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SOME DEVELOPMENT OF MARKOFF'S METHOD OF RANDOM FLIGHTS,

WITH THE INTENTION OF APPLICATION TO TURBULENT FLOW+

by
Toyoki Koga“‘

Fulytechnic Institute of Brooklyn

SUMMARY

Markoff's method of random flights is reconsidered and developed with the
intention of then applying it to problems of turbulent flow. The gist is to general-
ize the assumption regarding the probability distribution of causal events,

1. Correlations which may exist among causal events, and the consequences
appearing in the resultant events are considered. In view of the conclusion, some
of the previous authcrs' treatments are criticized,

2, The correlation probability between two resultant events which are
separated in space but caused by a common group of causal events is formulated.

3. The correlation probability between two events which are separated in

time hut caused by the same group of causal events evolving in time is formulated.

* This research has been conducted in pz:'t under Contract No. Nonr £39(38) for

PROJECT DEFENDER, and was made possible by the support of the Advanced

Research Projects Agency under Order No. 529 through the Office of Naval Research,

Visiting Professcor, Dept. of Aerospace Engincering and Avoplied Mechanics.
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SECTION 1

INTRODUCTION

Markoff's method of random {llghtsl is used to calculate the probability
distribution of th result caused by cvents of which the probability of occurrence
is given, The method was applied to proolems of the random walk by Rayleighz,
the statistics of clectric fields duce to charged particles by Iloltsmark?’, and the
statistics of the gravitational field due to stars by Chandrasckhar and von Neumann4.

In those trcatments, cach causal event is assumed to be independent of the
others. It is known that this assumption is fatal in some problemss. {In view of
this assumption, the author believes that some of the results obtained by Holtsmark
and by Chandrasekhar and von Neurnann are not plausible, as will be discussed later, )
As a matter of principle, this assumption is not indispensable in the method, as
will be considered in Section II. It is esscntial to eliminate the assumgtion to some
extent, especially when one intends to apply the method to problems of fluid mechanics
and/or plasma dynamics,

Sometimes one may be interested in the correlation between two resultant
events causcd by a cormmon set of causal events, as is considered in Secction III,
Also, it may bec useful to consider the corre.ation between two events when one is
directly causcd by a certain group of events, say group A, and the other is caused
by group B, which has evclved from A with a certain probability, This is considered
in Section IV,

Remarks in view of the application to turbulent flow are given in Section V,
There one may also {ind the author's answer to the possible question: why is it
necessary to consider the present method which appears to be anachronistic in
contrast with methcis of modern turbulence theories of high mathematical sophist-

ication?
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SECTION 11

CORRELATION AMONG CAUSAL EVENTS

Let us suppose that an cveat represented by a quantity (vector) denoted by P

ooooo

is the result of the sum of clementary quantities S(l), E(Z),

4

. M
/) — 2 77(”) (2.1)

Myt
For example, P may be a momentum given to a particle or a displacement. In

general, P may be a vector of s dimensions:

P (P, E,--,R),

(2.
(_v), qz(v), e

- '\
It is supposed that p(v) is « function of a set of coordinates, q(\"

= (ql

qk(v)} which represents a causal event., The probability of occurrence of the causes
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According to Markoff, we investigate the probability that i
P_,;dpczyb < /7+—-/P
2
y=y/ (2.6)

Ey denoting this probability by W(P)d°P, we have

W(P)dp //A w‘/'d"‘?r"”

(2.7) i
:
where A=1 wheneve ‘-ondition (2.6) is satisfied, and A= 0 otherwise.
Function A is given by Dirichlet's integral
//Aon/zldp/o)»dﬂm{zd/j ) }
(Fal L) SFP) 47
P il 2l opif (e F #/]
“s
J‘/D / [ o 2o 2T
o )l p (X~ P) |4 p (2.8
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Hence,
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Wi(P) :(%J/“]b’f’/"/‘)‘/‘?)/l(ﬂ/d/ (2.9)
where
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Previous authors have traditionally assumed that

i
W = w(u (-0“}- . 61)( /)
, s (2.11)
Y My . at
W= )
In most cases of application, it is further assumed that
w2
(2.12)
and that
/ > o 4
- T o, o

We have to emphasize, however, that there are many practical cases where it
is not trivial to choose w given either by (2,11) or by (2,12). Probability w given
by (2. 3) may imply that there are certain correlations among N causal events, 23

for example, in such a condition as

whene =r

P2 2 =2 gt
(g7~ 57 =

In other words, one may take into account the interaction among different events,
In this sense, causal events do not occur completely at random. In the following,

we consider two dynamical examples where the above consideration has some

significance,




Example A, The Distribution Function of the Total Force Indu-ed

by Free Field Particles.,

Lect us suppose that field particles |, 2,...,N exert their gravitational

forces on a test body fixed ..t point 0, The masses of those particles are

assumed to be the same. As iliustrated in Fig, 1-a, the field particles are
supposed to be confined in the spa:e bztween two spherical walls with their

centers at 0, The r~dii arc denoted by R, and R1 + 8 R, Here,

c([f << A),

(2.a.1)

The mutual interactions among the field particles, and also the force
exerted by the iest body on th-.n, are ignored because we assume that eac - of

them has a large momentum and its motion is not significantly disturbed by those

interactions. Under this circumstance, we may usec relation (2.12) and

/
JV ~
§v= S (R cIR)-R]

w =

(2.a.2)

= 4«7t IR

(2,a.3)

We write for p the force due to a fieud particle
P, - 7

Ny
X

(2.a.4)
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Fig. 1-a. A meridian section (g = 9y and @t m) of the

space between tv.o spherical walls with their centers
at 0, Since the space is not divided, a particle may
exist anywhere inside the space with uniform probability,

e

B ——————




by me:ns of a spherical coordinate system. Writing the total force F for P

. (2.9) and (2.10) yield

(7’ . 7 _’ SR, , )
W(F) _C7; MWeap ~cwef 407 ) o 2'de dy’d,,"j Z
./1./
3 e A s nZ 7
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Here the domain of integration is
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8=0, ¢ = 0 for the convenience of treating A(p).

A(P)
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If we take into account () EIZJR¢I =/,

then
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(2.a.5)

Since A(B\) is independent of the direction of E, p is assumed to be in the direction

(2.a.6)




Since A(p) i. independent of the direction of p, W(F) is also independent of
the direction F.
By taking F in the direction {(6' =0, o = 0), we have
-+ / 5 0 v AP K 2
W(E) =7 [[[osnt-ip Feeo 6 smp- (L5 )]
27y %
xpAnG'dpde Ay’
2.a.7)
/ /

(
- LYN L K )2
- /z)/z [4(4/ K ZJJ/JMP]:F/?/— /7}]
57 () £h
Of course, it is easily shown that

///W/F_t)d&— d'l:,:‘ d-}'; = 441{'//}4‘//,_‘);-’6//:.

=/ (2.2.8)
and that
o0 -3 _
CJEI> :/WerF)f AF
(] £
4 M x (2.2.9)
T (6" kP -
<FB = [4xW(F)FdF
? (2.a.10)

K 2
= N (—
(/?I.\

It is noted that('F’")is equil to the square of the force of each single field particle

multiplied by the number of the field particles.
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Example B. The Distribution Function of the Total Force Induced

oy Restricted Field Particles.

In Example A, we assumed that each of the field particles is free in
the domain between two spherical walls, In the present example, we assume
that N field particles are divided into G groups confined in G separate
sub-domains which are formed with additional walls set in the entire domain
considered in Example A, For the sake of simplicity, the number of field

particles in eacl group is assumed to be the same:
g - (2.b.1)

By taking G to be even, we assume that there is always a pair of
sub-domains g and g' which are geometrically symmetric regarding center 0

(see Fig. 1-b),

domain coordinates volume
pom 6 2o 640 P iuino RSO SP
g vy B yrf

(2.b,2)

-0-d8 » 7T-8
Rt SRTETY

U4

y ({*7‘ o V-ffff‘l

For A(p), we have, instead of (2.19) or (2, a. 5),

A(P) = 7//7[//«) -b)fp((/o )/i. m&aadedgo:’
‘[/é' %f/l ';'//z,dmé*d/zdadf] (2.b.3)

e = e S—— = L e S




Fig, 1-b, A meridian section similar to the one illustrated
in Fig. l-a, The space between the two spheres are further
divided in pairs of smaller section, g, g', etc. A particle
existing in g has no probability of existence in the other
part of the space.
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Here,

/

w - ~ ~ e
2, ¢ 2.b. 4
/ R2din6 KBy (2.5.4)

inside domain g, but vanishes outside the domain. A similar relation exists

between @ and domain g'. It may be convenient to put

-

' (o = J&
Aump I8 =2 (2.b. 5)

and to consider T8 invariant regarding .’. the sub-domains. In the present
case, A(S) is by no means independent of the direction of p because each
sub-domain occupies a finite solid angle with respect to the centcr, A(p) may
fluctuate with pitches of those solid angles as the d‘.ection of ) changes.
Only at the limit G = o, may the distribution of particles be uniform, and A(S')
become independent of the direction of 0.

In order to avoid difficulty of rnanipulation, we consider in a special
direction (§= 0, p= 0), and interpret the result to be valid in the limit G - « ,

Considering those conditions, we obtain

; f/ w 25 (¢ ,"-~——) Amb‘dfz.dﬂd?’
o +d6
jk [&[?‘J —l/l—p( F—-Cmﬂlwgd@
p 4 “typ [/P RzCoc(ﬁf-/a)JfMp[P,(,_Cové_]

W RIR LR

PR /R

(2.b.6).
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X =W l?zJ/?ff "4/’[ /"_‘&;'mﬂ/f.lypl :/v‘f‘m(&-r/'{//
g 7

:ﬂK/,fl

(2.b.7)

Hence, .
= SR ) e 76) - -~— 2 ans ca)*
Xy Koo = (s K TREF) | 678" / e

*“‘"J

(2.b.8)

A ’ﬁ”'zj (2.b.9)
= yp |- Ll — /———/

Considering (2.9},

- o, -y d‘?; oK |27
7% f—}:(uf /14;( APF mﬁ)%‘ﬁ[, = ;27 ( 52/

A /" d/‘}/ﬁm 6Id6’df,
/V
, w/o[ /9 )j] (2.b.10)
= 773/2 r
/—zx¢’ /f
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In this case,

iy = X Se o

<EY = Ay / (2. b, 11)
instead of {2.a,10). The resultis independent of 8¢ and does not seem plausible.
This defect of the result must be expected in the beginning when we assumed that
A(p) were independent of the direction of § . As siated there, the present
result is valid only in the limit §6— 0. This may be sufficient for our present
purpose to demonstrate the consequence of a restriction appearing in w.

The ccntrast petween Example A and Example B is remarkable and

shows us the significance of the restriction imposed upon w. By condition {2.12},
each of the causal events is completely independent of the others, The value of

< F2>given by {2.a.10) is predictable in a simple manner: Denoting with Ei’

the force induced by field particle i, we have
- N
F-2F
R

Hence, - »

FlelR 1222 Ry
l‘/

Since Fi changes its direction as independent of the direction of Fj, the second

member in the right-hand side vanishes in
2 2
KFD= w(E">

which is identical to (2. a.10),

In a previous studyS related to multiple collisions among particles in
plasmas, the author noticed the significant and particular meaning of condition
(2.12), «nd expressed a deep doubt about the feasibility of the results obtained by
H. ltsmark3 regarding charged field particles and by Chandrasekhar and von Neumann4

regarding the gravity force due to stars, In those studies, condition {2.12) was

13




employed, Holtsmark calculated 'W(E) , the distribution function of the electric
force E exertzd on an emitter by the field particles {(charged particles, particles
with dipole moments and particles with quadrapole moments), Althcugh .rose
results are finite and do not show any particular contradiction by themselves,
the result in the case of charged particles may need some reconsideration,

On the other hand, the case of Chandrasekhar andvon Neumann is to be recon-
sidered more seriously. Chandrasekhar and von Neurnann applied the method
to the calculation of the gravity force exerted on a test star by the field stars.
Their interest was not only in the total force but also in the correlation period.
Hence the distribution function W{F, ) is defined in the six-dimension snace of
force, i?‘., and temporal change rate of force, ? By an approximate formula,

they defined the mean life of a force F by

- — <L
Crr =IF1/ (<1170 )%
which yields

_,
f F 7y W) [ [ 70 WiF)F = P

- g g - Iy ad - o)
f(/? CFI)ZM/(F)dj/://"F/ WI(F)af

4 . S |
to be finite., Here W(F) =fW/F,f)dfo

We note that the precise result Q diverges to infinity in the case of
gravity force (and/or Coulomb force): So far as P and Q are concerned, the
effect on the tes¢ particle exerted by the field particles which are assumed to
have no mutual interaction is equivalent to the effect as calculated under the

condition that only one of the field particles exerts its force on the test particle

14




at a moment of time. 1 other words, the effect is equivalent to the one
produced by "binary interactions" and hence the precise resvlt of Q is

easily shown to be infinite, as is well-knowns. The convergence of the result
obtained by Chandrasekhar and von Neumann seems to be due to the approximate
treatment. For applying the method to problems of continuous medium (for
instance, turbulent flow), the need of modifying condition (2.12) is quite

obvious. This modification will be studied in a report treating turbulent flow

in the near future,

SECTION III

CORRELATION BETWEEN TWO RESULTANT EVENTS SEPARATED IN SPACE

Let us suppose that two events denoted by f’A and 13B are results of
a common set of causal events denoted by a‘(v); v=1,2,,..,N. The probability
of occurrence of those causes is given by (2.3), We consider, by analogy to

(2. 6), the probability that

/ < ¥ < _id
’?4 -Td'?' - "ZH ﬁ - /e’ * = 6 ’
- ; > ¢ "uy < P’ +-id,5. (3.1)
,75 —EdPﬁ = Z a —Ig =2 & .
By denoting the probability by W(P,, Py) d°P,d°Py,
A »)
R A
S - [ [ &F ?-
Wﬂaf@)d"')’d@ Y=y
(3.2)

Here A=1 whenever condition (3.}) is satisfied, and A= 0 otherwise., Function 4

15
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is given by

(<my) =,
sy ? 7/7 (3.3)
“jperriify (24, 1,17 /s
/

as a simple generalization of (2.8). Hence,

. :3 /,3 p-, ; B 7
o= dap oty T/ e/
W(’P FG J/Z/J"/ y /’ ( 4 !
> ) _ ,J JJ
WA 3.
where
> » (v
‘u/ - (¥ N
y 7oA
7(,"/7 ""f/ { 7 (/,2? f‘f ,_'
/}{[o’& / V=7 /J
{3.5)
The average value cof, for example, PAZPBS may be obtained as
follows:
o~ T J =)
/P /) ) -:{-!/// /7 i A /id £,
s lgz? =) e o

The difference between the resuit in Section II and the present

result is a matter of notation. If we write for (2. 2)
-7 -~
p=lB, K, L. L,/
= A, A, " ﬁf

tiie statement in this section may be a repetition of that in Section II without any

other modification.

16
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SECTION 1V

CORRELATION BETWEEN TWO RESULTANT EVENTS SEPARATED IN TIME
We consider the probability tha. an evert caused by a set of causal

€’ents at time t is between P and P + dP :'nd subsequently at tirne t' between

P! and P' + dP'. The causal events at time t' are assumed as having evelved

from the causal events at time t. The probability is given, in general, hy

W(E t; Fit) dspdp’
) . SR i ¥ d,{.«:u)’
=/../44 Fyty g5t Ve, 4) T4 g b

{4.1)
Here,
a =/ b}
whenever y - -
- - ~ (¥ /
! . < Ld O
P-zd4f <2 P S P T4,
V=l
(4. 2)
F
and
a = 0
otherwise; similarly,
a’ =y
whenever
-2, ’d ;) = _.';V""(yjlé — / ,dP/
- = ura
pl-gdpr s 3 42 p -
Y=y :
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and

otherwise.

‘7’7' bl ‘,,M‘,g,(") is the probability that sach of the q(v)'s is respectively
between ;(\') and a.(\l) + da(v) at time t, while f](f:‘ fj . -"‘,/ A7) TS *ﬁ‘rwyd*} e’
gives the probability that the causal events, being known to be between

- - -
) (A
?' s ,9’”// Tt i’

ana

2 e 2 2 21 2w 2.
%"’-rdﬁ'w/ 2‘””/71 -, ¥ *dﬁ'ﬁo

at time t, appear at time t' between

5‘_(0’ ?:’,',,’ - @—_’mo/

’ /

and - -7 4
i:,(l,‘:r_d Z’:(,)/I f_’(;,;dz'-(z): -, ?_ ) ,*dﬁ' {4//

$ is called the trausition probability and

ff#T 7 57 =1,

Vs (4. 4)

The transition probability has often been considered in the theory of Brownian
motion4. If the physics of the causal events is well-known, the (ransition
probability is to be given as a consequence, In general, hcwever, the causal
events cannot be independent of the resultant events, In other words, those
events make a closed ring and there is no absolute way to separate them into

"causal” and "resultant", Itis expected that the entire system of events would

18




be presented by a set of integral equations, that is, by physical laws, Intro-
ducing transition probability is a conventional way to cut the closed ring of
events inte causal events ard resultant events, In this way, physical character-
istics are eliminated from the problem under consideration. In this sense,

the present treatment is kinematical rather than dynamical,

Similarly as in Section II, we may write

Wit 2 t) = = /w/ /MP/"’/’ P )ayp (-7 P

. . (4. 5)
A/W/’//"’)”/"d
where
s
AP P //“"/vwm P e s
v ()’
7 eypldp (BT (4. 6)
M=y
It is expected that > |
A -, Ny 7 /
(Wit Poe)dp'=WiE
J/ (4. 7)

where W(-é) is defined in Section I, The proof is as follows: According to the
definition

at=X /‘"’(/"[/’ (ZF - piddT

/27?

(4. 8)

Suppose that the entire domain of P' is divided into many small sub-domains,

19




-
Sub.domain between F_) -
._’

4
46 ’ tdf’
sub-domain between [0 —~ ;Ld V' amd /? v F d,&

0 (4.9)
- -» ¥y
o~/ ' r./ r t 4 r.7
s - A - - -
sub-domain betwecen [, Tl Ml B P e
e,

which cover continuously the entire domain. In each sub-domain we consider A'

/

4 oo o
60/4 ) /

as defined previously by (4. 3). By denoting those by - - - a’ Y

=/

we make the sum

o / / /7
2(\"—' et D, By Ay, + -
(4.10)

Since those sub-domains cover the entire domain of P' with no overlapping,

%..,7
ZA I s always unity regardless of the value of 7lf - Hence,

5/0/W/P‘f/P/‘L )d'Dl

p n/ 7"’77/ 4g. <227

=/-/'¢/(’§, t 5 +) (G )7 "3t B

[ considering (4. 4)]

=/-/d w/%,xf)/fd*ﬁ'”/

=WI(PIA*P s

according to the definition given in Section II,

20
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By means of [I/i/' {IL ,,//'/l’ Y f’) given by (4.5), one may obtain

7 ! ot D B i od
ITED = HE (P, )2 A PAF |
as a function ¢f 1=t - t, The result is expccted to decrease, monotonously

with 7 increasing,to zero at T= T . We may call T the period of correlation i

between Pi and P'j. 1

SECTION V

REMARKS IN VIEW OF APPLICATION

The treatment presented so far is a matter of mathematics. All
the possiblc physical implications are concealed in the distribution probability
of (;.ausal events, w, and the probability of evolution of causal events ramed
" ’rrlansition probability", ¢ . In a physical problem, the distinction between
"causal events" and "resultant events" is often artificial. A "causal event"
cana be affected by "resultant events", For example, consider a segment of
vortex line in a fluid. The segment, &s a cause, may induce a velocity field
which resv'ts in a shift of the location of another segment of vortex, as a
resultar -nt, At the same time, the first segment may float due to the
second segment., Such relations must all be included in w and ¢, and the
entire closed cycle of phenomena may often be presented by a set of integro-
differential equations, In this paper, the closed cycle is cut inio open parts,
and one of the parts is treated as if the distinction between cause and result is
obvious., See the schematic illustration of the relation in Fig. 2.

As read in the title, results of the present study are expected to
be applied to turbulent flow, In view of the general sophistication of current
theories of turbulent flow, it seems necessary to explain briefly the motive

of considering the present exotic method which, at this moment, appears to

be rather anachronistic: In spite of their mathematical sophistication, most
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Fig. 2, The eatire system of phenomenon is represented
by a ring, The cause of part 1l is the result of

part 3, and the result of partl is the cause of

part 2, etc,
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of the recent theories seem to bear two weak points in view of physics:
i. The significance of a vortex line, a singular line in the field,

is that the strength is an integral of motion as described plainly by Helmholtz's
three t(}:aeorems, and turbulent flows are considered to be induced by vortex
lines (of course, the;. strength is not permanently invariant because of viscosity

stress, Here, another integral, wave motion, is ignored, Regarding wave

A
motion, we may say the sam« as regarding vortex line, ) By having coarsc-grained

directly basic differential equations of fluid dynamics, either in the Lagrangian
I
sense or in the Eulerian sense, wc have n» more opportunity to introduce

sk

properly the integral of motior in a theory.

2, In grder to compensate the ignorance of vortex line as an integral
of motion, "Mis chungswég" was introduced by Prandtl in the Lagrangian sense
and "size of eddy" by Taylor in the Eulerian sense. Asconfessed by those
initial proposers, those lengths are simply of the sense,of dimgnsiona) analysis,

7
The structure of those lengths, in view of rational dyn_amics, has never been
clearly explained, in spite of their frequent appearance in modern theories,

The assertion motivating the present intention is that one has to
introduce singular lines of a field in advance of coarse-graining the basic
equations of the field, This approach is quite analogous to the approach of
Boltzmann, who considered precise dynamics of particle collisions in advance
of coarse-graining the collision effect in the Boltzmann equaﬁon. The author
wishes to publish some results of his study of turbulent flow in accordance

with the present assertion in the near future,
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SECTION VI

CONCLUSION

1. This is a purely inathematical treatment, FPhysical implications

are represented by w and $.

2, Itis emphasized that correlations appearing among causal

events are not trivial, as illustrated by the two examples in Section 11,

3. In view of (2) above, referring to the methcd of "random flights"

is not necessarily proper,
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