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SOME DEVELOPMENT OF MARKOFF'S METHOD OF RANDOM  FLIGHTS, 

WITH THE INTENTION OF APPLICATION TO TURBULENT FLOW + 

by 

Toyoki   Koga 

Polytechnic Institute of Brooklyn 

SUMMARY 

Markoff s method of random flights is reconsidered and developed with the 

intention of then applying it to problems of turbulent flow.    The gist is to general- 

ize the assumption regarding the probability distribution of causal events. 

1. Correlations which may exist among causal events,   and the consequences 

appearing in the resultant events are considered.    In view of the conclusion,   some 

of the previous authors' treatments are criticized. 

2. The correlation probability between two resultant events which are 

separated in space but caused by a common group of causal events is formulated. 

3. The correlation probability between two events which are separated in 

time but caused by the same group of causal events evolving in time is formulated. 

This research has been conducted in pb :i under Contract No. Nonr 239(38) for 
PROJECT DEFENDER, and was made possible by the support of the Advanced 
Research Projects Agency under Order No.   5Z9 through the Office of Naval Research. 

Visiting Professor,   Dept.   of Aerospace Engineering and Aoplied Mechanics. 
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LIST OF SYMBOLS 

A(p) defined by (1.10) 

-(1)    _(2) _(N) 
p     .   p       , . . . ,   p elementary results caused respectively by 

elementary causal events    q      ,   q       , , . . , 
-*(N) 
q N 

?: (P1.P2, ... .Ps) total result    ^    p (v) 

1 

q      ,   q       , . . . , q elementary causal events 

w(q^ ', q^    , . . . ,q      ')   probability density of the causal events 

W (P) probability density of P 

W(P, ^P'.t') defined by (4.1) 

A defined by (2.8),   (3.3),   and (4. 2) 

A' defined by (4. 3) 

$ transition probability defined in (4.1) 

(j      (q       ) probabiliiy density of causal event q^ 

oj defined by (2.12) 

in 



SECTION I 

INTRODUCTION 

4 

Markoff's method of random flights    is used to calculate the probability 

distribution of the- result caused by events of which the probability of occurrence 

is given.     The method was applied to problems of the random walk by Rayleigh  , 

the statistics of electric fields due to charged particles by Holtsmark   ,   and the 

statistics of the gravitational field due to stars by Chandrasekhar and von Neumann 

In those treatments,   each causal event is assumed to be independent of the 

others.    It is known that this assumption is fatal in some problems   .    (In view of 

this assumption,   the author believes that some of the results obtained by Holtsmark 

and by Chandrasekhar and von Neumann are not plausible,   as will be discussed later, ) 

As a matter of principle,   this assumption is not indispensable in the method,   as 

will be considered in Section II.    It is essential to eliminate the assumption to some 

extent,   especially when one intends to apply the method to problems of fluid mechanics 

and/or plasma dynamics. 

Sometimes one may be interested in the correlation between two resultant 

events caused by a common set of   causal   events,   as is considered in Section III. 

Also,   it may be useful to consider the correlation between two events when one is 

directly caused by a certain group of events,   say group A,   and the other is caused 

by group B,   which has evolved from A with a certain probability.     This is  considered 

in Section IV. 

Remarks in view of the application to turbulent flow are given in Section V. 

There one may also find the author's answer to the possible question;   why is it 

necessary to consider the present method which appears to be anachronistic in 

contrast with methcus of modern turbulence theories of high mathematical sophist- 

ication? 



SECTION II 

CORRELATION AMONG CAUSAL EVENTS 

Lot us suppose that an eveit represented by a quantity (vector) denoted by P 

is the result of the sum of elementary quantities   p      ,   p       ,   p       , 

" -, 

P   = I *'■ 
For example,   P may be a momentum given to a particle or a displacement.    In 

general,    P may be a vector of s dimensions: 

p   = {P., %,-■■>%). 
(2.2) 

It is supposed that p^        is .. function of a set of coordinates,   q(   ' 5   (q;    ,   q,      , 

q,      'jl  which represents a causal event.     The probability of occurrence of the causes 

L,   ,            ,-(1)    -(2) -(N).        , .-(1)  ,   .-(1)    -(2) L   ,-(2) -(NK-fN) . between (q      ,   q        q        ) and (q '  ' r uq '  ',   q v   ' + dq v   ',....,   q '      )+dq is 

given by 

Of course,   the q's inay be considered as functions of time-   t.    If there is neither 

sink nor source of causes,   w is governed by 

{7i *%■'■" (2.4, 

where 

^(^       dfr1» 
dt ' (2.5) 



According to Markoff, we investigate the probability that. 

U*/ * (2.6) 

By denoting this probability by W{P)d P,   we have 

P)ctSp   =f-[A V]fd*fr 

where   A= 1   whenevr.       ondition (2,6) is satisfied,   and   A= 0 otherwise. 

Function   A  is given by D'richlet" s integral 

- f^-. [■■■[**,[/;■ fif"j- p)U> 
C2*fj J    L 

Hence, 

where 

(2.7) 

(2.8) 

(2.9) 

(2.10) 



Previous authors have traditionally assumed that 

f 

In most cases of application,   it is further assumed that 

and that 

/} (?) = I f-fco wi //- r)<**fj 

(2.11) 

(2.12) 

(2.13) 

We have to emphasize,  however,  that there are many practical cases where it 

is not trivial to choose   w   given either by (2.11) or by (2.12),    Probability   w   given 

by (2. 3) may imply that there are certain correlations among N causal events,  as 

for example,  in such a condition as 

w = 0 

whene   J r 

/£"''-£""7-^ 
In other words,  one may take into account the interaction among different events. 

In this sense,   causal events do not occur completely at random.    In the followincr, 

we consider two dynamical examples where the above consideration has some 

significance. 



Example A.    The Distribution Function of the Total Force Indu-eJ 

by Free Field Particles, 

Let us suppose that field particles I,   2, .... N exert their gravitational 

forces on a test body fix^d   .t point 0.    The masses of those particles are 

assumed to be the same.    As illustrated in Fig.   l-a,   the field particles are 

supposed to be confined in the spa:e bölween two spherical walls with their 

centers at 0.    The r^dii are denoted by R,   and   R   + 6 R.    Here, 

ifi    «  R, (2.a.l) 

The mutual interactions among the field particles,   and also the force 

exerted by the Lest body on th- .n,   are ignored because we assume that eac    of 

them has a large momentum and its motion is not significantly disturbed by those 

interactions.    Under this circumstance,   we may use relation (2.12) and 

J (2. a. 2) 

We write for p  the force due to a fieid particle 

(2. a. 3) 

(2. a. 4) 



Fig.  I-a.    A meridian section (cp = cp, and (p,+ n) of the 

space between two spherical walls with their centers 
at 0. Since the space is not divided, a particle may 
exist anywhere inside the space with unifornri probability. 

i 

^ 



by mec ns of a spherical coordinate system,     Writing the total force   F  for   P, 
Eqs.   (2.9) and (2.10) yield 

/KP)*! 11',     ^^i^.-*rj*J4<:~*^'*j'4^l        (2-a-5) 

Here the domain of integration is 

&:    *   o   " 7L, 

/•• 
0    " *' 

M 

Since A{p)  is independent of the direction of   p,   p  is assumed to be in the direction 

6=0,  cp = 0   for the convenience of treating A(p). 

If we take into account    LÖ ff*Sft V-K.    ~ I, 

 —- 4**i ,  ^ 

-^L~f(^P 



Since   Afp)  L  independent of the direction of   p,   W{f)   is also independent of 

the direction I, 
—» 

By taking   F in the direction (9 ' = 0, cp' = 0),  we have 

Of course,  it is easily shown that 

(2. a. 7) 

(2. a. 8) 

and that 

¥* W(F) f £*f 

4 f* * 
(6*)"*     tf 

(2. a. 9) 

(2. a. 10) 

*: 

It is noted that(f^is equal to the square of the force of each single field particle 

multiplied by the number of the field particles. 



Example B.    The Distribution Function of the Total Force Induced 

oy Restricted Field Particles. 

In Example A,  we assumed that each of the field particles is free in 

the domain between two spherical walls.    In the present example,  we assume 

that N field particles are divided into   G   groups confined in   G separate 

sub-domains which are formed with additional walls set in the entire domain 

considered in Example A.    For the sake of simplicity,   the number of field 

particles in each group is assumed to be the same: 

Jj = n (2.b.l) 

By taking   G   to be even,  we assume that there is always a pair of 

sub-domains g and g1 which are geometrically symmetric regarding center 0 

(see Fig.  l-b). 

domain coordinates volume 

(2.b. 2) 

/, K-6-0* " t'* 

)r A(p ),  we have,  instead of (2.19) or (2. a. 5), 

A{f) = WVljjj^ **,(.■/■ ™)^*'"Ld*'id 

0 

_ 



J 

Fig.  1-b.    A meridian section similar to the one illustrated 
in Fig.  1-a.    The space between the two spheres are further 
divided in pairs of smaller section,   g,   g',   etc.    A particle 
existing in g has no probability of existence in the other 
part of the space. 

10 



Here, 

/ 
CJ>,     - 

inbidt- domain g,   but vanishes outside the domain.    A similar relation exists 

between^   , and domain g'.    It may be convenient to put 

4^ 9 fa ~ ff 
■*^^ (2. b, 5) 

and to consider   3"?    invariant regarding L:.  the sub-domains.    In the present 

case,   A(p)   is by no means independent of the direction of   p   because each 

sub-domain occpies a finite solid angle with respect to the center.    A(p)    may 

fluctuate with pitches of those solid angles as the d; section of   p   changes. 

Only at the limit G - oo,   may the distribution of particles be uniform,   and A(p ) 

become independent of the direction of   p . 

In order to avoid difficulty of manipulation.,   we consider in a special 

direction (6=0,  cp = 0),  and interpret the result to be valid in the limit G "* «> . 

Considering those conditions,  we obtain 

- ^ A;V* ff ■*+(> ('f ~1 c^)4^ & ä& 

(2.b. 6) 

II 



d *     ' t'PK/f?* PK/K 
(2.b.7) 

Hence, 

+ ....J 

and 

— .7^/V.- 
(2. b.8) 

Mti Yf'^f 

(2.b. 9) 

2 
Considering (2. 9), 

(2. b,10) 

12 



In this case, 

(2. b.U) 

instead of (2. a. 10).    The result is independent of    6cp    and does not seem plausible. 

This defect of ihe result must be expected in the beginning when we assumed that 

A(p)     were independent of the direction of   p* .    As stated there,  the present 

result is valid only in the limit   515 - 0 .      This may be sufficient for our present 

purpose to demonstrate the consequence of a restriction appearing in   w. 

The contrast between Example A and Example B is remarkable and 

shows us the significance of the restriction imposed upon w.    By condition (2.12), 

each of the causal events is completely independent of the others.    The value of 

^F2^given by (2. a. 10) is predictable in a simple manner:   Denoting with   F., 

the force induced by field particle i,  we have 

Hence, ^ 

< v 
-• _# 

Since F.   changes its direction as independent of the direction of   F.,   the second 

member in the right-hand side vanishes in 

which is identical to (2. a. 10). 

In a previous study    related to multiple collisions among particles in 

plasmas,   the author noticed the significant and particular meaning of condition 

(2.12),  j,nd expressed a deep doubt about the feasibility of the results obtained by 

3 4 H. Itsmark    regarding charged field particles and by Chandrasekhar and von Neumann 

regarding the gravity force due to stars.    In those studies,   condition (2.12) was 

13 



employed.    Holtsmark calculated W(E),  the distribution function of the electric 

force   E exert?d on an emitter by the field particles (charged particles,  particles 

with dipole moments and particles with quadrapole moments).    Although ..nose 

results are finite and do not show an/ particular contradiction by themselves, 

the result in the case of charged particles may need some reconsideration. 

On the other hand,  the case of Chandrasekhar and von Neumann is to be recon- 

sidered more seriously.    Chanvlrasekhar and von Neumann applied the method 

to the calculation of the gravity force exerted on a test star by the field stars. 

Their interest was not only in the total force but also in the correlation period. 

Hence the distribution function W(?, f) is defined in the six-dimension snace of 

force,  F,   and temporal change rate of force,  f .    By an approximate formula, 
—* 

they defined the mean life of a force F   by 

?IFI =/F//{tifi2s y 

which yields 

j f 7lfl wiF)ä3f/(rlfl vtnd'f - P 

and 

tobefi»«..    Here     W<F)   ' JW{F'f )d ^' 

We note that the precise result Q diverges to infinity in the case of 

gravity force (and/or Coulomb force):   So far as P and Q   are concerned,  the 

effect on the test particle exerted by the field particles which are assumed to 

have no mutual interaction is equivalent to the effect as calculated under the 

condition that only one of the field particles exerts its force on the test particle 

14 



at a moment of time.    In other words,  the effect is equivalent to the one 

produced by "binary interaction«" and hence the precise resvit of Q   is 

easily shown to be infinite,   as is well-known".    The convergence of the result 

obtained by Chandrasekhar and von Neumann seems to be due to the approximate 

treatment.    For applying the method to problems of continuous medium (for 

instance,  turbulent flow),   the need of modifying condition (2.12) is quite 

obvious.    This modification will be studied in a report treating turbulent flow 

in the near future. 

SECTION III 

CORRELATION BETWEEN TWO RESULTANT EVENTS SEPARATED IN SPACE 

Let us suppose that two events denoted by P.    ^ad   P._   are results of 

a common set of causal events denoted by q^     ;   v = 1, 2,..., N.    The probability 

of occurrence of those causes is given by (2. 3).    We consider,   by analogy to 

(2. 6),  the probability that 

»/=/ 

l-i4--irr-^^< (3.1) 

By denoting the probability by W(P   ,   Pg) d  P   d  P   , 

wd.hw^-H^Z' A   ZO-   V   J^f- 
CJ 

(3.2) 

Here   A= 1   whenever condition (3.1) is satisfied,   and   /\= 0   otherwise.    Function A 

15 



is given by 

4 

as a simple generalization of (2.8).    Hence, 

(3.3) 

(3.4) 

where 

Mlb'j 
(3.5) 

The average value of,   for example,  PAJPRC   
may be obtained as 

follows; 

(3.6) 

The difference between the result in Section II and the present 

resu't is a matter of notation.    If we write for (2. 2) 

the statement in this section ma/ be a repetition of that in Section II without any 

other modification. 

16 
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SECTION IV 

CORRELATION BETWEEN TWO RESULTANT EVENTS SEPARATED IN TIME 

We consider the probability tha , an event caused by a set of causal 

events at time   t   is between P and P + dP < nd subsequently at time t' betv/eftii 

P' and P' + dP'.    The caasal events at time t' are assumed at; having evolved 

from the causal events at time t.     The probability is given,   in general, by 

J l " (4.1) 

Here, 

whenever 

1/-i ' y-/ 

(4.2) 

and 

otherwise; similarly, 

^   =    0 

^'=/ 
wh enever 

V-V (4.3) 

17 



and 

otherwise. 

„ ' is the probability that aach of the q     's is respectively 

between ?v) and ?V) + d^V >  at time t,  while ^(f^J . ^ >V^^ ^^^"P^ 

gives the probability that the causal events,  being known to be between 

i0'. V". -. t"" 
ami 

i'-'.Jp",  P"*'*-";--, t""^£w 

at time t,  appear at time t1 between 

and . _ -f ^ 

$ is called the transition probability and 

{■■[4*' */"'= i 
U~f (4.4) 

The transition probability has often been considered in the theory of Brownian 

4 
motion  .    If the physics of the causal events is well-known,  the transition 

probability is to be given as a consequence.    In general,  hrwever,  the causal 

events cannot be independent of the resultant events.    In other words,  those 

events make a closed ring and there is no absolute way to separate them into 

"causal" and "resultant".    It is expected that the entire system of events would 

18 



be presented by a set of integral equations,   that is,   by physical laws.    Intro- 

ducing transition probability is a conventional way to cut the closed ring of 

events into causal events and resultant events.    In this way,  physical character- 

istics are eliminateu from the problem under consideration.    In this sense, 

the present treatment is kinematical rather than dynarr.icai. 

Similarly as in Section II,   we may write 

where 

,t^,.'?'.*'"'"'*"'. (4.6) 

It is expected that > 

J (4.7) 

—* 
where W(P) is defined in Section U.   The proof is as follows:   According to the 

definition 

> - jtllLU^r. ///- - pol"f 
~ (znfJ J (4.8) 

Suppose that the entire domain of P1 is divided into many small sub-domains. 

19 



" •       "* -'       L.n, 
Sub-domain between     P! --~^F'   C^J     ?-,   + '£**?' 

■I        2 

> 
sub-domain between   p ' Lrft/ a~*J     P' -f —dp' 

(4.9) 

sub-domain between   /--/     -   j d j"    "*•<*    r£.     ^ ^ *■ i 
VtC 

which cover continuously the entire domain.    In each sub-domain we consider   A' 

as defined previously by (4. 3).    By denoting those by - - • ^     . &&, &+. j ' " '/ 

we make the sum 

(4.10) 

Since those sub-domains cover the entire domain of P' with no overlapping, 

y A        is always unity regardless of the value of    £ f>    ^ .    Hence, 

^«yyr"' 
f 

f 
**(,'>~Sj*0.(>t>J 

**    O) 

^l--j*}(f,t;ir:y)w(fr,'')7rä*?l''r<*y 

[considering (4. 4)] 

= Wlßjä'P (4■11, 

according to the definition given in Section II. 

20 



- -     ^ w       / ) 
By means of  lA/ If'   til     '   f /     given by (4. 5),   one inay obtain 

aj a function ai   i = V  - t.    The result is expected to decrease,  monotonously 

with   T   increasinti to zero at   T= T  •    We may call   T      the period of correlation 0; C ' c r 

between   P.    andP'.. 
i J 

SECTION V 

REMARKS IN VIEW OF APPLICATION 

The treatment presented so far is a matter of mathematics.    All 

the possible physical implications are concealed in the distribution probability 

of causal events,   w,   and the probability of evolution of causal events named 

"transition probability",   $   .    In a physical problem,   the distinction between 

"causal events" and "resultant events" is often artificial.    A "causal event" 

cavi be affected by "resultant events".    For example,   consider a segment of 

vortex line in a fluid.    The segment,   r.s a cause,  may induce a velocity field 

which resists in a shift of the location of another segment of vortex,   as a 

resultar ^nt.    At the same time,   the first segment may float due to the 

second segment.    Such relations must all be included in w and §,   and the 

entire closed cycle of phenomena may often be presented by a set of integro- 

differential equations.    In this paper,   the closed cycle is cut inuo open parts, 

and one of the parts is treated as if the distinction between cause and result is 

obvious.    See the schematic illustration of the relation in Fig.   Z, 

As read in the title,   results of the present study are expected to 

be applied to turbulent flow.    In view of the general sophistication of current 

theories of turbulent flow,   it seems necessary to explain briefly the motive 

of considering the present exotic method which,   at this moment,   appears to 

be rather anachronistic:   In spite of their mathematical sophistication,  most 

21 



Cause 3 r Residt 2 

COuAX 2 

Fig.  2.     The entire system of phenomenon is represented 

by a ring.    The cause of part 1 is the result of 

part 3,  and the result of part 1 is the cause of 

part 2,   etc. 

22 



of the recent theories seem to bear two weak points in view of physics: 

1. The significance of a vortex line,   a singular line in the field, 

is that the strength is an integral of motion as described plainly by Helmholta's 

three theorems,  and turbulent flows are considered to be induced by vortex 

lines (of course,  the strength is not permanently invariant because of viscosity 

stress.    Here,  another integral,  wave motion,  is ignored.    Regarding wave 

motion,  we may say the sam« as regarding vortex line. )   By having coarse-grained 

directly basic differential equations of fluid dynamics,   either in the Lagrangian 

sense or in the Eulerian sense,  we have no more opportunity to introduce 

properly the integral of motion in a theory. 

2. In prder to compensate the ignorance of vortex line as an integral 

of motion,  "Mischungsweg" was introduced by Prandtl in the Lagrangian sense 

and "size of eddy" by Taylor in the Eulerian sense.    As confessed by those 

initial proposers,   those lengths are simply of the sense,oi dim^-nsiona}: analysis. 

The structure of those lengths,   in view of rational dynamics,  has never been 

clearly explained,  in spite of their frequent appearance in modern theories. 

The assertion motivating the present intention is that one has to 

introduce singular lines of a field in advance of coarse-graining the basic 

equations of the field.    This approach is quite analogous to the approach of 

Boltzmann,  who considered precise dynamics of particle collisions in advance 

of coarse-graining the collision effect in the Boltzmann equation.    The author 

wishes to publish some results of his study of turbulent flow in accordance 

with the present assertion in the near future. 

23 



SECTION VI 

CONCLUSION 

1. This is a purely mathematical treatment.    Physical implications 

are represented by w and   $ . 

2. It is emphasized that correlations appearing among causal 

events are not trivial,  as illustrated by the two examples in Section II. 

3. In view of (2) above,   referring to the method of "random flights" 

is not necessarily proper. 

24 
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