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ABSTRACT

During the past ten years there has been increasing interest in

the solution of allocation- type problems. Published papers on the

analytical solution of such problems have in the main been restricted

to particular cases.

This paper, while not offering an all-purpose algorithm,, addresses

the problem in general through the development of theorems giving

necessary conditions for a given vector or function to be a solution*

These conditions in many cases enable one to deduce the solution.

The paper is presented in two parts. The first addresses the

problem of maximizing a sum of n functions over an n-dimensional sim-

plex. The second is concerned with the maximization of the (Lebesgae)

integral of a functional over a class of integrable non-negative func-

tions with common Li norm.
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I. Introduction.

During the past ten years there has been an increasing interest in

the solution of allocation type problems — problems that are concerned

with the distribution of available resources in a manner that will maxi-

mize some sort of utility or payoff function. The resources may be

defined in terms of men, materials, money, weight, or a myriad of other

conceptual products over which some individual has control. The payoff

may be in terms of dollars gained, losses to an opponent, expected value

of a random variable, probability of the occurrence of an event,, or a

mixture of these and other factors.

A fairly large literature has grown up around these allocation

problems as they apply to many fields of endeavor such as target assign-

ment, theory of search, theory of games, etc. However, most of what has

been published has been in the form of particular solutions to particu-

lar problems (or classes of problems).

It is the purpose of this paper to set forth certain theorems which

appear to be at the heart of nearly all analytical solutions to alloca-

tion type problems. The theorems in Section 2 are not by any means

original but have been used by mathematicians for years. These and

Theorem V of Section 4 were first introduced to the author by Dr. J. M.

Danskin of the Institute of Naval Studies in his lectures at the U. S.

Naval Postgraduate School in the spring of 1963. Theorems VI S VII and

VIII, while apparently never before published (at least not In this

form), will be readily seen to be extensions of the basic concepts of

Theorems II, III and IV respectively to the case of the Lebej gje inte-

gral over En .



It is hoped that a study of the theorems and examples of this

paper will prepare the reader who is concerned with the analytical

solution of allocation type problems to better extend the reasoning

of the authors of papers attacking certain special problems, many of

which are referenced, to his own particular problem or problem area*

The order of development in this paper will be as follows

;

First, four theorems concerning the solution of finite allocati

problems will be developed.

Second, two examples of applications of the first four theorems

will be worked out and a discussion of appropriate published references

will be presented.

Third, four theorems and a lemma concerning the case ©f the c©n=

tinuum will be developed.

Fourth, two examples and a discussion of published references will

be presented.

I would like to express my gratitude for the encouragement, guid-

ance, and inspiration which Professor Kenneth Lucas and Dr. John Danskin

provided and without which this paper would not have been possi



2. The Finite Allocation Problem.

In this section we shall develop four theorems concerning the ana-

lytical solution of problems in which one desires to maximize the re-

turn from the allocation of a fixed resource among a finite number ©f

activities each of which has associated with it a known return function,

Suppose we have a finite number, n v of activities to which we wish

to allocate resources available in a fixed quantity X. Suppose further

that associated with each activity there is a function representing our

gain upon allocation of resource to that activity. That is f, (x) is

the gain realized from the allocation of an amount x of our resource to

the i ' th activity. The problem we are concerned with is to maximize

our total gain by the proper allocation of our resources. That is we

wish to find the n-dimensional vector x° - (x-.
s
X2°

9 . . *x °) that maxi-

mizes / f. (x.) subject to the constraints x,- for all i and

)x - X where x. represents the allocation to the i°th activity.

Since the properties derived in the theorems are independent of X 9

or the x.'s can be normalized, we shall assume henceforth that X s 1.

We shall also assume that the functions f* are twice continuously

differentiable (the derivative being taken from the right at and from

the left at 1) in what follows. In all but Theorem IV this restrict!

is excessive. For the reader who encounters problems not meeting the

above condition the allowable reduction of the restriction in '

I, II and III is readily apparent.



Theorem I. If x° r (x ,x , . »
„
,x ) maximizes

)f. (x.) subject to )x„ z 1

then there is a number A such that
/

and x„-0

f- ( Xl )

(The problem and constraints set forth In the above hyoothesis

shall be referred to as "the basic problem" throughout the remainder of

this section.

)

Proof .

Suppose x„ =» 0. Then construct

x^ = x„° - £ where 0=€ =x°

< x e
.

- * ° ± r for same j
I J ' J ^ C

for k £ i
, j

xe such that

;

i -- V
Obviously x f is admissible. (Throughout this paper the term

admissible will refer to a function that satisfies the constraints

applied in the statement of the problem to functions which may be com"

sidered a solution.)

Le

h

tF(£) r £}R
( X

k } =f
i

( Xi°*
e)+f

j

(K °+£ } + Zf
k

(V
-*0

Since x maximizes the above sum F(£ ) achieves its maximum

£ z and so we must have F (£)

but: f'(£)

=
£=o*

€=&
s f '.(x.°) - f:(x o)^o

J J i i
/_



implies that (1) f!(x °)=f'.(x °) for any j*i

We now observe that if for some j^i, x.°^0
f
we can by the s

method obtain the reverse inequality, thus giving us;

f;(x.°)*f'(xo) for x°>0&j*i
1 i

J J 1

fi(x.o) - f |(x.o) for x °=» & x.°=»0.
1 l j J i J

Taking /^ to be the common value of f!(x
v
°) for those x c

positive the theorem is obtained.

Theorem II . Given the basic problem , if all the f are strictly concave

(fy(x)<= 0) and x°: (x °,x.,o,...x °) yields the maximum, then there Is
1 1 * n

a number ^ such that x^;* if and only if fj(0)>^ . If f'(0)> ^

,

then x»o is the unique solution of the equation f"(x °) ; 1 .

Proof :

Apply Theorem I. If x,°=» 0, we see that f!(x„©) s)
i i i A.

but since f''(x)*=0, f! is strictly decreasing in x so that

f'(0)=»f:(x
i
o

) r ^.

On the other hand suppose fl(0) =» } . Theorem I states that if

x ° - then f!(Q)= X hence x A. and the if and only if statement

is proven.

To finish the proof, suppose f'(0)=»i . Then x °=» and from

Theorem I f'(x.°) z\ • That there is a unique solution to this equa-

tion follows from the fact that fl(x) is strictly decreasing in x.

Theorem III. Given the basic problem, if all the f .,
are strictly convex

(f''(x)>0) and "x r (x.o.x-,
, . . ,x °) yields the maximum, then there is

i 1 ^ n

an i such that x„° s 1 and x.o z o for j£i. (Geometrically, the



solution lies on a corner of the simplex.)

Proof .

Consider any admissible x ~ (x ,x , ...x ) such that at
1 ^ n

least two, say x and x. of its c
i J

ts are positive. We know

(since x is admissible) that x < 1 and x < 1.
i j

Take £ =» such that;

x
t
-e >

x. -£ =-

x
£
+£ -= 1

x. + £ * 1

Define x and x as follows

xl .- x
£

- I

A -• x
j
+

£

X
k

= X
k

f° r k ^ i 'J

x
t
2 = x

i + £

x, 2 : x. - £

x. x
k

for k£i»j

Then
x 1 and x are admissible and furthermore

We may now write

Wl
^z

L _
n

f (X 1) + YY (x/)

trl <^X



The inequality holds because each of the f„ is strictly convex and

x and x' differ. Hence ) f,(x.) must be less than _) f*(x
f
l)

or less than \ f.(x 2) or both and thus x does not yield the maxi=

mum. Thus if x° is not a corner of the simplex^ % is not the solu-

tion.

Note.- The solution for the above case is not necessarily unique

is, more than one corner of the simplex could yield the same maximum

value. However, we can see that all that is necessary to solve

lem for the convex case is to evaluate each f. at x. - 1 (or X if we

have not normalized) and select that activity which yields the highest

return.

Theorem IV . Given the basic problem. If 'x° z (Xj0,X2°s> . . .xn°) is the

maximizing solution, then fi'(Xj°)2 for all x„° which are posit:LA. ^

with at most one exception.

Proof. Suppose we have an admissible x° with

XjOj-O, x.°>0, fj(x <>)>0 and fV(x.°)>0

Let

a~ z x,°-#- x.°

£ z min (x
t
°

s x
2
°)

Now consider the problem:

(1) Maximize f . (x. ) + f .(x „) subject to

X,^0,Xi^0 6e x.+ x, z 0~
x— J— 1 J

If x ° maximizes the original problem 9 we see that the pair

(x.°, x.°) must provide the solution to (1).

7



Since both fV and f'.' are continuous, we can find a. £ =» such that
i J

<f<£and for/?p/^ $ we have f£(x„°+# )>0 and fV(x.°f 7f ) =>0

(This is the only place we utilize the full power of the constraints

placed on the f.'s.)

Let FCp) z f
i
(< x

i
-h^f >+ f < x °

**l) • For llj/^f we have

F"(77 )= so that F(7^) is convex and achieves its maximum on the in-

terval I— 6,&\ at 71- -6 or at 7?- + £ but since

(x°t^)+(x,° -}[ ) « C~ this shows us that (x °,x.°) can not be the

solution to Problem (1). Thus any such x can not yield the maximum

to our original problem.



3. Examples of the Finite Pi oh lent.

The theorems of the last section or variations of them have proved

useful in a large number of mathematical applications. Included In these

"allocation" problems are weapons assignments, solutions to games, and

many other problems concerned with the optimum distribution of effort or

resources.

It is the purpose of this section to illustrate through simple ex-

amples the application of the theorems of Section 2 to the solution of

problems. References will be given to several papers and books which

treat similar problems by this method and also to several which contain

a different approach to the solution to these problems

.

Example 1. (This example is based on a problem posed by Dr. John

M. Danskin of the Institute of Naval Studies in his lectures on Search

Theory during the spring of 1963.)

Suppose in the problem described prior to Theorem I we let the n

activities be interpreted as n available targets while x, represents the

number (of a fixed number X) of weapons we allocate to the i'th target.

Suppose the probability of destroying the i'th target with x weapons is

-b "X
1 - e r where b- 5- is a parameter representing weapon reliability^

accuracy, target defenses, etc. Suppose further that the destruction

of the i'th target resuLts in a gain to us of a,> units. We now de-

site to allocate our weapons in such a manner as to maximize our

expected payoff (gain) with respect to the probabilities of destruc-

tion. Our problem then is:

-b,X4
maximize

c-1

V^ ~ b ix i



Subject to: x :-0 for all i .

l
~~

&x,, z X

by letting y. r
x
i we can normalize this problem and rewrite it:

X

£Vi-.-Vimaximize

£-1

subject to." y. ^ for all i

where y. represents the proportion of our total arsenal X that we

allocate to the i'th target. In this example we shall determine the

solution for both variations to show that they are Indeed the same.

(We shall adopt the notational scheme of numbering equations for the

first problem and using the same numbers with a prime for the analogous

equations for the second problem.

)

We now have

:

(1) f^x.) = a^l-e'*1
*
1
)

(2) f»(Xi ) = a^e A

(3) fV(x.) z -a,b„
2

e
i%i< for all i & x20.1111 %—

•btXy:

(2') g!( yi ) = a^.Xe'

-fciXyi
and; (!') g.Cy,) = a^l-e JX

)

- biXYi

~b
i
Xy

i
(3') g^'(y

1
) = -a

i
b
i
x e < for all i & y„>0



We shall now let c, r b. X .

i i

Since f"(x)«=:0 for air I & x and g"{y)< for all i & Y s we see
i i

that Theorem II applies in both cases. So we calculates

(4) f£(0) - a
i
b
i

C4 ') 8|(0) r a iC]L

and the application of Theorem II gives us:

(5)

x.°> iff a,b,>A

x ° = iff a-b.^)
X

(5') /

y°>0 iff a^^Xy

r,° - iff a.c„«= )

We see from (5) & (5') that if the solutions are equivalent we must

have ^y
= XAX .

Now applying the second half of Theorem II we obtain;

for all i such that x, => 0?

fI<\°> = a
i
b
i

e
iXi

=A

or after multiplying by Va.b. and taking logarithms of b I

sides

:

,,, o 1 ,
a ib i

(6) x
£

,- - In

XT
Similarly for i such that y„ =»

(6
1

) y I h i ic i

Ay

We now re-label the targets so that a.b. ^ 32b2 ^ . .. ^an
b
n „ For

11



any \ we find its position in this string of inequalities.

tice that } must be less than a b since otherwise we would
' ^ x n n

all x. z 0.) Having chosen ) we set
x /vx

x.° - for a.b
4
* )

i 1 i = A

(No-

(7)
x

X

j
--! In il^i for a.b.»i

bj

We now vary } to obtain;

(8)

i&ibi>*X

Similarly using the same ordering (a.b„ > a.b .4=^ a.b, X11 J J 11

z a
i
D

i X), we obtain for the second problem

(7')
yi

°
= for ajC^X

o 1
In —yyi

• c

a
i
c
i

ln —

»

} for a c =•)
Av

and we vary } to obtain:

(8') £>; - > * ln =£
L =l

i*a.iq>\,

Substituting for c„ into 8" we obtain
1

.i. a.b. X
b
i
X In -?~i- =

l

Ay

or

1 a*t>i

bT l" T
1-

1

L Ay/ly/x X and we see

c?%b
(

>ff

that } r X A an<* tne two solutions are equivalent.

i.c »> a .c .

i 1 J J

12



From this we see that the product a„b„ is the factor that deter-

mines whether or not a target is attacked. So 9 if a new target arises

we can compute the new product ab and if the new ab is less than ) ,

the new target will not be attacked, if the new ab is greater than /^

then it will be attacked and a new 1 must be calculated.

Example 2.

Consider the two-person zero-sum game with payoff Kernal

h

r^ -* V^ ""^lYiK(x,y) r / a £x i
e where a, & b,=- and x c & y, are the coordi-

4— ii x x
c=l

nates of the n-dimensional vectors x and "y constrained by x a y =
i i

for all i and \ x, = c ; \ y. r do We might consider the

a. 's to represent target values; the b.'s target defensibility; x, the
l X x

allocation of weapons to target i by player I who desires to maximize

K(x,y) ; and y the allocation of defenses to target i by player 11 who

desires to minimize K(x, y) . For convenience we shall assume e & d s 1,

The existence of a solution to this garae
9
that is a pair (x

, y ) such

that K(x
, y )= KCx*", *y°) for all x in the simplex and

K(x
, y )^K(x

, y) for *ll y in the simplex will not be proved here„

Such a pair can be shown to exist.

Our problem then is to find the pair (x , "y ) such that;

n n

C-Z L=l

(2) x
i

= : y-°= for all i

13



(3) K(x, y°) ^ k(x
, y°) ^ K("x°, y ), for all x and y

satisfying (1) and (2).

Looking at (3) in the light of the theorems of the last section we

see we have a pair of maximization problems;

(4) Maximize K(x, ~y°) subject to

x. = for all i

(5) Maximize -K(x°, y ) subject to

y£= for all i.

fri- 1 and

n

Upon differentiating K(x, y ) = a.x.e

d=X

2
c=x

'biYi
4

by x. and apply-

c=l

ing Theorem I, we see that there must be number \ sucl

= A if */>- o-biy ,°
(6) a. e L/l J

= X if x,

-*o -*
Similarly from -K(x

, y) we see there must be a number k such

(7) a.b.x. e

-b 4 y.°o i^i
= k if y.° >

= k ify.°:0

From an examination of (6) and (7) we can determine the following'

(a) k > ; There must be at least one i for which x =*

i

This with (7) gives k ^ 0.

(b) y. > => x
i
0;=°

; If y.°> 0, then a
i
b
i
x
l

e
L^i

k > .*. x =» 0.
f

(c) a^^s^ x^ '

= => y^ -
; The first implication follows

directly from (6). The second is a consequence of

14



(d) a
i =A =^ yj = °

»
If a

* =A '
then y i

0> 0=^ x
i° - ° by

(6); but, by (c) x„° r => y o - .

1 i

(e) a
i -^=> x

i° = —~ ; Substitute y £
° . into (7)

a
i i

(f) ajs^:=> y^,
*- => x^s. ; This follows directly from

(6) and (b)„

Now to determine a solution we proceed as follows:

We see from (c), (d), (e) and (f) that we need only consider

i for which a.= ) .

-b °

From (6): a^A => ae *
=A

Substituting this into (7) we obtain:

(8) b.Ax
t
°

: k=>x.° = ^-, fora^A •

From (e) we obtain:

(9) x.° £ _J_ = _JL_ , for a. - 1 .

b
i
a
i *JT r

~ A

o

1
r

A .Z_ ^7
then £x.° .- Vx; + ^x/ .- f ) i+Z:L

C;

Now if we define B_ r } r—
b
i

then for Z = (that is x.o r for a. z \ ) we have

Lv =
i -! B°=» k^

c=2

15



However, if we set x o - _k
when a -\ we have;

1 AS l A

I'-lI^i'- i =$> r = A

We can thus see that we have

(10) *-B S £\° = L = J
B
l

have:

(11) A. * k * A
B, - - B
1 o

Using (10) we see that for any value of k satisfying (11) we can

find a number XS with = /S = I such that;

(12)
J

B
Q V(j[Bl "jV = *'

Recalling the definition of B and B (12) becomes;

So by setting x.° r ^ k
, for a. : ] ; x .° s 4— for a

^
" A

and x. =0 for a «= ^ , we obtain a solution for player J„

For player II we have y.°=- only if a.>j( . But for a^A

we have

o k

So we get from (7):

a
i
b
i -|b~ e"

b
i yi°

= k for a.>A

a- -bjVf° ~ 1. Miltiplying by A. and taking
or i e a

t

A

16



logarithms of both sides we obtain

.y,° = In A or v
*-b.y " = In A or y" : 1 In d

i
1/ 1 — i — —

-

Thus we can obtain \ as the solution to the equation;

(13) \y - \ jT In _i - 1

in the same manner as in Example 1,

Thus we can express the final solution to the garaej

k
<'Ah

for ai>A
x
i

Vl = r- In i

f X

for . 4 ]

'

' " AN

for a <a

yL
° z o

x,° =

y.° :

where: (a) \ _l_ a-

A satisfies / b^ *n "T" - I

(b) k is not unique but any number satisfying:

A L \ = l

= A L \

(c) jU is the nuraber for the chosen value of k such that:

_k

A
k

!k +"ilk-->
c'aJ

c-?A <r>4-=A

Substituting the solution (x ,y } into the expression for K we see

that the "value of the game" is;

17



aix i°e -- ya^ sx m

The preceding examples are highly simplified and are meant to serve

as an illustration of the method of applying theorems I through IV, not

as examples of applications. For a much more sophisticated and realis-

tic application of the theorems the reader is referred to the papers by

J. M. Danskin on Convoy Routing 6 and Theory of Reconnaissance [5].

For an appraisal of the earlier work done in this field with much

more severe restrictions on the nature of the problem the reader is re-

ferred to the papers by Charnes and Cooper \JZ^ and deGuenin [_7j

.

The reader has probably observed that the solution obtained by

application of Theorems 1 through IV will not, in general, provide inte-

gral assignments. Thus we may be faced with the problem of interpreting

the meaning of assigning 0.7 bombs to a target. Further, in some cases

the solution to an allocation problem is very unstable (this is the case

when the payoff functions f^(x) are S-shaped, first convex and then con-

cave as x increases). In cases of this type our method may not give us

any useful information. The paper by Karush £llj addresses this problem

and contains some very interesting examples pointing up the danger of

attempting to deduce an integer solution from the analytical solution

(these examples are readily apparent upon reading the article although

not specifically referred to therein). Bellman's book [l] provides a

fine computer oriented approach to the solution of allocation problems

by the generation of sequences of functional equations. Other approaches

to special types of allocation problems can be found in the papers by

den Broeder, Ellison & Emerling [8] , Lemus & David [13] , Manne Q.4J and

Piccariello D.6J .

18



4. The Case of the Continuum.

In this section we shall consider the analog of the problem of Sec-

tion 2 in which we are allocating our resource over a continuum of

activities. Examples might be the distribution of searching effort

(effort spent on a point represented by the velocity at which the point

is traversed) over an area or the positioning of barrier forces in order

to protect an installation- We will develop four theorems analogous to

those of Section 2.

The following lemma and four theorems are based on Lebesgue meas-

ure and integrals. In what follows we shall let:

m be Lebeigue measure

W be an integrable function

g be a measurable, non-negative function

X be the class of all integrable s
non-negative functions

bounded above by g and such that Jx - c whenever x£X.

All of the above are defined on E .

n

Lemma I . x°£ X maximizes Jwx over all xf X if and only if there

exists a number \ such that for almost all t:

- ^ if x°(t) _- g(t)

(1) W(t) i - ^ if <x°(t)<g(t)

S ^ if x°(t) =

Proof ;

a. Sufficiency .

Suppose x°(t) satisfies (1). We must show that:

W(t) f x°(t) - x(t)| = for all x£X.

19
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We can write

(2) fw(t)[x°(t) - x(t)] = f[w(t) - A][x°(t) - x(t)]

since fa[x°(t) - x(t) : /lc - A C =

We now decompose E_ into three disjoint measurable sets:

Sj_ z [t: W(t) <c AJ

5
2

= {t: W(t) z A}

5
3

= {t: W(t) > A]

Then (2) becomes;

[w(t) - A][ x°(t) -x(t)] + I [w(t)-^][x°(t)-x(t)]

Js
i Js

2

W( t) -A] [ x°(t) - x(t)]

We observe that:

On Sj : W(t) -A < and x°(t) = Thus

x (t) - x(t)^ 0. So, the integrand and consequently

the integral is non-negative.

On S
2 : W(t) - /t = so the integral is zero.

On S
3

: W(t) - A y and x°(t) r g(t) thus

x (t) - x(t)^ and so, as on S. the integral is non-

negative.

This proves sufficiency.

b. Necessity .

Suppose x°(t) maximizes the integral subject to the con-

straints of X.
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We note that Lebe< gue measurability is equivalent to approximate

continuity almost everywhere. (See Munroe [l5j , p. 292 or Saks /_! 7_/ s

p. 132.)

Let t and t be two distinct points of approximate continuity of

o o o ^^
x , W v

and g such that x (t )< g( t ) and x (t«)^0 (If no two such

points exist, the problem is degenerate.)

The following property of a function in a neighborhood of a point

of approximate continuity is vital to the remainder of the proof.

If x is approximately continuous at tQ , then for any £ > and

7? > there exists £ > such that for any interval I containing t

such that m(I)<<£ we haves

m(E x/0l)> (1 ~7?}m{l)
o

where E
%

- £t • | x(t) • *{t )/<l£j

Now let us choose yf z 1/6 , an arbitrary C*> , and £ > such

that: x°(t
o
)+4e< g(tQ ) and x°(t

1 ) - 3£ > 0.

Define

:

E
G

X
= £

c
- x

°
(t) < 8(t

o } " 3£i

e
o
w

= [t: W(t) > W(t ) - <rj

E
o
8 8 £t: g(t) > g(t ) - £}

E,* = £t s x°(t) > 2 5 J

e
1

w
£ £ts w(t> < wet,) + <rj

E! 8
= [t'. g(t) > gCtj) - £J

Then we can find $ *, $Q
U

, £Qg,
^x, <^W, ^8 all >

such that for;

1

1



t £ 1
* & m(I

K
)< £

X
, m(E f) I ) > 5/6 m(I )

© o o o o o

t £ 1
W & n(I W}< £ W

, «(E Wn I
W
) > 5/6 «(I

W
)

o o o o o o o

t„ e I g & m(I 8)< X 8
, m(E 8fU 8

) > 5/6 ra(l 8
>

° o Oo o o °

t, £ I
X

& m(I % )< £ *, :E
1

X
Ol,

X
) > 5/6 "(I^)

t
x
e i

t

W fcrnCI^Xf^. «(E
1

wOI
1

W)> 5/& -d^)

t
x
C I

t
8 SmCI^X 5^, ^(E

1

8ni
1

8)> 5/6 0.(1^)

We now take £ such that;

o<£< mm <«$•*, S
w

, g«, t x
. £"• £ g >-

o o o v
i 1 1

and I and 1, such that t
Q £ I

q
and ^£ ^ , i/l^ = and;

(3) 0< m(I
o
) = m(I

l)^5

Lets

(4) E r E
X
f) E

WH E 8 fH
' © o * o o o

c5) e
l

.- e*c\ *"o E^O^

then;

m(E
o ) = »(I

o
) - **(X

o
-E

o
) = m(I ) - «d " C^CfrVlzf] )

^m(I ) - m(l - E
x
) - m(I

rt
- E

W
) - m(I - E 8

)' uo ; v O O ©o oo
> m(I

o
) - I m(lQ ) - 5 m(I ) -6 m(I

o>

= 1/2 m(I )..

©

Thus we have

(6) m(E )> 1/2 m(I )
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and by the same reasoning we have

(7) m(E
1
)> 1/2 mCI^

Using (3), (4), (5} s (6) and (?) we obtain;

1/2 m(E )^ 1/2 m(I^) s 1/2 ra(I,)< m(E.,)^ m(I-)
o ° All

or 1/2 m(E )< m(E
1
)<2m(E )

and since m(^a}^ Wl£ caip- write

(Ej^

s m(I
Q)< 2 m(E )

l/2<Z7FiT < 2m( E It
• o'

Next define

f o mCEn)

1
x (t)

m(E )

x°(t) - £

on E,

on E,

o
x (t: elsewhere.

We observe

on E x^t) = x°(t)+£!^l><x (t)-|-2€
m E

on Ei

< g(t
Q ) £ < g(t)

x
1
(t) = x°(t) -£ >£ >

x
l
(t) = x°(t) -£< x°(t) < g(t;

and
/

Xl
*/"°+

jE

m{E
1 )

m(E )
£ - £

L
s fx° +£m(E

1
) - EmCEj^)

so x £ X

.

Now since x (t) maximizes our integral we can write:

jW(t) x°(t) > /w(t) X
1
(t)

and using the definition of x (t) this becomes
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(8) f mCEp f

>El J?©

but E and £„ were chosen such tlh

I

T

o 1

W(t)> W(t ) - 0~ ®n E

W(t) < Wit^+a- ©n E

so we have upon dividing both sides of (8) by £ i

f HE0 f
(WCt^-fcr) M^}} \ W(t)>sr^J / W(t)^(W(t )"<T)m(E

1 )

Upon dividing through by m(E ) which was chosen to be non zero we
1

obtain

W(t )-/-0~ -^ W(t ) - 0~" where tf-ls arbitrary.
JL o

Thus WCtj) ^ W(t ).

Since all we required was that x (t>)^0 and x (t )<g(t ) we

can see that if also x (t )> and x (t,)<g(t]) we can obtain the

reverse inequality in the same manner, thus obtaining W(t ) = W(t.).

Taking A to be this common value we obtain the conditions;

w(t> > ^ if x0 < c > £ 8<t>

W(t) :^if ^x°(t)< g(t)

W(t) < /[_ if x°(t) =

These conditions hold for all points at which x s W s and g are

approximately continuous and hence a.e„ and the necessity is proven.

With this lemma we are now ready to prove our first theorem.

Theorem V, Given g and X as before and a function f defined on E , ,

(or at least that portion having non~negative first coordinate) such

that f (x(t),t) (the first partial derivative by the first coordinate'
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is an integrabie function of t for all x £ X. If x (t) maximizes

f(x(t)
s
t) over x £ X, then there is a number A- such that for almost

11 t •

/

f„<* (t>,t) ;

>y X if x (t) = g(t)

z X if 4/(t) <, g(t)

^ ^ if x°(t) z

(The problem and constraints set forth in the above hypothesis shall be

referred to as "the Basic Problem 1" throughout the remainder of this sec-

tion. )

Proof ;

o
Suppose x (t) maximizes the integral subject to the constraints on

1
X. Then let x (t) be any other function from X.

Define

x (t) z &* <t)+ (I - 9)%
J
{t)

for ^ 9 < I

Obviously x*(t) £ X for all &tEQ,i]>

Let F(0) s f(x*(t),t) s ff(0x+(L^)x°,t/
Now since x maximizes the Integral* F( & ) has its maximum at Q z and

since f exists dF/jj© exists for B£[p,lJ (we take the derivative from

the right at and from the left at 1]

must be negative. But;

So d_F_

d 9 9-

d_F

So we have

J£K
(e*

l

+ (I - &)x° ,t) [x l
~ x^

d F

d6 <9 =

e /fx<x°<t),t)/:x
i-x^ o

for all x
1
£ X
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But this is the problem stated in the lemma with

W(t) r f (x (t), t). So by application of the lemma the theorem is ob-

tained.

When the function f(x,t) has convexity or concavity properties we

can determine even more about the nature of the maximizing solution as

the following theorems will show.

For simplicity we shall consider two functions that differ on a set

of measure zero to be equal in the following three theorems:

Theorem _VT . Given the basic problem^, if f (x s t) is strictly decreasing

in x for all t, then there exists a number A such that;

x°(t}> if and only if fx(0,t)>A

where x°(t) is the maximizing solution.

Proof.

x°(t) > =^f
x
(0,t)>^;

O v
Since fj.(x,t) is strictly decreasing we have for x (t)>

(1) fx
(0,t)> f

x
(x°(t),t)

From Theorem I we have

(2) x°(t)> 0=>f(x°(t)
s t)^ Xx

we obtain

f
x(o,o > X

b. f
x
(0,t»^=^xo <t)> o:

or equivalently x°(t) = =^ fx(0,t)^A

but this is the conclusion of Theorem V.

Theorem VII . Given the basic problem s if f (x,t) is strictly increasing

in x for all t and x (t) is a maximizing solution, then

m
f£

C 5 ° < *° (t) < g(t
\}) - °
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proof Suppose we have an x°(t> such thatw^ m(Tt ; 0<x°(t) <y(C)7^0.

Let t| & t.y be distinct points of S such that x and g are approximately

continuous at t* & t 2 - Recalling the variational technique employed in

Lemma 1 we take 77 z 1/4 and £ > such that;

x°(t
1 ) f4g< gC.t^

x°(t
2>^ 4£ < g(t

2 )

x°(t
1 >> 3£

x°(t
2 ) > 3£

Defines

E
i

x
- [l

°- '
x°^> * Atpi^j

E
i

8
= £

t s g(t) > s(t
i ) " ^3

E2
X

= {t : |x°(t) - x°(t
2)/^£J

E
2
S s £t : g(t) > g(t 2 ) - £J

We then find £i
x

, 6|8 » <>»
x

> <£?
8 ^ such that;

for t
x
£ ij* & mCI^-X 6^, m(E

I

xni
1

X» 3/4 m (I
x

)

t
L
£ Ij

8 imd^X^y, m(E
1
80l

L

8)>3/4 nd^)

t
2 £ I

2
X

6= m(I
2
x)<£

2

x
, m(E

2

xOl
2
x)>3/4 m(l

2
x

)

t
2 £ I

2
8 & md^X-^8

, m(E
28f)I 2

8)>3/4 m(I
2
8
)

Now select &> such that £< min (£ x
, <$>

8
, & x

, (fL^)

and 1. & I. such that t. CI, , t... £ I, ,12 112*
I|0 i

2
s 4> and mCij^) r m(I

2 ) ; <£ .

Let; E
x

= E^fl E^ f) ^

E
2 s E

2
x
f) E

2
8 /1 I

2

27



Now; mCEj^) z m(I ) -mdj^- E^ = mdj) = m(I
1

- (E^E^))

^m(I
1
)-m(I

1
- Ej*)- rnClj - E^)

>m(I
1
)- 1/4 iflj) - l/4m(I

1
) = 1/2 md^

Similarly we obtain mCE*)^ 1/2 n»(i^) and as before we obtain the

inequality:

nCE, )

1/2 < _X- < 2 .

m{E<j)

Now define:

x (t'

x (t) +• £ , on E,

x ft"

«°(t:

m((Ei

m E2)

on E„,

on - (E^ E
2 )

2
x (f

We observe

on E
1

' x (t) - £ , on E
1

< x Ct}-f
m(E

l
) c , onE,

m(E 7 )

I x (t) , on -(E^Ej]

1
x (t:

2
x (t

x2 ct:

x°(t)^e > x°ct)^ o

r x°(t)y-£< x <ti) + 2€<g(t
1

;

= x°(t) = £ > x°(t
2 ) - 2£ >

= x (t) =£< x°(t) < g{t)

£< g(t;
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an E
2 z x

l
(t) r x°(t) -

ra(E l^ g > x°(t) - 2 £> x°(t
1
> - 3£>

n^E?)

xx (t) 5 x°ct) - !l?rilg< x°ct>^ g (t)
m(E2)

X (t)) * X :t)+^4£> *°(t) > o

x
2
C t> = K°ct)4 ^4^ x (t)+"2f<x (t

1
H3r<g(t 1 ;

m(E2) i

~£< g(t).

x
1

- TxV fe . !5V i£ -
/ k

J Je l
mCE2 ) J ^

2 f o, n,(E
l
)

x x°"f- ^7?T /^ " /£

E2 J E,

nt(E2>

1 2
Thus x & x € X o ©12
We now observe that x (t) s x_(t) ~r_x_(t}

2

but„ since f is convex (f (x^t) is strictly increasing in x) we haves

f(x°(t),t)< 1/2 f(x l (t),t>+ 1/2 f(x
2
(6},t) for all t and thus

/f(x°(t),t)< 1/2 |f{x
l
(t)»t) + 1/2 I fCx

2
(t), t)

12 o
so that either x or x (or both) yields an integral greater than x .

O <-• ©
_

ft
Thus any x such that m( £x ; 0<x (t)<g{t])J- ) > can not be the maxi-

mizing solution and the theorem is proven.

Theorem VIllU Given the basic problem with f(x s t) twice continuously dif-

ferentiable by x. If x (t) is the maximizing solution and we let
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S
1
(x°) - ft : fxxC*V)> oj

s
2
(x ') s £t 5 o <x°<t) <g(t)j

and S(x°) : S
1
(k°) f) S

2
(x°) , then mCSCx )) = 0.

o o . »

Proof; Suppose we have an x (t) such that m{S{x ))> 0,

On S(x ) choose £ (t) > such that:
I

x°(t) - £^t) > o

X°(t) i-S^L))^ g(t)

and SAt) > such that i

for x°(t) - £
2
<t)^x(t)£ x°(t)-f £*

2
<t)

3
f
xx
(x,t)> 0.

This can be done since £ is continuous.

Let £(t) s min(£.(t) v £ 2 < t >)«

Now consider the problem;

(1) Maximize I f(x,t) subject to:

^S(x°)

(2) I
x(t) _

Js(x°)

(3) x°(t) - £ <t)£ x(t) ^x°(t)-»- £(t)

If x°(t) maximizes the original integral , then if we let x*(t) s x (t)

restricted to S(x°) 9 x*(t) must provide a maximizing solution to this

new problem.

If we now let y(t) s x(t) - x (t) -h £{t) s we obtain-
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f(y(t)-f- x°(t) - £(t) , t)

S(x°)

(2°) f y(t) - fet)

>*S(x )
J
S(X°)

(3
?

) ^y(t) ^ 2£(t)

o
We note that f (y(t) -f- x (t) - £(t) s t) can be written h(y(t) „ t)

since x and £ are fixed functions of t. We further see that

h
y
(y(t),t) z yy(t),t) and h (y(t),t) = fxx(y(t) v t) so we have

h
yy

(y(t),t) >0 on S(x°)

and by Theorem VII for y° to be a maximizing solution we must have

y°(t) z or 2 £ for almost all t in S(x ). But;

y°(t) z implies x*(t) s x°(t) 4- £ (t)

y°(t) - 2£ implies k*(t) * x (t) - £ (t)

Thus any x (t) such that m(S(x )),> can not be the maximizing solution

to the original problem and the proof is complete.
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5. Examples of the Continuous Case.

In this section we shall illustrate some applications of the theo-

rems of the last section by means of examples and shall cite references

for further reading for the interested reader. We shall use as our

primary example the problem of search as formulated by B. 0. Koopm&n fj-\j

>

A study of Koopman's article and his indicated generalizations will make

readily apparent how much less restrictive the theorems of Section 4 are

than similar theorems from the calculus of variations. We shall also

show the Neyman-Pearson lemma of statistics to be a special case of

Lemma I when the selection of a most powerful test of a hypothesis is

looked upon as an allocation problem.

Example 1 . The Koopman Search Problem.

Suppose we are searching for an object which may be represented as

a point on the real line. We desire to apply a fixed amount of search

effort along the line in such a manner as to maximize the probability of

detecting the object. Detection can be represented as a Bernoulli trial

with a parameter dependent on location, X, and effort . More specifi-

cally the conditional probability of detection with effort (x) given

the location of the object is in fact x is assumed to be (1= 6°^W).

(This assumes that all portions of the line are equally susceptible to

search, which assumption could be deleted.) Assuming X has the marginal

density function p(x), we have the unconditional probability of detec=

tion P({P) given by:

/-<t> {yC\
p(x)(l - e

x
') dx

So our problem is to find ^°(x) that will maximize ?(<p} subject

to;
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000 ^
) U X(0(x) dx = £

We now observe that in the terminology of Section 4 we have:

(3) £{</>, x) r p(x)<l-e-0<x >)

(4) f0(0, x) = p(x)e"^
(x)

< 5 > f^((Z5,x) = -p(x)e'^(x) ^ forl/x

From (5) we see that Theorem VI applies wherever p(x}>0 and where

p(x) = Op (p (x) obviously will be zero, so we can assume Theorem VI to

hold throughout. So we know that there is a number A. such that;

(6) 0°<x) >0 iff P(x)>A

Since we have no upper bound on 0(x)
r
(g(x):r c&) we also have from

Theorem V and (6)

?

fp(x) e"^ (X)
r A for p(x)> A

(7)
)
/ ^>°(x) r for P(x)< A

Taking logarithms of both sides of the upper equation in (7) we ob-

tain:

^>°<x) « J In ^ for p(x)>A

I for p(x)^^

from (2):

2) - l<t>°W dx * I In ^p1 dx s I (In p(x)- In X ) dx

-^x3p(x)>A Jx9p(x)>^

Thus we can use the following graphical method to find the solution

0°(x).
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Step (1). Graph ln(p(x)) for all x at which p(x)>Q this graph

look like Fig. 1.

Jr. (P(#J

Figure 1.

Step (2). Draw a horizontal line / parallel to the x axis and move

it up and down until the area (shaded in Fig. 1) above the line and under

the curve in(p{x}) is equal to $ . Mark off A s (A^ S A2»...) the projec-

tions on the x axis of the segments cut off from Jo by the graph ©f

Ln(p(x)).

Step (3). (k) s outside of A, »A2s,..» Inside these intervals

0(x)sln p(x) - ln(^.) is equal to the length of the vertical segment

from Ji to ln(p(x}) for the x in question.

This completes the solution to the problem. However,, we can obtain

further information which might prove useful.

Step (4). Graph on the same graph p(x) and the line y = /I (Fig. 2)
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Then the area (shaded in Fig. 2) above /\ and below p(x) is the

probability of successful search, P. The a-postiori probability density

of the location of the object p"(x) is;

/W)4_P
for x i A

/ /Vl-P for x £ A

So, if after an unsuccessful expenditure of effort $> a new quantity

of effort becomes available, its optimum distribution can be computed

using p'(x) instead of p(x). In this case (exponential) it turns out that

our optimum probability of detection for allocation ©f jp^*x units ©f

effort is the same whether we apply it in successive stages or all in one

stage.

Example 2 . The Neyman- Pearson Lemma.

We shall now show that the Neyman- Pearson Lemma of Statistics is an

application of Lemma 1 under suitable identification.

Suppose we have observations taken on n random variables (or as is

usually the case n observations of the same process). We desire to

test the hypothesis that the joint density function f (x, ^Xjj, . . „x ) is a

given function f against the alternative that f (x« ,x» 9 . . .x^) is aaottoer

function f^ at significance level m .

By significance level 0( we mean we want the probability of reject-

ing the hypothesis when it is true to be less than or equal to 0(. If

we define the power of the test to be the probability of rejecting the

hypothesis when the alternative is true we might then desire to find a

criterion based upon the observations that will maximize the power for

the given 0( • If such a test exists, it is called the most powerful

level 0< test.
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If we let t a (xi 9X2» . . .X-) , we have the probability of rejecting

the hypothesis when it is true is / f©(t) where A is the set of points

Jk

t whose observation would cause us t© reject the hypothesis. Thus a

test (or procedure) is a selection of a set A (or a partition of E_) such

that we reject the hypothesis if the observation x lies in the set A.

The set A 8 so determined s is called the critical region* Similarly the

power of the test may be written

Our problem then is to find the set A that yields the maximum

power for our level <* test. Letting C^ be the characteristic function

of the set A our problem is to;

maximize I f*{t) CA(t) The power of the test using critical
J region A

subject to; (1) ^ C A
^ 1

(2) / f (t) CA(t)^o( The test must be of level 0( .

We now le t

;

;t) « f
o
(t) c

A
(t>

t) s ! If f (tgi) were zero we would obviously
fgjCt) reject the hypothesis upon observation. of

t so we can restrict our problem to the

region wherein f (t)>O. Thus we shall
assume f (t) ^ throughout the problem.

/•

Our problem now becomes;

(3) maximize /W(t)x{t'

subject to; (4) ^ x(t) ^ f (t)
o

(5) /x(t}< o(

Since W(t) is non-negative we can without loss of generality write

(5) ass
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(6) J
x(t) = o(

Application of Lemma I to the problem of (3), (4) and (6) tells us

that for x°(t) to be a maximizing solution there must be a number %.

such that if

(7) >-X , x°(t) = f (t)
o

W(t) \ <^ s x°(t) z

= /. , x (t) is undetermined.

Substituting for x (t) and W(t) in (7) we obtain;

>Pi , CAo(t) f
o
(t) s f

Q
(t)

< A .
CA

o (t) f
o
(t > = °

= ,A , undetermined

Recalling the meaning of A (t) we have the conclusion that the most

powerful test of hypothesis at level O^ consists of determining a number

A (depending on f^, f and oO and to;

f,<t)

(8) if fj^
o

reject the hypothesis if

accept the hypothesis if

we have no test if

foCt)

f,(t)

fo< c
:

<A

fi(t>
s %

where t is the observed vector.

These two examples, while more meaningful than those of Section 3,

certainly fall short of illustrating the full power of the theorems of

Section 4. The interested reader can find much more sophisticated and

meaningful examples in the papers by Danskin and Gillman j_3_/ and

Danskin £4j . A particularly interesting problem is investigated by
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Karlin 9
Madow s and Prultt \\Oili who attack the problem of determining

optimum firing rates as a function of range for a weapon of given charac-

teristics against a particular type of target and then proceed using

these maKiifflium payoff functions to consider optimum mixes of several

types of weapons against supposed mixes of targets subject to an overall

cost or weight restriction on the weapons „ A recently published attack

on this same class of problems but more restricted than the one of this

paper can be found in the article by Zahl UL8J .

For the reader who is interested in a particularly thorough discus-

sion of the approach to problems of this type the two-volume set of

books by Karl in {jf) is recommended, especially Chapter 8 of Volume 11.
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