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ABSTRACT

The mechanical-graphical "peel-off" method and Marquardt's composite Gauss-
Newton and gradient iterative method were programmed for the Philco 2000, a 16K
asynchronous digital computer. Both programs were coded in the Philco Algebraic
Programming Language (ALTAC) using single-precision floating-point arithmetic.

Background material, flow charts, flow chart descriptions, subprogram usage,
computer memory requirements, and illustrative numeric examples of the analyses
of both simulated and empirical data are given. Each sample of simulated data
possessed an error component; the effects of an asymptote, in several instances, were
included during the generation of the data. Dog lung nitrogen washout activity
experiments were the source of the empirical data.
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FITTIN6 MULI-COWPONENJEXPOEIIKlA DECAY CURVES BY DINfAL COMPUT

I. INTRODUCTION

The principal purpose of this paper is to discuss the automation of two non-
linear parameter estimation procedures-the classical "peel-off" and Marquardt's
algorithm (2). As a mechanical-graphical method, the "peel-off" procedure
yields good results for parameter estimation in a hypothesized mathematical
model of a linear combination of exponential functions. But the length of time
required in the application of this method is, in general, too long. Automation
of the "peel-off' method rectified the time problem, but the computer-produced
parameter estimates turn out to be somewhat inferior in accuracy. A parameter-
estimate-refining progrp, i was written to improve the "peel-off" estimates. The
refining process was accomplished through the adaptation of an algorithm that
was described by Marquardt (2) for obtaining least-squares estimates of non-
linear parameters. Two iterative methods, classical Gauss-Newton and gradient,
were combined. This combination yielded an iterative method with strong con-
vergence properties and a compromise between two levels of rapidity of con-
vergence. Both curve-fitting programs were coded in the Philo Algebraic
Programming Language (ALTAC) (3), using single-precision floating-point
arithmetic. The computational mode has a range from slightly more than 10"n
to slightly less than 10-0'" and an accuracy of ten significant digits. The pro-
grams were tested on simulated as well as on dog lung nitrogen washout data.

Four sections follow this introductory section. The mathematical model used
in fitting a linear combination of exponentials is briefly discussed in section I.
The reader is referred to Danford (1) for a general discussion of exponential
model equations. Background material, flow chart, flow chart description, sub.
program usage, computer memory requirements, and numerical examples of the
analyses of simulated data (generated with and without the effects of an asymp-
tote and with error) and dog lung nitrogen washout data pertinent to the "peel-
off method are covered in section I1, Material similar to that of section 11, on
the composite Gauss-Newton and gradient method, is to be found in section IV.
Section V is concerned with comments on such selected material as: adapting
the computer programs to meet the user's requirements; possible places for im-
provement in the "peel-off" method program; the consequence of failing to use
the best possible estimate of the asymptote; the use of smoothed data to improve
parameter estimation; the importance of refining the preliminary parameter
estimates produced by the "peel-off" method program; asd the area in which the
use of double-precision floating-point arithmetic may become necessary In the
Gauss-Newton and gradient iterative process.
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II. MATHEMATICAL MODEL

Our main results concern the estimation of the parameters in the model

Y(x) = y(x) + ,(x) (1)
N

= 'o + zms. exp(-Pfx) + e(x)

N
= so + Z 4.. + ,(x),

ni-1

using the data points (xi, Y,), i = 1,2,..., L, where

y(x) : True value of Y at x,

% : Constant term or asymptote,

m. : Model parameters> O, m = 1,2..., N,

.(x) : Error term: NID (Oe) for each z and
S: 0 y(x),

p : Positive number; lOOp can be viewed as a percent error,

L : Total number of data points,

N : Number of exponential components.

Ill. "PEEL-OFF" METHOD

Mecl- anical-graphical version

The "peel-off" method for parameter estimation has been used for a con-
siderable period of time without undergoing any major modification. Its users
during this time have probably numbered in the hundreds and this extensive
usage has no doubt been due to the absence of a superior technic. Application
of the method is quite easy. Simple tools such as a pencil, semilogarithmicallyscaled paper, and five-place common logarithm tables are needed plus "frood" o_

judgment on the part of the analyst. The method can become very tedious
when many parameter estimate& per experiment are required or there are many
experiments to be anaiyse. One must not fail to mention disadvantages of a
graver nature: personal bias may be present that will affect the fit; the use
of imperfect semilogarithmlc paper may contribute to the bias in the estimates; j
the errors of estimation may be cumulative in nature; and finally there is the
problem of securing an estimate of error.

A simplified summary of the sequence of steps taken by the data analyst in
applying the "pl-off" method is as follows:

Step 1. Obtain an estimate of the asymptote ft by any productive means
availabl.

Ste 9. mmove the effets of the asymptote rom the &Ut IV dWGaf
each datum by the magitude of the asymptote.

2
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Step 3. Plot the residuals, obtained in step 2, versus x, on h-cycle base 10
remilogarithmic paper.

Step 4. Fit a straight line by "eye" to as many points as are judged a
"good" fit. Start fitting the points in the right-hand end of the plotted curve.
Furthermore, after the straight line is fitted, extrapolate back to the semi-
logarithmic axis to produce an estimate of parameter a, ; the estimate of the
associated #.,, is obtained through the use of a simple modified form of the
analytic expression for the fitted line.

Step 5. Terminate the "peeling" process if there are fewer than four points
to fit; otherwise, proceed to step 6.

Step 6. Obtain a new set of residuals by subtracting the effects of the com-
ponent fitted in step 4, using original units, from the points that were not in-
cluded in the fit.

Step 7. Plot the residuals, obtained in step 6, versus x, on semilogarithmic
paper. Return to step 4.

Figure 1 depicts an example of component "peeling" by means of the seven
aforementioned steps. In this particular instance, four components were ex-
tracted from the data after the effects of a constant (asymptote, estimated for
this case as two-thirds of the last recorded Y value) had been removed. After
the fit of each respective straight line, the parameter estimate of a is obtained
by taking I/,.,,, (since the original Y values were multiplied by 100 before plot-
ting) the value read off the semilogarithmic axis. The simple formula

= - 0lol0 - logs)inlo/zI (2)

was then used to compute the parameter estimate of # when the associated
estimate of a became available. The symbols log and In stand for common and
natural logarithms respectively; the single point (k,?) used is ty point on the
fitted straight line. The estimate of the parameter . is exp(-O). Observe the
estimates, by component, in the legend of the graph.

Digital computer venral.

We now proceed to describe the programmed version of the 'el-off" meth-
od. Our description will cover Input, gw al computational steps, fittod straight-
line acceptance procedure, additional computations, and output. Following this
there will appear a flow chart of the program along with Its description, sub-
program usage, computer memory requirements, and illustrative numeric ex-
amples of program yield in the analysis of simulated and empirical data.

Input:

1. Program parameten (from a punched card).

a. EXP: Experimnt numbar.
b. SAMP: Sampl number.

8a

.1 t



100 -

8o FIG. I

60

ESTIMATES
CONSTANT .0062
COMPONENT NO. e u

1 .0355 .0207 .9795
20 2 .0560 .0422 .95673 .1145 .0696 .9328

C'.* 4 .3500 .2996 .7411

10 k
a . (

6 1v # a,.An, % ",'. 1 oo .,
4 Mal, , ...

2 an

IOOY \ " "-".....

.-..

94 °

.4

.2 4 A.d rn-2

.01

4

** 4~4

.1 4 • 1 •- •



c. L: Sample size.

d. N: Number of components expected to be fitted.

e. &o: Estimate of the asymptote.

2. Data (from punched cards).

x,Y values.

Remarks: When the asymvptote is absent from the mathematical model, its
estimate is zero; otherwise, obtain a non-zero estimate that is based on the ex-
perimenter's personal experience, a graphical approach, or any other means that
will provide a satisfactory preliminary estimate of 'this parameter.

General computational steps:

Step 1. Obtain an estimate of the asymptote.

Step 2. Remove the effects of the asymptote from the data.
RY, =-Y, -Aao i-l =12..... L . ($)

Step 3. Rearrange the residuals obtained in step 2,
(XL + I - I'RYL + I - I)- (ZIIR!) (4)

and transform the residuals R, logarithmically,

G, =Ln(R,), i=12....L. (5)

Step 4. Fit a straight line, by principle of least squares, to K points (ZI, GJ.
Start fitting with i = 1. (See line-fitting acceptance procedure following step 7
below.)

Use
G=Ln(,)-PZ. Z) z-9ZK (6)

to obtain estimates of a, p for the mth component.

Step 5. Terminate the "peeling" process if there are fewer than four points
remaining after deleting the K points used in step 4; i.e., we must have

NR = (NPR - K) < 4 (7)

where

NPR: Total number of points available o fitting proem in step 4 (WltIal NPR = L).

Otherwise proceed to step 6.

Step 6. Obtain a new set of rmiduas by removing the effects of the mth
component "peeled" In stop 4.

Rej =j - u.p(- .P) j = + 1 + t .... . (a)



Step 7 Delete the K elements used in step 4 by repositioning the G,R,Z-
arrays

Zi -- ZK+j (9)

Rj =- RPc+ j  (10)

G= = Ln(Rj) , j - 1,2,.. .,NR (11)

Set NPR = NR and return to step 4.

In the acceptance of the existence of a "real" component which will be dis-
cussed next, the motivation for all the steps will not be given, for the whole
procedure is subjective. The automation of this scheme is based, primarily, on
our experience with one kind of data-nitrogen washout of the lung. It is
hoped, however, t!at the procedure will be fairly general and that the acceptance
tests to be described below will have some face validity to the reader. A slight
note is occasionally made to motivate a test, but there is no claim for this being
the best procedure that can be developed for the "peel-off" method. It has
undergone several revisions in our laboratory and must be considered as a best
effort at this point in time.

Acceptance procedure:

A fitted least-squares line, which implies the existence of a real component,
except for the "last component," is accepted if the following tests are satisfied
in the stated order:

1. Runs test.

The differences for the next four successive points are all positive.

DIFFj = Rj - a exp(-- _mZj)

= Rj - YEST >0, j -K + 1,K + 2,...,K + 4. (12)

2. Beta test

The slope of the least squares line fitted to the (m-1)st interval is less
than the slope of the line fitted to the mth interval.

AA

Pm> Pm- , (13)

where

= 0.0

3. F test.

The ratio is

DEVINC/4
> TOL, (14)

DEVFIT/(K- 2)
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where

K+4
DEVINC = 2 (Ri - YESTj)

j---K + 1 ( T

K
DEVFIT = - (Ri - YESTJ)2

j=1

and

K: Number of points in the interval of fit,
TOL: Upper 1% point of the Snedecor-Fisher (F) distribution with

4 and K-2 degrees of freedom, for K -- 32,
4, for K > 32.

4. Remaining res.duals test.

The differences for all successive residuals not included in the fit are posi-

tive.

RESj R, - YESTj > 0, i :=K + 1,K+2.... NPR, (15)

where

NPR: Number of residuals yet to be fitted.

Note that test 1 is, in general, a subtest of this test. It is used as a
quick or preliminary test. This more extensive test 4 is needed to overcome cer-
tain abnormal deviations which test 1 will not detect.

5. Alpha test.

The estimate of a. + 1, computed in the fitting of the next four successive
noints, must be less than or equal to 2Y1, i.e.,

+1 2Y •(16)

Here Y, is the first observation of the original data.

This test is not as obvious as the others. It has been empirically deter-
mined to guard against including too many points in the interval of fit of the
component that is being currently fitted.

The logic of the fitting process is such that from one up to md including
a predetermined number of components is fitted. Furthermore, four points is
the initial number as well as the least number of points which is included in a
fitted component. Also for greater clarity, two distinct categories of fittings
need to be considered: fitting the first through the next to the last component
and fitting the last componeht. Here "last component" is defined as a state
that exists when either one of the following two conditions holds:

7
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1. The predetermined number N of components expected to be fitted has
been reached.

2. NPR- K!4.

For either condition 1 or 2 holding, all acceptance procedure tests are ignored
when we fit the last component.

1. Fitting the first through the next to the last component:

If test i is not satisfied: Then either there was or was not a run of four
minus signs. In the case of four minus signs, shift the G,R, and Z-arrays such
that for each array the (i + 1) st element replaces the ith element: refit a
least-squares line to interval of K points of repositioned G, Z-arrays. Repeat this
point deletion action (referred to as "creeping") and refitting process until
test 1 is satisfied. In the other case, an additional point is included in the .in-
terval and the least-squares line is refitted. The proress is continued until test 1
is satisfied. This test is admittedly arbitrary and can be altered so that one is
more or less certain of detecting the beginning of another component.

If test 2 is not satisfied: Then "creep" in the manner described above
for test 1. The "creeping" and line refitting process continues until test 2 is
satisfied.

If test 3 is not satisfied: Proceed in the same manner as for test 1 for f
the case in which a run of four minus signs did not occur.

If test 4 is not satisfied: Repeat action similar to that taken for test S.

If test 5 is not satisfied: This indicates that too many points were
used in the fitting of the least-squares straight line. Proceed to reduce the
number of points in the interval of fit one point at a time and use the following
criteria for terminating the process:

Test 1, 2, or 4 fails-restore one point to the reduced interval; refit the

new interval; accept the fitted line,

or )
Test 1, 2, 4 and 5 hold-accept the line fitted to the reduced interval,

or

Number of points in the interval has been reduced to only four-accept
the line fitted to these four points.

$



2. Fitting the last component:

The program will fit the last four points in the sequence of residuals
that remains. Again, fitting exactly four points is arbitrary, but it seems to
give one essentially unbiased estimates.

Additional computations:

1. Compute a mean square ratio for each component

K111z_ [(Ri - YESTj)/YESTJ] 2

SSR.= ,m 1,2,..., M (17)
K111 - 2

where

K,,,: Number of points used in fitting the mth component,

M : Total number of components fitted.

2. Compute omegas

Ax(- m 12.. (18)

3l. Compute estimated Y values

M (9
YE, = 2~ + 2 2,1exp( - *,XI) , i 1,,..

4. Compute ratios

RAI = (YI - YE,)/YEI , i = 1.2....L. (20)

5. Compute cumulative sums of zquared ratios

CRATIO, =Z RA 2j , = 1,2,.... (21

6. Compute overall "unrefined" mean square ratio

PMBR= CRATIO1,

L - NP'

9



where

NIP 2M for asymptote not estimated,

2M +1 otherwise.

Output:

1. Print-

a. Experiment number.

b. Sample number.

c. For each data point:

(1) x, Y value.

(2) Estimated Y value.

(3) Ratio.

(4) Cumulative sum of squared ratios.

d. Model: Model 1 for no asymptote.

Model 2 otherwise.

e. Sample size.

f. Number of components expected to be fitted. I
g. Number of components actually fitted. ,1
h. Overall "unrefined" mean square ratio.

i. Estimate of constant.

J. For each component fitted:

(1) Range for x values included in the fit.

(2) Estimate of alpha, beta, and omega.

(3) Mean square ratio.

10



2. Write on output tape-

a. Experiment numdr.

b. Sample number.

c. Model.

d. Sample size.

e. Number of parameters.

f. Overall "unrefined" mean square ratio.

g. The constant and an alpha, beta, and omega for each component fitted.

h. Data points.

11t



FLOW 'CHART I
FLOW CHART OF THE "1PEEL-OFF"I METHOD

INPUT com- OUTPUIPUTE

42 41

REWNIND cij NP=2m+ I y~ NUMBER OF
TA PE MODEL=2 PARAMETERS?

a00 0.0
N

7-40

SEE FLOW CHART 41

READ ION OPPOSITE INP-- 2m
PAGE MODEL=I

2 44

READ PROGRAM PARAMETERS' C RATIO = 0.0
EXP: EXPERIMENT NUMBER----------

SAMP: SAMPLE NUMBER m

L : NUMBER OF DATA POINTS 0E=a+ ae 9

N: NUMBER OF COMPONENTS RA =(Yi -YE) /YE
EXPECTED CRATIO = CRATIO* RA2

Go: PRELIMINARY ESTIMATE OF PRINT!
ASYMPTOTE EXP, SAMP

X i, Yi, YE, RA, CRATIO

13 4 ~ FOR i = , 2,..., L

ANOTHER '\N WRITE OUTPUT- ---- - - - ---

,EXPER NENT? TAPE SENTINEL P MSR = CATIO /(L- NP)

lr- L5 1 45
INITIALIZE ARRAYS* PRINT:

a= i= =0.0 EXP, SAMP, MODEL,

SSRj : FLi FRI 0.0 L, N, m, PMSR, ao
FOR i =, 2,..., 2 0

G= jzXi =Yi =Zj =0.0 FLI, FR I, a i

FOR j =1, 2,..., 15 0 )9,coi, SSRi

FOR I ,2..

6

IREAD DATA POINTS: 46
Xi Ii WRITE,.)UTPUT TAPE:

FOR 1 1, 2, .. , L jEXP, SWMP, MODEL, L,
m, NP, PMSR, aGo

ai , ABi, wi
FOR i =I, 2,..., m

Xi , Yj

FOR j = 1, 2,. .. , L

COM-~ READPUTE

12



FLOW CHART I CONT.

Ite 2 Yj -go 8 4 T NW
ONn-) 10E kz4 L*SXw LET PTS. LEFr? FIT

L.AST G1~s
ORl Zia Z11

FOR I

k*4
Is 17 1)DCpwr ZRi

110F aR% Zj 41LD0" . A ALL DIFFj AL V uem ES nYTS N F aNsko

It FOlmhI2,..., It+4 IE"aIV? POS1TIVE? aDn- SON? KTESTNJ

mNOrii NIaaR

S"RATIO a 4 [(~Vwl)/W6r]'

2 aIw 111141111 A. 16%vm~ ms osomATOk-i)

FI% a 11

1R a13 -



~Pu PS ENOUGHSI
N FTPTS. LEFT? FIT Gm 6~, ZC~k TS

PRFT-kk4 *FITLK OC

R, a RNpRt. 1 4

LAST GISaG6NPR -i.. -m~,s, 4c~
Z18ZNPR-1-4 FITLINE

NPRt* a 4

V FITTINS N Fu~ Fa _______

Is VoO? TP E FT k2DEFT a-E~l

a~FO i a(m1, 2rVvuT'

*~~~E S P Rr aRjSi
sam,,, 8SAS12 RESOp1 m..mcsP

F0 . T t ar

TNPxj FILIN

FO .3.34



Description of flow ehart I

Box I - 4: Self-explanatory.

5: The following arrays are cleared:

Parameter array.

0: Parameter array.

w: Parameter array.

SSR: Mean squared ratios for the components.

FL: Left-end points of the Intervals of component fit.

FR: Right-end points of the intervals of component fit.

X: Abscissae of the data points.

Y: Ordinates of the data points.

G: Natural logarithmic transformation of R-array.

R: Residuals stored in reverse order.

Z: X.array stored in reverse order.

6: Self-explanatory.

7: Residuals obtained by removing the effects of an asymptote, making natural
logarithmic transformation of residuals, and developink G, R, and Z-arrays.

8: Initialize component number counter m and number of points remaining to be
fitted-gage word NPR.

9: Increment the component number counter in, initialize the number of points to
be fitted (K = 4), and set overfit switch (SWO) off.

10: If the component is the last component to be fitted, go to LAST ONE--box 12.

11: If a sufficient number of points remain for a normal fit, go to FIT-box 14.

12: Set up G, R, and Z-arrays so that the last four points can be fitted; set K = 4 and
NPR = 4.

1: Fit last component; go to ACCEPT-box 88.

14: A least-squares straight line is fitted to K point.

15: Comupute differences for points K + 1 to K + 4.

1: If all differences are negative, go to CREEP--box 10.

17: If all differences are not positive, go to NO RUN--box 23.

1: Betatst. If test holds,go to box 21.

I: Decrement the sumber of points remaning, NP..

W: Shift the G, R.Z-arays uch that for eh atray the (i + )st element repimea
the ith elemnt; so to PTS LZFT-box 11.

21 If reflttng, go to CK RES-boa i.

1m



22-27: F-test. If test fails, go to NO RUN-box 29.

28: If all points not included in the fit lie above the fitted line, go to CK ALPHA-
box 30.

29: Increment counter k; go to PTS LEFT--box 11.

30-32: Alpha test. If test holds, go to ACCEPT-box 88.

33: If the overfit switch (SWO) is on, go to box 85.

34: Overfit switch (SWO) was off-set it on; go to TEST K-box 86.

35: If the reduced interval of fit is rejected, accept currently fitted component;
go to ACCEPT-box 38.

36: If it is impossible to reduce the current interval of fit by one point, go to
ACCEPT-box 38.

37: Current interval of fit can be reduced-reduce counter k by one and set KP
equal to new value of counter k; go to FIT-box 14.

38: Compute sum of squared ratios for the K points fitted. Save various quantities
associated with the mth fitted component and compute the number of points
remaining.

39: If no points remain, go to OUTPUT-box 41.

40: Compute residuals, store in R-array; compute natural logarithms of residuals,
store in G-array; reposition Z-array; go to NEW COMP--box 9.

41.43: Compute the number of parameters fitted and set up model number.

44-45: Print output:

1. EXP, SAMP.

2. X, Y, YE, RA, CRATIO, for each data point.

8. EXP, SAMP, MODEL, L, N, M, PMSR.

4. t,; FL, FR, SSR, ,0 for each component fitted.

46: Write output tape:

1. EXP, SAMP, MODRL, L, M, NP, PMSR.

2. to and estimates . £0 for e1 .omponent ftted.

S. X, Y values.

Go to READ-.box L

Subprogram usage

Function subprograms (the first two are standard library functions) listed
below proved helpful:

1. EXPF. Argument: A wcation of expression A). Function: computes
the value exp (A).

16



2. LOGF. Argument: A (location of expression A). Function: computes
the value In (A).

3. YEST. Argument: I (location of subscript I). Function: computes the
ith estimated Y value using the estimates &, and #m

A subroutine subprogram needs to be mentioned:

FITLINE. Argument: A (location for storing a ), B (location for stor-
ing t3 ), C (location of first element in Z-array), D (location of first element in
G-array), and J (location of the number of points in the fit). Function: com-
putes estimates of the a and f by fitting a least-squares line to the natural
logarithms of J points.

Memory requirements

Program About 2,680 words

Oro 1 word
ai M words

M words
Ai M words
X-rray L words

Y-array L words

G-array L words

R-array L words

Z-array L words

Range limits 2M words

Component MSR's M words

Other 150 words

Total: 2,831 + 5L + 6M words approximately

Examples

Simulated and empirical data served as input to the "peel-off" method com-
puter program. The generation of the simulated data wa accomplished through
the use of the second equation of 1; the error term #( ". for each value of x.
was produced by means of a subroutlne that generatied pseudo-random normal
deviates with mean = 0, standard deviation = ,y(x); the generator of the
pseudo-random numbers used In the normal deviate generation was of the
multiplicative congruential type. The empirical data was restricted to dog lung
nitrogen washout data. Program yield for the cases considered is presented in
tables I to III for simulated data analysis and tables IV to VI for empirical data
alalysis.

17



TABLE I

Preliminary parameter estimates

(Simulated data)

Sample size: 50

Value of p: 0.0005

Square root of overall MS ratio: 0.0072

True value of an: 0.005 Estimate of a,,: 0.006*

Component Range of x values
No. IS ratio in interval fitted a w

1 12920 x 10 -10 30.0 - 38.0 0.020 0.036 0.965

True Value 0.020 0.030 0.970

2 296 y 10-10 1.0- 4.0 0.698 0.357 0.700

True Value 0.700 0.357 0.700
1 1 1 1 -- - I

Estimate of a,, arbitrarily chosen in the neighborhood of the true value.

TABLE II

Preliminary parameter estimates

(Simulated data)

Sample size: 75

Value of p: 0.0010

Square root of overall MS ratio: 0.0433

True value of a0: None Estimate of a,: None

Component MS ratio Range of x values a
No. in interval fitted W

1 856 x 10-11, 71.0 - 75.0 0.065 0.036 0.965

True Value 0.040 0.030 0.970

2 31526 x 10-1" 13.0 - 21.0 0.398 0.103 0.902

True Value 0.400 0.094 0.910

3 109720 X 10-1" 1.0 - 4.0 0.180 0.481 0.618

True Value 0.200 0.431 0.650
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TABLE III

Preliminary parameter estimates
(Simulated data)

Sample size: 42
Value of p: 0.0030
Square root of overall MS ratio: 0.0125
Trve value of ao: 0.050 Estimate of so: 0.050*

Component Range of x values
No. in interval fitted U

1 1804 X 10- 5  32.0 - 40.0 0.024 0.084 0.919

True Value 0.050 0.105 0.900

2 1968 X 10-5 18.0 - 28.0 0.042 0.162 0.850

True Value 0.100 0.357 0.700

3 39235 X 10-s 13.0 - 16.0 0.006 0.205 0.814

True Value 0.200 0.693 0.500

4 430 X 10-5 1.0 - 4.0 0.531 0.720 0.487

True Value 0.400 1.204 0.300

*Estimate of a. simply chosen equal to the true value.

TABLE IV

Preliminary parameter estimates
(Empirical data)

Sample size: 29
Square root of overall MS ratio: 0.0876
Estimate of a%: 0.005*

Component M Range of x values Q
No. MS ratio in in t erval fitt ed U

1 2018 X 10-9 26.0 - 29.0 0.012 0.080 0.923

2 25218 x 10-8 1.0 - 4.0 0.890 0.358 0.699

'Eatmate of a,, based on a visual inspection of plotted curve.

TABLE V

Preliminary parameter estimates

(Empirical data)
Sample size: 49

Square root of overall MS ratio: 0.0665
Estimate of a.: None

Cmiponent Range of x values
No. MS ratio in interval fitted P

1 186 x 10-10 46.0 - 49.0 0.015 0.014 0.986

2 4585 x 10-6 87.0 - 4.0 0.172 0.168 0.850

a 1578 x 10-1 1.0 - 4.0 1 0.17 0.38 0.696
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TABLE VI

Preliminary parameter estimates

(Empirical data)

Sample size: 140

Square root of overall MS ratio: 0.5504

Estimate of a,: 0.010*

Component MS ratio Ranges of x values

No. in interval fitted G p J

1 268 x 10-10 105.0 - 117.0 0.005 0.005 0.995 .

2 800 x 10-6 77.0 - 88.0 0.013 0.028 0.972
3 2705 x 10-6 1.0 - 4.0 0.621 0.260 0.771

*Estimate of a,, based on a visual inspection of plotted curve.

IV. COMPOSITE GAUSS-NEWTON AND GRADIENT METHOD

Marquardt's algorithm

A composite Gauss-Newton and gradient method has been programmed to re-
fine the preliminary estimates of the parameters in our mathematical model that
the "peel-off" program provides. It is an itt. rative method that was designed to
eliminate the inadequacies of straight Taylor-series methods and gradient meth-
ods but at the same time retain the "good" propeities of both approaches. Ex-
amples of good properties are: convergence greatly accelerated when close
proximity to converged values is attained and region of convergence broader
than other methods.

Consider fitting the function

Y = f(x;#) (23)

to a set of data points (xl, Y1) i = 1,2,... L, f(x;o) nonlinear in the parameters
represented by the vector 0 = (0o,01 ...

Y- f(xi ;9)
Now, using ratios to meet our needs, instead of the customary

f(xi ;)

deviations Y, - f(xi ;), we want to minimize

L
4(e) = X [(Yj - f(xj1;))/f(x;e)12

L
= - [Yf-l(x;e) - 112 . (24)

Let

g(x1:e) = f-'(x;) . (25)
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The Taylor-series expansion of g(xi ;0), to first order terms, about the vector
0(0) = (0(0), 0(0)... 0(0)), vector of preliminary parameter estimates, is

0 1 2M

2M
g(x;0) = g(x;0(O)) + 2 Djgj(xi;O(o)) , (26)

J-0

where

Di = O1 - OJ(O) ,

dg(x;o)
gi(xi; 0 O) - 10 = 0(O)

dej

0( L 2Mc~ieO)-12(7CO0) = I Y,[glx,;0(o)) + I- Djgj(xi;0(0))] - 2 (7)

Partial. derivative of -6(0) with respect to Oh is

(0) = 2 z Y,[g(x1 ;O(O)) + 2 Djgj(x,;0(o))] - 1 Yjg (x1 ;0( 0)) ( (28)

Setting 4h (0) = 0, simplifying and transposing terms, we have the normal
equations

2M [12
z2 ZYjgh (x,;O( 0)) jX#( ]D

= - 2 [Y~g(x;O(O)) - 1]Yjgh(XI;*(O)) , (29)
i-1

h 0=,1,..., 2M

or in matrix notation

CD = E. (30)

Matrix equation 80 is solved for the correction vector, D which in turn
is used in obtaining the parameter estimates.

The next trial vector in the iterative process is

*JO O) = #j(o + D5 j = 0,1...... (31)

This is considered the Gauss or Gauss-Newton approach to the stima-
tion problem. In practice, instead of using D, a is, a step size FD, 0 < F o9 1,
is used in an effort to inrease convergence. This in in contrast to the gradient
methods that use full steps in the direction of the negative gradient.
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Proceeding further to the basic uanstruction of Marquardt's algorithm,
equation 30 is modified by adding an arbitrary constant A to each diagonal ele-
ment of C. Then we have for the rth iteration, the matrix equation

[C*(r) + X, (r) I] D*(r) = E*(r) , (32)

which is solved for the column matrix D*(r), where

C*(r) = [C*(r))
h i

= (hO / (c(r))%(c(r))%] ,
hij hh j J (38)

E*(r) = [e* (r)]

= [e(r) / (C(r))YJ, (34)

and Chj and ej are elements of C and E of equation 30.

From D*(r) we obtain

D(r) = D*(r) / (c(r))%, j = 0,1 ... ,2M (35)

The next vector used in the process has components

9(r+1) = e(r) + D(r) , j = 0,1,..., 2M (36)

The choice of the constant ,(r) is critical. By trial and error it is deter-
mined so that p(r) < t(r.1).

The strategy employed, along lines somewhat similar to those laid down
by Marquardt, is as follows:

Let k(-1) denote the value of .that is associated with the (r-1)st itera-
tion, initial values AM0° = 10-2 and 0(O) = (PMSR) (DF). Choose a constant
. > 1, a suitable value chosen is 10, and

Test 1. If A(,-' ) "t 10-1, proceed to test 2. If not, let (') =
and compute ,I) (Ar')).

If *9' < ), then the parameter estimates are accepted;

otherwise, proceed to test 2.

Test 2. Let A(W) = A-') and compute #()(Ak).

If f() < 4 , 1), then the parameter estimates are accepted; con-
trarily, setw = 1 and proceed to test 8.

Test 8. If k4'l - 1010, the process is considered to be diverging and
further cycling is terminated. When the inequality does not hold, we let
Air) = k=r- )vw and compute .Et (AVr).
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If O(r) < &(r-1), then the parameter estimates are accepted;
otherwise, proceed to test 4. It should be observed that the values of x(") can
become extremely large in the case of parameter estimates with high (> .99)
correlation.

Test 4. Compute an angle

(r) = C-os odr)e(r) / (Z d2(r))% (z "2(r))

ITJ- 1 J-0o J-0 1

If y(r) --- yo = i/4, then increment (o by 1 and return to test S.

If y(r) < yo , then proceed to find a constant F(r) such that

F(r)D(r), 0 < F(r) -r 1, is the step vector; i.e., we want

e(r) = e (r-1) + F(r)D(r) . (38)

This constant F(r) is found by raising the fraction 1/2 to succes-
sive powers until either F(r) t- 10- 10, in which case t is incremented by 1 and a
return to test 3 is made after setting F(r) = 1, or it is found that O(r) < 0(r-1)
and the parameter estimates are accepted.

For use further on in the sequel, we have

M
g(x;o) = [% + Z a. exp( - x,)]I

= -S' (x1; ,) ,(9

g,, (xl;o) = _ S-2 (x1;ai)S, (x,;eL) , (40)

h =0,1,.... 2M

where
1 ,h=O

Sh (xt;eS) = ep( - Dh.1Xt) , h = 1,... odd integer

- aI,3xIxp( - Ph/2X) , h = 2,4.... even integer

and a, p are vectors defined as:

- ( fel,..., 0 t) I

Hence the normal equations 29 become

3M YL 8- ( pEO° ) )Sb(xl;e(°),D(°|)1 x' e° r )

j-0O

L
- I (Yo8-I(x,;e(u),P(l) _ -), , (41)

b = 0,1..... M.



Computer version B
We continue the sequel with a description of the computer program based on

Marquardt'R algorithm. This description will include program input, general
computationel steps, additional computations, and output. Then follows, for
completeness, a program flow chart, description of flow chart, subprogram usage,
computer memory requirements, and several numeric examples of analyses of
both simulated and empirical data.

Input:

1. , Program parameters.J

a. From a punched card.

NIA: Maximum number of iterations allowed.

b. From output tape prod-,ced by "peel-off" program.

(1) EXP: Experiment number.

(2) SAMP: Sample number.

(3) MODEL: 1 for no asymptote,

2 otherwise.

(4) L: Sample size.

(5) M: Number of components to refine.

(6) NP: Number of parameters to refine.

(7) PSMR: "Unrefined" mean square ratio based on preliminary
parameter estimates.

2. Preliminary estimates of the model parameters (from output tape).

&(0), , M), m = 1.2,...,M .

8. Data (from output tape).

x, Y values. i

General computational steps:

Step 1. Compute (initial) gag quantity

o= (PMSR)(DF) (42)

where

DF = L - JM for Model 1
= L - (2M + 1) for Modell
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Step 2. Compute the elements of the matricem C*(,), E*(r), h i -

c*(r) = c(r) / (c(r)) (C(r)) (43)
hi hi hh i

where

LC (r) = 2 t-(l ',()Sx~e' ~)S(lar,~)
hi 1-1hj 0,1....2M

and S(x, ;a(r),#(r)), Sh(X ;a(r),#(r)) are as defined in equations 39, 40.

e*(r) = e(r) / (e(r))%z,(4

where

L
e(r) = Z [YtS-.(x;a(r),#(r)) - 1J]YS-2(x1 ;(r),i(r)) S(x,;a(r),p(r))

j = 0,1,..., 2M

Step 3. Solve matrix equation

[C*(r) + x(r)I] D*(r) = E*(r) (45)

Step 4. Apply strategy, outlined by series of tests given above, for choosing
A(r) and selecting F(r).

Step 5. Terminate process in accordance with tests:

jD,(r)j/(, -{ [j(r)j) < , j = 0.....2M (46)

where

0 1 1 II M

r :arbitrary, say 10-a

: arbitrary, say 5(10-T)

or

N =NIA (47)

where

N Number of completed iterations,

NIA: Maximum number of iterations allowed.

Step 6. Return to step 2, if neither test in step 5 holds, with the current
solut;on vector

as the initial vector along with A40 value for the next iteration.
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Additional computations:

1. Compute omegas

=, = exp( - p(n)) P m =12 ... M . (49)

where

pm(n) = Final value of # for mth component.

2. Compute estimated Y values

M
YEST. = so(n) + Z &(ln) exp( - ,(n)x) i = 1,2,. . (50)

m-I

3. Compute ratios

RA,= (Y,-YEST)/YESTt, i=12... ,L. (51)

4. Compute cumulative sums of squared ratios

CRATIO = z RA, i = 1,2,..., L. (52)
J-I !

5. Compute "refined" mean square ratio

FMSR = CRATIOL/DF, (3)

where

DF = L-SM for Model 1

= L - (SM + 1) for Model .

Output:

1. Experiment number.

2. Sample number

8. Data.

4. Estimated Y values.

5. Ratios.

6. Cumulative sums of squared ratios.26l



7. Model.

8. Number of data points.

9. Number of iterations taken.

10. Number of iterations allowed.

11. "Unrefined" mean square ratio.

12. "Refined" mean square ratio.

18. Preliminary and final estimates of constant, alphas, betas, and omegas.

27
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FLOW CHART
FLOW CHART OF THE COMPOSITE GAUSS- NEWTON AND GRADIENT METHOD

Np Utf coN- TPUT

REWIN INPU TAPEI tTE

READ PROGRAM PARAMETER: a I(n) z n

REWIN INPU21TAP
NIA: NUMBER OF ITERATIONS ALLOWED &(n

6-46 '~ 21

cuSEE FLOW CHART ap % ,1n

TKON OPPOSITE FOR 1, 2,..., MTIP PAGEI

READ INPUT TAPE: @(n) (n

EXP: EXPERIMENT NUMBER
SAMP: SAMPLE NUMBER
MODEL: I FOR ND ASYMPTOTE 4

2 FOR ASYMPTOTE
L: NIUER OF DATA POINTS CRATIO:m 0.0

M NUMBER OF COMPONENS 70 REFINEm
NP: NUNBER OF PARAMETERS TO REFINE YE: @,-s -3 1 ae-#

FARAETERESTIATESRA:z I Yg -YE)/YE

ao: RUMNRY ETIMAE OFAVMPr0TdCRATIO - CRATIO + RA2

~PRINT:
Xi, Yj IFYE, RA, CRATIO

y OF ~FORl I1, 2...., L

INITIALIZE ARRAYS:FMRCATOL-P

gig A' .w 0.0 M aCAI/(-P
FOR i aI, 2,...,20

Di aE J ESj'aSj a(00
Tj a #j(m 3 j(')m ( PRR4T*

M'Rui a1.2,.....41 EXP. SAMP, MODEL. L,n,

FO I a 1. 1... IS0 NIA. PMSR, FMSR..4';

1 KAD INPUT TAPE*. 

oi," oil WIN

XK, Yk
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FLOW CHART I CONT.

Ott 10.0 I

2iP TEST xs 107T
FO hi 2..M PUS -O

so I? al go3
TOTR0~ faJESTD- Y ItV/4 RI Fu/ Ft 10 N)

Ii OE 
CIJY / 4

sTco a 0 .0

Ej~~~~~m am ES ieiOOms . E
OFT* ATi aWI)ebt 1

NP m I I,,..W

/0 coc/9S



~:).u S~ 'v TEST I JET u)vTESTxcX ETO aX 2 CET 0 3 11

I NCA7W PFAU6 TAPE

ST,

TYE n- f(0-11+ M, (nI in-1 nw Cjj Cij *Ti TjCAOJ

21-1 e 2i-1 aYEXh Enp j4TjEAe kuh+1

CAD.I3Y 11-- TV, YED FOR 1 1, 2,..., NP
FOR Ia 1, 2,..., M EADJ-(Yk-YE.yk)/YE 5  j 1,2,... NP

OTHPC, NP.UPI S, STAR MR~ i 1, 2,...,P

OF AN ONE45 5
10 IF ANY N i1/ I *tn'I) Z9(A a lKn aW L IEST

In-I)~~FO 1 CK ri'+12SIAFOl.... N

Ell OU0TPUT



Description of flow chart n

Box 1 -3: Self-explanatory.

4: The following arrays are cleared-

a: Parameter array.

p: Parameter array.

w: Parameter array.

0(0-1): (n-1)st parameter iterant array.

*(n) : nth parameter iterant array.

D: Parameter step adjustments matrix.

E: A basic column matrix used in the iterative process. Its companion matrix
is basic matrix C.

S: Square roots of the diagonal elements of matrix C.

ES: Column matrix produced by dividing elements of matrix E by the cor-
responding elements of S-array.

T: First partial derivatives of the mathematical model with respect to its
parameters.

X: Abscissae of the data points.

Y: Ordinates of the data points.

5-7: Self-explanatory.

8: Test parameter X . If the inequality holds, go to TEST 2--box 12.

9: Self-explanatory.

10: See description of subroutine GET 0, boxes 23-88.

11: Self-explanatory.

12: See description of subroutine GET 4, boxes 20-38.

13: Test parameter X . If the inequality holds, go to DIVERGE--box 22.

14: Self.explanatory.

IS: See description of subroutine GET f, boxes 23-38.

16-18: Compute an angle . If the inequality holds, go to TEST 8-box 18.

19: Self-explanatory.

3: Test step adjustment factor F. If the inequality holds, go to TEST 8-box 18.

21: See description of subroutine TEST *, boxes 39-46.

22: Self-explanatory.

08: Self-explanatory.

24: Clear locations for elements of matrices C, E, ES, 8 and T.

IS: Compute first derivative of the function in the model with respect to the
constant term. Counter k is nt equal to oDe

2 : Construction of basic matrices C and L

03 selt-explatowr.

34: Test counter k against gage word L If the Inequality holds, go to GET C and E-

bo K
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31: Compute adjustment quantities for matrices C and E.

32: Transform matrix C into simple correlation matrix, resulting matrix again
called C; adjust matrix E, resulting matrix called ES.

32: Add X to the main diagonal elements of simple correlation matrix C.

34: Compute inverse of modified simple correlation matrix C.

35: Compute product matrix D, D = C- 1 ES.

36: Transform elements of matrix D* back into-original units of measurement.

37: S-lf-explanatory.

38: See description of subroutine TEST *, boxes 39-46.

39: Self-explanatory.

40: Compute the nth iterant of parameter estimates. _

41: Evaluate nth iterant 4 function.

42: Test (n-1)st and nth iterant * functions. If the inequality holds, return to
location specified by subroutine exit.

43: Test parameter estimates for acceptability. If the inequality fails to hold, go to
OUTPUT-box 47.

44: Self-explanatory.

45: Test number of iterations completed counter n. If the inequality does not hold,
go to OUTPUT-box 47.

46: Initialize (0-1)-array for next iteration, go to TEST 1-box 8.

47: Relocation of the final estimate of s o , a's, and p's; computation of the associated
w estimates.

48-49: Print output:

a. EXP. SAMP.

b. X, Y, YE, RA, CRATIO for each data point.

c. EXP, SAMP, MODEL, L, N, NIA, PMSR, FMSR.

d. ao(O) and estimates a(o), #(), w(o) for each component (preliminary
estimates).

e. &0(n) and estimates s.(), i(), .(U) for each component (final estimates).

Subprogram usage

Function subprograms (the first one is a standard library function) listed
below proved very helpful:

1. EXPF. Argument: A (location of expression A). Function: computes
the value exp (A).

2. YEST. Argument: K (location of subscript K). Function: computes
the icth estimated Y value using the parameter estimates a(p) , at' , and #I*)

i 12, .... M; n denotes nth iteration.

Explicitly presented in the flow chart are two subroutine subprograms:

1. GET 0. Function: computes full step adjustments for the parameter
estimates under refinement.
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2. TEST o. Function: adjusts the parameter estimates using a full or frac-
tional part of the step adjustments and then computes the sum of squared
ratios. Performs a number of tests: 6(0) tested against (n-1), determines if
parameter estimates produced during the nth iteration meet the acceptance crite-
rion, or if permissible number of iterations criterion i0 met in case of failure
of parameter estimates to satisfy acceptance criterion.

Two standard library subroutine subprograms not explicitly shown in the flow
chart but of paramount importance in the iterative process are:

1. AMMAIN. Arguments: DET (location for value of the determinant of
the matrix), N (location for dimension of the matrix), C (location of the first
word of the matrix to be inverted), and T (location of the first of 2N words used
as temporary storage). Function: computes the inverse and determinant of a
matrix C in single-precision floating-point arithmetic. The Gauss process of
elimination is used.

2. AMMAMU. Arguments: NR (location for row dimension of matrix C),
NC (location for column dimension of matrix C), R (location for column dimen-
sion of matrix E), C (location of first element of matrix C), E (location of first
element of matrix E), D (location of first element of product matrix D). Func-
tion: forms the matrix product D - CE.

Memory requirements

Program About 3,080 words

a(°) 1 word
0

e(0) M words

0) M words

M words

2M) MI words

G(- 2M +1 words

M wordsx-arra M words

X-array L words

Y-srray L words

C-array (2K+ 1)I words
D-arry niM+ I words

Earray 2M + I words
MSanay 2K ,-4. 1 words

Other 170 words

Total: 8,26 + 14M + 2L + (2M+ 1)' words approximately.
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Examples

Parameter-estimate input to the composite Gauss-Newton and gradient meth-
od computer program consisted of the preliminary estimates shown in tables
I to VI. The refined parameter estimates along with supplementary data are
presented in tables VII to XII. Here results for simulated data are reserved for
tables VII to IX while for empirical data tables X to XII are utilized.

TABLE VII

Refinement of parameter estimates
(Simulated data)

Sample size: 50

Value of p: 0.0005

Number of iterations: 5

Square root of MS ratio for "unrefined" parameter estimates: 0.00725

Square root of MS ratio for "refined" parameter estimates: 0.00047

Parameter True value eslimiary Final estimateestimate

s 0.00500 0.006000* 0.00497

41 0.02000 0.02047 0.02000

Pi 0.03046 0.08561 0.08034

W1 0.97000 0.96502 0.97012

"2 0.70000 0.69812 0.69981

PS 0.35667 0.85789 0.35659

02 0.70000 0.69950 0.70006

Ofttimate of % arbitrarily chosen in the neighborhood of the true val,.
Running times--

Preliminary 0.1 ain.
Fial 1.1 man.

The data points listed below were used to derive the results presented
In table VII; thus, they may serve as test data.

Test Data

a 1 2 8 4 5

Y 0J14114004 08M661076 0.JM86M6 0.190918417 0.189N 80

6 7 a 9 10

Y 0.104017778 0.078 0.06100M36 0.04848487 0.086M1020

K 11 12 13 14 15

84

|I



Y 0.083183051 0.028566M5 0.0252820M 0.022818472 0.020982678

x 16 17 18 19 20

Y 0.019616827 0.018555200 0.017M9570 0.016995843 0.016445828

x 21 22 28 24 25

Y 0.015948802 0.015504852 0.015120464 0.014761646 0.01444851

x 26 27 28 29 s0

Y 0.014126197 0.018882992 0.018563697 0.018294188 0.018084256

x 81 32 38 34 85

Y 0.012786053 0.012550015 0.012822586 0.01210607 0.011888305

x 36 37 88 89 40

Y 0.011691969 0.011487734 0.011281 186 0.011108610 0.010918208

x 41 42 48 44 45

Y 0.010789656 0.010559082 0.010402486 0.010286416 0.010078497

x 46 47 48 49 50

Y 0.009914986 0.009782278 0.009636448 0.009496308 0.009859059

TABLE VIII

Refinement of parameter eatimates
(Simulated data)

Sample size: 75
Value of 0: 0.0010
Number of iterations: 6
Square root of MS ratio for "unrefined" parameter estimates: 0.0438
Square root of MS ratio for "refined" parameter estimates: 0.0008

Paraete Trevlve Pweolmiuar inal estimateestimate

soNone None None
al 0.0400 0.0640 0.0400

P,0.0306 0.08"s 0.0806
0.9700 0.964 0CM0

6,0.4000 0.891 097

Pa 00O4 0.1019 0.004

a0.9100 0.9022 0.100

050.100 0.1796 0.196

Pik 0.4w0 0.4812 0.4270
Mm0.6w0 0.6180 0.612

prewi~mry tv U aim.
Fl"a 1.4 w.
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TABLE IX

Refinement of parameter estimates
(Simulated data)

Sample size: 42
Value of p: 0.0080
Number of iterations: 89
Square root of MS ratio for "unrefined" parameter estimates: 0.0125
Square root of MS ratio for "refined" parameter estimates: 0.0028

Parameter True value Preliminary Final estimateestimate

4o 0.0500 0.0500* 0.0500
&1 0.0500 0.0243 0.0474

A 0.1054 0.0845 0.1028
0.9000 0.9190 0.9023

02 0.1000 0.0419 0.0549
P2 0.3567 0.1622 0.2976
W2 0.7000 0.8503 0.7426
as  0.2000 0.0061 0.2121
Ps 0.6932 0.2055 0.5723
W3 0.5000 0.8148 0.5642
84 0.4000 0.5314 0.4440

P4  1.2040 0.7203 1.2233
a 4  0.3000 0.4866 0.2943

*Estimate of a. simply chosen equal to the true value.
Running times-

Preliminary: 1.2 min.
Final : 10.5 min.

TABLE X

Refinement of parameter estimates
(Empirical data)

Sample size: 29
Number of iterations: 82
Square root of MS ratio for "unrefined" parameter

estimates: 0.0876
Square root of MS ratio for "refined" parameter

estimates: 0.0278

Parameter Preliminary Final estimate
estimate

de 0.0050" 0.0062

9a 0.0119 0,5666
# 0.0797 0.28M
01 0.9234 0.7680
a 0.8899 0,8864

pa 0.882 0.5698
Wi 0.6890 0.5657

IrAtimat oft a based on a visual inspeetion at piottd eurve.
Running Um-

PreUmInary: 0.1 min.
Final 3.4 min,
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TABLE XI

Ref inevient of par-ameter e8timateW
(Empiical data)

Sample size: 49
Number of iterations: 11
Square root of MS ratio for "unrefined" parameter

estimates: 0.0665
Square root of MS ratio for "refined" parameter

estimates: 0.0218

Paraeter Preliminaryestimater Final estimate

alNone None
0.0147 0.0107

p1 0.0139 0.0085
0.9862 0.9916

a20.1717 0.1037
p2  0.1625 0.1143

W20.8500 0.8920
a30.5173 0.6490
p3 0.3623 0.3922
W30.6961 0.6756

Running times-
Preliminary: 0.1 min.
Final 1.5 min.

TABLE XII

Refinement of Para meter e8timate8
(Empirical data)

Sample size: 140
Number of iterations: 15
Square root of MS ratio for "unrefined" parameter

estimates: 0.5504
Square root of MS ratio for "refined" parameter

estimates: 0.0216

Prmtr Preliminary FnletmtPrmtr estimate Fnletmt

00.0100* 0.0116
Z0.0047 0.0908

PI 0.0049 0.0410

010.9951 0.9599
a' 0.0182 0.1695

P2 0.0279 0.1477
02 0.9725 0.867

al 0.6208 0.4874

PI 0.260 0.4729
al0.7710 0.622

e*blmate of haWld - a visual Inspaltisa of ploted sar.
Rnnig timw-

Prelmissaay O.S mi.
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V. COMMENTS

Even a cursory examination of the basic steps pertinent to the "peel-off"
method reveals that these steps are quite simple in mathematical content and do
not offer any particular problem in programming. The overall "sticky" areas
of "when or where to continue or discontinue" the fitting process no doubt can
be improved upon. What and how much improvement is a question that can
best be answered through extensive testing of the program on data frequently
handled at a particular computing installation or laboratory. Needless to say, one
should obtain the best possible preliminary estimate of the constant term when
such is present in the model being fitted. A poor preliminary estimate of the
constant term results in inferior component estimates, and this in turn can
result in a great increase in the number of iterations for refinement or the diver-
gence of the refining process. A number of methods for constant-term estima-
tion by computer were tried but results were in general disappointing. Further
work along these lines is contemplated. Also some Monte Carlo studies of the
parameters estimates are planned. All raw data that is not monotone decreas-
ing should be smoothed before being analyzed and preliminary parameters esti-
mates should always be refined. Lastly the use of the upper 1% points of the
Snedecor-Fisher (F) distribution in the F test as proposed and used by the
authors may provide a test that is too stringent for some users. In such cases
the appropriate percentage points can be selected on the basis of program yield
on data commonly handled.

One should be able to program the composite Gauss-Newton and gradient
iterative method for nonlinear parameter estimation with relative ease. The
method is straightforward, requiring no "special" coding technics. Minor changes
envisaged in a few instances are those relative to the parameter values of e,
y,, AM", v,, and r. These changes may be made in accordance with the immediate
requirements of the user. In passing, one might consider the use of double-preci-
sion floating point in computing 4 with Y, in single or double precision for
tests 1 and 2 (see strategy for choosing A) if round-off contributes to erratic
fluctuations in '.
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