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ABSTRACT 

The interactions between shock waves,  produced in air by 
detonation of explosives,  and specific targets which they can destroy by 
air blast are described.    A mathematical analysis is used which relates 
weights of explosive (or yields of nuclear devices) to the distances at 
which they can cause lethal damage over the entire range of blasts from 
a few pcunds of conventional high explosive to kilotons or megatons of 
nuclear blast.    Effects at sea level and higher altitudes are examined. 
In the analysis, typical targets are defined by two parameters for which 
specific numerical values can be established.    Shockwaves produced by 
detonation of specific explosives are similarly defined in mathematical 
terms which relate characteristics of the explosive to the ambient atmos- 
phere.    A dimensionless scaling parameter relating a shock wave 
parameter to a target parameter is the key to the scaling relationships 
derived. 
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PROLOGUE 

The General Scaling Equations presented in this report are based 

on interactions between Shockwaves generated by explosions in air and 

targets which can be fully defined by two parameters in a simple mathe- 

matical model.    Simplicity is achieved by ignoring many factors which 

complicate rather than improve the study of blast phenomena.    These 

scaling equations, and the analytic techniques based on their use,  are 

not intended to be precision tools for computing specific effects with max- 

imum accuracy,  even though they are often as accurate as far more com- 

plicated computational techniques.    Their unique value lies in their use 

of a dimensionless, universal scaling parameter whose values span the 

entire spectrum of blast damage phenomena, from the effects of a few 

pounds of conventional high explosive to those of megatons of equivalent 

TNT.    The reader is cautioned,  however, not to expect real targets to be- 

have precisely like the simplified models from which the scaling equations 

were derived,  but he is encouraged to use the equations freely as a means 

of correlating isolated pieces of data with the basic analytic structure of 

blast damage relationships. 

These General Scaling Equations are a valuable aid in simplifying 

the complex effects of an air blast on a target.    They will be invaluable to 

the novice searching for a basic understanding of air-blast phenomena. 

The equations will also serve those who are making detailed studies of 

particular phases of blast damage phenomena,  by showing them just how 

their area of interest relates to the overall realm of air-blast theory. 

1- 
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I.    PURPOSE AND SCOPE 

This analysis deals with targets and the interactions between them 

and the shock waves generated by the detonation of explosives.    It limits 

its attention to that fraction of the total range of scaled distances within 

which a variety of actual targets, varying widely in toughness, have been 

destroyed by air blast.   Within this limited range, an abundance of excel- 

lent experimental data shows that shock waves behave in an orderly fashion 

allowing the parametric relationships which define their characteristics to 

be expressed mathematically by two simple, tractable equations. 

Since the purpose of this report is to derive scaling equations for 

interactions between Shockwaves and targets which result in target "kills, " 

these equations will be used only to compute the effects of interactions with- 

in the range of scaled distances at which such kills are realistic.    For this 

reason,  equations which validly and accurately define the characteristics 

of shock waves,  over this range of scaled distances,  can be used as the 

basis for deriving General Scaling Equations for blast kills.    These kills 

will be equally valid and accurate because the kills occur within the range 

to which the basic equations apply. 

These facts make it possible to derive scaling equations of classic 

simplicity in which specific target characteristic data (inherent in the "uni- 

versal scaling parameter" used in their derivation) ensure that the equa- 

tions will be valid for the range in which shock waves can and do kill such 

targets.    This universal scaling parameter allows the equations defining 

the blast-shock wave characteristics to be converted successfully into 

equations which scale the interactions between Shockwaves and targets. 

•2- 
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II.    DEFINITION OF SHOCK WAVE CHARACTERISTICS 

Appendix A* shows that experimental data,  over the range of scaled 

distances with which this report is concerned,  can be represented by con- 

sistent relationships between the parameters of the shock wave and its dis- 

tance from the detonation of any given weight of explosives.    Such data,   for 

the well known military high explosive,   50/50 Pentolite (Ref.   1),  which is 

frequently used as a standard for blast studies,  yield the following equations: 

13, 300 W 

R3 
(Eq.  A-6) 

I = 22QW°-733P°-267 

R 
1.20 (Eq.  A-7) 

(1) 

(2) 

where 

W   =   weight of explosive charge (lb) 

R   =   distance from explosive charge (ft) 

P   =   "normally reflected" peak overpressure of shock wave (psi) 

I     =   "normally reflected" positive impulse of shock wave (psi*   msecs) 

p    =   ambient air pressure (atmospheres),  having the value of 1.00 

at sea level 

—    =   ratio of the velocity of sound in air at any altitude to the ve- 

locity at sea level 

These equations are valid and accurate analytical expressions for 

peak overpressure and impulse characteristics of shock waves produced 

by 50/50 Pentolite over a range of scaled distances from 2 to 10 and are 

In the interest of brevity in the  ensuing   text,  definitions of terminology, 
and the details of all derivations are given in the appendices. 

-3- 
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very good approximations over a still wider range.    Data for other high 

explosives can be analyzed to yield equations of similar form but with 

different numerical coefficients defining their characteristics. 

Equations (1) and (2) may be solved simultaneously for W and R, 

yielding: 

0.0083  (—|    I3 

W=        1.20    0  80 (E^A"8) (3) 

P p 

R •    n. 733    0.267       ^  A~9) (4> 

P p 

A third,  and very important equation,  derived either by combining 

Eqs.   (3) and (4) or directly from Eq.   (1) is given by 

The significance of this equation is discussed in a later section of this 

report. 

-4- 



Th« Johm Hopkmt Univertity 
APPIICO  PMVtIC*  L»10«*TOHY 

Silver Spring, Maryland 

III.    CHARACTERISTICS OF A TYPICAL TARGET 

A typical target for air-blast destruction is an aircraft which has a 

relatively light skin covering the basic structural framework of ribs,  stif- 

feners,  and braces.    Typical blast damage,  assessed as a target kill,   may 

consist of substantial crumpling and distortion of the surface.    A character- 

istic of this damage is that the surface is forced inward a considerable dis- 

tance toward the basic structural elements which support it. 

In order to establish a basis for the numerical assessment of target 

characteristics,  the following parameter is defined: 

P     = the minimum unit surface pressure which causes any perman- 
ent deformation of the target: it is further assumed that P     is m 
the unit pressure with which the target will resist deformation 
when pressures greater than P     initiate and continue destruc- m tive deformation. 

In the course of deriving functions for the total work done in deforming a tar- 

get to the point of destruction (Appendix C),  several other    target parameters 

will be used temporarily and will ultimately be replaced by a second target 

characteristic parameter,   defined as: 

I     = the lower limit for the value of an impulse which can deform m the target enough to destroy it. 

The minimum unit pressure,   P    ,  is the only parameter required in the 

first step of the derivation given in Appendix C. 

-5- 
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IV.    THE UNIVERSAL SCALING PARAMETER 

This analysis is concerned with scaling the interactions between 

shock waves and targets.    A scaling parameter for this purpose should 

be a dimensionless ratio between some distinctive characteristic param- 

eter of the target and a similar distinctive characteristic parameter for 

the shock wave.    The only characteristic common to both is a unit pressure. 

A universal scaling parameter,  which can uniquely correlate every 

possible combination of charge weight with a corresponding lethal radius, 

is the ratio c,  defined as 

P 
€   =-f-     (Eq.   B-l) (6) 

where P     is defined as before and P is the largest shock wave unit pressure 
m 

which can just destroy the target without over killing it.    The ratio,  then, 

which exists when the shock wave can just kill the target is e.    It is im- 

possible for e to be zero since every real target offers some finite resis- 

tance to deformation.    No target deformation can take place unless P is 

greater than P   ,   which implies that c must be less than one.    Within 
m 

these limits, c  spans the entire spectrum of charge weights (and corres- 

ponding lethal distances) from a few pounds of conventional high explosive 

to nuclear devices whose yield is measured in kilotons or megatons of 

equivalent TNT. 

In the scaling equations derived in this   report,   the characteristics 

of the explosive,   the target,   and the ambient atmospheric conditions (alti- 

tude and ratio of sound velocities) are all defined by appropriate numeri- 

cal values of the parameters.    Every set of conditions represented by these 

parameters corresponds to a unique weight of explosive,  and the unique 

lethal distance associated with it.    Therefore,  e is a universal scaling 

parameter for the interactions between shock waves and the targets which 

they are capable of killing when the shock waves are spherical and the tar- 

gets are correctly defined by the parameters,   P     and I    . 
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V.    A GENERAL RELATIONSHIP BETWEEN LETHAL 
DISTANCE AND CHARGE WEIGHT 

The efficacy of the universal scaling parameter becomes readily 

apparent when it is introduced into Eq. 5; the shock wave parameter, P, 

is replaced by the more convenient target parameter,  P    ,  to give 

1/3     1/3 
R =    6'     Wl/3          (Eq.   G-9) (7) 

m 

The generality of this equation becomes obvious when € approaches one, 
1/3 as it does for large nuclear charges.    In this case the basic R/W        re- 

lationship is modified only by a term defining the threshold of damage for 

the target.    However, when € is less than one,  its values modify this basic 

relationship and introduce the variable distance-weight relationships which 

characterize moderate-sized charges of conventional high explosives. 

Although Eq.  7 is an enormously useful scaling equation,  further 

modification is necessary before it can be used effectively.    The problem 

of scaling blast damage would be considerably over-simplified if it were 

to be expressed in terms of a single parameter and the equation for shock 

wave peak overpressure.    The cube root of P     appears in the denominator 
m 

of Eq.   7,  but such factors as the amount of work per unit area which con- 

stitutes a complete kill and the altitude at which the blast occurs do not 

appear explicitly.    A closer examination shows that these factors are im- 

plicit in the value of € .    It is then necessary to determine the proper value 

of € to be used in Eq.   7. 

This determination is not a trivial task; it is treated at length in 

Appendices C and G.    It requires the derivation of functions for the total 

work per unit area which constitutes a kill,  and the derivation of general 

parametric equations for R and W which are repeating functions of the uni- 

versal scaling parameter, € .    R and W also contain terms dependent on 

-7- 
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the explosive, target,  and altitude.    The derivation of the following equa- 

tions is the major accomplishment of this analysis: 

3 

W = 0.0083 
I 
m 
1.20 

m 

ft) 
0.80 

F„.(€)     (Eq.  G-l) 
W 

(8) 

R = 4.8 
I 
m 
0.733 

m 

c_ 
c 

0.267 
F„(€)     (Eq.  G-2) (9) 

In each of these equations the first factor, the numerical coefficient, 

is a characteristic of the explosive (50/50 Pentolite) and would be different 

for different explosives.    The second factor consists of target parameters, 

and the third consists of the parameters which define the effects of altitude. 

Analytical expressions are derived in Appendix G for the functions of € 

which constitute the fourth factor of each equation, but the complexity of 

these functions makes it more practical to use the values in Table I (p.   10). 

The two functions of € in Eqs.  8 and 9 are related in the following way: 

F-,(€) = [F(€)]l/3 €113     (Eq.   G-7) (10) 

The third or altitude factor may be written as F    (alt) or F   (alt).    Average 

values of these factors are given as a function of altitude in Table II (p.   12). 

The scaling equations may thus be simplified to give: 

W = 0.0083 

R = 4.9 

m 
1.20 

rn 

m 

Fw(alt)Fw(€) 

0.733 
m 

FR(alt) FR(€) 

(11) 

(12) 
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Solving Eqs.   11 and 12 for their respective functions of € 

.   , 120.5 W  
FW(€) = 3  (13) 

p   I'D     Valt) 

m 

FR(€)= j-S  (14) 

4'8p   0m733   FR(alt) 

m 

•9- 
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Table I 

Functions of € 

€ V€) FEW> € ve» FH(€) 

0.01 0.00407 0.0344 0.36 0.976 0.706 
0.02 0.00958 0.0577 0.37 1.063 0.733 
0.03 0.01597 0.0782 0.38 1. 159 0.761 
0.04 0.02310 0.0974 0.39 1.264 0..790 
0.05 0.03095 0.1157 0.40 1.380 0.820 

0.06 0.0395 0.1333 0.41 1. 509 0.852 
0.07 0.0488 0.1506 0.42 1.651 0.885 
0.08 0.0587 0. 1675 0.43 1.809 0.920 
0.09 0.0695 0. 1842 0.44 1.985 0-956 
0. 10 0.0810 0.2008 0.45 2. 181 0.994 

0. 11 0.0933 0.2173 0.46 2.400 1.033 
0. 12 0.1065 0.2338 0.47 2.642 1.075 
0. 13 0.1206 0.2503 0.48 2.915 1. 118 
0. 14 0.1357 0.2668 0.49 3.22 1. 164 
0. 15 0.1518 0.2835 0.50 3.56 1.212 

0. 16 0. 1691 0.300 0.51 3.95 1.263 
0. 17 0. 1875 0.317 0.52 4.39 1.316 
0. 18 0.2072 0.334 0.53 4.88 1.373 
0. 19 0.2283 0.351 0.54 5.44 1.432 
0.20 0.2509 0.369 0.55 6.08 1.495 

0.21 0.2751 0.387 0.56 6.80 1. 562 
0.22 0.3010 0.405 0.57 7.63 1.632 
0.23 0.329 0.423 0.58 8.58 1.707 
0.24 0.359 0.442 0.59 9.67 1.787 
0.25 0.391 0.461 0.60 10.93 1.872 

0.26 0.425 0.480 0.61 12.38 1.962 
0.27 0.463 0.500 0.62 14.07 2.058 
0.28 0. 503 0.520 0.63 16.03 2. 162 
0.29 0.546 0.541 0.64 18.33 2.272 
0.30 0.593 0.563 0.65 21.03 2.391 

0.31 0.644 0.585 0.66 24.21 2. 519 
0. 32 0.700 0.607 0.67 27.99 2.657 
0.33 0.760 0.631 0.68 32.5 2.806 
0.34 0.826 0.655 0.69 37.9 2.967 
0.35 0.898 0.680 0.70 44.3 3. 14 

-10- 
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Table I ( cont'd) 

€ Ve> FB(€) € V€) FE<«> 

0.71 52.2 3.33 0.86 1595 11.   11 
0.72 61.7 3.54 0.87 2246 12. 50 
0.73 73.4 3.77 0.88 3249 14. 19 
0.74 87.9 4.02 0.89 4850 16.28 
0.75 105.9 4.30 0.90 7513 18.91 

0.76 128.4 4.60 0.91 12,180 22.29 
0.77 157.1 4.95 0.92 20,870 26.78 
0.78 193.7 5.33 0.93 38,400 32.9 
0.79 241. 1 5.75 0.94 77,500 41.8 
0.80 303 6.24 0.95 117, 500 55.2 

0.81 385 6.78 0.96 488,700 77.7 
0.82 496 7.41 0.97 1,800,000 120.4 
0.83 648 8.13 0.98 11,240,000 222.5 
0.84 859 8.97 0.99 256,600,000 633.3 
0.85 1159 9.95 

11- 
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Table II 

Functions of Altitude 

Alt. Alt. 

(1000's (1000's 

of F   (alt) 
W 

FR(alt) of Valt) FR(alt) 

feet) feet) 

1 1.015 1.005 31 1.79 1.21 

2 1.03 1.01 32 1.83 1.22 

3 1.05 1.02 33 1.87 1.23 
4 1.07 1.02 34 1.92 1.24 
5 1.09 1.03 35 1.96 1.25 

6 1.11 1.03 36 2.03 1.27 
7 1. 13 1.04 37 2. 11 1.28 
8 1.14 1.05 38 2. 19 1.30 

9 1. 16 1.05 39 2.28 1.32 

10 1. 18 1.06 40 2.37 1.33 

11 1.20 1.06 41 2.46 1.35 

12 1.22 1.07 42 2. 55 1.37 

13 1.25 1.08 43 2.65 1.38 
14 1.27 1.08 44 2.76 1.40 
15 1.29 1.09 45 2.86 1.42 

16 1.32 1. 10 46 2.97 1.44 
17 1.34 1. 10 47 3.09 1.46 

18 1.37 1.11 48 3.21 1.48 
19 1.39 1. 12 49 3.34 1.50 
20 1.42 1. 13 50 3.47 1. 51 

21 1.45 1. 13 51 3.61 1. 53 
22 1.48 1.14 52 3.75 1. 55 
23 1.51 1. 15 53 3.90 1.58 
24 1.54 1. 16 54 4.07 1.60 
25 1. 57 1. 16 55 4.23 1.62 

26 1.61 1.17 56 4.40 1.64 
27 1.64 1. 18 57 4. 57 1.66 
28 1.68 1. 19 58 4.74 1.68 
29 1.72 1.20 59 4.93 1.70 
30 1.75 1.21 60 5. 12 1.72 

12- 
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VI.    SCALING BLAST DAMAGE 

Equation 7 was derived in Section V by inserting € in an equation 

dependent solely on the characteristics of the explosive.   It can also be de- 

rived from Eqs.  8 and 9. 

Scaling computations start with a target which is defined by two 

parameters, P     and I    .    These values must be known before the scaling 
m m 

equations can be used.    The methods of determining these values are dis- 

cussed at some length in Appendix J when P     and I     are known for any 

target and the altitude is specified.    Equation 13 gives a value of F    (£) 

for any weight, W, and Table I gives the corresponding € value. 

The W and the corresponding € inserted in Eq.  7 give the lethal 

radius at which the charge, W,  can kill the specified target at the specified 

altitude.    This process may be repeated indefinitely with many different 

values of W,  and accurate lethal distances can be computed by simply find- 

ing the € value that goes with each W for the specified target and altitude. 

The use of Eq.  7 is a short cut in some cases; normally the known 

parameters are substituted in Eqs.  8 or 11 to find the values of F    (€) and 

€ ,    These,  in turn,  give F   (€) from Eq.   10 and allow R to be determined 

from Eqs.  9 or 12 for the specific target situation. 

13- 



Th» Johns Hopkini Univ»r»ity 

Silver Spring, M«ryl«nd 

VII.    A GENERAL R-W CURVE AND A SCALING NOMOGRAM 

When the values of the functions of €  listed in Table I are plotted 

in terms of log F   (€) vs log F    (€), they present a general parametric R W 
equation. The value of such a graph becomes apparent when it is realized, 

from the scaling equations, that for any specific explosive, target, and al- 

titude, R and W are simple linear functions of F_.(6) and FTrr(£) respec- 
R W 

tively.   If F   (€) vs F,,,(€) is plotted on a transparent overlay,  it can then 

be oriented with respect to a logarithmic diagram whose ordinate is dis- 

tance (in feet) and whose abscissa is charge weight (in pounds).    The con- 

stants which relate R to F0(£) and W to FTT.(€) determine the vertical and 
rt W 

horizontal displacements, respectively, of the overlay with respect to the 

distance-weight diagram. 

A nomogram based on this principle was constructed at the Applied 

Physics Laboratory in 1954 (Ref.   2)..    At that time it was classified con- 

fidential because data on specific targets were displayed on it as a guide 

for positioning the graph with respect to the scales.    The principle has 

subsequently been applied to a somewhat more elaborate "Nomograph Cal- 

culator" covered by U. S.   Patent No.  2,991,934,  July 11,   1961 (unclassified), 

assigned by the author to the United States of America as represented by 

the Secretary of the Navy. 

When both the graph and the scales are extended over many cycles, 

any fixed orientation of the component parts permits the reading of concur- 

rent distances and weights over the entire available range of the scales. 

These concurrent values apply to the kind of explosive, the nature of the 

target, and the altitude for which the "setting" is made.    The nomogram 

is merely a quick and convenient way of graphically performing the same 

analytic processes which are used in computing these relationships by 

means of the equations.    The vital role which the dimensionless parameter, 

€, plays is clearly evident in both the analytic and graphic solutions of the 

scaling relationships. 

-14- 
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VIU.    COMMENTS AND CONCLUSIONS 

This analysis has avoided the necessity of treating the full range of 

shock wave phenomena and particularly the regions in which parameter re- 

lationships are far too complicated to fall into any simple pattern.    By lim- 

iting its scope to the region in which parameter relationships can be expressed 

in simple analytic terms it fills a long-felt need for a direct and easy method 

of scaling blast effects on specific targets. 

Fortunately a majority of targets of interest will fall well within 

the applicable range of the equations derived in this report.    As soon as the 

parameters which define a target are known,  it is a simple matter to deter- 

mine the corresponding scaled distances and ascertain that they are within 

the applicable range of the equations. 

The preceding text gives a brief indication of how the scaling param- 

eter, € , can be used to convert a function describing the characteristics of 

a shock wave produced by detonation of an explosive charge into a general 

equation for scaling blast interactions with targets.    This use is but one of 

a multiplicity of uses to which this parameter may be put in simplifying 

the analysis of blast effects.    In addition to defining shock wave and target 

characteristics,  and giving details of derivations, the appendices which fol- 

low exemplify how the scaling parameter,  € , and equations derived there- 

from can be used to illuminate the many obscure facets of the air-blast prob- 

lem.    The appendices also discuss the determination of the target parameters 

and attempt to answer various questions which may arise in the minds of 

readers. 

As a final word, since the phenomena to be scaled are interactions 

between shock waves and targets, the parameter, € , which relates a com- 

mon characteristic of the two,  is the most useful analytic tool that can be 

found for scaling these effects.    Everyone who has to deal with blast damage 

will benefit by becoming acquainted with the scaling parameter, € ,  and by 

using it freely in computations of blast effects. 
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APPENDIX A * 

Definition of Shock Wave and Target Parameters 

This report deals with the interactions between shock waves pro- 

duced by detonation of explosives and targets which are damaged or de- 

stroyed by their action. 

In order to study these interactions, it is necessary to describe 

both the shock waves and the targets by parameters whose specific nu- 

merical values will uniquely identify their essential characteristics in 

terms which can be manipulated mathematically.    , 

The definitions and symbols in this appendix constitute the founda- 

tion for all the derivations and discussions which follow. 

1. The Nature of Shock Waves 

A shock wave is a rapidly moving disturbance in air characterized 

by an abrupt rise in air pressure (at some fixed point in its path; after this 

critical point the air pressure gradually declines until it reaches the original 

ambient pressure.    The behavior of a typical shock wave is shown in Fig. A-l. 

Fig. A - 1     PRESSURE-TIME CURVE 
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The shock wave characteristics,  at any point in its path,  may be 

defined by the following parameters: 

P = peak overpressure (psi) 

= the difference between the absolute peak pressure and the original 

ambient pressure (see Fig. A-l). 

T = time (msecs) during which the pressure of the shock wave is con- 

tinuously greater than the ambient pressure.    T is called the dura- 

tion of the positive impulse, 

t = time (msecs) measured from the instant at which the initial pres- 

sure rise begins, 

p = overpressure of the shock wave (above ambient pressure) at an 

time, t. 

I = total positive impulse (psi* msecs) up to time,  T,  i.e., 

? I =  /   pdt (A-l) 

•^o 

This is sometimes termed the first positive impulse,  since there 

often is a second positive impulse beyond T.    The pressure fluctuations be- 

yond T are not important enough to warrant consideration in this analysis. 

Values of P are usually given in terms of the "side-on" or "free- 

air" overpressures and the impulse taken assumes that nothing obstructs 

the free motion of the shock wave.    Because this report deals with the inter- 

actions between shock waves and targets, we are not concerned with free- 

air conditions but will deal with the overpressures and impulses which act 

on a solid surface normal to the shock wave motion.    For this reason the 

pressures and impulses and all other Shockwave parameters which are de- 

fined above and used in subsequent derivations are face-on or normally 

reflected peak overpressures,  impulses,  etc.    The reasons for using these 

values will be discussed more fully in'$ubsec.  2 of this appendix (Charac- 

teristics of a Target). 
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Shock Wave Characteristic s - - General. --Shock wave characteristics 

are functions of such factors as the distance from the detonation, the nature 

and size of the charge, and the pressure and temperature of the ambient 

atmosphere through which they propagate.    These factors are defined as 

follows: 

W = weight (lb) of the explosive charge. 

R = the distance (ft) from the center of detonation to the point at 

which the shock wave properties are being evaluated. 

Z = scaled distance,  defined by the equations 

z = -77T (A"2) 

w1/d 

p = ambient air pressure (atm),   i.e., p = 1 at sea level (14.7 psi). 

At higher altitudes,  p < 1. 

c    = speed of sound,  sea level,  300°K. o       c 

c = speed of sound at any altitude and ambient temperature. 

The absolute values of c and c    are not important since only their ratio, 

c/c   ,  occurs in the equations. 

Shock Wave Characteristics--50/ 50 Pentolite. --The relationships 

between peak overpressures, positive impulses,  scaled distances,  and at- 

mospheric environments differ from one explosive to another.    Since 50/50 

Pentolite is a military high explosive which gives consistently reproducible 

results,  it is often used as a standard explosive for evaluating the effects 

of air blasts.    Furthermore it is an explosive for which abundant and accur- 

ate data are available.    For these reasons this analysis has been built around 

the characteristics of 50/50 Pentolite given by the data of Ref.  3. 

Fortunately the interactions with which this report is concerned oc- 

cur within a range of scaled distances in which parameter relationships be- 

have consistently and the Sachs Scaling Laws appear to be valid.    In accord- 

ance with these scaling laws, the data for normally reflected peak 
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overpressures for 50/50 Pentolite are shown as a function of the scaled 

distance in Fig. A-2.    The straight line fitted to these data points is given 

by 

P   [zP
1/3]3 

In similar fashion the data for normally reflected positive impulses 

for 50/50 Pentolite are shown as a function of the scaled distance in Fig. A-3. 

The straight line fitted to these data points is given by 

I 220 
-_,l/3    2/3      ..      1/3_1.20 
W        p [Z ] 

P 

A-4) 

These two analytically tractable equations, Eqs. A-3 and A-4, define the 

characteristics of 50/50 Pentolite over the range of scaled distances with 

which this analysis is concerned.    The anomalies which occur at scaled 

distances less than two or greater than ten or twelve have no bearing on the 

accuracy and validity of these equations since they lie outside the range of 

parameters under consideration. 

Equation A-4 which is fitted to empirical data obtained at sea level 

(p = 1.00) indicates the qualitative effect of p on the impulse.    At higher al- 

titudes the temperature changes will affect the speed of sound and require a 

quantitative adjustment.    These changes, which are independent of p,  are ac- 

counted for by the independent parameter, c/c   , which is included in Eq. A-4 

in the following manner: 

,„l/3    2/3      r7   1/3,1.20 W        p [Zp       ] 

220 (A-5) 
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Equation A-2 may be used to eliminate Z from Eqs. A-3 and A-5, 

giving 
p . ^^- (A6) 

^ ,     220W°-733
D°-267 

rc.\Ri.2o <A-'» 

ft 

Further analytical treatment converts these equations into: 

010083/—^   I3 

ffi 

P"       p 
and 4.8,-^U 

W =        1.20    0.80 (A"8) 

ft) 
R =    0.733    0.267 (A-9) 

P p 

These two equations are the first step in the derivation of a set of com- 

pletely general parametric equations for W and R.    The second step will 

be taken when more general expressions for P and I,  derived in Appendix C, 

are used to eliminate P and I from Eqs. A-8 and A-9 in Appendix G. 

The characteristics of Shockwaves produced by 50/50 Pentolite are 

fully defined by Eqs. A-6 and A-7; weights and distances have been related 

to these characteristics by Eqs. A-8 and A-9. Similar equations for other 

explosives can be derived in the same manner. 

2. Characteristics of a Target 

Aircraft structures, which are typical targets for air blast, consist 

of superficial coverings of comparatively thin material supported by rather 

complex assemblies of l'ibs,  styffo.rdng webs,  and braces of various sorts 

which are attached to the basjrfnimework.    Target damage severe enough 
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to constitute a kill consists of substantial crumpling and distortion of the 

surface in the course of which it moves a considerable distance against the 

resisting forces offered by the structural elements which yield without 

breaking.    The behavior of a target cannot be fully simulated, but a remark- 

ably useful mathematical model can be defined in simple terms.    Unit pres- 

sures below a certain minimum value will have no effect whatever on the 

target regardless of how long they are maintained.   However, at some 

critical unit pressure the supporting structure will begin to yield, and if 

this pressure is maintained, the distortion will increase until the target is 

totally destroyed. 

Therefore,  it is possible to define a fundamental parameter repre- 

senting target toughness as follows: 

P     = the minimum unit pressure (psi) on the target surface which 
m 

will initiate destructive distortion and which,  if continued 

long enough, will cause target destruction. 

The mathematical model used in this analysis assumes a constant value of 

P     throughout the period of distortion up to the point of destruction.    Many 

real targets approximate this behavior closely enough to consider P     a 

statistically significant measure of target toughness. 

Other necessary parameters are: 

m = mass per unit area (lb/g) of target material which is moved 

relative to its basic supporting structure during the course of 

destructive deformation. 

S    = total displacement (ft) of the target skin relative to the basic 

structure which will constitute a target kill. 
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E    = total work done in producing this displacement which kills the 

target. 

These are not independent parameters since 

E    = S    P (A-10) o       o    m 

These parameters will be eliminated from the final equations. 

Although the behavior of real targets is not quite as simple as this 

model indicates,  it is necessary to describe target behavior in terms which 

can be treated mathematically in the ensuing study of shock wave target in- 

teractions. 

k 
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APPENDIX B 

The Universal Scaling Parameter 

A scaling parameter used in describing or evaluating the interactions 

between a shock wave and a target to which it imparts energy should be a 

dimensionless ratio of some physical characteristic common to both.    The 

only such characteristic is a unit pressure.    The significant pressure for 

the target is the minimum unit pressure, P   , i. e., the pressure which 

causes target damage; for the shock wave it is the maximum unit pressure, 

P, which it can exert on the target.    Hence,  a universal scaling parameter, 

is defined by the equation 
P 

€°-j* (B-l) 

No target damage can occur if  €  is greater than 1. 00 and no real 

target,  in which there is any finite resistance to deformation, can have an 

€ value of zero.    The entire gamut of shock wave target combinations, 

which produce target kills,  is covered by the open interval 0 < 6 <  1. 

It will be shown that small values of € are associated with small 

charges of explosives which kill the target at relatively short distances 

from the point of detonation, and that large values of € can exist only with 

very large charges such as those of nuclear weapons whose yield is meas- 

ured in kilotons, or even megatons, of equivalent TNT. 

For a specific target in a specific atmospheric environment,  each 

value of € is associated with a unique combination of charge weight and 

lethal distance.   All possible combinations of charge weight and corres- 

ponding lethal distance, which result in a kill in this environment, are as- 

sociated with specific values of 6 between the limits of zero and one. 
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APPENDIX C 

Interaction Between a Shock Wave and a Target 

This appendix treats the effects of shock waves on a target model. 

The target is defined by two parameters to which numerical values can be 

assigned.    The target model accurately simulates the behavior of many real 

targets whose destruction by blast has been observed under test conditions. 

This target is assumed to have a relatively light superficial covering (simi- 

lar to the skin of an airplane) supported by ribs, stiffeners, etc., anchoring 

the skin to the more massive components of the basic structure.   Associated 

with a target is a minimum pressure exerted on its surface below which 

threshold there will be no damage.   It is assumed that when this critical 

minimum pressure is reached, the supporting elements will begin to yield 

and permanent deformation will be initiated.    It is further assumed that as 

long as deformation (consisting of displacement of the surface relative to the 

more massive elements of the basic structure) continues,  it will be resisted 

by a constant force per unit area of the same magnitude as the unit pressure 

which initiated destructive deformation.    Every target will have to be deformed 

by some definite minimum displacement of the surface relative to the basic 

structure before its usefulness is destroyed,  i. e.,  a certain minimum tar- 

get distortion, or a certain minimum work per unit,  must be expended on 

the target to destroy it. 

It is necessary then to derive functions for the total work per unit 

area which any given shock wave can -impart to the target,  and to- specify 

the characteristics of the shock wave which can impart just enough work to 

achieve target destruction. 
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The normally reflected peak overpressures and the normally reflected 

positive impulses which are used in this study were derived in Appendix A 

for 50/50 Pentolite.    Values for other explosives may be found in a similar 

manner.    The justification for the use of these pressures and impulses to 

specify the required shock wave will be found in Appendix I. 

It is now necessary to have an equation for the pressure-time profile 

of a shock wave acting against a target surface.    This equation will give 

values of the overpressure as a function of time (t < T). 

The linear diagram in Fig. C-la shows 

P = P(I-^) (C-l) 

where 

t = time from the first rise in pressure 

p = the overpressure at time,  t (0 < t < T). 

Figure C-lb gives 

p = p(l-^e'T (C-2) 

It can be shown that a completely self-consistent set of scaling equa- 

tions can be derived from either of these pressure-time profiles and that the 

same relationships between charge weights and corresponding lethal distances 

are derivable from either equation.    The linear relationship was used in 

Refs.   2, 4, 5,   6, .and    7    with satisfactorily consistent results.    However, 

self-consistency within a mathematical model is not sufficient to assure that 

values of £ ,  as well as the values of such target parameters as P    ,  faith- m 
fully portray realistic interaction   characteristics.    The model will be com- 

parable to a real target only if the pressure-time function used to derive 

scaling equations accurately reflects actual shock wave characteristics. 
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The pressure-time relationships shown in Fig.  C-l differ from one 

another in the relationship of I to PT.    For the linear curve (Fig. C-la), 

the ratio is 1/2.    For the exponential curve of Fig. C-lb,  it is l/e or 0. 368, 

The data for 50/50 Pentolite (Ref.  3) show that the ratio of I to PT is not 

constant but varies at a moderate rate with scaled distance.    Furthermore, 

it was found that the ratio l/e of the exponential function (Eq. C-2) agrees 

with the 50/50 Pentolite data in the midrange of scaled distances used in 

this analysis.    Since an accurate mathematical formulation of the  actual 

pressure-time profile of a shock wave produced by 50/50 Pentolite over the 

full range of scaled distances has not yet been found, the exponential func- 

tion (see Eq. C-2) is the best representation within the range of scaled dis- 

tances covered by this analysis. 

The mathematical parameters used in this analysis to define the 

Shockwave and target characteristics are as follows: 

P = normally reflected peak overpressure of the shock wave,  also 

= the maximum unit pressure (psi) acting on the target, 

t = time (msecs) measured from the instant at which the shock 

wave first reaches the target. 

T = total duration (msecs) of the positive impulse, 

p = unit pressure (psi) of shock wave,  also 

= unit pressure (psi) acting on target at time,  t, where 0 < t < T. 

i = total positive impulse (psi-msecs) up to time,  t (for t <. T). 

I = normally reflected positive impulse (psi« msecs) of the shock 

wave up to time,   T. 

P     = the minimum unit pressure (psi) which can cause any target 

damage, also 

= the unit pressure by which the target resists deformation 
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The pressure-time relationships shown in Fig. C-l differ from one 

another in the relationship of I to PT.    For the linear curve (Fig. C-la), 

the ratio is 1/2.    For the exponential curve of Fig. C-lb,  it is l/e or 0. 368. 

The data for 50/50 Pentolite (Ref.  3) show that the ratio of I to PT is not 

constant but varies at a moderate rate with scaled distance.    Furthermore, 

it was found that the ratio l/e of the exponential function (Eq. C-2) agrees 

with the 50/50 Pentolite data in the midrange of scaled distances used in 

this analysis.   Since an accurate mathematical formulation of the actual 

pressure-time profile of a Shockwave produced by 50/50 Pentolite over the 

full range of scaled distances has not yet been found, the exponential func- 

tion (see Eq.  C-2) is the best representation within the range of scaled dis- 

tances covered by this analysis. 

The mathematical parameters used in this analysis to define the 

Shockwave and target characteristics are as follows: 

P = normally reflected peak overpressure of the shock wave,  also 

= the maximum unit pressure (psi) acting on the target, 

t = time (msecs) measured from the instant at which the shock 

wave first reaches the target. 

T = total duration (msecs) of the positive impulse, 

p = unit pressure (psi) of Shockwave,  also 

= unit pressure (psi) acting on target at time,  t, where 0 < t < T. 

i = total positive impulse (psi-msecs) up to time, t (for t s T). 

I = normally reflected positive impulse (psi. msecs) of the shock 

wave up to time,   T. 

P     = the minimum unit pressure (psi) which can cause any target 

damage,  also 

= the unit pressure by which the target resists deformation 
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m = mass per unit area (lb/g) of target material which is moved rela- 

tive to the basic target structure when destructive deformation 

takes place.    (This includes unit area of skin plus some additional 

fraction of the supporting elements which are distorted and moved.) 

F = net accelerating force (lb) per unit area at time,  t,  acting on 

mass,  m.    May be positive or negative. 

S = distance (ft) at time, t, that the mass, m, has moved from its 

original position. 

S    = minimum value of S which will cause target destruction, o & 

E    = total energy per unit area espended on target in displacing the 

surface a distance,  S  ,  against a resistance,  P    . o m 

All of the target parameters except P     will be replaced in the final scaling 

equation by a parameter,  I    , which will be defined at the conclusion of the 

derivation. 

On a pressure-time diagram,  impulses are represented by areas. 

Figures C-2 and C-3 will show that areas above the target resistance line, 

P    ,  (designated by 1) are positive impulses which accelerate the mass,  m, 

to a maximum velocity at time, t    , and areas below P     (designated by 2) J m m 
are negative impulses which bring m to rest at some later time, t  .    Ob- 

viously the two impulses must be equal. 

In setting up equations for the acceleration of the mass,  m,  one notes 

that between zero and T there is a constantly varying acceleration for which 

the pressure-time equation (Eq.  C-2) gives an analytical value,  but beyond 

the time,  T, the negative acceleration has a constant value. 

Interactions which are completed within the period (T) of the positive 

impulse can be treated by a single set of equations and will be designated 

Case I (see Fig.  C-2).    Interactions which continue beyond the end of the 
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positive impulse will require two sets of equations, one with a constantly 

varying acceleration (up to time,  T),  and one with a constant acceleration 

(beyond time,   T).    This will be called Case II (see Fig. C-3). 

Equations will be set up which will apply over the entire range from 

zero to T.    It will then be necessary to determine where Case I ends and 

Case II begins. 

The accelerating force is given by 

and hence 

F = p - P (C-3) m 

,2        ..      p - P 
*f--S--—JZ (C-4) 
dt2 

Using Eq.  C-2 and the definition of € , Eq.  C-4 becomes 

t t 

m Tm m 

Integrating Eq. C-5 with respect to t gives: 
t t t 

PTe  T + Pte_J + PTe_I_€Pt (c_6) 
mm mm 

which reduces to: t 
T 

S = —  -S" (C-7) m m 

An integration of Eq. C-7 with respect to t yields: 

t t 
T 2        T 9 9 

s = _PXle_i_PT^_!.^+PT_ (c_8) 
m m 2m m 
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By definition , 
t 

pdt = Pte    T (C-9) 

o 
and 

PT 
I-— (C-10) e 

Equations C-5 through C-10 are valid within the time range from 

zero to T and will be used in the subsequent analysis. 

Case I. --It may be seen in Fig. C-2 that 

t   «s T 
o 

Since areas 1 and 2 of this figure are equal and the velocity of mass,  m,  is 

zero at t  , the rectangular area 

o 

Substituting Eq. C-9 in Eq. C-ll gives 

€Pt    = i (C-ll) 
;o      t 

t 
p 

€Pt     = Pt  e    T (C-12) 
o o 

which reduces to 
o 

or 

When 

€= e   T (C-13) 

t    = - T ln€ (C-14) 
o 

t    = T,       then      In 6 = - 1        and     €   = - (C-15) 
o e 
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This value of € represents the dividing point between Case I and Case II. 

It may be seen from Figs. C-2 and C-3 that the applicable ranges of values 

of €   for these two cases are: 

and 

CaSeI: -s; € <1 (C-16) 
e 

Case II: 0 < £   s- (C-17) 
e 

In Case I at time..t. , ,   Eq.  C-8 becomes 

1° t 

t m m 2m m 
o 

When the value of t  ,  given by Eq. C-14,  is substituted in Eq. C-18 

PT 9 
Sx    = ^r~[2 € In £- 2 6-   6In   € + 2] (C-19) t 2m 

o 

Equation C-19 gives a general relationship between the distance the 

target surface has moved, S.   ,  and the parameters characteristic of a shock 
xo 

wave,  PT and T.    This relationship can be made specific by replacing S+ 
Lo 

with the minimum distance, S , which the surface must move to ensure 
°     2 

target destruction.    The term PT   in Eq. C-19 then will describe the shock 

wave which can just destroy the target characterized by S.    = S  . 
xo 

Since 

E    = P     S    =  6PS (C-20) 
o       m   o o 

then 
2   2 

E    = P
0
T €   [2 €ln£  - 26 - £ln   €  + 2] (C-21) 

o        <sm 
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Using Eq. C-10,  Eq.  C-21 becomes 

2   2 
^e € [2 € In €  - 2 € -  € ln2£ + 2] 

o       2m 

which may be rewritten as 

2E    m = I2e2€ [2 - € - € (1 - ln€)2] 

(C-22) 

(C-23) 

Thus for Case I (€ > -): 
e 

~\/2E 
'      o 

m 

e£l/2 [2 - € -  6(1 - ln€)2]l/2 
(C-24) 

This expression for the impulse which can destroy a target will be left in 

this form until a similar expression has been derived for Case II. 

Case II. --Up to time, T,  the distance which the mass,  m,  has 

is found by calculating S 

t = T.    This equation reduces to: 

moved is found by calculating S     rather than S from Eq.  C-8 by putting 

_ Z3L 
*T "'   2m [-H C-25) 

At time,  T,  the mass,  m,  has a velocity found by substituting T for 

t in Eq.  C-7,  i. e., 
. PT     €PT 

T     me        m 

or 
PT 
m 

1 - eC 

(C-26) 

(C-27) 
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After time    T, the mass, m, is subjected to a constant negative ac- 
« 

celeration which reduces its velocity from S    at time,  T, to zero at time. 

t .    The distance moved is then: o 

S(t-T) = 2ST(to-'T) 

o 
(C-28) 

which, with Eq. C-27,  becomes 

(t  -T) 
o 

firiii*i<t -T) 2m L      e     Jo (C-29) 

In Fig. C-3, it may be seen that 

rect. € P t = I + area 2 - area 1 
o 

(C-30) 

But since the velocity of mass,  m,  is zero at t , areas 1 and 2 must be 

equal.    Equation C-30 then becomes 

P t    - I o (C-31) 

Combining Eqs. C-31 and C-10 gives 

€P t PT 
o      e (C-32) 

or 

o     e€ 
(C-33) 

and,  hence 

t    - T = T 
o 

"l - e€~| 
_    e€    J (C-34) 

Substituting this value for (t    - T) in Eq. C-29 gives: 

_ PT 
*(t  -T) "    2m o 

(i-ee)' 

e26 
(C-35) 

•39- 



Th« Johns Hopkins University 
APPLIIO PNVtlM LA«0«*TO«v 

Silvor Spring, Maryland 

The total distance moved is found from Eqs. C-25 and C-35 to be: 

't        2m 
o 

e 2   ^ e   6 
(C-36) 

This general relationship between a distance (S    ) moved by the target sur- 

2 ° 
face and the characteristics (P and T  ) of the shock wave which produces the 

displacement may be made specific by substituting S   for S    .    This equation 
o 

2 
will then relate S    to the PT    of the specific shock wave causing this dis- 

placement and consequent destruction of the target.    The energy equation 

for Case II which is equivalent to Eq.  C-22 in Case I is given by 

^2   2 
E    . P  T  € 

o 2m 

which with Eq.  C-10 gives 

E 
c 

which reduces to 

2   2 
I e € 

2m 

e2€ 

e 2 «r e   € 

(C-37) 

(C-38) 

or 

E    =~- [1 + (2e2 - 6e)€] 
o     2m 

(C-39) 

E 
o      2m 

[1 - 1.5315 €  ] (C-40) 

Thus for Case II ( € < -): 
e 

m 

1. 53156 
(C-41) 
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For finite values of  € the denominator of Eq. C-41 is less than one 

and I is greater than ~\/2E m, but as €  -» 0, I -~\J2E m. 

It may be noted that ~\j 2E m has the dimension of impulse per unit 

area.    Since I approaches "\l2Em as a lower limit, we may now define a 

more general target parameter: 

I     = the minimum impulse (i. e., the lower limit of the impulse) 

which can destroy a target of unit mass, m,  requiring E 

to complete its destruction,  i. e., 

I     = -\/2E  m (C-42) 
m       V      o 

Equation C-42 may be substituted in Eqs. C-24 and C-41 to give: 

For Case I (€  ;> -): 
e 

I 
m 

For Case II ( € ^ -): 
e 

e€1/2[2 -€-€(! -in €)2]1/2 

I 
m 

(C-43) 

"^ 1 - 1.53156 

The use of these equations will be discussed in succeeding appendices. 

(C-44) 
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APPENDIX   D 

Parametric Equations for a General P-I Curve 

Equations C-43 and C-44 each cover a different part of the complete 

spectrum of values of € between zero and one.    These equations may be 

used to compute completely general pressure-impulse curves along which 

every point relates a peak overpressure to a positive impulse.    These are 

the overpressures and impulses related to a shock wave which is capable of 

destroying a given target.    The scaling parameter,   € ,  represents the peak 

overpressure, P.   In order to make the curve completely general the co- 

ordinates are expressed as dimensionless ratios,  i. e., 

P   _ 1 
P      ' € m 

(Eq.  B-l) 

For Case I ( € * *-): e 

I 
1 J-l2 ro       <r       ar/1       i    z:\2-il/2 m     e€        [2 -€-6(1- In 6) 

(Eq.  C-43) 

For Case II ( € <; -): e 

lm   ~\jl - 1.53156 
(Eq.  C-44) 

Values of these functions in terms of  € are given in the table on the fol- 

lowing page. 
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Table II] 

Coordinates of a General Pressure-Impuls e Curve 

€ 
P 

P 
m 

I 
I 
m 

€ 
P 

P 
m 

I_ 
I 
m 

0.01 100.00 1.008 0.31 3.23 1.380 
0.02 50.00 1.016 0.32 3. 13 1.400 
0.03 33.33 1.024 0.33 3.03 1.422 
0.04 25.00 1.032 0.34 2.94 1.444 
0.05 20.00 1.041 0.35 2.86 1.468 

0.06 16.67 1.049 0.36 2.78 1.493 
0.07 14.29 1.058 0.37 2.70 1.519 
0.08 12.50 1.067 0.38 2.63 1.547 
0.09 11.11 1.077 0.39 2. 56 1.576 
0.10 10.00 1.087 0.40 2. 50 1.606 

0.11 9.09 1.097 0.41 2.44 1.638 
0.12 8.33 1.107 0.42 2.38 1.672 
0.13 7.69 1.117 0.43 2.33 1.708 
0.14 7.14 1. 128 0.44 2.27 1.745 
0. 15 6.67 1.139 0.45 2.22 1.785 

0. 16 6.25 1. 151 0.46 2. 17 1.826 
0. 17 5.88 1. 163 0.47 2. 13 1.870 
0. 18 5.56 1.175 0.48 2.08 1.916 
0. 19 5.26 1. 188 0.49 2.04 1.964 
0.20 5.00 1.201 0.50 2.00 2.016 

0.21 4.76 1.214 0. 51 1.961 2.070 
0.22 4.55 1.228 0. 52 1.923 2. 127 
0.23 4.35 1.242 0.53 1.887 2. 187 
0.24 4. 17 1.257 0.54 1.852 2.250 
0.25 4.00 1.273 0.55 1.818 2.318 

0.26 3.85 1.289 0.56 1.786 2.389 
0.27 3.70 1.306 0.57 1.754 2.465 
0.28 3.57 1.323 0.58 1.724 2.545 
0.29 3.45 1.341 0.59 1.695 2. 631 
0.30 3.33 1.360 0.60 1.667 2.722 
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Table II (cont'd) 

€ 
P 

P m I 
m 

€ P 
P 

m 

I 
I 
m 

0.61 •-'.. 1.639 2.819 0.81 1.235 7.918 
0.62 1.613 2.923 0.82 1.220 8.571 
0.63 1.587 3.033 0.83 1.205 9.322 
0.64 1.563 3. 152 0.84 1.190 10. 19 
0.65 1.538 3,279 0.85 1. 176 11.21 

0.66 1.515 3.416 0.86 1. 163 12.41 
0.67 1.493 3.564 0.87 1. 149 13.85 
0.68 1.471 3.723 0.88 1. 136 15.59 
0.69 1.449 3.895 0.89 1. 124 17.73 
0.70 1.429 4.082 0.90 1. Ill 20.43 

0.71 1.408 4.285 0/91 1.099 23.89 
0.72 .   1.389 4.507 0.92 1.087 28.47 
0.73 1.370 4.749 0.93 1.075 34.73 
0.74 1.351 5.015 0.94 1.064 43.70 
0.75 1.333 5.307 0.95 1.053 57.37 

0.76 1.316 5.631 0.96 1.042 80.06 
0.77 1.299 5.990 0.97 1.031 123. 10 
0.78 1.282 6.391 0.98 1.020 225.85 
0.79 1.266 6.839 0.99 1.010 637.99 
0.80 1.250 7.345 

Figure D-l is a plot of the data given in Table III.   It relates the 

shock wave pressures and impulses to the minimum pressures and impulses 

which can damage a given target.    Thus, a single curve is the locus of all 

possible P-I combinations which can just destroy (without overkilling) any- 

given target characterized by P     and I    . t. t> J     m m 
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APPENDIX   E 

Efficiency of Energy Transfer 

Whenever the surface of a target on which a shock wave acts is per- 

manently displaced; some energy is imparted to the target.    The amount of 

energy per unit area transferred from the shock wave to the target depends 

on two parameters:   the mass per unit area of target which is moved, and 

the scaling parameter, € . 

Target with 6=0. —The maximum energy per unit area is imparted 

to a target when it offers no resistance to the shock wave (i. e,, when € - 0). 

This does not represent any real target but is introduced solely for the pur- 

pose of deriving an expression for the maximum energy transfer per unit 

area.    The target, for the purposes of this first derivation, consists of a 

plate of mass,  m, per unit area,  originally stationary with respect to the 

ambient atmosphere but free to accelerate under the action of the shock wave 

which is not opposed by any other external force. 

All of the energy imparted to the mass,  m, becomes kinetic energy 

and imparts a velocity which is assumed to be constant.    One further assump- 

tion is necessary for the following derivation:   the mass, m,  is large enough, 

and its final velocity small enough to make a relatively unimportant reduction 

in the shock wave pressure on the target.    This criterion substantiates one 

of the basic assumptions of this study:   the shock wave exerts its pressure 

on a non-moving target. 

Figure E-l shows the pressure-time relationship for a shock wave of 

unspecified shape whose equation is: 

p = F(t) (E-l) 

and hence 
T 

(E-2) 
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Fig. E-l      PRESSURE-TIME RELATIONSHIP FOR 6= 0 

Since there is no resistance to the target motion other than the inertia of 

its mass, m,  it follows that 

F(t) 
m 

(E-3) 

The acceleration continues for the duration of the positive impulse and hence 

the velocity at time   T,   is 

T 

S     = —    / F(t) dt T     m 
(E-4) 

which may by Eq. E-2 be reduced to 

T     m 
(E-5) 

If E     is defined as the kinetic energy imparted to mass,  m, then 
m 

Em = imV (E-6) 

2m 
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Two conclusions can be drawn from this derivation: 

1. The effectiveness of the shock wave is dependent only on the value 

of its positive impulse which is not affected by the shape of the pres- 

sure-time curve. 

2. The effective energy of the shock wave varies inversely as the mass 

per unit area, ra, of the target. 

These conclusions are valid for any target which is free to move without op- 

position from any external force.   All energy imparted to the target is 
2 

kinetic energy.    It will be shown that I   /2m is the maximum energy which 

the shock-wave can impart to a unit area of any target, and that when € 

has a finite value (between zero and one) the actual energy transferred is 
2 . 

always less than I  /2m. 

Target with € ^ l/e (Case I). --In the case illustrated by Fig. E-2 

•where 
€*± 

it was shown in Appendix C that 

t    = -T ln€        (Eq. C-14) 
o 

and hence 

£P t    = o 

but since 

€PTln€      (E-7) 

I = PTe"1 (E-8) 

Eq. E-7 may be written as 

€Pt 

IP 

HI 

o 
1 ll ^1 m 

1                *• _ 
•« 

I 
0 

0 

t •* » 111 
L 0. 

ll 1 
^^ 

• m -»- r 

( )         ,• • 
TIME,1  msec* 

o                                        T 

Fig. E-2     PRESSURE-TIME RELATIONSHIP F0R6 > !/• 

or 
I 

€Pt 

€PT In € 

PTe"1 

e 61n € 

(E-9) 

(E-10) 
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This ratio of the impulse acting on the target to the positive im- 

pulse of the shock wave has a value of one when € = l/e and t    = T, but o 
is less than one for all higher values of € , indicating that only a fraction 

of the positive impulse of the shock wave is able to act on the target in 

this range of € values. 

Target with   € <, l/e (Case II). —In the course of the derivation in 

Appendix C, it was shown that for Case II (see Fig. E-3) where 

then 

€P t    = I o 
(Eq. C-31) 

IP 

i 

III 
DC 
3 

|  1  | l^tt 
Q "06 Pm=£p j, Ul       — 

\ 

l2l 

TIME, t  msaes 

( ) »„ T •0 

Fig. E-3     PRESSURE-TIME RELATIONSHIP FOR €<   !/• 
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Here,  € P t    is the impulse acting on the target (a unit pressure, € P,  acting 

during a time, t  ) and is exactly equal to the positive impulse of the shock 

wave. 

Figure E-4 shows the fraction of the positive impulse which acts on 

the target as a function of € .    It shows that the impulse is 100 percent ef- 

fective for € <, l/e,  but the percentage drops rapidly for higher values of €. . 

The efficiency of energy transfer,  as a function of € , will be de- 

fined as the ratio of the energy imparted to a target having a finite value of 

€ to the energy which would be imparted if £ were zero. 

In Appendix C,  expressions were derived for energy per unit area in 

terms of I,  m,  and  € ,  as follows: 

1 I2 

For  €s- E = ~- [1 - 1. 5315 € ]    (Eq.  C-40) 
e 2m 

^{e2€[e-€  -€(!-!„ O2]} For  € •&- E = —< e"  € [e - €   •  € (1 -  In €  )"] >   (Eq.  C-23) 
e 2r~ 

Let ij)= —-— = efficiency of energy transfer 
r 

The above equations simplify to: 

For € ^ - i/,= [1 - 1.5315€] (E-ll) 

For  € z - ,/,= e2 € [e - € ~ € (1 - In €)2] (E-12) 

Figure E-5 shows the efficiency of the energy transfer as a function 

of € .    The efficiency is 100 percent at € = 0 and drops to 50 percent by the 

time € reaches 0. 32; at € = 0. 64,  it is reduced to 10 percent of its initial 

value. 

Figure E-6 shows the efficiency of energy transfer in terms of F   (€), 

i. e.,  of the charge weight.    It may be seen that where the latter is of the 

order of kilotons,  the efficiency is very low. 
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APPENDIX   F 

Determination of the Equivalent Bare Charge 

The remainder of this report deals with the effects of bare charges 

of explosive,  i.e., those unencumbered by casings or enclosing structures 

which could modify their effectiveness.    However, the report would not be 

complete if it failed to consider what happens when a substantial mass of 

non-explosive material surrounds the charge.    In most anti-aircraft war- 

heads the primary lethal agent is not the explosive blast but rather an addi- 

tional effect incidental to the use of high explosives whose prime function is 

to impart kinetic energy to fragments, rods, or other inert solid materials 

surrounding the charge.    Nevertheless the blast effects from such warheads 

are far from negligible; in fact they substantially augment the overall ef- 

fectiveness of the warheads.   An explosive charge encased in metal or other 

inert solid material must, of necessity,  impart some energy and momentum 

to these materials,  leaving less energy to be transferred by the shock wave 

to the target at some distance from the source.    The study of the nature and 

magnitude of the effects of such inert casings can employ the same general 

relationships that have been derived in preceding appendices. 

The usual way of expressing the effects of encasement is to determine 

the weight of an equivalent bare charge,  i. e., that weight which can just 

destroy a given target at the same distance from the detonation as the weight 

of a standard encased explosive.    In other words, the equivalent bare charge 

must do exactly the same amount of work per unit target area as does the 

standard encased charge. 

Let C = actual weight (lb) of encased charge 

KC = weight (lb) of equivalent bare charge 
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i. e.,    K = the proportionality factor relating equivalent bare charge to 

actual encased charge. 

R = distance from detonation to target (same for both cases). 

fi = weight (lb) inert casing material. 

It is assumed that when completely inert casing materials (as opposed 

to those which may react either with the explosive or the atmosphere) are 

used, both the peak overpressure and the positive impulse produced by the 

charge, C, will be lower than those associated with a bare charge. 

Let P    = peak overpressure (psi) produced by bare charge at distance, R, 

\P    = peak overpressure (psi) produced at distance, R, by an encased 

charge. 

The following equation, for work done on a unit area of target by a 

Shockwave, was derived in Appendix C: 

1 T2 

for   €  £- E = ~ [1 - I". 5315$] (Eq.  C-40) 
e 2m 

Charge weights up to the order of about a half ton  of explosive usually lie 

in this range of   € values,  and thus include charge weights pertinent to this 

study. 

The above equation shows that the target parameter,  m,  affects the 

total energy,  E; this is a fixed quantity for both the encased charge and the 

equivalent bare charge.    Total energy is affected by two other factors:   the 

impulse, I, which is exclusively a shock wave parameter, and  € , which 

is the ratio of a target parameter,  P    , to the peak overpressure of the shock 

wave.    In this analysis of the interactions between shock waves and targets, 

the equations which have been derived afford the basis for a new approach to 

the problem of determining equivalent bare charges.    It is only necessary 
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to find appropriate analytical expressions of I and   € for the encased charge 

and the equivalent bare charge.    These expressions are used in Eq. C-40, 

and the resulting energies equated. 

This analytical approach is based on the postulation that the momentum 

imparted to the inert casing material is subtracted from the total positive 

impulse which the shock wave from a bare charge could exert against the 

entire inner surface of a hollow sphere of radius,  R.    This postulation is 

made merely to simplify the analytical study; however,  it leads to some 

very interesting interpretations. 

Equation A-7, which gives the positive impulse (psi«msecs) per unit 

area,  may be rewritten as: 
0.733 

I = 22°^20 CF-U 
AR1'^0 

where 

I = normally reflected positive impulse (psi- sees/in*) 

W = weight (lb) of explosive 

R = distance (ft) from detonation to target 

A = value of a function of altitude above sea level (F   (alt),  Table II, 
K 

p.   12). 

The total normally reflected positive impulse over the entire inner surface 

of a hollow sphere of radius R is given by: 

„_o.T,0.733     0.80 
T _ 398W R .     „. 
W" A (F_2) 

Using the following definitions of M and V 

M = the momentum imparted to the weight, \u  of the inert casing 

material, and 

V = the mean velocity imparted to the casing material 
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it may be seen that 

M-^2 <F"3> 

Then Eq.  F-2 may be written: 

X    =398C°-73V-8°,^ 
C A 32.2 K        ' 

398K0-733C°'733R0-80 

XCK = A (F"5) 

where 

I     = the total impulse produced by the encased charge,  C_ 

I        = the total impulse produced by the equivalent bare charge,  KC 

Care must be taken to use the correct value of € for both the encased charge, 

C,  and the equivalent bare charge,  KC.    Both of these will be expressed in 

terms of a third value of   € which would exist at distance,  R, for a bare 

charge of weight,  C. 

These three values of  6  are given by 

P 
(F-6) 

(F-7) 

and 
P_ 

(F-8) 

where subscripts C and CK refer to an encased charge and its equivalent 

bare charge and XP    = peak overpressure produced by the encased charge. 

e = p 
O 

P 
m 

CK KP 
o 

P 
€c = 

m 
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Both € « and € « — may be expressed as functions of   £ as follows: 

CK     K (F-9) 

and 

C     X 
(F-10) 

Equation C-40 may now be used to give two expressions for energy 

per unit area:   one in terms of I       and  €       , and the other in terms of I 

and € _,.    These two can be equated to one another,  i. e., 

CK 
2m [l-1.5315€CK]=^[l-l.5315€q] (F-ll) 

Using Eqs.  F-4,  F-5,  F-9, and F-10,  Eq.  F-ll maybe re-written: 

2 
UsA-y-73^0-733^-80] 

2m 
1 - 1.5315 € 

K 

r398A-c°-733K°-3° - ^-J 
2m 

[l-iJtttt*.]      (F-12) 

or 

K 
0.733 ±w 5€ 

The scaled distance relationship 

56 
M VA 

12,800C°-733R0-80 
(F-13) 

Z=^3 = ^T73    <E"-A-2) 
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can be used to eliminate R from Eq.  F-13 to yield: 

K 
0.733 

1. 5315€ 

1. 5315€ 

11/2 

I. e., 

K = 

1.53156 

K 

-rO.682 

(I) VA 

12,800Z 
0.80 

(F-14) 

1.53156 
K 

C/ 

-i 1.364 
VA 

12,800Z 
0.80 

(F-15) 

This expression for K, the ratio of the equivalent bare charge weight to the 

actual weight of the encased charge,  is complicated by the presence of a K 

in the denominator of the first term, which precludes derivation of a simple 

explicit function for K.    The entire first term,  however,  may be considered 

as a correction factor which equals one when Xand K are equal and which 

varies from unity by only a small quantity even when Xand K are quite dif- 

ferent.    Therefore,  its effect on K is relatively small,  and Eq.  F-15 may 

be further simplified to: 

(*) K« 
VA 

1 - 
12,800Z 

0.80 

1.364 

(F-16) 

Implications--Equation F-16, which is based on the postulation that 

the total impulse of the Shockwave at a scaled distance,  Z,  is reduced by 

the amount of momentum imparted to the inert casing material, presents 

some challenging implications.    The negative term is the fraction by which 

the weight of the encased charge,  C,  is reduced to give the weight of the 

equivalent bare charge, CK.    Unlike some other expressions for the equiva- 

lent bare charge, this derivation implies that not only the ratio /i/C but both 

the altitude and the scaled distance have an effect on the degradation in ef- 

fective weight caused by the casing. 
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The parameters M/C and V, are directly related to one another.    For 

a spherical charge of pentolite the Gurney equation for V is: 

V = 8400" 
C/fJ 

1 + 0.6(C//i) 
(F-17) 

which in conjunction with Eq. F-16 gives: 

A 
K 

nl.364 
1 - 

1 .uf-'ff^ttf 
(F-18) 

The altitude function, A, is identical with F   (alt.).   Values are 
K 

listed as a function of altitude in Table II ( p.  12)* '•. 

The postulation upon which Eqs.  F-16 and F-18 are based is still 

only a postulation and not an established fact.    However, it has focused at- 

tention on the effect of altitude on the equivalent bare charge computations 

and suggests that the scaled distance also has some effect. 
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APPENDIX   G 

General Parametric Scaling Equations for Weight and Distance 

The equations for W and R derived in Appendix A are: 

/C  \3   3 0.0083 i2*-^  T 

W = ft)1' 

and 

„1.20    0.80 
P p 

(Eq. A-8) 

4.8(— 

R 
(t)1 

„0.733    0.267 
P p 

(Eq. A-9) 

These are combined with Eqs. B-l, C-43, and C-44 to give 

3^ 

W = 0.0083 
I 

3    -i 

m 
1.20 

m 
0.80 Fw(€) 

and 

R = 4.8 
I 
m 
0.733 

m 

m 
0.267 FR<€) 

(G-l) 

(G-2) 

In this pair of equations, only the final terms,  F_ir(€) and F_(C) are restricted 
W R 

to  € values above or below l/e. 

1 
1.20 

For    €   <; Fw<€)" (1 - 1. 5315€ ) 
3/2 

(G-3) 

and 

FB<€>- 
.0.733 

(1 - 1.5315 €) 
1/2 

(G-4) 
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For   6   ^f F    (€) = —j- (G-5) 
W e

3€°-30[2-€ - €(l-ln€)2f'2 

and 
0.233 

FR(€)- YTTT (0-6) 
R e[2 - € -6(1 -ln€)  ]1/a 

These two pairs of functions of €   are related as follows: 

F   («) Fie]113 e
1/3 

w 

This equation is valid for all values of € .    The functions F    (€) and F_,(€) 
W R 

are listed in Table I (p.  10) for values of   € from 0. 01 to 0. 99. 

The general parametric equations, G-1 and G-2, consist of four 

terms:   the first is a numerical coefficient derived from the characteristics 

of the explosive; the second is a function of the target; the third is a function 

of the altitude; and the fourth is a function of the universal scaling param- 

eter, '& .    For any particular explosive, target and altitude,  the first three 

terms are constants,  i.e.,  only the functions of € will vary.    It will be found 

that for each value of   €, W and R have unique values and furthermore, 6 

in the open interval 0 < € <   1 spans the entire spectrum of charge weights 

from a few pounds to kilotons or even megatons of equivalent TNT. 

From Eqs.  G-l and G-2,  one may obtain: 

R 23*76 (G-8) 

or 

w1/3"   P.1'3 

m 

1/3     1/3 
R = 23-7W

l/3
€  (G-9) 

m 
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The altitude functions to be used in Eqs. G-l and G-2 are given in 

3 Table II (p.  12) where 3 
c 

V"10 0.80 
P 

and 

F„(alt) = 

-9_ 
c 

o 
R.       ' 0.267 

P 

It is often desirable to use Eqs. G-l and G-2 rather than the short- 

cut afforded by Eq. G-9. FTI_(€ ) and F_.(€) are easily obtained from these 

equations for any values of W and R. 

All the analytical tools for finding lethal distances in terms of charge 

weight (or charge weight in terms of kill distance) are available in these gen- 

eral equations; the process can be further simplified by the use of the nomo- 

gram described in Appendix H. 
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APPENDIX   H 

Construction of a General R-W Nomogram 

The two general parametric equations G-l and G-2 for weight, W, 

and lethal distance,  R,  give all the necessary information with respect to 

interactions between spherical shock waves produced by explosive detonations 

and targets whose characteristics can be defined by P     and I    .    The range 

of scaled distances must be sufficient to encompass the region in which tar- 

gets of practical concern can be destroyed.    These two equations epitomize 

the fundamental analytic structure of shock wave-target interactions,  and 

are the most significant product of this entire study.    In order to appreciate 

their usefulness and to apply them to some practical problems of blast 

scaling,   it is well to review the statements on page 64, where it was made 

clear that the numerical constants in Eqs.  G-l and G-2 are functions of the 

explosive,  the next factor in each equation is a function of the target char- 

acteristics, the next of the altitude and the last of € .    The first three are 

constant when the target,  explosive and altitude are specified. 

Eqs.  G-l and G-2 could be written: 

and 

w = cw'Fw(° (H_1) 

R = CR  •  FR(€) (H-2) 

They may be expressed as 

and 

logW = logCw + logFw(€) (H-3) 

log R  = log CR + log FR(€) (H-4) 
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A graph of log F_,(£) versus log FTr,(£) constitutes a general R-W 
K W 

relationship.    It can be applied to a specific combination of explosive, 

target, and altitude, by adding log C    to the ordinate and log C     to the 

abscissa.    Such a graph of the F   (€) vs F    (€) values taken from Table I 
K, W 

(p.   10) is shown on Fig. H-l, with corresponding values of   € given for 

various points along the curve. 

Specific charge weight values are related to F    (€) by C     (in w w 
Eq. H-l) which is the product of the first three factors in Eq.  G-l.    A 

rough indication of the order of magnitude of the charge weight is shown 

on Fig. H-l from which it may be seen that over this range of €  the charge 

weights vary considerably--from 25 lb to 10 megatons. 

Two other lines are shown on Fig. H-l.    The first is a line of slope 

1/3 which becomes tangent to the general curve as €  approaches 1. 00 and 
1/3 F    (£) approaches infinity.    This is consistent with the relationship Ra W 

which has been shown to be true for nuclear charges.    The second is a line 

of slope 1/2 which is seen to be parallel to the general curve at values of 
1/2 

€   around 0. 20 to 0. 2 5 and is consistent with the R^W        relationship 

known to apply to charges of a few hundred pounds.    The change in the slope 

of the curve of log F_,(€) vs log F    (€) is the most significant scale effect 

in the relationships between charge weights and lethal distances. 

Let      (0= the slope of the log F_,(€) vs log FTrr(€) curve,  i. e. . 
It W 

*      • y 

h 1OSFR(€> 

<P="3  (H-5) 
3? l0sVe> 

and 
_,     constant /Ty  „. R =  (H-6) 
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Differentiating the expressions for these functions of €   given in 

Eqs.  G-3 to G-6, one obtains: 

0.7333 - 0.35746 
for 

and 

for 

e 

e 

(p 

(0 

1.20 + 0.45906 

€ln2  € + 0. 4667 [ 2 - € - € ( 1 - In €)2] 

3 6 In2  € - 0.60 [2 - € -€ (1 - ln€)2] 

(H-7) 

(H-8) 

These equations have been evaluated for   € from 0.01 to 0. 99.    The 

results are given in Table IV and in Fig. H-2> 

Table IV 

(0 vs € 

6 (0 € (D € (O € <P € <P 

0.01 0.606 0.21 0. 508 0.41 0.424 0.61 0.377 0.81 0.350 

0.02 0.601 0.22 0. 503 0.42 0.421 0.62 0.375 0.82 0.349 

0.03 0.595 0.23 0.499 0.43 0.418 0.63 0.373 0.83 0.348 

0.04 0.590 0.24 0.494 0.44 0.415 0.64 0.372 0.84 0.347 

0.05 0.585 0.25 0.490 0.45 0.412 0.65 0.370 0.85 0.346 

0.06 0.580 0.26 0.485 0.46 0.409 0.66 0.369 0.86 0.345 

0.07 0.575 0.27 0.481 0.47 0.406 0.67 0.367 0.87 0.344 

0.08 0.570 0.28 0.477 0.48 0.404 0.68 0.366 0.88 0.343 

0.09 0. 565 0.29 0.472 0.49 0.401 0.69 0.364 0.89 0.342 

0. 10 0. 560 0.30 0.468 0. 50 0. 399 0.70 0.363 0.90 0.342 

0. 11 0. 555 0.31 0.464 0. 51 0.396 0.71 0.362 0.91 0.341 

0. 12 0.550 0.32 0.460 0. 52 0.394 0.72 0.360 0.92 0.340 

0. 13 0.545 0.33 0.455 0. 53 0.392 0.73 0.359 0.93 0.339 

0. 14 0.541 0.34 0.451 0. 54 0.390 0.74 0.358 0.94 0. 338 

0. 15 0. 536 0.35 0.447 0. 55 0.388 0.75 0.357 0.95 0.337 

0. 16 0.531 0.36 0.443 0. 56 0.386 0.76 0.356 0.96 0.336 

0. 17 0.526 0.37 0.439 0.57 0.384 0.77 0.354 0.97 0. 336 

0. 18 0. 522 0.38 0.435 0. 58 0.382 0.78 0.353 0.98 0.335 

0. 19 0.517 0.39 0.431 0. 59 0.380 0.79 0.352 0.99 0.334 

0.20 0.512 0.40 0.427 0. 60 0.378 0.80 0.351 (1.00) (0.333) 
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Making the Nomogram. - -It has been stated that the general graph 

of log F   (€) versus log F    (€) could be made specific by adding an appro- 

priate constant, log C   , to the ordinate, and a corresponding constant, 

log C    , to the abscissa.    These additions can be performed mechanically 

by a nomogram consisting of two separate pieces, one of which is a sheet 

of transparent plastic on which the general curve is drawn.    This piece is 

movable both horizontally and vertically, with respect to the second piece, 

which is simply an ordinary log-log diagram of several cycles with its ordi- 

nate scale marked MTrtli distances in feet,  and its abscissa in weights of ex- 

plosive in pounds. 

Figure H-3 shows the two parts of such a nomogram.    The movable 

part made on transparent plastic uses the appropriate section or sections 

of Fig.  H-l.    The second or stationary part is merely a log-log grid with 

R as the ordinate and W as the abscissa.    It may extend both ways for as 

many cycles as are required for the specific problems as will be explained 

in the next paragraph. 

It is quite possible to construct a complete nomogram having 10 or 

12 cycles on the abscissa, covering the entire spectrum of charge weights. 

However,  it leads to more accurate reading of the scales of the nomograph 

if it covers only two or three cycles in the range of charge weights of im- 

mediate interest.    Three or four nomographs with overlapping scales, to 

cover the entire range of possible charge weights are to be desired. 

Positioning the Curve on the Scaled Diagram. --Referring to Eqs.  G-l, 

G-2,  H-l,  and H-2,  one notes that CD and CTIf are each the product of three 

terms,  and their logarithms are the sum of three logarithms.    Thus, the 

positioning of the movable curve involves adding three logarithms to log 

FD(€) and three others to log F „,(€).    Therefore,  each of the three pairs 
K W 
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of terms, which define explosives, targets,  and altitudes, produce displace- 

ments of the curve both vertically and horizontally.    The numerical constants 

in Eq. G-l and G-2 are only applicable to 50/50 Pentolite.    The log of 0. 0083 

is negative and the log of 4. 8 is positive, and therefore the curve displace- 

ment due to the two explosive characteristic terms in Eqs. G-l and G-2 is 

upward and to the left,  along a line with slope -1 /3.    The pressure-impulse 

curve on Fig.  D-l (p.  46) and Fig.  H-l (p.  69) are compared in Fig. H-4. 

This figure shows that the two curves have a similar shape and could 

be superimposed.    It is reasonable then to assume that the asymptotes of 

Fig.  H-4a,  (lines of constant I     and constant P    ), would become asymptotes mm 
to the curve of Fig.  H-4b.    From Fig.  H-2 it may be seen that the slope, <&, 

of the curve of Fig.  H-4b, has the values 0. 61 at € =0 and 1/3 at € = 1. 

This implies that the lines of constant I     and P     will have these respective mm 
slopes when referred to the axes of Fig.  H-4b. 

The second terms of Eqs.  G-l and G-2 may thus be accounted for be- 

cause:   (1) movement on the log-log diagram due to I     changes takes place 

along constant P     lines of slope 1/3,  and (2) the movement due to P     changes m m 
takes place along constant I     lines of slope 0. 61. m 

This permits one to use a grid composed of constant P     lines inter- 

secting constant I     lines as shown on Fig.  H-5.    This grid may conveniently 

be positioned on the same sheet as the log-log grid of R-W (Fig.  H-3). 

Hence,  a uniquely positioned point on the transparent movable part of the 

nomogram can be placed over the intersection of any pair of P     and I 

lines (or interpolated points between lines) to make the appropriate adjust- 

ments for both characteristics of the target. 
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*$cfc Fig. H-5     CONSTANT Pm AND lm LINES ON SCALED DIAGRAM 

Fig. H-6     ALTITUDE SCALE (KILOFEET) ON MOVABLE 
PIECE BEARING GENERAL DISTANCE -WEIGHT CURVE 
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The third terms in Eqs.  G-l and G-2 have values of one at sea level 

and greater than one at all altitudes above sea level (see Table II, p.   12). 

Increasing the altitude corresponds to moving the curve upward and to the 

right along a line of slope 1/3.    The displacement of the curve due to in- 

creasing altitude is in the same direction and along a line of the same slope 

(viz.   1/3) as the displacement due to increasing the value of I    .    This is m 
to be expected, since the effect of increasing the altitude is to decrease the 

positive impulse of the shock wave, without materially affecting the normally 

reflected peak overpressure.   Since the altitude displacement takes place 

along a line of slope 1/3,  such a line is drawn on the transparent movable 

piece of the nomogram, as shown on Fig. H-6.   In using the nomogram, 

the altitude point is superimposed on the point of P    -I     intersection and 

the altitude scale is aligned with the selected constant P     line. 
° m 

This nomogram is a simple mechanical device for expediting the 

solution of the scaling equations.   It gives the same R-W relationship that 

could be computed by use of these equations and tables which relate functions 

of € to € .    The nomogram is much more rapid and inherently has less 

chance of error than the equations. 
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APPENDIX   I 

Validity and Accuracy of Scaling Equations 

The destruction of actual targets by blast is a far more complicated 

physical phenomenon than is indicated by the scaling equations derived in 

this report for an idealized target model.    It has been shown that these scal- 

ing equations and the various parametric relationships derived therefrom are 

a valuable analytic tool.    It remains to be shown that the results obtained 

from them are both valid and reasonably accurate over the range of scaled 

distances within which they are applicable.    It is exceedingly important to 

know how much confidence can be placed in these equations and how closely 

a mathematical model of such simplicity can be expected to approximate 

actual phenomena. 

In Appendix E it is shown that the energy per unit area which a shock 

wave can impart to a target is a function of both the mass per unit area and 

the total positive impulse of the target but is not dependent on the shape of 

the pressure-time curve.    Further corroboration of this fact was obtained 

by repeating the analytical processes of Appendix C (which were based on 

an exponential pressure-time function) for two other pressure-time functions 

of the form 

»f] 
where n = 1 for the first function and n <  1 for the second.    Using these func- 

tions,  new and different expressions for I in terms of   € were derived,  and 

new sets of parametric equations for R and W were then obtained by the 

techniques of Appendix G.    Each set of parametric equations constituted a 

valid and self-consistent mathematical model as was shown when the re- 

sults were plotted in the form of a universal graph of distance-weight re- 

lationships by the techniques of Appendix G.    All three different pressure- 

time functions produced the same curve of log F   (€) vs log F    (€),  although 

the specific  €  points fell at different places along the curve. 
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The fact that there is only one general R versus W curve could have 

been anticipated from the nature of the derivation in Appendix G.    This fur- 

ther corroboration shows that any self-consistent set of R-W equations will 

lead to identical R-W relationships when the target parameters used are 

consistent with the pressure-time function from which they are derived. 

It is desirable to use a pressure-time function which closely approximates 

physical reality even though R-W relationships could be computed with equal 

accuracy by any self-consistent set of equations. 

Each pressure-time function produces a different set of functions 

for I in terms of  €  and the values of  € fall at different points along the 

universal R-W curve for each pressure-time function.    Therefore,  the gen- 

eral P-I curve described in Appendix D is not the same for all pressure-time 

functions, but depends strongly on the shape of the pressure-time curve. 

The essential difference between the results of using different pressure- 

time functions lies in the relationship between I and PT.    For the exponen- 

tial pressure-time curve: 

I = — = 0.3679 PT 

and for the linear pressure-time curve: 

PT 
I = -7T = 0. 50 PT 

(I-D 

(1-2) 

For the third pressure-time curve: 

I = PT 

which for various values of n becomes 

fe*r) (1-3) 

n = 1.0 0.9 0.8 0.7 0.6 0. 5 

I/PT = 0.5000 0.4737 0.4444 0.4118 0.3750 0.3333 
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A certain value of I must be achieved for the destruction of a partic- 

ular target, but the associated value of P obviously is dependent on the 

ratio of I to PT which, in turn, is dependent on the shape of the pressure- 

time curve.    Specific values of €   fall at different points on the universal 

R-W curve, and hence the pressure-time function determines which value 

of  6- will correspond to a specific set of R-W values.   Since €   is the ratio 

of the target parameter,  P    , to the peak overpressure,   P,  of the shock 

wave, the value of P    , which is consistent with a given set of R-W equa- 

tions,  is dependent on the ratio of I to PT for the pressure-time function 

from which they are derived.    If the chosen pressure-time function accur- 

ately represents the ratio I/PT, the corresponding P     values will approxi- 

mate the actual minimum unit pressures which they nominally purport to 

represent.    Otherwise they will merely be numbers which are consistent 

with a specific set of R-W equations. 

The exponential function upon which these derivations have been 

based closely approximates the physical reality within the range of scaled 

distances of major interest.    Experimental data for 50/50 Pentolite (Ref.  3) 

indicate that the ratio of I/PT is weakly dependent on the scaled distance, Z. 

Furthermore, the average of the ratio I/PT for scaled distances of the order 

of 5 to 8 is about l/e (the ratio associated with the exponential function),  i. e., 

the exponential function provides a good fit to the experimental data.    Scaling 

equations based on the exponential function are as close to actual physical 

reality as any simple analytical function can be.    They not only establish 

valid R-W relationships, but P     values consistent with these equations are m 
closest to the actual values of the minimum unit pressures which can destroy 

the targets. 
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The Effect of Non-Stationary Target Mass. --In Appendix C, the deri- 

vation of functions for total energy per unit area imparted to the target is 

based on the pressure-time function for a shock wave acting on a stationary 

surface.   Actually the pressure on the target will become somewhat less 

than this function indicates, as soon as the target begins to move under the 

action of the shock wave.    The decrement of pressure depends on how rapidly 

the target is moving away from the impinging shock wave.    The mass,  m,  is 

initially accelerated by the difference between P and P    ,  and the rate of ac- 

celeration decreases continually with time until it eventually becomes nega- 

tive,  i.e., the mass,  m,  finally returns to rest.    Figure 1-1 shows the nature 

of the velocity profile as a function of time. 

Figure 1-2 shows the effect of this velocity on the pressures actually 

exerted on the target surface.    The dotted line shows the pressure-time 

curve for a stationary target.    This is the value assumed by the preceding 

derivation which shows motion terminating at tx and a total work per unit 

area of  €   Ptx . 

In reality,  the pressure profile is more correctly shown by the solid 

line and the motion terminates at t2, where the total work per unit area is 

€ Pta.    This is considerably less than the work indicated in the preceding 

paragraph and raises a legitimate question regarding the validity,  or at least 

the accuracy,  of the derivation in Appendix C. 

Re-examination of Appendix C and of the way in which E    is defined 

discloses that the function for total work per unit area (whatever its analytical 

form may be) is simply defined as the work per unit area which can just de- 

stroy the target by moving the mass,  m,  a distance S  .    This work per unit 

area,  E  , which can just destroy the target is implicit in the value of I    ,  as 

given by Eq. C-42,  i.e., 

-.82- 
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Fig. 1-1  VELOCITY PROFILE OF TARGET MASS 

• Pm = € P 

Fig. 1-2     PRESSURE PROFILES FOR A STATIONARY AND A MOVING TARGET 
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I     is not found by computing E    from S    (which obviously depends on ta in 

Fig.  1-2), but is determined empirically from specific combinations of R 

and W which just destroy the given target.    Thus, neither the value of t2 

nor its relationship to tx enter into the calculations. 

The derivation in Appendix C merely establishes the analytical form 

of the function for I in terms of €   and I     but is not used in evaluating I    , m m 
since neither S    nor t2  are known,  and furthermore nothing is known about 

the specific value of E    beyond the fact that it is sufficient to destroy the 

target. 

As long as authentic data for actual distances at which given charge 

weights can destroy a target are used to establish the values for both P 

and I    ,  these values will be completely consistent with the scaling equa- 

tions which relate them to R and W values.    The methods for establishing 

these empirical values for P     and I     will be discussed in Appendix J. mm 

The Nature of Target Response. --The general scaling equations are 

both valid and accurate for computing R-W relationships for targets which 

behave approximately like the mathematical model defined in Appendix C. 

Fortunately many actual targets behave sufficiently like this model that 

the scaling equations derived in this report can be used confidently.    How- 

ever,  it would be a great mistake to assume that these equations may be ap- 

plied to all targets.    They can always be of great value in at least two ways: 

1. They provide the analytical framework for correlating vast 

amounts of data from numerous diverse sources for targets whose response 

to shock waves conforms in general to the target model defined in Appendix C, 

2. They can identify and isolate targets whose response characteris- 

tics are quite different from the model.    In this way attention can be focused 

on analyzing the differences between them. 
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If substantial amounts of data disclose a consistent pattern of non- 

conformity to the scaling equations derived in this report,  it is altogether 

possible that new target models (with different characteristics) could be de- 

fined and used to derive new scaling equations. 
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APPENDIX J 

Determination of the Target Parameters,  P     and I  a —m m 

The numerical values for the two target characteristics,  P     and 
m 

I , which are consistent with the scaling equations, are a necessary pre- 

requisite to every application of these equations. This appendix will show 

how to determine these parameters for any specific target. 

It is not easy, or even feasible to compute P     and I     directly in J r m m J 

terms of their physical significance,  since the pressure at which the struc- 

ture will yield continuously and the energy which will produce destructive 

damage are not readily obtained from drawings and specifications or even 

from an examination of the target itself.    These engineering data give 

rough estimates and relative orders of magnitude when comparing one tar- 

get with another, but they are not the best or most accurate means of de- 

termining values which will be consistent with the scaling equations. 

For any charge weight, W,  the values of P     and I     which are truly 

consistent with the scaling equations must be those which give the exact 

lethal distance, R,  in an accurately conducted set of experimental firings. 

Values for P     and I     are not ends in themselves, but are merely the an- m m ' J 

alytic tools for scaling Shockwave effects on a specific target.    They are 

derived from conditions under which values of R for various charge weights 

can be accurately determined by experimental firings.    The data can be 

scaled to simulate other ambient conditions and charge weights which are 

not amenable to experimentation. 

Numerical values for P     and I     are thus derived analytically from mm J J 

experimental data which determine the lethal distances for at least two 

charge weights.    The charge weights should differ from one another by 
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factors of three, four, or even five.    Experiments for this purpose will 

doubtless be made at or near sea level and with charge weights in the range 

within which € <  l/e.   In this region 

or 

I 
I = m 

V 1 - 1.53156 

I 
m 

1 - 115315 m 

(Eq.  C-44) 

from which equation 

and 

P     = 0. 653P 
m 

m 
(J-l) 

I     = I 
m 

-,1/2 

1-1. 5315 m 
(J-2) 

In an actual experiment the resultant distances are R    and R    for 

destruction by charge weights of W„ and W0.    Since P     and I     in Eqs.  J-l J 12 mm 
and J-2 are the same in both tests with the same target, then it may be 

shown that 

and 

m m. mr 

= 0.653 

2        2 
I     - I 

2        1 (J-3) 

I      = I 
m m. 

= I 
mr 

V -pii 
P2 pi 

i l2J 

-.1/2 

(J-4) 

-88- 



The Johnt Hopkins Univanity 
APPLICD  PHYSICS  LABORATORY 

Silver Spring, Maryland 

For the sea level case (p = 1 and c/c    =1) Eqs. A-6 and A-7 become 

P=13,300W/R        and      I = 220WU"   "/R1      . 

These values, substituted in Eqs. J-3 and J-4, yield 

w 1-467    w 1'467 

2 1 

P     = 8685 
m 

R, 
2.40 

R 
2.40 

T„  0.467„  0.60     „,  0.467D   0.60 
W2 R2 "Wl Rl 

I      = 220 
m 

^2     ^1 

„r  0.467n  0.60     „r  0.467^  0.60 
W2 R2 Wj Rx 

1/2 

(J-5) 

(J-6) 

These equations are based on data obtained on Pentolite firings in free air 

where no ground reflections affect the Shockwave at the target. 

It should be reiterated that the prime purpose of this study was to de- 

rive a method of predicting the lethal distance,  R,  at which an explosive 

charge, W, will just destroy a target.   An actual test firing is obviously the 

acid test of whether the scaling equations have fulfilled this purpose.   Such 

tests must be carefully and accurately conducted to obtain two sets of R-W 

values either for computing P     and I     or for checking the results calculated 
m m 

for some other charge weight.    Inaccurate tests will produce data which are 

not only meaningless but which may be actually misleading. 

When W,  is inserted into the scaling equations (with the P     and I 1 & mm 
values computed from the preceding equations,  and the same ambient at- 

mospheric conditions as the test) the correct value of R   will emerge from 

the computation.    Similarly, W    inserted in the equations with P    , I     and 

correct ambient condition terms will yield exactly R  . 
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Furthermore, the determination of P„,  P„,  and P     establishes € 12 m 
values for the two test weights (W   and W9): 

P 

and 

For 50/50 Pentolite tested under normal sea level conditions: 

P    R* 
€    = ^-^  (J-9) 

1      13.300W W   y' 
and 

Comments and Cautions on the Use of P     and I    . --The reader who  m m 
is about to use the equations of these appendices to determine P     and I mm 
values for targets, has reached the crucial point in his efforts to make the 

scaling equations and other techniques of this report into effective analytic 

tools for his own use. 

Reference to the discussion of the scaling nomogram in Appendix H 

will shed further light on the vital role which P     and I     values play in cor- & m m ^    J 

rectly orienting the relationships between the totally general R-W curve 

(Fig.  H-l) and specific R-W values (lower part of Fig. H-3). 

It may be seen from Fig. H-2 that the slope of the general curve has 

a maximum value of 0. 61 as   € approaches zero and a minimum value of 

exactly 1/3 as  €  approaches 1.00.    In Fig. H-4, the constant I     lines have 

a slope of 0.61,  and the constant P     lines have a slope of 1/3.    Figure H-l 
m 
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shows that each value of € has a specific place on the general curve and 

from Fig. H-2 (and Table IV) it may be seen that the slope of the general 

curve is different for each value of € , decreasing as €   increases. 

When the general curve is laid over the scaled portion of the nomo- 

gram (Fig.  H-3) it is positioned by the numerical values of three parameters: 

altitude (see Fig. H-6),  P     and I     (see Fig. H-5). & m m 

1. Increasing the altitude displaces the general curve, upward and to 

the right along a line of slope 1/3, thus decreasing R for a given W 

at all points except for large values of  € where the general curve 

approaches the slope of 1/3 and W is in the megaton range. 

2. In the same way,  increasing I     without changing P    ,  displaces the 

general curve upward and to the right along a line of slope 1/3, with 

the same effects noted above. 

3. Increasing P    , without changing I    , displaces the general curve 

downward and to the left, and decreases the value of R for a given 

W,  at all points where  €   is greater than zero (i.e., when the 

charge weight is significantly greater than zero). 

The change in slope of the general curve is small compared to changes 

in W.    For example, when W is rather small ( € = 0. 15), cp= 0. 536; when W 

is increased to five times the original value ( € = 0. 33), <p = 0. 455; i. e., 

U)has changed -15 percent for a 500 percent change in W.    The slope of the 

general curve differs from 1/3 (the slope of the line along which changes in 

I     displace the general curve) by 0.203 at € - 0. 15 for the smaller charge 

and by 0. 122 at € = 0. 33 for the larger charge.    Two independent sets of 

R-W values, for the same target,  establish a value of  6 for each set (see 

(Eqs.  J-7 to J-10),  and also a value of <p for each R-W combination,  and 

thus position the general curve with respect to the R and W scales on the 

fixed part of the nomograph. 
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It may be noted that experimental determinations of R    and R    deter- 

mine P     with much greater accuracy than I    .   Changes in R values change m J m 
P     values along constant I     lines of slope 0. 61 and the changes in P     pro- m m m 
duced by a given change in R are 1. 64 times greater than those in R.    But 

the same changes in R cause I     changes along constant P     lines of slope 
m m 

1/3, and cause I     changes 3.0 times as great as those in R.    If any small 

inconsistency in the measurements of R   and R    are such that the errors 

happen to be in opposite directions, they will cause an apparent change in 

the mean slope of the line between W    and W  .    This in turn will lead to 

quite erroneous I     values and values for  € . and € „.    For this reason it m 12 
is imperative that careful and accurate measurements be made if one is to 

compute accurate values for P     and especially for I    .    Unfortunately, there 

are no handbooks or tables to which one may go for P     and I     values. *   This J & m m 
deficiency may be remedied if any individuals or agencies elect to apply the 

techniques of this report to the analysis of their own test data.    Meanwhile 

it is suggested that the reader who wants to familiarize himself with these 

techniques of calculating P     and I     may use existing data on obsolete air- 6    m m       J 

craft.    The data are presented in a series of blast damage contours for 

military aircraft published by the Ballistic Research Laboratory, Aberdeen 

Proving Ground,  Md.  some fifteen years ago.    The author is convinced that 

a discussion of how P     and I     values were computed from these contours mm 
more than a dozen years ago, is of far more value than a tabulation of such 

values at this point.   The Aberdeen data consisted of experimentally determined 

The reader who may have access to Ref.  8, which listed a few Pm and Im 
values computed in the early fifties,  is cautioned not to use them with the 
equations in this report,  since they are intended for use with scaling equations 
having different numerical coefficients.    The equations of Ref. 8 are on a 
linear pressure-time function for shock waves,  rather than the more ac- 
curate exponential pressure-time curve used in the present study. 
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contours, about three mutually perpendicular axes, within which 90 lb (W ) 

and 450 lb (W ) charges of 50/50 Pentolite, in free air, could destroy the 

respective targets. 

The six contours plotted from the data (three for 90 lb and three for 

450 lb) in three different planes were measured with a planimeter, and were 

replaced for computational purposes by circles of the same areas.    The pro- 

jected areas of the three aspects of the target itself were similarly replaced 

by circles of the same areas.    The mean radius at which the 90 lb charge 

destroyed the target (in each of the three aspects) was the difference between 

the radius of the equivalent 90 lb circle and the radius of the corresponding 

projected area circle; R. was simply the average of these three differences 

for the three aspects.    R„ was computed in similar fashion by averaging the 

three differences between the radius of the 450 lb circle and the radii of 

the corresponding projected area circles. 

Experience has proven that the data presented in these contours were 

excellent and that these analytical techniques gave values of P     and I     with 

satisfactory accuracy. 

After P     and I     values have been established for a variety of tar- m m 
gets it will be noted that they are not only consistent with the scaling equa- 

tions, but begin to show some degree of self-consistency.    Really rugged 

targets will have higher P     values than the more fragile aircraft.    It will & m 

be particularly noticeable that I     values agree well with Eq. C-42,  i. e., 

I      ="\/2E  m m      »     o 

where m is the mass of material per unit area which is moved when the 

superficial covering of the target is displaced relative to the main structural 

framework. 
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