UNCLASSIFIED

AD NUMBER

AD477428

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies only; Administrative/Operational Use; JAN 1966. Other requests shall be referred to Chief of Research and Development, Department of the Army, Washington, DC 20310.

AUTHORITY

DANA ltr, 13 May 1975

THIS PAGE IS UNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

RESEARCH ANALYSIS CORPORATION

ĩ

0

5

A Method 00 for Predicting Repair-Parts Replacement **Developed from Data** for M60 Tanks and M113 APCs (U)

John R. Bossengo Conway J. Christianson Harrison N. Hoppes Howard A. Markham aboth C. Seip my D. Sh Douglas E. CON RAC of 165 FOR OFFICIAL USE ONLY

The contents of RAC publications, including the conclusions and recommendations, represent the views of RAC and should not be considered as having official Department of the Army approval, either expressed or implied, until reviewed and evaluated by that agency and subsequently endorsed.

SUPPORT SYSTEMS DIVISION TECHNICAL MEMORANDUM RAC-T-465 Published January 1966

7

Distribution Statement Each transmittal of this document outside the agencies of the U. S. Government must have prior approval of the Office of the Chief of Research and Development, Headquarters, Department of the Army, Washington, D. C. 20310

A Method

for Predicting Repair-Parts Replacement Developed from Data

for M60 Tanks and M113 APCs (U)

by John R. Bossenga Conway J. Christianson Harrison N. Hoppes Howard A. Markham Elizabeth C. Seip Harry D. Sheets Douglas E. Smith

MCLEAN, VIRGINIA

DEPARTMENT OF THE ARMY OFFICE OF THE CHIEF OF RESEARCH AND DEVELOPMENT WASHINGTON, D.C. 20310

CRD/J

SUBJECT: RAC-T-465, "A Method for Predicting Repair-Parts Consumption Developed from Data for M60 Tanks and M113 APCs (U)"

TO:

1. Transmitted herewith is (are) _____ copy (copies) of RAC-T-465, subject as above.

2. RAC-T-465 was produced by the Research Analysis Corporation, McLean, Virginia, in conjunction with the contract study "Maintenance Support Requirements."

3. RAC-T-465 documents an investigation into the problem of forecasting repair parts requirements for important classes of Army equipment. The repair parts forecasting methodology described in this technical memorandum is based on the use of repair parts replacement data of the type now available through the Army Equipment Record System (TAERS). The study conclusions that demand data have not been a completely satisfactory basis for estimating future repair parts requirements and that the availability of consumption data through TAERS creates a significant possibility of using this data as an alternative or additional input in the decision-making process are considered valid. However, it is to be noted that the views expressed in RAC-T-465 are those of the Research Analysis Corporation and that the document is not an official Department of the Army publication.

FOR THE CHIEF OF RESEARCH AND DEVELOPMENT:

Incls as

HERALD B. GALLINGER

Colonel, GS Chief, Human Factors and Operations Research Division

Received for Publication 28 April 1965 Published January 1966 by RESEARCH ANALYSIS CORPORATION McLean, Virginia

FOREWORD

During the past 6 years ORO/RAC has undertaken comprehensive analyses of the operation, maintenance, and effective lifetimes of many important classes of Army equipment.* This series of investigations has led to the belief that a departure can be made from the Army's current practice of relying solely on historical demands for repair parts as the basis for determining stockage requirements. The repair-parts forecasting methodology described in this technical memorandum is based on the use of repair-parts replacement data of the type now available through The Army Equipment Record System (TAERS) and represents an approach that could lead to significant improvements in the computation of repair-parts requirements.

> C. J. Christianson Chief, Support Systems Division

*Operations Research Office (now RAC): "The Overhauling of Equipment," ORO-T-381, Aug 60. FOR OFFICIAL USE ONLY; "Operation, Maintenance, and Cost Experience of $\frac{1}{4}$ -ton Truck Fleet (U)," ORO-T-382, May 61. CONFIDENTIAL; "Economics of Maintenance and Replacement of $\frac{3}{4}$ -, $2^{1}/_{2}$ -, and 5-ton Truck Fleets (U)," ORO-T-401, Sep 61. CONFIDENTIAL

Research Analysis Corporation (formerly ORO): "Materials-Handling Equipment: A Study of Economic Life," RAC(ORO)-T-406, Vol I, May 62, Vol II, Apr 62; "Operation, Maintenance, and Cost Experience of the Tank, Armored Personnel Carrier, and Self-Propelled Howitzer Vehicle Fleets (U)." RAC(ORO)-T-409, Sep 62. SECRET; "Allocation of Maintenance and Support Resources for Tactical Communications Equipment," RAC-T-413, Sep 63. FOR OFFICIAL USE ONLV; "Operation and Maintenance Experience of the Heavy and Medium Tractors (Crawler), 20-ton Crane, Road Grader, 1.5-kw Generator, and 45-kw 400-cps Generator," RAC-T-428. Aug 64. FOR OFFICIAL USE ONLV; "Operation, Maintenance, and Lifetimes of M60 Tanks, M113 Armored Personnel Carriers, and M88 Recovery Vehicles (U)," RAC-T-460. Mar 65. CON-FIDENTIAL

iii

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance and guidance provided by the study's Project Advisory Group consisting of Mr. M. D. Finn, chairman; Brig Gen D. G. Grothaus, co-chairman; Lt Col O. R. Grogan and Lt Col H. Lowe, executive secretaries; Col G. C. Benjamin, Lt Col A. Samuels, Dr. D. D. Willard, Mr. F. O. White, Mr. R. Lader, Mr. B. Levine, and Mr. F. W. Holden. RAC military advisors Lt Col B. E. Gill and Lt Col E. B. Junge provided effective advice and assistance.

The interest of Mr. F. Coopes, Secondary Items Division, Supply Directorate, US Army Tank Automotive Center (ATAC); Mr. E. Slayman, Maintenance and Reliability Division, Maintenance Directorate, ATAC; and Mr. J. McCallister, Special Purpose Vehicle Division, Maintenance Directorate, ATAC, is also appreciated.

Many members of RAC's Support Systems Division contributed to this study. The efforts of the following individuals are particularly important: Messrs. Richard G. Huver and Jerry L. Buffay, who helped to collect and analyze much of the M60 tank and M113 APC data; Mrs. Virginia S. Ellis, who assisted in analyzing replacement-rate data and in preparing the tables in Apps A to E; and Mrs. Thelma A. Chesley, who provided numerous technical contributions and prepared the draft manuscript for publication.

The authors especially wish to thank two members of the RAC Computer Sciences Center: Mr. Fred C. Hipp, who made several helpful suggestions concerning the mathematical formulations used in estimating repair-parts consumption, and Mrs. Sandra A. Veit, who programmed and provided written descriptions of the Expected Number of Repair Parts Actions Routine and the End Item Inventory Usage Routine.

The RAC Murder Board, composed of Gen Thomas T. Handy, Chairman, Dr. Richard M. Soland, and Gen N. M. Lynde, offered many constructive suggestions, which improved the pertinence and quality of the document.

iv

CONTENTS

Foreword	iii
Acknowledgments	iv
Summary Problem-Facts-Discussion-Conclusions-Recommendation	1
1. Introduction	4
2. Development of Replacement Rates Significance of Time-Dependent Failure Rates—Computation of Time-Dependent Failure Rates	10
3. Projection of Replacement Rates Alternative Methods—Projection of Replacement-Rate Patterns	19
4. Estimation of Expected Number of Parts Replaced Introduction—Computer Input and Output	24
5. Application of Methodology Recapitulation—Difficulties—Benefits	30
Appendixes	
 A. Description of Events Rates Computer Routine B. Replacement Rates for Selected M60 Tank and M113 APC Repair Parts C. Results of Least Squares Analyses of Replacement-Rate Data for 	35 55
Selected M60 Tank and M113 APC Repair Parts D. Description of Expected Number of Actions Computer Routine	$\begin{array}{c} 163 \\ 175 \end{array}$
E. Forecasts of USAREUR Replacement Actions for Selected M60 Tank and M113 APC Repair Parts	195
References	213

v

Figures

1.	Form Used by Commodity Analysts in Preparing Supply Control Studies	6
	Replacement Factors for USAREUR M60 Tank Generators	11
	$R_{a/a}$ Replacement Rates of USAREUR M60 Tank Engines	20
	Illustration of Linear Curve Fitted to Data Points by Least Squares	
	Technique	21
5.	Replacement-Rate Curves Fitted to USAREUR M60-Tank-Engine	
	Replacement Data	22
	Example of Computer Input Information Format in Estimating	
	Parts Replacement	27
7.	Example of Expected-Parts-Replacement Report Produced by IBM	21
	7040 Computer Routine	29
8.	Cumulative Percentage of M60 Tank Track-Shoe Assemblies Replaced	20
	in 1st Bn, 33d Armor, 3d Armd Div	33
	In 1st Da, ou Armor, ou Armo Div	00
Tables		
lables		
	Summary of Forecasting Methodology	2
2.	Value of Worldwide US Army Secondary Stocks in Excess	5
3.	Usage of USAREUR M60 Tanks in RAC Sample	8
	Usage of USAREUR M113 APCs in RAC Sample	8
	Main Sources of Data Collected	9
6.	Hypothetical Example of Events Table: Replacements of Repair	
	Part X	12
7-9.	Decrease in Vehicles Eligible To Experience First Replacement	-
	of Part X	
	7. Because First Replacement Has Already Occurred	13
	8. Because Mileage Accumulation Is Insufficient	14
	9. Because First Replacement Has Already Occurred or Mileage	17
	Accumulation Is Insufficient	14
10	Hypothetical Example of Vehicle Sample Density Table: Vehicles	14
10.	Available for Replacements	16
11		16
	$R_{s/e}$ and $R_{a/o}$ Replacement Rates for Part X	10
12.	Occurrence of Replacements, Available Vehicles, and $R_{s/e}$ and	
	$R_{a/o}$ Replacement Rates for USAREUR M60 Tank Engines, by	
10	Mileage Interval	17
13.	Elementary Types of Replacement-Rate Curves Considered by	
_	USAREUR M60-Tank-Engine Data	23
14.	Expected Replacements of Part X Required for Fleet of 60 Vehicles	
	during Current 1-Month Period	24
15.	Updating of Mileage Distribution of Vehicles Using Part X Based on	
	End-Item Usage Information Obtained 3 Months Ago	25
16.	Expected Replacements of Part X Required for Fleet of 60 Vehicles	
	for 900 Miles of Use, Beginning 8 Months from Present Date	26

ERRATA, RAC-T-465

P 26, Table 16, col 8. For: " $7 = 2 \times 5 \times 6$ " Read: " $(8 = 3 \times 6 \times 7)$ "

- P 27, 19. For: "col 7" Read: "col 8"
- P 29, last para. For: "during the period from the third quarter of 1964 to the fourth quarter" Read: "during the four quarters"
- P 55, Table B10. For: "On Starter Relays" Read: "For Starter Relays"

vi

Problem

To develop a method for predicting the replacement of repair parts (assemblies, subassemblies, and components) based on replacement rates obtained from an analysis of maintenance-action data.

Facts

The Support Systems Division of RAC is currently studying a variety of Army problems involving materiel readiness. One of these studies, RAC-RP-162.1, "Maintenance Support Requirements," is analyzing techniques for the improvement of repair-parts forecasting. At the request of the study's Project Advisory Group, special consideration is being given to the possibility of using data from TAERS. Because TAERS data of the type desired were not available to the project during the research described in this technical memorandum, USAREUR data collected for M60 tanks and M113 APCs by Support Systems personnel¹ were used to develop the forecasting r ethodology.

Discussion

The availability of repair parts continues to be one of the most important factors affecting the materiel-readiness posture of the US Army.^{2,3} A repair part is defined as any part, subassembly, assembly, or component required for installation in the maintenance or repair of an end item, subassembly, or component.⁴

After a new end item of equipment has been introduced into the inventory and the period of initial provisioning has passed, repair-parts procurement decisions are based on the quantity of parts requisitioned (demanded). However, the number of repair parts demanded may be an unreliable measure of future repair-parts requirements. TAERS is designed to provide partsconsumption information, i.e., data showing the use of parts in a current repair or replacement action. These consumption data provide another type of information for consideration in determining repair-parts replenishment actions for many end items of Army equipment.

This technical memorandum describes a method of estimating repairparts consumption for vehicle fleets during periods of projected future utilization. At the request of the study's Project Advisory Group and interested

RAC-T-465

FOR OFFICIAL USE ONLY

1

SUMMARY

SUMMARY

Army agencies, the methodology developed is capable of using TAERS-type information as input data, and calculating repair-part consumption estimates automatically through the use of a series of computer routines.

The methodology developed is summarized in Table 1. For any repair parts of interest the first step involves the calculation of replacement rates during individual usage intervals as, for example, each 100 miles of operation.

TABLE 1

Step	Description	Computer routine(s) used		
1	Determining usage-dependent rates of repair-part replacement	Events rates		
2	Projecting these rates into future time periods	Least squares		
3	Combining projections of replacement rates and end-item usage distribu- tions to estimate the number of repair parts replaced	End item inventory usage Expected number of repair parts actions		

This step of the estimation process is described in detail in Chap. 2, and the associated computer routine is described in Apps A and B. The second step employs standard statistical techniques to provide a means of projecting the usage-dependent replacement rates into the time period under study (see Chap. 3 and App C). In the final step the projected replacement rates are combined with projections of vehicle usage to develop estimates of the number of repair parts that will be replaced during the time period studied. Detailed information for this step is presented in Chap. 4 and App D.

Conclusions

This methalology can be useful in estimating repair-parts consumption throughout the period of utilization of many different end items of equipment for which TAERS data are available. The value of the forecasts obtained, however, depends directly on the accuracy and completeness of the input data utilized.

Recommendation

The proposed methodology should be tested on a selected sample of repair parts for a given end item and organization to determine how closely repair-parts replacement forecasts developed by applying this methodology correspond to actual quantities of parts replaced.

2

RAC-T-465

A Method

for Predicting Repair-Parts Replacement Developed from Data for M60 Tanks and M113 APCs

Chapter 1

INTRODUCTION

One of the most important factors affecting combat readiness is the availability of repair parts. Commanders' statements in the materiel -readiness reports² and the findings of the Baker Board of Inquiry on materiel readiness³ indicate that the readiness of many combat units is being adversely affected by a lack of repair parts. The availability of repair parts depends on the ability of the supply system to (a) determine how much of what materiel should be put into the supply bin and its ability (b) to move the materiel from bin to user as quickly as possible when it is needed.

RAC-TP-158⁵ described the ability of the Seventh Army supply system to perform the second function. It was found that when requisitions from combat units were filled at Seventh Army level, 18 days was required to fill 50 percent of the demands, 29 days to fill 75 percent. Significant steps are being taken to improve this performance. For the short term, Seventh Army is investigating order and shipping time with the assistance of a special team from Army Materiel Command. The long-term approach is exemplified by a Supply and Maintenance Command proposal that RAC undertake a comprehensive study of the total supply system.

The other function of the supply system, that of estimating repair-parts requirements, is complex and characterized by imprecision. The result is a tendency toward simultaneous feast and famine in various sectors of repair-parts supply operations. For example, RAC-TP-158⁵ showed the supply position of the 23 direct support supply activities (DSSAs) supporting five divisions and three cavalry regiments in US Seventh Army during a 3-month period in the summer of 1964. Of the total number of line items included on the stockage lists of these DSSAs, 32 percent were in zero balance, i.e., out of stock. At the same time there were significant excesses of secondary items in the worldwide Army inventory,⁶ as shown in Table 2. For all secondary items (a large portion of which are repair parts⁷) held at storage sites, excesses at the end of FY64 represented 18 percent of the total dollar value of stocks in inventory. For the dollar value of Mobility Command inventory alone (of which more than half are tank and automotive secondary items) excesses represented 26 percent of total inventory values.

These findings highlight the long-recognized fact that improvements in repair-parts forecasting techniques could result in improved parts availability, fewer excesses, and a higher state of readiness.

RAC-T-465

FOR OFFICIAL USE ONLY

TABLE 2

Value of Worldwide US Army Secondary Stocks in Excess⁶

(1 January to 30 June 1964)

	Al	l secondary it	em s	Mobility Command secondary items			
Sourcè of appropriation	Total Excess stocks stocks		Excess, %	Tota! Excess stocks stocks		Excess, %	
	Thous of dellars			Thous of			
PEMA ^a and	1 101 505		15		100 605		
O&MA ^b Stock funded	1,191,595	182,211	15	573,894	120,637	21	
Stock lunded	2,002,416	408,344	20	767,470	233,882	30	
Totals	3,194,011	590,555	18	1,341,364	354,519	26	

^aProcurement of equipment and mi_siles, Army.

^bOperations and maintenance, Army.

Under the present system of forecasting repair-parts requirements the commodity analyst follows procedures outlined in AR 710-45.⁴ For newly issued end items that have not previously been in the supply system, engineering-type estimates are used as the basis for determining the initial provisioning and stockage of repair parts. However, for ongoing items that have been in the system for some time an analysis of present and alternative techniques may result in improved forecasting of parts requirements.

Two general types of data can be used as the basis for estimating future repair-parts needs.

<u>Demand data</u> originate in the supply system and represent requisitions for repair parts to meet present or expected future needs. Although demand data do not necessarily reflect the actual use of the parts in current maintenance activity, they are the basis of the current technique used for forecasting repair-parts requirements for end items that have been in the supply system for some time. Figure 1 is a sample of DA Form 1794 "Supply Control Study" now filled out by commodity analysts for all high-dollar and superhigh-dollar items. This form and AR 710-45,⁴ which describes its use, demonstrate both the complexity of the present estimating procedure and the fact that under the present system purchasing for the future is done on the basis of recent demand patterns.

<u>Consumption data</u> are obtained from records of maintenance actions and represent the use of parts in a current repair or replacement maintenance action. Since the word "consumption" as used in this context refers to the replacement of both reparable and nonreparable items, the terms "consumption data" and "replacement data" are used interchangeably in this report. Data of this type are now available in TAERS. This system of record-keeping should facilitate rapid transmission and machine processing of repair-parts-action records. The basic objective of TAERS is to retain only the minimum number of forms for recording and transmitting essential information, and at the same time to include all Army equipment for which records and maintenance data are required for control and planning. Most of these records are of maintenance

RAC-T-465

FOR OFFICIAL USE ONLY

_	-				I PAPE	NING AGE	HCY			2 870			ITEN DET	CRIPTION					ATEO	T STUDIO	13
6.1 all			TROL	STUDY						-								LAST		CURRE	
				ITEMS																	
			IR PA		8 APPLI	CATION		4 SU	STITUTE		7 178	M TYPE	a	COVERABI				K STATUS CI	T-0FF	DATE	
					1						-						c	UBAREUR		-	
		(AR 7	10-45)																		
	1 CO	17	-	CATESCOV	12 FUND	CODE 11	-	JE 14 U	IT PACK	18 11	TE CLAS			VSTEM		ALIT	٧	18.	REOR	ER POI	178
					1					1			(Mantha)					LAST		CURRE	
					1							1.									
10.	REP	AIR CY	CLE MA	nihe)	-	C LEAD T	-) 81 R	eoncen (TCLE	22 87	-	DERAT	NG	24 REASON	708	STUDY				
ACT	-		RLT	DL T	ALT	PLT	DLT	- 7	denthe)		(14)	addha)	LEVEL	(addas)							
	l	1	~~ 1		1	1.1.	1														
	_	1					-	LY CONT	201							(PORECAS	TS			
	L					Prime in 19	01 2011					_	с	0		-	F	6	1	H	1
	l î																		-		· · · · ·
	N								2.52				BAL_QT		TAL	TR	01		T		
	Ē	1 1	HISTOR	CAL AND PR	ENCTION	DATA		PER	AND AND	A 358 1 DA			PY				FY.	FY			=
	-	1													05	HOS		sw		MOS	
	1	AQU	,	·	1	2	PROGRA	M CHANGE	FACTOR	8			1	0) (7	()	10) ()	r)
	1	DAGE	SERV	CEABLE	1	,	RECURP		NDS												
			REPA		1	,	ENROUT	TE AND BE	LO# DEP.	T PIL CI	ANGES	Depe)				1					
		1					NONRE	URRING D	ENANDS										_		
				DOIR	()	SAFETY	LFVEL A	NO CHANG	ET ()	I					1			
ĔB		360	T 187	QT # 20 QT		ATH QTR							L			_					
SECTION I USARPAC	8 7 8						TOTAL	DEMANDS					<u>د</u>					· · · ·	_		
· · ·		3	1				SERVIC	EABLE RE	TURNS (Re	tie)									
		Ĩ					REPAIR	ABLE RET	URNS (Mat	te)()				_					
	10						TOTAL	ASSETS ()()							1		
	11							ARPAC DE											T		
	12	DAG	>		(,		AM CHANG		15			1	1	21	1	(2.10	10	1	()
	13	PAQ	- SERV	ICEADLE	1	2		NING DEMA					h						-		
			- REPA	IRABLE	٢	,		TE AND BE		OT P.LC	HANGES	Dare,	t	+		+	··	+	+		
==	18		1	-				CURRING C					t	-+				+	+		
SECTION IS USAREUR	16		BASE PI		-, <u>(</u>	· ·	SAFETY	LEVELA	ND CHANG	1 836			ł			-			•	_	
84	17	8 -	Y 187	0TR 20 01	R 30 QTR	ATH QTR								+				-+			
5 5	1.8	-13	-		+	<u> </u>		DEMANDS						-+					+		
•	19					+		CABLE RE				,	ł								
	20	┥┋┝	-		+	+		ABLE RET	URNS (RD)		>1	,	-	+					-+		
	21	-f=i				1		AREUR DE) í	, ,	<u> </u>			-+					
	22	-						AME CHANG					<u> </u>	1	110	-+	,				
	12	AQI	BASE PI					NING DENA					ť	·	2	+			41_		+
	24			QTR 2D QT	A LAD LATE	ATH OTH		DEPOT P			(Deye)	1	+		-					
239	26	-14-	-								·····			+		-+			-		
232	17	-131-														\rightarrow		+			
SECTION IN COMUS AND OTHER 0/5	20				1	1							· · · · ·	1		-+		1	-		
200	20	-12-	-		+								t	+		-		1	+		
	10	+ *					NET CO	NUE AND	THERO	DEMANO				+	-	-+			+-		
	31	su		T DEMANDS	ON CONUS	DEPOTS (•	1		-+	-	+	+		
SECTION IV PTFMA ON CONUS	32			ETY LEVEL						16 917		,				+			1		
8.5	13			RING DENA									I						1		
138	34	1											I	1		-		1	1		
N. C	35																		I		
	36	1	TOTAL	DEMANDS O	N CONUS D	EPOTS (Su	n of lines 1	1 theu 35)					Þ	1	1	1			1		
	37	P AQ	R NEP	AIRABLE FO	RECAST			AQR)	(Ratio		1	ſ	1	1.1		1	1	210		1 1
255	30	GA	NS FRO	M FORECAS	TED REPAI	A (Apply re	pair aysta	block 19)									_		_		
0 IS	19			W UNSCHED			opair cyclo	block (9)			()	L						_		
222	40			M SCHEDUL							L								_		
SECTION V GAINS FROM RETURNS	41			VICEABLE R) (Re		,		r								_		
	42			GANS PROP)	F	-				-			
¥	43		C DIRE	CT PROCE	AFCT DAT	CONT	ACT DAT	DATE	TIRET DEL	IVERY	BALANC	E DUE IN		+	+		_		-	_	
285	44	+		+				-+				,	ļ	+		-+		+	-		
525	45	+				-+		+				,	t	+					+		
525	45	+						+					t	+		-+		1	-+		
SECTION VI PROCUREMENT SCHEDULE	47	+	1074	DUE IN PRO	-			1					<u> </u>	+				+		-	
-	+	+					• • • • • • • •					_	r	<u> </u>							
ł	49		PLY ASS	ETS 70 D				<u> </u>	× 00 >						ROLT + REO	CV.					
	<u> </u>	1					Т	ROR AND	OUES	_	RMO	r	T	T		. 1			-1		
				PTPMA SI	UPPLY STA	TUS		ASSE TS	O'JT	CONUS		SL	1	1				1			
-		GR		UREMENT	DO + BOJ									1		+			1		
	12			BLE STOCKS									I	1	I	1					
ACTIONS URING PT	53	GA	INS FRO	M RETURNS	(Prom time .				L			L			I				1		
1 1	34			ON PROCUR	EMENT (PN	m iine 48)						L	I			T			T		
E V B	58		TOTAL						L	[I			1				T		
101	- 14				(C	a line \$\$ mi	mus (81)					1							T		
	\$7	-		•					1										1		
	30		POSED											1	-			-	1]	
80	58	-		•					+					+		1		+	+]	
Alidens	60	+		-								L	L						1		
5	41				-	STATUS		AUTH AND ASSETS	BHRNO	ECON	MAP	EXCESS		SECTION V	11 - FIA L	EVEL	.5	SEC	TION	X . REM	ARKS necessery)
ㅋ	62	1		ED LEVELS			+		+	RET	RET			1				(Continu	- 017 10		nacessary)
Ē	63			en Levels	1000 17 A				1		ļ		PHRMO	+	ECON R			-1			
2							+		1			+	PROLT	+	MAP RE	<u>-</u> +		-1			
l e	64	50	PPLY PI		tine al m	inus (3)					i	1	REDCY	+		\rightarrow		-			
	88	-	Bosto	•		· · ·	+		1				BPTFMR	1		+		1			
	-	AC	TIONS			-			+ •				BHRNO	1	TOTA	L		1			
			PUTED				+	ORG COD	R I	DATE		<u> </u>		ROCURENE	NT	-		-			
	67								1			DATE		VALUE							
× 0									1							- 1					
225		REV	TEWED									-		CTIONS API	ROVED						
212	L."	1							Í				-	REPAIR							
SECTION X	6.9	APP	ROVED	87					-			1.				1					
~ 문격		-										-				-					
	78	APP	ROVED	87																	
	1		_																_		
			794					-						_							

Fig. 1—Form Used by Commodity Analysts in Preparing Supply Control Studies

RAC-T-465

FOR OFFICIAL USE ONLY

actions (adjustment, repair, or replacement) at unit and field level and therefore constitute a source of parts-consumption data.

In an ideally responsive supply system, demand data and consumption data would be nearly identical. If every parts user could be assured of obtaining all the repair parts he needed at a few moments' notice and if all echelons of supply activity could promptly replenish their supplies from a higher echelon, demand and consumption data would represent two sides of the same coin and would therefore be equally reliable bases for parts-requirements forecasting.

For a number of reasons these ideal conditions do not exist. Perturbations and delays in the supply system are caused by geographic distance, procurement lead times, financial restrictions, personnel turbulence, and technological improvement of end items with resultant multiplication of the number and complexity of pertinent repair parts. Further, the orderly demand pattern may be distorted as requisitions are passed upward through the various echelons of supply. AR' 710-45,⁴ which prescribes the procedure to be followed in preparing supply control studies, specifically cautions the commodity analyst:

The demands from units, geographically separated and having different activities, flow through multi-echelons. These echelons, by the addition of safety levels and the imposition of varying degrees of time delay (order and ship time, operating levels, etc., are all forms of time delay), distort and amplify the original frequency distribution of demand into many shapes and patterns. Forecasting, then, is based on skillful handling and understanding of data and the projection of that data into the future.⁴

These difficulties were further elaborated in a report submitted by Frankford Arsenal:⁸

The requisitions that are used as a basis for forecasting the expected demand at a stockage point are themselves composed in large measure of forecasts of expected demand that have been made by the stockage point's customers. These data can, then, be expected to be very different from the actual failure data or true parts consumption data. They are, however, the data on which inventory management decisions are made, frequently without appreciation of the fact that, while termed "demands" they are really forecasts that are superimposed on other forecasts. Thus, a National Inventory Control Point forecast of future system demand that uses past demand history as a basis for projection is in reality a projection of many lower level forecasts. It should come as no surprise, then, that the demand history exhibits such characteristically erratic patterns.⁸

For these reasons demand data have not been a completely satisfactory basis for estimating future repair-parts requirements. The availability of consumption data through TAERS creates the significant possibility of using these data as an alternative or additional input in the decision-making process.

This technical memorandum is devoted to an analysis of how consumption data can be utilized in forecasting repair-parts requirements. At the time this research was conducted, TAERS equipment-history data tapes were not available for study by RAC analysts. To develop forecasting techniques tailored to TAERS-type information, RAC data for M60 tanks and M113 APCs were used. These data were collected from USAREUR organization- and field-level maintenance records by teams of RAC analysts who visited USAREUR on four occasions between February 1962 and September 1963. The 3d and 4th Armd Divs were the principal sources of M60 tank data. The 24th Inf (Mech) Div and the 3d Armd Div were the primary sources of M113 APC information. Summaries by battalion of the vehicles studied are presented in Tables 3 and 4.

RAC-T-465

FOR OFFICIAL USE ONLY

 $\mathbf{7}$

TABLE 3

Usage of USAREUR M60 Tanks in RAC Sample

Unit	Vehicles	Average months in service	A verage miles per month	Average total mileage
3d Armd Div	250	23	142	3264
3d Bn, 33d Armor	54	23	124	2859
3d Bn, 12th Armd Cav Regt	31	19	179	3406
2d Bn, 32d Armor	66	22	137	3024
lst Bn, 33d Armor	77	24	161	3856
2d Bn, 33d Armor	22	23	117	2702
4th Armd Div	323	20	115	2305
2d Bn, 15th Armd Cav Regt	20	20	124	2473
24th Engr Bn	7	6	145	870
2d Bn, 35th Armor	55	21	112	2347
lst Bn, 37th Armor	55	20	120	2391
3d Bn, 37th Armor	48	20	124	2485
2d Bn, 37th Armor	56	21	118	2472
4th Bn, 35th Armor	72	21	103	2173
Special training vehicles	10	15	96	1434
24th Inf Div	67	22	131	2871
lst Bn, 70th Armor	33	22	127	2792
2d Bn, 70th Armor	34	22	134	2947
Total	640	21	130	2739

TABLE 4 Usage of USAREUR M113 APCs in RAC Sample

Unit	Vehicles	Average months in service	Average miles per month	Average tota mileage
24th Inf Div	357	18	164	2945
3d Bde	7	14	173	2418
lst Bn, 19th Inf	68	18	132	2382
lst Bn, 21st Inf	82	18	157	2830
2d Bn, 21st Inf	72	17	174	2957
1st Bn, 34th Inf	31	18	158	2840
3d Bn, 19th Inf	78	21	174	3656
2d Bn, 34th Inf	19	20	139	2772
3d Armd Div	185	18	155	2796
3d Bn, 33d Armor	14	14	108	1506
lst Bn, 33d Armor	17	14	129	1806
3d Bn, 36th Inf	61	20	155	3097
lst Bn, 48th Inf	27	19	189	3583
2d Bn, 48th Inf	66	16	170	2726
4th Armd Div				
51st Inf	63	14	111	1557
2d Armd Cav Regt	64	17	116	1964
lst Bn, 2d Armd Cav Regt	20	17	128	2184
2d Bn, 2d Armd Cav Regt	23	18	110	1973
3d Bn, 2d Armd Cav Regt	21	16	109	1744
14th Armd Cav Regt	38	22	100	2206
lst Bn, 14th Armd Cav Regt	19	23	98	2265
2d Bn, 14th Armd Cav Regt	19	20	107	2147
Total	707	18	147	2654

Ser.

RAC-T-465

FOR OFFICIAL USE ONLY

1 -

The main sources of data are summarized in Table 5. A detailed discussion of the information obtained from these sources is presented in RAC-T-460.¹

TABLE 5

Main Sources of Data Collected

DA form	Information extracted
2408-1	Daily vehicle record of miles and/or hours operated; fuel and oil consumed; month-by-month summary of vehicle operation
2408-3-1	Repair parts replaced, repaired, and adjusted by organi- zational (second-echelon) personnel
2408-6	Field maintenance (third-echelon) repair and parts replacement
2408-7	Issue date of vehicle to unit; transfer date of vehicle from unit
2407	Requests by organizational units for field maintenance services, repairs, and modification work orders

ň

RAC-T-465

FOR OFFICIAL USE ONLY

Chapter 2

DEVELOPMENT OF REPLACEMENT RATES

SIGNIFICANCE OF TIME-DEPENDENT FAILURE RATES

Consumption data can be utilized to project parts requirements in a number of ways. One of the simplest is calculating a replacement factor for the part in question. This factor represents number of replacements per vehicle/ period of observation. The period observed may be expressed in such terms as months, miles, rounds fired, or landings made. For example, if consumption data showed that an average of 0.30 M60-tank-engine replacements were made per tank during a given 12-month period, the replacement factor would be 0.30 replacement/12 months or 0.025 per month. A simple projection of these data could then be made as follows:

Replacement factor x number of vehicles x time period = parts of part x using the part x studied = required

If the hypothetical M60-tank-engine replacement factor were projected for a fleet of 2000 tanks for a 2-year period of use, the number of engines replaced would be

$0.30/12 \times 2000$ tanks $\times 24$ months = 1200 engines.

The replacement factor of a part may also be expressed as its mean life by simply inverting the fraction. In the example given above the replacement factor 0.30 replacement/12 months becomes 12 months/0.30 replacement, or a mean life of 40 months. This mean life may then be used to calculate requirements for a 24-month period as follows:

> (2000 tanks × 24 months) + 40 months mean life = 1200 engines. per tank engine

For parts that experience a constant replacement factor regardless of age or utilization this type of projection is accurate. However, if the replacement factor of a part increases as the vehicle ages in time or use, procurement based on this method of forecasting could fall seriously short of the needs that actually exist at the time the parts are received from the manufacturer.

This problem can be illustrated by an analysis, shown in Fig. 2, of the failure experience of M60 tank generators in USAREUR. In this figure mathematical techniques described in Chap. 3 are used to translate individual

10

RAC-T-465

FOR OFFICIAL USE ONLY

the to a sugar state

replacement factors (represented by dots) into a "curve" for the entire mileage range. From this curve it can be seen that at 1000 miles the replacement factor is 0.007, or 7 generators per 1000 vehicles per 100 miles. By 3000 miles this replacement has increased to 0.009, or 9 generators per 1000 vehicles per 100 miles, an increase of nearly 30 percent.

Fig. 2—Replacement Factors for USAREUR M60 Tank Generators

Delays in the procurement and delivery of repair parts (administrative lead time, production lead time, and delivery lead time) are recognized factors in the management of parts supply. When these delays are accompanied by an age- or use-dependent failure rate for the repair part in question, sensitive forecasting of future requirements will require the answers to two major' questions:

(a) What is the pattern of replacement frequency as the vehicle ages in time or use?

(b) What will be the age and/or mileage distribution of the fleet by the time the parts actually enter the supply system?

Methods of determining the answer to question a constitute the major subject matter of this chapter. Question b is discussed in Chap. 4.

COMPUTATION OF TIME-DEPENDENT REPLACEMENT RATES

The IBM 7040 computer routine described in detail in App A was used to compute the parts-replacement rates used in this study. The method used may be expressed as the fraction

RAC-T-465

FOR OFFICIAL USE ONLY

Number of replacements number of vehicles available to experience replacement

In this analysis the primary usage measure was that of mileage traveled; any pertinent measure of utilization (e.g., months, rounds fired, operating hours, or landings) could be used.

The basic information used in computing these failure rates is shown in two types of tables: the events table for the numerator of the rate fraction and the vehicle-sample density table for the denominator. An illustrative example of each is discussed below. This discussion and Tables 6 to 11 are based on a hypothetical fleet of 640 vehicles that experience replacements of repair part X.

Events Table

Table 6 shows a hypothetical example of an events table for repair part X. Usage intervals are delineated in hundreds of miles. The columns for first, second, and third order of replacement indicate whether part X is being replaced for the first, second, or third time. The numbers appearing in these columns therefore indicate how many replacements occurred at what mileage and what order of replacement each was.

TAE	S L, E	E 6	

Hypothetical Example of Events Table: Replacements of Repair Part X

Usage	Order of replacements							
interval, miles (1)	1st (2)	2d (3)	3d (4)	Total (5)				
0-100	2	0	0	2				
101-200	6	0	0	6				
201-300	5	0	0	5				
301-400	12	1	0	13				
401-500	16	3	0	19				
501-600	28	4	0	32				
601-700	27	7	2	36				
701-800	32	6	1	39				
801-900	42	9	1	52				
901-1000	50	10	2	62				

This table could also have been based on the number of maintenance actions instead of the number of parts replaced. For some types of studies (for example, those dealing with vehicle reliability) frequency of maintenance activity is of greater interest than the number of parts utilized. An events table showing number of job orders would be an important input for such an analysis.

Vehicle-Sample Density Table

The denominator of the replacement-rate fraction is the number of vehicles eligible to experience replacement. This denominator is not always the

12

RAC-T-465

same as the total number of vehicles in the sample fleet; two forces operate to reduce it at higher usage intervals.

(a) When a vehicle experiences a first replacement of part X in the 0-100 mile interval, it cannot experience a first replacement of this part at any higher mileage. This fact is demonstrated in Table 7, using the replacement distribution shown in Table 6. Table 7 assumes that all 640 vehicles in the observed

TABLE 7	
---------	--

Decrease in	Vehicles	Eligible To Experience First Replacement of	
Part X:	Because	First Replacement Has Already Occurred	

Usage interval, miles	Number of first- order replace- ments during usage interval	Number of vehicles that have not yet experi- enced first-order failures at beginning of usage interval	Cumulative decrease ir number eligible for first-order failures at beginning of usage interval
0-100	2	640	0
101-200	6	638	2
201-300	5	632	8
301-400	12	627	13
401-500	16	615	25
501-600	28	599	41
601-700	27	571	69
701-800	32	544	96
801-900	42	512	1.28
901-1000	50	470	170

fleet travel at least 1000 miles. Since two vehicles have first replacements of part X during the first 100 miles, the table shows that only 638 of the 640 could experience first replacements between 101 and 200 miles. Another six have first replacements of this part between 101 and 200 miles; only 632 could therefore experience first replacements between 201 and 300 miles. By the 901 the 1000-mile usage interval only 470 vehicles out of a total fleet of 640 are eligible to experience first replacements of part X since 170 have already done so at earlier mileages.

(b) Even if there had been no replacements of part X up to 1000 miles, the number of vehicles available for observation at that mileage would still be less than the original 640 because some vehicles would not have traveled that far (see Table 8). In most vehicle samples all vehicles have not traveled the same number of miles; at the higher mileages the vehicle sample is therefore smaller than at the lower mileages. Table 8 illustrates the effect of this factor on vehicle-sample density. In this example all 640 vehicles had traveled at least 301 miles. One vehicle, however, had traveled more than 301 but less than 400 miles; the sample therefore dropped to 639 for the 301-400-mile usage interval. Only 634 out of 640 vehicles had traveled at least 901 miles, a decrease of six in the number of vehicles available for observation.

Table 9 combines selected portions of Tables 7 and 8 to show how the two forces described above combine to affect the number of vehicles eligible to experience a first replacement of part X at various mileage intervals. Column 2

RAC-T-465

FOR OFFICIAL USE ONLY

ABLE 8

Decrease in Vehicles Available To Experience First Replacement of Part X: Because Mileage Accumulation Is Insufficient

Usage interval, miles	Vehicles with last observed mileage occurring during usage interval	Vehicles observed that have traveled this mileage or more	Cumulative decrease in sample size
0-100	0	640	0
101-200	0	640	0
201-300	0	640	0
301-400	1	639	1
401-500	0	639	1
501-600	1	638	2
601-700	2	636	4
701-800	0	636	4
801-900	1	635	5
901-1000	1	634	6

TABLE 9

Decrease in Vehicles Eligible To Experience First Replacement of Part X: Because First Replacement Has Already Occurred or Mileage Accumulation Is Insufficient

	Cumulative decrease to experience first		-	Vehicles eligible	Vehicles observed and
Usage interval, miles (1)	Because vehicle has experienced first replacement in preceding usage intervals (2)	Because of insufficient mileage (3)	Total (4)	to experience first replacement, 640 – (3), R _{s/e} denominator (5)	available to experi- ence replacement, 640 - (2), $R_{\alpha/o}$ denominator (6)
i	<u> </u>		L	L	l
0-100	0	0	0	640	640
101 - 200	2	0	2	638	640
201 - 300	8	0	8	632	640
301-400	13	1	14	626	639
401-500	25	1	26	614	639
501-600	41	2	43	597	638
601-700	69	4	73	567	636
701-800	96	4	100	540	636
801-900	128	5	133	507	635
901-1000	170	6	176	464	634

shows the loss to the sample because first replacement of the part has already occurred; col 3 shows the loss because of insufficient accumulation of mileage. Column 4 is the total of the preceding two and represents the total decrease in the number of vehicles eligible for both reasons. In the actual computational technique, any given vehicle is dropped from the "eligible to experience firstorder replacement" category for either of these two reasons, whichever occurs first.

Columns 5 and 6 represent two possible denominators that could be used in calculating replacement rates. Two major types of replacement-rate calculations are discussed in this chapter; for any given usage interval either type

14

RAC-T-465

FOR OFFICIAL USE ONLY

the state of the s

of rate can be computed. The distinction between these two types of replacement rates is an important one and can best be remembered in terms of the letters in the subscripts.

 $R_{s/e}$ is a replacement rate based on a specific order of replacement (first, second, or third, etc.). In the subscript the numerator s stands for the <u>specific</u> order of replacement; the denominator e refers to the number of vehicles <u>e</u>ligible to experience this given order of replacement during the specified usage interval.

 $R_{a/o}$ is a replacement rate based on all orders of replacement combined. In this case the subscript numerator *a* stands for all orders of replacement; the denominator *o* refers to the number of vehicles <u>observed</u> at each mileage interval.

Column 5 shows the number of vehicles eligible to experience a first replacement of part X at various mileages. It is an $R_{s/c}$ denominator and represents 640 vehicles minus the decrease in sample size for the reasons illustrated in Tables 7 and 8. By the 901-1000-mile interval 176 vehicles had dropped out of the sample: 170 vehicles because they had already experienced first failures, and 6 because they had not accumulated sufficient mileage. The number still eligible to experience a first replacement is therefore 464 vehicles: 640 minus 6 minus 170. Column 6 shows the number of vehicles available to experience a replacement of part X regardless of replacement order. It is an $R_{a/o}$ denominator and represents 640 vehicles minus the number of vehicles that have dropped out of the sample because of insufficient mileage. By the 901-1000-mile interval this number is 640 minus 6, or 634 vehicles.

By combining the information in Tables 6 and 8 according to the procedure illustrated in Table 9 it is possible to prepare a vehicle-sample density table showing the denominators to be used in replacement-rate calculations. Table 10 shows a hypothetical example of such a table for repair part X. Columns 2, 3, and 4 represent $R_{s/e}$ denominators for first-, second-, and third-order replacements of part X. Column 5 is the $R_{a/o}$ denominator for the same fleet.

The calculation of replacement rates is then a matter of dividing the replacement-events data shown in Table 6 by the vehicle-sample density data in Table 10. Examples of the two major types of calculations are given below.

 $\frac{R_{s/e}}{R_{s/e}}$ Rate for a Specific Order of Replacement. The replacement rate for first-order replacements of part X for the mileage range 701-800 miles is obtained by determining

Number of first replacements, $\frac{701-800\text{-mile interval}}{\text{number of vehicles that have}} = \frac{\text{col } 2, \text{ Table } 6}{\text{col } 2, \text{ Table } 10} = \frac{32}{540} = 0.0593$ not yet experienced first replacement, 701-800mile interval

 $R_{a/o}$ Rate for All Orders of Replacement Combined. The replacement rate for all orders or replacement of part X for the mileage range 701-800 miles is obtained by determining

Number of replacements of all orders, 701-800-mile interval number of vehicles observed and available to experience any order of replacement, 701-800-mile interval

 $\frac{\text{col 5, Table 6}}{\text{col 5, Table 10}} = \frac{39}{636} = 0.0613$

RAC-T-465

FOR OFFICIAL USE ONLY

Table 11 shows the results of $R_{s/e}$ and $R_{a/o}$ replacement-rate calculations for part X for various mileage intervals. Each rate shown in Table 11 represents the division of the replacement-events data from Table 6 by the corresponding vehicle density from Table 10.

TABLE 10

Hypothetical Example of Vehicle Sample Density Table: Vehicles Available for Replacements

Usage interval, miles	yet sp re	es that have not experienced ecific-order placement, denominators		Vehicles observed and available for replacements, R _{a/o} denominator
(1)	1st (2)	2d (3)	3d (4)	(5)
0-100	640	640	640	64
101-200	638	640	640	× 156
201-300	632	640	640	£-40
301-400	626	639	639	650
401-500	614	638	639	00-
501-600	597	634	638	638
601-700	567	628	636	636
701-800	540	621	634	636
801-900	507	614	632	635
901-1000	464	604	630	634

R _{s/e} c	$R_{s/e}$ and $R_{a/o}$ Replacement Rates for Part X					
Usage interval.		R _{s/e}		R _{a/o}		
miles (1)	¹ st (2)	2d (3)	3d (4)	(5)		
0-100	0.0031	0.0000	0.0000	0.0031		
101-200	0.0094	0.0000	0.0000	0.0094		
201-300	0.0079	0.0000	0.0000	0.0078 ^a		
301-400	0.0192	0.0016	0.0000	0.0203		
401-500	0.0261	0.0047	0.0000	0.0297		
501-600	0.0469	0.0063	0.0000	0.0502		
601-700	0.0476	0.0111	0.0031	0.0566		
701-800	0.0593	0.0097	0.0016	0.0613		
801-900	0.0828	0.0147	0.0016	0.0819'1		
901-1000	0.1078	0.0166	0.0032	0.0978 ^ª		

TABLE 11

^aThe $R_{a/o}$ replacement rate (for all orders of replacement) may be slightly lower than the $R_{s/e}$ rate (for a specific order of replacement) because the two rates have different denominators as well as numerators.

RAC-T-465

FOR OFFICIAL USE ONLY

TABLE 12

Occurrence of Replacements, Available Vehicles, and $R_{s/e}$ and $R_{a/o}$ Replacement
Rates for USAREUR M60 Tank Engines, by Mileage Interval

Usage interval,	Re	place	emer	nt s	yet		at have nced th ements		Vehicles available to experience		R,	/e		R _{a/o}
miles (1)	1 st (2)	2d (3)	3d (4)	4th (5)	l st (6)	2d (7)	3d (8)	4th (9)	replacement (10)	1st (11)	2d (12)	3d (13)	4th (14)	(15)
0-100	2	0	0	0	639.0	639.0	639.0	639.0	639,0	0.003	0.	0.	0.	0.003
101-200	2	0	0	0	635.7	639.0	639.0	639.0	639.0	0.003	0.	0.	0.	0.003
201-300	4	0	0	0	632.2	638.0	638.0	638.0	638.0	0.006	0.	0.	0.	0.006
301 - 400	4	1	0	0	627.7	636.8	637.0	637.0	637.0	0.006	0.002	0.	0.	0.008
401-500	3	1	0	0	623.0	633.5	634.6	634.6	634.6	0.005	0.002	0.	0.	0.006
501-600	7	0	0	0	616.2	632.0	634.0	634.0	634.0	0.011	0.	0.	0.	0.011
601-700	1	0	0	0	611.1	630.9	632.9	632.9	632.9	0.002	0.	0.	0.	0.002
701-800	4	0	0	0	606.7	629.0	631.0	631.0	631.0	0.007	0.	0.	0.	0,006
801-900	3	0	0	0	601.1		630.0	630.0	630.0	0.005	0.	0.	0.	0.005
901-1000	5	0	0	0		628.0		630.0	630.0	0.008	0.	0.	0.	0.008
1001-1100	-4	0	0	0	591.9		628.8		628.8	0.007	0.	0.	0.	0.006
1101-1200	1	0	0	0	589.3		628.0		628.0	0.002	0.	0.	0.	0.002
1201-1300	5	0	0	0	583.1		625.9	625,9	625.9	0.009	0.	0.	0.	0.008
1301-1400	6	1	0	0	573.7		621.7	621.7	621.7		0.002	0.	0.	0.011
1401-1500	8	0	0	0	564.4		619.2	619.2	619.2	0.014	0.	0.	0.	0.013
1501-1600	9	2	0	0	553.4		614.6	614.6	614.6		0.003	0.	0.	0.018
1601-1700	15	2	0	0	538.6		608.7	608.7	608.7		0.003	0.	0.	0.028
1701-1800	10	1	0	0	510.1	594.7	602.6		602.6		0.002	0.	0.	0.018
1801-1900	20	3	0	0		586.3	596.3	596.3	596.3		0.005	0.	0.	0.039
1901-2000	8	-4	1	0	478.7	570.0	580.9	581.1	581.1	0.017		0.002	0.	0.022
2001-2100	15	1	0	0			562,6		562.6		0.002	0.	0.	0.028
2101-2200	12	3	1	0	433.1	530.7	544.1	544.1	544.1	0.028	0.006	0.002	0.	0.029
2201-2300	9	1	0	0		500.4		513.5	513.5		0.002	0.	0.	0.019
2301-2400	14	5	1	0	359.2	448.7		460.9	460.9		0.011	0.002	0.	0.043
2401-2500	12	1	0	0	309.3	395.5	407.0		409.0		0.003		0.	0.032
2501-2600	11	0	1	0	255.9	339.1	350.6		353.1			0.003	0.	0.034
2601-2700	5	4	0	0	211.0	298,5		312.4	312.4	0.023	0,013		0.	0.029
2701-2800	6	4	1	0	189.2	258.0	271.4		273.7	0.032	0.016	0.004	0.	0.040
2801-2900	6 3	$\frac{1}{2}$	0 0	1 0	163.9	224.3 202.8	239.3 215.8	240.4 215.8	240.4 215.8		0.004		0.001	$0.033 \\ 0.023$
2901-3000	4	2	0	0		179.8	189,1	189,1	189,1	0.020	0.010	0.	0.	0.025
3001-3100 3101-3200	2	2	0	0		155.3	162.4	162.4	162.1		0.013		0.	0.021
3201-3300	1	2	0	0	95.6	128.2	134.5	134.5	134.5	0.010		0.	0.	0.023
3301-3400	3	1	0	0	77.9	104.2	109.3	109.3	109.3	0.039	0.010	0.	0.	0.022
3401-3500	4	0	0	0	70.7	92.6	97.6	97.6	97.6	0.057	0.010	0.	0.	0.041
3501-3600	1	0	0	0	60.2	82.2	86.5	86.5	86.5	0.017	0.	0.	0.	0.012
3601-3700	1	1	0	0	52.1	70.8	75.2	75.2	75.2	0.019	0.014	0.	0.	0.012 0.027
3701-3800	2	0	0	0	43.0	57.5	61.5	61.5	61.5	0.047	0.0.1	0.	0.	0.033
3801-3900	1	0	0	0	36.8	48.6	51.6	51,3	51.3	0.027	0.	0.	0.	0.019
3901-4000	0	0	ĩ	0	32.3	42.1	14.1	44.1	44.1	0.021	0.	0.023	0.	0.023
4001-4100	1	ĩ	0	0	26.2	34.9	37.0	37.0	37.0	0.038	0.029	0.020	0.	0.054
4101-4200	0	0	Ő	0	20.6	26.7	29.0	29.0	29.0			0.	0.	0.000
4201-4300	ĩ	0	0	0	16.1	19.4	20.4	20.4	20.4	0.062	0.	0.	0.	0.049
4301-4400	0	0	ŏ	Ő	10.6	14.4	15.4	15.4	15.4	0.	0.	0.	0.	0,000
Sum	235		6	1										

RAC-T-465

17

Table 12 shows USAREUR M60-tank-engine replacement rates calculated by the procedure described above. The total sample is composed of 639 tanks. The decline in numbers of tanks shown in cols 6 to 10 of Table 12 reflects both factors that reduce the denominators (i.e., occurrence of engine replacement and insufficient tank mileage). Because this routine accumulates vehicle usage in tenths of usage intervals completed, the vehicle-sample densities shown are not whole numbers. The computer routine developed to perform calculations such as these is described in App A. Tables for selected M60 tank and M113 APC parts are contained in App B.

.

RAC-T-465

FOR OFFICIAL USE ONLY

Chapter 3

PROJECTION OF REPLACEMENT RATES

ALTERNATIVE METHODS

Once replacement rates have been determined for each usage interval (each 100 miles of operation in Table 12), the next step is to establish a means of projecting these rates into the future.

One method of projecting rates and estimating parts replacements frequently used by RAC analysts is based on a collection of mathematical techniques referred to as "renewal theory."⁹ The use of this methodology depends on being able to calculate replacement rates of the $R_{s/c}$ type described in Chap. 2. The calculation of $R_{s,c}$ rates in turn depends on being able to identify first-, second-, third-, and higher-order replacements. If information is available only for first-order replacements, certain assumptions are made about the rate at which second-, third-, fourth-, and higher-order replacements will occur. For example, assumptions could be made that replacement parts will furnish 50, 75, or 100 percent of like-new performance; the parts needs resulting from the application of these different assumptions can then be compared. A RAC technical paper¹⁰ describes in detail the methodology of this forecasting technique and utilizes it in the prediction of engine requirements for the USAREUR M60 tank fleet during the period 1964 to 1967.

It is usually difficult to identify the order of replacement of a given part, however. In the first place this identification requires data extending back to the original issue of the end item on which the part is found; such information is frequently not available for end items that have been in the supply system for a protracted period. In the second place, considerable hand editing is frequently required in the analysis of data of this type. Since the objective of this study is to develop automated forecasting techniques that can readily be applied to the large volumes of data in the TAERS data bank, simplified mathematical techniques based on $R_{d/0}$ rather than $R_{s/c}$ replacement rates were developed.

In developing a means of projecting either of these replacement rates into the future, the two basic steps involved are (a) combining the observed replacement rates for each usage interval into a mathematical equation and (b) using this equation to forecast replacement-rate patterns. This chapter describes these two steps as applied to USAREUR M60 tank engine data.

RAC-T-465

FOR OFFICIAL USE ONLY

TRANSFORMATION OF DATA INTO MATHEMATICAL EQUATIONS

In Chap. 2, USAREUR M60 tank-engine replacement data and rates for various mileage intervals were shown in Table 12. Figure 3 shows these same replacement rates in graphic form.

Fig. 3—Ra/o Replacement Rates of USAREUR M60 Tank Engines

There are several methods of transforming such individual data points into a single mathematical equation. One of the most commonly utilized is the least squares technique. Its application produces the single "curve" (not necessarily curved in shape) of a particular type that best fits the individual data points; the curve of best fit is considered to be the one for which the sum of the squares of the distances between the data points and the curve is a minimum.

For data points fitted to a straight line, Fig. 4 illustrates the least squares technique. A, B, C, D, and E represent data points. The straight line pq results from the application of the least squares technique. The letters a, b, c, d, and e represent the distance between the data points and the straight line. The position of the line is such that if one squares each distance (i.e., $a \times a, b \times b$, $c \times c, d \times d$, and $e \times e$) and adds the squared distance figures together, the sum is smaller than for any other straight line that can be drawn through the data points.

In addition to the straight line, other types of curves can be fitted to the data. Four of the most common types of curves are illustrated in Fig. 5. The linear, log-log, and semilog curves have been developed through the application of least squares techniques.

FOR OFFICIAL USE ONLY

RAC-T-465

Fig. 4—Illustration of Linear Curve Fitted to Data Points by Least Squares Technique

<u>Constant Replacement-Rate Curve</u>. The simplest of all possible types of curves expresses replacement rates as a constant or average rate over the mileages observed. From Fig. 5a it is evident that this type of curve is a rather poor representation of engine-replacement activity. All observations from 0 to 1600 miles fall below the average rate of replacement, whereas all observations between 1600 and 3200 miles equal or exceed the average. (The degree of scatter is greater above 1600 miles than below because of the reduction in the number of tanks observed at the higher mileages.

<u>Linear Replacement-Rate Curve</u>. In Fig. 5b the $R_{a/o}$ replacement-rate curve is expressed as the straight line that best fits the data according to least squares criteria. The slope of the line indicates that the rate of engine replacement tended to increase over the range of mileages observed.

<u>Log-Log Replacement-Rate Curve</u>. Another common type of mathematical relation to which the individual replacement rates can be fitted is the log-log curve, also called the double-log curve. At first sight the log-log curve for the USAREUR M60-tank-engine data looks quite similar to the linear curve. However, a closer examination of Fig. 5c reveals that the $R_{a,b}$ replacement rate is increasing at a constant rate for the linear relation but is increasing at a decreasing rate for the log-log curve.

<u>Semi-Logarithmic Replacement-Rate Curve.</u> A fourth kind of mathematical expression that can be used to summarize the replacement-rate experience observed is a semi-logarithmic (semi-log) type curve. A semi-log curve fitted to the USAREUR M60 tank data indicates that the $R_{a,o}$ replacement rate for tank engines is increasing at an increasing rate (see Fig. 5d).

PROJECTION OF REPLACEMENT-RATE PATTERNS

The elementary types of replacement-rate curves discussed above are summarized in Table 13.

RAC-T-465

21

22

RAC-T-465

TABLE 13

Elementary Types of Replacement-Rate Curves Considered for USAREUR M60-Tank-Engine Data

Type of rate of	curve considered	De las modernel
Common name	Math notation	Replacement trend
Average	$R_{a/o} = A$	Constant
Linear	$\mathbf{R}_{a/o} = \mathbf{A} + \mathbf{B}\mathbf{x}$	Increasing at constant rate
Log-log	$R_{a/o} = Ax^B$	Increasing at decreasing rate
Semilog	$R_{a/o} = AB^{x}$	Increasing at increasing rate

Other types of replacement equations could also have been considered, of course, but the elementary ones shown are descriptive of a wide variety of replacement activity. Where more sophisticated types of equations are considered more applicable than those listed in Table 13 and when the quality of the data is known to warrant their use, the computer program described in Chap. 4 and App D of this study can be adapted to reflect more complex replacement patterns.

In projecting observed . eplacement-rate experience into future time periods, it must be decided which of the types of curves shown in Fig. 5 and Table 13 are most suitable. One method of selection might be to choose the type of curve that most closely fits the data during the period observed. On this basis the semi-log curve (Fig. 5d) would be selected. But a projection of the semi-log rate for another 3200 miles would indicate that by 6400 miles 37 of 100 tank engines would require replacement per 100 miles of operation, a rate of replacement that appears much too high. For this reason and because the constant replacement rate may greatly understate replacement activity, the log-log and linear equations have been given primary attention in the analysis that follows. Two other factors also lend support to the selection of log-log and linear curves: (a) vehicle components that experience aging frequently appear to follow log-log type behavior, and (b) linear projections provide a widely accepted kind of replacement estimate to compare with log-log projections.

Once the appropriate mathematical equation(s) has been selected, projection to future mileages is a relatively simple matter of extending the replacement curves on the basis of the pertinent equation. Appendix C provides replacement-rate information for linear and log-log equations for selected M60 tank and M113 APC repair parts. The repair-parts replacement rates for individual usage intervals presented in App B were used as inputs into a least squares statistical analysis routine to develop the information furnished in App C.

RAC-T-465

FOR OFFICIAL USE ONLY

Chapter 4

ESTIMATION OF EXPECTED NUMBER OF PARTS REPLACED

INTRODUCTION

Chapter 2 discussed techniques utilized in determining parts-replacement rates; Chap. 3 explained the method used in this study to project replacement rates into the future. The final step is that of developing techniques for applying these projections to a given vehicle fleet for a specified time period in the future. The result of this application will be an estimate of the quantity of a given repair part that will be needed during this future time period; the estimate will reflect both the mileage distribution of the fleet and the mileagedependent replacement rate for the part, projected from past maintenance experience. A detailed description of the computer routine Expected Number of Replacement Actions, developed to produce this estimate, is found in App D. This chapter provides a nontechnical description of the mathematical principles incorporated into the routine.

Table 14 represents a hypothetical example that illustrates the principle of how replacement rates and end-item usage distributions are combined. This table assumes a fleet of 60 vehicles that use part X; the vehicles travel an average of 100 miles/month.

TABLE 14 Expected Replacements of Part X Required for Fleet of 60 Vehicles during Current 1-Month Period (Rate of utilization 100 miles/month)

Usage interval, miles (1)	Vehicles using part X (2)	R _{a∕o} replace- ment rate (3)	Intervals for which estimate was made (4)	Estimated replace- ments (5) = (2) × (3) × (4) (5)
0-100	5	0.02	1	0.10
101-200	10	0.03	1	0.30
201-300	15	0.04	1	0.60
301-400	15	0.05	1	0.75
401-500	10	0.06	1	0.60
501-600	5	0.07	1	0.35
Total	60			2.7 2 3

24

RAC-T-465

Column 1 shows the various usage intervals expressed in miles. Column 2 shows the number of vehicles in each mileage interval; it is assumed that this distribution is based on current information. Column 3 gives the $R_{a/o}$ replacement rate for each mileage interval, rates derived by the techniques described in Chap. 2. Column 4 indicates that in this table the parts needs are being calculated for only one interval, i.e., for 100 miles or 1 month. Column 5 represents the number of replacements of part X expected for the entire fleet during this 1-month period. It is computed by multiplying cols $2 \times 3 \times 4$ for each usage interval and then adding the products together to obtain a total figure for the entire fleet. In this case a total of three replacements of part X would be expected during the current 1-month period.

It must be recognized, however, that information about fleet mileage distribution is usually not available at the NICP level on a current basis; the outof-date mileage distribution must therefore be updated, usually on the basis of average rates of utilization observed for the fleet over a recent period of time. Table 15 illustrates how the computer technique handles this updating problem

TABLE 15

Updating of Mileage Distribution of Vehicles Using Part X Based on End-Item Usage Information Obtained 3 Months Ago

(Rate of utilization 100 miles/month)

Usage interval, miles	Vehicles using part X 3 months ago	Vehicles using part X today
0-100	5	
101 - 200	10	
201-300	15	
301-400	15	5
401-500	10	10
501-600	5	15
601-700		15
701-800		10
801-900		5
Total	60	60

for a hypothetical 60-vehicle fleet. In this case it is assumed that the latest available information on fleet mileage distribution is 3 months old. The average rate of utilization for the fleet during the last year has been 100 miles/ month, and in the absence of contravening usage directives it is assumed that this rate has continued during the last 3 months. The updating therefore becomes a relatively simple matter of shifting the entire distribution 300 miles forward, as shown by the arrows leading from the second to the third column in Table 15. Such an updating technique assumes that there is effective command control of utilization and that there is no increment or loss in the vehicle sample.

The numbers in the last column of Table 15 represent the mileage distribution of the hypothetical vehicle fleet projected to the present. In most cases,

RAC-T-465

25

however, the decision to procure a given part is made a considerable time before it is expected that the parts ordered will actually enter the supply system. It is therefore important to know what the mileage distribution of the fleet will be at that future date, for the condition of the fleet at that time will affect the need for parts.

Another step of mileage-distribution data updating is there lore incorporated into the computer routine developed by this study; this routine is illustrated for the hypothetical 60-vehicle fleet in Table 16.

Column 2 shows the present mileage distribution of the fleet. The estimate of need for part X is to be developed for an average of 900 miles of vehicle use beginning 8 months from the present. The future rate of utilization cannot be determined precisely; the average rate in the past, seasonal variations, and changes in official policy must be considered. For purposes of illustration it is assumed that in this case average utilization during the next 8 months will be 75 miles/month. (This change from the previous average of 100 miles/month demonstrates the capability of the computer routine to handle different utilization rates in each of the two updating steps.)

The arrows leading from col 2 to col 3 in Table 16 show the change in fleet mileage distribution that occurs during an 8-month period if utilization averages 75 miles/month: the entire distribution moves 600 miles forward. Linear projections of Table 14 replacement rates are shown in cols 4 and 5.

Usage interval, miles Vehicles using part X today Vehicles using part X 8 months in future (3) 0-100 (2) (3) 0-100 (2) (3) 0-100 101-200 (3) 00-100 101-200 (3) 00-100 10 5 101-200 10 5 201-300 10 5 301-400 5 401-500 501-600 15 601-700 501-800 10 5 901-1000 5 10 1001-1100 10 10	R _{a/o} r Beginning of forecast period (4)	End of forecast period (5)	t rate Average for forecast period (6)	Intervals ^a for which estimate r ude (7)	Estimated replace- ments for 900 miles (12 months), begin- ning 8 months in future 7 - 2×5×6 (8)
interval, miles using part X today part X 8 months in future (3) 0-100 (2) (3) 0-100 (2) (3) 0-100 (3) (3) 0-100 (1) (2) (3) 0-100 (3) (3) (3) 0-100 10 (3) (3) 0-100 5 (3) (3) 0-100 5 (3) (3) 0-100 5 (3) (3) 0-100 5 (3) (3) 0-100 5 (3) (3)	forecast period (4)	forecast period	forecast period	estimate rrwde	(12 months), begin- ning 8 months in future 7 - 2×5×6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	<u> </u>			
1101-1200 1201-1300 1301-1400 1401-1500 Total	0.11 0.12 0.13 0.14 0.15	0.20 0.21 0.22 0.23 0.24 0.25	0.155 0.165 0.175 0.185 0.195 0.205	9 9 9 9 9 9	6.975 14.850 23.625 24.975 17.550 9.225

TABLE 16

Expected Replacements of Part X Required for Fleet of 60 Vehicles for 900 Miles of Use, Beginning 8 Months from Present Date

^aEach interval represents 100 miles. Nine intervals 900 miles or 12 months at 75 miles per month.

26

RAC-T-465
Columns 4, 5, and 6 show the $R_{a\ o}$ rates at the beginning of the forecast period, the rates at the end of the period, and the average rates for the entire forecast period, respectively. These rates are used in calculating estimated replacements because they reflect the fleet aging that occurs during the forecast period itself. Column 7 indicates that parts needs are to be forecast for nine intervals of 100 miles each; this situation represents 900 miles of use or 12 months of time if utilization is 75 miles/month. Column 8 shows the estimated number of parts required for this fleet during 12 months or 900 miles of use. The figures in col 7 are obtained by multiplying cols $3 \times 6 \times 7$, giving a total of 98 replacements for the entire fleet.

COMPUTER INPUT AND OUTPUT

In the previous section of this chapter a hypothetical example was used to demonstrate the steps by which the Expected Number of Replacement Actions Routine produces an estimate of needs for part X during a future period of time.

This section will give examples of actual computer input and output, i.e., the information format submitted to and the report format obtained from the computer routine developed by this study.

Information Format

Figure 6 is an example of the information format that serves as a computer input. Each line is described below.

- 1. Name and Federal Stock Number (FSN) of end item on which the part is used.
- 2. Name and FSN of repair part for which the forecast is being made.
- 3. Organization for which the parts forecast is being made. The computer routine automatically selects and utilizes pertinent stored data on replacement rates and end-item usage distributions.

Fig. 6--Example of Computer Input Information Format in Estimating Parts Replacement

Forecast of repair-parts consumption: estimated number of parts replaced.

^aIn this case engines with two different FSNs were used in the M60 tank. For the purpose of replacement analysis the two were combined.

RAC-T-465

FOR OFFICIAL USE ONLY

- 4. Beginning of the period for which parts needs will be forecast, expressed as a Julian date.* In this example the forecast period begins 1 October 1964 (Julian date: 4275).
- 5. Duration of forecast period. In this example parts needs are forecast on the basis of miles; the duration could, however, be expressed in months, rounds fired, operating hours, landings made, or any other suitable measure of usage.
- 6. Unit of measure used to describe duration of period for which the forecast is being made. In this example it is miles, but it could be any of the usage measures listed in 5.
- 7. The size of the usage interval for which end-item distribution is obtained and for which separate parts-replacement rates will be calculated. In this case 100-mile intervals corresponding to those of Tables 14, 15, and 16 were used.
- 8. Julian date on which study is undertaken, in this example 1 August 1964 (4214).
- 9. Julian date on which latest end-item inventory was made—in this case the date of latest information on the mileage distribution of the M60 tank fleet, 1 July 1964 (4183). This date is usually earlier than the date of the study shown in 8, since completely current information of this type is not custom-arily available.
- 10. Rate of utilization used to update fleet mileage distribution from time of latest inventory (1 July 1964) to the date of the study (1 August 1964). This is the type of figure used in performing the updating demonstrated in Table 15 earlier in this chapter.
- Rate of utilization used to project the fleet mileage distribution from the date of the study (1 August 1964) to the beginning of the forecast period (1 October 1964). This is the type of figure used in performing the second updating that was demonstrated in Table 16 earlier in this chapter.

Report Format

Figure 7 is an example of the Expected Parts Replacement Report produced by the computer when using the routine developed by this study. Since this report is printed by the computer immediately after the information shown in Fig. 6, there is no need to repeat identification of end item, part, organization, etc.

Line 1 shows that this estimate is based on $R_{a,v}$ replacement rates for tank engines rather than the $R_{s,v}$ rate; both of these rates and the reason for using the $R_{a,v}$ rate were discussed in Chap. 2.

Line 2 indicates that the projection of replacement rates was performed on the basis of a log-log curve, as discussed in Chap. 3.

Lines 3 and 4 represent the numerical values for A and B, the constants in the log-log replacement-rate equation (see Table 13). The values for A and B were computed by employing least squares techniques in the manner described in Chap. 3.

*A Julian date consists of two parts: the first digit identifies the specific year within a decade; the remaining three digits represent the particular day of the year, 1 January being day number 001. 31 December being day number 365.

RAC-T-465

FOR OFFICIAL USE ONLY

(1) (2)	Type of rate: R _a / Type of usage relat								
• •	Equation constant: A - 0.0016								
	Equation constant:								
(5)	Usage interval	(6) Quantity of end items in usage interval	(7) Estimated number of parts replaced						
	201-300	115	1.1						
	301-400	78	0.9						
	401-500	45	0.6						
	501-600	42	0.7						
	601-700	36	0.6						
	701-800	22	0.4						
	801-900	44	0.9						
	901-1000	27	0.6						
	1001-1100	41	1.0						
	6101-6200	2	0.2						
	6201-6300	5	0.5						
	63016400	2	0.2						
	6401-6500	3	0.3						
		Sum	90.3 91						

Fig. 7—Example of Expected-Parts-Replacement Report Produced by IBM 7040 Computer Routine

Column 5 lists the various usage intervals, in this case hundreds of miles. Column 6 represents the estimated number of end items (in this case M60 tanks) of various mileages that will be in the inventory during the forecast period, based on a projection of latest available mileage distribution data.

Column 7 gives the desired end result of the entire computer routine developed by this study: an estimate of the number of parts that will be replaced during the forecast period. In this particular example the estimate represents a 1 August 1964 estimate of the number of M60 tank engines that will be replaced in USAREUR during a 200-mile (3-month) interval beginning 1 October 1964, assuming a constant average utilization rate of 67 miles/month and basing the estimate on the mileage distribution of USAREUR M60 tanks as of 1 July 1964.

In using the Expected Number of Replacements Routine, a commodity analyst needs to specify only the information shown in Fig. 6. The routine automatically references the required replacement rate and end-item usage data compiled from organization- and field-level maintenance records and processed by auxiliary computer routines. For any end item, repair part, using organization, and forecast period specified for which data are available, the Expected Number of Replacement Actions Routine provides an estimate of the number of parts that will be replaced.

Forecasts of repair-parts consumption for selected M60 tank repair parts during the period from the third quarter of 1964 to the fourth quarter of 1965 are presented in App E.

RAC-T-465

29

Chapter 5

APPLICATION OF METHODOLOGY

RECAPITULATION

Previous chapters of this technical memorandum have described the methodology developed for preparing estimates of the number of replacements of a given repair part that will occur during a given usage interval. The three steps of the methodology presented in Chaps. 2, 3, and 4, respectively, consisted of (a) determining the replacement rate of the given repair part for individual usage periods, (b) developing a means of projecting these age-dependent rates into future time periods, and (c) combining projections of replacement rates and end-item usage inventories to obtain estimates of the number of repair parts expected to be replaced.

Chapter 2 described two major types of replacement-rate calculations: the $R_{a,\phi}$ rate, which measures all replacements regardless of order; and the $R_{s'c}$ rate, which deals with only a single order of replacement (i.e., first, second, or third, etc.). Because of the difficulty in identifying order of failure, the $R_{a,\phi}$ rate has been emphasized in this study. Chapter 3 described the combining of individual replacement rates into a simple mathematical equation through least squares techniques and discussed the reasons for projecting replacements into the future on the basis of linear and log-log curves. Chapter 4 then described the prediction of parts replacements. The first step involved updating the vehicle usage distribution to the date of the study and then projecting this distribution to the beginning of the forecast period. The second step consisted of applying the projected replacement rates to the projected fleet usage distribution to obtain the number of replacements expected to occur during the forecast period.

This chapter discusses applications of the methodology developed by the study. The first half of the chapter described several difficulties that may arise in utilizing the methodology; the latter half illustrates a number of its potential benefits.

DIFFICULTIES

The fact that a given repair part may be used on more than one vehicle (i.e., may have multiple applications) or that two or more repair parts may be

30

RAC-T-465

used interchangeably (i.e., are substitutes) somewhat complicates the application of the methodology. The accompanying tabulation illustrates the possible combinations of multiple applications and substitution of repair parts.

Number of end items on	Number of intercha	ngeable repair parts
which part is applied	1	2 or more
1	Α	С
2 or more	В	D

Combination A above (one repair part used on one end item) is the situation that has been assumed in previous sections of this paper. Combination B is the condition where one repair part is used on two or more end items. Combination C describes the situation in which one end item uses either of two or more repair parts that are substitutable and have different FSNs. Combination D represents a condition in which two or more substitutable repair parts are used on two or more end items.

The applicability of the computer routine to combinations B, C, and D is discussed in separate sections of this chapter.

One Repair Part Used on Two or More End Items (Situation B)

For purposes of illustration it will be assumed that part X is used on both vehicle A and vehicle B. In order to determine the total expected number of replacements of part X the expected number of replacements of part X on vehicle A and the expected number of replacements of part X on vehicle B must be available. The first is determined from the $R_{a,\phi}$ replacement rates and the usage distribution of end items, or more specifically from (a) the number of replacements of part X on vehicle A, (b) the quantity of vehicle A observed, and (c) the usage distribution of vehicle A; the expected number of replacements of part X on vehicle B is determined from (d) the number of replacements of part X on vehicle B, (e) the quantity of vehicle B observed, and (f) the usage distribution of vehicle B.

All the information necessary to calculate a to f is available from TAERS data. Some inconvenience may result from the fact that the commodity analyst will be required to add together the two replacement estimates, but the data and methodology are adequate to provide the total expected number of replacements of part X.

Two Repair Parts Used on One End Item (Situation C)

In this case it is assumed that either part X or part Y, which are substitutable but not identical, are used on vehicle A. Two separate estimates of replacements would be desirable: the expected number of replacements of part X on vehicle A and the expected number of replacements of part Y on vehicle A. The first is determined from (a) the quantity of part X removed from vehicle A, (b) the quantity of vehicle A using part X, and (c) the usage distribution of vehicle A using part X; the expected number of replacements of part Y on vehicle A is determined from (d) the quantity of part Y removed from vehicle A, (e) the quantity of vehicle A using part Y, and (f) the usage distribution of vehicle A using part Y.

RAC-T-465

31

None of these pieces of information is available from TAERS data. When either part X or part Y is replaced, the main enance action record does not show the FSN of the part that is removed; it is therefore not known whether the part replaced was type X or Y. Furthermore, when vehicles are issued it is not usually known which were equipped with part X and which were equipped with part Y. Therefore none of the information required in a to f is available from TAERS.

If part Y represented a modification of part X based on user comments and/or extensive research, it would be desirable to be able to compare the replacement rates of the two parts. For the reasons described above it is not possible to make this comparison with the data now available.

This does not mean, however, that no replacement analysis can be performed. In the example given above, an estimate of total replacements for vehicle A can be made. Although this estimate does not distinguish between part X and part Y, it nevertheless furnishes a helpful combined forecast of the combined replacement of both parts for the total vehicle fleet.

Two Repair Parts Used on Two End Items (Situation D)

In this case it is assumed that part X and part Y are used interchangeably on vehicles A and B. For the reasons described in Situation C above, it is not possible to determine separate replacement rates for part X and part Y on vehicle A. It is, however, possible to calculate a combined rate of replacement for part X plus part Y on vehicle A and to perform the same type of calculation for vehicle B.

BENEFITS

Several benefits may be derived from TAERS data analyzed according to the techniques developed in this study. Such information can be useful at various times during the utilization period of a given end item and its pertinent repair parts.

Newly Introduced End Item; No Stable Demand Pattern Established for Parts

Although the introduction of a new end item into the supply system is followed by a period during which no demand pattern for parts has yet been established, procurement actions should be instigated to meet future needs. During this period, information from certain using units can be an effective basis for predicting future parts needs for the end-item inventory as a whole. These are units whose vehicles accumulate more utilization (miles, rounds, etc.) than those in other units. This may be simply because their end items are used more extensively or because the end item was issued to them earlier than to other units. In either case the replacement experience of these "older" end items can serve as a helpful indicator of future parts needs.

An example of the value of consumption data during the early life of a new end item is demonstrated by the experience with M60 tank track in USAREUR in late 1962 and early 1963. During this period September-November 1962

32

RAC-T-465

RAC research teams were gathering parts-replacement data for M60 tanks in USAREUR.¹ The first M60 tanks in USAREUR had been issued to the 1st Bn, 33d Armor, 3d Armd Div in May 1961. Data gathered by RAC analysts showed that by the fall of 1962 the large majority of the tanks in this unit had experienced replacement of complete sets of track between 1800 and 2800 miles (see Fig. 8). On the basis of these consumption data (which are similar to those

Fig. 8—Cumulative Percentage of M60 Tank Track-Shoe Assemblies Replaced in 1st Bn, 33d Armor, 3d Armd Div

available in TAERS) it was possible to forewarn Army authorities of the impending large-scale demands for track that would result when the remainder of the USAREUR tank fleet entered this critical usage interval. Prompt action was taken to alleviate the imminent shortage.

End Item Continuing in Inventory: Demand Pattern Established

When an end item has been in inventory for a sufficiently long time, demand data are generated, summarized in average quarterly demand reports, and used as the basis of forecasting future parts needs. As was indicated in Chap. 1, demand information has not furnished a completely satisfactory basis for forecasting. The consumption information obtained from 'TAERS data and analyzed by the methods described in this study could be used to prepare average quarterly consumption reports; these could be used at present to supplement and perhaps later to supplant—the average quarterly demand reports as a basis for parts-needs forecasting.

RAC-T-465

33

End Item Leaving Supply System: Demand for Parts Declining

Because of rapid improvements in technology, new end items are frequently phased into the inventory while the older models are phased out. This changeover frequently involves a period of time during which parts for both old and new end items must be available.

During this period a considerable supply of old-model parts may be in the supply system. Frequently this situation is coupled with a low demand for the parts because of the decreasing old-model end-item population. If partsneeds forecasts are based only on demand data, some of the supplies of parts may be declared in excess and removed from the system. However, if the old end item remains in the system for a considerable period of time, this disposal of excess may later prove to be both premature and embarrassing; there may be a need to procure the same parts that were earlier disposed of. Therefore if usage-dependent replacement rates based on consumption data are developed for these end items, parts needs can be more accurately predicted and appropriate parts supplies maintained within the system.

34

RAC-T-465

Appendix A

DESCRIPTION OF EVENTS RATES COMPUTER ROUTINE

Introduction	36
General Description	36
Detailed Description	44
Figures	
A1. Flow and Generation of Information in Event Rates Routine A2. Example of Cover Page, M60 Tank-Engine Replacement-	37
Rate Output A3. Examples of Events Table, M60 Tank-Engine Replacement-	38
Rate Output A4. Example of Vehicle-Sample Density Table, M60 Tank-Engine	39
Replacement-Rate Output A5. Example of $R_{s/e}$ Replacement-Rate Table, M60 Tank-Engine	40
Replacement-Rate Output A6. Exam (A) of $R_{s/o}$ and $R_{a/o}$ Replacement-Rates Table, M60	41
Tank-Engine Replacement-Rate Output A7. Example of Cumulative $R_{s/o}$ and $R_{a/o}$ Replacement-Rates	42
Table, M60 Tank-Engine Replacement-Rate Output A8. Illustration of Phase I Selection Capability A9. Element Demonstration Computer Selection of Equipment	43 44
 A9. Flow Chart Demonstrating Computer Selection of Equipment Subsample and Type of Event from Equipment and Events Files A10. Phase I Output Tape Layout for One Job 	45 50
A11. Flow Chart Outline of Phase II	52
Tables	
A1. Record Format of Events Data A2. Record Format of Events File Label	45 46
A3. Record Format of Basis Equipment Data	46
A4. Control Data for Phase I	48
A5. Control Data for Phase II	51

RAC-T-465

などの時代の時代が、していたのである

35

14 183 AS

South a state

INTRODUCTION

This appendix presents a description of the computer routine used to develop the repair-parts replacement rates described in Chap. 2 and shown in summary form in App B. A general description of the routine is given in the next section of this appendix, followed by a detailed discussion in the last section.

Throughout this appendix the terms "events" and "events rates" will be used because the routine has been constructed to be sufficiently general to analyze any kind of event. It converts raw data of the form "event X occurred to equipment Y at equipment age Z" into an event rate. In studying vehicle maintenance, for example, the routine could be used to develop rates based on replacement, repair, or adjustment actions or on any combination of these actions.

GENERAL DESCRIPTION

An outline of the flow and generation of information in the Events Rates Routine is shown in Fig. A1. The routine requires two types of data files: an events file and an equipment sample file. For the events file the following information is needed: event identification code (repair, adjustment, or replacement), equipment serial number, and equipment usage (e.g., age, miles, rounds, landings) at the time the event occurred. For each item in the sample the following data must be in the equipment sample file: serial number, usage at which observation in the sample began, and the usage at which observation ended.

Use of the rates routine requires the existence of an appropriate sort routine for each of the two data files. Beginning with the two sorted files the rates routine proceeds in two phases.

Phase I places the desired elements of the two basic data files on one tape. During this phase it is possible to select any subsample and any type of event for analysis. The format of Phase I output is a sequence of one or more "jobs." Each job is composed of at least two data blocks. The first data block in each job is the equipment sample or subsample. Each remaining data block in the job is a specific event for which a rate is to be computed. This output is used as input to Phase II.

Phase II computes events rates for each job on the Phase I output tape. In the first of the two steps in this computation a usage interval (for example, 100 miles) is specified and a frequency count of events and equipment is made for each interval of a contiguous set of such usage intervals, beginning at usage 0 and ending with the interval containing the usage of the oldest sample or subsample. These two frequency counts are printed as the events table and the equipment-sample density table. In the second step the events rate for each usage interval is computed. The rate is computed in the $R_{S,c}$, $R_{a/o}$, and

RAC-T-165

FOR OFFICIAL USE ONLY

Fig. A1—Flow and Generation of Information in Events Rates Routine

cumulative $R_{a/o}$ forms. Rates are also computed in a mixed form $R_{s/o}$, which was not described in Chap. 2. The subscript s/o of this replacement rate indicates that for each usage interval, the number of replacements of a specific order s, is divided by, the number of vehicles observed and available to fail o. The cumulative $R_{s/o}$ is also computed and shown in tabular form.

The printed output of the rates routine is contained on six pages. Examples of these six pages for M60 tank-engine replacements are shown in Figs. A2 to A7. The formats of the tables shown in Figs. A3 to A7 are similar. These tables are basically 9 by 50 arrays in which the nine columns from left to right correspond to event orders 1 to 9 and the 50 rows from top to bottom correspond to age intervals (numbered 1 to 50) of the size stated on the cover page (Fig. A2). Sometimes 10th-col and/or 51st-row entries appear; these are row and column sums, respectively.

RAC-T-465

FOR OFFICIAL USE ONLY

M60-TANK-ENGINE REPLACEMENT-RATE OUTPUT

Maintenance Events Rates vs Age

Vehicle
Sample
Age Segment
Event

M60 Tank Total 100 Miles Engine v

Fig. A2- Example of Cover Page, M60 Tank-Engine Replacement-Rate Output

RAC-T-465

FOR OFFICIAL USE ONLY

Usage				Quant	ity Repla				
Interval,	lst	2nd	3rd	^{J.} Lh	5th	6th	7th	8th	9th
Miles	Order	Order	Order	Order	Order	Order	Order	Order	Order
0-100	2.	0.	0.	0.	0.	0.	0.	0.	0,
101-200	2.	0.	Ο.	0.	0.	0.	0.	0.	0.
201-300	4.	0.	0.	Ο.	Ú.	υ.	0.	Ο.	0.
301-400	4.	1.	ο.	ο.	ο.	0.	ο.	Ο.	0.
401-500	3.	1.	Ο.	0.	0.	Ο.	0.	0.	0.
501-600	7.	0.	0.	ο.	0.	0.	0.	0.	0.
601-700	1.	0.	0.	0.	ο.	0.	0.	0.	ο.
701-800	4.	0.	0.	ο.	0.	0.	Ο.	0.	0.
801-900	3.	0.	0.	0.	0.	0.	Ο,	ο.	0.
900-1000	5.	0.	0.	0.	0.	0.	0.	Ο.	0.
1001-1100	4.	0.	0.	Ο.	0.	0.	0.	Ο.	ο.
1101-1200	1.	0.	0.	Ο,	0.	0.	0.	0.	ο.
1201-1300	5.	0.	ο.	0.	0.	0.	Ο.	0.	0.
1.301-1400	6.	Ì,	ο.	Ο.	0.	ο.	0.	0.	0.
1401-1500	8.	0.	0.	0.	0.	0.	ο.	0.	Ο.
1501-1600	9.	2.	0.	0.	0.	0.	0.	0.	Ο,
1601-1700	15.	2.	0.	0.	0.	0.	ο.	0.	0.
1701-1800	10.	1.	0.	ο.	0.	0.	0.	0.	0.
1801-1900	20	3.	0.	ο.	0.	ζ.	ο.	0.	0.
1901-2000	8.	4.	1.	0.	0.	0.	ο.	ο.	ο.
2001-2100	15.	1.	0.	0.	0.	0.	0.	0.	0
2101-2200	12.	3*•	1.	0.	0.	0.	0.	0.	Ο,
2201-2300	9.	1.	0.	0.	0.	0.	0.	0.	0.
2301-2400	14.	5.	1.	0.	0.	0.	0.	0.	0.
2401-2500	12.	í.	0.	ο.	0.	0	0.	0.	0.
2501-2600	11.	0.	1.	0.	ю.	0.	0	0.	0.
2601-2700	5.	4.	Ο.	0.	0.	0.	0.	0.	0.
2701-2800	6.	4.	1.	0.	0.	0.	Û.	0.	0.
2801-2900	6.	1.	ō.	1.	0.	0.	0.	0.	0.
2901-3000	3.	2.	0.	0.	0.	0.	0.	0.	0.
3001-3100	4.	0.	0.	0.	0.	0.	Ο.	о.	0
3101-3200	2.	2.	0.	0.	0.	0.	0.	ο.	0.
3201-3300	1.	2.	0.	0.	0.	0.	0.	0.	0.
3301-3400	3.	1.	0.	0.	0.	0.	0.	0.	0.
3401-3500	ŭ.	0.	0.	0.	0.	0.	0.	Ó.	0
3501-3600	1.	0.	0 .	ō.	Ŏ.	0.	0.	0.	0.
3601-3700	1.	1.	0.	ō.	Ő.	Ċ.	ŏ.	0.	0.
3701-3800	2.	0.	<u>o</u> .	0.	0.	0.	0.	0,	Ο.
3801-3900	1.	ů.	0.	0.	0.	ö.	ŏ.	0.	0.
3901-4000	<u>.</u>	0.	1.	0.	ŏ.	<i>0</i> .	0.	0.	0.
4001-4100	1.	1.	0.	0.	0.	0.).	0.	0.
4101-4200	0.	0.	0.	0.	0.	0.	ο.	0.	0.
4201-4300	1.	o.	0.	0.	0.	0.	с.	0.	0
4301-4400	<u> </u>	0.	0.	0.	0.	0.	0.	0.	0.
4401-4500	0.	0.	0.	0.	0.	0.	o.	0.	0.
4501-4600	0.	o.	0.	0.	0.	0.	0.	0.	0.
4601-4700	o.	0.	0.	0.	0.	0.		0.	0,
4701-4800	0.	0.	0.	0.	0.	0.	Э.	0.	0.
4801-4900	0.	0.	0.	0.	0.	0.	с.	0.	0.
4901-5000	0.	0.	0.	0.	0.	0.	2.	0.	0.
SUM	235.0	44.	6.	1.	0.	0.	5.	0.	0.

Fig. A3—Example of Events Table, M60 Tank-Engine Replacement-Rate Output

RAC-T-465

39

Usage	r		Vehic]	es Which	Have Not	Yet Exper	ienced		
Interval,	lst	i 2nd	3rd	4th	5th	6th	7th	8th	9th
Miles	Order	Order	Order	Order	Order	Order	Order	Order	Order
	Repl.	Repl.	Repl.	Repl.	Repl.	Repl.	Repl.	Repl.	Repl.
0-100	639.0	639.0	635.0	639.0	639.0	639.0	639.0	639.0	639.0
101-200	635.7	639.0	639.0	639.0	639.0	639.0	639.0	639.0	639.0
201-300	632.2	638.0	638.0	638.0	638.0	638.0	638.0	638.0	638.0
301-400	627.7	636.8	637.0	637.0	637.0	637.0	637.0	637.0	637.0
401-500	623.0	633.5	634.6	634.6	634.6	634.6	634.6	634.6	634.6
501-600	616.2	632.0	634.0	634.0	634.0	634.0	634.0	634.0	634.0
601-700	611.1	630.9	632.9	632.9	632.9	632.9	632.9	632.9	632.9
701-800	606.7	629.0	631.0	631.0	631.0	631.0	631.0	631.0	631.0
801-900	601.1	628.0	630.0	630.0	630.0	630.0	630.0	630.0	630.0
901-1000	598.0	628.0	630.0	630.0	630.0	630.0	630.0	630.0	630.0
1001-1100	591.9	626.8	628.8	628.8	628.8	628.8	628.8	628.8	628.8
1101-1200	589.3	626.0	628.0	628.0	628.0	628.0	628.0	628.0	628.0
1201-1300	583.1	623.9	625.9	625.9	625.9	625.9	625.9	625.9	625.9
1301-1400	573.7	619.4	621.7	621.7	621.7	621.7	621.7	621.7	621.7
1401-1500	564.4	616.2	619.2	619.2	619.2	619.2	619.2	619.2	619.2
1501-1600	553.4	610.3	614.6	614.6	614.6	614.6	614.6	614.6	614.6
1601-1700	538.6	603.0	608.7	608.7	608.7	608.7	608.7	608.7	608.7
1701-1800	510.1	594.7	602.6	602.6	602.6	602.6	602.6	602.6	602.6
1801-1900	500.0	586.3	596.3	596.3	596.3	596.3	596.3	596.3	596.3
1901-2000	478.7	570.0	580.9	581.1	581.1	581.1	581.1	581.1	581.1
2001-2100	457.6	551.2	562.6	562.6	562.6	562.6	562.6	562.6	562.6
2101-2200	433.1	530.7	544.1	544.1	544.1	544.1	544.1	544.1	544,1
2201-2300	405.8	500.4	512.5	513.5	513.5	513.5	513.5	513.5	513.5
2301-2400	359.2	448.7	459.8	460.9	460.9	460.9	460.9	460.9	460.9
2401-2500	309.3	395.5	407.0	409.0	409.0	409.0	409.0	409.0	409.0
2501-2600	255.9	339.1	350.6	353.1	353.1	353.1	353.1	353.1	353.1
2601-2700	221.0	298.5	309.8	312.4	312.4	312.4	312.4	312.4	312.4
2701-2800	189.2	258.0	271.4	273.7	273.7	273.7	273.7	273.7	273.7
2801-2900	163.9	224.3	239.3	240.4	240.4	240.4	240.4	240.4	240.4
2901-3000	147.4	202.8	215.8	215.8	215.8	215.8	215.8	215.8	215.8
3001-3200	130.4	179.8	189.1	189.1	189.1	189.1	189.1	189.1	189.1
3101-3200	114.6	155.3	162.4	162.4	162.4	162.4	162.4	162.4	162.4
3201-3300	95.6	128.2	134.5	134.5	134.5	134.5	134.5	134.5	134.5
3301-3400	77.9	104.2	109.3	109.3	109.3	109.3	109.3	109.3	109.3
3401-3500	70.7	92.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6
3501-3600	60.2	82.2	86.5	86.5	86.5	86.5	86.5	86.5	86.5
3601-3700	52.1	70.8	75.2	75.2	75.2	75.2	75.2	75.2	75.2
3701-3800	43.0	57.5	61.5	61.5	61.5	61.5	61.5	61.5	61.5
3801-3900	36.8	48.6	51.6	51.3	51.3	51.3	51.3	51.3	51.3
3901-4000	32.3	42.1	44.1	44.1	44.1	44.1	44.1	44.1	44.1
4001-4100	26.2	34.9	37.0	37.0	37.0	37.0	37.0	37.0	37.0
4101-4200	20.6	26.7	29.0	29.0	29.0	29.0	29.0	29.0	29.0
4201-4300	16.1	19.4	20.4	20.4	20.4	20.4	20.4	20.4	20.4
4301-4400	10.6	14.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4
4401-4500	7.0	9.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
4501-4600	6.1	8.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1
4601-4700	2.2	4.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2
4701-4800	0.	1.1	1.3	1.3	1.3	1.3	1.3	1.3	1.3
4801-4900	0.	0.	0,	0.	0.	0.	0.	0.	0.
4901-5000	ο.	o.	'о.	o.	0.	Ö.	0.	0.	o.
SUM	15418.7	17239.7	17484.9	17497.4	17497.4	17497.4	17497.4	17497.4	17497.4

Fig. A4—Example of Vehicle-Sample Density Table, M60 Tank-Engine Replacement-Rate Output

40

のない、「ないない」

RAC-T-465

Usage	<u> </u>	Rs Re	eplacement	Rates fo	or Specifi	c Orders	of Replac	ement	
Interval,	lst	2nd	3rd	4th	5th	6th	7th	8th	9th
Miles	Order	Order	Order	Order	Order	Order	Order	Order	Order
0-100	0.003	0.	0.	0.	0.	0.	0.	0,	0.
101-200	0.003	0.	0.	0.	0.	0.	0.	0.	0.
201-300	0.006	0.	Ο.	0.	0.	0.	0.	0.	0.
301-400	0.006	0.002	0.	0.	ο.	0.	0.	0.	С.
401-500	0.005	0.002	0.	0.	0.	0.	0.	0.	0.
501-600	0.011	0.	0.	0.	0.	0.	0.	0.	0.
601-700	0,002	0.	0.	0.	0.	0.	0,	0,	0.
701-800	0.007	0.	0.	0.	0.	0.	0.	0.	0.
801-900	0.005	0.	0.	0.	0.	0.	0.	0.	0.
901-1000	0.008	0.	0.	0.	0.	0.	0.	0.	0.
1001-1100	0.007	0.	0.	0.	0.	0.	0.	0.	0.
1201-1200	0.002	0.	0.	0.	0.	0.	0.	0.	0
1201-1300	0.009	0.	0.	0.	0.	0.	0.	0.	0.
1301-1400	0.010	0.002	0.	0.	0.	0.	0.	0,	0.
1401-1.500	0.014	0.	0.	0.	0.	0.	0.	0.	0.
1501-1600	0.016	0.003	0.	0.	0.	0.	0.	0.	0.
1601-1700	0.028	0.003	0.	0. 0.	0.	0.	0.	0.	0.
1701-1800	0.020	0.002	0.		0.	0. 0.	0.	0.	0.
1801-1900	0.040	0.005	0.	0.	0. 0.	0.	0. 0.	0.	0.
1901-2000	0.017	0.007	0.002	0. 0.		0.	0.	0.	0.
2001-2100 2101-2200	0.033 0.028	0.002	0.002	0. 0.	0. 0.	0.	0. 0.	0.	0.
2201-2300	0.020	0.002	0.002	0.	0.	0.	0.	Q.	0.
2301-2400	0.022	0.011	0.002	0.	0.	0.	0.	0	0.
2401-2500	0.039	0.003	0.002	0.	0.	0.	0. 0.	0.	0.
2501-2600	0.043	0.005	0.003	o.	0.	0.	0.	0.	Ŭ.,
2601-2700	0.023	0.013	0.	0.	0.	0.	0.	0.	0
2701-2800	0.032	0.016	0.004	0.	0.	0.	0.	0.	0
2801-2900	0.037	0.004	0.	0.004	0,	0,	o.	0.	0.
2901-3000	0.020	0.010	0.	0.	0.	0.	0	0.	0.
3001-3100	0.031	0.	0.	0.	0.	0.	0.	0.	0.
3101-3200	0.017	0.013	0.	0.	0.	0.	Ο,	0.	0.
3201-3300	0.010	0.016	0.	ο.	0.	0.	0.	0.	0.
3301-3400	0.039	0.010	0,	0.	0.	0.	0.	0.	0
3401-3500	0.057	0.	0.	0.	0.	0.	0.	0.	0.
3501-3600	0.017	0.	0.	0.	0.	0.	0.	0.	ο.
3601-3700	0.019	0.014	0.	0.	0.	0.	С,	0.	Ο.
3701-3800	0.047	0.	0.	0.	Ο.	0.	Ο,	Ο.	0.
3801-3900	0.027	0.	0.	0.	ο.	ο.	0.	0.	0.
3901-4000	0.	0.	0.023	0.	0.	0,	0.	0.	Ο.
4001-4100	0.038	0.029	С.	0.	0.	0.	0.	0	0.
4101-4200	0.	0.	Ο.	ο.	0.	0.	Ο.	Ο.	Ο.,
4201-4300	0.062	0.	0.	ο.	0.	Ο.	Ο.	0.	Q.,
4301-4400	0.	0.	0	0.	0.	0.	Ο.	0.	Ο.
4401-4500	0.	C.	0.	0.	0.	0.	0.	0.	ο.
4501-4600	0.	0.	0.	0.	0.	0.	0.	ю.	Ο.
4601-4700	0.	0.	0,	0	0.	0.	ο.	0.	0.
4701-4800	0.	0.	Ο.	0.	0.	0.	0,	Ο.	Ο.
4801-4900	0.	0.	0.	0.	0.	0.	0.	Ο.	0.
4901-5000	0.	0.	0.	0.	0.	0.	0.	0.	0.

Fig. A5—Example of R_{s/e} Replacement-Rate Table, M60 Tank-Engine Replacement-Rate Output

RAC-T-465

....

FOR OFFICIAL USE ONLY

	Rs	Replac	ement F	ate for	Specif	ic Orde	rs of F	eplacem	ent	Re
Usage	0							0		ত
Interval,	lst	2nd.	3rd	4th	5th	6th	7th	8th	9th	Replacement Rate
Miles	Order	Order	Order	Order	Order	Order	Order	Order	Order	For All Orders Of Replacement
	0.002									
0-100	0.003	0.	0.	0.	0.	0.	0.	0.	0.	0.003
101-200	0.003	0.	0.	0.	0.	0.	0.	0.	0.	0.003
201-300	0.006	0.	0.	0.	0.	0.	0.	0.	0.	0.006 0.008
301-400	0.005	0.002	0.	0.	0.	0. 0.	0.	0.	0.	0.006
401-500 501-600	0.011	0.002	0.0.	0. 0.	0. 0.	0.	С. О.	0.	0.	0.011
601-700	0.002	0.	0.	0.	o.	0.	0.	o.	0.	0.002
701-800	0.002	0.	0.	о. с.	0.	0.	0.	0.	0.	0.006
801-900	0.005	0.	0.	0.	0.	0.	0.	0.	0.	0.005
901-1000	0.008	0.	0.	o.	0.	0.	0.	o.	0.	0.008
1001-1100	0.006	0.	0.	o.	0.	0.	0.	0.	0.	0.006
1101-1200	0.002	0.	o.	o.	o.	o.	0.	o.	0.	0.002
1201-1300	0.002	ō.	0.	o.	0.	o.	0.	0.	0.	0.008
1301-1400	0.010	0.002	0.	o.	0.	o.	0.	0.	0.	0.011
1401-1500	0.013	0.	0.	с.	0.	0.	0.	ŏ.	<i>o</i> .	0.013
1501-1600	0.015	0.003	0.	0.	ŏ.	0.	0.	ö.	0.	0.018
1601-1700	0.025	0.003	0.	0.	0.	0.	0.	0.	0 .	6.028
1701-1800	0.017	0.002	0.	0.	0.	0.	0.	0.	0.	0.018
1801-1900	0.034	0.005	0.	0.	0.	0.	ο.	0.	0.	0.039
1901-2000	0.014	0.007	0.002	0.	0.	0.	0.	0.	Ο,	0.022
2001-2100	0.027	0.002	0.	Ο.	0.	с.	0.	Ο,	с.	0.028
2101-2200	0.022	0.006	0.002	0.	0.	0.	0.	0.	0.	0.029
2201-2300	0.018	0.002	0.	ο.	0.	ο.	0.	0.	0.	0.019
2301-2400	0.030	0.011	0.002	0.	0.	0.	0.	0.	0.	0.043
2401-2500	0.029	0.002	0.	0.	0.	0.	0.	0.	0.	0.032
2501-2600	0.031	0.	0.003	0.	Ο.	0.	0.	0.	Ο.	0.034
2601-2700	C.C16	0.013	0.	0.	0.	Ο.	Ο.	0.	Ο.	0.029
2701-2800	0.022	0.015	0.004	0.	0.	0.	0.	Ο.	0.	0.040
2801-2900	0.025	0.004	0.	0.004	0.	Ο.	0.	0.	0.	0.033
2901-3000	0.014	0.009	0.	0.	0.	0.	0.	0.	0.	0.023
3001-3100	0.021	0.	0.	0.	0.	0.	0.	ο.	0.	0.021
3101-3200	0.012	0.012	0.	0.	0.	Ο.	0.	0.	0.	0.025
3201-3300	0.007	0.015	0.	0.	0.	0.	0.	0.	0.	0.022
3301-3400	0.027	0.009	0.	0.	0.	0.	0.	0.	0.	0.037
3401-3500	0.041	0.	0.	0.	0.	0.	0.	0.	0.	0.040
3501-3600	0.012	0.	0.	0.	0.	0.	0.	0.	0.	0.012
3601-3700	0.013	0.013	0.	0.	0.	0.	0.	0.	0.	0.027
3701-3800	0.033	0.	0.	0.	0.	0.	0.	0.	0.	0.033
3801-3900 3901-4000	0.019	0.	0.	0.	0.	0.	0.	0.	0.	0.019
4001-4100	0.	0. 0.027	0.023	0.	0. 0.	0.	0.	0.	0.	0.023
4101-4200	0.027	0.027	0.	0. 0.		0.	0.	0.	0.	0.054
4201-4300	0. 0.049	o.	0.	0.	0. 0.	0.	0. 0.	0. 0.	0.	0.
4301-4400	0.049	o.	0.	0.	0.	0.	0.	0.	o. o.	, 0.049 0.
4401-4500	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4501-4600	0.	0.	o.	o.	0.	o.	0.	0.	0.	Û. Û.
4601-4700	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4701-4800	0.	0.	0.	o.	0.	o.	0.	0.	0.	0.
4801-4900	0.	0.	o.	0.	0.	0,	0.	0.	0.	0.
4901-5000	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
		<u> </u>	<u> </u>	. ·	0.	<u> </u>	· ·	· ·	0.	0.

Fig. A6—Example of Rs/o and Ra/o Replacement-Rates Table, M60 Tank-Engine Replacement-Rate Output

42

RAC-T-465

Usage	Cumul	Cumulative R _S Replacement Rate for All Orders of Replacement Cumulative Transformed Rate for All Orders of Replacement Rate								
Interval,	lst	2nd	3rd	4th	5th	6th	7th	8th	9th	For All Orders
Miles	Order	Order	Order	Order	Order	Order	Order	Order	Order	Of Replacements
0-100	0.003	0.	0.	0.	0.	0.	0.	0.	0.	0.003
	0.006			0.	0.	0.	o.	0.	0.	0.006
101-200	0.012	0.	0. 0.	0.	0.	0.	0.	0. 0.	0.	0.012
201-300		0.		0.	0.	0.	o.	0.	0.	0.020
301-400	0.018	0.002	0.	0.	0.	0.	0.	0.	0.	0.026
401-500	0.023	0.004	0.		0.	0.	0. 0.	o.	o.	
501-600 601-700	0.034	0.004	с .	0. 0.	0.	0. 0.	0.	0.	0.	0.037 0.039
701-300	0.036	0.004	0.	0.	0. 0.	0.	0.	с.	0.	0.045
	0.042	0.004	0.	0.	0.	0,	0.	o.	0.	0.050
801-900	0.C47	0.004	0.	o.	0.	0.	0.	0.	0.	0.058
901-1000	0.055	0.004	0.				0.		o.	
1001-1100	0.061	0.004	0.	0.	с.	0.		0.		0.064
1101-1200	0.063	0.004	0.	0.	0.	0.	0. 0.	0.	0.	0.066
1201-1300	0.071	0.004	0.	0.	0.	0. 0.		0.	0.	0.074
1301-1400	0.081	0.006	0.	0.	0.		0.	0.	0.	0.085
1401-1500	0.094	C.006	0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0.098 0.116
1501-1600	0.107	0.009	0.							
1601-1700	0.134	0.012	0.	0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0.144 0.162
1701-1800	0.151	0.014	0.	0.						
1801-1900	0.185	0.019	0.	0.	0.	0.	0.	0.	0.	0.201
1901-2000	0.199	0.026	0.002	0.	0.	0.	0.	0.	0.	0.223
2001-2100	0.226	0.028	0.002	0.	0.	0.	0.	0.	0.	0.251
2101-2200	0.248	0.034	0.004	0.	0.	0.	0.	0.	0.	0.280
2201-2300	0.266	0.036	0.004	0.	0,	0.	0.	0.	0.	0.299
2301-2400	0.296	0.047	0.006	0.	0.	0.	0.	0.	Θ.	0.342
2401-2500	0.325	0.049	0.006	0.	0.	0.	0.	0.	0.	0.374
2501-2600	0.356	0.049	0.009	0.	0.	0.	0.	0.	0.	0.408
2601-2700	0.372	0.062	0.009	0.	0.	0.	0.	0.	0.	0.437
2701-2800	0.394	0.077	0.013	0.	0.	0.	0.	0	0.	0.477
2801-2900	0.419	0.081	0.013	0.004	0.	0.	0.	0,	0.	0.510
2901-3000	0.433	0.090	0.013	0.004	0.	0.	0.	0.	0.	0.533
3001-3100	0.454	0.090	0.013	0.004	0.	0.	0.	0.	0.	0.554
3101-3200	0.406	0.102	0.013	0.004	0.	0,	0.	0.	0.	0.579
3201-3300	0.473	0.117	0.013	0.004	0.	0.	0.	0.	0.	0.601
3301-3400	0.500	0.126	0.013	0.004	0,	0.	0.	0.	0.	0.638
3401-3500	0.541	0.126	0.013	0.004	0.	0.	0.	0.	0.	0.678
3501-3600	0.553	0.126	0.013	0.004	0.	0.	0.	0.	0.	0.690
3601-3700	0.566	0.139	0.013	0.004	0.	0.	0.	0.	0.	0.717
3701-3800	0.599	0.139	0.013	0.004	0.	0.	0.	0,	0.	0.750
3801-3900	0.618	0.139	0.013	0.004	0.	0.	0.	0.	0.	0.769
3901-4000	0.618	0.139	0.036	0.004	0.	0.	0.	0.	0.	0.792
4001-4100	0.645	0.166	0.036	0.004	0.	0.	0.	0.	0,	0.846
4101-4200	0.645	0.166	0.036	0.004	0.	0.	0.	0.	0.	0.846
4201-4300	0.694	0.166	0.036	0.004	0.	0.	0.	0.	0.	0.895
4301-4400	0.694	0.166	0.036	0.004	0.	0.	0.	0.	0.	0.895
4401-4500	0.694	0.156	0.036	0.004	0.	0.	0.	0.	0.	0.895
4501-4600	0.694	0.166	0.036	0.004	0.	0.	0.	0.	0.	0.895
4601-4700	0.694	0.166	0.036	0.004	0.	0.	0.	0.	0.	0.895
4701-4800	0.694	0.166	0.036	0.004	0.	0.	0.	0.	0.	0.895
4801-4900	0.694	0.166	0.036	0.004	0.	0.	0.	0.	0.	0.895
4901-5000	0.694	0.166	0.036	0.004	0.	0.	0,	0.	0.	0.895

Fig. A7—Example of Cumulative R_{s/o} and R_{a/o} Replacement-Rates Table, M60 Tank-Engine Replacement-Rate Output

RAC-T-465

FOR OFFICIAL USE ONLY

DETAILED DESCRIPTION

The Events Rates Routine is programmed in Fortran IV for the IBM 7040 computer. It was used to analyze replacement data gathered by RAC analysts for RAC-T-460.¹ Minor modifications would be required in order to process TAERS data. The routine has two phases: the first selects desired basic data and writes them on a file in the format required by the second phase; the second phase computes rates.

Phase I

44

As shown in Fig. A8, for Phase I the computer routine selects the desired subsample(s) of equipment from the equipment file and certain types of events from the events file. The blackened portions of Fig. A8 show the final results

Fig. A8—Illustration of Phase I Selection Capability

of the double selection process: certain types of events occurring in the selected equipment subsample. Figure A9 shows schematically the selection process as it is performed by the computer.

Input: Phase I of the rates calculation requires two kinds of input: basic data and control data.

Basic data: Basic data are in two files on separate magnetic tapes: an events file and an equipment file.

(a) Events file contains one record per block, 61 BCD characters per record, in ascending equipment number within ascending event number overall, or if the file is partitioned, within partition. The last record of the equipment sequence in the last event of the file or of a partition must be an ENDE record. The record format of basic events data is shown in Table A1. The information in parentheses represents the application of the format to RAC-T-460¹ data.

The first record of the events file is a label of the format shown in Table A2.

In addition to the label and the events data records, there is a record called ENDE for at least each troop unit in which equipment was sampled. The format of ENDE is shown in the accompanying tabulation.

RAC-T-465

	TABLE	A1	
Record	Format o	f Events	Dat

a

Element	Fortran nam e	Card columns
Equipment type code (tank or APC)	_	2
Unit code (Bn)	UN	3, 4
Equipment identification number (last 4 digits of		
USA registration number)	RN	8-11
Equipment age at event (miles)	AEM	27-31
Equipment age at event ^a (days)	AED	32-35
Event type code (repair, adjustment, or replacement)		44
Event order (first, second, third, etc.)		45
Quantity of components involved in the event	Q	46-48
Component identification number (FSN)	NFSN	49-59
Component identification number ^b (RAC No.) ^c	PN	60, 61

^aTwo age measures are permitted; the second (AED) interpreted as chronological age in the assignment of order number in step 3 of Phase I processing. ^bTwo component identification numbers are permitted.

^cA number is assigned to each part name and may represent more than one FSN.

RAC-T-465

s r

940

FOR OFFICIAL USE ONLY

TABLE A2

Reco	ord Format of Events	File Label			
	Element	Card columns			
"L"		l			
"00"		3, 4			
"0000"		8-11			
Date file	e was made	12-17			
Day		12, 13			
Month		14, 15			
Year		16, 17			
Equipme	nt type code	18			
	e code 2 for events	19	·		
Data des		20-43			
0's		49-61			
Element	Fortran name	Card colum	ns		
Unit code "ENDE"	UN ENDE	3-4 8-11			

(b) The equipment file contains one record per block, 60 BCD characters per record in ascending equipment number sequence overall, or if the file is partitioned, within partition. The last record of a sequence must be ENDV. The record format of basic equipment data is shown in Table A3.

TABLE A3

Record Format of Basic Equipment Data

Elemenț	Fortran name	Card columns
Equipment type code	_	2
Unit code	UN	3,4
Equipment identification number	RN	8-11
Equipment age when last seen in sample	AEM	27-31
Equipment age when last seen in sample ^a	AED	32-35
Equipment age when first seen in sample	ABM	50-54
Equipment age when 'irst seen in sample ^a	ABD	55-58

^aTwo age measures are permitted.

The first record of the equipment file is a label of the format of the events file label (Table A2) except that position 19 contains a "1" for equipment; there are also the same set of ENDV records as there are ENDE records for the events file.

Control data. The control data for Phase I specify program control words and also specify for each job the events and the equipment subsample (if any) to be selected from the basic data files. Each job is composed of at least two

RAC-T-465

FOR OFFICIAL USE ONLY

data blocks. The first data block in each job is the equipment sample or subsample. Each remaining data block in the job is a specific event for which a rate is to be computed. The control data are in punched cards and are shown in Table A4.

Phase I control cards are used in the following sequence:

- 1 Ends, match, blockstops
- 2 Events table, ≤ 60 cards
- 3 SWSUB
- 4 SWSEQ
- 5 SAMP
- 6 SWSUBE
- 7 SWRW
- 8 NBLK
- 9 Subsample table, ≤ 500 cards
- 10 VBLK
- 11 M

Only one card 1 is used per run; a set of cards 2 to 11 is used for each job.

<u>Processing</u>. The processing of Phase I consists of three steps: (a) reading control data, (b) transferring selected equipment records from the basic equipment file to the output file, and (c) transferring selected event records from the basic events file to the output file.

Step 1 is performed only once per job; steps 2 and 3 are performed once for each event in the job. In the performing of step 3, event-order numbers are assigned on the basis of the chronology of the events: the first observed event is always numbered 1; subsequent events are numbered consecutively 2, 3, ..., up to 9; events of order greater than 9 are ignored. Chronology is determined from the second of the two allowed age measures (see Table A1).

Output. The output file is a magnetic tape containing the selected events and equipment records in the record formats described under the subsection "Input" for event file and equipment file, except that the equipment number is now a 5-character field (the additional character is a 0 and appears in position 7 of the record). The tape format is shown in Fig. A10. The accompanying tabulation shows the format for nondata records used in the tape.

Record	Positions
V; E; Y; Z	1
SAMP; event description	1-54
Stop 1; 2	7-11

Phase II

Phase II computes rates as a function of equipment age for the events it receives from Phase I. Phase II can compute rates for two kinds of events from the same sets of events data: a job-order rate and a replacement rate. The two kinds may be different if the component in question exists on the equipment in numbers >1; in this circumstance a job order may involve the replacement of 0 to n (if there are n components on the vehicle). A rate may also be computed for two different age measures. Hence, for a set of events data, four different rates versus age calculations can be made. The size of the unit age

RAC-T-465

47

Ł	
ш.	
_	
8	
AB	
<u> </u>	

•
-
ā
for
Ð
to .
Δ
trol
ů

	Card	columns	4-7; 11-14;	25-28	32-35	38-42	4549		1_1g	21-32	35	38-40	43	46-50 52-57 60-61 35
	Card	number	-	-	Ц	-	Ч		6			101	6	0 0 0 1
	cters	Quantity	4	4	4	S	S		a l	12		ŝ	-	- 70 0 21
	Characters	Type ^d	V	V	Y	¥	Α		•	. •	Z	Z	Z	z z z z
	Codes	s 2000											 Data from time of issue Data from sub- sequent time 	
Control Data for Phase I	Description		Words identifying end of files and subsample table	Value assumed by the parameter MATCH when a match occurs in a comparison using MATCH to indicate its outcome	Value assumed by the parameter MATCH when no match occurs in a comparison using MATCH to indicate its outcome	Word used to indicate end of an event sub- file in Phase I output	Word used to indicate end of vehicle sub- file in Phase I output	List of events to be selected from basic data					Indicates whether data for the event was available from time of issue for all equipment in the sample or subsample or only from times in life later than issue for some valuates	
	Fortran	nome	ENDE ENDV ENDT	AN	NOMA	BLKS1	BLKS2		BLKN	BLKC	VF11	VFQI	BCI	NFSN1 NFSN2 PN
	Data		Ends	Match	No match	Block stop 1	Block stop 2	Events table	Ран пате	Part name abbreviation	د] ۴	Number of parts per equip- ment	Begin sample code	First part of part number Second part of part number Other part number The last card of the events table is "9"

48

FOR OFFICIAL USE ONLY

RAC-T-465

Subsample switch	SWSUB	Switch indicating whether a subsample is to be formed on the basis of unit num- ber, equipment number, or not at all		z	Ţ	en	11
Sequence switch	SWSEQ	Switch indicating whether the files are in subsample selection parameter sequence (used to permit taking advantage of in-	3 No subsample to be formed1 In sequence2 Not in sequence	Z	I	4	11
Sample	SAMP	creased efficiency of selection possible when the files are in sequence) Sample or subsample description for the		A	¥.	ŝ	11-64
Events selection switch	SWSUBE	Job Switch indicating which event identifica. tion number is to be used for event selection	 Use event number in positions 60, 61 Use event number in positions 	Z	1	Q	11
Rewind switch	SWRW	Switch indicating whether the basic data		z	I	t~	11
Basic files formats	NBLK	tapes are to be rewound after the job Indicates whether the basic files are		Z	1	80	ï
Subsample table	SPART	partitioned into subsamples List of unit numbers or equipment numbers specifying the subsample :o be selected	2 Partitioned	¥	4	6	11–14 ^b
Equipment subfile name	VBLK	from the basic data Identification of equipment type and an abbreviated statement of the sample	"V" Equipment	< <	1	10	11
Job control	Я	description Indicates whether another job follows	Sample abbreviation 98 Another job follows, 99 Last job	A N	2 2	11	34-45 11-12
^a A, alphameric; N, numeric. bThe last card of the table c	contains end	^a A, alphameric; N, numeric. ^b The last card of the table contains end of table (ENDT) in 11 to 14.					

. . . .

「「「「「「「「「「「「「」」」」

RAC-T-465

論を受いて

FOR OFFICIAL USE ONLY

Fig. A10—Phase | Output Tape Layout for One Job

interval may be anything >0. Phase II computes only one kind of rate for one kind of age measure for one unit age interval size per pass of the input tape; however, any number of passes of the tape may be made in a single Phase II run, and any combination of the three rate-type variables may be changed between passes.

Input. Phase II takes two kinds of input: the output of Phase I (described in the preceding section) and control data.

The control data for Phase II specifies program control words; states the study number, program name, and date; and defines the maximum number of age intervals to be considered, the age-interval size, the type of age measure to be used, the kind of event (job order or quantity), and Fortran format statements for reading the input appropriate to the specified kinds of rate and age measure. The control data are in punched cards as shown in Table A5.

The first pass requires control cards 1 to 11, in sequence. To make another pass with changed event type only, cards numbered 12, 9, 10, and 11-in

RAC-T-465

FOR OFFICIAL USE ONLY

TABLE A5 Control Data for Phase II

Date	Fertran			Char	acters	Cord	Card
Data	name	Description	Codes	Type ^a	Quantity	number	columns
Stops	STOP1	STOP1 is the word in the equipment num- ber field indicating the end of the event	<u>-</u>	A	5	1	11-15
	STOP2	STOP2 is the word in the equipment num- ber field indicating the end of the equip- ment sample or subsample		٨	5	1	16-20
Study number	STUDY	RAC study number		A	6	2	11-16
Program name	PROG	Name of computer program		A	36	2	17 - 52
Maximum age interval	YMAX	Age interval number containing the great-		N	3	2	53-55
number	ZMAX	est age that will be considered in the calculation; events occurring in later age intervals are ignored (usually set at 50 to keep an output matrix on one page)		N	3	2	56–58
Date	DATE	Day, month, and year of calculation		A	2	3	11-12
				A	2	3	13-14
				A	2	3	15-16
Abbreviated generel info	GRUN	Abbreviated statement of study, program name, and date (printed at top of output pages)		۸	24	4	11-34
Data type definitions	E	Definition of control records on the input	E events	A	1	5	11
	v	tape that designate whether the data	V equipment	A	1	5	22
	Y	following are events data or equipment	Y new job coming	A	1	5	44
	Z	data, and whether another job follows the one just ended or there are no more jobs	Z no more jobs	A	1	5	44
Run control definitions	NEWS	Words that tell whether another pass of the		A	4	6	21-24
3	NEWR	input tape is to be made, and if one is, whether it will be with a new age seg- ment ("and a new event type" is an option available here) or just a new event type		٨	4	6	31-34
Age segment	S	Age interval size and name of type of age		N	5	7	11-15
	STYP	measure		٨	6	7	16-21
Age format	FMTV	Fortran format statement for reading age field containing age in the specified measure		A	30	8	11-40
Event type	ЕТҮР	Designates event type as "job order" or "quantity"	1 JO 2 Q	A N	6 1	9 9	11–16 19
Event description format	FMTE1	Fortran format statement for reading event description	-	A	30	10	11-40
Event format	FMTE2	Fortran format statement for reading events		A	30	11	11-40
Run control	NFLD	Word telling the program whether to make another pass and if so what parameters to change	NEWS new age segment NEWR new event type ENDJ end of run	۸	4	12	8–11

^aA, alphameric; N, numeric.

語語を行かります。

RAC-T-465

FOR OFFICIAL USE ONLY

that sequence—are placed after card 11 of the preceding pass. To make another pass with changed event type and/or changed age segments, cards numbered 12, 7, 8, 9, 10, and 11—in that sequence—are placed after card 11 of the preceding pass. To end the run, card 12, containing ENDJ, is placed after card 11 of what is desired to be the last pass.

<u>Processing.</u> The processing of Phase II occurs in two distinct steps as shown in Fig. A11. In Step 1, events and equipment exposures to event occurrences are counted for each age interval of equipment exposure. In Step 2 these counts are arithmetically manipulated to produce various types of events rates.

Fig. All—Flow Chart Outline of Phase II

52

RAC-T-465

Step 1. Step 1 operates by first reading into core memory the complete (≤ 1000 records) equipment sample or subsample file for the job. It then reads in the events for which the rate is to be calculated for the sample or subsample. Having read in all the data for an event, it counts events E_{ij} and equipment exposures V_{ij} for each age interval *j* and for each failure order *i*, in the following manner:

(1) An event record (equipment number N_e , equipment age when event occurred A_e , and event order l) is noted.

(2) An equipment record (equipment number N_v , equipment age A_v when last observed in sample, and equipment age B_v when first seen in sample) is noted.

(a) If $N_{\nu} < N_e$ the item is regarded as having experienced none of the events in question, and the equipment counts V_{ij} are all augmented by 1 for i = 1, ..., 9, and $j = J_1$, ..., J_2 , where

 $J_1 = (B_v/s) + 1$ truncated to nearest lower integer, $J_2 = (A_v/s)$ truncated to nearest lower integer,

and by

$$[J_1 - (B_0/s)]$$
 for $j = J_1 - 1$,

and by

$$[A_{\nu}/s - J_2]$$
 for $j = J_2 + 1;$

the process continues at 2 with the next equipment record.

(b) If $N_v = N_e$ the event count E_{ij} for i = 1, $j = J_3$, where $J_3 = (A_e/s) + 1$ truncated to nearest lower integer, is augmented by 1 (unless $A_e > A_v$, in which case the event is ignored), and the equipment count V_{ij} for i = 1, $j = J_1$, ..., J_3 is augmented by 1, and for $j = J_1 - 1$ by $[J_1 - (B_v/s)]$, and for $j = J_3 + 1$ by $[(A_e/s) - J_3]$; now the next event is read, the event and equipment exposure are counted as just described if the event occurred on the present item; when it did not, 2a is executed except that *i* is limited to i > highest order event observed for the item.

(c) If $N_v > N_e$, the event is regarded as having occurred to an item not in the sample and is ignored; the next event is read, and the process beginning at 2a (not 2) is repeated.

Step 2. Step 2 operates on the counts made in step 1. The $R_{s/e}$ rates are computed directly from

$$\mathbf{R}_{(s/e)ij} = \mathbf{E}_{ij} / \mathbf{V}_{ij},$$

the $R_{s/o}$ rates are computed by

$$\mathbf{R}_{(s/o)ij} = \mathbf{K}_{ij} \mathbf{T}_{ij},$$

which is specified by

$$T_{i1} = 1$$

 $T_{in} = 1 - \sum_{j=1}^{n-1} R_{ij},$

RAC-T-465

de

FOR OFFICIAL USE ONLY

and $R_{a/o}$ rates are computed by

$$R_{(a/o)j} = \sum_{i} R_{(s/o)ij};$$

the cumulative rates are simply

$$R_{(s/o)ijc} = \sum_{k=1}^{j} R_{(s/o)ik}$$

and

$$R_{(a/o)jc} = \sum_{k=1}^{j} R_{(a/o)k}.$$

Output. The output of Phase II is a magnetic tape from which a six-page listing is printed for each part analyzed according to a given type of event and a usage interval of a given type and size. The format and a sample of the printed output are shown in Figs. A2 to A7 in the first section of this appendix.

Three notes on interpretation of out put are in order:

(a) Zeros are printed when the rate is 0 and when no equipment exposure occurred during the interval. The former meaning applies only if there was equipment exposure during the usage interval.

(b) Event order numbers have their intended meanings only when the complete history of the event in the sample is known (i.e., only when all events the sample has experienced since issue are known). This is detectable by examining the equipment count (V) page and knowing the sample population: if V_{i1} is equal to the sample population for i > 2 and if V_{ij} decreases monotonically with increasing j, the basic data for the sample is regarded as containing a complete history of the event. If neither or only one of these conditions holds, the basic data for the sample are regarded as not containing a complete history of the event. R_{a/o} is a valid rate for events with incomplete histories. Cumulative $R_{a/o}$ is also valid if the age intervals in which the sample is present are contiguous and begin at age 0.

(c) The meaning of event order is also obscured in replacement rates for parts that are present on the equipment in numbers >1. A replacement job order may not involve the replacement of all of them. In this situation the $R_{a/o}$ rate is valid; as in the case of incomplete equipment histories the cumulative $R_{a/o}$ rate is valid only if the age intervals in which the sample is present are contiguous and begin at age 0.

RAC-T-465

FOR OFFICIAL USE ONLY

Appendix B

REPLACEMENT RATES FOR SELECTED M60 TANK AND M113 APC REPAIR PARTS

Tables		
B1.	FSNs of Tank Repair Parts Studied	58
	For M60 Tanks in USAREUR, Based on Miles of Operation	
B2-B18.	Replacement Rates on M60 Tanks in USAREUR	
	B2. For Road and Idler Wheel Arms	59
	B3. For Batteries	60
	B4. For Engines	61
	B5. For Generators	62
	B6. For Final Drive Hubs	63
	B7. For Link Assemblies	64
	B8. For Fuel Injector Nozzles	65
	B9. For Fuel Injection Pumps	66
	B10. On Starter Relays	67
	B11. For Shock Absorbers	68
	B12. For Track Shoes	69
	B13. For Sprockets	70
	B14. For Starters	71
	B15. For Transmissions	72
	B16. For Traverse Gear Boxes	73
	B17. For Superchargers	74
	B18. For Road and Idler Wheels	75
	For M60 Tanks in USAREUR, Based on Months in Service	
B19-B35	Replacement Rates on M60 Tanks in USARE UR	
B15-B55.	B19. For Road and Idler Wheel Arms	75
	B20. For Batteries	77
	B21. For Engines	78
	B22. For Generators	79
	B23. For Final Drive Hubs	80
	B24. For Link Assemblies	81
	B25. For Fuel Injector Nozzles	82
	B26. For Fuel Injection Pumps	83
	B27. For Starter Relays	84
	B28. For Shock Absorbers	85
	B29. For Track Shoes	86
	B30. For Sprockets	87
	B31. For Starters	88
	B32. For Transmissions	89
	B33. For Traverse Gear Boxes	90
	B34. For Superchargers	91
	B35. For Road and Idler Wheels	92
	For M60 Tanks in 3d Armd Div, Based on Miles of Operation	
B36-B40	Replacement Rates on M60 Tanks in 3d Armd Div	
D00 D10	B36. For Engines	93
	B37. For Track Shoes	94
	B38. For Sprockets	95
	B39. For Starters	96
	B40. For Road and Idler Wheels	97

B 39.	For	Start	ers		
B40.	For	Road	and	Idler	Wheels

RAC-T-465

またいかが大きななかれたことのないのである

小いたのいたか

15400

FOR OFFICIAL USE ONLY

F	or M6	0 Tanks in 1st Bn, 33d Armor, Based on Miles of Operation	
341-B45.	Repla	acement Rates on M60 Tanks in 1st Bn, 33d Armor	
		For Engines	98
		For Track Shoes	100
		For Sprockets For Starters	102 103
		For Road and Idler Wheels	105
		FSNs of M113 APC Repair Parts Studied	106
D47 D60		r M113 APCs in USAREUR, Based on Miles of Operation	
B47-B62.		acement Rates on M113 APCs in USAREUR For Batteries	107
		For Ignition Coils	108
		For Differentials	109
	B50.	For Distributors	110
		For Engines	111
		For Track Pads	112
		For Radiators	113
		For Road Wheel Hub Seals For Shock Absorbers	114 115
		For Track Shoes	115
		For Spark Plugs	117
		For Sprockets	118
		For Starters	119
		For Transmissions	120
		For Idler Wheels	121
	B62.	For Road Wheels	122
	Fo	r M113 APCs in USAREUR, Based on Months in Service	
B63-B78.	Repla	acement Rates for M113 APCs in USAREUR	
	B63.	For Batteries	123
		For Ignition Coils	124
		For Differentials	124
	-	For Distributors	125
		For Engines For Track Pads	126 127
		For Radiators	127
		For Road Wheel Hub Seals	129
		For Shock Absorbers	130
	B72.	For Track Shoes	131
		For Spark Plugs	132
		For Sprockets	133
		For Starters	134
		For Transmissions For Idler Wheels	135
		For Road Wheels	136 137
-			101
		APCs in 24th Inf (Mech) Div, Based on Miles of Operation	
B4a-Ba0.	-	accement Rates for M113 APCs in 24th Inf (Mech) Div	199
		For Batteries For Distributors	138 140
		For Engines	140
		For Track Pads	144
		For Road Wheel Hub Seals	146
	B84.	For Shock Absorbers	148
		For Track Shoes	150
		For Spark Plugs	152
		For Sprockets	154
		For Starters For Idler Wheels	156
	-	For Road Wheels	1.58 160
		* va atven 1111010	100

56

RAC-T-465

This appendix presents tabular summaries of the $R_{a/o}$ replacement-rate information processed by the computer routine described in App A.

Tables in the first half of this appendix provide mortality rates for M60 tanks; tables in the latter half deal with M113 APCs. Table B1, the first of a group (Tables B1 to B45) dealing with M60 tanks, presents the official nomenclature of each M60 tank repair part studied and lists all the FSNs that were included in calculating the number of events that occurred for each repair part. Table B46 gives similar information for M113 APCs. Replacement-rate data for M60 tanks are provided in Tables B2 to B46 and for M113 APCs in Tables B47 to B90. In the titles of these tables the official nomenclatures of the repair parts have been paraphrased in order to make the titles easier to read.

The replacement rates shown in the last two columns of Tables B2 to B45 and B47 to B90 represent both the principal output of the computer routine described in App A and the principal input to the Least Squares Statistical Routine discussed in App C. Although the output from the first routine could be input directly into the second routine without intermediate printouts, the unsmoothed mortality data obtained from the Events Rates Program are frequently of considerable interest in reliability and maintainability studies. For this reasonand in order to illustrate the kinds of analyses conducted during the development of the forecasting methodology-replacement-rate information is presented in considerable detail in this appendix.

Various types of replacement-rate data are provided:

(a) $R_{a/o}$ rates presented are based on two usage measures, miles of operation and months of service. For the selected USAREUR M60 tank and M113 APC repair parts analyzed, the tables showing rates based on 100-mile usage intervals are immediately followed by tables based on 1-month usage intervals.

(b) Each App B mortality table contains two types of $R_{a/o}$ rates, one based on the quantity of parts replaced and a second based on the number of maintenance actions. Previous sections of this paper have emphasized rates calculated on the former basis because supply analysts are more concerned with the number of parts replaced than with the number of times parts are replaced. The $R_{a/o}$ rates indicating the frequency of maintenance actions have been included because of their importance in vehicle reliability analysis. When only one repair part of a given type is used on each vehicle per maintenance action, the two rates are identical.

(c) In order to illustrate the calculation of rates at different organizational levels, rate tables were included for selected M60 tank repair parts at division and battalion level and for selected M113 APC repair parts at division level. To offset the marked decrease in vehicle sample size at the lower organizational levels it is frequently desirable to increase the length of the usage interval. For comparative purposes Tables B41 to B45 and B79 to B90 present $R_{a/a}$ rates computed on the basis of each 100 miles and each 500 miles of operation.

RAC-T-465

57

M60 TANKS

TABLE B1

FSNs of M60 Tank Repair Parts Studied

Official nomenclature of part	FSN	Official nomenclature of part	FSN
Arm assemblies, road and idler	2530-678-3147	Pump, metering, fuel injection	2910-473-8003
wheel	2530-678-3148		2910-783-7063
	2530-678-3149	Relay, starter, modification kit	2920-897-6732
	2530-678-3150	Shock absorber, direct action	2540-690-2756
	2530-678-3151	Shoe assembly, rubber track	2530-337-6969
	2530-678-3152	Sprocket, final drive	2530-318-0229
	2530-678-3157	Starter assembly, engine	2920-678-4679
Battery, storage	6140-057-2554	electrical	2920-710-1752
Engine assembly	2815-679-4963		2920-796-2616
2 ,	2815-856-4996	Transmission assembly	2520-333-3522
Generator assembly, engine	2920-607-2623	,	2520-649-8542
accessory	2920-786-1175		2520-670-5379
	2920-830-6660		2520-774-8333
Hub, aprocket, final drive	2530-736-4134	Traverse gear box assembly	2520-621-9567
Link assembly, track adjusting	2530-602-5738	Turbosupercharger, engine	2990-678-4677
	2530-602-5739	assembly	2990-678-4078
Nozzle, fuel injector	2910-707-8784	Wheels, road and compensating	2530-678-4133
		idler	2530-784-9292

58

RAC-T-465

IN USAREUR, BASED ON MILES OF OPERATION

		Quant	tity of:	R _{a/o} replace	ment rate for:
Usoge interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	329.0	0	0	0.000	0.000
101-200	329.0	0	0	0.000	0.000
201-300	331.2	0	0	0.000	0.000
301-400	341.3	1	1	0.003	0.003
401-500	370.9	0	0	0.000	0.000
501-600	414.0	0	0	0.000	0.000
601-700	465.9	0	0	0.000	0.000
701-800	152.5	2 1 2 1 4	2 1 2 1 4	0.004	0.004 .
801-900	546.2	1	1	0.002	0.002
901-1000	567.0	2	2	0.004	0.004
1001-1100	579.6	1	1	0.002	0.002
1101-1200	593.0			0.007	0.007
1201-1300	598.4	1	1 2 2 2 1 3 7	0.002	0.002
1301-1400	603.8	2	2	0.003	0.003
1401-1500	607.7	0	С	0.000	0.000
1501-1600	607.0	2 1	2	0.003	0.003
1601-1700	607.4	1	2	0.002	0.003
1701-1800	602.6	1	1	0.002	0.002
1801-1900	596.3	3	3	0.005	0.005
1901-2000	581.1	1 3 5 1		0.009	0.012
2001-2100	562.ó	1	1	0.002	0.002
2101-2200	544.1	4	1 5 3 0	0.007	0.009
2201-2300	513.5	3 0	3	0.006	0.006
2301-2400	460.9	0	0	0.000	0.000
2401-2500	409.0	4	4	0.010	0.010
2501-2600	353.1	2	2	0.006	0.006
2601-2700	312.4		4	0.013	0.013
2701-2800	273.7	1	12	0.004	0.044
2801-2900	240.4	0	0	0.000	0.000
2901-3000	215.8	1	1 1	0.005	0.005
3001-3100	189.1	1	1	0.005	0.005

TABLE B2 Replacement Rates for Road and Idler Wheel Arms on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

415

北京などのの一部の一部のために

59

Usage interval, miles	Vehicles observed	Quantity of:		$R_{a/o}$ replacement rate for:	
		Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	329.0	0	0	0.000	0.000
101-200	329.0	2	2	0.006	0.006
201-300	331.2	2	2	0.006	0.006
301-400	341.3	1	1	0.003	0.003
401-500	370.9	3	4	0.008	0.011
501-600	414.0		12	0.005	0.029
601-700	469.9	1	1	0.002	0.002
701-800	512.5	0	0	0.000	0.000
801-900	546.2	1	1 4	0.002	0.002
901-1000	567.0	3	4	0.005	0.007
1001-1100	579.6	2	3	0.003	0.005
1101-1200	593.0	1		0.002	0.003
1201-1300	598.4	4	10	0.007	0.017
1301-1400	603.8	0	0	0.000	0.000
1401-1500	607.7	2 3 2 2	546215	0.003	0.008
1501-1600	607.0	3	4	0.005	0.007
1601-1700	607.4	2	6	0.003	0.010
1701-1800	602.6	2	2	0.003	0.003
1801-1900	596.3	1	1	0.002	0.002
1901-2000	581.1	4	5	0.007	0.009
2001-2100	562.6	5	12	0.009	0.021
2101-2200	544.1	4 5 3 1	8	0.006	0.015
2201-2300	513.5	1	2	0.002	0.004
2301-2400	460.9	3	2 9 1	0.007	0.020
2401-2500	409.0	3		0.002	0.002
2501-2600	353.1	0	02	0.000	0.000
2601-2700	312.4	1	2	0.003	0.006
2701-2800	273.7	3	15 3 0	0.011	0.055
2801-2900	240.4	3 3	3	0.012	0.012
2901-3000	215.8	0	Ō	0.000	0.000
3001-3100	189.1	1	1	0.005	0.005

TABLE B3 Replacement Rates for Batteries on M60 Tanks in USAREUR

60

RAC-T-465

Usage interval, miles	Vehicles observed	Quantity of:		$R_{\sigma/\sigma}$ replacement rate for:	
		Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	639.0	2	2	0.003	0.003
101-200	639.0	2	2	0.003	0.003
201-300	638.0	4	4	0.006	0.006
301-400	637.0	5 4	5 4	0.008	0.008
401-500	634.6	4		0.006	0.006
501-600	634.0	7	7	0.011	0.011
601-700	632.9	1	1	0.002	0.002
701-800	631.0	4 3 5 4	4 3 5 4	0.006	0.006
801-900	630.0	3	3	0.005	0.005
901-1000	630.0	5	5	0.008	0.008
1001-1100	628.8			0.006	0.006
1101-1200	628.0	1	1	0.002	0.002
1201-1300	625.9	1 5 7	1 5 7	0.008	0.008
1301-1400	621.7	7	7	0.011	0.011
1401-1500	619.2	8	8	0.013	0.013
1501-1600	614.6	11	11	0.018	0.018
1601-1700	608.7	17	17	0.028	0.028
1701-1800	602.6	11	11	0.018	0.018
1801-1900	596.3	23	23	0.039	0.039
1901-2000	581.1	13	13	0.022	0.022
2001-2100	562.6	16	16	0.028	0.028
2101-2200	544.1	16	16	0.029	0.029
2201-2300	513.5	10	10	0.019	0.019
2301-2400	460.9	20	20	0.043	0.043
2401-2500	409.0	13	13	0.032	0.032
2501-2600	353.1	12	12	0.034	.0.034
2601-2700	312.4	9	9	0.029	D.029
2701-2800	. 273.7	11	11	0.040	0.040
2801-2900	240.4	8	8	0.033	0.033
2901-3000	215.8	5 4	5 4 3 4	0.023	0.023
3001-3100	189.1	4	4	0.021	0.021
3101-3200	162.4	4 3 4	4	0.025	0.025
3201-3300	134.5	3	3	0.022	0.022
3301-3400	109.3		4	0.037	0.037
3401-3500	97.6	4	4	0.041	0.041
3501-3600	86.5	1	1	0.012	0.012
3601-3700	75.2	2	2	0.027	0.027
3701-3800	61.5	2	2	0.033	0.033
3801-3900	51.3	1	1	0.019	0.019
3901-4000	44.1	1	1	0.023	0.023
4001-4100	37.0	2	2	0.054	0.054
4101-4200	29.0	0	0	0.000	0.000
4201-4300	20.4	1	1	0.049	0.049

TABLE B4 Replacement Rates for Engines on M60 Tanks in USAREUR

RAC-T-465

「「「「「「「「「「「「「」」」」」」

FOR OFFICIAL USE ONLY

61

.

	Vehicles observed	Quantity of:		R _{a/o} replacement rate for:	
Usage interval, miles		Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0 -1 00	329.0	0	0	0.000	0.000
101-200	329.0	3	3	0.009	0.009
201-300	331.2	3 1 3 2 3 4	3 3 1 3 2 3 4	2.009	0.009
301-400	341.3	1	1	0.003	0.003
401-500	370.9	3	3	800.0	0.008
501-600	414.0	2	2	0.005	0.005
601-700	469.9	3	3	0.006	0.006
701-800	512.5			800.0	0.008
801-900	546.2	2 4	2 4	0.004	0.004
901-1000	567.0	4		C.007	0.007
1001-1100	579.6	3 1	3 1	0.005	0.005
1101-1200	593.0	1	1	0.002	0.002
1201-1,00	598.4	2 3 6	2	0.003	0.003
1301-1400	603.8	3	3	0.005	0.005
1401-1500	607.7	6	2 3 6 4	0.010	0.010
1501-1600	607.0	4	4	0.007	0.007
1601-1700	607.4	5 14	5 14	0.008	0.008
1701-1.800	602.6	14	14	0.023	0.023
1801-1900	596.3	6	6	0.010	0.010
1901-2000	581.1	4	4	0.007	0.007
2001-2100	562.6	5 4 6 7	5	0.009	0.009
2101-2200	544.1	4	4	0.007	0.007
2201-2300	513.5	6	6	0.012	0.012
2301-2400	460.9	7	7	0.015	0.015
2401-2500	409.0	5	5	0.012	0.012
2501-2600	353.1	3	3	0.008	0.008
2601-2700	312.4	5	5	0.016	0.016
2701-2800	273.7	5 3 5 2 2	5467535221321	0.007	0.007
2801-2900	240.4	2	2	0.008	0.008
2901-3000	215.8	1	1	0.005	0.005
3001-3100	189.1	3	3	C.016	0.016
3101-3200	162.4		2	0.012	0.012
3201-3300	134.5	1	1	0.007	0.007
3301-3400	109.3	l	1	0.009	0.009

TABLE B5 Replacement Rates for Generators on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

62
Vehicles	Quantity of:		$R_{a/o}$ replacement rate for:	
observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
329.0	0	0	0.000	0.000
		1		0.000
				0.000
				0.000
370.9			0.000	0.000
			0.002	0.005
			0.000	0.000
			0.002	0.002
546.2			0.000	0.000
567.0	1		0.002	0.004
579.6	0	0	0.000	0.000
593.0	0	0	0.000	0.000
598.4	0	0	0.000	0.000
603.8	0	0	0.000	0.000
607.7	1	1	0.002	0.002
607.0			0.000	0.000
607.4	2	2	0.003	0.003
602.6	5	5	C.008	0.008
596.3	4	9	0.007	0.015
581.1	5	8	0.009	0.014
562.6		8	C.007	0.014
544.1	4		0.007	0.013
513.5	10	14	0.019	0.027
460.9	11	19	0.024	0.041
409.0	6	11	0.015	0.027
353.1	2	4	0.006	0.011
312.4			0.013	0.019
273.7	8		0.029	0.051
240.4			0.025	0.033
215.8	3	3	0.014	0.014
189.1	3	3	0.016	0.016
162.4			0.006	0.012
134.5	1	1	0.007	0.007
	329.0 331.2 341.3 370.9 414.0 469.9 512.5 546.2 567.0 579.6 593.0 598.4 607.0 607.4 602.6 596.3 581.1 562.6 544.15 569.0 593.1 562.4 513.59 469.0 312.4 273.7 240.4 89.1 162.4	octions 329.0 0 329.0 0 329.0 0 331.2 0 341.3 0 370.9 0 414.0 1 469.9 0 512.5 1 546.2 0 567.0 1 579.6 0 593.0 0 598.4 0 607.7 1 607.0 0 607.4 2 602.6 5 596.3 4 581.1 5 562.6 4 544.1 4 513.5 10 460.9 11 409.0 6 353.1 2 312.4 4 273.7 8 240.4 6 215.8 3 189.1 3 162.4 1	actionsreplaced 329.0 00 329.0 00 329.0 00 331.2 00 341.3 00 370.9 00 414.0 12 469.9 00 512.5 11 546.2 00 567.0 12 579.6 00 593.0 00 607.7 11 607.0 00 607.4 22 602.6 55 596.3 49 581.1 58 562.6 48 544.1 47 460.9 1119 409.0 611 353.1 24 240.4 68 215.8 33 189.1 33 162.4 12	actionsreplacedactions 329.0 000.000 329.0 000.000 331.2 000.000 341.3 000.000 341.3 000.000 370.9 000.000 414.0 120.002 469.9 000.000 512.5 110.002 546.2 000.000 567.0 120.002 579.6 000.000 593.0 000.000 603.8 000.000 607.4 220.003 602.6 550.003 596.3 490.007 581.1 580.009 562.6 480.007 513.5 10140.019 460.9 11190.024 409.0 6110.015 353.1 240.006 312.4 460.013 273.7 8140.029 240.4 680.025 215.8 330.016 162.4 120.006

TABLE B6 Replacement Rates for Final Drive Hubs on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

Quantity of: $R_{a/o}$ replacement rate for:						
	Quant	ity of:	R _{a/o} replace	ment rate tor:		
Vehicles observed	Mainte- nonce actions	Parts replaced	Maintenance actions	Parts replaced		
329.0	1	1	0.003	0.003		
329.0				0.000		
				0.000		
341.3	0	0		0.000		
370.9	0	0	0.000	0.000		
414.0	4	4		0.010		
469.9	3	3		ാ.006		
512.5	0	0	0.000	0.000		
546.2	0	0	0.000	0.000		
567.0	1	1	0.002	0.002		
579.6	1	1		0.002		
593.0	0		0.000	0.000		
598.4	0	0	0.000	0.000		
603.8	2	2	0.003	0.003		
607.7	1		0.002	0.002		
607.0	1	1	0.002	0.002		
607.4	1	1	0.002	0.002		
602.6	2	2	0.003	0.003		
596.3	2	2	0.003	0.003		
581.1	4	5	0.007	0.009		
562.6	3	3	0.005	0.005		
544.1	3	3	0.006	0.006		
513.5	3	4	0.006	0.008		
460.9	Ĩ4	5	0.009	0.011		
409.0	3	3	0.007	0.007		
	2	3	0.006	0.008		
	2	3	0.006	0.010		
	1	ī	0.004	0.004		
240.4	0	0	0.000	0.000		
	2	2	0.009	0.009		
189.1	1	1	0.005	0.005		
162.4	1	1	0.006	0.006		
	329.0 329.0 331.2 341.3 370.9 414.0 469.9 512.5 546.2 567.0 579.6 593.0 598.4 603.8 607.7 602.6 596.3 581.1 562.6 544.1 513.5 460.9 409.0 353.1 312.4 273.7 240.4 215.8 189.1	Vehicles observed Mainte- nance actions 329.0 1 329.0 0 331.2 0 341.3 0 370.9 0 414.0 4 469.9 3 512.5 0 546.2 0 567.0 1 579.6 1 593.0 0 598.4 0 603.8 2 607.7 1 607.6 1 593.0 0 598.4 0 603.8 2 607.7 1 602.6 2 596.3 2 581.1 4 562.6 3 544.1 3 513.5 3 460.9 4 409.0 3 353.1 2 312.4 2 273.7 1 240.4 0	observedMainte- nonce actionsParts replaced 329.0 11 329.0 00 331.2 00 331.2 00 341.3 00 370.9 00 414.0 44 469.9 33 512.5 00 546.2 00 567.0 11 579.6 11 593.0 00 603.8 22 607.7 11 607.4 11 607.4 11 607.4 11 607.4 11 607.4 33 513.5 34 460.9 45 409.0 33 353.1 23 273.7 11 240.4 00 215.8 22 189.1 11	Vehicles observedMainte- nance actionsParts replacedMaintenance actions 329.0 110.003 329.0 000.000 31.2 000.000 341.3 000.000 370.9 000.000 414.0 440.010 469.9 330.006 512.5 000.000 546.2 000.000 567.0 110.002 579.6 110.002 593.0 000.000 603.8 220.003 607.7 110.002 607.4 110.002 607.4 110.002 607.4 110.002 607.4 110.002 607.4 110.002 607.4 110.002 607.4 110.002 607.4 110.002 607.4 110.002 602.6 220.003 596.3 220.003 596.3 220.003 591.1 450.009 409.0 330.007 353.1 230.006 273.7 110.004 240.4 000.000 215.8 20.009 189.1		

TABLE B7

Replacement Rates for Link Assemblies on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

		Quant	tity of:	$R_{a/a}$ replace	ement rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	329.0	3 5 2 1 4 3 3 1	5 5 2 1	0.009	0.015
101-200	329.0	5	5	0.015	0.015
201-300	331.2	2	2	0.006	0.006
301-400	341.3	1	1	0.003	0.003
401-500	370.9	1	1	0.003	0.003
501-600	414.0	4	10	0.010	0.024
601-700	469.9	3	3 4	0.006	0.006
701-800	512.5	3	4	0.006	0.008
801-900	546.2	1	2	0.002	0.004
901-1000	567.0	1	1	0.002	0.002
1001-1100	579.6	2	1 2 5 3 10	0.003	0.003
1101-1200	593.0	3	5	0.005	0.008
1201-1300	598.4	3	3	0.005	0.005
1301-1400	603.8	5	10	0.008	0.017
1401-1500	607.7	3	9	0.005	0.015
1501-1600	607.0	1 Q M M M M M M M M M M M M M M M M M M	9 8 15	0.008	0.013
1601-1700	607.4	6	15	0.010	0.025
1701-1800	602.6	9	19	0.015	0.032
1801-1900	596.3	5	21	0.008	0.035
1901-2000	581.1	4	15	0.007	0.026
2001-2100	562.6	2	23	0.009	0.041
2101-2200	544.1	4	33	0.015	0.061
2201-2300	513.5	4	19 1.8	0.008	0.037
2301-2400	460.9	4 0	1.0	0.009	0.039
2401-2500 2501-2600	409.0	2	1.3 5 17	0.005	0.032
2501-2600 2601-2700	353.1	5) 17	0.008	0.014
2701-2800	312.4	2 3 3 2	17	0.010 0.007	0.054 0.047
2101-2000	27 3.7	2	12	0.007	0.047

TABLE B8 Replacement Rates for Fuel Injector Nozzles on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

.

	[Quant	ity of:	R _{a/o} replacer	nent rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100 101-200	329.0 329.0	0 1	01	0.000	0.000 0.003
201-300	331.2	0	0	0.000	0.00.0
301-400 401-500	341.3 370.9	0	0	0.000	0.000
501-600	414.0	1 2 2	12203221344	0.005	0.005
601-700	469.9	2	2	0.004	0.004
701-800	512.5		ō	0.000	0.000
801-900	546.2	0 3 2 2 1 3 4	3	0.005	0.005
901-1000	567.0	2	2	0.004	0.004
1001-1100	579.6	2	2	0.003	0.003
1101-1200	593.0	1	1	0.002	0.002
1201-1300	598.4	3	3	0.005	0.005
1301-1400 1401-1500	603.8 607.7	4	4	0.007	0.007
1501-1600	607.0	11	11	0.007 0.018	0.007 0.018
1601-1700	607.4	10	10	0.016	0.016
1701-1800	602.6	7	7	0.012	0.012
1801-1900	596.3	5 4	5 4.	0.008	0.008
1901-2000	581.1	4	4.	0.007	0.007
2001-2100	562.6	3	3	0.005	0.005
2101-2200	544.1	13	13	0.024	0.024
2201-2300	513.5	3 3 2 3 2 3 2 3 2 3 2	3	0.006	0.006
2301-2400	460.9	3	3	0.007	0.007
2401-2500	409.0	2	2	0.005	0.005
2501-2600 2601-2700	353.1 312.4	3	3	0.008 0.006	0.008 0.006
2701-2800	273.7	0	2	0.000	0.000
2801-2900	240.4	1	ĩ	0.004	0.004
2901-3000	215.8	1 6	6	0.028	0.028
3001-3100	189.1	2	2	0.011	0.011
3101-3200	162.4	ō	0	0.000	0.000
3201-3300	134.5		3 13 3 3 8 8 8 9 1 6 8 0 1 8 8 1 8 8 1 8 8 8 1 8 8 1 8 8 18 18 1	0.007	0.007
3301-3400	109.3	1 3 2	3	0.027	0.027
3401-3500	97.6	2	2	0.020	0.020
3501-3600	86.5	0	0	0.000	0.000
3601-3700	75.2	2	2 1	0.027	0.027
3701-3800	61.5	1	1	0.016	0.016

TABLE B9 Replacement Rates for Fuel Injection Pumps on M60 Tanks in USAREUR

RAC-T-465

1

FOR OFFICIAL USE ONLY

.

Usage		Quantity of		R _{a/o} replace	ement rate for:
usage interval, ⊥miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000 1001-1100 1001-1100 1001-1200 1201-1300 1301-1400 1401-1500 1501-1600 1601-1700 1701-1800 1601-1700 1701-2800 2001-2100 2101-2200 2301-2400 2401-2500 2501-2600 2501-2600 2701-2800	329.0 329.0 331.2 $3^{1}.3$ 370.9 414.0 469.9 512.5 546.2 567.0 579.6 593.0 598.4 603.8 607.7 607.0 607.6 596.3 581.1 562.6 594.1 513.5 469.9 409.0 353.1 312.4 273.7	5 13 4 11 6 22 1 6 0 2 6 4 9 21 12 4 6 8 7 13 5 2 1 0 0	5 13 4 11 6 22 1 6 0 0 2 6 4 9 22 12 4 6 8 7 13 3 5 2 1 0 0	0.015 0.040 0.012 0.032 0.016 0.053 0.002 0.012 0.000 0.000 0.000 0.003 0.010 0.007 0.015 0.020 0.018 0.020 0.018 0.020 0.018 0.020 0.018 0.020 0.012 0.020 0.012 0.020 0.015 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.007 0.012 0.020 0.010 0.007 0.012 0.020 0.007 0.012 0.0007 0.010 0.007 0.010 0.007 0.010 0.007 0.012 0.007 0.012 0.007 0.012 0.007 0.012 0.007 0.012 0.007 0.012 0.007 0.012 0.007 0.012 0.007 0.0012 0.007 0.0012 0.007 0.000 0.000 0.000 0.000 0.000 0.000	0.015 0.040 0.012 0.032 0.016 0.053 0.002 0.012 0.000 0.000 0.000 0.003 0.010 0.007 0.015 0.020 0.018 0.020 0.018 0.020 0.018 0.020 0.018 0.020 0.012 0.024 0.012 0.024 0.005 0.003 0.000 0.000 0.000
2801-2900 2901-3000 3001-3100	240.h 215.8 189.1	1 2 1	1 2 1	0.004 0.009 0.005	0.004 0.009 0.005

TABLE B10 Replacement Rates on Starter Relays on M60 Tanks in USAREUR

.

FOR OFFICIAL USE ONLY

		Quan	tity of:	R _{a/o} replace	ement rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	329.0	0	0	0.000	0.000
101-200	329.0	0	0	0.000	0.000
201-300	331.2	0	0	0.000	0.000
301-400	341.3	0	0	0.000	0.000
401-500	370.9	0	0	0.000	0.000
501-600	414.0	0	0	0.000	0.000
601-700	469.9	0	0	0.000	0.000
701-800	512.5	0	0	0.000	0.000
801-900	546.2	0	0	0.000	0.000
901-1000	567.0	1	1	0.002	0.002
1001-1100	579.6	1	1	0.002	0.002
1101-1200	593.0	11	1	0.002	0.002
201-1300	598.4	0	0	0.000	0.000
1301-1400	603.8	1	2	0.002	0.003
401-1500	607.7	0	0	0.000	0.000
1501-1600	607.0	1	1	0.002	0.002
1601-1700	607.4	1	l	0.002	0.002
1701-1800	602.6	0	0	0.000	0.000
1801-1900	596.3	2	4	0.003	0.007
1901-2000	581.1	2	2	0.003	0.003
2001-2100	562.6	1	1 8	0.002	0.002
2101-2200	544.1	4	8	0.007	0.015
2201-2300	513.5	2	5	0.004	0.010
2301-2400	460.9	4	8	0.009	0.017
2401-2500	409.0	2	4	0.005	0.010
2501-2600	353.1	7	17	0.020	0.048
2601-2700	312.4	1	9 8	0.003	0.029
2701-2800	273.7	5 4		0.018	0.029
2801-2900	240.4		14	0.017	0.058
2901-3000	215.8	5 4	10	0.023	0.046
3001-3100	189.1		7	0.021	0.037
3101-3200	162.4	0	0	0.000	0.000
3201-3300	134.5	1	1	0.007	0.007
3301-3400	109.3	1	1	0.009	0.009
3401-3500	97.6	0	0	0.000	0.000
3501-3600	86.5	1	1	0.012	0.012
3601-3700	75.2	2	6	0.027	0,080

TABLE 311 Replacement Rates for Shock Absorbers on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

		Quan	tity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100 101-200	329.0 329.0	0	00	0.000	0.000 0.000
201-300	331.2	3	5 49	0.009	0.015
301-400	341.3	2	49	0.006	0.144
401-500	370.9	32 36 5 31 3 54 5 5 10	36 61	0.008	0.097
501 :00	414.0	6	61	0.014	0.147
601-700	469.9	5	60	0.011	0.128
701-800	512.5	3	175	0.006	0.341
801-900	546.2	1	162	0.002	0.297
901-1000	567.0	3	323	0.005	0.570
1001-1100	579.6	2	468	0.009	0.807
101-1200	593.0	4	167	0.007	0.282
201-1300	598.4	2	21	0.008 0.008	0.035
-301-1400	603.8	12	333 1215	0.008	0.552
_401-1500 _501-1600	607.7 607.0	10	669	0.015	1.999 1.102
601-1700	607.4	9 8	660	0.013	1.087
1701-1800	602.6	19	2436	0.013	4.042
1801-1900	59ú-3	23	2829	0.039	4.744
1901-2000	581.1	45	5439	0.077	9.360
2001-2100	562.6	52	7388	0.092	13,132
2101-2200	544.1	66	8972	0.121	16.490
2201-2300	513.5	60'	9076	0.117	17.675
2301-2400	460.9	57	8378	0.124	18.177
2401-2500	409.0	52	7782	0.127	19.027
2501-2600	353.1	35	5416	0.099	15.338
2601-2700	312.4	24	3483	0.077	11.149
2701-2800	273.7	21	3185	0.077	11.637
2801-2900	240.4	23	3413	0.096	14.197
2901-3000	215.8	17	2501	0.079	11.589
3001-3100	189.1	16	2187	0.085	11.565
3101-3200	162.4	8	1294	0.049	7.968
3201-3300	134.5	6	752	0.045	5.591
3301-3400	109.3	7 4	972	0.064	8.893
3401-3500	97.6		239	0.041	2.449
3501-3600	86.5	5	658	0.058	7.607
3601-3700	75.2	3	482	0.040	6.410
3701-3800	61.5	3	480	0.049	7.805
3801-3900	51.3	5 3 9 3	975 482	0.175	19.006
3901-4000	44.1	5	402	0.068	10.930

TABLE B12 Replacement Rates for Track Shoes on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

Vehicles observed	Mainte-	T		
	nance actions	Parts replaced	Maintenance actions	Ports replaced
329.0	0	0	0.000	0.000
	0		0.000	0.000
331.2			0.003	0.003
341.3			0.000	0.000
370.9			0.000	0.000
414.0	1	1	0.002	0.002
469.9		0	0.000	0.000
512.5	0	0	0.000	0.000
546.2	0	0	0.000	0.000
567.0	3	10	0.005	0.018
579.6	Ő	0	0.000	0.000
	1	4	0.002	0.007
598.4	1	4	0.002	0.007
603.8	4	12	0.007	0.020
	9	32	0.015	0.053
	10	26		0.043
				0.041
602.6	13	40	0.022	0.066
		26	0.015	0.044
	21			0.122
				0.140
				0.125
				0.148
	28			0.230
			*	0.225
	16			0.167
		53		0.170
		- 88		0.322
				0.291
				0.227
				0.635
	6			0.135
	3			0.059
	i	ž		0.018
	329.0 331.2 341.3 370.9 414.0 469.9 512.5 546.2 567.0 579.6 593.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE B13 Replacement Rates for Sprockets on M60 Tanks in USAREUR

70

FOR OFFICIAL USE ONLY

RAC-T-465

		Quar	tity of:	R _{a/o} replacement rate for:	
Uscje interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	329.0	9 8	9 8	0.027	0.027
101-200	329.0		8	0.024	0.024
201-300	331.2	9	9	0.027	0.027
301-400	341.3	10	10	0.029	0.029
401-500	370.9	11	11	0.030	0.030
501-600	414.0	7	7	0.017	0.017
601-700	469.9	8	8	0.017	0.017
701-800	512.5	10	10	0.020	0.020
801-300	546.2	11	11	0.020	0.020
901-1000	567.0	13	13	0.023	0.023
1001-1100	579.6	12	12	0.021	0.021
1101-1200	593.0	11	11	0.019	0.019
1201-1300	598.4	9	9	0.015	0.015
1301-1400	603.8	10	10	0.017	0.017
1401-1500	607.7	18	3.8	0.030	0.030
1501-1600	607.0	24	24	0.040	0.040
1601-1700	607.4	15	15	0.025	0.025
1701-1800	602.6	19	19	0.032	0.032
1801-1900	596.3	20	20	0.034	0.034
1901-2000	581.1	9	9	0.015	0.015
2001-2100	562.6	15	15	0.027	0.027
2101-2200	544.1	11	11	0.020	0.020
2201-2300	513.5	8	8	0.016	0.016
2301-2400	460.9	10	10	0.022	0.022
2401-2500	409.0	12	12	0.029	0.029
2501-2600	353.1	2		0.006	0.006
2601-2700	312.4	6	2 6	0.019	0.019
2701-2800	273.7	5 6	5 6	0.018	0.018
2801-2900	240.4	6	6	0.025	0.025
2901-3000	215.8	4	4 3 4	0.019	0.019
3001-3100	189.1	3	3	0.016	0 916
3101-3200	162.4	3 4	4	0.025	0.025
3201-3300	134.5	0	0	0.000	0.000
3301-3400	109.3	1	1	0.009	0.009
3401-3500	97.6	1	1	0.010	0.010
3501-3600	86.5	3	3	0.035	0.035
3601-3700	75.2	ĩ	1	0.013	0.013
3701-3800	61.5	0	0	0.000	0.000
3801-3900	51.3	1	1	0.019	0.019

TABLE B14 Replacement Rates for Starters on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

Usage		Quar	atity of:	R _{a/o} replac	cement rate for:
interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	639.0	2	2	0.003	0.003
101-200	639.0	2	2	0.003	0.003
201-300	638.0	2 3 0	2 3 0	0.005	0.005
301-400	637.0		0	0.000	0.000
401-500	634.6	1	1	0.002	0.002
501-600	634.0	4	4	0.006	0.006
601-700	632.9	1 2 4	1	0.002	0.002
701-800	631.0	2	2 4	0.003	0.003
801-900	630.0		4	0.006	0.006
901-1000	630.0	3 3 1	3 3 1	0.005	0.005
1001-1100	628.8	3	3	0.005	0.005
1101-1200	628.0		1	0.002	0.002
1201-1300	625.9	୦ ଥ ୬ ୬ ୬ ୬ ଥ ୬ 4	0	0.000	0.000
1301-1400	621.7	2	2	0.003	0.003
1401-1500	619.2	5	5	0.008	0.008
1501-1600	614.6	3	3	0.005	0.005
1601-1700	608.7	3	3	0.005	0.005
1701-1800	602.6	2	2	0.003	0.003
1801-1900	596.3	2	2	0.003	0.003
1901-2000	581.1	5	5	0.009	0.009
2001-2100	562.6		4	0.007	0.007
2101-2200	544.1	2	2	0.004	0.004
2201-2300	513.5	7	7	0.014	0.014
2301-2400	460.9	3	3	0.007	0.007
2401-2500	409.0	4	4	0.010	0.010
2501-2600	353.1	27343634	3	0.008	0.008
2601-2700	312.4	6	6	0.019	0.019
2701-2800	273.7	3	3	0.011	0.011
2801-2900	240.4		<u>4</u>	0.017	0.017
2901-3000	215.8	1 4	0 2 5 3 3 2 2 5 4 2 7 3 4 3 6 3 4 1 4	0.005	0.005
3001-3100	189.1	4	4	0.021	0.021

TABLE B15 Replacement Rates for Transmissions on M60 Tanks in USAREUR

RAC-T-465

ł.

FOR OFFICIAL USE ONLY

		Quant	tity of:	R _{a/o} replacer	nent rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	329.0	2	2	0.006	0.006
101-200	329.0	2 3 0	2 3 0	0.006	0.006
201-300	331.2	3	3	(.009	0.009
301-400	341.3		0	00C 0	0.000
401-500	370.9	1	1 2	J.003	0.003
501-600	414.0	2	2	0.005	0.005
601-700	469.9	0	0	0.000	0.000
701-800	512.5	2	2 2 3 1	0.004	0.004
801-900	546.2	2 2 3 1	2	0.004	0.004
901-1000	567.0	2	2	0.004	0.004
1001-1100	579.6	3	3	0.005	0.005
1101-1200	593.0			0.002	0.002
1201-1300	598.4	0	0	0.000	0.000
1301-1400	603.8	2543224	2 54 32 24	0.003	0.003
1+01-1500	607.7	5	5	0.008	0.008
1501-1600	607.0	4	4	0.007	0.007
1601-1700	607.4	3	3	0.005	0.005
1701-1800	602.6	2	2	0.003	0.003
1801-1900	596.3	2	2	0.003	0.003
1901-2000	581.1	4		0.007	0.007
2001-2100	562.6	4	4	0.007	0.007
2101-2200	544.1	2	2	0.004	0.004
2201-2300	513.5	2	2	0.004	0.004
2301-2400	460.9	3	3	0.007	0.007
2401-2500	409.0	4	4	0.010	0.010
2501-2600	353.1	3	3	0.008	0.008
2601-2700	312.4	2 2 3 4 3 5 2 3 I	2234352313	0.016	0.016
2701-2800	273.7	2	2	0.007	0.007
2801-2900	240.4	3	3	0.012	0.012
2901-3000	215.8	1 1	L L	0.005	0.005
3001-3100	189.1	3	3	0.016	0.016

TABLE B16 Replacement Rates for Traverse Gear Boxes on M60 Tanks in USAREUR

FOR OFFICIAL USE ONLY

milesnance actionsreplaced $0-100$ 329.0 0 0 $101-200$ 329.0 0 0 $201-300$ 331.2 3 3 $301-400$ 341.3 0 0 $401-500$ 370.9 0 0 $501-600$ 414.0 0 0 $601-700$ 469.9 1 1 $701-800$ 512.5 0 0 $801-900$ 546.2 1 1 $901-1000$ 567.0 1 1 $1001-1100$ 579.6 1 1 $101-1200$ 593.0 1 1 $1201-1300$ 598.4 0 0 $1301-1400$ 603.8 0 0 $1401-1500$ 607.7 3 3 $1501-1600$ 607.4 1 1 $1701-1800$ 602.6 1 1 $1801-1900$ 596.3 0 0 $1901-2200$ 581.1 1 1 $2001-2100$ 562.6 0 0 $2101-2200$ 544.1 1 1 $2201-2300$ 513.5 0 0		$R_{a/a}$ replacement rate for:	
101-200 329.0 0 0 $201-300$ 331.2 3 $301-400$ 341.3 0 $401-500$ 370.9 0 $501-600$ 414.0 0 $601-700$ 469.9 1 $701-800$ 512.5 0 $801-900$ 546.2 1 $901-1000$ 567.0 1 $1001-1100$ 579.6 1 $1101-1200$ 593.0 1 $1201-1300$ 598.4 0 $1301-1400$ 603.8 0 $1401-1500$ 607.7 3 $1501-1600$ 607.6 1 $1201-2000$ 581.1 1 $1201-2000$ 581.1 1 $1201-2000$ 581.1 1 $1201-2000$ 581.1 1 $1201-2000$ 581.1 1 $1201-2000$ 581.1 1 $1201-2000$ 581.1 1 $201-2100$ 562.6 0 $2101-2200$ 513.5 0	Maintenance actions	Parts replaced	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.000	0.000	
401-500 370.9 0 0 $501-600$ 414.0 0 0 $601-700$ 469.9 1 1 $701-800$ 512.5 0 0 $801-900$ 546.2 1 1 $901-1000$ 567.0 1 1 $1001-1100$ 579.6 1 1 $1001-1100$ 579.6 1 1 $1201-1300$ 598.4 0 0 $1301-1400$ 603.8 0 0 $1301-1400$ 607.7 3 3 $1501-1600$ 607.0 1 1 $1601-1700$ 607.4 1 1 $1201-1800$ 602.6 1 1 $1201-2000$ 581.1 1 1 $1201-2000$ 581.1 1 1 $2001-2100$ 562.6 0 0 $2101-2200$ 544.1 1 1 $2201-2300$ 513.5 0 0	0.000	0.000	
401-500 370.9 0 0 $501-600$ 414.0 0 0 $601-700$ 469.9 1 1 $701-800$ 512.5 0 0 $801-900$ 546.2 1 1 $901-1000$ 567.0 1 1 $1001-1100$ 579.6 1 1 $1201-1300$ 598.4 0 0 $1301-1400$ 603.8 0 0 $1301-1400$ 607.7 3 3 $1501-1600$ 607.0 1 1 $1601-1700$ 607.4 1 1 $1201-1300$ 596.3 0 0 $1401-1500$ 602.6 1 1 $1601-1700$ 607.4 1 1 $1201-2000$ 581.1 1 1 $1201-2000$ 582.6 0 0 $1201-2200$ 544.1 1 1 $2201-2300$ 513.5 0 0	0.009	0.009	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002	0.002	
901-1000 567.0 11 $1001-1100$ 579.6 11 $1101-1200$ 593.0 11 $1201-1300$ 598.4 00 $1301-1400$ 603.8 0 $1401-1500$ 607.7 3 $1501-1600$ 607.0 1 $1601-1700$ 607.4 1 $1701-1800$ 602.6 1 $1801-1900$ 596.3 0 $1901-2000$ 581.1 1 $2001-2100$ 562.6 0 $2101-2200$ 544.1 1 $2201-2300$ 513.5 0	0.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002	0.002	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002	0.002	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002	0.002	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002	0.002	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.005	0.005	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002	0.002	
1801-1900 596.3 0 0 1901-2000 581.1 1 1 2001-2100 562.6 0 0 2101-2200 544.1 1 1 2201-2300 513.5 0 0	0.002	0.002	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002	0.002	
2001-2100 562.6 0 0 2101-2200 544.1 1 1 2201-2300 513.5 0 0	0.000	0.000	
2101-2200 544.1 1 1 2201-2300 513.5 0 0	0.002	0.002	
2201-2300 513.5 0 0	0.000	0,000	
2201-2300 513.5 0 0	0.002	0.002	
	0.000	0.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.004	0.004	
	0.000	0.000	
2501-2600 353.1 0 0	0.000	0.000	
2601-2700 312.4 2 2	0.006	0.006	

. -

TABLE B17

Replacement Rates for Superchargers on M60 Tanks in USAREUR

74

.

RAC-T-465

	,	Replacement rates for road and later wheels on mou lanks in USAREUR								
11.222		Quaritity of:		R _{a/o} replace	ment rate for:					
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced					
0-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000 1001-1100 1001-1200 1201-1300 1301-1400 1401-1500 1501-1600 1601-1700 1701-1800 1801-1900 1901-2000 2001-2100 2101-2200 2201-2300 2301-2400 2401-2500 2501-2600 2501-2600 2501-2600 2501-2600 2501-2700 2501-2800 2601-2700 2501-2800 2601-2700 3101-3200 3301-3100 3101-3200 3301-3400 3401-3500 3501-3600 3601-3700 3901-4000 401-4200 4201-4300 4301-4400	329.0 329.0 329.0 331-2 341.3 370.9 414.0 469.9 512.5 546.2 567.0 5793.0 607.4 513.5 544.1 513.6 513.6 513.6 51.3 1097.6 1097.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 4 5 6 4 6 9 7 2 9 8 4 5 6 4 6 9 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 6 1 7 2 9 8 4 5 2 8 4 5 2 6 1 7 5 2 9 5 2 9 5 2 9 5 2 9 5 2 9 5 2 9 5 2 9 5 2 9 5 1 3 6 1 9 5 1 3 6 1 9 5 1 2 9 5 1 3 6 6 1 9 5 1 3 6 6 8 1 9 5 1 3 6 6 8 1 9 5 1 3 6 6 1 9 5 1 3 6 6 8 1 9 5 1 3 6 6 8 1 9 5 1 3 6 6 8 1 9 5 1 3 6 6 8 1 9 5 1 3 6 6 8 1 9 5 1 3 6 6 6 8 1 9 5 1 3 6 6 8 1 9 5 1 3 6 6 8 1 9 5 1 3 6 6 8 9 5 1 3 6 6 8 1 9 5 1 3 6 6 8 1 9 5 1 9 1 9	0.000 0.000 0.000 0.000 0.000 0.011 0.009 0.009 0.006 0.007 0.007 0.007 0.007 0.013 0.007 0.013 0.023 0.029 0.029 0.029 0.029 0.029 0.029 0.022 0.021 0.023 0.022 0.021 0.023 0.022 0.031 0.023 0.022 0.031 0.026 0.042 0.020 0.058 0.058 0.067 0.063 0.025 0.035 0.058 0.063 0.025 0.035 0.058 0.035 0.053 0.053 0.053 0.058 0.058 0.053 0.058 0.053 0.058 0	0.000 0.000 0.000 0.000 0.000 0.016 0.009 0.010 0.011 0.025 0.028 0.036 0.015 0.023 0.023 0.023 0.023 0.023 0.025 0.064 0.076 0.092 0.066 0.082 0.076 0.127 0.057 0.195 0.256 0.187 0.256 0.187 0.236 0.227 0.057 0.195 0.256 0.187 0.236 0.227 0.057 0.195 0.256 0.187 0.236 0.227 0.037 0.119 0.037 0.119 0.037 0.119 0.073 0.010 0.104 0.199 0.098 0.078 0.324 0.000 0.147 0.649					

TABLE B18

Replacement Rates for Road and Idler Wheels on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

IN USAREUR, BASED ON MONTHS IN SERVICE

		Quan	tity of:	R _{a/o} replace	ment rate for:				
Usage Vehicles interval, observed months		Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced				
0-1	330.5	0	0	0.000	0.000				
1-2	335.1	0	0	0.000	0.000				
2-3	435.2	0	0	0.000	0.000				
3-4	529.6	3 1 2 1 2	0 3 1 2 1 3	0.006	0.006				
4-5	539.2	1	1	0.002	0.002				
5-6	545.2	2	2	0.004	0.004				
6-7	562.7	1	1	0.002	0.002				
7-8	598.7		3	0.003	0.005				
8-9	618.2	0		0.000	0.000				
9-10	616.6	4	4	0.006	0.006				
10-11	616.2	1 4	14	0.002	0.002				
11-12	614.5		4	0.007	0.007				
12-13	613.0	3	3	0.005	0.005				
13-14	612.1	2	3 2 4 3 1 18	0.003	0.003				
14-15	605.1	3	4	0.005	0.007				
15-16	583.2	3	3	0.005	0.005				
16-17	569.6	1	1	0.002	0.002				
17-18	548.9	7		0.013	0.033				
18-19	534.8	9	11	0.017	0.021				
19-20	533.7	3	3	0.006	0.006				
20-21	498.1	3233179334	3 3 4	0.006	0.006				
21-22	326.8			0.012	0.012				
22-23	249.6	4	4	0.016	0.016				
23-24	151.7	1	4 5 3	0.007	0.033				
24-25	50.3	3	3	0.060	0.060				

TABLE B19 Replacement Rates for Road and Idler Wheel Arms on M60 Tanks in USAREUR

76

11

RAC-T-465

		Quant	ity of:	R _{a/o} replacer	ment rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	330.5	24	2	0.006	0.006
1-2	335.1		10	0.012	0.030
2-3	435.2	2	20	0.005	0.005
3-4	529.6	ณ พ๐ พณ ณ ณ ๙ ๚ พพพพพศ พณ 4	2 8 0 8 2 3 3 3 3 8 5 3 8	0.006	0.015
4-5	539.2	0	0	0.000	0.000
5-6 6-7	545.2	3	0	0.004	0.004
7-8	562.7 598.7	2	2	0.004	0.004
8-9	618.2	20	2	0.003	0.005
9-10	616.6	2	2	0.003	0.005
10-11	616.2	2	2	0.005	0.013
11-12	614.5	7	5	0.005	0.008
12-13	613.0	3	3	0.005	0.005
13-14	612.1	2	Å	0.005	0.013
14-15	605.1	3	12	0.005	0.020
15-16	583.2	3	8	0.005	0.014
16-17	569.6	ĩ	2	0.002	0.004
17-18	548.9	3	3	0.005	0.005
18-19	534.8	ž	12 8 2 3 8	0.004	0.015
19-20	533.7	4	15	0.007	0.028
20-21	498.1		15	0.014	0.030
21-22	326.8	7 3 5 1	15 3 20	0.009	0.009
22-23	249.6	5	20	0.020	0.080
23-24	151.7	1	6	0.007	0.040
24-25	50.3	0	0	0.000	0.000
25-26	38.0	2	10	0.053	0.263
	1	I		1	

TABLE B20 Replacement Rates for Batteries on M60 Tanks in USAREUR

:

		Quantity of:		R _{a/o} replacem	ent rate for:
Usage interval, months	Vehicles observed	Mainte- nonce actions	Ports replaced	Maintenance actions	Parts replaced
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8	639.0 636.9 635.0 633.9 633.0 629.9 629.0 628.4	4 8 8 3 7 7 3 3 6 8	4 8 3 7 7 3 3 3 6 8	0.006 0.013 0.013 0.005 0.011 0.011 0.005 0.005	0.006 0.013 0.013 0.005 0.011 0.011 0.005 0.005
8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20	625.0 622.0 621.0 615.0 613.4 603.2 582.2 569.6 548.9 534.8 533.7	3 6 8 23 14 24 31 22 19 27 19 10	3 6 8 23 14 24 31 22 19 27 19 27 19	0.005 0.010 0.013 0.023 0.023 0.039 0.051 0.038 0.033 0.049 0.036 0.019	0.005 0.010 0.013 0.023 0.023 0.039 0.051 0.038 0.033 0.049 0.036 0.019
20-21 21-22 22-23 23-24 24-25 25-26 26-27	498.1 326.8 249.6 151.7 50.3 38.0 17.9	15 8 5 7 0 2 1	15 8 5 7 0 2 1	0.030 0.024 0.020 0.046 0.000 0.053 0.056	0.030 0.024 0.020 0.046 0.000 0.053 0.056

TABLE B21 Replacement Rates for Engines on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

11.00.00		Quantity of:		R _{a/n} replace	ment rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	330.5	2	2	0.006	0.006
1-2	335.1	5 5 5 2 6 5 2 5 7 4	5 5 1 5 2 6	0.015	0.015
2-3	435.2	5	5	0.011	0.011
3-4	529.6	1	1	0.002	0.002
4-5	539.2	5	5	0.009	0.009
5-6	545.2	2	2	0.004	0.004
6-7	562.7	6	6	0.011	0.011
7-8	598.7	5	5 2 5 5 7 4	800.0	800.0
8-9	618.2	2	2	0.003	0.003
9-10	616.6	5	5	0.008	0.008
10-11	616.2	5	5	0.008	0.008
11-12	614.5	7	7	0.011	0.011
12-13	613.0	4	4	0.007	0.007
13-14	612.1	9	9	0.015	0.015
14-15	605.1	9 15 6	15	0.025	0.025
15-16	583.2	6	6	0.010	0.010
16-17	569.6	9 6	9 15 6 9 6	0.016	0.016
17-18	548.9	6		0.011	0.011
18 -1 9	534.8	10	16	0.019	0.019
19-20	533.7	6	6	0.011	0.011
20-21	498.1	3	6 3 2 1	0.006	0.006
21-22	326.8	3 2 1	2	0.006	0.006
22-23	249.6		_	0.004	0.004
23-24	151.7	1	1	0.007	0.007

TABLE B22 Replacement Rates for Generators on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

		Quant	ity of:	R _{a/o} replaces	nent rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10	330.5 335.1 435.2 529.6 539.2 545.2 562.7 598.7 616.2 616.6			0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000
9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21	616.6 616.2 614.5 613.0 612.1 605.1 569.6 548.9 534.8 533.7 498.1	0 3 5 3 2 5 7 1 5 20 17	0 3 7 3 2 8 10 2 5 31 32	0.000 0.005 0.008 0.005 0.005 0.003 0.009 0.012 0.002 0.009 0.037 0.034	0.005 0.011 0.011 0.005 0.003 0.014 0.018 0.004 0.009 0.058 0.058 0.064
20-21 21-22 * 22-23 23-24 24-25 25-26 26-27	490.1 326.8 249.6 151.7 50.3 38.0 17.9	9 2 0 0 1	32 14 3 0 0 2	0.034 0.028 0.008 0.000 0.000 0.000 0.000	0.004 0.012 0.000 0.000 0.000 0.112

TABLE B23 Replacement Rates for Final Drive Hubs on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

80

ż

	Quantity of:		ty of:	R _{a/o} replacen	nent rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	330.5	0	0	0.000	0.000
1-2	335.1	2	2	0.006	0.006
2-3	435.2	0	0	0.000	0.000
3-4	529.6	3 4	୦ ଥ ୦ ୬ ₄	0.006	0.006
4-5	539.2		4	0.007	0.007
5-6	545.2	0 3 1	0	0.000	0.000
6-7	562.7	3	3	0.005	0.005
7-8	598.7		1	0.002	0.002
8-9	618.2	1	1	0.002	0.002
9-10	616.6	1 1 5 4 5 2 2 3 2 3 4	1	0.002	0.002
10-11	616.2	5	6	0.008	0.010
11-12	614.5	4	4	0.007	0.007
12-13	613.0	5	5	0.008	0.008
13-14	612.1	2	2	0.003	0.003
14-15	605.1	2	2	0.003	0.003
15-16	583.2	3	3	0.005	0.005
16-17	569.6	2	3	0.004	0.005
17-18	548.9	3	4	0.005	0.007
18-19	534.8	4	4	0.007	0.007
19-20	533.7	.2	4	0.004	0.007
20-21	498.1	.2 3 1 5 1 1	03111645223344431711	0.006	0.006
21-22	326.8	1	1	0.003	0.003
22~23	249.6	5	7	0.020	0.028
23-24	151.7	1	1	0.007	0.007
24-25	50.3	1	1	0.020	0.020

TABLE B24 Replacement Rates for Link Assemblies on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

		Quant	ity of:	R _{a/o} replace	ment rate for:
Usage interval, months	Vehicles beserved	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17	330.5 335.1 435.2 529.6 539.2 545.2 562.7 598.7 618.2 616.6 616.2 614.5 613.0 612.1 605.1 583.2 569.6	4 5 4 4 2 1 5 6 2 4 8 4 0 5 5 3	6 5 10 15 2 2 7 11 2 6 31 27 52 21 11 16	0.012 0.015 0.009 0.008 0.007 0.004 0.002 0.008 0.010 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.016 0.008 0.009 0.005	0.018 0.015 0.023 0.028 0.009 0.004 0.004 0.012 0.018 0.003 0.010 0.050 0.044 0.085 0.035 0.019 0.028
17-18 18-19 19-20 20-21 21-22 22-23 23-24	548.9 534.8 533.7 498.1 326.8 249.6 151.7	5 5 5 5 0 3 1 1 1	29 14 0 10 1 1 12	0.009 0.009 0.000 0.006 0.003 0.004 0.007	0.053 0.026 0.000 0.020 0.003 0.004 0.079

TABLE B25 Replacement Rates for Fuel Injector Nozzles on M60 Tanks in USAREUR

82

RAC-T-465

FOR OFFICIAL USE ONLY

t,

т. Т. С.	Usage		tity of:	R _{a/o} replace	ment rate for:
intervol, months	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced
0-1	330.5	0	0	0.000	0.000
1-2	335.1	2	2	0.006	0.006
2-3	435.2	0	0	0.000	0.000
3-4	529.6	2 4	2 4	0.004	0.004
4 <u></u> 5	539.2	<u>i</u> 4		0.007	0.007
5.6	545.2	348653569654570	34865356965457	0.006	0.006
6-7	562.7	4	4	0.007	0.007
7-8	598.7	8	8	0.013	0.013
8-9	618.2	6	6	0.010	0.010
9-10	616.6	5	5	0.008	800.0
10-11	616.2	3	3	0.005	0.005
11-12	614.5	5	5	0.008	800.0
12-13	613.0	6	6	0.010	0.010
13-14	612.1	9	9	0.015	0.015
14-15	605.1	6	6	0.010	0.010
15-16	583.2	5	5	0.009	C.009
16-17	569.6	4	4	0.007	0.007
17-18	548.9	5	5	0.009	0.009
18-19	534.8	7	7	0.013	0.013
19 -2 0	533.7	9	9	0.017	0.017
20-21	498.1	11	11	0.022	0.022
21-22	326.8	1 3 1 1	1 3 1 1	0.003	0.003
22-23	249.6	3	3	0.012	0.012
23-24	151.7	1	1	0.007	0.007
24-25	50.3	1	1	0.020	0.020

TABLE B26 Replacement Rates on Fuel Injection Pumps on M60 Tanks in USAREUR

		Quant	ity of:	R _{a/o} replace	ment rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22	330.5 335.1 435.2 529.6 539.2 545.2 562.7 598.7 618.2 616.6 616.2 616.6 614.5 612.1 583.2 569.6 514.8 533.7 498.1 326.8	8 18 12 20 6 2 0 0 9 20 23 21 3 2 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 1 2 2 2 2 2 2 1 3 2 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1	8 18 12 20 6 2 0 0 9 20 20 20 20 20 23 21 3 2 1 1 3 2 1 1	0.024 0.054 0.028 0.038 0.011 0.004 0.004 0.004 0.004 0.005 0.032 0.033 0.038 0.034 0.005 0.003 0.002 0.002 0.002 0.002 0.002 0.004 0.002 0.002 0.004 0.002 0.002 0.004 0.002 0.003 0.002 0.002 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.003 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.003 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.	0.024 0.054 0.028 0.038 0.011 0.004 0.000 0.000 0.000 0.015 0.032 0.033 0.038 0.034 0.005 0.003 0.002 0.002 0.002 0.004 0.002 0.003
22-23 23-24 24-25 25-26	249.6 151.7 50.3 38.0	1 0 0 1	1 0 0 1	0.004 0.000 0.000 0.026	0.004 0.000 0.000 0.026

TABLE B27 Replacement Rates for Starter Relays on M60 Tanks in USAREUR

RAC-T-465

7

FOR OFFICIAL USE ONLY

		Quan	tity of:	R _{a/a} replace	ment rate for:
Uscge interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	330.5	0	0	0.000	0.000
1-2	335.1	0	0	0.000	0.000
2-3	435.2	0	0	0.000	0.000
3-4	529.6	0	0	0.000	0.000
4-5	539.2	0	0	0.000	0.000
5-6	545.2	2	2	0.004	0.004
6-7	562.7	С	0	0.000	0.000
7-8	598.7	0	0	0.000	0.000
8-9	618.2	1 0	1	0.002	0.002
9-10	616.6		0	0.000	0.000
10-11	616.2	1	1	0.002	0.002
11-12	614.5	4	10	0.007	0.016
12-13	613.0	1	1	0.002	0.002
13-14	612.1	5	10	0.008	0.016
14 - 15	605.1	2	10	0.003	0.017
15-16	583.2	1	2	0.002	0.003
16-17	569.6	15213566	11	0.005	0.019
17-18	548.9	5	12	0.009	0.022
18-19	534.8	6	7	0.011	0.013
19-20	533.7		10	0.011	0.019
20-21	498.1	7 4	15	0.014	0.03)
21-22	326.8	4	11	0.012	0.034
22-23	249.6	5	12	0.020	0.048
23-24	151.7	2	3	0.013	0.020

TABLE B28 Replacement Rates for Shock Absorbers on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

		Quantity of:		R _{a/o} replace	ment rate for:
Usage interval, nionths	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 24-25	330.5 335.1 435.2 529.6 539.2 545.2 562.7 598.7 618.2 616.6 614.5 613.0 612.1 605.1 583.2 569.6 534.8 533.7 498.1 326.8 249.6 151.7 50.3	0 3 12 5 4 6 3 5 5 14 4 0 8 8 2 0 5 6 2 0 3 1 4 7 7 3 2 2 1 2 1 2 5 4 6 3 5 5 5 4 6 3 5 5 5 4 4 0 8 2 0 5 6 2 0 5 5 4 6 3 5 5 5 5 4 6 3 5 5 5 5 4 6 3 5 5 5 5 5 5 5 5 6 2 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 0 \\ 41 \\ 133 \\ 166 \\ 338 \\ 179 \\ 182 \\ 469 \\ 1649 \\ 659 \\ 6074 \\ 4914 \\ 8596 \\ 4871 \\ 2305 \\ 3678 \\ 6511 \\ 9690 \\ 4454 \\ 4688 \\ 5985 \\ 12112 \\ 3722 \\ 1859 \\ 160 \end{array}$	0.000 0.009 0.028 0.009 0.007 0.011 0.005 0.008 0.024 0.023 0.071 0.065 0.098 0.062 0.065 0.098 0.062 0.036 0.014 0.088 0.113 0.056 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.059 0	$\begin{array}{c} 0.000\\ 0.120\\ 0.3(5)\\ 0.313\\ 0.627\\ 0.328\\ 0.328\\ 0.323\\ 0.705\\ 2.667\\ 1.069\\ 9.857\\ 7.997\\ 14.023\\ 7.958\\ 3.809\\ 6.307\\ 11.431\\ 17.653\\ 8.328\\ 8.784\\ 12.016\\ 37.062\\ 14.912\\ 12.254\\ 3.181\end{array}$

TABLE B29 Replacement Rates for Track Shoes on M60 Tanks in USAREUR

86

A Start

"to a dorad or

FOR OFFICIAL USE ONLY

RAC-T-465

語を

	Quant	ity of:	R _{a/o} replace	ment rate for:
Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
330.5	0	0	0.000	0.000
335.1	1	1 1	0.003	0.003
	1	1	0.002	0.002
529.6			0.000	0.000
539.2		0	0.000	0.000
	1	4	0.002	0.007
				0.007
	1	2	0.002	0.003
	1	4	0.002	0.006
	3	5		0.008
		8	0.006	0.013
		63	0.029	0.103
613.0			0.023	0.067
				0.165
				0.111
				0.171
				0.425
				0.138
	.7			0.047
				0.251
	19		0.038	0.145
		52		0.159
-				0.076
151.7	1	2	0.007	0.013
	observed 330.5 335.1 435.2 529.6 539.2 545.2 562.7 598.7 618.2 616.6 616.2 614.5 613.0 612.1 605.1 583.2 569.6 548.9 534.8 533.7 498.1 326.8 249.6	Vehicles observed Mainte- nance actions 330.5 0 335.1 1 435.2 1 529.6 0 539.2 0 545.2 1 562.7 2 598.7 1 618.2 1 616.6 3 616.2 4 614.5 18 613.0 14 612.1 27 569.6 61 548.9 21 534.8 .7 533.7 36 498.1 19 326.8 16 249.6 6	observed Maintenance nance actions Parts replaced 330.5 0 0 335.1 1 1 435.2 1 1 529.6 0 0 539.2 0 0 545.2 1 4 562.7 2 4 598.7 1 2 618.2 1 4 616.6 3 5 616.2 4 8 614.5 18 63 613.0 14 41 612.1 27 101 605.1 22 67 583.2 27 100 569.6 61 242 548.9 21 76 534.8 .7 25 533.7 36 134 498.1 19 72 326.8 16 52 249.6 6 19	Vehicles observedMainte- nance actionsParts replacedMaintenance actions 330.5 000.000 335.1 110.003 435.2 110.002 529.6 000.000 539.2 000.000 545.2 140.002 562.7 240.002 562.7 240.002 618.2 140.002 616.6 350.005 616.2 480.006 614.5 18 63 0.029 613.0 14410.023 612.1 271010.044 605.1 22 67 0.036 583.2 271000.046 569.6 612420.107 548.9 21760.038 534.8 .7250.013 533.7 361340.067 498.1 19720.038 326.8 16520.049 249.6 6190.024

TABLE B30 Replacement Rates for Sprockets on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

		Quant	ity of:	$R_{a/o}$ replacement rate for:	
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1 1-2	330.5 335.1	15 15	15 15	0.045	0.045
2-3	435.2	17	17	0.039	0.039
3-4	529.6	16	16	0.030	0.030
4-5	539.2	25	25	0.046	0.046
5-6	545.2	11	11	0.020	0.020
6-7	562.7	17	17	0.030	0.030
7-8	598.7	15	15	0.025	0.025
8-9	618.2	17	17	0.027	0.027
9-10	616.6	13	13 16	0.021	0.021
10-11 11-12	616.2 614.5	16 14	10	0.026	0.026
12-13	61.3.0	25	25	0.041	0.041
13-14	612.1	28	28	0.046	0.046
14-15	605.1	13	13	0.021	0.021
15-16	583.2	21	21	0.036	0.036
16-17	569.6	8 8	8 8	0.014	0.014
17-18	548.9	8	8	0.015	0.015
18-19	534.8	5 14	5 14	0.009	0.009
19-20	533.7			0.026	0.026
20-21	498.1	5 7	5	0.010	0.010
21-22	326.8 249.6	5		0.021 0.020	0.021
22-23 23-24	151.7	5 4))	0.020	0.020
24-25	50.3	1	5 7 5 4	0.020	0.020
/	70.5	_	-		

TABLE B31 Replacement Rates for Starters on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

0		Quantity of:		R _{a/o} replace	nent rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	639.0	3233514512584583574	32351451258458357423321	0.005	0.005
1-2	636.9	2	2	0.003	0.003
2-3	635.0	3	3	0.005	0.005
3-4	633.9	3	3	0.005	0.005
4-5	633.0	2	2	0.008	0.008
5-6	629.9		1	0.002	0.002
6-7	629.0	4	4	0.006	0.006
7-8	628.4	2	2	0.008	0.008
8-9	625.0	1	1 L	0.002	0.002
9-10	622.0	2	2	0.003	0.003
10-11	621.0	2	2	0.008	0.008
11-12	618.0	8	8	0.013	0.013
12-13	615.0	4	4	0.007	0.007
13-14	613.4	2	2	0.008	0.008
14-15	603.2	8	8	0.013	0.013
15-16	582.2	3	3	0.005	0.005
16-17	569.6	5	2	0.009	0.009
17-18	548.9	1	Ĩ	0.013	0.013
18-19	534.8	4	4	0.007	0.007
19-20	533.7	2	2	0.004	0.004
20-21	498.1	2 3 2 1	3	0.006	0.006
21-22	326.8	3	3	0.009	0.009
22-23	249.6	2	2	0.008	0.008
23-24	151.7	T	1	0.007	0.007

TABLE B32 Replacement Rates for Transmissions on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

		Quan	tity of:	R _{a/o} replacement rate for:	
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	330.5	3	3	0.009	0.009
1-2	335.1	2	2	0.006	0.006
2-3	435.2	3 2 3 1 3 5	3	0.007	0.007
3-4	529.6	2	2	0.004	0.004
4-5	539.2	3	3	0.005	0.005
5-6	545.2	1	1	0.002	0.002
6-7	562.7	3	3	0.005	0.005
7-8	598.7	5	5	0.008	0.008
8-9	618.2	1	1	0.002	0.002
9-10	616.6	2 5 7 4	2	0.003	0.003
10-11	616.2	5	5	0.008	0.008
11-12	614.5	7	7	0.011	0.011
12-13	613.0		4	0.007	0.007
13-14	612.1	5	5	0.008	0.008
14-15	605.1	7	7	0.012	0.012
15-16	583.2	5 7 3 4	3	0.005	0.005
16-17	569.6	4	4	0.007	0.007
17-18	548.9	5 4	5	0.009	0.009
18-19	534.8		4	0.007	0.007
19-20	533.7	2 2 1	3232313512574573454221	0.004	0.004
20-21	498.1	2	2	0.004	0.004
21-22	326.8	1	1	0.003	0.003
22-23	249.6	2	2	0.008	0.008

TABLE B33 Replacement Rates for Traverse Gear Boxes on M60 Tanks in USAREUR

RAC-T-465

90

Users		Quan	tity of:	R _{a/o} replacen	nent rate for:
interval, months	abserved	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced
0-1	330.5	0	0	0.000	0.000
1-2	335.1	1	1	0.003	0.003
2-3	435.2	3	3	0.007	0.007
3-4	529.6	3	3	0.006	0.006
4-5	539.2	2	2	0.004	0.004
5-6	545.2	1	1	0.002	0.002
6-7	562.7	2	2	0.004	0.004
7-8	598.7	5	5	0.008	0.008
8-9	618.2	2	2	0.003	0.003
9-10	616.6	3	3	0.005	0.005
10-11	616.2	5	5	0.008	0.008
11-12	614.5	4	4	0.007	0.007
12-13	613.0	2	2	0.003	0.003
13-14	612.1	2	2	0.003	0.003
14-15	605.1	6	6	0.010	0.010
15-16	583.2	1	1 1	0.002	0.002
16-17	569.6	3	3	0.005	0.005
17-18	548.9	2	2	0.004	· 0.004
18-19	534.8	4	4	0.007	0.007
19-20	533.7	1332125235422613241301	1 3 3 2 1 2 5 2 3 5 4 2 2 6 1 3 2 4 1 3 0	0.002	0.002
20-21	498.1	3	3	0.006	0.006
21-22	326.8	0	0	0.000	0.000
22-23	249.6	1	1	0.004	0.004

TABLE B34 Replacement Rates for Superchargers on M60 Tanks in USAREUR

RAC-T-465

たちの

FOR OFFICIAL USE ONLY

	Quantity of:		R _{a/o} replaces	nent rate for:	
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	330.5	0	0	0.000	0.000
1-2	335.1	0	0	0.000	0.000
2-3	435.2	5	8	0.011	0.018
3-4	529.6	0 5 3 5 0	0 8 4 8 0	0.006	0.008
4-5	539.2	5	8	0.009	0.015
5-6	545.2	0		0.000	0.000
6-7	562.7	5 13	19	0.009	0.034
7 - 8	598.7	13	39	0.022	0.065
8-9	618.2	4	7 2 14	0.006	0.011
9-10	616.6	1 7 9 5 26	2	0.002	0.003
10-11	616.2	7	14	0.011	0.023
11-12	614.5	9	17	0.015	0.028
12-13	613.0	5	22	0.008	0.036
13-14	612.1		77	0.042	0.126
14-15	605.1	15	38	0.025	0.063
15-16	583.2	17	35	0.029	0.050
16-17	569.6	23	61	0.040	0.107
17-18	548.9	18	49	0.033	0.089
18-19	534.8	28	105	0.052	0.196
19-20	533.7	31	84	0.058	0.157
20-21	498.1	28	117	0.056	0.235
21-22	326.8	21	53	0.064	0.162
22-23	249.6	9	19 38 8	0.036	0.076
23-24	151.7	13	38	0.086	0.250
24-25	50.3	l	8	0.020	0.159

TABLE B35

Replacement Rates for Road and Idler Wheels on M60 Tanks in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

• .

IN 3d ARMD DIV, BASED ON MILES OF OPERATION

TABLE B36

Replacement Rates for Engines on M60 Tanks in 3d Armd Div

Replacement Rates for Engines on Mou Tanks in 3d Arma Div							
Usage		Quan	tity of:	R _{a/o} replacer	ment rate for:		
interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced		
0.100	249.0	1	1	0.004	0.004		
101-200	249.0	2	2	0.008	0.008		
201-300	248.0	2	2	0.008	0.008		
301-400	248.0	2 3 1	2 2 3 1 4	0.012	0.012		
401-500	246.0	1	i	0.004	0.004		
501-600	246.0	4		0.016	0.016		
601-700	246.0	0	0	0.000	0.000		
701-800	246.0	2	2	0.008	0.008		
801-900	- 245.0	0	0	0.000	0.000		
901-1000	245.0	0	0	0.000	0.000		
1001-1100	245.0	0	0	0.000	0.000		
1101-1200	245.0	0	0	0.000	0.000		
1201-1300	244.9	3	3	0.012	0.012		
1301-1400	244.0	3	ž	0.008	0.008		
1401-1500	244.0	0	0	0.000	0.000		
1501-1600	244.0	0 6	6	0.025	0.025		
1601-1700	243.3	o	0	0.000	0.000		
1701-1800	242.6	2	2	0.008	0.008		
1801-1900	242.0	0 26 1.5 56 146	03206026155646791	0.025	0.025		
1901-2000	239.9 237.8	1	1	0.004	0.004		
2001-2100	237.8	•5	5	0.021	0.021		
2101-2200	236.5	5	5	0.021	0.021		
2201-2300	233.9	6	6	0.026	0.026		
2301-2400	230.0	14	14	0.061	0.061		
2401-2500 2501-2600	225.1	0	0	0.027	0.027 0.033		
2601-2700	215.3 203.1	6	6	0.033	0.044		
2701-2800	194.5	7 9 11 7	11	0.057	0.057		
2801-2900	188.4	7	7	0.037	0.037		
2901-3000	177.0	3	3	0.017	0.017		
3001-3100	164.8	3	3	0.018	0.018		
3101-3200	144.7	3 '	3	0.021	0.021		
3201-3300	124.5	3	3	0.024	0.024		
3301-3400	107.0	T M M M M M M	7333344	0.028	0.028		
3401-3500	96.6	4	4	0.041	0.041		
3501-3600	85.5	1 2	1 2	0.012	0.012		
3601-3700	75.2	2	2	0.027	0.027		
3701-3800	61.5	2	2	0.033	0.033		
3801-3900	51.3	1	1	0.019	0.019		
3901-4000	44.1	1	1	0.023	0.023		
4001-4100	37.0	2	2	0.054	0.054		
4101-4200	29.0	0	0	0.000	0.000		
4201-4300	20.4	1	1	0.049	0.049		

RAC-T-465

FOR OFFICIAL USE ONLY

	[Quar	itity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	18.0	0	0	0.000	0.000
101-200	18.0	0	0	0.000	0.000
201-300	20.2	0	0	0.000	0.000
301-400	31.3	1	12	0.032	0.383
401-500	60.7	3	36	0.049	0.593
501-600	97.2	5	60	0.051	0.617
601-700	144.1	3 5 5 3	60	0.035	0.416
701-800	180.4	3	175	0.017	0.970
801-900	211.4	0	, 0	0.000	0.000
901-1000	222.2	2	322	0.009	1.449
1001-1100	223.0	3	325	0.013	1.457
1101-1200	223.6	0	0 14	0.000	0.000
1201-1300	224.6	2 2		0.009	0.062 1.409
1301-1400	229.9		324 808	0.009	3.446
1401-1500	234.5	5 7	666	0.021 0.029	2.798
1501-1600	238.0	3.		0.029	
1601-1700	242.0	10	329	0.012	1.360
1701-1800	242.6 242.0	13	1450 1941	0.041	5.977 8.021
1801-1900	239.9	27	3264	0.113	13.606
1901-2000 2001-2100	237.8	34	4943	0.143	20.786
2101-2200	236.5	34	5217	0.144	22.059
2201-2300	233.9	25	3922	0.107	16.768
2301-2400	230.0	23	3238	0.100	14.078
2401-2500	225.1	20	2771	0.089	12.310
2501-2600	215.3	20	2992	0.093	13.897
2601-2700	203.1	15	2031	0.074	10.000
2701-2800	194.5	- Ś	1085	0.041	5.578
2801-2900	188.4	15	2119	0.080	11.247
2901-3000	177.0	13	1853	0.073	10.469
3001-3100	164.8	11	1377	0.067	8.356
3101-3200	144.7	6	970	0.041	6.704
3201-3300	1.24.5	5 7 4	590	0.040	4.739
3301-3400	107.0	7	972	0.065	9.084
3401-3500	96.6		239	0.041	2.472
3501-3600	85.5	5 3 3	658	0.058	7.696
3601-3700	75.2	3	482	0.040	6.410
3701-3800	61.5		480	0.049	7.805
3801-3900	51.3	9	975	0.175	19.006
3901-4000	44.1	34	482	0.068	10.930
4001-4100	37.0		484	0.108	13.081
4101-4200	29.0	3 1	321	0.103	11.070
4201-4300	20.4		162	0.049	7.941
4301-4400	15.4	1	160	0.065	10.390
4401-4500	10.6	0	0 166	0.000	0.000
4501-4600	9.1	2	1 100	0.220	18.242

TABLE B37 Replacement Rates for Track Shoes on M60 Tanks in 3d Armd Div

94

RAC-T-465

Usoge		Quan	tity of:	R _{a/a} replace	ment rate for:		
interval, miles	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced		
0-100	18.0	0	0	0.000	0.000		
101-200	18.0	0	0	0.000	0.000		
201-30%	20.2	0	0	0.000	0.000		
301-400	31.3	0	0	0.000	0.000		
401 20	60.7	0	0	0.000	0.000		
501-600	97.2	1	1	0.010	0.010		
601-700	144.1	0	0	0.000	0.000		
701-800	180.4	0	0	0.000	0.000		
801-900	211.4	0	0	0.000	0.000		
901-1000	222.2	0	0	0.000	0.000		
1001-1100	223.0	0	0	-0.000	0.000		
1101-1200	223.6	0	0	0.000	0.000		
1201-1300	224.6	0	0	0.000	0.000		
1301-1400	229.9	1	2	0.004	0.009		
1401-1500	234.5	2	2 6 5 2	0.009	0.026		
1501-1600	238.0	2	5	0.008	0.021		
1601-1700	242.0	l	2	0.004	0.008		
1701-1800	242.6	5	14	0.021	0.058		
1801-1900	242.0	2	6	0.008	0.025		
1901-2000	239.9	5	18	0.021	0.075		
2001-2100	237.8	9	36	0.038	0.151		
2101-2200	236.5	3	10	0.013	0.042		
2201-2300	233.9	3	12	0.013	0.051		
2301-2400	230.0	3	10	0.01.3	0.043		
2401-2500	225.1	5	20	0.022	0.089		
2501-2600	215.3	2 2 1 5 2 5 9 3 3 5 8 9 9 19	29	0.037	0.135		
2601-2700	203.1	9	33	0.044	0.162		
2701-2800	194.5	19	76	0.098	0.391		
2801-2900	188.4	16	58	0.085	0.308		
2901-3000	177.0	13	41	0.073	0.232		
3001-3100	164.8		12	0.018	0.073		
3101-3200	144.7	6	22	0.041	0.152		
3201-3300	124.5	3 6 3	8	0.024	0.064		
3301-3400	107.0	ĩ	2	0.009	0.019		

TABLE B38 Replacement Rates for Sprockets on M60 Tanks in 3d Armd Div

RAC-T-465

「「ないないない」というない

日本を見たい

FOR OFFICIAL USE ONLY

95

「日本書がいた

		Quantity of:		R _{a/o} replacement rate for:	
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	18.0	0	0	0.000	0.000
101-200	18.0	1	1	0.056	0.056
201-300	20.2	5	5 2	0.248	0.248
301-400	31.3	5 2 2	2	0.064	0.064
401-500	60.7	2	2	0.033	0.033
501-600	97.2	1	1	0.010	0.010
601-700	144.1	1	1	0.007	0.007
701-800	180.4	1 6 3 8	1 6 3 8	0.033	0.033
801-900	211.4	3	3	0.014	0.014
901-1000	222.2		8	0.036	0.036
1001-1100	223.0	10	10	0.045	0.045
1101-1200	223.6	9 4	9 4	0.040	0.040
1201-1300	224.6	4	4	0.018	0.018
1301-1400	229.9	8	8	0.035	0.035
1401-1500	234.5	7	7	0.030	0.030
1501-1600	238.0	11	11	0.046	0.046
1601-1700	242.0	4	. 4	0.017	0.017
1701-1800	242.6	4	4	0.016	0.016
1801-1900	242.0		3	0.012	0.012
1901-2000	239.9	3	3	0.013	0.013
2001-2100	237.8	5	5	0.021	0.021
2101-2200 .	236.5	3 3 5 6 3 7 4	4 3 5 6 3 7 4	0.025	0.025
2201-2300	233.9	3	3	0.013	0.013
2301-2400	230.0	7	7	0.030	0.030
2401-2500	225.1	4	4	0.018	0.018
2501-2600	215.3			0.005	0.005
2601-2700	203.1	6	6	0.030	0.030
2701-2800	194.5	2	2	0.010	0.010
2801-2900	188.4	5	5	0.027	0.027
2901-3000	177.0	4	Ú.	0.023	0.023
3001-3100	164.8	3	3	0.018	0.018
3101-3200	144.7	3	3	0.021	0.021
3201-3300	124.5	1 6 2 5 4 3 3 0	1 6 2 5 4 3 0	0.000	0.000
3301-3400	107.0	ĩ	1	0.009	0.009
3401-3500	96.6	ī	1	0.010	0.010
3501-3600	85.5	3	3	0.035	0.035
3601-3700	75.2	i	3	0.013	0.013
3701-3800	61.5	Ō	ō	0.000	0.000
3801-3900	51.3	ĩ	ĩ	0.019	C.019

TABLE B39 Replacement Rates for Starters on M60 Tanks in 3d Armd Div

i Tat

RAC-T-465

		Quantity of:		R _{a/o} replace	ement rate for:
Usage interval, miles	Vehicles observed	Mainte- nonce actions	Ports replaced	Maintenance actions	Parts replaced
0-100	18.0	0	0	0.000	0.000
101-200	18.0	0	0	0.000	0.000
201-300	20.2	0	0	0.000	0.000
301-400	31.3	0	0	0.000	0.000
401-500	60.7	1	1	0.016	0.016
501-600	97.2	0	0	0.000	0.000
601-700	144.1	0	0	0.000	0.000
701-800	180.4	0	0	0.000	0.000
801-900	211.4	1	2	0.005	0.009
901-1000	222.2	1	2	0.005	0.009
1001-1100	223.0	1	2	0.004	0.009
1101-1200	223.6	0	0	0.000	0.000
1201-1300	224.6	1	2	0.004	0.009
1301-1400	229.9	1	l	0.004	0.004
1401-1500	234.5	1	1	0.004	0.004
1501-1600	238.0	2	4	0.008	0.017
1601-1700	242.0	0	0	0.000	0.000
1701-1800	242.6	1	2	C.004	0.008
1801-1900	242.0	2	4	0.008	0.017
1901-2000	239.9	4	8	0.017	0.033
2001-2100	237.8	4	10	0.017	0.042
2101-2200	236.5	1	1	0.004	0.004
2201-2300	233.9	5	11	0.021	0.047
2301-2400	230.0	1	4	0.004	0.017
2401-2500	225.1	5 1 3 5 9 7 12	6	0.013	0.027
2501-2600	2.5.3	3	8	0.014	0.037
2601-2700	203.1	9	31	0.044	0.153
2701-2800	194.5	7	18	0.036	0.093
2801-2900	188.4	12	22	0.064	0.117
2901-3000	177.0	9 8	40	0.051	0.226
3001-3100	164.8	8	16	0.049	0.097
3101-3200	144.7	4 3 4	6	0.028	0.041
3201-3300	124.5	3	15 8	0.024	0.120
3301-3400	107.0	4	8	0.037	0.075
3401-3500	96.6	2 3 4	1	0.010	0.010
3501-3600	85.5	3	9 15	0.035	0.105
3601-3700	75.2	4	15	0.053	0.199
3701-3800	61.5	4	64	0.065	0.098
3301-3900	51.3	3 3 3 0	4	0.058	0.078
3901-4000	44.1	3	6	0.068	0.136
4001-4100	37.0	3	12	0.081	0.324
1,101-4200	29.0	0	0	0.000	0.000
4201-4300	20.4	2	3	0.098	0.147
4301-4400	15.4	4	10 .	0.260	0.649
4401-4500	10.6	2	2	0.189	0.189

TABLE B40

Replacement Rates for Road and Idler Wheels on M60 Tanks in 3d Armd Div

RAC-T-465

97

IN 1st BN, 33d ARMOR, BASED ON MILES OF OPERATION

		Quant	ity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	77.0	1	1	0.013	0.013
101-200	77.0	0	0	0.000	0.000
201-300	76.0	2	2	0.026	0.026
301-400	76.0	0	0	0.000	0.000
401-500	74.0	0	0	0.000	0.000
501-600	74.0	0	0	0.000	0.000
601-700	74.0	0	0	0.000	0.000
701-800	74.0	0	0	0.000	0.000
801-900	73.0	0	0	0.000	0.000
901-1000	73.0	0	0	0.000	0.000
1001-1100	73.0	0	0	0.000	0.000
1101- 200	, 73.0	0	0	0.000	0.000
1201-1300	73.0	0	0	0.000	0.000
1301-1400	73.0	0	0	0.000	0.000
1401-1500	73.0	0	0	0.000	0.000
1501-1600	73.0	0	0	0.000	0.000
1601-1700	73.0	o	0	0.000	0.000
1701-1800	73.0	i	i	0.014	0.014
1801-1900	73.0	1	ĩ	0.014	0.014
1901-2000	73.0	ō	ō	0.000	0.000
2001-2100	73.0	Ŏ	õ	0.000	0.000
2101-2200	73.0	i	ĩ	0.014	0.014
2201-2300	72.7	ō	ō	0.000	0.000
2301-2400	72.0	2	2	0.028	0.028
2401-2500	72.0	1	1	0.014	0.020
2501-2600	72.0	1	1	0.014	0.014
		i	1		0.014
2601-2700	72.0			0.014	
2701-2800	72.0	3 1	3	0.042	0.042
2801-2900	72.0		1	0.014	0.014
2901-3000	71.4	0	0	0.000	0.000
3001-3100	71.0	2	2	0.028	0.028
3101-3200	71.0	2	2	0.028	0.028
3201-3300	71.0	2	2	0.028	0.028
330.1-3400	71.0	2	2	0.028	0.028
3401-3500	71.0	2	2	0.028	0.028
3501-3600	69.5	1	1	0.014	0.014
3601-3700	65.8	2	2	0.030	0.030
3701-3800	56.8	1	1	0.018	0.018
3801-3900	49.7	1	1	0.020	0.020
3901-4000	44.0	1	1	0.023	0.023
4001-4100	37.0	2	2	0.054	0.054
4101-4200	29.0	0	0	0.000	0.000
4201-4300	20.4	1	1	0.049	0.049

 TABLE B41

 Replacement Rates for Engines on M60 Tanks in 1st Bn, 33d Armor

98

RAC-T-465
Usage		Quantity of:		$R_{a/o}$ replacement rate for:	
interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-500	76.0	3	3	0.039	0.039
501-1000	73.6	0	0	0.000	0.000
1001-1500	73.0	Ο	0	0.000	0.000
1501-2000	73.0	2	2	0.027	0.027
2001-2500	72.7	4	4	0.055	0.055
2501-3000	71.9	6	6	0.083	0.083
3001-3500	71.0	10	10	0.141	0.141
3501-4000	57.2	6	6	0.105	0.105
4001-4500	22.5	3	3	0.133	0.133

TABLE B41 (continued)

99

「日本の

		Quan	tity of:	$R_{a/o}$ replacement rate for:		
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced	
0-100	11.0	0	0	0.000	0.000	
101-200	11.0	0	0	0.000	0.000	
201-300	12.9	0	0	0.000	0.000	
301-400	20.4	0	0	0.000	0.000	
401-500	27.7	0	0	0.000	0.000	
501 -6 00	37.7	0	0	0.000	0.000	
601-700	48.9	0	0	0.000	0.000	
701-800	51.6	0	0	0.000	0.000	
801-900	53.4	0	0	0.000	0.000	
901-1000	54.7	0	0	0.000	0.000	
1001-1100	54.0	0	0	0.000	0.000	
1101-1200	54.0	0	0	0.000	0.000	
1201-1300	54.5	0	0	0.000	0.000	
1301-1400	59.9	0	0	0.000	0.000	
1401-1500	63.5	0	0	0.000	0.000	
1501-1600	67.0	0	0	0.000	0.000	
1601-1700	71.7	1	162	0.014	2.259	
1701-1800	73.0		324	0.027	4.438	
1801-1900	73.0	3	486	0.041	6.411	
1901-2000	73.0	6	889	0.082	12.178	
2001-2100	73.0	2 3 6 8	972	0.082	13.315	
2101-2200	73.0	8	1296	0.110	17.753	
2201-2300	72.7	15	2430	0.206	33.425	
2301-2400	72.0	12	1944	0.167	27.000	
2401-2500	72.0		1138	0.125	15.806	
2501-2600	72.0	7	972	0.097	13.500	
2601-2700	72.0	4	405	0.042	5.625	
2701-2800	72.0		324	0.028	4.500	
2801-2900	72.0	3	484	0.042	6.722	
2901-3000	71.4		1130	0.098	15.826	
3001-3100	71.0	5	649	0.070	9.141	
3101-3200	71.0		484	0.042	6.817	
3201-3300	71.0	9 7 3 2 3 7 5 3 4 6	509	0.056	7.169	
3301-3400	71.0	6	810	0.085	11.408	
3401-3500	71.0	4	77	0.056	1.085	
3501-3600	69.5		660	0.072	9.496	
3601-3700	65.8		482	0.046	7.325	
3701-3800	56.8	5 3 3	480	0.053	8.451	
3801-3900	49.7	9	973	0.181	19.577	
	49.1	7	482	0.068	10.955	
3901-4000 4001-4100	37.0	34	484	0.108	13.081	
4001-4100		2	321	0.103	11.069	
4101-4200	29.0 20.4	3 1	162	0.049	7.941	
4201-4300	15.4	1	162	0.049		
4301-4400	19.4	0 I	100	0.000	10.390 0.000	
4401-4500		2	166	0.220	18.242	
4701-4000	9.1	2	100	0.220	10.242	

TABLE B42 Replacement Rates for Track Shoes on M60 Tanks in 1st Bn, 33d Armor

100

RAC-T-465

ŝ

Useria		Quantity of:		$R_{a/o}$ replacement rate for:	
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-500	• 16.6	0	о	0.000	0.000
501-1000	49.3	0	0	0.000	0.000
1001-1500	57.2	0	0	0.000	0.000
1501 -2 000	71.5	12	1861	0.168	26.028
2001-2500	72.5	50	7780	0.690	107.310
2501-3000	71.9	22	3315	0.306	46.106
3001-3500	71.0	22	2529	0.310	35.620
3501-4000	57.2	23	3077	0.402	53.794
4001-4500	22.5	9	1127	0.400	50.089

TABLE B42 (continued)

RAC-T-465

FOR OFFICIAL USE ONLY

	T	Quan	tity of:	R _{e/o} replacement rate for:		
Usage interval, miles	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Ports replaced	
0-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000 1001-1100 1001-1100 1001-100 1001-100 1001-100 1001-100 1001-100 1001-100 1001-100 1001-100 1001-100 1001-200 2001-2000 20000 2001-2000 20	11.0 11.0 12.9 20.4 27.7 37.7 48.9 51.6 53.4 54.0 54.5 59.9 63.5 67.0 71.7 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0 72.0 72.0 72.0 72.0 71.4 71.0 71.0 72.0 71.7 72.0 71.7 72.0 71.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 71.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 71.0 72.0 72.0 72.0 71.0 72.0 72.0 72.0 71.0 72.0 72.0 71.0 72.0 72.0 71.0 72.0 72.0 72.0 72.0 71.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.0000 0.0000 0.0000 0.0000 0.000000	0.000 0.033 0.389 0.722 0.336 0.056	
0-500	16.6	0	0	0.000	0.000	
501-1000	49.3	о	0	0.000	0.000	
1001 - 1500	57.2	0	o	0.000	0.000	
1501-2000	71.5	l	4	0.014	0.056	
2001-2500	72.5	9	34	0.124	0.469	
2501-3000	71.9	45	180	0.626	2.503	

TABLE B43 Replacement Rates for Sprockets on M60 Tanks in 1st Bn, 33d Armor

102

RAC-T-465

		Quantity of:		$R_{a/o}$ replacement rate for:	
Usoge interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	11.0	0	0	0.000	0.000
101-200	11.0	1.	1.	0.100	0.100
201-300	12.9	5	5	0.388	0.388
301-400	20.4	522	5 2 2	0.098	0.098
401-500	27.7		2	0.072	0.072
501-600	37.7	0	0	0.000	0.000
601-700	48.9	0	0	0.000	0.000
701-800	51.6	0	0	0.000	0.000
80.1-900	53.4	0	0	0.000	0.000
901-1000	54.7	0	0	0.000	0.000
1001-1100	54.0	0	- 0	0.000	0.000
1101-1200	54.0	0	0	0.000	0.000
1201-1300	54.5	0	С	0.000	0.000
1301-1400	59.9	1	1	0.017	0.017
1401-1500	63.5	1.	l	0.016	0.016
1501-1600	67.0	5	5	0.075	0.075
1601-1700	71.7	1		0.014	0.014
1701-1800	73.0	0	0	0.000	0.000
1801-1900	73.0	1	1	0.014	0.014
1901-2000	73.0	1	1	0.014	0.014
2001-2100	73.0	0	0	0.000	0.000
2101-2200	73.0	1	1	0.014	0.014
2201-2300	73.0	1	1	0.01+	0.014
2301-2400	72.0].	1	0.014	0.014
2401-2500	72.0	1	1	0.014	0.014
2501-2600	72.0	0	0	0.000	0.000
2601-2700	72.0	3	3	0.042	0.042
2701-2800	72.0	1	1	0.014	0.014
2801-2900	72.0	0	0	0.000	0.000
2901-3000	71.4	1	1	0.014	0.014
3001-3100	71.0	0	0	0.000	0.000
3101-3200	71.0	0	0	0.000	0.000
3201-3300	71.0	0	0	0.000	0.000
3301-3400	71.0	0	0	0.000	0.000
3401-3500	71.0	0	0	0.000	0.000
3501-3600	69.5	2	2	0.029	0.027
3601-3700	65.8	1	1	0.015	0.015
3701-3800	56.8	0	0	0.000	0.000
3801-3900	49.7	1	1	0.020	0.020
3901-4000	44.0	0	0	C.000	0.000

TABLE B44 Replacement Rates for Starters on M60 Tanks in 1st Bn, 33d Armor

RAC-T-465

103

Usage interval, miles		Quan	tity of:	R _{e/o} replacement rate for:	
	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Ports replaced
0-500	16.6	10	10	0.602	0.602
501-1000	49.3	0	0	0.000	0.000
1001-1500	57.2	2	2	0.035	0.035
1501-2000	71.5	8	8	0.112	0.112
2001-2500	72.5	4	4	0.055	0.055
2501-3000	71.9	5	5	0.070	0.070
3001-3500	71.0	0	0	0.000	0.000
3501-4000	57.2	4	4	0.070	0.070

TABLE B44 (continued)

104

RAC-T-465

		Quantity of:		R _{a/o} replacement rate for:	
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	11.0	0	0	0.000	0.000
101-200	11.0	0	0	0.000	0.000
201-300	12.9	0	0	0.000	0.000
301-400	20.4	0	0	0.000	0.000
401-500	27.7	1	1	0.036	0.036
501-600	37.7	0	0	0.000	0.000
601-700	48.9	0	0	0.000	0.000
701-800	51.6	0	0	0.000	0.000
801-900	53.4	0	0	0.000	0.000
901-1000	54.7	0	0	0.000	0.000
1001-1100	54.0	1	2	0.019	0.037
1101-1200	54.0	Ō	0	0.000	0.000
1201-1300	54.5	0	0	0.000	0.000
1301-1400	59.9	Ő	o o	0.000	0.000
1401-1500	63.5	õ	Ő	0.000	0.000
1501-1600	67.0	ŏ	0	0.000	0.000
1601-1700	71.7	Ő	õ	0.000	0.000
1701-1800	73.0	1	2	0.014	0.027
1801-1900	73.0	1	2	0.014	0.027
1901-2000	73.0	1	4	0.014	0.055
2001-2100		0	0	0.000	0.000
2101-2200	73.0	0	0	0.000	0.000
	73.0	0	4		
2201-2300	72.7	3 0		0.041	0.055
2301-2400	72.0		0 4	0.000	0.000
2401-2500	72.0	2		0.028	0.056
2501-2600	72.0	1	2	0.014	0.028
2601-2700	72.0	1	1 4	0.014	0.014
2701-2800	72.0	3 2		0.042	0.056
2801-2900	72.0	2	2	0.028	0.028
2901-3000	71.4	2	6	0.028	0.084
3001-3100	71.0	1	2	0.014	0.028
3101-3200	71.0	1	2	0.014	0.028
3201-3300	71.0	2	3	0.028	0.042
3301-3400	71.0	0	0	0.000	0.000
3401-3500	71.0	0	0	0.000	0.000
3501-3600	69.5	34	9	0.043	0.129
3601-3700	65.8	4	15	0.061	0.228
3701-3800	56.8	4	6	0.070	0.106
3801-3900	49.7	4 3 3	4	0.060	0.080
3901-4000	44.0	3	6	0.068	0.136

 TABLE B45

 Replacement Rates for Road and Idler Wheels on M60 Tanks in 1st Bn, 33d Armor

RAC-T-465

FOR OFFICIAL USE ONLY

Usage interval, miles		Quan	tity of:	R _{a/o} replacement rate tor:	
	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced
0-500	16.6	1	1	0.060	0.060
501-1000	49.3	0	0	0.000	0.000
1001-1500	57.2	1	2	0.017	0.035
1501-2000	71.5	3	8	0.042	0.112
2001-2500	72.5	5	8	0.069	0.110
2501-3000	71.9	9	15	0.125	0.209
3001-3500	71.0	4	7	0.056	0.099
3501-4000	57.2	17	40	0.297	0.699

TABLE B45 (continued)

M113 APCs

TABLE B46

FSNs of M113 APC Repair Parts Studied

Noun of repair part	FSN
Battery, storage	6140-057-2554
Coil, ignition	2920-324-0371
Differential, steering control	2520-714-6135
Distributor, ignition system	2920-679-9753
Eagine assembly	2805-679-9668
	2805-751-9059
Pad, shoe, track	2530-690-2681
Radiator, engine coolant	2930-679-9748
	2930-811-9168
Seal, road wheel hub	5330-679-9879
Shock absorber, direct action	2540-714-6156
Shoe, track	2530-690-2682
Spark plug	2920-679-9728
Sprocket, wheel, track drive	2520-679-7956
Starter, engine, electrical	2920-784-1708
Transmission assembly, automatic	2520-679-8032
	2520-860-7342
Wheel, track idler, rubber; steel	2530-711-6375
	2530-856-2299
Wheel, road, rubber	2530-679-7973

106

RAC-T-465

IN USAREUR, BASED ON MILES OF OPERATION

·	Replacement N	Cates for D	atteries on M	113 APCs in USAF	
		Quan	tity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	466.0	0	0	0.000	0.000
101-200	466.0	2	3 2	0.004	0.006
201-300	466.0	1	2	0.002	0.004
301-400	466.5	0	0	0.000	0.000
401-500	469.2	0	0	0.000	0.000
501-600	475.8	1	1	0.002	0.002
601-700	488.3	1	1	0.002	0.002
701-800	501.1	0	0	0.000	0.000
801-900	507.1	6	9	0.012	0.018
901-1000	513.0	1	í	0.002	0.002
1001-1100	517.1	2	2	0.004	0.004
1101-1200	520.1	0	0	0.000	0.000
1201-1300	528.5	5		0.009	0.013
1301-1400	525.8	6	8	0.011	0.015
1401-1500	532.3	4	8	0.008	0.015
1501-1600	538.5	5643663667	7 8 5 8 8 3 6	0.006	0.009
1601-1700	532.6	6	Ŕ	0.011	0.015
1701-1800	514.2	6	8	0.012	0.016
1801-1900	495.1	Ř	3	0.006	0.006
1901-2000	487.8	6	6	0.012	0.012
2001-2100	482.0	6	8	0.012	0.017
2101-2200	463.6	7	10	0.015	0.022
2201-2300	440.7	3		0.007	0.011
2301-2400	417.6	5	5 8	0.012	0.019
2401-2500	402.0	6	11	0.012	0.027
2501-2600	378.3	5		0.013	0.013
2601-2700	343.2	3 56 5 7		0.020	0.026
2701-2800	317.0	7	9	0.022	0.028
2801-2900	287.7	7 1 5 4	5 9 9 1	0.003	0.003
2901-3000	257.8	5	7	0.019	0.027
3001-3100	232.7		5	0.019	0.021
3101-3200	207.1	4	10		0.021
	181.0	4		0.034 0.044	
3201-3300 3301-3400	159.7	7 8 5 7 6 2	9 7 8 3 7		0.050 0.044
3401-3500	140.4	7	7	0.031	
3501-3600				0.050	0.050
	122.1	0	0	0.049	0.066
3601-3700	102.0	2	5	0.020	0.029
3701-3800	85.2	5 1	1	0.059	0.082
3801-3900	72.7	<u>⊥</u>	1	0.014	0.014

TABLE B47 Replacement Rates for Batteries on M113 APCs in USAREUR

RAC-T-465

.

FOR OFFICIAL USE ONLY

		Quant	ity of:	$R_{a/o}$ replacement rate for:	
Usoge interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	466.0	0	0	0.000	0.000
101-200	466.0	1	1	0.002	0.002
201-300	466.0	1	1	0.002	0.002
301-400	466.5	0	0	0.000	0.000
401-500	469.2	· 1	1	0.002	0.002
501-600	475.8	1	1	0.002	0.002
601-700	488.3	3 1	3	0.006	0.006
701-800	501.1	1	1	0.002	0.002
801-900	507.1	0	0	0.000	0.000
901-1000	513.0	0 4	4	0.008	0.008
1001-1100	517.1	3	3 4	0.006	0.006
1101-1200	520.1	34		0.008	0.008
1201-1300	528.5	4	4	0.008	0.008
1301-1400	525.8	4	4	0.008	0.008
1401-1500	532.3	4		0.008	0.008
1501-1600	538.5	6	4 6	0.011	0.011
1601-1700	532.6	3	2	0.006	0.006
1701-1800	514.2	5	5	0.010	0.010
1801-1900	495.1	3523435 <u>4</u>	35234354	0.004	0.004
1901-2000	487.8	2	3	0.006	0.006
2001-2100	482.0	ŭ	L L	0.008	0.008
2101-2200	463.6	2	1 3	0.006	0.006
2201-2300	440.7			0.011	0.011
2301-2400	417.6	1	Ĺ.	0.010	0.010
2401-2500	402.0	i i	4	0.010	0.010
2501-2600	378.3	i i	4	0.011	0.011
2601-2700	343.2			0.015	0.015
2701-2800	317.0	6	2	0.006	0.006
2801-2900	287.7	2	3	0.010	0.010
2901-3000	257.8	2	2	0.008	0.008
3001-3100	232.7		1 5	0.000	0.000
	207.1	3	3	0.014	0.014
3101-3200 3201-3300	181.0	5	50	0.011	0.011
	159.7	6	6	0.000	0.000
3301-3400	140.4	52320320322	52320320 320322	0.021	0.021
3401-3500 3501-3600	122.1	5	2	0.016	0.015
3601-3700	102.0	2	2	0.020	0.020
	85.2	5	2	0.023	0.023
3701-3800	72.7	1	1	0.014	0.014
3801-3900 3901-4000		1	i	0.017	0.017
	59.5	· 2	2	0.040	0.040
4001-4100	49.7	6	<u> </u>	0.040	0.040

FOR OFFICIAL USE ONLY

TABLE B48 Replacement Raies for Ignition Coils on M113 APCs in USAREUR

RAC-T-465

		Quantity of:		$R_{a/o}$ replacement rate for:	
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	466.0	0	0	0.000	0.000
101-200	466.0	1	1	0.002	0.002
201-300	466.0	1	1	0.002	0.002
301-400	466.5	0	0	0.000	0.000
401-500	469.2	2	2	0.004	0.004
501-600	475.8	0	0	0.000	0.000
601-700	488.3	2	2 *	0.004	0.004
701-800	501.1	0	0	0.000	0.000
801-900	507.1	1	1	0.002	0.002
901-1000	513.0	4	4	0.008	0.008
1001-1100	517.1	3	3	0.006	0.006
1101-1200	520.1	5	5	0.010	0.010
1201-1300	528.5	3533433132	<u>พรพพ</u> 4 พพศ พชช	0.006	0.006
1301-1400	525.8	3	3	0.006	0.006
1401-1500	532.3	4	4	0.008	0.008
1501-1600	538.5	3	3	0.006	0.006
1601-1700	532.6	3	3	0.006	0.006
1701-1800	514.2	1	1	0.002	0.002
1801-1900	495.1	3	3	0.006	0.006
1901-2000	487.8	2	2	0.004	0.004
2001-2100	482.0	2		0.004	0.004
2101-2200	463.6	1	1	0.002	0.002
2201-2300	440.7	1	1	0.002	0.002
2301-2400	417.6	4	4	0.010	0.010
2401-2500	402.0	1	1	0.002	0.002
2501-2600	378.3	0	0	0.000	0.000
2601-2700	343.2	1	1	0.003	0.003
2701-2800	317.0	1	1	0.003	0.003
2801-2900	287.7	0	0	0.000	0.000
2901-3000	257.8	1	1	0.004	0.004

TABLE 849 Replacement Rates for Differentials on M113 APCs in USAREUR

RAC-T-465

109

	Replacement Rates for Distributors on with AI CS in OJARLOR								
Usage			tity of:	$R_{\alpha/o}$ replacement rate for:					
interval, miles	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced				
0-100	466.0	0	0	0.000	0.000				
101-200	466.0	0	0	0.000	0.000				
201-300	466.0	0	0	0.000	0.000				
301-400	466.5	0	0	0.000	0.000				
401-500	469.2	1	1	0.002	0.002				
501-600	475.8	0	0	0.000	0.000				
601-700	488.3	1	1	0.002	0.002				
701-800	501.1	0	0	0.000	0.000				
801-900	507.1	3	3	0.006	0.006				
901-1000	513.0	3	3	0.006	0.006				
1001-1100	517.1	3 3 4 5 4	3 3 4 5 4	0.008	0.008				
1101-1200	520.1	5	5	0.010	0.010				
1201-1300	528.5	4	4	0.008	0.008				
1301-1400	525.8	4	4	0.008	0.008				
1401-1500	532.3	5 1	5 1	0.009	0.009				
1501-1600	538.5	1	ì	0.002	0.002				
1601-1700	532.6	4	4	0.008	0.008				
1701-1800	514.2	6	6	0.012	0.012				
1801-1900	495.1	11	11	0.022	0.022				
1901-2000	487.8			0.010	0.010				
2001-2100	482.0	5 5	5 5 7	0.010	0.010				
2101-2200	463.6	ŕ	7	0.015	0.015				
2201-2300	440.7	4	i,	0.009	0.009				
2301-2400	417.6	4	4	0.010	0.010				
2401-2500	402.0	2	2	0.005	0.005				
2501-2600	378.3	2 8	2 8	0.021	0.021				
2601-2700	343.2	ĩ	ĩ	C.003	0.003				
2701-2800	317.0	.3		0.009	0.009				
2801-2900	287.7	3	3	0.010	0.010				
2901-3000	257.8	2	2	0.008	0.008				
3001-3100	232.7	1 `3 2 4	1 3 2 4 3 1	0.017	0.017				
3101-3200	207.1	3	3	0.014	0.014				
3201-3300	181.0	3 1	ĩ	0.006	0.006				
3301-3400	159.7	ō	ō	0.000	0.000				
3401-3500	140.4	4	4	0.028	0.028				
3501-3600	122.1	2	2	0.016	0.016				
3601-3700	102.0 '	1	ĩ	0.010	0.010				
3701-3800	85.2	2.	2	0.023	0.023				
3801-3900	72.7	0	0	0.000	0.000				
3901-4000	59.5	1	1	0.017	0.017				
4001-4100	59.5 49.7	2	2	0.017	0.017				
4101-4200		2 1	1						
	37.9	1		0.026	0.026				
4201-4300	27.8		1	0.036	0.036				

TABLE B50 Replacement Rates for Distributors on M113 APCs in USAREUR

110

FOR OFFICIAL USE ONLY

·...

RAC-T-465

		Quantity of:		R _{a/o} replacer	nent rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	705.0	0	0	0.000	0.000
101-200	705.0	2	2	0.003	0.003
201-300	705.0	1	1	0.001	0.001
301-400	705.0	2	2	0.003	0.003
401-500	705.0	0	0	0.000	0.000
501-600	705.0	2	2	0.003	0.003
601-700	705.0	1	1	0.001	0.001
701-800	704.1	0	0	0.000	0.000
801-900	701.3	4	4	0.006	0.006
901-1000	694.7	2	2	0.003	0.003
1001-1100	689.0	0	0	0.000	0.000
1101-1200	683.4	1	ĩ	0.001	0.001
1201-1300	675.6	2	2	0.003	0.003
1301-1400	660.6	1	1	0.002	0.002
1401-1500	645.7	2	2	0.003	0.003
1501-1600	632.8	24	4	0.006	0.006
1601-1700	613.1	7		0.005	0.005
1701-1800		3 3 5 5 8 2	3 3 5 5 8		
1801-1900	579.9	2	2	0.005	0.005
1901-2000	551.3	2	2	0.009	0.009
	532.9		2	0.009	0.009
2001-2100	515.4 490.8	0	0 2	0.016	0.016
2101-2200	490.0	1	2	0.004	0.004
2201-2300	463.1			0.002	0.002
2301-2400	434.4	2	2	0.005	0.005
2401-2500	411.0	8	8	0.019	0.019
2501-2600	382.2	3	3	0.008	0.008
2601-2700	345.7	5	5	0.014	0.014
2701-2800	318.5	28353354	2835354	0.009	0.009
2801-2900	288.7	3	3	0.010	0.010
2901-3000	258.8	5	5	0.019	0.019
3001-31.00	232.8			0.017	0.017
3101-3200	207.1	2	2	0.010	0.010
3201-3300	181.0	0	0	0.000	0.000
3301-3400	159.7	0	0	0.000	0.000
3401-3500	140.4	3 4	3 4	0.021	0.021
3501-3600	122.1			0.033	0.033
3601-3700	102.0	2	2	0.020	0.020
3701-3800	85.2	0	0	0.000	0.000
3801-3900	72.7	1	1	0.014	0.014
3901-4000	59.5	1	1	0.017	0.017

TABLE B51 Replacement Rates for Engines on M113 APCs in USAREUR

RAC-T-465

111

FOR OFFICIAL USE ONLY

*

		Quant	ity of:	R _{a/o} replacer	nent rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	466.0	0	0	0.000	0.000
101-200	466.0	0	0	0.000	0.000
201-300	466.0	2	3	0.004	0.006
301-400	466.5	1	2	0.002	0.004
401-500	469.2	1	1	0.002	0.002
501-600	475.8	5	135	0.011	0.284
601-700	488.3	i	i	0.002	0.002
701-800	501.1	4	134	0.008	0.267
801-900	507.1	5	187	0.010	0.369
901-1000	513.0	0	0	0.000	0.000
1001-1100	517.1	4	269	0.008	0.520
1101-1200	520.1	11	782	0.021	1.504
1201-1300	528.5	8	275	0.015	0.520
1 301- 1400	525.8	14	301	0.027	0.572
1401-1500	532.3	10	337	0.019	0.633
1501-1600	538.5	9	709	0.017	1.317
1601-1700	532.6	13	778	0.024	1.461
1701-1800	514.2	14	1148	0.027	2.233
1801-1900	495.1	11	901	0.022	1.820
1901-2000	487.8	17	1658	0.035	3.399
2001-2100	482.0	16	1661	0.033	3.446
2101-2200	463.6	21	2305	0.045	4.972
2201-2300	440.7	23	2665	0.052	6.047
2301-2400	417.6	12	1393	0.029	3.336
2401-2500	402.0	20	2359	0.050	5.868
2501-2600	378.3	I9	1827	0.050	4.830
2601-2700	343.2	11	1146	0.032	3.339
2701-2800	317.0	1.3	1523	0.041	4.804
2801-2900	287.7	14	1401	0.049	4.870
2901-3000	257.8	9	800	0.035	3.103
3001-3100	232.7	7	513	0.030	2.205
3101-3200	207.1	5	50 9	0.024	2.458
3201-3300	181.0	14	1250	0.077	6.906
3301-3400	159.7	6	758	0.038	4.746
3401-3500	140.4	9	784	0.064	5.584
3501-3600	122.1	16	1502	0.131	12.301
3601-3700	102.0	10	1206	0.098	11.824
3701-3800	85.2	6	572	0.070	6.714
3801-3900	72.7	3	256	0.041	3.521
3901-4000	59.5	0	0	0.000	0.000
4001-4100	49.7	4	382	0.080	7.686
4101-4200	37.9	0	0	0.000	0.000
4201-4300	27.8	2	189	0.072	6.799
4301-4400	19.6	3	381	0.153	19.439

TABLE 852 Replacement Rates for Track Pads on M113 APCs in USAREUR

112

RAC-T-465

		Quant	tity of: R _{a/o} replacement r		nent rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	466.0	0	0	0.000	0.000
101-200	466.0	0	0	0.000	0.000
201-300	466.0	0	0	0.000	0.000
301-400	466.5	1	1	0.002	0.002
401-500	469.2	0	0	0.000	0.000
501-600	475.8	1	1	0.002	0.002
601-700	488.3	1	1	0.002	0.002
701-800	501.1	1	1	0.002	0.002
801-900	507.1	0	0	0,000	0.000
901-1000	513.0	1	l	0.002	0.002
1001-1100	517.1	2	2	0.004	0.004
1101-1200	520.J.	2	2	0.004	0.004
1201-1300	528.5	0	0	0.000	0.000
1301-1400	525.8	4	4	0.008	0.008
1401-1500	532.3	1	1	0.002	0.002
1501-1600	538.5	0	0	0.000	0.000
1601-1700	532.6	1	1	0.002	0.002
1701-1800	514.2	1 3 4	1 3 4 5 2 7 4	0.006	0.006
1801-1900	495.1	4	4	0.008	0.008
1901-2000	487.8	4	4	0.008	0.008
2001-2100	482.0	5 2 7	5	0.010	0.010
2101-2200	463.6	2	2	0.004	0.004
2201-2300	440.7	1 7	7	0.016	0.016
2301-2400	417.6	4		0.010	0.010
2401-2500	402.0	2 1	2	0.005	0.005
2501-2600	378.3		1 6	0.003	0.003
2601-2700	343.2			0.017	0.017
2701-2800	317.0	0	0	0.000	0.000
2801-2900	287.7	1 2	1 2	0.003	0.003
2901-3000	257.8	1	1	0.008 0.004	0.004
3001-3100 3101-3200	232.7 207.1	1	1	0.004	0.004
3201-3300	181.0	1	1	0.005	0.005
3301-3400	159.7	1	1	0.006	0.006
3401-3500	140.4	1	i	0.008	0.007
3501-3600	122.1	i	1	0.008	0.008
3601-3700	102.0	2	2	0.020	0.020
3701-3800	85.2	0	Õ	0.000	0.000
3801-3900	72.7	1	ĩ	0.014	0.014
3901-4000	59.5	ō	ō	0.000	0.000
4001-4100	49.7	1	1	0.020	0.020

TABLE B53 Replacement Rates for Radiators on M113 APCs in USAREUR

RAC-T-465

113

FOR OFFICIAL USE ONLY

.

1		Quan	tity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100 101-200	466.0 466.0	0	0 1	0.000	0.000
201-300	466.0	ō	ō	0.000	0.000
301-400	466.5	0	0	0.000	0.000
401-500	469.2	0	0	0.000	0.000
501-600	475.8	1	1	0.002	0.002
601-700	488.3	3	1 3 8	0.006	0.006
701-800	501.1	2	8	0.004	0.016
801-900	507.1	1	1	0.002	0.002
901-1000	513.0	0	0	0.000	0.000
1001-1100	517.1	3 4	0 6 5 3 2 0	0.006	0.012
1101-1200 1201-1300	520.1 528.5	4	2	0.008	0.010 0.006
1301-1400	525.8	3	2	0.004	0.004
1401-1500	532.3	0	0	0.000	0.000
1501-1600	538.5		2	0.004	0.004
1601-1700	532.6	2 3 1	2 4	0.006	0.008
1701-1800	514.2	1	1	0.002	0.002
1801-1900	495.1	2	2	0.004	0.004
1901-2000	487.8	1	1	0.002	0.002
2001-2100	482.0	6	11	0.012	0.023
2101-2200	463.6	7 2	7 4	0.015	0.015
2201-2300 2301-2400	440.7 417.6	2		0.005	0.009
2401-2500	402.0	3 2 2 3	3 2 2	0.005	0.005
2501-2600	378.3	2	2	0.005	0.005
2601-2700	343.2	3	3	0.009	0.009
2701-2800	317.0	ŏ	ō	0.000	0.000
2801-2900	287.7	1	1	0.003	0.003
2901-3000	257.8	3	1 5 8	0.012	0.019
3001-3100	232.7	1	8	0.004	0.034
3101-3200	207.1	1	2	0.005	0.010
3201-3300	181.0	1	1	0.006	0.006
3301-3400	159.7 140.4	1 3	2 4	0.006	0.013 0.028
3401-3500 3501-3600	122.1	0	0	0.021	0.020
3601-3700	102.0	4	4	0.039	0.039
3701-3800	85.2	Ō	0	0.000	0.000
3801-3900	72.7	ŏ	0	0.000	0.000
3901-4000	59.5	32	5	0.050	0.084
4001-4100	49.7	2	4	0.040	0.080

TABLE B54 Replacement Rates for Road Wheel Hub Seals on M113 APCs in USAREUR

114

RAC-T-465

State and a state of the state

llesse	Quant		ity of:	R _{a/o} replacer	R _{a/o} replacement rate for:	
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced	
0-100	466.0	0	0	0.000	0.000	
101-200	466.0	0	0	0.000	0.000	
201-300	466.0	1	1	0.002	0.002	
301-400	466.5	0	0	0.000	0.000	
401-500	469.2	1	1	0.002	0.002	
501-600	475.8	0	0	0.000	0.000	
601700	488.3	2	2.	0.004	0.004	
701-800	501.1	0	0	0.000	0.000	
801-900	507.1	2	2	0.004	0.004	
901-1000	513.0	0	0	0.000	0.000	
1001-1100	517.1	1	1	0.002	0.002	
1101-1200	520.1	1	1	0.002	0.002	
1201-1300	528.5	4	. 4	0.008	0.008	
1301-1400	525.8	3 2	3	0.006	0.006	
1401-1500	532.3	2		0.004	0.008	
1501-1600	538.5	1	1.	0.002	0.002	
1601-1700	532.6	1	1	0.002	0.002	
1701-1800	514.2	6	6	0.012	0.012	
1801-1900	495.1	2	2	0.004	0.004	
1901-2000	487.8	2 2 4	2	0.004	0.004	
2001-2100	482.0	4	6	0.008	0.012	
2101-2200	463.6	8	15	0.017	0.032	
2201-2300	440.7	3	8	0.007	0.018	
2301-2400	417.6	8	11	0.019	0.026	
2401-2500	402.0	9	11	0.022	0.027	
2501-2600	378.3	6	10	0.016	0.026	
2601-2700	343.2	3	5	0.009	0.015	
2701-2800	317.0	2	3	0.006	0:009	
2801-2900	287.7	5	5	0.017	0.017	
2901-3000	257.8	8	10	0.031	0.039	
3001-3100	232.7	7	8	0.030	0.034	
3101-3200	207.1	7		0.034	0.043	
3201-3300	181.0	<u> </u>	7	0.022	0.039	
3301-3400	159.7	3	9 7 4	0.019	0.025	
3401-3500	140.4	7	7	0.050	0.050	
3501-3600	122.1	4	7 4	0.033	0.033	
3601-3700	102.0	8 38 96 32 58 ዮዮፋ 3r4 34	7	0.029	0.069	
3701-3800	85.2	ŭ	7 7	0.047	0.082	
3801-3900	72.7	7	11	0.096	0.151	
3901-4000	59.5	i	1	0.017	0.017	
4001-4100	49.7	3	9	0.060	0.181	
4101-4200	37.9	7 1 3 1	9 4	0.026	0.106	
4201-4300	27.8	1	4	0.036	0.144	

TABLE B55 Replacement Rates for Shock Absorbers on M113 APCs in USAREUR

FOR OFFICIAL USE ONLY

		Quant	ity of:	R _{a/o} replacer	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000 1001-1100 1001-1100 101-1200 1201-1300 1301-1400 1401-1500 1501-1600 1601-1700 1701-1800 1601-1700 1701-2800 2001-2100 2101-2200 2201-2300 2301-2400 2401-2500 2501-2600 2601-2700 2501-2600 2601-2700 2501-2600 2601-2700 2501-2600 2601-2700 301-3100 301-3100 301-3100 301-3700 3601-3700 3601-3700 3801-3900	467.0 467.0 467.0 467.5 470.2 470.8 489.3 508.1 514.0 518.1 529.5 533.5 533.6 488.0 441.7 410.3 514.0 518.1 529.5 533.5 533.5 533.6 488.0 441.7 418.0 379.3 208.1 182.7 100.7 141.1 103.0 86.2 100.7 141.1 103.0 87.7	0 1 2 4 0 5 2 6 4 2 3 6 1 7 9 4 9 3 8 1 6 1 8 9 8 1 0 1 4 3 7 7 9 4 9 3 8 1 6 1 8 9 8 1 0 1 2 4 0 5 2 6 4 2 3 6 1 7 9 4 9 3 8 16 1 9 8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0\\ 2\\ 3\\ 5\\ 0\\ 11\\ 65\\ 9\\ 6\\ 2\\ 8\\ 18\\ 42\\ 156\\ 185\\ 10\\ 19\\ 325\\ 661\\ 637\\ 645\\ 390\\ 265\\ 394\\ 547\\ 659\\ 1167\\ 1085\\ 730\\ 635\\ 925\\ 1123\\ 783\\ 789\\ 1706\\ 1300\\ 642\\ 582\end{array}$	0.000 0.002 0.004 0.009 0.000 0.010 0.004 0.022 0.004 0.004 0.004 0.006 0.012 0.021 0.013 0.017 0.007 0.017 0.007 0.017 0.007 0.012 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.023 0.012 0.023 0.022 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.044 0.045 0.066 0.073 0.053 0.066 0.071 0.138 0.117 0.081 0.068	0.000 0.004 0.006 0.011 0.000 0.023 0.133 0.018 0.012 0.004 0.012 0.035 0.035 0.079 0.296 0.347 0.024 0.019 0.024 0.019 0.037 0.655 1.352 1.319 1.388 0.883 0.633 0.978 1.442 1.915 3.670 3.758 2.821 2.717 3.964 6.170 4.872 5.580 13.859 12.621 7.448 7.897
3901-4000 4001-4100	60.5 50.5	5 4 5	34 445	0.066 0.099	0.562 8.812

TABLE B56 Replacement Rates for Track Shoes on M113 APCs in USAREUR

RAC-T-465

116

		Quant	ity of:	R _{a/o} replacer	nent rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced
0-100	466.0	2	2	0.004	0.004
101-200	466.0	3	6	0.006	0.013
201-300	466.0	7	19	0.015	0.041
301-400	466.5	3	18	0.006	0.039
401-500	469.2	3	22	0.006	0.047
501-600	475.8	3 7 3 5 8	40	0.011	0.084
601-700	488.3		58	0.016	0.119
701-800	501.1	11	65	0.022	0.130
801-900	507.1	9 8	39	0.018	0.077
901-1000	513.0	8	60	0.016	0.117
1001-1100	517.1	16	86	0.031	0.166
1101 -12 00	520.1	11	64	0.021	0.123
1201-1300	528.5	17	110	0.032	0.208
1301-1400	525.8	13	66	0.025	0.126
1401-1500	532.3	10	. 55	0.019	0.103
1501-1600	538.5	5	34	0.009	0.063
1601-1700	532.6	15	75	0.028	0.141
1701-1800	514.2	17	93	0.033	0.181
1801-1900	495.1	17	117	0.034	0.236
1901-2000	487.8	14	88	0.029	0.180
2001-2100	482.0	14	84	0.029	0.174
2101-2200	463.6	21	141	0.045	0.304
2201-2300	440.7	8	36	0.018	0.082
2301-2400	417.6	19	123	0.045	0.295
2401-2500	402.0	14	87	0.035	0.216
2501-2600	378.3	11	78	0.029	0.206
2601-2700	343.2	16	113	0.047	0.329
2701-2800	317.0	5 5 4	16	0.016	0.050
2801-2900	287.7	2	32	0.017	0.111
2901-3000	257.8	6	20	0.016	0.078
3001-3100	232.7	6	39 48	0.026	0.168
3101-3200	207.1 181.0	7	40 16	0.034	0.232
3201-3300		2 4		0.011	0.088
3301-3400	159.7	6	27	0.025	0.169
3401-3500 3501-3600	140.4	0	32 45	0.043	0.228 0.369
3601-3700	102.0	9 1 4		0.010	
3701-3800	85.2	1 1	3 32	0.010	0.029
3801-3900	72.7		24	0.047	0.376
3901-3900	59.5	3 3 6	13	0.050	0.330 0.218
4001-4100	49.7	5	42	0.121	0.845
4101-4200	37.9	1	42	0.026	0.106
4201-4300	27.8	2	16	0.072	0.576

TABLE B57 Replacement Rates for Spark Plugs on M113 APCs in USAREUR

RAC-T-465

.

117

FOR OFFICIAL USE ONLY

....

Usoge		Quan	tity of:	$R_{a/o}$ replace	ment rate for:
interval, miles	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced
0-100	466.0	0	0	0.000	0.000
101-200	466.0	0	0	0.000	0.000
201-300	466.0	0	0	0.000	0.000
301-400	466.5	0	0	0.000	0.000
401-500	469.2	0	0	0.000	0.000
501-600	475.8	1	4	0.002	0.008
601-700	488.3	0	0	0.000	0.000
701-800	501.1	0	0	0.000	0.000
801-900	507.1	1	2	0.000	0.000
901-1000	513.0	0	2	0.002	
1001-1100	517.1 520.1	0	0	0.000	0.000
1201-1300	528.5	1	2	0.002	0.004
1301-1400	525.8	1	2 4	0.002	0.004
1401-1500	532.3	Ō	4	0.002	0.000
1501-1600	538.5	1	ž	0.002	0.004
1601-1700	532.6	Ō	0	0.000	0.000
1701-1800	514.2	ĩ	ĩ	0.002	0.002
1801-1900	495.1	i	1	0.002	0.002
1901-2000	487.8	1	ĩ	0.002	0.002
2001-2100	482.0	1	Ĩ,	0.002	0.008
2101-2200	463.6	1	4	0.002	0.009
2201-2300	440.7	338365779666	8	0.007	0.018
2301-2400	417.6	3	12	0.007	0.029
2401-2500	402.0	8	32	0.020	0.080
2501-2600	378.3	3	1.0	0.008	0.026
2601-2700	343.2	6	14	0.017	0.041
2701-2800	317.0	5	12	0.016	0.038
2801-2900	287.7	7	22	0.024	0.076
2901-3000	257.8	9	25	0.035	0.097
3001-3100	232.7	6	11	0.026	0.047
3101-3200	207.1	6	21	0.029	0.101
3201-3300	181.0	6	20	0.033	0.110
3301-3400	159.7	5 13	24	0.056	0.150
3401-3500	140.4	13	31	0.093	0.221
3501-3600	122.1	4	10	0.033	0.082
3601-3700	102.0	5 6	11	0.049	0.108
3701-3800	85.2	6	12	0.070	0.141
3801-3900	72.7	1	2 8	0.014	0.028
3901-4000 4001-4100	59.5	1 3 5		0.050	0.134
4001-4100	49.7	2	15	0.101	0.302

TABLE B58 Replacement Rates for Sprockets on M113 APCs in USAREUR

118

RAC-T-465

Usage			tity of:	R _{a/o} replace	ment rate for:
interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenonce actions	Parts replaced
0-107 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000 1001-1100 1101-1200 1201-1300 1301-1400 1401-1500 1501-1600 1601-1700 1701-1800 1801-1900 1901-2000 2001-2100 2101-2200 2201-2300 2301-2400 2401-2500 2501-2600 2601-2700 2501-2600 2601-2700 2501-2600 2601-2700 2501-2600 301-3100 3101-3200 3301-3400 3401-3500 3501-2600 3601-3700 3701-3800 3801-3900 3901-4000 4001-4100	$\begin{array}{c} 466.0\\ 466.0\\ 466.0\\ 466.5\\ 469.2\\ 475.8\\ 488.3\\ 501.1\\ 507.1\\ 513.0\\ 517.1\\ 520.1\\ 528.5\\ 532.5\\ 532.5\\ 532.6\\ 514.2\\ 495.1\\ 487.8\\ 482.0\\ 463.6\\ 440.7\\ 417.6\\ 402.0\\ 378.3\\ 317.0\\ 287.8\\ 232.7\\ 181.0\\ 159.7\\ 140.4\\ 122.1\\ 102.0\\ 85.2\\ 72.7\\ 59.5\\ 49.7\end{array}$	35144003327401891960704033445634554364613	35144003327401891960704033445634554364613	0.006 0.011 0.002 0.009 0.020 0.020 0.020 0.026 0.026 0.026 0.027 0.019 0.017 0.017 0.021 0.015 0.017 0.021 0.015 0.021 0.015 0.021 0.015 0.021 0.015 0.021 0.017 0.021 0.015 0.021 0.017 0.021 0.015 0.021 0.017 0.021 0.015 0.021 0.017 0.021 0.015 0.021 0.017 0.021 0.017 0.021 0.015 0.021 0.017 0.021 0.015 0.021 0.017 0.021 0.015 0.021 0.017 0.023 0.013 0.017 0.023 0.013 0.019 0.028 0.025 0.025 0.025 0.059 0.047 0.083 0.017 0.060	0.006 0.011 0.002 0.009 0.009 0.021 0.020 0.026 0.026 0.023 0.014 0.027 0.019 0.015 0.017 0.012 0.012 0.012 0.021 0.015 0.021 0.015 0.021 0.015 0.021 0.012 0.021 0.015 0.021 0.015 0.021 0.017 0.021 0.015 0.021 0.015 0.021 0.017 0.021 0.015 0.022 0.021 0.015 0.022 0.021 0.015 0.022 0.021 0.015 0.022 0.023 0.012 0.031 0.017 0.023 0.013 0.017 0.023 0.013 0.019 0.028 0.025 0.025 0.059 0.047 0.083 0.017 0.083 0.017 0.083 0.017

TABLE B59 Replacement Rates for Starters on M113 APCs in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

		Quant	tity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	705.0	0	0	0.000	0.000
101-200	705.0	0	0	0.000	0.000
201-300	705.0	1	1	0.001	0.001
301-400	705.0	0	0	0.000	0.000
401-500	705.0	2	2	0.003	0.003
501-600	705.0	4	. 4	0.006	0.006
601-700	705.0	2	2	0.003	0.003
701-800	704.1	1	1	0.001	0.001
801-900	701.3	0	0	0.000	0.000
901-1000	694.7	4	4	0.006	0.006 .
1001-1100	689.0	0	0	0.000	0.000
1101-1200	683.4	3	3	0.004	0.004
1201-1300	675.6	0	0	0.000	0.000
1301-1400	660.6	2	2	0.003	0.003
1401-1500	645.7	1	1	0.002	0.002
1501-1600	632.8	1	1 1	0.002	0.002
1601-1700	613.1	0	0	0.000	0.000
1701-1800	579.9	1	1	0.002	0.002
1801-1900	551.3	4	4	0.007	0.007
1901-2000	532.9	1	1	0.002	0.002
2001-2100	515.4	ī	ī	0.002	0.002
2101-2200	490.8	ī	ī	0.002	0.002
2201-2300	463.1	3	3	0.006	0.006
2301-2400	434.4	3 1 2 4	1	0.002	0.002
2401-2500	411.0	5		0.005	0.005
2501-2600	382.2	1	2 4	0.010	0.010
2601-2700	345.7	4	4	0.012	0.012
2701-2800	318.5	0	0	0.000	0.000
2801-2900	288.7	ž	2	0.000	0.007
2901-3000	258.8	0	0	0.000	0.000
3001-3100	232.8	o	o	0.000	0.000
3101-3200	207.1	1	1	0.005	
3201-3300	181.0	ō	0	0.000	0.005
		1	1	0.000	0.000
3301-3400	159.7 140.4	2	2	0.008	0.006
3401-3500 3501-3600	140.4	4	4		0.014
			4	0.033	0.033
3601-3700	102.0	0		0.000	0.000
3701-3800	85.2	0	0	0.000	0.000
3801-3900	72.7	1	1	0.014	0.014
3901-4000	59.5	0	0	0.000	0.000
4001-4100	49.7	1	1	0.020	0.020

TABLE B60 Replacement Rates for Transmissions on M113 APCs in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

		Quan	tity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	466.0	0	0	0.000	0.000
101-200	466.0	2	3	0.004	0.006
201-300	466.0	3	3 3 8	0.006	0.006
301-400	466.5	3 5 5 14		0.011	0.017
401-500	469.2	5	10	0.011	0.021
501-600	475.8		18	0.029	0.038
601-700	488.3	3 28	3	0.006	0.006
701-800	501.1		51	0.056	0.102
801-900	507.1	11	24	0.022	0.047
901-1000	513.0	6	13	0.012	0.025
1001-1100	517.1	18	44	0.035	0.085
1101-1200	520.1	12	38	~ 0.023	0.073
1201-1300	528.5	21	43	0.040	0.081
1301-1400	525.8	12	25	0.023	0.048
1401-1500	532.3	10	33	0.019	0.062
1501-1600	538.5	7	21	0.013	0.039
1601-1700	532.6	15	38	0.028	0.071
1701-1800	514.2	19	69	0.037	0.134
1801-1900	495.1	11	24	0.022	0.048
1901-2000	487.8	13	38	0.027	0.078
2001-2100	482.0	17	50	0.035	0.104
2101-2200	463.6	18	52	0.039	0.112
2201-2300	440.7	15	38	0.034	0.086
2301-2400	417.6	14 10	33	0.034	0.079
2401-2500 2501-2600	402.0	4	22	0.025	0.055
2601-2000	378.3	4	11 11	0.011	0.029
2701-2800	343.2 317.0	6	18	0.012	0.032
2801-2900	287.7		16	0.019 0.017	0.057 0.056
2901-3000	257.8			0.008	0.019
3001-3100	232.7	2	5 5 16	0.009	0.021
3101-3200	207.1	5	16	0.024	0.077
3201-3300	181.0	52252562	8	0.011	0.044
3301-3400	159.7	5	20	0.031	0.125
3401-3500	140.4	6	21	0.043	0.150
3501-3600	122.1	2	6	0.016	0.049
3601-3700	102.0	7	23	0.069	0.225
3701-3800	85.2	3	12	0.035	0.141
3801-3900	72.7	7 3 4	16	0.055	0.220
3901-4000	59.5		2	0.017	0.034
4001-4100	49.7	5	20	0.101	0.402
4101-4200	37.9	1 5 2 0	8	0.053	0.211
4201-4300	27.8	0	ŏ	0.000	0.000
4301-4400	19.6	3	10	0.153	0.510
4401-4500	14.3	3 1	4	0.070	0.280

TABLE 861 Replacement Rates for Idler Wheels on M113 APCs in USAREUR

RAC-T-465

121

TABLE B62

Replacement Rates for Road Wheels on M113 APCs in USAREURUsage
interval,
milesQuantity of: $R_{a/o}$ replacement rate for:Vehicles
observedMainte-
nonce
actionsParts
replacedMaintenance
actionsParts replaced0-100
101-200
201-300
301-400466.0
466.5000.000
0.0000.000
0.000

0-100	466.0	0	0	0.000	0.000
101-200	466.0	0	0	0.000	0.000
201-300	466.0	0	0	0.000	0.000
301-400	466.5	1 2 1 0	1	0.002	0.002
401-500	469.2	2	5	0.004	0.011
501-600	475.8	1	1	0.002	0.002
601-700	488.3	0	0	0.000	0.000
701-800	501.1	1	5	0.002	0.010
801-900	507.1	1	2	0.002	0.004
901-1000	513.0	2	5 1 0 5 2 6	0.004	0.012
1001-1100	517.1	5	10	0.010	0.019
1101-1200	520.1	1 1 2 5 1 3 2 4	24	0.002	0.004
1201-1300	528.5	3	4	0.006	0.008
1301-1400	525.8	2	3	0.004	0.006
1401-1500	532.3	4	5	0.008	0.009
1501-1600	538.5	2	4	0.004	0.006
1601-1700	532.6	2 0	ŏ	0.000	0.000
1701-1800	514.2	2	5	0.004	0.010
1801-1900	495.1	2 1 6	3530568 28	0.002	0.012
1901-2000	487.8	6	28	0.012	0.057
2001-2100	482.0	8	29	0.017	0.060
2101-2200	463.6	8 8	29	0.017	0.063
2201-2300	440.7	Š	29 16	0.011	0.036
2301-2400	417.6	5 3	15	0.007	0.036
2401-2500	402.0	10	34	0.025	0.085
2501-2600	378.3	-4	20	0.011	0.053
2601-2700	343.2	6	17	0.017	0.050
2701-2800	317.0	à	6	0.009	0.019
2801-2900	287.7	6 3 4	14	0.014	0.049
2901-3000	257.8	4	8	0.016	0.031
3001-3100	232.7		3	0.009	0.013
3101-3200	207.1	1	3 28	0.019	0.135
3201-3300	181.0	5	8	0.028	0.044
3301-3400	159.7	5	8 16	0.031	0.100
3401-3500	140.4	2 4 5 5 3 1 0	28	0.021	0.199
3501-3600	122.1	i i	20	0.008	0.025
3601-3700	102.0	Ō	3 0	0.000	0.000
3701-3800	85.2	ĩ	1	0.012	0.012
3801-3900	72.7	2	1 9 13	0.028	0.124
3901-4000	59.5	2	13	0.050	0.218
4001-4100	49.7	1 2 3 2	10	0.040	0.201
4101-4200	37.9	1	10	0.026	0.053
4201-4300	27.8	1	7	0.020	0.252
4301-4400	19.6	1	2	0.051	0.153
4401-4500	14.3	0	2 7 3 0	0.000	0.000
4501-4600	9.6	1	4	0.104	0.417
+ JUI=+000		±		U+104 .	U.41

122

RAC-T-465

IN USAREUR, BASED ON MONTHS IN SERVICE

		Quantity of:		R _{e/o} replace	ment rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	466.0	1	2	0.002	0.004
1-2	469.0] 1	1	0.002	0.002
2-3	473.6	2	3	0.004	0.006
3-4	481.7	2	1 3 2 0	0.004	0.004
4-5	494.4	0		0.000	0.000
5-6	515.8	74	9 13 8 6 9 8 3 9	0.014	0.017
6-7	577.8		6	0.007	0.010
7-8	629.0	7	13	0.011	0.021
8-9	654.2	7	8	0.011	0.012
9-10	645.7	7 5 7 3 7 7	6	0.008	0.009
10-11	638.9	7	9	0.011	0.014
11-12	633.5	5	8	0.008	0.013
12-13	619.8	3	3	0.010	0.010
13-14	606.9	7	9	0.012	0.015
14-15	597.3	7	10	0.012	0.017
15-16	577.0	11	14	0.019	0.024
16-17	523.1	20	25	0.038	0.048
17-18	430.5	8	11	0.019	0.026
18-19	309.6	6		0.019	0.029
19-20	243.9	6 5 8 2	9 7	0.021	0.029
20-21	194.8	8	10	0.041	0.051
21-22	136.9	2		0.015	0.015
22-23	55.4	2	2 3 1	0.036	0.054
23-24	40.8	1	ī	0.025	0.025

 TABLE B63

 Replacement Rates for Batteries on M113 APCs in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

123

, en - a whig

TABLE B64

Replacement Rates for Ignition Colls on M113 APCs in USAREUR

Usage		Quant	ity of:	R _{e/e} replacer	ment rate for:
interval, months	observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1 1-2 2-3 3-4 4-5	466.0 469.0 473.6 481.7 494.4	0434	0 4 3 4 1	0.000 0.009 0.006 0.010 0.002	0.000 0.009 .0.006 0.010 0.002
5-6 6-7 7-8	515.8 577.8 629.0	1 9 12 4	9 12 4	0.017 0.021 0.006	0.017 0.021 0.006
8-9 9-10 10-11 11-12	654.2 645.7 638.9 633.5	3 8 5 9	3859	0.005 0.012 0.008 0.014 0.002	0.005 0.012 0.008 0.014
12-13 13-14 14-15 15-16 16-17	619.8 606.9 597.3 577.0 523.1	+ 8 7 3	38591873465	0.013 0.012 0.005 0.008	0.002 0.013 0.012 0.005 0.008
17-18 18-19 19-20 20-21 21-22	430.5 309.6 243.9 194.8 136.9	38591873465141	-6 5 1 4 1	0.014 0.016 0.004 0.021 0.007	0.014 0.016 0.004 0.021 0.007

TABLE B65

Replacement Rates for Differentials on M113 APCs in USAREUR

		Quan	tity of:	R _{e/o} replace	ment rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced
0-1	466.0	0	0	0.000	0.000
1-2	469.0	2	2	0.004	0.004
2-3	473.6	2 3 1	2 3 1	0.006	0.006
3-4	481.7	1		0.002	0.002
4-5	494.4	1	1	0.002	0.002
5-6	515.8	7	7	0.014	0.014
6-7	577.8	10	10	0.017	0.017
7-8	629.0	5	5	0.008	0.008
8-9	654.2	2	2	0.003	0.003
9-10	645.7	3	3	0.005	0.005
10-11	638.9	3	3	0.005	0.005
11-12	633.5	4	4	0.006	0.006
12-13	619.8	52334224	52334224	0.003	0.003
13-14	606.9	2	2	0.003	0.003
14-15	597.3		4	0.007	0.007
15-16	577.0	1	1	0.002	0.002
16-17	523.1	1	1	0.002	0.002
17-18	430.5	1	1	0.002	0.002
18-19	309.6	1	1	0.003	0.003

124

RAC-T-465

.

Usage interval, months		Quantity of:		R _{e/o} replace	ment rate for:
	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenonce actions	Parts replaced
0-1	466.0	0	0	0.000	0.000
. 1-2	469.0	0	0	0.000	0.000
2-3	473.6	0		0.000	0.000
3-4	481.7	0 2 4	0 2 4	0.004	0.004
4-5	494.4		4	0.008	0.008
5-6	515.8	1 6	1	0.002	0.002
6-7	577.8	6	6	0.010	0.010
7-8	629.0	4	1 6 4 5 4 3 9 13 6	0.006	0.006
8-9	654.2	5 4	5	0.008	0.008
9-10	645.7	4	4	0.006	0.006
10-11	638.9	3 9 13 6	3	0.005	0.005
11-12	633.5	9	9	0.014	0.014
12-13	619.8	13	13	0.021	0.021
13-14	606.9	6		0.010	0.010
14-15	597.3	15	15	0.025	0.025
15-16	577.0	15	15	0.026	0.026
16-17	523.1	5	5	0.010	0.010
17-18	430.5	5	15 5 6 4 8 4	0.014	0.014
18-19	309.6	4 8 4	4	0.013	0.013
19-20	243.9	8	8	0.033	0.033
20-21	194.8	4	4	0.021	0.021

TABLE B66 Replacement Rates for Distributors on M113 APCs in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

125

the providence of the second

.

Una		Quant	tity of:	R _{a/o} replacer	nent rate for:
Uscge interval, inonths	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	705.0	0	0	0.000	0.000
1-2	704.7	032122472349491	0 32 1 2 2 4 7 2 3 4 9 4 9 1	0.000	0.000
2-3	703.0	3	3	0.004	0.004
3-4	703.0	2	2	0.003	0.003
4 -5	703.0	1	1	0.001	0.001
5-6	702.2	2	2	0.003	0.003
6-7	699.9	2	2	0.003	0.003
7-8	694.1	4	4	0.006	0.006
8-9	684.5	7	7	0.010	0.010
9-10	675.0	2	2	0.003	0.003
10-11	654.6	3	3	0.005	0.005
11-12	644.5	4	4	0.006	0.006
12-13	627.9	9	9	0.014	0.014
13-14	612.0	4	4	0.007	0.007
14-15	600.3	9	9	0.015	0.015
15-16	580.0	11	11	0.019	0.019
16-17	525.7	9	9	0.017	0.017
17-18	432.5	4	4	0.009	0.009
18-19	311.6	5	5	0.016	0.016
19-20	245.9	2	2	0.008	0.008
20-21	196.8	2	2	0.010	0.010
21-22	138.9	94 52 2 92 1 1	94 52 2 9 2 1 1	0.065	0.065
22-23	57.4	2	2	0.035	0.035
23-24	42.0	1	1	0.024	0.024
24-25	32.8	1	1	0.030	0.030

TABLE B67 Replacement Rates for Engines on M113 APCs in USAREUR

.

RAC-T-465

126

		Quantity of		R _{a/o} replace	ment rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	466.0	1	1	0.002	0.002
1-2	469.0	1	126	0.002	0.269
2-3	473.6	1 5 3 9 4 6	8	0.011	0.017
3-4	481.7	3	6	0.006	0.012
4-5	494.4	9	146	0.018	0.295
5-6	515.8	4	5	0.008	0.010
6-7	577.8	6	259	0.010	0.448
7-8	629.0	1 11	665	0.017	1.057
8-9	654.2	20	2488	0.031	3.803
9-10	645.7	10	537	0.015	0.832
10-11	638.9	24	1988	0.038	3.112
11-12	633.5	48	4978	0.076	7.858
12-13	619.8	44	9951	0.071	16.055
13-14	606.9	37	7883	0.061	12.989
14-15	597.3	32	10604	0.054	17.753
15-16	577.0	33	5438	0.057	9.425
16-17	523.1	31	11573	0.059	22.124
17-18	430.5	20	5030	0.046	11.684
18-19	309.6	15	482	0.048	1.557
19-20	243.9	9	1018	0.037	4.174
20-21	194.8	9 9 9	1023	0.046	5.252
21-22	136.9	9	576	0.066	4.207
22-23	55.4	1	127	0.018	2.292

TABLE B68 Replacement Rates for Track Pads on M113 APCs in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

127

「ないたいないないないない」とう

		Quar	itity of:	R _{a/o} replaced	ment rate for:
Usage interval, months	Vehicles observed	Mainte- nonce actions	Ports replaced	Maintenance actions	Parts replaced
0-1 1-2 2-3	466.0 469.0 473.6	0 1 2 1	0 1 2	0.000 0.002 0.004	0.000 0.002 0.004
3-4 4-5	481.7	1	1	0.002	0.002
5-6 6-7	515.8 577.8	H L Q Q L Q 4 3 58	1	0.002	0.002
7-8 8-9	629.0 654.2	2 1	2	0.003	0.003
9-10 10-11	645.7 638.9	2 4	2 4	0.003 0.006	0.003 0.006
11-12 12-13	633.5 619.8	3 5	3	0.005	0.005
13-14 14-15	606.9 597.3	11	11	0.013 0.018	0.013 0.018
15-16 16-17 17-18	577.0 523.1 430.5	11 3 4 6 1 1	ย 	0.005 0.008 0.014	0.005 0.008 0.014
18-19 19-20	3 .6 243.9	1	1	0.003	0.003
20-21 21-22	194.8 136.9		0	0.021 0.000	0.021
22-23 23-24	55.4 40.8	0 1 1	1 1	0.018 0.025	0.018 0.025

TABLE B69 Replacement Rates for Radiators on M113 APCs in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

Usage		Quantity of:		R _{e/o} replace	ment rate for:
interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23	466.0 469.0 473.6 481.7 494.4 515.8 577.8 629.0 654.2 645.7 638.9 633.5 619.8 606.9 597.3 577.0 523.1 430.5 309.6 243.9 194.8 136.9 55.4	0 2 2 3 2 3 4 4 5 4 1 36 1 5 3 96 3 5 0 2 1	022326546416719411357041	0.000 0.004 0.004 0.006 0.004 0.006 0.007 0.006 0.008 0.006 0.002 0.005 0.010 0.002 0.005 0.010 0.005 0.017 0.014 0.010 0.021 0.021 0.000 0.015 0.018	0.000 0.004 0.004 0.006 0.004 0.012 0.009 0.006 0.009 0.006 0.009 0.006 0.009 0.006 0.009 0.006 0.009 0.011 0.002 0.015 0.007 0.021 0.021 0.030 0.016 0.029 0.000 0.029 0.000

TABLE B70 Replacement Rates for Road Wheel Hub Seals on M113 APCs in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

Usage interval, months	T T	Quantity of:		R _{a/o} replacement rate for:	
	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	466.0 469.0	102101133658	1	0.002	0.002
1-2 2-3	409.0	2	0 2 1 0 1 1 3 6	0.000	0.000
3-4	481.7	1	1	0.002	0.002
4-5	494.4	ō	ō	0.000	0.000
5-6	515.8	1	ĩ	0.002	0.002
6-7	577.8	1	1	0.002	0.002
7-8	629.0	3	3	0.005	0.005
8-9	654.2	3	3	0.005	0.005
9-10	645.7	6	6	0.009	0.009
10-11	638.9	5	10	0.008	0.016
11-12	633.5	8	9	0.013	0.014
12-13	619.8	11	19	0.018	0.031
13-14	606.9	10	13 15	0.016	0.021
14-15	597.3	10		0.017 0.021	0.025
15 -1 6 16 - 17	577.0 523.1	12 13	17 19	0.021	0.029 0.036
17-18	430.5	17	24	0.039	0.056
18-19	309.6		19	0.029	0.061
19-20	243.9	9 14	21	0.057	0.086
20-21	194.8	9	13	0.046	0.067
21-22	136.9	9 1	1	0.007	0.007

TABLE B71 Replacement Rates for Shock Absorbers on M113 APCs in USAREUR

RAC-T-465

1.27

FOR OFFICIAL USE ONLY

		Quantity of:		R _{a/o} replacen	nent rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance octions	Parts replaced
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23	467.0 470.0 474.6 482.7 495.4 516.8 578.8 630.0 655.2 646.7 639.9 634.5 620.8 607.9 598.3 578.0 524.1 431.5 310.6 244.9 195.8 137.0 55.4	1 3 5 11 12 17 12 21 11 13 24 25 10 10 13 7 1	6 138 6 154 111 156 804 1230 405 37 197 508 5615 5127 9363 3667 383 534 1094 635 127	0.002 0.006 0.017 0.010 0.022 0.023 0.029 0.019 0.034 0.017 0.020 0.039 0.046 0.032 0.046 0.032 0.046 0.032 0.048 0.058 0.058 0.032 0.041 0.066 0.051 0.018	$\begin{array}{c} 0.013\\ 0.013\\ 0.291\\ 0.012\\ 0.311\\ 0.215\\ 0.270\\ 1.276\\ 1.877\\ 0.626\\ 0.058\\ 0.310\\ 0.818\\ 9.237\\ 8.569\\ 15.634\\ 6.909\\ 8.498\\ 1.233\\ 2.180\\ 5.587\\ 4.635\\ 2.292 \end{array}$

TABLE B72 Replacement Rates for Track Shoes on M113 APCs in USAREUR

RAC-T-465

ι.

131

. .

FOR OFFICIAL USE ONLY

.

		Quantity of:		Quantity of: $R_{a/o}$ re		Quantity of: $R_{a/o}$ replacement		ment rate for:
Usage interval, months	al, observed Mainte- Parts Maintenar	Maintenance actions	Parts replaced					
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 24-25	466.0 465.0 473.6 481.7 494.4 515.8 577.8 629.0 654.2 645.7 638.9 633.5 619.8 606.9 597.3 577.0 523.1 430.5 309.6 243.9 194.8 136.9 55.4 40.8 31.8	4 8 11 16 17 13 19 18 23 16 21 20 26 17 20 18 15 9 9 5 2 3 1	12 53 64 82 106 69 141 102 79 107 137 118 132 170 111 171 143 122 98 48 51 40 7 20 8	0.009 0.017 0.023 0.033 0.034 0.025 0.029 0.028 0.029 0.028 0.025 0.036 0.025 0.032 0.032 0.043 0.028 0.043 0.028 0.043 0.028 0.043 0.028 0.043 0.028 0.043 0.028 0.043 0.028 0.043 0.037 0.046 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.031	0.026 0.113 0.135 0.170 0.214 0.214 0.134 0.244 0.162 0.121 0.166 0.214 0.186 0.213 0.280 0.186 0.296 0.273 0.283 0.317 0.197 0.262 (-22) (

TABLE B73 Replacement Rates for Spark Plugs on M113 APCs in USAREUR

132

RAC-T-465

	Vehicles observed	Quantity of:		R _{a/o} replacement rate for:	
Usage interval, months		Mainte- nonce actions	Parts replaced	Maintenance actions	Parts replaced
0-1	466.0	0	0	0.000	0.000
1-2	469.0	0	0	0.000	0.000
2-3	473.6	0	0	0.000	0.000
3-4	481.7	0 1	0	0.000	0.000
4-5	494.4	1	2	0.002	0.004
5-6	515.8	0	0	0.000	0.000
6-7	577.8	1	26	0.002	0.003
7-8	629.0	2		0.003	0.010
8-9	654.2	1 2 5 2 3 3 6	17	0.008	0.026
9-10	645.7	2	8	0.003	0.012
10-11	638.9	3	7	0.005	0.011
11-12	633.5	3	10	0.005	0.016
12-13	619.8	6	21	0.010	0.034
13-14	606.9	12 8	39	0.020	0.064
14-15	597.3	8	20	0.013	0.033
15-16	577.0	17	49	0.029	0.085
16-17	523.1	3 11	10	0.006	0.019
17-18	430.5		33	0.026	0.077
18-19	309.6	7	13	0.023	0.042
19-20	243.9	12	27	0.749	0.111
20-21	194.8	14	26	0.072	0.133
21-22	136.9	4	14	0.029	0.102
22-23 -	55.4	2	8	0.036	0.144
23-24	40.8	1	4	0.025	0.098

TABLE B74 Replacement Rates for Sprockets on M113 APCs in USAREUR

RAC-T-465

FOR OFFICIAL USE ONLY

÷

interval, months Venicies observed Mainte- nance actions Parts replaced Maintenance actions Parts replaced 0-1 466.0 7 7 0.015 0.015 1-2 469.0 11 11 2.023 0.023 2-3 473.6 8 8 0.017 0.017 3-4 481.7 9 9 0.019 0.019 4-5 494.4 11 11 0.022 0.022 5-6 515.8 19 19 0.037 0.037 6-7 577.8 12 12 0.021 0.021 7-8 629.0 19 19 0.030 0.030 8-9 654.2 8 8 0.012 0.012 9-10 645.7 14 14 0.022 0.022 10-11 638.9 13 13 0.021 0.031 12-12 633.5 20 20 0.031 0.031 12-13			Quantity of:		R _{a/o} replacement rate for:	
1-2 469.0 11 11 2.023 0.023 $2-3$ 473.6 8 8 0.017 0.017 $3-4$ 481.7 9 9 0.019 0.019 $4-5$ 494.4 11 11 0.022 0.022 $5-6$ 515.8 19 19 0.037 0.037 $6-7$ 577.8 12 12 0.021 0.021 $7-8$ 629.0 19 19 0.030 0.030 $8-9$ 654.2 8 8 0.012 0.012 $9-10$ 645.7 14 14 0.022 0.022 $10-11$ 638.9 13 13 0.020 0.032 $11-12$ 633.5 20 20 0.031 0.031 $13-14$ 606.9 13 13 0.021 0.021 $14-15$ 597.3 20 20 0.033 0.033			nance			Parts replaced
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20	469.0 473.6 481.7 494.4 515.8 629.2 638.9 633.5 619.9 606.9 5577.0 439.9 606.9 5577.0 439.9 5577.0 439.9 5577.0 439.9 5577.0 439.9 5577.0 439.9 5577.0 439.9 5577.0 543.0 5577.0	11 8 9 11 19 12 19 14 13 20 9 16 11 8 13 20 9 16 11 8 13 20 9 12 13 20 9 12 13 20 14 13 20 13 20 14 13 20 13 20 14 13 20 13 20 13 20 14 13 20 13 20 14 13 20 13 20 13 20 14 13 20 13 20 13 20 14 13 20 13 20 14 13 20 13 20 14 13 20 13 20 14 13 20 13 20 14 13 20 14 13 20 13 20 13 20 14 13 20 13 20 14 13 20 14 13 20 13 20 14 13 20 14 13 20 14 13 20 14 13 20 13 20 14 13 20 14 13 20 16 11 8 13 20 16 11 8 13 20 16 11 8 13 20 16 11 8 13 20 16 11 8 13 20 16 11 8 13 13 13 13 13 13 13 13 13 13	11 8 9 11 19 12 19 8 14 13 20 19 13 20 19 16 11 8 13 19 16 11 8 13 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 12 19 13 20 19 13 20 19 13 20 19 13 20 19 13 20 19 13 20 19 13 20 19 13 20 19 13 20 19 13 20 19 13 20 19 13 20 19 13 20 19 13 20 19 16 11 8 13 20 19 16 11 8 13 20 19 16 11 8 19 19 19 19 13 20 19 16 11 8 19 19 19 19 19 19 19 19 19 19	0.023 0.017 0.019 0.022 0.037 0.021 0.030 0.012 0.022 0.020 0.032 0.031 0.021 0.033 0.031 0.033 0.031 0.026 0.026 0.053	0.023 0.017 0.019 0.022 0.037 0.021 0.030 0.012 0.022 0.020 0.032 0.031 0.021 0.033 0.031 0.033 0.031 0.026 0.026 0.026 0.053

.

TABLE B75 Replacement Rates for Starters on M113 APCs in USAREUR

いたいの町

134

ļ
		Quantity of:		$R_{a/o}$ replacement rate for:	
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1	705.0	0	0	0.000	0.000
1-2	704.7	1	1	0.001	0.001
2-3	703.0	1	1	0.001	0.001
3-4	703.0	MQ MMO MQ Q.4	1323303224	0.004	0.004
4 -5	703.0	2	' 2	0.003 (0.003
5-6	702.2	3	3	0.004	0.004
6-7	699.9	3	3	0.004	0.004
7-8	694.1	Ō	Ō	0.000	0.000
8 - 9	684.5	3	3	0.004	0.004
9-10	675.0	2	2	0.003	0.003
10-11	654.6	2	2	0.003	0.003
11-12	644.5	4	4	0.006	0.006
12-13	627.9	5	5	0.008	0.008
13-14	612.0	i	1	0.002	0.002
14-15	600.3	. 4	4	0.007	0.007
15-16	580.0	8	8	0.014	0.014
16-17	525.7	5	5	0.010	0.010
17-18	432.5	li	i	0.002	0.002
18-19	311.6	3	3	0.010	0.010
19-20	245.9	i	ĩ	0.004	0.004
20-21	196.8	5 1 8 5 1 3 1 0 1	5 1 4 8 5 1 3 1 0 1 0 2	0.000	0.000
21-22	138.9		1	0.007	0.007
22-23	57.4	0	0	0.000	0.000
23-24	42.0	2	2	0.048	0.048

TABLE B76 Replacement Rates for Transmissions on M113 APCs in USAREUR

135

0		Quantity of:		R _{ia/o} replace	nient rate for:
Usage interval, months	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23	466.0 469.0 473.6 481.7 494.4 515.8 577.8 629.0 654.2 645.7 638.9 633.5 619.8 606.9 597.3 577.0 523.1 430.5 606.9 597.3 577.0 430.5 243.9 59.4	4 20 16 32 13 28 19 14 27 23 7 11 9 9 9 19 16 30 1 10 1	6 28 31 62 34 50 63 34 50 63 34 9 68 55 21 10 9 68 55 21 10 9 68 55 23 1 20 4 4 34 75 30 63 4 30 65 23 4 30 65 23 4 30 62 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 34 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 63 51 50 65 51 51 50 65 52 51 50 65 52 51 50 65 52 51 50 65 52 51 50 65 52 51 50 65 52 51 50 65 52 52 50 52 52 52 52 52 50 52 52 52 52 52 52 52 52 52 52 52 52 52	0.009 0.043 0.03 ^{1,4} 0.066 0.026 0.043 0.048 0.030 0.021 0.065 0.042 0.036 0.011 0.018 0.032 0.016 0.012 0.016 0.017 0.044 0.036 0.025 0.067 0.073 0.018	0.013 0.060 0.065 0.129 0.069 0.099 0.087 0.100 0.052 0.169 0.106 0.103 0.019 0.051 0.102 0.051 0.102 0.052 0.038 0.149 0.110 0.070 0.231 0.278 0.072

TABLE B77 Replacement Rates for Idler Wheels on M113 APCs in USAREUR

RAC-T-465

136

Usage interval, months		Quantity of:		Quantity of: R _{e/e} replacement		ment rate for:
	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced	
0-1	466.0	1	1	0.002	0.002	
1-2	469.0	2	1 3 1 2 11	0.004	0.006	
2-3	473.6	1 1	1	0.002	0.002	
3-4	481.7	1 1	2	0.002	0.004	
4-5	494.1	4	11	0.008	0.022	
5-6	515.8	3	5	0.006	0.010	
6-7	577.8	6	7	0.010	0.012	
7-8	629.0	3	26	0.005	0.041	
8-9	654.2	2	5 7 26 3 34 29	0.003	0.005	
9-10	645.7	11	34	0.017	0.053	
10-11	638.9	8	29	0.013	0.045	
11-12	633.5	8	23 8	0.013	0.036	
12-13	619.8	6	8	0.010	0.013	
13-14	606.9	8	29	0.013	0.048	
14-15	597.3	8	16	0.013	0.027	
15-16	577.0	น i i 4 36 30 j 88688 78	. 30	0.012	0.052	
16-17	523.1	8	33	0.015	0.063	
17-18	430.5	12	39 28	0.028	0.091	
18-19	309.6	12 12 5 4 3	28	0.039	0.090	
19-20	243.9	5	43	0.021	0.176	
20-21	194.8	4	15	0.021	0.077	
21-22	136.9	3	25	0.022	0.183	

TABLE B78

Replacement Rates for Road Wheels on M113 APCs in USAREUR

137

the second second second second second

「「「「「「「「」」」

FOR OFFICIAL USE ONLY

-

IN 24th INF (MECH) DIV, BASED ON MILES OF OPERATION

Usage		Quan	tity of:	$R_{\alpha/o}$ replacement rate for:				
interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced			
0-100	152.0	0	0	0.000	0.000			
101-200	152.0	0	0	0.000	0.000			
201-300	152.0	0	0	0.000	0.000			
301-400	152.5	0	0	0.000	0.000			
401-500	155.2	0	0	0.000	0.000			
501-600	156.7	0	0	0.000	0.000			
601-700	160.8	1	1	0.006	0.006			
701-800	165.0	0	0	0.000	0.000			
801-900	167.6	0	0	0.000	0.000			
901-1000	173.5	0	0	0.000	0.000			
1001-1100	178.9	0	0	0.000	0.000			
1101-1200	183.7	0	0	0.000	0.000			
1201-1300	196.9	1	1	0.005	0.005			
1301-1400	207.0	0	0	0.000	0.000			
1401-1500	225.1	0	0	0.000	0.000			
1501-1600	241.5	Ó	0	0.000	0.000			
1601-1700	251.7	2	2	0.008	0.008			
1701-1800	260.4	1	1	0.004	0.004			
1801-1900	263.6	0	ō	0.000	0.000			
1901-2000	267.6	2	2	0.007	0.007			
2001-2100	271.4	o	ō	0.000	0.000			
2101-2200	266.6	1	1	0.004	0.004			
2201-2300	258.1	3	5	0.012	0.019			
2301-2400	246.9	Ő	5 0	0.000	0.000			
2401-2500	242.7	3	6	0.012	0.025			
2501-2600	230.8	3	3	0.013	0.013			
2601-2700	210.1	2	3	0.010	0.010			
2701-2800	193.1	2 1	2	0.005	0.010			
2801-2900	178.7	Ď	0	0.000	0.000			
2901-2900	160.1	1	2	0.006	0.012			
3001-3100	148.6	1	1	0.007	0.007			
	136.2	1	1	0.007	0.007			
3101-3200		1	1 2	0.007	0.007			
3201-3300	119.7 106.1	2	2	0.028	0.047			
3301-3400		3 3 4	2	0.032	0.047			
3401-3500	92.9	5	5	0.032	0.032			
3501-3600	81.3		0	0.014				
3601-3700	71.6	1 4	2 5 3 6 2 6		0.028			
3701-3800	64.6		0	0.062	0.093			
3801-3900	55.4	1	1	0.018	0.018			
3901-4000	45.0	0	0	0.000	0.000			
4001-4100	36.7	2	2	0.054	0.054			

TABLE B79 Replacement Rates for Batteries on M113 APCs in 24th Inf (Mech) Div

138

FOR OFFICIAL USE ONLY

RAC-T-465

.

• ;

Usage interval, observed miles		Quantity of:		R _{a/o} replacement rate for:	
		Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-500	152.7	0	0	0.000	0.000
501-1000	164.7	1	l	0.006	0.006
1001-1500	198.3	1	ı	0.005	0.005
1501-2000	257.0	5	5	0.019	0.019
2001-2500	257.1	7	12	0.027	0.047
2501-3000	194.6	7	9	0.036	0.046
3001-3500	120.7	9	12	0.075	0.099
3501-4000	63.6	10	15	0.157	0.236

TABLE B79 (continued)

139

		Quant	tity of:	R _{a/o} replacen	nent rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	152.0	0	0	0.000	0.000
101-200	152.0	0	0	0.000	0.000
201-300	152.0	0	0	0.000	0.000
301-400	152.5	0	0	0.000	0.000
401-500	155.2	0	0	0.000	0.000
501-600	156.7	0	0	0.000	0.000
601-700	160.8	1	1	0.006	0.006
701-800	165.0	0	0	0.000	0.000
801-900	167.6	0	0	0.000	0.000
901-1000	173.5	0	0	0.000	0.000
1001-1100	178.9	0	0	0.000	0.000
1101-1200	183.7	0	0	0.000	0.000
1201-1300	196.9	1	1	0.005	0.005
1301-1400	207.0	0	0	0.000	0.000
1401-1500	225.1	3		0.013	0.013
1501-1600	241.5	i	3 1	0.004	0.004
1601-1700	251.7	3 1 0 2	0	0.000	0.000
1701-1800	260.4	2	2	0.008	0.008
1801-1900	263.6	ī	ī	0.004	0.004
1901-2000	267.6	1	ī	0.004	0.004
2001-2100	271.4	1 2 5 2	2	0.007	0.007
2101-2200	266.6	5	5	0.019	0.019
2201-2300	.258.1	2	5	0.008	0.008
2301-2400	246.9	ī	1	0.004	0.004
2401-2500	242.7	Ō	0	0.000	0.000
2501-2600	230.8	2	2	0.009	0.009
2601-2700	210.1	1	1	0.005	0.005
2701-2800	193.1	i	1	0.005	0.005
2801-2900	178.7	2	2	0.005	0.005
2901-3000	160.1	1	1	0.006	0.006
	148.6	1	1		
3001-3100 3101-3200	136.2	2	2	0.007 0.015	0.007 0.015
		1	1		
3201-3300	119.7	0	0	0.008	0.008
3301-3400	106.1	2		0.000	0.000
3401-3500	92.9	2	2	0.022	0.022
3501-3600	81.3	1	1	0.012	0.012
3601-3700	71.6	1	1	0.014	0.014
3701-3800	64.6	1	1	0.015	0.015
3801-3900	55.4	0	0	0.000	0.000
3901-4000	45.0	1	1	0.022	0.022
4001-4100	36.7	2	2	0.054	0.054
4101-4200	27.8	1	1	0.036	0.036
4201-4300	20.2	1	1	0.050	0.050

TABLE B80 Replacement Rates for Distributors on M113 APCs in 24th Inf (Mech) Div

RAC-T-465

FOR OFFICIAL USE ONLY

Usage interval, miles		Quantity of:		R _{a/o} replacement rate for:	
	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-500	152.7	0	0	0.000	0.000
501-1000	164.7	1	ı	0.006	0.006
1001-1500	198.3	4	4	0.020	0.020
1501-2000	257.0	5	5	0.019	0.019
2001-2500	257.1	10	10	0.039	0.039
2501-3000	194.6	7	7	0.036	0.036
3001-3500	120.7	6	6	0.050	0.050
3501-4000	63.6	4	4	0.063	0.063

TABLE 880 (continued)

FOR OFFICIAL USE ONLY

llesse		Quan	tity of:	R _{a/o} replacen	ment rate for:	
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced	
0-100	346.0	0	0	0.000	0.000	
101-200	346.0	1	1	0.003	0.003	
201-300	346.0	1	1	0.003	0.003	
301-400	346.0	1	1	0.003	0.003	
401-500	346.0	0	0	0.000	0.000	
501-600	346.0	0	0	0.000	0.000	
601-700	346.0	1	1	0.003	0.003	
701-800	346.0	0	0	0.000	0.000	
801-900	346.0	2	2	0.006	0.006	
901-1000	345.1	1	1	0.003	0.003	
1001-1100	343.5	0	0	0.000	0.000	
1101-1200	341.4	1	1	0.003	0.003	
1201-1300	340.0	0	0	0.000	0.000	
1301-1400	338.5	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	0.000	0.000	
1401-1500	336.4	2	2 2 2	0.006	0.006	
1501-1600	332.9	2	2	0.006	0.006	
1601-1700	329.7	2	2	0.006	0.006	
1701-1800	325.0	2	2	0.006	0.006	
1801-1900	318.8	3	3	0.009	0.009	
1901-2000	311.7	2	3 2 1	0.006	0.006	
2001-2100	303.8	1	1	0.003	0.003	
2101-2200	294.2	1	1	0.003	0.003	
2201-2300	281.5	1	1	0.004	0.004	
2301-2400	263.7	1	l	0.004	0.004	
2401-2500	251.7	4	4	0.016	0.016	
2501-2600	234.7	1	1	0.004	0.004	
2601-2700	212.6	3	3	0.014	0.014	
2701-2800	194.6	Õ	ŏ	0.000	0.000	
2801-2900	179.7	1141302421	1 3 0 2 4	0.011	0.011	
2901-3000	161.1	4	4	0.025	0.025	
3001-3100	148.8	2	2	0.013	0.013	
3101-3200	136.2	1	1	0.007	0.007	
3201-3300	119.7	0	0	0.000	0.000	
3301-3400	106.1	0	Ō	0.000	0.000	
3401-3500	92.9	0 2 3 2		0.022	0.022	
3501-3600	81.3	3	2 3 2	0.037	0.037	
3601-3700	71.6	2	2	0.028	0.028	
3701-3800	64.6	0	ō	0.000	0.000	
3801-3900	55.4	1	1	0.018	0.018	
3901-4000	45.0	1	ī	0.022	0.022	

TABLE B81 Replacement Rates for Engines on M113 APCs in 24th Inf (Mech) Div

RAC-T-465

FOR OFFICIAL USE ONLY

Usage		Quantity of:		Quantity of: R _{a/o} replacement		ment rate for:
interval, miles	Vahicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced	
0-500	346.0	3	3	0.009	0.009	
501-1000	345.8	4	4	0.012	0.012	
1001-1500	340.0	٦	3	0.009	0.009	
1501-2000	323.6	11	11	0.034	0.034	
2001-2500	279.0	8	8	0.029	0.029	
2501-3000	196.5	10	10	0.051	0.051	
3701-3500	120.7	5	5	0.041	0.041	
3501-4000	63.6	7	7	0.110	0.110	

TABLE B81 (continued)

FOR OFFICIAL USE ONLY

		Quantity of:		R _{a/o} replacement rate for:		
Usoge interval, miles	Vehicles abserved	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced	
0-100	152.0	0	0	0.000	0.000	
101-200	152.0	0	0	0.000	0.000	
201-300	152.0	0	0	0.000	0.000	
301-400	152.5	0	0	0.000	0.000	
401-500	155.2	0	0	0.000	0.000	
501-600	156.7	1	127	0.006	0.810	
601-700	160.8	0	Ó	0.000	0.000	
701-800	165.0	2	3	0.012	0.018	
801-900	167.6	1	127	0.006	0.758	
901-1000	173.5	0	Ó	0.000	0.000	
1001-1100	178.9	2	128	0.011	0.715	
1101-1200	183.7	6	637	0.033	3.468	
1201-1300	196.9	3	131	0.015	0.665	
1301-1400	207.0	026353676	258	0.024	1.246	
1401-1500	225.1	Î	255	0.013	1.133	
1501-1600	241.5	6	636	0.025	2.634	
1601-1700	251.7	7	764	0.028	3.035	
1701-1800	260.4	6	636	0.023	2.442	
1801-1900	263.6	5	635	0.019	2.409	
1901-2000	267.6	5 13	1526	0.049	5.703	
2001-2100	271.4	12	1524	0.044	5.615	
2101-2200	266.6	15	1905	0.056	7.146	
2201-2300	258.1	14	1778	0.054	6.889	
2301-2400	246.9		764	0.028	3.094	
2401-2500	242.7	7 16	1855	0.066	7.643	
2501-2600	230.8		. 929	0.039	4.025	
2601-2700	210.1	9 8	892	0.038	4.246	
2701-2800	193.1	10	1268	0.052	6.567	
2801-2900	178.7	13	1400	0.073	7.834	
2901-3000	160.1		576	0.044	3.598	
3001-3100	148.6	76	512	0.040	3.445	
3101-3200	136.2	4	508	0.029	3.730	
3201-3300	119.7		824	0.075	6.884	
3301-3400	106.1	9 5 8	633	0.047	5.966	
3401-3500	92.9	A I	783	0.086	8.428	
3501-3600	81.3	12	1309	0.148	16.101	
3601-3700	71.6	10	1206	0.140	16.844	
3701-3800	64.6		571	0.077	8.839	
3801-3900	55.4	5 3 0	256	0.054	4.621	
3901-4000	45.0		270	0.000	4.021	
4001-4100	45.0	4	382		10.409	
4101-4200	27.8	5	-	0.109	0.000	
4101-4200			0 62	0.000	3.069	
4201-4300	20.2 12.6	1 3	381	0.050 0.238	30.238	

TABLE B82 Replacement Rates for Track Pads on M113 APCs in 24th Inf (Mech) Div

144

RAC-T-465

interval		Quantity of:		R _{a/o} replace	ment rate for:
	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenonce actions	Parts replaced
0-500	152.7	0	0	0.000	0.000
501-1000	164.7	4	254	0.024	1.542
1001-1500	198.3	19	1409	0.096	7.105
1501-2000	257.0	37	4197	0.144	16.331
2001-2500	257.1	64	7826	0.249	30.440
2501-3000	194.6	· 47	5065	0.242	26.028
3001-3500	120.7	.32	3260	0.265	27.009
2501-4000	63.6	30	3342	0.472	52 .5 47

TABLE B82 (continued)

145

llesse		Quan	tity of:	R _{a/o} replacer	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	152.0	0	0	0.000	0.000
101-200	152.0	1	1	0.007	0.007
201-300	1.52.0	0	0	0.000	0.000
301-400	152.5	0	0	0.000	0.000
401-500	155.2	0	0	0.000	0.000
501-600	156.7	0	0	0.000	0.000
601-700	160.8	2	2	0.012	0.012
701-800	165.0	1	1 1	0.006	0.006
801-900	167.6	1	1	0.006	0.006
901-1000	173.5	0	0	0.000	0.000
1001-1100	178.9	2	5 3 3 1	0.011	0.028
1101-1200	183.7	2	3	0.011	0.016
1201-1300	196.9	2	3	0.010	0.015
1301-1400	207.0	1	1	0.005	0.005
1401-1500	225.1	0	0	0.000	0.000
1501-1600	241.5	0	0	0.000	0.000
1601-1700	251.7	i	1	0.004	0.004
1701-1800	260.4	ī	1	0.004	0.004
1801-1900	263.6	0	0	0.000	0.000
1901-2000	267.6	0	0	0.000	0.000
2001-2100	271.4	4	9	0.015	0.033
2101-2200	266.6		4	0.011	0.011
2201-2300	258.1	3 1	3	0.004	0.012
2301-2400	246.9	3	9 3 3 1	0.012	0.012
2401-2500	242.7	3	ĩ	0.004	0.004
2501-2600	230.8	ī	ī	C.004	0.004
2601-2700	210.1	2	2	0.010	0.010
2701-2800	193.1	ō	ō	0.000	0.000
2801-2900	178.7	ĩ	ĩ	0.006	0.006
2901-3000	160.1	2	3	0.012	0.019
3001-3100	148.6	ī	3 8	0.007	0.054
3101-3200	136.2	0	o	0.000	0.000
3201-3300	119.7	ĩ	ĩ	0.008	0.008
3301-3400	106.1	ō	ō	0.000	0.000
3401-3500	92.9	1	ĩ	0.011	0.011
3501-3600	81.3	ō	ō	0.000	0.000
3601-3700	71.6	4	4	0.056	0.056
3701-3800	64.6	Ō	Ŏ	0.000	0.000
3801-3900	55.4	ŏ	ŏ	0.000	0.000
3901-4000	45.0	3	5	0.067	0.111
4001-4100	36.7	1	5 2	0.027	0.054

TABLE B83 Replacement Rates for Road Wheel Hub Seals on M113 APCs in 24th Inf (Mech) Div

RAC-T-465

FOR OFFICIAL USE ONLY

llamo	Usage		Quantity of:		R _{a/o} replacement rate for:	
interval, miles	Vehicles observed	Mainte- nonce actions	Parts replaced	Maintenance actions	Parts replaced	
0-500	152.7	1	1	0.007	0.007	
501-1000	164.7	4	4	0.024	0.024	
1001-1500	198.3	7	12	0.035	0.061	
1501-2000	257.0	2	2	800.0	0.008	
2001-2500	257.1	12	19	0.047	0.074	
2501-3000	194.6	6	7	0.031	0.036	
3001-3500	120.7	3	10	0.025	0.083	
3501-4000	63.6	7	9	0.110	0.142	

2

TABLE B83 (continued)

RAC-T-465

147

		Quan	tity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mointe- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	152.0	0	0	0.000	0,000
101-200	152.0	0	0	0.000	0.000
201-300	152.0	0	0	0.000	0.000
301-400	152.5	0	0	0.000	0.000
401-500	155.2	0	0	0.000	0.000
501-600	156.7	0	0	0.000	0.000
601-700	160.8	2	2	0.012	0.012
701-800	165.0	0	0	0.000	0.000
801-900	167.6	1	l	0.006	0.006
901-1000	173.5	0	0	0.000	0.000
1001-1100	178.9	0	0	0.000	0.000
1101-1200	183.7	0	0	0.000	0.000
1201-1300	196.9	1	1	0.005	0.005
1301-1400	207.0	0	0	0.000	0.000
1401-1500	225.1	0	0	0.000	0.000
1501-1600	241.5	0	0	0.000	0.000
1601-1700	251.7	2	2	0.008	0.008
1701-1800	260.4	2	2	0.008	0.008
1801-1900	263.6	1	1	0.004	0.004
1901-2000	267.6	ō	õ	0.000	0.000
2001-2100	271.4	ŏ	õ	0.000	0.000
2101-2200	266.6		4	0.011	0.015
2201-2300	258.1	2	6	0.008	0.023
2301-2400	246.9	3 2 3	4	0.012	0.016
2401-2500	242.7	ר ו	1	0.004	0.004
2501-2600	230.8	1 3	3	0.013	0.013
2601-2700	210.1	0	0	0.000	0.000
2701-2800	193.1	1	ĩ	0.005	0.005
2801-2900		0	0	0.000	0.000
	178.7 160.1	2	2		0.019
2901-3000	148.6	2	2	0.012	
3001-3100		2	3 3 0	0.013	0.020
3101-3200	136.2		0	0.000	0.000
3201-3300	119.7	2	5 0	0.017	0.042
3301-3400	106.1	0		0.000	C.000
3401-3500	92.9	1	1	0.011	0.011
3501-3600	81.3	0	0	0.000	0.000
3601-3700	71.6	3	7	0.042	0.098
3701-3800	64.6	3 1 6	4	0.015	0.062
3801-3900	55.4		10	0.108	0.181
3901-4000	45.0	0	o	0.000	0.000
4001-4100	36.7	2	6	0.054	0.163
4101-4200	27.8	1	4	0.036	0.144
4201-4300	20.2	1	4	0.050	0.198

TABLE B84 Replacement Rates for Shock Absorbers on M113 APCs in 24th Inf (Mech) Div

RAC-T-465

FOR OFFICIAL USE ONLY

		Quantity of:		R _{a/o} replacement rate for:	
Usage interval, miles	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced
0-500	152.7	0	0	0.000	0.000
501-1000	164.7	3	3	0.018	0.018
1001-1500	198.3	1	1	0.005	0.005
1501-2000	257.0	5	5	0.019	0.019
2001-2500	257.1	9	15	0.035	0.058
2501-3000	194.6	6	7	0.031	0.036
3001-3500	120.7	5	9	0.041	0.075
3501-4000	63.6	10	21	0.157	0.330

TABLE B84 (continued)

RAC-T-465

...

FOR OFFICIAL USE ONLY

		Quan	tity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced
0-100	152.0	0	0	0.000	0.000
101-200	152.0	0	0	0.000	0.000
201-300	152.0	0	0	0.000	0.000
301-400	152.5	1	1	0.007	0.007
401-500	155.2	0	0	0.000	0.000
501-600	156.7	1	3 64	0.006	0.019
601-700	160.8	1	64	0.006	0.398
701-800	165.0	4	4	0.024	0.024
801-900	167.6	3	3	0.018	0.018
901-1000	173.5	Ō	Ō	0.000	0.000
1001-1100	178.9	2	7	0.011	0.039
1101-1200	183.7	2	3	0.011	0.016
1201-1300	196.9	9	11	0.046	0.056
1301-1400	207.0	3	148	0.014	0.715
1401-1500	225.1	3	5	0.013	0.022
1501-1600	241.5	ĩ	5 8	0.004	0.033
1601-1700	251.7	3	3	0.012	0.012
1701-1800	260.4	2 9 3 1 3 1 4	3 14	0.004	0.054
1801-1900	263.6	4	319	0.015	1.210
1901-2000	267.6	6	647	0.022	2.418
2001-2100	271.4	5	510	0.018	1.879
2101-2200	266.6	7	514	0.026	1.928
2201-2300	258.1	3	381	0.012	1.476
2301-2400	246.9	4	258	0.016	1.045
2401-2500	242.7	5	389	0.021	1.603
2501-2600	230.8	5	386	0.022	1.672
2601-2700	210.1	57345579888	404	0.033	1.923
2701-2800	193.1	9	1019	0.047	5.277
2801-2900	178.7	8	951	0.045	5.322
2901-3000	160.1	8	386	0.050	2.411
3001-3100	148.6	8	464	0.054	3.122
3101-3200	136.2	7	550	0.051	4.038
3201-3300	119.7	8	706	0.067	5.898
3301-3400	106.1	10	658	0.094	6.202
3401-3500	92.9	9	725	0.097	7.804
3501-3600	81.3	15	1452	0.185	17.860
3601-3700	71.6	ní	1186	0.154	16.564
3701-3800	64.6	6	515	0.093	7.972
3801-3900	55.4	5	582	0.090	10.505
3901-4000	45.0	5 2	31	0.044	0.689
4001-4100	36.7	5	445	0.136	12.125

TABLE B85 Replacement Rates for Track Shoes on M113 APCs in 24th Inf (Mech) Div

RAC-T-465

150

llassa		Quantity of:		R _{a/o} replacement rate for:	
Usage interval, miles	Vehicles observed	Mainte- nonce actions	Parts replaced	Maintenance actions	Parts replaced
0-500	152.7	ı	1	0.007	0.007
501-1000	164.7	9	74	0.055	0.449
1001-1500	198.3	19	174	0.096	0.877
1501-2000	257.0	15	991	0.058	3.856
2001-2500	257.1	24	2052	0.093	7.98 <u>.</u> L
2501-3000	194.5	37	3146	0.190	16.166
3001-3500	120.7	42	3103	0.348	25.708
3501-4000	63.6	39	3766	0.613	59.21.4

ż

TABLE B85 (continued)

RAC-T-465

FOR OFFICIAL USE ONLY

11		Quan	tity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Ports replaced	Maintenance actions	Parts replaced
0-100	152.0	1	1	0.007	0.007
101-200	152.0	0	0	0.000	0.000
201-300	152.0	0	0	0.000	0.000
301-400	152.5	1	8	0.007	0.052
401-500	155.2	0	0	0.000	0.000
501-600	156.7	0	0	0.000	0.000
601-700	160.8	1	8	0.006	0.050
701-80C	165.0	0	0 6	0.000	0.000
801-900	167.6	1	6	0.006	0.036
901-1000	173.5	ī	6	0.006	0.035
1001-1100	178.9	ō	õ	0.000	0.000
1101-1200	183.7	ĩ	ě	0.005	0.044
1201-1300	196.9	7	56	0.036	0.284
1301-1400	207.0	2	10	0.014	0.048
1401-1500		2	9		0.040
1501-1600	225.1 241.5	2	24	0.009	
		3		0.012	0.099
1601-1700	251.7	3	17	0.012	0.068
1701-1800	260.4	3	24	0.012	0.092
1801-1900	263.6	r	56	0.027	0.212
1901-2000	267.6	4	32	0.015	0.120
2001-2100	271.4	3	19	0.011	0.070
2101-2200	266.6	9	60	0.034	0.225
2201-2300	258.1	3	14	0.012	0.054
2301-2400	246.9	8	57	0.032	0.231
2401-2500	242.7	2	13	0.008	0.054
2501-2600	230.8	4	32	0.017	0.139
2601-2700	210.1	6	4 8	0.029	0.228
2701-2800	193.1	2	9 16	0.010	0.047
2801-2900	178.7	2	16	0.011	0.090
2901-3000	160.1	2	16	0.012	0.100
3001-3100	148.6	N N N O O	39 44	0.040	0.262
3101-3200	136.2	6		0.044	0.323
3201-3300	119.7	1	8	0.008	0.067
3301-3400	106.1	3	24	0.028	0.226
3401-3500	92.9	1 3 6 0 2 3 6	24	0.032	0.258
3501-3600	81.3	6	32	0.074	C.394
3601-3700	71.6	0	0	0.000	0,000
3701-3800	64.6	2	16	0.031	0.248
3801-3900	55.4	3	24	0.054	0.433
3901-4000	45.0	2	13	0.067	0.289
4001-4100	36.7	6	42	0.163	1.144
4101-4200	27.8	ĩ	4	0.036	0.144
4201-4300	20.2	1 2	8	0.099	0.396

FOR OFFICIAL USE ONLY

TABLE B86 Replacement Rates for Spark Plugs on M113 APCs in 24th Inf (Mech) Div

152

RAC-T-465

.

		Quan	tity of:	R _{a/e} replacen	nent rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-500	152.7	2	9	0.013	0.059
501-1000	164.7	3	20	0.018	0.121
1001-1500	198.3	13	83	0.066	0.419
1501-2000	257.0	20	153	0.078	0.595
2001-2500	257.1	25	163	0.097	0.634
2501-3000	194.6	16	121	0.082	0.622
3001-3500	120.7	19	139	0.157	1.152
3501-4000	63.6	14	85	0.220	1.336

TABLE B86 (continued)

153

1 :

	8	Quan	tity of:	R _{a/o} replaced	ment rate for:
interval, miles	- Abterved	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	152.0	0	0	0.000	0.000
101-200	152.0	0	0	0.000	0.000
201-300	152.0	0	0	0.000	0.000
301-400	152.5	0	0	0.000	0.000
401-500	155.2	0	0	0.000	0.000
501-600	156.7	1	4	0.006	0.026
601-700	160.8	0	0	0.000	0.000
701-800	165.0	0	0	0.000	0.000
801-900	167.6	0	0	0.000	0.000
901-1000	173.5	0	0	0.000	0.000
1001-1100	178.9	0	0	0.000	0.000
1101-1200	183.7	0	0	0.000	0.000
1201-1300	196.9	0	0	0.000	0.000
1301-1400	207.0	1	4	0.005	0.019
1401-1500	225.1	0	0	0.000	0.000
1501-1600	241.5	0	0	0.000	0.000
1601-1700	251.7	0	0	0.000	0.000
1701-1800	200.4	1	1.	0.004	0.004
1801-1900	263.6	0	0	0.000	0.000
1901-2000	267.6	1	1	0.004	0.004
2001-2100	271.4	0	0	0.000	0.000
2101-2200	266.6	1	4	0.004	0.015
2201-2300	258.1	2	6 8	0.008	0.023
2301-2400	246.9	2 2 5 3 4		0.008	0.032
2401-2500	242.7	5	20	0.021	0.082
2501-2600	230.8	3	10	0.013	0.043
2601-2700	210.1	4	8	0.019	0.038
2701-2800	193.1	4	11	0.021	0.057
2801-2900	178.7	7 4	22	0.039	0.123
2901-3000	160.1		14	0.025	0.087
3001-3100	148.6	2	5 8	0.013	0.034
3101-3200	136.2	2	8	0.015	0.059
3201-3300	119.7	2	8	0.017	0.067
3301-3400	106.1	5	17	0.047	0.160
3401-3500	92.9	3	10	0.032	0.108
3501-3600	81.3	1	4	0.012	0.049
3601-3700	71.6	3	6 5 2 4	0.042	0.084
3701-3800	64.6	2	5	C.031	0.077
3801-3900	55.4	1	2	0.018	0.036
3901-4000	45.0	22253132115		0.022	0.089
4001-4100	36.7	5	15	0.136	0.409

TABLE B87 Replacement Rates for Sprockets on M113 APCs in 24th Inf (Mech) Div

154

FOR OFFICIAL USE ONLY

RAC-T-465

11.12			Quantity of:		$R_{a/o}$ replacement rate for:	
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced	
0-500	152.7	0	0	0.000	0.000	
501-1000	164.7	l	4	0.006	0.024	
1001-1500	198.3	1	4	0.005	0.020	
1501-2000	257.0	2	2	0.008	0.008	
2001-2500	257.1	10	38	0.039	0.148	
2501-3000	194.6	22	65	0.113	0.334	
3001-3500	120.7	14	48	0.116	0.398	
3501-4000	63.6	8	21	0.126	0.330	

TABLE B87 (continued)

-

FOR OFFICIAL USE ONLY

. \

		Quant	ity of:	R _{o/o} replacen	nent rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	152.0	C	0	0.000	0.000
101-200	152.0	4	4	0.026	0.026
201-300	152.0	1	1	0.007	0.007
301-400	152.5	0	0	0.000	0.000
401-500	155.2	2	2 2	0.013	0.013
501-600	156.7	2	2	0.013	0.013
601-700	160.8	1	1	0.006	0.006
701-800	165.0	0	0	0.000	0.000
801-900	167.6	0	0	0.000	0.000
901-1000	173.5	0	0	0.000	0.000
1001-1100	178.9	1	1	0.006	0.006
1101-1200	183.7	1	1	0.005	0.005
1201-1300	196.9	3	3	0.015	0.015
1301-1400	207.0	2	2	0.010	0.010
1401-1500	225.1	3	3	0.013	.013
1501-1600	241.5	3	3	0.015	.012
1601-1700	251.7	5	5	0.020	0.020
1701-1800	260.4	<u> </u>	1 NQ N N N Q N 4 N N 9 N N Q 1 N 4	0.008	0.008
1801-1900	263.6	3	3	0.011	0.011
1901-2000	267.6	4	4	0.015	0.015
2001-2100	271.4	5	5	0.018	0.018
2101-2200	266.6	5	5	0.019	0.019
2201-2300	258.1	9	9	0.035	0.035
2301-2400	246.9	5	5	0.020	0.020
2401-2500	242.7	5	5	0.021	0.021
2501-2600	230.8	2	ź	0.009	0.009
2601-2700	210.1	1 1	1	0.005	0.005
2701-2800	193.1	3	3	0.016	0.016
2801-2900	178.7	4	- Ļ	0.022	0.022
2901-3000	160.1	4	4	0.025	0.025
3001-3100	148.6	2	2	0.013	0.013
3101-3200	136.2	2 1	2 1	0.007	0.007
3201-3300	119.7	1	1	0.008	0.008
3301-3400	106.1	2	2	0.019	0.019
3401-3500	92.9	2	2	0.022	0.022
3501-3600	81.3	2	2	0.025	0.025
3601-3700	71.6	5	5	0.070	0.070
3701-3800	64.6	i á	3	0.046	0.046
3801-3900	55.4	12225351302	2 2 5 3 5 I 3 0 2	0.090	0.090
3901-4000	45.0	í	í	0.022	0.022
4001-4100	36.7	२	2	0.082	U.082
4101-4200	27.8	õ	õ	0.000	0.000
4201-4300	20.2	2	à	0.099	0.099
4301-4400	12.6	0	ō	0.000	0.000
4401-4500	7.8	ĩ	1	0.128	0.128

TABLE B88

Replacement Rates for Starters on M113 APCs in 24th Inf (Mech) Div

156

RAC-T-465

Usage		Quan	tity of:	$R_{a/o}$ replacement rate for:	
interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-500	152.7	7	7	0.046	0.046
501-1000	164.7	3	3	0.018	0.018
1001-1500	198.3	10	10	0.050	0.050
1501-2000	257.0	17	17	0.066	0.066
2001-2500	257.1	29	29	0.113	0.113
2501-3000	194.6	14	14	0.072	0.072
3001-3500	120.7	8	8	0.066	0.066
3501-4000	63.6	16	16	0.252	0.252
4001-4500	21.0	6	6	0.286	0.286

TABLE B88 (continued)

RAC-T-465

.

.

1

FOR OFFICIAL USE ONLY

		Quan	tity of:	R _{e/o} replacer	nent rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	152.0	0	0	0.000	0.000
101-200	152.0	1	2	0.007	0.013
201-300	152.0	C	0	0.000	0.000
301-400	152.5	3 3	5 7	0.020	0.033
401-500	155.2	3	7	0.019	0.045
501-600	156.7	10	13	0.064	0.083
601-700	160.8	3	3	0.019	0.019
701-800	165.0	25	47	0.152	0.285
801-900	167.6	0	Ó	0.000	0.000
901-1000	173.5	0	0	0.000	0.000
1001-1100	178.9	10	24	0.056	0.134
1101-1200	183.7	5	17	0.027	0.093
1201-1300	196.9	5 14	23	0.071	0.117
1301-1400	207.0		12	0.024	0.058
1401-1500	225.1	5	18	0.022	0.080
1501-1600	241.5	5 5 4	11	0.017	0.046
1601-1700	251.7	1	1	0.004	0.004
1701-1800	260.4	6	18	0.023	0.069
1801-1900	263.6	2	4	0.008	0.015
1901-2000	267.6	2	8	0.007	0.030
2001-2100	271.4	2	8	0.007	0.029
2101-2200	266.6	4	11	0.015	0.041
2201-2300	258.1	3	10	0.012	0.039
2301-2400	246.9	8	23	0.032	0.093
2401-2500	242.7	4	11	0.016	0.045
2501-2600	230.8	3	10	0.013	0.043
2601-2700	210.1	ŭ	11	0.019	0.052
2701-2800	193.1	5	17	0.026	0.088
2801-2900	178.7	4	10	0.017	0.056
2901-3000	160.1	2		0.012	0.031
3001-3100	148.6	2	5	0.013	0.034
3101-3200	136.2	2	5 5 8	0.015	0.059
3201-3300	119.7	1 1	4	0.008	0.033
3301-3400	106.1	5	20	0.047	0.189
3401-3500	92.9	6	21	0.065	0.226
3501-3600	81.3	2	6	0.025	0.074
3601-3700	71.6	6	21	0.084	0.293
3701-3800	64.6	3	12	0.046	0.186
3801-3900	55.4	162224 384 34 532221 5626 34 4 520	16	0.072	0.289
3901-3900	45.0	7	2	0.022	0.044
4001-4100		- -	20	0.136	0.545
4101-4200	36.7 27.8	2	20	0.072	0.288
		2	0	0.000	0.000
4201-4300 4301-4400	20.2	2	10	0.238	0.794
4301-4400	12.6 7.8	3 1	10 4	0.128	0.513

TABLE B89 Replacement Rates for Idler Wheels on M113 APCs in 24th Inf (Mech) Div

158

RAC-T-465

		Qua	ntity of:	R _{a/o} replace	ment rate for:
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-500	152.7	7	14	0.046	0.092
501-1000	164.7	38	63	0.231	0.383
1001-1500	198.3	39	94	0.197	0.474
1501-2000	257.0	15	42	0.058	0.163
2001-2500	257.1	21	63	0.082	0.245
2501-3000	194.6	17	53	0.087	0.272
3001-3500	120.7	16	58	0.133	0.481
3501-4000	63.6	16	57	0.252	0.896
4001-4500	21.0	11	42	0.524	2.000

TABLE B89 (continued)

RAC-T-465

FOR OFFICIAL USE ONLY

	Quantity of: R _{e/e} replacemen		ment rate for:		
Usage interval, miles	Vehicles observed	Mainte- nance actions	Parts replaced	Maintenance actions	Parts replaced
0-100	152.0	0	0	0.000	0.000
101-200	152.0	0	0	0.000	0.000
201-300	152.0	0	0	0.000	0.000
301-400	152.5	1	1	0.007	0.007
401-500	155.2	1	2	0.006	0.013
501-600	156.7	0	0	0.000	0.000
601-700	160.8	0	0	0.000	0.000
701-800	165.0	1	5 0	0.006	0.030
801-900	167.6	0	Ó	0.000	0.000
901-1000	173.5	0	0	0.000	0.000
1001-1100	178.9	2	4	0.011	0.022
1101-1200	183.7	0	0	· 0.000	0.000
1201-1300	196.9	1	1	0.005	0.005
1301-1400	20,.0	1	1	0.005	0.005
1401-1500	225.1	0	0	0.000	0.000
1501-1600	241.5	0	0	0.000	0.000
1601-1700	251.7	0	0	0.000	0.000
1701-1800	260.4	0	0	0.000	0.000
1801-1900	263.6	0	0	0.000	0.000
1901-2000	267.6	1	2	0.004	0.007
2001-2100	271.4	l	5	0.004	0.018
2101-2200	266.6	2 0	2	0.008	0.008
2201-2300	258.1	0	0	0.000	0.000
2301-2400	246.9	2 5 1 2	14	0.008	0.057
2401-2500	242.7	5	18	0.021	0.074
2501-2600	230.8	1	4	0.004	0.017
2601-2700	210.1	2	8	0.010	0.038
2701-2800	193.1	0	0	0.000	0.000
2801-2900	178.7	1	3 7	0.006	0.017
2901-3000	160.1	3	7	0.019	0.044
3001-3100	148.6	3 0	0	0.000	0.000
3101-3200	136.2	0	0	0.000	0.000
3201-3300	119.7	2 3 2	2	0.017	0.017
3301-3400	106.1	3	10	0.028	0.094
3401-3500	92.9	2	23	0.022	0.248
3501-3600	81.3	0	Ō	0.000	0.000
3601-3700	71.6	Ó.	0	0.000	0.000
3701-3800	64.6	1	. 1	0.015	0.015
3801-3900	55.4	1	8	0.018	0.144
3901-4000	45.0 🛡	1	10	0.022	0.222
4001-4100	36.7	2	10	0.054	0.272
4101-4200	27.8	1	2	0.036	0.072
4201-4300	20.2	1	7	0.050	0.347
4301-4400	12.6	1	3	0:079	0.238

TABLE B90 Replacement Rates for Road Wheels on M113 APCs in 24th Inf (Mech) Div

160

RAC-T-465

.

Usage		Quan	tity of:	R _{a/o} replace	ment rate for:
interval, miles	Vehicles observed	Mainte- nonce actions	Parts replaced	Maintenance actions	Parts replaced
0-500	152.7	2	3	0.013	0.020
501-1000	164.7	1	5	0.006	0.030
1001-1500	198.3	4	6	0.020	0.030
1501-2000	257.0	1	2	0.004	0.008
2001-2500	257.1	10	39	0.039	0.152
2501-3000	194.6	7	22	0.036	0.113
3001-3500	120.7	7	35	0.058	0.290
3501-4000	63.6	3	19	0.047	0.299

TABLE B90 (continued)

RAC-T-465

FOR OFFICIAL USE ONLY

,

Appendix C

RESULTS OF LEAST SQUARES ANALYSES OF REPLACEMENT-RATE DATA FOR SELECTED M60 TANK AND M113 APC REPAIR PARTS

Tables

'.

C1.	Log-Log Fit of $R_{a/o}$ Replacement-Rate Data Based on 100-Mile	
	Usage Intervals for Selected USAREUR M60 Tank Repair Parts	166
C2.	Linear Fit of R _{a/o} Replacement-Rate Data Based on 100-Mile	
	Usage Intervals for Selected USAREUR M60 Tank Repair Parts	166
C3.	Log-Log Fit of $R_{a/o}$ Replacement-Rate Data Based on 1-Month	
	Usage Intervals for Selected USAREUR M60 Tank Repair Parts	167
C4.	Linear Fit of $R_{a/o}$ Replacement-Rate Data Based on 1-Month	
	Usage Intervals for Selected USAREUR M60 Tank Repair Parts	167
C5.	Log-Log Fit of $R_{a/o}$ Replacement-Rate Data Based on 100-Mile	
	Usage Intervals for Selected 3d Armd Div M60 Tank Repair Parts	168
C6.	Linear Fit of $R_{a/a}$ Replacement-Rate Data Based on 100-Mile	
	Usage Intervals for Selected 3d Armd Div M60 Tank Repair Parts	168
C7.	Log-Log Fit of Ra/o Replacement-Rate Data Based on 100- and 500-	
	Mile Usage Intervals for Selected 1st Bn, 33d Armor, 3d Armd Div	
	M60 Tank Repair Parts	169
C8.	Linear Fit of $R_{a/o}$ Replacement-Rate Data Based on 100- and 500-	
	Mile Usage Intervals for Selected 1st Bn, 33d Armor, 3d Armd Div	
	M60 Tank Repair Parts	169
C9.	Log-Log Fit of $R_{a/o}$ Replacement-Rate Data Based on 100-Mile	
	Usage Intervals for Selected USAREUR M113 APC Repair Parts	170
C10.	Linear Fit of $R_{a/o}$ Replacement-Rate Data Based on 100-Mile	
	Usage Intervals for Selected USAREUR M113 APC Repair Parts	170
C11.	Log-Log Fit of $R_{a/a}$ Replacement-Rate Data Based on 1-Month	
	Usage Intervals for Selected USAREUR M113 APC Repair Parts	171
C12.	Linear Fit of $R_{a/o}$ Replacement-Rate Data Based on 1-Month Usage	
	Intervals for Selected USAREUR M113 APC Repair Parts	171
C13.	Log-Log Fit of $R_{a/o}$ Replacement-Rate Data Based on 100- and 500-	
	Mile Usage Intervals for Selected 24th Inf (Mech) Div M113 APC	
	Repair Parts	172
C14.	Linear Fit of $R_{a/o}$ Replacement-Rate Data Based on 100- and 500-	
	Mile Usage Intervals for Selected 24th Inf (Mech) Div M113 APC	
	Repair Parts	173

RAC-T-465

163

This appendix presents the results of a least squares statistical analysis of the replacement-rate data provided in App B.

In analyzing replacement-rate information for relatively short usage intervals such as 100 miles or 1 month of operation, individual data points are frequently summarized by a single mathematical equation. The summary equation could be of many forms; often the type of rate being studied will help to determine which form(s) to select. For example, if $R_{s/o}$ replacement rates are available for analysis, equations of the type utilized in renewal theory might be chosen to fit to the data.⁹ These equations include the exponential distribution

$$R_{\frac{s}{o}} = Ae^{-At} ,$$

the Erlangian distribution

$$R_{\frac{s}{o}} = \frac{A(At)^{B-1} e^{-At}}{(B-1)!} ,$$

the gamma distribution

$$R_{\frac{s}{a}} = \frac{A(At)^{\beta-1} e^{-At}}{\Gamma(\beta)}$$

the Weibull distribution

$$R_{\frac{s}{\sigma}} = AB(Bt)^{A-1} e^{-Bt^{A}},$$

the normal distribution

$$R_{\frac{3}{0}} = \frac{1}{\sqrt{2\pi A}} e^{\frac{(Bi)^2}{2A}}$$
 and the log-normal distribution

$$R_{\frac{s}{2}} = \frac{1}{t\sqrt{2\pi A}} e^{-\frac{\ln(Bt)^2}{2A}}$$

The replacement rates presented in App B were of the $R_{a/o}$ type, i.e., rates based on the total number of replacements observed regardless of order. For rates of this kind it was felt that linear $(R_{a/o} = A + Bt)$ and log-log $(R_{a/o} = At^B)$ functional relationships would be adequate to describe overall replacement trends. For data that are known to be relatively complete and accurate the use of more complex equations such as $R_{a/o} = A + Bt^c$ appears warranted.

complex equations such as $R_{a/o} = A + Bt^c$ appears warranted. The data in App B were analyzed using a Multiple Regression Program developed at RAC.¹¹ This program is designed to provide great flexibility in acceptable input and to furnish a wide variety of statistics to the user. Among

RAC-T-465

FOR OFFICIAL USE ONLY

the items printed out by the program are means; standard deviations; extremes and related statistics; simple, partial, and multiple correlation coefficients; regression coefficients with their standard errors; and measures of significance such as the F ratio and Student's t. Optional data include sums, sums of squares, sums of cross products for raw data, and deviations about means. The program also has the capability of providing output in graphical form. Any two variables may be selected to define the two axes; the variable may be expressed as original data, as transformed data, as estimates computed from the regression equation, or as differences of original and estimated values. The program can accept as many as 74 regression-equation variables, of which any number may be dependent variables. The number of observations that may be used in any run is practically unlimited.

The Multiple Regression Program was used to perform least squares analyses on the detailed replacement-rate information presented in App B. Tables C1-C14 contain the results of data fits based on both the quantity of maintenance actions and the quantity of parts replaced. (In the case of those Federal Stock Numbers for which only one part is used per maintenance action, the equation constants calculated on the two bases are identical.) Each table also lists the number of usage intervals included in the least squares analysis for each repair part and the coefficient of correlation obtained.

The results of the least squares analyses indicated that much better data fits were obtained for some repair parts than for others. These differences in goodness of fit were attributed to a variety of causes. These included the observations that (a) some repair parts (e.g., superchargers) experienced a relatively small number of replacements per vehicle and a relatively large variation in replacement rates from one usage period to another (for repair parts of this type increasing the length of the usage intervals would tend to improve the data fits obtained); and (b) replacement activity for some repair parts such as batteries was more sensitive to the usage measure "months in service" than to the measure "miles of operation."

Although the Support Systems Division data provide indications as to which repair parts experience aging and which usage interval durations and measures are most applicable, it appears premature to make specific recommendations on these questions until similar analyses have been made using TAERS data stored in the Army Logistic Data Bank.

165

TABLE C1

Log-Log Fit of R_{σ/o} Replacement-Rate Data Based on 100-Mile Usage Intervals for Selected USAREUR M6C Tank Repair Parts

			R	esults of log-l	og fit based on		
Beeste unt	Usage	Quantity of repl	acement mainten	ance actions	Quanti	ity of parts repla	ced
Repair part	intervals observed	Equation	constants	Coefficient	Equation	constants	Coefficient
		A	8	of correlation	•	8	or correlation
Road and idler wheel arms	31	0.3741×10^{-3}	0.8127	0.5626	0.5923×10^{-4}	0.1546×10	0.5747
Batteries	31	0.2758×10^{-2}	0.1598	0.1269	0.3173×10^{-2}	9.3807	0.1643
Engines	40	$0.273C \times 10^{-2}$	0.6747	0.7856	0.2730×10^{-2}	0.6747	0.7856
Generators	33	0.3325×10^{-2}	0.3368	0.5996	0.3325×10^{-2}	0.3368	0.5996
Final drive hubs	33	0.6001×10^{-4}	0.1631×10	0.7326	0.1467×10^{-3}	0.1478×10	0.7250
Link assemblies	32	0.3648×10^{-3}	0.8167	0.4774	0.3126×10^{-3}	0.9038	0.4839
Fuel injector nozzles	28	0.6309×10^{-2}	0.6463×10^{-1}	0.1277	0.3969×10^{-3}	0.1432×10	0.5158
Fuel injection pumps	33	0.7056×10^{-3}	0.8338	0,4499	0.7056×10^{-3}	0.8338	0.4499
Starter relays	31	0.2943×10^{-1}	-0.3575	0.2510	0.2943×10^{-1}	-0.3575	0.2510
Shock absorbers	37	0.1520×10^{-4}	0.1926×10	0.6723	0.2815×10-4	0.1973×10	0.6751
Track shoes	38	0.3891×10^{-2}	0.8462	0.8601	0.3593	0.9770	0.9119
Sprockets	34	0.5806×10^{-3}	0.1277×10	0.7931	0.7924×10^{-3}	0.1646×10	0.8103
Starters	32	0.3004×10^{-1}	-0.1374	0.3275	0.3004×10^{-1}	-0.1374	0.3275
Transmissions	31	0.8602×10^{-4}	0.1491×10	0.3606	0.8602×10^{-4}	0.1491×10	0.3606
Traverse gear boxes	31	0.5554×10^{-3}	0.8344	0.2558	0.5554×10^{-3}	0.8344	0.2558
Superchargers	27	0.1323×10^{-2}	0.8600×10^{-1}	0.2272	0.1323×10^{-2}	0.8600×10^{-1}	0.2272
Road and idle: wheels	40	0.4027×10^{-3}	0.1351 × 10	0.8790	(1.2346×10^{-3})	0.1131×10	0.8733

TABLE C2

Linear Fit of Ra/o Replacement-Rate Data Based on 100-M⁺le Usage Intervals for Selected USAREUR M60 Tank Repair Parts

		2: 	R	esults of line	ar tit based on		
Per sis a set	Usage intervals	Quantity of repl	acement mainten	ance actions	Quanti	ty of parts repla	ced
Repair part	observed	Equation	constants	Coefficient of	Equation	constants	Coefficient
		A	В	or correlation	A	В	or correlation
Road and idler wheel arms	31	0.3161×10^{-3}	0.1940×10^{-3}	0.5305	-0.1458×10^{-2}	0.3976×10^{-3}	0.4462
Batteries	31	0.3181×10^{-2}	0.5524×10^{-4}	0.1627	0.4542×10^{-2}	0.2585×10^{-3}	0.2114
Engines	40	0.4277×10^{-2}	0.7584×10^{-3}	0.7125	0.4277×10^{-2}	0.7584×10^{-3}	0.7125
Generators	33	0.4746×10^{-2}	0.1985×10 ³	0.4274	0.4746×10^{-2}	0.1985×10^{-3}	0.4274
Final drive hubs	33	-0.3591×10^{-2}	0,5963 × 10 ⁻³	0.7228	-0.5127×10^{-2}	0.9041×10^{-3}	0.6728
Link assemblies	32	0.7319×10 ⁻³	0.1716×10^{-3}	0.5245	0.5262×10^{-3}	0.2067×10^{-3}	0.5441
Fuel injector nozzles	28	0.5984×10^{-2}	0.8976×10^{-4}	0.2119	-0.1310×10^{-2}	0.1544×10^{-2}	0.7501
Fuel injection pumps	33	0.2337×10^{-2}	0.2493×10^{-3}	0.3728	0.2337×10^{-2}	0.2493×10^{-3}	0.3728
Starter relays	31	0.2180×10^{-1}	-0.6185×10^{-3}	0.4727	0.2180×10^{-1}	-0.6185×10^{-3}	0.4727
Shock absorbers	37	-0.3437×10^{-2}	0.4682×10^{-3}	0.6621	-0.8144×10^{-2}	0.1043×10^{-2}	0.5881
Track shoes	38	-0.7596×10^{-3}	0.2367×10^{-2}	0.6434	-0.9395	0.3619	0.6389
Sprockets	34	-0.8914×10^{-2}	0.1802×10^{-2}	0.7269	-0.5875×10 ¹	0.8934×10^{-2}	0.6669
Starters	32	0.2553×10^{-1}	-0.2304×10^{-3}	0.3164	0.2553×10^{-1}	-0.2304×10^{-3}	0.3164
Transmissions	31	0.2839×10^{-3}	0.3794×10^{-3}	0.6805	0.2839×10^{-3}	0.3794×10^{-3}	0.6805
Traverse gear boxes	31	0.2187×10^{-2}	0.2141×10^{-3}	0.5232	0.2187×10^{-2}	0.2141×10^{-3}	0.5232
Supe. "hargers	27	0.1390×10^{-2}	0.1709×10^{-4}	0.0616	0.1390×10^{-2}	0.1709×10^{-4}	0.0616
Road and idler wheels	40	-0.6969×10 ⁻²	0.1579×10^{-2}	0.8279	-0.1647×10^{-1}	0.4256×10^{-2}	0.6770

166

RAC-T-465

۰,

TABLE C3

Log-Log Fit of Ra/o Replacement-Rate Data Based on 1-Month Usage Intervals for Selected USAREUR M60 Tank Repair Parts

£ 1 ... 1 ... 6 . 1 _ .

			R	esults of log-	og fit based on		
	Usage	Quantity of repl	acement mainten	ance actions	Quanti	y of parts repla	c ed
Repair part	intervals observed	Equation	constants	Coefficient	Equation	constants	Coefficient
		A	В	correlation	A	В	or correlation
Road and idler wheel arms	24	0.2086×10^{-3}	0,1260×10	0,7639	0.1944×10^{-4}	0.2208×10	0.7736
Batteries	24	0.3019×10^{-2}	0.2938	0,1806	0.4353×10^{-6}	0,3662×10	0.2855
Engines	24	0.3433×10^{-2}	0.7593	0.6689	0.3433×10^{-2}	0,7593	0.6689
Generators	24	0.7526×10^{-2}	0.1042	0,1441	0.7626×10^{-2}	0.1042	0.1441
Final drive hubs	23	0.5653×10^{-5}	0.2684×10	0,7987	0.4892×10^{-5}	0.2888×10	0.8019
Link assemblies	25	0.2385×10^{-3}	0.1190×10	0.6287	0.1262×10^{-3}	0.1450×10	0.6408
Fuel injector nozzles	24	0.1210×10^{-1}	-0.1769	0.2628	0.1083×10^{-1}	0.3428	0.0841
Fuel injection pumps	25	0.2382×10^{-2}	0.5447	0,6995	0.2382×10^{-2}	0.5447	0,6995
Starter relays	23	0.3943×10 ⁻¹	-0,4561	0,2573	0.3943×10^{-1}	-0.4561	0.2573
Shock absorbers	24	0.5811×10^{-5}	0.2510×10	0.8125	0.1869×10^{-4}	0.2377×10	0.8186
Track shoes	25	0.3632×10^{-2}	0.1038×10	0.7922	0.2695	0.1277×10	0.8783
Sprockets	24	0.1650×10^{-2}	0.1054×10	0.7778	0.5567×10^{-2}	0.1071×10	0.8031
Starters	25	0.4935×10^{-1}	-0.2660	0.5986	0.4935×10^{-1}	-0.2660	0.5986
Transmissions	24	0.3683×10^{-2}	0.2616	0.4005	0.3683×10^{-2}	0.2616	0.4005
Traverse gear boxes	23	0.6244×10^{-2}	0.1219×10^{-2}	0.0263	0.6244×10^{-2}	0.1219×10^{-2}	0.0263
Superchargers	23	0.3651×10^{-2}	0.9108×10^{-1}	0.2562	0.3651×10^{-2}	0.9108×10 ⁻¹	0.2562
Road and idler wheels	25	0.5587×10 ⁻³	0.1454×10	0.7897	0.5968×10^{-3}	0.1815×10	0.8119

TABLE C4

Linear Fit of Ra/o Replacement-Rate Data Based on 1-Month Usage Intervals for Selected USAREUR M60 Tank Repair Parts

			R	esults of line	ar fit based on		
Pangia aget	Usage intervals	Quantity of repl	acement mainten	ance actions	Quanti	ty of parts repla	ced
Repair part	observed	Equation	constants	Coefficient	Equation	constants	Coefficient
		A	В	or correlation	A	В	or correlation
Road and idler wheel arms	24	-0.5870×10^{-3}	0.4770×10^{-3}	0.7015	0.3022×10^{-2}	0.8517×10^{-3}	0,6489
Batteries	24	0.3268×10^{-2}	0.2252×10^{-3}	0.3810	0.8007×10^{-2}	0.1183×10^{-2}	0.4889
Engines	24	0.3833×10^{-2}	0.1540×10^{-3}	0.6685	0.3833×10^{-2}	0.1540×10^{-2}	0.6685
Generators	24	0.8598×10^{-2}	0.8217×10^{-4}	0.1075	0.8598×10^{-2}	0.8217×10^{-4}	0,1075
Final drive hubs	23	-0.6352×10^{-2}	0.1134×10^{-2}	0.7020	0.1068×10^{-1}	0.1828×10^{-2}	0.6734
Link assemblies	25	0.8600×10^{-3}	0.3646×10^{-3}	0.5394	0.3900×10^{-3}	0.4500×10^{-3}	0.5437
Fuel injector nozzles	24	0.1056×10^{-1}	-0.1993×10^{-3}	0.2768	0.1439×10^{-1}	0.8157×10^{-3}	0.2501
Fuel injection pumps	25	0.3290×10^{-2}	0.4485×10^{-3}	0.6074	0.3290×10^{-2}	0.4485×10^{-3}	0.6074
Starter relays	23	0.2877×10^{-1}	-0.1184×10^{-2}	0.5112	0.2877×10^{-1}	-0.1184×10^{-2}	0.5112
Shock absorbers	24	-0.3775×10^{-2}	0.7287×10^{-3}	0.8623	-0.8217×10^{-2}	0.1547×10^{-2}	0.8294
Track shoes	25	-0.4330×10^{-2}	0.4315×10^{-2}	0.6146	-2.4130	0.7460	0.6625
Sprockets	24	-0.5355×10^{-2}	0.2252×10^{-2}	0.5967	-0.2269×10^{-1}	0.8215×10^{-2}	0.5596
Starters	25	0.3924×10^{-1}	-0.9200×10^{-3}	0.6045	0.3224×10^{-1}	-0.9200×10^{-3}	0.6045
Transmissions	24	0.4714×10^{-2}	0.1696×10^{-3}	0.3781	0.4714×10^{-2}	0.1696×10^{-3}	0.3781
Traverse gear boxes	23	0.6051×10^{-2}	0.1383×10^{-4}	0.0359	0.6051×10^{-2}	0.1383×10^{-4}	0.0359
Superchargers	23	0.4447×10^{-2}	-0.9881×10^{-6}	0.0026	0.4447×10^{-2}	-0.9881×10^{-6}	0,0026
Road and idler wheels	25	-0.7950×10^{-2}	0.2624×10^{-2}	0.8045	-0.3624×10^{-1}	0.8699×10^{-2}	0.8322

RAC-T-465

167

TABLE CS

Log-Log Fit of R_{a/o} Replacement-Rate Data Based on 100-Mile Usage Intervals for Selected 3d Arnd Div M60 Tank,Repair Parts

			æ	tesults of log-l	Results of log-log fit based on		
Renair part	Usage	Quantity of repl	Quantity of replacement maintenance actions	ance actions	Quantit	Quantity of parts replaced	Ced
	observed	Equation	Equation constants	Coefficient	Equation	Equation constants	Coefficient
		۷	8	correlation	۲	æ	ot correlation
Engines	40	0.1459×10^{-2}		0,3288	10-2	0.8462	0.3288
Track shoes	4	0.8123×10^{-2}	0.6311	0.7047	0.6886	0.7629	0.7614
Sprockets	34	0.1088×10 ⁻³		0.7860	10-3	0.1738×10	0.7949
Starters	39	0.7647×10^{-1}		0.0226	0.7647×10^{-1}	-0.3765	0.0226
Road and idler wheels	40	0.1408×10 ⁻⁴	0.2667×10	0.7965	0.1135×10^{-3}	0.1920×10	0.8003

TABLE C6

FOR OFFICIAL USE ONLY

Line	ar Fit of R _a	Linear Fit of R _{a/o} Replacement-Rate Data Based on 100-Mile Usage Intervals for Selected 3d Armd Div M60 Tank Repair Parts	t-Rate Data Bo Armd Div M60	ssed on 100-1 Tank Repair	Aile Usage Inte Parts	rals	
			æ	tesults of line	Results of linear fit based on		
	Usage	Quantity of replacement maintenance actions	ocement mainten	ance actions	Quantit	Quantity of parts replaced	ced
	observed	Equation constants	constants	Coefficient	Equation constants	constants	Coefficient
		A	8	correlation	۲	æ	of correlation
Engines Track shoes Sprockets Starters Road and idler wheels	44 45 39 45 80 40	0.1942×10 ⁻² 0.1422×10 ⁻¹ -0.1106×10 ⁻¹ 0.5409×10 ⁻¹ -0.1140×10 ⁻¹	0.7979×10 ⁻³ 0.1799×10 ⁻² 0.1667×10 ⁻² 0.1294×10 ⁻² 0.1500×10 ⁻²	0.6020 0.5415 0.6504 0.3776 0.8082	0.1942×10 ⁻² 0.4582 -0.4219×10 ⁻¹ 0.5409×10 ⁻¹ 0.2837×10 ⁻¹	0.7979×10 ⁻³ 0.2882 0.6014×10 ⁻² -0.1294×10 ⁻² 0.3648×10 ⁻²	0.6020 0.5999 0.6371 0.3776 0.3776 0.7240

168

RAC-T-465

TABLE C7

Results of log-log fit based on Usage intervals Quantity of replacement maintenance actions Quantity of parts replaced **Repair part** Coefficient Equation constants Coefficient Equation constants Length, Number of of observed miles A В correlation A В correlation 0.5608×10^{-4} 0.5608×10^{-4} 40 0.1688×10 0.5822 0.1688×10 0.5822 100 Engines 0.2861×10^{-2} 0.1841×10 0.2861×10^{-2} 0.1841×10 0.4503 0.4503 500 8 Engines 0.2743×10^{-2} 0.5492 0.8070 Track shoes 100 44 0.9501 0.8099 0.8427 0.4440×10^{-1} Track shoes 500 8 0.1125×10 0.8624 0.7691×10 0.1010×10 0.8586 0.4981×10^{-6} 0.1738×10^{-5} 100 31 0.3605×10 0.6362 0.3644×10 0.6367 Sprockets 0.7150×10^{-7} 0.8922×10 0.1734×10^{-6} Sprockets 500 6 0.8478 0.9201×10 0.8476 0.1172 100 40 -0.5715 0.0892 0.0892 Starters 0.1172 -0.5715 0.6020 -0.6260×10 0.1238 Starters 500 8 0.6020 -0.6260×10 0.1238 Road and idler 0.1009×10-6 wheels 100 40 0.3482×10 0.5468 0.1270×10^{-6} 0.3753×10 0.5517 Road and idler 0.5191×10^{-4} wheels 500 8 0.4100×10 0.4608 0.5496×10^{-8} 0.8961×10 0.5067

Log-Log Fit of R_{a/o} Replacement-Rate Data Based on 100- and 500-Mile Usage Intervals for Selected 1st Bn, 33d Armor, 3d Armd Div M60 Tank Repair Parts

TABLE C8

Linear Fit of R_{a/o} Replacement-Rate Data Based on 100- and 500-Mile Usage Intervals for Selected 1st Bn, 33d Armor, 3d Armd Div M60 Tank Repair Parts

				R	esults of line	ar fit based on		
	Usage	intervals	Quantity of rep	acement mainten	ance actions	Quanti	ity of parts repla	ced
Repair part	Length,	Number	Equation	constants	Coefficient	Equation	constants	Coefficient
	miles	observed	A	В	of correlation	A	В	of correlation
Engines	100	40	-0.3481×10^{-2}	0.7393×10^{-3}	0.6857	-0.3481×10^{-2}	-0.7393×10^{-3}	0.6857
Engines	500	8	-0.2111×10^{-1}	0.1719×10^{-1}	0.8360	-0.2111×10^{-1}	0.1719×10^{-1}	0.8360
Track shoes	100	44	-0.6540×10^{-2}	0.2528×10^{-2}	0.6085	-0.2797	0.3283	0.5416
Track shoes	500	8	-0.7643×10^{-1}	0.6910×10^{-1}	0.6945	-7.8709	9.2174	0.6146
Sprockets	100	31	0.3162 × 10 ⁻¹	0.3547×10^{-2}	0.6504	-0.1261	0.1410×10^{-1}	0.6474
Sprockets	500	6	-0.2243	0.1005	0.7546	-0.8931	0.3994	0.7502
Starters	100	40	0.6433×10^{-1}	-0.1921×10^{-2}	0.3489	0.6433×10^{-1}	-0.1921×10^{-2}	0.3489
Starters	500	8	0.3149	-0.4376×10 ⁻¹	0.5383	0.3149	-0.4376×10^{-1}	0.5383
Road and idler wheels	100	40	-0.8388×10^{-2}	0.1202×10^{-2}	0.6588	-0.2160×10^{-1}	0.2614×10 ⁻²	0.6279
Road and idler wheels	500	8	-0.3943×10^{-1}	0.2726×10^{-1}	0.7099	-0.1285	0.6533×10 ⁻¹	0.7132

RAC-T-465

169

TABLE C9

Log-Log Fit of Ra/o Replacement-Rate Data Based on 100-Mile Usage Intervals for Selected USAREUR M113 APC Repair Parts

				Results of log-l	og fit based on		
Den els se d	Usage	Quantity of repla	acement mainter	nance actions	Quanti	ty of parts repl	aced
Repair part	intervals observed	Equation	constants	Coefficient	Equation	constants	Coefficient
		A	В	correlation	A	В	correlation
Batteries	39	0.2811×10^{-4}	0,1983×10	0,7130	0,5703×10 ⁻⁴	0,1853×10	0,6966
Ignition coils	40	0.1411×10^{-3}	0.1330×10	0.4615	0.1411×10^{-3}	0.1330×10	0,4615
Differentials	30	0.2257×10^{-2}	0.1988	0.3205	0.2257×10^{-2}	0.1988	0.3205
Distributors	43	0.2607×10^{-3}	0.1177×10	0.6512	0.2607×10^{-3}	0.1177×10	0.6512
Engines	10	0.1905×10^{-3}	0.1203×10	0.3739	0.1905×10^{-3}	$0,1203 \times 10$	0.3739
Track pads	43	0.1559×10^{-2}	0.9884	0.5334	0.9149×10^{-1}	0.1134×10	0.5989
Radiators	41	0.3661×10^{-3}	0.8885	0,4905	0.3661×10^{-3}	0.8885	0.4905
Road wheel hub seals	35	0.5059×10^{-3}	0.7996	0.5601	0.2820×10^{-3}	0.1124×10	0.5680
Shock absorbers	38	0.4499×10^{-5}	0.2506×10	0,8099	0.1320×10^{-5}	0.2961×10	0.8207
Track shoes	41	0.2754×10^{-4}	0.2215×10	0.8218	0.2053×10^{-3}	0.2881×10	0.8831
Spark plugs	40	0.6073×10^{-2}	0,4998	0.7049	0.1201×10^{-1}	0.8798	0.7388
Sprockets	41	0.2618×10^{-6}	0.3380×10	0.8183	0.8856×10^{-6}	0.3308×10	0.8084
Starters	41	0.2585×10^{-2}	0.7280	0.6753	0.2585×10^{-2}	0.7280	0.6753
Transmissions	41	0.2937×10^{-4}	0.1579×10	0,2220	0.2937×10^{-4}	0.1579×10	0.2220
Idler wheels	42	0.6636×10^{-2}	0.4714	0.6505	0.1472×10^{-4}	0.2575×10	0.7422
Road wheels	44	0.1540×10^{-4}	0.2056×10	0.6890	0.7649×10 ⁻⁵	0.2640×10	0.6982

TABLE C10

Linear Fit of R_{a/o} Replacement-Rate Data Based on 100-Mile Usage Intervals for Selected JSAREUR M113 APC Repair Parts

Repair part	Usage intervals observed	Results of linear fit based on						
		Quantity of repla	acement mainten	ance actions	Quantity of parts replaced			
		Equation constants		Coefficient	Equation constants		Coefficient	
		A	В	of correlation	A	В	of correlation	
Batteries	39	-0.5893×10^{-2}	0.1011×10^{-2}	0.7730	-0.6800×10^{-2}	0.1284×10^{-2}	0.7618	
Ignition coils	40	0.7462×10^{-3}	0.3660×10^{-3}	0.7159	0.7462×10^{-3}	0.3660×10^{-3}	0.7159	
Differentials	30	0.3248×10^{-2}	0.2914×10^{-4}	0.0884	0.3248×10^{-2}	0.2914×10^{-4}	0.0884	
Distributors	43	-0.7276×10^{-3}	0.5045×10^{-3}	0.6574	-0.7276×10^{-3}	0.5045×10^{-3}	0.6574	
Engines	40	-0.9538×10 ⁻³	0.4136×10^{-3}	0.6232	-0.9538×10^{-3}	0.4136×10^{-3}	0.6232	
Track pads	43	-0.2150×10^{-2}	0.1572×10^{-2}	0.6739	-0.6982	0.1694	0.6821	
Radiators	41	0.1951×10^{-3}	0.2439×10^{-3}	0.5293	0.1951×10^{-3}	0.2439×10^{-3}	0,5293	
Road wheel hub seals	35	0.6521×10^{-3}	0.2384×10^{-3}	0.5194	0.8235×10^{-4}	0.4176×10^{-3}	0.5189	
Shock absorbers	38	-0.7647×10^{-2}	0.1032×10^{-2}	0.8430	-0.1204×10^{-1}	0.1506×10^{-2}	0.8333	
Track shoes	41	-0.1724×10^{-1}	0.2440×10^{-2}	0.8555	-2.2201	0.2177	0.7478	
Spark plugs	40	0.1052×10^{-1}	0.7539×10^{-3}	0.5851	0.5577×10^{-1}	0.4901×10^{-2}	0.5776	
Sprockets	41	-0.1738×10^{-1}	0.1650×10^{-2}	0.7693	-0.4444×10^{-1}	0.4300×10^{-2}	0.7579	
Starters	41	0.6292×10^{-2}	0.8061×10^{-3}	0.6213	0.6292×10^{-2}	0.8061×10^{-3}	0.6213	
Transmissions	41	-0.4244×10 ⁻³	0.2293×10^{-3}	0.4213	-0.4244×10^{-3}	0.2293×10^{-3}	0.4213	
Idler wheels	42	0.1142×10^{-1}	0.7116×10^{-3}	0.4482	0.2366×10^{-2}	0.3561×10^{-2}	0.5762	
Road wheels	44	-0.5062×10^{-2}	0.8018×10^{-3}	0.7723	-0.2960×10^{-1}	0.3521×10^{-2}	0.6870	

170

RAC-T-465

TABLE C11

Log-Log Fit of $R_{a/o}$ Replacement-Rate Data Based on 1-Month Usage Intervals for Selected USAREUR M113 APC Repair Parts

Repair part	Usage intervals observed	Results of log-log fit based on						
		Quantity of repl	acement mainten	ance actions	Quantity of parts replaced			
		Equation constants		Coefficient	Equation constants		Coefficient	
		A	В	of correlation	A	В	of correlation	
Batteries	24	0.6799×10 ⁻³	0,1194×10	0,5879	0.1064×10^{-2}	0.1128×10	0.5520	
Ignition coils	22	0.5692×10^{-2}	0.2325	0.5877	0.5692×10^{-2}	0.2325	0.5877	
Differentials	19	0.4859×10^{-2}	0.8636×10^{-2}	0.4845	0.4859×10^{-2}	0.8636×10^{-2}	0.4845	
Distributors	21	0.6276×10^{-3}	0.1192×10	0.8817	0.6276×10^{-3}	0.1192×10	0.8817	
Engines	25	0.5565×10^{-4}	0.1998×10	0.8862	0.5565×10^{-4}	0.1998×10	0.8862	
Track pade	23	0.6686×10^{-2}	0.6869	0.8770	0.9155	0.7485	0,8350	
Radiators	24	0.2153×10^{-3}	0.1348×10	0.4860	0.2153×10^{-3}	0.1348×10	0,4860	
Road wheel hub seals	23	0.1013×10^{-2}	0.8229	0.3956	0.8026×10^{-3}	0.1038×10	0.4259	
Shock absorbers	22	0.1949×10^{-3}	0.1711×10	0.6938	0.2255×10^{-3}	0.1802×10	0.7122	
Track shoes	23	0.6437×10 ⁻²	0.6582	0.8525	0.2427	0.1039×10	0.8214	
Spark plugs	23	0.1607×10^{-1}	0.3064	0.8517	0.9004×10^{-1}	0.3425	0.7643	
Sprockets	24	0.8237×10^{-4}	0.1978×10	0.9032	0.1031×10^{-3}	0.2251×10	0.9026	
Starters	22	0.9410×10^{-2}	0.4816	0.5236	0.9410×10^{-2}	0.4816	0.5236	
Transmissions	22	0.1122×10^{-2}	0.5840	0.3909	0.1122×10^{-2}	0.5840	0.3909	
Idler wheels	23	0.3190×10^{-1}	0.4930	0.1226	0.4001×10^{-1}	0.3746	0.4369	
Road wheels	22	0.6976×10^{-3}	0.1170×10	0.8505	-0.3367×10^{-4}	0.2726×10	0.8640	

TABLE C12

Linear Fit of R_{a/o} Replacement-Rate Data Based on 1-Month Usage Intervals for Selected USAREUR M113 APC Repair Parts

Repair part	Usage intervals observed	Results of linear fit based on						
		Quantity of repl	acement mainten	ance actions	Quantity of parts replaced			
		Equation constants		Coefficient	Equation constants		Coefficient	
		A	B	of correlation	A	В	of correlation	
Batteries	24	-0.1312×10^{-2}	0.1268×10^{-2}	0.8009	-0.1036×10^{-2}	0.1600×10^{-2}	0.7607	
Ignition coils	22	0.6935×10^{-2}	0.2270×10^{-3}	0.2494	0.6935×10^{-2}	0.2270×10^{-3}	0.2494	
Differentials	19	0.6351×10^{-2}	-0.1404×10^{-3}	0.1853	0.6351×10^{-2}	-0.1404×10^{-3}	0.1853	
Distributors	21	-0.1891×10^{-2}	0.1194×10^{-2}	0.7972	-0.1891×10^{-2}	0.1194×10^{-2}	0.7972	
Engines	25	-0.5370×10^{-2}	0.1376×10^{-2}	0.7104	-0.5370×10^{-2}	0.1376×10^{-2}	0.7104	
Track pads	23	0.6004×10^{-2}	0.2387×10^{-2}	0.6733	0.1701	0.4395	0.4578	
Radiators	24	-0.9565×10^{-3}	0.6465×10^{-3}	0.6430	-0.9565×10^{-3}	0.6465×10^{-3}	0.6430	
Road wheel hub seals	23	0.1478×10^{-2}	0.5217×10^{-3}	0.6167	0.4980×10^{-3}	0.8607×10^{-3}	0.6360	
Shock absorbers	22	-0.7130×10^{-2}	0.1912×10^{-2}	0.7857	-0.1251×10^{-1}	0.2985×10^{-2}	0.7761	
Track shoes	23	0.7814×10^{-2}	0.1968×10^{-2}	0.6940	-0.7289	0.3173	0.5209	
Spark plugs	23	0.2052×10^{-1}	0.1026×10^{-2}	0.7531	0.1178	0.6884×10^{-2}	0.6366	
Sprockets	24	-0.1001×10^{-1}	0.2021×10^{-2}	0.7832	-0.2917×10^{-1}	0.5747×10^{-2}	0.8715	
Starters	22	0.1312×10^{-1}	0.1405×10^{-2}	0.5150	0.1312×10^{-1}	0.1405×10^{-2}	0.5150	
Transmissions	22	0.1364×10^{-2}	0.2648×10^{-3}	0.4682	0.1364×10^{-2}	0.2648×10^{-3}	0.4682	
Idler wheels	23	0.3398×10^{-1}	0.1393×10^{-3}	0.0506	0.5130×10^{-1}	0.3783×10^{-2}	0.4071	
Road wheels	22	-0.8442×10^{-3}	0.1176×10^{-2}	0.8184	-0.2481×10^{-1}	0.6339×10^{-2}	0.8088	

RAC-T-465

171
TABLE C13

Log-Log Fit of Ra/o Replacement-Rate Data Based on 100- and 500-Mile Usage Intervals for Selected 24th Inf (Mech) Div M113 APC Repair Parts

	Usage	Usaae intervals		œ	Results of log-log fit based on	og fit based on		•
Remain point			Quantity of replacement maintenance actions	acement mainten	ance actions	Quantit	Quantity of parts replaced	ced
	Length,	Number	Equation constants	constants	Coefficient	Equation constants	constants	Coefficient
	miles	observed	A	æ	or correlation	A	ß	of correlation
Batteries	100	41	0.6777×10^{-7}	0.3565×10	0.6185	0.4946×10^{-6}	0.3092×10	0.6231
Batteries	500	8	0.1049×10^{-4}	0.4611×10	0.9389	0.4514×10 ⁻⁵	0.5212×10	0.9486
Distributors	100	42	0.5042×10^{-1}	0.5445×10	0.6466	0.5042×10^{-1}	0.5445×10	0.6446
Distributors	500	8	0.3183×10^{-2}	0.1426×10	0.8956	0.3183×10^{-2}	0.1426×10	0.8956
Engines	100	40	0.2255×10^{-4}	0.1830×10	0.3215	0.2255×10^{-4}	0.1830×10	0.3215
Engines	500	8	0.7431×10^{-3}	0.2326×10	0.8724	0.7431×10^{-3}	0.2326×10	0.8724
Track pads	100	43	0.1640×10^{-2}	0.1020×10	0.6684	0.2765×10^{-5}	1.0041	0.6590
Track pads	500	8	0.1375×10^{-1}	0.1649×10	0.8955	0.1381×10^{-2}	0.1694×10	0.8760
Road wheel hub								
seals	100	35	0.2293×10^{-2}	0.2970	0.2960	0.2021×10	0.5054	0.3073
Road wheel hub								
seals	200	7	0.1503×10^{-1}	0.4055	0.5658	0.1264×10^{-1}	0.8755	0.6607
Shock absorbers	100	38	0.3613×10^{-5}	0.2303×10	0.419	0.1633×10^{-5}	1.9245	0.4538
Shock absorbers	500	t •	0.3649×10^{-2}	0.1247×10	0.8579	0.1985×10^{-2}	0.1832×10	0.8794
Track shoes	100	35	0.5577×10^{-6}	0.3366×10	0.8039	0.1876×10^{-4}	0.3605×10	0.8700
Track shoes	200	2	0.1093×10^{-2}	0.2934×10	0.9308	0.3569×10^{-1}	0.3387×10	0.9890
Spark plugs	100	0f	0.1794×10^{-3}	0.1483×10	0.5567	0.2240×10^{-2}	0.1303×10	0.5819
Spark plugs	500	8	0.7128×10^{-2}	0.1602×10	0.9599	0.6613×10^{-1}	0.1430×10	0.9773
Sprockets	100	40	0.1493×10^{-4}	0.2088×10	0.7225	0.6300×10^{-4}	0.1995×10	0.7160
Sprockets	200	8	0.1434×10^{-2}	0.2213×10	0.9450	0.6451×10^{-2}	0.2001×10	0606.0
Starters	100	36	0.3131×10^{-2}	0.5003	0.5222	0.3131×10^{-2}	0.5003	0.5222
Starters	200	1-	0.3266×10^{-1}	0.4849	0.6047	0.3266×10^{-1}	0.4849	0.6047
Idler wheels	100	40	0.1788×10^{-1}	0.1553	0.5083	0.6527×10^{-2}	0.8145	0.5693
Idler wheels	005	8	0.1045	0.1916	0.3354	0.9587×10^{-1}	0.8994	0.6561
Road wheels	100	40	0.1576×10^{-4}	0.1877×10	0.3363	0.6390×10^{-5}	1.6603	0.3563
Road wheels	500	8	0.3729×10^{-2}	0.1292×10	0.6152	0.2172×10^{-2}	0.2404×10	0.7095

172

RAC-T-465

FOR OFFICIAL USE ONLY

TABLE CI4

Linear Fit of R_{a/a} Replacement-Rate Data Based on 100- and 500-Mile Usage Intervals for Selected 24th Inf (Mech) Div M113 APC Repair Parts

		واعتصفت مصوار		R	esults of line	Results of linear fit based on		
Remain mont			Quantity of reple	Quantity of replacement maintenance actions	ance actions	Quantit	Quantity of parts replaced	-9
	Length,	Number	Equation constants	constants	Coefficient	Equation constants	onstants	Coefficient
	miles	observed	۷	8	or correlation	4	8	of correlation
Batteries	100	41	-0.7733×10^{-2}	0.7991×10^{-3}	0.6341	-0.1057×10^{-1}	0.1084×10^{-2}	0.6231
Batteries	500	8	-0.4214×10^{-1}	0.1839×10^{-1}	0.8532	-0.6425×10^{-1}	0.2700×10^{-1}	0.8340
Distributors	100	42	-0.4254×10^{-2}	0.5500×10^{-3}	0.6295	-0.4254×10^{-2}	0.5500×10^{-3}	0.6295
Distributors	500	8	-0.9929×10^{-2}	0.8679×10^{-2}	0.9795	-0.9929×10^{-2}	0.8679×10^{-2}	0.9795
Engines	0 01	40	-0.2046×10^{-2}	0.4584×10^{-3}	0.5994	-0.2046×10^{-2}	0.4584×10^{-3}	0.5994
Engines	500	8	-0.1525×10^{-1}	0.1158×10 ⁻¹	0.8496	-0.1525×10^{-1}	0.1158×10^{-1}	0.8496
Track pads	100	43	-0.4472×10^{-2}	0.1908×10^{-2}	0.6619	-0.4556	0.2004	0.6188
Track pads	500	8	-0.8414×10^{-1}	0.6014×10^{-1}	0.9571	-10.1984	6.7386	0.9366
Road wheel hub								
seals	100	35	0.3308×10^{-2}	0.3308×10^{-2}	0.2167	0.3264×10^{-2}	0.2742×10^{-3}	0.2481
Road wheel hub								
seals	500	2	0.1386×10^{-1}	0.2857×10^{-2}	0.4305	0.4000×10^{-2}	0.9464×10^{-2}	0.6572
Shock absorbers	100	38	-0.1693×10^{-2}	0.3648×10^{-3}	0.4949	-0.7684×10^{-2}	0.8947×10^{-3}	0.5104
Shock absorbers	500	2	-0.4286×10^{-2}	0.6393×10^{-2}	0.9023	-0.1471×10^{-1}	0.1121×10^{-1}	0.8716
Track shoes	100	35	-0.1058×10^{-1}	0.1962×10^{-2}	0.7978	-1.5460	0.1742	0.2295
Track shues	200	2	-0.6329×10^{-1}	0.4607×10^{-1}	0.8672	-8.6567	4.1300	0.9162
Spark plugs	100	40	-0.3223×10^{-2}	0.1045×10^{-2}	0.6642	-0.2027×10^{-1}	0.6995×10^{-2}	0.6828
Spark plugs	200	8	-0.2707×10^{-1}	0.2632×10^{-1}	0.9345	-0.1725	0.1755	0.9611
Sprockets	100	6	-0.7588×10^{-2}	0.8897×10^{-3}	0.7847	-0.2220×10^{-1}	0.2288×10^{-2}	0.7608
Sprockets	200	8	-0.4411×10 ⁻¹	0.2127×10^{-1}	0.9207	-0.1241	0.6264×10^{-1}	0.9017
Starters	100	36	0.5589×10^{-2}	0.3946×10^{-3}	0.4822	0.5589×10^{-2}	0.3946×10^{-3}	0.4822
Starters	500	-	0.2857×10^{-1}	0.8250×10^{-2}	0.6132	0.2857×10^{-1}	0.8250×10^{-2}	0.6132
Idler wheels	100	4	0.2134×10^{-1}	0.3079×10^{-3}	0.1212	0.2005×10^{-1}	0.2764×10^{-2}	0.4039
Idler wheels	200	8	0.1011	0.7690×10^{-2}	0.2331	0.7607×10^{-1}	0.6660×10 ⁻¹	0.6469
Road wheels	100	40	-0.1269×10^{-2}	0.3619×10^{-3}	0.5302	-0.2174×10^{-1}	0.2404×10^{-2}	0.4959
Road wheels	200	89	-0.3250×10^{-2}	0.6917×10^{-2}	0.8479	-0.7757×10^{-1}	0.4340×10^{-1}	0.8864

FOR OFFICIAL USE ONLY

RAC-T-465

173

.

Appendix D

DESCRIPTION OF EXPECTED NUMBER OF ACTIONS COMPUTER ROUTINE

Introduction	176
General Description	176
Detailed Description	180
Figures	
D1. Summary of Computer Routines Used in Predicting Repair-Parts	
Replacement	176
D2. First-Order Replacement Rates for USAREUR M60 Tank Engines	177
D3. Linear Replacement-Rate Curve Fitted to USAREUR M60 Tank-	
Engine Replacement Data	179
D4. Flow Chart for Expected Number of Actions Routine	182
D5. Examples of Control Cards	185
D6. Format for FSN Data Cards	186
D7. Format for DATES Data Cards	186
D8. Format for TYPES Data Cards	187
D9. Format for USAGE Data Cards	188
D10. Format for EQUIPMENT Data Cards	189
D11. Format for CONSTANTS Data Cards	189
D12. Flow Chart for End Item Usage Routine	192
D13. Format for THEATER or ORGANIZATION Input Data Cards	193
D14. Format for USAGE Input Data Cards	193
D15. Format for DATE Data Input Cards	193
D16. Format for ANOTHR Data Input Cards	194

Tables

D1. Summary of Forecasting Equations Based on R _{s/e} Replacement Rate	s 178
D2. Summary of Forecasting Equations Based on R _{a/a} Replacement Rate	s 180
D3. Expected Replacements of Part X Required for Fleet of 60 Vehicles	
for 900 Miles of Operation	181
D4. Summary of Input Data Required for Expected Number of Actions	
Routine	185

RAC-T-465

ALLEBA Standing.

175

INTRODUCTION

The major steps in the study's repair-parts forecasting methodology have been discussed in Chaps. 2 to 4. In addition to standard sort and extract routines, four other computer routines are required to process the data automatically. These routines are summarized in Fig. D1. The Events Rates Routine, described in App A, requires input data of the type "part X was replaced on vehicle Y at usage Z"; in turn it furnishes replacement-rate data for the Least Squares Statistical Analysis Routine (App C).

Fig. D1—Summary of Computer Routines Used in Predicting Repair-Parts Replacement

Appendix D describes the Expected Number of Actions Routine developed by study analysts to combine usage-dependent replacement rates and end-item usage data to predict repair-parts replacement during any period of interest. This appendix also presents a brief description of the auxiliary End Item Usage Routine developed to compute vehicle usage distributions.

The first half of the appendix is devoted to a general description of procedures for estimating parts replacement and the second half to detailed descriptions of the Expected Number of Actions Routine and the End Item Usage Routine.

GENERAL DESCRIPTION

The two types of replacement rates discussed in detail in Chap. 2 were the $R_{s/e}$ and the $R_{a/o}$ rates. Forecasting procedures based on each of these rates are considered below.

The $R_{s/e}$ rate measures the number of observed events of a specified order per vehicle available to experience events of that order. A plot of first-order $R_{s/e}$ rates for M60 tank-engine replacements for each 100 miles of operation observed is shown in Fig. D2; these rate data were obtained from Table 12. Using least squares techniques different types of curves can be fitted to these data. A linear fit, for example, could be represented by R(t) = A + Bt.

176

RAC-T-465

If there are N_1 engines available to experience first-order replacements at time t_1 and N_2 engines at time t_2 , the number of replacements in usage interval $t_2 - t_1$ is $N_1 - N_2$. For each usage interval the $R_{s/e}$ rates can be represented as $-\Delta N/N \Delta t$. For usage intervals of short duration, with a linear

Fig. D2—First-Order Replacement Rates for USAREUR M60 Tank Engines

variation of rates, the following equation applies: $-dN/N \cdot 1/dt = A + Bt$. Integrating,

$$\left[\ln N\right]_{N_{1}}^{N_{2}} = -\left[At + \frac{Bt^{2}}{2}\right]_{t_{1}}^{t_{2}}$$

from which it follows that

「「「「「「「「」」」」

$$N_{2} = N_{1} e^{-\left[A(t_{2}-t_{1})+\frac{B}{2}(t_{2}^{2}-t_{1}^{2})\right]}$$

and by subtracting N_1 from each side of the equation

$$N_2 - N_1 = N_1 \left[e^{-\left[A(t_2 - t_1) + \frac{B}{2}(t_2^2 - t_1^2) \right]} - 1 \right].$$

Since the expected number of replacements in $t_2 - t_1$ is $N_1 - N_2$,

$$N_1 - N_2 = N_1 \left[1 - e^{-\left[A(t_2 - t_1) + \frac{B}{2}(t_2^2 - t_1^2)\right]} \right].$$

RAC-T-465

FOR OFFICIAL USE ONLY

Similar expressions can be derived for other $t_y \rho es$ of least squares functional relations. Equations for calculating the expected number of replacements of a given order based on constant, linear, log-log, and semilog replacement rates are summarized in Table D1.

The equations shown in Table D1 apply to a single order of replacement. To calculate the total number of replacements expected, all orders of replacement must be considered. One method of using $R_{s/e}$ rates to estimate the total quantity of repair parts replaced is to apply renewal-theory techniques.⁹ In renewal theory terminology, $R_{s/e}$ rates are frequently referred to as "age-specific failure rates" or as "hazard rates"; equations have been developed to allow calculations of the total number of replacements from the distribution of times to first failure. In using renewal theory equations it is assumed that replacement components will exhibit the same time-to-failure pattern as original components (an ordinary renewal process) or will provide some known fraction of like-new performance (a modified renewal process).⁹

TABL	Ε	D	1
------	---	---	---

Summary of Forecasting Equations Based on $R_{s/e}$ Replacement Rates

Type of replacement-rate curve considered		Equation for calculating the expected number of replacements of a given order, <i>E(R)</i> ,		
Common name	Math notation	during usage period $t_2 - t_1$		
Average	$R_{s/c} - A$	$E(\mathbf{R}) = N_1 \left[1 - c^{-A(t_2 - t_1)} \right]$		
Linear	$R_{s/e} = A + Bt$	$E(R) = N_1 \left\{ 1 - e^{-\left[A(t_2 - t_1) + \frac{B}{2}(t_2^2 - t_1^2) \right]} \right\}$		
Log-log	$R_{s/e} = At^B$	$E(R) = N_{1} \left[1 - e^{-\frac{A}{B+1} \left(t_{2}^{B+1} - t_{1}^{B+1} \right)} \right]$		
Semilog	$R_{s/e} - AB^t$	$E(R) = N_1 \left[1 - e^{-\frac{A}{\ln B} \left(b^{t_2} - b^{t_1} \right)} \right]$		

In those cases in which the distribution of times to first failures can be identified accurately and in which subsequent-order failures occur according to the criteria specified for ordinary or for modified renewal processes, renewaltheory techniques can be extremely useful in providing long-range forecasts of repair-parts consumption. For a number of reasons, however, the forecasting methodology described in this technical memorandum was not based on already established renewal-theory techniques. These reasons can be summarized as follows:

(a) For many repair parts of interest, TAERS-type data either do not extend back to the introduction of a given end item of equipment or do not contain sufficient information to allow reconstruction of the first-failure time distribution.

178

RAC-T-465

(b) Even if data are sufficient to permit identification of failures, the assumption that replacement components furnish like-new performance (as measured in terms of time to failure) does not appear valid for selected tank and APC components.^{12,13}

(c) Even in cases where this assumption is valid and for which sufficient data are available, the effort required to identify the distribution of first-failure times may not be warranted for short-term consumption forecasts that extend only a few quarters into the future.

For these reasons, a simplified methodology based on less restrictive assumptions and data requirements was developed. This methodology provides a procedure for projecting replacements (regardless of order) into future time periods; it combines usage-dependent replacement rates of the $R_{a/o}$ type with projections of end-item usage. As will be recalled, the $R_{a/o}$ replacement rate measures the total number of repair parts of a given type that were replaced per vehicle observed. Figure D3 indicates the linear curve that best fits the engine-replacement-rate data ($R_{a/o}$) for the M60 tank according to least squares criteria. Once again the following equation can be specified: -dN/N + 1/dt = A + Bt.

Fig. D3—Linear Replacement-Rate Curve Fitted to USAREUR M60-Tank-Engine Replacement Data

In this case, however, the number of vehicles (N) available to experience an engine replacement of any order is independent of previous engine-replacement experience. Therefore, for the forecast period $t_2 - t_1$,

$$-dN = N_1(A+Bt)dt.$$

PAC-T-465

FOR OFFICIAL USE ONLY

Integrating,

$$\left[N\right]_{N_{1}}^{N_{2}} = -N_{1}\left[At + \frac{Bt^{2}}{2}\right]_{t_{1}}^{t_{2}}$$

from which it follows that

 $N_2 - N_1 = -N_1 \left[A(t_2 - t_1) + \frac{B}{2} (t_2^2 - t_1^2) \right].$

Since the expected number of replacements is $N_1 - N_2$,

$$N_1 - N_2 = N_1 \left[A(t_2 - t_1) + \frac{B}{2} (t_2^2 - t_1^2) \right].$$

A summary of forecasting equations based on $R_{a/o}$ replacement rates is provided in Table D2. Each equation presented in Table D2 considers three

Type of repl curve co	acement-rate nsidered	Equation for calculating the expected number of replacements of all orders, <i>E(R)</i> ,
Common name	Math notation	during usage period $t_2 - t_1$
Average	$R_{a/c} = A$	$E(R) = N_1 A(t_2 - t_1)$
Linear	$R_{a/o} = A + Bt$	$E(R) = N_1 \left[A(t_2 - t_1) + \frac{B}{2} (t_2^2 - t_1^2) \right]$
Log-log	$R_{a/o} = At^B$	$E(R) = N_{L}\left(\frac{A}{B+I}\right)\left(t\frac{B+I}{2} - t\frac{B+I}{I}\right)$
Semilog	$R_{a/o} = AB^t$	$E(R) = N_1 \left(\frac{A}{\ln B}\right) \left(B^{t_2} - B^{t_1}\right)$

 TABLE D2

 Summary of Forecasting Equations Based on Rade

types of information: (a) replacement-rate constants (A or A and B) determined by fitting curves to replacement-rate data for relatively short usage intervals such as 100 miles of operation, (b) the duration of the forecast period $(t_2 - t_1)$ specified by the reliability or commodity analyst, and (c) the number of vehicles N_1 falling in the first usage interval at the beginning of the forecast period.

The manner in which the forecasting equations are applied to an entire distribution of vehicle mileages is illustrated in Table D3. In this hypothetical example, patterned after that presented in Table 16, the projection of part X consumption is based on the linear curve $R_{a/o} = 0.01 + 0.01t$. The youngest vehicles in this example have accumulated 901 to 1000 miles of operation at the beginning of the forecast period that extends for another 900 miles, or nine usage intervals.

DETAILED DESCRIPTION

Details concerning the capabilities and utilization of the Expected Number of Actions Routine and the End Item Usage Routine are summarized below.

180

RAC-T-465

		TABLE D3			
Expected Replacement of Part X Required for Fleet of 60 Vehicles for 900 Miles of Operation					
Beginning of	End of	Validas (Na)	Evented on		

Usage interval, miles	forecast period (t ₁)	forecast period (t ₂)	Vehicles (N ₁) in usage interval	A(t2-t1)	$\frac{B}{2}(t_2^2 - t_1^2)$	Expected replacements <i>E(R)</i> based on linear curve
0-100	1	10	0	0.09	0.50	0
101-200	2	11	0	0.09	0.59	0
201-300	3	12	0	0.09	0.68	0
301-400	4	13	0	0.09	0.77	0
401-500	5	14	0	0.09	0.86	0
501-600	6	15	0	0.09	0.95	0
601-700	7	16	0	0.09	1.04	0
701-800	8	17	0	0.09	1.13	0
801-900	9	18	0	0.09	1.22	0
901-1000	10	19	5	0.09	1.31	7.00
1001-1100	11	20	10	0.09	1.40	14.90
1101-1200	12	21	15	0.09	1.49	23.70
1201-1300	13	22	15	0.09	1.58	25.05
1301-1400	14	23	10	0.09	1.67	17.60
1401-1500	15	24	5	0.09	1.76	9.25
Totals			60			97.50

Expected Number of Actions Routine

A detailed flow chart describing the major sections of the Expected Number of Actions Routine is presented in Fig. D4. This IBM 7040 routine is designed to provide the user with the capability of making many runs with a minimum number of additional input requirements. This is accomplished by the use of control cards that determine the input required for a particular run and also indicate when computation should begin and when all the runs have been completed.

In addition to control cards, certain input data cards are also required. These are summarized in Table D4. The next sections of this appendix present detailed descriptions of the control and data cards for the Expected Number of Actions Routine.

<u>Control Cards</u>. Control cards are used as program input to direct the program to the various branches for proper processing. They are used to indicate that data of a particular type follow, that a data group is finished, that the computation phase of the program is desired, or that no more runs are required. Meanings of specific control words.

BASIC. FSN data card, DATES data card, and TYPES data card follow in that order.

USAGE. USAGE data cards follow.

EQUIPMENT. EQUIPMENT data cards follow.

CONSTANTS. CONSTANTS data cards foilow.

INVENTORY. End Item Usage Routine is to be called to form the Equipment Inventory Table.

RAC-T-465

181

a. Main Control and Selection Section

182

RAC-T-465

Fig. D4—Continued

RAC-T-465

.

.

183

FOR OFFICIAL USE ONLY

and service and the service of the s

.

c. Printout Section

Fig. D4-Continued

184

.....

and the set of the other of the set of the s

RAC-T-465

-

TABLE D4

Summary of Input Data Required for Expected Number of Actions Routine

Card type	Input information contained on cards of this type
FSN	Repair part FSN
	End item FSN
DATES	User organization
	Inventory date
	Current date
	Beginning date of forecast period
TYPES	Type of equation(s) to be applied
	Type of replacement rate(s) to be used
EQ UIPMENT	Usage units for equipment inventory table
	Length of forecast period
	Utilization rate from inventory to current date
	Utilization rate from current date to beginning date of forecast period
CONSTANTS	Constants for expected value equations

COMPUTE. All pertinent data for a run have been entered and the computation phase is to be entered.

ENDGRP. A particular group of data cards is ended; this card is required at the end of every data group entered.

ENDRUN. No more runs are required and the program should terminate; this card is required as the very last card of all input cards.

The control words are punched on the cards starting in col 1. Nothing else is punched on the card.

Examples of control cards.

EDU: PMENT

אין איזןאיז איזן איז איז

UNAGE

CONSTANTS

c. CONSTANTS

Fig. D5—Examples of Control Cards

RAC-T-465

185

Input Data Cards.

FSN. This card contains the end-item FSN, repair-part FSN, and an option number to indicate a title that is printed with the output heading. It immediately follows the BASIC control card.

The option number that is punched causes the title to be printed as follows:

Option number	Title
1	Parts replaced
2	Replacement actions
3	Parts repaired
4	Repair actions
5	Parts adjusted
6	Adjustment actions

The letters FSN must be punched in cols 1 to 3 as shown in Fig. D6.

DATES. This card contains the using organization (for printout purposes), the inventory date, the current date, and the beginning date of the forecast period to be studied. All dates are expressed as Julian dates. This card is placed immediately behind the FSN card. The letters DATES must be punched in cols 1 to 5 as shown in Fig. D7.

Fig. D7—Format for DATES Data Cards

186

RAC-T-465

TYPES. This card contains codes for the types of equations to be used by the program in computing the expected values, the type of replacement rate considered, and the type of output desired. It is placed immediately behind the DATES data card.

The types of equations considered by the program can be selected by punching code numbers in cols 11 to 19. The code numbers and related equations are

Code	Equations
1	Constant
2	Linear
3	Quadratic
4	Cubic
5	(Nothing at present)
6	Semilog
7	Log-log
8	(Nothing at present)
9	No more equations to be processed

These code numbers are punched starting in col 11, proceeding to the right. When no more requests are desired, the code "9" is punched and the rest of the field should be filled with 9's (through col 19). This card must be followed by an ENDGRP control card since it is the last card of a data group. The letters TYPES must be punched in cols 1 to 5 as shown in Fig. D8.

Fig. D8—Format for TYPES Data Cards

USAGE. These cards contain information related to the usage units for a run, the basis for the usage interval, monthly usage rates from the inventory date to current date and from current date to forecast date, and the length of the forecast period.

The usage units measure can be months, miles, hours, or rounds. This is indicated by punching a code word in the first field of the card:

RAC-T-465

187

Code	Units
UMONTH	Months
UMILE	Miles
UHOUR	Hours
UROUND	Rounds

The various fields on the card are defined as follows:

basis for usage interval. The number of units that define an interval in the equipment inventory table.

usage A. The rate of end-item utilization (in units per interval) from date of inventory to date of the study.

usage B. The rate of end-item utilization (in units per interval) from the date of the study to the beginning date of the forecast period.

length of forecast period examined. The number of units (months, miles, hours, or rounds) in the forecast period.

As many cards of this type are prepared and grouped together as there are usage measures considered (a maximum of four). These cards are placed immediately after a USAGE control card. An ENDGRP card immediately follows these cards (Fig. D9).

Usuge code DMTH	Basis for interval 1	Usoge A 1	Usoge B 1	Length of forecast period examined 10	នៅក្នុងស្នេស ស្នេស ស ស្នេស ស្នេស ស្ន

Fig. D9—Format for USAGE Data Cords

EQUIPMENT. These cards contain data for the equipment inventory table for any of the four usage measures being considered. Each card contains the interval number in the table and the required data to be entered into the table for each usage measure. Only the fields pertaining to the appropriate usage measures being considered need to be punched.

As many of these cards are prepared as are required for the equipment inventory table (a maximum of 100). They are placed immediately after an EQUIPMENT control card and are immediately followed by an ENDGRP control card. The letters EQPMNT must be punched in cols 1 to 6 of the card (Fig. D10).

CONSTANTS. These cards contain the constants required for the calculations of the expected values. These constants had to be previously determined from a curve fit for the particular equation type indicated on the card. The

188

D FIELD

RAC-T-465

Fig. D10—Format for EQUIPMENT Data Cards

constants that are punched will refer to equations for usage measure, replacement rate type, and equation type.

The usage measure is indicated by punching a code word in the first field of the card.

Code	Units
CMONTH	Months
CMILE	Miles
CHOUR	Hours
CROUND	Rounds

The type of replacement rate is punched as an X or R with the following meaning:

 $R - R_{a/o}$ replacement rate only to be used

 $X-R_{s/e}^{a/o}$ and $R_{a/o}$ replacement rates to be used The equation types to which the constants apply are defined the same as for the TYPES data card. One of these data cards is required for each equation type being considered. These cards are placed immediately after a CONSTANTS control card and are followed immediately by an ENDGRP card (Fig. D11).

Fig. D11—Format for CONSTANTS Data Cards

RAC-T-465

189

<u>Card Deck Setup</u>. The following illustrates how the cards may be assembled for a series of three runs.

Run 1. Two usage measures (months and miles) and two equation types are considered.

Run 2. Same as Run 1 except that the length of the forecast period is changed. This requires a change in USAGE data cards only.

Run 3. Same as Run 1 except that a different forecast period starting date is required and the length of the forecast period is different. This requires a change in DATES and USAGE data cards only. Note that all three data cards of the BASIC group are changed even though the only difference would be on the DATES data card.

Card Setup for the three runs would follow the order below:

190

RAC-T-465

End Item Usage Routine

This computer program tabulates the number of vehicles in each usage interval of interest. A simplified flow chart of the End Item Usage Routine is presented in Fig. D12.

The user of the program specifies the theater or organizations and the inventory date. The program then selects only the pertinent vehicle data from the equipment history f: le.

The input to the program consists of certain specification cards that contain the theater and/or organizations requested, the inventory date, the known number of the inventory (so that adjustments can be made for unreported data), the vsage measure (months, miles, hours, or rounds), and the basis for the usage interval. The equipment history file is on magnetic tape; it has been prepared from TAERS data.

The program as described is used as a separate program, but it can very easily be made to serve as a subroutine for the Expected Number of Replacement Actions Program.

A more detailed description of the input cards is given in the next section. Input Data Cards.

THEATER or ORGANIZATION. This card designates the theater and/or organizations that are to be considered when extracting the data from the equipment history file. Provision is made on the card to designate whether a theater or organization is requested, the number of theaters or organizations requested, and their military identification code numbers. This is the very first card read in by the program (Fig. D13).

USAGE. This card contains the usage measure to be considered and the basis for the usage interval. It is placed immediately after the THEATER or ORGANIZATION card.

Any combination of months, miles, hours, and/or rounds may be specified in the usage measure codes field of the card. The desired usage interval basis for each usage measure is punched in the corresponding part of the "Basis for usage interval" field.

The usage measure codes that apply are

Code	Meaning
MO	Months
MI	Miles
HR	Hours
RD	Rounds

Figure D14 illustrates USAGE card format.

DATE. This card designates the date of the inventory and the number of pieces of equipment known to be on hand. When the program extracts the desired records from the equipment history file, a count is kept of the total number of items accumulated in the equipment inventory table being formed. An adjustment is made by the program for unreported data if this total is less than the known number on hand.

This card always follows a special control card that has "ANOTHR" punched in cols 1 to 6 (Fig. D15).

RAC-T-465

191

Fig. D12—Flow Chart for End Item Usage Routine

RAC-T-465

FOR OFFICIAL USE ONLY

Fig. D14—Format for USAGE Input Data Cards

Fig. D15—Format for DATE Data Input Cards

ANOTHR. This card is used in front of the DATE card so that the program recognizes that another DATE card follows. It consists of the word ANOTHR punched in cols 1 to 6. A blank card placed after a DATE card terminates the run (Fig. D16).

RAC-T-465

193

78 72 73 74 75 18 71 78 74 86
11.1111111
2 2 2 2 2 2 2 2 2 2 2 2

Fig. D16—Format for ANOTHR Data Input Cards

<u>Card Deck Setup</u>. The following illustrates how cards may be assembled for a series of three runs.

	THEATER-ORGANIZATION USAGE
RUN 1	ANOTHR
	L DATE
RUN 2	∫ ANOTHR
1001 2	L DATE
RUN 3	f ANOTHR
	DATE
	` Blank Card

FOR OFFICIAL USE ONLY

RAC-T-465

Appendix E

FORECASTS OF USAREUR REPLACEMENT ACTIONS FOR SELECTED M60 AND M113 APC REPAIR PARTS

Ta	Ы	

E1-E17.	Com	parison of USARE UR Replacement Forecasts for M60 Tank	
	E1.	Road and Idler-Wheel-Arm	196
`	E2.	Battery	197
	E3.	Engine	197
		Generator	198
	E5.	Hub	198
	E6.	Link Assembly	199
		Nozzle	199
	E8.	Pump	200
	E9.	Starter Relay	200
	E10.	Shock Absorber	201
	E11.	Shoe Assembly	201
	E12.	Sprocket	202
	E13.	Starter Assembly	202
	E14.	Transmission	203
	E15.	Traverse Gear	203
	E16.	Turbocharger	204
	E17.	Road and Idler Wheel	204
E18-E33.	Com	parison of USAREUR Replacement Forecasts for M113 APC	
	E18.	Battery	205
	E19.	Ignition Coil	205
	E20.	Differential	206
	E21.	Distributor	206
	E22.	Engine	207
	E23.	Track Pad	207
	E24.	Radiator	208
		Road Wheel and Hub Seal	208
		Shock Absorber	209
		Track Shoe	209
		Spark	210
		Sprocket	210
		Starter	211
		Transmission	211
		Idler Wheel	212
	E33.	Road Wheel	212

RAC-T-465

.

195

This appendix presents forecasts of USAREUR repair-parts consumption (replacement) for 17 M60 tank and 16 M113 APC repair parts listed in App B. These forecasts illustrate the kinds of output obtained from the Expected Number of Actions Program. They also provide projections that can be compared with the reported quantity of parts replaced as soon as TAERS equipment history data have been accumulated for the forecast periods studied. If future evaluations indicate that TAERS data provide an acceptable basis for determining repair-parts requirements, projections of the type presented in this appendix could be a valuable source of information for commodity analysts.

The estimates of repair-parts consumption shown in this appendix are based on USAREUR information¹⁷ that indicates the total number of miles each tank and APC in the active USAREUR fleet had accumulated by 1 July 1964. Forecasts of the quantity of parts that will require replacement during four consecutive quarters beginning 1 January 1965 are provided for three rates of tank-fleet utilization (200, 300, and 400 miles of operation per quarter).

As discussed in Chap. 3, repair-parts forecasts will be affected by the type of replacement-rate equation used in the analysis. This fact is illustrated in Tables E1 to E33, which present a comparison of expected M60 and M113 parts' replacements based on linear and log-log replacement-rate equations. The linear projections are very similar to the log-log estimates. Until a comparison can be made with TAERS data showing actual replacements during these forecast periods, it was felt that no evaluation of these or alternative types of equations should be made.

TABLE E1 Comparison of USAREUR Road and Idler-Wheel-Arm Replacement Forecasts for M60 Tank (8

Based on I	og-log va	linear projections)	
------------	-----------	---------------------	--

		Usage rate, miles/quarter						
Forecast period		20	00	30	0	40	0	
		Type of usage relation						
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea	
Quarter	year	Expected number of replacements during quarter						
1	1965	42	37	65	58	89	79	
2	1965	47	42	76	65	109	93	
3	1965	52	44	87	74	130	108	
4	1965	57	49	100	83	153	122	

196

RAC-T-465

TABLE E2 Comparison of USAREUR Battery Replacement Forecasts for M60 Tank (Based on log-log vs linear projections)

		Usage rate, miles/quarter							
- Forecast period		20	0	30	0	40	0		
,			Type of usage relation						
	Calendar	Log-log	Linear	Log-log	Lineor	Log-log	Linea		
Quarter	year	Expected number of replacements during quarter							
1	1965	47	50	71	75	96	102		
2	1965	49	52	75	81	102	111		
3	1965	50	54	79	86	109	121		
4	1965	52	57	82	92	113	130		

TABLE E3 Comparison of USAREUR Engine Replacement Forecasts for M60 Tank

.

(Based on log-log vs linear projections)

		Usage rate, miles/quarter						
Forecast period		200 300 40		00				
		Type of usage relatio						
•	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linear	
Quarter	year	Expected number of replacements during quarter					.	
1	1965	103	104	158	159	213	215	
2	1965	110	111	171	174	239	243	
3	1965	116	118	186	190	261	270	
4	1965	123	125	198	205	284	299	

RAC-T-465

FOR OFFICIAL USE ONLY

TABLE E4 Comparison of USAREUR Generator Replacement Forecasts for M60 Tank

(Based on log-log vs linear projections)

				Usage rate, m	niles/quarter				
Forecast period		20	0	30	ю	40	0		
		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected number of replacements during quarter							
ĭ.	1965	43	44	65	67	87	90		
2	1965	44	46	68	70	93	97		
3.	1965	46	47	71	75	97	104		
.4	1965	47	50	73	89	102	112		

TABLE E5

Comparison of USAREUR Hub Replacement

Forecasts for M60 Tank

(Based on log-log vs linear projections)

		Usage rate, miles/quarter								
Forecast period		20	0	30	0	40	0			
		Type of usage relation								
Calendar	Catendar	Log-log	Linear	Log-log	Linear	Log-log	Linea			
Quarter	year	Expected number of replacements during quarter								
1	1965	83	77	128	118	175	162			
2	1965	92	85	148	137	212	195			
3	1965	101	93	170	156	252	228			
4	1965	111	102	193	174	295	262			

198

RAC-T-465

FOR OFFICIAL USE ONLY

. ...

TABLE E6 Comparison of USAREUR Link-Assembly Replacement Forecasts for M60 Tank

(Besed on	log-log vs	linear projections)
-----------	------------	---------------------

			Usage rate, miles/quarter						
Forecast period		200		300		400			
		Type of usage relation							
	Calendar	Log-log	Linear	. Log-log	Linear	Log-log	Linear		
Quarter	year	Expected number of replacements during quarter							
1	1965	25	25	39	39	52	53		
2	1965	27	28	- 42	43	60	60		
3	1965	29	29	48	47	68	68		
4	1965	31	31	51	52	75	75		

TABLE E7 Comparison of USAREUR Nozzle Replacement Forecasts for M60 Tank

(Based on log-log vs linear projections)

		Usøge rate, miles/quarter								
	ecast riod	200		300		400				
				Type of usa	ge relation					
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea			
Quarter	year	Expected number of replacements during quarter								
1	1965	191	165	294	253	403	345			
2	1965	212	180	341	286	487	402			
3	1965	232	194	390	317	576	459			
4	1965	255	208	441	350	673	516			

RAC-T-465

1

FOR OFFICIAL USE ONLY

TABLE E8

Comparison of USAREUR Pump Replacement Forecasts for M60 Tank

(Based on log-log vs finear projections)

			Usage rate, miles/quarter								
Forecast period		20	0	300		400					
-		Type of usage relation									
Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linear					
Quarter	year	Expected number of replacements during quarter									
1	1965	45	38	69	59	93	79				
2	1965	48	41	76	63	93 107	89				
3	1965	52	43	83	69	119	97				
4	1965	55	46	· 91	74	131	107				

TABLE E9

Comparison of USAREUR Starter-Relay Replacement Forecasts for M60 Tank

(Prised on log-log vs linear projections)

			Usage rate, miles/quarter								
Forecast period		- 20	0.	3(00	10	10				
				Type of use	age relation						
Calenda	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea				
Quarter	year	Expected number of replacements during quarter									
1	1965	50	35	73	52	96	67				
2	1965	46	32	67	42	87	50				
3	1965	44	27	64	33	82	37				
4	1965	43	23	61	27	77	24				

200

RAC-T-465

FOR OFFICIAL USE ONLY

:.

TABLE E 10 Comparison of USAREUR Shock-Absorber Replacement Forecasts for M60 Tank

(Based on log-log vs linear projections)

				Usage rate, n	niles/quarter				
Forecast period		20	0	30	0	40	0		
•		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	, year	Expected number of replacements during quarter							
í	1965	89	78	138	121	190	166		
2 .	1965	101	88	166	143	241	205		
3	1965	114	98	196	164	299	243		
. 4	1965	127	107	230	186	363	281		

TABLE E11

Comparison of USAREUR Shoe-Assembly Replacement Forecasts for M60 Tank

(Based on log-log vs linear projections)

				Usage rate, miles/quarter					
Forecast period		20	00	30	10	40	0		
		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linear		
Quarter	year	Expected number of replacements during quarter							
1	1965	36,931	35,846	56,530	55,020	76,882	75,028		
2	1965	39,951	39,182	63,314	62,527	88,929	88,375		
3	1965	42,962	42,519	70,075	70,035	100,924	101,721		
4	1965	45,967	45,856	76,816	77,542	112,876	115,069		

RAC-T-465

- 14 1

201

TABLE E12 Comparison of USAREUR Sprocket Replacement Forecasts for M60 Tank

(Based on log-log vs linear projections)

	,			Usage rate, r	niles/quarter				
Forecast period		20	200 300 400						
		Type of usage relation							
	Colendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected number of replacements during quarter							
1	1965	800	721	1235	1112	1694	1524		
2	1965	894	803	1450	1298	2085	1854		
3	1965	991	886	1682	1483	2519	2183		
4.	1965	1094	968	1931	1668	2989	2513		

TABLE E13

Comparison of USAREUR Starter-Assembly Replacement Forecasts for M60 Tank (Based on log-log vs linear projections)

		Usage rate, miles/quarter							
Forecast period		200 300		40	ю				
·		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected num ber of replacements during quarter							
1	1965	93	92	139	137	184	182		
2	1965	91	90	135	133	178	174		
3	1965	90	88	132	128	174	165		
4	1965	88	86	130	123	170	156		

RAC-T-465

FOR OFFICIAL USE ÓNLY

TABLE E14 Comparison of USAREUR Transmission Replacement Forecasts for M60 Tank

(Based on log-log vs linear projections)

				Usage rate, n	niles/quarter				
	ecast riod	200 300 400							
		Type of usage relation							
	Colendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected number of replacements during quarter							
1	1965	51	43	78	67	107	90		
2	1965	56	47	91	74	130	105		
3	1965	62	51	105	82	155	118		
4	1965	68	54	118	90	182	132		

TABLE E 15 Comparison of USAREUR Traverse-Gear Replacement Forecasts for M60 Tank

t

(Based on log-log vs linear projections)

			Usuge rate, miles/quarter						
Forecast period		200		300		400			
		Type of usage relation							
0	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected number of replacements during quarter							
1	1965	36	34	54	52	74	70		
2	1965	38	36	60	56	84	77		
3	1965	40	38	66	60	93	86		
4	1965	44	39	71	65	104	93		

RAC-T-465

「「「「「

FOR OFFICIAL USE ONLY

TABLE E 16 Comparison of USAREUR Turbocharger Replacement Forecasts for M60 Tank

(Based on log-log vs linear projections)

		Usage rate, miles/quarter							
Forecast period		20	200 300 400						
		Type of usage relation							
Calendar	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected number of replacements during quarter							
1	1965	8	8	12	13	16	17		
2	1965	8	9	12	12	16	17		
3	1965	8	8	12	14	16	18		
4	1965	8	9	12	13	17	19		

TABLE E17
Comparison of USAREUR Road- and Idler-Wheel Replacement
Forecasts for M60 Tank
(Based on log-log vs linear projections)

-...

				Usage rate, n	niles/quarter				
Forecast period		200		300		400			
Type of usage relation									
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected num ber of replacements during quarter							
1	1965	405	397	621	610	846	832		
2	1965	441	435	704	697	994	990		
3	1965	479	475	787	787	1146	1146		
4	1965	515	515	874	874	1300	1303		

204

RAC-T-465

TABLE E18 Comparison of USAREUR Battery Replacement Forecasts for M113 APC (Based on log-log vs linear projections)

		Usage rate, miles/quarter						
	Forecast period		200 300 400					
		Type of usage relation						
Cale	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linear	
Quarter	year		ring quarter					
1	1965	265	230	409	353	559	480	
2	1965	294	250	475	397	681	559	
3	1965	325	270	547	442	817	638	
4	1965	356	289	626	485	964	717	

TABLE E19

Comparison of USAREUR Ignition-Coil Replacement Forecasts for M113 APC (Based on log-log vs linear projections)

		Usage rate, miles/quarter							
	ecast riod	20	200		300		400		
•				Type of use	ge relation				
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linear		
Quarter	year	Expected number of replacements during quarter							
1	1965	100	86	153	132	208	178		
2	1965	108	92	172	144	243	201		
3	1965	117	98	193	156	280	223		
4	1965	126	103	213	170	318	246		

RAC-T-465

FOR OFFICIAL USE ONLY

TABLE E20 Comparison of USAREUR Differential Replacement Forecasts for M113 APC

(Based on log-log vs linear projections)

		Usage rate, miles/quarter							
Forecast period		20	ю	30	0	40	0		
		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected number of replacements during quarter							
1	1965	33	31	49	47	66	63		
2	1965	33	32	51	48	68	65		
3	1965	34	32	52	50	71	67		
4	1965	34	33	53	50	72	68		

TABLE E21 Comparison of USAREUR Distributor Replacement Forecasts for M113 APC (Based on log-log vs linear projections)

			Usage rate, miles/quarter							
Forecast period		200 300 40				0				
·		Type of usage relation								
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea			
Quarter	year	Expected num ber of replacements during quarter								
1	1965	107	105	164	161	223	219			
2	1965	116	114	182	179	256	249			
3	1965	123	121	202	195	291	281			
4	1965	133	128	222	214	327	311			

RAC-T-465

206

FOR OFFICIAL USE ONLY

TABLE E 22 Comparison of USAREUR Engine Replacement Forecasts for M113 APC

(Based on log-log vs linear projections)

		Usage rate, miles/quarter							
Forecast period		20	200		300		0		
r.			······	Type of uso	ge relation				
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected number of replacements during quarter							
1	1965	86	84	131	128	178	174		
2	1965	92	90	147	142	206	199		
3	1965	100	96	162	157	235	224		
4	1965	106	103	179	170	264	250		

TABLE E23 Comparison of USAREUR Track-Pad Replacement Forecasts for M113 APC

(Based on log-log vs linear projections)

				Usage rate, r	Usage rate, miles/quarter				
Forecast period		200 300		400					
-		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linear		
Quarter	year	Expected number of replacements during quarter							
1	1965	32,267	31,905	49,319	48,834	66,990	66,414		
2	1965	34,723	34,509	54,881	54,690	76,936	76,824		
3	1965	37,210	37,110	60,540	60,546	87,096	87,235		
4	1965	39,726	39,714	66,282	66,403	97.433	97,645		

RAC-T-465

たいわれていたいというないというない

207

FOR OFFICIAL USE ONLY

TABLE E24 Comparison of USAREUR Radiator Replacement Forecasts for M113 APC

(Based on log-log vs linear projections)

		Usage rate, miles/quarter							
	ecast riod	200 300 400							
		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected number of replacements during quarter							
1	1965	55	55	83	84	113	114		
2	1965	58	59	91	93	126	129		
3	1965	61	63	99	101	122	144		
4	1965	65	66	88	99	172	159		

TABLE E25 Comparison of USAREUR Road-Wheel and Hub-Seal Replacement Forecasts for M113 APC (Based on log-log vs linear projections)

		Usage rate, miles/quarter							
	ecast riod	200 300 40							
·		Type of usage relation							
•	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year	Expected number of replacements during quarter							
1	1965	96	93	147	141	199	191		
2	1965	103	98	163	156	229	218		
3	1965	111	106	180	170	259	242		
4	1965	118	112	197	184	289	269		

RAC-T-465

FOR OFFICIAL USE ONLY

TABLE E26 Comparison of USAREUR Shock-Absorber Replacement Forecasts for M113 APC

(Based on log-log vs linear projections)

		Usage rate, miles/quarter							
Forecast period		20	200 300		40	400			
·		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linear		
Quarter	year	Expected number of replacements during quarter							
1	1965	362	239	563	367	780	501		
2	1965	418	262	699	419	1033	593		
3	1965	482	285	855	471	1341	686		
4	1965	551	308	1037	523	1710	779		

TABLE E 27

Comparison of USAREUR Track-Shoe Replacement Forecasts for M113 APC (Based on log-log vs linear projections)

				niles/quarter					
Forecast period		20	200 300		400				
r		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linear		
Quarter	year	Expected number of replacements during quarter							
1	1965	41,774	30,841	65,027	47,516	89,970	65,027		
2	1965	48,196	34,186	80,248	55,042	118,447	78,407		
3	1965	55,305	37,531	97,890	62,568	152,908	91,785		
4	1965	63,142	40,876	118,160	70,093	193,995	105,164		

RAC-T-465

FOR OFFICIAL USE ONLY

209

「「「「「「」」」、「」」、「」」、「」」、「」」、「」」、

,

TABLE E28 Comparison of USAREUR Spark-Plug Replacement Forecasts for M113 APC

(Based on log-log vs linear projections)

		Usage rate, miles/quarter						
Forecast period		20	200 300 40		00			
		Type of usage relation						
	Calendar	Log-log	Linear	Log-log	Lineor	Log-log	Linéar	
Quarter	year		Expected r	number of repl	acements du	ring quarter		
1	1965	1736	1507	2645	2288	3583	3089	
2	1965	1847	1582	2894	2458	4021	3390	
3	1965	1956	1657	3138	2627	4450	3691	
4	1965	2065	1733	3377	2797	4873	3992	

TABLE E29 Comparison of USAREUR Sprocket Replacement Forecasts for M113 APC

(Based on log-log vs linear projections)

Forecast		Usage rate, miles/quarter							
		200		300		400			
•		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea		
Quarter	year		Expected	number of repl	acements du	ring quarter			
1	1965	884	605	1382	932	1921	1275		
2	1965	1037	670	1747	1080	2610	1540		
3	1965	1208	737	2181	1229	3471	1804		
4	1965	1402	803	2692	1378	4529	2068		

RAC-T-465

y

FOR OFFICIAL USE ONLY

TABLE E30 Comparison of USAREUR Starter Replacement Forecasts for M113 APC

(Based on log-log vs linear projections)

		Usage rate, miles/quarter						
Forecast period		20	0	300		400		
		Type of usage relation						
Quarter	Calendar	Log-log	Linear	Log-log	Linear	Log-log	Linea	
	year	Expected number of replacements during quarter						
1	1965	221	226	336	343	454	464	
2	1965	233	238	363	371	502	513	
3	1965	245	250	390	399	547	563	
4	1965	257	263	414	427	592	612	

TABLE E31 Comparison of USAREUR Transmission Replacement Forecasts for M113 APC (Based on log-log vs linear projections)

		Usoge rate, miles/quarter							
Forecast period		200 300 4		40	100				
		Type of usage relation							
	Calendar	Log-log	Linear	Log-log	Lineor	Log-log	Linear		
Quarter	year		Expected	number of repl	acements du	ring quarter			
1	1965	51	47	78	72	106	98		
2	1965	55	51	89	80	127	112		
3	1965	61	54	101	88	149	126		
4	1965	66	58	114	96	172	140		

RAC-T-465

{

FOR OFFICIAL USE ONLY

TABLE E32 Comparison of USAREUR Idler-Wheel Replacement Forecasts for M113 APC

(Based on log-log vs linear projections)

		Usage rate, miles/quarter							
Forecast period		20	0	300 40		00			
ŗ		Type of usage relation							
Quarter	Calendar	Log-log	Linear	Log-iog	Linear	Log-log	Linea		
	year	Expected number of replacements during quarter							
1	1965	965	802	1497	1223	2065	1658		
2	1965	1100	856	1815	1346	2656	1877		
3	1965	1247	911	2178	1469	3356	2095		
4	1965	1409	966	2587	1592	4171	2315		

TABLE E33

Comparison of USAREUR Road-Wheel Replacement Forecasts for M113 APC (Based on log-log vs linear projections)

		Usage rate, miles/quarter							
Forecast period		200 300 40		00					
•		Type of usage relation							
Quarter	Calendar	Log-log	Lineor	Log-log	Linear	Log-log	Linea		
	year		Expected	num ber of repl	acements du	ring quarter			
1 .	1965	637	547	990	841	1366	1149		
2	1965	729	602	1204	963	1766	1365		
3	1965	828	655	1451	1085	2241	1581		
4	1965	938	710	1728	1206	2798	1798		

RAC-T-465

212

FOR OFFICIAL USE ONLY

>

REFERENCES

- 1. Research Analysis Corporation, "Operation, Maintenance, and Lifetimes of M60 Tanks, M113 Armored Personnel Carriers, and M88 Recovery Vehicles (U)," RAC-T-460, Mar 65. CONFIDENTIAL
- 2. US Army Supply and Maintenance Command, Logistic Data Center, Lexington Army Depot, "Logistics Management Information: Materiel Readiness Report (U)," 4th
- Depot, "Logistics Management information: Materiel Readiness Report (0), sur qtr FY63, 2d qtr FY65. SECRET
 3. Maj Gen Wm C. Baker, Jr, President, "Report of Board of Inquiry on Materiel Readiness," Dept of Army, 23 Sep 64.
 4. Dept of Army, "Supply Control Policies and Procedures for Minor Secondary Items and Repair Parts," AR 710-45, Oct 62.
 5. Research Analysis Corporation, "An Analysis of the Responsiveness of the Seventh Analysis Corporation, "PAC-TD-158 Apr 65, FOR OFFICIAL
- Army Repair Parts Supply System," RAC-TP-158, Apr 65. FOR OFFICIAL USE ONLY
- Dept of Army, US Army Materiel Command, Financial Inventory Accounting, "Summaries of Distribution of Army Inventories," for period 1 Jan-30 Jun 64.
- -, "Dictionary of United States Army Terms," AR 320-5, 1958.
- 8. Bernard B. Rosenman, "Forecasting the Demand for Military Repair Parts," Pt 2, paper presented at Army Operations Researcl Symposium, US Army Ordnance Corps, Frankford Arsenal, Philadelphia, 27-29 Mar 62, pp 6-7. 9. D. R. Cox, <u>Renewal Theory</u>, Methuen & Co. Ltd., London, 1962.
- Research Analysis Corporation, "A Projection of M60 Series Tank Engine Requirements for USAREUR by Quarter from 1 Oct 64 through 30 Sep 67," in preparation.
- 11. , "RACSTAT-MR62: Multiple Regression Program," in preparation. 12. US Army Weapons Command, Weapons Operations Research Office, Rock Island
- Arsenal, "Reliability and Maintainability of the M48A1 Tank," OR-63-2, Apr 64.
- 13. Research Analysis Corporation, "Operation, Maintenance, and Cost Experience of the Tank, Armored Personnel Carrier, and Self-Propelled Howitzer Vehicle Fleets (U), " RAC(ORO)-T-409, Sep 62. SECRET

RAC-T-465

FOR OFFICIAL USE ONLY