
UNCLASSIFIED

AD NUMBER

AD481391

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational use; 25 Mar
1963. Other requests shall be referred to
Air Force Aero Propulsion Lab,
Wright-Patterson AFB, OH 45433-0000.

AUTHORITY

AFAPL ltr 12 Apr 1972

THIS PAGE IS UNCLASSIFIED



r- A A01

1 I:

CVII)!~7 7 T\Z~V~ C L

Reproduced From
Best Available Copyj

I-

..... . ... ..... ........-. A:.



DATE Z5 March 1963 REPORT 5978

AH PRP

(Titne -- Urnclasified)

17U.)MZNTL P F 1,AT 10NS IN THE SUPERSONIC FLOW
0 F A PERi*F~CT GAS AND THE

'15 Q 1A 'PTS CALCULATIVZ TECHNI UE

Contact AF 33(657)- 10796'

Al p~ ro; et 296

A;RPPOY2EO GY

?Xonsier, LAC/lypersonic
Ramjet Program

'2. .s dccwmeiit Is subject
t11,jcial exp~ort controlzsOlid

ercl trca.s:mitt2.l to Poreipn
1? Eo-crrMncrtts or f'oreiEgn

.~v>o ~ticr.zla rry be -%de only
.ithi 1rior 0pi;1Iovn1J of'

* , Ar r-o~ce 'iero £lroiplsion InL

I J*.~ I ..I Ad



UNIL SS IFIED VAN NUYf" CAtIIP'°IA

............ . ....... . ......

.. .............. . . .. I.

-etco ',.nstat Vm o l.. u me... .....

. . . . . . .. .................. . .. .... L uuat.cns.............................................................

C. U;F::ifi u.....................................................i

. . I e te. . . .-- . . . .

. . . . . I . . . 15
fJ

. -1u~- c ";' 4,-ntr+~ low-'-r , (Rotational.) . l .. 1
£. ::~ :: trmr, g '4aves . . . .. .. . . . . . .. .. 1 1

. 3-cee3 oIf a 1Norma]. Weak Wave ..... ..... . . 15Fank,nf ""Eqt ,wat-Io ...... w [orr.a1 Strong Waves,.. 16
H, ..a ,. .' .e .. . . .. 17

• C-:e-Dim n an l "',zzle Flow .. . . . .. . . . 18
J. Ranre/. - K.... ct Ecuatios for Oblique Strong Waves ..... 20

....... s for Isentrcptc, Isenthalpic Flow. 21

. . . .Re... In.. ..... . . ... ... ............... . . . 32

B.-.-oe-t C"o:- trat._ .... at Outer and Inner Wall Boundaries. . 56
C.G e-- ee .e> Iption of the Coleulative Procedure ......... 9

APPENDIX A NmSuezynclature ........... 52

.. .. . . . . . .-. . . . 5

4 7

-- .



IN 13MK0 - zKtlarquard/VAN NtJY$. CALIPOINIA

renrccvntc 'tfl (:ttctEt tO tr~ ___ _

.. - Amr from ±;'p 'U'~lc"
..............................

Actnwi c:' Cbaractcriztlcs in '<tarn isIng tt2e fundorm'&r.tal relations
".IC lic~.' ... >nperP ct ,.... .e..r"rr'3ns 2, and 5 huve been used

'xt'-:..;:'.'tty ~'i gathering -this :aaterlal.
1:::.:: A brIef descrIptIon of existing chariot stIes flew pi-ograins is alac

,-rr-~ detoUed flvtr.T.atior: . .. ~. zp-'~ pn:-gra:r.s avellabic
Lc~ta Procesetag Y:pa rtrjenz.

.1:. INTRO LVCTIQN

- * ""se jro;rr::s nave herr. u:o~ ~r. toe CoSign ot hlgn Mach number,
- - r..'Ini. mci -tie gestatrv inlet~ and of high ':xpanslon ratio, van-

- -- - - -. . ..-. ,~ ~ -5. inst s~su~o~ .rc:: both Inlets non nczz.es have shown
;c t uil22t Zr;,a;r.vm~nt t4th pr-ct;:-. ~ :n-ecre:ical performence.

., -i *,. LAte? oi~o:-z~enz;ndo of these programs In analytical in-
* .- '---- y:nbustlon proees-3e6.

.~sentty oxisting prc~;rans w LI handLe Isentropic, Isenthalpic,

1:rtatli:nL fPzwfcr both two-dizenstot on-i exlsy:ranetrlc dcsigns. Colonific
$ are accounted f'sr to to extent Indicated in the body of this

:'r~'~ 0 w cr.ndttIc:ls behind e ccr.teV.. moat, can rjj~~ be computed. -

tr is orccee'i~ng on other programs wn!ch consIder the effect of
~ as chemical. rcactI-n~, in the flow, rotatIonal ±'lo's, shock.

U
bc'uuda ry, bOuI2ifl-y b y~ g, ar0J L-hCCk wove-bounc.ory layer inter-

-. :-...__.;:zt'&,'DYNI~MICS

A. Gc~ne r& flc2.atibna -. . -

. ___ --

~n orcer to plesn~t th"' for superse-nic flow of a perfect
- necessary to write sown a relatIon among the state *;erlables P,

- C---:~-:-rfect gases. Such a rev1 tcn s czfl led en ecuatlon of state.

?h" ecuation of state uf C xrfet't gus Is

- - -- (1.)
- -

- 5-2-iture
-- c-;r.sttnt . -

* --- - -- ____________

-SI I-__________________ A

-I-u7KTb$S IFIEI) . . -. -



IJNC(ASSIFi~fl rA04 "U110 CAIWo"DA t 27..

An alternate formulation is

Where
V - Volume per unit mssa

A distinction should be made between thermally perfect and calorific-
ally perfect gas. A thermally perfect gas is one which obeys Equations (1) or
(2). A calorifically perfect gas is one whose specific heats are constant. The
gas assumed for the existing characteristic programs is thermally perfect and
calorifically imperfect. Calorific imperfections are accounted for by providing
a curve of the ratio of specific heats ( ) as a function of temperature.

iTe perfect gas law may be derived from the following iechanical
models

1. The gas is assumed to ccnsist of a set of point mtsses enclored

in a cubical box.

2. The point masses are in random motion, colliding vith each
other and tnie walls of the box in perfectly elastic fashion.
From this we can conclude that the change of momentum per
unit time at each wall of the box is the same.

5. Define temperature T such that

T-- Vr 2 , or Ifl - P.

Where

Vr w Root mean square velocity of the point mauses

m - Mass of each point mass

k x Boltzmann constant

This establishes a relation between (molecular) kinetic energy and
temperature. Real gases can of course not be exactly represented by this model.
However, the behavior of real gases can be adequately described by Equations (i)
or (2) for aost applications. In many problems, the assumption of perfect gas
behavior is far less restrictive than certain other sesumptions which are made.

B. Equipartition of EnerM

In Item 3 above, temperature T is related to the kinetic energy of
translation of point masses. If "e now consider molecules rather than point

masses, we see that there are other modes of motion other than trbrisletional,

UNCLASSIFIED-
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Where

E Internal energy of the gam per unit mass

N w Number of degrees of freedom, plus the vibrational degrees of freedom
for potential energy.

(Actually, .'c internal energy of a real gag also depends very slightly on the
volume and temperature.) (We define a calorifialli 1&4tect gar zs cne fcr wh1ch

Y2 -. Y(T)Cv

Define CV. 3 - Specific heat at constart vrluc.e ;or a perfect gas.

Thus, for a diatomic molecule, the number uf degrees of freedom is

6, and N is6+lIw 7, so B - RT and Ci, 4 R.

D. First Law of Thermodynamics

The first law of thermodynamics states that, for a closed system
containing a gas and a quasistatic process,

dE - gW, (4)

Where
,5 - Quantity of heat exchanged between the system and the surroundings

9W = Aount of work done on the gas by the surroundings

dE - Change in internal energy which results from SQ and S W.

If the internal dnergy of the gas is a fun;tion of the state vari-
ables only, dE is a perfect differential, but $W and Qo are not necessarily
perfect. The symbol S is used to indicate that these quantities are not func-
tions of only the initial and final states, but also depend upon intermediate
conditions.

We now obtain a relation between C. and C the specific heat at
constant pressure. The internal energy of a gas depens upon P# T, and P , or
P, T, and V. From the equation of state, which we will take to be the perfect
gas law, we can express any one of P, T, or V in terms of the other two. Thus
E is an explicit function of any two of P, V, or T.

UNCLASSIFIED - -
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?K ' :Ye first law,

3% %= ::-(A ) aT+(. ) dV ' (5)
,.T"') dT+ o.V

v T

, = dQ0 . " ,

2 e ' ne A "

Ifhr e CidT, oe cbtain - w -

:'c-flne . - ~ V

Cp - (

Cv

F. Enthel. .

-9Te enths, or total heat h a te Is asiru to b

h a Fl + E (8)

A~j~n this Is referred to ,unit nag. From the rnt~ts Tot a rrf't ga ,

E."T' C--2 " (9)

Here the reference Vetel 1' takMli tr4*, hi m- 0" T~e w 0.
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F. Entrop

We must now distinguish between reversible and irreversible proc-
eases. If when the gas is performing work, or is being worked upon, conditions
exist such that the gas is not in equilibrium with the surroundings, the gas will
undergo certain net internal accelerations. In order to return to equllibrium,
this type of motion must be dissipated as heat in the gas. This amount of wasted
heat is added to the term LQo in t',- rt.jtennt wf the first law for reversible
procesr r, to 61ve the new term bQ:

$SQ S. q + 89dss (10)

Define the entropy (S) by

or

Note that $%diss is not heat which Is exchanged between the system
and the surroundings, but heat which is generated in the system itself by dissi-
pative processes. In the case of the system doing work adiabatically ( §Qo = 0),
the dissipation due to friction serves to reduce the amount of work capable of
being done, and prevents the temperature of the gas from decreasing as much as it
would ideally, i.e., if no friction were present.

Entropy is defined in terms of reversible processes. If a system
involved in a process undergoes a change from state PO, To, Po to Pf, Tf, )f,
the entropy change of the system can be calculated by choosing a series of revers.
ible processes whereby the state variables of the system change from P., To, Po
to Pf, Tf, .ef. For the case of a perfect gas, this becomes 5S w dS.

If I Q=' 0, i.e., no heat is added from surroundings, the process
is adiabatic. If "Q - % the process is reversible and adiabatic, or
isentropic.

Again, entropy here is really entropy per unit mass. From the first
law

S dS 0 C dT dP (
Tp T F

This comes about by: SQ + SW - dE, Q pdV - CvdT, - d(pv) + vdp = C t,
Q - d (RT) + vdp - CVdT,Q + vdp - Cpdt.

Note that for dv positive, S'W is negative, since 5W is work done on the sy..tem.

UNCLASSIFIED - 6 -
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In ~ej;rat i ng Equation ( 11),

S C PLNT - RLN 1

or

ThiLs may be rewritten as

S C =

PP

or

Fo an intopi RocPss

(14

AW reutwihwl eue ne A e8r~e rmEuto 1)



21~~ 5978
-RLS1E0VAN NUIS. CAIIPOftOA BON ______

and

e v P

or

PI __- e 15

IV. STEADY STATE EQUATIONS OF MOTION

A. Description of Equations

In describing the equations of motion, we shall refer to two differ-
ent flow configurations, namely, the two-dimensional case and the axisymmetrical
case. In the two-dimensional case, we use the Cartesian coordinates x and y. In
the axisymmetricel case, the x-axis is the axis of rotation of the x-y plane, and
flow conditions will be the same on any x-y plane which has been rotated at any
angle with respect to a staticnary line orthogonal to ihe x-axis.

We shall also use the steady state Eulerian formulation, whereby
solid boundaries in the flow are stationary with respect to the observer.

The steady state equation of ccntlnuity is, for no sources or sinks,

V • (Qj) = 0 (16)

Where

=Densiq'y

q= Velocity vector = (u, v), u q cos 9, v= q sine9

Written out, thl becomes

+ v]+u + v +E(-L) o

Where

= 0 for the two-dimensional case

C = 1 for the axisymmetric case

This equation ray! that mass is preserved at all points in the flow rtrcam.

UNCLASSIF D
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The Navier-Stckes eauation of motion Is, in component form, for no
dilataticn or external forces,

Dt- X(18)

9  =/ 2v - (19)
Dt

Where
D +

dx
dt

v= "

dt

t Time

Viscosity

The terms U and - are zero in steady state flew. These equations are the

statements cf Newton's second law for compressible fluids. In what is to follow,
we shall assume/' = 0.

The equation of LnerU Is.

2 )___-- + i=: o (o

'Ae re

The gas enthalpy per unit mass at any point In the flw stream is

1 -- _ - - .. (21)U - 1

UNCLASSIFJED - 9 -
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The ga3 enthalpy for the equilibrium reservoir gas, for which q (0,0) is

)= Po
10 = j "--? , or stagnation enthalpy. (20)

If io is constant in the entire flow field, the flow is called isenthalpic.

The equation of energy, Equation (20), is valid along the flow
streamlines. This equation could also be written as

u2  + v2 T C T2 + p 0 (20)'

Where Po = R eo To.

This equation expresses the interchangeability of random and uniform energy of
motion. The term C T is related to random motion, and the term 1/2 (u2 + v2 ) is
related to uniform Rotion. If the flow is isenthalpic, the energy equation,
Equation (20), is valid at all points in the flow field, and not Just along a
particular streamline, since io is constant.

The temperature T is that which would be measured by an observer

moving along the streamline with speed + .-f2 +

The perfect gas law , Equations (1) or (2), also holds fc .-
with a net velocity. However, in applying it, we must understand that the quan-
tities P, T, and e are those which would be measured by an observer moving along
with the gas at the same net velocity, i.e., they are static quantities.

Define the quantity a to be

a=+ (22)

We will later show that this is the local speed of sound in a gas. For a perfect
gas, this becomes

a + 7, (22)1

since for constant entropy,

P= CdP -

P~ C

UNCLASSIFIED - o-
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Another relation which we will need is Crocco's result.

x(Vx ) RAD 10 - T RADS (2-3)

B. Special Results

We shall write down acme relations which will be needed later.
From Equations (22), (23), and (1,),

P 2 )S 2 (e
t- Ia (24.a)

()P a2 A + a 2)e (24b)

Whe re

Cv

C. Results for Isentrcpc, Isenthalpic Flow

From Equations (22), (22)1, (20), and (21), and by differentiating
Equaticn (20), and by using Equations (24a) and (24b) with the assumption that
S constant, we obtain

au v 2 a2  p (
Uj +Y 0 2a

Su , v a2  )e 0ry v y ry (25b)

where

o= Constant in the entire flow field.

By substituting Equations (25a) and (25b) into the continuity
cquation, Equation (17), we obtain,,or J-. [u2 (,26)v ,,.,, v I  ,, ,

'37y uv + .v2ev(26

IJNCIASSIFIED - 1-



UNCLASS IF IED VAN WYL CAU"N"

Equation (26) is the relation which is used in the nozzle flow program which will
be described in Section V below.

(Derivation of Equations (24a), (24b))

A
Define S , S/C v .

Then Equation (15) becomes

SA~-o1 I
P -Po [e -

A
-' -o

PO 0~ Sas 3

We also have

ap AP 33+ P) a OP dx+&
YX ~ ZTSr X- #

Therefore

Po G-S O + S a2

(Derivation of Equations (25a), (25b))

Start with Equation (20):

u2 + v 2  
P

2 + -= Constant

UNCLASSIFIED - 12 -
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Differentiating with respect to x,

u u v v+ ) F

--L- I iJL 1 p P C)] (j)3 p

12 P e 1 2 2-

We can now write down the ifinal equations fcr isentropic, isenthaip-

1z ccmzress±1,le fluid f'low with unk~nowns LT, au J, and a-

Frsm E.:ation (23),

C~v a .0(27)
'FX- ayu

.er!tfrg Equation (26),

3u + ~ 3v' )u +__U+u a E( (26)

Also -we Lan write

audx + audy =du (28)

a dx + a y dv (9

Y - (29)FE
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D. Results Lr Nonisentropeic Flow (Rotational)

Substitut. ig frP and P from Equations (24a) and(24b) in the
a x y

Navier-Stokes Equations (18) and (19), we obtain

ou u a2 Z + a , o (30)

Sv+ v +26 + a 2  o (31)

Rewriting the equation of continuity,

-u = - E(O) (17)

Also,

Zlu ;3u
dx + F dy - du (52)

dx + Fdy - dv (3 )

dx + udy - dt (34)

ASdS
Td x + T-d S05

The condition that entropy be constant along a streamline except for passage
through a strong shock is

u S+ Cas 0UNC+ S--IE- o

t+
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Note that the equatiOn of energy is not included !rn this set of
equations. The following case of flow with rotation is consilered here -- there
are v-rlations in the rest enthalpy (Io) and in the ertrcpy (s), from streamline
to streamline. The entropy Is a constant along a particular streamline before
and after the shock, while there is a discontinuous increase in entropy on each
streamline in crossing the shock front.

E. Weak and Strong Waves

The plug nozzle program (Section V below) carries out the solution
of Equatiens (27), (26), (28), anm (29) by a numerical integration using the
method of characteristics. Before going into this, ho;ever, it is advisable to
ccnsider the physical basis for the mathematical develc;.ent. Indeed, this is
really necessary, because certain initial ccndit1l'-rs ar. bc-.zar-*c& .,ust be
prescribed befcre the solution of the equations can be carried cut, and these
are obtained from physical copsiderations.

We begin by writing the continuity, i.avier-Stckes, and energy
equations for one dimension, i.e., the x-direction, in differential form.

du , de . (36)

udu + L- o (OT)

udu + C dT - 0 (38)

pa

F. Speed of a Normal Weak Wave

Assume that we have a flow configuration as sh-wn in the following
sketch:

P,e P+ SP, e+Se
U -U +4SU

Assume that there exists a disturbance normal to the flcw velocity u such that
the variables P, e , and u undergo small changes S P, 5 i , and Su, where

5p < < , < 1, Su < < 1 and such that the dlsturbarce is stationary.

If these changes are sufficiently small .we may substitute SP for
fP, S for d? , sandu for du in Equations (56), (071, and (3f') with a small

neeligible errcr resulting.

UNCI.ASSIFED . 5 -
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Combining Equations (37) and (38)

dP =
S CdT d(j) (39)

so the change in entropy 's npgligible. Combining Equations (36) and (37)

u2  . dP (40)RR

Therefore, for such a disturbance to exist, the flow velocity u must be given by
Equation (40).

If we impose a velocity u to the left in the above sketch, the dis-
continuity advances into undisturbed fluid with speed u. The most common ex-
ample of such a wave is a sound wave, and

is called the local speed of sound.

0. Rankine-Hu'oniot .Equations for Normal Strong Waves

Assume that we have the flow configuration shown in the following
sketch

Pl, el ,> ,2
u2 - u

Assume that there exists a stationary disturbance such that 
U

Ul

P2 P1 e2 are not small compared to one.

We refer to this disturbance as a strong wave or shock wave. The
Rankine-Hugoniot shock conditicns are now expressed as Equaticns (i1), (94.), and
(43). The mass flow across the wave must be the same as behind the wave, so

ell U I '22 " - (,I)

UNCLASSIFIED- -
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The increase in r.cmentum cf the gas pcr unit time must equal the
net force on the gas in the sam direction, so

P 2 + P - ) - e'- u2 2 u (2)

By conservation of total energy (uniform and random), and using the energy
e - at ion,

2 P1 u2 +

2 2 - + (a*)2 (4.5)2 X- e 2 , r:t2= (1 1)

where a* = the speed wherein u and a are equal.

The basic eqr the velcity change across a normal shock
wave may be derived as follows. Combine the energy equation, Equation (53), and
the :omaentum equation, Equation (-2), to obtain

ul -u2 = (Ul U1) Y+ u 2 (

7ne :olution to this equation for ul 2 is

u = a*2  ('-5)

We can conclude fro.. Equation (-5) that if uI is greater than the
spced of scund, then u2 must be less than the slueed of sound.

Define u = M = The Mach number for compressible flew.a

H. IMach Waves

Assume that we have a weak wave inclined to the direction of flow
behind the wave, which is staticnary, as shown in the following sketch.

dQ

- In
UNCLASSIFIED 7-
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Assume also that du n is very small compared with u I . This is defined to be a

Mach wave. We know from the study of a weak normal wave that the speed of flow
normal to the wave must be a. From the flow diagram,

sin = i (46)ul

From Equation (..), we may conclude that u I must be supersonic, and
that there is only cne angle at which the wave r-ay be inclined for initial
speed uI.

With reference to the bent wall boundary, if t)e flr, is required
to be parallel to the wall, then the bend creates the disturbance which produces
the wave.

I The particular wave shown here is an expansion wave. If the bend
had been upward, it would have been a compression wave, i.e., the pressure in-
creases. This can be seen from the relations

d =-1 du n cos ,

and

d9 dun
sin q IM -1

dP XU du n sinP
P a2

From the first relption, if d; is as shown, du > 0, from the second relation,
dP < 0.

I. 0ne-Dimensional Nozzle Flow

We now derive a result for Mach number M where variable cross-
sectional area is present.

Po T A

(Gas at
Rest)

UNCLASSIFIED - V3-
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First. we write the continuity equaticn to take into account the area variation.

de du + dA(47)
-~+ u A

Newriting the Navier-6toes equation,

O +dP = 0 (57)
udu + -P o(x'

.4ui 'icn (57) may be rewritten as

udu + a2 d? = 0 (57)1e

Elis.tnating de/e between Equations (37)1 and (117),

u A (48)

If dA/A = 0, there are two possibilities: either M = 1 or du = 0. If, however
M = 2. somewhere in the flow, then at that point dA = 0. Cach a point is calleo
a thr3at (local minimum in the crcss-sectional area A).

We now investigate the mass flow through the ccnfieuration shown in
tht obcve sketch. Take P to be the external pressure.

un A z Ap e0 (-)i 1__ p (49)

'he ±ss flew m has a maximum at the point dm/d 0, or at
Po

P - 2 )Y()

cr..ur.nel flow, we write dcwn results, assuming entropy constant.

UNCLASSIFIED -19 -
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rquation (1) oncs directly ir.n the energy equotion. If we p t YX tinto
Equatiun (.), we gCL Equation (,0). The Thannel outlet is the point dA/A = 0.
C. reefcre ut P corresPondtng to dm/d L - 0, M ; I at the otitlet.

po

Now assume that P; the external pres3ure, is reduced below this
val!te, The mass flow cannot de rease, a, Fquation (49) would predicl, when we
!c',!er P, but nither can it increase. We still have M = I at the outlet, and

?cutlet given ty Equation (50). Therefore we are led to the coacluson that

P / Poutlet for P < P given by Equation (50)

This means that there is a pressure disccntinuity at the outlet (cr
shock wave) in this case, We mwy, hcwever, add an expanding section to the noz7le
to mvach lo-wer prescures beyond the throat. We will then hnve a convergent-
uivergent nozzle.

J. Rankine-Hugoiot Equations for Oblique Strong Vaves

S

ult// ~ v
u~t U2

J0

1  1 2
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Cont itulity '

Conservation of momentum normal to the shock wave-

S 2 2. 2
P ,+ e' Isnp P 2 2 , si v

Conscrvation of momentum parallel to the slxck wave:

el viZ sil $ no 2 (U2 sin? v2 Ocs ) u2 ccs?+ -.2sin )'4

Ccn, ervation of energy across the wave:

12 P ___+)_ 2P
+ & ~~(~ 2 +V 'v 2 (55)

The vnthalpy will charge when the flow encounters an cblique strcng
wave.

We Just mention the e2cstence of reflected waves, vhich will occur
if a wave is oblique to a straight boundary. The reflected wave keeps the fl-w
parkllel to the v-ll.

In the preceding development, we have classified disturbance waves
which can exist in compressible fluids. For our Immeuiate purposes, the class
of wean wafes Is mc' t imoortant. We are now in a positicn to Interpret the re-
silt, c, the numerical integray.1cn tc follow.

K. The Method of Characteristics for Isentropic,. se. 'halpic Flow

By neglecttng viscous effects (both in the stream and at the
boindariis), zmall char es In entropy and entbalpy across weak waves, and essen-
tially asatuiing that Cv and ,2p are constant, we arrived at Equations (27), (26),
(28), cnd (29). We further assume that no strong w&aves will exist in the flcw
field. if they should occur, thelr position and shape would have . be deter-
mined and the Runkine-H!ugoniot equaticns- used. In other wcrds, t trng waves must
in general be specified as "boundary conditions" in tne flow fie7d.

UNCLASSIFIED - 21-
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,ewritln4 Eq atlons (27), (26), (28), and (29),

5u bv
u oV (27)? )v 2u->1 " = - - ) (26)

a2 N7x F

,dX + 4dy = du (28)

dx- dy = dv (29)

We shall refer to these equations shortly.

dlig Making the kssurnptlcns which we have menticned, we notc that we are
dealing with systems of partial differential equations which are first order,
that is, the highest order derivatives which appear are first der-at.ves. (If
we included viscous effects, we wsuld have a second order system of eq uations.)
T.his means that wn have to solve an init.j&l value problem, ioeo. we specify
bounda'. conditions on only part af the boundary of the flow field. We cannt
in general. have a closed boundary problem.

In deciding which nuznerical scheme to use, there exists the possi-
hility of writing difference apprzxitratlcns to our system of equations uing a
rectangul&r net. In order for these difference approximations to be valid, we
require continuity of higher order der.vatives so that the mean value theoreA can
be applIed tc the Taylor's ssries to cbtain a remainder term which expresses the
size of the truncation error. For accurate solutions, we of course require that
the truncation error be at least a order of magnitude smaller than the solutions
themselves.

In the case ef plvg nczzle flow with uniform initial conditions,
however, it is evident that if we assume continuity of the first derivatives
au u 3V v
T.., : " and T we can obain only uniform flow throughout the flow stream by

the usua. processes of numerical integration using rectangular nets.

JNCLASSII F-0D 2
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Outer Boundary

Inner Bcundary

Ccnslder the case of nozzle flow with unifrm initial conditions
precr'be!i aCng a non-characteristic line in a region cf supersonic flow. Equa-
ticns (216) and (27) are then a set of hyperbolic equations.

Initial --,
Line

J2

By the initial value theorem, the flow in a three-sided region in-
rluding the initial line will also be uniform (See diagram above). The lines 1
and 2 are characteristic lines. The flow outside of this three-sided region is
ncnunifcrm, because of the curvature of the boundary, and the fact that the
boundary Is a streamline of the flow. Thus the flow changes from uniform to ncn-
unifcrm across the characteristic lines I and 2. Since, as will be Indicated,
the derivatives at a characteristic are disccntinucus, a valid Taylor's series
with small remainder cannot be present at the characteristics. A method must be
used whereby scluticns of the differential sy tem of equaticns can be patched
together alcng characteristic lines.

Courant pcints out that the nonlinear equaticns of hydrcxynamics
(i.e., E7'ation (2,)) exhibit this behavior of discontinuities ceing generated in
the f!c*., field, even though ncne are present cn the initial line. This Cannot
happen, however, for linear sets of equations of hyperbolic type; fcr example,
the wave equation

a 2 , 2u + 2 u) &2u

.;e Just menticn that one vay of eliminating the charavteristtos I,
a seound order visccsity ti rm to the energy and momentum equaticr.s.

UNCLASSIFIED - 23
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This second order term has little effect except at places where the

derivatives Ux, Uy, vx, Vy otherwise become discontinuous (at characteristics),

then it has the effect of smoothing cut the transition lines so that the charac-

teristics vanish.

One method of finding the characteristic lines for Equations (27),

(26), (28), and (29) is now illustrated. We can write these equations in the
following form:

2 ) uv- v (. 4u)

0 i -1 0 0

(56)

dx dy 0 0 vduru

ov

o 0 dx dy dv

Solving for by Cramer's rule, we obtain
ax

2u (a2 - v2 ) dv dy- 2 uv dy du- (a2 - v 2 ) dx du + a2  -dy
2

a2 (dx2 + dy
2 ) - (udy - vdx)-

For u to be indeterminate, it is necessary and sufficient that both numerator

and denominator be zero. This implies that and L are also indetermin-

ate. ay x oy

Discussion: Since the denominator is zero, the coefficient matrix is

singular, hence of rank less than four. This implies a linear relaticn a-"ong
)u ;u V av d av d v

, .,and and hence - , 3v, and are indeterminate.

UNCLASSIFIED -24 -
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The ccnditcn that the dunrnmatcr -anish g1.ies the following two
,-har',rLt.riztic curves, whl:h are obtained directly by :lving for dy using the

ll-nvwn fcr.ula for ctin'n, rc t: f - ua,!ratic:

dy - A' dx = 0, (Left- charaeteristic line) (58)

dy - AR dx = 0, (Right characteristic line) (59)

c
, ~L uv V, /2+ 2 _a

u" + -a(6o)

R- Lv a U2 + V 2  a2  (61)
2  2

These are the only two characteristic lines which can be found.

Frrm Equations (60a and (61), we see that the characteristics are
real 11' and only if u 2 + v2 - a, - , that is, if and only if the flow is super-
scnic.

We have the following equaticns, which will be verified:

tan ( 4 (6p)

kR tan (4 +o() (6,)

4S.
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Verification: Assume Equetion (62) is true. Then

F a

uv + a 2 a2? an 9 + tan_ tan 9 +
9 2 I tan (9 +S ) =

U2 -a 2  1.- tan 9 tanc( I - tan Q a

02 sin cos + a2y -  I ? V12 - 1 sin 9 + cos 0

2cos 2 - a2  V - 1cos 9 - sin 9qCO

q2 sin 9 coS2 9-VTT 1+ a2 (M2 
-1) ces 9 -. q2 sin2 9 cos 9- a 2 sin i-m2

q2 cos 2 9 sin 9VM2 I + q2 cos3 g- a2 '- - 1 sin 9 -a 2 cos 9

a2 ( 2  1l) cos -q2 sn 2 9 cos 9 q2 cOs3 9 - a2 cos g

q 2 sin 2 O q2 cos2 9

220
q2 - q , 0

Similarly, we could verify Equation (63).

The numerator of the quotient of Equation (57) is set equal to zero. it is

(a - v ) dvdy - 2 uv dydu - (a - v 2 ) dxdu + Ca 2 v dy2 =0 (64)
y

The denominator, set equal to zero, is

(a 2 
- u2 ) dy 2 + 2 uv dxdy + (a 2 

- v2 ) dx2  0 (65)

UNCLASSiIED - 26



UNCLASSIFIED VAN NUYS. CALI ,OMA ".*o 598

Multiplying Equation (64) by dx and substituting (a 2 
- v2 )dx 2 from Equaticn (65),

we obtain

(a 2 -v 2 ) dvdydx - 2 uv dydudx + (a 2 -u 2 ) dy 2 du + 2 uv dxdydu + Ca2 I dy2 dx 0
y

(66

or
(a2 _v2) dv dydx + (a2-u 2) dy 2 du va2 ! dy 2 dx 0.

y

Ignoring the pcssible root dy 0, we finally obtain

(ae-ve) dvdx + (a 2 -u 2 ) dy du + a l dy dx = 0 (67)
y

Substituting Equation (58) in Equation (67), and ignoring the pcssible root dx
0, we obtain

(a2-v2) dv + ( 2 -u2)AL du + a& dy 0 (6)

Substituting Equation (59) in Equation (67), and ignoring the possible root dx 2
0, we obtain

(a 2 -v 2 ) dv + (a 2 -u 2 )AR du + Ca 2 v dy - 0 (61

Equations (68) and (69), give relations between u, v, and y which must hold
along the characteristic lines given by Equations (58) and (59). These are
referred to as compatibility equations.

We will now go through a develop;ent to put Equaticn (68) in a more
convenient forrm.

UNCLASSIFIED - 2T7 -
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Substituting AL from Equatl)n (60) in Equation (68), we obtain

- (q 2 sin 9 cos @ + a% q2.a2)(ccs 4 dq - sin 9 q d9)+(a 2 -q2 sin2 9)(sin ? dq +

cos @ q d9) + E a2 q sin d= 0
y

Rearranging terms,

(Cos 4 + a si Q (dQ -~~.Ldq) + Esinl 9 0 (70)
a a y

Assuming that

cos 9 + sin 9 0a

and multiplying Equation (70) by sin 0( we obtain

d9 - cot dq + sin Q sino( d = 0 (71)
q sin (e + ) y

where

tano(= a

By a similar process, Equation (69) beccaAs

7<t sin 9 sino( dy72
d, +ot'Xdq- (72)

under the assumptlon that

cos - sin 9 / 0
a

UNCLASSII ED __8
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We will new gc through a development tc put Equations (71) and (72)
in the form in which it I.s used in the Plug Nczzle program. Let us first wfork cn

the term sin ; sno( dy of E.a tion (71).

sin 2 sincK k sin sncK tan(; 4) dx sin 9 sino(
siny = n( 7 eos 4 cOso( - sin 9 sin0

dx~ [ dx tan (73
y c' cot 0(c= l 5T tan -

Ncw we work cn the term sin k si( d of Equation (72).
sin(3-o() y

sin sin0( dv sin P sirno( tan ( ydx d x sn sin 1 sin
s -00 y sin (; -00 y y cos ccso( + sin sino

dx [a (]74)
t t) tano( + I + tan

Lastly, we derive a new ex~ression for the term ctc ( Of
Equatiecns (71) and (72). Tn this wcrk, w'e shall assume Y= C/c, is a -urstant.

From the energy equation

q d q + C dT 0 (75)
p

Frcn te recults c-n isentr:pic flow, (Equation 51),

TO ('(6)

N S2
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From Equation (76),

T r
dT - 0 2  I1 ) M dM (77)

2

Fr:rm Equations (77) and (75),

= TO Cp - 1) MdM (78)

q q2 (1 + !_-l M2 )
2

Since q P .a and a = V' RT,

To  CPY -1 M d M

(l+ - I1M 2 C-P o
dq2 __ __ _

2i YR (_ (6- I)
q 2To+

2

dM

( + L-_ M2) (79)
2

Fi-om these results, Equation (71) assumes the form

__ VM' - 1 d M +- tan -" (71)1
M (1+ X M2) vfr2?1 - tongi

(corresponding to XL)

UNCLASSIFIED 0 -
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:2 ~i4t cn(72) assies the form

~+ tan -o

(csrrcz; nding tc AR)

In deriving Eq>uatiLcns (71)l xind w7r% , liuvo n.-t yet -defr

ijy =0, (i

S+ 2a SI 0, (!Equati(.n 1Yi) (R2)

~~ - sin =0, (Equati ,n (72)'), ( 3

ve will now' .;h~w that 'Equaticns (62) an~d (8.,) imply that tln ::hur-
~2t*!31:.slie alcne the x-ax~s, .r dy 0. iRcwrltlrL Eq-uati~r (832), rnd

r';It iyn thrc.ueh by sin ~

ec' s~ s.n( X ccz s n 0< s n

tCstrc, f7cr Equaticn (63)p

UNCLASSIFIED -
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-1 .

The uniqu:e solution to Equation (82)l is

-o(, (Left line), (84)

and the unique solution to Equation (83)l Is

. fht line). (85)

To interpret equations (84) end (85), let us refer to the following
diagram:

Y-axis
Left Characteristic

Streailine

19-_ c- ax is

Right Characteristic

If 9 = - for the left line, then obviozlty the left line lies along the x-axis

If Q = (X for tile right line, then the right line lies Rlong the x-.axis.

We might cemment here that the notation "left characterirtic line",
or "left line" denotes the direction that , ball would roll if placed along the
line. Likewise, a ball would roll to the right if plaLcd on a rtht line".

As a practical matter, we can avoid the corylition dx Z 0 by requai.r-
ing M>1 in the calculations. This point will b. clarified later. The condition
dy = 0 usually does not occur, it if does, there is e sppcial provision which
can be carried out in the calculations.

The condition y = C is avoided in the cal:ulatlons as will be seen
later.

V. PLUG NOZZLE PROGRAM

A. Ceneral Relations

In the pliq nozzle program, we deal with flow which I,; is, -trpic
onj isenthalpi'. This Implies that in the flow field thfere are nrvi o rl
heat trunsfer, or viscosity effects, and no Thocks . ne charneterizti x, uhic
urply to this type cf flow are expressed by Xqnatici ) tnd (63):

7W c1:AMSFI[D -52-
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dy - tan (Q +0() dx - 0 (Left line) (62)

dy -"tan (Q -,0) dx - 0 (Right line) (63)

Th:c compatibility relations which must hold along the characteris-
tics are

-. - - - . -dm ta - 0 (Along left line) (71) l

MVl .L dM _ LV tan - tan

d.... .. H-tn0 (Along right line)(72)1

m(I. L i y a

We nno mav a slight m Mfficatim to Equaticns (71)1 and (72)1. In the existing
program, we ade a small correction "actor to the coefficient of dM4 in Equations
(71)1 and (7)-, so that

m iI(1l + M2

is replaced by

L- b+ Ml-,(TM l ,c(P ) (T)~ ~'
m 0O +1J 2

This comes about by aaujing that C. and C are not constant, but Y = Y(T).
WfL still ue the pcrfecl. gac law as our equation of state, however.

U S IF 1)
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Derivation of the new expression for the coefficient of dM.

Rc. 11 that the dM term was originally ;f2-1 j (Equati,-s(71)
and (72)). 

q

By the equal:ion of energy in differential form,

C pdT + q dq = 0 (Along a streamline). (88)

This can be rewritten as

qIL !T (88)l

We have

a2 = )RT

2

)' RT

2
T -

~RM2

dT = _%-_"-- _, RM2  FjRg5 2RM2

Equation (88)1 becomes

q 1 1 (g. " RM .,,1 , Rg 2

Frorr 7quation (88)", we finally obtain

dM L L (IN d' 1 (89)
q (1 + Y-- M2) IA 21 dT 7R

UNCLASS IFID -
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In line with this assumn'tfcn that Z. Cv(T) and C C (T), 1;,qua-
tion (51) loses significance, sic iti ePe suin vad aecn

stant. An expression for 3T/)M which can be peiw!fo h re~ qaini

-M (90)

However, we still use Equation (51) tc cbtain initial line temperatures. Also,
we neglect certai~n other effects which shoul'd :%dify cur initial assumptions.

The general type of nczzle which will be used is illustrated in the
following diagram, which represents a cross sect..;n. In the aisymmetrical case,
this cross at-Qtion is any plane which has included the x-axis, or the axis of
symmetry. In the two-dimensional case, the cr.,ss section is any plane parallel
to the x-y plane. The lower half of the nozzle is hot shown, since It is a mir-
ror image of the upper half.

Outer Wall

Zout = between outer wall and x-axis at
the initial line

19 4 between plug wall and x-axis at
the initial line

FLAN 9 = initial- guess for final. streamline
___FIELD angle

Inner Wall
(plug)

axis tif symmetry (x-axis)
x 0

The variables x, y, M~, and 9 are presecribed at discrete points on
the initial line as part of the starting, cr input data. Vhe initial line, which
need not be vertical, is generally assured to be in the throat, or point of mini-
m~um cross-sectional area, and so .1. alcng the !nlt~a1 line is usually assigned a

ccn~tant value just larger than cie. A table cf /,x, y) values describing the
cuiter wall and the plug wall, also the angles :;u and ai re also needed.

3.
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It is assumed that a continuously differential curve can be passed
through the outer and inner wall points, starting at x - 0. (From the diagram,
it is evident that this is not pcssible at point c.) We will require also that
the streamlines of flow are parallel to the inner and outer wall at points where
the derivatives are continuous. At point c, we must handle the situation differ-
ently. The methods of procedure for insuring parallel flow at the boundaries and
for handling conditions at point c are now described.

B. Physical Considerations at Outer and Inner Wall Boundaries

1. Reflected Mach Waves

We can provide a physical basis for our bound,.ry conditions by
showing that the characteristics line scgments are also the Mach wave lines.
Equation (46) describes the angle of inclination of a Mach wave to the flow
direction as a unique function of M.

sin = (46)

For the characteristic line, we have

q M

where 0( = Angle between the characteristic line and the streamline.

Obviously,

0( P (89)

Note that we are dealing with stationary lines here.

Therefore, the characteristic lines are also Mach lii 9, i.e.,
the loci of Mach waves.

UNCLASSIFID - -
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From physical consideratcrns, when a Mach wave is incident on a
s:nc,,th bcundary oblique tr the directicn .-f flow, there must be a reflected wave

"h renders the directicn of f!c-w a~a'n rurnllel to the boundary, as shown
be low.

Wall

initial Flc Final Flow

reflected
Inc ident Wave
Wave

In the plug nozzle program, the reflected wave will be manifest as
a characteristic line originating at the bzumdary point where the incident char-
acteristic- line intersects the b,-undary. -The point of intersection is determned
by the calculations.

2. Prandtl-Meyer Expansicn

In the plug nozzle prcgram, characteristic lines are generated
starting at the initial line and moving to the right. Let us consider what
1,.appens when we have reached point c on the plug.

uOuter Wall

Outerx-axis

7irne L is the first left line to reach point c.

By first considering that theze iv : cme cuzrvoturc at pclnit r
e x1.d then taking the limiting case of a corner at point C, it bec .es evident
that th ere must be a fan of characteristics originating at point c and ccntn'-

until the final streamline angle s is reached. Pictorially,

SA

2- *1
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L

Plug C

The expansion angle is denoted by .

Now consider what happens at the right characteristics in the
fan as we approarh point c. Evidently dx approaches zero. Equation (72)1 then
bec omes

d9 1 + MO.(T. M (86)
M( '_ +

2

and the right characteristics converge to the point c.

Equation (86) gives us a relation between streamlinc angle and Mac number in
the vicinity of point c.

We can obtain a relation between 9 + c< and M also.

Since

ol = sin 1l -W
then

and

d(9 + 00 dQ + d'k VW - 1d (l +Mo<.(T,M) + dr - (87)L (1 + j-M- 2)  M V -

From Equation (87); we can calculate M for the characteristic left line )rigin-
ating at c at angle 9 + ce by numerical integration cf Equation () "he
program, we specify

d(i,+cC) =A(+ ) = /@'

to be a dmall negative constant angle.

UNCLASS IEDD- 8 -8
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N,;te tihat s'nce ' beccmes negative, the "ball rolling" definition of left line
becczes £nva2id! Suffice it to say that the left lines which are dealt with
herc rtain the property that the angle 3< Is added to the angle 9 to obtain
the z:,gle cf Inclination.

C. General Descriotion of the Calculative Procedure

By referring to the program abstract, we can determine what input
data tre re.quired for a calculation.

1. Curve Fitting

The first procedure is to determine zcntinuously differentiable
funct-cns which ;ass through the specified cuter and Inner wall points. The
slope of, say, the outer wall function at bcth ends of the nozzle will be that
specified by the input data.

This curve fit is obtained in the following way. We begin at
the first outer wall point, where the slope go 1 is specified. (:Te inner wall
calculation is carried out in the same way) rass a parabola Lhrough the first,
second, and third specified cuter wall poi.ts, and determine the slope ;o,2 f

this parabcla at the second point. Then determine the coefficients of a cubic
which passes through the second and first point, and which has slope go 1 at the
first point and slope go 2 at the second point. This cubic is the analytic ex-
pression for the cuter wall between the first two input points. Cbtain a cubic I
for the second and third points in the way just described, by passing a parabola
between the second, third, and fourth points, etc.

2. Characteristics

in gcnerating the characteristic net, we are primarily ccr :erned
with finding pcints cf intersection of left lines with right lines, or with
r,:int! of intersection of left lines with the cuter wall, or right l1n,'3 with th,
inner wall.

2
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We will nou describe in detail thl method for cz±cul.tirn T,,
X3 , Y3, M3, and G3 at point 5 'n the diagram above, where we know Ti, Xl, YI
9i, MI and T2, X2, Y2, M2, 92.

Express
dxyLL 

= Y - YI

dxR = x, - x2, dy =

dx'~ x2  y 3 - Y2

Rewrite .quations (62), (65), (71)1, and (72)l "

dLy AL d O, or y 5 - l (X5 " xl) 0 (6L)

d? - AR d = o, or -v - R (x - ) ) (63)

-- 91 - AL (14 _ MI) + BL (X3- x2 , 0(-I

93" A (M2 -+ A) R BR (X,3_ x2) 0 (2

Where

A t "  "f 1 [ -M oe(T, M) 1

M(I + -*- M )
2

A R-V W 1 + M ((T, M)j

M ( + M' 2

UNCLASSIFIED -
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Y+ taili

AL . t. *

Y -- tan

We also have equation (51) which gives T =T(M)

The star indicates that the starred quantities AL, AR, BL and
BR are to be evaltated at points on the lines connecting X3 with X2 and X1 .
That is, A and B are to be evaluated at

+

2

Ml + M
M m

2

and

T = T I + T3

2

rather than at, say @i, M, and Tl .

This more accurate procedure is called the mean value lattice point method.

Since this Implies that Equations (62), (63), (71)1 and (72)1
are nunlinear, we cannot solve directly for X3 , Y3 M3 , and QA, bttt must use
an iterative procedure.

UVLT ASS-IFIEID -_ __._ _ 1I
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T r,.n te it- -' n, te .L AL, nd BL t and

A , A1
d , n71?; ,*~n I. en s;o1'e Equations(6TR AR )n~ -.Ri PAR M. ? m

(I)' and (-2)1 fcr tile initial iterates

13 5, 1,, 5x , f.nd i where i = 1.

Thon uvzluate T5frcn 7Th'uzt ior (,,C,) uz-.ing~ AM '14 1.1 - nd Am -12

and expressing

T 1 +T 2 + 4 'A

2

where

T3 average of the two differences obtained from M5 - M1 and 'M5 - M

Since Equation (51) says

T =- (i + (----I m )

2

calculating T involves an iteration also.
N+i 3 Ob t i+ 1L = (i 3

No'x obtain and y from tun ; + 0 + tan( l+ (1)

and

i I = 1/2 ftan (ig3 i(3) + ta n ( , )

Obtain

from

1 = /2 (A", (I. t , 'T,i( , (T) 5 ), A" (MI, ;1, i', "'(T

and uo on.

UN FED -
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B L[ tan 0 aG

--ta n ta

-1 + tan J

AL = tan (g +o()

A = tan < -o(9

We alsc have equation (51) which gives T = T(M).

The star indicates that the starred quantities AL, AR , BL and
are to e evaltated at points on the lines connecting X3 with X2 and XI.

That is, A and B are to be evaluated at

1+

2

M1 +M

2

and

T = T

2

rather than at, say 91, M, and T1 .

This more accurate procedure is called the mean value lattice point m.ethcd.

Since this implies that Equations (62), (63), (71)1 and (72)1

are nfnlin~ar, we cannot solve directly for X3 , Y3, M, ard , but rust use
an iterative procedure.

-MCIASSIFi-
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C :,t ln>.. this iteration until

1i+Ix3 - iY3I <'CX

i +l 5 - i M 3 4(-

IJ+l:5 3 C

For the case of outer wall or inner wall intersection points, we
Sthrcugh a mcdification of this type of iteraticn. However, an outer wall

:o. ? o2 cn pcint involves only a left line, i.e., just one set of 1oints T, X,
y zw, h [hch are known. An inner wall intersection point involves only a right
11.ne. ;hen the iteration for the inter-ection point (x,y) is complete, tan 9 will
be dy,'dx of the particular cubic that represents the boundary at the point (x, y).

Generally this is the way the characteristic net is begun.
that the initial line is neither a left line or a right line. Assume, say,

that three pcints are given as input data to describe the initial line.

Outer Wall
2 ........

initial 3

Tine 1

Inner Wall

car, c .ulate T, X3 , Y 5 , M, and 9 frcm prescribed ccndlticns at input

w nts ~~I .2. (See above diagram).

IjI- ,E D



UNCLASS IFIED VAN NUYS. 't,,,o,,A

-e then exti.Ad a left I ine to the cuter wall.

1001 0

The ccmplete line is labeled the "101" line.

Nr.w calculate the next pcint us indicated below.

1001

Ccntinue this to the outer wall as shown.

100 101 102

Now extend the lower most right line to the irner wall.

102

Now start to work line 105 to the outer wall.

The right lines are also numbered. The complete numbering 1:i Indicut..d h:re.
0 101,10 2,102

100,100
102, 101

10 0

10199 100 102,100

102, 992

102,98 105,9Y _____

The nu rbering here is of curse arbitrary; this was chcen rs the 5y. , r, te

timo the ;rcram .as written.

, iIM_
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It should be noted that the intersection points 102, 102, or
105, 97 do not as a rule intersect the bcundaries at input data points. Als(, we
cannot trace a streamline by assuming that, say, a streamline can te drawn frcr.
point 101, 99 to point 102, 100. We r.ust cbtain streamlines by ancther considera-
ticn. All we know in this connection is the streamline angle ; at the two points.
Ncte that the net refinement depends up-cn the number of specified initial line
points.

Thio process is continued until we have generated a left line
past the inner wall cutoff point c. (To obtain this 1%ne we must use an imaginar.
extensicn of the inner wall boundary past c.)

We then interpolate between left lines n and n+l to obtain the
first special left line which begins at point c. Starting with this !.inc, we
develop a fan of left lines about point c, evaluating Y on each line using Equa-
tion (87).

d (9 + 0) = V 1 2 (l + '(TM + 1 j dM (87)
M( 1 + L2 MV M-l

where d (9 + ) A +,() is a specified constant.

This expansion is cr;ntinued until ;, correspcnds to s, the nr- -
>:td streamline angle at point c. For this corresp-r..ence tc occur, we mu., sulc-

divide A( +0) near the angle Q.'

If the inltia guess for 9. is good, we can trace a streamline
sterting at point c which is asymptotic to the x-axis.

If it Ir not good, we can estilrate a new 9s, and try gatn.

2
3

Along this streamline, 5.. and T. are constant, therefore, 4e need cnly ccnp.ut
(X, Y, 4) at discrete pc 4 rnts, say pdcint 5 abc.e.

UNCLASSIFIED
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s In calculating (X, Y, 9) at point 3, we use the eqwJ 2 , the
streamline

dy = tan 9 dx

or

(y3 - y2 ) tan ( 'x-2x.)

and Equations (63) and (72)l for right llne < 1, 3 >

Eventually, we will generate a left line which will extend past
the last outer wall data point. When this happens, we extend the cuter Wall to
intersect the line, and then proceed as indicated below, we have onitted the right
lines.

LastCuter Wall 216,216
Point

-- '-----7 217,216
20 LL 21i

23,216

204,178-- - 3

Right Line L16

3. Nozzle Efficiency

In order to calculate nozzle efficiency, we must first develop
a system of equations which describe an 'ideal" nozzle.

To do this, we develop briefly a one-dircasional thc.ry which
ideally might apply to a nuzzle of slowly varying crosc-cr:etional dr.. is-
cussion fcllwws Lieprnnn and Puckott, Acr.]ynnmlcs (f n rc .ssbie id n

UNCLS-S1IlrED - 4" -
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4(,; rn1e, the vaiables M4, P,J/0, ui T n all C ~~~.at a cr.ns. .,3cct.cn pc~'
~:li~QIaf c the exi cf ~y~r.~rcr -<a~ .; -21'~cr br.-kk to Em! ticns

....................... d.4c$~ 'xfl e:xttnsiln t(,
&I rc o~ ~-~Ie 'iAA c. .:~ .- nne~r bc,,ijnary

ia 'r2 .'4ptncwhza.1

PO

J et untaler nO u*A* = Mass flr1 tayJssscinp,.-~d'-ua to thex-

the reer tccnii.s i ,Ict

FqG~tin (49)relate ercsssectioal ae- t;uesr n

a a x .1 M,

-0 N, u- S S I
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From Equations (93) and (94)

ThMe stl'en thrust at anY Point Cf the nozzle Is

F = pA , Au 2 = pA(? X

Let us Say that 'e want to evalua te F at a particular area A. ifwe know A*, we 'can calculate M from RquatJ on (93), once having determined F fromjEquation (94). Then we have

F M2 + i ,- 2

(i +/ M-,

where Y= the value y, the perpendicular distance frow the exit x. to the wall.

OutL
Yi, ase

Throat

-Staticin, Pu

'U'-.
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fN'w we develcp the thru~st develc~d by the plug nozzle. This
\'-l 1 -n atdiscrete p'oints x. ccrresponcling to the interLecticns of' left

i: c,,, cr wal. The thru.3t will tic exjr,!ssed as the sum of fo:urtris

Thlts terrm is the rcaos 4'lcw cc,..pcnezit parallel to t'ne x-exls. It

F1 r + )o. ut,02 in 2

+F ;-12 -77-)

c- ral&lel to the x-axis.

''-s the M!aoh nuimber at the bitial point X. (M is assumed to be ccnstarst;
,nS. tho cssectio).

Thu- 7xpression for F2 :

This ? crin Is the fcrce on the bas ol' the plug. We can calculate
- fr th, 5-,atic regicon frc= 7-quaticn (9"., since M is ccnstant (:n the flnel

e"'I ne. V,' obtain

F,:) 7ry as

UNCLASS IF!ED- -
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The Exprens1i fcr_ F~e:

ThVi t n,~, o. '. r i *eWcill wi>Li!tc Cr
:-ubtructs frmm the t.hrust.

= yey 

ye
2). p dAI

p 0 -7r 0 'Y +'Jj

wi, r(! * ar! Uur'tIzry ? Icllts (,utc-r wail) w ii Pj re precf. Irc-s at intersect ions
f± 1v ft lines with the cluter wall, can b- rr, mutd f'rrn %M by F,':aticn (94).

'Me Fxjpress.lm fur F,

Thi tcn i i~n1~t:~F c~c 1. t z~rcwcsth- ',.ree -2crrpun-
.rit _n the inner wal'.

Y bas

k P~r LIN prca,:sures at I t:ze f ri ,lt llroc:3 w ~th !h 1:r., r ";_ll. De -
f~ne ttna efficiency tu be

F Fr Ie 7,0
RN F

Since we hv atd.e tepuint-;, c.~ uu.CtIn 1'',

:utur wall sAt Grve Qf the s iiscretLa Iintc, anAl tlaAi. :I enyf thc
Oicj"'Qf.-cff 1k Z:.'.le. Iwv *frtm p:jl uiaI i . ,we cf!ac'. (. dc
tfi.! Aitvr wall tu th lc3oft L! tht rit :in,! wnloh l1 ts the inner ca il h bc.irvi ary.

1 .0

0

Of __ __--_ ___ -
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APP?2;I X A

S3?'XHY CF :!T.INCLATURE

Symbol Description

c< Mach angle

a Speed of sound

a* Critical speed

Cv  Specific heat at ccnstant volun'.e

Cp Specific heat at ccontant pressure

E Internal energy per unit mass

= I if axisymretrical gec..etry, 0 if two-dimensional

Ratio of Cp to Cv

h or i Enthalpy per unit mass

k Boltzmann constant

M Mass in Section IIT-A, rass flow otherwise

M Mach number

P Pressure

eDensity, mass per unit vclume
Q Heat energy per unit volume

qFlow velocity = (u, v)

Flow speed = Ve + v
2

R Gas constant

S Entropy per unit nass

T Temperature

t Time

9 Flow angle

,.itViscosity

u Component of velzcity in the x-directlcn

v Ccmponent of velxcIty in the y-d!rection

V Volume per unit rass

W Work

y Coorinates of a rcint in !the Euclideen plane J
UNCLA5 FIED I


