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An alternate formulation is

PV = RT (2)

Where
V = Volume per unit nsss

A distinction should be made between thermslly perfect and calorific-
ally perfect gas. A thermelly rerfect gas 18 one which obeys Equations (1) or
(2). A calerifically perfect gas is one whose epecific heats are constant. The
ges assumed for the existing characteristic programs is thermally perfect and
calorifically imperfect. Calorific imperfections ere accounted for by providing
a curve of the ratio of specific heats ( ) as & function of temperature.

The perfect gas law may be derived from “he following 1echenical

models
1. The gas 1s mssumed to ccnsist of & set of point m.sses enclosed
in a cubical box.
2. The point masses are in random moticn, colliding with each
other and tue walls of the box in perfectly elestic fashion.
From this we can conclude that the change of momentum per
unit time at each wall of the box is the same.
3, Define temperature T such that
1=8v2 or i« }uv?,
Where

Ve = Root mean square velocity of the point nasses

m = Mass of esch peint mass

k = Boltzmann constant

This establishes a relation between (molecular) kinetic energy and
temperature., Real gased can ol course not be exactly represented by this model.
However, the behavior of real gases can be edecuately described by Equations (1)
or (2) for most spplications. In many problems, the assumption of perfect gas
behavior is far less restrictive than certain other assumptions which sre made.

B. Egquipartition of Energy

In Item 3 ebove, temperature T is related to the kinetic energy of
translation of point masges. If we nov consider molecules rather than point
masses, we see that there are other modes of motion other than trenslational,

UNCLASSIFIED -2 -
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Where
E = Internal energy of the gus per unit mess

N = HNumber of degrees of freedom, plus the vibrational degrees of freedom
for potentisl energy. :

(Actually, L internal energy of a real gas also depends very slightly on the
volume and temperature.) (We define a calorifically pesfect gas a5 cne for which

Y~§2n Yim ).
v

Define C, -% = Specific heat at constart v.luze [or a perfect gas.

Thus, for a diatomic molecule, the number of degrees of freedom is

6, nd N1s6+1 =7, 60 =-L RT and Cy = =% R.

D. First lav of Thermodynamics

The first law of thermodynamices estates that, for a closed system
containing a gas and a quasistatic process,

aE = o + Sw, (1)

Where
S Qo = Quantity of heat exchanged between the system and the surroundings

SW = Amount of work done on the gas by the surroundings
dE = Change in internal energy which results from SQ and S W,

If the internal cnergy of the gas is a fungtion of the state vari-
ables only, dE is a perfect differential, but Sw and 9Qo are not necessarily
perfect. The symbol S is used to indicate that these quantities are not func-
ticns of only the ing{tial and finsl states, but also depend upon intermediate
conditions.

We now obtain e relation between Cy and C,, the specific heat at
constant pressure. The internal energy of a gas depenRa upon P, T, and e ) Or

P, T, end V. From the equation of state, which ve will take to be the perfect
gas law, we can express any one of P, T, or V in terms of the other two. Thus
E is an explicit function of any tvo of P, V, or T.
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If there is nc vclume change, them | WﬂO, and (-Ei-) = (g-v)
N . T

Se. = dq,.

Sefine

‘QL A E s
( ) C, »(-)
Ty Ty

1% = 0T, we cbtain

3N alpv s o
Cp = ( ) - —§¥-z + C,. c:-’:R.(f c,

Tefine - [

E. Enthalpy

g

The enthalpy, or total heat of  ges s efined to be

v,

h = PV + E

.

Agaln, thls 1s referred to unit mass. From the ‘resuits for a perfect gas,

“NCLASSE IED VAN NUYE, CALIPOBNIA REONY, 7976
From tre flrst law,
b
S+ SQO = a2 = (%%i)l d7 + (-%) av (5)

(6)

Rewriting the first law, and using tne rerfect gag result thet

(1)

(8)

UNCTASSIFIED
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F. Entropy

We must now distinguish betwveen reversible and irreversible proe~
esses. JIf when the gas 1s performing work, or is being worked upon, conditions
exist such thet the gas is not in equilibrium with the surroundings, the gas will
undergc certain net internel sccelerstions. In crder to return to equilibrium,
this type of motion must be dissipated as heat in the gas. This amount of wasted
heat 1s added to the term 5% ip tre etatemcnt of the first lav for reversible

processer, L0 give the new term $Q:

58 = 5, + By, (10)
Define the entropy (8) by
s - 4
or
o8 > STQ"

Note that sqdiss is not heat which ig exchanged between the system
and the surroundings, but heat which is generated in the system itself by dissi-
pative processes. In the case of the system doing work adiabaticelly ( Q@ = 0),
the discipation due to fricticn serves to reduce the amount of work capable of
being done, and prevents thé temperature of the gas from decreasing as much as it
would ideally, i.e., if no friction were present.

Entropy is defined in terms of reversible processes. If a system
involved in a process undergoes e change from state P, T, Po to Pr, Ty, ?r,
the entropy change of the system can be calculated by choosing a series of revers-
ible processes whereby the state variables of the system change from Py, T, 90
to Pr, Te, Q¢. For the case of a perfect gas, this becomes %5 = dS.

Ir % = 0, {.e., no heat is added from surroundings, the process
is adiabatic. If §Q =0 = éQo' the process 18 reversible and adiabatic, or

isentropic.

Again, entrcpy here is really entropy per unit mess. From the first

law
dT 4P
T -ds*CPT-R-i"— (11}

This comes sbout by: $Q + GW = dE, §Q - pdV = C,aT, 8¢ - d(pv) + vdp = C,dt,
S Q - 4 (RT) + vdp = C 4T, 3Q + vdp = cdt.

Note that for dv positive, S‘d is negative, since 5!4 18 work done on the system.

UNCLASSIFIED -6-
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Inteprating Equation (l}),
5 = CPLN’I‘-RLNP
or
o T .
5 - B, = C g »:au : (32)
°© = ’
r 1‘3 .
This may be rewritten as . 1
T P
§ = C IR —m-
P ,
P - . w
or '
7 , P
S = C LN -7 ; (l”ﬁ
For an isentropic process,
5= so; 5
and ;
Y=l
T=P .
or R ; i
ST IR T -
p= 0 ‘ s , (14)
A result which will be used .l.n'ber can be derivc.d from Equation (12).
Duviding by C,
$ - So :
f‘
vy

UNCLASSTFIED
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Cv eb P
or
P -3 4 ‘
P = ""“-To QT‘_/R e (15)
o]
v. STEADY STATE EQUATICNS OF MOTION

A. Description of Eguations

In describing the equations of motion, we shall refer to two differ-
ent flow configurations, namely, the two-dimensional case and the axisymmetrical
case. In the two-dimensional case, we use the Cartesian coordinates x and y. In.
the axisymmetricel case, the x-axis is the axis of rotation ¢f the x~-y plane, ancd
flow conditions will be the same on any x-y plane which has been rotated at any
angle with respect to a staticnary line orthogonal to ihe x-axis.

We shall also use the steady state Eulerian formulation, whereby
solid boundaries in the flow are stationary with respect to the observer.

The sieady state equation of ccntinulty is, for no sources or sinks,

V. Ry = o (16)
Where
Q = Densiiy
q = Veloeity vector = (u, v),'u =qcos e, v=gq 8in @

Written out, this becomes

JERE RN TS PR

Where
€ - O for the two-dimensional case
€ = 1 for the axisymmetric case

Thie equation rays that mass is preserved at all points in the flow #trean.

o ———————

BAC ASZD
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The Navier-Stckes eauation of motion 1s,
dilataticn or external forces,

P

Du 2
5t ~«Vu - 5%

v
P =

Where
L. u 9 + v d + 9
bt = ‘I x 3y It .
u =§-§
dt
v ::gl
dat
t = Time
4 = Viscosity
du dv
h — A
The terms % and 31

statements cf Newton's sccond law for compressible fluids.

N
9
we shall essume 4= 0.

The equation of energy is.

2. 2
2——:——!_4-1::1

3 0

where

The gas enthalpy per unit mass at any point in the flcw stream is

are zero in steady state flcw. These cquations are the

in component form, for no

(18)

(19)

In what 1s to follow,

UNCLASSIFIED
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The gas enthalpy for the equilibrium reservoir gas, for which q = (0,0) is

P
Lo ”X_yl ps , or stagnation enthalpy. (=20}

If 1, is constant in the entire flow field, the flow 1is called isenthalpic.

The equation of energy, Equation (20), is valid along the flow
streamlines. This equation could also be written as Co

2 2
u~ + v
= +CpT = Cp Ty (20)*

Where Py = R &, T,

This equation expresses the interchangeability of random and uniform energy of
motion. The term C.T {8 related to random motion, and the term 1/2 (u2 + v2) is
related to uniform Rction. If the flow is 1isenthalpic, the energy equation,
Equaticn (20), is valid at all points in the flow fileld, and not just along a
particular streamline, since i, 1s constant.

The temperature T is that which would be measured by an observer
moving alcng the streamline with speed 4.JL2 + v2 ,

The perfect gas law , Equations (1) or (2), also holds fcr gascs
with a net velocity. However, in applying 1t, we must understand that the quan-
tities P, T, and € are those which would be measured by an observer moving along
with the gas at the same net velocity, i.e., they are static quantities.

Define the quantity a to be

as=+ \/(g—?)g . (22)

We will later shcw that this is the local speed of sound in a gas. For a perfect

gas, this becomes
. ’ P
a = + x.e.. . (22)1

since for constant entropy,

¥-1
p=c9x,%§=c19 =X—§-

ANAC A2

UNCLASSIFIED - 10 -
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Another relation which we will need 1s Crocco's result.,

ax(Vxq = GRAD 1, - TGRAD S (23)

B. Specilal Results

' We shall write down scme relaticns which will be needed later.
From Equations (22), (23), and {15),

2 3% |
Ty S e (24a)
-g; =?%2' g-g +a2§§ (2up)
Where
A
S =

s
Cy

C. Results for Isentrcplic, Isenthalple Flow

From Equations (22), (22)1, (20), and (21), and by differentiating
Equaticn (20), and by using Equaticns (2La) and {2Lb) with the assumpticn that
S = cocnstant, we obtain .

=S

)

=

+

+
W

g‘;: 6: 5% 0 (25a)
u du | v R a® 3¢ o
¥ "y T % (25v)
where
1o = Constant in the entire flow field.
By substituting Equations (25a) and (25b) into the ccrtinuity

equaticn, Equation (17), we cbtain
Qu , v _ 2 du du ov , ,29v| [ 44 26
Q[af&;J ;Cz[u : ruvay+uv3;.+v B.;J_-gy (26)

UNCLASSIFIED -‘r,l -
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Equation (26) is the relatfon which is used in the nozzle flow program which will
be describad in Section V below.

(Derivation of Equations (2%a), (24b))
A
Define S = 8/C,.

Then Equation {15) becomes

P A_g , .
P'“’pfr{es o] 4 .
A
P TSo | ¥ 8 a8 .8, ,%1
$ ey e [ e 5 e 5

[+

A -
P -5 +8 ¥yloeas ae '
¥ ¢ © € %[TB?*S;J (15

We also have

A A
P AP 3s Py O _ (9P 35 29
> =(-a-;s‘)€ 5 (E?)'g& = ('gg-)ea; +a 3—5
Therefore
3. +5
Py o Y 2
% e ’z -
(Derivation of Equaticns (25a), (25b))
Start with Equation (20):
2 2
= ; A + 3 ? T %} = Constant
UNCLASSIFIED - 12 -
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Differentiating with respect to x,

We can now write down the final equaticns for }sentroplc, isenthalp-~

du v ,
2 ccmrressible fluid f‘low‘ with unknowns 5—‘-’:, -a-‘;, g—;,and 3;

Frcm Ejuation (23),
gz du (27)

Rewriting Equation (26),

- . 2]
du . v 2 du u dv 23, ..
e[é_fc*é;} - -a%[u E;Jruvg_yo-uv&_: +V_E;J é(;..) (26)
Alsc we cen write
g%: dx + du dy = du (28)
g-; dx + %; dy = dv (29)

ONCLASSTFTED TP
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D. Results fur Nonisentropic Flow (Rotational)

ox
Navier-Stokes Equations (18) and (19), we obtain

Rewriting the equation of continuity,

3 v 1 9 -
exregrugeryE - e
Also,
’
%’ adx + %’3 dy = du
% dx + -g—‘-y' dy = dv
?rf dx + ggdy = dat
A
g—g dx + g—g dy = dg *

The condition that entropy be constant along a streamline except for passage
through a strong shock 1s

u%.i’vg-:-o

Substitut: 1g for oF and %13 from Equations (2ua) and (24b) in the
Y

(30)

(31)

(17)

(32)

(33)

(34)

(35)

"UNCLASSIFIED -1k -
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Note that the equation of energy is nct included $n this set of
equations. The rcllowing case of flow with rctation is consijered here -- there
are varfatiocns in the rest enthelpy (1,) and In the entrcpy (5), frem streamline
to streamline. The entropy i{s a ccnstant alcng a partizular streamline bef'cre
and after the shock, while there is a disccntinucus increase in entrcpy on each
streamline in crossing the shock front.

E. Wesk and Strong Waves

The plug nczzle program (Section V below) carries out the soluticn
of Equaticns (27), (26), (28), and (29) by a numerical ‘ntegrstion using the
method of characteristics. Before going intc this, howsvrer, it is advisable to
censider the physical basls for the mathematical develcpment., Indeed, this is
really necessary, because certain initial ccrditiecns an? Tcuirlarics wust be
prescribed berfcre the soluticn of the equaticns can be carried cut, and these
are cbtained from physical comsiderations.

We begin by writing the continuity, llavier-Stckes, and energy
equations for one dimension, {.e., the x-direction, In differential form.

SRR S (36)
udu + %{’s o (37))
wdu + CdT = O (38)]

F. Speed cf a Normal Weak Wave

Assume that we have a flow configuration as shown {n the following

p, 0 P+ §P, 0+5°0

>u >u +8u

sketch:

Assume that there exists a disturbance normal to the flcw velccity u such that
the variables P, €, and u undergo small changes S P, S ¢, and Su, wvhere

%—E <<l, —%P— <<, _%_1_1 < <1 and such that the disturtance {8 stationary.

If these changes are sufficlently small, we rmay substitute 8P for
aP, P fer 4@, and Su for du in Equaticns (36), (j’(s. and (354) with a small
negligible errcr resulting.

UNCLASSIFIED - 15 -
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Combining Equations (37) and (38)

. ocer - gl o (39)

50 the change in entropy !s negligible. Combining Equations (36) and (37)

w = %% (s0)

Therefore, for such a disturbance to exist, the flow velocity u must be given by
Equation (40).

If we impcse a velocity u to the left in the above sketch, the dis-
continuity advances into undisturbed fluid with speed u. The mc¢st commcn ex-
ample of such a wave {8 a sound vave, and

3Py
s = /(%)
e s
is called the local speed cof socund.

G. Rankine-Hugeniot Equations for Normel Strong Waves

Assume that we have the flow configuraticn shown in the following
sketch —

> > Yo
P Py, P, €2

Assume that there exists a stationary disturbance such that - ’

up - uy
u

Pp - P €, -9
S [§

are not smell compared to one.

We refer to this disturbance as a strong wave or shcck wave. The
Rankine-Hugcniot ehock conditicns are now expressed as Equaticns {41), (42), and
(43). The mass flow across the wave must be the game as behind the wave, so

el u, = eé u, = m (51)
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The increase §n mcrentum of the gas por unit tisme nmust equal the
net force cn the gas in the same directicn, so

-Py+ P = m (ue - Ul) = \92 UQ;- - 91 \112 (s2)

By ccnservation of total energy (uniform and randcm), and using the energy
egzuaticn,

+

2 P
2oL 2.0 () (45)

wiere a* = the speed wherein u and_a are egual.

The basic equation for the velocity change &crcss a normal shock
wave may he derived as follows. Combine the erergy equation, Eguation (b)), and
tre momentum equation, Eguation (i2), to cbtain

+

[Y+1  a Y-1 .
ul - ue = (ul - UE\)L > z ul U;_; D) 7 (b4)

“he rolution to this equation for u; #£ u, is
2
ul U2 = a%* (!‘5)

We can conclude from Equaticn (-3} that if u; is greater than the
speed of scund, then up must be less “han the speed of scund.

Define %} = M = The Mach rnuzber fcr compressible flow.

H. Mach Waves

Assume that we have a weak wave irclined tu the direction of flow
terind the wave, which is staticnary, as shcwn in the following sketch.

ds
\11 N ul dun
e :; léS:::Ex
Un.a
6 — o
rrrrrrTTrTrrirrrrrri '-'—d‘S'——-—-—-_._
L‘ -
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Assume also that du, is very small compared with uj. This is defined to be a

Mach wave. We kncw from the study of a weak normal wave that the speed of flow
normal to the wave must be a. From the flow diagram,

a 1
8in 9 = — = (u6)
LT
From Equation (4€), we may conclude that u; must be supersonic, and
that there is only cne angle ? at which the wave may be inclined for initial
speed uy.

With reference tc the bent wall boundary, if tte flo’ is required
to he parallel to the wall, ihen the bend creates the disturbance which produces
the wave.

The particular wave shown here is an expansion wave. If the bend
had been upward, it would have been a compression wave, i.e., the pressure in-
creases. This can te seen from the relations

! P
a9 = = [dun cosj,
and
@ = sin@ N[Y-ES) ,
dpP Yu duy, sinﬂ
P T 2

From the first relaticn, if d3 is as shown, du > 0, from the second relation,
4P < 0.

I. One-Dirensional Lozz]e Flow

We ncw derive a result fcr Mach number M where variable cross-
secticnal area 1s present.

‘\\\s~‘~M1A
P ™

o? ‘o

(Cas at

Rest) /t
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First we write the continuity equaticn to take into account the area varlation.

%—f-’ + d_u‘l + % = 0 (W)
Rewriting the Navier-btunes equation,
& - o (57)

udn  +
?_

Zuuaticn (37) may be rewritten as

2 af

av . 4
5 0 (37)

udu + a

Bliminating AP /P between Equations (57)1 and (47),

du 2 dA
cu - = - &2 L
(1 - ) S (18)
If d4/A = 0O, there are two possibilities: either M = 1 or du = 0. If, however,
M somewhere in the flow, then at that pcint dA = O, Cuch a point is callec
).

sat (local minimum in the crcss-secticnal area A

We now investigate the mass flow through the cenfiguration shown in
the <tcve skxetch., Take P to be the external pressure.

Y ¥ =

2 P P b

m = euA:A —m—POeO(Po l-Po (149)
P

The mass flow m has a meaximum at the point dm/d 53 = 0, or at

__%._)Y% (%)

¢r ohurnel flow, we write dewn resuits, assuming entropy constant.,

o9
ol
+
‘-I
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Pquation {51) comes directly L'rum tne energv equation. If we put M = 1 into
Fguatien (55.), we gev Eguation {50). _The channel outlet is the point dA/A = O.
Trerefore wt P curresponding to dm/d ool 0, M = 1 at the outlet,

o

Now assume that P, the external pressure, is reduced below this
value. The mase flow cannot devrease, as fquation (49) would predici, when we
lcwer P, tut neither can it increase. We still have M = 1 at the outlet; and
Poutlet &iven bty Equation (50). Therefore w2 are led to the counclusion that

P # Poyplet for P < P given by Equation (50)

This means that there is a pressure discontinulty at the outlet (cr
shoeck wave) in this case., We may, however, add an expanding section to the nozrle
to reach lower pressures beyond the throat. We will then have & convergent-
civergent nozzle.

J. Rankine-Hugonlct Eguations for Oblique Strong Vaves

i

=
[en

e Qo

MAC A4TD
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Contiyulty: }
€y uy 510 B = Qa (up sin B » vp coe § ) {(52)
i Conservation of momentum normal to the shock wave: -
‘ Py o+ ?1 ul?' sin2 g = Py + ?2 (u.e sin B - va cos B }2 (53)
.i Congervation of momentum paralliel to tﬁe shoek wave: ' ; X
. ;

Py 1 sin B nos B = €5 (up sin B - vp ces B) {up cosB+ vos1nB 1{50)

Censexvation of encrgy across the wave:

P oy P ‘
12 1 _ [y« 2 1, 2 2, 4 ‘2 )
] e S 255 P 2O T8 B (u2™ + vo") + ¥-1 6 (55) 8

The enthalpy will change when the flcw snccunters an cblique strcng
wave.

oo = ek b e et Yo, o o i
-

We Just mention the existence of reflected waves, vhich will cecur
if a wave {s cbligue to a straight boundary. The reflecied wave keeps the flcw
purallel to the will,

In the preceding development, we have classified disturbance waves
which can exist in compressible fluids. For our immeulate purpcses, rhe class
of week wascs {8 most important. We are novw in a positicn to interpret the re- ' i
sulty of tne numerical integratlcn tc follow. :

K. The Method of Charscteristics for Isentropic, Isenthalpic Flew

By neglecting viscous effects (both in the stresm snd at the
boandarizs), small changes in entropy and enthalpy acrcss weak waves, and esson-
tially assuming that Cy and Cp are constent, we arrived at Equations (27), (263,
{=8), and (29). %e furiher assume that no strong wseves will exist in the flcw
fileld. If they should occur, thelr positicn and shape weuld have s Le deter-
mined and the Rankine-Hugonioct equaticns used. In other wcrds, strcng weves must y
in general be specified as "boundary conditions” in tne flow fleld, .

RAC A47Y

~ONCLASSTFIED a1 -

I
]
V
i
!
RNy i
2
i

e

&




MAC AT

' | ;%’YMI
UNCIASSI }'-LED —_ V4N NUYE, CAUFORNIA

sron_ T8

Rewriving Ec atlons (27), (26), (28), and (29),

’337 - %:Ct = 0 (1)

[81\ av | O B R dv 2 dv _ Py "
() 3;+-§-y'J 32 u 31:4_, 3~+qu;4“/ 5-; —--e(;— (46)
%;'—:dx + (\*5 dy = du (28)
35 9% ¢ é’-;’; dy = av {29)

We shall refer to these equaticns shortly.

Making the sssumpticans which we have menticned, we note that we are
dealing with systems of partial diflerential equations which are first order,
that is, the highest order derivatives which appear ere first derilvatives. (If
we included viscous effects, we wzuld have a secend orcer system ¢f equations.)
This means that wo have to solve en ini%!lal value problem, l.e.. we specify
bounda.y conditions ~n only part of the boundary of the flow fileld. We cunnot
in general have a closed boundary probtlem.

In deciding which nuzerical scheme to use, there exists the possi-
hility of writing difference apprcximations to our system of equaticons uiing &
rectangular net. In order for trhese differencs approximeticns tc be valid, we
requive continuity of higher order derivatives so that the mean value theorea can
be applled tc the Taylor's saries to cbtain a remainder term which ¢xpresses the
size of the truncation error. ¢r accurate solutions, we of course require thet
the truncation error be at least &r nrder of megnitude smaller than the solutions

themselves.

In the cage c¢f plvg nczzle flow with uniform initisl condltions,
however, {t is evident thet if we essume continuity of the fizrst derivatives
gﬁ,.%§, g§ and-%§ we can otuvain ¢nly uniform flw throughout the flow stream by

Y

the usua. preocesges of numerical integration using rectangular nets.

St o+ Sntrm—— s o . Srr———

n
Ny
1
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—

—_—

-
=

Inrer Bcundary

Censider the cese of nczzle flow with unifcrm initial conditions
presorited sleng a non-characteristic line In a regicn ¢rf supersonic flow. Equa-

ticns (29) and (27) are then a set of hyperbolic equatfizi;/,/

1
Initia
Line

By the initiael value thecrem, the floew in a three-sided region in=-
cluding the initial line will also be uniform (See diagram abcve). The lines 1
and £ are characteristic lines. The flow outside of this three-sided regicn is
ncnunifcrm, because cof the curvature cf the boundary, and the fact that the
bcundary is a streamline of the flow. Thus the flow changes from uniform to ncn~
unifcrm acress the characteristic lines 1 and 2. Since, as will be indicated,
the derivatives at a characteristic are discontinucus, a valid Tayler's series
11 remainder cannct be present at the characteristics. A methcd nmust te

with small
used wnereby scluticns cf the differential system cf eguaticns can be patched

togetrer elcng characteristic lines.

Courant pcinrts out that the ncnlinear equaticons cof hydrodynamics
(t.e., Ziuation (27)) exnibit this behavior of discontinuities velng generated In
the flcew £leld, even though ncne are present cn the initial iine. This cannct
rhapgen, hcwever, fcr linear sets of equations of hyperbilic type; fer example,

th2 wave equation

2 (52u R Bgu) 3%
& 5% o2/ T ot

we Just menticn that one vay ¢f eliminating the charanteristics 1=
a secound corder viscesity térm te the energy and mcmentum equaticrns.

Lo ..
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This seccnd order term has little effect except at places where the
derivatives ux, uy, vx, vy Otherwise become discontinuous (at characteristics),
then 1t has the effect of smoothing cut the transition lines so that the charac-
teristics vanish.

One method of finding the characteristic lines for Equations (27},
(26), (28), amd (29) is now i{llustrated. We can write these equations in the
follewing form:

2 2 d
u v u
P(l-;g)-;%uv-;%uv (1';2) 3 “G-gy'
du
(o] 1 -1 0 0
dy
— (56)
ov
dx dy 0 0 Py du
0 0 dx dy é! . dv
| dy
Solving for gH by Cramer's rule, we obtain
X
gg - (a2 - v2) dv dy - 2 uv dy du - (a2 - v2) ax du + € a° g} dy® (57)
X a2 (ax® + ay®) - (udy - vax)?

For é& to ve indeterminate, it i{s necessary and sufficient that both numerator

X
and denominator be zero. This implies that gg, gz and gx are also indetermin-
y ©oX ¥y

ate.,

Discussion: Since the denominator is zero, the coefficient matrix is
singular, hence of rank less than four. This implies a linear relaticn arong

du Au Jv O  ord hence g? , g%, and g; are indeterminate,

— le]
ox ’ r X Jy
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woll-inown formula for cbtaining reots of a qualratic:

dy - AL dx = 0, (teft characteristic line)
AF ;
dy - dx = O, {(Right characteristic line)
Where -
AL . ouv_ ¢+ a v;g + ve - g¢
we - a
AR _ w - a v+ v2 - @°
- 2
u - a”

These are the only two characteristic lines which can te found.

real if and only 1if ul + v2 2
scnic.

‘Ae have the fcllowing equaticns, which will be verified:

The ccnditicn that the dencminstcr vanish gives the follewing two
characteristic curves, wnish are cbtained directly by s.lving for dy using the

]
Frem Equaticns (602‘ and (61}, we see that the characteristics are
2 5% , that is, if and only if the flow is super-

(58)

(59)

(€0)

(61)

ALl - tan (9 + ) (62)
AR = tan (» + &) (63)
|
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Verification: Assume Eque“ion (62) 1s true. Then

' a

+ -
? tan (6 + &) = tan 8 + tano(_ztan9+ Vqﬁaa2

ué - a 1-tan © tand ] - tan @
\Gz-a:

o sin @ ces 3 + a2 VM2 - 12 V2 - 1 51n 0 + cos ©

s )
Q" cos 92 - a? V2 - 1 cos @ - sin ©

g2 8in 9 cos2 9VM2 - 1+ a® (M2 - 1) cos @ - q2 sin® 9 cos @ - a2 sin SIM2 - 1

a?VM2 - 1 6:n 9 -~ a2 cos @

?
= q° cos? 9 sin 9VME - 1 + qe cos” @

a® (M - 1) cos 6 - q? sin° ¢ cos 2

He

q2 cos) 8 - a2 cos @

291 2coaee

?- fanlolyg

2
€ -q°=o0

Similarly, we could verify Equation (63).
The numerstor of the quctient of Equation (57) is set equal to zero. It ia

(a2 - v2) dvdy =~ 2 uv dydu - (a2 - ve) dxdu + 632-5-— dy2 =0 (64)
The dencminatcer, set equal to zero, is
(a2 - ue) dy2 + 2 uv dxdy + (a2 - v2) ix2 = o (65)

UNCLASSIFIED - 26 -
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Multiplying Equation (€4) by dx and substituting (a° - v@)dx? from Zquaticn (€5),

we oObtain
'

{(a2-v2) dvdydx - 2 uv dydudx + (a2-u?) dy%tu + 2 uv dxdydu + €a2 % ay2 dx = 0

(¢6]
or
(ae-ve) dv dydx + (ae-ue) dy2 du + €e® % ay2 ax = O.
Igncring the pessible root dy = 0, we finally cbtain
(a2-v2) dvax + (a- 2) dy du *-€32¥ dy dx = O (57)

Substituting Equation (58) in Equation (67), and igrorirg the pcssible root &x =
0, we cbtain

(a®-v?) av + (a®-u®)) au + £a? Yay = 0 (€8)

Substituting Equation (59) in Equation (67), and ignering the pcssible rcot dx ®
0, we cbtain

(aQ-VE) dv + (ae-uellB du + €a? 5 dy = 0 (€3)

Equeticns (68) and (69), give relations betveen u, v, and y which must hold
along the characteristic lines given by Equations (58) and (59). These are
referred to as compatibility equations.

We will novw go through a development to put Zquaticn (68) in a mcre
convenient fornm.

UNCLASSIFIED -7 -
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Substituting /{L from Equation (60) in Equation (68), we cbtain
- (¢° sin @ cos @ + aVvq2-a2)(cos 9 dq - sin 9 q d9)+(a2-q2¢1n? 9)(sin 3 dq +
cos © g d@) +€32qsin9 & _ o
Yy

Rearranging terms,

V2, .2 2 2 1

(cos @ + =2 =B 51n 3) (de -13-;—5- dq) + € sin 9 gf = 0 (70)
a .

Assuming that

cos @ +

\/2 2
«-9—-;—-5- sin 9 £ 0

and multiplying Equation (70) by sin £ we cbtain

cot X sin 9 sino dy
A9 = ————d — e = 0 [P
q ,q sin (0 +x) y (1)
where
tan X = —o
Ve® - o2
By a similar process, Zquation (69) beccmes
49 + cot X dq sin 9 sinK dy (72)

sin (0 -X) ¥y

under the assumption that

2 2
cos?-!u sin @ § 0
a

’

o
[eq]
]
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we will ncw gc through a development tc put Equations (T71) and (72)
in the form in which it is used in the Plug Nczzle program. Let us first work con

wren 8in 2 sind dy . :
the term m r cf E'JA%IOH (71).

sin 2 sinX dy sin 3 sinX tan(d «X) . _ dx|{ sin @ sinX
n = = PN ¥ Qx = - = N g
sin (7 +X] ¥ sin (& + X) y Yy | cos 5 cesdf - sin 3 sin&X
= .‘25 1 = ..d—x tan 9 (75)
Y cet » cotol~- 1 5 V2o 1 - tan 2

sin 9 sin_gi_ dy
sin (8 -X) ¥y

Now we work cn the term of Eguation (72).

sin 5 sino{_ dy sin 2 sin{ tan (&
T sin (5 -K)

[ ]
R
e
F
t]

145
@
o
B;
1
3
]
“ g
i

ax < 3 sin 3 sind ]
x cos 5 ccsek + 5in 9 sinK |

dx 1 dx tan 3

Y |cot § cotx + 1 2 \/M-E_‘T+tan9

(74)

Lastly, we derive a new expression for the term cctﬂ(—c}-g of
Equaticns (71) and (72). In this wcrk, we shall assume ¥= Cp/Cv is * a ~curstant.
From the energy equation

gdq + C dT = O (75)

Frem the results on isentrzpic flow, {Equaticn 51),

- o .
T = 1.7 (r6)
2
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From Equation (76),

T
dT = =~ ——— 2 -
¥y-1 "2[(1 2 M] a
(1 + M)
2
From Equations (77) and (75),
.‘.‘i& = To Cp 5 (Y- 1) MdM
@ 1+ Yol
Since q = Ma and a =V Y RT,
T, C
—_——L S (Y-1)ManM
- 2 C
(1,,1.._&“) =2 (¥ - 1l)am
dg - 2 - Y RM
T -
1+-2321,2
2
daM

M (1 +1-’-51M2)

From these results, Equation (71) assumes the form

40 -

N
M™ - 14 M ‘€ tun © dr
M (1 +l%_1M2) VM2 -1 - ton e

(corresperding to l Ly

(17)

(78)

(79)

(r1)t

(o]
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nd Riaatlcon (72) assumes the form

e
v ‘“2 -1 4™ tan = 2{ -0 ('f?)l

dw + - € .
(1 + x-g—--l M) Ve L+ tan s ¥

(cerrespoending te AR)

. . qy 1 FUURES § . .
In dertving BEquatioens (Y1) and (772)7, we have not yet jrivided rer
hunaling Lhe caces

ix = 0, &)
dy = O, (51)

vel

V2T a2 , i
3+ T2 5in 2 = 0, (Fquaticn 1ty (82)

V@2 .
a3 5 - =228 sin 8 = 0, (Equaticn (72)1), (&%)

.8
We will now show that Equaticns (82) and (85) imply that the char-

‘weteristios lie aleong the x-axis, .r dy = O. Rewrlting Equaticn (62), and
multiviying through by sins. |,

ocs @ cinX + cezX sin 5 - O

(&3
rs
N

sin (6 +&«) =~ 0
Dolng, the seme for Equaticn (83),

-

noe 9 sin o - ews e cln 5 s 0

sin (s =&) -+ 0 rooy

UNCLASSIFIED -1 -
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The unique solution to Equation (82)1 1s

9 = -, (Lleft line), (84)
and the unique solutfon to Equation (85)1 ts
'
o =K. {Right line). {85)

To interpret equations (84) end (85), let us refer to the following

diagram;
qL\ y"axis

Left Characteristie

& gt i
— Streamline

A

8 - X-8X18

T~ Right Characteristic

If 8 = » o€ for the left line, then obvioucly the lefi line lies aicng the x~axis

If @ = o for the right line, then the right line lies nlong the x-axis.

We might ccmment here that the notation "left characteristic line",
or "left line"” denotes the directicn that « ball would rolli if pleced along the
line. Likewise, a ball would roll te ithe right if placed on a “righkt line",

As a practical matter, we can avoid the condition dx ¥ ¢ by require
ing M>1 in the calculations. This point will b« clarified later. The condition
dy = 0 usuelly dres not occur, it if Goes, there is e gpecial provision which

can be carried out in the calculations.

The condition y = C is avoided in the calculaticons as will be seen

later.

V. PLUG NOCZZIE PROGRAM ;

] A. Ceneral Relaticns

In the plug nczzle program, we deal with flow which (s {setrople

This tmplies that in the flow fl2ld there are nc vort.city,
The characteristics vhich

i e,

end isenthalpie.
heat transfer, or viscostty effects, and no chocks.,
arply to this type of flow are expressed by Mgunaticns | 2) wnd (52):

BAS &573
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dy - tan (@ +X)dx = 0O {Left line) (62)
dy - tan (¢ -o{) dx = O (Right 1line) (63)

The compatibility relations which must hold along the characteris-
_tics are '

40 - V2. 1 am '€ tan 9 8% . 0 (Alcng left Ltne) (7131
M(1+}~:-}'M2) L\[Mz 1 - tan @

2

a9 + ___ﬁf_:_}__gﬁ,___ - Fl’ tan 8 dex = 0 (Alcng right line}{72)!
o]

M(l*-y-«a--h\ VH® . 1 + tan
?

Ve now mexe a slight modfficatim o Equaticns (71)} and (72) . In the existing
procmm, we add a suall correction factor to the cnefficient of 4M in Equations
(71) and (72}t ; 80 that

—— v S

M(1+3-21M«?)

is replaced hy

_.Y_ﬂ.z 1 e [L+MW§(T,M)],<:(('P,M) ,_L | & ('r)
Y L) 23

This comes about Ly asswning that (,‘p and C, are not ccnastant, but Y . )’(T).
We 0till use the porfect gus law as cur equution of state, however.
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Derivation of the new expression for the coefficient of dM.

Rce.ll that the dM term was originaily 3 M@ - 1 %f {Equatiuns(T1)
and (72)). .

By the equauion of energy in differential form,

CodT + q dg = 0 (Along a streamline). (88)
This can be rewritten as
(RXyaT _ _dq (88)*
¥-1° 2 q '
q
We have
a2 = XYRT
. L
7 RT
2
T = —3
¥ re?
ot 2 qdq _ 29%aM _ g% a}¥
XRMe XRM.‘S ¥ 2rM2
Equation (88)l becomes
_8q_ 1 (RY) {2949 _ 2q° au _ g af (e8y
e 2 L (frf Y YR

Fror Rquation (88)11, we finally obtain

*l

aM 1 1 4} ar
"—"““(“x.lM‘z‘)‘[w*a‘a-fr-m] (89)
2
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In line with this assumpticn thst 2, = C,{T) and Cp = Cp(T), BZqua=-
tion (51) loses significance, since it Is derlvec assuming Cy and Cp are con-
stant. An expression for OT/OM which can be darived from the energy nquation is

g .. v 2 (90)
(e ¥ () ]

However, we still use Equation (51) ts cbtairn initial line temperatures. Also,
we neglect certain other effects which should m2dify cur initial -assumptions.

The general type of nczzle which will be used is {llustrated in the
following diagram, which represents a crcss sectiin. In the axisymmetrical case,
this cross section is any plane which has included the x-axis, or the axis of
symmetry. In the two-dimensional case, the criss section is any plane parallel
to the x-y plane. The lower half of the nozzle is riot shown, since it is & mir-
ror image of the upper half. .

Outer Wall

y-axlis
= § between outer wall and x-axis at

the initial line

= ¢ between plug wall and x-axis at
the initlal line
—a= oOut 2 = Initial guess for final streamline

—= FIELD 8 angle
e i

Inner Wall
(Plug)

axis cf symmetry (x-axis)

< x|
4 n
oo

The varisbles x, y, M, end ® are rresecrived at discrete points on
the initial line as part of the starting, cr input data. The initiel line, which
need not be vertical, is generally assumed tc te In the throat, or point of mini-
mum cross-sectional area, and so M alcng the fnitlsl line is usually assigned a
ccnstant value Just larger than cie. A tactle ¢f {x, y) values descridbing the
cuter wall and the plug wall, also the angles 3.,, and &y, 8realso needed.
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It is assumed that a continuously differential curve can be passed
through the outer and inner wall points, starting at x = 0. (From the diagram,
it is evident that this 1s not pcssible at point c.) We will require alsc that
the streamlines of flow are parellel to the inner and outer wall at points where

the derivatives are ccntinuous. At point ¢, we must handle the situation differ-
ently. The methods of procedure for insuring parallel flow at the boundartes and

for handling conditicns at point ¢ are now described.

B. Physical Ccnsiderations at OQuter and Inner Well Bocundaries

1. PReflected Mach Waves

We can provide a physical basis for our bound.ry conditions by
showing that the chiaracteristics line scgments are also the Mach wave lines.
Equaticn (L6) describes the angle of inclination of a Mach wave to the flow
direction as a unigue function of M.

——pp
AN _
1
sin @ = 0 (46)
For the charscteristic line, we have
a 1
sind = U _ (88)
where { = Angle between the characteristic line und the streamline.
Obviously,
K = F (89)

Note that we are dealing with stationary lines here.

Trerefore, the characteristic lines are also Mach lir '3, f.e.,
the loci of Mach waves.
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From physical consideraticns, when a Mach wave is ilncident c¢n a
smecth bcundary obligue to the directicn orf flcow, there must be a reflected wave
whizh renders the directicn of flow ageain pasrallel to the becundary, as shown

below.

Wall

——— ———
Initial Flew Final Flow

Reflected

Incident wave
Wave

In the plug nczzle program, the reflected wave will be rmanifest =s
a cheracteristic line criginating at thre bcoundery peint where the incident char-
acteristic. line Iintersects the bcundary. The point of intersecticn is determined)
by the calculations.

2. Prandtl-Meyer Expansicn

In the plug nczzle program, characteristic lines are generated
starting at the initial line and moving to the right. Let us consider what
happens when we have reached point ¢ on the plug.

Plug ¢ \\gs

—_ w x-axis

Ilre L is the first left line tc reach pcint c.

LR T

By first consldering thet there it s-.me curveiure at point o
and then taxing the limiting case cf a ccrner at point o, it becimes evident
~hat there must be a fan cof character!stics originating at peint ¢ and cerntinu-
s unt il the final streamlline angle 33 is reached, fetorielly,

- —— -

®AC 2477
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Plug ¢

The expansion angle is denoted by .

Now consider what happens at the right characteristics in the
fan as we approach point c. Evidently dx approaches zero. Equation (72)* then

becomes

ae = M2 - 1 oM [1 + MA(T. M)] (86)
M(1+ _____X; L 2)

and the right characteristics converge to the point c.

Equation (86) gives us a relation between streamline angle end Mac' number in
the vicinity of point c.

We can obtain a relation between @ + o and M also.

Since
- <1}
°<— sin o
then
ax = - M
MVYME - 1
and

e .
,}_‘f_:_];i.”_.. (1 +Me((T,M) + (87)

.
M (1 +!—2‘-,—1M2) mVie. 1

a(o +«) = a8 + dAh= -

From Equation (87); we can calculate M for the characteristic left line origin-
ating at ¢ at angle 9 + o by numerical integration of Kquation (e, © the

program, we specify

a(o +o) =N(o+a) = NP

to be a small negative constant angle.

—— e et bty s
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Note tnat since 3 beccmes negative, the "ball rolling” definition of left line
beccres invalid! Suffice it tc say that the left lines which are dealt with
hiere rotain the property that the angle oC is added to the angle 9 to cbtain
the engle of ‘nelinaticn.

C. General Descripvtion of the Calculative Procedure

By referring to the program abstract, we can determine what input
data wre regulred for a cal:culation.

1. Curve Fitting

The first preccedure is to determine continucusly differentiatle
ncticns which pass through the specified cuter and inner wall points. The
pe of, say, the cuter wall function at beth ends of the nezzle will te that
spec fied ty the input data.

This curve fit is cbtained in the fcllowing way. We begin at
the first cuter wall pcint, where the slope Oo 1 is specified. (The inner wall
calculaticn is carried out in the same way) Fass a parabola chrough the first,
seccrd, and third specified cuter wall points, and determine the slcpe 9 30,2 cf
this rarabcla at the seccnd point. Then determine the coefficients cf a cubte
which passes thrcugh the seccnd and first point, and which has slope 90’1 at the
first pcint and slcpe Oy, 2 at the secend point. This cuble is the analytic ex-
pressicn for the cuter wall between the first two input pcints. Cbtaln a cubic
fcr the seccnd and third points in the way Just described, by passing a parabcola
between the seccnd, third, and fourth points, etc.

2. Characteristics

In gunerating the characteristic net, we are primarily ccrzerned
with f£irding pcints cf intersecticn of left lines with right lines, cr with

puints of intersecticn cof left lines with the cuter wall, cr right lines with thy
inner wall.
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We will now describe in detail the method for cujculutin, Ts,
X3, Y3, M3, and &3 at point 5 in the diagram above, where we xnow T3, X1, Y1,
Q1, My eand T2, X2, Y2, M2, 2.

Fxpress

u

de = X3 = X1, dyL ¥3 - ¥1,

d)l‘R=’Xz-x2, dy = ¥3 = ¥o

Rewrite Equations (62), (63), (71)1, and (72)11

dyL 'AL de = 0, cr Yy - Jy1 - AL (xj - Xl) = 0 {62)
dyR - )ﬁ de = 0, orys-yy - )? (xj - x2) = 0 (63)
9 - 8; - ab (M} - M) o+ BY (X§ -x3) = O (71)1
95 - 03 + AN (M5 - M) - BN (x5 -x) = 0 (12F
Where .
. s *
Al - Vie -1 [1 + MA(T, M)
M (1 + 1—;_-% M7) J
4 ®
RV [l'rMo((T, M)
M(1+ -L; 1 w2) ’
UNCLASSIFIED -
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BL - & [ tan & ] ] I
YIVWE o1 - tane | l

gﬁ_g.r t&n@ﬂ

¥ e

 VME « 1+ ten ¥

k.3
A¥ . tan {8 +ol)
&
A - ten (¢ eal)
We also have equation {51) which gives T = T(M).
The star indicates that the starred quantities AL, .RR, BL and

BR are to be evalgated at points on the lines connecting X3 with X3 and Xj. :
That is, A and B™ are to be evaluated at |

0, + 0 :
9 = b2 !

and

rather then at, say 0;, M, and T,.
This mcre accurate procedure is called the mean value lattice point rethod.

Since this implies that Equations (62), (63), (71)* and (72)!
are ncnlinear, we cannot solve directly for X3 , Y3 , M3 , and 91, but must use
an 1tcrative prccedure.

«AC ASTS
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: L
Te begin the {teratson, cvaluate A}ﬂ AL, und B at M. -~ und
o AR, AR und B e M. -p, wnd Tz. Then solve Equations (62), (t3),

m
k4

Ty, @ )
(%1)1 und (7291 for the initial tterates

[}
o)

L3 43 0 g 133 unere o

Then eveluate M2 from Bquation (9C) using Ny = o . M1 ¢nd JASTIPRETY- I Mo,
end expressing
A
T Ty o+ A
2

where

N .
/\‘Tj = average of the two differences obtained from tM5 - M; and iM5 - Mp

Since Equation (51) says

T = Tt
(14 XLy
caleulating T involves an iteration also.
Now obtain 1*1x5 and 1+1yj from iII' = l/U ltun (195 +£xj) + Lun(91+qlﬁ
ard

L 18 =12 [t’.un (12 - 1x®) + tan (o, - «2)]

Obtain

1+1Mj , 1+195 , 1+115
from
RV {AL (e, 12, Iy (1)) 0 AT (g, s, 1, )"(Tl)]

and so0 on.




wAC AST2

A hrguardt

UNCLA S S 'F'ED VAN NUY3, CALIFORNIA

won__ 918

r ;
BR £ Ef? e
y V + tan ©

BL - <3 [ tan @
y_Mz-l - tan ©
}

A . ten (e +a()*
X o otan (s =ol)

We alsc have equation (51) which gives T = T(M).

The star indicates that the starred quantities AL, AR, BL and
ER are to Ee eval ted at points con the lines connecting X3 with X2 and X3.
That 1s, and B are to be evaluated at

9, + 9@
9= 2
2
M; + M ’
1
Mo 22
2
and
T=T1;_Tz

rather thesn at, say @1, M, and Ty.
This more accurate procedure is called the mean value lattice point method.

Stnce this implies that Equations (62), (63), (71)} and (72)%
are nunlinrar, we cannot solve directly for X3 , Y3 , M3 , oand 33, but must use
an {tcrative prccedure,
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Continue this {teration until

Pyl 2121 <,

141 35 1.3 .
y <Ey

VRN ES BT

14153 _ 153

<€'9

Fer the case of outer wall or inner wall Intersecticn pcints, we
=C through a medification of this type of iteraticn. However, an cuter wall
nte ‘cn peint involves cnly a left line, l.e., Just one set cf ;oints T, X,
ich are xnewn., An inner well intersecticn point involves cnly a right
n the iteration for the Intercecticn point (x,y) is ccmpiete, tan 9 will
f the particular cubic that represents the bcundary at the point {x, y).

Generally this is the way the characteristic net [s begun.
Aoaume that the initial line s neither a left line or a right line. Assume, say,
tat tihree pcints sre glven as Input data to describe the initial line.

Cuter Wall
4//’”’/”

2 a—

Initial 3
Line 1

Inner Wall

TR TR

oen owe can caloulate Ta, Xj, Yj, M?, and 95 frem prescrited cconditicns at {nput
rotnts L oend 2. (See above diegram).

SRR R

wal AdTT
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We then extend a left line to the cuter wall.

100 01

)

The ccmplete line is lsbeled the "101" line.
New calculate the next pcint us indicated below.

100 101

Ccntinue this to the outigéwall as shown.

\

Now extend the lower most right line to the irner wall.
102

100 10

Now start to work line 103 to the outer wall.

[ o AP
The nurbering here is of ccurse arbitrary; this was chesen rs

time the prograem was written.
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It sheuld be noted that the Intersecticn peints 102, 102, cor
103, 97 do not as a rule intersect the bcundaries at {nput data pointa. Alsc, wa
cannot trace a streamline by assumlng that, say, a streamline can t2 drawn frorn
point 101, 99 to point 102, 100. We must cbtain streamlines by ancther consldera-
ticn. All ve know in this ccnnection is the streamline angle 8 at the twc points.
Hcte that the net refinement depends upcn the number cf specified iritial line
points.

Thia process 1s continued until we have generated a left lins
rast the inner wall cutcff point ¢. (To cbtain this line we must use an imaginar;
extensicn of the inner wall boundary pest ¢.)

We then interpclate between laft lines n and n+l to cbtain the
first special left line which begins a2t pcint c¢. Sterting with this lLine, we
develop a fan of left lines sbcut pcint ¢, evalueting M on each line using Equa-

tion (87).
__V__..___M'l (1 + Mo((T,) +

M(l+.7_;_1M2) MVM -1

d (6 +K) = - )| am (87)

where d (9 +&) = /A(® +X) 1s a specified ccnstant.

This expansicn 1s ccntinued until & ccrrespends te =g, the sres!
rred streamline angle at point c. Fcr this ccerrespurnlence tc ccocur, we Tust Sub-
divide A(9 + o) near the angle 9.

If the Initla) guess fcr Og s goud, we c¢an trace a streamline
starting at point ¢ which {5 asymptotic to the x-axis.

If 1t 17 nct good, we can estimate e rew 93, and try raain.
1

Alcng this streamline, M, and Ty are ccnstent, therefice, we need only congut
(x, v, &), at discrete potnts, say polnt 5 above,
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- In calculating (X, Y, 8) at point 3, we use the eguztion . tha
streamline !
dy = tan G dx
or

(ys = vo) = tan ( 2) (x3 - %)

and Equations (63) and (72)1 for right line < 1, 3 >

Eventually, we will generate a left line which will extend past
the last outer wall data pcint. When this happens, we extend the cuter wall to !
intersect the line, and then proceed as indicated below, we have cmitted the right
lines.

216,216

204, 204
217,216

232,216

204,170

Right Line 216

3, Nozzle Efficiency

In order to calculate nozzle efficiency, we must first develop
a system of equations which describe an "ideal” nozzle.

To deo this, we develop briefly a cne-dimensicnal thecory which
1d=nlly might apply to a nozzle of slowly varylng creoss-sectional earea. 0 dis-
¢cussion rfollews Liepmann and Puckett, Aerodynamics of o Compressibile Iﬂlg5. In

MAC AN
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this madel, the varisbles M, P, /P, ani T gre a
tendfeniar to the exis cf symmetry, cor

<"‘ (T.'&'): (!‘H); (‘7}' and (5O)y ani
: thecat or point where dAZA ¢ UL W
We now have a aunverd

v ndded

i

rhe-ilvergent nczale.

Tder Nere,

1Y constant at a cross section jwre
ze us refer beck to Ppuaticns

: o plug or inner boundsry

an extension to

Sirce tne mass flow Is the same at all <rozs egections,

5 Y - ..7.:._.1}
o S =—)¥ « (=) ¥
A m i1 Po Pc (PQ) {1 (PO)

it us take m = fh ut A* = Mags flcw st any o
axis where Lthe * refers te conditiong ut tone

-

r.ss
tarcat.
Ryuaticn (49) relates cross-sectional aresz to pressure and X .

We have glso

section yervondicular to the x-

<
AVS]
ot

e e v e A eem e W o

—~~
o
P

—

{27)
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From Equacions (93) and {9h)

Yo 1
-1
AyE ot 2 o Y1 e
(33) = - [YTJ (1 .wa (@5)

The stresm thrust at any point of the nozzle is

Fo=piefa=pa (M 5+ 1)

Let us gay that we want to evaluate F at a particular area A. if
we know A%, we ‘cun caleculate M from Zguation (93). once having determined P from
Equation (94). Then we have

M Y+ l'x‘ TTyee

o e
y-1

(1« 132w

ce|

where y, = the value y, the perpendicular dlstance frow the exit x, to the wall.

//-—"‘-
r«f"/
U
o
Yvese
Throat
-/ S —
' tatis
th, —" Plug Statls —

RO e /
R N Streamiines
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Whees M Is the Mach nunber at the initlal point X, (M is assumed to be ccnstanu
on

Now we develep

the thrust develcped by the plug nozzle.
d-ne at discrete polnts

X..

wiltl bo

Tloes with

T the cuter wall,

This
@ corresponding to the Intersecticns of left

thrust will be expressed as the sum of four terms

The

— =

[v]

———

[Fl*?a"‘f‘je*'l?.“ -"-P
(o]

Fple

<2 that the flow {s lsentrepic, sc the stagnaticn pressure Py 1s the same

othe Tleld of Tlow. Note Lhat the equaticns apply only to the axlsym-
REEL

The Expressicn fcr Fy:

This term is the mass {lcw component parallel to tne x-axls. Tt

w rurallel to the x-axis.

thiz arcss secilon).

The Expression for Fo!

This =erm {s the furce on the base ¢f the plug.
tatic regien from Tyuaticn (94),
We obtaln

We can calculate
since M is constant ¢n the finel

Ty,

i base
o Y 71
(1 + 423w
14

f NP
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The Expression ror Fe:
This term exrreasces Lhe foree on fthe water wall whleh odds te or
cubtracts {'ram the thrust,
~ ;
. y = Ye Yy = Ye {
¢ . L P P + P
3 -— < 2 + 1 1
~Ze = T (yt§+1“)"j)"-‘?—/,—?‘j———-:? pd A
o . < Fo 2o
\y:.:o y=c 4
where ¥ oare boundary points (cuter wall) ana Fy are precsures at Intersecticns
Wlert lines with the cuter wall. Pj can b2 ecmputed from MJ by Fqguaticn (9).
L
The Expressicn for Fy:
‘ This ternm {o simfgar Lo Py exeept I cxpresses the force odmpuns-
cnt on the inner wull.
)
v s iy
P - ase . b+ p j
.._.{:7'(' (; . ik SR L :
B Yot ¥y o4y) 2P ?
o — C
y =90 :
Here ?l are pressures at intersecticns of right lines with the inner wall.  De-
fine tne efficiency to be
N, - itele
N oF kR, OF
Since wez have QN ut discrete points, we coula “brogk orf” the
cuter wall at one of these diserete points, and have the eff:ciency v the
chcpped=off nezale.  Powever, from physifeal considerstions, we muct ot chop off
the cuter wall Lo the left o the ripght line which hits the inner vall boundary.
1.0 L S
/’/#“ -—\\\
Ty o
R
!
i
0 - T e e et e “h?
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SUMMARY O
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NCMENCLATURE

Symbol

Description

kol
*

O
<

or 1

o«-am:u.a.olofomzax:r«mmo
3

\

=

Mach angle

Speed of sound

Critical speed

Specific heat at ccnstant velume
Specific heat at constent ressure
Internal energy per unit rass

1 if axisymmetrical gecrmetry, = O if two-dimensional
Ratio of Cp to Cy

Enthalpy per unit mass

Boltzmann constant

Mass in Secticn IIT-A, mass flow otherwise

Mach number

Pressure

Density, mass per unit vclume

Heat energy per unit vclume

Flow velocity = (u, v}

N

u

Flow speed
Gas constant

Entropy per unit rass
Temperature

Time

Flow angle

Viscosity

Ccmponent of velcclity in tre x-directicn
Ccmponent of velaxcity In the y-dlrection
Vclume per unit cass

Work

Coordinates of a point in the Euclidean plane




