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UNCLASSIFIED ABSTRACT 

EQUILIBRIUM STRUCTURE OF THIN 
DIFFUSION FLAME ZONE,  by P.  M.  Chung 
and V.   D.   Blankenship 

TR-669(S6240-I0)-1 
December 1965 

The method of inner-and-outer expansions was used to analyze the initial 
broadening of a diffusion flame sheet caused by the nonvanishing equilibrium 
constant.    Analytic expressions are derived for the thickness of the flame 
zone, and the position and the value of the maximum flame temperature.    The 
thickness of the flame zone created by the nonvanishing equilibrium constant 
is found to be less than that created by the decreasing Damkohler number 
studied previously.    Varying the stoichiometric coefficient of the fuel is found 
to affect the oxidant side of the flow to a greater degree than the fuel side 
itself, and vice versa.    The problem of nonvanishing equilibrium constant is 
important when a fuel is injected into a hypersonic stream and the high energy 
of the stream begins to prevent the full release of the heat of connbustion. 
(Unclassified Report) 
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I.    INTRODUCTION 

In the combustion of initially unmixed reactants,  when it is considered 

that the chemical kinetics is represented by the simple relationship 

kf a (oxidant) + b (fuel)   ^    d (product), (1) 

it is well known    that a diffusion flame sheet is established as 

_, T>,      ,   LI L characteristic residence time .,. 
rf   =   Damkohler number   =     characteristic reaction time     ^ * '     <2) 

and at the same time 

T—   =   equilibrium constant   -♦   0. 

For this limiting case»  the combustion is completely controlled by the diffusion 

and heat transfer characteristics of the flow field alone.    This independence of 

the combusiion on the chemical reactiou kinetics, together with the fact that 

the equilibrium constant is zero,   enables one to postulate a certain set of 

conditions at the flame sheet,  and to solve the governing equations rather 
,   1,2 simply 

When either the Damkohler number or the equilibrium constant is finite 

and nonvanishing, a zone of finite thickness instead of the thin sheet is required 

for combustion.    Solution of the governing equations is then no longer simple, 

and usually only a full numerical treatment can satisfactorily describe the 

burning process.    Such numerical  analyses  and certain empirical simpli- 
3 fications derived from the numerical results were given by Chung, et al    and 

4 Libby and Economos   . 



The most efficient combustion from the standpoint of heat release takes 

place as  rf -► oo  and K^/k, -* 0 and, hence, as the thin flame sheet is 

established.    It is,  therefore, very helpful if one can quickly predict,  without 

having to solve numerically,  the values of the Damkohler number and 

equilibrium constant at which the flame sheet first begins to broaden and the 

ri«uiie temperature begins to drop.    Also,  one would gain a considerable in- 

sight into the development of diffusion flames by studying in detail the manner 

in which the flame sheet first broadens,  and by studying the structure of the 

thin flame zone thus created.    The above information, which is often difficult 

to obtain through a pure numerical analysis,  can be deduced by a suitable 

perturbation analysis. 

Mathematically,  the flame sheet represents a singular point    since the 

second derivatives of temperature and reactant concentrations increase without 

limit as one approaches the sheet.    (See Figure 1.)   Therefore,   the flame 

sheet broadening cannot be analyzed by the regular perturbation method.   In 

order to perturb about the singular point,  the technique of inner-and-outer 
3 

expansions was successfully employed by Chung,  et al   when the broadening 

was caused by the decreasing Damkohler number for the general combustion 

process given in Eq.   (1).    A similar method was shown   to be applicable when 

the flame sheet broadening was caused by the nonvanishing equilibrium constant, 
3 

with  F, -► oo,  but only for a = b = d = 1.    Unlike the flame zone    created by the 

decreasing  F,,   relaxing the restriction ofa = b = d = lto arbitrary stoichio- 

metric coefficients does not result in a simple extension of the analysis for 

a=b = d=l  if the broadening is caused by a nonvanishing equilibrium constant. 

It is because the flame sheet broadening by the decreasing F, directly influences 

the inner region only whereas that due to the nonvanishing equilibrium.constant 

directly affects both inner and outer regions and,  hence,  influences the 

matching process. 



In the present paper,  the initial broadening of the flame sheet caused by 

the nonvanishing equilibrium constant,  for equilibrium flows,  will be 

analyzed by the method of inner-and-outer expansions for arbitrary stoichio- 

metric coefficients.    From the analysis,  closed form expressions will be 

derived for the important variables such as the value and the location of the 

maximum temperature of the flame zone. 

II.    FORMULATION 

The basic chemical features of the present analysis are independent of 

any particular flow geometry.    We shall hence consider the simple stagnation 
3 

mixing layer configuration previously employed    for convenience.    A jet of 

pure gaseous fuel is introduced into the oncoming uniform stream of pure 

oxidant at the stagnation region of a two dimensional or axisymmetric blunt 

body.    A laminar mixing layer is then formed as the two streams meet 

(see Figure 2). 

The general governing equations for this problem have been derived and 

appropriately transformed for Prandtl and Schmidt numbers of unity in the 
3 1 previous paper   ,  from which we write when -=- = 0, 

if 

f"   +   ff"   =0 

(H + mj)"   +   f (H + mj)'   =   0 

(H + m2)"   +   f (H + m2)1    =   0 

b 
ml m2 

„a+b c H exp 
(■ -) (■ - 

a M] 

"MT 
ml - 

bM2 

irrm 
.)■ 

(3) 

(4) 

(5) 

(6) 



where  e   is the suitably normalized constant portion of the equilibrium 

constant and it is defined as 

a+b 

e    = 

a
ab 

1       x^a+b^ 
-T  M3 '{%) (f 

p\l-(a+b) 
K 

EO (7) 

with the equilibrium constant expressed as 

T^   -   KE0 T    exp I    RT }    ' (8) 

The stoichiometric coefficient d is set to one in Eq.  (1) without loss of 

generality because Eq.   (1) can be always divided through by d.then a  and 

b can be redefined.    In Eq.   (8), Kp-  is a constant.    The exponent  n  is set 

to one for Eq.  (6)  .    AE, R,   P, and T are the heat of reaction per unit mass, 

gas constant per unit mass,   pressure, and the temperature respectively. 

9 = (AEc   )/(RAh  ) in Eq.  (6) with the modified heat of reaction Ah    defined as, 

Ahv 
a M. 
 1   yO 

b M. I V,0 V,0 h2 - h3 (9) 

where h     is the heat of formation per unit mass,    c     is the constant pressure 
P r 

specific heat of the gas mixture which is assumed to be constant.    In 

Eqs.   (3) through (5), f(Ti) is the conventional Blasius stream function which 

is defined such that f = —   where  (     )'  denotes the total differentiation 
e 

with respect to the similarity variable TJ   defined as 

11/2 

n   = (i tsl m. i pdy (10) 

Tn = 0 was employed in Ref.   3. 



In the above equation,   o-  is either zero or one depending on whether the 

flow is two dimensional or axisymmetric.    u is the x-component of velocity 

as shown in Figure 2.    The subscripts   e and  -e,   denote the edges of the 

mixing layer on oxidant and fuel sides respectively,  and o denotes the 

stagnation point,    p and n are the density and viscosity of the gas mixture 

respectively. 

The subscripts   1,  2,  and 3 represent the oxidant,  fuel, and the 

combustion product respectively.   H and m are the normalized temperature 

and mass fraction respectively defined as 

T, 

m, 

m. 

/M, 

• (rraj) 

U 
A c. (11) 

where  M and C  represent the molecular weight and the mass fraction 

respectively. 

The boundary conditions for the governing equations,  Eqs.  (3) through 

(6),  are as follows: 

For T| -♦ oo, 

f   =   1. 

H   =   H 
Ah^ 

m. 

m. 

=   m 
1 le" 

=   0, (12) 



for Tl    - • •00, 

f   = 
u-e 
ue 

H   = H -e 

m1   . = o, 

m2   . 
M3 

b M2 

and for  r| ■ 0, 

f (0) = 0. 

= \. 

=   H    \.6, 

m 
2.-e' (13)t 

(14) 

Though the equilibrium equation,  Eq.  (6),  is algebraic,  it automatically 

satisfies all the boundary conditions because the fluid is always in chemical 

equilibrium at both  e and  -e due to the fact that only one reactant is present 

at the mixing layer edges. 

Now, we have completed the formulation of the boundary value problem 

which is comprised of Eqs.  (3) through (6) and boundary conditions (12) 

through (14).    Solution of this boundary value problem constitutes the next 

section. 

III.   ANALYSIS 

The boundary value problem comprised of Eqs.  (3) through (6) and Eqs. (12) 

through (14) will be analyzed in this section.    The solution of momentum 
5   6 equation,  Eq.  (3),  is available elsewhere   '     for some values of \.    In the 

present analysis,  Eq.   (3) was first integrated for various values of  \. 

T The particular flow geometry demands that H     /H    = X. .    This point was 
3 -e     e 

explained in detail in a previous paper. 

———— 1 



When «  = 0,   the boundary value problem can be solved readily by 

replacing Eq.   (6) by a set of postulations derived from physical reasoning 

at the flame sheet.    Such flame sheet solutions which a priori admit certain 
1   2, 3, 4 

singularities at the sheet are well known  ' .    When € > 0,   on the other 

hand,   Eq.   (6) is highly nonlinear though algebraic,  and the problem is in 

general amenable only to numerical analyses.     The present interest,   however, 

as was explained in Section I,   is with the onset of the flame sheet broadening 

and the structure of the thin flame zone,  thus with the small values of c. 

We,   therefore,   shall obtain a perturbation solution of the boundary value 

problem posed with  c   as the perturbing parameter.    As it has been pointed 

out   previously,     c  - 0 is a singular point and,  hence,  the regular perturbation 

technique cannot be applied to the present problem.    In the following,   the 

method of inner-and-outer expansions will be employed and closed form 

expressions which describe the salient features of the flame sheet broadening 

will be derived.    For a general method of inner-and-outer expansions,   the 
7 

readers are referred to Van Dyke  . 

Asymptotic Expansions 

We first assign an inner region about the singular point (the flame sheet) 

and represent it by (i).    The remaining portion of the flow field is then 

designated as the outer region.    We specify the outer region on the oxidant 

side as the upper outer region (u) and the fuel side the lower outer region (L). 

The superscript ( )* will be used to specify various values at the flame sheet 

which exists in the limit of 6   =0.    (See Figure 1. ) 

For the two outer regions,  we express the dependent variables by the 

following regular series. 

m Z.U«*'^   =   F^^ + cJF^W+^F^W + O^), 

Hu  (€,  T!)   =   Hu0 (n) +€J Hul(T,) + €2j Hu2 (T1) + 0(€
3J

), (15) 



and 

mUL{*,H)   =   YL0 (T!) +«k YL1 (nl + c21" YL2 (TI) +0(e3k). 

k 2k 3k 
m2j L («. 1))   =   FL0 (TI) + € K rL1 h) + « ** FL2 (T!) + O (c •3K). 

k ?k ^k 
HT   (e,  l|)   =   HTn (T!) +«KHT , (n) + €£KHT7 (n) + O (« •5K). lL0 lLl lL2 (16) 

For the inner region, we first define a new independent variable with a 

stretching factor as 

c = TI - n*   -  I (17) 

The dependent variables are then expressed by the series, 

ml,i(c'  &)   =   ^ *1 ^)+e2i Y2 (;) + 0(€3i), 

m2(i (€.  i)   =   «i Fj (&) + €2i F2 (&) + 0(63i), 

H.f«.  t,)   =   m+€l Hl (C) +62i H2 (&) + 0(€3i). (18) 

Now,  it is crucial,  in order for the inner-and-outer expansion method 

to work with the proposed series (15) through (18), that a particular set of 

constants  j,  k,  q, and i  be found such that the ensuing solutions of the three 

regions will match in a consistent manner.    The perturbation parameter 

appears explicitly only in Eq.  (6) among the governing equations.    Since  c 

appears in Eq.  (6) as a linear parameter, one's natural tendency would be 

to expand the dependent variables for the outer regions, which are regular 

regions,  into integral powers of e.    Indeed such expansions produced correct 

asymptotic solutions for the outer regions, which could be matched to the 

inner solution consistently to all order,  when the flame sheet broadening was 
3 caused by the decreasing Damkohler number    for all values of a and b.    Also, 

it was the case with the flame sheet broadening caused by a nonvanishing 

8 
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equilibrium constant    when a = b = 1.    A similar attempt,  however,  was found 

to fail in the present analysis with arbitrary a  and b.    The physical reason 

why j and k should not necessarily be an integer will be discussed later.    A 

careful study of the series,  in the light of the governing equations,  and the 

nature of the matching required,   showed that  the present method of solution 

would work only if we let 

j   =    1/b, 
(19) 

k  =   1/a. 

For the inner region,  in consideration of the fact that this region becomes 

finite as the second term of Eq.   (6) which represents the backward reaction 

becomes non-negligible,  and also the subsequent matching in mind,   we let 

q   =   i    =   l/(a + b). (20) 

The above values of j, k,   i, and q will be shown to be correct later 

through matching.    The series developed will now be used to analyze the 

various regions in the following subsections. 

Outer Regions 

The series (15) and (16), with the values given in Eqs.   (19),   are first 

substituted into the governing equations,   Eqs.   (4),  (5),  and (6),  and a set of 

various order perturbation equations are generated for the outer regions by 

collecting the terms with equal powers of c .    The perturbation equations of 

L.;8.  (4) and (5) are readily integrated in terms of the Blasius function f,  and 

the boundary conditions specified by Eqs.   (12) and (13) are applied to the 

zeroth order solutions for the upper and lower regions respectively.    The 

usual homogeneous boundary conditions are satisfied by the higher order 

solutions.    By applying the boundary conditions at TI -♦ oo  to the upper 

solutions and those at T] -► -oo  to the lower solutions, one of the two constants 

of integration of each order perturbation solution of Eqs.  (4) and (5) is 



eliminated.    The first two order solutions of Eqs.  (4) and (5) and the 

corresponding perturbed equations of Eq.  (6) thus derived for the outer 

regions are as follows: 

Hn + Yn   =A(f, -1)+H    + —=4- , uO        uO ' ' e     a M. 

Hn + Ff^Ctf' -1)+H. uO        uO x ' e 

^uO^ <Fuo)b   =   0' 

H   , + Y   ,    =   A- (f - 1), ul        ul 2 ' ' 

H   , + F   ,    =   C, (f - 1). ul ul 2 x ' 

■ ^uO^ ^ul^   "   (Hu0)a+b (l    ^ Yu0)exp (- ^1 

HL0 + YL0   =   B <*' " ^ + H-e' 

HT n + F. n   =   D (f - \) + H  ^ + 
M. 

lL0  ' ^ LO   "   " »*   " "' T "-e T WW, 

<YL0)a ^LO^   "   0' 

HL1 + YL1   "   B2 ^ " V* 

* HL1 + FL1   "   D2 & - *' 

Cffl)a(FTn)b   =   (HT,)a+bfl      bM2 
Lr LO' lL0' (■ TT J^f^) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

i30) 

(31) 

(32) 

In the above equations, A,  C, A2,   B,   D, B2, and D2 are the remaining 

constants of integration which will be determined subsequently through 
matching. 

10 



As mentioned earlier, a flame sheet is established when e  = 0.    The 

well known flame sheet solution is obtained for the present problem by 

applying certain boundary conditions at r\* to Eqs.  (21),  (22),  (27), and 

(28), and by thus determining the constants, A,  C,  B, and D.    The flame 

sheet solution wt.s given in the previous paper    from which we write for 

the subsequent use. 

«So ■ Hto =   H«   = 
m,    m_ + H      m,    + H    m_ le     2, -e        -e      le        e     2, -e 

m,    + m- le 2,-e 
(33) 

Y*„   =   Y^ uo       -lo  " FSo = Flo  = 0' (34) 

f (n*) = \ + m,    + m_ 
le 2, -e 

(35) 

Inner Region 

A substitution of the series,  Eqs.  (18), with the aid of Eq.  (20),  into 

the governing equations,  Eqs.  (4),  (5),  and (6), and the collection of the 

terms with like powers of €   results in a set of perturbation equations for the 

inner region.    The perturbation equations generated from Eqs.  (4) and (5) 

are integrated readily.    The first order inner solutions are given by, 

Hj + ^    =   a;   +  p, 

A A 
Hj +FJ    =   Y&   +   6, 

(VfV   "   (H*)a+bexp(. j^). 

(36) 

(37) 

(38) 

where a, ß,  y, and 6 are the constants of integration. 

With the use of the lowest order expressions derived for the outer 

and inner regions,  the dependent variables will now be matched between 

the regions. 

11 
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Matching 

In view of the governing equations,  Eqs.  (4),  (5),  and (6),  we shall 
ab match the functions (H + m.) (H + ni_), and  (m.)    (m-)  , between the two 

outer regions and the inner region, to the lowest order.    First, by matching 

the fMnctions (H + m.) and (H + m2),  all the unknown constants to the lowest 

order, A,  C,  B,  D, a, ß,   y, and  6   will be determined.    With the constants 

determined,  it will be shown that the functions   (m.)    ("^    also match 

consistently thus completing the solution. 

The function (H + m.) is first matched between the upper outer region 

and the inner region in the following manner.    We obtain for the upper outer 

region with the aid of Eqs.  (15), 

H    + m, u lu =   (H uO + Yu0) + tF<Hul+Yul) + O(tE/ (39) 

Eq.  (39) becomes as  TI -► TJ*, with the aid of Eqs.  (33) and (34) 

H    + m.      =   H* u lu 
+ { V'uo + ^cA IT <Hüo + Ko* + 0 ^3) + 0V7 (40) 

In terms of the inner variable,   Eq.  (40) becomes with the aid of Eqs.   (17) 

and (21), 

M 3    .    ä+F M* + o («F) + o U*75/- H, + m,      =   A (f* -  1) + H   + —r^- + t" t, Af u lu ' '        e     a M, ■ 

1 2 
F        ä+F Here either e     or e may be greater than the  other. 

The function (H + m,) for the inner region becomes, with the aid of 

Eqs.   (18) and (36), 

(41) 

1 
ä+F H. + mi   =   H* + t" (a C + ß)+of€rf:FJ. (42) 

12 
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Eq.  (42) becomes in the outer variable as 

H. + m. 
i i 

♦   a   l+c^ß+O^j. H*    r   o.   4+ e'-1'"  ß  + OW'"  |- (43) 

A comparison of Eqs.   (41) and (43) shows that a consistent matching up to 
/   1\ /    2  \ 

Olc    yor O Ic        A   whichever is greater, will be accomplished for function 

(H + m,)  if all the explicit terms of Eq.  (41) can be matched with those of 

Eq.  (43).    Eq. (42) is equivalent to Eq. (43) except that the former is in the 

inner variable.    We therefore match the explicit term of Eq.  (42) with those 

of Eq.   (41),  and we obtain 

A   = 

H    + —r^- - H* e     a M, 
i rr» 

a    =   A f"« , 

p    =   0. (44) 

In a similar manner,  the function (H + m2)  is matched between the upper 

outer,and the ipner regions.    The functions   (H + m.) and (H + m?) are 

also matched to the lowest order,   in the same way,  between the lower 

outer regions and the inner region.    From these matchings the following 

results are obtained: 

c 
He - H* 

1 - f*   ' 

(H    - H«) f"* 
6 

Y 1 - f* 

6 = o. 

B =   A, 

D =   C. (45) 

13 



Now.  all the constants of integration for Eqs.  (21) through (23),  (27) 

through (29).  and (36) through (38) have been determined by matching 

functions   (H + m,)  and (H + m_).    Notice,  however, that the matching of 

these two functions could have been just as well accomplished with many 

other values of j.  k,   i,  and q.   instead of those employed in the present 

problem.    We shall now employ the crucial equation.  Eq.  (6),  and match 
ab 

the function (m.)     (ra?)  »   an^ thereby show that only the particular values 

of j, k. i.  and q given by Eqs.  (19) and (20) permit the function (m.)    (m_) 

to match consistently between the two outer regions and the inner region. 

We derive for the upper outer region with the aid of Eqs.  (6) and (15). 

a M, 
(mlu)    (m2u) 

b   - * m    ^a+b 

(■ 
i 

~ur .u0,eKp 

The above equation becomes as  T) -♦ T)*,  (^ -• 0). 

a M 

H-feH'4) (46) 

(m lu )
a(m 2u =   c (H*;V (i i 

TT ^M-BS) 

+ 1 
,,      aM, 

•'Hu0 >* TTT 'Yio'* exP i^y^-^) 
iKo^ 

r^s9 • exP (H-AI u0' 
{-^^^-)'K0>*{ aM 1 

exp 
V HW + o an .o(,-i). 

M3   Yu0 

(47) 

) 

14 

. 



which becomes with the aid of Eqs. (21) ,hrough (23,, „ , , ^ {t , „,_ 

f»..>*<-^)b ■   • [ W" ^ (. ^    +.      t „,(.£). 
aM. 

" -KI7 <A-C) (H*)a+b + C 0 (H*)a+b-2 + C(a+b) (H*)a+b- »    r-, 

+   0(|2)      +   o(c1+Fj. 

For the inner region,  we derive with the aid of Eqs.  (6) and (18), 

a+b 

(48) 

J".i'*'"M»b ■ • <H')a+b ~p (. ^ +.'
+ ^ [. !^i ?i (H, 

M 2  A 
ta+b 

" b MT Fl (H*)a+b + (a+b) (H*)^-1 A, + (H*)a+b-2 

exp {•&ho(,l*&). 

A 
Hl e    • 

(49) 

we 
Now, before we can analyze the behavior of the above equation as £ -♦ oo, 

A A A 
must find the behavior of functions  Y, (^),  F,  (£) and H, (£)  for large 

values of £.     These are obtained in the following. 

The first order inner expressions,  Eqs.  (36),  (37),  and (38),  are 
first manipulated to give 

<*:, 

a_+b 
a 

+ (^ - Y) & (FjV |(H«)a+b  exp ("4" =0. (50) 

15 



i" ■      .1         

Solution of above algebraic equation is not usually obtainable in closed form 

for arbitrary values of a  and b.    However, for the purpose at hand which is 

to derive analytic expressions for  Y,,  F,   and H.   for large positive values 

of t,, an asymptotic solution of Eq.  (50) is obtained as, 

F, (U   - 
(H*)        exp 

(« - y)i  

a 
F 

/a.        1 
{P (a - v) I 

i (H*)a+b exp ("  H»j 
(a -y)\  

A 2a 
T 

+ o 
2 + 3a    ' (51) 

A A 
The asymptotic expressions for functions   Y.   and H,   are similarly derived 

as 

f, (&)   =   (a - V) C + 
U^; exp  (■   «jj 

(a   - V) I 

■» a 

F 

+ o 
i + 2a 

(52) 

H, (C)  =  vC 
(H«)a+b exp 

(a - Y) & 
(-Ä)] 

a 
F 

+ o 
1 + 2a (53) 

Now,  having derived the expressions for functions  F,,   Y,,  and H.   for 

large positive values of &,   we return to Eq.  (49). 
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With the aid of-Eqs.   (51),   (52), and (53),   Eq.   (49) becomes as C - <». 

1+JL 
/    e \ a+b        /   e \ 
(- ml + € exp (- ml 

,        \*i        vb /TJ.,,.a+b /      6 \   . a+b (m1.)  (m2i)    = €  (H-) exp 

(a+b) (H*) 
a+b-1 

V + (H*) 
a+b-2 

9 Y - (H*) 
a+b 

/aMj 

) 
(Q  -  Y) 

(a+b)^*)^13"1 +(H*)a+b"2e + (H*)a+b   ^j-i   +(H*)a+bbM2 
M 

[(H.,-". exp  (-   »)] 
1      1 
b 

a 
,b 

•   + o y I+E j (54) 

(a - Y) V 

Above equation becomes in terms of the outer variable. 

(mli)
a(m2i)    = £  exp   (-  m) (H*)a+b   + (a+b) (H*)a+b-1   v 

.     .a+b-2 ^ ., a M, 
+ (H''c) c .„..a+b . . 1 v     ' 0 v - (H*) (a - v)   -J^J— 

(55) 

Now,   the outer solution as  -q -► T|*  will be matched to the inner solution 

as  £ -»00.     This can be done by matching Eq.   (48) with Eq.   (55).    With 

the help of Eqs.   (44) and (45),  which define and relate various constants, 

it is readily seen that all the explicit terms, of Eq.  (48) match with those 

of Eq.   (55).    A similar matching can be established between (m      )a (m      ) 
ah 1L» 2 Li 

and (mj.)* (m2.)b. 

Now,  we have accomplished the complete first order matching between 

the two outer regions and the inner region. 

3 J 
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With the present values of j,  k, i,  and q,  the higher order matchings 

can also be carried out but with increasing algebraic complexities.   Also, 

it is noted here that any other values of j, k, i,  and q do not permit the 
a b matching of the function (m.)    (m_)  . 

Maximum Flame Zone Temperature and the Location 

From Eqs.   (18), 

H.   =   H*   +   t1^ ftj   +  O \^) . (56) 

and from Eq.   (37), 

A 
H 1 1 (57) 

In order to obtain the first order inner functions,  H.  (&),  Y, (&),  and 
A 1 1 

Fj (&),  for all values of I,,  the algebraic equations,  Eqs.  (36),  (37),  and 

(38),  must be solved.    This entails the general solution!   of a nonlinear 

algebraic equation,  Eq.  (50).    For most cases of combustion,  however, 

the primary interest is with the value and the location of the maximum 

flame temperature as affected by the flame sheet broadening.    These 

informations can be obtained without the general solution of Eq.  (50).    In 

the following,  analytical expressions will be derived for the value and the 

location of the maximum temperature of the broadening flame zone. 

The maximum value of H.   exists where 

=   c 

1 
ä+F 

(*) m 
(58) 

I+E] Thus  (H.)      occurs where 
I'm 

tti (59) 

T Note that only the asymptotic solution of Eq.  (50) for large values of £, 
obtained analytically, was needed for the matching. 

i 
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First,  we shall evaluate (F,)    ,  where  (     )      denotes the value at the position *   I'm '      m 
wh 

A 
dF, 

of the maximum flame zone temperature.    Note that  r|      = r)* when  e   = 0.    We 
in A 

1 
differentiate Eq.   (50) with respect to   £ and substitute  y for —r»-   in accordance 

with Eq.  (59).    The resulting equation is then readily solved for  (Fj)      as 

(Fl)m 
(a - V) V (J) 

tt + V(|)    , 
m 

(60) 

Eq.   (60) is now substituted back into Eq.   (50) and the resulting equation is 

solved for t n 
temperature, 

solved for C    .    Then,  we obtain for the location of the maximum flame zone m 

11   -   Tl«  =  € 

1 

exp (mm 

] I M3        M3 
^•HMi-f*)!^^ (^)fe-"-e-"e) 

(D^raq tH-e -Ha)(^tHa " H-a) 
a+b 

or, 

Ti - ti* = e' 

1 
a+b exp \-m/\ 

/ M- \ 
i  i_ 1 tu 

[*srpr2 'M2 - Mi' • (^) '"-e - Hej "* '■-f">) 

{if (nq + H-a " Ha) (iKq + Ha - H-a) 

1 
a+b 

to O  (e  ^j 

(61) 

(62) 
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Eqs. (60) and (61) or (62) give 

(>.) rm TNT \" 

i    a 

/    3   fH    -H   ^ I aM, e        -el 

H« exp 
('*) 

1 

(63) 

(H.)      then follows from Eqs.  (56),  (57),  (61),  (62),  and (63), with some 

manipulation,  as 

dV m =    H# - € 
a+b 

,    1 
a+b 

exp (-^)a+b(^)(rb(-i) 

(H*) (H* He)^ (l He-H4tS^) 

ä+F 
+ o y« ITFJ (64) 

The properties at the thin flame sheet,  (     )*,  are given in Eqs.   (33) through 

(35).    Now having derived the analytic expressions which describe the behavior 

of the maximum flame temperature, the results will be discussed in the 

following section. 

IV.    DISCUSSION 

First,  it is seen from Eqs.  (17) and (20) that the order of the thickness 
1 

of the flame zone created by the nonvanishing equilibrium constant is  c ä+F 

In the previous work  , the order of the flame zone thickness created by 
1 

where  « n is the reciprocal of decreasing Damkohler number was (c _) 
D 
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Damkohler number.    Thus,  the thickness of the flame zone created by a finite 

equilibrium constant is less than that created by a decreasing Damkohler 

number when  a  and b  are order   1. 
3 

It was found    that all the perturbation terms in the outer regions except 

the zeroth order terms were found to be zero in the analysis of flame sheet 
3 

broadening due to a decreasing Damkohler number.    Hence»  there    the outer 

regions were unaffected by the broadening flame sheet to all ordvrs.    This is 

the reason the expansions of the outer functions were not influenced by the 

stoichiometric coefficients,  and were in integral powers of c-^ for all values 

of a and b.    In the present problem,   on the other hand,   it was seen in 

Section III that the expansions of the outer functions depended directly on a 

and b.    Also,  it was seen,  in that section,   that the higher order outer terms 

were not zero but would have matched consistently to the appropriate inner 

terms.    Thus,  the effect of broadening flame sheet is felt in the outer regions, 

as well as in the inner region,  when the broadening is caused by a nonvanishing 

equilibrium constant.      We also see from Eqs.  (15),  (16), and (19) that 

increasing the stoichiometric coefficient of the fuel supplied from the lower 

outer region enhances the effect of the present flame sheet broadening on the 

upper outer region,   rather than the lower region.    Similarly,  the stoichiometric 

coefficient of oxidant supplied from the upper region affects the lower region 

more than the upper region itself.    Eq.   (62) shows the location of the maximum 

flame temperature of a broadened zone with respect to that of the flame sheet. 

M3 We see that the sign of the quantity aM1M2 (^-^'-(^(H-e-Hj 

determines the direction to which the position of the maximum temperature 

begins to move at the onset of the flame sheet broadening.    It is seen that 

when M? = M,   and H   ^ = H    the position of the maximum temperature is un- 

changed and is at  TJ*.    It is interesting to note that the position of the maximum 

flame temperature tends to move toward the lighter reactant (reactant with a 

smaller molecular weight) as the flame sheet is broadened.    Also,   it would 

move toward higher temperature reactant source.    Moreover,  increasing the 

stoichiometric coefficients  a and b will accentuate the temperature effect. 

21 



—* 
1 

as compared to the molecular weight effect,  on the movement of the position 

of the maximum temperature.    One can readily manipulate the results given 
3 in the previous paper    and show, when the flame zone is created by the 

decreasing Damkohler number,   that the position of the maximum flame 

temperature is governed by the parameter, 

b M2 (H* - H_e) - a Mj (H* - He) 

b M2 (H* - Ue) + a Mj (rt* - tie) 

Therefore, when the flame zone is being created by the decreasing Damkohler 

number,  the position of the maximum flame temperature depends on (aM.) and 
3 (bM7) rather than M.   and M?.    Also,  in that case   , the position is determined 

for a given value of the above parameter through another numerically computed 

function.    Hence, the sign of the above parameter does not necessarily reflect 

the direction to which the maximum temperature moves. _ 

a+Ta Finally,  the maximum flame temperature is given by Eq.  (64) to O (c        ). 

Eq.  (64) first shows the expected result that a nonvanishing equilibrium 

constant reduces the maximum flame temperature.    For those values of 9/H* 

which would make the exponential term the predominant term of Eq.  (64), 

the amount of the flame temperature drop increases as coefficients  a and  b 

are increased.   Also,  in that case, the actual order of the flame temperature 

drop as well as the flame zone thickness (see Eq.   62) is 
1 

lä+F 
c   exp f *)]; 

In closing,  it is pointed out here that it is understood in the evaluation 

of £      and H.      that H*  is greater than H    and H     .    Otherwise,  the m xm e -e 
maximum temperature is not created by the combustion and,  therefore, 

£      and H.      would have no meaning. 
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CONCLUDING REMAPKS 

The initial broadening of a diffusion flame sheet caused by an 

equilibrium constant becoming finite has been analyzed by the method 

of inner-and-outer expansions.    The Damkohler number is assumed to 

be infinitely large and,  therefore,   the fluid is in local chemical  equilibrium 

everywhere.   Analytic expressions have been developed for the thickness 

of the flame zone, and the position and the value of the maximum flame 

temperature. 

The various effects of the stoichiometric coefficients on ^he flamv.- zone 

broadening have been discussed in detail in the preceding section.    As a 

whole,  it was found that varying the stoichometric coefficients affect the 

flame zone and the outer regions quite differently when the flame zone is 

created by a nonvanishing equilibrium constant compared to the case    where 

the zone was created by a decreasing Damkohler number.    Also,  the 

stoichiometric coefficient of the fuel affects the oxidant side more than 

the fuel side, and vice versa. 

Now,   the problems of diffusion flame sheet broadening due to either 

the decreasing Damkohler number or the nonvanishing equilibrium constant 

having been analyzed,  the next problem worth considering may be the problem 

of simultaneous perturbation wherein both the Damkohler number and the 

equilibrium constant become perturbed from their respective limiting 

values. 

' 
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Figure 1.    Sketch of Flame Sheet Broadening 
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