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FOREWORD

This is Volume II of the final report under Contract No. Nonr 5005{G0).
This report is issued in order to present the linear theoory (in its most
general form) of water waves produced by explosions and to specify the
assumptions which prevail in performing the Mono Lake deep water
predictions. The most general form of the iinear theory has never

~-appeared in the literature prior to this report and it is evident that it
has not been employed to its fullest extent.

This report was prepared under the direction of Dr. B. Le Méhauté,
Associate Director and Project Manager for this program. Miss Lois
Webb contributed to the development of the computing techniqués and
the programming was accomplished by Mr. H. Lee Butler,
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ABSTRACT

The objective of this project was to predict the water waves gerezated
by the Mono Lake fieid tests. These tests consisted of detcnating ten
TNT explosions of approximately 9,500 pounds each, and measuring
the water waves and run-up produced by these detonations.

Volume I of the final report contains these predictions and a brief
description of the theoretical and empirical methods"emﬁloyed in per-
forming the predictions, This vclume presents the .3eneral form of the
linear theory of water waves produced by explosions in water of con-
stant depth. The theory is developed in detail so that the full extent
of the assumptions made in performing the‘prediction; for Mono Lake
can be realized. It is also evident that several natural extensidna to
the presently employed theory can be made which will result in more
realistic initial conditions and which should present a more reliable
theory. Examples of the various solutions that depict the differences
between a symmetric surface deformation, a symmetric time-dependent

surface deformation, and an asymmetric time-dependent surface
deformation are given.
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1. INTRODUCTION

The linear theory of water waves produced by explosions has-been
utilized by many investigators (Lamb 1945; Vana Dorn 1959, 1963;
Kranger and Keller 1955; Prins 1956; Whalin 1965; Kajiura 1963; -
Unoki and Nakano 1953; Stoker 1947; Penney 1950; Fuche 1952;
Kirkwood and Seeger 1950) during the last 20 years. The basic
mathematical foundation for the generalized linear theory has-been in
existence for a longer period of time. It involves the use of a time- _
dependent Green's Function which satisfies the Laplace éép.iaﬁon with
the appropriate linearized boundary conditicns and the recognized
assumptions that linearization involves. However, this theory in ita
general form has escaped application with one notable exception
(Kajiura, 1963), who applied the theory to calculate the leading wave
of a tsunami and gave various examples of the theory to show that
certain special cases reduced to the well known soluticns (Kranzer
and Keller, 1955) for explosion waves.
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This report formulates the general theory and applies it to water waves
produced ty explosions. The\;symptotic solutions are developed,

along with examples, for several special cases and the full impact of
the use of the time-dependent Green's Function is thoroughly discussed.
The advantage of using this theory in the case of one detonation and
multiple detonations is pointed out. '

The axially symmetric water craters presently being used to predict
explosion waves many times bear little resemblance to the actual
craters created (Van Dorn 1663, Whalin 1965); these craters are
generally termed ''pseudo’ crateras. The use of a time-dependent
initial deformation will undoubtedly result in much more realistic
crater parameters, These parameters should be related to weapon
yield and location as has been accomplished for stationary symmetric
water craters (Whalin, 1965). The theory in its most general form can
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be applied to predict the wawe spactrum generated by an exctic shoyped
source resulting from multiple datonations which may be employed to
produce wave amplification at a certain point or in a specified area.

The conclusion of this report is that the prediction methods presently
employed and used for the Mono Lake program should be modified to
account for a time-dependent source of disturbance. Further, the
empirical relationships between the cavity parameters and the weapon
ciz: ;nd location should be established as they have been for a
stationary initial deformation, Furthermore, one can probably
estadiish a model, which will account for the evaporation of water as
well as the subgsequent return of water from the plume collapse. In
addition, the general solution for an arbitrary shaped initial deforma-
tion can be used to predict the wave spectrum generated by multiple
explosions.
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2. THEORETICAL FORMULATION

The mathematical medel employed in the generalized linear theory of

water waves generated by explosions is based on the linear theory of -
surface waves in an inviscid incompressible fluid of constant depth.

This model allows the source to be asymmetrical and time-dependent

, in its most general form, Consequently, a mathematical model is

0 available in which the actual wave generaticn mechanism can be

simulated much more precisely than that generally used in present

TR T s N T L. T,
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applications,

The water is assumed incompressible, of constant depth &; the origin

E of the Cartesian coordinate system (x’, y’, z’) is at the undisturbed
free surface, the vertical axis z’ is positive upwards, and the
[ variables are transformed to dimensirmless form (i.e., x = x’/d,
y= y'/d. t=t’ Vg/d. n= n',dn V= V'/'V—ga.: o= w'/d vgd;
! p = (p’'/p)/gd; etc.).
i
The kinematic and dynamic conditions at the free surface are
¢z = ntn z=0 (1)
wtz-ﬂ-p,z=0 (2)

f and the bottom condition is
¢, = wpr 5= -1 (3)

where wg is the assumed bottom velocity corresponding to a bottom
deformation. The above conditions are subject to the restrictions of
assuming a linear approximation. That is, the deformation at the
surface and bottom are assumed smzall compared with the wave length,
A’, and water depth, d, and the condition 22'%/a83 ¢,
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The time-dependent Green's Function, G, is a solution of the Laplace z
equation : :
G =0, 0>52>-1,tz27 (4) :
satisfying the free surface condition : :
11
. Gtt + Gz =0,2=0 - (5) 5

and the bottom condition

Gz =0, z=-1 (6)
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It is required that G, Gx' Gy' Gz' Gt’ Gbc’ th. and Gtz be uniformly
bounded for every t at x,y = =. In addition, (G - 1/R) must be bounded

at (xo. Y. zo) where

o

b}

2 _ - 2 . 2 2
R® = (x xo) +(y yo) +({z - zo) (7;
At time t = T the following initial conditions are assumed
G= Gt =0, z=0

The above equation and conditions are sufficient to determine G uniquely.
From Stoker, the Green's Function for the case of three-dimensional
motion in water of finite depth is

® J (mT)
G(xo.yo.zo;‘r!x,y,z.t) =£ _c%é'ET'n sinhm{l - |z-z°|}-linhm{l+(z+zo)}

+ :—z {l - coshy(t- ‘r)}?o—;-ETn- cosh m(l +z) cosh m(l + zo)] dm,

0>z, z°>-l
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where

P e x-x)ltly-y)’ | (10)
and
72 = mtanh m (11)

Note-that G is symmetric with respect to (xo, Yo zo) and (x, y, z) and
also t and 7. Therefore

4

G(xo.yo. zo;rlx.y. z;t) = Gix, y.z:tlxo.yo. zo;‘r) = G(xo.yo. zo;tlx.y. 2;7)

(12)
From Green's formula and the above Green's function
1
o (x,v.2:7) = — st;p - .G ds
T ! red I ( Tz, T 'o)z°=0 °
l : .
i 7 ISJ(Gw‘rzo - 9,G, as, (13)

o z°=-l

where dSo = dxo dy ° and the integral on the laterzl boundary in water
vanishes because of the condition imposed on G,

The integration of Eq. 13 with respect to T from 0 to t and substitution
of conditions in Eqs. 1, 2, 5, 6 and 8 for p and G yield

..l -
Olx, s 20 t) - hx, v, 2, 0) = = fsj‘[(cuzo G’n)7=o+ J:pcﬂd‘r]‘o=odso
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The first intogral in Eg, 14 represents the ceniziiuilcn ef the curlicn
coxndition ard the latier L‘:"“c.l that of the bottom conlitfon,

At the surface z = 0, Eq. 9 becomes ' N

- 2 J (mx)
G("o' Vs zo"""y’ 0,t) = Io -71 {1-cozy{t-rT)Imcozhm(l+e )cmm — dm

(15)

——

and since the surface elevation, 1), is given by Eq 2, the subsiituticn
of Eq. 14 into Eq. 2 yiclds

O B

(n+p) = & sf(zl +1,+1,)ds (16)
where
zle(c¢ -G n) aao.no, an
L - '[o PCrpe d"'(1"3-1/ ot T 18)
t _ .
1, = jo P, G, dr - (pGﬂ)fzo: 2,20, 50, and (19)
t
13 £ th:‘ fd , OFr (20)
1, £ G, 0, - (o, c‘o)‘rr-o' s,= -1, x=0. (21)

Note that Eq. 17 represents the contribution of the initial velocity end
elevation of the water at the surface, Eq. 18 or Eq. 19 tha contribution
of the surface pressure, and Eq. 20 or Eq. 21 the cont-ibution from the
bottom deformation,
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3. ASYMPTOTIC SOLUTIONS

This section presents the asymgtotic eolutions chtained by an explicsticn
of the method cf stationazry phasce to evaluste the intagral in Eg. 16.

The special cases for which the asymptotic soluticn is develcped are

a symmetric initial impulse, a symmetric initial dzformation, a
symmetric time-dependent initial deformaticn 2nd an asymmetric time-
dependent initial deformation. In each case the source is given as an
~arbitrary function where special cases are easily investigated, Examgples
of a special case appear for each asgumed irnitial condition. The
condition of a symmetric initial impulse (Saction 3, 1) and a symmeatric
initial deformation (Section 3. 2) were solved by Kranzer and Keller
(1955) and are reprcduced here for completeness, However, ths
developments of Sactions 3.3 and 3.4 are original and bear further
investigation as far as application to actually performing predicticns

are concerned.

3.1 Axially Syrmmetric Initial Impulse

The special case of an axially symmetric initial impulse was solved by
Kranzer and Keller by the method of integral transforms. When the
proper assumptions are employed their solution is obtained from Eq. 16.
Cylindrical coordinates are used and the initial conditions becoma:

a) The water surface is initially undisturbed

ﬂo (fou aou T) = 0

b) The initial velocity at the surface at time t = 0 is.

g =0
o
¢ s =0 s 0
£o
r zt=0
Consequently 1, = (G o - n s 0
1 (tao Tt )f=0;8°=0.8=0
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- c) The arplied pressure &t {ho gurface o foapmlcive ©37 = 6,

i.e., pf Io 5(7). ~.szc§e

ot
I,= jop,Gr‘rt

d‘r+(pG") _;, z =0, 220

‘a .u‘a

= Ic,(x-")lt.':‘.,,',t 7=0,2=0, z, = 0

g»«:«:

- d) 1380

Upon substitution in Eq. 16 and expressing the wave amzplitude in
cylindrical coordinates : ~

" 0,8 = I+ _[: 2y m sin 9t {Ji’ f: 1(r)J (m7) =z dr a9 }am  (22)

o

or upon integration with re;pect tor, and 6 ° the wave amplitude beccmes

7z, 0,t) = - Ioc m Vm tanh m f;(m)Jo(mr) sin ( Vm tanh m t)dm {(23)

=

i

where
T;(m) = J; Iotgo) Jo(mro) r, dr, (23

The above integral is evaluated by the method of stationary phase upen
the assumption that the frequency of oscillation of J (mr) and the
circular function is large compared to that of I (n) Thea J (mr) is
approximated by an asymptotic expansion and upen irtegraﬁou

T (m)m ) ‘

nrt) = 2 sin(mr- Vmtamhmt)  (25)

% where

g ¢lm) = '2' tu!";‘;‘;" + 1 (%3] « X (26)
m 2 cosh_z m tanh m ¢
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" Figure 1 chows an examyple cf the wave amplitcde 23 & furaiicn of

Teble Iin Ssction 3.2 gives T{m) for vzricus initial dmpulses I (- ).

time for the initizl impulse in essamplo 2 of Table I 2t cne chsazvatica
stziion, ' -

3.2 Axially Symmetric Surface Deformoation

The asymptotic solution for an axially symmetric surface deformaticn
was solved by Kranzer and Keller for several special cases. However,
the theory is presented in the following page's from the more géneral
mathematical formulation given in Secticn 2. When cylindrical
coordinates are used, the initial conditions become:

a) The water surface is initially undisturbed and is definad
by the function n, (r )

b) The initial velocity of the surface at time t = 0 is

z°=0
¢z gz =0 =0
Oly =t=0
c) Il 8’6 ﬂ(r )l.r-oz—o z=0
=[- j'o 2 cos (yt) m J_(mT) dm | N (r )
d) 12313::0.

Upon substitution in Eq. 16 and expressing the wave amplitude in
cylindrical coordinates

nir,t) = =— I 2m coo‘yt{fz I n (rc)J (mr)r dr Oo}dm (27)




3.2
. ‘ - ]
g = R{' 'z‘v" oS ﬁ —
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Figure 1
Wave Amplitude From an Initial Impulse .
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or

.7l J-o"zm con | J:* J; ,,o(ro){Jo(mg)Jo(mo) + znz 3, (ma)3 s hecanlo- 8,)}

r dr odeo] dm | (28)
however
_— . : .
_r: ct'u.n(G-Oo)dO° =»O o {29)
therefore
2. r 3 d 30
ir,t)= .JO m Jo(mr) cos n[ ono(ro) °(mz'ﬁ) o dro] m (30)
where
j'o n(r) I (mr ) r_dr, = T (m) (31)

which is the zero order Hankel Transform of no(r o)‘ The wave
amplitude becomes

ir,t) = - J‘O ﬁo(m) m cos ( Vm tanh m t) J (mr) dm (32)

The above integral is evaluated by the methed of stationary ghase whare
it is 2assumed that 'ﬁo(m) has a much lower frequency of.oscillatien
than J °(rm-) and the circular function., This assumztion {0 a valid one
for the types of initial deformations which are represontative of under-
water explosicns, as can be observed from the examples in Table I,
Jo(mr) is approximated by an asymptotic expaneion for large argument
and the integral becomes

wHIM

-’ (m)

T)o(m) cos (mr - 4/m tanh m't) (33)
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where .
1, /tsshm 1 | s
@lm) = 5 — + P 'vt_,,.g,n, = %t (24) )

The following table gives 'ﬁo(m) for various initial deformaticns no(r o)’

The wave amplitude may be computed either as a function of time with
Z.constant or as a function of r with ume constant. '

Figure 2 shows the wave amgplitude as a function of time for example 3
of Table I at cne obsexrvation station.

3.3 Axially Symmetric Time-Danendant Surface Doformation

There has been little investigation into the effect of using a time-
dependert symmetric surface deformation., This section presents the
theory with several specific examples given in detail. The examples
can be compared with those where the source is independent of time.
The intial conditions become: -

a) The water surface {s initially undisturbed and is defined
by '

”c(’o’ lin% -’,1,;. O0sre

(r ,7)=
n(re 7) {o. e

It is assumed that the varizblaes T, and T are ieparable and
r* ghould be taken as the dimensionless pericd of the first
expansion of the bubble or the water cavity for the case of

a surface explosion.

b) The initial velocity of the surface at time 7 = 0 is

%0 " 0 an,(r,, 1) .
”:o s =0 ¢ —3F =t N(ry)
r =t T2l
12
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no(ro)

TABLE1 :
HANKEL TRANSFORM OF VARIOUS INITIAL DEFORMATIONS

Io(ro)

o

or
IO

T, (m) T, (m)
n or —r;—-

(]

o

2'

own ©

o

W
o w
»

E 4'

PRI ENIVEIRET Y

[1 +2 (i-_)z]

iI. 1, r € R

0, r°> R

[1-2()7] =, = Ve

, r°> '\/ER

41'5‘
0;;2- +l], ros V;R

s r°>'\/33

-3/2

e '\/’2 r/R

6. e (r/mz

R T S N e

R

25 1, (VamR)
m

25 1,(V3mR)
m

2 e-Rm\/?

R
3

RZ

2(1 + R%m%/2)

3/2

(_R_‘-’) . -m?R%/4
3
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<) I1 = (Gte’zo)

r=o.z°=o.z=o
® 2
Gt = IO Vain‘yttn.!o(m?)dm
d) I,=1,=0

Upon substitution in Eq. 16 and expressing the wave amplitude in
cylindrical coordinates -

. azmsiﬁ‘yt“'z”'A . «Hr
nr,t) = e ¥ o JoJo&na"o(ro) W)ro dr,, deo] dm

+1

n °(r o)r odrodeo dm

=1 27 “m sinyt *®
=+ 377 J; y J (mr) [ '[0 N(r o) Jolmr,) dro]dm (35)

However, the integral with respect to T, is merely the zero order Hankel
Transform of the initial deformation no(ro) and will be denoted by 'ﬂ;(m).
= mJ o(rm')

+97
r,t) =
’ 27*0 m tanh n

ﬁ:(m) sin {Vm tanh m t) dm (36)

Upon evaluation by the method of stationary phase

n_(m)
7z, t) = -2";—”-5 r\f?f_anh'—m '\%ﬂin {mr - \lmtanh m t) (37)

where ¢ and ¢’ are defined as before. Examples of -'E(m) are found in
Table 1.

15

1 L’m s;n L [J‘:” J:{Jo(mr)J' o(mro)‘l'znz:{ o(mr)_(mr_)cosn(6- 60)}
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; Figure 3 ehcws the wave amplitude as a function of time at 639 _
{ cbgervation station where ﬁ:(m) is given by ezamgle 3 cf Takls 1,

3.4 Asymmetric Time-Darnandont Surface Defermation R

In addition to assuming the s ource of diatu.rbance to be time-deperndent,

f it is relatively straightforward to avoid the assumption of axial -
) syminetry. How.ver, in the case of explogion waves, this assumztion ] ]
) is not necessary unless an unsymmetric cavity is preduced by an in- f’;}
complete detonation or by multiple detonations. The iritial condition 4]
| becomes: '
i A a) The water surface is initially undisturbed and is defirad by
no(rc')e(ﬂé) T(T), O0<sT7<7* T, s R

nir,,0,t) = . 0<96 <27
) It is assumed that the variables are separable and that r*

is a parameter which should be related to the tims of the

initial expansionof the bubble,

b) The initial velocity of the surface at time 7= 0 is

z, =0 dn (r_,6 ,7) .
o - o "0 O
Pelz=0 = —ar = Nylrg) €(8,) T,(0)
<) I 1 Gt P ° and
T=0, z°=0. £=0
t
’ o z -
G, = J; 7 .in'rtm.l’o(m?) dm
d) 1 2 = 13 =0
16
i
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Upon substitution in Eq. 16 and expressing the wave amplitcle in
cylindrical coordinztes . T ' ’

7r,0,t) = T (0) J‘mainyt”‘z I {J (mzr)J (‘nr )+ZZJ (mr)J’ (mr )rcsnw-d )}

Myl ) 616 ) x_dr a8 Jam (33)

Upon performing the integrations witk respect tor ” and 6 o

T (0)
nr,6,¢) = fol"-'-*"-"-‘-[J (mr) T (m)1_ + z}‘: (mn) m) L, (0) Jam  (39)
where - )
(m)=| nir)J (mr )r dr = gero order Hankel transform
o I o0 "o d"o"o)
ﬁ(m) = I LR (r N (mr )r dr = ntd order Hankel tranaform of
No(ty)
”
Io = f: 6(90) aeo (40)
A 7 sinnb
16 = {"® (41)
B #cosnb

and the An are coefficients of the Fc;urier sine series
representing 6(90). f.e., if 9(90) =‘é° Ap sin p~9° or if

6(90) s ﬁo BP cos peo. then the Bn are the cosfficlents of

the Fourier cosine series and p=n,

The above in'egral is evaluated by the method of otationary phase and

(. 8,0) = - '\/ olm] 1T (m) + 2 (m)1_(6)
nix tanh m -p'(m) " znn ™ n }

nz]

oin (mr - Vm tanh in t)

The following table {llustrates the various parameters li\ the above

(42)

solution for specific initial deformations.
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Figures 4, 5, 6, 7, 8, 9, 10, 11, a=d 12 chow the wave amilituds

as a functicn of time at eix cbservalica stzticns which are eguidistont,
r, from the ozigin ard at varicus locaticns 6 on the surface whera the
initial conditions are taken from examplse 3 of Telle IT. A comgparisen
withs Fig. 3 of the previous section shows the effact of coneldering an
asymmetric time dependent source where the cnly difference is the
function G(Go). It should be noted that the consideration cf an asym-
etric source is of little value when considering the effects of & single

~-detonation unless it happens to be an incomplete and asymmatrical

detonation. However, the method is certainly applicctble to multizle
detonations.

The physical significance of considering the initizl deformaticn of this
form should be clearly understood. It appears, at a cursory glance,
that we have obtained an asymptotic -oiuﬁon. valid at large distances
from the source, which yields the solution for a deformation that forms
in a prescribed manner from time 0 to 7#, and that the solution is
valid for all t 2 7*, However, this is not precisely the case. Actually,
we are solving an initial value problem where we prescribe the ehape
of the water surface and the velocity field at the surface at time t=r = 0,
The velocity field is obtained from the prescribed time dependent
deformation from time 0 to 7*., The recgult is that the solutica obiained
will be a solution for a class of initizl ccnditions, precisely thzt class
which has the same surface saape and valocity field at the surface at
time 7 = 0. This class is described by the set S consisting of elements
T(r) such that ‘

' hd
TO)=0 and T (0)=37;

Examples of this set include

Tir) = oin-}-ﬁ-} f“+f" cos aT, n 22

I .0 brP
’
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That is, the solution does not depend on the precise maraar inwhich
the deformation builds up from time 0 to T* but cnly ca hew 1% siacts
to build up. Furthermore, if the solution were evaluntzd at € = 7%, it
would not yield the precise deformation assumed (or thouzht to be
assumed). However, it can be expected that the solution prchably
would not deviate significantly from 1 (r 6. 6, 7%) since the assumed
initial conditions are physically reasonable conditions and the

mathematical model also is physically reasonable.
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4., METHOD OF SOLUTION IN THE AREA NEAR THE SOURCE

The uymptotie'colutian- (method of stationary phase) prceetited in the
previous secticn are not valid in the area near the explosion. The
integral with respect to m must be evaluated in some other approxi-
mate manner and the method proposed by Whalin(1965) for a
symmetric water cavity is also applicable with only slight modification,
The equation to be solved, in general, is

= et = IOE‘-!,-‘Eﬁ[IoJo(mr) T(m) + 22: ,lln(e)Jn(mrFﬂ:(m)]dm

where the quantities !o. To'(m). In(O). 'ﬂ;(m), and ¥ are the same as
previously defined. The proposed method of evaluation is to fit a
fourth degree polynomical to each half oscillation of the integrand and
integrate directly. This method requires that all computations be
performed in double precision and the upper limit of integration may be
chosen to bound the error to almost any predetermined limit.

The above integral is to be approximated in the following manner

B -
nr,0,t) = 5= Io gtm) dm 4 [T g4 L Iph(m) dm
am

where
. s = a small number such that the oscillatory functions of the
integrand may be approximated by asymptotic expansions
. - near ms 0,

§ B = a value of m large enough so that the contribution of the
. latter intogral is negligible and in addition is a sero of the
' integrand., This must be carefully chosen and depends upon
'ﬁ:(m) and -n:(m).

g{m) = the integrand when approximated by asymptotic expansions
for smallm

3
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3/2 .
oftm) 8 2B Pty 5 o) F(em) + zuZx 1.6) J_(mr) Tim)}

where
— flm) = -'-1-313 J (mr) f(m), n= 0
pfim)=21(6)J (mr) nn(m). nxl

v 3 '2
flm) g, (m) -}' {nA mb+ B/m>4+ C/m?+ Dim+ E}

t‘m‘nmi. i=1}

m

n ‘-l‘m‘nmip 112.3....n1

where the 2™ and the ordered gzeros of the integrand, nt(m). and n! is
the number of zeros of the integrand from a up to and including ¥,
Upon substitution and subsequent integration, the second integral and
consequently the wave amplitude becomes

b, |nAig o2 . 912y, 8Bl vz 112y, 0S¢ 812 812
"(‘"9'4‘ Zp (i )+ 5 (o] )+2p (i )

a1/ "< 23"!(:: 13- 204w (w2 - 412) :
¥ |
pigh) Z[n z( md/2 . md/2) ,__’_(nm‘r/z 1/2) ' ms/z m3/2)!

n l

™. ni- ni-

B 1( md2. wdl?) s gl (w2, wll2)]
n

nll * 2™t

e am

Having chosen the proper limits a and B, the first integral may be
integrated directly 2nd the latier integral is negligible. The second
integral will be approximated by a polynomical fit, nli(m), over each
half oscillation of the intzgrand. ,




. -

B where

f nAi' = aM

l nBi' i (nmi+nmi 1) At B

' nc’i; T e T S (n 1*:“‘11) Bt aG

fl nPi * n™in™i1 0By c (nmi+nmi-l) 2
i conBi T My Ay n"i
| -4 +3 a1 n 1 a1
' at* (amy = gy ) 5 ( s ( )
[ gt ()]
+3nmi-l n‘+3 m‘l
| nBis(mi nil)([( ) ( )
| ° (nmi+ my 1) pf (2’11';-22-‘;1)

\ (3 o +s,,m‘,,) ( *n'“x x)]

2(,m, + n"“i-l"%"‘i o™

' .8
,, nci *

r ) 3
(““»"i - nm‘_l)

) m +3m
{1 n i “n i-
of etcn -l

u"("‘*"‘ )

R z(“mi +3 A
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’
nAl = nAl

B’ = B

nl n1 A

" a™1n""1

’
C = ncl - 2™ B}

’ .
al) © nD1 - 2™ Sl

Sl

nEl = - aM D)

nAl * 1_17[‘

1

ns n7)

{a + nb + nc)

. (nfb - n“l):'

-_C
n n

(b+nc+nd)

tu
"

n°l " Ta- B LTTE-

gbnc + nbnd +

0
"

nS nd)

nl (a - nb)(a -

s

nc)

n®

(‘6 of?) - a- 9 n5 n?’]

(ac+ad+ cd) (ab+.d+ bd)

nfs T—'m'r—nfe*‘r.-—'rr—r

D. = a[- (nb n%2 nd) + n® ] + [ “n lnd)_ (nc'nQS nd)
' n"l A3 (4P = ,d) c( c- afa- d) c{c- dF
+ c r(nb * 0% nd) (a - o nd)]
n "-:_\b (nb - d, ala- nd’ nml* 3a
- 4 fl—7—)
nb s .M + 32 n‘Z '3 lnml + a)
nml 4+
nS °® ™ +a - z“: (——z-—)
n‘3 * m, - a
3nml +a n i
nd . 4 Snm‘ +a
-4 f( )
nf(a) . _
n‘l s . né (. - a)
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n! n4 '

nfs * ST d 2% * aofi/nfs
f £
ng n4

n‘b = nB - na n“z = nle n‘4
f, - f
n3 n4

nf‘l = nS " na na3 * n‘3 ln‘4

Examples of this integration method are shown in Figs. 13 to 15 for the
case of a parabolic impulse and further details can be found in Whalin

(1965). The method is relatively easy to use and the accuracy of the
integration procedure is well established,
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5. CONCLUSIONS

The preceeding theoretical developments present the limit to which one
may employ a linear constant depth model to the problem of water
waves generated by explosions. The present state of the art is ata
point where much can be gained by the natural extensions of tae theory
presented in Sections 2, 3, and 4.
~

Data and methods are available which will enable one to relate the
parameters of & time-dependent symmetrical cavity to the size and
location of the weapon., In addition, there are sufficient data available
from the Mono Lake tests, Hydra, and other WES tests to analyse the
usefulness of considering cavity parameters which result from this
model, Figures 2 and 3 indicate the difference obtained in the wave
train by considering the time dependence. . This order of magnitude
difference in the envelope amplitude is a result of the fact that a
symmetric stationary cavity contains only potential energy and the
assumed time-dependent cavity from time 0 to 7* will contain approx-
imately the same poteniial caergy at ‘ime v+, Howevsr, in ad4ition,
the fluid contains kinetic energy at this time and hence the resulting
vast difference in the envelope amplitudes., A thorough investigation
of this form of initial conditions should prove bencficial. Also, it hae
been pointed out by Van Dorn that one could probably even consider the

effect of the plume collapse by the proper choice of initial conditions
and skillful use of land cratering data,

The utility of considering an asymmetric time-dependent form as an '
initial condition is obvious. If the effects of multiple explosions are to
be studied, then this is the only valid method, One can not, in general,
merely add the solutions of several symmetric surface deformations
after obtaining the asymptotic solution fox each. The total deformation
of the source area must be considerea initially, then transformed and
integrated approximately by the method of stationary phase (m.s. p) to
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obtain the correct asympiotic scluticn. It also sheould ba ncted that
the asymmetric medel is applicable to the predicticas cf the wave
spectrum generated by an earthquake when applied to circumstances

consistent with the assumgtions of the mathematical model. o

Predictions at Mono Lake were made from example 3 of Table I which
is a symmetric surface deformation surrounded by a lip such that the
volume contained in the lip is equivalent to the volume of the cavity,
f.e., no net addition or removal of fluid from the systemn.,

o
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g{m), f(m)
h(m)

8
i, j. k, n

nl'n z’nfS."

n 4’ nfS’ nf6'

NOIATION

an integration limit

functions of nmi

functions of nmi

water depth
functions

acceleration of gravity
summation indices
dimensionless wave number

zeros of the integrand (i.e., the m, are the ordered
zeros of _f(m) n

dimensionless pressure
pressure
dimensionless radial distance from the origin

radial distance from the origin
distance from a point (r, 6) to a source point (ro. Go)
space variables of a source point (cylindrical coordinate)

dimensionless time
time

dimensionless space variables (Cartesian coordinate
systein)
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T(r)

space variables (Cartasian coordinate system)
dimensionless bottom velocity

constants

constants

constants

constants

constants

time-dependent Green's Function

a function describing an initial impulse
integrals

the number of zeros of the integran

gero order Hankel transform of !o

nth order Besse!l function

distance betwaen points {x,y, z) and Xy Yo 2 ); also a
parameter of the initial disturbance °

a set; aleo a surface

a function describing the time dependence of the initial
doformation
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\4 dimensionless velocity
v’ velocity

nal'na .na3 functions of 2™

g T €D asee

an integration limit -

B
Y */m tanh m
n
n

|

dimensionless wave amplitude

wave amplitude

l v 7): nth order Hanke! transform of no

, function describing the initial deformation

‘ A dimensionless wave length
A’ wave length
.4 constant

t [ water density

a dimensionless time variable of the source

T a constant
r’ a time variable of the source
L] velocity potential (subscrints denote partial differentiation)
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