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SUPERSONIC FLOW OVER BODIZS OF REVOLUT™ON
(WITH SPECIAL REFERCNCE TO HIGH SPEED COMPUTING)

ABC TRACT

A With the advent of large-scale high-speed computing machines, it has
become feasible to solve certain supersonic flow problems by mmerical
methods using the exact hydrodynamical equations instead of resorting to
linearization or graphical methods. This report describes in detail one
such nmmerical method; namely, an efficient form of the method of charac-
teristics.—

—Characteristic equations are derived fqr supersonic, steady, invis-
cid, isoenergetic fiows in terms of a variety of dependent variables. The
computation described is applicable to non-yawed bodies of revolutioy hav-
ing pointed noses and fairly arbitrary contours, which lie in orm
stream moving fast enough to produce a shock-wave at t e and majntain
supersonic flow everywhere. The computatigga},.pme’é‘&ire is divided -into
several parts: Tsylor-Maccoll, co ntour, general, and shock proc-
esses. Equations and W&m given for each of these
procedurese ™ -~

"ﬁ’ discussion is given of several methods of numerically solving sys-
tems of 1lst order ordinary differential equations, such as are encountered
in the Taylor-Maccoll and corner processes. Ihe other computations involve
approximating partial derivatives by difference quotients and solving on
a finite grid of points. Solutions are derived for the cases in which the
derivatives are approximated to 1lst, 2nd, and 3rd orders.-

An empirical study is made of the error due to the introduction of
finite differences. This is based on the results of a particular caleu-
lation performed on the ENIAC. It is shown that a kmowledge of the na-
ture of the errors leads to a procedure for extrapolation to zero grid
size, which reduces by a factor of ten the total labor required to ob-
tain a solution correct to about four significant figures.--_.
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SUPERSONIC FLOW OVER BODIES OF REVOLUTION
(WITH SPECIAL REFERENCE TO HIGH SPEED COMPUTING)

Section 1. Introduction

- The mathematical basis for computing the velocity, density, and
pressure distribution of air flowlng faster than sound over plane bodies

and bodies of revolution has been laid by Riemannt*Y, Picard’‘?, Hada-

manrdl'3 s Goursat1°4, Lewyl'5 , Friedrichs and Iewyl'(’, Frankl and

AleksievaL1 7, Courant and Ia.xl 8, and otherss The problem is that of
solving a non~linear system of hyperbolic partial differential equations
with boundary conditions given on a known curve (the bodi contour) and.
on a curve not known in advance (the shock wave).

Methods have been known for fifteen years for solv:mg the éexact
squations (without friction, with rotation) for supersonic flow about
plane and axial bodies. Heretofore only slight use has been made of
them, however, because of the extreme tediocusness of the mmerical com-
putations. Instead, the solution of supersonic flow problems has pro-
ceeded 'along two main lines: (1) graphical and semi-graphical procedures,
developed especially by Prandtl, Busemann, Sauer, Tollmien, Guderley,
and others of the German school; and (2) linearization of the hydrody-
namical equations. Linear problems are easier to solve; whole families
of solutions may often be obtained exhibiting the variation of the solu~
tions with impertant parameters. Indeed, even if the linear problem has
been obtained by neglecting some moderately large terms, the solution is
often very valuable qualitatively in guiding the intuition.

ol Ro Courant and D, Hilbert, Methoden der Mathematischen Physik,II;
p» 311. Julius Springer, Berlin, 1937,

2 E, Picard, Traite d'analyse, II. Paris (3rd ed. 1926)

3 J. Hadamard, Lecons sur le Problem de Cauchy; p. 487. Paris, 1932

4 E. Goursat, Cours d'Analyse, 1l; pPe. 360. Paris (4th ed. 1924)

5 H. Lewy, "Ueber das Anfangswervproblem bei einer hyperbolischen
nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit
zwel unabhingigen Ver&nderlichen, "Mathematlsche Anmnalen, vol. 98
(1927), pp. 179-191,

1.6 X. Friedrichs and H. lewy, "Das Ani‘angswertproblem einer belieldgen
- michtlinearen hyperbolischen Differentialgleichung beliebiger Ord-

nung in zwei Variabeln. Existenz, Eindeutigkeit und Abha'ngigkelts—
bereich der LY¥sung," Mathematische Annalen, vol. 99 (1928)," pp.
220~-221.

1.7 F. Frankl and P. Aleksieva, "Two Boundary Value Problems from the

Theory of Hyperbolic Partial Differential Equations with Applica-
tions to Supersomic Gas Flow", Rec. Math. Mosc., T. 41:3 (1934).
(Also BRI Report X-123; Aberdeen Proving Ground, Maryland.)

1.8 R. Courant and P. Lax, "On Nonlinear Partial Differential Equations

with Two Independent Variables™, Communications on Pure and Applied

Mathematics, Vol. II, nos. 2-3 (1949); p. <55.
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With the advent of high speed computing devices such as the ENIAC
now opereting at the BRL or the EIVAC being installed at the BRL, a shift
of emphagis will take place. A greater effort will be devoted to the solu-
tion of the exact equationse. It will be possible to solve these equations
so rapidly that parameters may again be introduced. Since the machines
are even able to think in an e¢lementary way, they can be made to solve in
a mumerical manner such problems in the Calculus of Variations as deter-
mining the head shape of given diameter and head length which will lead
to minimal head drag.

This report has been written in an effort to accelerate the change
in emphasis. It includes some results obtained using the ENIAC. It is
expected that more ENIAC and EIVAC results will appear in later reports.

Section 2. Furndamental Equations

Introduction

The proolems considered in this report are all of the following type:
air flows steadily and supersonically, from a region of uniformity, past
a body which may be plane or have symmetry of revolution. If there is a
shock wave, the Mach mmber is assumed large enough and the initial flow
deviation smll enough so that the shock fromt is attached to the body
at a known pcint, and the velocity is everywhere supersonic. Air is con-
sidered a perfect gas, body forces and friction (therefore heat conduction)
are neglected, but rotation of the flow caused by a curved shock wave is
allowed.

With these restrictions the comtimuity, energy, and Euler equations

- 2.1

(1) V. (0 =0,

(2.2) @+ i 22 =3,
(r~1)

S
(2.3) @ .v) T= Ve Vv p,s

where Q, /s Py 7 , and A arc the velocity vector, density of the air,
pressure of the air, ratio of specific heats, and velocity of sound,
respectively.

Equation (2.2) shows that as the velocity of sound approaches zero
the velocity approaches a limit C. Equation (2.2) holds across a shock

wave> *2 also, and therefore C is the same for all parts of the fluid.

2.1 K. Courant and R. O. Friedrichs, Supersonic Flow and Shock Waves;
ppe 14, 22, 15. Interscience Pubﬂs?irs Inc., New York, 1948
2,2 W. F. Durand, Aerodynamic Theory; Vol. III, p. 217.
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Accordingly, we shall take it as the umit velocity, setting
(2.4) a = Q/c, a= a/.

With this motation equations (2.1), (2.2) and (2.3) become
(2.5) T (pd) =0,
(2.6) q2 + 2 a2 =1,

Y=l
and

—.ﬁ. Vp.

(2.7) (@ . Vv)a 75

For a perfect steady gas without friction and body forces, it can
be chown that in those regions where there is no shock-wave the constancy
of the entropy on streamlines follows from equations (2.1), (2.2) and
(2.3). Hence

= _ _ S/c
(2.8) q.VS =0 wherep/p7” =e'"v
or

(29) p(@.Vp) =7rp(Q.Vp)
Special Coordinate Systems

In the case of flow past or through a body of revolution we shall
introduce the axis of symmetry as the x-axis with the orientation of the
free stream velocity vector 9. We shall let the y-axis be a line

through the leading point A, perpendicular to the axis. We assume all
velocity vectors lie in planes

through the x-axis and have components J
u and v parallel to the x and y axes
which are independent of the angle 1
about the x-axis. —— u
A
L X

Figure 2.1
Except for an arbitrary translation along the y axis the disposition
of axes is the same for plane flow.

With these definitions equations (2.7) a.ld (2.2) become, both for
plane and axial flow,

JPE VY N ST

(T S




nab £

"'(32 Px)/ YD
~(a® py)'/ 7 v,

u ux +vau
(2.10) y

WV _+VV
X ¥

and

(2.11)  p(up +v D) =7p(up, +v )

where
= 9u = ie)
n® 33 = gh, ete
The equation of contimity is

(2.12) up¥+pr+p(ux_+v +ev/y) =0,

y

where € = 0 or 1 for plane or axial flow. ' ’

Substituting for Py py and u o £FVPR 5 from equation (2.10) and
(2.12) into equation (2.11) we obtain an equation
2
a“v

(2013) H ux + K(uy + vx) +Lv_+ € ? =S 0’ -

y
where

H=a2-u2, K==uv, L=a2-v2.n

independent of p and A . This equation holds whether the flow is ro-
tational or not. -In addition, if the flow is irrotational

R Vxqg=0,
or I

(2015) Vx s uy = 0.

Shock Wave

I{ there is a shock-wave somewhere in the flow, the following equa-
tions arising from the conservation of mass, energy, a:d momentum hold

across it-z'z:

2 .2
(2.16) o PR T (7 -1)
P Y+l
' 2 .2
(2anf2__%eed 01 kTsin" g
R T em (G, -0) -1 “12 P o +2
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TR TR ey > u—-v.-——"

Figure 2.2

In addition the componert of velocity parallel to the shock wave is un-
changed.

(2.1‘8) q, cos 6, =4, "os (Qw - 0).

In these equations 0 is the angle between the velocity vector on the side

denoted subscrip'b one in front of the shock-wave, and the shock-wave,
Ml is ql , and @ is the angle between ql and q, . From these equations

it is possible to eliminate p,/p, and ,°,//°, obtaining the relation

7-1 1 . *% 2
(2.19 — —— —_— - = - U - Y -1 .
A [7’41 1 7 “2:| (9 = uy) l: v ]
1 .

An additional relation may be read from Figure 2.2

q -
(2.20) L= _:LTuE * where ‘% is the slope of the shock-wave.

These two equations are the boundary conditions which must be satis-
fied at the shock-wave. Vie shall call them the shock conditions.

Rotation Introduced by the Shock Wave

From equations (2.16) and (2.17) it is apparent that the entropy
jump across the shock,

_ P, [{P\"|

is a function of @ e Therefore the entropy is constant behind the “ock-~
wave only if the shock is straight in any x-y plane.

-

Let the subscripts 0 and 3 refer to stagnation before and behind the
shock-wuve if there is one. Then from equations (2.8) and (2.6)

pfp” = P/ /°3 ’




(2.22) P = p3(1 - ¢ =Py B(q),

-]

and
- 27=1 :
(2.23)  P=p41 -a7) " =44,
where Py and '103 vary from streamline to streamline.
Let us attempt to define a stream function z(x,y) by the equations

(2.24) zx=-Ay_£1

and i
(2+25) Zy = Ay'u,

where € is as defined before. _
Clearly from this definition ¥ 2 is perpendicular to q. The definition

is only justified however if
(226) () = (2 -
To prove this, consider the continuity equation

Vpa)-= V.[@(z)A&]éo.
Differentiating: '
Y¥P3 (va.D+p,v. D =o.

z
But ¥ z.qd =0 and therefore

V.(A q) =0,
or

2 (yu) +& @y€v)=o.

Referring to equations (2.24) and (2.25) we see that (2.26) is satisfied.
From the equation (2.2) we see that
CEDNN R R
. B
Thus we have, substituting in (2.22) and (2.23)

(2.28) p=p, h(;) B(q),

and , .
(2.29) =4 n(z) A(a)e

These equations hold everywhere if we let h(z) = 1 before the shock.’

We may now obtain a second equation to replace equation (2.15) when
the flow contains a shock-wave. To do this we differentiate equation

(2.28) logarithmically:

10




N\

~—v—— g

! uu, +vv
=hzx- y(vu, x

ol

-1 2
ZT (1-4q9)
or
_ €, _n .
=~y AVH—;E- (uux+vvx),
but from equation (2.10)

'U'N'U

p ry o

x——-z-z(uu +vou),

N g X N4
and, therefore,

2

a” h € .. _ .

FRAY S VRIU +V VL =uu, Ve s
or firally 2

__€ aAh .
(2030) uy-vx-'-y % °

This equation reduces to (2.15) if there is mo curved shock-wave since
ht'(z) is then zero.

In order to use equation (2.20) it is desirable to express ~(-1)h!'/
(rh) in terms of velocity components. This may be done using equations
(2.16), (2.17), (2.18), (2.19), and (2.20). Let us write

Py =P P [CPy/ PP P] o

From equation (2.29) 1 ~
i= 1 - q12)7:I ’
and /°0. | 1
2=q- qg)”:I ;
3

similarly, using equutions (2.17), (2.6), (2.19), and (2.20)

;3= 7+1 (uz'b)
r-l U, = 1 7
2a ("2 ")

where
vE 2 &1— toT G -
Furthermore, using equation (2.19)
1l - qg =] - u§ - vg
_2y (o, =) (7w, - e)
7+ T4, D)

11
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where

;Iﬂq + -1 _1_ )
Tt q
Therefore
L Py Maprsy T (r - b) 7/(7-1)
T h 1 1 ’
so that ' 2 .
(2.31) - (LD b (vy-q,) du, .

4 (uz-b)(u2- %I)(Yuz—e) dz
We shall call this quantity g(z) and rewrite equation (2.30)
€ B

g

=J
(2032) Vx' - uy = .T

We summarize these results in equations

2
av=
( a) Hux+K(uy+=vx) +1L ry+§ - 0.

H=a=u, K==, L=a" <« 1 axial flow

- eBg.
B) vy-u =in=f

B = (1 - q2) 7/(7'1)

2 2 226._{0p1anef10w
p =

y gz (2 - ) au,
] g =
(uy=b) (w,- }1—1 (P upe) @
=(7-1\ 1 2 7+l =1} 1
Y HF) § () °'(—r)ql*(T)'¢i

c) dz=y€ A(~r dx + u dy)
d p =p hB
e) A=A hA

AE @~y

Lo Ma) (a7 [ w, = b ]r/(r-l)

(7-1) (@) 7 (- g-l-)(r o

-

- =, .




Y

— T

-~
|' f) 32 =Z2-],; (1 o= q2)
M8 V5 (b - = (g - w) (w, - d)

4z [().’-1)/(~7’+1)J :—1

- d
B g =(a -y,
i) y =F(x) equation of contour of given body

) v=uPF (x)

Lk) 4z =0

Characteristic Equations

Although it would be possible to solve directly by mumerical methods
equations 2.Ia,b,c subject to the boundary conditions 2.Ig,h,i,j, and k
(being careful to satisfy the cause and effect condition of Courant and
Lewy) we have preferred to work instead with characteristic equations
to be derived below.

Hyperbolic partial differential equations 2.4 differ from elliptic
equations in that the solutions may have derivatives of certain arders
which are discontimious across certain curves (if there are two inde-~
pendent variables) called characteristics. In the case of supersonic
flow these curves are called Mach lines in honor of the physicist who

discovered them with shadowgraphs. It is shc:rwn2°3 that if the system is
of second order there are two characteristics through each point of any
region where the differential equations are hyperbolic; that is, the flow

supersonic. Following the procedure of Frankl and Aleksieva1'7 we shall
introduce these characteristics as a basis for a curvilinear coordinate
system.

Let & (x,y) = constant be the equatio”. of a family of curves and
B (x,y) = constant be the equation of anotner. Let & and /3 have contin-
uous derivatives with respect to x and y. If we introduce o¢ and A

as independent variablesz°4, assuming the Jacobian otand B with respect
to x and y is zero or infinite only at isolated points, equations 2.Ia
and b becoms: N

2.3 R. Couran’ ard D. Hilbert, Methoden der Mathematischen Physik, v. II.
2.4 The method of characteristics as used by sauer and Tolimlien does not
use coordinates constant as characteristics but uses instead an infinity
of affine coordinate systems based on straight lines parallel to tangents
to two characteristics.




(2.33) (chx+Ko<y)ua +(?<<>:Jc Lo )v --(Hp pr}u'a -(K,ax+L/3y)%-

2
€ a“v
Y
. ; A € Bg
(2.34) - o 1, OV, —ﬁyul‘3 -8By, +_L!.__ .

If u and v were given continuously differentiable functions of 3 on

a surface &« = constant, equations (2.33) and (2.34) could be solved for ue

and v if and only if

27 HA _ + KX Kt + L
(2.35) . - - v % o
-0 o3
Y x

In this case u, and vy would also be continuous. If u(4),
v( /3) » c(x,¥), B (x,y) possess higher order continuous derivatives,
it will be seen by differentiation that the higher derivatives of u
and v, and ug , etc. with respect to & are determined by equa-
tions (2 33) iy (2 534) and threir derivatives. Therefore, if o = con~
stant is a characteristic, equation (2.35) must fail:
2 2 _
(2.36) Hax + 2quay + Lozy = 0.
Similarly it will be found that /3 (x,y) must also satisfy equation (2.36)
in order to be a characteristic.

To be precise we may define & (x,y) and A (x,y) by the conditions

(2.37) Het +(K=-Ro . =0,
and

(2.38) HA, + (K + 12)/3y =
(2.39) R /q* - a* ‘

=qu

0= K2 - B

with some boundary conditions to be stated later.

From the equations
fxa a, +xg B =1,
J Yo *x* Y8 Px =0

o =
Xy y+xﬁpy 0,

i}
o]
-

ky"‘ %y * T A,




we find that
X = ﬁy / AN )
- _“y/A s
(230) Yo =R/ A
«/A
A A=a /3 -~ By
and, substituting into (2.37) and (2+38) we get

3
|

>
i

-(2.40) Hyo‘-(K+R)x°‘=0,or(K-R)yo‘-Lxu=0
and :
(2.41) Hy,a-(K-R)xﬁ=0,

(2.42) Hug + (K - R) vy +x(e —&';-—)-

and 2
(243) (K-Rug+Lvg +y, (2= -—H8) =

Together with equations {2.24) and (2.25) and the boundary conditions 2.Ig,
h,i,j, equations (2.40)=(2.43) may be used as a basis for computing numeri-
cally plane or axial iflows. If the flow is plane and irrotational, then
it is preferable to introduce the velocity components as independent
variabiss because the equations then become linear,

Other variables which are better adapted to computation of certain
flows are q, the magnitude of the velocity, and 8, the angle between the

x-axis and velocity vector, or ‘/(q2 - a2)/a2 =p and tan @ = t; it may
sométimes be advantageous. to couple to z, a function ¢ defined by the
equations

(2444) ¢x =Gu

(2.45) ¢y =Gv _
and G must be chosen so that (;bx)y =(¢ y)x. @ reduces to the velocity
potential for irrotational flow. For future reference, we include chargc-
teristic equations in these variables in our summary.

f Ho +2(K-R) a =0

2
a) H a -1 »

-uv,




2.11#

b) H,ax+(K+R)ﬁy=o |
¢) (K=R) Yo~ L X =0 0T ¥, = Axy
1z a2.42
AZ  L/(X-R)
d) Hyﬂ -(K-R)xﬂ =0 orwyﬂ=xﬂ
w= H/(K-R)
2
g av _BRy€gy
e) Huy+ (K-R) vy +X(€ = + —5—=)=0
W+ +xa(€K§R+K?R)=O
= a%v - BRy€¢
P =3 CF ==
2
y a’v _ BRy€g.
£) (KR)u/e+wae+y/3 (e = F—) 0
P Q _
uﬂtlvﬁ +yB (€m - m) =0
2 2
g?ay‘. A¢'6-Gzﬁ Q- -a“=0
g')¢x= Gu, ¢v = Gv
h) ay€A¢q + G 3z, @ -a%=0
ht) ].‘= - y€av, Zy =y € lu
2 2 : 2 2
3 q -a sin®d . 1 =q q -a
i) gq +0_+12 € *
o aq « a[quz qZ aZ
i) -a 1 q2-a2 +6,+3 631n0-1_q2 q2"3~2 (g)
< < 2
IV Z B Bl o 1a
2 2 v
qvg -3 oK — g ’
k)¢q+ — 0 zo‘--—--2 Uy =
a cos © -/q"-a sin & 1¢t
2 2 y :
1) ¢g- 1V -8 B -0, 35=51 (y,-tx
f<] > 5 > 8 B8
a cos © +‘/q - a sin® 1+t
2 2
m) 2976, =6g(-q")

16
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2 2
n) y, (t+p)=x,(tp-1), t=tanp, p=3—-2a—
-‘ | a
o) Vg (P-t) =x,(tp+1) , ,
: +*
p) dz =L (ay-tax), o= L QFP)
/1447 : 1+q°p
3#2 -1l
q 4
741
_ 2 @
Q) (1+%) 2(0) Py + by + & (7~ txg) =0, P=fHL,
(1 -4q%)
2 t -
r) -(1+t)f(p)p'@+§3+3;(yﬂ- g ) =0
f(p) = a-& 5
(14p°) (148°5°)
gz &P =ca2v 7z Q _BRy€g
_ =R~ Ty(K=R) ? ER ~ T(X-R)

Section 3. Numerical Solution of Boundary Value Problem

Introductio_n_

Typical of the characteristic equations which may be used to com=-
pute the supersonic steady frictionless flow past a given ~lane or axi-
symmetric boly are equations 2.II e¢,d,e,f, and 2.Ic with boundary cone
ditions 2.I g, h,i,j. Accordingly we shall describe the procedure we
use in terms of these equations. This is no restriction, of course, and
any of the other ¥ets of equations may be used, e.g., 2.IIn, 0, p, q, r
with boundary condi‘t,‘ion deduced frp\m 2.Ig,hyi, Je :

We shall consider.the cass of axisymmetric rotational flow; the
cases of axisymetric potential flow, plane rotational or plane potential
flow may be treated the same way with several simplifications.

Consider then a supersonic flow, uniform at infinity, past a body
of revolution ABDEF (Figure 3.l1). The fact that we have assumed the
flow supersonic implies a restriction relating the free stream lach
number and nose angle of the body. Indeed if the nose is blunt, or if
it is pointed but the free stream Mach number is less than some mmber
greater than one, it is known that the shock wave is detached from the
body and crosses the axis normal to it. From equation (2.17) it fol-

lows that q?i would, be less than [(‘/—1)/( 7’+1)J° %, i.e. subsonic.

For cones tfiers is a half-vertex angle (about 52 34! in air) above
which the shock-wave is detached at all Mach numbers. For sach smaller

17
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cone-angle there is a Mach number above which the shock is attached to
the vertex and there are two conical shockdwaveSBeich of which corresponds
to a mathematical solution of the flow problem. ~°

Intuitively it is clear that for other bsdies of revelution than
cones there exist one or more solutions (probably two) with attached shock
if the nose angle is small emough, the curvature negative or zero, and
the Mach number large enough. As far as we know, this has not beeE gemon-
strated mathematically, although the paper by Franlkd and Aleksieva™*’ con=-
tains a1 theorem which the authors believe could be extended to do it. We
shall assume that it is true and that we have this case before us. We
shall assume furthermore that the solution is a continuous function of the
boundary y = F(x) in the sense that if we replace a small section of the
nose by a straight line A'B tangent to it at the point B of juncture and

¥ /4

G /

/

c ; :
D E '
. x D~--D o
A'A al '
Figure 3.1 Tigure 3.2

let P approach A, ths flow about A'BDEF will approach the flow about
ABDEF ieee

lim x' (¢, 8) =x(x,B8),

B—sA

limu' («,8) =uw(«,B)

B—=A
etc.

In summary we assume that the given body of revolution has a con-
tour characterized by the equation y = F(x); that F® exists except at
isolated points, and is less than or equal to zero everywhere between
x=0amix=xF , except at a finite number of points such as D and E

where F'(x) may be discomtimious; that F'(0) << tan 52°; and that i is
large enough so that the shock-wvave is attached.

3¢l UC. L. Taylor and J. W. Maccoll, Proc. Roy. Soc. of london, Series A,
vol 139, 1933; p. 278-299.




A
P Y

——r—y

Approximations at the Nose

At the nose, in accordance with an assumption stated above we re-
place the contour to the left of B by a straight line tangent to the
given contcur at Be.

Since the flow at a point P is independent3 = of changes made in
the region bounded by the two half characteristics farthest from the
velocity vector at P, the flow in the region A'BC, tounded by
characteristic BC, and the shock A'C, is precisely Taylor—Maccollé 1
flow over a cone. That is, u and v are constant on lines

% £
G-D 55, =°
through the nose A'. We may therefore seek immediately the values of
x,t,u,v,2 for equally spaced values of some variable such as y along
the characteristic BC. The differential equations for u,v,and t may
be fcund more readily from equation 2.Ia,b, 2.IId than from Taylor and
Maccoll's equations. Since u and v depend only on t,

_du, __du/dy t° __u' ¢2

t — =~ —
T T TTAy 7T ¥
where we denote by a prime, d/dy. Similarly

w, = BB
y ¥y
v =_'V' ﬁ
x 0 y 2
and v = vt
vy ¥®Wy
Therefore from 2.Ia,b (g is zero in A'BC since the shock is straight)

' azvt'
ut(K - ) + v/(L - t§) + 2= o0,

u' + vt = 0. " '
In addition it fellows from equations (3.1) and 2,IId that

t(K - R - tH)
K- R °

(3.2) tr =

Using equation (3.2), the equations above (3.2) may be solved for ut and

vi:

| = -2 vt
(3:3) W' = FrEw- )

3e2 Re Gourant and D. Hllbert, Methoden der Mathematischen Physik,
Vol. II, p. 307
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To these equations we may add three initial conditions

(3'5) t = __ZE_—.. > ‘
9 X = X

_ 2
(3.6) s qo/ 1+ to ’
and
- 2
(3.7) Vo = qoto/ l+ to .

Integration is to stop when u, v and t satisfy equation

(3.8) (7+L)t (utvt)(tu-v) = (7’-1)4 [1 + 'l'.2 - (u+ vt)z:'

derived from shock conditions 2.I g and h by elimination of %G 4
is then determined from equation

(309) ql =u+ Vt'
The value of q, so obtained will vary with qo. Therefore in orxder to
obtain the flow at a prespecified Mach nmumber or value of ql we shall have

to modify 9, in a wmay governed by the variation of 4.

Distributing the data at equal intervals of y yields a poor distri-
bution in the hodograph plane. It is tetter tg use something dependent
on the velocity as independent variable, e.ge = = T. If this be done,
it may be shown as above that the differential® equations are

(~ ~Gdu_ =y

ut I = =T
2! =-yai f(va+u\/q2-a2) L ‘
N e ot = g >y
y' = -G(uv + a¢q2 - az) f e
\v =nu7,

vith initial conditions
(3'5') TO =YB/(xB -xA|) ’

/ 7
uo_qo/ 1+T° ’
zo=0,

X = 2
and o~ *B
Yo =g 3

20




and terminal conditions to detemmine q, and q1 s

(3.61) (wx+y) [(y2+x2)u - x(uxﬁy)] = (;{%—)x o - (uxwy)z-]

-d

- WX +vy
9 = X

If the problem is to be done by hand, equations (3.2), (3.3), and
(34) may be solved first; & and A4 found later. With the ENIAC, how-
ever, this would waste time since more ca=ds would have to be read.
From equation 2.Ic we find that

(310) z! + %:% [u(K-R) - vH_] = _y%_a_ [a u - v\/q2 - a2].

Freedom in Choice of & and A8 .

As for /3 , let us consider more generally tiz determination of o
and £ throughout the whole region in which we shall seek the values of
X, ¥y, u, v, z. Suppose that we assign ﬁ arbitrarily on BC increasing
from B to C (Figure 3.3). Assuming, as we have, that the charactaristics
have no emvelopes and that therefore thaere is one characteristic of each
family through each pnint, the values of /3 in BC determine the values
of 43 through the region BCD but have no effect on the values of & in
that region. Accordingly we are free to make o¢ an arbitrary increas-
ing function on BD. This will '
determine & in the region BDEC
but will not affect the values
of B in CDE. (E may be at
infinity since IE may not
intersect the shock wave.)
Step by step it is seen
that /3 may be assigned
arbitrarily (we £hall make
it increase from B to RH)
along BCEH and X may be
assigned arbitrarily along
BEDFI (we shall make it
increase from D to I )e
Indeed we may make o =

x (A),
B=& () along EOFT
and 8=-8 (&), 3/3"1 (A Figure 3.3

along  CEH where & (B) and B (o) are non-decreasing functions.

In order to make the map of the region IDFIHECB on to a pertion of the

o« /8 plans a one to one map, it is necessary tc forbid the meps of SDFI
and CEH to have any points in common. Because there are two arbitrary
functions at orz'sdisposa. in the agsignmermt of parameters theie are many
choices availasble. One could let /B = y on BCEH and & = x on EDFI; one

pal
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could let & = /B = x on BDFI or on CEHG (in the latter case, this leaves
ox undefined downstream of the characteristic & = oe which may intersect
the body somewhere between D and I); one could let /8 =y on CEHG, or if
s is arc length along EDFI, s' is arc length along CEHG and 0 is curva-
ture along either, one could let

%%‘ =+ o'(s)  on HDFI ,

a8 _
"'sé‘ -,60 +,@1 o (s') on CEHG

where s Xy ﬂn”el are positive constants, so computations carried out

on a square grid in the &, /3 plane would correspornd in the physical
plane to a fine grid where the velocity is changing rapidly and a large
grid where it is changing slowly. Jther choices will suggest themselves
to the reader. To facilitate the simultaneous programming of whole
families of flcws for ENTAC and other machines we shall in this report
usually map the shock-wave onto a line of slope one and the given con=
tour onto lines of slope % or 1.

Corners

From a point on the given coutour such as D, F or I on Figure 3.4
where the slope is decreasing but discontimuous, it is kmown that a family
of characteristics &¢ = constant emanates, but only one characteristic
A = constant. Therefore points D, F and I must map onto horizontal
line segmemts D'eeeD!y F'o...F' and It...I'. Once again the assigmment
of ¢ is arbitrary. '

Figure 3.4
A K1 Lt
1'
HA
Figure 3.5 - ¢
gure J. £l A T ]!
ot L Fi-Ft
. Di=D!
B! (%
2
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Terminal Boundary to Flow Computations

Since the velocity at G is independent of the velocity at poimts to
the right of characteristic HG, there is no reason to compute the flow
beyond this curve if, for example, the pressure distribution along A'BEDFIG
is desired. The flow can be computed in the region HGF bounded by the
characteristic HG. It will have to be computed also in some region HGLK
in order to determine the flow in the base region. At the presenmt, there
is no known satisfactory way of doing this becauge the non-viscous steady
flow model is not applicable to the wake, as a glance at a shadowgraph
of a wake will suggest. Thus the object of this report will be to deter-
mine the velocity at a net-work of points in the region R or R' shown in
Figures 3.4 and 3.5.

Retuming to the determination of the flow along the characteristic
BC, we shall simply set & = 0.and ﬁ=ﬁ°(y - ¥g)+ Summarizing: along BC

(o) &t _ b(k-R=tH)
dy "7 (K -R)
S
Al
¢) du - -az vi
¥y [ #(x-R)-L]
2
dv a’v
d) =
&y s
e) g-f; = %‘gg [u(x-R)~ve]
£) B =py-v
g) &= 0
y %
h)t:jB ,u=qo ,v=qoo
9 A o 2 . 2
: 1+, 14t
1) (7 At (a vt )t v ) = (7-1) [(l+t'2’)-(u'w't")2]
)] 4 =9, + Vb,
k) =g = - e/ + )
1) 2'=-ya Af(va+n \/q2 - az)

m) x! = (a2 - uz)f

n) yt == (w +a VOUET BT,
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3.1 (% =3/ -5
g qo/ 1+ sz
t) 4 z, = ,
X0 = X3
k_yb = YB
w) B =(7-1)/(T -T) .
v)

(ux + vy) [(y2+x2)u - X(u.x+vy)] =(§1'.%> x [:x2+y2 - (ux+Vy)2]

Q’) q; = (ux +vy)/x

t, u, v, 2, X, /3 are deternined at equally spaced imtervals of y by
solving equations 3.I a,b,c,d,e,f with initial conditions 3.Ih and termi-
nal conditions 3.I i,Jj; or u,z,x,y,v, /3 are determined at equally spaced
intervals of T by solving equations 3.I k--n, u, with initial conditions
3.It and terminal conditions, 3.I v,w.

Contour Process

Once the initial data has been determined, flow variables may be
found at the intersection D1 of the given contour and a characteristic

6 = constant through a point Bl on BC. The process involved in doing
this we :

y B, A

Figure 306 Figure 3.7

shall call the contour process. It will be used every time the flow
variables are to be found at a new point on the contour.
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Since only ocvaries in passing from Bl to Dl two of the equations
to be used are 2.IIc and 2.1Ie

- (3011) yO‘:: )\xo( 9

(3.12) wugy + v°‘+x-’_5§‘(eP+Q) = 0,

Actually Q will be zero since the shock is straight near z = 0. The
other three equations are the boundary conditions 2.I i,}j

(3.13) y = F(x),

(3.14) v = uF'(x) = uG(x)
and the condition
(_3.15) z =0,

A simple procedure which cagnbe_%id to find the flow variables at
1

A X 5 %
D, i ly to replace =— by —————w etc., obtaining linea ua-
, is simply ep eaa Yy Ao etc., o g r eq
tions for x, y, u, v. The justification for this procedure is given in
Frankl and Aleksieva's paper which applies to our problem once we
assume that the flow on BC is correctly determined. Instead of using
equation (3.13) as it is we prefer to differentiate it in order to
obtain a'linear equation in x and N
W 1

(3.13) & =cx).

Let.usdenot.ethemapofBl,BanleintheOCﬂ plane by [ , s,

and no name, (Figure 3.7) and denote the corresponding x,y,u,v,z by xﬁéy’ 5
u! s vl ’ 7{ s Xgs Yo Uus Voo 2,9 X Ty Uy V,y 2o Then we get, us
the suggested procedure, the following linear equations

(3.16) T=3,=F (x)(x-x),

(317 y-yy= Apx-x,),

(3.18) v=uG, P

(3.19) w,{u=u,)+v-v, +€ _‘ (x=x,) =0,
- A AR PED PR

(3.20) =0 ;

which, solved for x, y, u, v, z give .
(3.21) x= [yz- I+ F'a x, - lx[] /(F."a- Al D5
(3:2)  y=[5, B Azt A, Bix)] /Ry =Ay)s
(3423) z2=0,
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: P
) (324) u=Ew£uL+\Q-€-K;J.:§I(x—x1)J /(w"+G),...
an
(3.25) v= G [wzu’e +v~£ -€ R’;%R;" (x - X, )] /(wl+ G).

This represents the simplest possible contour process. Clearly many
refinements may be made. For example, it would be preferable to evaluate
A, @ and Pat m, the midpoint of £ and the desired point, and G at N,
the midpoint of a and the desired point. This may be done by extrapola-
tion or by integration. We shall reserve Jdiscussion of such refinements
for the next section.

General Process

Once the flow variables have been found at I)1 or any other point on

the contour, the next step is to find them at 2 point P at the intersse-
tion of a characteristic & = constant through 32 on the initial line and

a characteristic o¢ = constant through Dl' More generally, given the flow

variables at any two points £and u not on the same characteristic we my
find them at the intersection P of characteristics & = constant and & =
constant through _Z and u respectively. We shall call the process for

8
l\

Vol B S

Figure 3.8 Migure 3.9

doing this the general process.

The equations to be used to this end are equations 2.II cdefh!

b _ .
(3‘26) y“ - ) X o ?

(3.27) oy4 = X5

(3.28) wu, VY * X, (exgﬁ+xgn)‘=0 ’
(3.29) Uyt )\v"3 * v _(e—%R-RgE).-.-O,

e

and
(3.30) dz = yA (- v dx + u dy).

The method again is to replace partial derivatives by difference quotients.
’ There is no need for the grid sizes in o and A to be equal since the
difference equations do not contain Ao or A4 :

e
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(3.31) y- lx—l Ax

(3.32) @y-x= &y -x,

(3.33) wu+v =wu1+v£-(x-x WS+ T,
(3.3) uw+Rv=u +Av -(y-y)E-D,

and

(335).-2z I+z +yA [(2x-x1-x)v+(2y Vp - y)u] i

where 8§ = ——ﬁ andT—m .

Instead of evaluating the quantitites X, ¥ I, etc. at the midpoints
of Land P, and u and P we suggest in this simple general process evaluating
them at the midpoint of £ and u; i.e.,

- T + R
y= £ 8

u
E:-A—,;—a-}l‘
2.2,
K= A(Q)’

etc. This simplifies the computation and is all that is justified until
a more careful procedure is descnbeq in the next section. Solution of
equations 3.31-3.35 yields x, y, u, v, 2 at P.

(3.36) =x= [65(3'1 - Ax,) - (wy, - xu)] /(1 -Raw),
33 y= |- Rx,z - A Gy, -x)] /- K@),
(3.38) u= [u + Xv - (y=y. )(S-T)} X{wu ), -(x-xe)'S+T)}] /-
1- Aw),
(3.39) v = [{'ul ( -(x-xl))(S+T)} -wqu + 2 v, - (7, )(S-T)}] {
(1' A&)))
(3.40) 2z = %[z tz + R {-(k-x XV +(2y -y, - %) ﬁ}] .

Any hand computation must be accompanied by checks. The values of
H, K, L and R may be checked by the identity

HL K2 - R°

the solutions (3¢36) - (3.40) by substitution into some of equations
(3.31)=(3.34) the value of z by the formula

z=zl+)-'l[-(x-xl)w?+(y-y:)ﬁ:]

etc.

27
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Shock Process

Sirilar to the contour process though more complicated is the other
boundary process which gives the flow variables at a new point on the shock
wave. In this case the flow variables are known at a point a on the shock
wave and another point u lying on a characteristic 4 = constant through a.
The point P lies on the shock wave and a characteristic & = constant through

Ue
v A
P
a
a
/o =
x a
Figure 3.10 Tigure 3.11
The eqtiations we shall use are 2.II d,f, h' and 2.1 g,h,b!?
(3+41) Wyga =X )
dyﬂ ql"ﬂu
(3-42) = 7 ’ :
€P-Q, _
(3443) 11'6"'. AV'@ + yﬁ ( —K’:IT—) = 0,
(3.44)  v3(b - u) = (a - 0)3(u - a), or § = v (u,v),
(3-45) dz =yA (- v &x +u dy),
ant = ( u - ql)2 du,

(3-46) € = - TwH) eI/ 7 ey T
The procedure is as before; the coefficients in equations (3.41) and

(3.43) may be evaluated at u, the other at a. The results for x, y, u,
v, z are

347 x=[onx -x + o (y-y,)] Aeh -1),
(3:48) ¥ =[h@y-yh(x, -x)] /wph -1),
(3:49)  w=[A g +u ed v -7 - (7 - w6, ] /AL,
(3.50) v =[fAyv, + v, +E(u -u)- fa(y-yu)(su-Tu)] /AL, + 1),

(351) 2z = 2, + A Aa [—wra(x-:ca)+ua (y - ‘ya)] c
where
ha = (ql - ua)/va

£, = [(9 - ) {(qw) + 20} ] [, a 2]

28
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When the flow variables are determined at P, g may be computed at
the midpoint of aP by equation (3.46) using
du _ u- Ya
dz 2 -2 s

a

Corner Process

We have seen that a cormer such as D (Figure 3.2) maps into a line-
segment D-—D in the & & plane. Along DD u, v, and & vary although x,
¥,2 are fixed. & may be related to u and v in any practical way such as

(3.52) o = S ey U B B " 6 \r e e ,
1%~V © %2 T Y2
a linear function of the tangent of the velocity inclination.

y A
D/ . D D
- {
X d, oz
Figure 3.12 Figure 3.13

Sincé x is constant at D,

Xee = 0,
and thus from 2.IIe
(3.53) Uua‘ + v“ = 0 o
or
(3.54) wdu+dv=0 ,

This is an ordinary differemtial equation in u and v whose solution is
an eplcycloid in the u,v plane. The solution has been tabulated in

various plac333 -3 o Thus it is simple to obtain a set of points along
D—-D. However, if more accuracy is rsquired than three significant
figures, and if it is desirable to space the daia at equal increments

in v/u, then it is simpler to modify equation (3.53) introdusing v/u =
t as independent variable

Je3 Esge, N.A.C.A. Tochnical Note 1428, Dec. 1947, Notes and Tables for
Use in the Analysis of Supersonic Flow.
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(5:55) T =g
anmd solve directly.

Section 4. Refined Numerical Methods

Introduction

In section 3 the problem of determining numerically the supersonic
steady frictionless flow past a body of revolution was solved in a simple
way. Having assumed that the flow near the nose could be reasonably well
approximated by the Taylor-Maccoll flow with the smaller shock wave angle,

the paper of Frankl and Aleksieva1'7 proves that there exists a umique
solution and that the approximation outlined in the last section con-
verges to this solution as the mesh size approaches zero (if we ignore
round-off errors).

However, in the last section, little attention was paid to the prob-
lem of getting the best approximation for a given amount of labor by hand
or by machine. This is a problem which can never be completely solved.
Nevertheless, in this section we shall examine some aspects of the prob-
lem end show how some of the computations previously described can be
done to a given accuracy more easily. We shall indicate in several
places how a problem should be treated depending on whether it is done
by hand, or by a fast machine of small memory, or by a fast machine of
large memory.

Systems of Ordinary Differential Equations with Initial Conditions

Given a system

(4e1)  y; = £ (yyse 05Ty X)) i=1,2 ceoosmy ¥ =¥ (x)
of ordinary differential equations with initial conditions

(402) yi(xo) = yi ¢
o

The mmerical method of solution most commonly used for hand compu-

tation at the BRL is due to lfoultonz"l, although it differs only a little
from a method used earlier by Adams. Like most mumerical methods it
agsumes that the solutions may be closely approximated on short intervals
by polynomials of sultable degree. The polynomial of degree n passing
through n+l points has been found in various forms by Gregory (1670),
Newton (1687), Waring (1779), Lagrange (1795). If Gregory's formula for

(4°3) fi(Sﬁ_:u--Ym: x) = Fl (X)

Z.T ennett, Wlne, and Bateman, "Numerical Integration of Differemtial
Equations¥;, Bulletin of the National Research Council No. 92, Nov.
1933, pp. 74’ 75, 800
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‘be integrated from X, to x

a the following formulae mesult:

L , 1.2
(hots) . F; (x)dx = h [Fi,n+1 2V E m -V Fi,n+1] ¥
n

1 3 19 gl 3 5

e [’ ZV P ~ Y Fipn "0V Fi,n+1] *
863 6 ' .

+ h[— m V Fi,n+1 CJ ooo‘o] F]

where

FJ'.,n-i-l = fJ'.(yl,n-sl’ y2,_n+1’ *** Jp,n41? xnil)

(4e5) 4 VEF pa “Finm - Fin

P =V [v -VE o Fna ot e

i,n#l F'i,n+1 - V'isn i,n+l “i,n
L 4 . ®
L ] [ [

j - -1 : j=1
ka Fi,n+1 - V[V . Fi,n+1 - v’ Fi,n-_l E

Moulton's method ir the following: values of yi,l’ Fi,l’ yi,z,

Fi,2"°°’ yi,j’ Fi,j are obtained corresponding to x.l’ xz’ cveey xj by

special means such as Taylor's series. These 313 arranged on a computing
form as follows:

3l
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A trial value for Fi 41 is then secured hy extrapclation or otherwise,
b
and yi,j 41 18 computed from the formula
xj+:l.
(4'7) yl,j+1 = yl,J & Fid-x’
.xj
using equation (4.4).
A corrected value of F, . A is then found from equation (4.1) and
XY g
the process repeated until no change occurs. The values of x

P i 3410 71, 5417
i, 5, eril | Fl,j+1""’ V. Tn,ia are entered in the table. WHlues

of yi,j+2’ yi,j+3’ etc., are computed in the same way until the end of

the interval is reached. Practically, differences beyond the third are
not often used so that the solution is aprroximated by a fourth degree
polynomial. We shall refer to it then as a fourth order method. More
generally we shall say that if j-1 differences are used the method is

a jth order method, because if the functions y, were analwtic we should

, W X
be making truncation errors of the form [d3+1y/dx3+1] [83+l/(j+1)i]
in each interval. It is customary to chosse j comvenienily and then to
adjust the size of the interval so that Fi,k are negligible. This
ray require several changes of interval size during the computation.
It will he noted that if it be necessary to halve the interval, then
auxili.ry roints must be inserted using interpolation formulae. As a
guard against errors, hand computations are fiequently checked using
equation (4.7) over larger intervals and, for example, Simpson's Rule
and/or Weddle's Formula. .

Youlton's method, though convenient for hand computation, has three
defects for machine computation which are avoided by other methods. These
are: (a) the mmber of grantities which must be r:membered in going from
x_to x ., namely, [(5+1)m+1] ; (b) the fact that early steps are

different from later steps; and (¢) the necessity of using interpolation
formulae in reducing the interval size. In setting up a problem for a
machine, if there are N registers available to i'emember numbers, then
1+(j+1)m must be less than or equal to N. Thus if a fourth order apnroxi-
mation is to be used, then m must be less than or equal to (N=1)/5. For
example, N will be about twelve to fourteen for the ENIAC if ten figures
are to be used. Let us in future discussions let N = 13; thus only a
second order system could be handled by Moulton's method on the ENIAC.

Most of the othar common methods such as th&se of Adams, Steffénsen
and Milne are subject to the same objections for machine work and accord-
ingly will not often be used for high-speed machines.

The best known methods which are less open to objections (a), (b),
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and (c) are those of Runge and Ku‘l'.ta.l”3 « The step from X to o is

the same for all k with these methods. For exampls, their fourth order
method is described almost completely by the formulae

Gi,ml =Tynt (g1 + 2 5+ 2k 5+ )6
where

k.

i,1 s fi (xn’ N,n? *°° ym,n)

= 3 ¥ %
(AOBK ki,2 h fi (xn + ;.-'h’ y.].,n + zkl,l’ ooy ym,n+ zkm,l)

_ 2, 2%
ki,B h fi (xn + Zh, yl,n + 21(1,2, seey y'm,n + %km,2)

k =h fi (xn + h, yl,n + 1(1’3, soey ym’n + km,3)

1,4
\

(i =1, 2, csoey m).

This method is free from defects (b) and (¢). As for (a) there is one
stage of the computation when x , Vim0 o Vo 2 1,0 + (kg 1+2k1 2)/6,

Yz PRACEREWYLIRIIE A (k a7t 2% 2)/6’ k200000
m,‘ kl,'}’ k2 39 *oes k 1,3 nmst be remembered, i.04y 1 + 4m quantities.

In this case, therefore, 1f N =12, m = 3; so a system of three equations
could be handled by the ENIAC if the Runge-Kutta fourth order method is
used and 13 registers are availatle, This method is therefore superior
to the previously described methods for machines of limited storage space.
It will be observed that the functions fi are used four times in going

from x to X, 38 compared to once by the Moulton and similar methods.

Usually the formation of these functions is the most difficult part of
the problem and thus the Runge-Kutta method is in most cases more tedious
for hand computation. However, for machines such as the ENIAC where com-
puting time may be a small fraction of total time spent on a problem,

and where it 1s nearly as easy to instruct it to form f four times as
one, this is no drawback.

Another method which is somewhat similar to the Runge-Kutta method
in adaptability to high spesd machines but superior in regard to space,
is described below. We have not found it in the literature, (although
it may have been known to Gregory, Buler, Newton, cor lagrange). There-
fore we shall derive it in detail. In this development we shall always
assume that i rms from 1 to me Let us assume that the functions f

are analytic; then y, are also analytic. Let us denote yi(x + 2.) by

dy
= h
Yi, a'z—'(xn + 2) by yi s Btc' wing i,n’ yj_ n: yi,n+1’y1,n+1

about x_ + g- we have: ,
n

Z.3 Bemnetl, Milne, and Bateman, Op. cit., pp. 77-80

34

R T R v ¥ T P

B ST Y




Yy

——r

(4:9)4

=1 = Oh =
Vi B " et " "t o(r’)
2 3 4
o - h - = h h
T =H - WE R R - B gt B gt o)

where O(h™)/n" is a quantity which approaches a fimite limit as h

approaches 0.
Adding and subtracting the first and second pairs of equations:
' 3
(" _ _= =qy D 5
a) Yintl “¥in T i+ i oz Ol )
= = 'h2 .
D) Fip t Fon T2 A OO
(4.1o)ﬁ ;
v
c) i1 ~Vi,n =Y b+ O()
h2
1 1 =2y T M
L?') yi n+l + yi,n 2}’1 + yi z- + 0( )
Assume now that y and X, are mown and that Y i is lmowm to
order j; i.e., L
= j+1
Vimer = Yi,me, g+ OB"T)

where j =0, 1, 2, or 3. Then the following sequence of computations

will yleld v 3 mHl, 341
a) i fi(yl,n, Ya,n* **** Yo,n x) equa. (4.1)
b) y.’t,n-l-l,j (}’1 n+l,j’"""’Ym,n4, j’ xn+h)+ O(hj:;\la. (4.1)
o ¢) 7 jh =¥,y Tt o(nY) equa. (4.10)c
d) 2y ;j Y n+1,3 i,n - 3-’; j=2 h2/l. * O(hj+1)equa. (4.10)b
e) ii, =f (yi 5 y2 ,3 ...,ym 5 *n + h) + O(hJ;;Za. e
£y, n/4 = o, gt W gt o(h9*1) equa. (4.10)d

&) ¥y pa, 54 = Vint ¥,

+ T h3/24+o(h3+2)
equa. (4.11)a

By repeating this sequence of operation 4 times Yi nel will be obtained
b
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to fourth order. If a higher order approximztion is desired, it is
necessary tc adjoin more points, or dlfferentlaue the difierential equa~
vinns to have rore equations. Jince fourth order is a convenient
approxination, we shall not discuss the other possibilities.

Iet us cumpare this method now with the previcusly discussed ones.
here, as in the munge-Kutta method, there is no difference between the
step fron X to x and the step from X, to X 45 por is there any diffi-

culty in changing the interval. As for the tax on remory, the moment

of greatest storage requirerent occurs when x R 0’ Ji nti, 3 and
b

VA 3 rmust all be held in order ¢o form 3r""J 2 h /4 (J o may be

subst1tu+ed for 5 as scon &s foiaaed)e Thus **e ,anquant r
/

Z i,ntl,j-1 <
1 + 3m = ! must be satisfied. Tor the DZITIAC, therefore, m = 4} i.e.,
it is possible to approximate to fourth order a system of four equations.

The mrice for being able to solve 4 instead of 3 equations is the
formation of fi 20 times instead of 4 as in the Runge-Kutta method; just

as the price ior being able to solve 3 instead of 2 equations is the
formation of fi 4 tires instead of one.

If the process described aktove is stopped at the second iteraticn,
it azounts to the ileun method:

. b : -
(4.12) v, n+1—y T fi(yl’n,--,ym,n,xn)+fi(a-l’n+hfl{y1’n,--,y n,«n}

cosX +1);]
This method yields cnly a 2nd order approxiiction to the sclution but
has the advantage that only 1 + 2m registers are required for dead stor-
age, so that a systen of © equations may be handled on the ZITZAC. This
is actually the method which has often been used in the past for the
E54a0. It 1s clear, however, that if Zour or less equaticns are in-
volved, or if eight or less are invelved and only five sign’licant iig—
ures are to be carried through the computation, then it is ;-Lohly desira-
ble to use the fourth order approximation describad alove; for larger
steps nay be used for a given truncation error, and there will be corre-
spondingly less round-off error (only the round-off error of the last
iteration counts). The following table summarizes appreximate esti-
mates for various methods of solving ordinary differential cquaticns
with the emphasis on computing machines of small memory capzcity.
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Moulton

Adams— : . Succes~
Method Bashforth ?ﬁ:ﬁ:- Cllp;r Heun ggﬁﬁ ::t'on ive approxi-
Stephens - ping = mation
Milne
Hand Excellemt Good Poor Fair Not usually Occasionally
computation practical good
Hachine Poor Good Good Good Not vsually Not adapted
computation applicable for machines
of small
memory
Different
procedure Yes No No No No
at start
Interpolates
to reduce Yes No No No No
interval
Mumber of

registers in
internal mem-
ory required
for storage
for system of
m equations and
4th order
approximation

1l +5m l+4m 143m (142m, but
gives 2nd
order approxi-
mation, not

4th)

Mmber of

equations ) 3 4 (6, but
that can be 2nd order)
solved to

fth order

with ENIAC

Higher Order Approximations to the Solution of Systems of Hyperbohc
Firtial Differential Equations

Just as it was possible to approximate the solul on of a system of
ordinary differential equations by a polynomial of arbitrary order over
a given interval, so it is possible to do the same for a system of par—-
tial differential equations. We shall not attempt to give any general
theory; however, certain general observations may be made. Suppose we
have a system of m~2 quasi-linear hyperbolic first order partial dif-
ferential equations in two independent vardiables Yy ari Uy, and m=2

dependent variables ua, ooy W Suppose there are m-2 families of
real characteristic curves, only two families being distinct} then
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characteristic variables & and ,6 may be introduced so that the system
takes the canonical form:

fm ‘aui
Z aij ey = bj j = 1, 2, cesy ﬂ
i=]
(613) 9
ol 3111
Z a. . =D, j= l“'l’ooo,m Y
2, “ij 348 3
\1=1 .

If now the aij and bj are amalytic functiong of Upy eeey Wy and the
u's are all known at a set of n points Pl’ P2, ghc., in the o ,ﬂ

plane, the problem of finding the u's at a point P nearby may be attacked
as follows: Assuming that the u's are analytic, we may expand them at
P, Py, e, P, ebc., about some comnvenient point B. These mn equations

plus the m differential equations at P plus the (25 - 2)m differential
equations at P obtained by k-fold differentiation yield (2k+l + n-l)m

algebraic or transcendental equations for u, aﬁi/aot , al-li/a/@ 5

o= o :
2 ui/ao\ad » 371, /3034 ,etc. They may in general be solved

P
P5° 01 P
P
. 3R P,
P
. 'P6 .
Figure 4.1
for (2°4n1)m of these derivatives in terms of the known u's at P

1’
P2, ...Pn. If these then be substituted in the Taylor expansions for the
u, at P about P, a polynomial approximation of some order j is obtained.

fantogCicgae m(14+24.0.+3) = mj(3+1)/2

derivatives of u's at P of order j or less, j would in general be the
largest interger less than or equal to

_ 3 / 9+8(2k+1+n-2)
Ity & )
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For example if the differential equations are not differentiated and
two points are used, J =1 and we are assured of being able to obtain

a first order approximation to the uts at P.
Howaver, it nay well be that by choosing the points Pl’ Pz, etc.,
properly the equations obtained in ﬁ'i , aﬁi/ao\ , etc., contain fewer

independent quantities to be eliminated than mj(j+l1)/2. TFor example,
using four points Pl’ Pz, PB’ P arranged at the corners of a rectangle

with sides parallel to the & , 8 axes and with P chosen at the center,
the expressions

2% 2%
i+ (Aa)? 1 (MBS —
* ™ 38

occur in the expansion of w at each of the four points; thus the mm-

ber of quantities of order two or less at P to be eliminated is reduced
from 6 to 4 and so, using only the original differential equations a
second order approximation to the u's at P may be found. Until the
reduction in mumber of independent quantities was noted, one would have

predicted that there were only enough equations to provide a first order '

approximation to the u's at P.

In the process of extending the functions w from points Pl’ eeey P

n
to point P we have used (with reservations) expansions of w at F 2
about B and the differential equations and their 25'1-2 sets of derived
+1

equations at P. (2k -1)mn additional equations in the derivatives of
u, at P may be obtained by expanding the derivatives of u, up to order

k about B and substituting in the (2¥'1-1)m differential equations at
each point Pl’ P2’ ceey Pn' Except for checking, these equations, how-

ever, are usually of academic interest only, since they have essentially
been used already in the earlier determmination of the uts at Pl’ P2 y etce

The assumption that the u's are analytic must be considered for each
problem. It is well known that the solution of a system of hyperbolic
differential equations with analytic coeffic’ﬁents Qeed th be Qnalytic.
(E.g., the two-dimensional wave equation 3"u/9x" = 3"u/ay is
equivalent to the system p. = s Py = Q. where p=u, q =u. The '

general solution is p = £' (x+y) + g'(x-y), q = £¥(x+y)=-g!(x-, , where
f(a) and g( ,3) are any functions with continuous second derivatives,
and f'(a) =df/dqt , g'('ﬂ) =dg/d 4.) In fact, the characteristics
may be defined as curves along which ‘discontinuities of derivatives of
some order may occur even though the solutions y, are themselves con-
timous. As an example for the aerodynamicist, ¥onsider the flow over
a body of revolution with a contour having discontinuous slopes as in
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Figure 4.2. Consider any curve ABC intersecting at a non-zero angle the
v characteristics which bound the expansion regions. The velocity com-

ponents and the pressure and density of the air all have discontinuous

derivatives at Pl-‘ P2, P, P[* with respect to arc length along this curve.

i

Figure 4.2

On the other hand, if functions uy have analytic initial values given

along an analytic curve which is not a claracteristic, then the u's

will be analytic in the mgifn of determinacy. More general theorems of
. this nature are available.™*

V-4
4, ob
P - > A
ae u
Figure 4.3

Let us return now to the general process described in section 3,
and rediscuss it in the spirit of the above general remarks. As in
section 3, we assume that we are to determine a solution of equations

a) (K-R)yy =-1lx, =0 ory, = A X o

(4e14) b) H Vg - (K-R)xA =0 or Wys= Xg

2
av

!\ci) Hu,, +(K-R)va +x [e

o + (Bﬁy‘g)/é:, =0

Z<Z R.Cowrd® andD. Hilbert, Methoden der Mathematischen Physik, vol. II,
Chapter 5. .
F. Frankl and P. Aleksieva, Op. cit., p. 793.
I{O Iﬁwy, OEQ Cit-, pl lrn.
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2
1 av € =

d) (K R)uﬂ +1vg + yg e = (BRy g)/2] 0

e) 2 =- y€ar zy = yeAu

with boundary conditions

2

(4)4 o2 = %) du,,
conttd | €

" 1 dz
(u,y=b) (uy- ;,:I)(Y u,-e) ?

v, () = (g - ), - )

RN CHERWA

¥y = F(x)
v = uFt1(x)
z=0

-

We assume that x, y, u, v, z are knomzt £and u in the &4 , ﬂ plane
and are to be found at b, the interscction of characteristics through
£ and u. Let us translate the & , & axes to P, the midpoint of £
and u. Let us expand x at A, b, and u about P, indicating quantities
at P by bars and quantities at b by no subscript, A oc and A B by «

and respectively, derivatives with respect to & by subseript «,
etc °e

=X +o<1'c°‘+ ,8:?.'6 + %(“2’-‘01«*/82;‘,6,@)*“/5;‘0:,@ + 0(h3)
- = | 1ra2= 2- = 3
(4.15)4 x, = X ~a¥, +Bxg+ e Xpot B }.%6)'“'6}:0‘.6 + 0(h”)

= 3 Lol .8 oA 2=\ 4% 3
X =X 40X, ’B}fd"' s( o xaa+,6 xﬂﬁ) qéxa/g+ o(h7)
where h is the larger of o¢ and 4 . Adding and subtracting the third
equation to and from the second, we obtain

rx! +tx = 2% + a2£“a+,52§4’- 2a,6:':0w+ O(h3)
y + 7, 237“““925'%8- 2487, g+ 0(8)
(4.16){ Uyt = 2U + o 2Em+/52%- 2a,3£m+ 0(h3)
Vp tV S ¢« 2\7aa+ﬂ2%- 208V g o(n?)

o= 2- 2= - 2087 -+ O(h7
2y +2, =22+« zoux+'6248 of

2y +

e A Bes - mimm
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+ 20%, + o(r?)

Vg =Yg =¥, == 2y, +2"5§,8 + 0(h3)

(4.1'7)-{ud =u, -u =- Zau“ + 2,495/s + O(h3)

T = T = Y o '“ +2,3x?6 + 0(h3)
| Cd=z£-z = -2z +2656 + O(hB)

Substituting from equations (4.14) into equations (4.17), we ob~
tain the two pairs of equations

1

1
N
R
]

Ry = - 20+ B2RT + o(h3)
- - = - 3
; aay e Aza_xa +_2':3§’e +-O(h ) L 3
oy =- [€FR)/(R-B)] 2485, - 2o¢u‘x->\2ﬂvﬁ + 0(h’)
vy = [(eP*Q)/(K—ﬁ)] 2u:'ca+52aﬁa + 2874 + o(h3)

for the pairs of unknowns 20(:-:0‘ 5 Zﬁiﬂ and 20(501 F Zﬁ;ﬁ « As for
the coefficients, we observe that from equations (4.16)

) y = p yerey

if f is analytic (class C,). Therefore to the order indicated the coef-
ficients may be replaced “by fun-*ions of the means of x, y, u, v, 2

at / and u. The determinant of the coefficients in each pair of equa-
tions is

1o A@4 22 vd -8
] uv + a q2-a

} it would only be zero if the Mach number were one or infinity, and in-

finfte if uw + a vV q°a® = 0. We rule out these three cases. With this
restriction, equations (4.18) may be solved with third order errors:

(@5, - %]/ [1- X&)+ o)
[yd > ixd] /[l -.)\&':}r o(r’)

: (a5,

4e20,£2 8§
( \/3 8

T ' X, +X ¥, +7. z,+7
(&1s) 12(%,7,5,7,5)= f[..%z_‘&.+-.a(h2), 2 0(112),...,_1.2_‘_1_ + O(h2)1
X, 4X_ 5, YV z,+2
=f ( L u £ u l u ) + O(h2)

e e oo die
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:2¢x1'1°‘ = - [(1 -3\&)(5\\7 +uy) +{<"-T -\ W ('s'+"f)}yd +
(4:20) - 2]/ [a- A2 + o)
(conttd) 28 [(1 =\ % (Vg + @uy) - 2T &Yy + {S+’f‘->\w(S-T)} —I
/[1-A&3)° + o)

where S %%g—m andT-g%ﬁ% 5

These quantities may now be substituted into the expansions for x, y, u,
v, 2; but the results

=

X

n
N!
2ol

—[ byg - (1 + )\w)xd]/l:l Aw]
=7+ [+ A )y, - 2Ax ]/[1 2]
(422) uw=7+3 {1+ A3 g + 22 v} -2 {(3y)(5-D)-.
Axx, )EDY/ [1-3a@]
v =7 + 3[{edu, «1eRavy }- 2 {(xx, )ED- By
(5-0)})/ [2-2a]
2+ ¥ [~x-0T +y-pi ],
'l'(x'e X ): y = '%'(3:" ¥ ), u = %(u +u ): ‘7:%-("2 "'Vu)s

2
are correct only to first order since é-[tx % e +ﬂ 5s * 2owxa)6]

etc., have not been evaluated. These expressions are the same as those
obtained in the last section. However, it is possible to obtain expres-
sions which are correct to second order by the simpl: expedient of using
the values of w at a in Figure 4.3+ In fact corresponding to equations

2

where X =

(4416) are equations
Gc-xa =2ux, *+ 2/5:?,6 + 0(1°)
= = 3
VY, =2a¥y * 283, + 0(h7)
(4.22)4 a & f3 _ 3.
-, = 20<u + 2,6u/3 + 0(h”)

Vv =207, + 28T + o(n)

o = 2
(22, =2z, + Zﬂzﬂ + 0(h?)
which with equations (4.20) yield equations
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(x = x, + [2Z>yd -(1+i Z'))de/EL-i&] + o)
I [(1+3\ ®)yy - 27\xd]/[1-.i &J + o(n?)
u=u + [{(1+i5.))u +2>\vd} -2 { (y-yu)(§-"f') -

(4:23)4 7\\x-x )G}/ [1-AB] 00y
vev +[{2wu +(1+7\w)vd} -2 {(x-x, )(5+T) -

» (wu)(s-ﬂ}]/ [1-23] +00)
2=, + 3 [Fex,) + ﬁ(y-ya)] + 0(n°)

It is important to note that the computations involved in the second
order approximations are almost identical with those in the first order
approximations. Accordingly, the only excuse for using the first order
ones would be in the case where storage memory in a machine was too small
to remember the values at the extra point a.

An alternative procedure for obtaining a second order approximation
to x, y, u, v, 2 at b which is slightly better for the machine of small
nemory may be found as follows: one might expect that if he replaced
2o<_ by xX, 5 20 g%" by y-¥p » etc., in equations (4.14)a and
(4.14)0 evaluating coefficients at the midpoint of £ and b, and
similarly replaced 2,6:-§aby ¥=x , ebce, in equations (4.14)b and (4.14)d

evaluating coefficients at the midpoint of b and u, a second order
approximation would result; and this is true. To prove it, let us form
the expressions

+ O(hB)

2o iﬂ X o
G 24)4_}(-3( - c'.S(y-y) 208 &y 5;8+ O(hB) /

) A (u-u )+(v-v )+(S+T)(x-x )= 2| a+(§+T26 J-t'“‘]
+ O(h )

éu-u Y+ i(v-v )+(S-’T)(y—y ) —-20(%[ VA +(§-T) /3]

6"32" i(x"'xl)

+ (1)

and replace()\ , @, A\ . etc., using equations
3\=l( Ayt A ) + oK)

1(w2+ @) + o(h?)
(4.25)’4 (5+T) %[(Sl +T, )+ (S, +T )] + ()

‘ aio(:%(x-x )+O(h)

pL YA

Ll

S U




g

4 B, = Hyy,) + o(n)

L«i; KA -2, + o)

etc.

As a result we find the equations

E
(77, ) = HA= X )x - x,) = o()
(xx ) - M w+e )y - v,) = 0(n’)

(4:26)4 (vv ) + 2(w+w£)(u-ul ) + |:(S+T)+(s£ + 1, )]

(xx, ) = o(?)
(u-uu) + 3 '}\+7\ )(v-v ) + 5 [(S-T)+(S =T )

- (71,) = o)

These may be solved for x, y, u, v, z.

v= [§ zo\w x,} A0, ¥ {5, -Hew+w)r )]/
[1 - 7\+)‘1)( w+ w )]
2D qu = [fo O a5} = 3R+ ) {Hw+ey) up+
vy ey )] /[ AR D ray)]
v = [{%(w+w1,ul v, - 14 (x=x, )} “Hw+ w,) {uu*%(k*-)\u)vu

= [, Mooy} + 3om) {5 Az )]/
[1 e A, )(w+w )]

53y} J/ A 0 v g ]

2 =[ Kz, 4 [ (2w, )} (2o, v 4 )
(2}{-3%—1: 2 )+(2u+uu+u l)(2y—yu-y 2 )}]

Lv_vhere b =3 [(s+1-)+(s 12, )J and 1, [(s-'r)+(su-Tu):|

but these formulae must be used by iteration to yield second order approxi-
mations since 7\ »y w , P, Q, Ayu, Ayv must themselves be known to firs?h

order.

We turn our attemtion now to a third order approximation to x, y, u,
v, z at a point not on a boundary. As we have suggested, we may increase
the order of approximation by adjoining more points or by differentiating
the differential equations or both., Because of the fact that we want our
methods to apply when there are characteristics which are lines of dis-
continuity of derivatives of x, y, u, v, z, we prefer not to adjoin more

points. -

The reason is that using only the points [ s U, 3 and b on the

vertices of a rectangle we can always manage to have isolated character-
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istics of discontimity be part of our network and thus avoid having

them pass through any of the rectangles. It will then be permisgsible
always to assume that the dependent functions are analytic inside the
rectangle. )

Following the general remarks above, we observe that using x, y, u,
v, 2z as given at three arbitrary points_and expanded about a J_;’ourth_f’
we would have fifty unknowns (X, Xo¢ 5 Xg » Xax 5 Xg9 s Xxg sXoxxes

etcs) to determine from the 15 + 5 (2k+1-1) expansions and differential
equations obtained by differentiating k times. Thus k would have to be
2., The problem of differentiating the differential equations twice,
obtaining 35 differential equations, and solving these 35 with 15
expansions for the fifty unknowns would appear to be quite formidable.
Actually, because of the symetry of the four points, a, b, L s U, with
respect to P, the midpoint, the number of unknowns is so reduced that we
shall only need to use five of the ten possible first derived ejuations.

To be pféei,se, if we expand any function p such as », y, u, v, z,)s,
@) ebesy at 8, b, £, u, taking thre origin at B,

=5 *kby A B + HChuct ATy ViaBhg + (O P Betoc*
jb’ﬁ Baﬁs )+ 5(3‘:’L ﬁf’qa,e +,831-)pﬁﬁ )
) = BBy 48 By + HoPuy 48 Byg )BT, 4= HA Puowr *
: oo e =
(4+28) & 304" Rraa)t %;(kgﬂp,mptéBpMp )
B = B +® By ~BBg +H(O P + B Tgs 10, 4 K P nor *
2= 1 2 -
6y - U Fong
B, =B -aB, =8 By XDy + 6 Bap Jaa0,, - £k
2= 2= =
328 Dyan ) - %(3’& Apm,g+ﬂ3pma) ’
we may form the combihations
(4429) p+p, -py - P, = 4kBDea * o(r%) 4
(4.30) p,*+p, =2p+ o(n?)
(4¢31) «p, =(p+ P, - P, =By ) +o(r?)
(4e32) BBy =(p+py-p, -p)fh+ o(r)
(4.33) P - P, = 2D, + 285, +0(’) , amd
(4:34) p

A
Equation (4.29) will yield third order approximations %o x, y, u, v,

3=
pquo( o

=B, =-2KBy *28pg + o(r’).

-——_— __ _.a

[N

. O S




Rt s Sy L Meansa sonnneat et e a e il g

z provided we can evaluateag ;:”(ﬁ 2B Ty 8 ° etc. This suggests

that we differentiate equations (4.14)a), c), e) and (4.14)b), d) with
respect to 4 and oC respectively and solve for 4xX@8 xo(ﬂ R Aogquﬁ,
ete:

Yy X8 =L & 28 :\ﬁ 2% Xo+ 2By 2,3;7‘]/ 1-A®]
1B Tupg =[N 2% @285, +26808 2% 5/ [1 ) &]
4K B Toe = VEMIUAS Fogg ~(5-1)idBTwg +] 2 Big200i, -
o} 28 75] / [1.-)ah
[D2g (5+7) g WIy - 2 (3-T)x 24 ;A] [1‘-') 55]
lokBiog =[BT (5-T)ikB T ~(S+TVUXB Ry g + 3 20028 Ty =
- 2BBg2i o] /[1 -AS
[& 200 (5-7), 287, 285, 22 5] /1 Ha]
A«AEqp= YA(~v 4”‘45}.5«,9* u Z‘“ﬁirp ) + 2,5(37A'E)p 2ey, -
- 23(375\7),9 2e0x0of .

In order that®g® J-cq, shall be correct to third order it is necessary
that ) ,& , P, Q, yAu, JAV be Lnown to first order, ande X, 9Xg,
etc., andet Ay , A Ai s o B, etc. be knovm to :econd order. The
first set may be found by using equation (4.30). The secopnd set may be

(4.35)%

"found by solving equations (4.18).

200X g¢ =[‘T’ (vg=-7,) - (xg- Xu)] / [1 =) cI)]
28 = [(3g - %) -Xxg-x)}/[1 -2 @]
(4:36) 2oy = ~[(ug = w) + }(g= v )Brg ) - Wow)] /
- [2-)3]
[G(ul- U ) (v,¢ - v+ §(x2 <) - T(x - xa)] /
| [1 -,'\Ga]
To find the third set we use equations (4.23) and (4.33) and (4.34).

2,ew7ﬂ

Second and third order boundary processes may also be devised al-
though we do not have a third order process yet which is elegant enough
to include in this report.

. To obtain a second order contour process, for example, let us call a
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and b two points on the contour in the o 8 plane, £ the point of
intersection of vertical characteristic turough a and horizontal charac-
teristic through b, P and P, the midpoints of £, b and a, b respectively.
We agsume that x, y, u, v, z are known at £ and a and are desired at

b. We take the origin at P, expand x, y, u, v, z at £ and b about P,
and at a and b about P, and form the differences and sums.

. *b

e

Figure 4.4
(437) p-p, =2ep, +O(r),

(4438) p+ Py = 2p +o<2£°u + O(hl*),

(439) P - p, =205, + 28B4 + O(F),
= e o
(4:40) p+p, =2p+py, +8° p 2a,8p + o(n*),
denoting x, ¥y, W, V, 2, A, etc., genera.call;r by p.

Now if the map of the contour is 8 == T, the boundary conditions
may be written
d Y +TY
(4ell)  F= ot = 1)
x *a

and

(4e42) v =u £(x,y) »
Multiplying the second member of equetion (4.41) above and below by
2 8/7T or2a& we get

(4e3)  2a3, +287,4 = £(x,3) [20(:: +2,exp]

nquations (4.42) and (4.43) must hold in particular at P and then we
find tr_xe equations

r

y-y, -1 (x-x)=0)

y= 35 = Alx - %) = (1)

(40“) < = _ 3
@ (u =) £ (v -7,) + (S+D)(x - x,) = O(h7)

v - u £xy) = o(r)
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which may be solved for second order approximation to x, y, u, v, 2
provided A # T. However, )\ would only equal T if the Mach angle were
zero, i.e. the Mach number infinite. Ruling this case out, A will not
equal f if the grid size is small encugh because of the continuity of )\ .
These equations are iterated to get the second order; i.e., }\ » 1, ete.,
are first taken equal to )\ 2 f,, etec., for a first order approximation,

then 2\_ , I, etc., are found from equations (4.38) and (4.40) and used
in equations (4.44) for the second order approximetion.

Alternatively, in regions where extrapolation is permissible _A c
f, etc., may be found to first order by extrapolation.

Section 5. Error Study
Introduction

, Numerical solution of differential equaticns involves making approxi -
mations which introduce errors. an estimate of these errors is of great
importance in the analysis of the computations.

The first and thus far the oaly type of body studied by the methods
described in the preceding sections is the cone-cylinder. A report on
these computations will be published later. Before they were carried
out on the ENIAC, a study of the errors involved in the mmerical pro-
cesses was made. It is expected that the bechavior of the errom in the
cone~cylinder problem typities the behavior of errors in the calculation
of flows about arbitrary pointed bodies of revolution. The method of
analysis and the differential equations are the same, only the boundary
conditions are specialized.

ENIAC Computations, Zmpirical Study

To investigate the effect of grid size and corder of approximation on
the computaticns, the “.cw in the expansion region for a particular cone-~
cylinder and Mach number vas computed by the ENIAC. The case studied was
one for wnich § = 20“ and 1L = 2.12966. The lst order, 2nd order itera-
tive, and 2nd ».)srder-B point methods were used for grid sizes varying from
h=1l to h=l/40.

b The expansion region in the physical plane (ABC) is shown in Figure
} 5.13 and in the charecteristic plane (AA'EC), in Figure 5.2. (h =1
corresponds to the grid :ize which yields x, y, u, v at C in one step
(see Figure 5.1). When h = %, four steps are required to obtain x,

¥y. u, v at C; when h'= 1/3, nine steps are required; etc.) We assume
that the input data (x, y, u, v along the characteristics A =0 and
/& = 0) contain no error.

=y




A
y B
A ‘G;( 1 B C
c
(")
™ by
¥/ /4
A \ 2h-
h
% > X B Al > O
Oh 2h 1
JFigure 5.1 Figure 5.2

It is pO.:SlblP , modifying the method used by Frankl and Aleksieva5 i

or (}Qursat5 *", to obtain limits on the size of the error in the values

of X, ¥, u, v at any point in the flow field. These limits are of con-
siderable theoretical interest. However, in order to obtain general re-
sults it is necessary to make rather strong assumptions. The limits so
obtained are much larger than necessary, and give only a poor idea of
the behavior of the error as a function of grid size or order of approxi-

mation. The work of RJ'.ch:amdson5 »3 suggests that a much more exact study
of the error is possible for each specific flow problem. A natural pro-
cedure is to solve the problem for more than one grid size, h; and then
at points common to several grids to fit x, y, u, v to some reasonable
function of h. Assuming that these functions are valid approximations
for all sufficiemtly small values of h, it is possible to extrapolate
for the limits of x, ¥, u, v as h approaches zero.

The above-mentioned procedure was applied tc the ENIAC computations
of the cone-cylinder expansion region. The computed functn.ons were
plotted against the grn.d cize h at the points (1,3), (3,3), (,1), and
(1,1) in Figures 5.3, 5.4, 5.5, and 5.6 respectively for the lst, 2nd
order iterative, and 2nd order-3 point methods. The curves for the 2nd
order computations were drawn with zero slope at h = 0.

The curves drawn at these four representative points showld indi-
cate the general behavior of the error in the whole region. The graph-

. ical extrapolations to h = Q are shown in Table 5.I. Also included

for comparison are the computed values for h =1/32 by the 2nd order
iterative method.

5.l F. Prankl and P. Aleksieva, Op. Cit. ref. 1.9

5.2 Goursat, Cours d! Analyse, Par. 320

5.3 L. F. Richardson, "he deferred approach to the limit, part I -
single lattice®, Phil. Trans., vol. 226, 1627, p. 299
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(a= 1w =5 % y u v
Tst ord, T8 .T050 TS0 —.010'6
2nd ord. iter. 1083388 0705713 0723392 -.019765
2d ord.-3 pte 1.83396 «70565 723400 ~.01978
2nd ord.iter.,h =1/32 1.83391 «705693 +723393 ~.019777
(a=3 B=13) x y b v
Ist ord. 107065 0—76491; 0662525 0081.56
2nd ord. iter. 1.707045 764791 662496 ~+081612
md 0rd.-3 pto 1070736 0764'710 066248 -008161
2nd ord. iter.,h=1/32 1.707056  .764761 662483 .081609
(d=%,4=1) X ¥ u v
Tst ord. 3.2052,  1.8086 0.66985 0388
2nd ord. iter. 3.20525  1.80004 0.663896 .043910
2nd 0rd.-3 pto 3020550 1.80891 0166978 004390
2nd ord. iter.,h=1/32 3.20531 1.80£99 0.669783 .043918
(d=1,4=1) X ¥ u v
Tst ord. 3752 L.5455 10932, =.020%6
2nd OI‘d. itero 3071593 1.54547 0709311 --026316
2nd Ordo"3 pto 307162 1054535 o7®32 ‘002630
2nd ord. iter.,h=1/32 3.71610 1.54535 »700200  -,026319

The agreement of the graphical extrapolations indicates that we may

be assured of the accuracy of x, y, u %o within 3 in the fourth figure
and of v to vithin 1 in the third figure in all the values listed in
Table 5.1. Ignoring the first order extrapolation, we find even closer
agreerent,which indicates that the second order iterative computation
for the grid size h=1/32 is reliable to within 6 in the fifth figure
for x, y, u and to within 2 in the 4th figure for v.

The graphs show that the 2nd order-3 point calculations follow two
differemt patterns in relation to grid size. The points lie on either
one of two curves, depending on whether 1/h is odd or even for (d =1,

A =1), and on whether 1/2h is odd or even for the other three points. .

To obtain a numerical extrapolation to h = 0 one can fit the data
by the least squares method to some reasonable function of he. This was
done for the computations at (a =1, & =1); the functions employed
are £(h) = a + bh + ct? for the 1lst order values, and f(h) =a + bh +

ch2 + dh3 for the 2nd order iterative and 2nd order-3 point values.
Table 5.I1 shows the results.

52

P




T w—— Ml o | e o) T T hdl 1 «4 T Wy Tt T e T T T T e T 4 L " “
2/1=¢ ‘2/1=30 LNIOd LV SNOILYINOTVO NO 3ZIS QI¥9 40 123443 'S JHNOI4
(9) (q)
L} L}
3 & z _ o 3 v 3 0 s "
14278 7 T T T 859 | [o,-3: 7 (TR T 0I99 2080 -7 1N|0I_ €9.LG
5080 b
x\
0180 080 191 tsL0
os9z 201 seor g2 oLz}
5180
1o L 891 »99-{s820
[32)
oz80 3
seou ovsz suf
-6280
£180 691 $6.0°
ocso
099z sver oszp
s180° —ou1 —{s080°
sg80°
Jh
! /
1 n Prec W
Lew £99' {oso21 o£99 . L 180
e Td€-0uo puz . » L ¥3LI-GU0 PuZ =—ave e "

| 91

At




I=g ‘2/1«30 LNIOd L1V SNOILVINOTWO NO 3ZIS QI¥9 40 133443 S°S 3unoid

(9) (q)
n Y
[ v ¢ z r 0 (13 03 13 o1 (1} ° RS
202¢ T T T T 099 081 so8
\ n n
) —~
808" [ Hovo 0699'{6£v0° osgo’
l\\‘ll
s2e1
9091
o181 2699'—10¥¥0’ oS0
S#0°
cral
N
Y2
211 |- voZ'E 60w 699 1v#0° 00%0
' os0’ 5981
verl- / 9699'—{2¥¥0° ozro
o181l
TTY
$50°
9ig 8699—EPFO oreo’
N1
. L_ore :
Q'] o s0861
=Dk 1"}
K X 1d €-0HO pu2 n A K X SILLZ0U0MENS n A A A




e ‘a

SEg)

oS

Sesi

fel-1-4)

r o
IR 7 i

804~

§20' =

2L ] oz

14 € -0HD puZ

0 INIOd IV SNOILYINDTYY NO 321Is Qiuo 40 105443

s v e M o
SiZg ' Sloz 1930 -
A =
ogs -
- o02.'¢ 0802 {9930 —
SES |-
— s2u¢ $80L~{$920 —
ors| -
- oglg 920 ~
11 210
SELg ;
€920 -
X " u311-a¥o puz ” X

9°¢ JMN9I4
(o)
K- v 4 z I (]
L2 (153 T T T 907
// S0
lﬁ \
l.'m.n./

wlee \

— 9
091 - 99¢
—@9¢

E3 1l - TR S

vy libis

80 -

0f0 -

auo

")

55




- —— r——— 1 L §

Table 5.1
1st order
x = 3.7055035 - 340695693 h  + 04633792 W,
Y = 1.54562504  + 181446572 h - .00554870548 K,
u = ,70931271 + 02430564 h - .00444836206211
v ==,026314228 - .048620732 h + .011581095 h
2nd order-~iterative
X = 3.715802542 + ,002385437 h  + 134694176 hg - 002492252 hg
¥ = 1.545510530 = ,001357115 h =~ 117729376 hy + «025024049 1?
u = ,709308737 + ,000075481 h - .020277732 h NE 013444660
vV ==402630000 - .00012539676 h - .00125911740 h* - .009568309 h

2nd order-3 point

X = 3.716199722 - 000608705 h = ..002697709 h22 + 4008292560 h33
y = 10545365028 + .0003562452 h + 0040463651 3 + 0051117669 h3
u=".700310875 ~ .000055470%9 h + 0006804297 h°, ~ 0077314754 h3
v = —,0263339776 + 0001389884 h =~ .05993978635 h° + .0205477726 h

The constant terms in the polynomials are the extrapolations to

h =0, The range of grids used was h = § to h = 1/40. Only even grids;

were used for the 2nd order-3 point data fit. The above polynomials
all agree with the given data at least to within 5 in the 6th figure
for x, y, us and to within 1 in the 3rd figure for v. (The v agree-
ment for the first order computations holds only for h & 1/20.) Come
parison shows that this numerical extrapolation to h = Q agrees with
the graphical extrapolation to within 3 in the 5th figure for x, y, uj
and to within 1 in the 3rd figure for v.

These results svggest that the error can be moderately well repre~
sented by simpler functions; namely, by bh, for the 1lst order method,
and by bh? for the 2nd order methods. The least squares fits of the
data to these functions are given in Table 5.III.

Table 5.III

lsﬂ;_ozder

X = 3,715007365 - 3284527749 h
¥ = 1.545690071 + 1799814167 h
U= 7093652534  + 02312716466 h
v = -.02644997335 - 04280405843 h
2nd ord. iter.

X = 3.716010825  + 1426135703 hg
¥ = 1545421374 ~ 1164789567 h
u = ,7093000262 - +01673578393 &
v = -,02631802511 -~ .0023052374 h'

po ana
»
Ve
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Table 5.ITI (cont'd)
2nd ord.-3 pte

X = 3.716162678 - .002?84617161?h2
y= 1.545376882 + 0065855559 1o
u= .7003153981 + .0075518560 h2
v = -.0263463811 - .0543126060 h

These curves differ from those in Table II at most by 5 in the
5th figure for x, y, u; and by 1 in the 3rd figure for v.

Round-Qff Exrors

Although the outputs of the ENIAC in this problem contain ten fig-
ures, they have less than ten significant figures, for several reasons.
In order to make allowance for the wide ranges of same of the quantities
encounttered, certain numbers such as x and y were purposely shifted to
the right on the accumilators. While this procedure insured that no
numbers would exceed the capacity of the machine in the extreme cases,
it meant a loss of one or two significant figures. Furthermore ENIAC
multiplication and division are only correct to nine places. Thus local
computations are affected by round-off errors in the sixth or seventh
significant figure of x and y, and the eiglth significant figure of u.

As for v, since its magnitude is small (it can change sign) it may have
between zero and eight significant figures locally correct. When it
has none, however, it does not affect the accuracy of the other quanti-
ties. '

These local errors, of the round-off variety, are in addition to
the errors due to the replacement of derivatives by difference quotients.
It is the principal aim of our error study to determine empirically the
nature of these latter truncation errors.

Because of the above-mentioned round-off errors we cannot hope by
extrapolation to zero grid size to obtain more than six significant fig-
urese.

Theoretical Study of the Truncation Error

It is natural to expect that the local errors in computing the val-
ues of x, y, u, v, at b (assuming correct values given at 1, a, and u)
are of order j (i.e. the error is a series in h starting with terms of
order j). Then the total
errors at B, made in com~ 4
puting X, y, u, v step-by }
step from boundaries CAD c
can be expected to be of

Figure 5.7
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n ml = . n+2
h +th +thn + ee0e

Y"‘YL =E_ = 5 hn + Sy hn+1 + eeoey etc.
n j,
where X is the limit of x as h approaches zero, and the coefficients

;x, b, Ex, etc. are functions of d and & independent of h, tut dif-
fering for x, y, u, v.

If this is true and if this series converges rapidly enough for
the values of h for which the flow problem has been solved, we may

neglect all but the first one or two terms and solve for n, a, b and
X {or ¥, etc.)s For example, if t is used generically for x, y, u

or v, and if tl, t,, and t3 are the values of t when h is h,, h2, and
h3, we should have the equations

_ -. n
(5.2) t; =t +3ah

t.=t, +a nho

2=, 2
= - n
t3 = t.L + a h3
for t;, a, and n to satisfy.
Eliminating 3 and t;, n mst satisfy the equation

(5:3) (ty=t5) (" = hy") = (4=t,)(hy" - by").

T .2.: 3
(54) [ t -, ]
n = |log ——g— / log 2
o 2 S 3
g - %

Having found n, & and t, are given by
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5.6 == B
(546) by 3-8 h3
t. - t2
Howewver, for some cases — may be negative, and therefore
the data cannot be fitted for three values of h by a function of the form

= =.n
t—tL+ah.

This means that the term 5 1™} cannot be neglected. If the approx-
mation

(5.7) t=t +an"+5 ptl

is used, the four values of h and t available are substituted

(t =t +ah1 +5hln+“

L
(5.8)4{2 tL+ah +5hzn+1
- ntl
t3 b+ ah3 +5h3
- n+l
[04 tL ah " +Sh

and tL eliminated, the equations

(6,6, =8 =5 (™" +5 (h1n+1 n+1
(5.9) { t,=t =A2=a(h2.h3)+5(2n+1_h 1)

3 3
. _ = n, n n+l _ n+l
:.B-tA—AB—a(h3-h4)+S(h3 h4 )
result.
Therefore, n must satisfy the equation
y n n n+l n+1l
b h-hy b -h
1 n+l
(51052 iy My =0
n n n+. n+1l
= It SR Bk )
! hl h h .
In particular, if = 2 _ 3 h4 , equation (5.10) becomes
B z
(s11) |4, 22 L2
Ay, 222t
JAY 3 1 1l
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or (5.12) A, -34,2 +24, (2%2 = o,

The solutions of this equatidn are

,
30, % ﬁA5-8A1A3 \
] l:l"g 2R, /)

(5413) n = [1/1082

provided 9 A é >8A1 AB , and

2

4A3
Somewhat more generally, if hl = h2 = h3 =h,, the equation
’ = T — 3
© K k4

to be satisfied by n is

(5 A g - () A, KR+ k AB(kn)z = 0,

141) & 41)2 A 2-4kA. A >
(‘5015)11:[1/1%1{] [1og<(+) 2 i \A+) o —hkDy 3 |

X4,

When n has been obtained, t,, a, and b are found from three of the
linear equations (5.8).

.or

The value of equation (5.13) for hand computations is very small.
hl must be made small enough so that it is permissible to truncate

equation (5.1) at the second term. Then A3 will be so small that it
can be known accurately only if very many figures are carried. ‘

In summary, if assumption (5.1) is correct, it is possible to
determine n, a, b, etc. if the solution is carried out at enough grid
sizes. If the computations are done by hand, a tiny error, whether by
mistake or round-off, affects the value of n (as given by equations
(5¢4)y (5413), or gimilar formlae) so markedly that the study cannot
be very valuable. In fact, it is possible for a small variation in
the fifth figure of the data at small grid sizes te change the sign

2
of the discriminant (9A2 - SAIAB) in equation (5.13) frem positive

to regative to yield a complex value of n.

Qur study was made on the ENIAC, a machine which carries ten
figures and rarely makes mistakes. Even these ENIAC computations, how-
ever, carmot all be relied upon to calculate satisfactory values of n,
for reasons discussed above and in the section on round-off errorse.
Since the computations of u were found to have the most significant
figures, we calculated n with theme The values of n, found by equa-
tion (5.13) from the u data at h =1/4, 1/8, 1/16, 1/32, are listed in
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Table 5 oIV,

Table 5.IV
(=1, 8=1/2) ©=1/2,41/2) (a=1/28=1) (4 =1,8=1)
1st Ord ' .99 1.0 1.0 097
2nd ord - itere 2.1 2.1 2.1 2.1
2nd ord - 3 pto 109 2.0 2.0 2.0

From Table 5.IV we see that the order of the gross error is approxi-
mately one for the 1st order computations and approximately two for the
2nd order computations.

If assumption (5.1) is correct, as the data seem to indicate, we
may make the following observations. Let us consider methods of two
different orders for computing t, calling the results tl and t2. Ve
can represent the errors by

hnl (1 +él)

t2 - tL 52 hn2 (1 +€ ), where 61 and€2 go to zero as

(5416) tl - tL

h goes to zero and r12>n1 Then for any n, there exists an h = H, such
that
™

a (n,) h2 <3 () b

and h < Hl. It is reasonable to expect that n(j) is an incrensing
function of j, the local order. Thercfore, a method of any local order
j gives more accurate results than methcd; of smaller local order for
all grid sizes, h, small enough ( < ).

Under the same assumptions, there would also exist some (porsibly

smaller) grid size H", such that the method of local order j gives re-
sults of specified accuracy with less total labor than any method of
lower local order. This is true as long as the specified accuracy is,
as good as, or better than, the accuracy associated with grid size h .

g Although this conclusion ignorss the effects of round-off errors, it

is probably correct even with round-off errors, provided enough 51gn1f1-
cant figures are carried. The computation with hlgher order local
approximation has fewer round-off errors (since it is carried out at
larger grid size) if the specified accuracy is higa enough.

On the other hand, for grid sizes larger than K there will be
lower order methods which sive more accurate results for a given amount
cf labor. For this reason and for reasons of accuracy in extrapolating
to zero grid size, the second order method was fowld th3s best for hand
and machinz computations.

62




Comparison of Extrapolation to Zero with Small Grid Computations

Having found the 2nd order iterative method most feasible for
computation with the ENIAC we wish to imvestigate the accuracy obtain-
able by the process of computing at large grid sizes and extrapolating
to h = 0. This method involves considerably less labor than computa-
tion at very small grid sizes.

Ietting t be a generic symbol for x, y, u, and v, we write for t
the seccnd orcer function of h:

2
t(h) - ¢, =ah”,

where t. is the desired éxtrapolated value. If we use two grid sizes

L
h, and h, such that h, = 1/2 hy, then

(5.17) tL =’c(h2) +1/3 [t(hz) - t(hl)] .

Using by = 1/16 and h, = 1/32, the smallest available grid sizes

applicabie to equation (5.17), we calculate t. throughout the expansion

L
region, and we consider it to be the ®correct® value of t. Then we form
the quamtity A | = [ - t(h) ] /%, throughout the expansion region.

t
L
A h is the relative error in the computation at the point (A , '5)
resulting from the use of the finite grid size h.
We also calculate tL* = t(1/8) + 1/3 [t(l/B) - t(1/4)] and
forn & * = (t, - £, %)/t;. It is A™ that we wish to compare with A )

for various grid sizes to see how the accuracy of extrapolation with
large grids compares with that of small grid computations.

Ir figure 5.8 we have the relative errors in x plotted for the grid
sizes 1/8, 1/16, 1/32, and for the 1/4, 1/8 extrapolation. It is evi-
dent that the 1/4, 1/8 extrapolaticns are not as good as the 1/32 x 1/32
computations but are appreciably better than the 1/16 x 1/16 computations.
The errors in y, u, and v behave in an identical mammer with those of x.

The amount of labor required for grid size h is proportional to l/hz.
Taking the extrapolations as equivalent to computations with h = 1/28,

the ratio of the work required is about (42 + 82) /(28)2, approximtely

1 An

L B d

Similar conclusions can be drawn from the 1lst order and 2nd order-
3 point method computations.

R. F. Cllppinger
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