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FOREV0IRD

This is Volume II of the final report under Contract No. Nonr 5006(00).
U This report is issued in order to present the linear theory (in its most

general form) of water waves produced by explosions and to specify the

j assumptions which prevail in performing the Mono Lake deep water

predictions. The most general form of the iinear theory has never

.- appeared in the literature prior to this report and it is evident that it

has not been employed to its fullest extent.

This report was prepared under the direction of Dr. B. Le Mdhauti,

Associate Director and Project Manager for this program. Miss Lois

Webb contributed to the development of the computing techniques and

the programming was accomplished by Mr. H. Lee Butler.I
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ABSTRACT

The objective of this project was to predict the water waves generated
by the Mono Lake field tests. These tests consisted of detonating ten

TNT explosions of approximately 9, 500 pounds each, and measuring
the water waves and run-up produced by these detonations.

Volume I of the final report contains these predictions and a brief

description of the theoretical and empirical methods employed In per-

forming the predictions. This volume presents the 3eneral form of the

linear theory of water waves produced by explosions in water of con-

stant depth. The theory is developed in detail so that the full extent

of the assumptions made in performing the predictions for Mono Lake

can be realized. It is also evident that several natural extensions to3 the presently employed theory can be made which will result in more

realistic initial conditions and which should present a more reliable

theory. Examples of the various solutions that depict the differences

between a symmetric surface deformation, a symmetric time-dependent
surface deformation, and an asymmetric time-dependent surface
deformation are given.
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I. INTRODUCTION a p eha

The linear theory of weer waves produced by e.-,oztons has-been

utilized by many Investigators (Lamb 1945; Van Dorn 1959, 1963;
Kranzer and Keller 1955; Prins 1956; Whalin 1965; Kajiura 1963;
Unoki and Nakano 1953; Stoker 1947; Penney 1950; Fuchs 1952;
Kirkwood and Seeger 1950) during the last 20 years. The basic
mathematical foundation for the generalized linear theory has been in

existence for a longer period of time. It involves the use of time-
dependent Green's Function which satisfies the Laplace equation with
the appropriate linearized boundary conditions and the recomnized
assumptions that linearization involves. However, this theory in itsI general form has escaped application with one notable exception
(Kajiura, 1963), who applied the theory to calculate the leading wave
of a tsunami and gave various examples of tCe theory to show thatI; certain special cases reduced to the well known solutions (Kranzer P
and Keller, 1955) for explosion waves.

This report formulates the general theory and applies it to water waves
produced by explosions. The asymptotic solutions are developed,
along with examples, for several special cases and the full impact of
the use of the time-dependent Green's Function is thoroughly discussed.
The advantage of using this theory in the case of one detonation and
multiple detonations is pointed out.

The axially symmetric water craters presently being used to predict8I
explosion waves many times bear little resemblance to the actual
craters created (Van Dorn 1963, Whalin 1965); these craters are
generally termed "pseudo" craters. The use of a time-dependent
initial deformation will undoubtedly result in much more realistic
crater parameters. These parameters should be related to weapon
yield and location. as has been accomplished for stationary symmetric
water craters (Whalin, 1965). The theory In its most general form can

I
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be applied to predict the wave spactrum generated by an exotic shaped

source resulting from multiple d'.Rtonations which may be employed to

produce wave amplification at a certain point or in a specified area.

The conclusion of this report is that the prediction methods presently i
employed and used for the Mono Lake program should be modified to .

account for a time-dependent source of disturbance. Further, the

empirical relationships between the cavity parameters and the weapon

size and location should be established as they have been for a

stationary initial deformation. Furthermore, one can probably

establish a model, which will account for the evaporation of water as

well as the subsequent return of water from the plume collapse. In

addition, the general solution for an arbitrary shaped initial deforma-

tion can be used to predict the wave spectrum generated by multiple

explosions.

2!a 4!

. *.-".I,',..,. . .. . .... . . . . . . . . . . . ... I' _



2. THEORETICAL FORIMULATION

The mathematical modal employed in the goneralized linear theory of

water waves generated by e=plosions is based on the linear theory of

surface waves in an inviscid incompressible fluid of constant depth.

This model allows the source to be asymmetrical and time-dependent

In its most general form. Consequently, a mathematical model is

available in which the actual wave generation mechanism can be

simufated much more precisely than that generally used in present

applications.

The water is assumed incompressible, of constant depth d; the origin

of the Cartesian coordinate system (W', y', z') is at the undisturbed

free surface, the vertical axis z' is positive upwards, and the

variables are transformed to dimensiinlesso form (i. e., x = xg/d
y-ay'/d, t-=t' Vg•, 17=-1'/d. V-=V'/\j•g'- •0-= '1"gd

p = (p'/p)/gd; etc.). 4

The kinematic and dynamic conditions at the free surface are

lo (2

et= -?•-p, a=O (2) -

and the bottom condition is

VS = wBP -l (3)

where wB is the assumed bottom velocity corresponding to a bottom

deformation. The above conditions are subject to the restrictions of

assuming a linear approximation. That is, the deformation at the

surface and bottom are assumed small compared with the wave length,

;.', and water depth, d, and the condition z'X' 2 /d 3 3 4.

3
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The time-dependent Green's 17unction, G. is asolution o h Laplaice
equation *

2(4V G 0. 0, 0z -1 tar(4

satisfying the free surface condition

. + G+G - 0 z-0 (5)

and the bottom conjition

G = 0,Z=- (6) : 1

Iz
It is required that G, G0. Gy, G and G be uniformly

I bounded for every t at x,y - . In addition, (G - I /R) must be bounded

at (xo, Yo, zo) where

RL = (x-x 0 ) +(y-yo) +(z- zo) (Tok

At time t 7 r the following initial conditions are assumed

SG = Gt= 0, z =0

[ The above equation and conditions are sufficient to determine G uniquely.

From Stoker, the Green's Function for the case of three-dimensional
motion in water of finite depth is

G(x 0 Yot z 0;7jxtyp zot 0~ 0 [snhmcshIn 1 - IS-5 0 1}-snh m{I + (:z z)

1 {l2 - cos1-) cosh m(l z)coshm(l+zo0 , d) ,

0 > z, zo >-

l4



where

= (x - zo) (y-yo) (10)

and

TV - m tanhm (11)

Note-that G is symmetric with respect to (xo, yo. z )and (x. y. z) and
o 00

also t and?. Therefore

G(xoy, ozo;.jx,tyz;t) G(x,y.z;txo,Yo,yzo;7) a G(x, Yo, ;tlx,y,s;T.)

(1Z)

From Green's formula and the above Green's function

4P (X, .y Z; ). S (CO-?z 0 ,~ dS 0
-ISJ(G0Tzo - OG)zo dSo (13)

where dS 0 dx° dy° and the integral on the lateral boundary in water
vanishes because of the condition imposed on G.

The integration of Eq. 13 with respect to r from 0 to t and substitution

of conditions in Eqs. 1, 2, 5, 6 and 8 for 0 and G yield

0(x,ye z, t)-0 xfye z, 0) G - ,G+[o. - +0 dS0

J 1 t( ) oddSo (14)

fjf o so--
dSS

| • .T;.. _ .. . • -. • .'• • ,::•.;[-• }• • '• •• • • • --" _.• . . .. . . . . -- .. .0

5i



The first integral in Eq. 14 Of"' a

Ucondition =rd the l~aitr Lntc~ral, that of LQ;4 -n

At the surface z = 0, Eq. 9 becomes

=0 & (m•)

,(X5y 0 9 Z 0 1Xpys Oft) o ' 1- cosY(t-r)Jmcozhm(1+z d•.oo d
0y Ycooh r.

I:_- (15)

and since the surface elevation, 17, is given by Eq. 2. the substitution

of Eq. 14 into Eq. Z yields

(([ +p) A T UJ(I Il+1 2 +1 3 ) dS (16)

c where

I I f (° - t - ) G r 0o ) 0 .o .S0, (1?)

2 IP C;z p dr.d"+ 1pC•3 or (8
t

,1- a (pG;.dT+=(pG,. orr (19)

t

13 a fo Gto" 7 d,. or (20)
13 a, Gtr O,, 0 dr (°, 0,o 1*o.o--,.. o. (21)

Note that Eq. 17 represents the contribution of the initial velocity rnd

elevation of the water at the surface, Eq. 18 or Eq. 19 the contribution

of the surface pressure, and Eq. 20 or Eq. 21 the contribution from the

!I bottom deformation.

i 1 "
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)4 3. Dj

This section proez-t3 alte a3y i'.otic s'-~:cltaim-d by z21cznc
of the method of stoation-ry 1phaae to evalut±e tle iztagral in Eqj. 16.
The special cases for which the asymptotic soluticn is developed are

a symmetric initial impulse, a symmetric initial daformation, a

mymmetric time-dependent initial deformation and an asymmetric time-

E dependent initial deformation. In each case the source is given as an
-arbitrary function where special cases are easily invest!gated. E=ampes

of a special case appear for each assumed initial condition. The

condition of a symmetric initial impulse (Section 3.1) and a sym'-mtric
initial deformation (Section 3.2) were solved by Kranzer and Keller

(1955) and are reproduced here for completeness. However, the

developments of Sections 3.3 and 3.4 are original and bear further

F investigation as far as application to actually performing predictions

are concerned.

3. 1 Axially Symmetric Initial Impulse

The special case of an axially symmetric initial impulse was solved by
Kranzer and Keller by the method of integral transforms. When the

proper assumptions are employed their solution is obtained from Eq. 16.

Cylindrical coordinates are used and the initial conditions becomae:

E a) The water surface Is initially undisturbed

17% (ro, 0 o, ) 0 0

Sb) The initial velocity at the surface at time t u 0 is.
!io.0

0
O a 0 .0
s° two

Consequently I1 • Gl.t ). 0 0

I .r
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U I

C) 7he ay:21.d proacr at '*-::' otT:Ui.e., ps=I° C(•'); t• •
0,tU1; P, o' do+.pG'-ot

= Io(ro)Grt, "0, z=0 z = 0

£ d) 13=0

Upon sutbstitutlon in Eq. 16 and erpreseing the wave am'rpli±'-a in

cylindrical coordinates

vj(rOt) = m sin t r(0 )0 (m-) rodrod, 0}dm (22)
0 00000o

or upon integration with respect to r and e0 the wave amplitude becomes

00

[- where

[ r(r)= o°(r Jo(mr) r dr (2 )0 f 0O 0 0 0 0 0

The above integral is evaluated by the method of ststionary phafe upon

the assumption that the frequency of oscillation of 3 (inr) and the
- 0

circular function it large compared to t.at of ro(m). Then 3o(mr) is

approximated by an asymptotic expansion and upon ir.tagraton

$n " (mr - 'V/ tanh n t0 (25)

3 where

z(m) m + 'I tah m- (26)

ZYFal 2 cosh mn

__ -7, .7777.



Tal!1e I in S--ctior 3.2 Vivo$ 1!(M) for va.Zie-i in!L-'ZI I (z
Figure 1 eh0W8 anl C=?-M;1O Cf the Wa.ve arnIlzd1a±e as afUn
time for the initial imp-alse in e:xap-o 2 of TWIs I at cn- clbcrvaticn

BstaWon.

E 3.2 Axially Symmetric Surface Deform-ztion

The asymptotic solution for an axially symmetric surface deformation

-was solved by Kranzer and Keller for several special cases. However,

the theory is presented in the following pages from the more general

mathematical formulation given in Section 2. When cylindrical

coordinates are used, the initial conditions become:

a) The water surface is initially undisturbed and is definedU by the function 1io(ro).

b) The initial velocity of the surface at time t = 0 is

O z =0 =0

C) I I "G t qo(ro)= I o=0 , z= 0 , 0

2- o2Cs. (Yt in 0(yo ) dm] 1o0 (ro)

d) 1 =13=0

IIUpon substitution in Eq. 16 and expressing the wave amplitude In

cylindrical coordinates

T(r,t) " I a2m Co. vt{f %(rdJ (inr)rodrdG dm (2?)
4T0 0 0 0

1" 9
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I
2M{coo%(r,){3 0 mr)30 (mr0 + ZZ In(m?)3 n(r~ir )coi =(-8

JO 0- 00

i 0odrdoo] di (28)

I however
t coosn(9 - aSi0de 0 0 (29)

I therefore

m 30 (mr) cot i0 (r0 ) 3(mr.) r. dr] dm

I where

I (ro) 3o(mro)re dro " lo(m) (31)

which is the zero order Hankel Transform of %1(r.). The wave

amplitude becomes

[ Mfr. 0 - J j0 m) m Cos (V m 'tah m t) Jo(rnr) dm (32)

j The above integral is evaluated by the method of stationary phase where

it is assumed that !o(m) has a much lower frequency of.oscillationIthan 3o(mr) and the circular function. This assumr-tion is a valid one

for the types of initial deformations which are represontative of under-

water explosions, as can be observed from the examples in Table 1.
So(mr) is approximated by an asymptotic expansion for large argument

and the integral becomes

M(r,t) 0 l -(m) cos (mr - "-VItnh mmt) (33)

I A,

11 I I III1 1-IIIIII 1 • I . ...•. • r +*•

.. +,I/ , :.+
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ina
where

aI FM 2 Cat 2-nrn + Z (4)•m) ••v m Z"cosh m V•. m =-(

The following table gives %(m) for various initial deformations 17olr.

The wave amplitude may be computed either as a function of time withI r-constant or as a function of r with time constant.

Figure 2 shows the wave amplituide as a function of time for e:=&ample 3
of Table I at one observation station.

3.3 Axially Symmetric Time-Dependent Surface Dteformatim

There has been little investigation into the effect of using a time-
dependent symmetric surface deformation. This section presents the
theory with several specific examples given in detail. The examples

can be compared with those where the source is independent of time.

The intial conditions become: -. I

a) The water surface Is initially undisturbed and is defined

by0

flo(re' )' °r°) 0 in 1 , TT •

It ls assumed that the variables r and " are separable and

i* should be taken as the dimensionless period of the first

expansion of the bubble or the water cavity for the case of

b) a surface explosion.

b) The initial velocity of the surface at time i a 0 is

- --'n d j ', - -- 0"r + q 17olro)

II
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C TABLE I
HANKEL TRANSFORM OF VARIOUS INITIAL DEFORMATIONS

0, -r o-2>I -. tO0r ! 2

0 r r0 > -\(2-R '

0 r >R\3R m

o , o
0

3 24. 2,÷ ., -•,.-" j.

. - -/R R 2
e 2(1 + RZm 2 /2) 1

e (rIR) ,,, (R -.mR,

Ir

II
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I C) I nc;t O° -" and

I0--,z 0,ZO

I Ct sin Tt ='lm-r) dm

d) 12=13=0

Upon substitution in Eq. 16 and expressing the wave amplitude inflcylindrical coordinates

9(r, t)1 2msinVt [ o 0m (r) ()ro dr o d

0y 0

S!i
However, the integral with respect to r0 is merely the zero order Hankel
Transform of the initial deformation (ro) and will be denoted by 2F(m). n

00 00

+32+r 45 ms o(mr) _____r_ d(

Upon evaluation by the method of stationary phase

17(r. t) 0 (36)~m

Z~;r* /~ f/TOW7sin Cmr - 'tanhm t0 (3?

where 0 and 0' are defined as before. Examples of Wo(m) are found in
Table I.

.--



Figure 3 shows the wave ampliitude as a funcuion of time at G=

observation station where V-(m) is given by e-'nme 3 of Tabl I.

3.4 Asymmetric Time- Dor-a.&!nt Surface Dfrrto

In addition to assuming the a ource of disturbance to be time-dependent.

it is relatively straightforward to avoid the assumption of axial

symnetry. However. in the case of explosion waves, this assumption ii
is not necessary unless an unsymmetric cavity is produced by an in-

complete detonation or by multiple detonatiobxa. The initial condition I
becomes: ]

a) The water surface is initially undisturbed and is defined by

0 0
•"o•~~(ro , 90. t) = • 0S •O < 2V •

0 t • 5. ro > R

It is assumed that the variables are separable and that 1*

is a parameter which should be related to the time of the

initial expansion of the bubble.

b) The initial velocity of the surface at time = 0 is
z .=0 d 11o ro' 0 r

=0 0- 76.) =I Cr (O )T (0)
Psz= 0 . o 00o 0

C) I °I Gto and

1=0,5 o0O, z=O =0

20

-f sin tinJ (mr) dm
Ct To 0

d) I 1=

1 16 2 13=0
2* 3

-3

16

k.~ -A, VZ
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Upon substitution in Eq. 16 and ex-pre•in-3 tC:- wave in

cylindrical codrdinates

T0. J inv [o{(mr) 0 (ro 0 )+2 (mrir)M .(mr0 o .a onl-

*17tr)8(8)r~dr dO dr (33)

Upon performing the integrations with respect to ro and 0o

,(r,O.t) =m sJYtm 10 + 2 " n (39)
0 V 0(r)nm)IO)] In

where

117m) = o l(ro)Jl(rnro) rodr0 = ero order Hankel transform0 of 17olro)

"YF(m)= C )(ro) Jn(mro) rodr0 nth order Hahkel transform of
0 11j(ro)

80I = (9le) do 140)

A. Wn sin WD
Ine =B ron 0 (41)

and the A are coefficients of the Fourier sine seriesna

representing 0(80), i.e.., if 08o)z ;0 Ap sin p% or if

GO 10o z A0 B coso' p .then the B are the coefficients of

Sthe Fourier cosine series and p a n.

The above in'.egral is evaluated by the method of stationary phase and

ii~r~t) T1,(0) -V.;;(rr {I-ijm) + 2 XFm ()17 (r, 0, t) f (•r1 •tanhm -- lu1

sin (mr - -Vin tanh in t) (42)

I'he following table illustrates the various parameters in the above

solution for specific initial deformations.

isi
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Figures 4. 5, 6. 7, 8. 9. 10, 1It z d 12 c!-. the wave a&=l i-:1

as a function of time at si= cb-scrvQ-ca tnt-= vich are cqi : zt

r, from the origin =d at various locantic. 0 on the surface where the

Initial conditions are taken from e=mplo 3 of Tale IT. A cornpariocn

vit;, Fig. 3 of th, previous section shows the effect of considering an

0&symmetric time dependent source where the only difference is the

function e(Oo). It should be noted that the consideration of an asym-

etric source is of little value when considering the effects of a single

-- detonation-unless it happens to be an Incomplete-and asymmetrical

detonation. However, the method is certairly applicable to multiple

detonations.

iThe physical significance of considering the initial deformation cf this

form should be clearly understood. It appears, at a cursory glance,

that we have obtained an asymptotic solution, valid at large distances

from the a ource, which yields the solution for a deformation that forms

in a prescribed manner from time 0 to r*. and that the solution is

valid for all t a r*. However, this is not precteely the casse. Actually,

we are solving an initial value problem where we prescribe the shape

of the water surface and the velocity field at the surface at time t u t a 0.

The velocity field is obtained from the prescribed time dependent

9 deformation from time 0 to r*. The result is that the solution obained

will be a solution for a class of initial conditions, precisely that class

I which has the same surface s'ape and velocity field at ths surface at

time r a 0. This class is described by the set S consisting of elements

T(r) such that

T(O)aO0 and T 0

Examples of this set include

* T(r) s sin. +r " +•rnv C..n#n2

. 7 nbrP+

W Ir

20

r.777: 77
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That In, the solution does not depend on the precise inr in wch

the deformation builds up from time 0 to T* but cnly on hew it oZ.It

to build up. Furthermore, if the solution were evalueted at t a T*, it

I would not yield the precise deformation assumed (or thou.ht to be
assumed). However, it can be expected that the solution probably

would not deviate significantly from 1o(roa 0o. O *) since the assumed

initial conditions are physically reasonable conditions and the

mathematical model also is physically reasonable.

1:3I
1 3

U
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4. METHOD OF SOLUTION IN THE AREA NEAR THE SOUfIRCE

The asymptotic solutions (method of stationary plhase) presented in the

previous section are not valid in the area near the explosion. The

integral with respect to m must be evaluated in some other approxid

I mate manner and the method proposed by Whalin (1965) for a

symmetric water cavity is also applicable with only slight modification.
The equation to be solved, in general, is

I_____W-)+ 1~ (6J (mr )d'*1 .. Cr, 6, t) z f1m. $n[ Yoo" n= I

where the quantities I0. TI(m), I (e). ITm), and y are the same as0 0 npreviously defined. The proposed method of evaluation is to fit a

fourth degree polynomical to each half oscillation of the integrand and'I integrate directly. This method requires that all computations be

performed in double precision and the upper limit of integration may be
chosen to bound the error to almost any predetermined limit.

The above integral is to be approximated in the following manner

a 0 a fmn1X•r,90 , t) = g(m) dm+. f+T dm + w h(m) dm

j where

a * a small number such that the oscillatory functions of the

integrand may be approximated by asymptotic expansions

near m n O.

P * a value of m large enough so that the, contribution of the
latter integral is negligible and in addition is a sero of the

integrand. This must be carefully chosen and depends upon
-(m) and -(.)

g(m) * the integrand when approximated by asymptotic expansions

for small m

31
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i
Having chosen the proper limits a and A, the first integral may be

integ'rated directly and the latter integral is negligible. The second

integral will be approximated by a polynomical fit. nf1(m), over each

• I half oscillation of the integrand.
3l83/2 snt J(r M)+2;1.8)..(r -!;-~

J where

of(m) a a V -7 Jomr) W0m). n 0

II nflm) • 2 In(O) Jnlmr) 1nlm), na ;m4E;

3f(m)~ OWA(m) : Am 4 +nBim 3 4C

a mLnmA, 1+ 1-

nm/-I 3  m 9 m,. Ia 2,3...n,

where the nmi and the ordered zeros of the integrand, nf(m). and nItis

the number of zeros of the integrand from a up to and including P.

Upon substitution and subsequent integration, the second integral and

consequently the wave amplitude becomes

l•t l aA( 9/2. n'89 12 m n/ 2 7/2 ) 7/2+ nC SI*. 2 aS

a, + r-iD,( m3/2 . a3/• 1,/2 a1/2.5

o 
n1 I, ( - ' n 1n I%

1.y 1 1_A CnO
4AN 4 (. m 3 /. I•a 9 /2 n + E m /2 h7/2n.

4~~~ i-1~2 m!) n I (nm /2 n~ D J-
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j where

n i nm f-I ti (

A u - 6 [ m + 3 n i 1 I4 -

2 3 + inm
44i

645 (mi+ 3 n in- + 3n ini-
n_____B__ 1t 6 ft i"'-') n 0' i4 tj

(n _ _, m m,-ft

( 3n m 5 3 mfti

-8 ~(nin +3n mi.)(3 nmin + in m11) i mi inm

ftm 1 nt 1- 1- ft 3. n /' 4 n

n min1+ 3n m11)(3 nmi + nm )3 nmi+ nmi-
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I,

A" n4 f

a " .d n% u D lJ4

S~n'2 - nf4

nf67 " -- J J

n7 c- d fI4Sn n

Examples of this integration method are shown in Figs. 13 to ISfor the

case of a parabolic impulse and further details can be found in Whalin

(1965). The method is relatively easy to use and the accuracy of the

integration procedure is well established.
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5. CONCLUSIONS

The preceeding theoretical developments present the limit to which one
may employ a linear constant depth model to the problem of water

waves generated by explosions. The present state of the art is at a

point where much can be gained by the natural extensions of the theory

presented in Sections 2, 3. and 4.

Data and methods are available which will enable one to relate the

parameters of a time-dependent symmetrical cavity to the size and

location of the weapon. In addition, there are sufficient data available

from the Mono Lake tests, Hydra, and other WES tests to analyze the

usefulness of considering cavity parameters which result from this

model. Figures 2 and 3 indicate the difference obtained in the wave

train by considering the time dependence. This order of magnitude

difference in the envelope amplitude Is a result of the fact that a

symmetric stationary cavity contains only potential energy and the

assumed time-dependent cavity from time 0 to re will contain approx-

imately the same potential %nergy at ime -r*. Howeiar. in ad-Ption,

the fluid contains kinetic energy at this time and henci the resultirg

vast difference in the envelope amplitudes. A thorough investigation

of this form of initial conditions should prove beneficial. Also, it has

been pointed out by Van Dorn that one could probably even consider t"he

effect of the plume collapse by the proper choice of initial conditions

and skillful use of land cratering data.

The utility of considering an asymmetric time-dependent form as an

initial condition is obvious. If the effects of multiple explosions are to

be studied, then this is the only valid method. One can not, in general.
merely add the solutions of several symmetric surface deformations

after obtaining the asymptotic solution for each. The total deformation

of the source area must be considereo Initially, then transformed and

integrated approximately by the method of stationary phase (m. s. p) to
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obtain the correct asymptotic solution. It also should be ncted thi.t
the asymmetric model is applicable to the prediction* of the w*aim i
spectrum generated by an earthquake when applied to circum,1'.tces
consistent with the assumptions of the mathematical model.

Predictions at Mono Lake were made from example 3 of Table I which
to a symmetric surface deformation surrounded by a lip such that the
volume contained in the lip is equivalent to the volume of the cavity,
i.ea.. no net addition or removal of fluid from the systern.

404



6. REFERENCES

Fuchs. R. A. (1952), "Theory of Surface Waves Produced by Under-
water Explosions, " Univ. of Calif.. Institute o! Engineering
Research, Berkeley, Calif., Technical Report Series No. 3,
Issue No. 335, May 3.

Kajiura, K. (1963), "The Leading Wave of a Tsunami," Bulletin of the
Eat hquake Research Institute, Vol. 41.

Kirkwood, 3. G. and Seager, R. 3. (1950), "Surface Waves from an
Underwater Explosion, " Underwater Explosion Research - The
Gia-Globe, Vol. II, Office of Naval Research, Department of
the Navy, pp. 707-760.

Kranzer, H. C. and Keller. 3. B. (1955), "Water Waves Produced by
Explosions, " IMM-NYU 222, September.

Lamb. H. (1945), Hydrodynamics, Sixth Edition, Dover Publications.
New York, Articles 238, Z41, and 255.

Pennly, W. 0. (1950), "Gravity Waves Produced by Surface and
Underwater Explosions, " Underwater Explosion Research, Vol. 11 -
The Gas Globe, Office of Naval Research, Department of the Navy,
pp. 679-700.

Pinkston, J. M. Jr. (1964), "Surface Waves Resulting from Explosions
in Deep Water, " U.S. Army Engineer Waterways Experiment
Station, Corps of Engineering, Vicksburg, Mississippi, DASA
1482-1, Technical Report No. 1-647, Report 1, July, Confidential.

Prins, J. E. (1956), "Characteristics of Waves Generated by a Local
Surface Disturbance, " Wave Research Laboratory of the Institute
of Engineering Research, Univ. of Calif., Berkeley, Series 99,
Issue 1, Auigust.

Stoker, J. J. (1Q47), Water Waves, Interscience Publishers, Inc.,
New York.

Unoki, S. and Nakanio, M. (1953). "On the Cauchy-Poisson Waves
Caused by the Eruption of a St-bmarine Volcano, " Oceanograhical
Magazine, (1st ptiai) Vol. 4, No. 4, pp. 119-141, 1953a; (2nd
paper) Vol. 5, 1 . 1, pp. 1-13, 1953b; (3rd paper), Vol. 4,
No. 3-4, pp. 139-150, 1953c.

Van Dorn, W. G. (1963), "Water Waves from 10,000-lb. High-
Explosive Charges," STO Reference 63-20. June.

41



t

Van Dorn, W. G. (1959), "Impulsively Generated Waves, "SIO Report
S~No. 11.

Van Dorn, W. G. (1964), "Explosion Generated Waves in Water of

Variable Depth," Sears Foundation: Journal of Marine Research,
IVol. 22, No. 2, May 15, pp. 123-141.

Whalin, R. W. (1965b), "Water Waves Generated by Explosions:
Propagation Theory for the Area Near the Explosion, " Journal
of Geophysical Research, Vol. 70, No. 22, November 15.

Whalin, R. W. (1965a), "Research on the Generation and Propagation
of Water Waves Produced by Explosions, Part I1: A Prediction
Method," NMC-IEC, March, Confidential.

I
I
I
I

I
I
I

I
I

-1 4Z

`77 7



I

NO I A rtON

a an integration limit

I nbi, Ci ndi functions of n

n n ni n~n,n nfI ,nf2, nf3,"

n4' fS'f6-functions of nmin

I nJ7

d water depth

g(m), f(m)

I h(m) functions

Sg acceleration of gravity

i, J, k, n summation indices

im dimensionlees wave number

n Mzeros of the integrand (I. e., the nm i are the ordered
Szeros of n Am)

p dimensionless pressure

p pressure
r dimensionless radial distance from the origin

rd radial distance from the origin

r distance from a point (r, 0) to a source point (rr. 0O)

r0 *ot, o, space variables of a source point (cylindrical coordinate)

t dimensionless time

t' time

x, y, a dimensionless space variables (Cartesian coordinate
system)
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x *", 3 space variables (Cartesian coordinate system)

WB dimensionless bottohm velocity
A, Ani
Ai. n eA' constantsn A V n A'

B, B Bitn ien~

B'n B. constants
n n i

IC, nnCl,nCi
I nC, nC constants

D, nD nDi.g n

D', W constants

t E, nE1 , nEiDI 
n E.E constantsnEl, nE'

I
I G time-dependent Green's Function

10 a function describing an initial impulse

Ilt 12# 13 integral@

I the number of zeros of the integran
Sn

T I sero order Hankel transform of I

Jn(mr) nth order Bessel function

I R distance between points (N, y. z) and xo, Yn, zo); also a
parameter of the initial disturbance

I S a set; also a surface

T(T) a function describing the time dependence of the initial
1 doformation
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I
SV dimensionless velocity

V' velocity

I a Vlna,,2, ,a 3  functions of nj

an integration limit

. "41m tanh m

7 •dimensionless wave amplitude

17 wave amplitude
-•nth order Hankel transform of 170

110 function describing the initial deformation

i A dimensionless wave length

I A' wave length

I constant

p water density

7 a dimensionless time variable of the source

U 7* a constant

7' a time variable of the source

0 velocity potential (subscripJts denote partial differentiation)
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