, be evident at the first iteration whent = 0, On

the other hand, if player 1 does not have a hehavior strategy satisfying
the requirement on the duration of the game, then, for socme i, L.P,

{i, v(0)) will be infeasible. Summing up, the augmented L. P. {i, v(0))
is feasible for each i, if and only if the constrained game has a solution
(a value and optimal strategiee), If the solution exists, it may be found

from the augmented L. P. (i, v(t}) and the iterative technique developed

cad e mrr e owe
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in section 3,

A few comments on ‘he choice of the constant C are in order,
First, we have required C2 1, equation (29)., IfC< 1, then X, =9
(i=1,...,n) and the augmented L.. P. (i, v(t)) is infeasible for 2ll i,
This implies that no behavior strategy exists for player 1, which yields
an expected duration less than one -- an obvious fact. Second, we may

also establish an upper bound on C., By assumption (i) and equation (3)

n
z Pl.(.hsl -8, alli, k, h

e U

Thus, for every behavior strategy X,

k_kh _ . .
‘E X; Py <i-s,alli, h

ik
and the constraints (30) are redundant if C 2 -i-. Intuitively, this means
that no behavior strategy for player 1 yields an expected duration greater
than l . Therefore, the constraints (30) are nontrivial if C is chosen

8

from the interval

1sC<c ~.
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4,8 A TSG with Perfect Information

We return to our idealization of ASW, In this section, the
hunter -killer force knows or is willing to assume certain behavior of
the submarine, More precisely, we assume that player 2 is playing
some fixed behavior strategy which is known to player 1; thus, the
game is effectively a one-person game. For instance, the hunter-killer
force might assume that the submarine takes evasive action. Another
example is the assumtion that the submarine takes evasive action but
is moving toward some objective, In practice, one might find optimal
tactics for the hunter-killer force under various assumptions about the
behavior of the submarine and then use the set of tactics for the most
plausible behavior. The merits of this approach are:
1. The analysis is greatly simplified.
2, Less data is required.
3. If the submarine has the assumed behavior, the total ex-
pected payoff will be at least as great as in the two-person
TSG.

4. All of the tactical information available to the hunter-killer
force can be used in the state specification. (In the two-
person case only the information available to both players

can be used,)

5. The hunter-killer force has an optimal pure strategy.

Of course, the main disadvantage of this approach is that the hunter-
killer force must have information on the behavior of the submarine or

be willing to act as if it did and take the attendant risks,
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Evidently, we are interested in a TSG with perfect information.
Thus, we assume that player 2 uses precisely one strategy (pure or
miixed) which ie known to player 1. Accordingly, suppose that player 2

uses the behavior strategy Y = (Y1 s ee Yn). Define

N. Ni

1k
P]ft. =z p..h Y%l and al.( = 5 al.<h y%l . These are now the transition
oo 4E i, i

probabilities and payoffs for player ! in the TSG with perfect information.
In this game with perfect information, the optimal strategies for player 1
are pure strategies (von Neumann and Morgenstern (1]). Thus,

Shapley's functional equation (5) may be rendered as

~ max n a
31 - 1 i=1,...0n
(31) Yi T lsksM, [ai HRIR TR 1=1 &
1 J=1
I'e
This functional equation is one of a much larger class that has been

shown by Charnes [2] to be amendable to linear programming analysis,
By means of a linear program, we establish the existence and uniqueness
of a solution to equation (31). In addition, the optimal pure behavior

strategies and state values, W., may be computed directly from the

i ’
linear program.

In connection with the literature rises in two typ

G Lyp<s

of Markovian decision processes. The first may be called a termi-

nating Markovian decision process. These processes have been

T

el




i i i v i bt

Ty

131

studied under the modified assumption of section 4 by Derman [1)] and
Eaton and Zadeh [1]. Derman cbtained a line.r fractional program for
a termninating Markovian decision process, This linear fractional
program can be reduced to a linear program by a transformation duz to
Qiarnes and Cooper [ 6]. The resulting linear program is precisely
equivalent to the dual to problem I below. Thus, Derman's viewpoint
is, in a sense, ''dual'' to the approach taken here. A TSG is also
equivalent to a discounted Markovian decision process. For such a

process, one must solve the equations

31 - _ max k n k. ] .
{(31a) N = 1<ksM. ai+B.E qijwj , i=1,...,n
1 j=1
k . iriae win n K
where 0 s B< 1 and the qij are transition probabilities with & qij =1.
j=1

In our notation, we take pl;j = Bqli; and we have

550

qF.=B<1

n
Y p..=8 i
) ; H

1
=1 J

14

ts

Therefore, a TSG with perfect information has precisely the same
structure as a discounted Markovian decision process. For studies on
discounted processes see Howard [1], Blackwell [1] and, with particular
reference to equation (31a) and linear programming, see d'Epenoux

[1], Balinski (2], and Denardo [1].
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We employ the following linear program to solve equation (31).

-

Protlem 1 .

n
(32) Min & w,

. i

i=1

ok k i=1,...,n

33 Subject to w, - a. , ! ’
(33) ubjec ijflpijwjz : K=l ..., M,

As may be noted, the functional of this system serves to drive the

values of w, to be the maximum over k of the right-hand side of (31).
Other functionals serving the same purpose could also be employed. The
following two lemmas and theorem 3 establish that the optimal solution
to problem I exists, satisfies equation (31), and is unique.

Lemma 2: An optimal solution W = (W , x?zn), to problem I

UL

exists,

Proof: It is sufficient to show that problem I has a feasible

solution and that its functional is bounded from below.
First, iet w; = C,i=1,...,n, Cis a constant, Equation (33)

becomes

n k,_k
c(1 - .;; pij)z a,
j=1

n
But, 1 - % pli; > 0, alti, k. Thus, we may choose C large enough to
j=1

satisfy all of the above inzqualities simultaneously and problem I has a

feasible solution., Let w = (wl, .o ,wn) be a fcasible soiution to

problem I and suppose that W < W, i=1,...,n, Then W must

A e e

PURRIA
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satisfy the inequalities

n k n
woza + E, prjwjzar-l» Z Prj ¥z
j=1 j=1
and
n k k
w_ (3 - 2 prj)zar, k=1, ... ,Mr
j=1
min aj . . . . . .
Joet Q= 7 K o” This minimum exists by assumpticns (i) and
1,
I- 2;" Ps;

fii) on page . We now have

k
ar .
W Zz2W 2 —m——2fQ, i=1,...,n.

k
1- T py;
J

Hence, (32) is bounded from below for every feasible solution to
problera I. By boundedness and feasibility, problem I has an optimal

solution. .

Lemma 3: Every optimal solution to problem I satisfies equation
(31).

Proof by contradiction: Let w = (W,

., \'v;n) be an optimal

selution and assume for some § say i = r, that
n
~ k kK .
w 2_+ . W, k=1,. M_.
r> %t L P Vs, ) M

j=1

A+ £ s A e b
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~ »
&,_{wr-A,whereA>0,1=r
i \zi,i?sr

We wish to find a 4> 0 such that w’ is a feasible solution. Now

n ok . ~ k kK A
LY /
Wy Z Prj J=wr'A‘zprJ J'prr(wr"A)
j=1 j#T
a R k . k
=w. - Z prjwj'A(l'prr)
j=1
Since 1 - p... > 0, we may choose 4 > 0 such that
@ R ot W'2a, kx=1,...,M
r j=l r) r r
Fori#r
n
) k a2 a k k
wi- & Pijy Wy =W - L Pij J-pil‘( ¢ -8
j=1 j#r
n
='v3,-2 p%t,w-!-pl.cAza, k=1, M
ioyoy W ir i

Therefore, \fri' (i=1,...,n)is a feasible solution to problem I for

some A > 0,

n n . . .
We also have ¥ v?_i' < I W.. This contradicts the

i=1 i=1-

assumed optimality of w. Therefore,

AN

Wi

max k n
= ISksMi a; + z p’-JW-]

We sum up with the following theorem.

PRV RPN
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Theorem 5: The optimal solution to problem I exists, it
satisfies equation (31), and is unique.
Proof of uniqueness: Assume w=(w.,...,w } and

1 n

w = (wl, cee s wn) are both optimal solutions to problem I. From

L.emma 2 and this assumpticn, there exists a set of integers { k{i}},
p g

such that
n

(34) w, -ak(l)+ T p k(l) wio =1,
j=1

W must be a feasible solution to problem I for the set {k(i}}, thus

(35) %, = k“’+ % ARE

ii 5 i=1,...,n.
=1 J

Subtracting (34) from (35), we obtain

n
(36) % ~w,.2 5 poN& —w), i=1,....n,
5Py T

Let {Iz(i)} be the set of integers which gives

n
v?}iz k(l)-i'E k(l)*, i=1l,...,n,

j=1 ’

Then, we also have

n [ SOV XY
, - ) RiL) ja -
{37) LARRA < j:&l pij (wj wj), i=1,...,n.

L
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Conside> two cases.

I, ... n)

Case (1): Assume v'?/i - w; < 0 for some i (i
Then inequality (36) is not satisfied for alli (i =1, ... ,n), Therefore,

wi-wizo {i=]1,...,n)

Case (2): Assumew, - w,> 0 for somei(i=1,...,n).

i i
Now ineguality (37) is not satisfied for alli{i=1, ... ,nr). Therefore,
'ﬁi =w, = 0 {i=1,...,njis the only possibility and, indeed, (36) and

(37) are both satisfied when v?/i -w, =0 (i=1,...,n). Hence, \'{ri = w,

(i=1,...,n) and the theorem is true,

Since the solution to equation (31) is unique, we conclude that
equation (31) is solved by problem I. Now, an optimal pure strategy for
the TSG with perfect information is available from the solution to
problem I or its dual. There may be more than one optimal pure
strategy since the right-hand side of equation (31) may be maximized for
more than one k and some i, However, alternate optima for the dual to
problem I correspond to alternate optimal pure behavior strategies and
vice versa. Thus, all of the optimal pure behavior strategiec are avail-
able from the solution to problem I or its dual. Finally, one would
normally solve for the optimal strategies from the dual to problem I
since it hae less constraints than problemn I and, therefore, less

computational effort is required.

- ———
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4.9 An Example of Optimal Target Approach

We give a tactical exaiaple of a game with perfect information.
Consider a situation where the searcher has a datum point of last
contact, but he may or may not hold the contact on his sensors at each
decision point in the pursuit, The searcher wishes to get into attack
position. The states for this pursuit are determined by twc observed
factors, range to the datum and clasgsification of the centact. For our
purposes, rangs is measured in three increments, 1, 2, 3, and the
cla-ssification is either a hold (H) or lost (L) contact. These two factors
determine six states, 1H, 1L, 2H, 2L, 3H, 3L, where for example,
1H means the searcher is at range increment 1 from datum and is
kolding the contact. When tha purcuit has not terminated, it must be in
one of these six states. In addition, we specify two terminal states, a
permanent lost state (Lo) and a successful attack state (So)‘ The
searches wishes to maximize the probability of arriving at state So'

Now there are four types of decisions: attack {A), decrease the
range by one increment (D), increase the range by one increment (I),
and stay at the present range (5)., Not all of these decisions are allowed

for each state. For example, the searcher cannot attack when the con-

tzct iR lost {tem

and the transition probabilities are given in Figure 3,1,
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TRANSITION PROBABILITIES

{Blank spaces in the table are zeros.)

FROM TO STATE
State| Decision { 1H 1L 2H 2L 3H 3L So
IH A 2 .3 .5
S 2 .6
1L —
I 3 .6
D .8 2
ZH
A 3 .4 .3
D .4 4
2L S 3 . 6
I .2 8
D .9 1
3H
A 3 .6 .1
D 3 . 6
3L
S .3 7
Figure 3.1
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We briefly review the theory of section 4. 8 in order to formulate
a model for this example. Recall that p1i<j is the probability of tran-
sition to state j given state i and decision k, We number the non-
terminal states i = 1,.,.,6 and let Wy be the probability of termination
in state So starting from state i. From section 4. 8, there is a policy
(a decision for each state) which is simultanecusly optimal for all
starting states. Now, for each fixed policy, ‘he probability of
absorption in state So is the probability of transition to So in cne siep,
plus the probability of going to some state other than S, and then being

abeorbed from there. The optimal prebability of absgrption is then

given by

. max k
{40) w, = DBX Pig +L
o

k .
i e D wj] i=1,...,6

Aij

i1
J=1

Notice that the probabilitv of transition to state L, does not appear in

‘the above equation. Further, equaticn (40) is equivalent tc equation {32}

with pli(s being the immediate payoff for decigsion k and state i. Hence,
o

{40) may be solved by the linear program (34} 2nd {35). Lessz compu-

tational effort is required to solve the dual of {34} and {35}, and we

exhibit this dual below.

& M
Max & % p X.o
=1 k=l g ik
{41)
1";:5 6 My
x, ~ & T pix,=1, j=1,...,6
kei 5 jaf k=i B K

TRy
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In the preceding linear program, the variable x;, corresponds to

state i and decision k. As we have shown, the optimal positive vari-
ables x; will designate an optimal policy. (For each i, exactly one of
the Xk will be positive.) Also, notice that only the ncn-terminal states

are included in (41).

The data from Figure 3,1 is arranged in the following tableau

format for the linear program (41).

21 X22 *3) *32 *41 *42 *43 *51 *s2 %61 *62

1-.2 -2 -. 8 -. 4 =1
-3 1-.6 1 -.2 -. 4 =1
-3 1 1-.3 -.3 -9 -.3 =1
-. 6 -.4 I 1-.6 1 -1 -. 6 =1
-.2 1 1-.3 -3 =1
-. 8 -.6 1 1-.7 =1

Figure 3.2

The above linear program was solved by a standard code on the CDC 1604
comnpiuter, The resulting optimal policy and the probabpility of a successiul

attack starting from each state (dual variables) are shown next.

g
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Optimal Preob of a
State Decigion Successful Attar:k1
1H A .962
1L I .9
2H A 1
2L I 1
3H b 1
3L S 1

The optimal policy is then as follows: if the contact is held at range 1
or 2, then attack; if the contact is lost at range 1 or 2, then increase
the range by one unit; if the contact is held at range 3, then decrease
the range by one unit; and if the contact is lost at range 3, then stay at
range 3,

This example demonstrates the utility of the models presented
in this chapter. They rmay be used to describe tactical situations where
the searcher has some information on the pesition or\status <‘>f the
submarine, Of course, the inclusion of the states in the model permits
the use of such tactical information.

We bzve used the perfect information model of the last section to

€ a situation with two iterminal states, This extension was

The numbers in this example are somewhat gptimistic.
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poss’ible because we were maximizing the probabilily of terniination in
state So‘ If, instead, we wished to minimize the time to arrive at
state S,, then the rnodel will require some non-trivial modifications,
In the next section, we modify the perfect information model to include

more than one terminal state in general,
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4.10 Two Terminal States

We consider a game with perfect information and two termin:l
states., One of these terminal states, state 1, is favorable for Pl and
the other t{erminal state, state n, is unfaverable for P1. When the
pursuit has not terminatcd, it is in exactly one of the states
i=2,...,n-1, Pl's objective is to minimize the expected cost of
arriving at state 1. For example, the pursuit may terminate when Pl
catches P2 or when P2 gets away from Pl. Here Pl is interested in
minim:zing the cost of catching P2, Notice that we cannot achieve this
objective with the model of section 4. 8 because, in general, this model
would simply minimize the cost of termination in either state 1 or n.

We develop a model with the already indicated objective. A
device first introduced by Derman [1] is used to transform the given
absorbing Markov chain to an equivalent irreducible chain. The cost
of absorption in state 1 can then be expressed in terms of steady state
probabilities, The problem of finding an optimal policy becomes a
linear fractional programming problem, and this program .s reduced
to a linecr program by the method of Charnes and Cooper [¢]. When
state 5 is deleted, the resulting linear program is precisely the dual of
the »rogram given in secticn 4,8, Hcnce, the approach taken here is,

in a sense, ''dual' to the approach used in section 4. 8.

-
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As before, we define the following parameters for states
i=(2,...,n-1). Let a]; be the cost of decision k when the pursuit

is in state i and let p_, be the probability of transition to state
1

jli=1,...,n), given state i and decisionk (k= 1, ... Mi)' The plicj

must satisfy

n
pr20 popi=1 1=2%...,n-1
i o1 o k=1,...,M

We will define the transition probabilities and costs for states 1 and n
later,

We introduce the set S of all randomized decision policies
D= {Dik} where Dik is the probability of decision k given state i. We

require

(42) L D, =1

Then, the stationary transition probabilities, pij’l and the cost

of passing through state i, a;, for each fixed D¢S, is
M; M;
i i
(43) p =% D p° i,j=2,...,n-1; 2 =% D a* i=2, ...,n-1
ij k=1 ik ij i o1 ik i

We require the following assumption:

ion A; From each statei{i=2,..,,n-1) and for all

p.. is the probability of transitiqn to state j given state i for
1
some fixed D#¢S,

'
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De&, state ]l is reached in a finite number of steps with probability one.

We expect Assumption A to hold in practical situations. For,
policies are not permitted which result in (i) cycling between states or

(ii) termination in state n only. Policies of type (i) or (ii) yield an

infinite cost of arriving at state 1. Hence, we do not restrict the model

by ruling out these possibilities,

We introduce a device due to Derman [1] to transform the
abso1:bing Markov chain nto an equivalent irreducible chain.
Accordingly, i:or .all De¢S, we define the following transition proba-

bilities or states 1 and n,

1 1 . )
p]_i-‘n-z , pni--——-n-z 1—2,...,11 1
(44)
pli=0 ’ pni=0 1=1,n

The transition probability matrix for each fixed D¢S is then

1 2 n-1 n
12 L1
1 0 n-2 m-2 - n-2_n-2___0_|
2
n-1 pij
SRS U SR O
n 0 n-2 n-2 n-2 n-2 0

As may be noted, when the pursuit arrives at either state 1 or a, it is
etarted over agdin in one of the states i = 2, ... ,n-1 with uniform
probability.

From Assumption A and equation (44), it is clear that the set

)

Tk . ot
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of states {1, ... ,n) is irreducible for all D¢S, We will depend heavily

on this fact to formulate the objective function and the model. Let rp

3

be the r-step transition probability from stateito j(i, j=1,...,n}.

ij

Consider a pursuit which lasts exactly m > 1 steps and for fixed D€S
evolves according tc the transition probabilities given by equations {43)
and (44). Let MD(m, i) be the expected number of occurrences of
state 1 when such a pursuit starts in state i, and let Cp(m, i) be the
expected cost of termination in state 1. When the pursuit starts in
state i, the expected cost of the rth utep is
3:, rpija. i=1,...,n,
j=1
Hence, CD(m, i} is given by
m n .
L I Py

. r=1 j=l
C , D e e ettt
D(m ? MD(m, i)

e
[
™

and m is sufficiently large to insure that M_{m. i} # 3.

D

lim

CD=m @

CD{m, 1y i=13,...,n all De5,

Theorem 6 establishes that the above limit axists and is indepzndent of
the starting state i. Notice that Cyy is the expectsd cost of termipation
in state 1 regardleas of the starting staie i. We seek to find a D$S
which minimizes Cp over all DsS,

Theorem 6: The expected ccst of termiration 1o state 1, starting

PRI
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from state i and for each fixed policy D¢S, is independent of i

(i=1,...,n)andis given by

(45) Ch=-- Em
D T - . a.
n, j=1 7

where the II; are the unique solution to

n
(46) O.- 2 0O p..=0 j=1,...,n
Jjoq=1 11j
n
£ n =1
j=1
Proos
m n r
L L “p. .a,
c = MM ooy lmorm r=1 sl ‘“]
D m e DYV m mLMD(m,i) m

- lim m ']" lim 1j=1 T
[m ® MD(m, i) lm o m J

provided both of the limits in the above product exist,

But,
. . pP.. &, . P..
lim r=1 j=1 ij j a lim rel ij
= Zai s -]
m o m F1l" m = m

Since the set of states (1, ... ,n) is irreducible for each D¢S, the

Mean Ergodic theorem holds, i.e.,

W"'W
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m
by
. Z Py ;
lim =% =@, j=1 & n
m © ——-—————m J » .2

This limit is independent of i (i = 1, ... ,n) and the nj are the unique

solution to (46). (These nj's also satisfy I'Ij >0,j=1,...,n)

Now
m n
L L 'p..a,
lim r=lj=1 = 7 B
=% N.a
m m . J J
j=1
We also ha.ve1
lim m 1

m = MD(m, i) o

or L is the mean recurrence time of state 1. This iimit is well

Iiy
defined, since Assumption A guarantees Hl > 0.

Putting the above results together, we get

n
Z Ia

Ch = .
J

1
Dom oy

This completes the proof.

We want to find a D" ¢S which minimizes Cp over all D¢S.

From Theorem 6 and euuations {42) and {43), D" ig an optimal sclution

lsee Parzen [1].
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to the following nonlinear programming problem. 1

Mi L 2 1nD k
m = 5 . ka-
Wy 2y Y
M.
n 1
I - I ﬂilepl{}- i=1,
i=l k=1
n
(47) =1
, j
j=1
M;
Djk=1 j=1,...,n
k=1

We transform problem (47) into a linear fractional programming

preblem by means of the following change of variables,

{48} xjk= Hijk i=L, ...,n; k=1,,.

M;
From {48) and § D'k =1, we get
k=

ot
1,

Probiem {47) bacomes

f

e
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i . . . .
For conveniance, in the following formulation, we have k = 1

for states 1 and n and pg'; {i = 1,n) is then given by equation (44).
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n Mj
'fl kel i %
Min 3
M;
L X1k
(49) k=1
. M; n M k
Subject to: 3 xjk -3 X pij =0 j=1, ,
' k=1 i=1 k=1
M.
n
(492) Z L oxpo= 1
j=1 k=1
xjk 20

Clearly the transformation (48} is one-to-one between optimal solutions
to (47) and (49). Hence,_we may solve {47) by solving (49).

We use the method of Charnes and Cooper [6] to transform
problem (49) to an equivalent linear program. To establish this equiva-
lence, we observe that the convex set of feasible solutions to (49) is

M,
bounded and non-empty, Further, II1 =k§1 X1 > 0 for all feasible
solutions to (49). Hence, the following transformation is one-to-one
between problems (49) and (51).
M;

n
. j=1 k=1 k




Yo
(¥}
ot

Using (50}, the equivalent linear program to {49) is1

I\/IJ an M ‘
51 Yo ~ & T 5. 0 i=1 , 0
(1) k=1 Tk 1:1 k=i i‘]k pl" )
M,
L
oYy =}

We make one further reduction of problem {51). Aciually, there
are no decisions {o be made when tha pursuit is in the {erminal states

i=1orn. Hence, we eliminate the variable 5 ¥ix and ¥ from

rcblem {51}, By mezns of couation ‘144) and suome algebra, problem
P : % . g P

(51} is equivaient “to

Min z -
j: 2 k=1 y.]k 3

M; n-1 Mj

52) £ y. - % I v,(p’;+p’.‘) =2 j=2,...,n-1

k=1 ¥ 122 k=] K in no2
n-j i
z I Yix p = 1
i=2 kel il
vie 20
__T . Mj
The cousiraint {452) bocomes & T Yy = b, since this cen-
j=1 k=1
straint is redendza’ in (51) we have ozmtt d it,

For convenience, we have taxen a}; _— 0.
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From problem {52Z), we obtain a final result concerning the
nature of the optimal decision policy. The optimal policy is charac-
terized by

1 for k = k.
(53) DY = {

J j=2,...,n-
Ofork#kj J ! n-1

where kj is some decision icr state i
Of course, {53) says that a ''pure policy! is optimal, i.e., for
each state pick some alternative with probability one. Equation (53)

follows from the following observations. From the constraints of (52)

-

. iy nzd Mk
5 } oy i 'y o ‘e . s
an optimal sclution { K} satisfies :'}'_2 151 Yik (pll +Ppj, )2 0 and

hence,
My

{54) E v >0 =2 ...,n-1
x=1

Now one of the eguality consirrints in (82) is redundant. Thiz may be
verified by swnming cver the first n -2 consiraints, Hence, {52) has,
at most, ©~Z iinsarily inaependent co_straints {excepting non-negativity
conditions); and, hence, 2 hasic feasible solution has ot mest -2
pogitive variables. Further, at least one baeic feasible sclution must
:2 gptimal, By {54) and the fact that at most n - 2 variables can bs

positive in an optimszl solution, we have

\
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y¥ >0 fork=k,
Jk J

y* =0 fork#k, | a . ’
Jk J
where kj is some decision for state j.
Now, by the transformations set up between the D’:k variables i
and the y}"k variables, we conclude that our assertion (53) is correct. ‘
We have shown how to formulate a model for situations involving
two terminal states and the objective of minimizing the cost to arrive
at one of these terminal states. In section 4.9, we gave an example
of a two terminal state situation. If our objective for that problem was
to minimize the time to complete a successful attack, then the model
presented in this section is applicable. All immediate payoffs, a?,
are taken equal to one to achieve the 'time’' objective., As may be

noted, the approach taken here results in a linear program which is the

dual of the linear program obtained from the functional equation app::é»a,ch.
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4.11 A Firnite Terminating Stochastic Game

We return to our idealization of ASW and introduce the ad-
itional rule: the pursuit is terminated in a specified finite number

of mocves if it has not already reached a terminal state, In ASW,
this forced termination may be caused by one of a number of factors,
such as resource limitations or submarine endurance time when
submerged. This means we have a finite version of a TSG. It termi-
nates in m moves or a terminal state, whichever occurs first,

The follow-ing notation is introduced for the finite TSG. Consider
a collection of rmutually exclusive and collectively exhaustive states
anumbered i =1, ... ,N. Terminal states are included in this collection,
and the finite TSG must be in one and only one of these states at each
movet=1,...,m. When the game is in state i, we number the avail-
able alternatives for players 1 and 2 respectively, k=i, ... ,M; and
h=1,...,N;. If the finite TSG is in state i at move t snd players !
and 2 cbocse alternatives k and h respectively, then the payoif from

player 2 to player 1 is

Kkh i=1,...,N k=1,...
a3 . so1,...,m h=1,...,

"
2

[N

and the game trancits to state j with probability

]

PF.h(ﬂ, Lyl ..., N k=1,...,M
ij t=1,...,m h=1,...,N

'
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Since the states are assumed to be mutually exclusive and collectively

h
exhaustive, "the pli(j {t) must satisfy

n .
5 pi}h () =1; also, pli;h (t) =0, allij k, h,t.

j=1
Finally, we assume that the players are informed of both the state and
the move before they choose their strategies,
One will note that the above structure is different from that of
the infinite TSG in the following respects. In the finite TSG:

1. The payoffs and transition probabilities may depend on the
move,

2. There may be a zero probability of termination in one move.

3. The play2rs know the state of the game and the move when
they choose their strategy for the next move.

Thus, if the game is finite, more flexibility may be permitted in the
model, i.e,, items 1 and 2 abeve.

Next, we show how the value and optimal strategies of a finite
TSG may be computed. As will be noted, the methods and represen-
tations developed here are closely related to those of the infinite game.

Let v. (%) 1,
: [N

’ i\i} be the minimax of the total expected pay-
ments received by player 1 from the remaining m -t moves when the
game is in state i at move t, and let V(t) = (v1 (ty, ..., vN(t)). Now,

V{m) is the minimax of the total expected payments with zero moves to

go; accordingly, V(m) = 0. For convenience, we introduce the M; x N,

aaras

21 L Sk deb fe dorn




—r—a

ROAEDAI L wrvoman

T

156

matrix Aj,(a) whose k - hth element is

kh k=1,... , M

N
al.Ch (t) + % p.. (t)a,
' =1 J R=1,...,N

j=1
The minimax of the expected payments with one move left, V{(m - 1), is

clearly given by the following set of equations:

Vi(m - 1) = Vval [Aim(V(m))] = Val [Aim (0)], i=1,...,N.

Let }%i(m) and ?i(m) be optimal strategies for players 1 and 2 re-
spectively in the game Aim (V(m)). Then it follows that
)E(m) = )21 (ra), ..., }EN(m) and '?(m) are optimal strategies in the
mt? move of the finite TSG. Since the payoffs and transition proba-
bilities depend only on the move and the state, which are known to the
players, it may be established by induction that the following relationship
obtains:

i=1,...,N
(54) V. (t-1)=Val[A (V(t)],

1 it
t=1;...,m

According to equation (54), V(0) is the value of the finite TSG.

Let }?[i (t) and ’?; (t) be optimal strategies for players 1 and 2 re-

spectively in the game Ait (V(t)) {: I, ... ,rl\:l} Then it is clear,

=1,...

from equation (54), that X(t) = (}El(t), ,)“{N(t)) and

'xc(t) = (’xtl {Ths o0 '!J:N(‘t)) are optimal strategies in move t of the firite
TSG. Note that }?(t) and ¥ (t) depend, in general, on the move of the

game and are, therefore, not behavior strategies. In general,
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behavior strategies are not optimal in a finite TSC.

Returning to the linear program L.P. (i, V(t)), we see that it
is a linear prograrnming formulation of the game Ait {V{t)) with the
pay})ffs and transition probabilities depending on t. To compute the
value and optimal strategies for the finite TSG, we can start with
V(m) = 0 and compute }E(m), {'(m), and [}(m) from {L.P. (i, V(m))}.
i=1,...,N. Now, set Vim - 1) = ﬁ(m) and compute }E(m - 1),

’;'(m - 1), and I}(m - 1), and so on. Thus, the value and optimal

strategies may be computed recursively by linear programming.
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CHAPTER V - MULTIPLE CONTACT ALLOCATION MODELS

5.1 Introduction

We develop models for the allocation of hunter-killer forces to
multiple contact areas. The central problem is to determine an optimal
division of effort, between several contacts, subject to typical con-
straints, To focus attention on the ideas, we consider hunter-killer
operations which consist of at least two separate contact areas. For the
first model types, we assume that effort is allocated to the contact areas
only once during the planning horizon, We then relax this restriction
and formulate a dynamic allocation model. Now, before introducing
these models, we discuss the predominate features of the tactical sit-
uations which will be considered.

In a wide variety of military problems, the force level required
to accomplish a given military mission is uncertzin when the aliocation
of forces is made. One of the primary causes of this uncertainity is
due to lack of information on enemy forces and capabilities, To reflect
this uncertainity in the model we assume that the amount of effort
which is required to accomplish a specified military mission in each
area is a random variable with a known joint cumulative distribution

function (c.d. f.). This c.d. f. may be rather difficult to determine in

158
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practice! Nevertheless, we assume that it can be determined and sen-

sitivity studies can then be conducted to deiermine the effects of esti-

mation errors and data variations, After the models are formulated,
we can also ascertain the effect of treating the random requirements
as deterministic quantities,

Next, we introduce the objective functions which will be em-~
ployed. These objectives are oriented tow'ard optimizing a measure
of overall mission success. From the specification of the random re-
quirements, we can readily relate individual mission success to over-
all effectiveness. For we have assumed that the military mission in
each tactical area can be accomplished if the allocated force level
exceeds the ubserved random level. Hence, our objective functions
measure the ''difference' between allocated levels and the random re-

quirements, In particular, the following two objectives are used:

1. Maximize the probability that all allocated force levels

'? simultaneously exceed their random requirements. This is equivalent
t

to maximizing the probability that all missions are simultaneously

;

£ accomplished.

2. Minimize the total expected shortage between allocated and

required levels,
In some situations, time may be an important measure of ef-

fectiveness, For these cases, the following objective is employed:
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3. Minimize the expected distribution time to achieve a
specified probability that ail requirements are met.

Each of the above objectives will be studied for the "one-shot"
allocation models. Objective (3) is the only one which is employed for
the dynamic model,

We have introduced the reguirements and objectives which will
be taken for multiple contact situations., Now we discuss a measure
of available effort. We measure the available effort in some meaning-
ful unit such as a ship, surface attack unit, or one flying hour. If
several types of effort are available, then all effort is measured in
terms of a single ''standard' unii. However, the models could be ex-
tended to include different types of effort. Depending on the measure-
ment adopted, effort may be treated as continuous or discrete. For
instance, if a unit of effort is one flying hour, then effort may be
treated as continuous. On the other hand, a unit of one ship will usuaily
require a discrete treatment, Both discrete and continuous measure-

ments will be studied for most of our models,
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5.2 The Probability Model

We formulate a model with objective (1) of the last section.
Methods of solving the model are given and the detailed solution for a }

uniform distribution is presented. This is to be a '"one-shot' alloca-

ticn problem; only one allocation is made to each contact area.

We assume that n contact areas are specified and dj is the
amount of effort required in area j(j =1, ... ,n) to accomplish the
mission there, Further, each dj is a random variable and the joint
cumulative distribution functien (c. d. f.) of dl' dz, ...d is assumed

n
known. We let F be this joint c. d. f., then

s Vs oes =Pr(d. £y.,d <y,...,d s ,
F(V1 Y, yn) r(1 y;pd, =y, n yn)

where ""Pr'' denotes probability. Let X; be the amount of effort to be
assigned to area j(j =1, ... ,n) and let "a'" be the total amount of effort
available. Now objective (1) of section 5.1 gives way to the following

optimization problem:

y X )

Max F , ) oo
X (xl x2 ) N

(1) .
Subject te: (la) I

ija
j=1

XjZO

The objective is to maximize the joint probability that all allo-
cations X; exceed their random requirements d., Of course, the funda-

mental notion that dj is the amount of effort required to accomplish the
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missicn in area j leads to the interpretation that we are maximizing the
probability that all missions are simultaneously accomplished. The
restrictions in model (1) are on the total amount of effort available and
on the non-negativity of each individual allocation xj .

The burden of optimization in (1) is placed on the objective
function. Later, we consider models with more complicated con-
straints and a simplier objective function. This model embodies the
essentials of H. A. Simon's [1] satisficing approach. For we maximize
the probability that a specified goal is reached. In addition, this ob-
jective is similar to the one used by Charnes and Cooper [4] in their
so-called "P-model". Next, we discuss methods for solving problem
(1).

We apply the Kuhn - Tucker conditions of conwex programming to
(1). To employ these conditions, we require that F is continuously
differentiable., Without loss of generality, we may replace the inequal-
ity in (1. 1) by equality, since F is a c. d.f. and therefore it is a
monotone non-decreasing function. The Kuhn - Tucker necessary con-
ditions are the following:1 if X = (x, xp, ... ,%,) is an optimal solution

to (1), then there exists a scalar y such that X and , satisfy

IOf course, '‘constraint qualification' is satisfied by the con-
straints of (1}.
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If Fis a concave function, then the above conditions are also sufficient
for X to be an optimal solution to (1). These equations are rather diffi-
cult to solve in general because (2) and (3) are usually non-linzar.
Nevertheless, we will apply these conditicns to a special case of {1),
but first we examine model (1) when d;, ... ,d, are independently
distributed.

Numerous tact'ical problems have independent d;, dp, ..., d.
We would expect independence when an allocation to one area does not
have an appreciable spillover effect on other areas. Indeed, contact
areas are often widely separated and nc interaction occurs between
areas. Furthermore, independence would probably be required in order
to empirically determine F, With the asm;mption that dy, ..., d, are
independently distributed, we obtain

(5) Fxy, ... P X)) = Fl(xl) F,(x,)... Fn(xn)

h F.(x,) =Pr(d, <x,
where J(x_}) r(J xJ)

Now, we may maximize the logarithum of the function in (5),

- .
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since the log is a monaione transformation and (5) is non-negative. With

this transformation, problem (1) becomes

Max % log Fj(xj)

j=1

(6)  Subject to: > x; = a
j=1

Xj 20

Perhaps the most general method which is availabie to solve {6)
is dynamic programming, It is especially useful when the x; are re-
quired to te non-negative integers. Since the application of dynamic
pregramming to allocation problems has been extensively studied (see
Bellman and Dreyfus [ 1]}, we do not dweli on this method here. Instead,

we turn to an important special case.

Bl iadnted The apecial case is studied where the random variables dj are

independent and uniformly distributed between a; and bj . A uniform

distribution implies that the actual requirement occurs at random.
Roughly speaking, no particular requirement is preferred over any
other requirement,

With the uniform distribution and independence assumption, we

have
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0 X, <a
J J
(7) F (x) = _BJ_X'.’_a,j .a.%x <b,
J 3 s T %) 3 ]
J J
1 x 2b.
J J

n
Nctice that when z a; 2a then the maximum in (6) is negative infinity
.j=1

and when % bj <a then all solutions w‘ii:h each X3 2 bj are optimal
j=1

Hence, we restrict our attention to the following non-trivial case:

n
(8) % aj<a.< b bj
j=1 j=1

For convenience, we introduce the transformation

(9) vj = % - 3

andweletc:a-% a.>0, c:=b;-2a,>0
j:l‘] J J J

then, when (8) is satisfied, problem (6) with equation (7) is equivalent

to

n
Max ¥ log ¥;
j=

"

n
(10) £ y=c
j=1

0 SYJ ‘SCi
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Now the optimal solution to (10) may be readily obtained by the follow-

ing method. For simplicity, suppose < 4 c, ... % c - Then the

following allocation is ontimal

. [od
yl - mln(Ci,;)
(11) .
1~
I T
v min (c;, j= ) =2, n
1 i a-i+4+1
l‘ Yioi Hy; 1 F ¢

The optimality of (11} can be routinely verified by show.ng that this
solution satisfies the Kuhn - Tucker sufficient conditions. The pro-

cedure given by (11) allocates an equal amount to each activity until

Y =€ Then equal amounts are allocated to the remaining activities

n

n
until y2 =c_or % y. =c. This process is continued until % y, = c.

i=1 ! i=1

To illustrate, consider the following simple example:

The optimal solutior from (11) is
= 2, = 3, = =7/2
vy v, Yy =¥, =7/
We examine the tactical consequences of the solution given by
(11). This optimal solution requires a maximal 2llccation of ¢, to

certain areas, namely those areas where a probability of one can be

achieved with the least amount of effort. All other areas which have

oo oty st
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not achieved a maximal allocation receive the same amount of effort
which is groater than the largest <; for those areas which have
achieved a probability of one.

This policy is appealing in some aspects but it has drawbacks
introduced by th:e lin _arity of the c. d. {,'s, namely maximal allocation
to some areas. This phenomena would disappear with c. d. f. 's of the
non-linear type such as those of the exponential family. Rather than
pursue these points further here, we turn to the second objective of

minimizing the expected shortages.
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5.3 Expected Shortage Model

We formulg.te the expected shortage modei and show that the case
of independent uniform distributions is reduced to a quadratic program-
ming problem. The tactical motivation for this model is the same as
for the one of the last section. Hence, we proceed directly with the
formulation of the model.

Our objective will be to minimize the expected excess of demand
over supply (allocation). Therefore, we introduce the following

shortage function.

0 x.> 2
(12} 85 (x5, 2) = J j=1,...,n
Z-x x sS2Z
J J

where as before x, is the amount allocated to area j, Then ¢ (x , Z)
J J 2

is the shortage in area j, if Z is the actual demand. Let Fj be the

marginal c.d.f. of d_and let E (x ) denote the expected value of
J J J

¢j (xj , Z). Now we assume that each Fj is sufficiently well-behaved so

that Stilges integretion by parts may be performed. Then,

J
® X

J -
Jo (Z-xj)dFj(Z) ‘ro (Z-xj)drj(Z)

4OH
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X %
o Tur i
Ej(x) = 4 - X, [(z x) Fyz) | ) Io Fj(Z)dz]

x.
J
:p,.-x. -X,F.(O)'l"j\ F(Z)dZ
J J J J o J
where p,j is the mean of dj.

We have Fj(O) = 0, since dj is a non-negative random variable.

Hence,
X.
(13) E (x,) = x. + J JF(Z)dZ
(s L T TN P

According to our stated objective 2 from section 5.1 and the
previously indicated constraints, we formulate the following
optimization problem:

Mi 3 A EL(
in . E.(x,
j?l J 3 J)

n
(14) (143) = ija
j=1
x.20
J

n
where the )‘j are specified weighting factors with .20, g )‘j =1.
j=1
These weighting factors may be used to r2flect the relative irnportance
of shortages between various areas, )
Problems similar to {14) have been investigated by other authors.

For example, Charnes, Cooper, and Thompson [ 2] investigate a general

class of problems in '"constrained generalized medians" 1 and (14)

1 . . .
See this reference for an extensive list of references,
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belongs to this class.

Now Ej (xj) is a convex-decreasing function of xj and, therefore,
the inequality (14a) may be replaced by an equality, There are two
general solution technqiues which may be applied to (14). The first
technique is dynamic programming. Of course, thiz method is es-

. pecially useful when the xj are required toc be non-negative integers.
Dynamic programming does not require many special properties of the
function Fj and it is an efficient computational technique. (See
Bellman and Dreyfus [1].) The other tgchnique which may be used to
solve (14) is the Charnes and Lemke [1] minimization technique for
ncn-linear separable convex functions. This technique is especially
useful when more constraints are adjoined to (14).

For purposes of comparison with the previous section, we
discuss the special case when the dj are independent and uniformly
distributed. Accordingly, we assume that Fj (xj) is given by equation (7).
Then Ej(xj) will take the following form

. -xj, Oij<aj
Ej(xj) = J . a.j s xj < bj

2

X a.:
(TR x .+ (_;]_.-_._J_)__
J J Z(bj-ai)

.S X.
L 0, bJ xJ

1
where y, =a_ + (b, -a).
L T T S R

As may be noted, Ej (xj) is either a linear or quadratic function of
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X5 (see Figure 5.1 below).

/‘ linear

J(xJ;

/—- quadratic

Figure 5.1
To reduce our model to a quadratic programming problem, we

introduce the variables v and w_ with
3 J

Xx.=v.+w, j=1,.,..,n
A R I
(16) 0<v.<a,
J )
0sw.<c, where ¢, =b, -a.20 j=1,...,n.
J 3l J 3 J
However, we must require w.j = 0 when vj < aj. This is accomplished
by the non-linear conditions
wJ.(v. -a,)=0 j=1,...,n

J J

These restrictions can be maintained by restricted basis entry, With

the above change of variables, ihe expeciation of (15) becomes
1 2
(17) E =p, -{(v.+W) 4 W,
J J J J ch J
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Problem (14) now gives way to the following quadratic programming

problem. 1

n 1 2
Max § A. [v.+w.--——w.

n

i8 . . =

(18) .Z,‘ vJ+wJ a
j=1

w (v, -a)=0
i

0<sv <a,
J J

0sw. < c,
J J

Any of the standard quadratic programming methods can be used to
solve (18), Of course, bounded variable techniques can also b~
employed to substantiaily reduce the size of the constraint set and
thereby improve computational efficiency.

FO‘;I.' the uniform case, we compare the expected shortage model

to the probability model, We take A = 1 j=1,...,n in (18),
J

n
since the probability model maximizes the probability that all missions

are simultaneously accomplished and therefore the missions are equally

weighted. Notice that we will have a nontrivial optimal solution for (18)

n
when 1 2;2 2. This was not true for the probability model. To obtain
j=1

e ———

' The constant Z )\jy,j has been dropped from the objective
function and the optimization has been changed to maximization by
multiplying the objective function by «1. We have also excluded the

trivial case }; bj < a and this permits us to write equality in the second
constraint.
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a direct comparison, we require ''a' to satisfy

(19)

M

n

a.sas 5 b,

S

The optimal solution tc (18) will the: have all v_ = a_, so we delete the
J J

v variables and the non-linear conditions w_{-r_ - a_ ) = 0; then the w,
J J J J

variables of (18) correspou. directly to the yj variables of {10)., When

(19) is satisfied, then (10) and (18) Lecome

n n 1 2
Max 3 logy. Max § | w, - 5= w, ]
j=1 J j=1 J Cj J
(10a) (18a)

n n

D y.=¢ L, w.=¢

X J . J

=1 J=1

C<y.sc, 0<sw. ¢,

5l J J

In general, the optimal solutions to (10a) and (18a) will not be
the same. However, they are the same if all cj are equal, This in
turn is true if and only if every mission has the same variance. In
other cases it is difficult to obtain direct comparisons between (10a)
and (18a) unless the constants c:j are known. But, since the constraint
sets of (10a) and (18a) are identical, differences in optimal solutions are
attributed to differences in the objective functions. Next, we take up
a different approach to the multiple-contact problem via the constructs

of chance-~constrained programming.
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5.4 Chance-Constrained Distribution Model

In this section we introduce a more complicated model of a
muitiple contact problem. This model also utilizes the concept of
random demands which are required to accomplish a specified mission,
However, here we explicitly recognize that the units of effort may
come from different origins. The problem is to minimize the ex-
pected distribution time to accompiish each mission with at least a
specified probability., We develop a chance-constrained distribution
model of this problem.

To forrmulate the model, suppose that ai units are available at
some location (origin) i (i=1, ... ,m), where a, is a given non-
negative integer. Further, assume that the number of units required
to accomplish the specified mission at some location (destination) j
{j =1,...,n)is a non-negative discrete random variable dj with the
known marginal c. d. f., Fj . Of course, some of the origins and
destinations may coincide. Also, F, may be a degenerate distribution

J
for some destinations, giving rise to a deterministic requirement.

The above assumptions lead directly to distribution type con-

straints. One set of constraints is as follows: the amount sent from

any origin cannot exceed the amount available. Then, letting X, be the

amount sent from origin i to destination j, we get

e ke S . R
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(20)

[T o R
»
12N
o
[}
n
Pomt
o]

13 i
j=1

The second set of constraints is written to reflect the random nature

of the requirements. The value of the random variable dj is observed

after the allocations are made., In the face of thi ' uncertainty, we

employ the ingenious notion of chance-constraints due to Charnes and

Cooper [2]. These constraints arel

m
21 Pr {2 x,.=2d, }zc. i=1,...,n
(21) Z 5%y i J

where the < are specified constants. The double inequality in (21) reads

m
as follows: the number of units sent to destination j b xij) must

A=

exceed the actual requirement at least 100 cj % of the time, Hence,
these constraints guarantee a stipulated level of protection against
shortages at 2ach destination. In addition, we will place non-negativity
restrictions on the Xij .

As mentioned previously, our objective will be to minimize the

expected distribution time. Accordingly, we let 1:ij be the time for one

unit to travel from origin i to destination j, where the tj; are random

.
.

variables with knewn means. Then, our objective is

(22) Min E { zl: ? s % }

1”Pr" de¢notes probability in the following equation,

CERRE TR, ALk 7357 >
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where ""E' is the expectation operator. We let %ij be the expected value
of tij . Then, bringing together the above objective and tire already

indicated constraints, we obtain the following optimizaction problem. 1

(23)
(23a) Pr { z X 2 dj} 2 Cj

Problera {(23) is distribution model with the chance -constraints (23a).
Fortunately, we can solve this model by obtaining ar equivalent distri-
bution model with no random elements, a deierministic equivalent. 2

To proceed, we rewrite equation (233) in terms of the known
c.d.f. s, i.e,

(24) Fj (xj) 2 cJ.

where X, =X x,.
J i i)

Recall that dj is a discrete random variable and let

k=0,1, 2, .
. =Pr{d <k} =F (k) s 2r G
ka {3 } J( i=1,...,n

1'I‘o reduce the objective function, we use the fact that the ex-

pectation of a sum of random variables is the sum of the expectations,
The approach used is due to Charnes and Cooper [4].
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To obtain the deterministic equivalent, w=~ define the function I‘:i

Y

which is a pseudo inverse of Fj .

_ [O y<o0
(25) Fi(y) =4
k < k=0,1,2,.
L P a1 SV 5Py

For each j, the relationship between f‘j and Fj is depicted by

Figure 5. 2 below,

1 ¢+ ————
; F,
: F (x) J(Y)
i J
; 3 r v
i P., + —_—
! 2 J
+ — 2 E——

le
{
:‘ 1 +—
} | S,

p.
f 10 . . 0 R .
¢ — 2 4 1 § L ] T
i 0 1 z 3 x P.o Pji1 P, 1
g
S‘i Figure 5,2
}.\

The following lemma provides the wanted reduction of equation
(24).

Lemma }: F (x )z2c, ifandonlyif x > F_(c.).
e ) J J J J

PR N Y S R =Y LY
[aLisiies r (x j 2 C

%,
J J J
Then, since Fj is rnonotone non-decreasing, xj 2 k where k is the

POy PR P v e S SN

unique integer which satisfies
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Pi k-1 % % Pi
Now, by definition of i‘j, f‘j (¢;) = k; hence,
xJ 2 J(cJ)

To prove the opposite implication, assume for fixed j that X; satisfies

xj 2 f‘j(_cj ). Then, xj 2 k where k is the unique integer which satisfies

<
Pir k-1 %7 Pk

But, Fj is monotone non-decreasing; thus,
F (x)2 F (k)
J ) J

Furthermore,

Fj(k)=P

. 2 C.
Jk

Hence, Fj (xj) 2 cJ. and the lemma is proved.

From Lemma 1, problem (23) and the followir g problem are

7

equivalent
Min 2 E %ij X35
1
26 <
(26) T X,
)
20a ..2 F, lc.
(20a) Z X5 2 J(CJ)
1
x..2 0
1)

Since problem (26) is a distribution model, the following well-known

roperties! of (26) or equivalently (23) are immediately available:
prop

lSee Charnes and Cooper [ 5].
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i. Problem (26) has an optimal solution if and only if

a, F.(c,
L 2,23 File)

1 J
2. Since the F, (cj) j=1,...,n are integers and the a,
i=1,...,m are asswumed to be integers, (26) has an optimal integer

extreme point solution,

3. The inequalities in (26a) may be replaced by equalities with-

out chaiing the values or the existence of optimal solutions (since all

~

tij 2 0).
Property 2 above is especially useful because no special integer
techniques are required to obtain an integer solution,
It is interesting to note that (26) is infeasible if there are not
enough units available to obtain the stipulated confidence levels in (23).
Of course, feasibility may be secured by reducing the value of some <5

or increasing the amounts available, One of the important features of

Y- (23) is that its deterministic equivalent (26) has a dual and, trerefore,

dual interpretations can be obtained. The dual evaluators indicate the
change in the objective function per unit change in a, or in f‘j (Cj) . This
leads to an immediate evaluation of the effect of a change in ¢; on the
optimal tolution. Of course, this effect is discontinuous since f‘j is a
step function (see Figure 5,2). In addition te dual evaluation, senasitivity

and parametric studies can also be implemented.

We conciude discussion of this model with an example. Suppose
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that a known number of ships are available at each of four origins and
that specified missions are to be accomplished at each of six desti-
nations during the planning horizon. This iunitial tactical configuration

is shown in Figure 5, 3,

0505

0, denotes origin i and Dj denotes destination j.

Figure 5.3

Some of the above origins and destinations coincide since units
are both available and required at these pointe, The tactical infor-
mation pertaining to the destinations is given in the following Takle 5.1,

We also have computed f‘, (c.).
J )
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F (k) _

j J c, F.(c;)

k=0 k=1 k=2 J
D, 0.2 0.6 1.0 2
D, 0.5 0.8 1.0 2
D, 0.4 0.9 1.0 1
D, 0 0 1.0 1. 2
D, n.7 2.9 1.0 0
Dy 0.7 0.9 1.0 1

DPemand L' stributions

Table 5.1

The mean travel times from each origin to each destination

"

tj | Dy | Dy | D3 | Dy | Dg| D | Avail
o, |2 | 3 4 6 8 | 10 3
0, | 2 | 4 4 3 7 8 2
0, | 4 | 3 0 3 3 4 2
o, | 8 | 5 3 5 0 3 2

Travel Times and Amounts Available

Table 5, 2

and the amount available at each origin are given in Table 5.2 below.
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As may be noted from Table 5.1, some destinations are more ‘''critical’
than others, For, certain requiremente musi be satisfied with higher
probability. In this way, the constants, cj’ reflect the relative im-
portance of the missions. Also from Table 5.1, a demand already
exists at D4 so that 2 units must be sent there with probability 1.
Finally, no units are required at D5 to attain the stipulated level of
protection against shortages and D5 is now deleted from the problem.

The data from Tables 5.1 and 5. 2 is assembled in the following

distribution tableau.

D, D, D3 . D4 Dy Durimy ; Avail
]
2 3 4 6 19 0
1@ | @ s
2 . 4 4 3 8 0
) ©) ® 2
4 3 0 3 4 0
% @ | @ ®| -
8 5 3 5 3 0
. ® | O
Req'd 2 2 1 2 1 1 ’

Optimal expected time = 19,

Optimal Tableau

Table &, 3

o

P
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The optimal solution is circled in the preceding tableau. An alternate

optimum is also available. Both optimal solutions are shown bel«w.

D
1 2
l/r Dl \ e 1
0, 0 0, 0,
2 2 2
y v LY 1 Y2
1 D 1 Yy D
D D 2 4
2 5 4
03D; — 0,D;,
1 1 . D
04D5 —————— D6 04D5 tonnd 6

Optimal Distribution Schedules
Figure 5. 4
As we have mentioned, there are a number of sensitivity studies
which can be conducted, Most of these are well understood, and we do
not dwell cn them here, However, we have computed the variation in
Cj which is allowed before the requirements f‘j (cj) change., These

computations are made from Table 5,1 and they are:

.6<c151.0, .8<czsl.0, 4<cy2.9
0<c5$ .1, .7<c6$ .9
Because the requirements are discrete random variables, consider-

able variation of the risk coefficients < is allowed without changing the

requirements in the deterministic equivalent, Nevertheless, the optimal
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solution is sensgitive to changes in cj if c.i is near the extremes of the
of the allowable range.

To sum up, the model presented in this section determines an
optimal (minimum expected time) distribution of units from their origi-
nal locations to contact areas. The number of units which will be re-
quired to accomplish the imission in each area is not known in advance,
but these requirements are distributed according to a known c. d. {.

We required .that the number of units seni to each contact 2rea must "
satisfy the actual requirement with at least a specified probability,

i. e,, the mission must be accomplished with at least this spe‘cified
probability, The model was then reduced to an ec.luivalent distribution

model with no random elements (a2 deterministic equivalent), Finally,

an example was given to illustrate these ideas,
©
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5.5 A Dynamic Distribution Model

We extend the model of the previous section to two periods.
This extension is dynamic because the two pericds are coupled to-
gether by using the same unirs in each period. The problem is to
minimize the expected distribution time, subject to constiaints on
the amounts available and chance constraints on the requirements.
This model is reduced to a deterministic equivalent by the use of a
zero-order decision rule for each period. A method is also propesed
which allows the decision variables in the second period to be de-
pendent on the actual requirements observed in the first period, The
method only utilizes zero-order decision rules.

To formulate the model, we assume that allocations are made
at the begim?ing of periods 1 and 2. We number the locations where
units are available and / or required j=1,...,n. Because of this
numbering system, some of these locations may have either nothing
available or nothing required. Let d;.( be the number of units required
to accomplish the specified missicn at location j in periodk = 1, 2.
Now d}
made, while djz is observed after the second allocations are made.
The d;c are discrete random variables with a known joint c. d.{. Let

xlf, be the number of units sent from leccationitoj (i,j =1, ... ,n) in

3

periodk = 1, 2, and let a; be the number of units available at location i

. is observed after the first and before the second allocaticna are

i ne <7 t————— A r—"
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initially. We introduce the following distribution constraints:

(27) P TR
J
(28) Pr {2 X,, 2 dl} 2 c%
i 1} J J
2 1 1
(29) Z x5 Lox D ox,fa,
J J J
2 2 2
30 Pr{ . zd.} 2 cC,
(30) P le 3 i
(31) xL %2 20
1) 1)

where c; and cj2 are specified constants with 0 < c‘l].( <1.
Constraint (29) is the only type not encountered in the last

section. It requires that the amount sent from location i in period two
2\ .
( N xij ) cannot exceed the amount available there
J

<a, + lei - xl> This constraint couples the distribution models
i ; i 1)
J J
of each period.
k -
Let tij be the time taken by one unit to go from location i to j

in period k (t:':j may be a random variable), QOur objective is to mini-

mize t:he total expected distribution time, i.e.,

. 21 1 42 2.
(32) Min ¥ tij xij + tij xij

i,j
where ‘E:] and ?:lﬁ denote the meens of tilj and tizj respectively.

We assume that bot.. xil_j and xizj are determined by zero-order

decision rules; then, by Lemma 1 of the last section, equations (28)
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and (" 0) are equivalent to

k =k, k
33 o > (c. =
(33) ‘? x5 ¥ (cJ) k=12

where f‘k (cl.t) is an integer determined from the marginal c.d.f. of
J J

d? (see esquation {25)).
From the above discussion, the model with objective (32) and

constraints {(27) through {31} is equivalent to the following deterministic

model
Min % %1 x.l. + %2 x.a.
i;j IJ IJ :J lJ
1
IRRSY s a;
J
1 =1,1
34 X, 2 F. .
(34) 2 x Fy ()
1 1 2
R TR B TR 2 TR
J J J
L x..2 f‘.z (c.z)
i 1} J J
x.l. . x.z. 20
1) 1)

Mow {34) has an optimal solution if and only if

n =k k 1
. ; . k=1, 2
zi;ale;FJ (cJ) 1

j=1

In addition, (34) has special structural features. Indeed, techniques

1'I‘hia!s follows immediately from the distribution properties
of (34).
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such as the mixing routine of Charnes and Cooper [ 5] are available to

exploit this special structure and thereby reduce computational effort,

However, for multiple coxntact situations, ''n'' would be on the o—der

of 10. In this case, (34) is a linear program with 200 variables and

40 constraints. This is not a large probiem for modern linear program

codes, Therefore, we do not dwell on Sp\ecial methods of computations,
We propose a method for implementing (34, An optimal so-

1 and x,z, . Instead of uring both of

¥ b

these optimal distribution plans, one can employ the following pro-

lution to (34) yieids optimal x

cedure. Use the optimal xilj from (34). The xZ which are actually

ij

employed are obtained by solving the one period distribution model oi
section 5.4, with FJ2 being the conditional distributicn of d").z given the

actual values of d; which have been observed, To reiterate, the

optimal xi, from (34) are used. The xf_ from (34) are not used, Rather,
J J -

we determine conditionally optimal xf?‘_ given the actual values of d?’
ij J

which are observed,
This dynamic model can also be formulated with a linear de-
cision rule. Only a verbal description of the procedure is given here,

since no new results are obtained when such a rule is employed. We

2

would write xij as an unknown linear combination of the random

. | . 2 . .
variabies dj . These expressions for xij are then substituted in {34),

and a deterministic equivalent for the case of normally distributed dé
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and d;-a can be obtained by the method of Charnes and Cooper [4]. The

optimal solution to the resulting model yields an optimal linear decision
rule for the xizj‘ The xizj which are employed will, therefore, depend

an the actual vaiues of dj1 which are observed. Hence, an adaptive

model is obtained by the above procedure,
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