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Summary

Dynamic stability is defined and classified, and examples
are given for the various classes of problems. Criteria are develo;ied
for practical stability and it is shown that in a practical elastic
column tested in a conventional testing machine stress reversal always

precedes the attainment of the maximum load. The two coincide, however,

in the limit when the initial deviations of the column axis from straight-

ness and the loading speed tend to zero.
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Introduction

Thirty-five years ago, when he was working in the airplane

industry, the author became aware of the importance of dynamic stability. |

As a beginning engineer, he had to carry out the complete dynamic, aero-
dynamic, and structural analyeis of a new training plane which was then
being designed by four of his equally inexperienced colleagues. It may
be of interest to add that in one year's time the design and analysis
were completed and the prototype manufactured and successfully test

flown; the story of the difficulties encountered is not part of the

present paper.

In accordance with governmental airworthiness requirements,
the static stability of the straight-line flight of the plane had to be
checked under climbing, horizontal flying and gliding conditions. This
was done by plotting first against the angle of attack the aerodynamic
wing moments with respect to an axis through the center of gravity of
the airplane perpendicular to the plane of symmetry of the airplane.
The curve obtained always indicates instability for the conventional
airplane: If the angle of attack « of the wing is increased, the

aerodyn~mic wing moment M also increases (See Fig. l).*
The airplane is stabilized with the aid of the horizontal tail
surfaces. The change in the moment of the tail surface with respect to

its own centroidal axis is insignificant compared to the change in the

moment of the vertical upward force acting on the tail surface with

*
Some of the aerodynamic and inertia forces necessary for dynamic

equilibrium are not shown in the figure.
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respect to the center of gravity of the airplane. An increase in the
angle of attack a of the wing causes an increase in the angle of attack
of the tail surface vhich increases the 1lifting force PH of the hori-
zontal tail surface. This incz‘ement APH multiplied with the distance h

between the center of gravity of the airplane and the line of action of
the tail force is a negative moment capable of counterbalancing the
positive increment AM in the wing moment if h and the area of the
tail surfece are sufficiently'large. The Job of the designer-analyst
was therefore to insure, under all normal flight conditions, that
h(dPy/da)da had a greater absolute value than (dM/da)da .

It was quite a reveliation for the author to find out from the

(1]

literature that the condition mentioned was only a necessary but not a
sufficient condition of an automatically stable flight of the airplane.
If the dynamic equations of the motion of a rigid airplane in its own

plane of symmetry are written for small oscillations about the steady-state

conditions, and if the aerodynamic coefi'icieunts are inserted with their
steady-state values, assumption of an exponential solution results in a
quartic. Solution of the quartic can lead to any of the four different
behavior patterns shown in Fig. 2. Curve a 1indicates an asymptotic
return to the initial state after a disturbance, which obviously means
stability of the initial state. A second stable pattern is shown in
curve b where the disturbance is followed by damped oscillations and
eventually a return to the initial state. Curve ¢ corresponds to static
and dynamic instability. i'inally, the airplane characterized by curve 4
is statically stable but dynamically unstable; the static restoring force
or moment acts in the sense necessary for stability but the ensuing

oscillations increase in amplitude rather than damp out.
2
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In the literature of structural stability one can also find
systems that appear to be fully stable when investigated by static
methods and whose displacements from the state of initial equilibrium
nevertheless increase with time follc.ing a disturbarce, Just as it is
indicated in Fig. 2d. Such systems evidently must be analyzea with the
aid of the dynamic, or kinetic, method in which the motion of the system
following a disturbance is studied. The dynamic equations of motion are
also needed when the loads applied to the structure vary significantly

with time.
(2]

In a recent paper Herrmann and Bungay followed usage
established in the theory of aeroelasticity when they proposed that
structural instability of type (c) be designated as divergence, and that

of type (d) as flutter.

Definition and classification of problems of dynamic stability

Definition

In the introduction to the first English edition of their
monumental textbook entitled Engineering Dynamics, Biezeno and Grammel[sl
explain that, following Kirchhoff's definition, dynamics is the science
of motion and forces, and thus includes statics, which is the study of
equilibrium, and kinetics, which tr=zats of the relationship between
forces and motion. According to this interpretation of the meaning of
the words, the dynamic teat of equilibrium mentioned in the Introduction
cf this paper should be called a kinetic test, and this is indeed the
terminology adopted by Ziegler[h] in his studies of ﬁhe’stability of

non-conservative systems. But dynamics is generally accepted as the




antonym of statics in everyday usage, and this is the sense in which it
is used in the title of the International Conference on Dynamic Stability

of Structures.

A number of significantly different concepts can be included in

the uneaning of the term dynamic stanility of structures. One of them is

the stability of motion of an elastic sysiem subjected to forces {..at are
functions of time. Another is the study of the stability of a system
subjected to constant forces as long as the study is carried out with
the aid of the dynamic equations of motion; such an investigation is
designated by Ziegler as a stability analysis with the aid of the kinetic

criterion.

In this paper any stability problem analyzed with the aid of
Newton's equations of motion, or by any equivalent method, will be

considered a dynamic stability problem.

The classification of the problems that follow is not funda-
mental in any sense of the word. Its purpose is simply to group together
problems that are usually treated by similar mathematical methods, or
analyzed by the same group of research men. A more fundamental ciacsifi-
cation could be based on the principles proposed by Zieglerls} in his

article in Advances in Applied Mechanics.

Parametric resonance

Among the problems of the dynamic stability of structures
probably the best known subclass is constituted by the probtlems of
parametric excitation, or parametric resonance. A (ypical example 1is

the initially straight prismatic column whose two ends are simply

4




supported and upon which a periodic axial compressive load is acting
(Fig. 3). Such a column is known to develop lateral oscillations if its
straight-line equilibrium is disturbed. Depending upon the magnitude

and the frequency of the pulsating axial load, the linear Hill or Mathieu
equation defining the lateral displacements of the column may yield
bounded or unbounded values for these displacements. The structural
analyst can be useful to the design engineer if he points out the

regions in the frequency-amplitude plane that must be avoided if the
column should never deviate noticeably from its initial straight-line

equilibrium configuration.

According to Bolotin[6]

s the first solution of this problem
was glven by Beliaev[7] in 192&; this was followed by an analysis by
Krylov and Bogoliubov[el in 1935. 1In the United States, Lubkin[gl,

a student of Stoker, solved the problem in a doctoral dissertation
submitted to New York Uaniversity in 1939; the results are more easily
available in an article by Lubkin and Stoker[lO] printed in 1943. The
results of a theoretical and experimental investigation of the subject

[11]

were published by Utida and Sezawa in 1940. Another early solution of

the parametric excitation problem of the column is due to Mettler[12]
(1940); as & matter of fact, this problem is called Mettler's problem in
Ziegler's comprehensive work on elastic stability. The parametric excita-
tion of thin flat plates was first discussed by Einaudi[lsl (1936). A
rather complete treatment of known solutions of the parametric resonance
problem can be found in a book by Bolotin[6] in which the effects of

friction and nonlinearities are also discussed.
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It is perhaps unfortunate that the phenomena described have
become known as parametric excitation, or parametric resonance. This
terminology refers to the mathematical structure of the equations defining
the phenomena, and fails to define or allude to the physical nature of
the phenomena. Perhaps the terms sympathetic excitation or sympathetic

resonance would be more descriptive and acceptable.

It is worth noting that in his book already mentioned, Bolotin[6]

defines dynamic buckling much more restrictively than was done in this
paper. He includes only the phenomena of parametric excitation and

resonance in his definition.

Two papers to be presented at this conference deal, at least
in part, with parametric resonance, namely those by E. Mettler, and by
D. A. Evensen and R. E. Fulton. Possibly the presentations by V. V.
Bolotin and by S. T. Ariaratnam, which treat of stability under random

loading, will also make use of the techniques employed in parametric

. resonance studies.

Impulsive loading

In the second subclass of the dynamic stability of structures,
buckling under step loading and impulsive loading are studied. Because
of the difficulties of tracing the origins of these studies, only a few
random examples of solutions will be given here. Two early papers
dealing with the danger of failure of a column subjected suddenly to a
constant axial compressive load which is suddenly removed after a
finite time interval of action were published by Koning and Taub[lh],

and by Taub[lS], respectively, in 1933. Their results showed that a

6




suddenly applied load can cause collapse even if it is amaller than the
Euler load. At the same time, the column need not be damaged by a suddenly
applied load greater than the Euler load if the load is removed after a

sufficiently short time.

The author of the present article, together with Victor Bruce[l6],

prepared a paper for the Eighth International Congress of Applied Mechanics
held in Istanbul in 1952 in which the snap-through buckling of a laterally
loaded perfectly elastic flat arch (see Fig. 4) was studied under step
loading and impulsive loading. A diagram showing some of the results

obtained for a particular case is reproduced in Fig. 5.

The figure contains the equipotential lines of a system con-
sisting of a flat arch and a suddenly applied lateral load Q that is
distributed according to a half sine wave along the arch. The initial
rise y_ .. =¢€p of the arch of the example is such that e = 8
and p 1is the radius of gyration of the cross section of the arch.

The magnitude of the lateral load was so selected as to be critical,
that is just sufficient to cause snap-through buckling, if the load is
suddenly applied and then maintained constant for all times t . Along
each equipotential line the strain encrgy stored in the arch less the

work done by the applied load is constant.

The equipotential lines can be regarded as the contour lines
of a topographic map of the potential energy surface. The abscissa

r, =V max/p is the non-dimensional amplitude of the displacements

according to the first symmetric mode (one half-sine wave), and

r, = ¥, max/p is the corresponding quantity according to the first

antisymmetric mode (two half-sine waves).

1




The undisplaced position corresponds to r, = 0 and r = e=8.
To the left of this position is a shallow hollow; at its bottom the
potential energy surface has a minimum which corresponds to stable equil-

ibrium near the unloaded position of the arch. Farther left, at r, =1,

1
r, = 0 there is a hilltop where the equilibrium is unstable, and at
about r, = -9, r, = O there is a much deeper hollow; this point of the
map corresponds to stable equilibrium in a position beyond the straight
line connecting the end points of the arch. If the load is large enough,

the arch can snap through into this position.

The surface has no maxima or minima except along the axis of
abscissae. This implies that no stable equilibrium is possible in the
presence of displacements according to the antisymmetric mode. One.
unstable equilibrium position exists, however, near r = 55 r2 =3
where the surface has a saddle point. The critical nature of the diagram
is manifested by the fact that the initial position characterized by
r, = 8, r, = 0 1is connected with the saddle point by a contour line.

For a slightly lower value of @ than chit the saddle point would
correspond to an energy level higher than that of the initial point;
hence the arch would be unable to reach the saddle point without a

finite disturbance.

With Q = ch an infinitesimal disturbance in the first
antisymmetric mode can start the arch moving toward the state represented
by the saddle point. If it reaches the saddle point and then continues
to the left and upward along the dotted line, it is likely to descend
through the ravine to the stable state of equilibrium in the snapped-

through position. Along this steepest path of descent the arch gathers

8
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speed and both r and f2 change rapidly in absolute value. The arch

cannot stop therefore in the snapped-through state but must continue to

move a8 its kinetic energy is now quite high. In a real system this
energy will be transformed gradually into heat in consequence of friction

and eventually the arch will come to rest in the snapped-through position.

It is of interest to note that in the case treated snap through
can take place only with the aid of the antisymmetric mode even though
the initial and final states are entirely symmetric; in an experiment
the presence of the antisymmetric mode might not even be noticed because
of the speed nf the motion. In the absence of the antisymmetric mode,
however, the energy of the arch would have to climb over the high
barrier of the symmetric unstable equilibrium state which could be

avoided when the arch passed through the antisymmetric mode.

The recent technical literature comprises many articles belonging
to the subclass of impulsive loading. Among them may be mentioned elastic
analyses of shaliow shells by Grigolyuk[l7] and by Humphreys and BodnerIlB],
and an analytical study of imperfection-sensitive elastic structures by
Budiansky and Hutchinson[lgl. Essentially experimental investigations
of the collapse of thin-walled circular cylindrical shells under axial
impact were presented by Coppa[eol and by Schwieger and Spuida[zl].
Numerical methods to predict the dynamic deformations of beams, rings,
plates and shells of revolution were developed by Witmer, Balmer, Leech

and Pian[22]. The elastic behavior of circular cylindrical shells under

lateral impact was studied by Goodier and McIvor[QS] and by Lindberg[zu];
the latter also gave results of experiments. Plastic deformations were
also taken into account and results compared with experiment by

Abrahamson and Goodierl22. 5
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At the present conference a number of papers will be presented
that belong, at least in part, to Subclass 2. Their authors are
B. Budiansky; J. N. Goodier; J. M. T. Thompson; D. A. Evensen and

R. E. Fulton; and T. H. H. Pian, H. Balmer, and L. L. Bucciarelli Jr.

Circulatory loads

The third subclass is constituted by problems of buckling
under stationary circulatory loads, that is, under loads not derivable
from a potential and not explicitly dependent on time. The best-known
example in this field is Beck's problem which is shown in Fig. 6. The

[26] (27] ana

problem was discovered by Pfliiger , explained by Ziegler

solved by Beck[28]

, a doctoral student of Ziegler. A static linear
analysis leads to the conclusion that a column, one of whose ends is
rigidly fixed while the other is subjected to a compressive load of
constant magnitude P whose direction ie always tangent to the deformed
column axis, does not buckle, whatever be the magnitude of the load.

On the other hand, Beck's study of the flexural vibrations disclosed
that the amplitudes remain small when the initial displacements and

velocities are small, provided that P 1s less than the critical value

P,. = 20.05 (E1/L%) (1)

where EI 1is the bending rigidity and L the length of the column.

When P > Pcr , the amplitude of the oscillations increase without
bounds. It must be concluded therefore that the column is unstable in
the presence of lateral disturbances of its original state of equilibrium.
It 1s worthy of note that Pcr of Eq. (1) 1s about eight times the Euler
load of the column (which is calculated for a load P that always

remains vertical).
10
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Ziegler stated in his paper already cited that non-conservative
stability problems must be analyzed by means of the dynamic criterion of
buckling as the two commonly used static methods of determining critical
loads can lead to incorrect results. One of these methods consists of
finding, by means of the static equations of equilibrium, a static
equilibrium state in the immediate neighborhood of the state whose
stability is being investigated. In the other method the total potential
energy of the system is studied; the lowest load under which this energy
ceas to be positive definite is the critical load.

In 1956 the criteria of elastic stability were analyzed at

[29]

some length by Zieglerts} who already in 1952 had discussed the

concept of a conservative system. An additional study of stability in

[2].

the presence of non-conservative forces is due to Herrmann and Bungay

Finally, a recent book by Bolotin[so] is entirely devoted to the buckling

3
problems of non-conservative systems. Bolotin attributes to Nikolai[ 2]
the discovery of the insufficiency of the static approach to the calcula-

tion of the critical load of & particular elastic system, namely a bar

subjected simultaneously to compression and torsion.

At the present conference, G. Herrmann and S. Nemat-Nasser

will discuss the buckling of non-conservative systems.

Aeroelastic problems

Interaction between the non-conservative aerodynamic forces
and the elastic structure of airplanes and missiles can give rise to
theoretically interesting and practically important problems. They are

dealt with, as a rule, by specialists known as aerocelasticians. Two

11
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well-known books in this field are those written by Fung[ssl

Bisplinghoff, Ashley and Halfmanlsu]. Only one paper falling into this

and by

category will be presented at this conference, namely the one prepared

by Y. C. Fung and M. Olson.

Buckling in the testing machine

Of the many possible time-dependent loading conditions not
yet mentioned, one, buckling under the conditions prevailing in the
ordinary testing machine, presents special interest. In industry,
most compressed structural elements are designed on the basis of Euler's
theory of buckling, or with the aid of one of the modifications of
Euler's theory to account for inelastic behavior. The practical suit-
ability of these theories is Jjudged, as a rule, on the basis of a
comparison with buckling loads obtained in the conventional mechanical

or hydraulic testing machine. In 1949 the author[ssl

drew attention to
the fact that the behavior of the dynamic system consisting of testing
machine and test column does not necessarily agree with that of a
compressive element in an airplane hitting the ground or in a bridge
subjected to dead and live loads; nor do the initial and boundary con-
ditions assumed in Euler'c theory agree with those prevailing in the

testing machine.

The process of buckling in the testing machine was therefore

investigated with the aid of the dynamic equations of motion[SS]’[36]’[37].

In the analysis, the testing machine was idealized to be perfectly rigid

and its loading head was assumed to be descending at a constant velocity c.

The initial deviations of the center line of the column from the straight

12
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line of action of the compressive load were represented by a half sgine
wave of amplitude ep , where p 1is the radius of gyration of the
cross section (Fig. 7). Under these conditions the amplitude

Ymiddle = F = pf varies as a function of the non-dimensional time

E = (1/eE)(ct/L) as shown in Fig. 8. Here t is the time, L the

length of the column and € defined as

E 4
ey = T/ (1/0)" (2)

in 1is the Euler strain, that is the compressive strain (counted positive)
that corresponds to Euler's buckling load with a perfectly straight and
elastic column. The figure corresponds to a loading that is much more
rapid than can ever be achieved in the conventional testing machine.

The similarity number of loading & 1is given by

Q= er;(E/uc2) (3)

1

where W 1is the mass per unit volume of the material of the column,
and thus (E/u)l/2 = a 1is the speed of sound in the material of the
column. For steel and for aluminum alloys this speed is about 200,000

in. per second.

To obtain a representative value for ,Q in rapid loading
in the conventional testing machine, one may assume that a perfectly
straight and elastic column of 10 in. length and of a slenderness ratio
L/p = 100 1is brought up to its Euler load in 100 seconds of testing.
In this case the Euler strain €p is about 10™3 . The total displace-
ment of the loading head €L = lO-2 in. divided by 100 seconds gives

E
c = lO-h in. per second. With 7 = 10 and E/u = b x 1020 (in./sec)e,

13




Eq. (4) ylelds Q= U4 x 10lo . Buckling of the same colum in 10 seconds,

a speed seldom if ever reached in conventional testing, would reduce
Q to 4 x 108 . Hence the value of 2.25 of the figure represents a
much higher slenderness ratio or a much higher speed of loading than
those. of conventional tests. To obtain a comparable value of Q in
an actual test, the loading machine would have to be sped up to such
an extent as to cause buckling in one-thousandth of a second; then,

under the conditions given, the value of Q would be 4.

As Fig. 8 shows, under such rapid loading the lateral displace-
ments of the column lag behind those calculated from static considerations.

As a consequence, the load supvorted by the column can exceed the Euler

load considerably[38] . Figure 9, taken from a report by Erickson, Nardo,

Patel and Hoff[39]

,» Plots the theoretical values of the ratio of the
maximum load to the Euler load as a fuiction of the similarity number

of loading R and of the non-dimensional initial deviation amplitude e.
The circles in the diagram indicate experimental results obtained in a
specially designed and constructed rapid loading machine. Columns with

three values of the initial deviations were tested, namely with e= 10-1,

2 3

100° and 10~ These values were maintained with a tolerance of

310 per cent. The agreement between theory and experiment as shown in

N

Fig. 9 1is good.

It should be mentioned that the analysis loses its validity
when the time necessary to reach the maximum load becomes so short that
it is comparable to the time required for a pressure wave to travel from
one end of the column to the other. This is not the case in the examples

discussed. In one-thousandth of a second the pressure wave travels 200
inches while the length of the column is only 10 inches.
14




The effect of the interaction between pressure propagation along

the column and lateral displacements of the column was investigated by

Sevin[hol. The buckling of thin-walled circular cylindrical shells in

the testing machine was studied by Vol 'mir and Agamirov[hl]’[hal.

Buckling criteria

The practical meaning of stability

' When an engineer has completed the analysis of the state of
ctatic or dynamic equilibrium of a structure or machine, he would like
to know whether he can rely upon this equilibrium state in view of the
unavoidable inaccuracies of the manufacturing processes and in the
presence of disturbances of all sorts. The expert in applied mechanics
should be able to furnish him with an answer. If an answer sufficient
to the needs of the engineer can be given through the solution of a
classical eigenvalue problem of the Eulerian type, the expert can indulge
in mathematically elegant calculations and at the same time do a useful
Job for the engineer. If such an answer is insufficient for any reason,
it is necessary that the problem be set up analytically in such a manner
as to take into account external non-conservative loads, internal dis-
sipative mechanisms, initial deviations from the exact shape, disturbances
of a finite magnitude and whatever else it takes to obtain a satisfactory
soclution. After all, applied mechanics is a branch of the natural

sciences, and not a chapter of pure mathematics.

A very simple example should illustrate the difference between
practical and highly idealized conditions. A suitcase standing ir an

automc.ile is in stable equilibrium as long as the forward speed of the

L
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car is constant on a smooth road, but it is likely to fall rlat on the
floor when the driver brakes rapidly. The practical problem of stability
is not answered in this case by a solution based on the theory of small

disturbances.

A broad criterion proposed

To cope with the exigencies of real life, the follcwing

definition of stability is Lherefore proposed:

A structure is in a stable state if admissible finite
disturbances of its initial state of static or dynamic
equilibrium are followed by displacements whose magnitude
remains within allowable bounds during the required life-

time of the structure.

The magnitude and the number of admissible disturbances must
be determined from a statistical and probabilistic investigation of the
environment in which the structure will be used and due consideration
must be given to required safety standards and to economic factors.
Calculations of this kind are now commonly carried out when the fatigue

of airplanes is investigated in the presence of gust loads.

Allowable bounds of displacements are those which do not
interfere with the proper functioning of the structure. The lifetime
required for the structure is determined from considerations of an
economic nature, or, stated in a form that is more popular today, from
considerations of cost effectiveness. The pharaohs built the pyramids

toc last for eternity, but the buildings on Fiftn Avenue in New York

16




are replaced every thirty years or so by more modern ones. Transport

airplanes are generally required to last through 30,000 to 40,000 hours

of flying.

In the unalysis the probable deviations of the shape of the
structure from the perfect shape, caused by inaccuracies of manufacture,
must be taken into account. The same is true of inaccuracies of loading

and variations in material properties.

The tesk set appears to be overwhelming and naturally it should
be, and as a matter of fact it can be simplified substantially in almost
every practical case. But simplifications should be undertaken only
when they can be Justified, and the analyst should not begin with the
a priori notion that the stability of a practical structure can necessarily

be defined in the Eulerian manner.

Examples
Some of these thoughts were expressed by the author in his

[k3]. To illustrate the behavior patterns of

Colston Paper of 1949
typical; not perfectly elastic systems, the simple model of Fig. 10

was devised. It consists of a rigid lever of length L pivoted at the

bottom and loaded with a vertical force P at the top. The upper end of
the bar is supported laterally by a spring which may have elastic,
viscoelastic, elasto-plastic, or other properties. The stability of the
system is investigated by imparting, at time t = O , to the upper end
of the bar a norizontal veleccity v and by calculating the horizontal
displacement u from the initial vertical position during the ensuing

motion.
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When the structure is subject to creep, a first approximation
to its behavior can be had by attributing linearly viscoelastic properties
to the spring of the model. The displacements u (normalized through
division by the disturbance velocity v ) are plotted against time in
Fig. 11. Curve 1 corresponds to P = O; the oscillations are represented

by undamped sine curves in the absence of a compressive load.

In the figure, the compression increases as the number written
beside the curve increases, and for all non-zero values of the compressive
load the displacements “end to infinity as time tends to infinity.
According to the classical criterion all viscoelastic columns are
therefore unstable. However, for practical purposes a reinforced
concrete column in a building on Fifth Avenue is still stable if it
develops very large deflections only after a thousand years. Hence the
dynamic analysis should be used to determine the maximum displacements
that are likely to occur during the lifetime of the column; they have
to be calculated from the probable values of disturbance and .initial

deviation from the perfect shape.

It should be noted that the creep deformations of metal
structures are highly non-linear functions of the loads, and that in
the presence of nonlinear creep the deformations increase without bounds
at a finite value of the time, the so-called critical time. A survey of
the theories of buckling in the presence of non-linear creep was given

by the author[hh] in 1958.

An even more complex behavior pattern is exhibited by structures
in the presence of dry friction. In Fig. 12, curves 1 and 2 show the

displacements of the upper end of the bar under the same subcritical

18
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compressive load, but the friction is higher for curve 2 than for curve 1.
In both cases the motion stops, after some oscillations, at some distance
from the initial state of equilibrium. If this distance is too great for
proper functioning, the structure must be considered unstable in the
presence of the disturbance velocity v even though P is less than

the Euler load PE of the structure.

Curve 3 corresponds to the Euler load, and curves 4 and 5 to
a load P = l.lPE . In spite of the critical and supercritical magni-
tudes of the loads the displacements tend to a limit if the friction is
sufficiently high; the value of the fricition increases from curve 3
through curve 4 to curve 5. If these limiting displacements can be
tolerated by the structure, stability in a broad sense exists at and
above the Euler load. However, the displacements tend to infinity when

the friction is too low and P > P_ ; this is shown in curve 6.

E

Initially imperfect structures

In a very interesting discussion of the concept of stability
for elasto-plastic structures, Drucker and Onat[hS] stated that the
classical linearized condition of neutral equilibrium was really not
relevant to inelastic buckling. They also showed, through the analysis
of models, that essentially the same kind of information could be
obtained from a kinetic analysis of a perfect system as from a static
analysis of an imperfect system, provided the loads were of a static
or quasi-static nature. They indicated a prqference for the imperfection

approach because they found it generally simpler than the kinetic approach.

19
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Whenever there is evidence that no new, unexpected information
on stability can be gained from the kinetic method, evidently there is
no need to go to the trouble of using it. Thus in his classical analysis

Koiter[h6] »[47]

showed that the large reduction in the buckling stress of
circular cylindrical shells subjected to axial compression and of spherical
shells subjected to external pressure is a consequence of the great
sensitivity of these structures to small deviations from the perfect

shape. This sensitivity is illustrated in Fig. 13 which is reproduced

here from a paper by Madsen and the author[usl. Ail is the non-dimensional
amplitude of the initial deviations g of the median surface of the shell
from the ideal circular cylindrical shape. These deviations were assumed

to be defined by

(o]

. cos(27rx/Lx)

o
Wo = At cos(wx/Lx)cos(ny/Ly) + A

where t is the thickness of the wall of the shell, x and y are the
coordinates in the axial and circumferential directions, and Lx and
Ly are the wave langths in the same directions. This sensitivity can

be detected without the use of the kinetic approach.

The kinetic approach and the assumption of initial deviations
were included simultaneously in an analysis carried out by the author[w]
in his Wilbur Wright Memorial Lecture of 1953. The system studied was
an initially slightly curved column whose material followed a cubic (non-
linear) stress-strain law. If the testing machine is elastic, there are
three equilibrium states corresponding to each displacement ¢ = ct/Lt-:E
of the loading head in a limited range of the ¢ values. This fact was

already mentioned by von K‘rm(n“@] in his doctoral dissertation in 1910.
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For the particular value ¢ = 19 within this range the lateral
oscillations of the column following a disturbance can be characterized
by the phase plane diagram of Fig. 1. The technique of drawing such
diagrams is explained in detail in Stoker's book[so] on nonlinear vibra-
tions. L 1is the length of the column, p the radius of gyra%ion of
the cross section, and L/p the slenderness ratio of the column. The
amplitude of the lateral oscillations of the midpoint of the column is
ap and the initial distance of the midpoint from the line of action of

the compressive force is ep . S characterizes the elasticity of the

testing machine.

The curves are contour lines of constant total energy pdotted

over the plane of nan-dinensional lateral displacement a (abscissa) and

non-dimensional lateral velocity v/K** (ordinate). The three approx-
imately elliptic regions are hollows, and their bottom corresponds to
stable equilibrium in the presence of small disturbances. The two sides

of the figure are not symmetric with respect to the axis of ordinates
because the column was initially slightly curved, with the initial
nondimensional deviation emplitude e = 0.01 . The state of the system
at ¢ = 19 , reached through a quasi-static loading process, is represented
by the lowest point in the centrel hollow, a little to the right of the
origin of coordinates. If the middle of the column is now pushed to the
left or to the right a distance of 2.5p , Just beyond the saddle point,
and then let loose , oscillations around the stable equilibrium states
represented by the bottom of the hollows to the left or the right,
respectively, follow. Oscillations past all the three stable equilibrium
positions are also possible if the energy of the disturbance is sufficiently

large.
21
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The ordinary quasi-static loaa"tng analysis discloses only the
existence of the stable states of equilibrium of the central and right-
hand hollows, and the unstable state of equilibrium corresponding to the
saddle point between these two hollows. Obviously the left-hand portion
of the phase plane cannot be reached from the initial equilibrium state

without a disturbance.

It is worthwhile to call attention now to a possible source of
error in the use of the vibration method. It follows from the theory
of small oscillations that the frequency of the natural vibrations of a
system decreases and tends to zero as the loads acting on the system
increase and approach their first critical wvalue. The conclusion should
not be drawn from this fact that the value of the buckling load can
necessarily be detected experimentally by a corresponding method of
exciting vibrations. When the two pivoted ends of the column are held
a fixed distance apart, as in a rigid testing machine (see Fig. 7) with
the loading head fixed, the compression varies noticeably with the dis-
placemént of the column. The solution of the nonlinear differential
equation governing the vibrations is an elliptic function which degener-
ates into a trigonometric function as the amplitude of the vibrations
approaches zero. For finite amplitudes the frequency f does not
approach zero as P approaches PE .

This can be seen from Fig. 15 in which B 1is the amplitude
a of vibrations divided by the radius of gyration p of the section,
and the relative frequency is the frequency b divided by the frequency

bo in the absence of compression, with

b, = (mo/2i%) (e/u) /2 (1)
22
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and p the density of the material of the column. Figure 14 is taken
[51]

from the doctoral dissertation of Burgreen , & former student of the

author. Burgreen's experiments confirmed his theoretical conclusions.

A phenomenon in which initial deviations from the exact shape
play a paramount role is creep buckling. The initial deviations are
magnified by creep as time passes, and with metals, whose strain rate-
stress law is highly nonlinear, the solution of the nonlinear differential
equations indicates that the lateral displacements increase without
bounds as a critical value of the time is approached. Of course, this
critical value decreases as the compressive load P acting on the column

increases, and the critical time is zero when P = PE .

The fundamental phenomenon just described gets lost if the
structure is idealized to such an extent that it is considered perfect.

Probably this is the reason why a very elegant analysis by Rabotnov and

[52]

Shesterikov » in which the method of small perturbations was used,

ylelded results that are difficult to interpret physically, as was pointed

out by the au'thor[uh]’[ssl.

Conference papers on buckling criteria

It appears that the definition of buckling and buckling
criteria will be discursed at this Conference by J. J. Stoker and by

B. Budiansky, and possib.y also by J. P. La Salle and by V. V. Bolotin.
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The tangent modulus load

Statement of the problem

The dynamic analysis can be used to re-investigate the con-
troversy about the tangent modulus load. In 1946 Sha.nley[sh] published

a paper under the title The Column Paradox and in 1947 he followed it up

with a second publication entitled Inelastic Columh Theory[SS]. In these

publications he described consecutive stages of the buckling process of:
a column in the testing machine during which the decrease in the com-
pressive stress on the convex side of the column caused by bending is
balanced or exceeded by the increase in the average compressive stress
caused by the increasing displacements of the loading head of the testing
machine. The consequence of such a process is that the compressive stress
increases monotonically throughout the cross section, more rapidly on the
concave side and more slowly on the convex side. In the absence of a
reversal in the sign of the time derivative of the stress, that is, in
the absence of unloading, the stress increments are proportional to the
strain increments, and the factor of proportionality is the tangent

modulus Et defined as

E, = do/de (5)

where o0 is the stress and € the strain in the column (Fig. 16). The

value of E,Z 1is determined from the conventional stress-strain diagram

t
of a strain-hardening material. 1In the initial, perfectly elastic part
of the stress-strain curve the tangent modulus Et is equal to Young's

modulus E .

2l
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As long as there is no unloading and the displacements are
infinitesimal throughout the cross section, the column behaves as a
perfectly elastic column with a modulus Et . Hence Euler's buckling

stress

cr E 2

(L/p) :
where L 1is the length of the column, p the radius of gyration of its
cross section, and L/p the slenderness ratio of the column, is replaced

by the tangent-modulus buckling stress

2
il (7)

ocr t - (L/p)2

In contrast, Considére, Engesser and von K£rmgn assumed that
the average stress in the column remains constant during the buckling
process. Under these conditions the bending of the column increases
the stresses over part of the cross section and decreases them over the
remainder of the cross section. When the stress increases, Eq. (1) is
valid and the factor of propcrtionality is Et + In the remainder of
the section only the elastic part of the strain can be recovered and

the stress-strain law for unloading is

E = (dla/dc-:)o=o (8)

where E 1is Young's modulus. Hence the buckling stress is

TE, -
E 9
Per x (1/p)°

25




———

where Er is the reduced modulus whose value depends both on the stress-
strain curve and the shape of the column cross section. For an idealized
I section, consisting of two concentrated flanges of a total cross

sectional area A and of a web of vanishingly small area,the reduced

modulus is

E. = ZEEt/(E + Et) (10)
For a solid rectangular cross section the expression is
E, = hEEt/\/E + ~/Et)2 (11)

These formulas and the buckling of columns above the elastic limit of
the material were discussed in detail by the author in earlier public-
[38],[56]

tions

In his papers, Shanley drew the conclusion that since the column
is capable of buckling at the tangent modulus stress, which is always
less than the reduced modulus stress, it will buckle at the tangent
modulus stress and thus the classical critical stress of the reduced
modulus formula is erroneous. He confirmed this condlusion with the aid
of column tests whose results were closer to the curve representing the
tangent modulus buckling stress than to that representing the reduced
modulus buckling stress. It is to be noted that the difference between

the values according to the two curves was always small.

In the discussion of Shanley's second paper von Ktrm(n[sﬂ
attributed the differences in the critical values obtained through the
two processes described to the absence of a unique stress-strain rela-
tionship when the stress is higher than the limit of elasticity of the

material. He did not point out, however, that Shanley had posed a
26




Problem completely different from the classical problem solved by -

\;On Kdrmgh. 1In the classical problem the stability of a system, con<
sisting of a strain-hardening column and a.presv'cribed load, is investigated
by Euler's mgthod. Shanley's problem is the determination of the buckling
load during a loading process which, in,cidentally, was not completely
defined. It is not paradoxical that two different solutions are found

for two different problems.

The solution of von Kermén's classical problem is unique and
is still given by the reduced modulus formula (9). Its correctness can
neither be corroborated nor disproved by the conventional laboratory
test which is carried out under conditions related to but in many

respects different from the conditions assumed in the classical theory.

In the conventional laboratory test there is only one
characteristic quantity that can be and is observed by the practicing
+

engineer: the maximal value of the load. This maximal value is designated

in practice as the buckling load of the column.

The problem for the specialist in applied mecha.niqs is then to
investigate the loading process of the conventional column test. The
difficulties of such an investigation are manifold. The testing machine
hp,s mass and elasticity and thus, together with the column, forms a very
complex dynemic system. When the testing machine is very rigid compared
to the column, and when the rate of descent of the loading head is ~igidly
controlled, the following idealization appears permissible: The wovin;
head of the testing machine can be assumed to descend with a uniform

velocity c¢ .
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A second difficulty arises from the fact that columns cannot
be manufactured with perfect accuracy. Their centroidal line will always
deviate more or less from the theoretical straight line. At the same

time it is impossible in the laboratory to apply the compressive load

BT IR e g

perfectly centrally. In a theoretical investigation one can assume
l|perfection, and this is done in th2 clascical theory; but the loading
process in the laboratory can be r vroduced analytically only if the
practical deviations from the ideal system are given due consideration.
When the results have been obtained for the imperfect system, it makes
good sense to inquire how the results would change if the imperfections

were made to decrease in magnitude and approach zero.

In his investigation Shanley assumed that he was free to

M ANEMCAED ke S Bt £ 8 SR 5 T

control independently the compressive load acting on the column and the

beunding of the column. In this manner he was able to obtain lateral

-
“

disiiacements, which under idealized conditions mean buckling, without
stress reversal. (By stress reversal the practicing engineer means a
change in the sign of the time derivative of the stress.) This led to

thev: buckling stress assoclated with the tangent modulus.
|
The purpose of the present analysis is essentially to find out

whether in the conventioral laboratory test buckling can occur without
such a stress reversal. For this purpose the test of an imperfect
column in an idealized testing machine will be studied with the aid of

the dynamic equations of motion.

From the standpoint of Jjudging Shanley's work a significant

shortcoming of the study presented here is that it is based on <Jjuations

3
derived earlier by the author[ 5] for the dynamic buckling of perfectly

& 28
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elastic columns. The results can only show therefore whether stress
reversal precedes elastic buckling. Work is now in progress to extend

the investigations to strain-hardening materials.

Differential equation and boundary and initial conditions

The integro-differential equation governing the lateral

displacements of a perfectly elastic column tested in an idealized

[35]

testing machine was derived in an earlier publication In the

derivation it was as-umed that the time required for a pressure wave to
travel from one enu of the column to the other is short compared to the
time necessary for the lateral displacements to develop at buckling.
Under such conditions inertia effects in the axial direction can be

disregarded.

The initial deviations of the center line of the column (see
Fig. 7) from the straight line along which the axial compressive load P

is acting were assumed to be given by
Y=y, = pe sin(mx/L) when t=0 (12)
where y 1is the initial deviation, e 1is the amplitude of the non-
o
dimensionalized lateral deviation, p 1is the radius of gyration of the

cross section of the column, x 1is the axial coordinate, measured from

an endpoint of the column, and L is the length of the column.

The second initial condition was stated as

dy/dt = 0 when t=0 (13)

which means that the laleral velocity of points along the axis of the

column is zero at the beginning of the experiment.

8 .



The boundary conditions at the two ends of the column were

given by
2 /8.2
y = 3 y/dx =0 when x = 0,L (lh)
Under these conditions the assumption

y = of sin (mx/L) (15)

where y 1is the total distance of the centroid of a cross section of
the column from the straight line along which the load P 1is acting,
and f 1is the amplitude of the non-dimensional distances at time ¢t ,
satisfies the boundary conditions and makes it possible to carry out
the integration. Thus the partial integro-differential equation is

reduced to the following ordinary differential equation:

f"+n[(1-;)f-e+(1/h)f3-(1/h)e2f] =0 (16)
Here ¢ 1is the non-dimensionalized time defined as

£ = (eg)(et/n) (17)

¢ is the uniform velocity of the downward motion of the loading head,
t 1is the time elapsed from the beginning of the test, and the double
prime " indicates two successive differentiations with respect to ¢ .

The symbol €g is the Euler strain, that is the strain corresponding

to Euler's critical stress:
2 2
The parameter Q 1is defined as

a-= veeg(E/ uc?) (19)
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with E Young's modulus and ¢4 the mass of a unit volume of the material

of the column.

The initial conditions can be written under these circumstances
as

f=e £' =0 when t=0=¢ (20)

Another quantity of considerable interest is the value of the axial force

P acting along the column at time ¢t . It is given by the equation

P/Pp =& - (1/4)(£° - &) (21)
Here PE is the Euler load:
P, = BAey = T°EI/L° (22)

where A 1is the cross-sectional area and I the moment of inertia of

the cross section of the column.

As it was assumed in the derivation of this equation that the
curvature of the column could be represented by bay/ax2 , the equation
is valid only for moderately large lateral displacements; they should
not exceed, say, one-twentieth of the length of the column. This means
that for a column of a slenderness ratio L/p = 100 the non-dimensional

amplitude f should be restricted to

2] =5 (23)

Earlier solutions of the equations

The initial value problem represented by 1ifferential equation
(16) and the initial conditions (20) was solved in the paper mentioned[ssl

for arbitrary values of Q , but the numerical evaluation was carried
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out only for relatively small values of  , that is for loading speeds.
much greater than those occurring in the conventional column test in

[351,057] t1at with such high loading speeds

the laboratory. It was found
the maximum load reached in the column can significantly exceed the

Euler load.

As the loading speed is decreased, the non-dimensional dis-
placement f Dbecomes a monotonically increasing function of ¢ upon
which increasingly rapid oscillations are superimposed. For small
displacements permitting a linearization of the equations, these
oscillations are represented by Bessel functions of order 1/3 and -1/3
and of argument (2/3)91/2(l-§)3/2 . Between £ =1 and ¢ = O the
value of the argument varies between zero and 666 if Q = 106 which
still corresponds to a rather rapid loading process. In a slow loading
process characterized by § = 10lO s the range of the argument is about
666,666. 1In the former case there are about 200, and in the latter about

20,000 small oscillations between the beginning of the test and the time

when the Euler displacement is reached.

In accordance with a suggestion of George F. Ca}rier, the

slow loading process was studied in the Wilbur Wright Memorial lecture[ssl
with the aid of the B.W.K. method. It was established that rapid oscil-
lations of small amplitude about the static solution constitute a good
approximate solution of the problem; the number of oscillations found by
this méthod agreed well with the numbers derived from the linearized

solution valid &t the beginning of the loading process.
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Formulation for the new solution

Since the purpose of the present investigation is the deter-
mination of the times when stress reversal occurs and when the maximum
load is reached in a slow loading process, another asymptotic solution
appears to be advantageous. In the derivation of this new solution it

is convenient to introduce the reciprocal of Q :
0=1/2= (/P ueP/E) = (1/1°)(c/a)?(1/p)° (2b)

where a 1s the velocity of the propagation of sound in the material

of the column. It 1s given by

a= (B2 (25)

Equations (16) and (20) defining the initial value problem can then be

rewritten in the form

WE" 4 (1-8)F - e + (1/B)E° - (1/4)e’f = O
(26)
f=e ar/at = £'= 0 when £ =0

This problem will have to be solved for small values of w .

Maximum load and stress reversal

A necessary condition of a maximim of the load as given by

Eq. (21) is

a(p/py)/ae = © (e1)

from which it follows that

PP = 2 (28)
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This condition 1is equally valid, of course, for slow and for rapid loading,

and for all cross-sectional shapes.

In the calculation of stress reversal ié is convenient to con-

silder only columns of idealized I section. They consist of two concen-
trated flanges, each of area A2 , held a distance h = 2p apart by a
web of vanishingly smell cross-sectional area. It was shown in an earlier

paper[sel that the behavior of such columns resembles that of the practi-

|
:

cal metal columns of engineering much more than does the behavior of the

AT

columns of solid rectangular section usually investigated in the literature.

With the notation of the present paper the stress o on the convex side

1 ,
i of the column midway between the two end supports is
%
: Oony =(F/A) - (M/T) (29)
. With I = Ap2 and M= - EI[?e(y-yo)/BxEJ this reduces to
7

Opony = (B/A) = (Pg/A) (f-e) (30)

A necessary condition of stress reversal is

dg/ag = 0 (31) !
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which yields the equation
£'(24f) = 2 (32)

This equation is again valid for slow as well as rapid loading, but only

1 for columns of ideal I section.

Static loadigg

When the loading takes place extremely slowly, w can be set

equal to zero. Equations (26) become

34
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(1-g)fo -e + (1/&)1'2 - (1/1;)e21'O =0
(33)

f =e when ¢ =0
o

where the subscript o indicates static conditions. Differentiation

with respect to ¢ and solution for f(') yield

f
P = . (34)
1 +(3/8)f° - (1/4)€?
But Eq. (33) can be easily solved for ¢ 1in terms of
Lo k=le/t) - (1) 4 (1/4)e? (35)
Substitution in Eq. (3L4) yields
ef? :
' = 36)
°©  2e4fd
o
Substitutions in/Eq. (21) lead to
tions 1y/Eq. (21)
fo -e
P/Pp = 5 (37)
o
The derivative of this expression is
P'/p, = —22 (38)

g 2e + fs
o

The condition of a maximum of the load, given in Eq. (28),
becomes upon substitution from Eq. (36)

2f3
o

5 =2 (39)
2e+fo
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With a non-vanishing .e this 1is satisfied only as. ro tends to infinity.
On the other hand, the condition of stress reversal expressed in Eq. (32)
has a solution in the finite range of f . Equation (32) becomes upon

substitution and solution

- 12 (40)

b ¢ =
O rev

where the subscript o rev 1indicates stress reversal during static

loading. Substitution in Eq. (35) yields

1-¢ = el (1/h)es (1/4)e? (1)

rev

When e 1is small, this becomes

x o1/2
1-brey =€ (s2)

Thus stress reversal takes place close to, but below, ¢ =1 when e
is small, and the smaller e 1is, the closer the value of grev is to

1.

Since e 1is a small number for practical columns, with values
ranging perhaps from 10-3 to 1/’4 , stress reversal in very slow loading
occurs at values of fo less than unity, while the maximum load, that is
the buckling load of the practical engineer, is reached only as fo
approaches infinity, as long as e 1s a non-zero quantity however small.

Hence the stress reverses before the buckling load is reached.

In the limit, as e tends to zero, Eq. (35) reguces to

£ -1= (£ /2)° £ 40 (43)

o

This equation has no real solution when ¢ <1 . The only possible
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solutions are therefore

f =0 " when £ =1
[o]

(b4)

1/2

£, = 2(e-1) when ¢ 21

In the singular problem corresponding to e = 0 the columm
remains perfectly straight until ¢ = 1 18 reached. Beyond ¢ = 1 tvo
solutions exist. One is obtained if both e and fo are set equal to
zero in Eq. (33). 1In the other, fo increases parabolically with

increasing values of ¢t -1 . The load increases linearly from z&ro to

PE vhen ¢ 1ncreases from zero to one. From then on it remains constant,
as can be seen from Eq. (37), if lateral displacements develop. Similarly,
Eq. (38) shows that P' is zero, that is, the load versus end displace-
ment curve is horizontal wherever fo does not vanish, that is, when

£ 20 . 8Since for the perfect column, e = O , lateral displacements can

begin only at & = 1 , and if they do begin they develop under constant

load P , evidently stress reversal occurs at the instant of buckling.

To sum it up, in the real case of small initial deviations e
the maximum load, that is the buckling load, is reached only when the
displacements fo become very large. Stress reversal, however, occurs
before £ = 1 , and the value of ¢ = grev at the instant of reversal
approaches unity as e 1is decrcased and is allowed to tend to zero. 1In
the highly artificial case of the perfect column, e = O , one obtains
the result that the column remains straight and the stress remains uniform
until the time when ¢ = 1 . At that instant displacements may begin to

occur, but in th at case the stress is reversed in the convex flange

(Fig. 17).
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A few other expressions of interest are:

(1) At £=0
£ = £ —— L5
0™ ° ° 14(1/2)e? )

When e 1s small, the last expression becomes

f =€ (46)

(2) At _t=1
Equation (23) reduces to

2 5

efo+he-f0-0 (b7)
Solution of the quadratic yields

L 1/2

e = (2/r )4 -1+ 1+(fo/h) (48)

When fl;/h << 1, this becomes

3
e ~ fo/h (49)

Hence

£ = (be)t/® (50)

At the same time

y2/3
f(; = W’g (51)
P/Py = 1- (1/4)e2/3 P'/py = 1/3 (52)
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(3) For use in the next section it is necessary to calculate the second

derivative of fo twice with respect to & . The result is:

3 ke -f:
fo = ll»fo -—? (53)
(2e+f°)
Slow loading
In the case of slow loading it is worthwhile to attempt a
solution in the form
f=1f +uf, +uf, + w<<1 (54)
o) 1 2 "

Substitution in the differential equation (26) and consideration of the

fact that f = satisfies Eq. (33) lead to the equation
; 2 2
£ £ (1o (31 - (1/4)ef] = 0 (55)

Solution for fl glves

_f"
£ = ° 6
Lo1-g s (322 - (1/m)e® )

Substitution of quantities determined earlier leads to

£ = - 8, _O'E (57)

Again, one can calculate the derivative with respect to ¢ :

3pe° - h6ef: + ng
n (58)

3
(2e+fo)

VoL 5
fl = 16fo
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Similarly

g = 6h0e3 + 230he2f3 - 1lh0ef6 +7or9
1" (o] (o] (o]
f!' = 16fo B

1
3
(2e+fo)

(59)

If terms multiplied by w2 are next taken into account, one

obtains the equation
7 (1-8)F, + (3/8)F £2 +(3/8)£2¢, - (1/4)es, = O
1l 2 ol 02 2

Hence

2
1

271 ¢ +(3/8)52 - (1/8)e®

£ +(3/1+)fof

-f

This can also be written as

1" 2
£1+ (3>/l+)fofl

= f2 = 2f

2e+f3
o

or as

52ff> 3 2.3 6 9
f2 = 640e” - 2352¢ £ +116kefo -73f0 )

3
(2e+fo)
The derivative of f2 with respect to & 1is
8
6Lr
f1=—©° _ (80.‘5f12 -18,632e£2 +70,248e21° - 59, 8u0e s
2 3 11 o] o o]
(fo+2e)

Lo

(60)

(61)

(62)

(63)

; +egsoe")

(64)




In the calculation carried out in this section the successive

terms of the asymptotic series have been obtained without any consideration
of the initial conditions. It is necessary to check therefore what kind

of initial conditions the solution implies.

For small values of e , the nondimensional initial velocityl
f(’) ~ e ., If it remained constant, it would cause a nondimensional lateral
disvlacement equal to e by the time the Euler displacement is reached
(£=1). It is satisfactory therefore for our purpose to irvestigate a
column with the initial conditions fo = e and fc'» = e 1instead of
1’o = e and f(; = 0 . The higher order approximations f‘1 and f2
yield quantities proportional to and of the order of e for initial dis-
placement and velocity. As these rmust be multiplied by w, w2, o« s o

their effect on the practical initial conditions can be disregarded.

The equations derived in this section were used to determine
the history of loading for a number of combinations of the values of w
and e . Part of the results obtained on the Burroughs B5500 digital
computer of the Computation Center of Stanford University are shown in
Figs. 18 and 19. Only the portion of the history near & = 1 1is pre-
sented because elsewhere the various curves are practically identical with
one another and with the curves representing infinitely slow ]:oading

(w=0).

When w < 10-7 {where the equal sign corresponds to buckling
in 1.58 sec if the slenderness ratio is 100), the dynamic displacements
practically coincide with the static displacements, as can be seen from
Fig. 18. Por high:- speeds of loading systematic differences arise;

unfortunately the magnitude of the deviations from those characterizing

L1
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static conditions are so great that the validity of the asymptotic
solution is in doubt. The dynanic curves of Fig. 18 must be considered
only as an indication of the effects of higher loading speeds but the

numerical values should not ve relied ugpon.

In Fig. -19 the curve labeled w = 1077 coincides with the
static curve. Its maximal value is reached asymptotically as ¢
approaches infinity. With the higher speeds maxima occur in the neigh-
borhood of & = 1°. All the values showr—l in the two figures correspond

to e = 1070 ,

The values of f = frev and ¢ = grev corresponding to stress

reversal can be calculated without difficulty for all the cases investigated.

Some of the numerical results are collected in Table 1.

TABLE 1

-3
Values of ¢ and ¢ for e =10
————————— rev —— PSP —

max

and for various loading speeds

= grev gP'me
1.5><1o'6 0.969 0.989
107 0.969 0.995
1077 0.969 None
10'8 0.969 None
1079 0.969 None
-10
10 0.969 None

L2




The variation of grev with e for a fixed value of the load-
ing speed, namely w = 1077 » 18 given in Table 2. Values of ¢, .
max
are not listed as they could not be detected in the neighborhood c.
g =1. It must be assumed that the load curve rises monotonically and

approaches 1>/1>E =1 as § tends to infinity.

TABLE 2

Values of & for ws= 107 ard for various

rev
initial deviation amplitudes e

ew 107t 1072 1073 1074
£, = 0-T106 0.9025 9 0.9880
ey static = 0-T065 0.9025 0.9686 0.9900

It is concluded therefore that both in static loading and at
the usual speeds of the conventional testing machine, stress reversal
precedes the maximal load value when the column 1s perfectly elastic,
except that stress reversal and maximum load coincide for quasi-static
loading in the limit as the initial deviation from straightness approaches
zero. The same conclusions were drawn earlier in the Wilbur Wright
Lecture[38] on the basis of oscillographic recordings of tests carried
out in conventional testing machines. Further corroboration of these
conclusions is contained in a set of diagrams published for strainharden-
ing columns by Wilder, Brooks and bhthauser[”]. These results were

obtained for an idealized I -section with the aid of a digital computer.
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It 1is worth noting that the fact that buckling, as defined by
the practical engineer, in other words the attainment of the maximum
load in the testing machine, cannot take place before stress reversal,
can be derived directly from Eqs. (28) and (32) in the case of an elastic
column. Indeed, both f and f' are always positive in quasi-static
loading; this follows from the solution of Eqs. (33). Moreover, f
increases monotonically with ¢ under these conditions. Hence Eq. (32)
will always be satisfied before Eq. (28) is satisfied. The same can be
sald for loading at the usual speeds of the conventional testing machine
because the dynamic analysis has shown that the perturbation of the

quasl-static state is negligibly small under these conditions.

ons

Ziegler[S] concluded his paper in Advances in Applied Mechanics

by stating that in difficult problems the stability analysis must be
carried out with the aid of the kinetic criterion, and that initial
deviations from the exact shape must also be taken into account. The
writer of the present paper agrees with Ziegler. Whenever a simpler
analysis will obviously yield the correct answer, the 'more difficult
approach can be dispensed with, a‘.}s was argued by Drucker and Onat[hﬁ.
But there will always arise questions that cannot 7e answered with

assurance unless a complete analysis in the above sense 1s undertaken.

Fortunately this complete analysis can be undertaken now when-
ever necessary. With further developments in applied mathematics and in
computer design and techniques many problems that even now appear formi-

able will be reduced in difficulty to acceptable levels.
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