
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD483003

Approved for public release; distribution is
unlimited. Document partially illegible.

Distribution authorized to U.S. Gov't. agencies
and their contractors; Critical Technology; DEC
1962. Other requests shall be referred to Naval
Postgraduate School, Monterey, CA. NOFORN.
Document partially illegible. This document
contains export-controlled technical data.

NPS ltr, 1 Mar 1972





IIBPARY

U S. HAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA



GKNERATION AND TESTING OF RANDOM NUMBERS

r •. BITRARY nSTRIBUTION

* * -v * *

Norman A

,

$hJ§ 4eeuffl#flt Is subject to special expert
§@fltf§l§ and eaoh transmittal to foreign govern*

ffl@fi • df forei ii nationals may be made only ••'ith

Pficf ap ruvi'l of the U.S. Naval Postgraduate
Sc'O 1 v

,wr*4 35)

.



NO FORM

' N ! ION JT1 3 OF [IANDOM NUI

0? ' ' Bn I Y DISTRIBUTION

bv

Norman *-« Va.a.

Ii

Lieutenant Commander, United States Navy

Knitted in partial fulfillment of
the requirements for the degree of

- 1 r-.n-.-7T-) QY? ^CTFNPF

United States Naval Postgraduate "chool
Monterey, California

1962



LIBRARY

U.S. NAVAL POSTGRADUATE SCHOOL'

MON LIFORNIA

GENERATION WT TESTING OF tANTOM NUMBERS

OF AN ARBITRARY DISTRIBUTION

by

Norman A. Vaa

This work is accentf-*4 as fulfilling

the t^or-is requirements for the degree of

M/ 51 "I OF SCIENCE

from t T->^

United '
rt\-!tr>p. N'aval Postgraduate School



the ' "
r ;enerati ndent random uni-

form numl srs th . Interval, tT,<:o methods of gener-

ating ir 1 'ent "andora normal numbers, ono method to gen-

erate exponential random numbers and one method to gene : t

independent rai ' ibers frc chi-squar listribution

:esei I. Ml four methods : i i FC

on tl ^DC 1604 '

3
"

" ;ital computer, and test id by a

ttery of statist: ts. Results of the tests ar -'.

arized f



- .-
1

-, i
-,-

,-rp-^ >~ *-, T r i^m T " * 1

N '"

: I '

i

1.1 Basic '.

1 .2 No rmal i1 by tl

I Methc JO

1 .? 1 bers fr >m

1.4
•

bers. (

1#5 Chi-Squ "
•

"
;

1,6 "
• •

T "

PTTHW ^ '" ""TTV^ '
*" n *\TpY"

2,1

. r
'

1

7

2
.

'- S ign T

2.5 Lai Correlation

2.6 3un Tes Tl

"
- ts 2:



(continue

;•
'

31

[BLIOGRAFHY

•

T.
' '

A METHOD FOR GENS :HI-SQUARE
. DEVIAT

• c :ntial
RAI 45

DIM D PXGRAMS



I.- I

Contact so . Machine Simulation Models (war games)

has indicated that the need for "random numbers' 1 is real and

pressing, yet the information available to the war gamers

concerning the properties of these numbers is often quite

vague and limited.

The average of the results of several runs of a war game

is often used to evaluate the many relationships tested by

the game. Since random numbers are the device that determines

the yes/no answer at the many decision points of the game,

the faithfulness with which these numbers exhibit the proper-

ties desired by the war gamer directly affect the validity of

the results

.

In view of the critical role in war gaming played by

these numbers it seems useful to provide a tested method of

producing the numbers, and to provide also the means of test-

ing any other number-producing methods considered useful.

Random numbers have an important application in statis-

tical sampling, \ ;aming, and other monte carlo techniques.

The applications -nentioned in this paper will be primarily in

the war game area.

This thesis was written at the United States Naval Tost-

graduate School, Monterey, California, during the period

v
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are some initial problems he study of war gaming. One

problem lies in having precise terminology and notation to

explain concepts that are la probabilistic in nature.

Another lies in the stochastic structure of the game, i.e.,

the decision points in the game which require drawing e ran-

dom number to determine the occurrence or non-occurrence of

an event. This provides the requirement for a random number

generator in the game. A third problem is, given a random

number generator, are the characteristics of the numbers pro-

duced by this generator such that the results of the game are

valid?

The second and third problem areas mentioned, that is,

generation of random numbers, and testing of random numbers

nre the subject of the investigation in this thesis. The

investigation included a search of the literature and accu-

mulation of reference material, writing COC 1604 FORTRAN pro-

grams for generation of random normal, exponential and chi-

square numbers, writing programs for tests of random numbers,

and running the programs for the generators anc\ tests on the

CDC 1604 computer.

Sections 1 and 2 of the thesis contain discussions of

generation of random numbers and testing of random numbers,

respectively. Section 3 contains the results of tests per-



formed on two normal random number generators, an exponen-

tial and a chi-square random number generator. Section 4

presents the conclusions reached in this paper. Appendices

,
B and C provide justification for the methods of genera-

tion of random numbers and Appendix D reproduces the pro-

grams in CDC 1604 FORTRAN language for the four generators.

It is suggested that the reader familiarize himself with

the explanation of notation and definitions of terms immediate'

ly following this introduction. It is also suggested that the

U.S. Naval Postgraduate School thesis "Pvandom Number Genera-

tion on Digital Computers'' by J. !t. Barron

for information concerning the generation of uniform random

numbers

.

be consulted



DEFINITIONS OF TERMS AND NOTATION

In this paper a random variable, X, and its associated

cumulative distribution function F, will be identified as

(X,F) or, in some instances, where it is more convenient to

refer to the associated density function f, we shall write

(X,f). In conformity with standard notation

F(x) - Pr(X = x)

dx

Random Numbers : It is considered that there is available

some formula or mechanism or device which produces numbers

which are regarded as drawn from a population (X,F) or equi-

valently (X, f ) . Such a number is frequently identified as a

pseudo-random number in the literature; however, here we shall

identify it simply as a random number.

We may say that a set of such random numbers is associ-

ated with the random variable (X,F) or, more briefly, that

they are associated with the distribution F,

Sequenc e of random numbers : As the formula or the generating

device or mechanism employed produces a set of random numbers,

these appear serially or sequentially. We shall refer to

these numbers as a sequence of random numbers.

In referring to random numbers, as defined above, as-



a,b

sociated with specific random variables and their associated

cumulative distribution functions, we shall need additional

specific definitions and notation.

N(/I
t
u ) : A normal distribution with mean jl and standard

deviation as parameters.

U(a
t
b) : A uniform distribution over the interval

Tn particular, U(0,l) will be used extensively. •

Random N(/i.
t
O) numbe r: A random number associated with the

random variable C',F) where F is N(/i, u),

Random U (
T
1 ) numbe

r

: A random number associated with the

random variable (X,F) where F is U(0,1).

Normal -eviate : A random N(Q,1) number which has been obtained

as a transformation of a random TJ(0,1) number.

Generator: \ formula or method for producing a sequence of

numbers.

N:y?:G~N : The computer program to generate normal deviates

by the Box-Muller method.

NORHG TJH : The computer program to generate normal deviates

by the "sums of uniforms'' method.

IliiFQGEN: ^he computer program employing Marsaglia's method

to generate exponential random numbers

.

CHIGP.N : The computer program to generate chi- square random

numbers from sums of squares of independent normal deviates,



with the number of degrees of freedom as an arbitrary

Darameter.



:ction 1

iTION OF ' NUMBERS

1.1 BASIC THEORY

For generation of random numbers associated with general

random variables (X,F) from random U(0,1) numbers, it is nec-

cessary to establish a relation between the uniform distribu-

tion and other distributions. Particularly a relation between

the uniform and normal distributions would be useful, because

other distributions such as the chi-square, F, and Student's

t can be derived from the normal distribution. A general re-

lation between the uniform distribution and other distribu-

tions docs exist and is called the probability integral trans-

formation. This relation may be stated as follows: (See

for a proof)

Theorem : Let X be a continuous random variable

with distribution function „ Then the random

variable Y = G(X) has a density function given by

I
1 0^y=l

f(y) =

elsewhere;

its distribution function is given by

y ^0

.r y = y y 0<y ^

1

1 y£l



The relation y = G(x) is called the probability integral

transformation, and since rJ is a non-dec ceasing function it

follows that (see page 313 of jl5 ):

; r G"
1
(Y)^x w Pr SG(x>] - G(k)

The above provides the basis for generating random num-

bers associated with an arbitrary distribution by transform-

ing 11(0,1) numbers.

In the case of the exponential distribution where

y = G(x> = 1 - e , it is possible to solve explicitly for x,

that is, x = -log (1-y) =0. In this case we say that has
e

been found in closed form, meaning that x has been expressed

in terms of the logarithm function, one of the functions

which, like the sine and cosine, we choose to call elementary

functions

.

For a general distribution function, it is not always

possible to find the inverse function in closed form, that is,

it is not always possible to express the inverse in terms of

so-called elementary functions.

For the normal distribution, a closed form expression

for the inverse* function is not available. In such a case

it may be possible to employ a graphical interpretation.

3raohical methods, however, have a minimum of decimal place



accuracy and Leaf"! to table look-up procedures in high speed

digital computers. Entering the ordinate of Figure 1 to de>

termine abscissa values by use of a table, sometimes called

the "Normal Curve of Error Table 1

', also leads to table look'

up methods in the computer.

i

•

Figure 1

The disadvantage of the table look-up method of supplying

random numbers for a war game is apparent when the memory

st>ace limitation of a computer is considered.

Even though no inverse function may exist in closed

form, it is possible to construct generating schemes that are

fast and have acceptable properties. Two such generating

schemes for the normal distribution are given in the next

two sections.

1.2 Normal Numbers by the Box-Muller Method (NORMGEN)

Box and Muller 111 proposed a method for generating a



ir of independent ran ,i) numbers from a oair of ran-

dom U(0,1) numbers. The transformation (see Appendix A) for

generating the pairs of N(0,1) numbers is:

\,

X = (-2 log II ) " Cos 2 77U
- 1 el 2

X = (-2 Loo; U )
2 Hin 2 7TU

2
&
e 1 2

where U. ,U are independent 11(0,1) and X ,X ace indepen-

dent N(0,D.

In view of the four functions (sine, cosine, log
,

square root) which must be computed in the Box-Muller method,

this method cannot be considered fast, although a nair of

numbers is produced so that computation time must be halve' 1

for comparison with other methods. The major advantage of

the Box-Muller method is that it is an analytically exact

transformation (of pairs of numbers) from the uniform distri-

bution and will faithfully produce a normal distribution

given a uniform distribution.

\e disadvanl , other than computation time, is that

the Box-rMuller method will reflect whatever bias or contam-

ination is present in the uniform generator.

'.."hen ' a subroutine and included in a service

library, the Bo: -Muller normal generator may be employed in



two ways: The pair of N(0,l) numbers may be delivered simul-

.?ovtfv^
, -, X in the A-reeister and X in the Q-register. or'1 &

2

the subroutine nay save X until the next call for a random

number. In the first instance the user would be required to

save X^ for any case where only a single number were desired.

In general, standard library subroutines are very expen-

sive in machine time, as they are required to be able to ac-

cent the general case. ..... .they must test for sign and mag-

nitude in many cases before beginning the computation. In

special cases where the argument with which the subroutine is

entered is = X5l, or perhaps = X = 27T, the tests are not

germane and precious machine time is wasted. In cases such

this the functional subroutines can be rewritten and

ortened an ' ' Luded 3 part of the generator subroutine.

However there is trade-off here, as this greatly increases

the length of the generator and consequently the libra y ro-

tm. 2 library function routines are then partially dupli-

cate'' hin the generator routine when the generator routine

becomes oart of the library. Of the four generators describe.-'

in this th.es is, these remarks per 'most exclusively to

the in \ Muller :N.



1.3 Normal Numbers fro- Sums of Uniforms (NORMSUM)

discussion of the justification for approximation of

a normal (0,1) random number by the sum of 12 uniform (0,1)

random numbers appears in Appendix A. The approximation can

be improved by increasing the number of uniform (0,1) num-

bers used, but machine time places a restriction on the de-

sirability of using more numbers. The sums of uniform random

variables converge more rapidly to a normal distribution than

the sums of random variables from a non-symmetric distribution,

e program for generating these numbers is short in both

program steps and machine time. There are no library sub-

routines which must be called in.

This method, is appealing to the intuition as there is

the factor of "smoothing'' or averaging whatever bias or con-

tamination may be present in the uniform (0,1) generator.

1.4 Exponential Random Numbers (EXPOGEN)

Marsaglia's 2; method for generating exponential ran-

dom numbers is more complicated in programming details than

either the NORMGEN or N01MSUM, but lends itself very well to

the FORTRAN language.

The exnected value of the n of Marsaglia's method (see

->endix B) is approximately 1.58, so on the average only



1.58 U(0,l) numbers are required from which the minimum must

be selected, and 1.55
'

; scriminations (see Appendix B) are

required to assign a value to n. Assigning a value to m also

requires an average of 1.5°. discriminations, Generation of

an exponential number thus requires an average of approxi-

mately 4.75 U(0,1) numbers.

This method of producing exponential random numbers is

sensitive to any bias in the characteristics of the uniform

generator.

1.5 Chi-Square Random Numbers (CHIGEN)

jpose that ten chi-square random numbers with five

degrees of freedom are desired and that thq N RMSUM genera-

tor is used to nroduce the normal numbers. It takes 12 uni-

form numbers to produce one normal number and five normal

numbers to produce on--? chi-s< number with five degrees

of freedom. Thus we require 50 normal numbers and 600 uni-

form numbers to produce ten chi-square numbers with a rel-

-

tiv small numb c es of freedom. One has no diffi-

ilty seeing that production of chi-square numbers is expen-

sive in machine time. However, in war gaming the nee'-
1 for

chi-square numb. i likely to be considerably less than

the need for uniform or normal numbers.



The chi-j just "am is again relative]

direct no spec lifficulties are encountered . The

•ncy and goodness-of-fit tests do - sent a special

problem, as changing the degrees of freedom in effect creates

a new distribution and the class intervals and expected fre-

auencies of occurrence within the class intervals change.

They do not change in such a fashion that DO-rLGOFS ray be

most economically employe"'. The program becomes quite lengthy

in machine time if chi-square numbers with several different

-rees of freedom are tested.

3 .6 Computer Language

FO ITRAN wa computer language employed for all pro-

grams written for this thesis . It is realized that FORTRAN

may not be the best language for all types of war games, al-

though successful war ganes have been written in this len-

gua" Speed an ory space limitations may dictate the

use of assembly routines as opposed to FORTRAN-type compilers.

However, within a FORT! rogram, strings of symbolic machine

1 be inserted where the legal FX ITRAN statements

not appropriate. In general, the particular character

of the simulation will suggest the most convenient language.

For use in a war game, the four random number generators

Ls must be translated into the language in which



the game is Ltl One r

; :d of caution is in order at this

point:. The method used to generate the U(0,l) numbers de-

pends on the computer having a 48-bit word length, and the

method must be revised for use on a machine with a different

wox ' th.

e Control Data Corporation 1604 stored program, gen-

eral purpose digital computer with a storage capacity of

32,768 48-bit words was available at the Naval Postgraduate

School for this project.
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ING OF 1

2.1

se of this section is to discuss the followin;

';uos f:'
: tor has prod iced a sequence of ran-

dom numbers and it is '

.

1 to associate them wit! 'ti-

eul distribution function F, .

'

t should be the criteria

: deciding on the merits of ' enerator?

llu :
" purposes the NT(0,1) distribute '11

: to in this section, although most of

the remarks will pertain to the generation of a uence

of random number .

The criteria will to some extent depend on the employ-

ator. T^cr example, statistical sampling ex-

per for estimating the pz 1 iters of mixer1 populations

Ire ver -ranee criteria for the random number

nerato \ ?he emplo ' lered in this paper will be

•' •

If the wit! lich the sequence of random numbers is

- associ id is >*)> ^ *-s obvious that a mean near

zero and a variance near one must be demanded, but is this

Lcient? The answer is emphatically no, as Figure 2

ites.



F- • 2

nsity function graphed in Figure 2 could well have s

ro and a vi of one, but the skew to the left

elimit from consi at ion.

st of tl of numt r by computation of the

first three central moments jives the criteria for tti an,

variance and skew. Is this iiecient? The snswer is defi-

nitely no again. " Jensity s nay have the sa

s fc First three central mom€ and yet have quite

different value" for the fourtl j 1 igher central moments.

• '"flatness" of a den-

sity function. A rough ;u r kurtosis is the stand-

court' tral moment. .'. Jistribution having

pea^ such as the cur c in Figure 3a is called

tic, the - " ' ire 3b which is flat-

called latykurtic. M 'ibution which is neither

excess: rel 1 nor Lvely flat is caller3 "mesokur-

:", for i ! jrmal disl 'ibution, see ill .

11



\

Lentokurtic F 1atykurtic

Figure 2 a Figure 3b

Now we have established a requirement for at least com-

puting the first four central moments to provide data for de-

ciding if a sequence of numbers can be regarded as a sample

from a desired distribution, F.

At this point the experimenter would do well to apply a

frequency test to the sequence of numbers by dividing the

theoretical range of the numbers into class intervals and

counting the numbers which fall into each class interval.

see the theoretical frequency of occurrence of numbers in

each class interval is known, a goodness-of-fit test like the

chi- square test may be applied to test for a significant dif-

ference between sample frequencies and observed frequencies

in the class intervals.

Tn the case of the N(0,l) distribution, any sample con-

sidered to have been drawn at random should have an approxi-

mately equal number of positive numbers and negative numbers.

count of positive signs thus provides the data for another

12



ter . :ive signs for any disl ril ation

has the biv :

. distribution with p = \> If the median of

ro. 3ee Section 2.4,

Lscussed up to this point wore concerned with

distribution associated with the generated sequence of

random bers. The order in :h tue numbers in the se-

nce are generated is also of primary importance. For ex-

ile, in the general case, a sample of say l n ,00 ri
•

' srs

could be gene which would pass all six of the tests for

listribution cn^ yet have been produced as a monotonic

jquence. .arly the war garner would not ordinarily be ii -

terested in this sam

How tl est for randomness, in contrast to test-

for the cl ' tics of tin distribution? Hince we do

ant the numbers in the sequence to have a predictable

relationship to numbers folio1 later in the sequence, a

tor' IE c the serial correlation of the numbers (with various

is d

ow a I 'ial correlation an 1

• c :ui -
•
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numbers. his could have disaster is ef-
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a run of lositive numbers, or all negative numbers.

over-all effect of bhi i sit lation is that the game must

be pL • Lbitively large number of tines to obtain

: that a meaningful average.

testing information is summarised in

le 1

.

hasized that these tests are neces-

sary tests, but are not sufficient to guarantee the

properti , ven when administered collectively,

TABLE 1
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"

-
-

•CJRTC -
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yi »n

'

cussion ' - lires an explanation of

, tl lple
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3 computer time required.
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/ Serial Correlation Tes1

The serial i 1 ition coefficient is a measure of the

rel, i
' ip of numbers in a sequence to numbers occurring

later ir tl . For example, given a sequence of

.
-' ers (U U U ) the relationship o*

-

the first number
1 2 n

hi *d, the r^~r,.-\c> to the fc irth, the third to the

fifti
}

•= - called serial correlation, lag two, a
:

is defined '
:

.-• J . t u - -

"1 ' 1

^
(VarU.) (VarU. J

\

In ger 1, su In j, j = 1,2, ,n-k:

\ ' _ 1=
'

II i

]

"-*
z ,

Li
i (

n-*nZ^MiJ 1

"-* / Mi4 Cr»-*H/ ,^i
J\

'

' Lor f is rather involved,

c\
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-" .It m ist '

j

r = 1, and r r 'are un-
-1

"

.

-i
. from plu ! tc nir is one, witl

Lue. It is desired to "'
2 he abs Lul

)f r low '
'

' - uf 1c. -uns of posi Civ arte!
' -

2.6 £un Tr

:

i this ---•-- will only be appl

'UTT, although

if]
' -"' "

•
- <~ ' ]_•-.-- •-!-' ed 1

-

v LI*

lom
x" o

s
<

v

numbers a certain num-

... venerated i r stlt matel' positive

• Lve rith no r-v < : .

'

le in length abo1

'o,
"

*dly say that those numbers

,
he fi1 1 too '

rf~o . The greatest number >f

5, the n t :eates1 :f length

In Lver sampl runs may be counted rnd

tical values For determi Li "
'

r
'

•iffe en : s

.

(- j i ytle, Jr.
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'

' ive

from n nu '
! :-~ 3 s r ppro :itru tely

:

- 1,2,

Since it is desired to keep the expected number of :

in any cIgsf. Lnl * I greater than some number, say 10, r ~

- 'ness- f-fit I ,

'" ,
'"- »d numbers of runs greater

ths tain 1 be ;rouped i to a single class.

The ' " positive and negativi uns of 1

;o some umber ' is approximate!; :

'",-. ' 'efined by the foil •

i tg equation:

'• Least one run of length^ ] a a

i 16 :hat ' is am ro' :ims te ly:
.05

^ •} ( i - - + i
N

-
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'

"

SULT S

he r c
t >sts performec 1 on sequences of nu

- rated
''

EGEN, NOSMSUM, ':" " :
T

and CHIGEN r.:e

.
" Tabl 2-9. It should be noted that Pos Corr. an

"orr. in I 'efer to -'-'" lar >1 ositive and

_

r serial correlation obtained in

rators in Tables 2 ,-. rid 3, CHISQR1

•ncy t witl al class intervals and

13 d
"

, and T'lSQB 'efers 1 £ tret lency test

with iquenc: Li :lass interv Is 3 }
''

es of : !om. ' th tical values of chi-s sre

the val .es al 5 whicl suits are significant at

i5 level. '

\ N MSU1 both pas ?d the goodness-

of-fit t iples of ! i 1000 and greater at

level if: te Ln Table B, and

' nre were no runs long : n K , wh ; QS 3. 3 (log n - 1;

ar- • '
i ion 2.

pass the frequency tests for sample

t 500C 10,000 at either the .05 or .01 significance

levels, the
'

unt for the ten class intervals for

1000, 5000 and 10,000 are compared in Table 6.

91



Alt! cent: of ' Lass intervals are

, the fit becomes poc thi lple sizi increases

le to the sc ffe •
a in the numerator of th€ chi-

le, "or exai Le, L2C x 12C = 14,400 Ls 1"

timer as great L44, while 10,

^

n " (tl ".nominator; is only

ten times great* '"""). Mso it is noted that a sample

of si 100 far ' lly in tei performed on se-

quer f num 1

. *oduced by S
'"'". "" 11 "-of ex-

ponential numbc : t sensitive to the \e itude of the

uniform bers from which they are tran: form ". This is true

of and . more well-knowr thod, i.e.,

taking the logarithm of U(0,1) numb r .

'" T Li
r
- (CHIGnN) gives the values of

chi-square goodness-of-fit statistic using 10 classes.

For tv' *ees of freedom the ,95th and ,99th percentile

di it ion are 16.9 and 21.7 re-

spectively. Thus, s Lfic suits at the 5T level were

obtained '
• n = 'and ^=3,4,5 and 15. In order to in-

vestigate tl ' further a chi-square analysis was rone ror

sai-: ] f size 500 L000 (Table 7). It should be noted

not necessarily improve with sample size. For

all of fre torn md sample sizes considered, CHIG^N

the test of fit at the .01 level of significance.

i~i '



To fur •
•

• ; '' the CH] fc
<

,

were computed but not tabled for sam-

ples of si , , 1000 and 5000 with five ricrrees of

edom. 1 values of the first four moments

are ,10, , respectively, cs computed from the

moment general '
' motion. T '-: values of the first a

second moments were reasonably close to the theoretical val-

ues, but the values of the third moments were quite low for

all sample ' is. ralue of the fourth moment was low for

size 0, indicatiri possible "fl< :

: curve for

le of the raw data test results ' •
-• been included

Les 2-~, as ;' - re likely to be of interest to experi-

ment le ' a summary of results of tests for n = 1000

for CHIG^N and n = 10,000 for all other generators. The terms

i

' Tal Le 9 are use^ in an intuitive and

ive sense rather than as any absolute standard.

plies that the theoretical cr>s test values are not

sd ' t] erent at the .05 level and no undesirable

cteri " rent. POC implies significant dif-

rences at tl i .01 level or sufficient deviations from thcor-

eti
"

'"he generator suspect for lica-

tioi . CR implic condition somewhere- in between the two

25
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Table 4 -

n=] n=500 n»100( n=5000 rv= 10000 Theor,

•

iean

.6:

l.o: i 1.021

.971

:>ment 1.902 1.596

)rnent . 8.446 S.156

Chi-sqr 13. '.72 ".70

.Largest
~

7.18 7.18

"'os Corr .215 .107 .

•'

Meg Corr -.' -.072 -.

.983 1.002
^

1.000

992 1.036 l.(

1.925 2.169
;

2.0'^n

8.191 10.061 9.000

22.5° 33.70 16.90

8.32 10.57

.^35 .017

10

on

'

) i lec Var

1 1.187 2.352

2 2.153 3.877

- q n q o .001

'

4.564 7.671

5 5.6 10.321

Table 5 - CHIG2N 'n=200)

Var PosCorr NegCorr Largest Chi-sqr

or.

10.73? 17.872

15.98° 24.203

21.120 40.3^5

072 -.11 :

132

I ': 9

395

122

105

r\qo

7.^4 8.42

1111 -.115 °.35 7.3"

.103 11.12 18.34

.13" 11,59 18,07

.12° 15.71 19.42

.143 23.54 12.83

.168 28.21 18.21

.0^4 41.32 14.65

16.

Oq



XUNT FX SEN NUMBERS

Interval n=10C n=5000

522

n=10000

1037

Theor

1 10%

2 96 50n 077 107c

3 97 +87 995 lOX

4 114 544 1046 107.

5 472 070 107;

: 97 4^7 n 57 io7:

7 111 556 1120 10?

3 434 906 10"

10 111

ro-j

502

°51

103°

107:

107

Table 7 - CHI -5 ' \LYSIS FCC CHIC:::

n=200 n-500 n=1000

1 8.42
1

13.81 19.57

2 7.3 n 20.33 10.25

18.34 17.06 17.39

4 18.07 15.04 13.46

5 19.42 17.01 14.99

10 12.83 » 14.57

15 18.2 + 17.
n
7 18. :'

20 14.65 10.86 18.40
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'
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)0 6.30
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.05 ! .01
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ION 4

INCLUSIONS

e tests have demonstrated that random numbers may be

generated 4
.

' t behave when tested like numbers from a normal,

Donential or chi-square distribution. It is apparent, how-

ever, that the behavior of these numbers depends heavily c

• multiplicati ' ise ' t generate the U(0,1) random

hers from which they were transformed. me of the gen-

ting schemes discuss* " ' this thesis are theoretically

t so tha : thi sts 'escribed in effect provide klition-

al tests of the perform-. " of the random U(0,1; generator

that integral " NCRKGSN, NORM UM, SXFOGEN and

JN. for generatior nd testing of U(0,1) random

rs.

In general, ;

. : results of Section 3
T

:
""

is1 be Li£ .

* with caution for vor_. . 11

it be user' with caution for large sam-

ples. The chi-square generator was obtained by two trans

f

ild 1 irefulb ' --'mined for the sample siz

c Pre ;

:

' 'ed, as the results are not con-

L tent tl 'out. er tesl
'"'

is required for the

latter and will 'athe tensive hine time if

lar id pever. I i

•' ers of degrees of freedom

31



'
• ' ises a ;reat many r-

1
•

:

' i 1

;

'

r testir

itervals to ensure that the number

" len into some sort of trap such as find-

ing ro in a multiplicative scheme. T1 Is, of course, is

rely . tension of ] .

r not trusting the

it answers before submitting the model to a test

?itl nswers. In any extensive program

itic r: ;ivi :s to questions that

really ', ' riot to questions the programmer thougl I

'.

an incidental ol "or., it is believed that ''

sequence of ' program techniqui •- '

3 to start

'line : •
3 the fundamental machine i • ruc-

tions, bier and finally to a compile ..

Language ich as FORTRAN is < Jverti s

•

:> computer :e necessary", the programmer who

-

j .
,„ _• ... • •

.

• 111 find

.

'

-

'

" task . This is

rently not . ter of general s ment.

Since ranc . have been \ h

:hemes, including

r



*

:
;< ?

: 1
'•

, it i
-

1
i reasc

; of t! ' best" pub-

lished tables of r umbers could be typ 1 ards

inserted into iory for testing by the se.no. battery

of SEN, N "•
, :HIG N and I were sub

-

It: "
T

'

I that rping 10,000 IBM sards

ill task. decks of cs rds may be available

in ises.

iltipli '
'

•
'

.

-' tl is
' ' >ner-

i,l] 'elivers a long cycle of nu

rs . Bl ••'.- of the/ imberi

uite likely to have undesireable char-

acteristics, bi *nt point by in-

ber f
'

i
'

' gorid

>f *e tested, tl b] tks sho^ '.

Lcs could 1
' : it

tical Lrning - s. There is a definite

i * •- -

-'
-.

. 'he dropping of short

haracteristici ;

' ~ve

11 sampl ade tl ' - : -

: '~
'

:.r\: ' cs of T

Is matte parently not been discusser in tl

literature.
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2. Marsa A' ,
S. GENERATING "

'I
. NANTIAL RANDC
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Anals of Mathematical Statistics
Vol'.. : 32, Number 3, September, 1961

ering a
1evice for producing exponential rand ri-

les by performing discriminations on the relative m«

nitudes of uniform (0,1) random variables.

Marsaglia, G. expressing a random variable
in terms ~7 uniform random
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r'tion for expressing listribution function as a
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The purpose of this appendi - is to discuss in more de-

tail the two methods (NORMGEN ?n^ " "If) of generating

random N(0,1) numbers im 1 :ed In Section 2.

It is assumed, as has been Hone throughout this thesis,

that* a method erate uniform random numbers is available,

transformation of uniform random numbers to normal random

bers will now be considered. Of the several existi^ r

me ds to accompl this, the method suggested by Box and

Muller '

1 . w< c ted ror accuracy and integrity in the

of the distribution, as war gamers and others can be

tereste
'

;

'are events".

^112121' I-et
'

T ,U be indenendent random variables from
i- 2

the uniform d L1 function on the interval (0,1). Consider

!om variables

:

X = (-2 loo U )
" Cos 2 7TU

1 1 2

(1)
X - (-2 lo~ TT

; in
"^ T

'

2
X - (-2 lo~ U ) Sin 27TU Then
2 :

(X ,X ) are a pair of independent random variables from the

ie non ] 1 tribution. Notice that the radical is always

positive since = U ~ 1.

Justification: Solving (1) for the inverse relation-

-



it difficulty:

:

T [-(X? h J&/2
i x /.

u -(l/27T)a?ctan(X /X )

2 1

,U \with respect to(X ,X \ is found to be

r 2 1
r27T)exp [

" '2j and the joint density function of

T

.
,

:

, so :he j ' lensity function of XX is:

: ,x
'

(1/2771
2 2

-0^ + Xp/2

v.
2(1/2D exp [-X

/2J
• (1/27T) exp[-X*/2

fCx^.r:-:^

lat X
1

and v'^ are >rmal (0,1) and independent

an ] :ically exact and the character-

ise : • produced are distorted from the i
"

on] miform numbers used as input ^- _

Ions, including the — ire root, lo~,

;s. Expected accuracy is 13 decimal

PC r IAN routines. It is hop sd and

pec' Lonal round -off errors will be random.

isers ma; lot be interested in rare

events but i cs around the mean we next select for

'



! on t
!

1 Limit Theorem. The

'tion of sums of independent random variables from

metric distributions approaches the normal distribution

lite capi It is noted that 50 numbers, each composed

of the sum of five random digits, gives a strikingly normal

• rice when plotted in a histogram.

3ince the variance of the U(0,l) distribution is 1/12

variances of uniform random variables are additive under

convolution it is convenient to select 12 as the number of

uniform random variables whose sum will approximate a normal

random variable. Means of uniform variables are also addi-

tive so that it remains to subtract the constant .six from the

sums o r 12 inde- f(0,l) random variables to approximate

a normal (0,1) distribution.

This process truncates the distribution so that -6 = x

=

6

Mow much is lost his truncation can be estimated by the

fact that normal tables with 4-place significance have posi-

tive probabi] ithin the limits -4.26= x = 4.26.

There is a case for the truncated normal distribution

in model is useful when it can be realistically ap-

ed to a real world situation. 2 msider the height of men

ven race as a random variable, normally distributed.

For use the distribution is truncated in that the smallest



is c< no fool* and the reatest

than ten feet. Definite bounds c ' > set on

mar ors of mea hich are considered normally dis-

'ibuted. »ns of the theoretical normal distribu-

are so frequent] truncated in the real world that it

seems inconsistent to reject a manually generated sample from

a normal population if the sample exhibits the properties of

the theoretical distribution between the limits of usable

values

.

H



APPKNDIX B

EXPONENTIAL RANDOM NUMBERS

The exponential distribution figures prominently in

particle or radiation studies, reliabilit}', life testing and

like areas which can be of interest to persons using high

speed computers and monte carlo techniques. A power series

expansion to compute the logarithm of a uniform random vari-

able may be used to generate exponential random variables,

but a more rapid method is desired.

G. Marsaglia of the Boeing Scientific Research Labora-

tories offers a simpler .device for producing exponential

random variables by performing discriminations on the rela-

tive magnitudes of uniform (0.1) random variables. See 2 .

The idea is to choose the minimum of a random number of

uniform random variables, then a<^<^ a random integer say,

let n and m be random integers according to the following

schedule

:

Value of n "rob. Total Value of m Prob. Total

.58

.20

.10

.02

.58

.87

.97

1

2

3

.63

.23

.00

.03

.63

.86

,98

':



, '„, , Is a s
r .- .

• >Grif|ent ani-

[0,1), thi "
- "iabl

' •' ' ,' T
, U )

1 n

• the expon tribution.

Let I ariabl -

'

: •-

.

3
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CHI SQUARE RA ( ERS

Let x.,x , ... ,-<.. be j independent random variables

normally distributed, each with zero mean and unit variance

. 2
Let X equal the sum of the squares of these \J random

2 .2
variables, i.e., K - x + x* + . . . + xj . X is also

a random variable because it is a function of random vari-

ables. The density function of the chi-square random vari-

able is written as

Yz
l = (V? P"£ * =

= otherwise

All x f s must have zero mean and unit variance. If they are

independent normal ( U , CO numbers, the quantities

do have a normal distribution, each with zero mean and unit

variance. Hence, on i, for i = 1>2, > V

y.



-•; a chi- "ibution with *J degrees of freedom.

n example of such a random variable in as follows:

missile is sent toward a target. If the range and de-

flection errors of the missile are independent normally

distributed random variables each with zero mean and equal

variances, the squared distance between the explosion and

the target, divided by the variance, has a chi-square dis-

tribution with two degrees of freedom. This can be easily

extended to three dimensions.

subroutine available to a war gamer to supply inde-

2
pendent X numbers with arbitrary degrees of freedom thus

can have immediate annlication.
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Following is the Box-Muller method of generating pairs

numbers from pairs cf
'

T
' n ,l) numbers, programmed

in the Control Z rporation 1604 " rRAN lan£ua?,e.

The program as written mer 1 " computes 100 numbers

and stores them in an array called '"TAB". N is the sample

size £ ys be one-half the value of N. The di-

be at least the value of N. The numbers

that the pro tores in TAR are in floating point format.

^K=40000C
PI2=2**3J

ET= "ITT

'2)-l

=1,50
'2(0

, 2NI1(2) ,T N

/ ri(IUNIT) ,SCL(MASlO ,STA2(IU)
,

IT),

ST ').

fl=TU(l)
' =Ul/2.

xi

I2*U2

]

I v— £

'•.
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TA '

)
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.b(lW:i

ram for generating N(0,l) number? from

ims of 12 uniform numbers also stores N numbers in "TAR"

'100)

N=100
^V:K=4000Q009000 r'0900 r'

NIT=2.**23+3.
IUNIT=UNIT
IU=1

702 1=1,

N

STOR=0
701 M=l,12

LDA(IU), r),SGL(MASK),STA(IU).
J1=TU

5CIUl=XIUl/2.**47
701 3T0R=STCR+XIU1

702 TAB(I)
'

The chi-square generator has two parameters, the size

of sample N and 'ees of freedom NU,

A
TAB(IOO)

'500000900B

[IT=2.**23+3.
NU=5

IUI

IU= 1

1=0
~ ~':2 IT=1,"

-.0

]

) ,SCL(MASK) ,STA(IU).
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127
r^- 'E

IF;H-X; 136,138,138
136 !\M=XM+1.

1 3 7

138 l:

• r(139)

112(1)
M LDA(IU)

I(IU

'A(IU)
'(11)

"

V

>( .

-

i

sta2(t :
!

139 ISK2 (x)
' "1)

141
•

IFO [?(1)-T ' )) 141, 141,1
i'-r - • -

v v

141 c

143 '
' )=' "(1)+'

Tl e CDC 16 t
j-p;; test programs written for use in

tre av ble in F" '"' Language in the Computer

Cen1 t :he tval Postgraduate School, Monterey, Cali-

fornia*






