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Summary 

Dynamic stability is defined and classified, and examples 

are given for the various classes of problems.    Criteria are developed 

for practical stability and it is shown that in a practical elastic 

column tested in a conventional testing machine stress reversal always 

precedes the attainment of the maximum load.    The two coincide, however, 

in the limit when the initial deviations of the column axis from straight- 

ness and the loading speed tend to zero. 
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Introduction 

Thirty-five years ago, when he was working in the airplane 

industry, the author became aware of the importance of dynamic stability. 

As a beginning engineer, he had to carry out the complete dynamic, aero- 

dynamic, and structural analysis of a new training plane which was then 

being designed by four of his equally inexperienced colleagues.    It may 

be of interest to add that in one year's time the design and analysis 

were completed and the prototype manufactured and successfully test 

flown; the story of the difficulties encountered is not part of the 

present paper. 

In accordance with governmental airworthiness requirements, 

the static stability of the straight-line flight of the plane had to be 

checked under climbing, horizontal flying and gliding conditions.    This 

was done by plotting first against the angle of attack the aerodynamic 

wing moments with respect to an axis through the center of gravity of 

the airplane perpendicular to the plane of symmetry of the airplane. 

The curve obtained always indicates  instability for the conventional 

airplane:    If the angle of attack   a   of the wing is increased, the 

aerodynamic wing moment   M   also increases  (See Fig. l) .* 

The airplane is stabilized with the aid of the horizontal tail 

surfaces.    The change in the moment of the tail surface with respect to 

its own centroidal axis is insignificant compared to the change in the 

moment of the vertical upward force acting on the tail surface with 

Some of the aerodynamic and inertia forces necessary for dynamic 

equilibrium are not shown in the figure. 
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respect to the center of gravity of the airplane.    An increase in the 

angle of attack   a    of the wing causes an increase in the angle of attack 

of the tail surface vrhich increases the lifting force   ?„   of the hori- 

zontal tail surface.    This increment   ^P„   multiplied with the distance   h 

between the center of gravity of the airplane and the line of action of 

the tail force is a negative moment capable of counterbalancing the 

positive increment    AM    in the wing moment  if    h    and the area of the 

tail surface are sufficiently large.    The  Job of the designer-analyst 

was therefore to insure, under all normal flight conditions, that 

h(dPH/da)da   had a greater absolute value than    (dM/da)da . 

It was quite a revelation for the author to find out from the 

literature       that the condition mentioned was only a necessary but not a 

sufficient condition of an automatically stable flight of the airplane. 

If the dynamic equations of the motion of a rigid airplane in its own 

plane of symmetry are written for small oscillations about the steady-state 

conditions, and if the aerodynamic coefi'icieuts are inserted with their 

steady-state values, assumption of an exponential solution results in a 

quartic    Solution of the quartic can lead to any of the four different 

behavior patterns shown in Fig. 2.    Curve    a    indicates an asymptotic 

return to the initial state after a disturbance, which obviously means 

stability of the initial state.    A second stable pattern is shown in 

curve   b   where the disturbance is followed by damped oscillations and 

eventually a return to the initial state.    Curve   £   corresponds to static 

and dynamic instability.    Finally, the airplane characterized by curve    d 

is statically stable but dynamically unstable;  the static restoring force 

or moment acts in the sense necessary for stability but the ensuing 

oscillations increase in amplitude rather than damp out. 

2 



In the literature of structural stability one can also find 

systems that appear to be fully stable when investigated by static 

methods and whose displacements from the state of initial equilibrium 

nevertheless increase with time follc.ing a disturbance, Just as it is 

indicated in Fig. 2d.    Such systems evidently must be analyzed with the 

aid of the dynamic, or kinetic, method in which the motion of the system 

following a disturbance is studied.    The dynamic equations of motion are 

also needed when the loads applied to the structure vary significantly 

with time. 

[2] In a recent paper Herrmann and Bungay       followed visage 

established in the theory of aeroelasticity when they proposed that 

structural instability of type  (c) be designated as divergence, and that 

of type (d) as flutter. 

Definition and classification of problems of dynamic stability 

Definition 

In the introduction to the first English edition of their 

[3] monumental textbook entitled Engineering Dynamics. Biezeno and Grammel 

explain that,  following Kirchhoff's definition, dynamics is the science 

of motion and forces, and thus includes statics, which is the study of 

equilibrium, and kinetics, which treats of the relationship between 

forces and motion.   According to this interpretation of the meaning of 

the words,  the dynamic test of equilibrium mentioned in the Introduction 

of this paper should be called a kinetic test, and this is indeed the 

[4] 
terminology adopted by Ziegler        in his studies of the stability of 

non-conservative systems.    But dynamics is generally accepted as the 



antonym of statics in everyday usage, and this is the sense in which it 

is used in the title of the International Conference on Dynamic Stability 

of Structures. 

A number of significantly different concepts can be included in 

the meaning of the term dynamic stability of structures.    One of them is 

the stability of motion of an elastic system subjected to forces vaat are 

functions of time.    Another is the study of the stability of a system 

subjected to constant forces as long as the study is carried out with 

the aid of the dynamic equations of motion;  such an investigation is 

designated by Ziegler as a stability analysis with the aid of the kinetic 

criterion. 

In this paper any stability problem analyzed with the aid of 

Newton's equations of motion, or by any equivalent method, will be 

considered a dynamic stability problem. 

The classification of the problems that follow is not funda- 

mental in any sense of the word.    Its purpose is simply to group together 

problems that are usually treated by similar mathematical methods, or 

analyzed by the same group of rebearch men.    A more fundamental cxäC'ifl- 

cation could be based on the principles proposed by Ziegler        in his 

article in Advances in Applied Mechanics. 

Parametric resonance 

Among the problems of the dynamic stability of structures 

probably the best known subclass is constituted by the problems of 

parametric excitation, or parametric resonance.    A typical example is 

the initially straight prismatic column whose two ends are simply 

k 



supported and upon which a periodic axial compreasive load is acting 

(Fig. 3). Such a colunm is known to develop lateral oscillations if its 

straight-line equilibrium is disturbed. Depending upon the magnitude 

and the frequency of the pulsating axial load, the linear Hill or Nathieu 

equation defining the lateral displacements of the column may yield 

bounded or unbounded values for these displacements. The structural 

analyst can be useful to the design engineer if he points out the 

regions in the frequency-amplitude plane that must be avoided if the 

column should never deviate noticeably from its initial straight-line 

equilibrium configuration. 

According to Bolotin  , the first solution of this problem 

was given by Beliaev   in 192^; this was followed by an  analysis by 

Krylov and Bogoliubov^ J in 1935.  In the United States, Lubkin'9^, 

a student of Stoker, solved the problem in a doctoral dissertation 

submitted to New York University in 1939J the results are more easily 

available in an article by Lubkin and Stoker   printed in 19^3. The 

results of a theoretical and experimental investigation of the subject 

were published by Utida and Sezawa1   in 19^0. Another early solution of 

[12] 
the parametric excitation problem of the column is due to Mettler 

(I9U0); as a matter of fact, this problem is called Mettler's problem in 

Ziegler's comprehensive work on elastic stability. The parametric excita- 

ri3l 
tion of thin flat plates was first discussed by Einaudi1  J (1936). A 

rather complete treatment of known solutions of the parametric resonance 

problem can be found in a book by Bolotin   in which the effects of 

friction and nonlinearities are also discussed. 



It is perhaps unfortunate that the phenomena described have 

become known as parametric excitation, or parametric resonance.    This 

terminology refers to the mathematical structure of the equations defining 

the phenomena, and fails to define or allude to the physical nature of 

the phenomena.    Perhaps the terms sympathetic excitation or sympathetic 

resonance would be more descriptive and acceptable. 

It is worth noting that in his book already mentioned, Bolotin 

defines dynamic buckling much more restrictively than was done in this 

paper.    He includes only the phenomena of parametric excitation and 

resonance in his definition. 

Two papers to be presented at this conference deal, at least 

in part, with parametric resonance, namely those by E. Mettler, and by 

D. A. Evensen and R. E. Fulton.    Possibly the presentations by V. V. 

Bolotin and by S. T. Ariaratnam, which treat of stability under random 

loading, will also make use of the techniques employed in parametric 

resonance studies. 

Impulsive loading 

In the second subclass of the dynamic stability of structures, 

buckling under step loading and impulsive loading are studied.    Because 

of the difficulties of tracing the origins of these studies, only a few 

random examples of solutions will be given here.    Two early papers 

dealing with the danger of failure of a column subjected suddenly to a 

constant axial compressive load which is suddenly removed after a 

[IM finite time interval of action were published by Kbning and Taub        , 

and by Taub        , respectively, in 1933.    Their results showed that a 



suddenly applied load can cause collapse even if it is smaller than the 

Euler load.   At the same time, the column need not be damaged by a suddenly 

applied load greater than the Euler load if the load is removed after a 

sufficiently short time. 

The author of the present article, together with Victor Bruce        , 

prepared a paper for the Eighth International Congress of Applied Mechanics 

held in Istanbul in 1952 in which the snap-through buckling of a laterally 

loaded perfectly elastic flat arch (see Fig. k) was studied under step 

loading and impulsive loading.   A diagram showing some of the results 

obtained for a particular case is reproduced in Fig. 5« 

The figure contains the equipotential lines of a system con- 

sisting of a flat arch and a suddenly applied lateral load Q that is 

distributed according to a half sine wave along the arch.    The initial 

rise    y = ep    of the arch of the example is such that    e = 8 ; •'o max        M r ' 

and    p    is the radius of gyration of the cross section of the arch. 

The magnitude of the lateral load was so selected as to be critical, 

that is Just sufficient to cause snap-through buckling, if the load is 

suddenly applied and then maintained constant for all times    t  .   Along 

each equipotential line the strain energy stored in the arch less the 

work done by the applied load is constant. 

The equipotential lines can be regarded as the contour lines 

of a topographic map of the potential energy surface.    The abscissa 

r-,  = y-,        /p    is the non-dimensional amplitude of the displacements 

according to the first symmetric mode (one half-sine wave), and 

r? = yp     T/P    ^s *he corresPondin8 quantity according to the first 

antisymmetric mode (two half-sine waves). 

7 
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The undisplaced position corresponds to 'o = ^ ^"^ ri ■ e«8. 

To the left of this position is a shallow hollow; at its  bottom the 

potential energy surface has a minimum which corresponds to stable equil- 

ibrium near the unloaded position of the arch. Farther left, at r, ■ 1, 

r- = 0 there is a hilltop where the equilibrium is unstable, and at 

about r = -9» r = 0 there is a much deeper hollow; this point of the 

map corresponds to stable equilibrium in a position beyond the straight 

line connecting the end points of the arch. If the load is large enough, 

the arch can snap through into this position. 

The surface has no maxima or minima except along the axis of 

abscissae. This implies that no stable equilibrium is possible in the 

presence of displacements according to the antisymmetric mode. One 

unstable equilibrium position exists, however, near r, = 5, r0 = 3 

where the surface has a saddle point. The critical nature of the diagram 

is manifested by the fact that the initial position characterized by 

r1 = 8, r = 0 is connected with the saddle point by a contour line. 

For a slightly lower value of Q than Q ..  the saddle point would 

correspond to an energy level higher than that of the initial point; 

hence the arch would be unable to reach the saddle point without a 

finite disturbance. 

With Q = Q   an infinitesimal disturbance in the first 
^cr 

antisymmetric mode can start the arch moving toward the state represented 

by the saddle point. If it reaches the saddle point and then continues 

to the left and upward along the dotted line, it is likely to descend 

through the ravine to the stable state of equilibrium in the snapped- 

through position. Along this steepest path of descent the arch gathers 

8 



speed and both f, and f  change rapidly in absolute value. The arch 

cannot stop therefore in the snapped-through state but must continue to 

move as its kinetic energy is now ^uite high. In a real system this 

energy will be transformed gradually into heat in consequence of friction 

and eventually the arch will come to rest in the snapped-through position. 

It is of interest to note that in the case treated snap through 

can take place only with the aid of the antisymmetric mode even though 

the initial and final states are entirely symmetric; in an experiment 

the presence of the antisymmetric mode might not even be noticed because 

of the speed of the motion. In the absence of the antisymmetric mode, 

however, the energy of the arch would have to climb over the high 

barrier of the symmetric unstable equilibrium state which could be 

avoided when the arch passed through the antisymmetric mode. 

The recent technical literature comprises many articles belonging 

to the subclass of impulsive loading. Among them may be mentioned elastic 

FIT! fiSl 
analyses of shallow shells by Grigolyuk   and by Humphreys and Bodner   , 

and an analytical study of imperfection-sensitive elastic structures by 

[191 Budiansky and Hutchinson   . Essentially experimental investigations 

of the collapse of thin-walled circular cylindrical shells under axial 

r poi r 211 
impact were presented by Coppa   and by Schwieger and Spuida 

Numerical methods to predict the dynamic deformations of beams, rings, 

plates and shells of revolution were developed by Witmer, Balmer, Leech 

[22] 
and Pian   . The elastic behavior of circular cylindrical shells under 

[23] [2k] 
lateral impact was studied by Goodier and Mclvor    and by Lindberg   ; 

the latter also gave results of experiments. Plastic deformations were 

also taken into account and results compared with experiment by 

[251 
Abrahamson and Goodier   .      r> 



At the present conference a number of papers will be presented 

that belong, at least In part, to Subclass 2. Their authors are 

B. Budlansky; J. N. Goodler; J. M. T. Thompson; D. A. Evensen and 

R. E. Fulton; and T. H. H. Plan, H. Balmer, and L. L. Bucclarelll, Jr. 

Circulatory loads 

The third subclass Is constituted by problems of buckling 

under stationary circulatory loads, that is, under loads not derivable 

from a potential and not explicitly dependent on time. The best-known 

example in this field is Beck's problem which is shown in Fig. 6. The 

problem was discovered by Pflüger   , explained by Zlegler   , and 

solved by Beck1  , a doctoral student of Zlegler. A static linear 

analysis leads to the conclusion that a column, one of whose ends is 

rigidly fixed while the other is subjected to a compressive load of 

constant magnitude P whose direction is always tangent to the deformed 

column axis, does not buckle, whatever be the magnitude of the load. 

On the other hand. Beck's study of the flexural vibrations disclosed 

that the amplitudes remain small when the initial displacements and 

velocities are small, provided that P is less than the critical value 

Pcr = 20.05 Ul/L
2) (1) 

where El is the bending rigidity and L the length of the column. 

When F > P  , the amplitude of the oscillations Increase without 

bounds.  It must be concluded therefore that the column is unstable in 

the presence of lateral disturbances of its original state of equilibrium. 

It Is worthy of note that P   of Eq. (l) is about eight times the Euler 

load of the column (which is calculated for a load P that always 

remains vertical). 
10 



Ziegler   stated in his paper already cited that non-conservative 

stability problems must be analyzed by means of the dynamic criterion of 

buckling as the two commonly used static methods of determining critical 

loads can lead to incorrect results. One of these methods consists of 

finding, by means of the static equations of equilibrium, a static 

equilibrium state in the immediate neighborhood of the state whose 

stability is being Investigated. In the other method the total potential 

energy of the system is studied; the lowest load under which this energy 

ceas  to be positive definite is the critical load. 

In 1956 the criteria of elastic stability were analyzed at 

[5] [29] 
some length by Ziegler   who already in 1952    had discussed the 

concept of a conservative system. An additional study of stability in 

[2] 
the presence of non-conservative forces is due to Herrmann and Bungay 

2 Finally, a recent book by Bolotin is entirely devoted to the buckling 

problems of non-conservative systems.    Bolotin attributes to    Nikolai 

the discovery of the insufficiency of the static approach to the calcula- 

tion of the critical load of a particular elastic system, namely a bar 

subjected simultaneously to compression and torsion. 

At the present conference, G. Herrmann and S. Nemat-Nasser 

will discuss the buckling of non-conservative systems. 

Aeroelastic problems 

Interaction between the non-conservative aerodynamic forces 

and the elastic structure of airplanes and missiles can give rise to 

theoretically interesting and practically important problems.    They are 

dealt with, as a rule, by specialists known as aeroelasticians.    Two 

11 
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well-known books in this field are those written by Fung   and by 

[34] 
Bisplinghoff, Ashley and Halfman   . Only one paper falling into this 

category will be presented at this conference, namely the one prepared 

by Y. C. Fung and M. Olson. 

Buckling in the testing machine 

Of the many possible time-dependent loading conditions not 

yet mentioned, one, buckling under the conditions prevailing in the 

ordinary testing machine, presents special interest. In industry, 

most compressed structural elements are designed on the basis of Euler's 

theory of buckling, or with the aid of one of the modifications of 

Euler's theory to account for inelastic behavior. The practical suit- 

ability of these theories is Judged, as a rule, on the basis of a 

comparison with buckling loads obtained in the conventional mechanical 

[35] or hydraulic testing machine.  In 19^9 the author    drew attention to 

the fact that the behavior of the dynamic system consisting of testing 

machine and test column does not necessarily agree with that of a 

compressive element in an airplane hitting the ground or in a bridge 

subjected to dead and live loads; nor do the initial and boundary con- 

ditions assumed in Euler'^ theory agree with those prevailing in the 

testing machine. 

The process of buckling in the testing machine was therefore 

investigated with the aid of the dynamic equations of motion       '   , 

In the analysis, the testing machine was idealized to be perfectly rigid 

and its loading head was assumed to be descending at a constant velocity c 

The initial deviations of the center line of the column from the straight 

12 
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line of action of the compressive load were represented by a half sine 

wave of amplitude ep , where p is the radius of gyration of the 

cross section (Fig. ?)■ Under these conditions the amplitude 

y . ,,. = F = pf varies as a function of the non-dimensional time 
"'middle 

| = {!/£„)(ct/L)    as shown in Fig. 8. Here t is the time, L the 
St 

length of the column and    €    , defined as 

€E = 7r2/(L/p)2 (2) 

in is the Euler strain, that is the compressive strain (counted positive) 

that corresponds to Euler's buckling load with a perfectly straight and 

elastic column. The figure corresponds to a loading that is much more 

rapid than can ever be achieved in the conventional testing machine. 

The similarity number of loading ß is given by 

a = TT^E/UC2) (3) 

where ^ is the mass per unit volume of the material of the column, 

l/2 and thus  (E/U) '  = a  is the speed of sound in the material of the 

column. For steel and for aluminum alloys this speed is about 200,000 

in. per second. 

To obtain a representative value ^pr ,fl    in rapid loading 

in the conventional testing machine, one may assume that a perfectly 

straight and elastic column of 10 in.  length and of a slendemess ratio 

L/p = 100    is brought up to its Euler load in 100 seconds of testing. 

In this case the Euler strain    e      is about    10"3  .      The total displace- 

c 

-2 

k   . „.^  2   1rt   ..    „/ ,   ,«10/,  /   s2 

ment of the loading head e„L =10  in. divided by 100 seconds gives 

= 10" in. per second. With TT = 10 and E/|i = ^ x 10  (in./sec) , 

13 



Eq.  (4) yields   fl « 4 x 10      .     Buckling of the same colunn in 10 seconds, 

a speed seldom if ever reached in conventional testing, would reduce 
o 

Q   to   4 x 10    .      Hence the value of 2.25 of the figure represents a 

much higher slendemess ratio or a much higher speed of loading than 

those, of conventional tests.    To obtain a comparable value of    Q   in 

an actual test, the loading machine would have to be sped up to such 

an extent as to cause buckling in one-thousandth of a second; then, 

under the conditions given,  the value of   Q    would be   k . 

As Fig. 8 shows, under such rapid loading the lateral displace- 

ments of the column laß behind those calculated from static considerations. 

As a consequence, the load supported by the column can exceed the Euler 
r ■»Q 1 

load considerably        .    Figure 9, taken from a report by Erickson, Nardo, 

[39] Patel and Hoff        , plots the theoretical values of the ratio of the 

maximum load to the Euler load as a function of the similarity number 

of loading    12    and of the non-dimensional initieLL deviation amplitude   e. 

The circles in the diagram indicate experimental results obtained in a 

specially designed and constructed rapid loading machine.    Columns with 

three values of the initial deviations were tested, namely with    e= 10    , 

-2 -3 
10        and   10 "   .      These values were maintained with a tolerance of 

±10 per cent.    The agreement between theory and experiment as shown in 

Fig. 9 is good. 

It should be mentioned that the analysis loses its validity 

when the time necessary to reach the maximum load becomes so short that 

it is comparable to the time required for a pressure wave to travel from 

one end of the column to the other.    This is not the case in the examples 

discussed.    In one-thousandth of a second the pressure wave travels 200 

inches while the length of the column is only 10 inches. 

Ik 



The effect of the interaction between pressure propagation along 

the column and lateral displacements of the column was  investigated by 

Irical she] Sevin   . The buckling of thin-walled circular cylindrical shells In 

the testing machine was studied by Vbl'mir and Agamirov 

Buckling criteria 

The practical meaning of stability 

When an engineer has completed the analysis of the state of 

rtatic or dynamic equilibrium of a structure or machine, he would like 

to know whether he can rely upon this equilibrium state in view of the 

unavoidable inaccuracies of the manufacturing processes and in the 

presence of disturbances of all sorts. The expert in applied mechanics 

should be able to furnish him with an  answer. If an answer sufficient 

to the needs of the engineer can be given through the solution of a 

classical eigenvalue problem of the Eulerian type, the expert can Indulge 

in mathematically elegant calculations and at the same time do a useful 

Job for the engineer. If such an answer is insufficient for any reason, 

it is necessary that the problem be set up analytically in such a manner 

as to take into account external non-conservative loads, internal dis- 

sipatlve mechanisms, initial deviations from the exact shape, disturbances 

of a finite magnitude and whatever else it takes to obtain a satisfactory 

solution. After all, applied mechanics is a branch of the natural 

sciences, and not a chapter of pure mathematics. 

A very simple example should illustrate the difference between 

practical and highly idealized conditions. A suitcase standing ir an 

automc/die is in stable equilibrium as long as the forward speed of the 

15 



car is constant on a smooth road, but it is likely to fall flat on the 

floor when the driver brakes rapidly. The practical problem of stability 

is not answered in this case by a solution based on the theory of small | 

r 
disturbances. 

| 
i 

A broad criterion proposed 

To cope with the exigencies of real life, the following 
i 

definition of stability is therefore proposed: 
i 
s 

A structure is in a stable state if admissible finite 
i 

disturbances of its initial state of static or dynamic 

equilibrium are followed by displacements whose magnitude 

remains within allowable bounds during the required life- 

|    . time of the structure. 

The magnitude and the number of admissible disturbances must 

be determined from a statistical and probabilistic investigation of the 

environment in which the structure will be used wid due consideration 

must be given to required safety standards and to economic factors. 

Calculations of this kind are now conmonly carried out when the fatigue 

of airplanes is  investigated in the presence of gust loads. 

Allowable bounds of displacements are those which do not 

interfere with the proper functioning of the structure.    The lifetime 

required for the structure is determined from considerations of an 

economic nature, or, stated in a form that is more popular today,  from 

considerations of cost effectiveness.    The pharaohs built the pyramids 

to last for eternity, but the buildings on Fifth Avenue in New York 
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are replaced every thirty years or so by inore modem ones.    Transport 

alrplanee are generally required to last through 30,000 to 40,000 hours 

of flying. 

In the analysis the probable deviations of the shape of the 

structure from the perfect shape, caused by inaccuracies of manufacture, 

must be taken into account.    The same is true of inaccuracies of loading 

and variations in material properties. 

The tp.sk set appears to be overwhelming and naturally it should 

be,  and as a matter of fact it can be simplified substantially in almost 

every practical case.    But simplifications should be undertaken only 

when they can be Justified,  and the analyst should not begin with the 

a priori notion that the stability of a practical structure can necessarily 

be defined in the Eulerian manner. 

Examples 

Some of these thoughts were expressed by the author in his 

Colston Paper of 19^9   .  To illustrate the behavior patterns of 

typical, not perfectly elastic systems, the simple model of Fig. 10 

was devised. It consists of a rigid lever of length L pivoted at the 

bottom and loaded with a vertical force P at the top. The upper end of 

the bar is supported laterally by a spring which may have elastic, 

viscoelastic, elasto-plastic, or other properties. The stability of the 

system is investigated by imparting, at time t = 0 , to the tipper end 

of the bar a horizontal velocity v and by calculating the horizontal 

displacement u from the initial vertical position during the ensuing 

mot ion. 
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When the structure is subject to creep, a first approximation 

to its behavior can be had by attributing linearly viscoelastic properties 

to the spring of the model.    The displacements    u   (normalized through 

division by the disturbance velocity    v )    are plotted against time in 

Fig. 11.    Curve 1 corresponds to   P = 0; the oscillations are represented 

by undamped sine curves  in the absence of a compressive load. 

In the figure, the compression increases as the number written 

beside the curve increases, and for all non-zero values of the compressive 

load the displacements  tend to infinity as time tends to infinity. 

According to the classical criterion all viscoelastic columns are 

therefore unstable.    However, for practical purposes a reinforced 

concrete column in a building on Fifth Avenue is still stable if it 

develops very large deflections only after a thousand years.    Hence the 

dynamic analysis  should be used to determine the maximum displacements 

that are likely to occur during the lifetime of the column; they have 

to be calculated from the probable values of disturbance and initial 

deviation from the perfect shape. 

It should be noted that the creep deformations of metal 

structures are highly non-linear functions of the loads, and that in 

the presence of nonlinear creep the deformations increase without bounds 

at a finite value of the time, the so-called critical time.    A survey of 

the theories of buckling in the presence of non-linear creep was given 

by the author^     '   in 1958. 

An even more complex behavior pattern is exhibited by structures 

in the presence of dry friction.    In Fig.  12,  curves 1 and 2 show the 

displacements of the upper end of the bar under the same subcritical 
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compressive load, but the friction is higher for curve 2 than for curve 1. 

In both cases the motion stops, after some oscillations, at some distance 

from the initial state of equilibrium.    If this distance is too great for 

proper functioning, the structure must be considered unstable in the 

presence of the disturbance velocity   v    even though    P    is less than 

the Euler load   P_    of the structure. 

Curve 3 corresponds to the Euler load, and curves k and 5 to 

a load    P = !.!?„  .      In spite of the critical and supercritical magni- 

tudes of the loads the displacements tend to a limit if the friction is 

sufficiently high; the value of the fricition increases from curve 3 

through curve k to curve 5-     If these limiting displacements can be 

tolerated by the structure, stability in a broad sense exists at and 

above the Euler load.    However, the displacements tend to infinity when 

the friction is too low and    P > P    ; this is shown in curve 6. 

Initially imperfect structures 

In a very interesting discussion of the concept of stability 

[h5] for elasto-plastic structures,  Drucker and Onat stated that the 

classical linearized condition of neutral equilibrium was really not 

relevant to inelastic buckling.    They also showed, through the analysis 

of models, that essentially the same kind of information could be 

obtained from a kinetic analysis of a perfect system as from a static 

analysis of an imperfect system, provided the loads were of a static 

or quasi-static nature.    Ihey indicated a preference for the Imperfection 

approach because they found it generally simpler than the kinetic approach. 

19 



Whenever there is evidence that no new, unexpected infonnation 

on stability can be gained from the kinetic method, evidently there is 

no need to go to the trouble of vising it.    Thus in his classical analysis 

Koiter        * showed that the large reduction in the buckling stress of 

circular cylindrical shells subjected to axial compression and of spherical 

shells  subjected to external pressure is a consequence of the great 

sensitivity of these structures to small deviations  from the perfect 

shape.    This sensitivity is  illustrated in Fig. 13 which is reproduced 

here from a paper by Madsen and the author        .      A°      is the non-dimensional 

amplitude of the initial deviations    w      of the median surface of the shell 

from the ideal circular cylindrical shape-    These deviations were assumed 

to be defined by 

wrt = A°    t cos(Trx/L )cos(T7y/L ) + A., t cos(27rx/L ) 0        11 '   x '   y 20 '   x 

where    t    is the thickness of the wall of the shell, x   and   y    are the 

coordinates in the axial and circumferential directions,  and    L      and ' x 

L      are the wave langths in the same directions.    This sensitivity can 

be detected without the use of the kinetic approach. 

The kinetic approach and the assumption of initial deviations 

were included simultaneously in an analysis carried out by the author1 

in his Wilbur Wright Memorial Lecture of 1953.    The system studied was 

an initially slightly curved column whose material followed a cubic (non- 

linear)  stress-strain law.    If the testing machine is elastic,  there are 

three equilibrium states corresponding to each displacement    £ = ct/Lc 

of the loading head in a limited range of the   (   values.    This fact was 

[kg] 
already mentioned by von lufrmath in his doctoral dissertation in 1910. 
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For the particular value    | = 19   within this range the lateral 

oscillations of the column following a disturbance can be characterized 

by the phase plane diagram of Fig. Ik.      The technique of drawing such 

diagrams is explained in detail in Stoker's book on nonlinear vibra- 

tions.      L    is the length of the column,    p    the radius of gyration of 

the cross section, and    L/p   the slendemess ratio of the column.    The 

amplitude of the lateral oscillations of the midpoint of the column is 

ap   and the initial distance of the midpoint from the line of action of 

the corapressive force is    ep .     S    characterizes the elasticity of the 

testing machine. 

The curves are contour lines of constant total energy plotted 

over the plane of nairdiinensional lateral displacement   a (abscissa) and 

K        (ordinate).     The three approx- 

imately elliptic regions are hollows, and their bottom corresponds to 

stable equilibrium in the presence of small disturbances.    The two sides 

of the figure are not symmetric with respect to the axis of ordinates 

because the column was  initially slightly curved, with the initial 

nondimensional deviation amplitude    e = 0.01  .      The state of the system 

at    5 = 19 , reached through a quasi-static loading process, is represented 

by the lowest point in the central hollow, a little to the right of the 

origin of coordinates.    If the middle of the column is now pushed to the 

left or to the right a distance of   2.5p ,  Just beyond the saddle point, 

and then let loose, oscillations around the stable equilibrium states 

represented by the bottom of the hollows to the left or the right, 

respectively, follow.    Oscillations past all the three stable equilibrium 

positions are also possible if the energy of the disturbance is sufficiently 

large. 
21 



The ordinary quasi-static loaoftig analysis discloses only the 

existence of the stable states of equilibrium of the central and right- 

hand hollows, and the unstable state of equilibrium corresponding to the 

saddle point between these two hollows.    Obviously the left-hand portion 

of the phase plane cannot be reached from the initial equilibrium state 

without a disturbance. 

It is worthwhile to call attention now to a possible source of 

error in the use of the vibration method.    It follows from the theory 

of small oscillations that the frequency of the natural vibrations of a 

system decreases and tends to zero as the loads acting on the system 

increase and approach their first critical value.    The conclusion should 

not be drawn from this fact that the value of the buckling load can 

necessarily be detected experimentally by a corresponding method of 

exciting vibrations.    When the two pivoted ends of the column are held 

a fixed distance apart, as  in a rigid testing machine  (see Fig. 7) with 

the loading head fixed, the compression varies noticeably with the dis- 

placement of the column.    The solution of the nonlinear differential 

equation governing the vibrations is an elliptic function which degener- 

ates into a trigonometric function as the amplitude of the vibrations 

approaches zero.    For finite amplitudes the frequency   f    does not 

approach zero as   P   approaches    ?_,  . 

This can be seen from Fig. 15 in which    ß    is the amplitude 

a    of vibrations divided by the radius of gyration    p    of the section, 

and the relative frequency is the frequency   b   divided by the frequency 

b      in the absence of compression, with 

r^Uip/.^1/2 
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and   |i   the density of the material of the column.   Figure Ik is taken 

from the doctoral dissertation of Burgreen        , a former student of the 

author.    Burgreen's experiments confirmed his theoretical conclusions. 

A phenomenon in which initial deviations from the exact shape 

play a paramount role is creep buckling.    The initial deviations are 

magnified by creep as time passes, and with metals, whose strain rate- 

stress law is highly nonlinear, the solution of the nonlinear differential 

equations indicates that the lateral displacements increase without 

bounds as a critical value of the time is approached.    Of course,  this 

critical value decreases as the compressive load   P   acting on the column 

increases, and the critical time is zero when   P = P_ . 

The fundamental phenomenon just described gets lost if the 

structure is idealized to such an extent that it is considered perfect. 

Probably this  is the reason why a very elegant analysis by Rabotnov and 

[52] 
Shesterikov        ,  in which the method of small perturbations was used, 

yielded results that are difficult to interpret physically, as was pointed 

out by the author^     ^53^ 

Conference papers on buckling criteria 

It appears that the definition of buckling and buckling 

criteria will be diacut'sed at this Conference by J. J. Stoker and by 

B. Budiansky, and possibly also by J. P. La Salle and by V. V. Bolotin. 
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The tangent modulus load 

Statement of the problem 

The dynamic analysis can be used to re-investigate the con- 

troversy about the tangent modulus load.    In 19^6 Shanley1,       published 

a paper under the title The Column Paradox and in 19^7 he followed it up 

[551 with a second publication entitled Inelastic Column Theory       .    In these 

publications he described consecutive stages of the buckling process of; 

a column in the testing machine during which the decrease in the com- 

press ive stress on the convex side of the column caused by bending is 

balanced or exceeded by the increase in the average compress ive stress 

caused by the increasing displacements of the loading head of the testing 

machine.    The consequence of such a process is that the compressive stress 

increases monotonically throughout the cross section, more rapidly on the 

concave side and more slowly on the convex side.    In the absence of a 

reversal in the sign of the time derivative of the stress, that is, in 

the absence of unloading, the stress increments are proportional to the 

strain increments, and the factor of proportionality is the tangent 

modulus    E.    defined as 

Et = do/d€ (5) 

where    a   is the stress and    e    the strain in the column (Fig. 16).    The 

value of   E.    is determined from the conventional stress-strain diagram 

of a strain-hardening material.    In the initial, perfectly elastic part 

of the stress-strain curve the tangent modulus    E.     is equal to Young's 

modulus    E . 

2k 



'f-,. ._ •-V".   ; i . 

As long as there is no unloading and the displacements are 

infinitesimal throughout the cross section, the column behaves as a 

perfectly elastic column with a modulus E. . Hence Euler's buckling 

stress 

TE a cr E  /T/ X2 
(VP) 

(6) 

where L is the length of the column, p the radius of gyration of its 

cross section, and L/p the slendemess ratio of the column, is replaced 

by the tangent-modulus buckling stress 

TT E 

^=^? (7) 

In contrast, Considdre, Engesser and von Krfrmrfn assumed that 

the average stress in the column remains constant during the buckling 

process. Under these conditions the bending of the column increases 

the stresses over part of the cross section and decreases them over the 

remainder of the cross section. When the stress increases, Eq. (l) is 

valid and the factor of proportionality is E. .  In the remainder of 

the section only the elastic part of the strain can be recovered and 

the stress-strain law for unloading is 

E = (da/de)^ (8) 

where   E    is Young's modulus.    Hence the buckling stress is 

irE 
o     r =  S (9) 
Cr r      (L/p)2 
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where   E     is the reduced modulus whose value depends both on the stress- 

strain curve sind the shape of the column cross section.   For an idealized 

I section, consisting of two concentrated flanges of a total cross 

sectional area   A    and of a web of vanishingly small area>the reduced 

modulus is 

E   = 2EE /(E + E ) (10) 

For a solid rectangular cross section the expression is 

E = 4EE./7E + N/E. )2 (11) 

These formulas and the buckling of columns above the elastic limit of 

the material were discussed in detail by the author in earlier public- 

In his papery Shanley drew the conclusion that since the column 

is capable of buckling at the tangent modulus stress, which is always 

less than the reduced modulus stress, it will buckle at the tangent 

modulus stress and thus the classical critical stress of the reduced 

modulus formula is erroneous.    He confirmed this condlusion with the aid 

of column tests whose results were closer to the curve representing the 

tangent modulus buckling stress than to that representing the reduced 

modulus buckling stress.    It is to be noted that the difference between 

the values according to the two curves was always small. 

[57] 
In the discussion of Shanley's second paper von Kcfrnrfn 

attributed the differences in the critical values obtained through the 

two processes described to the absence of a unique stress-strain rela- 

tionship when the stress is higher than the limit of elasticity of the 

material.    He did not point out, however, that Shanley had posed a 
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problem completely different from the classical problem solved by 

von Kärmefo.    In the classical problem the stability of a system, con-* 

sisting of a strain-hardening column and a prescribed load,  is investigated 

by Euler's method.    Shanley's problem is the determination of the buckling 

load during a loading process which, incidentally, was not completely 

defined.    It is not paradoxical that two different solutions are found 

for two different problems. 

The solution of von Krfnnsth's classical problem is unique and 

is still given by the reduced modulus formula (9) •    Its correctness can 

neither be corroborated nor disproved by the conventional laboratory 

test which is carried out under conditions related to but in many 

respects different from the conditions assumed in the classical theory. 

In the conventional laboratory test there is only one 

characteristic quantity that can be and is observed by the practicing 

engineer: the maximal value of the load.    This maximal value is designated 

in practice as the buckling load of the column. 

Sie problem for the specialist in applied mechanics  is then to 

investigate the loading process of the conventional column test.    The 

difficulties of such an investigation are manifold.    'Hie testing machine 

has mass and elasticity and thus, together with the column, forms a very 

complex dynamic system.    When the testing machine is very rigid compared 

to the column, and when the rate of descent of the loading head is ^l^Mly 

controlled, the following idealization appears permissible}    The moving 

head of the testing machine can be assumed to descend with a uniform 

velocity    c  . 
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A second difficulty arises from the fact that columns cannot 

be manufactured with perfect accuracy.    Their centreidal line will always 

deviate more or less from the theoretical straight line.   At the same 

time it is impossible in the laboratory to apply the compressive load 

perfectly centrally.    In a theoretical investigation one can assume 

perfection, and thid is done in th» classical theory; but the loading 

process in the laboratory can be r produced analytically only if the 

practical deviations from the ideal system are given due consideration. 

When the results have been obtained for the imperfect system, it makes 

good sense to inquire how the results would change if the imperfections 

were made to decrease in magnitude and approach zero. 

In his investigation Shanley assumed that he was free to 

control independently the compress ive load acting on the column and the 

bending of the column.    In this manner he was able to obtain lateral 

displacements, which under idealized conditions mean buckling, without 

stress reversal.    (By stress reversal the practicing engineer means a 

change in the sign of the time derivative of the stress.)    This led to 

the*buckling stress associated with the tangent modulus. 
I 

The purpose of the present analysis is essentially to find out 

whether in the conventional laboratory test buckling can occur without 

such a stress reversal.    For this purpose the test of an imperfect 

column in em idealized testing machine will be studied with the aid of 

the dynamic equations of motion. 

From the standpoint of Judging Shanley's work a significant 

shortcoming of the study presented here is that it is based on c-juations 

[35] 
derived earlier by the author for the dynamic buckling of perfectly 
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elastic coluans. The results can only show therefore whether stress 

reversal precedes elastic buckling. Work is now in progress to extend 

the investigations to strain-hardening materials. 

Differential equation and boundary and initial conditions 

The integro-differential equation governing the lateral 

displacements of a perfectly elastic column tested in em idealized 

[351 testing machine was derived in an earlier publication   .  In the 

derivation it was assumed that the time required for a pressure wave to 

travel from one enu of the column to the other is short compared to the 

time necessary for the lateral displacements to develop at buckling. 

Under such conditions inertia effects in the axial direction can be 

disregarded. 

The initial deviations of the center line of the column (see 

Fig. 7) from the straight line along which the axial compressive load P 

is acting were assumed to be given by 

y = y = pe sin(Trx/L)     when   t = 0 (12) 

where y  is the initial deviation, e is the amplitude of the non- 

dimensionalized lateral deviation, p is the radius of gyration of the 

cross section of the column, x is the axial coordinate, measured from 

an endpoint of the column, and L is the length of the column. 

The second initial condition was stated as 

dy/dt = 0     when    t = 0 (13) 

which means that the lateral velocity of points along the axis of the 

column is zero at the beginning of the experiment. 
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The boundary conditions at the two ends of the column were 

given by 

y = a2y/öx2 = 0    when     x = 0,L (14) 

Under these conditions the assumption 

y = pf sin (TTX/L) (15) 

where   y    is the total distance of the centroid of a cross section of 

the column from the straight line along which the load   P    is acting, 

and   f    is the amplitude of the non-dimensional distances at time   t , 

satisfies the boundary conditions and makes it possible to carry out 

the integration.    Thus the partial integro-differential equation is 

reduced to the following ordinary differential equation: 

f,,-Ki[(l-e)f-e+(lA)f3.(lA)e2f] = 0 (16) 

Here    |    is the non-dimensionalized time defined as 

i =  (l/€E)(ct/L) (17) 

c is the uniform velocity of the downward motion of the loading head, 

t is the time elapsed from the beginning of the test, and the double 

prime " indicates two successive differentiations with respect to | . 

The symbol e  is the Euler strain, that is the strain corresponding 

to Euler's critical stress: 

€E = /(p/L)
2 (18) 

The parameter   fl    is defined as 

fl = Tr2eE(E/Mc2) (19) 
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with E Young's modulus and v   the mass of a unit volume of the material 

of the column. 

The initial conditions can be written under these circumstances 

as 

f = e f • = 0 when  t = 0 = | (20) 

Another quantity of considerable interest is the value of the axial force 

P acting along the column at time t .  It is given by the equation 

P/PE= | - (lA)(f2 - e2) 

Here P_, is the Euler load: 

(21) 

PE = EAe^. = vhl/l} (22) 

where   A   Is the cross-sectional area and   I   the moment of inertia of 

the cross section of the column. 

As it was assumed in the derivation of this equation that the 
2        2 curvature of the column could be represented by   d y/öx    , the equation 

is valid only for moderately large lateral displacements; they should 

not exceed, say, one-twentieth of the length of the column.   This means 

that for a column of a slendemess ratio   L/p ■ 100   the non-dimensional 

amplitude   f   should be restricted to 

If   5 5 (23) 

Earlier solutions of the equations 

The initial value problem represented by differential equation 

(l6) and the initial conditions (20) was solved in the paper mentioned 

for arbitrary values of fl , but the numerical evaluation was carried 
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out only for relatively small values of n , that is for loading speed«! - 

much greater than those occurring in the conventional column test in 

the laboratory. It was found   *    that with such high loading speeds 

the maximum load reached in the column can significantly exceed the 

Euler load. 

As the loading speed is decreased, the non-dimensional dis- 

placement f becomes a monotonlcally increasing function of | upon 

which increasingly rapid oscillations are superimposed. For small 

displacements permitting a linearization of the equations, these 

oscillations are represented by Bessel functions of order l/3 and -l/3 

i/o    3/2 
and of argument (2/3)n ' (l-|) '  .  Between | = 1  and £ = 0 the 

value of the argument varies between zero and 666 if n = 10  which 

still corresponds to a rather rapid loading process. In a slow loading 

process characterized by fl = 10  , the range of the argument is about 

666,666. In the former case there are about 200, and in the latter about 

20,000 small oscillations between the beginning of the test and the time 

when the Euler displacement is reached. 

In accordance with a suggestion of George F. Carrier, the 

fagl 
slow loading process was studied in the Wilbur Wright Manorial lecture 

with the aid of the B.W.K. method. It was established that rapid oscil- 

lations of small amplitude about the static solution constitute a good 

approximate solution of the problem; the number of oscillations found by 

this mtethod agreed well with the numbers derived from the linearized 

solution valid at the beginning of the loading process. 
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Fommlatlon for the new solution 

Since the purpose of the present investigation is the deter- 

mination of the times when stress reversal occurs and when the maximum 

load is reached in a slow loading process, another asymptotic solution 

appears to he advantageous. In the derivation of this new solution it 

is convenient to introduce the reciprocal of Q : 

u) = 1/ß = (l/7r2€|)(nc2/E) = (l/7r8)(c/a)2(L/p)6 (2U) 

where a is the velocity of the propagation of sound in the material 

of the column. It is given hy 

a = (E/n)l/2 (25) 

Equations (l6) and (20) defining the initial value prohlem can then he 

rewritten in the form 

wf" + (1-1 )f - e + (lA)f3 -  (lA)e2f = 0 
;      (26) 

f = e df/dj = f' = 0 when    | = 0 

This problem will have to he solved for small values of   u . 

Maximum load and stress reversal 

A necessary condition of a maximum of the load as given hy 

Eq.   (21) is 

d(P/PE)/dS = Q (27) 

from which it follows that 

ff' = 2 (28) 
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This condition Is equally valid, of course, for slew and for rapid loading, 

and for all cross-sectional shapes. 

In the calculation of stress reversal It Is convenient to con- 

sider only columns of Idealized I section. They consist of two concen- 

trated flanges, each of area A/2 , held a distance h « 2p apart by a 

web of vanlshlngly small cross-sectional area. It was shown In an earlier 
rcQi 

paper1 p J that the behavior of such columns resembles that of the practi- 

cal metal columns of engineering much more than does the behavior of the 

columns of solid rectangular section usually Investigated In the literature. 

With the notation of the present paper the stress a on the convex side 

of the column midway between the two end supports Is 

iwa(p/A)-(Mp/I) (29) 

With I = Ap2 and M = - El[ö2(y-y )/öx2] this reduces to 

aconv = (P/A)"(PE/A) (f"e) (30) 

A necessary condition of stress reversal Is 

da/d| = 0 (31) 

which yields the equation 

f'(2+f) = 2 (32) 

This equation Is again valid for slow as well as rapid loading, but only 

for columns of Ideal I section. 

Static loading 

When the loading takes place extremely slowly, u can be set 

equal to zero. Equations (26) become 
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(1-6 )f0 - e + (lA)f= - (lA)e2fo = 0 

f   » e when   6 «• 0 o 

(35) 

where the subscript    o    Indicates static conditions.    Differentiation 

with respect to    5    and solution for   f'    yield 

f 

"     1 - | + (3A)f2 - (1/U)e2 o 

But Eq. (33) can be easily solved for | In terms of f : 

1 - 6 . (e/f^ - (lA)f^ + (lA)e
2 (35) 

Substitution In Eq. (3U) yields 

0       2e + f3 
o 

Substitutions in^Eq.   (21) lead to 

P/PE = ^ (37) 

The derivative of this expression is 

P7PE - -^-3 (38) 
2e+ f o 

The condition of a maximum of the load, given in Eq. (28), 

becomes upon substitution from Eq. (36) 

2fi 

2e + f3 o 

^ = 2 (39) 

35 



WK*       it 

With a non-vaniBhlug   e    thla is satisfied only as.   fo   tends to Infinity. 

On the othef hand, the condition of stress reversal expressed In Eq.  (52) 

has a solution In the finite range of   f    .    Equation (32) becomes upon 

substitution and solution 

f = el/2 (UO) o rev x    ' 

where the subscript    o rev    indicates stress reversal during static 

loading.    Substitution in Eq.   (35) yields 

l-lrev= el/2- (lA)e+(lA)e2 (4l) 

When    e    is small, this becomes 

1-1       ^el/2 (1*2) ^rev x    ' 

Thus stress reversal takes place close to, but below, 6 = 1 when e 

is small, and the smaller e is, the closer the value of |   is to 
' ' ^rev 

1 . 

Since e is a small number for practical columns, with values 

ranging perhaps from 10   to l/k  , stress reversal in very slow loading 

occurs at values of f  less than unity, while the maximum load, that is 

the buckling load of the practical engineer, is reached only as f 

approaches infinity, as long as e is a non-zero quantity however small. 

Hence the stress reverses before the buckling load is reached. 

In the limit, as e tends to zero, Eq. (35) reßnceB  to 

| -1 = (fo/2)
2 fo ^ 0 (43) 

This equation has no real solution when | < 1 . The only possible 
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solutions are therefore 

f « 0 when S « 1 

-i)1/2 

m 
t   » 2(|-1) '    when 6 i 1 

In the singular problem corresponding to e = 0 the column 

remains perfectly straight until 6 « 1 is reached. Beyond | » 1 two 

solutions exist. One is obtained if both e and f  are set equal to 

zero in Eq. (33). In the other, f  increases parabollcally with 

increasing values of 6 -1 . The load increases linearly from zero to 

P_ when 5 increases from zero to one. From then on it remains constant, 

as can be seen from Eg. (37), if lateral displacements develop. Similarly, 

Eq. (38) shows that P' is zero, that is, the load versus end displace- 

ment curve is horizontal wherever f  does not vanish, that is, when 
o '      ' 

| 2 0 . Since for the perfect column, e = 0 , lateral displacements can 

begin only at | = 1 , and if they do begin they develop under constant 

load P , evidently stress reversal occurs at the Instant of buckling. 

To sum it up, in the real case of small initial deviations e 

the maximum load, that is the buckling load, is reached only when the 

displacements f  become very large. Stress reversal, however, occurs 

before | = 1 . and the value of | = t    at the instant of reversal 

approaches unity as e is decreased and is allowed to tend to zero. In 

the highly artificial case of the perfect column, e = 0 , one obtains 

the result that the column remains straight and the stress remains uniform 

until the time when 5=1. At that instant displacements may begin to 

occur, but in th at case the stress is reversed in the convex flange 

(Fig. 17). 
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A few other expressions of interest are: 

(1) At S = 0 

-■r----^; 

f = e 
o 

f' 
0  l+(l/2)e

2 
(^5) 

When e is small, the last expression becomes 

f* « e o 
(U6) 

(2) At £ = 1 

Equation (23)  reduces to 

e2f    + ke - f3 = 0 o o (^7) 

Solution of the quadratic yields 

e = (2/fo)<[-l + [-('»]1/2} 
When    f A « 1 , this becomes o' ' 

m 

e a r/k o' (^9) 

Hence 

f0 - M 
1/3 (50) 

At the same time 

.2/3 
(51) 

P/PE a 1 - (lA)e' 
2/3 P'/Pg = 1/3 (52) 
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(3) For use In the next section It Is necessary to calculate the second 

derivative of f  twice with respect to | . The result is: 

he -f3 

Slow loading 

In the case of slow loading it is worthwhile to attempt a 

solution in the form 

f = fo + u^ + ü)2f2 + . . . u « 1 (5U) 

Substitution in the differential equation (26) and consideration of the 

fact that    f      satisfies Eq.   (33) lead to the equation 

f^ + ^[l- | +(3A)f2 -(lA)e2] = 0 (55) 

Solution for f  gives 

-f" 
fi = h—7—2 ^6) 1  1 - | + (3A)f2 - (lA)e

2 

Substitution of quantities determined earlier leads to 

h - -  8fo \ (57) 
(2e+f5) 

Again, one can calculate the derivative with respect to    |  : 

c 32e2-U6ef3+5f6 

fi = - l6fo rr-^ (58) 
(2e+f3) 
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Similarly 

.   - 640e3+ 230l*e2f3 - llUOef6 +70f9 

*l - < —s—2—- (59) 

2 
If terms multiplied by w  are next taken into account, one 

obtains the equation 

. 

fj« +(l-|)f2 - (3/4)^ +(3/1;)^ - (lA)e2f2 = 0 (60) 
: 

Hence 
j 

| f" +(3A)f f
2 

l - f2= —l r1—2 (61) 2  l-S+(3A)^-(lA)e2 

This can also be written as 

f!, + (3A)f f? 

o 

or as 

.7 

f2-  ^ (6!+0e3 - 2352e2f3 +ll6Uef^ -73f^ ) (63) 

(2e-f.f3) 

The derivative of f  with respect to 5  is 

6Uf8 

f2 = 
(f3

+2e) 

2-^ (aoSf^2 - I8,632ef9 +70,2U8e2f^ - 59,8UOeV +8960eU) 

(61*) 
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In the calculation carried out In this section the successive 

terms of the asymptotic series have been obtained without any consideration 

of th* Initial conditions.    It is necessary to check therefore what kind 

of initial conditions the bolutlon implies. 

For small values of    e , the nondlmenslonal initial velocity 

f' ^ e  .    If it remained constant,  it would cause a nondlmenslonal lateral o ' 

disTjlacement equal to   e    by the time the Euler displacement is reached 

(  | = 1  ).    It is satisfactory therefore for our purpose to Investigate a 

column with the initial conditions    f   = e   and   f' = e    Instead of o o 

f   = e    and   f' = 0 .    The higher order approximations    f.,    and   f 

yield quantities proportional to and of the order of    e    for initial dis- 

placement and velocity.    As these must be multiplied by    w, u ,  .   .  .   , 

their effect on the practical initial conditions can be disregarded. 

The equations derived in this section were used to determine 

the history of loading for a number of combinations of the values of    w 

and    e   .     Part of the results obtained on the Burroughs B5500 digital 

computer of the Computation Center of Stanford University are shown in 

Figs.  l8 and 19.    Only the portion of the history near    5=1    is pre- 

sented because elsewhere the various curves are practically identical with 

one another and with the curves representing infinitely slow loading 

( w » 0  ). 

-7 When   u) < 10        'where the equal sign corresponds to buckling 

in I.38 sec if the slenderness ratio is 100), the dynamic displacements 

practically coincide with the static displacements, as can be seen from 

Fig.  18.    For higher speeds of loading systematic differences arise; 

unfortunately the magnitude of the deviations from those characterizing 
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static conditions are so great that the validity of the asymptotic 

solution Is In doubt.    The dynamic curves of Fig. 18 must be considered 

only as an Indication of the effects of higher loading speeds but the 

numerical values should not "oe relied upon. 

-7 
In Fig. 19 the curve labeled u = 10  coincides with the 

static curve. Its maximal value is reached asymptotically as | 

approaches infinity. With the higher speeds maxima occur In the neigh- 

borhood of |=1. All the values shown In the two figures correspond 

to e » 10'3 . 

The values of f = f   and § « (   corresponding to stress rev *      brev e        ^ 

reversal can be calculated without difficulty for all the cases Investigated. 

Some of the numerical results are collected in Table 1. 

TABLE 1 

Values of 5 rev and    | 
^max 

for   e = 10 "3 

and for various loading speeds 

CO *rev max 

1.5x10 -6 
0.969 0.989 

10-6 0.969 0.995 

10^ 0.969 None 

10-8 0.969 None 

10-9 0.969 None 

10-10 0.969 None 
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The variation of ( with e for a fixed value of the load- rev 
.7 

Ing speed, namely u> » 10  ,18 given In Table 2. Values of J___ 

are not listed as they could not be detected In the neighborhood c 

| ■ 1 . It oust be assumed that the load curve rises monotonlcally and 

approaches P/P_ = 1 as J tends to Infinity. 

TABLE 2 

-7 
Values of 6   for u » 10 ' and for various   "rev   ' 

Initial deviation amplitudes e 

e « 10"1 lO"2 10-3 10 

0.9025 -.      9 O.988O 

0.9025 0.9686 0.9900 

I     = 0.7106 rev 

5rev static 

It is concluded therefore that both in static loading and at 

the usual speeds of the conventional testing machine, stress reversal 

precedes the maximal load value when the column is perfectly elastic, 

except that stress reversal and maximum load coincide for quasi-static 

loading In the limit as the initial deviation from straightness approaches 

zero.    The same conclusions were drawn earlier in the Wilbur Wright 

[38I Lecture on the basis of osclllographic recordings of tests carried 

out in conventional testing machines.    Further corroboration of these 

conclusions is contained in a set of diagrams published for stralnharden- 

[591 ing columns by Wilder, Brooks and Mathauser        .    These results were 

obtained for an idealised    I - section with the aid of a digital computer. 
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It Is worth noting that the fact that buckling, as defined by 

the practical engineer, In other words the attainment of the maxlnum 

load In the testing machine, cannot take place before stress reversal, 

can be derived directly from Eqs.   (28) and (32) In the case of an elastic 

column.    Indeed, both   f   and    f'    are always positive In quasi-static 

loading; this follows from the solution of Eqs.   (33).    Moreover,    f 

Increases monotonlcally with    |    under these conditions.    Hence Eq.  (32) 

will always be satisfied before Eq.   (28) Is satisfied.    The same can be 

said for loading at the usual speeds of the conventional testing machine 

because the dynamic analysis has shown that the perturbation of the 

quasi-static state Is negligibly small under these conditions. 

Conclusions 

Zlegler       concluded his paper in Advances In Applied Mechanics 

by stating that in difficult problems the stability analysis must be 

carried out with the aid of the kinetic criterion, and that Initial 

deviations from the exact shape must also be taken into account.    The 

writer of the present paper agrees with Zlegler.    Whenever a simpler 

analysis will obviously yield the correct answer, the/more difficult 

[U5] approach can be dispensed with, as was argued by Drucker and Onat        . 

But there will always arise questions that cannot be answered with 

assurance unless a complete analysis in the above öense Is undertaken. 

Fortunately this complete analysis can be undertaken now when- 

ever necessary. With further developments In applied mathematics and In 

computer design and techniques many problems that even now appear forml- 

able will be reduced in difficulty to acceptable levels. 
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Fig. 1.    Change in Moment Equilibrium of Airplane in Consequence of 
Change in Angle of Attack 
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Fig. 2.    Response of Airplane to Disturbance 
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Fig. 8. Nondimensional Lateral Displacement Amplitude f as Function 
of Nondimensional Time in Very Rapid Loading (From Journal of 
the Royal Aeronautical Society) 
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Fig. 9«    End Load Ratio as Function of Nondimensional Time in Very Rapid 
Loading (From PIBAL Report 296 of the Polytechnic Institute of 
Brooklyn Department of Aeronautical Engineering) 



Flg. 10.    Buckling Model (From Symposium 
of the Colston Research Society 
on Engineering Structures) 
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Fig,   13.    Effect of Small Initial Deviations  from Perfect Shape on the 
Maximum Load Carried by Circular Cylindrical Shell (From 
Report SUMER 227 of Stanford University Department of 
Aeronautics  and Astronautics) 
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Fig.  1^.    Ihase Plane Diagram of Oscillations of Imperfect Column in 
Elastic Testing Machine Near Maximum Load (From Journal of the 
Royal Aeronautical Society) 
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