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ABSTRACT 

At present, methods are well established for meas- 

uring the performance of sensors, such as sonars and 

radars, in an experimental environment.  However, the 

results of these measurements are not necessarily indic- 

ative of the sensors' performance under operational con- 

ditions.  A method is developed, whereby, the operational 

effectiveness of sensors is determined directly from data 

obtained from operational exercises.  The sensor perfor- 

mance is represented by a lateral range curve called the 

modified definite range law.  Planning errors are dis- 

cussed and detailed procedures and forms are recommended. 
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PREFACE 

Due to the great differences between experimental and 

operational environments, measures of the performance of 

sensors, such as radars and sonars, obtained under experi- 

mental conditions are seldom indicative of the sensors' op- 

erational performance.  For the purposes of operational 

planning and evaluation of command performance it is desir- 

able to develop a feasible method of measuring the operation- 

al effectiveness of sensors and the men who operate and com- 

mand them.  The data base must be the operational exercise. 

Herein, such a method is developed.  The necessary 

information is extracted from exercise narratives and nav- 

igation charts at post-exercise reconstruction sessions. 

Later, it is placed on IBM cards for ease of data processing. 

Periodically, the performance statistics of many sensors can 

be computed for a variety of operational conditions from this 

accumulated data.  It can then be disseminated to interested 

commanders. 

Included in the development of this method are new defi- 

nitions of "missed opportunity" and "modified definite range 

law".  Certain probability of detection errors are discussed. 

In one section detailed procedures and forms are suggested. 

The author wished to express his gratitude to Commander 

Lloyd Bell, United States Navy, for his inspiration and in- 

terest in the problem and to Professors W. p. Cunningham 

and J. R. Borsting, United States Naval Postgraduate School, 

for their helpful critiques and comments. 
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1.  Introduction. 

Methods are well established for evaluating the per- 

formance of sensors such as radars and sonars under control- 

led experimental environments.  The results are useful for 

comparing the performance of different sensors and for 

studying the effect of parameters such as sea state on the 

performance of the sensors.  However, due to the controlled 

experirr ental nature of the process, the results are usually 

not in agreement with the performance results of the same 

sensors under operational conditions. 

The problem at hand is to develop a method for evalu- 

ating sensor performance under many operational conditions 

using, as a data base, the information received from the 

operational exercises which employ the sensors under con- 

sideration.  It will be clear that it is not only the sensor 

which is being measured, but also the platform on which it 

is mounted (aircraft, ship), and the men who operate and 

command these sensor vehicles.  To separately evaluate the 

performance of the equipment and the performances of the op- 

erators and commanders is not an easy task«,  This procedure 

does not solve this problem but it does provide for a mea- 

sure of the effect of crew training and the state of opera- 

tional readiness on sensor performance. 

There are two reasons, at least, for establishing a 

method for determining the performance of sensors under 

operational conditions.  The first is to provide a cumula- 

tive record of the performance of sensors for the purposes 



of operational planning and equipment design,.  The infor- 

mation can be put on IBM cards and stored in a computer 

facility.  As the amount of data becomes large, the actual 

capabilities of the sensors under various operational con- 

ditions and states of crew readiness become well established. 

Automatic data processing of this data at the computer fa- 

cility will be routine and the results can be periodically 

released to interested commands.  These results should sub- 

stantially assist operational planners and equipment de- 

signers. 

The second reason is to provide an accurate method for 

evaluating the performance of a sensor during a short exer- 

cise such as an operational readiness evaluation where the 

operational readiness of a commander and his forces is being 

determined. Not only is this information of basic interest 

to the commander and his superiors, but it should be as 

reliable as possible since the results obtained by many 

commanders is subject to comparison0 The procedures to be 

recommended tend to smooth out the errors inherent in the 

measurement of results from a small exercise (small amount 

of data).  Also, as the accumulated data, mentioned in the 

preceding paragraph, becomes large, it is meaningful to 

compare the results of a small exercise with the previously 

determined performance figures. 

The method recommended here does not require extensive 

paper work or data collecting by the exercise participants 

during the conduct of the exercise itself«,  To do so would 



be folly since the extra work may impair the performance 

of the sensor which is subject to measurement.  Only reas- 

onably accurate navigation and usual exercise narratives 

are required.  The performance results are determined from 

these charts and narratives at the exercise reconstruction 

session at which all participating units should be repre- 

sented.  Here, information is transferred from the charts 

and narratives to forms and, later, to IBM cards for de- 

livery to the computer facility. 

In Section 2 the expected length of a straight path 

through the target's range circle of radius R is found to 

be 7TR/2.  R is the minimum distance beyond which detection 

of the target is deemed unlikely.  In Section 3 it is shown 

that this length of path is very close to 7TR/2 even if the 

turns made by a sensor during a search pattern are considered, 

provided the average length of search legs is greater than 

the diameter of the range circle.  In Section 4 there are 

two important definitions.  The concept of a missed oppor- 

tunity is discussed and a definition is made.  Also, a simple 

lateral range curve called the modified definite range law 

is established and said to be representative of the sensor's 

performance.  With these definitions the operational effect- 

iveness of sensors can be determined from available exercise 

data.  In the next three sections the modified definite range 

law is compared with the definite range law, a normal curve 

and a triangular curve.  Planning prediction errors are 

determined. 



Section 8 outlines the procedures to be used during 

the exercise reconstruction session and an example of a 

form in IBM card format on which data is recorded.  Section 

9 summarizes the procedure and the two appendices outline 

computer programs used to develop the method. 

Who should be interested in using this procedure to 

evaluate sensor performance? Any command which frequently 

umpires operational exercises should be if search, screen- 

ing or reconnaissance is an important factor in the exercise 

and the sensor-target encounters are 9imilar to those in the 

following sections.  In the Navy, the ASW Defense Forces and 

Fleet Training Groups are examples that come to mind. 



2,  Expected Length of a Straight Path Through a Range 

Circle. 

Figure 2.1 

Consider the detection situation shown in Fig. 2.1 

above.  The target, Ts   is located at the center of a range 

circle of radius Re   the maximum range at which detection 

is expected to occur0     The sensor, S, is in motion and. 

will enter the range circle on a track parallel to the Y 

axis.  The x=coordinata of the sensor8s entry point is al- 

lowed to vary uniformly from -R to Hc  Assuming that no 

turns are made by the sensor, what is the expected length 

of path through the circle? 

Due to the symmetry of the problem, only the right 

hand semicircle will be considered.  Clearly, the expected 

length of path in either semicircle is equal to chat over 

the entire circles 



Let X be a random variable, the x-coordinate of the 

sensor's entry point on the range circle, and let X be 

uniformly distributed from zero to R.  The probability den- 

sity function of X is 

=   o    ; elsew/iefe 
Let Y be a random variable, the length of path within 

the range circle of a sensor whose entry point x-coordinate 

distribution is given above.  From Fig. 2.1, 

y =2yg-f 

and the Jacobian of transformation is 

u~r= i/fei = -yv-j- /zx 

Therefore, the probability density function of Y is given 

by 

but. 

* = -\JiR-yy z 
therefore. 



Q(y} =, 7==    ;        o<y<zR 
dy 2R ~\jiRz-yz 

-     0 j       elsewhere. 

By the definition of the expected value of a random 

variable, the expected length of path, E Y  , is given by 

l2-1'    E[Y]=/ytyrtJ/ '-TR^AF
1
^^^ ^~ 

As an example, suppose a sensor is sent on a mission 

to detect a target, and, due to many factors, the maximum 

range at which the target can be detected is determined to 

be ten miles.  The target is assumed to be somewhere in an 

area much larger than that of a ten mile range circle.  If 

the sensor closes to within this maximum detection range, 

the expected length of path within this range is given by 

(2.1) with R = 10 miles.  That is, E [Y] = 15.7 miles. 

In this situation, the assumption of a uniform dis- 

tribution for the random variable X is valid since there 

is no reason to prefer one point of entry into the range 

circle over another. If, however, R is very large or the 

target's position is more accurately known then the area 

of search may not be sufficiently large in comparison to 

the area of the range circle to allow this assumption. 

In other detection situations only the target or both 

the sensor and the target may be in motion.  This is of no 



consequence to the solutions presented since only relative 

motion need he considered.  In most practical situations 

either the sensor or the target moves very slowly relative 

to the other and only a small error is incurred by fixing 

the slower one. 

Another assumption made in this section is not at all 

realistic.  Here, the sensor is not allowed to turn during 

the passage through the range circle.  In the next section 

the sensor will be allowed to make turns and the expected 

length of path within the range circle will be investigated. 

The results will be compared with those of this section. 



3.  Expected Length of Path Through a Range Circle, 

Allowing Turns. 

Let S be the expected length of path through a 

range circle.  In the previous section it was shown that 

= S Y I = TTR/2  when no turns by the sensor are 

allowed.  In order to determine S d  when the sensor is 

allowed to turn, it is necessary to know the search pat- 

tern of the sensor.  For a particular mission this may 

be know, but due to navigation errors or deliberate changes 

of plans, it is often not possible to continue it.  In any 

case, search plans vary with time, location, weather, and 

operational situations making it infeasible to choose one 

d The method or even several of them to determine S 

used here will be to the simulation of search patterns by 

probability distributions with variable parameters and 

subsequent approximation of S d  by computerized wargame 

techniques. 

Search patterns which are composed of a series of 

straight tracks can be characterized by two random varia- 

bles, the length of search legs, V, and the amount of turn, 

A, between successive legs.  The density function of each 

is assumed to be triangular due to ease of computation and 

proximity to the normal density function. 

<z 

Figure 3,1 
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Assuming that the most likely turn is one of 90 de- 

grees, the probability density function for the amount 

of turn, A, is given by 

(3.1) 
0 < cu < if/z. 

elsewhere. 

This density function is shown in Fig. 3.1.  Note that the 

function is defined on Tf  radians, therefore it is neces- 

sary for the program to determine if a turn is to be made 

to the right or to the left. 

fivW 

Figure 3.2 

Similarly, the probability density function of V, 

the length of search legs, is shown in Fig. 3.2 where v 

is allowed to vary from v -  b to v s <a with mean value at 

v = c.  Also, (c-b) = (d~c)„  The density function is 

(3.2) 
/)yW - (v-b)/(c-b)Z 

= (d-v)/(c-bf 

- 0 

j 

j 

b  ±  V ±  c 

c <  v < d 

j    elsewhere. 

The function is completely specified by (d=b) and the 

mean value, c.  These are allowed to vary by the program. 

10 



For each pair of values chosen for c and (d.-b) e   1000 runs 

on the target were made by the sensor to determine £ 

The program itself is outlined in Appendix k  and the re« 

suits are tabulated in Table 3.1 belowc  Note that through- 

out the program, R is one for simplicity. 

Table 3.1 

c (d-b) 
Number of runs having below 
indicated number of turns 8 d 

o 1 2 3» 5 6=10 11-100 

1/64 1/32 0 331 164 160 106 239 .239 

1/32 1/16 0 351 149 180 84 236 .461 

1/16 1/8 0 312 153 164 92 279 .953 

1/8 1/4 1 363 182 161 77 216 1.189 

1/4 1/2 2 375 162 167 114 180 1.520 

1/2 1 14 426 187 218 128 25 1.441 

1 2 59 553 236 142 10 0 1.500 

2 4 237 656 94 13 0 0 1.529 

3 2 490 510 0 0 0 0 1.562 

4 4 591 409 0 0 0 0 1.595 

4 8 547 440 12 1 0 0 1.582 

5 2 688 312 ° o 0 o 1.562 

6 4 743 257 0 0 0 0 1.549 

6 8 718 282 0 0 0 0 1.548 

7 2 792 208 0 0 0 0 10551 

8 4 793 207 0 0 0 0 1.552 

8 8 776 224 o 0 0 0 1.575 

8 16 744 255 1 0 0 0 1.551 

9 2 819 181 0 0 0 0 JL ffl DÖ5 

10 4 832 168 0 0 0 0 1.549 

10 8 855 145 c 
1 

0 0 0 1.559 

10 16 827 173 0 0 0 0 1.589 

11 2 849 151 0 0 0 0 1, 576 

12 4 '877 123 0 0 0 0 1.604 

12 8 873 127 0 
! 0 o !  o 

! 
1. 554 

i 
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12 16 858 142 0 0 0 0 1.569 

14 8 872 128 0 0 0 0 1.576 

14 16 872 128 0 0 0 0 1.576 

16 16 890 110 0 0 0 0 1.542 

18 16 928 72 0 0 0 0 1.562 

From the program results, summarized in Table 3.1, 

it can be seen that for c - 2 the approximated value for 

B [d] is within 2.7% of E Y -  1.571e  For c ^ 1/8, B [dl 

is much smaller than E and decreases rapidly as c 

decreases.  The values of E | d  obtained by the program 

are plotted below for values of c22„ 

EWJ 

A6Z- 

/.GO- 

1,58- 
■rr/z. 

AS-6-- 

l.5f- 

ISL 

x   *     * 

I 
2 

*    x     * 

i 

9 

S     *    £ 

i 
6 

i 

-x- 

X 

I 
/a 

3 

i i 
ft /8 

Mean length of search leg, c 

Figure 3.3 

The average value of E d for c^2 is 1.565 which 

is sufficiently close to 1.571 to conclude that when the 

mean value of the length of search leg is greater than 

the diameter of the range circle« E d SB  S = 77-R/2. 

12 



Since there are many actual detection situations where 

c^2R and since E Id] is a function of c for c -= 2R, only 

the case of c - 2R will be considered here.  Now that the 

effect of various search plans on the value E [d 1 is known, 

a method for measuring the operational effectiveness of 

sensors will be developed. 

13 



4. Measuring the Operational Effectiveness of Sensors. 

The definitions and procedures of this section are 

applicable to operational detection situations where the 

following conditions hold: 

(a) There exists a maximum range, R, beyond which 

detection of the target by the sensor under 

consideration is deemed unlikely. 

(b) The mean length of sensor search legs is greater 

than 2R, the diameter of the target's range 

circle. 

(c) The operation or exercise must provide the data 

necessary for the determination of the sensor's 

effectiveness. 

The first two requirements have been discussed in the 

previous sections.  The major sources of data from exer- 

cises are the reconstructed navigation charts of the sen- 

sors and targets.  It is also important to record other 

factors which are likely to affect the ability of the sen- 

sor to detect such as sea state and visibility.  If the 

sensor's track and that of the target are drawn to the same 

scale, by superimposing one over the other, it becomes an 

easy matter to determine the total distance travelled by 

the sensor within the target's range circle.  Recommended 

procedures will be presented in detail in Section 9, but 

presently, it is enough to realize that it is feasible to 

gather meaningful data from the track charts of sensors and 

targets. 

14 



Suppose that considerable data has been collected 

from one or more exercises and we wish to evaluate the 

performance of a particular type of sensor in a given sen- 

sor-target situation.  The following information is known: 

(a) C - the number of initial detections made by 

the sensor. 

(b) D - the total distance travelled by the sensor 

within the target's range circle, excluding 

distance accumulated on successful passes. 

The following definition of a missed opportunity for 

detection is crucial in this development of a measure of 

effectiveness. 

A missed opportunity is defined as equivalent to a 

distance E I dl = 7rR/2 travelled by the sensor within the 

target's range circle during one or more unsuccessful pas- 

ses through the range circle.  The total number of missed 

opportunities, M, accumulated by the sensor during the 

evaluation period is therefore 

(4.1) M = 2D/7TR 

The sensor's probability, P, of detecting the target 

given that he enters the range circle is given by 

(4.2) P = C/M+C 

which is simply the number of successes divided by the 

number of opportunities.  This probability is defined over 

a path width of 2R giving the following lateral range 

curve. 

15 
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: Figure 4.1 

This is a modified definite range law* differing from the 

definite range law in that P need not equal one. 

As an example of the above, suppose that during an 

exercise a particular radar was being used to detect small 

fishing boats in a sea state of 3.  Assume R = 40 miles, 

C = 10, and D = 157 miles.  From (4.1) the number of missed 

opportunities, M, is determined to be 

M = 157/(1.57 x 40) = 2.5 

The probability of detection, P, is 

P = 10/(2.5 + 10) = 0.8 

and the lateral range curve is given below. 

P       *6 

c>,Z\ 

h r3r\^e. 
-90 & to 

Figure 4.2 

In the subsequent sectionss   the above type of lateral 

range curve will be compared with other curves to determine 

possible sources of error and to demonstrate the utility of 

the modified definite range law with respect to the opera- 

tional evaluation of sensors. 
16 



5.  Modified Definite Range Law vs. Definite Range Law. 

Another method of measuring the effectiveness of sen- 

sors makes use of the definite range law.  This method 

involves the following parameters; 

(a) R - the maximum range at which detection is 

expected to occur. 

(b) C - the number of initial contacts by the sensor, 

(c) Op - the total number of opportunities. 

The terms, R, and C, are identical to those used in 

previous sections to develop the modified definite range 

law.  Often, in present practicee   the number of opportun- 

ities, Op, is obtained by counting the number of times the 

sensor penetrated the range circle^ with no regard to the 

opportunity distance accumulated within this range.  In 

other words, each of the following two tracks would result 

in one missed opportunity by this definition. 

Figure 5.1 

Clearly S2 had a much greater opportunity to detect the 

target, T, then did S, ,and this difference should be re- 

flected in the sensor performance evaluation.  If the num- 

ber of opportunities is very larg©f the effect of extreme 

examples auch as those shown in Fig. 5.1 diminishes and 

1? 



the number of opportunities obtained by this counting 

method approaches the value (M + C) of equation (4.2). 

However, if the number of opportunities is small, as it 

would be in a small exercise, the use of the definition 

of missed opportunity given in Section 4 will result in 

a truer evaluation of the sensor's performance.  This is 

especially important if sensor performance figures ob- 

tained from small exercises are used in part to evaluate 

and compare the operational readiness of military command- 

ers.  Several unsuccessful passes of the type of Fig. 5.1 

(a) would be recorded as only one or two missed opportun- 

ities according to Section 4, while a pass such as that in 

Fig. 5.1(b) would be equivalent to about three missed 

opportun i ti e s. 

The next step in the definite range method is to de- 

fine the sweepwidth, W, as the width of a path centered 

at the sensor in which the probability of detection is one. 

The value of W is given by 

(5.1) w = 2RC/0p. 

The sweep width, w, is often quoted as a measure of the 

performance of a sensor. 

Although the modified definite range law and the 

definite range law are similar, there are two reasons for 

preferring the former.  The modified law is a more accurate 

representation of the sensor's actual performance.  The 

probability of detection, P, is determined empirically 

over a path whose width is equal to 2R.  If ? is determined 

18 



from a large amount of data it can be predicted quite con- 

fidently that the sensor will continue to detect targets 

with probability P under the same operating conditions.  In 

the case of the definite range law, however, the probability 

of detection is arbitrarily set at one and the resulting 

sweep width does not necessarily represent the actual range 

of the sensor.  The disparity between the two lateral range 

curves increases as P approaches zero, and in the extreme 

case of P = 1, they are identical.  Given that P is the prob- 

ability of detection over a path of width 2R in the modified 

law, the sweep width, W, for the equivalent definite range 

law is 

W = 2PR 

The two lateral range curves are shown below for the case 

where P = .5. 

/a4 

ar- 

r -R 6 * -PK      6       PR 

Modified definite range law        Definite range law 

Figure 5.2 

The second reason for preferring the modified law is 

applicable when two or more sensors move along parallel 

tracks.  Consider a strip of width 4R within which, the 

lateral range curves of two parallel tracking sensors are 

contained.  Let P be the average probability of detection 

measured over the width of the strip.  It can be seen that 

19 



P is a function of d, the separation of the sensors.  Fig. 

5.3 below depicts each range law.  Here d is such that 

overlap of the lateral range curves occurs only in the case 

of the modified definite range law.  When d is less than 

2PR the lateral range curves for the definite range law 

will overlap also. 

/0 

P 
4X-. 

V -^ — ■H  k 
K— 

-4R- 

Modified definite range law        Definite range law 

Figure 5.3 

Let ftn be the average probability of detection for 

two sensors obeying the modified definite range law in 

a strip of width 4R. 

,5.2) &= UE±&&te££}^p.?+j£, eiJafi 

Let Pd be the average probability of detection re- 

sulting from the equivalent definite range law, averaged 

over the same width, 4R. 

(5.3) z-m--p */R J 2PR <J<ZR 

2.   n 0£ J±2.PR 

20 



In deriving the above equations, the following for- 

mula was used to determine the probability of detection 

in the area of overlap, Pc, assuming independence. 

Pc = l-(l-P)2 = 2P-P2 

Below is a plot of Pm and Fd for P = .6.  Note that the 

maximum differences occur at d = 0 and at d = 2PR = 1.2R. 

p 

J 

Figure 5.4 

For 0=P=1 the plot of Pm and Pd as a function of d 

is similar to Fig. 5.4 with the change in slope of the 

Pd curve occurring at d = 2PR.  In the extreme cases, 

where P = 0 and P = 1, Pm = Pd for 0^dS2R. 

The average probability difference E = Pm-Pd and the 

percentage error, Ep, is defined as 

£P = ^4-x^ 
Gn+Pj 

From   (5.2)   and  (5.3), 

21 



-i(i-P) + i% (P-l) J     o< J<2 PR 

Note that at d= 2RP/(1+P)   the value of  E changes sign, 

For   2PR* d£2Ry    , 

P*(J-2R)+8PR Ja° 

(5.5)     For 2PR/U+P) £ d £ 2PR 

and for 0^ d^ 2PR/(1+P) 

As can be seen from Fig. 5.4, the maximum errors 

occur at d = 0 and at d = 2PR.  Setting d ■= 0 in equation 

(5.6) 

22 



(5.7) £,= ^-x^,-     J=° 

A plot of (5.7) is show» below. 

t P 

P 

Figure 5.5 

At the other point of maximum error, d = 2PR, Ep 

is obtained by setting d = 2PR in equation (5.4). 

E, _ 2PC/-P) J=-ZPfZ 

A plot of (5.8) is shown below. 

23 



Ef p 

P 

Figure 5.6 

At d = 2PR/U+P), Pm = Pd and Ep - 0 for all values 

0-^ p^ 1. 

As can be seen in Fig. 5.5 and Fig. 5.6, the per- 

centage error is most significant for cases where P - .5 

and d< 2PR/(1+P).  This implies that for small P, the use 

of the definite range law for planning purposes will re- 

sult in a large error in the prediction of P if the track 

spacing d is small and if the modified lateral range curve 

accurately represents the performance of the sensor. 

If the sensors are spaced such that the lateral range 

curves of the definite range law are adjacent, d = 2PR, 

and Fig. 5.6 gives the percentage error as a function of 

P, assuming again that the sensor obeys the modified law. 

The maximum error of 13.3% occurs at P = .5. 

The sweepwidth concept is useful, however, since it 

allows for the measurement of the capability of a sensor 

by a single value, w, while the modified definite range 

24 



law requires knowledge of P and R«,  The sweepwidth, W, 

should be considered only as a figure of merit for the 

sensor and should not necessarily be considered as repre- 

senting a valid lateral range curve. 

£3 



6.  Modified Definite Range Law vs. Normal Curve, 

It may be argued that both the definite range law 

and the modified definite range law are unrealistic since 

it is highly unlikely that there is a range, R, at which 

the probability of detection drops sharply from P to zero. 

A lateral range curve may be derived from physical assump- 

tions concerning the operational environment whereby the 

probability is a function of the lateral range, r, rather 

than a constant.  Quite likely, P will approach zero mono- 

tonically as jr| approaches infinity. Here, the normal 

lateral range function will be defined and chosen as rep- 

resentative of such a family of functions. 

Suppose that a lateral range curve for a sensor has 

been obtained in accordance with the modified definite 

range law method of Section 4.  If, however, the true lat- 

eral range curve has the shape of the normal probability 

density function, what errors are incurred by assuming 

the modified definite range law holds? 

Since a lateral range curve is not a true probability 

density function, it will be necessary to apply a trans- 

formation to it in order to apply the theory of probability 

to its use.  The following conventions will be adopted 

throughout this section»  The random variable subscript 

used in the function notation of Section 2 will be dropped, 

i.e., 

fx (x) = f(x) 
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Also, if two functions have the same shape, but one is a 

probability density function and the other is a lateral 

range function, the prime superscript will be used to iden- 

tify the latter.  Two functions, f and f', have the same 

shape if 

(6.1) £(£) __r _ ^ . 
/f*)  * J w/ ere. K /s    ecnz'a-n/. 

f(r) 

-R o R 
r 

Figure 6el 

Let f'(r) be the function represented by the lateral 

range curve of the modified definite range law, Fig. 6.1. 

(6.2) 

- Ö       j        elsewhere. 

This function is not a probability density function unless 

the area 2RP =1. To transform f8(r) to the uniform prob- 

ability density function f(x) having the same shape, let 

k = V2RP in equation (6.1). 
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-f(-x)^P/2R       • —^R/2P  < X<V^/3 

One of the assumptions made in the development of 

the modified definite range law was that the probability 

of detecting the target from outside the range circle 

was very small, and is indeed set to zero as in Fig. 6.1. 

If the normal curve is assumed to hold, however, the prob- 

ability of detection is greater than zero for all ranges, 

therefore, a decision must be made as to how much of the 

area under the normal curve should fall within the limits 

-8<r<R of the modified law in order not to invalidate 

this assumption.  Two normal curves will be considered 

with 95% and 99% of the area being within these limits. 

that 

Let f'(r) be a normal lateral range function such 

R 

{ (r)Jr    = .?f x 2RP 

and let fi(r) be a similar function such that 

R 

-R 

f,(x) and f2(x) are normal probability density functions 

23 



having the same shape as fMr) and fifr) respectively 

and, furthermore, 

,/ 
i2(T)  =V2/^P £{X) 

Since fi(x) and f2(
x) have the same relation to the 

uniform function, f(x), as f|(r) and f-U*) have to f'(r), 

the functional form of f.(x) and f2(
x) can be determined. 

Let the mean of all functions be zero. 
2 

f,(x) is normal with mean 0 and variance cT. such that 

iR/ap 

I    \MJX-.95- 

--JR/2P 

therefore Gj -  ^L-^JR/ZP 

^ 

£™ = Wh e2* J 
— OO <   X < CXJ 

*2 

Similarly, -fzu) = J=rL,    <S    Z6^ ;      -c^< X < OO 
■fiWfc 

where 0£ ~ Jj-^R/zP 
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Finally, by (6.1), 

i'(r) ^2Rp      jzU)      . 

fz(r) = ^j2RP     l(x)    ; 

— OO  -< r£   GQ 

-oo<£ r< oo 

Fig. 6.2 is a graph of these two normal lateral 

range functions and the modified definite range law. 

f (r) 

r 
-R a R 

Figure 6.2 

Since the maximum allowable value for the probability 

of detection is one, there are also maximum allowable 

values of P in (6.2) in order that the maximum values of 

f|(r) and f~(r) do not exceed one.  The maximum values of 

f^(r), t^r),   fx(x) and f2(x) occur at r = 0 and x = 0. 

Therefore for f{(r) 
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i^-il^-^co^ax^--! 

P=W =-^? 

and the normal lateral range function f^(r) can apply 

only when the probability of detection in the modified 

definite range law is less than .639.  Similarly, by 

setting f^O) = 1, it is found that P is limited to a 

maximum value of .488 when it is assumed that f'(r) is 

the true lateral range curve. 

In general, let oC  be the percentage of the area 

under the normal lateral range curve which is allowed 

to be outside the limits of the modified law, and let 

Pmax be the associated maximum allowable value of P in 

the modified definite range function.  Pmax is related 

to oC  by 

föax ~   t    V z w^ where. 

t 2 

du  = — 

The value, t, can be obtained from a table of the normal 

probability function.  A plot of Pmax as a function of 

°C  is shown below. 
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p 
tndX 

Figure 6«,3 

Since the normal function is positive for all finite 

values of its argument, it will not be compared with the 

modified definite range law directly to determine the errors 

incurred when the sensors are searching on parallel tracks. 

In the next section, the normal function will be approxi- 

mated by the triangular distribution and the parallel 

tracking error will be determined. 
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7.  Triangular Lateral Range Function and Prediction Errors, 

The triangular probability density function, t(x), 

with parameter b and mean zero is given by 

t (rt - 
■x+b 

L2- 

=    o 

-L < 7 <  O 

o< x < /? 

elsewhere. 

and is shown below. 

t(X) 

-boh 

Triangular density function 

Figure 7.1    , 

Si nee     £W = 0j     Vir-M^EL**]^        fatwcJ; 

£ 

K 

As can be seen in Fig. 7.2 below, the triangular 

distribution is a good approximation of the normal func- 

tion.  Both functions have S = 0 and Var X = 1. 
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 triangular function 

normal function 

o .r 2.0 2.s -^ 
J.o J.r 

Figure 7.2 

Similarly, the normal lateral range function may be 

approximated by a triangular function.  If the probability 

of detection in the modified definite range law is not 

greater than one half, the triangular function can be as- 

sumed to hold satisfying the following two conditions. 

(a) The probability of detection is equal to zero 

for R< r< -R. 

(b) The maximum probability of detection is not 

greater than one. 

The percent prediction errors Ep, incurred in parallel 

track searches will now be determined in a manner similar 

to that in Section 50  Here, however, the modified defin- 

ite range law will be compared with the triangular lateral 

range function,   t(r), realizing that the latter is a good 

approximation of the normal lateral range function.  Con- 

sider two sensors, searching on parallel tracks of spacing 

d, and whose lateral range curves are confined to a strip 
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of width 4R.  Let t.(r) and t-(r) be triangular lateral 

range functions and h,(r) and h-Cr) be mo<3ified definite 

lateral range functions for the two sensors.  The problem 

is to determine the prediction error incurred when one 

function is assumed to hold when in fact the other does. 

2P-PZ - 

P - 4 (*■") I k (r) a 

k 

i 

a        d-fl                      J 

 £jR _ 

J+R, 

Overlapping modified definite lateral range functions 

Figure 7 „3 

For the case of the modified law, Fig„ 7,, 3, P^„5 and 

= o \lse\jh ere 

,  - 0      ; elsewhere 

The average probability of detection, Pm, over the strip 

of width 4R is given'by 

- -R d-R. 

(7.1) 
I m-i        S/O 

1 2dP+(ZR-J)(2p-P*) 
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(WP-2RPLI-C±P2~) 

2P~ rU(r) 

i-r 

K •^ -H 

Overlapping triangular lateral range functions«. 

Figure 7.4 

For the- case of overlapping triangular lateral range 

functions, Fig. 7.4} 

ur)-^nR ).t -/^ < r <c£> 

-»m; 0* r< /? 

=        O             ; elsewh&re. 

^=^^' J-R+ r^J 

-^^J 
a/* r< J+R 

0     .i e/se_whe.rc 
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The average prcability of detection, Pt, over the strip 

of width 4R  is given by 

(7.2) J-R. -R 
1 

i 

^J iL(r) +2.\tL(r) + \ [t (r) + f2(r)- £ (r) Qr) 
- -^    o d-R 

~^ O d-R. 

for A -  d - 2R.  FOJ  0 £ d <  R, Pt is given by 

(7.3) 

'IK 

-o 

zz^y2Lp(^)+2p(ffAy^(f^.]e^zd) 
J^ß 

-J 

+\{zp($t) M'ir) - ^m (-x±fL-)} 

Let E = Pt - Pm and define the percentage error as in 

Section 5. 

(7.4) E - S-^- * loo 

A small program was written to determine Ep for vari- 

ous values of P and d. See Appendix B for the program and 

complete results. 
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Ep is plotted below as a function of  d for P =  .5 

and P =  .3. 

Ep 

/.Ö       ''i-       '>'/       '•&      '■$ ?'.d     d 

Figure 7. 5 

Ep 

/£       'V       '6       >2      /'O      /<£      /.</     '■£      /■£     V<o ~j,a~ d 

Figure 7.6 
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8.  Suggested Procedures and Forms« 

There are two reasons for establishing a method for 

determining the performance of sensors under operational 

conditions. 

(a) To provide a cumulative record of the performance 

of sensors (and targets) for the purposes of op- 

erational planning and equipment design. 

(b) To provide an accurate method for evaluating the 

performance of a sensor during a short exercise 

such as an operational readiness evaluation where 

the operational readiness of a commander and his 

forces is being determined. 

The degree of success of the method depends on the 

type and reliability of the data collected and the data 

processing and storage procedures.  There is one rule which 

must be followed if the measurement of performance is to be 

meaningful.  The data collection requirements placed on the 

operating forces must not be so complicated or extensive 

that they affect the same performance results which the 

data is supposed to measure. 

The procedures recommended here require only accurate 

navigation tracks and narratives of the exercise on the 

part of the participants.  The narratives should be of the 

usual type, containing information such as bearing and dis- 

tance to all targets detected, weather information, etc. 

Following each exercise there is a period of exercise 

reconstruction during which the participants compare tracks 
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and determine the results of the exercise.  It is during 

this reconstruction session that information can be gath- 

ered from the charts and narratives and transferred to 

forms which are laid out in an IBM card format.  Subse- 

quently, the information is placed on IBM cards and placed 

in storage to await further processing«, 

As an example of the method« consider the detection 

situation where an aircraft radar is the sensor and the 

target is a submarine snorkel.  A recommended format for 

this combination is shown in Fig«, 8.1.  The details of 

this form will be explained further. 

One of these forms should be filled out whenever 

(a) A contact is made on a true or false target. 

(b) The sensor closes to within the predetermined 

distance, R, of the target and fails to make 

a detection. 

If several unsuccessful passes are made by one sensor, 

as in Fig. 8.2, the information can be put on one form, 

otherwise one form should be filled out each time the 

sensor enters the range circle.  If a detection were made 

on the third pass in Fig. 8.2, two forms would be neces- 

sary to record the encounter, one for the two unseccess- 

ful passes and one for the detection. 
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2 
— ——  —  
0 - MiP«öd opportunity 

1 - '"^'»'-«"ion-correct classif. 

2 - jJet^c „ion-incorrect classif. 

3 - False contact 
2-5 Time (local) 
6-7 Day 

8=9 Month 

10-11 Year 
12 Sea State? 0f   1, 2,   3, 4, 5 

13-15J Wind Direction (degrees true) 
16-17 Wind Velocity (knots) 

18-20 SS Side Number 

21-23 

24-26 

,27-29 

30-32 

Length of opportunity legs in following 

15-20 mile (miles and tenths) 

33=35 

36-38 

. «.-«., 

True bearing to target 

Range to target (miles and tenths) 

39 Type A/C (see key) 
40-42 A/C Ground Speed 

43 Type Radar (see key) 
44 Crew Readiness 

0 - 25% 

1 - 50% 

2 - 75% 

3 - 100% 

Figure 8.1 
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&Se ■rtsor 

Figure 8.2 

Several blocks in Fig. 8.1 need further explanation. 

In block one the term "Deteetlon-ineorreet classif." per- 

tains to the situation where an actual target is detected 

but is classified as a false target«,  In blocks 21-23 

through 30-32 the range circle is subdivided into range 

bands since the value of R will not necessarily be the same 

for each radar type«, A plexiglass template with range cir- 

cles marked on it will be useful herea  In blocks 39 and 43 

it is necessary to refer to a key which assigns an identi- 

fication number to each type of aircraft and to each type 

of radar.  The crew readiness,, noted in block 44, is de- 

termined by the evaluator during the exercise reconstruction 

session. 

Upon completetion of an exercise reconstruction, many 

of these forms will have been accumulated«,  The results may 

now be totalled in order t© evaluate the sensor.  For in- 

stance, if R is 20 miles for a particular radar, the value 

of D in equation (4.1) Is equal to the sum ©f the distances 



in blocks 21=23 through 30-32 on those forms which have 

a zero recorded in block one.  The forms which have a two 

in block one may also be included if it is desired that 

a missed classification be considered a missed opportunity. 

From equation (401), the number of missed opportuni- 

ties is given by 

M = 2V/TTR  = D/107T 

and from equation (4.2) the probability of detection over 

a path of width 2R is 

P = C/(M+C) 

where C is the number of contacts made« that is, the number 

of forms which have number one marked in block one.  The 

sweepwidth, W, is given by 

W = 2PR 

and is only a figure of merit for the sensor as discussed 

in Section 5. 

The probability of detection under varying operating 

conditions can be determined by considering only those forms 

which satisfy the conditions specified«  For example, in the 

aircraft radar vs. snorkel case, the effect of sea state on 

the probability of detection can be determined by separating 

the forms according to the sea state determinations in block 

twelve, and then evaluating P in each ease«  Similarly, the 

effects of crew readiness, aircraft speed, time of day, 

relative bearing to target and relative wind direction can 

be determined. 

After each exercise the information is transferred to 
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IBM cards, and placed in storage at a computer center. 

Here, a cumulative record of the performance of sensors 

under various operating conditions can be kept and the in- 

formation can be disseminated to interested commands per- 

iodically. As the volume of data increases, the resulting 

performance figures will become more indicative of the true 

capabilities of the various sensors and the men that oper- 

ate them. 
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9.  Summary and Conclusions. 

A method has been developed« whereby, sensors may be 

evaluated In an operational environment.  It is a simple 

method, requiring only accurate navigation and routine 

exercise narratives on the part of the operational forces. 

The required forms can be filled out by the participants 

during the post-exercise reconstruction session.  By com- 

paring sensor and target tracks and studying the events re- 

corded in the narratives, the following are obtained. 

(a) D - the total distance travelled by the sensor 

within the target's range circle, excluding 

distance accumulated on successful passes. 

(b) C - the number of initial detections made by the 

sensor. 

The number of missed opportunities, M = 2D/7fR where 

R is the range beyond which detection is unlikely.  It is 

the radius of the target's range circle.  The probability 

of detection over a path of width 2R is P = C/(M+C) and 

the resulting lateral range curve is called the modified 

definite range law.  The sweep width w = 2PR is a figure 

of merit for the sensor's performance.  The definite range 

law, based on sweep width, should not be used to plan search 

patterns.  To do so may result in a parallel track predic- 

tion error as high as 13.3% or even higher for small P and 

small track separation. 

The modified definite range law was compared with the 

more realistic normal and triangular lateral range functions. 
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The parallel track prediction errors were found to be small 

and due to the simplicity of the modified law, it is pre- 

ferred over the other two as a representative lateral range 

curve. 

In Section 8 some procedures were suggested for applying 

the method to the case of aircraft radar vs. submarine snor- 

kel.  The same procedure can be extended to other target- 

censor combinations and the results tabulated and dissem- 

inated in a form similar to that shown in Fig. 9.1.  N = M+C 

is the number of observations of the sensor under the given 

conditions.  The operation evaluator may wish to modify the 

format by changing the column headings (operational condi- 

tions) , 

The information can easily be placed on IBM data cards 

and kept in a computer facility.  Summaries, such as in Fig. 

9.1, issued periodically by the computer facility will assist 

eoittmanders in the evaluation of sensors and in the planning 

of search and screening operations. 

When considerable data has been accumulated it becomes 

a matter of interest to determine the effect of the differ- 

ent operational conditions on the probability of detection. 

In general, the problem is to determine which conditions sig- 

nificantly affect P.  The statistical technique of analysis 

of variance is applicable here and should be applied when 

considerable data has been accumulated.  It may well be de- 

termined that some of the operating conditions listed on 

forms such as Fig. 8.1 are insignificant and can be dropped 
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from further consideration. 

Refinement of the modified definite range law is pos- 

sible.  The lateral range function is somehow related to 

the distribution of initial contact points about the target. 

This problem was not considered here but it certainly is an 

area worthy of further study.  Computer simulation would 

undoubtedly provide many answers but an analytical approach 

may be feasible. 

Finally, it must be remembered that a value of P or W 

is meaningless without an associated statement about the 

operational conditions and the assumptions under which the 

particular value was obtained.  The development of the modi- 

fied definite range law assumes that the sensor closes to 

within a distance, R, of the target.  In the case of an 

alert target, such as a submarine, it may be quite diffi- 

cult to close to within this rangec  Therefore, a high value 

of P in a case such as this is no guarantee that the proba- 

bility of finding the target in a given area can be made as 

high as desired by using a clever search plan.  The method 

discussed here is only a start in solving the much larger 

problem of measuring the effectiveness of search and screen- 

ing sensors against an alert adversary,, 

48 



BIBLIOGRAPHY 

1. Joseph M. Barron, Random Number Generation on the 

CDC 1604.  United States Naval Postgraduate School, 

Monterey, California, 1962. 

2. s. Parzen, Modern Probability Theory and Its Applica- 

tions, John Wiley and Sons, Inc., New York, 1960. 

49 



APPENDIX A 

PATH LENGTH PROGRAM 

A program was written to provide the values of E 

given in Table 3.1 for various values of c and (d-b).  In 

all runs« the turn angle was assumed to be distributed ac- 

cording to the triangular distribution, (3.1).  The length 

of the search legs was also assumed to be distributed ac- 

cording to the triangular distribution with parameters c 

and (d-b), (3,2).  For each pair of values for c and (d-b), 

1000 runs were made. For each run, the following steps were 

takent 

1. Determine length of first leg of search pattern 

which will intercept the range circle. 

2. Determine x-coordinate of the entry point into the 

range circle. 

3. Determine where along this leg the range circle 

will be entered. 

4. If this leg passes through the range circle, the 

run is complete and the length of the leg inside 

the circle is recorded.  Start the next run.  (Step 

1), If leg terminates inside the range circle, 

record distance inside circle and go to step 5. 

5. Generate a turn angle, length of next leg, and de- 

termine coordinates of the end of this leg. 

6. If this leg terminates inside the circle, record 

distance and go to Step 5.  If the leg terminates 
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outside the circle, record the distance travelled 

while inside the circle.  Determine the total dis- 

tance accumulated within the circle on this run, 

record, and start next run (step 1). 

For each combination of values for c and (d-b), B | d 1 

is determined by dividing D by 1000 where D is the total 

distance accumulated within the circle during the 1000 runs. 

Fig. A.l is a flow chart of the program, using the 

following notation: 

RAND - Generate a random number 

D - Storage cell used accumulate distance within 

the circle over 1000 runs 

d - Length of present leg within the range circle 

N - Cell which records the number of runs made 

The random number generator used in this program was 

tested by Lieutenant Commander Joseph M. Barron, United 

states Navy, ,   P. 39. 
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Set N = 0 

Set D = 0 

RAND 

store 

S [ d ] s D/1000 
/V 

YES 

Determine length 

of first leg 

RAND 

JL. 
Determine x-coordinate 

of entry point 

RAND 

4L 
Determine y-coordinate 
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APPENDIX B 

PARALLEL SEARCH PREDICTION ERROR PROGRAM 

A small program was written to determine Ep, the paral- 

lel search prediction error,   in equation (7.4).  For sim- 

plicity, let R = 1.  From equation (7.1) 

ftn = (4P - 2P2 + dP2)/4? 0±d^2 

After evaluating the integrals in equations (7.2) and 

(7.3) 

Pt = P - P2(8-12d+6d2-d3)/6? 1^ d^2 

a 2Pd2+8P2(d-l)3/3-(d-l)2(4P-8P2+4P2d) 

-(d-1) (8P-4Pd-0P2+8dP2)+2Pd(2-d)- 

4P2(D-D2+D3/6)  /4y O^d-1 

The value for P, the probability of detection, was 

allowed to vary from 0.05 to 0.5 and d, the track spacing, 

from zero to two.  The program itself was written in FORTRAN 

for the CDC 1604 and is given below. 

PR0GRAM PRLLERR 
DIMENSION PT(21), PM(21), E(2l), EP(2l) 

P = O. 

D0 30 L = 1,10 

P = P+.05 

D = -.1 

D0 20 J=0,10 

D = D+.l 

PM(J) = (4.*P-2.*P*P+D*P*P)/4. 

A = 2.*P*D*D 

B = D-1. 

C = B*B*B*P*P*8./3.+B*B*(8.*P*P-4.*P-4*P*P*D) 
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CC  =   B*(4.*P*D-8.*P+8.*P*P-Ü.*D*P*P) 
H  =   2.*P*D*(2.-D)-4.*P*P*(D-D*D-D*D*D/6.) 
PT(J)   =   (A+C+CC+H)/4. 

E(J)   =   PT(J)-PM(J) 

EE(J)   =  PT(J)+PM(J) 

EP(J)   =   2.*S(J)/EE(J) 

PRINT  20,   PT(J),PM(J),E(J),EP(J) 
20   F0RMAT   (4F10.7) 

D  =  1. 
DJ?  30 J  =  11,20 

D  =  D+.l 

PT(J)   =  P-P*P*(8.-12.*D+6.*D*D-D*D*D)/6. 
PM(J)   =   (4.*P-2.*P*P+D*P*P)/4. 

E(J)   =   PT(J)-PM(J) 

EE(J)   =   PT(J)+PM(J) 

EP(J)   =   2.*E(J)/EE(J) 
PRINT 30, PT(J), PM(J), E(J), EP(J) 

30 F0RMAT (4F10.7) 

END 

END 

The program results are arranged below in Table B.l. 

Note that a maximum occurs at d = 1.3R for all values of 

P,  At this track spacing Pt-Pm is a maximum, however, Pt 

and Pm each has its maximum at d = 2R.  Here, both Pt and 

Pm are equal to P.  Another maximum for Ep occurs at d = 0.1. 

Here, Pm-Pt is a maximum. 
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Vt .05 10 .15 20 25 30 .35 .40 .45 .50 

0 .009  . 018 .027  , 038  , 049  . 061 .073 .087 .102 .118 

.1 .009  , 019 .030  , 041  . 053  . 066 .080 .094 .110 .127 

.2 .009  , ,019 .029  , 041  , 052  , 065 .078 .092 .107 .124 

.3 .008  . 017 .027  , ,037  , 047  , 058 .070 .083 .097 .111 

.4 .007  , ,015 .022  , .031  , .039  , ,048 .058 .068 .080 .091 

.5 .005  , Oil .017  , ,023  , .029  . ,036 .043 .050 .058 .066 

.6 .003  , ,007 .010  . ,014  , .018  , ,022 .026 .031 .035 .040 

.7 .001  , ,002 .004  , .005  , .006  , ,008 .009 .011 .012 .014 

.8 .001  , ,002 .003  , .004  , .005  , ,006 .007 .008 .009 .010 

.9 .003  , ,006 .008  , ,011  , .014  , ,017 .021 .024 .027 .031 

1.0 .004  , ,009 .013  , .017  , .022  , ,027 .031 .036 .041 .047 

1.1 .005  , ,011 .016  , .021  , .027  . ,033 .039 .044 .051 .057 

1.2 .006 ,012 .018 .024 ,030 ,036 .042 .049 .055 .062 

1.3 .006 ,012 .018 ,024 ,030 .036 .043 .049 .056 .063 

1.4 .006 ,012 .017 ,023 .029 ,035 .041 .047 .054 .060 

1.5 .005 ,010 .016 ,021 ,027 ,032 .037 .043 .048 .054 

1.6 .004 ,009 .014 ,018 ,023 ,027 .032 .037 .041 .046 

1.7 .004 ,007 .011 .014 ,018 ,021 .025 .029 .032 .036 

1.8 .002 ,005 .007 ,010 ,012 ,015 .017 .020 .022 .025 

1.9 .001 ,002 .004 .005 ,006 ,007 .009 .010 .011 .012 

2,0 .000 ,000 .000 ,000 .000 .000 .000 .000 .000 .000 

Values of Sp/100 for various values of P and d 

Table B.l 
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