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ABSTRACT

The theorem of least work was used to investigate

the stress pattern and bowing, i,e, uniform curvature,

of an initially straight thin tube subjected to a steady

temperature distribution independent of the longitudinal

coordinate of the tube. Simple equations were developed

for stress, strain, and bowing- They show that if the

thermal strain is expressed as a Fourier series, the tan-

gential stress is small and is a function of the first

harmonic only, the axial stress is a function only of

the second and higher harmonics, and the bowing is a

function only of the first harmonic

,
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1. Nomenclature.

A = cross section area of tube wall

a,b = coefficients used to specify axial strain
(See Equation 4)

C(y^ = local thermal strain, presumed a function of
only, not of r or z.

^»i;^>7= coefficients in Fourier expansion of E(^y

E = Young *s modulus of elasticity

n = an integer denoting the nth term of a
Fourier series

r = radial coordinate, measured positive outward
from mid-thickness of tube

li = tube radius to mid-thickness of wall

t = tube wall thickness

T(G) = local temperature

T^ = base temperature from which thermal strain is
measured

U = strain energy per unit length of tube

u(0) = local radial displacement of mid-thickness
curve of tube

u„,u„ = coefficients in Fourier expansion of u(9)

v(0) = local tangential displacement of mid-^thickness
curve of tube

v„ , v^ = coefficients of Fourier expansion of v(9)

x,y,z = tube coordinates (see Figure lo)

^ = coefficient of linear thermal expansion

l^'To

"V^ ,">^ = elastic strain components in tangential and
longitudinal directions, respectively



9)^-a= total strain (elastic plus thermal) in the
tangential and longitudinal directions
respectively

n

= angular coordinate measured clockwise from
the positive z-^axis, (see Figure 1)«

^R= angular position of the plane of bovd.ng

'» = curvature of bowed tube

^ = Poisson*s ratio

.2.
•o

^'^^)^ ~ direct stress in the radial, tangential, and
longitudinal directions, respectively

''^ = shear stress in the r^-plane

ii) = /" V^

(//= r/^p;f/- f)

^ - -T^ where ou is any representative variable
a a



2. Introduction

The problem of stress distribution in a tube with

temperature variation independent of the axial coordinate

has been solved under the following two sets of circum-

stances: (1) an exact solution [2]* in the sense of the

theory of elasticity for steady-state temperature config-

uration, and (2) a very elementary solutionCsJ in the

framework of elementary strength of materials. Solution

(1) is of limited usefulness, not only because of its

limitation to the steady-^state configuration but also

because of its mathematical complexity^ Solution (2) was

developed to investigate technically important cases of

the bowing of pipes partially filled with a cryogenic

fluid, such as liquid oxygen. This solution assumes

that only longitudinal strains and stresses in the pipe

are an important cause of bowing. This in effect is

taking Poisson*s ratio equal to zeroo Presuming that

Poisson*s ratio is zero, while actually it is in the

neighborhood of 0«3 for most piping materials, led to a

simple and useful solution for bowing radius and axial

stress but said nothing about tangential stress. The

degree of approximation involved was quite unknown; there-

fore, it was the purpose of the present investigation to

obtain a more accurate solution than that of Flieder,

Loria, and 9nith[5J without involving the mathematical com-=

'''Numbers in brackets refer to works listed in the
bibliography, page 45-



Then strain energy is differentiated partially with

respect to each such coefficient, each such partial deri-

vative is equated to zero, and finally the resulting set

of equations is solved for the corresponding values of

the coefficients.

This procedure, which was used for the present investi-

gation, gives the displacement which minimizes the strain

energy (subject to the implied constraints of the assumed

displacement) and thus corresponds to equilibrium.

That the theorem of least work can be applied to the

problem at hand, where temperature changes are involved,

is not obvious. Argyris[l] and Boley and Weiner [2] have

discussed, in general terms, the energy theorems and thermal

stresses where temperature changes and non-^linear elasti-

city apply. Even so it seems appropriate to establish,

by using the following physical considerations, that the

theory of least work can be applied to the present problem.

Consider the structure cut into a number of elemental

volumes such that the temperature change is uniform in

each element. A change in temperature causes thermal

strains but not stresses; however, the elements no longer

fit together continuously. In order to fit the elements

together into a continuous structure having an assumed dis-

placement pattern from the original shape, stresses must



be applied which cause elastic strains in accordance vd.th

the theory of elasticity^ Since the stresses are applied

holding temperature constant, the strain energy can be

calculated using the equation previously cited, j<TQ'r

The values of the elastic strains are determined by the

difference between the total strain, determined from

geometric considerations of the assumed displacement pat-

tern, and the thermal strains resulting from known tempera =

ture change So The theory of least work now applies and

states that the strain energy is a minimum when the assumed

displacement pattern is that corresponding to equilibriumo

6



3. Analysis of Stress and Strain.

In order to proceed with the analysis, certain condi-

tions must be met and asstimptions made^ The tube must be

constructed of an isotropic elastic material and the

temperature distribution must be a known function of the

angular coordinate, , and independent of time and the

longitudinal coordinate, z. This is the resulting tempera-

ture distribution when a tube is partially filled with a

cold liquid. Also no external forces or moments may be

applied to the tube. The necessary assumptions are as

follows:

1. The tube is "thin" and thus <^r and 7^^ are small

and can safely be neglected in the analysis.

2. The temperature is constant across the tube wall

thickness.

3« Young's modulus of elasticity and Poisson's ratio

are constant. This is a reasonable assumption as shown by

values for 302 stainless steel in Figures 1 and 2.

Stainless steel is typical of most metals.

4* Plane normal cross sections remain plane.

By neglecting (T^ and T'r©^ equilibrium cannot be satisfied
and any results are necessarily approximate. A similar
assumption has been made by others under similar circumstances
and the solutions obtained were acceptable when compared
with the exact solutions according to the theory of elasti-
city. See DenHartog[4J pages 221 to 223 and page 2^0. The
latter portion of Appendix III shows the relative magnitudes
which may be expected of (5V

and r^^ .



5« In accordance with Saint Yenant's principle the

stress pattern exists uniformly along the tube except at

short distances from the endso

>0
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Figure 1. Modulus of Elasticity of AISI 302
Stainless Steel
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Figure 2. Poisson^s Ratio for AISI 302

Stainless Steel

From T. F. Durham, R. M. McClintock, and R„ P.
Reed, "Cryogenic Materials Data Handbook",
National Bureau of Standards, PB Report 171809,
1961.
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A. Symmetric Case.

Temporarily the temperature distribution will be

limited to one symmetric about the y-=axiSu The coordinate

system used is shown in Figure 3*

Figure 3 Typical Section of Tube

When there is a change in temperature of the tube, a

point P located on the raid-^thickness curve will, in gen-

eral, be displaced to a new location P» The radial dis-

placement, u, and the tangential displacement, v, are

positive in the directions indicated in Figure 40

Figure 4<> Displacement of Mid-thickness Curve



The tangential strain at any point can be expressed as the

strain of the mid-thickness curve plus the strain due to

bending of the tube wall, which in turn can be expressed

in terms of the radial and tangential displacements as

follows e^= ^ - -^r
. (1)

'o 'a

For derivation see Appendix I-

Since the temperature distribution is symmetric about

^ = 0, the radial displacement will be an even function of

and the tangential displacement will be an odd function

of O o Expressed as Fourier series they are

riso (2a)

and V^^ \/^sm(n9)
.

The necessary derivatives are

6<= -f n'-a^cos^nS)
/fa/

y-- 2^ ri l^ cosCn$)
(2b)

r5(
Substituting Equations 2 into Equation 1 we obtain

€^- ^ 2[[ '
-^ i^'^^'Oju^ + n K] cos C" B)

, (3)

The assumption that plane cross sections remain plane

requires that the axial strain be

€^= <^-^b(r,'i^r)cos(e)y (4)

where a and b are constants to be determined..

10



Because there are no external forces or moments applied

(5)to the tube j^^ ^^ ~ ^

xaicJA-0

(6)

(7)

where (/ =^ Cn,-t- r)cos 6 and c/A^C^-^Odrc/^, (g)

f.

Equation 7 is automatically satisfied as a consequence

of symmetry^

With the assumption that radial stress is zero, the

stress condition in the tube is that of plane stress.

The equations of plane stress are

<r.= ^.[^.-^^o-0^'^)£(')] ,9)

<^ = T^F. [«* ^ >'«* - ('^ "^^ ^^>]
,

(10 )

where S.(^)±s the thermal strain o Expressed as a Fourier

series 8(e>) ^ E^-^^ ty^^osCnS)
^

(11)

The thermal strain is an even function as a consequence of

the temperature being s3nTimetric about the y^-axiso In

general E(o) - J «^t) Jx „ Using the above expression
Tb

11



for axial stress and integrating Equations 5 and 6 permits

determining a and b in terms of displacement:

^ = (i'^u)s.- ^-1j^^
Q

(12)

b = j|[0^W£,^ ^^^J (^3)

where ^ ^ I - ±^^ ^
^^ I ^ ^^, and ^^ 1^ ^

The integration is performed in Appendix II-

The elastic strain energy for the case of plane stress

as discussed on page 4 is

V = ifjl^i-^(^^}<^t * [^e-£(^)l<^e} c//l (14)

per unit length of tube

.

Substituting Equations 9 and 10 for stress into Equation

4, multiplying and collecting terms, we get

^'^U = J[e^+e,'-.?.^e,€,-t0^v)£(e-£€^^e,] +t(i->-v)£(8fjclA. (15)

Integrating Equation 15, we get the following expression:

See Appendix II for details of the integration*

12



Applying the theorem of least work as discussed pre^

viously, we are now in a position to evaluate the coeffi=

cients u^, and Vn by taking the partial derivative of X
with respect to each coefficient and equating the result

to zeroo

For the coefficient u^,

-^Ci-^v)aS'-^) - 4d±M&<. ^o .
(17)

Therefore, ^^^^S S^ where ^= -LzJL
. (ig)

^ / - l* p

For coefficients u, and v^
,

Q

where only those terrr^s that contain u, or v^ have been

written o Note that b contains the sum ( u^ +v^ ) o It is

not possible to evaluate u, and v, separately because

xL^ equals ^21 - However, it is stifficient to obtain their

sum because that is the only form in which u^ and v^ appear

as can be seen from Equation 19 o Taking ^ ^ and equating

to zero:

42L- = -l^ + &^Jl + z(u^[,- ifl^i^ilM, [i->f].o (20)
^(u.,+ K) ^o ^^ ^ o *t> o

13



Solving for (u, +v, ) we get

r y/? 1

r«,+ K) 'P,r.e. where ^, - ^T- ^^^ • < ^l)

r
For all other coefficients, u^ and v„ , n>l :

|f;-^>,^.-^'^V^-r/-^vJ/^^r.£^=^; (22)

and 1^ =^„««-^^K,-r/^)^)^£^-^ (23)

yields nl/>, = f/+i<;/;£„-/^^^.,. (24)

Substituting Equation 24 into 22 yields Cfr\''f^n)(^n^O .

But C^n~f» ) "^
, therefore,

^^7^^ ; l/^=
0^v)^r^a,

^ (25a, b)

The radial and tangential displacements are now

known as functions of the thermal strain, and thus tempera-

ture. Substituting Equations 16 and 21 into Equations 12

and 13 respectively, yields:

«.= ^,5, where ^- /"^V(^/-^^J (26)

and b^§j^ y^here f^^j-Lf-^^O-f/i)]^ (2?)

Thus the axial strain is

14



Substituting Equations IB, 21, and 25 into 3 gives the

tangential strain,

0O

^e^^oS,-^^,e,cos(e)-^0+V)^er,CQsCrie) . (29)

Remembering that EIo) =^ Eo-^S.COsCe) -^Z Sr,COS(ne)
11=. z,

then ^E^CosCnS) = E(e)-8o^S, COS and,

Substituting these expressions for strain into the stress

formulas, Equations 9 and 10, determines the stress:

and <r^-j^^^l(t-^)-^i^(^-t}la,+^^^^ B] . (32)

This concludes the stress analysis for the symmetric caseo

B, Anti-Symmetric Case.

If the temperature distribution is anti-symmetric

with respect to 6=0, the thermal strain is anti-syrometrico

Expressed as a Fourier series

oo

eCe)^7L E^s/nCne) ^ (33)
jt-j

15



where
o Tjg

Note that there is no constant term in the Fourier series*

It is seen that this is similar to the symmetric case

rotated 90 degrees and we can apply some of the results of

the previous case^

The first harmonic is the only one contributing to axial

strain, so the axis of rotation is the y-axis and the

longitudinal strain can be written as

€^ = a,-f b, (ro^r)sm 6 y (34)

where a, is automatically zero because of anti-symmetryo

The radial displacement will be an odd function and the

tangential displacement an even function of the angular

coordinate. Expressed as Fourier series they are

00

cl(0)==H u„ s/n (no) (35)
/

OO

and v(e)^X v„ cos(ne) , (36)

Note that v contains no constant term. A constant term

would imply a rotation of the tube-

Substituting Equations 35 and 26 into 3> we obtain

€^ = ^^{[/ + fr/7^-/;j6(^" ngJsfnCne), (3?)

16



Letting ^ Kt ~ ^

n

yields

V /

The expressions for ^ and €q are of the same form as

in the symmetric case except that sin(n0) is substituted

for cos(/^^) The only integrals that do not vanish when

integrated over the interval to 2irr are Js/zi CnB)d9o

These integrals have the same values as jcos Cf^OjdO for

the interval o Thus by making the substitution V^-v^ and

writing sin(/7^) for cos('^^), the solution of the symmetric

case is applicable and the results are as follows:

^4- 0'^7:,)i^i,s\ne (39)

e^-[<:^,-/J-)j6,S/r?^ +0+V)E(B) (40)

^^e^jrp^k^rO-^^CirO^^i^ile.s/nO. (42)

The stress analysis is now complete for the anti^ symmetric

caseo

17



C- General Case-

For a general temperature distribution the thermal

strain can be expressed as the sum of the symmetric and

anti- symmetric cases, an even and an odd functiono

Thus 6{a) = C^-t^He^cosCne) +Ze„S/nCne) ) (43)

a complete Fourier series o The general solution is as

follows: e^^§^e^-^0-^£)i^[e,cosO^a,s/n^] (44)

^ = ~^[l('P^~0-^Hi-i)]e^ +M^i^r;)^^f.|jfe,co.d4£.s/^6^j}(47)

The stress and strain resulting from a general temperature

distribution is now known

c

D« Simplified Equations for Stress and Strain

»

It is instructive to consider the magnitude of §^ ,

(p i i, i and (jJ in order to simplify the equations of

stress and strain » The stress and strain equations (Equa--

tions 45)1 46 and 47) contain the terms k^-l ), (J-/ ),

(</'-/ )> and (^-/ ) which vanish if the §, 's and f^'s are

13



unity o Table I shows that for tubes of practical wall

thickness this is very nearly soo

TABLE I

The Effect of Wall Thickness on Stress and Strain

t/r„ 0„1 Oo05 OoOl

^, 0^99992 Oo 99996 1.00000

^^
lo 00027 1.00012 1.00005

i. 1.00027 lo 00014 1.00001

i. Oo99825 0.99913 0.99972

forv = 0.296

Substituting unity for §^ , ^ , §^, and ^,

Equations 44, 45, 46, and 47 become:

(4^)

eQ=(i-^^)eC9) -)^(e^'^e,cosa -^e, sm e)

0- =^^^ (a, COS o^e, sm e)
.

(49)

oi^-E[e(e)-lt,+(i-^^jr^JeiCose+e,sme)i\ (50)

These equations should be sufficiently accurate for most

design applications.

(51)

19



4. Bowing of Tube*

A tube subjected to the assumed temperature distribu-

tion will bow into the arc of a circle, or if restrained

develop stresses equal to those required to straighten the

bowed tubeo This is of practical concern in pipe design

and has been discussed by Flieder, Smith, and Wetmore[6j<>

From the analysis of the bending of an initially straight

beam [7] it is known that the curvature, K , is ;^ ; where

c is the distance from the neutral axis and€ is the strain

resulting from bending o The axial strain on the mid-thick-

ness curve of the tube is €^=i^S^-h§^(s,ct>sd-i'S,sit7 0)^ obtained

by taking r=0 in Equation 44 - The $^6^ term denotes a

general elongation of the tube and does not contribute to

bowingo The «j£^co^^ term results in bowing in the yz-=

plane- The strain, C , at ^ ==0 is J^S/, at a distance r^

from the neutral axis- Thus, Aye*^ ?^' is "the curvature

in the yz-plane» The $,6/ 5ind term results in bowing in

the xZ"planeo The strain at ^ = \ is $^6^, and as before the

distance to the neutral axis is r^ . Therefore , ^^' t£.'

is the curvature in the xz-plane^ The curvature in general.

(52)

is the vector sum of K^^ and '^y*, and the plane of bowing

is given by Of,- i^n'' -^ , (53)

20



measured clockwise from the y-axis- Again it is possible

to set T, =1 without significant error so that

/r- ±^J-±S:i
. (54)

21



5. Results, Design Equations.

The analysis leads to the following simplified equa-

tions which can be used to design thin tubing systems

subjected to steady temperature distributions that are in-

dependent of tube length.

1. Axial strain

e^^ E^-^ O-^-ijCSiCose -^e,sin e) (48)

2. Tangential strain

€^'-0-^ide(B) -)^(eo-^s,cose -t-i.s/na) (49)

3. Axial stress

(Tg^ ''£[e(e)'LSo+0-f'^r^^)(e,cosa+i,smei} (50)

4. Tangential stress

OJ ^ctSt^ ^^' ^^"^ B^l,Sine) (51)

5. Bowing curvature

)^^ ^^K-^^i"" c^ 0j^=^Un'' ^ (54)&(53)

£(e) ^fo:tr}dT=^ €. +Z Le.cosO?(9)-i'a^s»nCne)]
Where

So" ixjf<^(r)drde
o 'B

22



ZTT T(9)

e^= ^J J oc(T)dT cos{ne)Ji^
^ -Ts

x.'jr T(^)

^^^'aTf' / oc(r)ciTsji^(yie)cla

"" ^B

23



6. Discussion of Results.

When thermal strain is expanded in a Fourier series,

the tangential stress and bowing as given by Equations 51

and 54 are functions of the first harmonic only, and the

axial stress as given by Equation 50 is a function of the

second and higher harmonics. To interpret the physical

meaning of this, consider the case where SC^J^S^^O^O-^^fo^^.

When the thermal strain is projected onto a yz-plane,the

first harmonic transforms to a linear function and the

second harmonic transforms to an even function. It is

known [Sj that linear thermal strain does not cause stress

in a free beam, but causes bowing, and that an even thermal

strain function causes stress but not bowing. Thus, the

res\ilts are those expected from superimposing elementary

solutions for simple beams.

Equations 44 thru 47 include a first approximation for

the effect of wall thickness; however, the basic assumptions

of this analysis, particularly that the temperature does

not vary through the wall, suggest that the results be

confined to thin walled tubes. Accordingly, Equations 4^

thru 51 and 54 are suggested as being the appropriate ones

to use for actual design and analysis. These results

afford a slight extension of those obtained by Flieder,

Loria, and Smith in the following respects: (1) they give

a variation of axial stress through the wall thickness and

24



(2) they give a value for tangential stress.

The present results and those of Flieder, Loria, and

Smith are comparable for the case where E, v , and oc are

constant* When these conditions are imposed, Equation 50

is identical at the wall raid-thickness to the result devel-

oped by Flieder, Loria, and Smith. Note that O^ is

independent of Poisson^s ratio. Equation 50 gives a minor

variation of c3i through the wall; they did not consider

any radial variation of G^ . Flieder, Loria, and Smith do

not give a result for tangential stress. Equation 51 shows

that tangential stress is zero at the tube wall mid-thickness

and that it is small for tubes with slight bowing. Equation

51 also shows that tangential stress vanishes if Poisson^s

ratio is zero.

Comparison of the results for bowing show that there

is a very slight effect due to finite wall thickness and

non-zero Poisson's ratio as given by Equation 52. However,

the simplified equation, Equation 54> which is here recom-

mended for purposes of design and analysis, is essentially

identical to that given by Flieder, Loria, and Smith.

Essentially, we have shown that influences neglected

in the analysis of Flieder, Loria, and Smith have only the

very slightest effect on the final result. However, the

expression of the thermal strain as a Fourier series has

25



simplified the final form of the equations and aids in the

visualization of the effect that a given temperature dis-

tribution may be expected to have on a tube

.

26



simplified the final form of the equations and aids in the

visualization of the effect that a given temperature dis-

tribution may be expected to have on a tube.
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APPENDIX I

Derivation of Expression for Tangential Strain

The temperature change from point to point around the

circumference of the tube results in thermal strains. There

is assumed to be no temperature gradient across the wall

thickness of the tube, thus the thermal strain is indepen-

dent of radius. Superimposed upon this strain is another

strain which varies with radius and is caused by the change

in curvature of the tube wall.

To derive an expression for that portion of the strain

independent of radius, consider two points A and P, close

together, on the mid-thickness curve. V/hen the temperature

changes, the points will move to new locations A, and P, as

shown in Figure 5.

/
/ "^^"^^*"i—~ -,^ /" ^.!^.a/ /^<v+d*'

*-~s^ ^ \ / <)!

/^J»p>
/u+du
\ V

/
/ \

\

Figure 5. Tangential Strain at Mid-thickness,

27



Let A- and J be unit vectors in the i and j directions

respectively. The bar denotes a vector.

Then OA^- vl -i- (r^-hu)^ j (la-1)

Qp, = (v-i'dv)[cos{c/0)7'hs/rf{c/0Jj]
^ (ia.3)

and A^ = O^-f- Qf^ -OA^
^ (la-4)

Because c/^ is a small angle, sin(<:/^) =u^ and cos(o^d) =1.

Then, A/f^ ^E^^^^^Jde-h duJO-^d\/]A +&/a- \/c/^- o/i/c/<9jj , (la-5)

Neglecting infinitesimals of higher order,

A^P, ^L(K^u)d9+ciyil +Cc/u -h vdO]j (la-6)

-,4

and lA,f^l^[(n-^'^)y^''-tz(n-^a)vde''-i-u''J0^-ZLLVcl9\vy^J. (la-7)

The strain, €^/ , on the raid-thickness curve is defined

as the change in length per unit initial length of the curve

as the tube wall deflects. For small angles the arc length

and the cord length can be taken as equal. Therefore, the

strain is _ /AT?l^rod<9 ,, ^.

Substituting the value of Mi"^! yields

Again neglecting infinitesimals of higher order, the strain

2g



becomes r f/ -f- tC^-^^^I^ — C
^&,/ p . (la=10)

Since SCa+/)«/ ,i/+-^<:"^'^jr^[.'-^ ^^J (la-ll)

Therefore

,

^. .= ^ . (la-12)

on the mid-thickness curve

o

The second component of strain is caused by the change

in curvature of the tube wall„ Because the tube is "thin"

the theory for bending of straight beams can be usedo The

strain due to bending is

^^,z"" rA>/^, (la=13)

where r = distance from mid-thickness and

"^A = change in curvature of tube wall mid^-thickness

curve o

To find the change in curvature consider a point P

which after a change in temperature is at a new location

P, as shown in Figure 6„
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Figure 6. Displacement of a Point on Mid-thickness
Curve.

The point is located by the vector R=(Q^-^)^r-^^^e (la-14)

where ^r and 2^ are unit vectors in the radial and tan-

gential directions respectively* Taking derivatives;

# = di e^ + (n>+u.) e^+ V^ff - ve^

= (u-v)^r '*-(r^-t(jL+v)ei0 (la-15)

and ^= 0^-v)Gr '¥((JL-V)eQ + CCi-i-]>)e^-(n-ha-^C')er^

^(u'ZV'U.-ro)er-^(^-hZU'V)e^ . (la-16)
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The curvature after deflection isf3j

Noting that r^ greatly exceeds u, v and their derivatives,

we get the approximation

= fo'-'Cu.'^u.Jr, , (la-18)

';

The change in curvature is the final curvature minus the

initial curvature. The tube is initially round so the

initial curvature is l/r© . Thus,

4A= iifn^ - I = _ _ai^
. (13.19)

The strain due to bending is then (u-^u)

The tangential strain is the sum of the two components

developed above:
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Solving Equation 2a -4 for a, we have

CL- 0-^^)8o-b'£^]^; (2a-5)

"* T.and CL^O-^^deo- ^«
where ?' z-^^^. (12)

Equation 6

L<r^<jdA^O (6)

y=.(n»-hr)cozO and dA^^CTo^i^) drJd (g)

Substituting Equations 8 and 2a-l into 6 and integrating

over the same interval as before:

-^-^ii^Z ejzo^(ndhosejdl9 ^ 0. ( 2a-6)

Note that
o^
c^C»-6!;co50^)^^^|^^ ' ^^^ . (2a.7)

Henceforth in the analysis, terras which vanish in this way-

will not be written. Continuing the integration,

j^\[h(r,+rfi-v(u,+ v.)(K^ -(i+y)e, (n.-^r)^]<Jr=-0 (2a-8)
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Let S^ ''*'1~^ <^i^^ /^ " /"^TT^ >

then 6=^7" [0-^^)3, - v(u,-^v,) ] . (13

)

Equation 15 .

'2.Ci'^y)aCd)€, + zO'^)f)e(e) ]JA

The integral is the sum of the following terms:

n:
Vf ^1 ^ O ft

^ o —

'

<4 ^
n.

=fa^r)^. [z/:i -i)u:^f fl'^^^-^-i^J^^ +^«^+ f/^-'-oy. i^^>;v;]]

-^x '
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where ^,=
''^

iTq'-(''^''^ ^^^/^^= ^-^ /^^^('^"'-O -

= SJiir fct-^rjlzO-*- f)0ia,-tCn-^r)Cu,+ \/,)b2dr

]ZE /a (f^yJaeO^dA = 2 0^y)fjCr.-^r)drff a!:COS X^Q) d^
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Summing all terms:

-^zO-^^A^^o-^^Sn] . (16)
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APPENDIX III

Example

• The follovd.ng example will illustrate the method of

solution and order of magnitude of results « A 302 stain-

less steel pipe 10 inches in diameter, with a wall thick-

ness of 0.5 inches is subjected to the temperature

distribution shown in Figure S. Assuming the pipe is free

from restraint, what is the stress pattern and how much

will the pipe bow?

so

1

—

/oo
%
Qc
Uj

O. '/£-0

-ZOO

-zso

-300
O O.ZTT O.^TT a^n O.&lr /.OV i.ZTt MTT /.67T /.8Tr Z^Otr

6, RADIANS

Figure 8, Temperature of Pipe
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The first step is to determine the thermal strain for

each temperature o The base temperature in this case is

taken as 6^**F because the data, see Figure 9, is given in

that form« A harmonic analysis is then performed to deter-

mine ^©^ <E, ^ and 6", , The calculations and results are

given in Table II and paragraphs below.

at

I

>1

400

300

ZOO

inn

/

/
/

/
/

/
/

o y/
'100

'2.0O

///

'300

400

y
•AOO -300 -ZOO -100 100 ZOO

TEMPERATURE } "F
300 4.00 SOO

Figure 9» Thermal Expansion of AISI 302 Stainless Steel

From T. F. Durham, Re Mo McClintock, and R. ?. Reed,
"Cryogenic Materials Data Handbook", National
Bureau of Standards, PB Report 171^09, 1961.
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TABLE II

Harmonic Analysis

e T(0) ace) e(^) cos eC^) sin

radians "F tio^ x/o^ y^io^

0.0 50 -20 -20.0 0.0
0,1 43 -21 -20.0 -6.5
0o2 43 -26 -21.1 -15.3
0«3 35 -35 -20.6 -28.3
0.4 23 -45 -14 »

2

"43.3

0.5 -10 -62 0.0 -62.0
0.6 -20 -80 24.7 -76.2
0.7 -70 -125 73.5 -101.4
0.8 -250 -260 211.0 -153.0
0.9 "295 -285 272.0 -88.2

1.0 -300 -288 288.0 0.0
lol "295 ^285 272.0 88.2
1.2 -250 -260 211.0 153.0
1.3 "115 -162 95.3 131.2
1.4 -100 -150 46.3 142.5

1.5 "85 -140 0.0 140.0
1.6 -75 -130 -40.2 123.8
1.7 -50 -110 -64.7 89.2
1.8 15 -50 -40.5 29.4
1.9 40 "30 -28.5 9.3

Total

i.9ir

"2566 1224.0

-5"

323.0

The bowing of the pipe is

K ->fi?^ = ^(m.4^y i^z.^^y

-I
at Sj.^ ^a.^'' e, = M^o"' 3Z'l = M.8 .



The tangential stress is given by

therefore, on the mid-thickness curve, r=0, c&=0.

Letting E=30xl0^psi and >^ =0.296,

At the outside diameter r=t/2=0»25 inches.

^ = ^^ 9.71^^ (l^^'"^ coze + 32-3 s/yf 9 ^

The results are given in Table III«

The axial stress is given by

cji- -E{aC9) -]^.^0^^^))Le,cose ^ a, sm B)\\

On the mid-thickness curve r=0 and L -^ "^
r 0-i^'^) J "^^

At the outside diameter r=Oo25 and /^/-f C
^^ J =1,055«

Axial stress was calculated for each position and the

results are given in Table III and also shown in Figure 10,
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TABLE III

Tangential and Axial Stress

6 (Tg ,psi C3i ,psi di ,psi
radians at r-0.25 at r=0 at r=0<,25

0«0 596 4,200 5,700
0.2 575 4,^00 S,700
0,4 333 -4,200 -3,000
0.6 -23 -16,500 -16,^00
0.^ -390 14,400 13,500
1.0 -596 11,400 9,300
1.2 "575 4,200 2,400
1.4 -333 -13,^00 "15,000
1.6 23 2,700 3,000
i.a 390 600 2,700
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Figure 10. Stress Pattern of Pipe.
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The result of the first assumption, that cJp- and ?Vd

are negligible, is that equilibrium cannot be satisfiedo

The values of these stresses are now estimated using the

conditions of the example, A section is cut out as shown

in the free body diagram, Figure 11. These are the posi-

tions of maximum and zero tangential stress.

Figure 11. Shear Stress

The stress distribution, a^ , causes a net counter-clock-

wise moment of 25.7 in-lbs. To restore equilibrium,

stresses 0^ and 2^^ are required. Summing moments about

the point P,

The tangential stress, o^' , is also equal to 10.3 psi.

An indication of the magnitude of the radial stress

required to maintain equilibrium can be obtained by inves-

tigating the condition at =195 , the cold side of the pipe,

There the axial stress is about 10,000 psi and will be

taken as constant. Figure 12 shows the action of axial and
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radial stress

^^-fOfOOO pzl

Figure 12 „ Radial Stress Component Caused by-

Axial Stress

o

The radius of curvature, R, was obtained from the

bovidng. Summing forces in the radial direction,

Therefore, Cy = ^'^s^Po^^
^ = ^'27 psi, the radial

stress caused by axial stress..

The maximum radial stress component resulting from

tangential stress can be estimated by considering the stress

condition at 0=^1{ as shown in Figure 13

«
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Figure 13 » Radial Stress Caused by Tangential
Stress.

Taking the sum of the forces in the radial direction

we get,

<rr^^^(^^^o)^7,7.- psc

The total radial stress is the sum of the component

caused by axial stress and the component caused by tangen-

tial stress { a>- hZl -^ 1.1S =^9 ps^ )<,

It is seen from the above calculations that op and

'^^ are small when compared with other stresses, and there-

fore, neglecting them is realistic

»
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