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SUMMARY

Two aspects of power flow associated with electromagnetic waves in plane-
stratified, dispersive, anisotropic media that are also lossless and linear are considered.
One aspect is the relation between group velocity and the velocity of energy transport of
surface waves in such media. It is shown that the group velocity of surface waves is
equal to the ratio of the real part of the complex Poynting vector, integrated over the
coordinate of stratification, to the corresponding iriegral of the stored energy density.
Thz second aspect is the relation between the dyadic surface impedance rz2presenting
either a slab ci plane-stratified mecdium above a perfecily conducting pluane or a scemi-
infinite region, the latter for the case of evanescent fields, and the pcwer flow in the

respective structures. The significance of the surface impedance and power relations

for suxface waves is discussed.

This rcsearch was supported hy the Office of Naval Research, Washington, D, C. ,under
Contract No. NONR 833(38). ARPA Order No. 529.
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INTRODUCTION

In this paper two aspects of the power flow associated with electromagnetic
waves in plane-stratified, anisotropic, dispersive media and their application to surface
wave propagation are considered. The first aspect is that of the relation between the
group velocity and the velocity of energy transport of surface waves; the second is the

relation between a dyadic surface impedance and the power flow and stored eaergy in the
structure it represents.

It is well known that monochromatic plane electromagnetic waves in a homogenecus,

dispersive, anisotropic medium that is also lossless and linear, e. g., the ionosphere for
small-signal propagation, carry power in the direction of the normal to the plane wave
dispersion surface. Specifically. the velocity of energy transport of plane waves in such
a medium is equal to the group veiscity, that is, the gradient in the wave number space
of the frequency. (1,2) This relation between the group velocity and the velocity of energy
transport finds an important application in the ray interpretation of the far fields radiated
Yy sources in the presence of homogeneous anisotropic media. (3)

It i= shown here that an analogous relation involving the group velocity holds for
the case of surface waves in plane-stratificd, dispersive, anisotrcpic media that are alsc
lossless and linear, in that the group velocity of surface waver that can propagate in such
a medium may be interpreted as the surface wa:e energy transport velocity. For such
surface waves, the direction as well as the magnitude of the r=al part s of the complex
Poynting vector is, in general, a function of 2z, thc coordinaie in the direction of strat-
ification. {An example of this dependencz is described in Refeicence {4)). Therefore, s
divided by the energy density cannot be identically equal to the surface wave group
velocity, which is a vector independent of z. It wili be shown, however, that the group
velocity of the surface wave is identical to the velocity of energy transport of the surface
wave taker. as a whole, i.e., the gradient in the transverse wave number plane of the
frequency is equal to the integral ovier z of s divided by th2 corresponding integral over
z of the stored energy density. In a marner analogous to that for plane waves in aniso-
tropic, homogeneous media, the relation between group velocity ana energy transport
velocity for surface waves shuuld prove useful in formulating a ray interpretation for the

{5, 6)

surface wave fields excited by a source.

The proof of the relation between the group velocity and the en21gy iransport

velocity is furnished for two corfigurations. In the first section ¢f this paper, the case
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considered is that of a plane-stratified mediun, filling 2il space, while the second sec..on
contains the proof for the case of a plane-stratified medium f{illing the hali-space above a
perfectly conducting plane at z=0.

In the third section of this paper, the relation between the dyadic surface imped-
ance at z=d, which represents a plane-stratified, lossless, anisoiropic medium filling
the region G < z<d and bounded at z=03 by a perfectly conducting plane, and the power
flow and stored energy in this reygion is considered. With the help of the develepments
of the first section, it is shown that the power flow and stored energy in the region
0 < z<d are directly related to the derivatives of the surface impedance, with respect
to transverse wave numbers and frequency, and to the components of the r.f. magnetic
field iransverse to z at z=d. The relation of power flow and energy to the surface react-
ance apply for all frequencies and real transverse wave ruinbers, not just thove acsociated
with surace waves. In particular, fcr surface waves propagating ahove a dyz2dic imped-

arnce plane, the power flow znd energy relations are shown to be significant in caiculating
the energy transport velocity.

The frurth section of this paper is devoted to a discussion of the dyadic surface
impedance representation cof a semi-infinite, plane-stratified, lossless, anisotropic
medium for ranges of frequency and transverse wave numbers for which the fields in the
medium are cvanescent at infinity. Again the power flow and stored energy relation
involviny the sorface impedance are ocbtained. The power division between the space
inside aad outside of a surface wave guiding stricture is determined in terrns of the dyadic
surface impedances defined in the thira and fourth _:ctions of the paper.

The Appendix treats brieiiy the dyadic admittance representation of a medium
above a perfecily conducting nlane. At thoce values uf frcquenty and traniverse wave
numbers where the imnpediance formalism breaks down, the admittzance formalism may,
in general, still be used. Power flow and stored energy relations in terms of the surface
admittance are given.

STRATIFIED MEDIUM FILLING ALL SPACE

A lossless, anisotropic, dispersive, plane-siratified mediui~ s assumed to fili
all space. It is unircrm in the x and y directions and its intcraction with 2 monochyu-
matic electromagneti~ field can be described in terms of the constitutiva parameters of
the medium. the dielectric tensor < and the permeability tensor . Since the medium
is lossless, ¢ and u are He:milian,(z' 7, 8) and because of the ass:.med uniformity in x
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and y, they ave independent of these coordinates. The tersors € and u arTe analytic
fu.-stions of the angular frequency . and are assumed to be continuolxs~functio'~.s of z
except for a possibly denumerable number of finite jumps. The ~» dependence of € and
4 is further assumed tu be such that the medium supports surface .v25 propagating

transversely to z. Such surface waves are solutions of the soiirce-{ree Maxwell equa-~
tions anrd have the formn

Emkywll felzik,,

-jk.cp
= e t - (1)

where € andh tend tc ~ero as |z| approaches infinity. As used th.oughout this paper
p=X
‘transverse wave vector. The vector aroplitudes e and h are required to be such that the
elactric and magnetic 2nergy densities, 2s well as Re(gxh*), are integrable on the

infirite interval -« <z < ~. Becausc the dependence of E and H on x and y is e'Jl-tt'i,

. ays 5 - L4 g
o¥ t Yy, vy is the position vector iransverse to z and ,1§t 501\, Xok is a real

the electric and magnetic energy dersities and Ex Em are independent of 5. Furthermore,
gince the field comnponents transverse to z, 2 and ht’ must be contmuous—in Z across
any jump in ¢ a1 M, they must be continuous functions of z. For simplicity, e andh

are assumed te be Rms quantities.

In the absence of sources, Maxwell's ec¢unations in a medium describe:d by ¢ and

u are

VxE = pr-E-

VxE:_ —quﬁ

whére the harmonic time dependence ej “' has been suppressed. Subs’ituting Eand H
from equation (1) into (2) results in six linear homogeneous equations in the six unknown
field components, four ordinary differential equations in the variable z and two algebraic
equations. For any particular medium that can support surface waves, these six equa-
tions will have solutions satisfying the cavity-type boundary conditions ¢=h=0 at |z| =,
a.ad possessing the integrability properties described above, only for restricted values

of the parameters E—t and @ that satisfy some functional relation of the form

WP



Dk 1) =0 (3)

where in general D is a regular functior of k and w. Relation (3) is the surface
wave diapersion relax -on ard determines the ,,ussmle surface waves that can propagate
transversely to z in the nerticular plane-stratified medium.

Let k and x bLe sach as to satiefy the surface wave dispersion relatien (3} and
coasider nelghnm ing values k + dk and ¢+ dy, also satisfying {(3). The fields of
that surface wave propagating w:th wave vecto: Et + d_lst at the frequency w+ dy are

giver, to first order in differential quantities, by

Ef{r; k, +dk,, .+ dg = E(r; k,, ) + 3Ei{r; k, )
=N 2 T =155 =15 Xy (4)

ln

(x5 k, + dk , w+dy) = H{r ko ) + 8H(r; ko)

whare the variation § symbolizes the differeatial operation
b=k, - Y +dpd (5)

with Vk =X, -SE—-+10 a% » and the partial derivatives of E and H are evaluated at

(kt' ). Since E and H are continuous functions of z for both sets of values (k )
and (k + dk ¢ .L+ duy), 1t is seen from (4) that the variations 5E and 5H must al"

be continuous functions of z. The differential equations that sE dnd 8H sahsfy can be
found by applying the variation 5 to Maxwell's equations. Recalling (5) and because £

and 4 do not depend on B—t' the variation on Maxwell's equations results in

Are

VXGE = jdy aif-g+j;;‘.:~ 55
. (6)
;.(m:l-
VxﬁE = jdy 3T ~_}i-jwu. 5!.}'
Consider now the identity
% %
7 {Ex sH + E x H')
SSH-VxELET-VxH4H - VxsE-E vxu' . (7




With the help of equations (2) ard (6), the right-hand side of (7) can be rewritten to give
the relation

q: £ x dud

S EHH o B 3

v- (“"xéF+5ExH)—-Jd1(E

A e

when the assumption that ¢ and are Hermitian is used to write 8k - o E"’ as

~

> #
E -¢.8E and sH- H_* as H -u - SH . The first term on the rlg‘xt -hand side of

(8) is twice the time average electric energy density We while the second is twice the

q q q )

time average magnetic energy density Wy (2.8,9) As pointed >ut, v, and w, are
independent of p. In terms of the tctal energy density w =w twp, equation (8) can then

be written

* ¥
V'(Ex5ﬂ+6§x§) = -j2Zwde . (9)

The divergence term on the left-hand sid: of (9) is now evaluated by expanding

8E and S§H and subsequently applying the V operator. With the kelp of (5) and (1), it
-jEta f
(6g-jd5t-p e} e -

8H = (sh - jdk, -~ h) e -

is seen that
3

The variations on the transverse vector amplitudes, .',el_ and 511 , ase contanous
functions of z since SEt' 5§t. e, and ht are,a fact that will n.avs useful laier.

Since e and h are independent of », using the above relations ons has

] b3
V- (E"x sH + sEx H)

b 3 % %
7-le xth+sexh -jdk -Plexh+exh)]

(ex6h+5exh)-32d}~ Dga—(z -E}-jZdlc_t

(11)

3 %= w®

where s{z) = Rele xh') is the real part of the complex Peynting vector ExH =exh .
It is easily seen that the term 2y 8 is independent of z, i.e., _5%(50' &) =0, since in
a source-free region filled with a loscsless medium, the divergence of the real part of the

Foynting vector is zero and, for the plane-stratified medium under discussion, s is




far

i f i # . . B
independent ~f ., so that o (_-50 s} = -a%(xo. s) = 0. Thus with the aic £ (11), equa-
tion (9) “ecomes

.1 £ "

In the derivation of {12}, the essential assumptions used are that the medium be
lossless and that it be plane-stratified so that waves of the form given in (1) satisfy the
source-free Maxwell equations. The assumption that (k ¢ ) and (l__(t + dgt, o+ dw)
satisfy the surface wave dispersion relation (3) serves to restrict the changes dl_<€ snd
dy in -lft and g to a surface in kt' ¢ space, so that 53t and 5ht will be continuous
functions of z for all -®< z <o and tend to zero as 'z[ —®,

Since the wave vector 5t+ dkt and the frequency :+ d: satisfy the surface
wave dispersion relation, to first order d.. = d_lft- Vk ;»(Et) where .::(kt) is the
solution of the dispersion relation (3). Using this expression for d., and after rear-
ranging, equation (J2) becomes

% =
J% %30'(5_xéh+53xh)=d5t~('.'.“7k ‘l’i) . (13)

The terr: on the left of (i3) does not vanish identically so that in gereral s # ka W

and hence in the surfa:e wave case Vk i cannot be interpreted as a locai energy \Eelocity.
-t
In order to eliminate tk: term on the left-hand side of (13) we now integrate this

relation and obtain

s
3 [ Lz (SxshtsexhVdz = ak, - W3 - S) (14)
where e @ .
s= | saz (15)
and -:
W = J'wdz (16)
-

Bdecause s_=z - s is indeprndent of 2z, as discussed above, and is zero at !z' =@,

2 0
csince e and h are zero there, 5. is zaro for ali values of z. Thus s, and hence §,

+ . . . . .
"Bec:use e, arnd ht are continuous functions of z, 2, S is a continuous function of =z

t
. d tuerefore -3% (30 - 8) cannct have a de'*a function behavior at the jumps of £or .




are purely transverse vectors.

Recognizing that

% *, * *
Zo-lexth+oexh, =z -(e xeh 46e,xh,) , (17)
and using the fact that [ }—'t' égt and 5ht are continuous functions of 2z, one has
-]
2 (e'x sh+ h'ldz = * x sh, + 10 8
[ 2z, (e"xsntsexhddz = z - (e, x sh + e, xh) ' (18)
-® -0

which vanishes as a consequence of the boundary conditions on e andh at |z} = =.
Hence,

ak, (WS s-5) = 0 (19)

and, since S is a purely transverse vector and dl_ct is arbitrary, it follows that

Ve v = S/IW . (20)
—t

Although the real Poynting vector s can vary in magnitude and direction with z,
the total real Poynting vector S is independent of z and represents the total surface
wave power flow across a strip normal to S, infinite in z and having unit width. The
terma W represents the total stored energy of the surface wave fields in an infinite
cylinder, parallel to z, whose x-y cross section has unit area. Equation (20) thus
states that the group vzlocity of the surface wave, Vk ¢» i8 equal to the velocity of
cnergy transport S/W of the surface wave as a wholé. This statement for the surface
waves ir plane-stratified media replaces the relation vki’ = s/w for plane wavee in
homogeneous anisotropic media and should be useful in the ray interpretation of the sur-

face wave fields excited by a sonrce in anisotropic plane-stratified media.

STRATIFIED MEDIUM ABOVE A PCRFECTLY CONDUCTING PLANE

The plane-stratified medium described in the first section is now asgumed to fill
the half-space above a perfectly conducting plane at z=0. Again we assume the
dependcnce of ¢ andpu to be such that surface waves of the form given in (1) can
propagate trans:/ersefy to the direction of stratification. The vector amplitudes e and h
of these waves tend to zero as z approaches infinity anc satisfy the boundary condition

o




3 3 . . *
e, - 0 at z=0. The (lectric and magnetic ¢nergy densities, as well as Re (e xh), are
now assurmed to be integrable on the semi-infinite interval 0 < z<w, As discusced in

the previous section, e  and Et must be continuous functions of z. Solutions of

Maxwesl's equations sattisfying the above conditions occur only for values of k ¢ and y
that obey a surface: wave dispersion relation, Ds(Et' w) = 0, valid for the eemi-infinite
medium.

As in the previous section, the fields at twe neighboring sets of values, (Et' w)
and (Et + dl_(t , » + dw), both of which satisfy the dispersion relation, are considered.
Using equation (4), the fields E and H at (l_<t+ dgt. wtdw) ave found, to first order,
in terms of the fields and their derivatives, with respert to kx' kY and 4, evaluated at
(k ¢ w). Since the variations ir the ficlds, $§E and §H , ir this prublem also satisfy (6),
2quation (13) holds in this cas~ as well. Because the terin ¢n the left-hand side of (13)
is, in general, not zero, Vk i again cannot be interpreted as a local surface wave energy
velocity., However, upcon iﬁltegration of (13) over the interval 0 < z <o, the left-hand
side vanishes and Vk i can again be interpreted as the velocity of energy transport of
the surface wave as_atwhole. To see this, one recognizes that since gt=0 at z=0, 65t
must also be zero there. Hence, 1sing equation (17) and recalling that e and h are czero

at z=®, itis seen that

[--] [~
3 # * _ ® * =
rvd—z-go (3x6§+6§xh)dz-_z'o-(gtxbhtb-ﬁstxﬁt) =0 . (21)
o o
Defining ®
w - dez (22)
o
and &
s= [sdz (23)

J

o
(S :heing a purely transverse vector since s_= 0) the integration of {13) over tke interv_l
0 <z <o gives, in view of (21),
0 = dk, - (WY 4-5S) . (24)
-t Et =

Again, because dkt is arbitrary, it ‘ollows that

vktm = S/W. . (25)




That is to say, for surface waves above a perfectly conducting plane, the group velocity

¥+ is equal to the velocity of energy transport S/W of the surtace wave as a whole. '

f‘.:

SURFACE IMPEDANCE AND POWER FLOW RELATIONS

When formulating steady-state electromagnetic problems involving (ields of the
form given in (1) in a lossless, plane-stratified anisotropic medium above a perfectly
conducting plane at z=0, it is sometimes profitable to represent the effect of the struciere
below a plane z=d > 0 on the fields ia the region z >d by a surface impedance dyaaic
at z=¢. The impedance dyadic Z may then be employed as an equivalent boundary con-
dition at z=d when solving for th-; fields in the region z > d. In this section the relation
between the derivatives of the impedance dyadic, with respect to the spatial wave numbers
kx and k_, and the power flowing in the region 0 < z <d will be established and the
significance of this relation for surface waves supported by such an ejquivalent impedance
plane will be pointed out. The relation between 3Z /3 u and stored energy in the region
2 < z<d will also be established. B

In order to define Z and to find its relation to power flow and stored energy in
the region 0< z< d, consi:leration is first given to the auxiliary problem of finding the
fields in this region when Et of the form given in (1) is specified at z=d. Thus, we look
in the region 0 < z < d for the solution of Maxwell's equations that satisf{ies the boundary

conditions

, E =0 (26)
at z=0 and j(l'"..'ft' 0)

H(r,t) = h - (27

4
at z=d. All values of Bt and ;, except those at which Z is singular, are considered
{for further discussion, see the Appendix). No restrictions are placed on the fields in the
region z >d. In fact, the medium filling the region above the plane z=d may be taken

to he arbitrarily stratified, since, with ﬂt rigidly prescribed at z =d, the medium does

If a second perfectly conducting plane at z=d > 0 is present, it is casily seen that (25)
is s:i&! wvalid for the ﬁe(}ds between the conducting planes if S and W are now taken as

S = :3 dz and W = | wdz. Thus for waves in a parallel plate wave guide filled with

o o
s plane-stratified, lossless, anisotropic medium, the group velocity is equal to the
velocity of energy transport.
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not affect the fields for 0 < z < d. The medium filling the rtegion 0 <z <d is assumed
to be lossless, uniform in x and y and characterized by ¢ and U, which are analytic
functions of u. ) )

Specification of the avove boundary conditions 1s sufficient, in general, to uniquely
determine the fields, and hence the power flow 2-d sto-ed energy, in the region 0 <z <d.

Solving this auxiliary provlem for arbitrary polarizations of h , then permits a unique

determinaticn of the dyadic surface imp:dance z. Having detec:'mined Z from the
auxiliary problem, one can now solve for the fiefds above the impedance~plane z=d in
tarms of g, the excitation in the region z > d, and the Loundary conditions at z=o,
The requirement that Et be continuous across z=d now permits one to uniquely detex-
mine the fields, and thus the power flow and stored energy, in the region 0 < z <d in
terms of (H) _, + andthe given Z.

In practice, the auxiliary problem need be solved for only two linearly indepeuadent
polarizations cf hd' since the linearity of Maxwell's equations permits the solution for
any other polarization of hd to be expressed in terms of those for the two independent
polarizations. Thus, at each of the values of k and gy to be considered, we solve for
the fields in the region 0<2 <d when h d takets ou two linearly independent polarizations,
e.g.., hd =X, and Bd Yo Having found the fields, which wiil be of the form given in
(1), for toth polarizatione of h Q' Z: n:ay uniquely be defined by requiriag that the relation

"—E-t)z=d - %'(—zoxﬂt)z=d (28)
be satisfied for botk sets of fields. This requirement is equivalent to specifying four
inhomogeneous, linearly indzpendent squations from which the four uaknown elements of
Z can be found. If one now wisher to solve for fields of the form ziven in (1), in the
;egion z >d, relation (28) may be used as a boundary condition at z=d, which will ensure

that the transverse fields connect continuously to valid fields in the vegion 0 <z <d., That

is, if e and h in the region z > d are such that {28) is satisfied, then, taking -}ld as
(ht) +» the corresponding e in the region 0 <z <d will be such that (e,) _=
- z=d - =6 z=d
(e,)

t 7= d+ 0

Having thus defined Z, we proceed to investigate the meaning of its derivatives
with respect to kx' ky and y. Toc this end, we assume the fizlds in the region 0 <2z <d

are known and -}ld of {27) has been selected such that the derivatives of the fields with




respect to kx. ky and w exist. Equation (12) can now be e
the variation § are arbitrary and independent.

Equation (12) is valid for the fields in
the region 0 <

z < d gince the assumptions used in deriving it are also satisfied in the
present case — see the text after (12).

mpleyed where dk, and dy in i

The restrictions placed on dk, and dy in the ]

first section are nct necessary in the present discussion since, as Previously mentioned,

solutions of Maxwell's equzrions for which e, and ht are continuous in z will exist in

the region 0 < z<d for all !_ct and @ (exceuting the singular points of Z, as discussed
in the Appendix), thus ensuring that §e_ ane 6ht

are continuous functions of z for all

d_l_(_t and dy. Since the fields are bounded as Z approaches d and as z approaches o,

it is permissible to integrate (12) cver the closed interval 0<z<d, Performing the
integration and using (17) yields the relation

1 % # _ )
Here d
Wd = JP wdz (30)
o
and
d
= [
§~d = sdz . (31)
Ncte that since % s, © V.5 =0 and (sz)z=0 =0, 8,0 for all 0<z<d and hence _S_d f
is a transverse vector.,

Since E and H have the form given

in (1), the impedance relation (28) may be
rewritten as ’

(e, .q =2  (zox By, .y - (32
Applying the variation § to the 2bove equation gives
Bey-q=2 (2 xthy), g 4620z xh) _, . (33)

2t)z=d from (32) and (6£t)z =d from (33), it can be verified that

% % %
Zo° (St x 6ht+ 6stxht)zzd - [(onht)‘ag.. (onht)]z=d (34)




1c

when the anti-Hermitian property'f of Z is used to write [(301( h:) - Z -(zox sh t)] q°
%* x = -t .~ = -t z=
- [(on 6lxt)- Z - (zox ht)] _ . - With relation {(34), equation (29) becomes
~ - - z=d
.1 *
) [(onht)' 82 - (onllt)]zzd = L

gdr-dk S, . (35)

Since dkx. dkY and dg are all independent, one finds that

1 % 2Z
jzllzyxh ) Si lzgxh )] g 7 Sy,
(36)
1 % 3Z
jE[(onht) ) 'a—li ) (—z-oxht)]z:d = §dY
and that
.1 % =
-jzlz_ xh.) - 3, " (Zoxh)l 4= Wy - (37)

It is thus seen that Wd and §d can be found knowing only Z and (h t)z= e As
previously pointed out, if fields ¢f the form given in (1) exist in the region z>d and
satisfy the impedance boundary condition at z=d, there will be unique fieids in the

region 0 <z < d that satisfy the continuity conditions (ht) _=+th t) and

z=d z=d

(E ) = (e ) + Because of the continuity of ht at z =d, the power flow and

+
t z=d t z=d
stored energy associated with the fields in the region 0 <z <4 can be calculated from

relations (36) and (37) using (l‘t)z=d = Lim lxt, i. e., the limit of ht as z approaches
z¢d ’ -
d from above.

Since the relations {(36) and (37) hold for arbitrary Et and g, they are valid, in
particular, for values of _lst and p that correspond to a surface wave. Thus relations
(36) =nd (37), with appropriate values of k, and y, furnish an alternative way of cal-
culacing that portion of the surface wave power flowing in the slab and that portion of the

stored energy of the surface wave which is in the slal..

TThe impedance dyadic Z is anti-Hermitian, i.e., the matrix representation for Z has
the property that the transpose conjugate Z v is.equal to -Z., This property follows
from the facts that 2,=0 for all z<d and that the fi¢clds arfe continuous as z approaches
d from below so that Re(s' xht )z -d must be zero.
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The relation between power flow and the derivatives of % with respect to kx and
ky given in (36) does not appear to have been previously recognized. While the connection
between stored energy and a% /3w, to the best of our knowledge, has not been shown
explicitly for the case of traveling waves, the connection between stored power and the
impedance matrix of a lossless junction is well known. (1)

The consistency of relations (36) and (37) for surface waves with the results
obtained in the second section will now be shown. Consider a surface wave propagating ia
a lossless plane-stratified medium above a surface impedance plane at z=d. The sur-
face impedance % is assurned to be known and to represent the effect of a plane-
stratified, lossless medium above a perfectly corducting plane at z=0. The surface
wave fields in the region z >d are assumed to be of the form given in (1) with _lgt and g
related through the apprcporiate surface wave dispersion relation. The surface wave

fields satisfy (13), which, when integrated over the interval d <z <=, yields the relation

-]
% &
-j%—z-o'(gtf'bht+63txht)z= = dk, [V w dez— J‘ . (38)
d d
Since e, and h, satisfy the impedance condition {32), equation (34) holds. Using (34)
and the fact that for the surface wave dy = d_ls : Vk w, the above equation can be written
as o azZ -t
dk k\u{fwdz-.]z[(z xh) ?- (z xh)]z d}
d
r )y .1 BZ
= dkt 1 I_g dz +_§° 5 [(=z xht) "Ik (onht)]z_
d X
i « 9z
+X02 [(—‘v‘oxht). aky ) (onht)]z=d } ) (39)

As discussed above, the terins containing 3aZ /akx and aZ/aky that appear in (39)
are equal to the x and y components of the power flow -§d below the plane z=d. Further-
more, the term containing 3Z/3w is equal to the stored energy, per unit area in the x-y

plane, below the plane z=d, namely W Thus (39) may be written

e

-1

dk .thw{;fwciz+wd}=dk {fsdz+s } (40)

e
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or, since dlc_t is arbitrary,
-] -} #
thw{fwdz-i- Wd}=I_e[dz+§d . {41)
d é
Finally, frora the definition of Wd and §d given in (30) and (31), equation {41) is seen to r
reduce to ® g
9. erdz = lsdz . (42)
,lft J'—
o o i

which is precisely the reiation found to hold in the previous section for surface waves
above a perfectly conducting plane at z=0. Heance if a surface impedance bouadary con-
dition representing a plane-stratified medinm above a perfectly conducting plane is used

when solving for surface waves, the resultant group velocity \7k w is equal to the energy
=t

transport velocity of the entire surface wave, not to just that portion of the surface wave

above the impedance plane.

SURF.ACE IMPEDANCE FOR TEE CASE OF EVANESCENT WAVES

In the derivation of the power flow and energy relacions for a surface impedance
representing a plane-~stratified inedium above a perfectly conducting plane, the presence
of tne conducting plane served to ensure that 8, = C and that ‘ke stored energy, per umnit
area in the x-y plane, and power flow are finite in the region 0 <z <d for all possible
polarizations of (h,) _, and all real values of k,  and w. Since the fields of evanescent
waves in a semi-infinite plane-~stratified medium also pocsess these two properties, one
would expect powser flow and energy relations similar to (36) and (37) to exist in this
case for the surface impedance representing the semi-infinite medium.

Let a semi-infinite, plane-stratified, lossless, dispersive, anisotropic medium

fill the region above the plane z=d. By 2nalogy to the case of the medium above a per-

fectly conducting plane, conside\ation is first given to the auxiliary problem of finding

those fields in the region =z > d which satis{y the boundary conditirn

wt -k, -p)

(H,) . =hde (43)

—t'z=C

at z=d and the bound: 'y conditions
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Lim (E ,H) =0 . (44)
- z-om”

In addition, we require that Igd z and J‘wd z exist. The term '"evanescent, ' as used
d d

in the rest of this pap:r, will refer to fields satisfying (44) and the foregoing integral

requiremenis. Evanescent fields will alsc have the property that s, =0 The auxiliary

problem is to be solved for all polarizations of E—d so that the aurface impedaace may bte
defined.

{n general, only for limited regions in

K
-t
have unique, non-trivial, evanescent solutions that satisfy'(43) for all h

- @ space wi’l the auxiiiary problem
d and thus permit
definition of the surface impedance %s' C ther values of l_ct and » will not be considered
for one of two reasons. First, in media haviag aa appropriate z dependence, non-urique,
cavity-type, evanescert soluticns satisfying (43) with h ;=0 may exist fcr points lying

on surfaces in k, -y cpace. In cuch cases, %s will have singularities on tl'ese surfaces.
{Discussion of sucl points and the d:rivation of a surface admittance formalism that is,

in general, rcgular at cuch points, zre anaiogous to those given in the Appendix for a
medium of finite thickness abovz a perfectly conducting plare. ) Second, in some regicna
of Et' w space, fields satisfying {43) will not be of thz evarercent type for most or ali
polarizations of hy T Thus, unless alternate boundary cuanditions are specified at z==
s .ch as the radiation conditiun, the fields, and hence %S,cann_ot be uniquely defined. Even
if beundary conditions are impose at z=® and if Z, is deiined in this case(it is no longer
anti-Hermitian), the associated fields do not posscse the integration properties necessary
to derive simple power flow and stored energy relations.

Hence only those regions in k, - space in which the auxiliary problem has

unique, non-trivial solutions satisfyin; {43) and (44) for all l‘d ¢ 0 will be considered
here. The regions where the auxiliary problem can be solved, the na‘ure cf which depends
on the particular .nedium under discussion, are assumed to exist and to form open sets,

i. e., not merely surfaces, so that kx. k_},, and g will be continuous, independent variables

within these rzgions.

A~1 example of a reg.or wher° no evanescent we ves exist 18 formed by the poir!r in and on

- lu (kx+ky) when the medium being srvdied is free space. Outside thris
o

cone unigue, non-trivial soluiions of the auxiliary problem exist for all b—d

the cone (uh =
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Thus restricting Et and ¢ (o those regions where unigue, non-trivial solutions
of the auxiliary problem are assumed .to exist for all polarizations of P—d' the surface
impedance dyadic %s can be defined for the semi-infinite region. Since tha linearity
of Maxwell's equations permits the solutiors for all Bd to be expressed as a cuper-
position of the soluticns for two linearly indupendent polarizations of hd' we again need
consider only two suck polarizations, e.g., -lld =X, and b—d Yo From the solutions of
the auxiliary probiem, which will be of the form given ir (1), for these two polarizations,
'4:‘_ g Gan be found uniquely from {1e requirement that the relation

' =Z -(-z_xh)

“Et)z-d ~B -0 —~t'z=d (45)

be sztisfied Ly the fields ot both solutions. i

By analogy to the liscuszion given in the previous section, Z~B may be used as a
boundary condition at z=d when golving for the fields below this plane. Also, requiring
ht to be continuous at z=d uniquzly determines the fields abueve this plane when the
fields below are known.

Assuming %s and the fieids in the regioa z >d :0 ke known, equation {12) is
employed it fi.ding the power flow and suergy relations in this region. Eqguation (12} is
valid ior the fields ir the region 2z >d since the assumptions used in deriving it are
satisfied in the present case - see the text after (12). Tk differential quantities d:'ft and
dw in the variatior § &re arbitrary and independent since '’ w0 ky and w are independent

variables. lategrating (12} from z=4 to z=® gives

-j_lz_fo (f:x5ht+6gtth)z=d= W Glne ee0 ) (46)

where ®
LA ZE (47)

d

1.In the above relation, -z, is used instead of 2z, as was used in {28) and 32} fur the
r. 2dium 3bove a perfectly conducting piane, because %o is the outward unit normal for

the configuration being coneidered. The conventicn nf using the ovtward unit normal in
defining the impedance is based on the desire to have the impedanca mairix be positive-
definite when Joss 18 present in the stracture.
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and the purely transverse vector S s is

o
§s g J‘E(". . {48)
d

In a manner similar to that of the previous section, the term on the left-hand sice of {46)

can be written in terms ot §Z - if the anti-Hermitian property of 7 . is taken into
account. That Z . is anti-Hermitian follows from the fact that s, = 0 for evanescent
fields in a lossless, plane-stratified medium. In terms of 6%5’ {46) becomes

N ¥, _
gz nhy) 62, Lzgx b)), = W,du- dk'S, - (+9)

Since dkx, dkY and dyg are all independent, the alove relation can hold only if

. 2l
A L =8 ..
[x, 2 -z, xh) w Zzo%hy)
. 3Z
N * . —8 (. 1 =
T X, 2( onht) aky ¢ -zoxht’]zsd Ss
{50)
and
l[ * a%s = W
g llzgxh) 5tz xh)) g = Wy o (51}

The foregoing relations should be comparad to {36) and {37). Note that if z,
instead of “Z, had bren usza in {45), the abo‘.'e relation. would contain an additional
minus sign.

The concept cf a surface impedance to describe the eifect of the medium atove
the plane z =d on the fields below this plane can be employed to derive the dispersion
relation for surface waves. The physical configuration {o be considexed here ccnsists of
a plane-stratiiied, lossless, anisatropic medium above the planc z=d >0 and 2 cecond
planc-+«‘ratified, lossiess, an‘sotropic medium between a per{zctly conducting plane at
2=0 and th= plane z-d. It will be assumed that the values of l_<t and w of interest are
such that the medium above the plane -=3d is represeniable in terms of an anti-
Hermitian surface imp=dance ;Z's that satisfies {45). This reatriction on %, and w is

-t
equivalent to the requirement t*:at .he ficsds in the region z >d be of the surface wave

.
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type for all (-}lt)z=d' {In special cases, surface waves may exist when the fields in the

region z >d are of the surface wave type for only one polarization of (_}_‘:t)z -q Such
cases are not inciuded in the present discussion.) The structure below the planz z=d
is assurned to be represented by the surface impedance Z that satisfies (32).

Since € and h . for the surface waves are continuous funciions of z, there
quantities must be the same in both (32) and (45).

gives

Thus subtracting these two equations
= Zs'’ (Eo Ay ag T % (52)

which is a honiogeneous sat of two iinear egu.ations in the two unknown elements of

(_z_o x ht)z g For non-trivial solutions of (52) to'exist one requires that det(Z + %_‘) =0,
which gives the surface wave digpersion relation Ds(-lft’ w) = 0. At those values of ”lgt

and  which satisfy the surface wave dispersion relaticr, (_z_ox ht);v.:d can be found.

If the partial derivatives of % and Es with respect to kx’ k and w are calculated, the
power flow and stored energy can now be found in each region by using (36), (37), (50) and
(512,

Thus it is seen that the krowledge of Z and Z:S for the lossless plane-stratified
structures previously described is sufficient to find the surface wave dispersicn relation
and the division ¢f power flow and stored energy between the two regions. Also, this
procedure can be applied when the structure below the plane z-d is a semi-infinite
medium whose regions in lit' @ space, where the reactive surface impe  1ce may ve

defined, intersect the corresponding regions for the medium above the rlane z=d.
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APPENDIX

In order to define ti.=t Z which represents 2 plane-stratified, lossless, dispersive,
anisotrcpic medium above a perfectly conducting plane, the auxiliary problem, with
boundary conditions (26) and (27), was first considered. For most valuecs of the param-
eters K ¢ and ¢, the auxiliary problem +vill have ur‘que non-irivial golutions of the form
given in (1) for ail hd# 0. At the remaining values of Bt and @, which lie on surfaces
in gt-w space, non-unique cavity-type solutions will exis: for h §: 0 13nd no soiutions
satisfying the boundary condition (27) will exist for all hd# 0. The non-unique solutions
exist when the plane z=d corresponds to a magnetic field null and would give infinite
values for some or all of the components of the imped..uce dyadic Z. For this reason
suck values of ‘:’t and W are excluded from the consideraticn of Z. Although the surface
impedance formalism breaks down at these values of _lg_t and w, a surface admittance
formalism will in general remain valid.

The surface admittance Y is the inverse of % » when both Z and its inverse
exist, and is regular at those values of k, and w for which Z cannot be defined. In
studying the properties of Y, one would c-onsider the fields in the region 0 < z <d with
_E_It,rather than E—t’ specified at z=d. Thus to find the admittance, one requires that Y
be such as to satisfy the relation

(53)

fcr two field solutions in the region 0 < z <d. The two field solutions to be used are those
satisfying the boundary condition

Hat -k, - 0)
(Et)z:d = Sde - (54)

at z=d with [P taking on two linearly independen: forms. If (53) is satisfied for these
two field solutions, because of linearity, it will Lc satisfied by the solutiuns for all pos-
gible L¥E Those valres of _lgt 2:d w for which non-trivial solutions exist when ea3: 0
are excluded trom consideration. Th: Lianedance formalism may, however, be used,
in general, at such valuez.

The energy and power relations containing \_: can be derived from reaeoning
similar to that used for Z . Thoy are




and
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N sdx

(55)
=! de
= Wd o (56)




10.

11.

21

REFERENCES

W. P, Allis, S.17I. Buchsbaum and A, Bers, "Waves in Anisotropic Plasmas", John
Wiley and Sons, New York (1962), pp. 103-106.

T.H. Stix, "The Theory of Plasma Waves", McGraw-Hill Book Company, New York
(1962), pp. 45-51.

L. B. Felsen, "On the Use of Refractive Index Diagraias for Source-Excited Aniso-
tropic Regions'", Radio Science, 69D (1965), pp. 155-169.

H.L. Bertoni and A, Hessel, "Surface Waves on a Uniaxial Plasma Slab; Their
Group Velocity and Power Flow'", Microwave Research Institute, Polytechnic Insti-
tute of Brooklyn, Report 1294 (1965).

A.F. Kay, "Excitation Efficiency of Surface Waves Over Corrugared Metal and Doubly
Corrugated Metal and in Dielectric Slabs 2 a Groud Plane", Technical Research
Group, Scientific Report No. 5(1956), pp. 22-31.

S.N. Karp and T. S. Chu, "The Diffraction of Cblique Surface Waves by a Right-
Angle Bend", Courant Institute of Mathematical Sciences, Division of Electromagnetic
Research, New York University, Research Report MNo. EM-190 {1964).

L.D. Landau and E. M. Lifshitz, "Electrodynamics of Continuous Media", Pergamon
Press, New York {1960), p. 331,

A. Tonning, "A Contribution to the General Theory of Linear Networks', Norwegian
Defense Research Establishment, Report No. 2§ (1959), pp. 13-23.

Landau and Lifshitz, pp. 253-256, 314.

A.D. Bresler, "The Far Fields Excited by a Poiut Source in a Pagsive vissipationw
less Anisotrnpic Uniform Waveguide", Microwzve Research Institute, Polytechnic
Institute of Brookiyn, Report R-683-58, PIB-611(1958), p. 12.

C.G. Montgomery, R.H, Dicke and E. M. Purcell, "Principles of Microwave Cir-
cuits’, McGraw-Hill Book Company, New York (1948), pp. i51-153,

-
. T T TNy




Advanced Research Projects
Agency

Attn: Dr. B.S. Fisher

The Pentagon

Washirgton, D,C. 20301

Advanced Research Projacts
Agency

Attn: Maj, R. M, Dowe, Jr.

The Pentagon

Washington, D, C. 20301

Advanced Research Projects
Agency

Attn: Mr. C.E. McLain

The Pentagon

Washington, D.C. 20301

Advanced Pesearch Prcjects

Agency

Attn: Mr., ¥F.A. Koether
The Pentagon
Washingten, D, C. 20301

Advanced Research Projects
Agency

Attn: Dr, P, L. Auer

The Pentagon

Wa.shington, D.C. 20301

Advanced Research Projects-
Agency

Attn: Dr. R. Zirkind

The Pentagon

‘Washington, D.C. 20301

-Advanced Research Projects
Agency

Attn: Major H, Dickinson

The Pentagon

Wachington, D.C. 20301

Aerojet-General Corporation
Attn: Technical Library

P. Q. Box 296

Azusa, California

Aeronutronic Division
Philco Corporation

Attn: Dr. H. Shenfiel?d
Ford Road

Newport Beach, California

Aerospace Corporation

Attn: Manager, IPenetration Aids

2400 E. El Segundo Blvd.
El Segundo, California

Aerospace Corporation
Norton Air Force Base
Attn: Mr. William Barry
San Bernardino, California

Aerospace Corporation
Norton Air Force Base
Attn: Dr. H, Meyers

San Bernardino, California

Air Force Cambridge Research
Laboratory

Attn: Scientific Library

CRRELR, Stop 29

i.G. Hanscom Field

Bedford, Mass.

Air Force Cambridge Research
Laboratory

Attn: Dr. Norman W, Rcsenberg

L.G. Hanscom Field

Bedford, Mass,

Air Force Cambridge Research
Laboratory

Attn: Dr. K. Champion

L.G. Hanscom Field

Bedford, Mass.

Air Force Cambridge Research
Laboratory

Attn: Dr. A.T. Stair {CROK}

L.G. Hanscom Field

‘ Bedford, Mass.

Air Force Qiffice of Scientific
Research

Attn: Dr. M.C. Harrington

Washingion, D, C.

Air Force Office of Scientific
Research

Attn: Dr. D. L. Wennersten

Washington, D, C.

Army Missile Command
Attn: AMCPM-ZER-R
Redstone Arsenal
Huntsville, Alabama

Army Missile Command
Attn: AMSMI-RP
Redstone Arsen:zl
Huntsville, Alabama

Army Missile Command
Attn: AMSMI-RNM -
Redstone Arsenal
Huntsville, Alabama

Army Research Office
Attn: Dr., Hermann Robl
Box C.M. Duke Station
Durham, N.C. 27706

Army Technical Inteliigence
Agency

Attn: ORDLI

Ariington Hall Station

Arlington, Virginia

Air Ferce Wezpons Laboratory
Attrn: Capt. David Sparks
Kirtland Air Force Base
Albuquerque, N, M,

Air Force Weapons Laboratory
- Attn: Capt, William Whittarer

Kirtland Air Force Base

Albuquerque, N.M.,

Applied Physics Laboratory
Johns Hopkins Uriversity
Attn: Dr, Felix Falls
Howard County, Maryland

Arecibo Ionospheric Observa-
tory

Attn: Dr. W, E. Gordon, Dir.

Box 995

Arecibo, Puerto Rico

Australian Embassy

Attn: D.Barnsley, Defense
R.and E. Representative

2001 Connecticut Ave., NW

Washington, D.C.

Avco-Everett Research Labh,
Attn: Technical Library
2385 Revere Beach Pkwy,
Fverett 49, Mass,

Avco-Everett Research Lab.
Attn: Mr, P, Rose

2385 Reverc Beacn Pkwy,
Everett 49, Mass.

Avco-Research and Advanced
Development Div,

Attn: Mr. Harold Debolt

201 Lowell Street

Wilmington, Mass.,

Avco-Research and Advanced
LC-velopment Div,

Attn. - A, Pallone

201 Lowell Street

Wilmington, Mass.

Ballistics Research Laborator:
Attn: Dr. C.H. Murphy
Aberdeen Proving Ground, Md,




Battelle Memorial Institut:
ATTN: Battelle-DEFENDER
505 King Avenue

Columbus }, Ohio

Bell Telephone Laboratories
Attn: Dr. C. W, Hoover
Whippany, N.J.

Bendix Systems Division
Flignt Sciences Department
Ann Arbor, Michigan

British Joint Mission

British Embassy

Attn: Mr, A. N, Mosses, Defense
Research Staff

3100 Massachusetts Ave., NW

" Washington- D. C.

Brown University
» Department of Chemistry

* Attn? Dr. John Ross

Providence 12, Rhode Island

Bureau of Naval Weapons
Special Projects Office

Attn: Commander Julian, SP-25
Munitions Bldg.

Washington, D.C.

Canadian Armament Research
and Development Establish,

Attn: U.S. Army Liaison Officer

P.O. Box 1427

Quebec, P.Q., Canada

Air Force Cambridge Research
Laboratory

CRUB

Attn: Dr. K, Champion

Bedford, Mass.

Central Intelligence Agency

Attn: OCR Standard Distribution
2430 E St., NW
Washington, D.

~
e

Chief of Naval Operations
Attn: OP-07TIO
Washington, D.C.

Coranell Aeronaatical Lab., Inc,
Attn. Mr. A. Hertzberg -

P.0O. Box 235

Buffalo 21, N. Y.

Cornell University

Nuclear Studies Laboratory
Attn: Dr, Edwin E. Salpeter
Ithaca, N. Y.

Defense Atomic Support Agency
Attn: Dr. T. Taylor, Deputy

Director, Scientific
The Pentagon 13 697
Washington, D.C,

Defense Atomic Support Agency
Attn: Dr. C, Blank

The Pentagonl B 697
Washington, D.C.

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

20 copies

Defense Research Corporation
Attn: Dr. Bernard A. Lippman
P.O. Box 3587

Santa Barbara, California

Eleciro-Optical Systems, Inc.
Attn: Mr. Denison

300 N. Halstead Street
Pasadena, California

General Appiied Science Labs.
Attn: Library

Merrick and Stewart Avenues
Westbury, L.I., N.Y.

General Applied Science Labs.
Attn: Mr, Walter Daskin
Merrick and Stewart Avenues
Westbury, L.I., N.Y.

General Atomic

Attn: Dr, Rcnald Stebbings
P.O. Box 608

San Diego 12, California

General Dynamics Corperation

Convair Division . .

Attn: Mr,K.G, Blair, Chief
Librarian

P.O. Box 166

San Diego, California

General Dynamics Corporation

Convair Division

Attn: Dr, Roy H. Neynaber

P.O. Box 166

San Diego, Calif.

General Dynamics Corporation
Convair Division

Attn: Dr. Klaus G. Sulzmann
P.O. Box 166

San Diego, Calif,

General Electric Co,, M5VD
Docurment Librar

Reentry Physics iibrary Unit
Attn: Mgr,-MSVD Library 3446
3198 Chestnut Street
Philadelphia, Pa.

General Electric Research Lab.

Attn: Dr.Gecrge C, Baldwin
(General Engineering Lab)

Schenectady, New York

General Electric Space Scierce:
Laboratery

Attn: Dr. T. Reithoff

Valley Forge Space Tech.Ctr.

P.O. Box 8555

Valley Forge, Pennsylvania

General Electric Tempo

Attn: Dr. R. Hendrick

Santa Barbara, California

General Motors

Defense Research Laboratory
Attn: Mr, C. M, Shaar

Box T

Santa Barbara, California

Geophysics Corp. of America
Burlington Road
Bedford, Mass.

Harvard University

Chemistry Department

Attn: Dr, Dudley R. Hershbach
Cambridge, Mass.

Headquarters BSD (AFSC)
Air Force Unit Post Office
Attn: BSRVD

Los Angeles 45, California

Heliodyne Corporation
Attn: Dr., Saul Feldman
2365 Westwood Blvd.
Los Angeles, Calif,

Nlinovis Institute of Technology
Research Institute

Attn: Dr. Carsten Haaland

10 West 35th Street

Chicago, Ilil.




. P000 Box 73

* Attn: Dr.
* University of Maryland
‘ Cellege Park, Maryland

Joint Institute for Labh Astrophysics
N. B.S., University of Colorado
.Attn: Dr, Lewis Branscomb

1511 Univzrsity Avenue

Boulder, Colcrado

Institute for Defense Analyses
Attn: Dr, W, Culver

400 Army-Navy Drive
Arlington, Virginia

Attn: Dr, Leon Fisher
3251 Hanover Street
Palo Alto, California

Institute for De¢fense Analysis
Attn: Dr. A. Hochstim

400 Army-Navy Drive
Arlington, Virginia

Monsanto Research Corporation
Dayton Laboratory

Attn: Dr. J. W. Butler

1515 Nicholas Road

P.O. Box 8, Station B

Dayton, Ohio

Naval Ordnance Laboratory
Attn: Librarian

White Oak

Silver Spring, Maryland

2 copies

Institute for Defense Analyses
Attn: Dr, D, Katcher,

JASON Library
400 Army-Navy Drive
Arlington, Virginia

Institute for Dcfense Analyses
Attn: Dr. J. Menkes

409 Army-Navy Drive
Arlington, Virginia

Naval Regearch Laboratory
Attn: Dr, Alan Kolb, Code 7470
Washington 25, D.C.

Institute for Defense Analyses
Attn: Dr. H, Wolfhard

400 Army-Navy Drive
Arlington, Virginia

MNaval Research Laboratory
Attn: Code 2027
Washington 25, D, C.

Institute for Molecular Physics National Aeronautics and Space

Edward A. Mason Administration

Attn: Applied Materials and
Physics Div.

Langley Research Center

Hampton, Virginia

National Aeronautics and Space
Administration

Attn: Mail Stop 213

Langley Research Center

Hampton, Virginia

Jet Propulsion Laboratory National Aeronautics and Space

Attn: Library Administration
4800 OCak Grove Drive Attn: Dr. Robert F. Fellows,
Pasadena, California Code SL

Langley Research Center

. Hampton, Virginia
Kansas State University National Aeronautics and Space

Attn: Prof, Basil Curnutte

) Administrction
Physics Department Attn: Dr, Alfred Gessow,
Manhattan, Kansas Code RRP

Washington, D.C.

Lincoln Laboratory, M.I. T.

National B of Standards
Attn: Dr. M. Balser Rt Sl ndar

Attn: Dr.Karl G. ‘Kessler, Chief
Atomic Physics Div,

Lexington, Mass, Washington, D.C.

Lockheed Missiles and Space Co National Bureau of Standards
Attn: Dr. R. Myerott Attn: Dr. M. B. Wallenstein,
3251 Hanover Street

Palo Alto, California Waahington, D.C.

Lockheed Missiles and Space Co. National Bureau of Standards

Attn: Dr. Kurt E. Shuler
Washington, D, C.

National Bureau of Standards
Attn: Dr. E. L. Brady,
National Standard Reference
Data Centsr
Washington, D, C.

New York University

Attn: Dr, Benjamin Bederson
Physics Department
University Heights

New York 53, N. Y,

New York University
Attn: Dr, Sidney Borowitx
Physics Department
Univearsity Heights

New York 53, N. Y,

Oak Ridge National Laboratory
Attn: Dr.S. Datz

P,0. Bor X

Oak KRidye, Tenn,

Office of Naval Research
Department of the Navy
Attn: Dr.S.G. Reed,

Jr, Science Director
Washington, D.C.

Office of Naval Research
Department of the Navy
Attn: Dr, J.H. Shenk
Materials Science Div.
Washington, D, C.

Office of Naval Research
Department of the Navy
Attn: Dr., W.E. Wright,
Physical Sciences Div.
Washington, D.C.

Office of Naval Research
Department of the Navy
Attn: Dr, F.T. Byrne
Physics Section
Washington, D, C,

Polytechnic Institute of Brookly

Atta: Mr. Jerome Fox
Research Office

333 Jay Strest

Brooklyn, New York

Queen's University of Belfast
Attn: Professor D, R. Bates

Chief, Physical Chem,Div, Department of Applied Math.
Belfast 7, Northern Ireland, UK




D—

Radio Corp. of America
Missile and Surface Radar Div.
Moorestown, N.J.

RCA-Victor Co., Ltd.
Research Laboratories
Attn: Dr. A.I. Carswell
1001 Lenoir Street
Montreal 30, Canada

The Rand Corporation
Attn: Library

1700 Main Street

Santa Monica, California

The Rand Corporation
Attn: Dr. R. Hundley
1700 Mair Strzet

Santa Monica, California

The Rand Corporation

Attn: Dr. Forrest R. Gilmore
1700 Main Street

Sants Monica, California

The Rand Corporation

Attn: Dr. Robert E, LeLevier
1700 Main Street

Santa Monica, California

Rocketdyne Division

North American Aviation, Inc.
Attn: Dr.S.A. Golden
Physics Group

6633 Canoga Avenue

__Canoga Park, Calif, 91304

Sperry Rand Research Center
Attn: Dr. Philip M, Stone
North Road (Route 117)
Sudbury, Mass.

“Space Technology Laboratories

Attn: Dr. L. Hromas
1 Space Park
Redondo Beach, California

Stanford Research Institute
Attn: Dr,.C.J. Cock, Director
Chemical Physics Div,
333 Ravenswood Avenae
Menio Park, California

Stanford Research Institute

Attn: Dr. Carson Flammer,Mgr.
Mathematical Division

333 Ravenswood Avenue

Merlo Park, California

United Aircraft Corporation
Research Laboratories

Attn: Dr, Russell G. Meyerand
East Hartford 8, Conn. :

University of Alabama
Attn: Dr, Erich Rodgers
Physics Departinent
P.0O, Box 1921
University, Alabama

Urniversity of California
Attn: Prof, Xenneth Watson
Physics Departiment
Berkeley, California

University of California

Law: ence Radiation Laboratory
Attn: Dr. Marvin Mittleman
Box 808

Livermore, California

University of California
Attn: Dr, Herbert P. Broida
Department of Physics

Santa Barbara, Calif.

Dr. Keith A, Brueckner
University of California
San Diego

P, 0. Box 109
La Jolla, Calif. 92038

University of Chicags

Attn: Dr.John Light,
Chemistry Department

Chicago, Ill.

University of Chicago

Attn: Prof.C.C.J. Roothaan
Department of Physics

Chicago, Illinois

University of Florida
Atin: Dr. Alex Green
Physics Department
Gainesville, Florida

University of Michigan
Attn: Dr. R, Bernstein

Chemistry Department
Ann Arbor, Michigan

University of Michigan

Attn: Dr. Otto LaPorte
Physics Department

Ann Arbor, Michigan

University of Mix;mesota
Attn: Prof. H.,J., Oskam
Department of Electrical

Engineerinﬁ
Institute of Technology

Minneapolis 14, Minnesota
University of Pittsbunrgh
Attn: Prof. Wade Fite
Pittsburgh, Pa.

University of Southern Calif,
Attn: Prof. Gerhard L. Wziagsle
Dept. of Physics

University Park

Los Aiigeles 7. California

Westinghouse Electric Corp.
Attn: Dr. A. Phelps
Research Physicists
Reseazrch Laberatories
Pittsburgh 35, Pa,

bt 1101

bAoA o AARCALPASRAMALL bbb ss b

.

s




