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ABSTRACT 

A test has been made of the constant-turbulent-Reynolds number hypo¬ 

thesis for a turbulent Jet flow in a converging-diverging axisymmetric tube. 

Using the free turbulent Jet as the sole source of data for evaluation of 

the Reynolds number, and velocity shear distributions, the general ducted 

flow was predicted with the aid of appropriate similarity relations. Cal¬ 

culated results are compared with the extrensive and consistent data of 

Hembold; good agreement is observeda It is found that the methods of cal¬ 

culation employed can be considerably simplified without large effect on 

the calculated results. The existence and extent of zones of recirculation 

are also discussed. 
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NOMENCLATURE 

b width of shear layer (Figure l) 

d nozzle díame* at exit plane 

D tube diameter 

m total mass flow per unit area (Equation 1^) 

M momentum parameter (Equation 15) 

P pressure 

Pq initial stagnation pressure of secondary stream 

R tube radius 

R,j, turbulent Reynolds number 

U velocity (Figure 1) 

Uj jet velocity (Figure l) 

Uq outer stream velocity (Figure 1) 

X axial coordinate (Figure l) 

y radial coordinate (Figure l) 

a velocity profile integral (Equation 18) 

Y velocity profile shape parameter (Equation 9) 

6 width of Shear layer (Figure 1) 

n y/6 

0 momentum thickness (Equation *0 

» VUJ 
p density 

T shear stress 

eddy kinematic viscosity 

♦ velocity profile integrals (Equations 6) 

ÿ shear stress integral (Equations 6) 
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INCOMPRESSIBLE JET MIXINC IN CONVKRGING-DIVERGINC- 

AXISYMMETRIC DUCTS 

by 

Philip G. Hill 

!. INTRODUCTION 

Ac Constant Turbulent Reynolds Number Hypothesis 

Many turbulent shear flows lave mean streamline patterns which are qual¬ 

itatively easy to understand y l aie very difficult to predict quantitatively 

due to uncertainty in the effective turbulent shear stresses. In certain 

cases, however, these stresses may be estimated quite well by assuming that 

the turbulent Reynolds number = AUb/vT is constant (AU being the differ¬ 

ence in mean velocity across the shear layer, b the width of the layer and 

vT the so-called eddy kinematic viscosity)« Of course, this is at best a 

very approximate representation of the effects of the turbulence on the mean 

motion. However, it is worth considering, both because of its proven use¬ 

fulness in prediction of mean flows and because of the difficulty of improv¬ 

ing upon it, either empirically or theoretically. If the effective value 

of is to be deduced either from the measured mean velocity field (and the 

momentum equation) or from direct hot-wire measurements, it is usually very 

difficult to discern its lateral or strearawise variations in the scatter of 

experimental data. Refined measuring techniques may lead to improved accur¬ 

acy but not without great difficulty. Except for certain very simple cases, 

e.g. the free jet expanding into a stationary medium, its mean value across 

the flow field is seldom known within 10¡é. Of course, a compensating factor 

is that since it is so difficult to deduce from the mean velocity field, 

its value need not be known to high precision in order to predict the vel¬ 

ocity field quite well. 

(|irWJIwn*^liira«an^<mwnuiP'™iiT,nrtï»niMn«u«n 
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2. 

In Reference (1) it has been shewn that the constant-turbtdent-Reynolds 

number assumption yields quite satisfactory results for Jet mixing in con¬ 

stant diameter tubes, both before and after the Jet has diffused to the tube 

wall. The turbulent Reynolds number was evaluated from well-established data 

on the free Jet expanding into a stationary medium. Another case where the 

constant-turbulent-Reynolds number hypothesis appears to hold, quite closely 

is the turbulent wake in an adverse pressure gradient (Ref. 2). In this case 

the constant was evaluated from data on the constant-pressure turbulent wake, 

in which the similar velocity profiles and spreading rates differ somewhat 

from the corresponding ones for the free jet. The Reynolds number based on 

shear layer half-width ûtfb/vT (see Fig. 1) is about 100 for the axisymmetric 

free Jet and only about 23 for the two-dimensional constant-pressure wake. 

The large difference between these values has been rationalized in terms of 

t the corresponding eddy structures by Townsend^and Gartshore^. Clauser^ 

# / 
has shown that in the outer part of the turbulent boundary layer vTaU<$ (U 

- # 

being the free*stream-velocity and 6 the boundary layer thickness) bo that 

i ' 

in this case also the turbulent Reynolds number is apparently constant (at 

least within 10Í). 

( 6) 
Mellor 'has developed similarity solutions for free turbulent shear 

layers under this hypothesis. There is need for further study of the use¬ 

fulness and limitations of this approximation and the present paper is dev¬ 

oted to a more severe test of it than for the constant-diameter tube of Ref¬ 

erence (l). In this case, the tube is converging-diverging and the pressure 

^ gradients imposed on the Jet mixing are quite substantial. The study is, 

however, still restricted to the mixing of streams of equal and constant den¬ 

sity and the geometry is taken to be axisymmetric. 



3. 
B. Free Turbulent Jet 

Numerous experimental studies on the ascisymmetric free turbulent jet 

(see Ref. 3, p. It?, for example) have established that a few diameters down- 

stream of the nozzle the velocity profile defined by 

f(f) 
Ô (1) 

is essentially constant (U^ being the center-line velocity and 6 the jet 

width) «. Also it has been found that to a very close approximation 6ax and 

-1/2 
U.CXX * These facts and the momentum equation together require (see Ref, 

1) that the tiirbulent shear stress distribution, defined by 

(2) 

must also be constant. These simple results are of considerable importance 

in relation to more complex flows. 

Co Jgt Immersed in a Constant-Pressure Secondary Stream 

When a jet is immersed in a general secondary stream its velocity pro¬ 

files cannot, strictly speaking, be self-preserving (except for the special 

case Uq/Uj = const,, which corresponds to U0axm)o Referring to Figure 1, 

the hypothesis 

U-Un 

IT(3) 
J 

is not generally and strictly compatible with the momentum equation. However 

it has been shown (Ref, 1) that within the limitations of the best available 

experimental data, this fact is unimportant as long as Uj is not less than U0 

If relationships (2) and (3) are assumed, then it may be shown that U /Un and 
J 0 

6/e depend only on x/8, tb* mcanentum. thickness 6 being defined by 

V2 = 2* /“ U(U~U0) ydy (¾) 

The solution of the momentum eçuation for this case is (l) 
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X 01 —■ =s 1 ' 1 1.~ 
0 = 

4 

const. (5) 

in which 

anc? 

¢4 a J0 fndn 

¢5 = l0 f2ndn 

^ =1 /Í n(!^ (^‘) dn 
w 

(6) 

If free jet data is used to evaluate the ç’s and ^ Equation (5) may be 

used to provide quite a satisfactory estimate of the mixing of the turb\ü.ent 

jet immersed, in a secondary stream. The constant in Equation (5) is eval¬ 

uated from the condition that J0 + 0 at x - 0, the virtual origin. 

D, Concentric Jet in a Cylindrical Duct 

When the Jet interacts with the tube walls, at least three distinct flow 

regimes are possible (in addition to the relatively short transition zone 6 

or 8 jet nozzle di*uneters from the exit plane of the nozzle). 

1) A region in which the jet is approximately self-preserving and 

is immersed in a potential outer stream which may be accelerating or decel¬ 

erating, depending on the shape of the duct and the rate of entrainment of 

mass into the jet. 

2) A possible region in which recirculation occurs9 following a 

deceleration of the outer stream. At the beginning of this zone the "edge" 

of the jet has not yet diffused to the wall and the secondary fluid recir¬ 

culates through the Jet, The pressure gradient is generally observed to be 

negligible in this zone. 

.||PPfp|P}f§^ ^ 



5. 

3) The region downstream of the point (fairly distinct in many 

cases) at which the Jet attaches to the wall. An adverse pressure grad¬ 

ient is generally established but the relatively high shearing forces near 

the wall tend to accelerate the fluid and terminate a zone of recirculation* 

had it been present. 

In region (l) the Jet velocity profile may again be well approx¬ 

imated by 

U - U 

U i'(£) (7) 

in which Uo is now a function of x. Again f is detemined from free Jet 

data as is the shear stress distribition 

pU 
(8) 

These relations Etre also assumed to hold in the recirculation region (2) 

in which* additionally, the pressure gradient is assumed zero. 

In region (3) the jet velocity profile is allowed to change shape 

according to 

U - U 

U, ° a f0(n) + yf^n) (9) 

in which T) = y/H, is the free jet distribution* y « y(x) and f^ is a 

function which satisfies the conditions 

n « 0 fi * V * 0 

n « 1 fi s V s 0 

As far as may be inferred from typical data on velocity profiles, the function 

f^n) = n2(l - n)2 (10) 

is a satisfactory approximation. The relative un-importance of f1 is discussed 

later in the paper. 

In spite of the changing shape of the velocity profile in region (3) 



the constant turbulent Heynolds number assumption may be retained with* as 

vrill be shown, apparently reasonable success, The shear stresses can thus 

be computed from 

3U 

T - VT P*7 (11) 

using the result obtained from the free jet 

U.R 

1^7 
U.b 

(i.e. rf- = 102) 
T T 

in which the tube radius R has now replaced the jet half-width. 

In general^wall friction is of second order importance in Jet mixing 

problems so that it may be adequately taken into account by supposing that 

the wall shear stress t can be estimated by 

To * cf<! PU02 (12) 

in which Cf is a constant of T,he order of 0.005. When the tube diameter 

is constant the wall shear stress has virtually no influence in those flows 

where the pressure rise due to jet mixing is significant (in these cases U 
o 

is generally quite small). If the duct converges in the region of jet mixing 

then U can become large enough to make the effects of the wall shear x felt o 0 

significantly by the stream as a whole. 

With the relationships described above, the flow of jets in axisymmetric 

ducts of general shape can be readily calculated. If the jet nozzle diameter 

is reasonably small compared to the inlet diameter of the duct, then the jet 

can be replaced conceptually by a point source in the exit plane of the nozzle. 

The inlet flow conditions can then be characterized (l) by a single dimension¬ 

less flow variable 

Ao + (d/D)r 
m ^ o f 

W7T7? 2(1 + 
2 \q) (a/D)2 

(13) 



T. 

in which m is total mass flow per unit area at the duct inlet and is defined by 

m = pui [Ao + (f)2] U1*) 

where * is the ratio U /U, at the nozzle inlet plane and d/D is the ratio 
o o j 

of nozzle and duct diameters at the inlet plane. M is twice the sum of the 

total momentum pressure forces in the inlet plane. It is given by 

M = PUj [*02 + 2 (1 + 2*o) (|)2] 

m 
m 

(15) 

approaching 
Possible values of lie between 0 and 1.0. K>r values of 

unity, the duct walls have no noticeable effect on the jet mixing; this is 

the case of a "small1* jet mixing with a "large'* secondary stream. Small values 

0f — on the other hand signify that the wall effects are important; if 

= 0 the net mass flow is zero and the Jet nozzle exhausts into a tube whose 

end is closed. 

The appropriate relationship of the dimensionless variables for the flow 

may be expressed as 

U u 
J Y * 

/m/p’ Æ77 R ’Y 

P - P 
___o _ ,x_ R_ _ms 

M ~ R ’ R ’ 
o o 

(16) 

in which Uj, and x are defined in Figure 1. R is the local duct radius 

and R the initial value. Up to the point of Jet attachment to the wall Y = 0 
0 

çjid past this point <5 is no longer a variable (the shear layer has then constant 

width and its velocity profile changes shape with alteration in ï). The 

quantities 
m 

»'mp 
m and M are defined in Equations 13, 1^* and 15 and is the 

stagnation pressure of the secondary stream at the inlet plane. 

E. Purpose of the Present Paper 

The object of this paper is to demonstrate that the simple approximations 

outlined above have quantitative value in predicting the flow in converging- 

diverging axisymmetric ducts. The physical approximations are quite severe, 



especially in the zone of recirculation, but it will be seen by comparison 

with extensive experimental data of Hembold (7) and Curtet (8) that over a 

wide range of flows, the prediction is surprisingly good, especially when 

corrections are made for the effects of wall friction, 

n. METHODS OF CALCULATION 

A. Upstream of Jet Attachment 

In this zone the four variables that are to be determined by integral 

techniques are A = , 6, and p, the pressure. They are determined 

by using an integral form of the continuity equation, and three integrals 

of the momentum equation of the form 

R 

¡0 (U 
M + V 31 
3x + V 3y 

A 1 DP, i , ,R 1 

+ p y dr = /0 7 
3_ 

y 3y (p y) y1 ày (17) 

i = 1, 2, 3 

Equation (?) is used for the velocity U, the distribution function f being 

evaluated directly from free-Jet data (l). The pressure P = p~ V pu'z is 

assumed constant across the test section. In the Jet (0 <. y < 6) the shear 

is obtained from an integral of Equation (8) again using free-jet data (l) 

for numerical evaluations. Outside the Jet (6 < y < R) the flow is assumed 

shearless except for a concentrated shear force tq applied at the wall 

By these steps the continuity equation and the three momentum integral equ¬ 

ations can be expressed as in the coefficient matrix of Table I. In the 

first row of Table I the rimes denote differentiation with respect to x/R 

and the variables , 6, R and P indicate the dimensionless variables of 

relationship (l6). A is the velocity ration U /U.. In the region of re- 

circulation (UQ< o), the pressure gradient is set equal to zero, and the last 

equation is not usede 

The coefficients appearing in Table I are defined as follows and 
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evaltu^ . 'l in Table II, 

i *- 1 ,2, 3 

a » 2 fn^dn 
oi J0 

«U = 2 f0 ^ 

J f2n^dn 

“si = 2 ¡0 ignl(in 

r1 2 
\i = J0 « n dn 

1 .. i-1 fn 

a , “ 
6i 

fn sa 
/1 

- /1 f'n1“1/ sçáçdn 

a . ® 
21 * 0 8i 

” ¡o s'ni"1 K fÇdCdri 
1 imml n 

- f g’n / gçdçàn 

r1 i 
a9i 83 “■ J- f,n dn 

10i « - /o g'n^n 

a =- / f'n1" / fçdçdn 
5i 0 'o 

E. Downstream of Jet Attachment 

In this region four equations are needed, and again the integral continuity 

equation and the three momentum integrals of Equation (l6) are used. The 

difference between this region and the previous is mainly that the Jet shear 

layer now has constant width (6 = R) but is flowed to have a changing velocity 

profile (y ^ 0 in Equation (9)). If backflow occurs, the pressure gradient is 

not set equal to zero, because in this case the entire flow is subject to 

shearing stresses. 

The four equations may be represented by 

ß 

U ' ß 

i v~ + V’ + V’ + = 6j5 (" f5 + 

in which the coefficients & . are evaluated from 
JK 

ß 
jk Ijk 

c.^A2 + o ,, A o.,. Ay o 
2jk 3Jk 4Jk + at;41rY + °rA\ry 5Jk 6jk 

Finally, the coefficients given in Table III, The coefficients 

appearing in Table III are obtained from Table II, 

IIP*!!«» 



III. RESULTS 

A. Wall Pressure Distribution 

The methods described in Part II have been used tc calculate the flow 

in the axisymmetric channel in which Hembold^^ made careful measurements 

of the trail pressure distributions, and velocity field. The geometry of hia 

test section is given in Table IV. 

Figures 2, 3, and k show a comparison of measured and calculated wall 

pressure distributions for a wide range of inlet conditions (.162 < m/vip < 

.697). On Figure 2 the relative importance of wall friction is indicated 

by the two sets of lines corresponding to Cf values of 0 and 0.005. It will 

be seen that at the highest values of m/Æp, wall friction effects are apprec¬ 

iable, particularly on the downstream side of the contraction. 

The value of the turbulent■Reynolds number used in these calculations 

was determined directly■from data on the free jet (l) and had the magnitude 

(UjS/vj or UjR/vt) of 1^7. This is equivalent to = 102 for the free 

jet. The velocity profile f(n) was deduced directly from free Jet measurements. 

Thus, nothing except free jet data was used in calculating the theoretical 

results indicated-in Figures-2 through 12i 

Figure 5, a crossplot of the twelve sets of data for two values of x/D 

shows a very acceptable consistency in the experimental results. The predicted 

pressures are generally somewhat higher than the experimental ones. While 

arbitrary adjustments of R^, and could have been used to bring the calcula¬ 

tions into even closer accord with the data, this was-not done since the point 

of the exercise was to see how well this particular flow could have been 

predicted if nothing except the wall geometry were known in advance. 

B. Velocity.-Field 

Figure 6 shows both experimental and calculated velocity distributions for 
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the one inlet condition (m/ÆF * 0.^99) for which these data are reported by 

Hembold» The agreement is relatively good at x/Dq » 0.5 but deteriorates at 

higher value© of x/D^ suggesting' that the velocity* pi*ofiles employed in the 

calculation method could be improved upon, 

figure 7 is a crossplot of the dimensionless Jet velocity profiles and 

shows that, as expected, their shapes are practically identical up to x/D = 

3.5, which is well ahead of the point at which the Jet has spread all the 

way to li e wall. However, it may be noted in Figure 7 the function f(n) 

(deduced from free jet data (l)) somewhat overestimates the velocity at the 

edge of the jet. Velocities near the edge of a free turbulent Jet are of 

course very difficult to determine accurately. 

The calculated widths of the Jet before it touches the wall are shown 

for four values of e/>/mP in Figure 8. Experimental points for m/Æp a 0.499 

are also shown; these rere determined by obtaining b (see Fig. 1) from the 

velocity profiles aim using & = 1.44b. The third of the experimental points 

shown actually corresponds to a point downstream of Jet attachment. 

for definitions) vary along the tube. The few experimental data points for 

mA'Sp = 0.499 are also indicated. For m/Æp less than about 0.35 it appears 

that a recirculation zone is possible. 

C. Recirculation 

From Figure 11 a comparison can be made of calculated and experimentally 

determined physical boundaries of recirculation in a constant-diameter tube. 

The calculations were made with exactly the same procedures as for the fore¬ 

going case. The predicted axial length of the recirculation zone is the 

vertical distance between the top and bottom branches of the solid curve. 

Experimentally, Barchilón and Curtet used a bubble injection apparatus 



to visualize the zone of recirculation, Also they deduced the aæan streamline 

pattern from hot-wire measurements of mean velocity. It will be noted that 

their measurement b ana the present calculation method agree very well on the 

location of the upstream boundary of recirculation. Surprisingly, however, 

their measurements11 indicated that the location of the downstream boundary 

is independent of rn/Æp. Calculations indicate that the strength of the re¬ 

circulating eddy is quite strongly dependent on m/Æp. Figure 12 shows, for 

example, how the maximum intensity of backflow theoretically depends on a/Æp 

for the constant-diameter tube,, The present calculations have, of course, 

employed quite severe approximations in treatment of the recirculation zone 

and it seems clear that further experimental and analytical work is needed 

in this area£ 

D, Simplification of~ the Calculation Method 

A major simplification of the calculations described herein can be 

obtained if the change in shape of the shear zone after the Jet touches the 

wall is ignored. Setting the function y identically equal to. zero means that 

less than half of the coefficients of Tables II and III are needed, and the 

momentum equations for the downstream zone are very much reduced in size. 

The question is whether this further approximation has any serious effect on 

the accuracy of the prediction method. 

Figure 13 shows how the calculated value of y (see Equation (9)) varies 

with m/v^Mp and x/D. The maximum value of the function f^n) in the equation 

U » UQ + Uj [ fo(n) + Yf^n) ] 

is 0.0625, Since the maximum value of fQ is unity, Figure 13 indicates that 

* They have expressed their results in terms of a parameter C. to which the 

present one is related by m/Æp = [ 1 + 2/C. ] 
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fairly substantial variations in the shape of the velocity profil® are predicted. 

However, Figure ih show® that actually the modification in the calculated wall 

pressure distributions is quite small. Suppressing y makes the predicted results 

deviate somewhat further from the experimental ones, but not much. Both in the 

constant-diameter tube and the variable diameter geometry used by Hembold, 

effects of the change in velocity profile shape seems quite unimportant. 

IV. CONCLUSIONS 

A. 

The constant-turbulent-Reynolds number hypothesis appears to provide a 

quite satisfactory description of the velocity field of a Jet enclosed in a 

variable-diameter tube. All empirical data used in the calculation method, 

were evaluated from information on the well-known round free Jet. 

B. 

The method appears to predict the incidence of recirculation ve?.y well 

though the details and extent of this zone of backward flow are probably not 

adequately treated by the simplified descriptions of the velocity field used 

in this work. More work is needed to provide satisfactory methods of predict¬ 

ing the mean velocity fields in zones of recirculation, 

C. 

Although the "jet" part of the velocity profile must depart substantially 

from a self-preserving shape after the Jet spreads to the wall, it is apparently 

not necessary to take this into account in order to obtain a fairly good est¬ 

imate of the overall dynamics of the mixing zone, e.g. the static pressure rise. 

4 
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TABLE IV 

HKMBOLD MIXIHG TUBE (~ ■ « 

.LLUWUi iilil..... 

o.io) 

Axial Distance 
Prom Initial Plane 

(inches ) 

Diameter 
(inches ) 

.000 6.030 

1.245 5.850 

2.895 

4,689 

6.591 

8.637 

10.785 

13.095 

15.540 

17.100 

20.100 

23.100 

26.100 

29.100 

32.100 

35.100 

38.100 

41.100 

44.100 

47.100 

50.100 

51.000 

5.670 

5.484 

5.301 

5.118 

4.932 

4.746 

4.560 

4.446 

4.262 

4„l4l 

4.082 

4.085 

4.151 

4.279 

4.470 

4.723 

5.038 

5.415 

5.855 

6.000 
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