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ABSTRACT 

This report is concerned with problems in passive sonar detection 

that arise when signal or noise properties deviate significantly from the 

simplest possible model (a target acting as a point source of broad band 

Gaussian signal in a background of isotropic Gaussian noiae). The problems 

investigated fall under two major headings 

1) Improvements in detectability obtainable from a knowledge of 

special features of signal or noise. Topics considered in this 

category include 

a) Detection in a strongly anisotropic noise field due to a 

nearby source of interference. 

b) Detection of targets whose radiated noise includes sinusoidal 

or narrow band components with appreciable power. 

2) Degradation in detector performance resulting from a lack of 

adequate knowledge of signal or noise statistics or from a deliberate 

choice not to use all available information in order to simplify 

the instrumentation. Problems in the second category include 

a) Detection in a noise field of unknown power level. 

b) Losses due bo sampling and clipping. 

I 
I 
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FOREWORD 

The work described in thi3 report was accomplished by members of the 

Department of Engineering and Applied Science, Dunham Laboratory, Yale 

University, under subcontract to the SUBIC program (contract NOnr 

2512(00)) during the period July 1, 1964 to July 1, 1965- The Office 

of Naval Research is the sponsor and General Dynamics Corporation 

Electric Boat Division is the prime contractor. Lcdr R.N. Crawford, 

USN, is Project Officer for ONR; Dr. A. J. van Woerkom is Project 

Coordinator for Electric Boat and Chief Scientist of the Research and 

Development Department. 

The SUBIC program encompasses all aspects of submarine system analysis. 

This report is the third in a series dealing with acoustic signal 

processing. Progress Reports no. 17 and 18 and no. 20 through 22 are 

included in this volume. The information originally in Report no. 19 

is included as part of Report no. 20. 
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I. Introduction 

The following is a summary of work performed under contract 53-00-10-0231 

between Yale University and the Electric Boat Company during the period 

1 July 196U to 1 July 1965. More detailed, discussions of the results as well 

as their derivation are contained in a series of five progress reports that 

are appended. 

Previous reports in this series have dealt extensively with the passive 

detection of a directional Gaussian signal (a sonar target) in the presence 

of Isotropie Gaussian noise. Signal and noise spectra were assumed to be 

known. The characteristics of the optimum (likelihood-ratio) detector were 

determined and it was shown that simple instrumentations in common use 

generally achieve a performance quite close to the optimum. It wais clear 

from the results that significant departures from standard instrumentations 

could be justified only if the state of knowledge concerning signal or noise 

differed materially from the conditions postulated above. 

The present report deals with several situations of practical importance 

in which the state of knowledge indeed differs substantially from the 

primitive assumption of directional Gaussian signal in Isotropie Gaussian 

noise with given spectral properties. The departures take two general 

directionst 

1) Cases in which the available information is stronger. Two instances 

of this type were considered in detail. 

a) Much of the "noise" background is due to interference from 

an undesired target (e.g., a nearby ship). If the interfering 

signal is also Gaussian, the superposition of interference 

and ambient noise results in a disturbance that is still 



Gaussian tut no longer saotropic. With strong interference 

there is a high degree of anlsotropy that can be used to 

Improve detection, 

b) The target Signal contains sinusoidal or very narrow-band 

components due to propeller motion, rotating machinery or 

similar causes. It is characteristic of such signals that 

their frequency is not known » priori, that it is likely to 

change over long periods of time, but that it remains 

essentially fixed for the length of time required in normal 

detection procedures. Thus on« is faced with the problem of 

detecting sinusoidal or narrowband signals of unknown center 

frequency. 

2) Cases in which the available information is weaker, 

a) One of the least realistic features of the primitive model 

is the assumption that the total noise power is fixed and 

known. In practice the total noise power is certainly not 

known a priori to any degree of accuracy and undoubtedly 

changes over prolonged periods of time, It therefore becomes 

^Depending on one >s point of view one can regard the narrowband case as 
either a strengthening or a weakening of the initial assumption of Gaussian 
signal with knot« spectrum. If one takes as one's point of departure a 
narrowband signal with fixed spectrum, then recognition of the fact that 
the center frequency of this spectrum is unknown represents a degradation 
of available information. On the other hand, if one takes the point of view 
that over a long period of time the signal power is distributed over a wide 
band, then or* gains considerable additional information from the knowledge 
that the power is in fact concentrated in a narrow band for the time intervals 
used in practical deteotion schemes. The latter point of view leads to a very 
natural transition to the sinusoidal case and is therefore chosen as the 
basis for classification here. 
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pertinent to inquire into the cost to the detection process 

of such lack of previously postulated knowledge, 

b)   Regardless of the actual state of knowledge concerning signal 

and noise, one may deliberately choose demotion procedure* 

that fail to usu all available information because of the 

greater simplicity of the resulting instrumentations.   The 

relative ease of processing digital data has made it attractive 

to convert the hydrophone outputs Into a series o£ binary 

numbers even though this clearly ontails some loss of 

information.   The effective utilisation of clipped data 

therefore forms a subject of considerable interest. 

II.   Detection in the Presence of Interference 

Work completed to date on the subject of passive target detection in the 

presence of ambient noise as well as interference is contained In Progress 

Reports No, 17 and 21.    Progress Report No. 17 is concerned with setting 

absolute bounds on the deteotabllity of targets in such an environment. 

Signal, interference and ambient noise are assumed tc be stationary Gaussian 

rmdorn variables with known spectral properties.   Signal and interference 

are taken as point sourcss with fixed locations while the ambient noise is 

endowed with no special spatial properties but is assumed to be independent 

from hydrophone to hydrophone.   The input signal-to-noise ratio is assumed 

to be small. 

Under these conditions the optimum (likelihood-ratio) detector is 

found to have the following output signal-to-noise ratio (defined as the 

change in average output due to signal divided by the rma output fluctuation )t 



'out 

T is the observation timaj S(co), I(oi) and N(») are the power spectra of 

signal, interference and ambient noise respectively. «.<»<% i8 *be 

processed frequency range (in rad/aeo), M is the number of elements of a 

uniformly spaced linear array of hydrophones, and x in the difference 

between the signal delay and the interference delay from hydrophone to 

hydrophone. 

The most important properties of the optimal instrumentation follow 

quickly from Eq. (1) [See Report No, 17, pp. 19-22] t 

1) The output signal- bo-noise ratio («id hence detection performance 

for fixed false-alarm rate) depends critically on , but has 

no strong dependence on T(co).    [in the limits of large and small 
N(co 

it is independent of I(u), except for the trivial case of 

target and interference in angular alignment], 

2) For M » 1 and a certain minimal angular separation of target 

and interference, the output signal-to-noise ratio is no smaller 

than that of a conventional (M-l)-element linear array detecting 

the aame signal in the sane ambient noise but in the absence of 

interference. 

Thtse two results may be interpreted as followst Given an array of 

reasonable «is* and a certain minimal separation of target and interference, 



the presence of a localized interference, however strong, has very little j 

influence on target detectability.   The optimum detector is apparently 

capable of eliminating the interference without significant cost to the 

remainder of the detection operation.   With a ijQ-element array, 2-ft spacing 

between hydrophones, au - 2nX50O0 rad/see, and a broadside target, the 

"minimal separation" referred to above is roughly 3°.   The corresponding 

figure for the endfire condition is about 20°. 

A standard power detector—which simply aligns all hydrophone outputs 

with the target, adds, squares and smoothes [Report No. 17, Fig. ij —can 

be distinctly inferior to the likelihood-ratio detector in an environment 

including interference.   When interference becomes the dominant influence— 

which occurs when M times the interference power exceeds the ambient noise 

power [Report No. 17, Eq. (20)1 —the output signal-to-noise ratio depends 

on the signal-to-interference ratio, rather than on the interference-to- 

ambient-noise ratio.   Thus large gains in detectability can be made by the 

use cf optimal techniques if the interference is very strong.   In the 

strong interference regime the output signal-to-noise ratio of the 

conventional detector varies asyn , whereas that of the likelihood-ratio 

detector varies as M.   Hence from this point of view also the likelihood- 

ratio detector achieves r >re effective utilisation of the available sensor 

dai>a. 

The performance index of ultimate interest is probably the detection 

probability fcr a fixed false-alarm rate.    Curves of this performance index 

as a function of input aign*l-to-ambient-noise ratio were computed [Report 

No. 17, Figs. 12 and 13J .    They «how advantages of the likelihood-ratio 

detector over the standard detector varying from moderate to large depending 

primarily on the Interf6»ancs-to-ambient-noise ratio. 

i 



The results of Report No. 17 make it clear that significant improvements 

in performance can be obtained in interference-dominated situations by 

departing from conventional detector design. There remains the question 

whether reasonable approximations to the theoretically possible performance 

can bs obtained with instrumentations of acceptable complexity. Report 

No. 21 is addressed to some aspects of this question. 

Since the likelihood-ratio detector achieves a performance largely 

independent of the interference at an overall cost of no more than one 

hydrophobe, it appears reasonable to search for a simple instrumentation 

that eliminates interference at a sacrifice of no more than on.a signal 

channel. This is accomplished by the instrumentation shown it Report No. 21, 

Fig. 1. The hydrophone outputs are delayed to align the interference 

components (the interference direction is easily measured because the 

interfering signal is presumably strong). Pairwise subtraction of adjacent 

channels yields M-l interference-free signals whose target components can 

now be aligned by a second set of delays. Conventional addition, squaring 

and smoothing follows. 

An analysis of the detector Just described yields an output signal-to- 

noise ratio quite close to that of the likelihood-ratio detector [Report 

No. 21, Fig. 2J . Except for targets in very close angular proximity to 

the interference, the degradation amounts to only about 1 db of equivalent 

input signal-to-ambient-noise ratio. From this point of view, therefore, 

the proposed instrumentation can be regarded as almost completely successful. 

On the other band, if one examines the average bvariag response pattern, one 

finds that target peaka are sharply diminished in a rather broad angular 
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neighborhood of the interference Report No. 21, Figs. i*-9 L  In qualitative 

terms, the zone of degraded performance extends over an angle roughly equal 

to the width of the beam formed by adjacent hydrophones. Thin observation 

suggests the required remedy. Instead of subtracting adjacent channels after 

alignment with the interference, one obtains the interference null by 

subtracting hydrophone pairs spaced a greater distance apart. Figure 10 of 

Report No. 21 gives one example of such a procedure. Analysis of a general 

arrangement of thie type yields an average bearing response pattern clearly 

showing target peaks »van in rather close proximity to the interference and 

under very unfavorable conditions of signal-to-noise racio [Report No. 21, 

Figs. 11 and 12]. 

Taken together, Reports No. 17 and 21 indicate that significant 

improvements over conventional instrumentations are possible in interference- 

dominated situations and that the improvements can be obtained with only 

moderately increased complexity in instrumentation. From a practical point 

of view the most serious modification is the need for a second set of delay 

elements. While the proposed instrumentation lays no claim to optimal!ty 

either in performance or in simplicity, one is tempted to speculate that 

the need for two sets of delay elements (or one set with storage facilities 

to permit sequential processing) is fairly basic, for one can hardly hope 

to eliminate interference without forming a beam on the interfering signal. 

"TPhe relative significance of output signal-to-noise ratio and average 
bearing response is discussed in Report No. 21, Section 7. 



III. Detection of Sinusoidal and Narrowband Signals 

Results on the detection of sinusoidal end narrowband Gaussian signals 

are oontained in Report No. 20.* it should be pointed out that certain portions 

of this material have been reported previously-. In particular, noch of 

Chapter II was contained in Volume II of this series as Progress Report No, 1$. 

Report No. 20 is concerned with the effect of frequency uncertainty on 

the detection problem. All other assumptions are therefore chosen as simple 

as possible. Spectra of narrowband signals and of the noise are assumed to be 

flat over their respectisa bands and wideband signal components (undoubtedly 

present in practice) are ignored. The signal, sinusoidal or Gaussian with 

bandwidth B„, is assumed to lie anywhere within a band B > B«, over which the 

noise spectrum is flat [See Report No. 20, Fig. III.lj . 

The results fall into two general categories: 

1) The physical structure of the optimum detector. 

2) The performance of the optimum detector. 

The structure of the optimum detector depends critically on the product 

BgT of signal bandwidth and observation time. If BgT » 1 , one has available 

a statistically significant sample of the Gaussian signal process. If the 

center frequency of the signal is known, the instrumentation problem reduces 

to the standard result for the detection of a Gaussian signal in Gaussian 

noiset a bandpass filter matched to the signal followed by conventional 

patter detection. With unknown center frequency it is shown in Report No. 20 

that the optimum detector for large output signal-to-noise ratio (good 

detectability) examines the output of a series of such detectors with filters 

having all possible signal center frequencies. If any one of the outputs 

exceeds an appropriate threshold, a signal is reported to be present.  In 

Report No. 20 contains all of the Information originally in No. 19 in addition 
to new material. 

2 
Is Report No. 20 this configuration la described as a "bandsweeping detector." 



practice, of course, one cannot construct filters for each of the infinity 

of possible signal center frequencies, Aa a first approximation one can 

simply divide the band B into r - B/Bg parts, eaoh of width B.. The first 

step of refinement might esnploy 2r overlapping filters [Report No. 20, 

Fig. III.In and further approximations to the continuously variable center 

frequency are clearly possible. From c practical point of view, the 

numerical results indicate that an instrumentation with 2r filters already 

gives a fairly good approximation to the optimum, so that much more 

complicated detector structures should be of limited interest. 

If B-T « i the available sample of the narrowband Gaussian signal looks 

essentially like a sinusoid at the center frequency of the signal band. It Is 

therefore not surprising to find that the optimum detector crosseorrelatea 

the received signal with a series of sinusoids at the various possible center 

frequencies [See Report No. 20, Kq. (17-22 )J. Since the phase of the received 

signal is not known a priori the correlation is performed at each frequency 

against two sinusoids in quadrature with each other. Because of computational 

difficulties the number of crosscorrelators required for a reasonable 

approximation to the ideal instrumentation (using a continuously variable 

correlator frequency) was not investigated in as much detail as the 

corresponding phenomenon for B_T » 1 . It appears clear, however, that the 

practical spacing of correlator frequencies should be of the order of * 

rather than B„. Over a period of T seconds correlators using eiuusoids 

separated by much less than « cpe would have essentially the sane output 

and would therefore be highly redundant. Numerical computations were actually 

carried out for correlator frequencies separated by m   cos, and the results 

are felt to give a reasonable approximation to the attainable optimum [Report 

No. 20, Fig. IV.l] . 
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Sine« a narrowband signal with   BgT « 1   la practically indistinguishable 

from a sinusoid, it follows that the detsction of a sinusoid of unknown 

amplitude, frequency and phase is simply a special case of the narrowband 

problem.   All comments concerning detector structure and performance carry 

over to the sinusoidal case without difficulty. 

The performance of the optimum detector can be discussed from two 

opposite points of view, as suggested earlier.   Starting with the known 

solution to the problem of detecting a narrowband Qaussian signal with known 

center frequency in broadband Qaussian noise, one can consider the degradation 

in performance brought about by the frequency uncertainty.   If the signal can 

lie in any one of r disjoint frequency intervals and "signal present" is tc 

be reported when any one of the r detectors operating on these separate 

intervals exceeds a fixed threshold, then the probability of .false alarms 

increases with r for fixed threshold level.    Conversely, if one wishes to 

maintain a fixed false-alarm rate, one laust increase the threshold level 

with r and must therefore tolerate a somewhat lower detection probability 

than in the fixed-frequenoy case.    From the other point of view one starts 

with a fixed signal power uniformly distributed over the entire processed 

band B and regards any knowledge about signal concentration in a narrower 

band Bg as additional information which can be used to enhance detector 

performance.   Under a fixed power constraint the input signal-to-noise 

ratio Rg within the signal band varies linearly with   r - B/Bg .   For fixed 

center frequency and low input signal-tc-noise ratio the output signal-to- 

noise ratio depends linearly on the input signal~to-noise ratio.   Thus the 

output signal-to-noise ratio would vary linearly with r if it were not for 

the false-alarm problem produced by the need to process r separate frequency 
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bands. Fran this point of vie«, therefore, there are two counterbalancing 

effects: Improvement due to the Increase of H_ with r and degradation due 

to the more severe false-alarm problem. The results of Report No. 20 

indicate that the first effect dominates as long as Eg «1 . Under these 

conditions the output signal-to-noise ratio is almost as large as one would 

predict from the given R_ and standard theory for fixed center frequency. 

When Rg reaches the order of unity, however, the picture changes. Once SL 

exceeds unity, the rms fluctuation of the detector output is no longer 

primarily due to the noise component of the input, but to the signal 

component. Further increases in IL not only increase the useful output 

but also the output fluctuation. Computations in the region of IL > 1 

are tedious to perform, and not enough accurate values have been obtained 

to determine the exact behavior of the output signal-to-noise ratio in that 

region. On* asymptotic value which is easily calculated is the limiting 

form for 3<,—+ 0 (hence IL—»* ). This is the case of a sinusoidal signal 

of unknown amplitude, frequency and phase. Results for this case indicate 

that the most favorable situation for detection is not necessarily that of 

greatest concentration of signal power in the narrowsst possible band. 

[See Report No. 20, pp. 163-16U, for a discussion of this problem.J Further 

work on the detection of signals strong in at least SOBS portion of the 

frequency spectrum 1B planned for the future.  In the meantime it would 

appear that little or no gain in detectabllity is mtiue by processing frequency 

bands so narrow that the expected signal-to-noise ratio within the signal 
2 

band exceeds unity. 

"Trequency uncertainty is not an essential part of this particular problem. 
The strong signal case has not been fully discussed in the literature even with 
predetermined spectral properties. 

2 
On the other hand, the use of narrower and narrower bands can achieve 

values of Rg close to unity for signals of smaller and smaller intrinsic 
power level. 
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IV. Detection in' an Unknown Noise Background 

Report No. 18 is concerned with the degradation in detectability 

resulting from a lack of a priori knowledge about the noise power. It may 

be viewed as a first step towards a model presupposing no prior knowledge 

of noise statistics. In Report No. 16 the noise is still assumed to be 

Gaussian with known spectral shape. Only the level (and hence total power) 

is regarded as unknown within reasonable limits. 

On a general level, the report demonstrates that a sufficient statistic 

for detection under the above conditions is furnished by the two-dimensional 

random variable (u^,u„) , where 

^•Sx'ljS«"1» (2) 

u2-x«Q-1x (3) 

5 is a measure of the average signal power, x is the vector of received 

signal samples at various hydrophones, x1 is the transpose of x, Q is the 

normalized noise covariance matrix and P is the normalized signal covarlance 

matrix. 

If the noise power is known, Eq. (2) alone forms a sufficient statistic. 

The additional operation required without such knowledge ia specified by 

Eq. (3). In the absence of signal this amounts simply to the estimation of 

tfcc noise power from the available data. If a signal is present it is not 

possible to obtain data on the noise alone. However, the operation of Eq. (3) 

is matched to the noise properties (through the matrix Q" ), and to the extent 

that signal and noise differ (in directionality, spectral properties, modulation, 

etc.) it can achieve a measure of discrieiination. 

In practice one i« frequently interested in constant false-alarm rate 

(CFAR) performance. It is shown [Report No. 18, pp. hrSJ that a process of 

threshold detection on the linear combination u. - au., (a a constant} yields 
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CFAR operation., While any other quadratic form u~ - x'Ax would also lead 

| to CFAR operation, it is demonstrated {Report No. 18, Appendix AI that the 

choice A - Q  has properties that are desirable although not necessarily 

optimum in any absolute sense. 

On a more specific level, the output signal-to-noise ratio of the CFAR 

detector [Report No. IP, Eq. (13)] is evaluated for several particular 

situations of practical interest. It is shown that for large arrays (M » 1) 

lack of knowledge concerning the noise power has little influence on 

detectability because adequate estimates of the noise level can be made from 

Eq. (3). The cost of such estimates is roughly K hydrophone! i.e., deteotion 

performance is the same as that of an array with M -* hydrophones operating 

in a completely known noise environment. At the other extreme, when M ■ 1 , 

detection is impossible unless signal and noise have distinguishing features 

other than directionality. One such feature investigated is the presence of 

amplitude modulation on the signal. Under these conditions it is shown that 

detection can be accomplished with a single hydrophone but that the 

advantage gained from knowledge about the modulation rapidly decreases as 

the number of hydrophones increases. Even with only two hydrophones, tha 

advantage to bj gained from sinusoidal modulation is equivalent to no more 

than about 1,5 db in input signal-to-noise ratio. 

A .lumber of computations were carried out to gain insight into the 

effect of differences in spectral properties of signal and noise on the 

above results. All such efforts led to the conclusion that the effects 

were minor except for extremely small arrays. 
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V.    Jhe Coat of Clipping 

Because of the practical convenience of working with digital data, 

there \$. considerable interest in the inherent loss in detectability 

resulting from the required sampling and quantizing operations.   Several 

earlier reports in this series have dealt with various aspects of this 

problem [Reports No. 2, k and 6 of Vol. I and Report No. 11 of Vol. IlJ . 

Most of these reports considered the effect at clipping on specific 

instrumentations.    Only one [Report No. 6J attempted to assess the 

inherent cost of clipping, and it did so under highly idealized conditions 

(the initial data were assumed to be independent samples of a Gaussian 

random process).   All the previous work dealt with Gaussian signals and 

noise. 

Report No. 22, while working with another specific instrumentation, 

gives new insight into the meaning of the results obtained previously, 

particularly with regard to the relativ« importance of sampling and 

clipping in the degradation experienced with digital data handling 

techniques.    It also gives some results for detection in an environment 

of non-Gaussian noise. 

The particular instrumentation under study is the polarity coincidence 

array detector (PCA), a natural generalization of the polarity coincidence 

correlator (PCC),    It observes the hard-clipped outputs of all array 

elements and uses as a test statistic e quantity that is in effect the 

naxiraura nurabur of outputs having the same sign.    This scheme has the 

following attractive properties: 

l) If the input consists of independent samples ox a Gaussian random 

process, it is asymptotically optimal in the Neyman-Pearson sense 

for small input signal-to-noise ratios. 
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2) If the input consist* of independent but not necessarily 

Gaussian samples, the detector roeiniains a constant false- 

alarm rate independent of the f.aput distribution. 

3) If the input consists of dependent Gaussian samples, 

constant false-alarm properties are maintained in spite 

of possible variations in the noise power level. 

Because of the asymptotic optimality in case 1) this situation is 

equivalent to the problem treated in Report No. 6 and one arrives at the 
o 

same degradation of - or 1.96 db in equivalent input signal-to-noiae ratio. 

In case 2) the degradation oan be either larger or smaller than 1.96 

db, depending primarily on the behavior of the noise probability density 

function near the origin. If the noise probability density near the 

origin is higher than that of a Gaussian random variable with the same 

power, the degradation is less then 1.96 db (impulse noise would be a case 

of this type). Conversely, with low values of noise probability density 

near the origin, there can be a substantially greater loss. 

Case 3, dependent Gaussian samples, sheds light on the sampling problem 

because increase in dependence may be viewed as the consequence of more 

rapid sampling. It is shown that the loss in detectability declines as the 

dependence increases. One typical example yields a reduction from 1,96 db 

to 0.63 db degradation as the sampling rate is varied from a lew value 

furnishing essentially independent samples to s very high value. It is 

important to keep in mind under what circumstances a portion of the 1.96 db 

loss is recoverable. If, as in Report No. 6, signal and noise are Gaussian 

random processes with flat power spectra over the entire processed band 

(0,W), then a series of samples taken at intervals of «n sec arts livJKpwdent 
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and completely describe the received signal. There has been no sampling 

loss. If these samples are new hard clipped, there if a 1.96 db loss in 

detectebility which mast apparently be charged to the clipping process. 

On the otter hand, if the continuous signal is clipped and then sampled 

at a rate increasing from 2W samples per second to a very high value, then 

the degradation of detector performance declines from l.?6 ub to well under 

1 db.  From a practical point of view it is important to note that the 

sampling rates required in order to recover most of the I.96 db loss are 

quite high compared with the nominal cutoff frequency of signal and noise 

spectra [see Report No. 22, Fig. 3 1, 

Also considered in Report No. 22 are several variations of the PGA 

detector that may be somewhat more convenient from the point of view of 

practical implementation. Their figures of merit tend to be somewhat, 

though not drastically, inferior to that of the PCA. 

Report No. 22 ie part of a continuing effort to determine the cost 

of using digital techniques in processing sonar data for detection 

purposes. Additional topics in this area now under study include 

detection under condition of high signal-to-ncise ratio and detection 

in an environment dominated by utrong interference. 

rrom another point of view this result nay be regarded as a 
consequence of the bsndspreading produced >w clipping. The clipped signal 
is not b/z-iimited to (0,W) so that samples at intervals of (1/2W) sec 
no longer completely represent it. It is clearly immaterial to this 
argument whether the physical operation of clipping takes place before 
or after the sampling operation. 
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Suwnary 

The report deals with the passive detection of a sonar target in the 

|| presence of ambient noise as well as interference from a second target, 

possiuly *ssy "^ch stronger than the first.   Target, interference and ambient 

noise are assumed to be Gaussian random processes, the ambient noise being 

statistically independent from hydrophone to hydrophone of the (linear) 

receiving array.   Output signal-to-noisa ratios and error probabilities 

are calculated for conventional and likelihood-ratio detectors.   The 

following results are obtained: 

1)   The output signal-to-noise ratio of the conventional detector 

varies as M for   j » VM
1
 and as '\fj? for  | « yfi?.     [N 

average ambient noise power, I ■ average interference power, 

! 

i 

i 
I 
I 

! 

M s number of hydrophones . 

2) The output signal-to-noise ratio of the likelihood ratio detector 
N varies as M for low as well as for high values of y . 

3) The effective input noise power of the conventional detector is 

I approximately N for   | » VM
1
 and I   for   | « VM* • 

h)   The effective input noise power of the likelihood-ratio detector 

I is approximately N for low as well as for high values of w. 

5)   Except for targets vary close it. bearing to the interference, the 

performance of the likelihood-ratio detector is no worse than 

that of a similar detector with one less hydrophone operatint in 

"4he analysis of the conventional detector aaswsas that the normalized 
autocorrelation functions of interference and ambient noise have the same 
exponential form.   No such restriction is made in the general analysis of 
the likelihood-ratio detector, but many of the specific numerical results 
are based on the aasymption that the spectra of signal, interference and 
ambient noise have the same form, 

i-i 



A-ii 

the sane ambient noise background but In the absence of inter- 

ference. Thus the cost or eliminating interference from a 

point scurce is no more than one hydrophone. 

6) For targets angularly remote from the interference, the advantage 

of the likelihood-ratio detector over the conventional detector 

N 
depends critically on the value of j . Sampla calculations of 

miss probability for fixed false-alam probability (for a 1»0- 

element linear array with 2-ft hydrophone spacing, processing 

bandwidth of 5000 cps, and false alarm rate 1%) yield an 

advantage equivalent to about 2 db of input signal-to-noise ratio 

fox* m*k*   Corresponding figures for lower values of * are: 

7 db for | = 1 , 17 db for | - 0.1 . 

7) As the interference approaches the target in bearing, the 

performance of both detectors declines.   For a likelihood«*atio 

detector *.iith processing bandwidth of 5000 cps (using a liO-element 

linear array with 2-ft hydrophone spacing, tars^t broadside, false- 

alarm rate 1 %}% this loss in performance amounts to less than •* db 

in equivalent input signal-to-noise ratio as the relative bearing 

of interference and target decreases from 90° to 3°.    Only for 

relative bearings of less than 3° is the decline in performance 

pronounced.    For a conventional detector without pre-filtering, 

operating under similar conditions, the decline in performance is 

equivalent to 5-6 db in input 3igr»al-to-i oise ratio as the relative 

bearing varies from 90° to 3°.    The corresponding figure for a 

conventional detector with pre-whitening is of the order of 3 db. 
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8) The ability of the likelihood-ratio and conventional detectors to 

detect targets in angular proximity to the interference varies 

in the some manner with target location relative to the array 

axis.    It is best in the broadside condition end poorest in the 

endfira condition. 

9) The elfect of clipping on the average bearing response pattern of 

a conventional detector is no greater in the presence of inter- 

ference than in its absence (interference remote in bearing from 

target). 



I. Introduction 

This report deals with the problem of passive sonar detection of a weak 

target signal in the presence of interference from a second target, possibly 

very much stronger than the first, as well as the usual ambient noise. 

Signal, interference and ambient noise are assumed to be independent, 

stationary Gaussian random processes with known spectral properties. The 

receiving array is assumed to be linear and to consist of M equally spaced 

omnidirectional hydrophone». The wavefronts of target signal and inter- 

ference are regarded as plane over the dimensions of the receiving array. 

Since interest centers on the effect of interference, the ambient noise is 

treated as statistically independent from hydrophone to hydrophone, an 

assumption that achieves considerable computational simplification and is, 

in any case, not too unrealistic for hydrophone spacings above a fairly 

small minimum. 

For the purposes of the present investigation the sum of interference 

and ambient noise may be regarded as the effective noise. Under the 

assumptions stated aaove, the effective noise is therefore another 

stationary Gaussian random process with known spectrum. Thus the problem 

under investigation differs from that treated in a series of earlier 

reports only in that the effective noise is strongly anisotropic if the 

interference exceeds the ambient noise by a substantial amount. The 

basic analytical techniques developed in the earlier reports remain for the 

most part applicable with only minor modifications. However, some of the 

specific results are decidedly different when the anisotropy of the noise 

is pronounced. 

''in particular Reports No. 2, 3, 6. 

A-l 
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The present report addresses itself primarily to the following three 

problemst 

1) The effect of interference on the performance of a conventional 

(power) detector. The report derives the output signal-to-noise ratio of 

a conventional detector and shows its dependence on such factors es inter- 

ference power, number of elements in the array, and angular location of 

the interference relative to the target. 

2) Improvements in detectability attainable through use of optimal 

procedures. If one assumes that the angular location of the interference 

is known or can be measured quite accurately (which is a reasonable 

assumption when the interference is strong), one feels that it should be 

possible to achieve improvements in detection by "nulling outn the inter- 

ference by proper operations on the various hydrophone signals. Such a 

procedure will, of course, also tend to diminish the desired signal so that 

a compromise is called for. The report investigates the performance of a 

likelihood ratio detector -Jhich automatically achieves the best compromise. 

The results of earlier studies on likelihood ratio detectors have indicated 

that the gains to be made by rwiing this generally rather c&aplicated 

instrumentation are slight unless knowledge concerning important distinguishing 

features of signal and noise it> available at the receiver. The results of 

the present report suggest that noise anisotrapy may be precisely such a 

feature. 

3) Detection from clipped hydrophone data. It is convenient for a 

number of reasons to clip the output of each hydrophone (i.e., in effect 

to reduce it to a binary number) before attempting to form beams or engage 

in other data processing procedures. There is evidence to suggest that such 

., | 
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a procedure nay be undesirable when the effective noise consists primarily 

of interference. The report attempts to give at least a partial assessment 

of the cost of clipping in the presence of Interference. 

Nomenclature, The following Symbols will be use<f. throughout this 

report: 

a.(t) * signal component of the output from the J  hydrophone 

i.(t) s interference component of the output from the $ 
3 hydrophone 

n.(t) * ambient noise component of the output from the J 
3 hydrophone 

V- s signal delay from j  to k hydrophone 

T.. s interference delay from j  to k  hydrophone 

S * average signal power at each hydrophone 

I • average interference power at each hydrophone 

N * average ambient noise power at each hydrophone 

S(«o) a signal spectrum 

I(u) ■ interference spectrum 

N(co) * ambient noise spectrum 

p (T) * w s^(t) s.(t + *c) s normalized autocorrelation of the 

signal at each hydrophone 

PJOO ■ j i.(t; i.(t + T; » normalized autocorrelation of the 

interference at each hydrophone 

P (T) ■ ~ n.(t; n.(t + *] = normalized autocorrelation of the 

ambient noise at each hydrophone 



r 

M   - number of hydrophones 

T   ■ observation (smoothing) tine 

II. The Effect of Interference on the Performance of a Conventional Detector 

This section is concerned with the output signal-to-noise ratio of the 

conventional detector shown in /ig. 1. As in several earlier reports, 

output signal-tonoise ratio is here defined as the change in DC output due 

to the appearance of a target signal divided by the rms fluctuation of the 

output. With the array electrically or mechanically trained an the target 

location, the change in DC output due to signal is 

r   1 

A (DC output) - ITS (1) 

s^t) + njft) ♦ i^t) 

s2(t) * ag(t) * i2(t) 

3M(t) + nM(t) + iM(t) 

M hydrophones 

summer squarer m low-pass 
filter 

z(t) 

Figure 1 
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Assuming low input signal-to-noise ratio at each hydrophone, the output 

variance can be written town immediately from Report No. 3, Eq.  (L|6>s 

CO 0» 

rjL,    \ 2I2 
D (a) - -y- 

M    M    K    M     f ,        7 

Z E Z  Z      pi(T3h+T) pi<V*> * + T- «*    Pn^T> * 
3-1 h-l k-1 «-1 *. J *> - (2) 

T is the smoothing time of the low-pass filter, which consists of a device 

averaging y(t) over the past T seconds, Pn(f) is the normalized auto- 

correlation function of the ambient noise. 

It is probably not unreasonable to assume that the autocorrelation 

functions of interference and ambient noise are simple exponentials. 

Furthermore, the bandwidth« of both processes are apt to be comparable 

in many cases of practical interest.  Hence it appears permissible for 

purposes of rough approximation to make the relatively simple assumption 

-CO|T| 

P±M - Pn(t) - e (3) 

a is the effective bandwidth of interference and noise, 
o 

Since the hydrophone array is linear and equally spaced it follows that 

Tjh - (i  - h)ro (U) 

where x   is the rtelay of the interference from hydrophone to hydrophone. 

Hence 

h*K -M. liA-*in *t 
Pl(Tjh + T).e   «" •    ' (5) 

One would certainly not process a band very much larger than that of the 
signal, so that one may rule out the case of an effective interference band- 
width broad compared to the signal bandwidth. On the other hand, if the 
interference were extremely narrow in bandwidth compared to the signal, one 
could effectively eliminate it by filtering. Thus the case of primary interest 
is that of signal and interference at least roughly equal in bandwidth. A 
similar argument applies to the relative bandwidths of signal and ambient 
noise. 
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Thus the indices j, h, k, t   in Jq, (2) appear only in the combinations j -h 

and k -t . For further manipulation it is convenient to define 

Jpi<Tjh+T)pi<Tk ♦*>*-°H*W (6) 

Then tiie fourfold sum can be reduced to a double sura by the following 

procedure. 

The change of variable j -h - r yields 

M M M  M 

EE E Ew-«- 
j=l h-l k-1 *-l 

MM       M  M M-l MM -(M-l) 
ME Eco,k-* + E E E(M-r)cr,k.<+E E E ^r)%^ 
k=l 1*1 k=l *»1 r-1 k-1 M r--l 

MM        MM M-l 

" M E £°0,k-* + E E E (M-r)(Cr,k-< + C-r,k-«> ft) 
k-1 *-l      k-1 4-1 r-1 

The further change of variable k -1  - s leads to the form 

M  M  M  M M-l 

E E E £ Wi ■ A>,o♦ M E ^v + Vs> 
3-1 h-l k-1 «-1 s-1 

M-l M-l M-l 
+ 

r-1 r-1 s-1 
ME(M-r)(Cr,0+ C-r,0> + E E(M-r^M-8)(Cr,s+C-r,s + Cr,-s + C.r,-s^ 

(8) 

1 
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The required coefficients are determined by a straightforward computation 

from Eqs. (5) and (6), 

o 

%s-^<1+8Vo>e"SV° <12> 

C       - i (1 + |r-s| Vo) e '•• (13) 
* o 

i   r 1   -(rl"8K,Tft C-r,s-F[1+(™VoJ* °° C1U) 

i 

From symmetry conditions it is clear that 

C0,s " C0,-s * Cr,0 " C-r,0 | 

Cr,s"C-r,-s W | 

c      - c -r,s      r,-e 

Hence 

M    M     M     M M-l 

EE E EW'-^o^E^v. 
j-l h-1 k-1 *-l c-1 

M-l M-l 
+ 2E   E(M-r)(M-8)(Cr,s + C.r,s' 00) 
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Substitution of Eqs. (11) through (HO into Eq.  (10) yields 

M    M    M    M 

)-> L L Lcs»*,x-t" 
j-l h-l k-1 Cl 

!:! 

1W -StOT ,W 

-j^M2* l4M^(M-s)(l+8CüoTo)e     00 + 2£(M-»)S 

3-1 8-1 

"28ca«T« 
1+ (1+ 2sw T ) e      ° ° 

0 0' 

M-l r-1 
l£  £ (h-r)(M-s) [l* (r-a V0]e ° ° + [l+ (r+s)»^], 
r-2 8-1 V 

■(»«Vo 

(is/ 

I       ! 
i I 

Use of Eqs. (l), (2) and (15) now gives the desired output signal-to-noise 

ratio 

(DC output) „ 
D (output) 

&,- 

MS 

i».A.kF— ..-V..2 
M-l 

R^(M-s)(l+s<ooTo)e 

8-1 

M-l r-1 

*M* 
^(M-s)2 

s-1 

-23« T 
l+(l + 2s«T)e      00 

0 o 

1 

j£ £ E (M-r)(M-s) [l+ (r-s>ooTo]e" • • +[l+ (m^] 
-(r+s)o)T 

r-2 n-1 

(16) 

Useful insight into the meaning of this result can be c rained by considering 

the special case 
-sea ? 

e     00tro     f.-     8>1 
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This corresponds to a reasonably broad-band interfwenca sufficiently remote 

from the target in bearing so that the cross-correlation betraten the 

Interference received a» adjacent hydrophones (at the sane instant of tins) 

is negligible. An equivalent condition would be that the autocorrelation 

function of the interference vanishes for values of its argument equal to 

or larger than the interference delay from hydrophone to hydrophone. 

If, under this hypothesis, the exponential terms in Eq. (16) are set 

equal to zero, one obtains 

M S A (DC output) m 

D (output) 
(17) 

The remaining summation can be carried out without difficulty, the result 

being 

A(DC output^  ->Pwo M_S_ 

In the absence of interference, Eq. (16) reduces to 

A(DC output) ,-feMS 

D(oubput)   '  2  N 

(18) 

(19) 

In this case the output signal-to-naiae ratio varies linearly with the number 

of hydrophones. Comparison with Report No. 3, Eq. (80), indicates that this 

basic linear dependence on M is retained even if the isotropic ambient noise 

is not independent from hydrophone to " ydrophone. 

"Ttoder the assumption that the spacing between hydrophones remains 
fixed as H varies. 

I 
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In the presence of interference (noi>isotropic noise), on the other hand, 

Eq. (18) indicates an increase ot output signal-to-noise ratio With only v H 

once (I /3]X 211 » N . If the interference power is awaller than the ambient 

noise power, an Increase in the number of hydrophones will therefore 

initially achieve a linear improvement in the output signal-to-noiae r?+io. 

In this range the effective input noise power is approximately N. Beyond 

a certain value of K, however, further improvement depends only on VM 

and the effective input noise power becomes approximately I. It will be 

shown in the next section that optimal detection procedures can preserve 

tho first power relation and at the same time achieve an effective input 

noise power of the order of N for all values of M. 

It may, at first glance, appear surprising that interference should 

result in a different detector performance than isotropic noise whon the 

interference is uncorrelated from hydrophone to hydrophone. It must, 

however, be remembered that this lack of correlation applies only to the 

hydrophone outputs at the same instant of time. Since the interference 

comes from a single source, there exists some value of relative delay 

for which the interference components of any pair of hydrophone outp .a 

are perfectly correlated. If, as was Implicitly assumed in the computations, 

the smoothing time T is much larger than the travel time of the interference 

wavefront across the array, then this coherence can and does produce 

fluctuation in excess of the isotropic noise result at the receiver output. 

Since all terms in the denominator of Eq. (16) are non-negative, 

Eq. (18) provides an upper bound on the output signal-to-noise ratio for 

any value of ®Qy ,   A lower bound is provided by the case of interference 

aligned in bearing with the target (T - 0), in which case Eq. (16) 

reduces to 



n(DC output) „ JTeo        I! 3 

D(otttput) v*7* -$mf? 

A-01 

(20) 

The upper bound is, of course, attained only If a   ^ Q for some value 

of the bearing angle of the interference relative to the target. 

In Big. 2 the output signal-to-noise ratio j£q. (l5)J is plotted in 

normalized form as a function of x - » * for the case of primary 
oo r        " 

interest here, I»S . The number of hydrophones M is a parameter in 

this computation. 

In order to exhibit the actual dependence of output signal-to-noise 

ratio on interference bearing 0 relative to target bearing, the curve for 

liO hydrophones is replotted in Fig. 3 as a function of 0 for the target 

in broadside position.  In that case « T » a  - sin 0 , where d is the r oooc' 

spacing between hydrophones and c is the velocity of sound in water. 

Uith 2-ft hydrophone spacing, the values of u - - 1, 2, and h chosen for 

the plot correspond to interference bandwidtha of approximately I4OG aps, 

800 cpa and 16OO cps respectively. 

niftth the target in endflre position, the angular discrimination is 
substantially poorer because of the slower variation of T with 0, See 
discussion in Section HE. 

i 
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III. Improvements in Detect ability Through use of Optimal Procedures 

The basic theory of the likelihood ratio detector for Gaussian signals 

and noise is discussed in Report No. 3. Host of the general developments 

of that report remain applicable to the present problem. Thus if one 

writes the output of the j  hydrophone as 

ej(*) " Ci^fa) oes %*> + B^1») sin Mn*        (21) 

then the A.(n) and B.(n) are independent Gaussian random variables with 

zero mean. If one writes 

x±(n) •>( 

Ai+1(n) 
T 

Bi(n) 

i odd 

i even 

and defines 

(x^n) x^n)) - Pih(n) 
s 

(xj (n) x^n)) - q^n) 
N 

(22 f 

(23 f 

(2hf 

then the output signal-tc-noise ratio can be written simply in terms of the 

matrices P(n) and Q(n) whose »laments .«J?e P^n) and ^(n) respectively. 

Thus onj obtains 

TNote that the sequence x,,*«,.. is here defined to correspond to 
A-jB-yLjBj.., rather than to A-,A2...AM,B-,B2...B,. as was done in 
Report No. 3. This is strictly a matter of computational convenience. 

"In Report Ho. 3 Pju and q,. ore normalised with respect to the 
signal end noise spectra. This is inconvenient here because ambient noise 
and Interference may have different spectral functions. 
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APJLSÄi . ^tej^JQ-^n)!2]' (25) 
D(output)      iF H n     (L J J 

This expression follows directly from Report Ho. 3, Eqs. (11), (21) and (23). 

However, the simplification achieved in the earlier report by expressing the 

trace of the square of   P(n) Q   (n)   in terms of the square of the trace is 

not applicable here since it depended on symmetry properties in the noise 

matrix that are present only in the Isotropie case. 

The primary computational problem is the inversion of the noise matrix. 

Since ambient noise and interference are independent, the Q matrix is 

actually the sum of a diagonal matrix (the ambient noise matrix) and a 

non-diagonal matrix (the interference matrix) which is the signal nutrix 

for a target located in a direction other than that to which the array is 

steered.   The ambient noise matrix has the diagonal elements   H(w )A»   , 

where H(») is the ambient noise spectrum.   Designating the interference 

spectrum by 1(a)» it is a simple matter to write down the interference 

matrix (and hence the complete noise matrix) from Bryn'sr expression for the 

elements of the signal matrix.   The result Is 

T". Bryn, "Optimal signal processing of three-dimensional arrays 
operating on Gaussian signals and noise," J.A.S.A. Ik, Ho. 3, pp. 289-297, 
March 1962. 
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With the array steered on target the signal matrix it 

P(n) - S(«n)A» 

1 0 1 0 

0 10 1 

10 10 

0  10  1 

10  10 

0  10  1 

1 0 

0 1 

1 0 

0 1 

1  0 

0  1 

(28/ 

The computation of Tr( P(n) Q (n)l S la tedious but basically 

straightforward. Details are given in Appendix B. The result is 

N(OL) S2(con) 

7(%) 
M + 

N(«n) 

TUT) 

MH-1+- 

«Vj 

M-l 

- 2) (M-J) cos tat T 
t_i        n o 

12 

I 
(29) 

Substitution into Eq. (25) yields the output signal-to-noise ratio 

o(DC output)  1  I)  JS(wn) _ 
D(output)       WVFn1^ 

fr-D* 
M-l 

2^(14-*) cos to. T 
n o 

<-l 

N(o)n) 
S (30) 

Steering may bo mechanical cr electrical. In the latter case the 
parameter T of the noise matrix must be interpreted as the difference between 
the interference delay and signal delay from hydrophone to hydrophone. 
Electrical steering implies the insertion of dolay at the output of each 
hydrophone. Since no information is destroyed by this operation, the 
performance of the likelihood ratio detector is not affected by it. Hence 
with proper interpretation of T the results obtained here are valid £ov any 
target bearing relative to the array axis. 

Tlote this is sisply Eq. (26) with T » o, N(CIL) - 0 and !(«_) ■ S(<0. 
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2n If the observation time T - T~ is sufficiently large so that none of the 

u -dependent terns in Eq. (30) change significantly over an interval An, the 

output signal-to-noisa ratio can be written in integral form see Report 

No. 3, Eq. (29)1, 

.'(DC output) 
D (output) 

) 008 tax 

• du 

(31) 

ca, < ca < cou is the frequency range (in rad/sec) processed by the detector. 

N(u) 
If W-jj< »M for all u in <^ < « < »2 > i.e.» if the dominant noise 

is ambient noise, then Eq. (31) reduces to 

a (DC output) 

D(output) 'MM du (32) 

Comparison with Report No. 3, Eq. (32), indicates that this is simply the 

output signal-to-noise ratio of a likelihood ratio detector operating in an 

Isotropie Gaussian noise field uncorrelated from hydrophone to hydrophone. 

N(u) On the other hand, if  »V4 « M - 1   fcralluln   «, < u < «u    (and  x   f 0), 

Eq, (31) becomes 

^^^«rf--iE<» 
^2 

I) COS  /UT du   (33) 

2qs. (32) and (33) clearly show two important differences between the 

likelihood ratio detector and the conventional detector [characterised by 

Eq. (18jit 
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1) The effoctlvo input signal-to-noise retio of the likelihood ratio 

detector is jrfj* for high es well oe low levels of interference. 

For the conventional detector the effective input noise power is 

I when tho interference bee« is dominant. 

2) The output signal-to-noise ratio of the likelihood ratio detector 

increases with H for high as well as low levels of interference. 

For the conventional detector the output signal-to-noise ratio 

varies only as vM once the interference becomes dominant. 

In the special case T ■ 0 (interference aligned in bearing with the 

target) 
M-l 
£ (M - I) cos ^«^o - Efi^il Ok) 
*-l 

Thus the terms independent of «J-jU in the numerator of Sq. (31) cancel and 

one obtains 

a (DC output) m 

D(output) 
*m 

x . «•> 
4L  L   M». 

 1 
2 

da (35) 

In this ease, as one would expect, the likelihood ratio detector shows the 

same type of behavior as the conventional detector (i.e., dependence of 

output signal-to-noise ratio on £*~4 and M for >|^ » M and on y*jj-t 

and "VM for •?-* « M . Any advantage it may still possess over the 

conventional detector depends strictly on its ability to discriminate 

between the spectral properties of signal, noise and interference, rather 

than on spatial anisotrope of the noise field. If x4 0 but small, 

i.e., if the interference is located at a bearing oloae to but not identical 

with that of the target, the cancellation leading to Eq. (35) will not be 

^ee Eq. (20). 
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jÄsrfect. Since the nor? no longer perfectly cancelled terns In the numerator 

of Eq, (31) depend on IT, they will eventually dominate. However, in this 

case the inequality JrjU « H~l may have to be quite strong before the 

asymptotic expression of 2q. (33) becomes valid. 

In order to compare the ability of the likelihood ratio detector and 

conventional detector to resolve in angle a weak target from a nearby 

strong interference, it will be of interest to construct a curve similar 

to fig. 2 for the likelihood-ratio detector. For that pvrpose let 

S      S 
S(w) « » N(co) - - £(") over the band processed, i.e. assume that signal, 

noise and interference have spectral functions of the same form though not 

necessarily of the same power level. 

With a.  - 0 Sq. (31) now assumes the form 

A (DC output) 
D (output) 

»•I 
M|M-1 + Jj - 2^T (H- I) cos lonQ 

I^[M-1 + ||   -lMK-ltSj](M-«) 

dco 

«in &cuT c o 

Vc 

M-l M-l 

+ 2 £   £(M-*)(M-r) 
*-l r-1 

sdn(<-r)<DkT      sln(6trWf 

(/-r^i (&-r)c4,i 

V2 

(36) 

The asymptotic form   (swr   »1)   of Eq.  (36)   cerresponding to 

Kq.  (18)   is 
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AjDC 

D(output 

g^ffitj   -.f? I "l"-^!! -f , i oi.i)(a.i)' 

Tn ff (M"1)  - "TB* 
1 + HT 

1   N 

f or   M » 1 (37 J1 

If  | <K M -1   this reduces to 

A(DC output) y-fe   S (M_1) (3Q) 

D (output) 

In the absence of interference the output signal-to-noise ratio of the 

likelihood-ratio detector is from Report No. 3, Eq. (32)1 

& (DC output) m -W *% S M 
D(output)   "^ 

(r 

Comparison of Eqs. (38) and (3?) suggests that complete elimination of the 

interference is accomplished at the expense of one degree of freedom, i.e. 

the performance of the detector in the presence of strong interference as 

well as ambient noise is the same as that of a similar array (same hydrophone 

spacing) operating in ambient noise only but having one less hydrophone. 

The last version of Eq. (3?) indicates that for j not very small compared 

with M-l the output signal-to-noise ratio is somewhat larger than the 

figure given by Eq. (38). The radical in the first form of Eq. (37) can 

only increase the result. Thus the elimination of interference is actually 

accomplished at a cost of somewhat less than one degree of freedom. Whether 

these statements are true under other than the asymptotic conditions 

considered here remains tc be investigated. 

It is clear from Figs, k and 5 that this approximation become: very good 
for values of OUT exceeding unity by only a relatively small amount. 
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„PV s 
Figure I» shows Eq. (36), normalised with respect to (-jr » » plotted 

u 
as a function of y for M - UO . For * < k   the variation in output 

N signal-to-noise ratio with « is too email to be obeenrable on the scale of 

this graph, except near   CCLT   - 0 .    Figure 5 gives the equivalent picture 

for   H - 10 ,   Comparison with the conventional detector pq. (16)1 is 

complicated by the fact that Eq. (16) depends on a t . not on the variable 

(CUT   appearing in Eq. (36).   co  is the frequency rt which signal, noise and 

Interference spectra reach half of their low-frequency values,   au, on the 

other band, is a rather arbitrary limitation on the frequency band processed 

by the likflihood-ratio detector.     Since the analysis of the conventional 

detector implies the absence of any band-limitation imposed by the detector, 

c reasonable comparison demands that one choose COL appreciably larger than 

co .    An acceptable value night be   cog - it co    , which makes the multiplying 

constants of Eqs. (16) ana (36) equal.   For the signal bandwidths mentioned 

in Section III (UOO cps - 1600 cps) this corresponds to detector bandwidths 

of 1250 cps - 5000 cps, which certainly does not appear- excessive.   Hence 

the conventional detector curves for   •« - 0.1, 1 and It   appearing on Figs. 

k and 5 were derived from Eq, (16) by choosing   ecu - sa    and normalizing 

with respect to "y-ig* JT •   It is clear from comparison of the curve.? that 

the likelihood-ratio detector exhibits distinctly superior angular 

discrimination near the interference location.    In addition, of course, 

the/e is the expected improvement .JI detecta'oility for targets remote in 

Tn practice it is determined by the fact that, counter to the 
s s assumption   S(co) - « N(co) - « I(co) , the input signal-to-noise ratio 

becomes negligible above son», unite frequsnoy.   See discussion In 
Report No. 3. 
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bearing from the interference.    Both advantages remain significant even for 
N 1 j> > 1 , as long as the number of hydrophones Is sufficiently large. 

In order to avoid misinterpretation of Figs, li and 5, one should k**p 

in mind that the postulated "conventional detector" is a veiy simple device: 

It consists exclusively of delay (beam formation) addition, squaring and 

smoothing.   For the case under study here - signal, ambient noise and 

interference spectra of the same shape - one could obviously improve system 

performance by the very simple procedure of introducing a pre-whitening 

(Eckart) filter.   This is not in general the optimum linear filter, but it 
2 

is simple and previous work suggests   that it realizes most of the gain 

available through linear filtering techniques.   With such a pre-whitening 

filter the normalized autocorrelation functions corresponding to Eq. (3) are 

sin OUT 
P±b) * Pn(x) - —f- o*o: 

where au is the upper end of the frequency ranged processed by the detector. 

Then from Eq.  (6) 

I   sin ou(rr  +T)   sin ou(sr + T) 
C      -         2—2 2—2 dT (la) 

'        J       <^(rTo + T) t^(sTo + T) 

With the change of variable   x - akU'T + T)   this becomes 

CO 

C      . JL      »iEL*.—L£ 2_J.dx Qa) 
r s     M»   I v 

\ j     x        ^(r-s^-x 

The fact that the conventional detector curve falls somewhat above that 
of the likelihood-ratio detector at   C^T  -0   (particularly for   H/I - k, 
H ■ 10) may be attributed to the assymptJon   hat the convmtional detector 
is not bandlimited whereas the likelihood-ratio detector completely discards 
all frequencies above uu. 

2 
C. K >«Tpp, "A Power detector with optimal prefiltering for detecting 

directional liauasian signals in Gaussian noise fields," QD/E6 P«port Uia7-6U-O09. 
February 1?6U. 
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Equation (U2) is cf the form 

C. 
..«■*/« 

x) f(y-x) dx 

sin * 
where f(x) ■ ^jp'- and y - (iL(r-a)t. , 

Fourier transforming Bq. (1*3), one obtains 

J or,.Cf) •  cör - A J f (x) e  dx 

ml» 

It follows that 

0   for  |X| > 1 

I 

-1 

e^dX-J-2^ 
«^ y 

Upon reinserting the definition of y, 

C       --i r,s 

sin d^(r .S)T 

^      c^(r-s)To 

Va) 

(WO 

(U5) 

cue; 

Equation (U6) clearly satisfies conditions (9). so that it can he used directly 

in Eq. (10).   The desired output signal-to-noise ratio follows almost 

immediately. 

A (DO output) m J
Tc^ S 

D (output)        l""5*** 

M 

M-l 

*♦! Joe-) sin VTo 

s-1 V( 
M-l M-l 

££ £<M-r)(M-s) 
r-1 s-1 

sin au(r-s)t      sin «2(r+s)rc 

o^(r-s)to «^ (**■)*„ 
(U7)1 

Strictly speaking, the values of 3, JJ and I appearing in Eq.  (it?) are 
average powers after pre-whitening.   However, since all spectra have the same 
■hope, the filter has the same effect on each, so that the ratios S/S and 1/ti 
appearing In Eq.  (hi) may still be interpreted as input power ratios. 
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When   OUT   »1 , Eq, (Itf) reduces to 

6 (DC output) m -tlTffl2 

D(output)        » ** 

MS 

t^hl 
(US) 

«"2 
This ia identical with Eq. (18) except for the replacement of » with ~ . 

o    n 

Thus with the relation au •«« employed in Figs, h and 5, the asymptotic 

value of output signal-to-noise ratio for large angular differences between 

target and interference is unaffected by pre-whitening. 

For T = 0 , Eq. (Itf) reduces to the expression 

A (DC output) 

D(output) 

MS 

"^N2 + I2!*2 
(U9) 

For Uk ■ no) this is identical with Eq. (20), the corresponding expression 

for the conventional detector without Eckart filter.  , 

Figure 6 shows plots of Eq. {kl) normalized with respect to «-*- w 

for M ■ UO and •> - U, 1 and 0.1. Corresponding curves for the conventional 

detector without pre-whitening are also included to indicate tue improvement 

in angular discrimination attainable through pre-*hltening. 

Figure 7 ^ives the actual dependence on interference bearing of the 

normalized output signal-to-noise ratio with the target in broadside 

location. Curves are givan for the likelihood-ratio detector as well as 

the conventional detector with and without pre-whitening. All curves are 

based on the parameter values: M •> lid , » • U , c^ ■ 2nX 5000 rad/aee , 

hydrophone spacing d - 2 ft. 

Equivalent results for a target in other than broadside location are 

readily obtained from the following considerations. Suppose the target 

bearing (relativo to the normal to the array axis) is Q   and the interference 
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bearing relative to the target faring is 0 (see Fig, 0). Then the signal 

delay from hydrophone to hydrophone is - sin 0 while the interference delay 
C     0 

fron hydrophone to hydrophone» is - sin(6 +0) . As mentioned on page 18 
0     0 

(footnote l) the parameter t must he interpreted as the difference between 

these two delays. Hence 

T  » 
0 

f[sin(Qo+0)^sinOo] (50) 

target 

Interference 

array 

Figure 8 

For   0   • 0    (broadside condition) this reduces to the expression 

T   » ä Bin 0 o     c 

used previously. For 0 ■ * (endfire condition) one obtains 

T - - (cos 8-1) 
0  c 

(51) 

(52) 

For snail values of 0, Eq. (52) varies more slowly with 0 than does Eq. (51). 

Thus the detectability of targets in the presence of interference is poorer 

in the endfirs condition than in the broadside condition. This is illustrated 

by Fig. 9, which is the equivalent of Fig. 7 with an endfire target. 

Corresponding curves for other target locations will clearly fall between 

Figs. 7 and 9. 
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Iff. Error Probabilities 

The parameters of ultimate interest in characterizing the porforaano« 

of a detector are tba error probabilities. If the observation time is 

sufficiently long 30 that the detector output nay bo regarded as Gaussian, 

then it is a simple matter to convert) output signal-to-noise ratio into 

error probabilities. Under this assumption the output probability density 

of the detector in the presence of signal is 

f(x/S)-7Ve  ZO (53) Wo 

Hero a is the standard deflation of the detector output |D(output) in tho 

nomenclature used earlier ir. this report 1 and m, is the mean value of the 

detector output ir. the presence of signal.    In the absence of signal the 

output probability density is 

(x-rag)2 

1      '~^7~ 
fCx/0) - -sir e GU V*T a 

»here m» is tho moan value of the output in the absence of signal. Strictly 

speaking, the output standard deviation is not the same in tho presence and 

absence of signal. However, if the input signal-to-noise ratio at each 

hydrophone Is small, the fluctuation power at the output is almost entirely 

due to noise. Thus the use of tho same value of a in Eqs. (&) and (5I4) is 

consistent with the assumption of small input signal-to-noise ratio 

underlying all other computations in this report. 

If a detection threshold K is employed, the false alarm probability a 

(probability of deciding that signal is present when there is none) is 
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(55) 

WLth the change of variable   -—— ■ y   this becomes 

Vn j 
K-mg 

/K-mj 
1 - ori ~-   > 

where 

(56) 

estf x > -~ |   e"3r   dy (57) 

Similarly the miss probability S (probability of deciding signal abaen. 

when in feet signal is present) is given by 

B--A-    fe"     * 
V2n o J 

dx 

K - 
1 + erf »1 

vr (53) 

The threshold K can be eliminated beti-een Eqs.  (56) and (58).   Thus fron 

Eq.  (56) 

K - mg +'/?o erf^d-aa) (5?) 

I": 

where erf"  is tho inverse of the error function defined by Eq, (57). 
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Substituting Eq. (59) into Eq, (58), one obtains 

p - fil* erf 
-m." 

erf-^l^o) -~-^ 
YsTo 

(60) 

HU -BL 

The quantity  —-—   is easily recognHod as the output eign&l-to-noise 

ratio   ^^oSpSbV '   ftmce ^  (6o) beoon0S 

p - »^1+ erf -^-■»-^Atun2 (61) 

Figures J.0 and 11 show plots of p versus a for various values of the 

■*-*•** ■ M8(ogtj) > 
A specific example of the application of Eq. (6l) to the detection 

problem considered in this report is given in Fig, 12,    It shows the miss 

probability ß as a function of the signal-to-esbient-noise ratio (in db) 

at each hydrophone for a fixed false-alarm rate of l£.    The calculations 

assume   M ■ I4O , ecu ■ 2n X5C00 rad/sec , d - 2 ft > T - U aec , and a 

broadside target.   Curves are shown for the likelihood-ratio detector 

(essentially independent of » for   7 * U )   and for the conventional 

detector without prs-vhitening with values of   « » h, 1 and 0,1.    Efoh 

curve is labelled with the bearing in degrees of the interfare-ice relative 

to the target.    Figure 13 shows on equivalent set of curves for a 

conventional detector wit«: p^e-whitening filter.    It is interesting to 
N 0 observe that for  * < U   and for interference bearings no less than 3 

from target bearing, the performance of the likelihood-ratio detector is 

almost entirely independent of the interference.   The performance of the 

conventional detector depends to a viry considerable extent on the strength 

of the interference. 
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In the absence of pre-whitenins tliere is also a substantial dependence , - 

on interference bearing, but this effect becomes much less pronounced when * - 

pre-whitening is used. No computations have been made for a conventional -- 

detector employing optimum linear pre-filtering, but in the light of *« 

1 ? 

Knapp's results it appears reasonable to expect further improvement in p I 

bearing discrimination from such a procedure. The curves for 90° interference * - | 

bearing relative to target bearing are virtually identical in Figs. 12 and 13. J 
I 

and there is no reason to expect any different behavior in this respect «- 1 

with optimum pre-filtering. ? • I 

A change in smoothing time T simply shifts all curves of Figs. 12 and 13 *■*  • 

I 
horizontally by a fixed amount,    Since the output signal-to-noise ratio -    j 

varies as "yT «   it is clear that an increase by a factor of 2 in smoothing '.*    i 

time is equivalent to an increase cf 1.5 db in input signal-to-ambient-noise • *    j 

ratio \a) it each hydrophonn. 

A simple relabelling of the curves yields the corresponding results 

for a target in locations other than broadside.    Thus for an endfire target 

a straightforward computation from Eqs.  (51) end (52) indicates that the 3° 

curves should be relabelled   18 i , the 10° curves should be relabelled 3U°, 

while the 90° curves remain unchanged. 

ej 

See p. 26, footnote 2. 
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V. Detection with Clipped Hydrcrahone Data 

The clipping problem In the presence of Interference Is here approached 

by colouring the average bearing response patter» of a conventional, detector 

with and without clipping. Consider the block diagram ehown In 21g. lb. 

s1(t>n1(t>i1(t) 
clioper 

^(t) 

Xg(t) 32(t>n2(t>i2(t) 

clipper 

t -.-., 

t »nfr^ftfryt) 
clipper **<*'• 

M hydrophones 

7i?i 

Figure 1U 
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In accordance with Report No, 2 ths average bearing response pattern a(0) 

is defined cs the average value of the output s(t) as a function of th« 

target bearing 0 relative to the bearing angle of the major lobe of the 

array pattern. If target and interference are well separated in bearing, the 

bearing response pattern would take the general form shown in Fig. 15. As 

Figure 1$ 

interference target bearing (0) 

in Report No. 2 the excess Aa of the on-target value over the lowest value 

z^, normalized with feapect to sL» will be used as a figure of merit. The 

computation of this quantity is quite straightforward. In the absence of 

clipping 

M a  

■(o) - 7(e) - £ _] [8^t>+a3^>+l3^3[V
t)*Mt)+ik(t)]  (62) 

j«l w. 

Since the signal components at each hydrophone are the same except 

for delays, 

V*' V*'"s psV 
Similarly for ths interference 

(63 f 

(6U)1 

T 

,5ee page 3 for definition of tern». 



Finally, because the ambient noise is assumed to be inoapendent from 

hydrophone to hydrophone, 

{N for  3 - k 

(65)1 

0 for 3 / k 

Substituting Eqa.  (63),  (61*) and (6$) into Eq. (62), one obtains 

MM MM 

*°>-sE EpsV + MN + IE Epi(v        (66) 
3-1 k-1 3-1 k-1 

The delay times y „ and T . are trigonometric functions of the bearing 

angle 0. 

If target and interference are well separated in bearing and both 

are fairly broadband processes, it appears reasonable to assume that the 

interference is uncorrelated from hydrophone to hydrophone in the "on 

target" condition, i.e., 

Il  for  3 - k 

Pi(T*k) on targetlO  for  j / k 

For the target signal one obtains analogously 

o.V 
1    for     3 - k 

off target I 0     for     3 j.< k 

(67) 

ps(vikJ| " X    for aU 3 snd k (68) 

Ion target 

(69) 

aee page 3 for definitions of terns. 
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Hence 

z(0)|      - S $ + M(N + I) 

Ion target 

(70) 

«^ - M(S + N + I) (7i r 

It follows that 

& . (M- 1)   S 

S + N + I 
(72) 

If a perfect clipper (with output   v.(t) ■ * 1 )   is inserted after 

each hydrophone, the average hearing response becomes 

M     M 

«(0). £  ^^(t)vk(^ 
pl k*l 

From Report No. 2, Eqs. (6) and (8), 

v^t; vk(tj - - arcsin 
k(tK(t)* ij(t)] [^(t)*^)*^)] 

S + N + 1 

(73) 

(710 

Hence 

M  M 

z(0)-| ^ 2J arcsln<—2—^ a—i-2L 

j-1 k-1     I S + N + I 

(75) 

The plateau value sL of z(0) is indeed the minimum value, as suggested by 
Tig. 35»if the autocorrelation functions of signal and interference are non- 
negative. In practice an exponential function is apt to be a fairly good 
approximation for both autocorrelation functions so that this hypothesis is 
not entirely unrealistic. On the other hand, if the detector processes only 
a relatively narrow frequency band, both autocorrelation functions tend to be 
oscillatory and one could obtain values of 7(0) smaller than the T. given by 
fcq. (71). Whether this would aid in target detection depends on trie relative 
location of the minima and the peak &ie to the target. In any case the value 
of Z. used here is representative for the important case of target and 
interference well separated in bearing. 
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«hare 

> 

1    for     i - k 

0    for     j / k 

Now, using the syraaetxy properties of the correlation function   [p (X«.) 

(76) 

*s<V ' pi(V ■ pi(Tk^]' 

M       H 

1(0) - K + Jj £    £  «rcBiiJ 
j«l k-j+1 

sp.<y+ipi<y| 
S + N ♦ I 

(77) 

Therefore, if again target and Interference are sufficiently separated in 

bearing so that Pj^Tnj) 
on target 

- 0 for j f k , 

ä(0) 

M  M 

.   " M + n E S arC8lli 
on target     j-1 k-j+1 

S + H + I 

M ♦ - (M2 -M) arcsin §  
n S + N ♦ I 

(78) 

and 

V M (79) 

Therefore 

i£- | (M-l) arcsin ~ 

\ 
S + N + I 

(60) 

Comparison with £q. (72) reveals that for the case of primary interest, that 

of low input signal-to-noise ratio i ■+ w +y « 1 , the degradation in 

performance is given by the factor of - , the same as in the absence of 

interference (see Report No. 2). Thus the presence of interference does 
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net alter the cost of clipping as measured by average bearing response if a 

conventional detector is used. This leaves open the question whether the .> 

e* rect of clipping night not be more serious under a measure of performance 

such as output signal-to-noise ratio or error probability, in Report No. 2 \ 

the output signal-to-noise ratio has been computed for the case of Isotropie 

noise only and the resulting figure of merit turns out to be simply a 

constant (not very different from unity) times the figure of merit — . 
i - [ 

The corresponding calculation for non-isotropic noise is quite tedious and ■»* \ 
1 has not been carried out to date. Also loft open is the question whether - i 

I f 
the inherent cost of clipping may not be substantially greater- when the *r  | 

I 
detection procedure is not confined to the conventional arrangement of » $ 

Fig. Ik. m      I 
I 

™« i 

t _ 
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VI.   Concluding Remarks 

The results of Sections II to IV suggest that significant gains in 

detectability can be made in certain case? of streng interference ty grlng 

to aome Instrumentation more nearly optimal than a simple power detector. 

No analysis has been made to date of the equipment required to implement 

the likelihood-ratio üstector, but experience with other likelihood-ratio 

detectors suggests that it may be rather complex.   Therefore it becomes 

important to answer two questions: 

1) Can one find a simple modification of the conventional power 

detector that will attain a performance comparable to that of 

the likelihood-ratio detector? 

2) Are the assumptions underlying the analysis sufficiently realistic 

to make the predicted improvement practically meaningful?   The 

deviations from the analytical assumptions which inevitably occur 

in practice will almost certainly degrade the performance of the 

likelihood-ratio detector relative to that of the conventional 

detector.   Will the remaining improvement be sufficiently large 

to justify the increased complexity in instrumentation? 

Further study is required to resolve each of these questions.   The 

direction which such en effort should take is indicated in part by the 

following comments. 

It appears that the likelihood-ratio detector combines the outputs 

of various hydrophones in such a manner as to achieve an at-least-approximate 

null in the effective array pattern in the direction of the interference 

while still meints ning as much gain as possible in the target direction. 
N N 

With Y " ° Vn* nu31 would be perfect. For finite values of j a 

compromise is mad« between interference rejection and sensitivity to target 



A-IlB 

I « . 
signal. Future work will have to determine whether these ideas can lead to 

a simple but effective suboptimal instrumentation. ' 

As far as the realism of the analytical assumptions is concerned, 

the followins points certainly deserve attentiont \ 

1) The analysis assumes that the power level and spectral properties 

of signal, interference and ambient noise are loaown. Lack of 

precise knowledge concerning spectral properties may not be 

crucial. Interference and ambient noipe power, on the other 

hand, are apt to be quite critical and would have to be measured. 

Since an array is available and the interference is assumed to be 

quite strong (so that it is easy to locate in bearing), it would 

not be difficult to make power measurements. However, the 

accuracy of such measurements in the finite observation time T 

cannot be perfect, and the resulting degradation of detector 

performance should be investigated. 

2) The analysis assumes that the interference bearing is known. 

If the interference is strong, it.-, bearing can be determined 

quite accurately. Nevertheless, the measurement is subject to 

some error, so that the location of the detector "null" will 

be inaccurate. The degradation of target detectability caused 

by tills imperfection requires investigation. 

3) The analysis assumes Isotropie ambient noise. Sjnce interference 
** 

elimination is accomplished at the expense of reducing sensitivity 
**« 

to target signals, the question arises whether moderate anisotropy » 

in the ambient noise field could give rise to false target 

indications. I 
I 
I 
J 
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I4) ?he analysis assumes that both target and interference are 

sufficiently remote so that the resulting wavefronta at the 

receiving array are essentially plane. This night not be true 

for a very strong, and hence nearby, interference. There is 

no reason to expect that the "nulling out" of interference could 

not be accomplished in this case, but the computational procedure 

required tc determine the output signal-to-noise ratio would be 

more complicated. 

5) There is, of course, the very basic underlying assumption that 

signal, interference and ambient noise are stationary Gaussian 

random processes. For relatively short smoothing times the 

assumption of stationarity should be quite satisfactory. 

Whether deviations from Gaussian statistics would seriously 

degrade the likelihood-ratio detector relative to the 

conventional detector is difficult to foresee,, but the 

possibility cannot be ruled out because of the generally 

rather critical dependence of optimal instrumentations on 

analytical assumptions. 

Finally, it should be stressed that the development of Section V 

represents only a very partial treatment of the clipping problem in 

multiple-target situations. At the very least one should obtain error 

probability curves- comparable to those contained in Section 17 for a 

conventional detector with clipping. Also of considerable interest 

would be the evaluation cf a lücelihoocUratic detector operating on 

clipped data. Such a computation would resolve the question whether or 

net the inherent cost of clipping is the same in the presence and 

absence of interference. 
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Appendix A  Inversion of the Q(n) Matrix X 
'   i The derivation of Eq. (27) fron Eq. (26) Is carried out by induction. 

A trivial c ■■■■ putation verifies that the result is correct for M»l. 

Now assume that Q (n) is given by Eq, (27) fev M - M and deduce the 

corrasponding inverse for M+1 . 

For greater compactness the argument a of the spectral functions is 

omitted in subsequent manipulations and ax   is replaced by x. Then the 

noise matrix Q(n) for M+l hydrophones is given by 

I 
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The matrix will ba treated as partitioned by the dotted lines into 

the >rm 

Q(n) 

B 
I 

B1 ! c 

(A-2)3 

The inverse of this partitioned matrix ia given by 

i-l 

Q"X(n) 

A"1 + A_1B[C - BT A'H]  BT A"1 

[c - BT A-1B1  BT A"1 

- A^jc - BT A"Vf 

[c - BT A-1B1 
(A-3r 

A  is given by Eq. (27) (hypothesis). Since C - B AB is only a 

2X2 matrix the inversion becomes quite simple. The primary difficulty 

is the computation of B A"T8 . 

T -1 
The elements r. . of B A  are obtained by straightforward 

computation. Thus for j odd 

HI * ■ cos Mx cos lyix - sin» sin 1^ x - cos(M-l)x cos lji-]J 

- sin(M-l)x sinU^i-1 

- sin M- ^y^jx sin x + 

IM--ijijx cos x T sin 

X  ...   -COS 

M-l + jl COB 

X COS  X 

• COS 

- CCS X COS 

H.-Lfl) x sin x ... 

M-Ajl x + sin x sin H-T 

Tlote that the multiplier I&o is included in the definitions of A,B,C. 
2 
See, for instance, Hohn 
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Aji coa lM - -i^j x + [M- 1 + |j 008 H - ^ 

| C09 

In completely similar fashion 

|(ll + || r13 « - | sinlM + 1 - ^ x       for i even 

?MK-MM-1ii 

IMK'H**1-*]' 

for j odd 

for i even 

Hence 

BT A"^ - I toa ■ >  u X 
M + } 

cos Mx -sin Ms i cos(M-l)x -sin(M-l)xi... cos X -sin x 

sin Mx 
(      i" "" 

cos It; . sin(M-l)x cos(M-l)xl.., sin x cos X 

(A-U) 

(A-5) 

(A-6) 

(A-7) 

I tu 11 
H + 

1   0 

0  1 

cos Mx sin Mx 

-sin Hx cos MX 

cos(M-l)x sin(M-l)x 

-sin(M-l)x 

• 
t 

cos(M-l)x 

• • • 

COS X sin x 

-sin x cos X 

(A-8) 



Therefore 

C - BV
2
B » iAcJl + |) ^ 

1       0 

M + 1 + 
N 

N A» Try 
l     o 

USk 

(A-9) 

r 

u i 

It follows that 

C - B*A ,T.-lB 1-1 M  k 
N 

N Aw   M+ 1 + TT 

1      0 

0       1. 

(A-10) 

t. 

The various components of Eq. (A-3) are now easily computed. 

-IT, 
A
-1

B[C - BVVI    B
A
A* 

cos Mx   i    sin Mx 

-sin Mx   !    cos Mx 

cos(M-l)x jsin(M-l)x 

-sin(M-l)x jooe(M-l)x 

cos x sin x 

M+T 

* L: »»2 N A»   H + 1 + |   (M + || 

cos Mx 

sin Mx 

-sin Mx 

cos Mx 

cos(M-l)x 

sin(M-l)x 

.sin(M-l)x 

cos(M-l)x 

cos x   sin x 

sin x | cos x 

sin x cos x 
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'ill  X 

N bo   M + |M+ 1 + | 

1      0     cos x   ain x !. .:. , cos(M-l)x ' ain(M-l)x 

0      1    -ain x   COB x ',,.].   '-sinÖC-lJs: : oos(H«l)x 

coa x   -ain x 

ain x coa x  ! 

1 

0 

. . . i coe(M-2)x sin(M-2)x 

1   !. .; . ~ain(M-2)x coa(H»2)x 

cos 2x  -ain 2x   coa x   -ain x J 1 ' ... coa(M-3)x sln(M-3)x 

ain 2x   cos 2x ; sin x    coa x J 0 ' ...-ain(K-3)x , coa(M-3)x 

coa(M-l)x -sin(M-l)x cos(H-2)x -ain(M-2)x r-r-ö 

sln(H-l)x coa(M~l)x ain(M-2)x COS(M-2)K' . . 

(A-U) 
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This coincides with the first 211 rows and columns of Eq. (27 ) if one 

replaces H with   MA1   in the latter expression.   With the SOT« 

substitution Eq. (A-10) goes over into the 2X2 matrix in the lower 

right corner of Eq. (27).   Thus there remains only 

L -I NtoM+l + Y 

-cos Mx sin Mx -cos (M-l )x sin(M-l)x -coa(M-2)x sin(M-2 )x ... -cos X sin x 

-sin Mx -cos Mx -sin (M-l )x -cos (M-l )x -ain(M-2)x -cos(M-2)x ... «•sin x -008 X 

(A-13) 

This corresponds to the first 2M columns of the last «wo rows of Eq, (27) 

with M replaced by M + l . With the same substitution the transpose of 

Eq. (A-13) yields the first 2M rows of the last two columns of Eq. (2?). 

Thus the proof of Eq. (27) is complete. 
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fr ,  -.2) 
Appendix B Computation of Tr<|P(n) Q (n)J \ 

It is apparent from Sq. (28) that P(n) Q (n) consists of M identical 

pairs of rows. Thus it is necessary to compute only one such pair, say 

rows 1 and 2. 

For K oven the two rows are 

S 1 
* 71 

where 

*1   h   a2   b2 •••   «ty2   b^2   <ty2 -bj^2 ...    a2 -b2   a, -1^ 

"h   h "b2   fi2 "• "Vz   fy2   V2   V2 •*•    b2   *2   \   \ 

a. « K-lt» • } cos tx - \    cos <x 
*«1      l-l 

and 

<-3 

sin *x 

(B-l) 

(B-2)1 

(B-3) 

The equivalent expression for odd M is 

S    1      v 

al   \   *2   b2 '•• Vl   Vl   Vl       ° 
T    'T    T 

■M-I -^-1 
K1 "B 

a2"b2   al"bl 

-bl   «1-^    a2---bM-l   Vl       °       Vl   Vl   "!«"■    b2   a2   "l   «1 
~r  T" T*   ~r   T 

(B-U) 

T"he last sum of this expression is to be interpreted as zero for j ■ 1 . 
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«here a, and b are still given by Eqs. (B-2) and (B-3). Since each b. 

occurs both with positive and negative sign in each row of Eqs. (B-l) and 

(B-lt), it is clear than the b's make no contribution to Tr|[p(n) Q (n)J >, 

Menoe Tr 

yields 

|p(n) Q-1^)]2} depends on tha a's only and a single oonqputation 

Tr |[p(n) Q^CnfJ -||f -2^ 
8<*1 + a* + ... *y/2' for M even 

(B-5) 

2(2a1 + 2a2 +... 2ajj j^ + a^)2  for M odd 

T     T 

Qoing bad; to the definition of a. [&q. (B-2)j, it is a simple natter to 
jl 

count the number of terms of the for»   M-l+<j, cos x, cos 2x...   in the 

sums of Eq. (B-5).   Ckie finds for even M 

».1 
a1+ a2 + ... a^g -{J(H-l+{) -£ (M-*) cos Ix   (B-6) 

l'l 

and for odd H 

M-l 
2a1+ 28g + ... 2«^. + a^ - M - 2^ (M-1) cos tx (B-7) 

T     T «-1 

Hence for both even and odd K 

Tr|[p(n) Q-^n}] |- ({)   -J^ |M(M-1*|) - 2$>-*> cos tat 

(B-B) 

This agrees with Eq, (29) and tto derivation is therefore complete. 

I 
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ABSTRACT 

The problem of detecting modulated Gaussian 

directional signals 5.3 reconsidered under the condition 

that the noise level is unknown. It appears that 

results obtained in previous analyses of this problem 

are essentially unaffected by the added uncertainty 

as long as detection is by arrays with a large number 

of elements. It is also found that in general the 

cost of not knowing the precise noise lavel is 

approximately equivalent to the loss of one half 

of a hydrophone from a large array. 
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I. Introduction 
1     " 1 

In previous analyses of the detectability of underwater signals, it ! 

has generally been assumed that the background noise was a stationary 
[ 

Gaussian random process with zero mean and known power spectrum. Although 1 

this assumption may be unjustified on several different counts, the only 

aspect considered in this report is that the noise is nonstationary. 

Furthermore, the nonstationarity is assuned to be slow, so that in a 

relatively short observation Interval the noise level is essentially 

constant. 

The signal is assumed to be a Gaussian, random process with zero mean 

which is distinguished from the noise mainly by the fact that it is 

directional, while the noise is assumed to be Isotropie. It is also 

possible that the signal is amplitude modulated with a known modulating 

function whose frequency is high relative to the time over which the 

noise level can be assumed to be constant, 

Under these conditions the detection problem becomes the problem 

of finding a Gaussian signal in a Gaussian noise of unknown level. The 

optimum detector in this case depends on what is known about the noise 

level, '-nd it is discussed in sane detail in the next section. 

II. Optimum Detectors for Signals in Noise of Unknown Level 

If it is assumed that the probability dmnaity functions ps(S) and 

Pjji'K) ef the signal and of the noise level are known, then one can in 

principle compute an averaged likelihood ratiot 

3-1 
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Lfe) 

%(N) pg(S) ^(j/S,!!) dS dN 

\ - 

/■ %CM) f0te/K) * 

(i) 

where x = x,,,,.x   la the sample vector representing the received 

signal x(t), and f.(x/S,N) and f (x/N) are the probability density 

functions of x given that the signal is or is not present, respectively, 

and that the signal and noise levels are, respectively, S and N. (The 

prime indicates matrix transposition,) 

Although it generally is not reasonable to assume that pg(S) or 

Pjj(N) is known, Eq, (1) furnishes a clue concerning the form of the 

optimum detector. If it is assumed that f_(x/S,N) and f (x/P) are 

Gaussian density functions, and if the signal-towiodse ratio is small, 

Eq. (1) can be written in the approximate fornr 'i 

L(x) 

^^«xpf—r u-+B« 

2N 

/■ 
PN(N)N-n/2 exp 

(2) 

where 
u- 5 J'Q  £ £"'*.» 

5 - JS ps(i) dS, 



Q - I fr x1)    is the normalized covarlanc* matrix of x if 

x(t) conalata of noise only, and 

p - * (x x«)    is the normalised covariance matrix of x if 
s 

x(t) oonaiato of signal only.   A 

convenient normalisatirn, which, in 

effect, defines 8 a:id h is 

tr f - tr 2 ■ n . 

T      2 
B. - ^- tr(P £ )  and B? - 3 tr P Q  are constant 

Ma» terms. 

From Eq. (2) it can be seen that u_ and u, are sufficient statistic? in 

the sense that they contain all the relevant information about the signal. 

Hence the basic function of the optimum detector must be the computation of u, 

and u, given tne received signal :c(t). Also it can be seen that if the decisicn 

rule is to accept the signal hypothesis «hen L(x) exceeds the threshold K, 

there is an equivalent decision rule that accepts the signal hypothesis when 

*The derivation of Eq. (2) involves the expansion of the matrix 

/  S   ll "■*■ 
expression It»F <J ]   in a binomial series of the form 

*     s m    m 
I + Z (-if (§] (P 2 )  «ad staining only the first term in the 
"     m-1 

IS     I summatien.   This procedure is permissible if U >.    «  i    where X. is 

the eigenvalue of ? g"   having the largest absolute value.   For instance, 
if detection Is by~means ef an array of H elements, if the array is steared 
on target, and if signal and noise spectra are white,   X, ■ M   and therefore 

SI it is necessary that   w « n   for Eq.  (2) to be a good approximation. 
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gtajU«) > 0 , where g(u_,u?) is a function depending on p»(N) and on 

the type of detection characteristic that is desired. 

In the absence of any information about the noise level, it is often 

desirable to employ a detector with a constant false-alarm rate,' ' a 

CFAR detector. It is easily seen that such a detector results if 

gO^.Uj,) « t^-aug (3) 

where a is a constant. In order to demonstrate this we compute the false- 

alarm rate for a detector with this characteristic. The statistics u. 

and u„ are random variables, and if the number n of elements in x is 

very large, as is usually the case, the distribution of 11, and u2 

approaches the Gaussian form ly the Central Limit Theorem. Hence 

VL -au2 is also Gaussian. Undsr the hypothesis that x(t) consists of 

noise only, it is easily shown^ that the mean and variance of u. - au„ 

are given by 

Ho - ^- au^    *> N(tr P Q"1 -an) (k) 

and 

(VavV <v-2>* - ^ tr(P Q"1) -2a tr P Q"1 +a2n (5) 

. 

The fal3e-alarm probability is the probability that   VL. -au,. > 0   when 

x(t) consists of noise only, and in view of Eqs.  (1*) and (5) it is 

given by f 

erfc 
an - tr ? Q -1 

erfc < 

tr(P £-1) - 2a tr P l}"1 + a2n 
W \ (6) 



I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

ui 

«bar« 

•rfo (x) - v? 

• 

'. 

It is seen that the noiae level N cancels out in this expression so that 

the detector ha«, in fact, a OFAR characteristic   It is not completely 

obvious, however, that it is the optimum OFAR detector, eine» it is easily 

shewn that any quadratic form   x'A x   used instead of a, would a]JO result 

in a CFAR characteristic.   A further discussion of this point is given in 

Appendix A.   The general foot* of the detector is shown in Fig, 1.   The upper 

channel forming tha test statistic u, is equivalent to a likelihood-ratio 

detector for noiso level known precisely, and it is generally a nonlinear 

filter matched to the expected signal structure.   The lower channel is 

basically an estimator of the noise level. 

yes 

Figure 1  Optimum CFAR Detector 



If the false-alarm probability a is specified, the argument of 

erfc in Eq. (6) is a constant, K , and therefore Eq, (6) can be solved 

for a. The result is 
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a - | tr(P Q"1) 1 + n 1 
n-iÄ 

II-1«. 

,F7] 
1 —r* \ 

For large n this simplifies to 

ass ! tr(P3_1) 

(7) 

(8) 

which is seen to be independent of the false-alarm probability.    The 

reason for this is that for large n the error funct:U,n in Eq.  (6) approaches 

a unit step function, and therefore any value of a other than aero or one 

will rasult in approximately the same argument for erfc. 

In order to compute the detection probability   1- ß   the mean and 

variance of the output statistic   u. - au«   under the hypothesis that 

x(t) consists of signal and noise must be fr.und.   Under the assumption 

that signal and noise are independent, the mean is 

«"l"^—2>      "8 
3+N 

1 * 1 
tr(P 3, - a tr(P Q x) (9) 

and if the signal-to-noi3e ratio is very small, then the variaroe 

2 2 
a.  cz aQ   .    Then 

1 - B - erfc < s 
12           -1 tr(P Q    ) - a tr(P £ x 

' 

a 2 
tr(P Q"1)  -  2a tr P Q"1+ a2n 

1/2 

< 

(10) 
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If the value of a from Eq. (7) is substituted into this expression, the 

result is 

1-p - erfc «0-W 

V 

Ite^aV-JjteCpa"1)]' 
&_ 

1-« .-jStrtPS"1) 

For large n this can again be simplified to 

I 2 -2 
1- 8 - erfc k   - Jj -\ ltr(p g"1) - ||tr(P Q"1)] 

Ol)j 

112) 

The detection probability obviously depends on the signal-to-noise ratio w, 

but since tha detector structure does not, the detector is "uniformly 

optimum." 

It is clear from Eq.  ("12) that the detection probability is determined 

by the magnitude of the quantity 

4-i- Jtr^Q"1) - ijtrPCT1) 
\2      2K    v' 

(13) 

By Eqs,  (U) and (9), d is also seen to be the "output signal-to-noise 

ratio"  (u-, - u )/o   .    fhus d is the usual figure cf merit for evaluating 

the detection system.    For an optimum detector «here the background noise 

level is known, d is given by the well-known relation 

d 

(U) 

•■Ä-1l*<ptf*>2 <Xk) 

This can be aeer^ for instance, by setting   a - 0   in Eq,  (10).    Comparison 

of Eqs. (13) and (XU) therefore furtiiahes a convenient indication of the 

cost of the uncertainty in the noise level. 
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III. Evaluation of the CFAR Detsctor 

The figure of merit d of Eq. (13) la not; evaluated for same special 

cases. In all cases considered, detection is Toy lieans of an array 

consisting of M elements properly phased 30 that the array la steered 

"on target." The signal consists of amplitudewnodultted noise, i.e., 

s(t)-f(t)y(t) (15) 

where y(;c) is a stationary Gaussian noise with mean-square value S, and 
2 

where f (t) ■ 1 + b cos «t . The modulation frequency is known, and it 

is low compared to » , the bandwidth of y(t). 

Suppose first that the power spectrum of y(t) and n(t) is uniform 

(white) up to a frequency co and zero above this frequency. For large a 

it can be shown^ ' that thic inplies that there is zero correlation 

between the noise received on different hydrophones. 

According to the sampling theorem, * ' the signal received by any one 

hydrophone can be represented by m time samples during an observation 

interval T, where m ■ o> T/n . Then for detection by an array of M elements 

one can use the convention that the first m samples cf x represent the 

signal on the first hydrophone, the next m represent the signal on the 

second hydrophone, etc. Then the dimension of the sample vector is 

n » Mm . 

The fact that the array is steered on target implies that the 

signal components at the different hydrophones are 100 per cent correlated. 

Hence the P matrix consists of n   identical submatrices, which are 

diagonal If y(t) is a white noise. As a result of the additional factor 

of amplitude modulation, the general element of the P matrix is given by 

■ 
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0        otherwise (16) 

where for   mr < i <a(r+l) ,   k - i-mr j and where   f.    ■ f (t ) - 

1+ b coa B t   ,    Furthermore, the assumption concerning the noise implies 

that   £ - I , the n-dinensional unit matrix.   Then it follows directly 

that 
ill 

tr P 2"1 " M V  fk
2 ÄJ ton - n (17) 

k-1 

where the approximation is valid by the Rita&ann-Lebe'guc lemma if the 

observation ti»e   T - »(*v «■ Vj.) >>   2n/'M
0 •   Similarly, 

tr(P S"1)   - M2^ fk
U « All + \\ 

k-1 

Hence the figure of merit d becomes 

(18) 

d - -S—i |m 

Z1 

^{l + ^l-M (1?) 

If the signal «ere uxmodulated,   b - 0 , and therefore the ratio 

of figures of merit fcr the cases of modulated and unmodulated signals is 

tiNF-f^ for   M *>• 1 (20) 

If the noise level had been assumed to be precisely known, then, by 

Sqs, (lit) and (18), the ratio of d's for modulated and unmodulated 

signals would have been 
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dcn _ -w, .. ? (21) iR 
for all M. This is the result that has been obtained previously.Vl ' 

Since b cannot exceed unity, the increase in d caused by modulation is 

less than 2£ per cent. This is equivalent to saying that the reduction 

in » permitted for equivalent performance is less than .9 db if 

modulation is present. 

It is clear that for large arrays the effect of the lack of 

knowledge of the noise level becomes negligible. In fact, if the 

square-root factor in Eq. (19) is expanded oy means of the binomial 

formula, the result for large M is approximately 

.V2 
d=yfN-^T*T] •? 

whereas, by Eq. (lU), for precisely known noise level, 

Mil + *-I 1 (22) 

j 
1 

I I 
win       I 

I 

T 

Thus for large M the cost of not knowing the noise level is approximately 

one half of a liydrophone. 

The situation is clearly different when M is small.   As an extreme 

case, consider   M ■ 1 .    Then with modulation and unknown noise level 

d.-iLb-i/f1 (210 

Without modulation d » 0 , leading to the obvious result that an 

unmodulated signal is not detectable by a single hydrophone if the noise 



I 
I 
f 
I 
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level la completely unknown.   Thus modulation plays a vary crucial role I 

in this case.    On the other hand, if   M - 2 , the ratio   d/d    is already I 

less than  v2j hence the limiting case of large H is approached very 

rapidly. 

IV. Nonuniform Signal and Noise Spectra 

The results of the previous section may be extended to nonuniform 

signal and noise spectra if the assumption of negligible noise correlation 

between hydrophones is retained. The general effect of modulation with I 

nonuniform spectra has been considered previously* ' and the general | 

conclusion was that for a modulating frequency very much lower than the 1 

frequency for which the spectrum of y(t) begins to drop off, the effects | 

of modulation on detectability are unaffected by the shape of either the j 

signal or the noise spectrum. Thus in this section we consider only 

unmodulated signals. _ I 

Let the signal spectrum be S S(«) , where S is zero-frequency 

spectrum level end S(w) the normalized spectrvnt, defined auch that 

lim S(u) ■ 1 . Similarly, let the noise soectrum be given by N N(<o) . * 
co-K> ° 

(9) Then it has baen shown in previous reportsv' • that 

2 A   S m   „2r, 

trCPQ-1) «2£ -2j -r~oK) 
s(».) 

i-i V LN<V 

where 0(0».) is the array gain.' ' As is shown in Reference {$),  if 

the observation time T is sufficiently large so that the signal and 

noise spectra are essentially constant over a frequency interval of 

A» - -a? rad/sec , Eq. (25) can be expressed in the integral form: 

(25) 

*Et is assumed that S(w) and N(u) have finite values as   a—► () . 
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2   S  f 

^s"1) -Irs Äi G(o>)T 
:»)    J 

si«] 
N( 

d» 

Similarly, it can be shown that 

trGCf1)^ 
'Ittr 

SI^GH 
H(tt) 

dto 

V Finally, since there are   -— frequency saraplos in time T, 

m 

Substituting Eq3. (26), (27), and (28) into Eq. (13) results in the 

figure of merit 

Ilr 

2M Q(co) 
N(») 

d» =- 
Hw 

© 
,2 

m- 

H(») 
0(a) du 

(26) 

(27) 

(28) 

(2?) 

If the noise correlation between diffarönt hydrophones is negligible,'    ' 

then   G(w) ~ M .   Also, it is often true that the signal ar.d noise spectra 

are sufficiently similar so that approximately   ö(«) - N(u) .   Using this 

results in 

2n   N 
(30) 

This equation is identical to Eq. (1?) with b * 0 since the number of 

samples m in Eq. (19) can be eouated to ~2. Also we find that the 

figure of merit for noise level known precisely is given by 



I 
s 
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I 
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(3D 

Hence the argument of Eq.  (22) can be applied here again to show that the 

cost of ignorance about the noiss level is approximately * hydrophone 

when M is large. 

In order to consider a case «here S(&>) and N(co) are not identical, 

suppose that 
co 

N(ffi)     « + <o 

A possible combination of signal and noise spectral densities 

leading to this result might be 

S(«) -     g     i 
co.   +to 

2, 2,    2* 

N(co) « -W-V 

Thus both signal and noise spectra have essentially the sama form at 

low frequencies, but at frequencies above »   the noise spectrum levels 

off.    Then, from Bqs.  (26) and (2?), 

(32) 

(33) 

Ok) 

CO 
o 

T 
CO lit ,   CO 
mo     _ ♦.»-!   5 

~2 J'tan    ~ 
l\ +Mo °. 

and 

l 
tr(? Q"1) - co   tan"   J5 

(35) 

(36) 
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and therefore 

d - ■®h& m o     . +m-l   m 
T~T+tan    ~ _ + a> o 

2 2 

n v o1 

For   M   «K o)    this raduces to the result obtained above [Eq.  (30 M. 

However, for   a   » ta ' in        o 

'•-fi'i-A'-^'-W T» ' S 0      2 M 
0 

(37) 

(38) 

as   "_/"—\ ro .   The limiting value of d is the same as the velue obtained 

when the roise level is known precisely.   Thus the cost t$ not know*.2/g the 

noise level is less than l/2 hydrophone for la»^» M, and it approaches 

zero for large   a/ca   ,   Detection by a single hydrophone also becomes 

feasible under this condition. 

This result does not depend critically on the precise form of 

|£~j , but only on the fact that   j  |H G(w) do    is finite.   This 
0 

will always be true if the signal spec hum falls off wore rapidly with 

increasing frequency than the noise spectrum, and it is true particularly 

for narrow-band signals.   Under these conditions the received signal at 

very high frequencies consists almost exclusively of noise, and it is 

theoretically possible* therefore, for the high-frequency noise level to 

be quite accurately established.   Then, if the form of the noise spectral 

density ie precisely kncwn, the high-frequency level can be extrapolated 

down to low frequencies, and the noise level at all frequencies would be 

precisely known. 
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In practice this sorb of extrapolation is not always feasible. 

Thus, in the example noise spectrum of Eq.  (310, the freciuency a  might 

be the frequency at which the locally generated white noise begins to 

dominate the sea noise.   This frequency depends on the low-frequency 

level of the sea noiae as well as on the level of the white noise. 

Hence in this case the high-friqueacy noise level does not racessarily 

contain very rauch information about the low-frequency noise. 

It can be seen by means of Schwartz 's inequality that 
C 

(39) 

(12) 
where the equality holds only when the integrand is a constant.* ' Thus 

for non-constant *rfi-l   the figure of merit d is always somewhat larger 

than the value given by Eq. (30). This indicates that the optimum CFAR 

detector can always make use of known differences between signal and 

noise spectra to improve the detectability. This is of course particularly 

important if detection is by a single omnidirectional hydrophone, since in 

this case difference* in spectral shape provide the only possibility 

for detection. On the other hand, for large M the improvement cannot 

exceed the w hydrophone loss that resets when «rfc* - 1 . Moreover, 

it is shown in the next section that- even for fairly largo variations in 

«p4 th<s two sides of Eq. (39) are approximately equal. 

VI. The Approximate Effect of Noise Correlation Between Hydrophones 

Noise correlation between hydrophones results in a reduction in the 

array gain with decreasix« frequency. This has been studied in some 

detail in previous reports, *' and the exact relation between Q(w) 

m was found to be fidrly complex. A typical curve of 0(co) vs. a is 
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shewn in Tig. I.   For «iro frequency, the coisa correlation approaches 

100 per cant, and therefor«, If thara is sons self-noise, 11a r> fm) - 0. ■ 1 . 
<B-fO ° 

(In the absenoa of self-noisa Q   may differ fron unity, bot -Ulis Is * 

singular case which is of little practical interest.) 

0(cü) /N 

Figure 2     Typical Array Qain 

In order to obtain an astiaate of the affect of noise correlation, we 

approximate Q(u>) by 
Q(«)-M- (M-O^e"00 (iiO) 

where c is a constant chosen to approximate the true Q(o>). A typical curve 

of approximate 0(u) vs. a is alco shown in Fig. 2. Furthermore., sinoe it is 

desired to observe only the effect of 0(«), It is assumed that S(OJ 1 . 

Substitution of Eq. (ltO) into Bq. (29) and performing the Integration yields 

.■04m\ ■n%{*- ?(M-Q0)(H-i) 

CO» 

(M-o0r 
2<% 

i - • 

2 
'2eV SVl.  -°°W! (la) 
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For noise Xeval precisely know the result would be 

K   S0< ITS O M
2- 

2M(M-0J ,       -«%\ .  0»-O 

cum       \ 2c»_ 

-2c»_ 
1-t 

j/2 

For   »-»0, limiting forms for d and d.Q are 

lY^ 

and for   ^—»» , 

«■■H^M1-*! 

TöT  S      •       i\l/2 

*-^TS ■;Mi1-s| 

(U3) 

(itli) 

For intermediate values of « , the Schwartz inequality again indicates that 
m 

<  f   5  1 o 

If we let 

/ -co> \ 
I, m\ 11-e       \ 

 =, 

!—„| .   f(o> ) , then 
u       j m m     / 

iff-1"" 

(15) 

(M-Go)
2     2 

M - 2(M-QJ *(«*.) + —*    f (V 

M- 2(M-Q0)f(»ffi) + 
CM-Q.f 

M 
f<2V 

(U6) 

(K-Q0) 
The bracketed team is plotted in F'ig. 3 for several values of   —jj-£- , 

and us aeen to be approximately equal to unity for all values of a.   Hence 
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for all u . Thus it can to concluded that noise correlation doe» not have 

any significant effect on the cost of not knowing the precise noise level.. 

Although this conclusion is based on a particular expression for the array 

gain, it oan be seen by inspection of the basic relation lüq. (29 H that- 

it actually depends on the fact that 

«_ 

(W) 

This equation ia obviously not true in general, as shown, in fact, by 

Eq. (39). However, if Q(w) had been approximated more closely, as for 

instance by M- (M -0 ) e"60 coe(k<n + 0) , which simulates the oscillations 

in Q ((») better than Eq. (1*0), Sq. (U6) would still have been approximately 

correct. On« may be Justified, therefore, in assuming the conclusion of 

this section to be generally true. Al»o, it can to seen by inspection of 

Eq. (39) that variation of B« with frequency would generally have the 
r 
i same kind of result. 

VII. Conclusions 
f 
I If the noise level is not known, it is desirable \o employ a detector 

having a CFAH characteristic.   Such a detector can be represented as a 

two-channel device in which one enamel is a stancUu-d likelihood-ratio 

detector, and the other channel consists of a noise level estimator.   When 

a detector of this type is employed in the detection of a Gaussian 

directional signal, the following results are obtained! 

a)   The improvement in deteotability resulting from amplitude 

modulation by means of a known time function depends on the number of 



L 
»«o r 

elements in the receiving array. If there is only a single element in the 

array, amplitude modulation is crucial to detection, an unmodulated signal 

being essentially undetectable if the noise level is not known. However, 

if there are many hydrophones in the array, tho improvement approaches 

that obtained when the noise lev»! is known, and modulation permits a 

reduction in signal-to-noise ratio of at most ,9 db for a sinusoidal 

modulation. Even with two hydrophones in the array, the effect is 

equivalent only to about 1.5 db of signal-to-nolse ratio. 

b) The effect of the unknown noise level on the detectability by 

large arrays is generally equivalent to the loss of w hydrophone from 

the array. This figure is relatively unaffected by noise correlation 

between hydrophones or by the shape of the signal or noise spectrum, so 

long »3 the signal and noise cover essentially the same band. However 

if the signal band is narrower than the noise band, the cost of igncrah J 

about the noise level becomes further reduced, and approaches zero as 

the ratio of signal bandwidth to noise bandwidth approaches zero. 

It is interesting to note that a DMIS detecting system approximates 

the operation of the optimum CFAR detector quite closely, since it 

displays off-target as well as on-tcrget information simultaneously. 

The difference between the on-target and off-target indications is very 

similar to the difference bet.,een upper and lower channels of the CFAR 

detector considered in this report. 
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Appendix A  Optlraality of the CFAR Detector for Detection of a Pamelas 

Signal In Qauasian Noise 

It is well known that if the signal and noise power levels, 3 and N, 

are known, the optimum detector is the likelihood-ratio detector, It can 

V« shown  ' that this deteotor generally iuinimisea the quantity ß +K a , 

when, p and a ere respectively the conditional miss and false-alarm 

probabilities, and K is the likelihood-ratio threshold. When S and N 

are not known, and if it is not reasonable to assume that probability 

density functions for S and N can be defined, then a conditional likelihood 

ratio must be employed. It has the form 

L(ys,N) (A-l) 

where f. (x/S,N) ia the conditional probability density of x given that 

signal is präsent, and that signal and noise power are respectively S and Nj 

and where £ (JC/V)   is the conditional probability density of x given that 

there is no signal and that the noise power is N. Also under these 

conditions the error probabilities a and ß become a(N) and ß(S,N)f i.e., 

they are conditional on the signal and nois« levels S and N respectively. 

The conditional likelihood-ratio detector is then optimum in the sans« 

that it minimizes the quantity ß(N,S) + l a(N) relative to other detectors. 

In formulating the conditional likelihood ratio one assumes that 

S and N take on particular, known values. Hence if the signal and noise 

are Independent Gaussian processes, and if it is aesuand that the signal- 

to-noise ratio is very small (See footnote, page 3), the axpresslen fer 

th« conditional likelihood ratio has the usual formt (IS) 

1 
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L(x/S,N) - exp 1- -S- x'Q-^ Q"3* - £ tr P Q"1 - J. tr(P Q"1) 1  (A-2) 
| 2H2 ™        IjN2  ""   J 

The conditional false-alarm probability a(N) is the probability that 

^l " 5*3 i 21 exceeds the threshold u when x(t) consists of noise 

only. For large sample size, u. is approximately Gaussian by the Central 

Limit Theorem, and its mean and variance for x(t) consisting of noise only 

are given by 

Ho0O- (\)   -Ntr^Q"1) (A-3) 

2 2 
!(N) « (u.2) - <u.\  - 2N2 tr(P Q"1)        (A-li) 

Hence 

o(R)-J erfc 
N tr(P Q"1) - u 

2N "v^fea"1) 
ByEq. (A-2) 

2 

uo - ^ log K + tr ? Q"1 + |j tr(P 3"1) 

(A-5) 

(A-6) 

It must be ra-emphasized that in this formulation S and N are given 

values, and therefore if K is fixed, u Is also fixed. But with fixed u 
o o 

it is clear from Eq. (A-5) that a will change at. N changes. Thus, to 

obtain a CFAR characteristic it is necessary that u be made proportional 

to N. However, sines N is not known, this is not directly possible, and 

the best that oan be done is to make u. proportional to an unbiased 
A 

estimate N of Nj i.e., to let 

u - a N 
o (A-7) 
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A simple way of estimating the noise level is to measure the power in the 

received signal; i.e., 

n 

N - V  \   " 5'2 (A-8) 
i-1 

A more general form of estimator is the quadratic form 

N-xsAx (A-?) 

The matrix A is an arbitrary n X n symmetric matrix, except that it is 

convenient to require that it satisfy 

tr(A g) - n (A-10) 

This is merely a normalization thai specifies a particular value of a in 

Eq. (A-7). It is clear that Eq. (A-S) is a special case of Eq. (A-?) 

with A - I . 
A 

For large n the estimate N is approximately Gaussian by the Central 

Limit Theorem. Its mean, value, when x(t) consists of noise only, is 

(ft) - N tr A Q - Nn (A-ll) 
N 

Thus the estimate is unbiased, as required.    Also, the variance of N 

(for x(t) consisting of noise only) is easily shown to be 

cfl2 - 2N2 tr(A Q)2 (A-12) 

It is clear that the threshold u is also a Gaussian random variable. 
0 

Thus, depending on the value of u   that actually emerges from the 

noise-level estimc IT, the false-alarm probability is different from 

observation to observation, and it can therefore be represented by 

a(M,uo) . 
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Since one is usually interested in an overall false-alarm rate rather 

than the false-Alarm probability for a particular observation, one would 

presumably want the average of the false-alarm probabilities over u . 

This would, for instance, yield the expected number of false alarms in a 

long period of time in which a large number of disjoint observations had 

been made. Without getting involved in the details of the computation of 

this average false-alarm probability, it is fairly clear that the effect 

of the variable threshold is to broaden the curve of a «. a, as shown 

in Fig. A-CL. In this figure a(H,ü ) represents a particular false-alarm 

probability evaluated with an average noise level N and with ü - a N , 

a deterministic quantity. The average (<*(N,u )\  is essentially the 

0 

weighted sum of curves of this type with different N's. 

a 

Figure A-l 

From heuristic reasoning of this sort it can be concluded that the smaller 

the variance of u , the steeper the curve of /a(H,u )\  vs. a would be. 

o 

Therefore, the value of a needed to obtain a given small value of a 

decreases as the variance of u decreases. But the smaller a is, the 
o 



I 

•-25 

higher the detection probability wi,"<j. be.   Hence it is concluded that the 

optimum system results when the variance of u   is a minimum. 1 
1 

As a result of Eqj.  (A-7) and (A-12), the variance of u   is f 

2aw   tr(A Q)   .   Consider the non-negative quantity \ 
I 
f 

2 I 
trf* S - l] " tr(* Q)2 - 2 tr A 2 + n | 

(A-13) j 
■ tr(* s)2 - n * ° 

where the second step follows by use of Eq. (A-10). The equality holds j 

for A = Q~ , and therefore the minimum-variance estimate of N is 

The optimum detector that emerges from this discussion is then the 

one shown in Fig. 1. 
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List of Syabola 

A arbitrary Symmetrie matrix 

a constant that determines false-Jslarm rate 

^ ^ trCP^*1) 

B2 3tr(PQ-1) 

b modulation index 

c constant 

d figure of merit 

d figvu» ef merit for known noise level 

d figure of merit with modulation present 

d figure of merit for unmodulated signal 

d__ same as d. except for known noise level am m 

d same as d . except for known noise level 
OU U' 

f(t) modulating function 

fk f<V 
f1(x/S>N) probability density of x, given that signal is present 

f (x/tt)  probability density of x, given that signal is absent 

G(«) array gain 

0^ zero-frequency array gain o 

I unit matrix 

K likelihood-ratio threshold 
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1 

i 

K argument of false-alarm probability 
ft 

LQc) likelihood ratio 

H number of elements in array 

m number of samples per array element 

N noise level 

n dimension of sample vector 

N(cü) normalized noise spectral density 

N zero-frequency noise spectral level 

P normalized signal covariance matrix 

P«(N) probability density function of noise level 

PS(S) probability density function of signal level 

Q normalized noise covariance matrix 

S signal level 

S zero-frequency signal spectral level 

S(u) normalized signal spectral density 

s (t) signal 

T observation time 

tr(  ) trace of matrix 

test statistic 

noise estimate X1Z 

u threshold value of 
\ 
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x(t) received signal 

x reoaived-signal sample vector 

y(t) unmodulated signal 

a conditional false-alarm probability 

p conditional miss probability 

X, eigenvalue of   P g      having largest absolute value 

H mean value of statistic when signal is absent 

u- mean value of statistic when signal is present 

a variance of statistic when signal is absent o 

CD modulation frequency, also high-frequency break frequency 
in noise spectrum 

<a, break frequency 

co maximum frequency 

V 
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The major result of the work of Chapters III and IV is that In 
the case of low pre-detectlon SNP, the detectabili\y of a stochastic 
signal of unknown center frequency is governed primarily by the pre- 
detection SNR Re in a hand of the width of the signal, even though the 
frequency location of the signal may he unknown within the wider 
processing hand. Thus if the signal spectrum and the observation time 
are fixed and the processing band is gradually widened, the signal 
detectability (for a fixed false-alarm probability) will gradually 
decrease, but the decrease will be slight when compared with the 
increase in noise power which results from widening of the processing 
band. 

From another point of view the processing band and the observation 
time may be regarded as fixed. Then, if the signal power is confined 
to a frequency band r times narrower than the processing band 
instead of baing uniformly spread over the processing band, the pre- 
detection SKB is increased by a factor r and signal detectability 
is accordingly increased in spite of the signal frequency uncertainty. 
The work cf Chapters III and IV indicates that substantial improvement 
in detectability can be achieved in this manner only up to the point 
where the pre-detection SNH R_ becomes on the order of unity. 
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SUHMAi« 

Thia investigation is concerned with the detection of signals of 
unknown frequency in the presence of broadband additive gaussian noise. 
Several signal models art- considered sad in each case the structure 
of the optimum detector is determined and the signal detectability 
is calculated. 

Chapter I presents the background and description of the problem 
to be considered. A power aeries approach to the problem which was 
investigated in earlier vork is described and its limitations are 
discussed. 

In Chapter II the signal to be detected is taken to be a sinusoid 
with known amplitude and phase but unknown frequency, the frequency 
having a discrete probability distribution. The results show that as 
the post-detection SNR is made large the optimum detector becomes 
equivalent to a band-splitting detector in which a test quantity is 
generated and threshold-tested at each possible value of the unknown 
signal frequency. The performance of this detector is analysed and 
is compared with that of a sub-optimum detector in which the test 
quantities are summed before the threshold test. Finally, some 
work is described in which the results of the present investigation 
were extended to the problem of detecting a sinusoid of known amplitude 
but unknown phase and frequency, with the frequency again being given 
by £ discrete probability distribution. 

Chapters III and IV are concerned with the detection of a 
gaussian stochastic signal of unknown center frequency. The signal 
power is assumed to be confined to a frequency band which is r times 
narrower than the overall frequency band being processed and the signal 
spectrum is assumed to lie anywhere within the processing band with 
uniform probability. The optimum detector structure in this case is 
conjectured to be a band-sweeping detectoi the limiting form of the 
band-splitting detector derived in Chapter II. A suitable engineering 
approximation to the band-sweeping detector is then found and its 
performance is evaluated. 

The analysis of Chapter III is based upon the assumption of low 
pre-detection SNR. Experimental data is presented which corroborates 
some of the theoretical results obtained in this chapter. When the 
pre-detection SNR R (defined in a ^and of the width of the signal 
spectrum) is on the order of or larger than unity, the analysis of 
Chapter III must be modified; this strong-signal situation is considered 
in Chapter IV. 
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CHAPTER I 

INTRODUCTION 

1.1 Preliminary Remarks \ 

This report dealt with the detection of sinusoidal or narrowband f 
I 

signal! of unknown frequency In a background of noise having known j 

statistical properties. Much of this work has been reported in a series j 

of earlier progress reports. In particular» moat of Chapter II has 

previously been submitted as Progress Report No. 15, while Chapters III 

and IV were largely covered by Progress Report No. 19. Some portions of 

Chapter I »«ere contained in Progress Reports No. 8 and lb. The purpose 

of the present report is primarily to collect all the material on this 

topic in one place, to put some of the earlier work on the subject into 

proper perspective in the light of the later results, and, where 

I appropriate, to make a number of extensions of the work already reported. 
* 

Motivation for the investigations described in thii report was 

I derived from the knowledge that signals received fron passive sonar 

targets often üontain a number of low frequency sinusoidal or quasi- 

J sinusoidal components. These are believed to originate at the target 
i 

vessel as rotatlng-maahiisery noises and upon reception» are jbserveei In the 

I spectrum of the received data as lines    t %rwt small but noa-sero band- 

width.    Although some existing sonar systems make use of these low fre- 

quency components, no analysis has been made to date to determine the 

ultimate detectability of such signals. Hence this investigation was 

undertaken. 

The frequencies of tht^e narrowband signals are related to the 

operating speeds of various machines on board the target vessel and 

cannot be known a priori; however, the signals do appear in predictable 

regions of the spectrum.    The frequencies of the individual signals are 

0-1 
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observed to vary with tine, but these variations appear to be relatively 

<Low with respect to the proceeding tinea vhicta are typical of aonar 

detection systems. Therefore the signal frequencies nay reasonably be 

regarded as constant, though unknown, throughout the observation time of 

the received signal. 

For the purposes of analysis, some reasonable assumptions can be 

made regarding other characteristics of these signals, i.e., statistical 

parameters, ban&widths and spectral shapes. Thus the problem to be 

considered is one of detecting a narrowband signal with given statistical 

properties, whose frequency is 'unknown but nay be characterized by a 

statistical distribution over tiome prescribed range of the spectrum. 

One would also like to know tbe structure of the detector which provides 

maximum detectability for such signals, the optinva detector. 

In general several such narrowband signals as have been described 

appear simultaneously in the received data at a number of frequencies, 

but for simplicity this investigation will consider the detection of a 

target characterised by only one such signal. 

The problem which has thus been outlined in physical terms belongs 

to a broad class of problems which will be discussed in the next section, 

namely, the optism detection of signals having unknown parameters. 

The specific problem to be considered will then be described 

mathematically in Section 1.3. 

1.2 Optimum Detection of Signals with Unknows Parameters 

a) The Likelihood Bstjs detector 

The detection of a signal in the presence of noise may be 

described ats follows:  A received signal v(t) is observed during 

some interval of time 0,T and on the basis of this observation 

one of the following two decisions is made. Either 1) the received 

a.- 
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data consists of noise only, and v(t) ■ n(t); or 2) the received 

I data consists of signal and noise, and v(t) ■ s(t) + n{t), where 

the noise is assumed to be additive. * 
4 
I 8ince the noise (and perhaps the signal as veil) is a random 

process, these decisions are statistical in nature and are subject to 

J errors of false alarm and false dismissal. The conditional probabil- 

ities of these two types of error are defined in the following manner: 

_ The conditional probability of false alarm a is the probability of 

deciding that a signal is present when the received data actually 

contains vr.?y noise. The conditional probability of false dismissal 

6 is the probability of deciding that only noise is present when 

the received data contains a signal and noise. 

The central problem of signal detection is then one of designing 

detectors which make these decisions in an efficient manner. In order 

to detign detectors which are in some sense optimum, one must know 

„ the statistical properties of the noise and the description (a stat- 

istical description if the signal is stochastic) of the signal to be 

detected or be able to make estimates of these characteristics. If 

in addition a criterion of goodness is selected, by which the per- 

formance of detectors may be compared, then one may in principle 

find a detector which yields the best performance with respect to 

1 this criterion. Such a detector is termed an optimum detector. 

In the literature on detection theory several approaches have 

4 been taken to this question of selecting an optimum detector. Two 

representative approaches will be mentioned briefly. One is based 
i 

4 on the theory of hypothesis testing as originally outlined by Heyman 

J 

I 
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and Pearson, who proposed the use of hypothesis tests which minim- 

ise the conditional probabilities of error. In terms of the detec- 

tion problem, this corresponds to using a criterion of goodness 

which requires that the detector minimise the conditional false 

dismissal probability for some pre-aasigned value of conditional 

false alarm probability. 

A second approach was developed by Middleton, who saalysed the 

signal detection problem from the point of view of statistical 

decision theory. In this type of analysis the detector is required 

to make decisions in such a way that a certain average "risk" is 

minimised. 

The use of either of these criteria leads to a Likelihood Ratio 

(hereafter LR) detector as an optimum detector structure. When the 

statistical properties of the noise »re known and the signal is a 

known function, the optimum detector processes the received signal 

by forming the LR 

f(v/s) 
t (v) « -.  (1-1) 

f(v/0) 

where v and s represent sample-vector forms of v(t) and s(t) 

respectively, and where f(v/s.) and f(v/0) are the probability 

density functions (hereafter p. d. f. 's) of v conditioned on the 

t See Neyman and Pearson (I). The Neyman-Pearson theory is discussed 
in many books; see for example Cramer (I, Chap. 35) and Lehmann (I), 

Tt See Middleton (II, Part h).    This reference also presents discuss- 
ions of several other decision criteria in relation to detection systems. 

ttt Derivations of the LR detector can be found in many references. 
See for example Davenport and Root (I, Chap. Ik),  Helstrom (I) and 
Middleton (II, Part k). 
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prtitac« of signal tad noLc and oo tho prootnc« of noioo only, 
9 

I respectively. Whan the signal s(t) depends upon parameters yhleh 

art unknovn tut have known statistical distributions, then the 

I optimum detector must generate a LR as follows: 

l  (v) -  =S— (1-2) 
'(2/0) 

| where the average indicated by () „ represents a statistical average 

™ taken over all values of the unknovn signal parameters. Since only 

the numerator in Eq. (1-2) depends upon the signal parameters, the 

average ( )g nay equivalently be taken over the entire right side of 

Eq. (1-2) and thus i(v) may be regarded as an average LR, 

The optimum detector makes a decision by comparing the average 

LR with a preset threshold k . This threshold test is indicated by 

<*<v/.)>8 

><k (1-31 

i f<i/o) 

If the threshold is exceeded the decision is made that signal and 

I noise are present in the received data v ; otherwise the decision is 
I 

iiade that only noise le present. 

i The threshold setting k is determined by the particular criteri- 

on which has been selected to evaluate the detector performance. 

I If for example the Neyaan-Pearson criterion had been chosen, k 

would be set at a level to produce the pre-assigned conditional false 

alarm probability. The threshold test indicated by Eq. (1-3) would 

then minimize the conditional false dismissal probability for the 

pre-assigned false alarm probability. 

The LR given by the right side of Eq. (1-2) prescribes the 

I 
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operation« which the optimum detector suit perform on ths» received 

signal and therefore represents the structure of the optimum detector. 

This structure clearly depends upon the statistical description of 

the noise and upon the functional form of the signal and the statis- 

tical distribution'! of its unknown parameters. Attention will now 

be given to the problem of detection in a background of g&usslaa. noise, 

b) Detection in Gaussian Holse 

If the noise is a zero-mean gaussian random process, the p.d.f. 

of the received signal v conditioned on the presence of noise only 

is 

f(v/0) -  -75 -75- exp l-kW.! <lJ»> 
(2»)n/2(det K)n/2      L  * J 

where n is the number of time samples of the received signal taken 

during the observation interval 0,T and K is the noise »variance 

matrix. Since the noise is additive, the p.d.f. for v given signal 

and noise is 

f(v/s) -  -75 T75-«XP I - 5<I-£)V1(T-»)| (1-5) 
(2«)n/2(det K)n/2    '-  2 "--I 

When Eqs. Cl-U) and (1-5) are substituted into Eq. (1-2) the average 

LR becomes 

t (v) - /exp [ - ^I-lÜ'^v-sjA exp[|v,K~1v] 

or 

I (v) - /exp [ - |s V1! ♦ s'lcS ]\ 

(1-6) 

(1-7) 

It thus remains to carry out the averaging operation over the 

values of the unknown signal parameters in specific signal cases. 
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When the signal is completely known the averaging operation can be 

dropped and the LR becoaes 

I (v) - exp [ - slK""1* ♦ S'K"\ (1-8) 

It is usually convenient to interpret the detector structure fron 

log t (v) rather than fron t (v), therefore 

(1-9) log tiv) ■ - ssV1* + S'K^V 

The operation vhich the optimum detector performs on the received 

signal in this case is given in Eq. (1-9) by the term J.KJ v vhich 

may be interpreted as a generalised cross-correlation of the received 

signal v vith a replica of the desired signal e_ . The term 

1 ' -1 
' 2 -—  - is * con8taDt from on* observation to the next and acts 

as a bias in the threshold test. 

c) Signals vith Unknown Parameters 

When the desired signal is a function of unknown parameters, 

then the average />g in Eq. (1-7) must be carried out. If this 

average can be carried out anlayvically, the result is a closed-form 

expression for the detector structure. Such results can be obtained 

in certain instances. One example is the important case of a narrow- 

band signal with unknown phase. 

When the signal to be detected has the form 

s(t) » a e(t) eos(2wft - 0) (1-10) 

with known amplitude factor a, envelope function e(t), and fre- 

quency f , but vith an unknown phase 0 whose p.d.f. is uniform 

over the range 0, 2», the statistical average over phase can be 
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carried out analytically, and this leads to a closed-for* represen- 

tation of the detector structure.  Furthermore it can be shown that 

this structure is optimum regardless of the signal amplitude if the 

amplitude is one sided  (confined to positive values or confined 

to negative values). That is to say, if, in addition to the phase, 

the amplitude factor in Eq. (I-10) is unknown ml has a one-sided 

statistical distribution, the detector structure derived for the 

case of random phase will yield maximum signal detectability for any 

fixed level of false alarm probability, regardless of the «ignal 

amplitude. This point will be discussed more fully in • later chapter, 

where a specific problem of this type will be considered. 

If the frequency f of the narrowband signal is not known 

a priori, then the development of the average LR, as given by Eq. 

(1-7) for detection in gaussian noise, requires an averaging with 

respect to f . Unfortunately such an average cannot be carried out 

in closed form, and other methods must be used to determine the 

optimum detector structure in such cases. It is cases of this type 

vith which the work of this dissertation is concerned. 

There is one other type of signal for which the optimum detector 

structure has been obtained analytically: a gaussian stochastic 

signal having a known spectrum. The detection of such signals in 

gaussian noise has been investigated in detail by Middleton.  (A 

specific case of thio type will arise in later chapters). If the 

center frequency of the signal spectrum is unknown, however, the LR 

t Derivations of this result are widely available In tfet literature. 
See for example Belstrom (I, Chap. V) and Middleton (IX, Sec. 20.1-3). 

ft See Helstrom (I, pp. 157-158} for a discussion of this point. 

ttt See Middleton (I) and (II, Sec. 20.M). 
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nut again be averaged, and this cannot be done in doted fora. 

For Situation» in irhieh the signal involves unknown parameters 

and the average LR cannot be obtained in closed fora, on« technique 

which has been proposed for obtaining the detector structure 

consists of expanding the average LR in a power series and approx- 

imating the detector structure by using certain low order terms 

of the series. This technique will be discussed in Section I.kt 

where it will be shown teat the technique is not satisfactory in 

cases of narrowband signals of unknown froquency. First the specific 

problems to be considered will be discussed. 

1.3 Description of the Problet- 

As has been stated this research is concerned with the optimum 

detection of a signal of unknown frequency in a background of noise 

having known statistical properties. Two distinct problems of thii 

type will be considered, corresponding to two different models of 

the signals to be detected. In er. " j«se the olse is assumed to 

9 
be gaussian with a flat spectral density of Isvel I volt /cps 

extending from zero frequency up to some cutoff frequency which 

is much higher than the highest possible signal frequency. It is 

assumed that the noise is additive and independent of the signal. 

The two signal models to be considered are as follows: 

1) In the first case the signal to be detected is a sinusoid 

of known amplitude and phase, but unknown frequency. The unknown 

frequency is assumed to have a discrete probability distribution over 

m possible values. Since the phase of the signal is assumed to be 

known for each possible value of the signal frequency, this signal will 

be termed a "coherent" sinusoid. The structure and performance of the 

optimum detector for such a signal will be found. This idealised 

signal model will serve tc give insight Into the particular 

I 
I 
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band of width B cps . It is assumed that B ■ rB_, r>l, where 

r is called the frequency unce-tainty ratio. The form of the opti- 

mum detector will he obtained for this case by extending the results 

obtained for the case in which the signal frequency has a discrete 

distribution to cases in which the frequency has a p.d.f. over a 

continuous frequency range. 

Of particular interest in this case is the question as to what 

enhancement in signal detectebility can be obtained fro« the know- 

ledge that the signal power is confined to a band appreciably narrower 

than overall frequency band B being processed, even though the exact 

frequency location of this signal is not known in advance. This prob- 

lem will be treated in Chapters III and IV. Chapter III will deal 

with the situation of low pre-detection SIB. When the pre-det&ction 

SNB is high, the analysis must be modified somewhatj this will be 

done in Chapter IV. 

T.i A fewer 8erles Approach and Its Limitations 

It vui pointed out in 8ection 1.2 that there are situations of 

interest in which the averaging cf the LR, as indicated by Bq. (1-2) 

cannot be carried out in closed form. One approach tc this problem 

question of finding an optimum structure for the detection of signals 

of unknown frequency. This case will be analysed in Chapter XX. I 
( 

2) The second ease deals with the detection of a narrowband 
«* 

gaussian stochastic signal of known average power and known band- f 

width Bg cp«. The center frequency of this signal is not given 

a priori but Is known only to lie somewhere within a wider frequency s. 
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«hieb hu been proposed is buied on an expansion of ths average LR 

(or seme monotone function of tbe average l£)  in a power eerie* 

involving linear, quadratic and higher order operation« on the 

received signal v . This gives a series representation of the 

optima detector structure. Under certain conditions it may then 

be possible to obtain an accurate approximation of the detector 

structure from one or more low-order terms in the series, if higher« 

order terms can safely be neglected. An analysis «as ctrried out 

in order to determine the conditions under which such a technique 

could be applied to the detection of signals of unknown frequency in 

gaussian noise» 

In that analysis three signal cases were considered: 

1) A broadband gaussian stochastic signal whose spectral 

density is flat over a band of width B cps and zero outside tbe 

band. 

2) A narrowband gaussian stochastic signal with bandwidth 

B_ cps and canter frequency f cps . Here f  was assumed 

equally likely to lie anywhere in the band B , and B_ was assumed 
8 

to be much smaller than B. 

3) A limiting case of 2) in which B + 0, thus producing a 

sinusoidal signal of unknown phase and frequency whose amplitude is 

constant over each observation interval, but considered over all 

observations, is a random variable with a Bayleigh p.d.f. 

t See Middleton (II, p. Sl9ff.). 

tt 8ee Levesque (I). 

I 
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[Cues 2)  end 3) are essentially identical with those «hieb vill * 

he treated by different means in Chapters ZZZ and IV of the present i 

investigation.] 

An expansion of the detector structure vas obtained by first '. 
i 

developing the average LR, of the form given in Eq. (1-7), in a power 

series and then taking the average^ \g tnrm by term. Then 

log l(v) vas expanded in a second power series. For each of the *•• 

three signal cases described above, the "deflections" of certain 

terms were calcualted. A deflection is defined here as a change in 

the avera^ value of a term in going from the noise-only situation to ' 

a signal-plus-ncise situation. In order that any terms in the series 

be considered negligible in describing the operatic: ->f the detector, 

it is necessary that their deflections be negligible. 

The results of the analysis are summarised in Appendix A. They 

show that in the broadband gausslan signal case higher order terms 

in the expansion can be neglected on the basis of low prs-deteetien 

SNH . For the case of narrowband signals, however, and even more 

for the sinusoidal signal, the higher-order terms may become signif- 

icantly large if the post-detection 8KB is made large by a long 

Integration time. Thus dropping higher-order terms on the basis of 

low pre-detection SHR, a» is suggested by Middleton , is Justified 

only in cases where the post-detection SNR is also small, cases 

which are not of Interest where high signal detectability is required. 

Thus the application of this power series technique to the problem 

at hand would involve the use cf a number of terms in the power series 

t See Middleton (II, discussion on p. 821). 
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representation (a number depending upon the pre-det«ction SHR and 

the observation time) in order to adequately describe the dettstor 

structure. This procedure is cenbaraome and thus a new approaah 

to this problem has been undertaken and will be outlined in the 

following chtjter. 
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II.1 Introduction 

The detection of a sinusoid of known amplitude and phase, hut 

unknown frequency, In a background of broadband gaussian noise will 

now be considered. Since the phase of the signal Is assumed to be 

known for each possible value of the frequency, the signal is term- 

ed a "coherent" sinusoid. The unknown frequency is assumed to have 

a discrete probability distribution over m possible frequency 

values. A geometric Interpretation of t(v) , given by Eq. (1-2), 

and of the threshold test, given by Eq. (1-3), is proposed; from 

this point of view the structure of the optimum detector will be 

developed. Then signal detectability will *c calculated. Optimum 

detector performance will also be compared with that of a sub- 

optimum structure derived from a power series expansion of the 

average LR. 

II.2 Likelihood Ratio Detection of a Signal of 'unknown Frequency 

Since signal frequency f la the ocly unknown parameter in this 

signal CM«, the average / \„   la Eq. (1-2) singly Implies \ \t- 

CHAPTER II f 

DETECTION OF A COHERENT SINUSOID 

OF UNKNOWN FREQUENCY 
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The expression for i(v) may mow be tv-written as 

i (v) "/Hs/f) \ 

where 

f(l/£,f) 
L(2/f} "  f(v/o) 

(II-1) 

(II-2) 

I 
I 
I 
I 
I 

is at lit calculated for a particular value of f . 

If the frequency f has a discrete probablltiy distribution 

over a finite set of values, 

i»l x    x 
(II-3) 

whtre m is the total number of possible values of f and p. is 

the probability cf the 1  value. In general the quantities 

log Ur/t.) can be generated more conveniently than L(v/f.) . 

With this in aind tht average LR can be written as 

m 

i(v) • I   pt exp | log Kv/f^j (II-k) 

Thus the optimum detector calculates the quantities log L(v/f.), 

forms the *um in Eq. (II-J*), and compares this with a pre-set 

threshold k . If the threshold is exceeded, the decision is made 

that the desired signal is present in the received data. This test 

is indicated by 
m 

iii-5) I   p exp flog L(v/f )] < k 
i-1 *   l      x J 
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The decision seltene ess be visualised ia geometric ten» if the teit 

quantities log L(v/f.) «re taken as coordinates ia aa m-dineasional 

hyperspace. The apace ia divided iato tvo regions, which nay be 

called the "signal" and "no signal" regions. The boundary between 

theae two regions is determined fron Bq. (II-5) by the equality 

n 

I   ?1 exp [log Kj/fj)] ■ k (II-6) 

For a given received signal v» the coordinates log L(v/f.) define 

a point is the m-dimeusional space. If the point lies in the "signal" 

region, the decision is nade that the desired signal is present with 

noise. If the point lies in the "no signal" region, the decision is 

made that noise only is present. A specific case will nov be consid- 

ered. 

II.3 Detection of a Coherent Sinusoid -•■ Two-Frequency Case 

a) The Decision Plane 

If the desired signal is a sinusoid with known amplitude and 

phase and with & frequency f that can take en any one of m dis- 

crete values, then from Eq. (II-1»), 

m 

*(v) - I     pt exp [ log L(y/fA) J 

As an example, let a «■ 2 and p, « p, » ? . 

now gives 

(II-7) 

Equation   (II-7) 

Kv) - \ exp    [log L(v/fx)] ♦ \ «xp   [log L(v/f2>]    (II-8) 
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Using Eq. (U-6), the boundary bttvttn the two decision regions is 

given by 
* 

I exp [log L (y/f^J ♦ | esp f log L(v/f2)]- k (li-o) 

or 

log L(v/f2) - log I  2k - exp [log tfv/^) 1 )     (II-10) 

Threshold curves given by Eq. (II-1G) are plotted in fig.II.1 for 

several values of k . It should be noted that the curves all become 

asymptotically parallel to the coordinate axes. In practice one of 

these curve? is chosen to divide the plane into "signal" and "no sig- 

nal" decision regions. For a received signal vector v , log L(v/f.) 

and log L(v/fg) are calculated and these quantities define a point 

in this decision plane. If the point lies above or to the ?ignt of 

the chosen threshold curve, the decision is made that the desired 

signal is present. If the point lies belov and to the left of the 

curve, the decision is made what noise only is present. 

If the number of possible values of the frequency is made largerf 

the decision plane cf Fig. II.1 is replaced by an m-dimensional deci- 

sion space, and the threshold curve is replaced by an m-dimensional 

decision surface. 
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b) Detection in Gaussian Soiss 

If the ooise Is additiv« «ad gauasian vith a eovariance matrix 

K, than fron lq, (1-6) the I* for a given value of signal frequency 

it 

Urjti) ■ exp [ -1 .'(fj) K"1 • (tt)* ■,(ft)|T1r |(n-ii) 

For convenience let 

and 

Lt - L(v/ft) 

=1 " !*'i> 
S. ■ 

For the case in which the signal frequency nay take on one of two 

discrete values, the test quantities are then given by 

log 1^ - - | Si'rtLj, ♦ VE"1! (11-12) 

log L2 ■ - J. Sfi'K"1^ ♦ Sg'K"1! (II-13) 

Thus the operation of the optimum detector in this case consists of 

a general cross-correlation of the received signal vith the desired 

signal at each of the possible signal frequencies. 

In order to calcualte the detectetoility of the signal, the con- 

ditional p.d.f.'s of log L. and log L» must be obtained. Since 

the noise is gaussian and Bqs. (11-12) and (11-13) describe linear 

operations on the received signal, the quantities log L, and log L, 

are gaussian random variables. The required mean values of log L. 

are calculated as follows: 
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(II-ll.) 

-K'rti (11-15) 

<£* y      " -1 k'rti ♦ ai'^dfi ♦ ^>i 

- - | Si'S"1»! ♦ li'Si"1* (11-16) 

[ 

The variance» of log Lj ara 

var. [  log LJ   - a - I §i'*m\ * «i'K"1!. r> - fcli'^V 

\-l —   — —   —1, 

V**^    *\ 

* ■1'£"1££"1i1 

'   Si'£  5i (n-17) 
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I 
t 

"81 

w, 

♦ li'S."1 («a)   r1«! " fräa'S"1!*)2 

- »i'K"1»! (Il-l8) 

varS2*HUo8 Ll] ' 

ClT^li^lfi ♦ ("i'JL"1^)2 ♦ »i'K"1».! 

(11-19) 

The noise is assumed to have a flat spectrum over a band extending 

from zero frequency up to a sharp cutoff at V cps . Thus samples 

of the noise taken at a rate 2W    are independent, and the 

noise covariance matrix K is diagonal. One can therefore write 

V £\ - i   lui -A* -2(V (ii-sa) 
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(11-21) 
i-1 

where R it the variance of the noise. 

If the apectral level of the noise Is H volt/cps, then 

" = H W and, from results of sampling analysis, 

»iW^| } \    dt s,(t) s. ,<t) 

% 0 (11-22) 

where T is the observation time of the received signal. The sere 

result in Eq. (11-22) follows from the fact that sjt) and sJt) 

are sinusoids of different frequencies. 

Similarly, 

'i!'*2"«"!, |* 
s^U) (11-23) 

It will be convenient to define a detection index: 

- |  f dt s2(t) (II-2«») 

1 
where s(t) maybe either s.(t) or s«(t), since the signal is 

assumed to have the same amplitude at either frequency. It should 

be noted that the detection index is proportional to the power in 

t [it is assumed that the smallest spacing between possible 
frequency values is much larger than the reciprocal of T . It 
can be shown that if 2t(f.-f»)T >.10, then thi exact value of 
s.' K" Sg is at most one tenth as* large as s,' K~ £,]• 
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the received eigaal «ad to the obeerration tiaw «ad inversely pro- 

portional to tha epectral level of to« nolM. This detection index 

■ay alto b« regarded aa tha poet-detection 8RR. 

With the aid of ft». (11-20) through {IX-Sis), tha arsrsgss is 

ftw. (il-lk), (11-15) and (11-16) aay now be written aa 

Similarly, 

81 + I 

log 1^ d 

82+H 

/logl^ 
d 
2 

log L, v>.- 2 /     2 

log Lg 

' 8g ♦ H 

(11-25) 

(11-26) 

(11-27) 

(11-28) 

(11-29) 

(II-3C) 

Similarly, 

'■ [l08 L2 ] " * 

V i [l0« ^ ] ■4 

(11-31) 

(11-33) 
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To eonitxmet tbe Joint p.d.f.'s for th« test quantities, th* sorrela- 

tion coefficient is.required. 

A i / 
7 \ [logL, ♦ f ]  [Log Ls ♦ |K    1 ^'K-1! I-r'-eN 

"  \h'*\ 

(n-3»0 

Thus the test quantities log L and log L£ are uncorrelated, and, 

since they are g&ussian random variables, independent. With the 

following change of variables, 

xx - log Lx 

Xg ■ log L2 

the joint p.d.f.'s can be written a« 

(vj) * LfLLfJ ft^.Xg/Q) ■ -jq- exp 

f(x1,x2/s1) ■ g|d eap 

fCxj^.Xg/sg) • -gifj- exp 

^^ 

2d 

(vj) + (vj) 
2 "1 

2d 

(«i*«) +(x2-2y 
2d 

(11-35) 

(11-36) 

J     (11-37) 

I. 
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The centers of the*« three «entity function! are plotted in the 

decision plane of Fig. II.2, together with a typical optimal thresh- 

old curve. It ie particularly interesting to note that if the thresh- 

old curve remains fixed and the detection index d become large, 

the precise shape of the threshold curve near the origin of the 

decision plane becomes less important with regard to the conditional 

probabilities of error. This is because the region near the "corner" 

of the curve becomes a region of steadily smaller probability measure 
f 

with respect to the three p.d.f.'s as d increases.  With this in 

mind the decision scheme may be simplified when * is large by re- 

placing the optimum threshold curve with its straight-line asymptotes, 

&lso shown in Fig. II.2. The decision scheme corresponding to this 

new threshold curee can be stated as follows: If either log L, 

or log L. is above the threshold value log 2k  , the decision is 

made that a signal is present. Thus a threshold t«st is performed 

at each of the possible frequencies at which the signal may appear 

and a final decision about the presence of the signal is made on the 

basis of the individual tests. This type of decision scheme will be 

referred to in a general way aa a "band-splitting" scheme.  As d 

is mads increasingly large, the region (shown in Fie. II.2) between 

the optimum threshold curve and the band-splitting threshold carve, 

makes a steadily smaller contribution to the conditional probabilities 

t The mean value of each of th« test quantities h§.i a magnitude 
equal to d/2 , and a standard deviation equal to n~: thus as d 
becomes larger, each of the density functions becomes narrower with 
reepect to ita mean value. 

tt The term "band splitting" is more appropriate where a continuous 
frequency band is being searched for a signal by means of a bank of 
band-pass filters. For eonvienience a set of correlation detectors 
will be regarded as a special case of the filter bank. 
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Fig, II. 2.    Optimum Tkireahold Curve and Its Band-Splitting Approximation 

Two-Fraquancy Caaa 



I 
I 
I 
! 

I 
f 
I 
I 
I 
1 
I 
! 

I 
I 
I 
I 
I 
I 
I 

0-27 

of error. Therefore it can be stated that the optimum detector 

becomes asymptotically a band-splitting detector as the detection 

index d is aade increasingly large. 

A different situation prevails as d approaches sero, how- 

ever. Figure II.3 shows, for a low value of d, the arrangement of 

centers of the p.d.f.'s with respect to a typical optimal threshold 

curve. As d is made very small, the shape of the threshold curve 

for large magnitudes of log L. and log L- becomes less signif- 

icant in the determination of the error probabilities. Only the 

shape of the threshold curve in the region of the closely spaced 

p.d.f.'s is important, and a straight line with slope -1 can 

serve as a good approximation to the curve in that region. Such a 

straight-line threshold is also pictured in Fig. II.3. 

It is shown in Appendix B that if log (l>(v/f )\ 1B expanded 

in a power series and the lowest-order coherent term in the seriea 

is used to approximate the operation of the optimum detector, then 

that approximation corresponds precisely to a straight-line thresh- 

old as pictured in Fig. II,3. That is, for this case of a coherent 

sinusoid having one cf two known frequencies, a power series analysis 

with small-signal approximations leads to the tewt 

log 1^ ♦ log L2 * 2 log k - 2 (11-38) 

It is now clear that the approximation leading to Eq. (11-38) is 

valid only if the detection index d is much smaller than ucity, 

and it must be noted that it is not sufficient that ths pre-detection 

SHR be small, since d also depends on the integration time, as shown 
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Fig. II. 3. Optimum Threshold Curve and Its Small -Signal Approximation 

Tw>^Frequency Case 
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by Eq. (II-.2U) . In the weak-signal situation, where 4 is made 

much larger than unity by means of a long integration time, the 

band-splitting detector will provide a better approximation to the 

optimum detect«. 

The detuctor structure implied by Eq. (TI-38) will be referred 

to hereafter as a "sum-and-test" detector, 

c) Detection Probabilities - Two-Frequency Case 

The conditional false-alarm and false-dismissal probabilities 

will be calculated for the optimum detector and for the sub-optimum 

detector derived by the small-signal aualysis of Appendix B. Signal 

detectability curves will then be obtained. 

Optimum Detector 

The conditional false alarm probability a can be visualised 

with the aid of Fig. II.2. It is the probability that the point 

{log L,, log L„) lies above or to the right of the optimum threshold 

curve, given that noise only is present. From Eq. (II-35), 

log 2k  * 

log 2k 

dx„ 

1. 

»£»d 

1 

/5ifd 

exp hi*   *lY 2d (x2  2/ 

exp 2d \X2*2J «Jx, LexP 1 ^d 

log [2k-exp(x2)j 

fe(v If 

(11-39) 

t It vill be recalled that this is the conclusion which was 
stated in Sec. I.I» in the discussion of the power series technique 
and its suitability for problems involving the detection of signals 
of unknown frequency. 

I 
I 
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After a change of variables. 

• f        y?+iiog2k t 
1 

1 dv exp [. 4], x dv exp (' £)-k du exp ^- -y-j 

yf+i10«2* l/F *£ log[ac-exp< tfv-f)) 

(lI-*0) 

The double integration in Eq.. (11-40) cannot be carried out in 

closed font, but it nay be numerically evaluated to any desired 

degree of accuracy. To facilitate computations in this report, 

the optimum threshold curve will be replaced by the band-splitting 

threshold for large values of d. A graphical estimation of the 

detectability for lev values of d will then be carried out. For 

the band-splitting approximation, the conditional false alarm pro- 

bability is given by 

a ■» 
G7 

»m(mjfy± 

a 

v? J^log* 

jU^log» 

dv exp f-Ai 1^7 
du exp (4) 

f.i^,» 

o* jrl ti-^.lu,^    |4^. lu.-) 
(II-ia) 
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where 

*U) - -i= I « «•[-4-1 it* I \   ' I 
(Il-i*2) 

The function *(x) is the Normal Probability Integral, available 

in tables . 

The conditional false-dismissal probability is the probability 

that the point (log L., log L.) 1120 to the left of and belov the 

optimum threshold curve in Fig. II.2 vhen a signal is present in 

the received data. Given that the two signal frequencies are 

equally likely, this probability can be calculated with respect 

to either one of the signal-plus-noise distributions. Thus 

log 2k log [2k-exp(x2) .n 

.         1 
2 &£ 2d 1*2     2J dr.        exp 

1   <£itd -«£•») 
(II-J.3) 

After a change of variables, 

(II-aU) 

t See Rational Bureau of Standcrds (i). 
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Again, for the band-splitting Approximation the false-dismissal 

probability is approximated by 

~io«2kVt 
6*   JL 

£7 

t^.** 
du   exp l-fl 

(n-Jts) 

• ■* '••^>1 i +• /f ♦ ~ log a 1] (11-1*6) 

From Eqs. (11-1*1) and (11-46), the conditional detection 

probability 1 - ß is plotted in Fig. II. k  as a function of </& 

tot fixed values of the conditional false-alarm probability a . 

The curves are estimated for the region of' 1 -8 below 80 per 

cent. Detection probabilities on the order of 99 per cent or 

better vill usually be desired, and «his is veil vithin the range 

where the band-splitting detector provides a very accurate 

approximation to the optimum detector. 

Sum-And-Tcat Dc-tector 

From Eq(u-35) and with the aid of Fig. II.3 

2 u 
1   du &s H" 
J   (d/2 ♦ log k) 

2d 

(ii-vr) 

t Eq. (11-1*1») van evaluated by neans of hand computations for 
a few points in fig. II. It in order to check the accuracy of the 
band-splitting approximation. When Bq. (11-46) gives B» .500 the 
exact expression Eq. (11-41*) gives Ö* .It85, an error of approximately 
3 per cent. The percentage error falls off rapidly as 6 decreases. 
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After a change of variable, 

/Z? 
dz exp {■*■) 

jr + ■*- log k 
*  ^d 

..1 (II-W) 

Similarly, 

■■» I ■$.-$-.*} (II-U9) 

From Eqs. (11-1*8) and (ll-l»9), values of 1-0 are plotted in 

Fig. II.k  a« a function of •£ for three fixed false-alarm prob- 

abilities. It is seen that the conditional detection probability 

for this sub-optimum scheme steadily falls away from that of the 

optimum detector as the detection index Increases. As the uncertainty 

about the frequency of the desired signal is increased to a larger 

number of possible values, the difference between the performance 

of the sum-and-test detector and that of the optimum detectcr 

becomes more pronounced. 

II. J» Detection ~»f a Coherent Sinusoid - m-Frequency Case 

a) The Decision Space 

The work of the previous section has shown that in the detection 

of a coherent sinusoid with an unknown frequency which can have 

one of two values, the optimum detector becomes asymptotically a 
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band-splitting type of detector at the post-detection 8KR becomes 

large. If tbe unknown signal frequency is equally likely to have 

any one of m possible values, the decision space becomes an 

m-dimensional hyperspace, and the threshold surface dividing tbe 

space into "signal" and "no signal" regions is obtained from 

Eq. (II-6) with Lfv/fj) ■ ^ ,  as 

j I  eip (lor i-t)  » k (11-50) 
i-1 

As tbe detection index is made very large and a received signal is 

tested, two different situations will occur, depending upon the 

presence or absence of a signal: 

1) If no signal is present, all a of the test quantities 

log L. will have large negative mean values, equal to - d/2 

[See Eq. (11-25)3. 

2) If signal is present, m-1 of the test quantities will 

have mean values equal to - d/2 , and one test quantity will have 

a mean value equal to £/2    [See Eqs. (11-27) and (11-26)]. 

Thus it is of interest to examine the shape of the threshold 

surface in regions of the byperspace vhere the test quantities 

have large negative values. If Eq. (11-50) is solved for on? of the 

test quantities in terms of the others, 

expdog J^) ■ mk - exp(log Lg) - ... - expdog L^)    (11-51) 

or 

log Lj ■ log [mk - expdog 1^) - ... - expdog L^)]  (11-52) 
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When log L-, ... , log L_ have large negative values, the 

exponentials in Eq. (11-52) become very mail, and 

log Lx S log a k (11-53) 

Tuus the asympototes of the optimum threshold curve are hyper- 

planes perpendicular to each of the m coordinate axes of the 

decision space. These asymptote planes are analogous to the 

asymptote lines of the two-dimensic-nal case. 

It is seen then that as the detection index becomes large 

the precise shape of the threshold surface near the origin of the 

decision space becomes l?ss iaportant with respect to error prob- 

abilities and the optimum threshold surface may be approximated by 

a set of m hyperplanes. The decision scheme corresponding to 

this approximation can be stated as follows: If one or moreo of 

the test quantities log I . log L„, ... :.og L  is above the thres- 
x c m 

hold log m k , \£« decision is made that a signal is present. 

If all m test quantities are below log m k , the decision is 

made -chat noise only is present. As in the two-frequency case, 

this detection scheme will be referred to as a "band-splitting" 

scheme. 

It can be stated in general, then, that the optimum detector 

for the detection of a coherent sinusoid whose unknown frequency 

is given by a discrete probability distribution becomes asymptotically 

a band-splitting detector as the detection index d becomes large. 

For small values cf post-detection 8MB, the work of Appendix B 

shows that tha optimum dete«. or can be approximated by a sum-and-teat 
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detector. For the m-frequency case the approximation leads to the 

test 

9 A 
I     log L. > a log k - (a-1) f        (II-5U) 

1-1    * £ 

The threshold surface corresponding to this sub-optima scheue is 

given by 

I  log L. - m log k - (m-1) f        (H-55) 
i«l    x 

end this is seen to be a hyperplane in the m-dimensional decision 

space. This is analogous to the straight-line threshold shown in 

Fig. II.3 for the small-signal approximation in the two-frequency 

case. 

b) Detection Probabilities - m-Frequency Case 

Optimum Detector 

For large values of d the optimum detector will be approx- 

imated by the band-splitting detector to simplify the computation 

of the error probabilities. For small values of d the detect- 

ability will then be estimated. 

The conditional false-alarm probability is the probability 

that one or more of the test quantities exceeds tbe threshold log mk, 

given that noise only is present. That is, 

o ■ P [At least one of the test quantities log L. is 
above its threshold, given that noise only is 
present.] 

■ 1 - P [All the test quantities log % are below 
their thresholds, given that noise only is present.] 
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The conditional false-dismissal probability is 

't 
! 

S ■ P [All the test quantities log L. are below 1 
their thresholds, given that a signal is 
present at any one of the possible frequencies.] 

1 

It is shown in Appendix C that 

a - 1 - (1 - oj)" (n-56) 

and 

where 

t « ßt(l - 0l) "
1 (II-5T) 

a. » P [log Lj is above its threshold, given that 
no signal is present at the frequency f..] 

0. ■ P [log 1^ is below its threshold, given that 
a signal is present at the frequency f., ] 

The probabilities a.    are assumed equal for all i ■ 1, 2, ..., m, 

and the probabilities 6. are assumed equal for all i ■ 1, 2, ..., m. 

The error probabilities a and B can be bounded as follovs: From 

an expansion of Eq. (11-56) one obtain? 

a im oi (11-58) 

and from Eq. (11-57) one obtains 

6 < ßt (11-59) 

These bounds are very accurate for m a.« 1. It is seen from 

Eqs. (II-58) and (11-59) that if the threshold for *ach log 1^ 

lb held fixed and the number of possible frequenci« is increased, 

the false alarm probability will be approximately proportional to m, 



0-39 

vfaile the false dismissal probability vill remain approximately 

unchanged. 

The conditional p.d.f.'s for log L. are needed. Let 

xi - log ht  . The, from Eqs. (11-25), (11-26), (11-27), (11-31), 

(11-32) and (11-33), 

f(x./0 or s.) ■ -——•  exp 
/ZiiS 

it* 
and 

„VSi). _ m 

M>^1 

-4- ',    tf 2d ^xi ' y 

(n-6o> 

(11-61) 

If the threshold for each test Quantity is log mk , 

(11-62) 

From Eqs. (11-56), (11-57) and (11-62), the conditional detection 

■probability 1-8 can be calculated as a function of /S   for a 

fixed value of the conditional false nlarm probability a and for 

any number m of signal frequencies. Results of these calculations 

for o ■ .01 and a « 1,2,1»,8 and 128 are shown in Fig. II.5. It 

can be seen from the figure that ihe set of detection curves for 

different values of m becomes a set of parallel straight lines as 

d becomes large, with the detectabllity becoming poorer as m 

increases, as would be expected. The asymptotic form of the detect- 

abllity curves for small error probabilities can easily be derived 

using the bounds of Eqs. (11-59) and (11-59)  For small values of as. 
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the bounds becomy very good approximations and using Eq. (11-58) 

together with Eq. (11-62), one can write 

- m 
«- ? 1"*(^+|l08"k) 

(n-63) 

The conditional detectability 1 -0 ii to be calculated ai & 

function of &  for a fixed value of a, therefore let a ■ a 

where a  is the chosed fixed false-alarm rate. Now, from Eq. (11-63), 

~ log ik * ♦ *(»--£)-V* di-61») 

.-1/ where ♦ (i) denotes the "inverse Rormal Probability Integral", 

that is, the number x for which z ■ *(x) [See Eq. (H-U2)j. 

From Eqs. (11-59) and (11-62), an approximation is obtained 

for the conditional false-dismissal probability as 

"I 1 -♦ ($ -±108Bk) (11-65) 

Inserting Eq. (11-61») into Eq. (H-65), one obtains 

8* |(1 -♦ /& - *~ 
*) 

(11-66) 

The conditional detaction probability is then approximately 

1. > ß* i\ 
f 

1 +♦ 

- 

<*(>• 
2«#>\ 
m) ! 

L /&. » 1 
(11-67) 



Q-kZ 

The right-h»nd side of Eq. (II-67) is seen to be of the general form 

cl* [c2tf + c. * c. (11-68) 

where 2,,C2, C. and C^ are constants. This general form represents 

a linear function of «faon the normal probability scale? of Pig. II.5. 

Thus the asymptotes of the detectability curves for the optimum 

detector, given by Eq. (11-67), plotted for various values of m 
« 

or various values of 0  are a family of parallel straight lines, 

the horizontal displacement of each line being determined by the 

-1/    * »     * 
quantity ♦ (1 - 2a /m). If a  is held fixed and a is increased, 

•' 1 (—$" as m 

a ■ const. 

Thus the detection curve moves steadily to the right as m incrases, 

representing steadily poorer detectability with increasing uncert- 

ainty about the signal frequency, as is seen in Fig. II.5. The 
» 

same trend is observed if m is held fixed and a is decreased; 

that is, 

♦-1 (1 - 4)- as 0 +0 

m ■ const. 

This is the trend exhibited by th« optimum detector curves in Pig. II.lt 

for the two-frequency case. 

Sum-And-Test Detector 

For the sum-and-test detector, the test quantity is 

m 
y ■ [ log L. 

i»l    x 
(11-69) 
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When noise only is present, each of the quantities log L. has 

a mean value - d/2 and a variance d . Thus 

f(y/0) 
rZm& 

~ exp 

2 - 

2md y + 
md! (11-70) 

When a signal is present at one of the m possible frequencies, 

m - 1 of the quantities log L. will have a mean value - d/2 

and one will have a mean value d/2 . Thus 

f(y/s,) 
/2nmd 

exp 1 
2md y ♦ (m - 2) 

j (II- •71) 

If y is compared with a threshold m log k - (m - l) j , the 

conditional error probabilities are given by 

I'1 -» 1 -•(■/& 'Vf io«*) (11-72) 

Curves of conditional detection probability 1 -B as a function 

of /d are shown in Fig. II.5 for the sum-and-teet detector. The 

curves are plotted for a * .01 and values of m « 1,2,1»,8, and 128. 

As was seen for the optimum detector, the signal detectability with 

the »um-aüd-test detector becomes poorer as n increases. An 

expression for 1 - ß as a function of </&   and any fixed false- 

alarm rate a = a  and for any value of m can be found as follows: 

Prom Eq. (11-72), 

1-Ö/E ♦# - j (11-73) 
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Thus 

-i/f log k - *ml{l  - 2a*) 

Prom Eqs. (11-72) and (II-7U), 

(n-Tfc) 

whare ♦" ( ] 

(11-75) 

has the same meaning as in Eq. (11-61«) . The right- 

band side of Eq. (11-75) is seen to be of the general form of 

expression (11-68) and thus represents a linear function of /T 

on the normal probability scale of Fig. II.5. Since /<f enters 

Eq. (11-75) in the form »£7m , the slope of the detectability 

curve will vary with m , decreasing as m increases. Thus if 

a family of detectability curves *or the sum-and-teat detector is 

plotted for a fixed value of a , the slope of each curve will 

approach zero as m becomes increasingly large, as is seen in 

Fig. II.5. The horizontal displacement of the curves is governed 

by ♦ (1 - 2 t» ) and thus a family of curves plotted for a fixed 

value of m consists of a set of parallel lines, with the detect- 

ability becoming steadily poorer as o  is made smaller; this is 

seen in Fig. U.U. 

Fig. II.5 shows that as the uncertainty about signal frequency 

increases, the performance of the sum-and-tost detector declines 

more rapidly than that of the optimum detector. In the operation 

cf the sum-acd-test detector, an increase in the- number of possible 

values of the signal frequency requires an identical increase in 

l. 

i 

the number of noisy correlator outputs to be iu2ssed before the 



threshold test; thus the post-detection SNH varies Inversely vith 

m , as is seen in Z$.  (11-72), However, the optimum detector, 

vhen visualised In terms of its asymptotic form, the band-splitting 

detector, Affectively searches out the "best" (that is, the largest) 

of the m outputs and then uses this in the threshold test. 

Increasing m simply increases the number of test quantities 

among which the detector must search, but the detector vill still 

seek out the "best" output for use in the threshold test. As more 

outputs are to be examined, the conditional false alarm probability 

increases, therefore the threshold must be adjusted slightly up- 

ward to maintain the same fala«? alarm rcte; this change in threshold 

level leads to a slightly lover conditional detection probability. 

A useful basis for cenparison of the optimum detector with the 

sum-and-test detector is that of pre-detection SNR or integration 

time required for a desired level of performance. This comparison 

is made in Fig. II.6 in a plot of & /d . vs. m , for a > .01, sum opt 

and B -  .50; where 

d  * detection index requited vith the sum-and-test 
1011  detector for error probabilities a * .01 and 

ß • .50. 

d . » detection index required witn ihe optimum 
*  detector for error probabilities a ■ .01 and 

8 « .50. 

Since the detection index d is seen from Eq. (ll-2h) to depend 

linearly upon the pre-detection SNR and linearly upon the integration 

time, the ratio d
fun/

d
0I)* ""V *• interpreted as either a ratio of 

required input SNR for a fixed integration time or a ratio of 

required integration times for a fixed input SNR. It is seen from 
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the figure that the logarithm of this ratio Increases in an 

approximately linear fashion with the logarithm of a . 

II.5 Detection of a Slnusiod of Random Phase and Unknown Frequency 

In Gaussian Hoise 

After the results presented in this chap*er vere originally 

reported., they vere extended by Rill tc hhe problem of detecting 

a sinusoid of known amplitude but unknown phase and unknown fre- 

quency in broadband gaussian noiee. The signal frequency was assum- 

ed to hare a discrete probability distribution over m possible 

values as was assumed in the present investigation, but, the phase 

was assumed to be unknown with a uniform p.d.f. over the range 

0,2* . This signal was termed an incoherent sinusoid. Hill 

employed the geometric decision-space approach developed here and 

snowed that in the case of unknown phase the optimum detector 

again becomes a band-splitting detector as the post-detection SNB 

is made large. Signal detectability curves were computed and 

compared with the corresponding results obtained for the coherent- 

sinusoid case. Detectability curves are presented in Fig. II»? 

for both the coherent and Incoherent signals, for the 2-frequency 

cti«e (m ■ 2) . Conditional detection probability is plotted as a 

function of the detection index /d for several values of the 

faliie alarm probability a. The curves for coherent signals are 

tho«e previously shown in Fig. II.it. It is seen from Fig. II.7 

that for each value of a the detectability curves corresponding to 

coherent und incoherent signals, respectively, become parallel 

t See Leveaque (II) 

tt Hill, F. S., Jr., unpublished research, January, 196!». 
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straight lines a* /d increases. Thus the random» ss of the 

phase results in an approximately constant "coat" in fä  in the 

region of high detectability. This is the same trend vhich is 

exhibited in a single-frequency analysis . 

la Fig. II.8 are plotted detectafeility curves for the inco- 

herent case with m ■ 2V k, 3, and 126, and for a ■ 10  and 

-6 «2 
10" . It can be seen by comparing the curves for a » 10" 

vlth Fig. II..5 that the curves for the incoherent case once again 

become parallel to the corresponding curves for the coherent case. 

A useful measure of the loss in deteetability due to unknown 

phase is the increase in pre-detection SHR required to achieve a 

desired level of performance with the observation time T 

assumed fixed. For o » .01 and 0 ■ .50 the required increase 

in SHE varies from 1,5 db to 1.0 db as m varies from 2 to 

128 . Similar losses in pre-detection 8NR are exhibited at a ■ 10 . 

See for example Helstrom (I, discussion on pp. 155-156). 
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11*6 Co»ants 

The results obtained in this chapter have shown that the 

optima structure for the detection of a coherent sinusoid with a 

discrete frequency distribution becomes a band-tplittlag detector 

as the post-detection SKR is Bade large. This work could be 

extended directly to the detection of any incoherent signal whose 

frequency is given by a discrete probability distribution. For 

such a case the threshold test would again be given ly Eq. (II-5) 

and the threshold surface by Eq. (II-6). The major departure from 

the foregoing"analysis would be the non-gaussian statistics of the 

test quantities log L(v/f.) . However, regardless of the precise 

font of the distributions of log L(y/f.) , tbese distributions 

would again move away f.-om the m-dimensional "corner" of the 

decision threshold «urf&ce, and the surface could again be accurately 

approximated by its asymptote planes. Thus once again the band- 

splitting detector should emerge as an accurate representation of 

the optimum detector structure. 

The next two chapters will consider a somewhat more generalized 

problem, one of detecting a narrowband signal whose frequency is 

given by a p.d.f. over a continuous frequency range. 
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CHAPTER III 

DETECTCOK OF A HÄRROWBAID GAUS8IAN 8ICSAL 

OF umarowN CENTER FREQUENCY - PART I 

WEAK SIGNALS 

III.l Introduction 

This chapter and the following chapter will deal with the 

problem of detecting, in broadband gauaaian noise, a narrowband 

gaussian signal of bandwidth B„ . The center frequency of this 

signal is not known in advance but is assumed to lie within a 

frequency band of width B , where B ■ rBg and r> ü . The 

quantity r will be referred to as the frequency uncertainty 

ratio. The optimum structure for the detection of such a signal 

will be determined and a satisfactory engineering approximation 

to the optimum detector will be found. 

The signal detectability will also be determined. Of par- 

ticular interest is the question as to what improvement in detect- 

ability is obtained when the signal power is confined to a band 

r times narrower that the frequency band B being processed 

rather than being uniformly spread over the band B . This im- 

provement in detectability will be determined for several values 

of r . Experimental data on optimum detector performance will 

be presented and compared with theoretical results. 
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The signal detectabllity will be seen -to depend upon signal 

strength through Rfl , the SKR is ■ narrow band of width Bq . 

This chapter will be concerned with the situation in which Rg id« 1, 

that is, the weak-signal case. When the signal is strong with 

respect to the noise in a band of width Bg , and R_» 1, then 

the analysis must be modified; the strong-signal case will be 

taken up in Chapter IV. 

III.2 Detection of a Stochastic Signal of Utucaovn Center Frequency 

When the signal to be detected is a stochastic signal with 

a spectrum of known shape but unknown center frequency f , the 

optimum detector must compute the average LR. 

Kv) (L(v/fc)) f (III-1) 

where 

f(v/s,f ) 
L^fc} "   ~fTi7ör (III-2) 

is a LR calculated for a particular value of the center frequency. 

When   i(v)    lo expressed in terms of   log L(V/f ), 

i(v) »   /exp [log L(v/fc)n (III-3) 

If the unknown center frequency has a probability distribution 

over a discrete set of   m   values, Sq.  (III-3) becomes 

m 
*(l) * I   Pt 

e*p flog L(v/fH)] (III-I») 
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I 
where p. is the probability that the center frequency has the 

value f . . The optimus *etector forms the sum in Eq. (ill-b) f i 
M compares the sum with a preset threshold V: 

I   p. exp [log L(j/f)] < k (1II-5) 
i-1 

The average LR given by Eq. (III-U) and the threshold test 

given by Eq. (III-5) are analogous to Eq. (II-*») anS (II-5) 

deriv  in the preceding chapter for the detection of a coherent 

sinusoid whose frequency was given by a discrete probability 

distribution. In that chapter a geometric interpretation of the 

average LR and of the threshold test was proposed and that inter- 

pretation was used to derive the asymptotic form of the detector 

structure. A slightly different approach will be taken here. 

Suppose that the stochastic signal is narrowband and the 

discrete center-frequency values f , are separated by frequency 

intervals at least as large as the signal bandwidth. Then when the 

observation time is long, i.e., several times as large as the 

reciprocal of the signal bandwidth, test quantities log L{v/f .) 

and log L(v/f,) will be independent *or i ^ J . If the post- 

detection SNR is made large in order to insure high detectability, 

and if a signal of center frequency f . is present in the received 

data, the test quantity leg L(v/f . ) will on the average have a 

t It will ' seen in the next section that tne formation of a 
test quantity log L(v/f>^) requires three basic operations: 
filtering of the received signal with a pre-detection filter 
matched to the signal spectrum and centered at frequency f , 
followed by a nonlinear operation and finally integration. If 
the pre-detection filters centered at fcj and fc< have non- 
overlapping frequency responses and if the observation time is 
long with respect to the reciprocal of the filter bandwldths, then 
the filter outputs, and hence log L(v/f .) and log L(v/f ) are 
independent. u 
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high value. The remaining m-1 of the test quantities vill on 

the average have small values. The exponential operation in 

Eq, (III-5) suppresses low values of log L(v/f .) and emphasises 

high values, Therefore when a signal is present in the received 

data the dominant term in the summation in Eq. (111-5) is that 

corresponding to the actual center frequency of the signal to be 

detected. As the separation is Increased between the average value 

of log L(v/f .) with only noise present and the average value 

with signal of center frequency f . and noise present, the thresh- 

hold test on l(v) can be closely approximated by a test on the 

largest term in the summation, that is, 

max [log L(v/fci) + log p^,] ^ log k (1II-6) 

\ 

I 
I 

A test of this form is referred to as a maximum likelihood test. 

If at least one of the m quantities [log L(v/f ,) + log p.] 

exceeds the threshold, the maximum of the quantities will have 

exceeded the threshold. Hence the test prescribed by Eq. (III-6) 

can be accomplished by a band-splitting detector, in which 

log L(v/f .) is generated at each of the m possible center 

frequencies and is compared with a threshold as follows: 

lrj, L(v/fcl) < log k - log pA (III-T) 

I 
I 
I 
I 
i 
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If one or more of the test quantities exceeds its threshold, the | 

decision is made that a signal is present in the received data . 

Ibis band-splitting detector is precisely the detector structure 1 

which was derived in Chapter II using the geometric interpretation 

of the average LR and the threshold test. 

The foregoing argument has made use of the assumed independence 

of the test quantities log L(v/f .) in order to state that when i 

a signal is present and the post-detection SUB is high, ose of the 

terms in the summation in Eq. (Ill-it) will dominate and the remaining | 

terms may be ignored. If the number m of possible locations of 
! 

the signal center frequency in a fixed frequency range is steadily I 

increased, test quantities generated at neighboring frequency values 

will become correlated. Then, when a signal is present, two or i 

more test quantities will on the average have high values. However 

the teBt quantity log L(v/f . ) , where f .  is the true signal 

center frequency, will have a higher average value than any other test 

quantity log L(v/f .) . The exponential operation in Eq. (111-1») 

will cause the average difference between exp [log L(v/f J] and 

exp [log L(v/f .)] , i i k, to be of exponential order in the 

difference between the average values of log L(v/f .) and 

log L(v/f .) , the difference between these latter average values 

increasing with the post-detection SHB. Thus as the post-detection 

t Since it is not required in the detection problem that the actual 
center frequency of the detected signal be identified, it does not 
matter that on some occasions the threshold will be exceeded at more 
than one frequency, though a signal can be present at only one 
possible center frequency. 
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SNR la made very large the test quantity log L(v/f . ) will again 

dominate in the summation which represents I (v) cud the threshold 

test in Eq. (ill-5) may be accurately approximated by a test on the 

largest term in the summation, a test which is implemented by a 

band-splitting detector, as was found in the case of independent 

test quantities. 

Thus it may be concluded that the optimum detector for the 

detection of a stochastic signal whose center frequency is given 

by a discrete probability distribution asymptotically becomes a 

band-splitting detector as the post-detection SNR becomes increas- 

ingly lexge, regardless of the spacing of the possible values of 

the signal center frequency. 

If the number m of frequency values in a fixed range is 

increased indefinitely, a limiting situation will be reached in which 

the center frequency of the stochastic signal Is unknown over a 

continuous frequency band. If this frequency band has a width 

B cps, the average LR as given by Eq. (III-3) may be written as 

I  (v) dfc p(fc) exp [log L(v/fc)] (III-8) 

B 
The optimum detector now generates exp[log L(v/f )] as a contin- 

uous function of frequency and averages this over the band B with 

respect to the p.d.f. of the signal center frequency. As in the 

case of a discrete frequency distribution, the exponential oper- 

ation in Eq. (III-C) emphasizes large values of log L(v/f ) and 

suppresses low values so that if a signal is present in the 

received data and the post-detection SHR is made large, the function 
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dxpUog Uv/tjl     will cm the average have a large peak near 

the true value of the signal center frequency, and thia peak will 

provide the major contribution to the integral in Eq. (III-8). 

Thus it can again be seen that if the post-detection SHR is made 

very large, a test on t(v)   can be closely approximated by a test 

on the peak value of p(f) times expflog L(y/f )] or equivalent- 

ly by a test on [log p(f ) + log L(v/f )]. This test can be imple- 

mented by means of a "band-sweeping" detector, in which log L(v/f ) 

is generated as a continuous function of frequency and the following 

test is made: 

log L(v/fc) < log k - log p(fc)      (III-9) 

If the threshold is exceeded anywhere in the band B, a decision is 

male that a signal is present. The foregoing discussion does not 

constitute a proof of the asymptotic optimallty of the band-sweeping 

detector, but is simply an extension of the similar result, obtained 

for the case of a discrete frequency distribution, to the limiting 

case of a  continuous distribution. Since the asymptotic optimallty 

of a band-splitting detector can be demonstrated for any discrete 

distribution of signal frequencies however dense, it seems reason- 

able that the limiting form of the band-splitting detector, the 

t Elsewhere the tero "sweeping" is often used to describe a 
filter or other electronic device some parameter of which is 
continuously varied as a function of time while the device is 
processing a signal. It must be emphasised that the band- 
sweeping detector described here does not operate in this fashion. 
Rather, the detector generates the .function log L(v/fe) simul- 
taneously for all frequencies fc tin the band B, and log L(v/fc) 
at each frequency is generated from the same set of samples of 
v(t) , taken in the time interval 0,t . 

| 
i 
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band-sweeping detector, is also asymptotically optimum as the 

post-detection SNH is made increasing large. Thus, the asymptotic 

optimality of the band-sweeping detector will be conjectured without 

further attempt at a rigorous proof. 

The performance of the band-sweeping detector will now be 

analyzed to determine the detectability of a narrowband gaussian 

signal of unknown center frequency in regions of high signal 

detectability. In regions of low detectability, where the analysis 

of the optimum detector is not tractable, the signal detectability 

can be estimated. This is no loss, however, since the only situations 

of real interest are those where high detectability is obtained. 

A practical implementation of the band-sweeping detector would 

employ a densely spaced bank of narrowband filters, each matched 

to the expected signal band, spanning the overall band of frequency 

uncertainty. It is clear that as more filters are added to the 

filter bank, the instrumentation approaches the band-sweeping 

detector. It is thus of practical interest to determine how 

densely the filters must be spaced in order to achieve satisfactory 

performance. The question will be answered by considering succes- 

sive band-splitting approximations to the band-sweeping detector. 

III.3 Narrowband Gaussian Signal of Unknown Center Frequency 

The problem to be considered is as follows: A narrowband 

gaussian random signal is to be detected in the presence of broad- 

band gaussian noise. The spectral level of the noise is assumed 

to be known, as are the signal power and the signal bandwidth Bg;ps. 



0-& 

The center frequency of the signal is not known however, except 

that it lies domevhere in the frequency band being processed, a 

band of width B, where B 2. B_ . In various situations the signal 

bandwidth Bg may be narrower than B by varying amounts, thus 

it is of interest to determine the signal detectability as a function 

of the relative magnitudes of B and B_ , as well as a function 

of signal and noise powers and the integration time. 

For convenience of analysis, the following assumptions will 

be made: 

1) The background noise has a flat spectral density of level 

H volt /cps from sero frequency up to a cutoff frequency W cps, 

where W is much higher than the highest possible signal frequency. 

The noise may thus be considered white with respect to the narrow- 

band signal. 

2) The signal is assumed to have a rectangular spectrum of 

width B- centered at some frequency f . The total average o c 
p 

signal power will be A/2 . 

3) The p.d.f. for the signal center frequency is assumed to 

br uniform over the band B , and the band B is an integral 

number of times wider- than the signal bandwidth, that Is 

B - r Bs (111-10) 

where r, the frequency uncertainty ratio, is assumed to take on 

integer values. 

The assumed model of the signal spectrum is shown in Fig. III.l . 

{'. 
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Fig. III.l Spectrum of the Signal to be Detected 

As was stated in Section III.2, the optimum detector vill be 

approximated by a band-sweeping detector. It was conjectured that 

this detector becomes asymptotically optimum as the signal detect- 

ability is increasingly imporved. Thus the detector must calculate 

log L(v/f ) for values of f  in the band B. The quantity 
—' c c 

L(v/f ) is the LH calcualted for a gaussian signal in gaussian 

noJ.se given that the center frequency of the signal spectrum is 

known to be f   L(v/f } is eaaily derived. When a signal is c    — c 

present, the received sample vector v is 

v » s ♦ n (III-ll) 

where s is a sample vector from the gaussian signal process and 

n a sample vector from the gaussian noise process. If the signal 

and noise processes are independent, then v is a sample vector 

from a gaussian process with covariance matrix P + K where P 

is the signal covariance matrix for a given value of the narrowband 
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center frequency f , and K is the noise covariance matrix. 

Thru, given that signal is present, the p.d.f. of the received 

signal v is 

f<Z/JL.O 
(2»)n/2 [det(P + K)]1/2 

exp [.|v'(P ♦ K)_1vj 

(111-12) 

r ; 

'l i 
i 

V 

*. 

where n is the total number of samples. 

When noise only is present in the received signal, the p.d.f. 

for v is 

f(v/0) exp [- |v« K-1v]    (111-13) 

(2i)n/2 (det K)1/2 

Hence the LR evaluated for a given value of the narrowband center 

frequency is 

[  det K 
L(2/fcJ " [ det {?""♦ K) 

1/2  , 
exp Ir'KP + K)"1 -K_1]v) 

(m-HO 
It is necessary at this point to establish the precise 

structure of the vector and matrix forms v,. P and K used in 

Eq. (111-1*0 . Since the assumption is being made that the signal 

spectrum is rectangular with vidth BQ centered at f , then in 
a C 

forming the quantity L(v/f ) for a particular value of f , 
c c 

none of the noise spectrum outside the corresponding band Bg 

centered at t     need be considered. Thus if the receives signal c 

v(t) is ideally pre-flltered to the band B_ , v represents a 

vector of samples of a band-pass signal v(t) taken during the 

observation time   T .    Sampling analysis indicated that for   B_T» 1 , 
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«t«s*i|0r- 

the signal v(t) can be completely described by complex samples 

taken every 1/B- seconds. Each conplex sample z(t.) consists 

cf a sample of the received signal v(t) and a sample of its 

Hilbert Transform v(t), that is, 

«(tj) - v(tt)  ♦ j v(tt) (111-15) 

I 

For B.T» 1 the following properties of a function x(t) and its 

Hilbert Transform x(t) can be demonstrated. These tvo statements 

will not be proven here, but follow directly from the properties 

of the Hilbert Transformation. 

1) The mean-squared value of a function x(t) is equal to 

tl. ■! mean-squared value of its Hubert Transform x(t)T 

2) When the function x(t) is a bandpass function strictly 

limited to A band of width W ops, samples of the Hubert Trans- 

form x(t) taken at intervals of g sec. are uncorrelated, as 

are samples of x(t) . Also, samples of x(t) and of x(t) are 

uncorrelated at the same instant of time or at instants separated 

m 

m 

by intervals of   rrsec,    that is 

x(tt) iitj) * 0      ,     %t - tj - 0 , i , | ,  .  .  . (111-16) 

Thus it is seen that when the received signal v(t) is a gaussian 

process strictly band-limited to a band of width B cps and when 

BgT» 1 , v(t) can be represented by a vector v of 2BgT 

independent samples. Furthermore, the matrices P and K can 

be written as diagonal matrices ( of order 2B„T ) , that is, 

£--§-! (ni-17) 

t See Deutsch (I, Chap. Is. 

tt This property can be stated either in termr of time averages or 
in terms of ensemble averages, the only requirement being that the 
process x(t) oe wide sense stationary. See the previous reference 
for a discussion of this point and for further references. 
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K ■ V I 

C-ft 

(in-18) 

1. 

where I is the identity matrix and 

»■Vs (m-19) 

is the total noise power in the narrow signal hand. The determinants 

appearing in Iq. (XXX-lt) than baec 

det K ■ I* 

det(P + K) ■(-§-♦») 

(111-20) 

(in-21) I 

Row Eq. (HI-lU) can be written more simply as 

n/2 

Uv/t) 
* H 

n/2 

2H ♦ 1 

exp   \" 2 

/ 

85Sp(-i 

A2 " -§■♦ I 

▼ 'I  V 

. 2H ♦ 1 ar ~ 

(ni-22) 

The test quantity log L(y/fc) is given by 

log L(v/fe) [4-] | 10« 14, ♦ 1 
£.1 
2M * * 

b-'1- 
(Hx-23) 
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The operation on the received signal is seen to ^e a linear function 

of the quadratic form v'l v , and it is clear that any linear 

function of v'l v would serve as s« equivalent test quantity. 

For purposes of analysis and computation:, it will be convenient 

t 
to take as a test quantity 

I 

Q(f) - A-v'l v -| 
hit * 2S * 2 ( 3» 

(III-2U) 

At this point an input or pre-detection SNR will be defined as 

RS  2N 

2NoBS 
(in-25) 

and is simply the signal-to-noise power ratio in a band Bg 

containing the desired signal. An input SNR may also be defined 

with respect to the overall band to be processed: 

K ~ 2N B 
o 

(111-26) 

In the work immediately following, R„ as given by Eq. (111-25) 

will be more useful, but at certain later points in this work, 

P will also be a convenient measure of SNR. The distinction will 

always be made clear by the subscript S . 

t Since the test quantity is specifically a function of center 
frequency, it should be written as Q(f ) ; however,, for simplicity 
Q(f) will be used. 
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From the definition of R-, Eq. (lll-2k)  may be rewritten 

a* 

(111-27) 

For small values of input SIR R- , Jq. (111-27) represents a 

close approximation to the right si«-? of Eq. (111-23), but Q(f) 

is always a valid test statistic, beiag * monotone function of 

log L(v/f ) , regardless of the sise of R.. Hence if the received 

signal is ideally pre-filtered to a band lg cps wide cantered at 

t » f , the calculation of the test quantity simply requires the 

formation of the vector product of v with itself, y/I v . From 

the discussions following Eqs. (UI-lU) and (111-15), the vector 

product becomes 

V 
I/I I * [ ▼«* ♦ ♦« 

i-1 
(111-28) 

From property 1) stated in tnat discussion, one can write that 

for B-T» 1, 

B„T      B.T 

! 
i»l     *       i»l 

and thus Eq. (111-96) may be written approximately as 

BT 
ri    " X    fi (111-29) 

I 

fen 

2B-T 
•I  y    « (111-30) 

i«l 
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If the summation in Eq. (111-30) is approximated by an integration, 

the operation on the filtered received signal v(t) is 

T 

v'l v 2B„ dt v2(t) (111-31) 

i 

I 
i 
I 
I 
I 

Thus for long observation times (BgT>> 1 ) the formation of the 

test quantity Q(f) at a particular value of center frequency 

f » f requires a filtering of the received signal v(t) to a 

band of width B„ cps centered at f , followed by squaring and 

integrating operations. This set of operations simply represents 

a measurement of the energy in the received signal in the corres- 

ponding band B_ during the interval T . 
b 

Since v iB a vector of samples fron a gaussian random process, 

the quadratic form v'l^ v has e Chi-Squared p.d.f. with n degrees 

of freedom. However, in a weak-signal situation n is made very 

large, corresponding to a large time-bandwidth product; and as n 

is made large, the Chi-Squared p.d.f. becomes gaussian. 

Thus only the mean and variance of Q(f) are required, nnd 

they are calculated as follows: ".'ith only noise present, 

.2 

-^-i[*s*H
2] 

~-t[«s*K
2] "n "fei 

if Rs (111-32) 



varH [Q(f)] -(Aj "*„ fl'I vj 

.(4J ftr8*. 2 trf'-A») 

I 8 (IIX-33) 

4. 

When a signal is present in the received data, the mean and variamce 

of Q(f) depend upon the relative frequency positions of the bead« 

sweeping filter and the narrowband signal spectrum.  When the 

filter is centered at a frequency f separated from the true 

signal center frequency by at least Bg cps, then the filter does 

not overlap the signal apectrua, and the mean and variance of 

Q(f) are given by Xqs. (111-32) and (111-33). When the filter is 

exactly aligned with the signal spectrum at f ■ f, the mean and 

variance of Q(f) are easily shown to be 

w«'"-tV (IH-3M 

and 

itWQCfH.fm/ll**]2 (112-35) 
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In any intermediate situation, where the pass-band of the band- 

sweeping filter overlaps a fraction o of the narrowband signal 

spectrum, the total average signnl (desired signal) power in the 

oA2 
filter output is  -g- . Thus it can easily be shown that the 

mean and variance of Q(f) are 

Es+N[Q(f)] " J Rg
2(2a  - 1) , 0<. c< 1 (111-36) 

and 

var- „[Q(f)] - | R_2 [l + oRg]
2 , 0< a  < 1 

2 * S 
(II  7' 

A 

When o*0, representing no overlap, Eqs (111-36) and (111-37) 

give the resultB of Eqs (III-32) and (111-33); and when o « 1 , 

corresponding to alignment of the filter with the signal spectrum, 

Eqs. (111-36) and (III-3T) become identical to Eqs. (III-3M and 

(111-35). 

From results of sampling analysis the number of time samples 

n in the time interval T is 

n - 2 B„T (111-38) 

where T is the observation time of the received signal. When 

Eq. (111-38) is substituted into Eqs. (III-32), (111-33), (111-36) 

and (111-37). 



yQ(f)]«-^2BsT 

varHtQ(f)J ■ Rg2 BgT 

Bfl.„[Q(f)] ■ h (2o - 1) RJB.T    ,   0 <. o<. 1 

vars+„[Q(f)) « Rs
2 [1 + oRgl2 BgT    ,    Oi o < 1 
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(111-39) 

(111-1*0) 

(III-U1) 

(III-J»2) 

. * 

E 
r 

Thus, when the time-bandwidth product B_T is made much larger 

than unity, as will always b* true if small received signals are 

to be enhanced to a detectable level by long integration time, the 

test quantity Q(f) calculated at each possible value of signal, 

center frequency Jill become a $au&sian random variable, Its 

parameters are given above, and depend upon the presence or absence 

of desired signal and the degree of overlap of the band-sweeping 

filter vith the signal spectrum. The detectabillty of the narrow- 

band gauEsian signal with unknown center frequency can now be 

considered. 

At this point it is convenient to define a detection index D 

M 9 
D " W (III-J.3) 

which may also be regarded ae a measure of post-detection or 

output SRR.    Since   Q(f)    can be treated as a gaussian random 

variable, the signal detectability will be a function of the 

deflection of   Q(f) and the variance of   Q(f)    in the noise-only 

case and in the signal-plus-noise case.    The deflection of   Q(f) 

is simply the difference between the averages in Eqs.  (111-39) 

and (III-IO-, using E<;.  (III-1»3) this becomes 
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AE [Q(f)l * | (20) Rg2BsT 

« oD , 0 < a  < 1        (III-M») 

The variance of Q(f) given noise only becomes 

varH[Q(f)] « D (III-1»5) 

and given that signal and noise are present, 

varg+N[Q(f)] - [1 + oRg]
2  ,  0 <. a <. 1    (III-1.6) 

Inspection of Eq. (I1I-U6) shows that if the pre-detection 

SNR R„ is much smaller than unity, then 

varg+N[Q(f)] V D (III-UT) 

vhich is equal to the variance given by Eq. (III-U5), indicating that 

if the input SNF is very small, the variance of tile p.d.f, for  Q(f) 

is essentially unchanged vith the arrival of a signal. Ir such cases, 

the input SNR and the integration time determine the detectability 

only through the detection index D (the spectrum overlap 0 vill 

disappear when the average detectability is computed), vhich means 

that the signal detectability can be presented as a function of the 

single variable D for various value» of the frequency uncertainty 

ratio r . When R^ is on the order of unity or greater, it is 

seen from Eq. (III-U6) that detectability will then be a function 

of two variables, D and Rg (or, equivalently, B_T and R ). 

Advantage will be taken of the compactness of presentation afforded 

by lot/ input SNR by treating this case separately in the following 

section. The strong-signal case vill be treated ir. Chapter IV. 

1 
S 
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III.lt Signal Detectabillty In the Weak-Slnnal Case 

a) Error Probabilities 

In this section attention will be turned to the calculation 

of the detectabillty of a gaussian stochastic signal of total 

A2 
average power -z   having a rectangular spectrum of bandwidth B_ 

centered at an unknown frequency f . Here the assumption will be 

made that the pre-detecticm 8KB is small, that is, 

Rg - a4-  « i (m-W) 
O B 

As was indicated earlier, the signal detectabillty will b#s 

calculated by analysing the performance of a band-sweeping detector, 

since it is conjectured that this detector becomes asymptotically 

optimum as the post-detection SIR Is made very larqe. The band- 

sweeping detector would generate Q(f) , given by Eq. (Ill-2b), 

as a continuous function of frequency f within a band B cps 

wide which is known to contain the center frequency t     of the 

signal when a signal is indeed present. It has been asemmed uhrt 

the p.d.f. for f  is uniform over the uncertainty band B so 

that Q(f) is to be compared with a uniform threshold: 

Q(f) i   k« (III-U9) 

A practical approximation to this detector consists of discrete set 

of densely spaced (possible overlapping) filters covering the 

B-band, each of bandwidth B . The discussion following Eq. (111-27) 

showed that the output of each of these filters is to be squared and 
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then Integrated over the observation interval 0,T . Each of 

these integrator outputs, Q(f.) , is then compared with the con- 

stant threshold k' ; and if one or more of these outputs exceeds 

its threshold, a decision is made that signal is present. 8uch 

a detector may be referred to as a band-splitting approximation 

to the band-sweeping detector. As the number cf filters placed 

in the 6-band is increased, the performance will approach that of 

the band-sweeping detector. It is of practical interest therefore 

to determine how densely the band-splitting filters must be spaced 

in order to achieve detection performance reasonably close to optimum. 

Let the number of filters in a given band-splitting detector 

be given by b . If each of the integrator outputs Q(f,) is tested 

against the threshold k' , the conditional false alarm probability, 

given that onxy noise is present, ie 

a ■ P [at least one Q»i".)> k' / coise only] , i * 1, 2, ...,b 

■ 1 - P [all Q(f1)<kl / noise only]     , i ■ 1,2,...,b 

(111-50) 

Given that signal and noise are present, the conditional false 

dismissal probability is 

6" P [all Q(f1)<k
l / signal and noise] , i ■ 1,2, .., ,b 

(111-51) 

Two successive approximations to the band-sweeping detector will 

b& considered, each employing rectangular filters of width B_. 

In the first approximation the number of uniformly spaced filters b 

I 
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will be equal to r, where r ii the ratio of signal frequency 

uncertainty, it osn b* neun tbsA *hi» describes t »et of non- 

overlapping rectangular filters completely covering the ban! 3. 

In the second approximation, b will equal it  . In each case 

the conditional detection probability, 1*0 , is to be calculated 

as a function of the detection index 0 for a fixed conditional 

false alarm probability, 

b) First Approximation - Son-overlapping Filters (b ■ r) 

When the frequency responses of the band-splitting filters 

do not overlap, then under the assumption of long observation time 

(BgT>>l) being made in this chapter, their outputs are linearly 

independent, and any two test quantities Hit.)   and Q(f.), i 4 i, 

are independent. The conditional false alarm rate given by Eq. (111-50) 

can then be written as 

t 
r 

o » 1 - n  P [Q(f.) <k'/noise only] 
i - 1     x 

(111-52) 

Each of the terms in the product in Eq. (111-52) can be interpreted 

as the complement of a false ala:m rate for the i   output Q(f,) , 

that is, 

a • 1 n (1 -a.J 
i»l    l 

(111-53) 

where 

«i ■ P (Q(f1)> k'/noise only] , i ■ 1,2,...,b   (III-5U) 

t See Appendix D, which deals with the correlation properties 
test quantities Q(f.). 

tt See Appendix C. 
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When the Integration time ie long, Q(f.) is a gaussian random 

variable with mean and variance obtained from Eqr. (HI-39), (111-1*3), 

and (III-U5) as 

^[QC^JJ - - f D  ,i-l,2,...b 

varH[Q(ft)] ■ D  , i ■ 1,2,...b 

The conditional p.d.f. for Q{f.) , given noise only, is then 

(III-55) 

(111-56) 

f(x/0) ■ -~exp 4 (■ * tf (111-57) 

where x ■ Q(f.) . The false alarm probability for the i 
th 

output a  is then 

/sss 
dx exp ';M'4\ 

I 

I 
i 
I 
I 
I 
I 
I 

After a change cf variable, 

» « 

ai._i.| du exp (-^) 

H-»t-6«-s] (111-58) 

where *(x) is the Normal Probability Integral, given by 

x 

• (*)»-£= dt exp / - ^ ) (III-59) 

I 
I 
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When signal and noise are present, signal power vill in general 

appear in the outputs of two adjacent band-splitting filters, a 

fraction o of the total average signal power appearing in one 

and the remaining fraction 1 -a appearing in the other. This 

situation is indicated in Fig. III.2. When signal is present, 

two of the filters will share the total signal power, as shown, 

and b - 2 of the filter outputs will contain noise power only. 

Therefore the conditional false dismissal probability is 

B * P[2 outputs Q{f.) < k' , given that signal spectrum 

overlaps the corresponding frequency bands, and 

b - 2  outputs Q(fJ < k' , given that only 

noise is present in these bands.] 

Since none of the filter responses overlap one another, the b 

outputs Q(f.) are independent and 0  may be calculated as 

* ' ei(o) ßi(i-c) U ' ai] 
b-2 

, b ■ r (111-60) 

Under the assumption being made in this section that the input 

SRR is low, as indicated in Eq. (III-W), the mean and variance 

of Q(f.) in a filter band containing a fraction o of the total 

signal power are 

WQ(fi» " (2° -l) \ 0 < a < 1 (111-61} 

var8*HlQ(fin"D (111-62) 
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The p.d.f.'s for Q(f.) In the hands containing signal power are 

thus , 

f(x/o) ■ -^  exp    ( - |i IIIX-&2) 

and 

f(x/l - o) - -^  exp  J        X 

^üri? 2D x ♦ (2o - 1) 

{III-6I») 

4.. 

From, the above distributions, 

V 
ßi(a) * 

•• 
dx f(x/a) 

f 

1 dx exp ^ 
" 2D & 

£-(«>»£ u2 
£7 f 

du   exp 
*/      2   \ 

(II1-65) 

Similarly, 

(111-66) 
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With Eqs. (in-53), (111-58), (III-60), (III-65) and (III-66) the 

conditional detection probability 1-0 can be calculated as a 

function of the detection index D for a fixed value of false 

alarm probability, which determines the threshold k' , and e 

prescribed value of the frequency uncertainty ratio r . At each 

value of D , of course, the detectability is r> function of the 

signal spectrum overlap 0 . It has been assumed that over the 
1 
I ensemble of all observations of the received signal, the narrow- 

band signal spectra will be centered at all possible frequencies 

in the band B vith uniform probability density. Therefore, 

ignoring end effects near the edges of the band 8 , the signal 

overlap 0 will take on all values in the range 0,1 with uniform 

probability density. Thus at each value of detection index D 

the average signal detectability may be computed, representing 

an average detectability over all possible locations of the signal 

spectrum within the band of signal frequency uncertainty. 

Signal detectability has been calculated for a case in which 
I 
2 r * 5 , that is, a case in which the band of signal frequency 

* 
uncertainty is five times as wide as the signal bandwidth . 

Figure III.3 shows the detectability obtainable with a first- 

approximation detector as analyzed in this section, a detector 

covering the entire band being processed. The pertinent curves 

are those labelled "b ■ r • 5 ". The curve denoted as "maximum" 

I t Where r Is» as low as 5, end effects are not really negligible 
I in the calculation of error probabilities, nevertheless, end 

effects were ignored. In this way the results obtained for r ■ 5 
can be generalized to higher values of r , where end effects indeed 
become negligible. 
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indicates signal detectaMlity obtainable when the apectrus of the 

narrowband aignal happens to be precisely aligned with any one of 

the five filters, that is, when a ■ 1 . The curve  denoted as 

"minimum" refers to the least favcrcble frequency location of the 

signal, when the aignal power is divided equally between two adjacent 

filters, that is, when a ■ | . The "average" curve gives average 

detectability over all values of J , as discussed in the previous 

paragraph. All curves in Fig. III.3 have been derived for a fixed 

value of conditional false alarm probability o ■ .01 . 

It is evident from Fig. Ill,3 that if a bank of non-overlapping 

filters is to be used in detection, the performance is very sen- 

sitive to the actual location of the signal center frequency, a 

wide variation in detectability resulting from the range of values 

of o . Thus a second and better approximation to the band-sweeping 

detector will next be considered, 

c) Second Approximation - Overlapping Filters (b ■ 2r) 

A detector will now be considered which employs a bank of 

b ■ 2r uniformly spaced rectangular filters covering the entire 

processing band B . Since each filter has a bandwidth Bg , and 

aince B ■ rB_ , the centers of the filtera are spaced at frequency 

intervals cf x B_ . The outputs of the filters ■»«' pnn«equently 
CO 

the test quantities Q(f.) are no longer independent, and from 

Eq. (IIT-50), the conditional false alftrm probability ia now 

■a 
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a ■ l - p [all Qt < k' / nolle only] 

■ 1 - P [^ < k« / noise only] 

• PlQg < k' / 5^ < k\ noise only] 

• P(Q3 < k' / Qj_ < k', Qg < k« , noise only] 

••• ?[% < k' / ^ < k' , % < k'  %ml < *' . noise 

(111-67) 

w!ire for simplification Q^ • Qtf^). 

Whan b ■ 2r , the output of each filter is correlated with 

thet of each of the two (except for end effects, which shall be 

ignored) nearest-neighboring filters but not with that af any more 

remote filter. Thus Q. and Q. are partially correlated for 

|i - j| ■ 1 , but uncorrelated for |i - i\> 1 . With this fact, 

the false alarm probability can b« written as 

a ■ 1 - /PIQJ_ < k' / noise only] 

• PtQg < k' / «j < k' , noise only] 

• P[Q3 < k' /• Qg < k' , noise only] 

"* P-^ < t' / ^_x < k' s noise onlyj\ 

- 1 - | P[Q. < k1 / noise only] -. 
L ? \b-l 

• |P[Qg < k' /^ < k' , noise only] j (111-66") 

!. 

r 
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If end effects near the edges of the processing band are ignored, 

the false alarm probability becomes approximately 

s * 1 - |ptQ2 < *' / Qx « 
k' • nol8e onlyJ ) 

(111-69) 

The joint p.d.f. for ^ and Qg is needed. From Section III.3, 

W - y^i" ■ t 

var,,^] - varR[Qa) ■ D 

(111-70) 

(111-71) 

The calculation of the correlation coefficient relating   Q.      and 

%   is not carried out here, but is left to Appendix D,    The 

derivation is straightforward and for the case at hand, in which 

b ■ 2r , the correlation coefficient is 

covariance-[Q.and Q_] 

VvarjjtQjJ'  yvaTjjfQgl 
(111-72) 

The .Joint p.d.f. for Q., and Qg given noise only can now be 

written. If Q. ■ x and Q,, « y , then from Eqs. (111-70), (111-71) 

and (111-72), 

f(x,y/0) 

wvCjtf  14-®. * (»* I) ] 

^. 

UII-73) 
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From Eq. (111-69), 

/ I» 
• I - ( P{y < k' I x < k' , noise only]) 

1 \    P[x < k' / noise onlyj  / 

Cxn-7*> 

•ad then fron Eq. (111-73) 

P[y < V, x < k" / noli« only] 

k»        k' 
 ; I      ■!   f   dx   f   dyexp« 

» v^W L   L 
\ 

A— "* t ß y   JB 

+-™i .[..ft 

MW 
du dv exp -=J [u2-2(|\uVv2j 

i+ -4     J| 
(ni-75) 

•*i    The integral in Eq. (111-75) !• of the fore 

L(h,k,p) du   dv 

I 2rr^ 1 -P 2
1 
«* -i (u2 - 2puv ♦ vZ) 

2(1 - p') J 

(111-76) 

Talt integral has teen tabulated' for various values of the limits 

h and k and the correlation coefficient p . If Eq. (III-T6) is 

substituted into Eq. (111-75), 

t See Rational Bureau of Standards (II). 
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P [y < k* , x < k' / noise —[-(vHWv^H 
(m-77) 

The denominator in Eq. (III-71*) is simply 

P [x < k' / noise only] ■ j 

From Eqs (HI-7»0, (111-77) and (111-78) 

^/5\k,vl l^(yf+^j (111-78) 

(^SMtf-5W 
o S 1 -( 

»h^a 
(111-79) 

The conditional probability of false dismissal will now be 

calculated. When a signal is present, the remarks following Eq. (17.1-67) 

regarding pair-wise statistical dependence of the test quantities 

Q. still hold, and from Eq. (111-51) the false dismissal probability 

is 

0 ■ P [Q, < k' / 8 + if] 

• P [Qg < k» / Qx < k' , 8 + N] 

• P (Qj < k« / ^2 < k' , 8 + H] 

••* P [(L < k' / a .< kf , S ■♦ !f]   (in-8o) 
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(.1+!)th filter: (a * .5)/-£) 
» C     I 

(j+2)th filter: (1 - o)f§-) 

(j*3)th filter: (.5 - off-J 

0 < a  <•?  (111-81) 

Thus the mean values of the four corresponding test quantities ere 

obtained frosi Eq. (III-61) as 

L 

u 
When % narrowband signal is present, the signal spectrum will in 

general overlap the pass bands of four of the band-splitting | 

filters, (see Fig. Ill» thereby increasing the average power 

in the outputs of these four adjacent filters, and the mean values | 

of the four corresponding test quantities Q. vill accordingly 
I" 

be increased. Since the pre-detection SIR is assumed to be lev, | 
HIM 

the presence of signal vill not affect the variances of these 

/our Q.'s , nor vill the correlation coefficient p relating J 

adjacent Q.'s be affected. The remaining t ■ - U quantities Q. 

vill have statistics unchanged from the noise-only condition, 

Let the filters be numbered consecutively starting from the 

lev-frequency end of the band B . Let the lowest numbered filter 

which passes part of the signal spectrum be the j   filter. 

Then the j   filter and the next three filters along the frequency 

scale share the signal power as follows: 

jth filter:o(-§-) 
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0 < o < .5 

(111-82) 

[ 

[ 

A total of five of the condition»! probabilities in lo.. (III-80) 

will be affected by the presence of signal: The j  through 

(jv3)  tens indicated abore and also the (j*k)      ten, since 

Q.+u is correlated with Q. , . Therefore if end effect« are 

ignored, the false dismissal rate as given by Eq.. (111-80) is the 

product of b ten», b-5 of them of the form 

P [Q2 < k« / ^ < k« ,1] 

>s)-(frsM] 
(in-83) 

The five remaining terms in the product are 

L 

PtQj < k« / *yl  < k- , 8*8] - 

J-"*-5)-£-5)-» 
'*"(*-5) 

(III-81») 



P [Q^ < k» / Q^<   k, 8 + H] 

(ni-85) 

p[V2<k' /Vi<k,,s + Bl 

(III- 86) 

r 

i 
I 
J 
I 
I 

P [QJ+3 < k' / Qj+2 < k'  , S + N] - 
'-WF'SM'-^-S)* 

(« 
1 +•   ((2o - 1)W+ ~ 

(I2I-87) 

p tQj+«t * k' ' V3 * *'* S + HJ " 

■W-Ö-M-SH 

-Hff-5) 
(111-88) 

Thua, If the first term in Eq. (Ill-80) it approximated by the right- 

hand side of Eq. (111-83) in order to eliminate end effects, the 

conditional false diamiasal probability ia obtained from the above 

equations by 
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8 ■ (Bq. (Ill-83)]b"5 [Eq. (III-8U)! [Iq 

•[iq. (m-87)] [Sq, ( 

(111-85)] t«q. 

ni-88)], 

b ■ 2r 

Cni-86)] 

(III-89) 

A* ia the analysis of the first-approximation detector, signal 

deteetability may be calculated as a function of the detection 

index D for a fixed value of false alar» probability a and a 

fixed value of the frequency uncertainty ratio r , usiäg Iqs. (111-79) 

and (III-89). At each value of 0 signal deteetability oust be 

averaged with respect to the signal spectrum overlap a  , These 

computations have been carried out for the case in which r ■ 5 , 

and the resulting curves of average deteetability at a false alasm 

probability a» .01 are plotted in Fig. III.3, labelled as 

% m 2r « 10". It is seen from the figure that vben th* number of 

band-splitting filters is twice the frequency uncertainty ratio, 

the variation in signal deteetability due to the randomness in the 

frequency location of the narrowband signal is greatly reduced fro* 

the corresponding variation with the first-approximation detector. 

It is clear that a third and better approximation to the optimum 

detector, say a 15-band or 20-band detector, would further improve 

deteetability, but only marginally. Since the ultimate optimum 

deteetability curve would lie above the "averß^' curve obtained for 

b « 2r • 10 and below the "maximum" curve for the same value nf 

b , it is seen from Pig. III.3 that for values of 1 -8 in excess 
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I of 95 per cent, this detector will yield an average signal detect- 
j « 

ability which is within 3 per cent of the optiaum. It nay thus be 

I concluded that a band-splitting detector with a number of filters 

equal to twice the frequency uncertainty ratio represents a very 

I satisfactory compromise between complexity of implementation and 

efficient signal detectability. 

I With this result at hand, Eqs. (IXI-79) and (111-89) may be 

used to derive detectability curves for various values of the signal 

i frequency uncertainty ratio r . In Fig. 111,5 signal detectability 

is plotted for a fixed false alarm rate a ■ .01 for values of 

r ■ 1, 5 and 25 . The curve for r ■ 1 is obtained from Eqs. (111-58) 

*nd (HI-65) with 0 ■ 1 and represents the most favorable situation 

with regard to detecting the narrowband signal, that in which the 

center frequency is known a priori. For r ■ 5 and 25, b ■ 2r 

as indicated, and these two curves give average detectability with 

respect to all possible values of signal spectrum overlap. It 

is seen that the curves fdr r ■ 5 and 25 become parallel to that 

for r ■ 1 as <fö   increases and are displaced further to the right 

as t   increases. If the curves are compared at a given value of 

detection probability, this trend may be Interpreted as meaning that 

the initial uncertainty regarding the canter frequency of the narrow- 

band signal iesults in a fixed "cost" in JS   for a particular value 

of r as JB becomes large. Since 

I 

•A»  Sg fijF (III-9O) 
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The coat in &  may be regarded at a cost in pre-detection SKR 

for a fixed value of the tine-bandwidth product B-T . Similarly, 

if the curves are compared at a given value of & , an increase 

in the uncertainty ratio r is seen to produce a decrease in signal 

detectability. 

From another point of view, let the total signal power and the 

overall bandwidth B be given. If the signal power were »nrwt 

uniformly across the band B bieng processed, signal «wtectability 

would depend upon the pre-detection SIR R, where 

2HoB (111-91) 

If, however, the same signal power is confined to a narrower band 

of width B_ , it has been shown that detectability depends upon 

Rg as t pre-detection SHR, thus 

I 
! 

I 
I 
I 
8 

»A 
rA 

21 B o 

" r R (111-92) 

Thus knowledge that the signal bandwidth is r times narrower 

than the band being processed leads to an increase in the pre- 

detection 8VR by the factor r and a resulting Increase in detect- 

ability for a fixed false alarm probability. 

The uncertainty «garding the actual frequency location of the 

signal makes necessary the use of a bank of band-splitting filters 
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which in effect search the overall band B . As the frequency 

uncertainty ratio r increases, the number of filters required I 

also increases and if a constant false alarm probability is tc be 
r 

maintained, the threshold level mist be raised, which tend* to i 

offset somewhat the increase in detectability. The net result, 

however, is a gain in signal detectability. | 

A useful measure of this gain in detectability can be obtained 

as follows: Suppose that the bandwidth E and the observation § 

time T are fixed and that prescribed values of false alarm 

probability a and false dismissal probability 8 are require1. | 

One can then calculate the pre-detection 8KB R required to achieve 

thie performance in each of the following two cases: 

1) In one case assume that the signal power is uniformly 

distributed over the bend B . 

2) In the second ;ase ussume that the signal power is confined 

to a bend of width B_ ■ - B , and that the signal lies at some a  r * 

unknown frequency within the band B . 

Let R. and R_ be the values of pre-detection SNR R [given by 

Eq. (111-91)1 required to produce the prescribed values of a and 

S  in cases 1) and 2), respectively. The ratio Rj/R2 
then 

represents the net increase in effective pre-detection SHR for a 

fixed level of performance achieved when the signal spectrum is 

r times narrower than the overall band being processed. 

Figure III.6 shows the ratio  Rj/lU  u a function of r 

for false alarm probability a ■ .01 and false dismissal probability 

0 ■ .50 . The dashed line in the figure corresponds to the rstie 
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[ 

I 

R,/B2 * r and represents the gain in pre-detection SHR which 

could tie obtained by narrowing the signal spectrum by the factor r 

is the frequency location if the signal spectrum were known in 

advance. Thus the vertical displacement of the curve for Rj/R« 

from this dashed line represents the loss i» pre-detection 8HR 

due to frequency uncertainty. It can be seen that this loss is 

fairly constant at approximately 2db for values of r between f 
I, 

5 and 30. 

Therefore it may be concluded that in the weak-signal case. I 
l '': 

most of the enhancement in pre-detection SHR, achieved when the 

signal spectrum is appreciably narrower than the processing band, | 

is retained in spite of the frequency uncertainty. 

The work of this chapter has been a weak-signal, long-observati.cn- 

time analysis. The assumption of a long observation interval has 

been rather heavily relied upon at certain points, notably in repre- 

senting the pre-detection filtering operation by a rectangular 

frequency response curve. Without this device the calculation of 

detection probabilities would have been vastly more complicated, 

if possible at all. The assumption of long observation time is 

of course quite reasonable when high detectabillty is to be achieved 

in a veak-signal situation. In Chapter IV the assumption 01* a 

weak input signal will be dropped. 

Before proceeding to the next chapter, the results of some 

experimental work, related to the work of this chapter, will be 

presented. 
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III.5 Experimental Verification 

Experimental work vas carried out to obtain a check on some 

of the theoretical results obtained in Section IIZ.U. A band- 

splitting detector vas constructed employing a bank of five band- 

pass pre-detection filters, each filter being followed by a full- 

wave rectifier and a low-pass filter. Each of the pre-detection 

filters had a half-power bandwidth of 50 cps and rolloffs of 

+ 18 db per octave. The filter responses were aligned in such a 

way that the upper half-power frequency of one filter coincided 

with the lower half-power frequency of the adjacent filter. The 

five filters covered the frequency range from 1,000 cps to 1,250 cps. 

Each low-pass filter consisted of a simple RC pi-section. Diagrams 

of the detector circuits are shown in Appendix E. 

The detector was operated in two different configurations: 

1) In the first configuration, a threshold test was made 

on the output of each individual low-pass filter, a decision being 

made iu favor of the presence of a signal whenever at least one 

filter output exceeded its threshold. This system is shown diagra- 

matically in Fig. 11*1.7. 

2) In the second configuration the five low-pass filter out- 

puts were summed, and a threshold test was made on this sum. This 

cystem is shown in Fig. III.6 and will be termed a sum-and-teat 

detector. 

Tne first configuration represents an approximation to the 

idealized band-splitting detector described and analyzed in the 

work of this chapter. The second configuration is analogous to the 

suboptlmua sum-and-test detector discussed in Chapter II la connection 
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[ 

with the detection of a coherent sinusoid of unknown frequency. 

The Bum-and-test detector effectively processes in toto the frequency 

band covered by the five pre-detectioti filters, since the enhance- 

aent in SIR provided by band splitting is offset by tfe* summation 

of the five low-pass filter outputs. 

These two detector structures ware used to detect a sinusoid 

of unknown frequency ie broadband gausiian noise. 

The additive noise was generated by means of a standard OR I 

noise source. Statistical seasurenents of the noise output Indicated 

i* 
that the noise exhibited a gausslan distribution out to amplitudes 

equal to four times the standard deviation. 

The detection of the sinusoid using the band-splitting detector f 
«*■* 

is equivalent to the detection of any weak signal of the scae power 
i 

when the signal frequency is such that all the signal power appears 

in the pass band of one of the pre-detection filters. That ie, only 

the average signal power is of consequence In determining the detect- 

able Uy. Thus the detection of the sinusoid with this detector 

configuration ia approximately equivalent to the upper-bound situation 

analysed in Section III.1», Article b , where non-overlapping pre- 

detection filters were considered and where the gaussian signal was |. 

nssumed to be exactly aligned with the pass band of one of the filters. 

When the second detector configuration, the sua-and-test detector, 

is used, the performance should be comparable with a power detector 

processing the overall frequency band 1,000 - 1,250 cps to detect a 

weak signal in that bard. This can be seen as follows: If each of 

the ore-detection filters had on ideal rectaa<nilav frequency response 

function and if each were followed by a squarer and then as ideal 
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Integrator, thia detector would simply be measuring the energy 

in eaoh of the five bands and then sunning these energy measurements. 

Since this sum is equal to the total energy in the overall band, 

the operation of the detector would be equivalent to measuring 

this total energy directly. The sum-aad-test detector which was 

actually built represents an approximation to this idealised 

detector. 

Experimental data was obtained with the two detector structures 

described, giving signal detectability as a function of the pre- 

detection SUB and the Integration time for several fixed values of 

the false alarm probability. A block diagram of the instrumentation 

used is shown in Appendix E. 

The results are presented in Figs. III.9 through III.11. The 

acquisition of data was of necessity confined to a restricted range 

of error probabilities. Level drift in the high-gain d.c. amplifier 

made it difficult to run she large numbers of tests which would 

have been necessary in order to obtain reliable statistics at low 

error rates. Together with the experimental data are plotted per- 

tinent curves obtained from the theoretical analysis of Section III.I». 

The data obtained with the band-splitting configuration are to be 

compared with the upper bound on detectability obtained in Section III.lt, 

Article b , for the specific case b«r«5 . The data obtained 

with the sum-and-test configuration are to be compared with the 

theoretical detectability based upon the SIR in the overall frequency 

band being processed, chat is dttect ability for the case b ■ r » 1. 

It is seen from the figures that the experimental results are In 

reasonably «.lose agreement with the theoretical results. The 
i 

! 

1 
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I 

enhancement in detectability obtained with the band-splitting detector 

ie clearly evidenced. 

It is seen that the measured detectability curves are almost 

consistently steeper than the theoretical, this seems to be due to 

tvo factors: First, the electronic noib« source used in these 

measurements produces aoise with an amplitude distribution which is 

truncated at some finite amplitude. Thus the rare but intense noise 

peaks which would contribute to errors at low probability levels are 

simply not produced. Second, the level croeeings counter does not 

respond to threshold crossings which are arbitrarily short in duration. 

That is to say, the instrumentation introduces additional post- 

detect iou smoothing. 

« 

I 
I 
I 
1 
I 
I 
I 
I 
I 



CHAPTER IV 

DETECTION OF A NARROWBAND GAUSSIAN SIGNAL 

OF UNKNOWN CENTER FREQUENCY - PART II 

STRONG SIGNALS 
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I 
r- 

i. 

IV.1 Detection Analyst« In the Strong-Signal Case 

In Chapter III the pre-detection SNR Rg , defined in the 

narrow bend B_ containing the signal spectrum was assumed to be 
5 

much smaller than unity; in this chapter the assumption will be 

dropped. When R_ becomes on the order of or greater than unity, 

the analysis of Chapter III must be modified in two ways, one which 

affects the form of the optima* detector for short observation 

ti».a  and another wihch affects the signal detectability when the 

observation time is very long: 

1) The signal detectability is always a monotone increasing 

function of the pre-detection SNR R_ and the time-bandwidth product 

B_T . When R_ is small, as was assumed in Chapter III, B_T must 

of necessity be large in order that high detectability can be 

achieved. This requires that BgT be »1,  which implies that 

the observation time la many timts longer ti-an the correlation 

time of the narrowband signal.. In such a situation the optimum 

detector can only perform energy maasuremnnts on the received 

signal, and the analysis of Chapter III i» applicable. If, however. 
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Rg is made arbitrarily large, B„T is not necessarily required 

to be » 1 in order for high detectabillty to be obtained. If 

B-T is on the order of unity, then the signal is highly coherent 

over the observation interval 0,T, and in view of this coherency 

the form of the optima detector must be re-examined. It should 

be noted, however, that if B_T is made much larger than unity, 

the optimum detector will process the received signal in the 

purely incoherent fashion described in Chapter III, regardless of 

the magnitude of the pre-detection SHR R_. 

2) When the time-bandwidth product B-T is » 1, the signal 

to be detected must be regarded as completely incoherent. However 

when R_ is large, the variance of the test quantity Q(f) given 

signal and noise cannot be accurately given by Eq. (III-1»7). 

Instead, the variance must be calculated using £q. (111-1*2), which 

is repeated here as 

varg+J|(Q(f)] « (1 + oRg)' Rg^gT ,  0 < a <_ 1 (IV-D 

where a   is the fraction of the signal spectrum which appears in 

the pass band of the rectangular filter, centered at frequency f - 

used in generating Q(f) . (For example, when the signal spectrum 

is precisely aligned vith the pass band of the filter, a  » 1.) 

It can be seen by comparing Eqs. (IV-1) m&  (III-ltO) that t&e 

effect of high input SHE Is to increase IS?« variance of the signal- 

and-noise distribution of Q(f) . It can be shown that this growth 

in the va.viai.ce of Q(f) has the effect of making the gausslan 
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IV.2 Detection for Short Observation Times (BgT « 1) 

a) Detector Structure 

The signal to be detected has been described es having total 
2 

average power A /2 in a rectangular spectrum of vidth B  centered 

at seat frequency f . The a.c.f. for this signal is given by 

.2 
% 8(T) ■ ^ sine Bft cos 2*f,T (IV-2) 

where 

fllDCS* «iSu™. 

When the observation tiae f of the signal is long compared with 

the correlation tiae, that is, when B-T » 1 , then the signal may 

be accurately represented by complex samples taken at a rate B , 

as was discussed in Section III.3- That discussion showed that 

under the assumption of long observation tine, the signal covariav.ee 

matrix P could be written as a diagonal matrix. However, »ben 

BfiT is on the order at unity» the narrowband signal can no longer 

be accurately described by staples taken at the rate B . and the 

L 
assumption for Q(f) in the aignal-and-noise situation inaccurate 

as R_ becomes » 1 . For this reason an exact Chi-squared j 

distribution for the test quantity will be used. It must also be 

noted that in the strong-signal case detectability cannot be eal- \ 

culated in terns of a detection index alone, but rather Ra and 
D 

B-T must both be specified. 

Tie case of short observation time, i.e., BgT « 1, will be 

considered first. j 
1 
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«lgcftl must instead be sampled at a much higher rate. 

It has been assumed that the background noise is gausslan 

with a flat spectrum extending up to frequencies much higher than 

the highebt possible signal frequency. Let it be assumed that the 

noise spectrum extends from zero frequency and is sharply cut off 

at a frequency W cps , which is chosen so ihat 

2VT •»> 1 

The signal may now be represented by real time samples taken at a 

rate 2W , so that samples of the noise are independent. From Eq. (IV-2) 

the sampled a.t.f. of the desired signal is now 

ÖJgttj - t ) ■ ^ sine Bg(tl - t.) cos 2irf(*i - t^)      (IV-3) 

For very short observation times, when B«.T «  1 , then the envelope 

of 0^S(T) is approximately constant and 

s(t1 - tj) « ^ cos 2»fc(t1 - tj)  , BST « 1     (IV-M 

which is the a.c.f. for a sinusoid of frequency f  with a mean- 

2 
squared value of A /2 , or equivalently, an r.m.s. amplitude A . 

Since the signal s(t) is a gaussisn random process, the moments 

of s(t) can be written in general as 

,2 \p/2 

< 

1-3.5.... (p-1) l^g- J    , p even 

0 , p odd 
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It will now be shown that for ILT « 1 , i(t) can be represented 

by a sinusoid of unknown phase 0 and unknown amplitude a . The 

phase, considered over the ensemble of all observations of length T , 

has the p.d.f. . 

-57      ° - * - 2* 
f(0) • < " (IV-6) 

0       elsewhere 

The amplitude of the sinusoid is constant over the duration of 

each observation interval (as is the phase), and its p.d.f. is 

,7'Ai)   '-0 
f{a) - { A   \k   I (IV-T 

a < 0 

If this representation is valid, then all the moments of this 

sinusoidal signal should agree with Eq. (IV-5) . The sinusoid is 

written as 

s(t) « a cos (2»f t - 0) (IV-8) 
c 

ThJ variance is 

+ cos ?(2tfct - 0)] 

3     /   2 
.a     I  a 

* 7 -  - 7 

0,a 

A2 
(IV-9) 
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Similarly. ,   ni2 

'(3,a 
(IV-30) 

<A«>M-I4P (IV-11) 

and in general 

(sP(t)\ 

l'3-5....(p-l) I % 
P/2 

, p even 

(IV-12) 

, p odd 

which agrees with Eq. (IV-5) . According to a theorem regarding 

moments, if  u , p « 0,1,??,..., are the moments (assumed finite) 

of a probability distribution function, and if the series 

I   a tp 
p«0 p- 

is absolutely convergent for some t > 0 , then the state! 

probability distribution function is uniquely defined by the 

moments u , p «0,1,2,,., . Letting 

-p » <-*<*>> 
<J.a 

(IV-13) 

in the above summation, and using Eq. (IV-12), one may easily 

varify that 

|   <*">».. tp 
p-o       P: 

p even 

exp |\ t2 (IV-ll») 

t See Cramer (I, pp. 176-177). 
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for any finite value of t , Thus the aeries converges, and the 

moments given by Eq. (IV-5) and (IV-12) must define the same p.d.f.. 

Therefore, when the observation time T is much shorter than the 

correlation time of the narrowband signal, the signal is equivalent j 
j .   1 

to a sinusoid of unknown phase with a random amplitude given by a j 
i 

Rayleigh p.d.f. . It should also be noted tnat this representation 

would be exact for any observation time T if the signal band- 

width Bs were allowed to go to zero, since the .-signal correlation 

time would then be infinite. 

The sinusoidal signal model as described above will now be 

used to analyze tho form of the optimum detector and the signal 

detectability when the observation time is short. The argument put 

forth in Section III.2 to explain the asymptotic optimality of a 

band-sweeping detector is equally valid for any narrowband signal 

of unknown frequency. The argument relies upon the fact that as 

the post-detection SHR becomes very large, then when a signal is 

present tbe LR, generated as a function of frequency, will have a 

large peak in the vicinity of the actual signal frequency and will 

lie near some low average value at other polct» in the band of 

signal frequency uncertainty. It then follows that a test on She 

peak value of the LR, or on the peak value of the logarithm of tbe 

lit, becomes optimum as the post-detection 3NR becomes very large. 

The argument can be applied as well to the detection of a sinusoid 

of unknown phase, amplitude and frequency as to the detection of 

a narrowband gaussian signal of unknown center frequency. 

Thus the band-sweeping detector will again be taken as a close 

approximation to the optimum detector, and it now becomes necessary 
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to find the form of the processor vhich will generate log L(v/f ), 

thnx is, the LB detector for a sinusoidal signal of known frequency 

hut unknown phase and amplitude. 

The problem of detecting a sinusoid ox unknown phase has been 

treated in the literature and the analysis leads to the familiar 

log I  detector structure . When written in terms of the variables 

being used in the pre&ent work., this result gives 

2 
L(v/fc,a) - exp  - j^n h     /v^v (IV-15) 

or 

log L(v/f,,a) ■ - 
tt

2                         |   ,  \ 
TTw* + lo« \ 1 ^'Sc* ) 

,    ,.            ! 

whe»e 

% '   < p^   '" 2"'cUl 

1 

and n ■ 2WT 

(IV-16) 

(IV-17) 

(IV-18) 

&ad W is the cutoff frequency of the noise spectrum. 

In an earlier discussion it was pointed out that the form 

of the optimum detector for the detection of such a signal does 

t See earlier discussion in Section 1.2, Article c, and the 
pertinent references. 

tt Prom the point of view of hypothesis testing, a threshold test 
on the right side of Eq. (IV-16) is a "uniformly most powerful test 
at a fixed level" with respect to all values of the amplitude a . 
Sec Lehmann (I) for discussions of uniformly nost powerful tests. 
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not depend upon the signal amplitude a provided only that a 

has a one-sided p.d.f. . Thus the detector structure prescribed 

by Eq. (IV-16) will provide maxinum probability of detection at 

any fixed level of false alar« probability . The particular value 

of the probability of detection at any given false alarm probability 

will of course depeai upon the statistics of a . Thus if both 

the false alarm probability and the detection probability are to 

be considered in setting the threshold, the statistics of the 

signal amplitude would influence the choice of a threshold setting. 

With the above discussion in mind, it can be seen the.t since 

I  is  monotone» any monotone function of v' 0 v will serve 
o — —c •*• 

equally veil as a test quantity in this case of unknown phase and 

amplitude. It vill be convenient in this work to use as a test 

quantity 

q(f) « v* G v CCV-19) 
Tt 

where 

2HV 
o 

(IY-20) 

Thus the operation to be performed on the received signal is 

t See the previous footnote. 

tt Strictly, this test quantity is a function of the given signal 
center frequency fc and thus should be written as q(fc) . 
However, for simplicity, q(f) will be used. 
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q(f) 
2H V     [ l   Vj C08 2"fc(ti * V 

2N V 

2 2 
2K    W 

o 

i J 

I   I Vj cos 2tfet4 co. 2.fct3 

i   J 

+    J   [ v.v, sin 2wf t. »in 2*f t. ttiJ ci c j 
i   J 

j I v, ecs 2rtetJ    ♦    j   I vA sin atf^J (IV-21) 

where all the summations ax« taken from 1 to n, the total number 

of time samples. Sampling relationships may be usjd to approximate 

the summations in Eq. (IV-21) by integrals»: 

q(f) * 

q(f) 

dt v(t) cos 2*f t  +  2W 

\*1 
\ 

dt v(t) sin 2itf t j c 

dt v(t) cos 2nfct ) + dt v(t) sin 2«f t 

(IV-22) 

Thus it is seen from Eq. (IV-22) that the optimum detector 

processes the received signal v(t) at «ach possible value of 

the signal center frequency by correlating v(t) with the quadrat,ire 

components of the desired signal at that frequency, squaring and 

then summing the two squared outputs. 
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This result has followed from the assumption of short 

observation time (B_ « 1) and« In paragraph 1) an page 106, 

and Indicates that under such an aseinption the operation of 

the optimum detector on the received signal is quite different 

from the operation required «hen the observation time is long 

[Compare Bq. (IV-22) with Kq. (ill.23)]. Summarising briefly, 

vhan tlie observation tint is long compared with the correlation 

time of ths aorronband signal, the detector can only measure 

total received power in each possible narrow band of width IL . 

However, when the observation time is short compared with the signal 

correlation time, the phase of the signal, though unknown, is 

essentially constant over the observation period and tau» a form 

of correlation detection is to be employed. A complete analysis 

of the optimum detector in the strong-signal situation then 

requires analysis of the correlation detector for BgT « 1 and 

analysis of the power detector for B-T >•> 1 . In the region 

where B_T * 1 t a rigorous analysis cf the optimum detection 

problem in the strong-signal case, without simplifying assumptions 

regarding the duration of the observation interval, is required. 

Such an analysis however is outside the scope of this investigation. 

(Further comments in this regard will be made in the concluding 

chapter.) Rather, signal detectability in this region will be 

interpolated from the results which can be obtained analytically 

for E3T « 1 and B-T » 1 . 
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b) Signal Detectabllity 

It has been argued earlier that the optimum detector becomes 

a band-sweeping detector as the pcit-detection SNR is made large. 

If B T is « 1 in regions of high output SMR, then the band- 

sweeping detector must generate the test quantity given by Eq.(IV-22) 

as a continuous function of center frequency f  in the overall 

uncertainty band 8 . If the test quantity exceeds a preset 

threshold at any frequency f  in the band, the decision is made 

that a signal is present. 

A practical approximate form of the optimum detector would 

consist of a discrete set of correlater pairs, analogous to the 

bank of band-splitting filters analyzed in Section III.lt . Again 

it is of interest to know how many such correlator pairs are 

required in an uncertainty band of given width to achieve detect- 

abllity close to the optimum. 

In order to investigate the performance of a given bank of 

correlator pairs, the Joint y.d.f.'s relating test quantities 

q{f) at different values of the frequency f  are required. 

For convenience let the correlator outputs in Eq. (lV-22) , 

generated at a particular frequency value f ■ f, , be denoted 

by 

ci dt v(t) cos 2wf.t (IV-23) 
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and let 

it v(t) sin 2-rt^t 

.2    2 ,   2 
*i "Xci *xsi 

(IV-2»») 

(IV-25) 

f • 

I j 

It is elea:* that a threshold test on q(f\) is equivalent to a 

2 
test on i>,      or even on ty.   ,    Consider then the Joint p.d.f. 

for I|L and i|»2 , quantities generated at two different values 

of frequency f., and t„ .   Since v(t) is a sample function 

of a gaussian random process, x . and x . are gaussian random 

variables, being generated by linear operations on v(t) as seen 

In Eqs. (IV-23) and (IV-21*) . Thus a Joint p.d.f. can easily be 

written for the four variables x ., x „ x gjX^and from this the 

Joint p.d f. for *, and <i_ can be obtained. The result, 

adapted from Rice , is 

Li    i 

(1V-26) 

where 

'11 •<"el2>-<^2>- <V>-\%2a) 

a (xcl ^ca) * (xsl xs2/ 

(IV-27) 

(IV-28) 

t See Rice (I, Sec. 3.7) 
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/ 

\k * < «el X»2/ "  "V^H (IV-29) 

and 

2    2    2 
M"wll -"13 " pli» (IV-30) 

Thus ^ and ^ are seen to be correlated random variables, 

their correlation being accounted for in Eq. (IV-26) by v.„ 

and w.^ vithin the argument cf the modified Bessel function. 

Consider for the sake of discussion a simple case in which 

detection is to be csirriei:. out using a bank of correlator pairs, 

and the correlator frequencies are spaced at interval? such that 

quantities <(,. and 4,. at adjacent correlator frequencies are 

correlated but correlations between more remotely separated 

correlators may be Ignored. (This is similar to the situation, 

described on page 8l, involving pair-vise-overlapping band-splitting 

filters.) In such a case, the calculation of false-alarm probability 

will involve the evaluation of integrals of the form 

k1      k* 

I ■ ♦l d*2 f( *!• *2* (IV-31) 

where f(f., <p.) is given by Eq. (IV-26). Such integrals with 

respect to this p.d.f. cannot be carried out in closed form but 

would have to be evaluated numerically. Thus even a simple case 

such as pair-wise dependence between test quantities cannot in 

general be easily handled by analytical methods. If however, 

both the covariances y.. and M.. are equal to zero, then i|». "13 Ik 
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and ^. are independent and the p-.d.f. in Sq. (IV-26) la greatly 

simplified and integrals of the form of Sq. (IV-31) «ay be :*ediiy 

evaluated. Thus u.~ end y^ will be examined in the ease of 

noise only. 

It has been assumed that the background noise is gaussian with 

a flat spectral density extending from zero frequency up to a 

cutoff frequency W cps. Thus if V   is much higher than the highest 

possible signal frequency, the a.c.f. for the noise may be vrltten 

as 

/v(t) v(s)\    -   ~f-    «(t-s) (IV-32) 

i: 

where   6(x)    is the Dirac delta function.   From Eqs. (IV-23) ard 

(IV-28) tue oovariance   uig   is obtained for the noise-only case as 

T \ 

M13 - \ 

/ 

dt v(t) cos 2tt,t ds T(S) cos 2»f-s \ 

/ 

T T 

j.j ds   (v(t)    r(a)y     co9 2*^ cos 2irf_s 

0            0 

T • 3 ' 

w dt ds    i(t-s) cos 2itf.t cos 2itf„s 

I ■ 

0 

1 > 
; tt C! 38 Zwf.t cos 2«f2t 

(Continued on next page) 

I 
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dt [COB 2ff(f, - fjt ♦ cos 2* (r. ♦ fjtj 

N 
0 

sin 2t(fx - f2)T sin 2»(fx ♦ f2)T 

"T 2»<f2 - f2) 2«*^ ♦ fg) 

N 
0 

T 
sin 2w(f1 - t?)T 

2*{t1 - f2) 

BoT ain 2w(f1 - fg)T 

-IT 2«(f1 - f2)T 

(IV-33) 

(IV-31») 

(IV-35) 

The second tens in the right side of Eq. (IV-33) is dropped since 

2 (fx + f2) » 1    . 

Similar]/, from Bqs. (IV-23), (IV-21») and (IV-29) 

Mlfc 

N 
-  o 1 - cos 2*(f, - fg)T 

?Mtx - f2)T 
(lV-36> 

From Eqs. (IV-31*) and (IV-36), 

2 2       »o
2T2   sin2 2w(f1 - f2)T ♦ I - 2»cos 2»(f1-f2)T+cos22ir(f1-f2)T 

h*   * WiJi    "    ■"■"""" ■"'    "    "   " ■■ • — 
13    '      * tA^-v*' 

No
2T2        2 - 2 cos 2w(f1 - f2)T 

"^ ^ - f2)2 T2 

iV       sin2 »(^ - f2)T 

P13 ♦ im - 
■ V s 0 iinc2(f1 - f2)T (IV-37) 
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2    2 
Therefor» it is seen from Eq. (IV-37) that v,, ♦ u,^ "0 vVm 

the frequency separation t.  - f~ is equal to noa-zero integral 

1 2    2 
multiples of  s . (The general font of yT- ♦ y ^     has b*m 

derived for completeness, but inspection of Eq«. (IV-35) en^ (IV-36) 

shows that p.. and y., each equal zero with the stated frequency 

separation.) Hhsn these zeroes occur, then since 1.(0) ■ 1, 

the p.d.f. in Eq. (ZV-26) becomes 

I  1 

f(*r<»2) 
*1*2 

"11 

eXi 

2^ 11 

e «>; 
'11 

ifc'J   jj 

I 
-ft-* 
2y 11 *11 

expj 

(IV-38) 

Thus ii,    and $_ become statistically independent and Eq. (IV-38) 

is seen to be the product of two Rayleigh p.d.f.'s. The smallest 

separation between correlator frequencies for which independence 

occurs is f, - f„ = =■; therefore the densest spacing of 

correlators in the band of signal frequency uncertainty which can 

be conveniently analyzed is that in which the correlator frequencies 

are set at intervals of = . If closer correlator spacings wer? 

to be considered, than y 2 + y^2 as give- ly Fj. (IV-37) 

would not equal zero and the p.d.f. in Eq. (lV-26) would have to 

be used in its general form. Numerical evaluation of integrals of 

the form of Eq. (IV-31) would then be required in the calculation 

of error probabilities. For the purposes of this investigation then, 
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only on« detector structure will be considered in avsJuatlng 

signal detectability for   B-T « 1 , a structure consisting of 

a bank of correlator pairs whose frequencies are spaced at uniform 
intervals of   1   in the overall band of frequency uncertainty. 

f 
The detector will therefore employ   BT   correlator pairs.   This 

detector structure will be used to obtain upper and lover bounds 

on signal detectability for   B_T « 1 .    The conditional false- 

alam probability will first be calcualted. 

The test quantity generated at a general correlator frequency 

fj   is, from Sq. (IV-22), 

2    /- \2 

4V ■ ft 
O I 

dt v(t) cos 2*f.t J  + 

I 
dt v(t) sin 2»^ 

(IV-39) 

The conditional false-alarm probability is the probability 

that at least one quantity   (lit.) exceeds its threshold, given 

that only noise is present.    If the correlator freundes are 
i 

chosen at intervals equal to   jr,   then from the previoue discussion 

the quantities   q. ■ q(f.)   will be independent random variables, 

and the conditional false-alarm probability may be written as 

BT 
a ■ 1 -   IT   P[q,<   k' / noise only] 

i =1       ^ 

1 - (1 - at) *T ( IV-itO) 
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where 

o   « P [q>   k   / noiie only] , i • 1,2,...,BT 

(IV-Ul) 

The p.d.f. for q. under the aaaunption of noiea only 1B 

obtained from the p.d.f. for *., 

r 
r » 
u 

f(*4/ o) « 

/ *1    I   1.2 *,iO 

( IV-U2) 

♦£ < 0 

which is obtained from Eq.( IV-23), (IV-2U), (IV-25) and( IV-39) 

one sees that 

2A'        ;? 
( IV-I»3) 

and thus one may write the p.d.f. of q. as 

[Jl 
f (y/0) ^ l»vuA 

exp 

Si* 
• y i° 

, y < o 

(iv-M) 

where the variable y stands for q. . 

The variance ]>1X   is caxculated for the noise-only cue as 
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"il dt   it)   COS   2Ktxt ds r(h)    cos 2ff i 

T T 
f 

dt (vlt) v(s)) ds   <v(t) v( •))      cot 2*f,t COS 2*f,s 

0 0 

T T 
N ( 

dt 

Ö Ö 

T 

dt cos   2iff.t 

ds 6(t -a)   cos 2irf,t   cos 2fff,s 

N 
*T*   T (IV-J.5) 

The p.d.f. for   q.    thus becomes 

1L / 

f(y/0) 

—5~ e,5> 

A*T A y     »    y iO 

( IV-U6) 

,    y < o 

A detection index   d'   vili now be defined as 

d1 ■   —— T a 2N    l 

o 
( IV-1»7) + 

+ This detection index is seen to be analogous to the detection 
index d defined in Chapter II for the case of a coherent sinusoid; 
see Eq. (II-2I»), 
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ii m JL 
21   B:S o 

RsBsT 

BgT 

(iv-'-d) 

Thus d* may also be regarded as a post-detection SKR, equal to 

the input or pre-deteetion SNR times the normalized observation time, 

and the p.d.f. for q. can be written simply AS 

( IV-1»9) 

The conditional probability   o.    that    q     exceeds its threshold 

when only noise is present is calculated as 

dy f <y / 0)     - ji-, öy exp j - g|, y ' 

- exp 2d' y 

«*P   - 37T  *' 
l 2d' ( IV-50) 

Therefore the conditional false-alarm probability becomes, from 

Eq. ( IV-l»0), 

a « 1 - 1 - exp [ - 2*7   k' 
H 

9T 

i iv-51) 
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If 

BT ®sp| - -%T   k' 1 « 1 , 

then the false-alarm probability is approximately 

a - BT exp - —• V \ (IV--52) 

Whenever one or more of the test quantities q. exceeds the 

preset threshold k', the decision is made that the desired signal 

is present. Therefore the conditional probability of false dismissal 

is 

0 > P [all q. < k' / signal and noise] , i ■ 1,2,...,BT 

(IV-53) 

When a signal is present in the received data, the false- 

dismissal probability, or equivalently the detection probability, 

depends upon the actual frequency location of the signal. 

Upper Bound on Detectabillty 

Two bounds on conditional detection probability will there- 

fore be considered. An upper bound on signal detectabillty is 

given by the situation in which a signal is present and its 

frequency happens to coincide with one of the BT correlator 

frequencies. The work leading to Eq. (IV-38) showed that when the 

correlator frequencies are chosen at uniform intervals equal to 

= and when noise only is present, then the quantities ♦ ., i|»., i f* J 

are tigain statistically independent, a fact which greatly simplifies 

the computation of signal d'jtec «ability. 
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Since, ith signal and noise pretest, the received signal 

v(t) is again a gaussian random process, the quantities x . 

and x , in Eqs. (IV-23) and (IV-21») are again gaussian randon 
81 

variables and therefore Eq. (IV-26) still holds as the joint 

p.d.f. for <i. and ♦_ , test quantities generated at frequencies 

f, and f« respectively. n»e covariances y  and u*u   «re 

now required for the signal-and-noise case. The covariance u 13 
is 

P13 " <Xcl Xc2> 

T 
S+S 

\4 
dt v(t) cos 2irfjt 

\ 
ds v(f) cos 2tffgS 

\ S+H 

T   T 

dt ds (v(t) v(s)\   cos 2tf.t cos 2wfgS 
S+H 

(IV-5U) 

Since the signal and noise processes are assumed to be independent, 

and  (v(t)) - (v(t)) - 0 , 

*13 

' 1 

dt du 

. 

(v(t) v (s))   ♦   (v(t) v(s)) cos 2wf,t cos?»£s 

(IV-55) 

But it can be seen from Eq. (IV-35) that 

L 

l"   \! 

T    T 

dt 

Ö   Ö 

ds Mt)  v(s)y cos 2«f-t cos 2wf0s ■ 0 
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when 

Therefore 

f 1 " f2 * *   m T      *     m " 1»2»"* 

y13* 

T T 
dt 

0 0 

ÜB    \v(t)   v(s)>     COB   2nf t   C08   2irfpS 
s 

(IV-56) 

The signal has a bandwidth Bg centered at some frequency f . 

the moment It vill he assumed that f  n c 

vithln the prescribed processing band. Thus 

For the moment it vill be assumed that f  may be any frequency 

*13 dt d8 -T-   sine B (t - s) cos 2*f (t - s) cos Svt^t cos 2t>f2s 

(IV-57) 

Under the assumption of short observation time, i.e. B„T « 1 , 

being made here, Eq. (IV-57) may be vritten approximately as 

[See Eq. (Vf-k)) 
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-   A 
U13S   ~2 

dt ds 208 2irf (t - s) coa 2wf,t cos 2wf„s 

A2 

"5 

T        T 

dt ds ([COB 2ir(f<+f1)t+ cos Strtfg-fjH] [cos 2t(f+^)s+co8 2w(f-^ 

0       0 

r 

+ [sin 2«if +fjt+ sin 2*(f-fjt] [sin 2ir(f *f9)s* sin 2«(f -f5)s]} 
C     1 C     1 Cd C     <        I 

A2 sin 2*(f +f.)T     Bin 2i»(f -f.)T 
C     1 C     i. 

2*(f +f.) c    1 2»(fe-l) 

"sin 2w(f +f„)T     sin 2»(f -f5)T 
 C ___« . C     c. 

2t(fc+f2) 2ir(fc-f2) 

1-cos 2»(f +f, )T     1-coB 2ii(f -f.)T" 
C     1        . C     1 

2w<V'i> C     1        _ 

1-cos 2ir(f+fjT     1-coB 2w(f -fjT c   z         c   g 

a(f0+f2) 2ir(fc-f£) 

(17-58) 

A2 Bin 2»(fc-fx)T   sin 2n(fc-f2)T     1-cos 2ir(f -f^T   1-cos 2»(fc-f2)T 

2»(fc-f1) 2n(fc-f2) 2w(fc-f1) 2»(fc-f2) 

(IV-59) 

The approximation embodied in Eq. (IV-59) follova from the fact 

that the first term in each of the four sets of brackets in 

Eq. (IV-58) may be neglected under the assumption that 2 (f +f.) » 1 

and 2 (f +f„) »1. 
c d 
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It can be seen that if f - f. and f - f0 are different 
C    1       C    e 

integral multiples of =• , Eq. (IV-59) will yield lero. Therefore 

if the correlator frequencies are spaced at intervals equal to =; 

and if the signal frequency f  coincides with any one of these 

correlator frequencies, then the covariance p.- relating x . 

at correlator frequency t.    *nd x„ at correlator frequency f„ 

is equal to zero. Similarly it can be shown that v*i   i» 

»Ik (xcl V) 
8+N 

A2 sin 2nf -f.)T     1-coü 2*(f -fjT     1-cos 2*(f -f,)T     sin 2ir(f -fjT 
C     1       _ C     g C     1        _ C     2 

2f{f_ -fj 
c     j. 

2,(fc-f2) toit^tj 2n(fc-f2) 

A£    sin 2ir(f2-f )T - 2 sin »(fj-fgjT cos n^f^-fj-fgjT 
(IV-60) 

It may be seen from Eq. (IV-60) that if the frequencies    f.    and 

fg   are separated by a non-iero integral multiple of   =• , v-^ ■ 0 , 

regardless of the signal center frequency   t    . 

Thus when the signal appears at one of the correlator frequencies, 

2 A 2     n 
y13   +    ulU   "° 

and the quantities )., y,» i i 3  «""e again independent, and their 

Joint p.d.f. is given again by Eq. (IV-38). The variance y-, 

must now be obtained. From Eqs. (IV-23) and (IV-27) , y,, is 

calculated as 



"11 it v(t) COB 2 

\° 
T    T 

dt 

Ö   Ö 

T   T 

dt 

0   0 

i v 
»f.i  ds V(B) COB 2wf s \ 

J / 
0 / ß+K 
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ds {v(t) v  (•))   co« 2tf-t cos 2tf.s 
N        S+N      A      x 

de (v(t) v(s)) + (v(t) ▼(«)) 
S a 

cos 2wf.t cos 2*^8 

(IV-61) 

The second integral in Eq. (lV-6l) is obtained from Eq. (lV-lt5) as 

N 
ds (v(t) v(s))  cos 2 f jt cos 2*^8 «-JJ

2
-T   (IV-63) 

T    T 
f 

dt 

Ö    Ö 

The first integral in Eq. (IV-61) can be obtained directly from 

Eq. (IV-59) by letting fg ■ fx , which yields 

T         1 

dt 

0         C 

• 
ds /v(t) v 

)                  f 
A2 

is))     cos 2»f.1 
S                 1 

sin 2*(fc-f1)T 
T    1 

Ac    2 

^(^-fj) 

2  . sine    If -f. )T 
C     1 

2 i- 

+ 

-|2 
1 - ccs 2«(f -f.)T 
 C X 

2,(fc-f1) 

(IV-63) 

Thus, from Eqs. (lV-6l), (IV-62) and (IV-63), vhen the signal is 

located at the correlation frequency f,, for which y.. is being 

calculated, then 

.2.2   H 
(iv-6k) hi'   ^~  *   fT 

r 

i. ■-. 

\ ■ 
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and when the sigu.il 1B located at seme correlator frequency other 

than f, 

wll" T (IV-65) 

The upper bound on conditional signal detectacility can now he 

calculated. When a signal appears at one correlator frequency, 

only the test quantity q. corresponding to that frequency is 

affected by the presence of signal. Therefore the conditional 

false-dismissal probability is 

8 ■ P [one quantity q.< k' , given that a signal is 

present at f., and BT - 1 quantities q.< k' 

given that these quantities are affected by 

noise only] 

Using the independence of i>. , ♦.. i 4 i    and hence of q, , q,, i 4  J, 

one can write BT - 1 

B - 8i 1 - aj (IV-66) 

where 6. is the probability that q. falls below the threshold 

k' given that p. signal is present at the corresponding frequency 

f., end a, is the probability that q, exceeds the threshold 

given that no signal appears at t.   .    An expression for a. has 

already been derived and is given in Eq. (IV-50). The probability 

ßi   will now be found. The p.d.f. for q. , given that a signal 

is present at f., is found from Eqs. (IV-1»1*) snd (1V-CU)  to be 

■_2       "  " 
fty/f^) - exp 

N 

A2 Jt      B T ♦ f T  A< 
, y > 0 
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or 
1 . y.lo 

^        2d' (d' + 1) 2d» (d» ♦!) 

(IV-S7) 

where 

0 

The test quantity q. la of course always a positive number, and 

B.    is calculated as 

Bi * 2d' (d'+lj "y exp - 2d'(d'n) y 

U 

* - eJ* - 2d'(d'*l) y 

■ 1 - exp 
2d'(d'+l) 

Using Eq. (lV-50_ one may write 0. in terms of o, : 

1 

8i - 1 - «i 

( iv-69) 

(iv-69) 

With this and with Eq. (IV-66), the upper bound on conditional 

signal detectability becomes 

1 - ß < 1 -  l-o. 

1 
d'+l 

l"1 
(BT-1) 

(IV-TO) 

This upper bound on   1-8   can now be calculated for a fixed value 

of false-alarm probability   a   by first solving Eq.  (IV-bO) at each 

value of normalized integration time   BT   for the value of   a. 
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which produces the proscribed value of a . Then Eq. (IV-70) can 

be used to calculate 1 for various values of Ro; since 

*• - Rg BST 

B T 
r 

(IV-71) 

(IV-72) 

where r is the frequency uncertainty ratio. It should be noted 

that detectability cannot be stated as a function of the detection 

inder d' only, but that both R_ and BT must be separately 

specified. In Figs. IV.1 and IV.2 are plotted detectability curves 

giving conditional detectability 1 - 6 or conditional felse- 

dismissal probability 0 as a function of / B-T' for tvo fixed 

values of pre-detection 8NR R„ and two values of sijnal frequency 

uncertainty r . In all cases the false-alarm probability is 

fixed at a * .01 . The curves obtained from Eq. (IV-70) according 

to the above discussion are labelled "upper bound". The curves 

are carried out only to / B_T' = 0.9 , since the analysis thus far 

in this chapter has been based upon the assumption of short observation 

times. 

CoMp^.rtaon of Fig. IV.1 with Fig. IV.2 shows that the 

upper bounC dejacuttbllity curves in Fig. IV.2 (r ■ 100) fall below 

the corresponding curves in Fig. IV.1 (r*25). This means that if 

points on corresponding curves In the two figures are compared at 

the same value of / B_T' , the probability of detection is some- 

what poorer for the higher value of r . This is quite reasonable 

since the selection of a single value of /BgT' implies that the 
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signal bandwidth is being held iixed, and an increase in r fron 

25 to 100 then corresponds to an increase in the width of the 

processing band 6 by a factor k  . Increasing B increases the 

«mount of noise power in the signal being processed, and the 

detectability is thereby decreased. Of special importance however, 

is the fact that the signal detectability has decreased only 

slightly in view of this sizeable increase in noise power. This 

point will be discussed more fully in the concluding chapter. 

An Approximate Lower Bound on Detectability 

An approximate lower bound on detectability for short 

observation times will now be obtained by calculating (approximately) 

the detectability given that a signal is present and its center 

frequency lies exactly midway between two neighboring correlator 

frequencies. 

It has not been proved that this situation actually 

represents a lower bound on detectability. However, in the weak- 

signal analysis of Section III.U, where signal detectability was 

calculated for a number of possible signal frequency locations, 

detectability did exhibit a minimus when the center frequency of 

the signal appeared midway between the center frequencies of two 

adjacent filters.  It is being assumed that this minimum would be 

obtained under the same circumstances in the strong-signal case. 

The covariances y., and p .  are again required. Ihe 

covariance y.- relating the quantity x , generated at frequency f. 
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and the quantity x « generated at fg, where f, and f- are 

separated by a non-^ero multiple of =• , has already been obtained, 

given noise plus a signal at the general frequency f . This c 

result is given in £q. (IV-59). Inspection of that equation shovs 

that y., has a non-zero value except in instances where f 

coincides with one of the correlator frequencies in the processing 

band. Thus when a signal appears midway between neighboring 

correlator frequencies, as is being assumed in this dorivation of 

a lower bound on 1 - 6, u,^ will always be non-tero, and therefore 

any two quantities ii,, $,,    i i  J will in general be correlated 

random varibles. Thus the test quantities q., q., 1 i  J * - In 

general be correlated, and an exact calculation of 1 - B in this 

lover-bound case cannot be carried out on the basis of independent 

probabilities. The conditional false-dismissal probability is 

J»P [all q.< k' , given that noise is present together 

with a signal located at a frequency midway between 

any two adjacent correlator frequencies], 

l ■ 1,2,..., BT 

- Ptq-L < k'l P[q2 < k' / \x  < *']••• P[qBT < k« / ^  < k',..., lu^*'] 

(IV-73) 

Each of the probabilities on the right side of Eq. (IV-73) 

ie of course conditional upon the presence of signal and noise. 

Calculation of 8 -lsing the exact expression given in Eq. (IV-73) 

would be a considerable tapk, and this will not be done here. 
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Instead two approximations to that expression will be made. The 

first approximation consists in ignoring the correlation among | 

quantities q. except for those generated at the two adjacent 

correlator frequencies between which tha signal appears. That is, f 

I 
if the signal is assumed to appear midway between correlator 

frequencies f. and f..., only the correlation between q. and * 

q.+1 will be considered. It can be shown that this approximation 

is reasonable accurate. For example, the correlation coefficient 

L 
relating q  and q1+2» 

or relating q. , and q1+1» is approximately 

one tenth as large ae that relating q. and q.+1; correlation 

coefficients relating other pairs of test quantities are even 

smaller. Since the correlation between pairs of test quantities 

always erters the p.d.f. in Eq. (IV-20 through the sum of squares 

of y., and v,u  > non-2ero values of these covariances always 

produce positive correlation. This positive correlation makes the 

conditional probabilities in Eq. (IV-73) larger than the corresponding 

unconditional probabilities would be. Therefore, ignoring the 

correlation among a group of test quantities results in a consistently 

low approximation to the right side of Eq. (IV-73), or in other words, 

a lower bound on 6 as given by that equation. Thus this approx- 

imation may be expressed as 

BiPhj < k1) P U2 < k'j-'-PUj < k'] P [qJ+1 < k' / ^  < k'] P UJ+2<k'] 

••' PUgr < k'] 

(IV-T»0 
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Now a second approximation will tie obtained in the form of a bound 

I on the right side of Eq. (IV-71*), using the inequality 

j P UJ+1 < k« / q^ « kf] <l 

It is readily seen that if this inequality is inserted into Eq. (IV-7'»), 

i the result is an upper bound on whe right side of the equation, 
t 

ncsaely, 

P[qx <k'] P [qg <k,],,'P[qJ  <k'} P [qJ+1< k« / ^ <k'] P (qJ+g< k']-"P[qBT <k'] 

IP [qi<k>] P [qg <k']'"P[qJ  <k'] P [qj+2 <k']"-p[qBT <k'] 

(IV-75) 

which is in conflict with the bound previously derived. Thus the 

two bounds tend to offset each other, but it cannot be stated with 

certainty whether the result is a consistent upper or lower bound 

on B as given by Eq. (IV-73). Since the first approximation, 

contained in Eq. (IV-7U), is very accurate, it is highly probable 

that the upper bound on 8 is preserved and is given by the right 

side of Eq. (IV-75). Since this cannot be stated with certainty, 

the result will be stated as au approximation to B, that is, 

6 = Plqx< k'] P [q2< k']"- P[qj< k'] P [qJ+g< *•]••■ ?{q.T<  k'] 

(lV-76) 

or 

B - 6^1 - c^r*"' (IV-77) 



G-142 

vhere ß  is the probability that q, falls below its threshold, 

given that the signal is present midway between the j  and (j+1) 

correlator frequencies. The probability a. has already been 

derived and is given by Eq. (IV-50). Since the expression for 8 

given by Eq. (IV-73) itself represents an upper bound on the 

conditional false-dismissal probability for the optimum detector, 

Eq. (IV-77) gives an approximation to this upper bound, or equivalently, 

an approximation to a lower bound on signal deteotability. This 

may be expressed as 

(IY-78) 

In order to calculate 6. in Eq. (IV-78), the p.d.f. for q. 

must be obtained under the condition that, together with noise, a 

signal is present at a frequency midway between the correlator 

frequencies f. and t,...   The general form of the p.d.f. is 

obtained from Eq. (IV-M) as 

1 - ß >   apx 
/              iBT-2 

_l-Ml--iJ 

f(y/e.) 
N 

UwuA 
exp   - 

SiA 
y I .    y > o 

cl 

L 

(IV-79) 

The variance   \ty.    may be obtained from Eqs. (IV-U5), (IV-59) and 

(IV-6l).    The second integral in Eq. (IV-61) is found in Eq. (IV-1»5) 

to 'oe 

dt 
H 

da   /v(t) v {?))    cos 2sfjt cos 2sf.s »   y- T 

(IV-80) 
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The first integral in Sq. (IV-61) may, for the ewe at band, be 

obtained from Eq. (IV-59) by letting 

and 

which yield« 

T       T. 

It 

0       0 

Vl 

f c * fl + W 

ds   ^v(t)    v(s)^    COB 2sf t COB 2irf s 
S 

±   4rT2 2  8 

(IV-81) 

When Eqs. (IV-80) and (IV-61) are substituted into Eq. (IV-61) 

the result is 

The p.d.f. for q., given in Eq. (IV-79), now becomes 

f(y/s.) exp 

"T T T
2* T  A 

-pH 
exp 

"' 7d'*a 

(IV-83) 

i 

I 
1 
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ad'l1^ V* 1 
iff 

C-lWt 

dy   exp 

2d«    Ld'+ i i 

exp 

2d' 4d'+ l 

L    »' 

k' 

■   1 - exp 

2d K*»il 
/ 

(IV-81») 

Using Eq. (IY-50), one may write    o.    in terms of   8.    as follows: 

».-i -«: 

', i.   \ 

? / 
"i "i 

When Eq. (IV-85) is substituted into Eq. (IV-78), the lower bound 

on signal detectability beeosea 

(IV-85) 

/ \ 

1 - 8 > apx< 1 - 

/      1      \ 

(1 • • v » 
' 

J»  d'+l 
W2          1 

ai 

\ i 

(IV-86) 
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Detectability curves obtained from Eq. (IV-86) are plotted in 

Figa. IV.1 and IV.2 and are labelled "lower bound". AB with the 

"upper bound" curves discussed earlier, these curves show conditional 

detection probability 1 - 0 or conditional false-dismissal 

probability 6 as a function of itegT far various values of pre- 

detection 8NR and frequency uncertainty r . The lalse-alarm 

probability is held fixed at .01 . It is evident from Figs. IV.1 

and IV.2 that these upper and lover bounds, derived under the 

assumption that BJF « 1 , are reasonably dose. 

The detectability curves ?.n Figs. IV.1 and IV.2 were obtained 

for a detector structure employing a bank of correlator pairs 

whose frequencies are spaced at intervals equal to ~ cps. This 

spacing of correlator frequencies is the closest spacing for which 

detectability can be conveniently derived. A closer spacing of 

correlator frequencies, representing an improved approximation 

to the optimum detector, would of course result in tighter bounds 

on signal detectability but would require :onsider&ble computation 

in the evaluation of integrals involving the p.d.f. in Eq. (IV-26) 

or p.d.f.'8 of larger numbers of Chi-squared variables. Such 

computations have not been deemed Justifiable for the purposes of 

this vork and therefore Eq.(IV-70) and Eq. (IV-86) will be taken as 

bounds on detectability for B_T << 1 . 

Attention will now be given to the problem of detection in 

the strong-signal case when the observation time of the signal is 

long with respett to the signal correlation time, i.e., when 

B T >> 1 . 
S 
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IV.3 Detection for Long Observation Timee (BJT » l) 

When the observation time of the received signal is long with 

respect to the inverse of tue signal bandwidth, i.e., when B_T » 1, 

then in forming the test quantity L(v/f ) for the optima detector 

[See Rq. (III-lU)], the received signal may be pre-filtered tu 

a band of width B_ centered at the frequency f • f . Then 

from the results of sampling analysis discussed in Section III.3, 

the received signal vector v represents a vector of n * 2BJT 

Independent samples. The test quantity log L(v/f ) then becomes 

(IV-87) 

as was given In Eq. (111-23). The noise variance N is the noise 
i 

power in a narrow band of width Bg , that ie 

N * N Bc (IV-88) 
O  B 

It will now be convenient to define as a test quantity 

A2 
. i       Q'(f) " -*5   V I v 

■ (. UN2 , 
I 

UK2 lil * 

Thia test quantity, bei:sg a sum of squares of   n   independent 

gauscian random variables, has a Chi-squared p.d.f. vith   n   degrees 

of freed:«.    In Section» 111,3 and III.U a gaussian approximation 

I 
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to the Chi-squared distribution was used,   übe accuracy of such 

an approximation rests, however, on the assumption of a low pre» 

detection SNH and is no longer valid when   Rg » 1,   as is being 

assumed in this chapter.    For this reason an exact Chi-squared 

distribution for   Q'(f)   will be used. 

The p.d.f. of a sum of squares of   n   independent gaueaien 

random variables   v.  , each having sero mean and variance denoted 

by var(v)    is given by 

f(x) 
var(v) Lvar(v)J 

j. >, 0 (IV-90) 

where   k(z)    is the standardised Chi-squared p.d.f. with   n 

degrees of freedom.    Therefore the p.d.f. for   Q'(f) becomes 

f(x) kS< 

A   var(v) 
l»Ne 

A   var(v) 
,    DO (lv-91) 

As in Section III.l» the signal detectability will be estimated 

by considering the performance of a band-splitting approximation 

to the optimum detector. When p» »-detection filters in a band- 

splitting detector have overlapping frequency responses, their 

outputs are correlated, which means that the corresponding test 

quantities Q'(f<) are also correlated. Therefore computation 

of error rates in general involves integrations with respect to 

t See, for example, Cramer, (I, Chapter 18.) 
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joint p.d.f.'s for correlated Chi-squared variables. It may V» 

recalled that a aimilitr point arose In Section IT.2 store detect- 

ability In the streng-s? anal ease with abort obaerv*tica tin» tm» 

baing eontidered. There the teat quantity va» izm-l tsts s <*i- 

«quared variable with two degreee of freedom, and th* jciut p.d.f. 

for two such correlated teat quantities was a function involving 

a aodified Beasel function [See Iq. (IV-26J, Zt can thus be aeea 

that even in caaea vbere only pair-wise correlation betveen teat 

quantities need be considered, the calculation of error probabilitits 

would Involve considerable labor. For the purposes of this 

investigation such confutations will not be carried out. Rather, 

a detector structure will be analysed which employs ■» band of 

pre-detection filters whose frequency responses are »paced as 

closely as possible without overlapping. That is, «ince 

B.rB3 

the detector will use r rectangular filters, each of bandwidth 

Bg , covering the total band of signal frequency uncertainty B . 

The outputs of the filters will then be uncorrelated turl the test 

quantitits Q'(f.) will thus be Independent. Upper and lower 

bounds on optima signal detectability »ill be derived usin^ this 

detector model. 

The general expressions for the false-alarm rate and for the 

conditional detection probability may be obtained from the work 

done in Section III.I» . Prom Eq. (IV-53) the false-alarm prob- 

ability is obtained as 

I 
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1 

i - n (i - a.) 
i-i   x 

(IV-92) 

vhore, hare, 

*t " P fQ'tfj) > k' / noise only! , i « 1,2,,..,r   (IV-93) 

When a signal is present, It« spectral will is general overlap the 

frequency responses of two pre-detection filters. Thus the 

conditional probability of fast dismissal Is given by Iq. (III-60) 

as 

B" *i(o)8i(i-o) \l " 81 

r-2 
(IV-9»») 

vher« 

Bi(p) " P ' *'^fi' * k'  • 8lvtn **** th* mtM teind 

contains a fraction   p   of the total signal 

power] 

The false-alarm probability vill be considered first.   When 

only noise is present, the variance of a sample of the received 

signal is 

var(v) • 5 (IV-95) 

Whan this is substituted into Eq. (IV-91), the p.4»f, for one of 

the test quantities Q'tfi) becomes 

f(x/0). ^kn |jr« • x * 0 (IV-96) 



Using the definition of pre-detectlc« SIR, 

"8       21 

the p.d.f. for   Q'Jf,)   may he rewritten as 

'<*'*>■   ^   kn(4
Xl       '     S,'° 

The probability a. then becomes 

(W50 

(IV-ST) 

(IV-98) 

0 
[ 

r 
r » 
V - 

c 

*s 
d« *»(!£* 

or 

dz k (z) n (IV-99) 

This result is in the form of the standardized Chi-squared integral, 

which is available in tables .    Thus the false-alarm probability 

may be calculated with Eqs. (IV-92) and (IV-99). 

When a signal is present, signal power will appear in the 

pass bands of two adjacent band-splititng filters.    If & fraction 
2 

0   of the signal power   A /2 appears in one pass baud, then the 

variance of a sample of the signal at the output of that filttr 

t See National Bureau of Standards (III, Sec. 26.) 
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var(v) => a Y   * N 0 < o < 1 

CJ.51 

(W-100) 

Therefore, from Eg«. (IV-91) and (IV-100) one obtain« the following 

p.d.f.'s for test quaatltias Q't^) generated for the two baute 

containing signal power: 

f(x/o) 
R,(o R„ + 1) 
6   O 

I—*—1   • I R„(o R. + 1) I 
1_ o   » 

x > 0 

(IV-1C1) 

and 

fU/l-o) x )  x » 0 

Rs [{l-o)Rg +1]    \   Rg [(l-ojRg ♦ 1] 

(IV-102) 

The probabilities $,.  » and 6wiHJ\ are obtained b„> integrating 

the above distributions: 

k' 

6 
i(o)   „ /_»} . -, \ 

dx 
n   V'V1* 

or 

2k' 
I 

3i(c) " 

( 

ls(oRs+D 

dz k (z) n (IV-103) 
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And similarly 

2k' 

Ji'l-o) dz k (z) n 'IV-lOk) 

The conditional false-dismissal probability   B   or the conditional 

detect ability    1-8    can nov be calculated from Eqc.  (IV-91*), 

(IV-9?), (IV-103) and {IV-IO«) .    The detectabiiity will of course 

depena upon the actual frequency location of a received signal in 

the overall band of interest, tbat is, upon the signal overlap 

fector   o .    In Fig. IV.3 are plotted curves ?f signal detect- 

ability as a function of   /Of   for a fixe«'  false-alarm probability 

a* .01 . The frequency uncertainty ratio   r   is taken to be 100, 

and the pre-detection 55R R. takes on values of 1C and 100.    Tru 

curves labelled "upper bound" and "lower bound" correspond to the 

following situations: (l)   When a signal is present, the highest 

detectability is achieved when the signal spectrum is exactly 

aligned with the passband of one of the pre-detection filters. 

Then   o ■ 1   and the detection probability, obtained from 2q. (IV-ol*), 

becomes 

1-8- i - ei(1)ji - h 

r-l 
(IV-105) 

[ 
[ 
r 

[ 

since 

ßi(0) '  1 (iv-io6) 
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(25 When a signal appears with a center fruqueney midway betwaon 

the center frequencies of tv adjacent filters, the detectability 

is the poorest.    Then <s ■ •*   aad the Election probability becomes 

C! 
I 
I 

G 

e » l Bi(i/2) t\ 
r-2 

( IV-10T) 

These two situations therefore reprerent upper and lower bounds on 

detectability for the detector aodei considered. The inclusion 

of more band-splitting filters for the sane overall processes 

bandwidth B , representing a closer approximation to the optimum 

detector, would result in tighter upper and lover bounds on detect» 

ability. If the approximation were refinad by adding a larger and 

larger number cf filters, the bounds should converge to the optimum 

signal detectability. 

Bounds on signal detectability, derived in Section IV.2 for 

short observation times [See Eqi. (IV-70) and (IV-66)] are »Iso 

plotted in Pig. IV,3 for small values of 4ÖJ . 
5 

The bounds on signal detectability obtained in the strong- 

signal case are not ae tight as those obtained for the veak-signel 

case. However, if Figs. III.3 and IV.3 are compared, it may be 

seen that the upper and lower bound detectability curves of Fig. IV.3 

for B„T »1 show trends similar to the maximum and miniaua curves 
S 

of Fig. III.3 for b ■ r . There is no reason to suspect that a 

further approximation to the optimum detector in the strong-signal 

case would yield detectability curves much different it character 

from those shown In Fig. III.3 for b • 2r ; therefore on the basis 

[ 

s- • V, 
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of thl/j ccaf-arison one might aakr & fairly accurst« estimate of 

optima signal dettctability in the atroag-sig&al cam«. 

Such estimates vor« mad« and «re «hewn la 71«. IV.3« Using 

these results obtained la the strong-signal ease aa example «111 

now be considered which will demonstr» e the gala la detectability 

obtained from the knowledge that the signal power la confined to 

a band of width Bg somewhere within the band being processed, 

of widtk B • rBg . 

Example 1 

Suppose that the overall frequency band to be processed has 

a vidth B ■ 500 cps , and the allowable integration time is 

T ■ 1 sec. . Let the input SlfR, R, defined as the ratio of total 

signal power to total noise power in the overall banl B , be 

•-10 db , that is, 

A2/fc 

■ 0.1 

Suopose uov that the signal spectrum is known to have a width of 

5 cpa and that the signal spectrum may lie anywhere within ehe 

overall frequency band B . The optimum detector would now employ 

pre-detection filters each of bandwidth B_ ■ r cps , and hence 

r • =2. ■ 100 
BB 

The pre-detection SNR Rg, defined with respect to a band of width 

V i8 
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H% 

■ r H 

■ 10 

Since   H_ « 10 » 1 , the detectability curves of Pig. IV,3 are 

applicable.    If the false-4larn rate it to be held fixed at 

o ■ .01 , then with   Rg • 10   tad )/B~T » 2.2k , the conditional 

detective probability it ettlaated to be 

1 - * ■ 95 per ceut (ettlaated) 

[ 

( 

If, however, %ä» signal power were uniformly spread over 

the entire bend of width B ■ 500 cps , then a value of input 

SIR R greater than 0.1 (-10 db) would be required in order to 

achieve a detectability of 95 per cent at a « .01 , attuning 

that the integration tine it «till held at T » 1 tee. Tfca 

required SDR in this case is found fron Fig. III.5, where the 

curve labelled r ■ 1 yielde 1 - 8» 95 per cent when 

s R Jffl   » k 

Therefore the required input 8HR is 

• R ■   

■ —^— 

/5Ö0 

i. 

.179 
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or 

10 log^ (.179)   ■   - 7.5 db 

Thus the effective «\in la input SIR du* to taovlejg» that tu 

signal hn a Mire« sptctrua of unknown crater frequeacy within 

the baad bo lot processed le 

- 7.5 - (-10 db) ■ 2.$ db 

Thii gain appears to bo sodest to view of too fac* that tho pre- 

dotoction 8HB U apparently increased froa   B ■ .1   to   H ■ 10 , 

an increase of   20 db .   Most of the effect of talc   20 db   Increase 

is loet, hovsvers due to the fuet that when   R. »1 , the variance 

of the teet quantity   Q'(f)  , as «ell as the average value of 

Q'(f)   increases appreciably with   IL. 

A second exaaple vill give further insight into this point. 

Suppose that the processing baad again has a width   B ■ 500 cps, 

sad   T ■ 1 sec.   It was found in   Exasyle 1 that if the signal 

power is spread unifonly over the processing: bead   B , then an 

input EXF. Ft ■ .179   is required to achieve 95 per cent detectability 

at   a ■ .01. 

Suppose now that the signal spectrum U known to have a 

width of 100 cps; the frequency uncertainty ratio is then   r ■ 5. 

The value of pre-detection SUB R- required to produce   1 - 0 ■ .95 

at   a ■ .01   is now found fras Tig. III.5 , where the curve labelled 

r ■ 5   yields   1 - 9 ■ .95 tt 

•tf  ■ Rß   <SJF  ■ 5.1 
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Tfcsrefore tb« iaput SHH H„ , dafineÄ with reaptct to B_ , is 

B . JLi- a JLL. • ,51 

and H , d«fin«d with respect to B , is 

R - i Rg • •#• - .102 

Thus tha effective g%in In input 8MB du« to th« knowledge 

that th« eignal ha« a spaetrun 5 tin«« narrower than th« processing 

band 1* 

It i« «esn that thi« it very clos« to th« 2.5 db gain in 

input SHH demonstrated in Example 1, vbera tha signal spectrum vis 

assumed to be 100 times narrovar than tha processing band, H«nce 

further increase of the uncertainty ratio r front 5 to 100 (with B 

assumed fixed) only yields an additional 0.1 db effective gain in 

input SNR. 

Thus it appears that substantial gaina in detectability can 

be achieved by narrowing the signal spectrum within th« processing 

band up to the point where R_ is on the order of unity. Then 

AS the signal spectrum ia narrowed further, tha corresponding 

change in detect&bility becomes very small. 

This observation suggests an interesting question with regard 

to the detectability of stochastic signals in cases of high pr«- 

detection BNR, the question whether concentration of a given amount 

of singal power Into & steadily narrows- frequency band produces s 

Li 

C 
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aosaione increase in detectability (with a mi&mm detectability 

at «ero aigBal bandwidth! or whether sutiMn detectability occur« 

at »earn nou-sero bandwidth.   TJ is question aagr ba sonai&ei-ed quite 

apart froa the problem of signal frequency uncertainty and aoaw 

remarks vlll ba made to this point in the concluding chapter. 
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acmrnm 

I 
i 

This investigation has produced two principal results with 

regard to the detection of signals of unknown frequency. The ! 

first result concerns tie font of the optiaun detector for the 
r 

detection of such a signal in the presence of additive noise. j 

When the signal to be detected is a coherent sinusoid with 

an unknown frequency given by a probability distribution over a |_ 

discrete set of frequency values, the work of Chapter II shored 

that the optimum receiver structure for the detection of such [j 

a signal ie essentially a band-splitting detector.   This band- 

splitting detector becoaes exactly optiaun as the post-detection [ 

SIR is aade increasingly large. 

The detection of s. gaussiaa stochastic signal with a center L 

frequency given by a discrete probability distribution was discussed 

at the beginning of Chapter III, where it was shown that for i, 

this signal case optima detection is once again achieved with a r. 
1 

band-splitting detector. L 
» 

When the center frequency of the stochastic signal has a ., 

enntinuow) p.d.f. over a prescribed frequency band, the work of L 

Chapter III indicated that the optiaun detector becoaes a band- 

sweeping detector.   A practical approximation to the band- 

sweeping detector is a band-splitting detector eaploying a finite 

L 
[ 
r 
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number of pre-detection filters. Tht results presented to Chapter 

III show that very nearly optimum detactsbillty is n&tievo«? «1th 

a bank of filtere equal in number to twice the frequency uncertainty 

ratio r . 

The second principal reault which tat been obtained .'• that 

in the detection of weak signals, detectabllity is governed 

primarily by the pre-detection SOT Rg, defined in a band of the 

width of the signal spectrum, even though the frequency location 

of the signal may be unknown within a wider processing band. The 

implications of this result may be discussed fron two points of 

view. 

From one foint of view the signal spectrum may be regarded 

as fixed while the processing band B may be wider than the signal 

spectrum by various amounts, corresponding to various values of 

the frequency uncertainty ratio r , r >. 1 . She uncertainty 

regarding the sscct frequency location of the signal makes 

necessary the use of a bank of band-splitting filters. A test 

quantity is generated from the output of each of these filters 

and a threshold test is made on each of these quantities. As the 

frequency uncertainty ratio r is increased from unity, the 

number of required filte~s also increases. If a constant false 

alarm probability is to be maintained, the threshold levels nust 

be raised accordingly. This raising of the threshold levels 

tends to degrade the dateetability somewhat, but the results 

obtained in thie investigation show that this degradation is small 

compared with slseable increase in noise power which results from 

r 1 
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widening of the processing band by a factor r. 

Fron a second point of view, CM nay regard the overall | 

processing bandwidth as fixed. la this tat* a unity value for r . 

describes a situation in which the signal power is spread unifonly 

across the cn'cire {.rocc-ssing band B , and on increase of the 

uncertainty ratio r fro« unity corresponds to concentration of 

the signal power into a narrower hand soaevbere within B . . 

> Since the results of this work show that the detectability i 

in the weak-signal case depends critically upon the pre-detection . 
j 

SNR R- in the narrow signal band, then when the signal power is I 

contained within a band tt width Bg instead of being uniformly r 

spread over the hand B * ?B„, r > 1 , the pre-detection SHR is t • 

increased by the factor r , and increased detectability is accord- 

ingly gained. As has been discussed, the frequency uncertainty 

necessitates the use of a band-splitting detector with a resulting 

loss in detectability, which partly offsets the effect of increased 

prevdtttection SNR. However a net gain in detectability is still 

obtained. The weak-signal anaylsls presented in Chapter III shows 

that the increase In R. by a factor r results in an effective 

gain in pre-detection SNR almost equal to r . In typical cases 

the loss in effective SNR due to frequency uncertainty is on the 

order of 2 db. 

The residts are somewhat different is the strong-signal 

situation however. It appears that appreciable iaprovenest in 

detectability through narrowing of the signal §peetrun can be 

realised only up,to the point where R_ is on the order of unity. 
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When Rg 1« unity or cheater, then an increase in JL not only 

increases the ^flections of the test quantities generated by 

the b«r.d-eplittiüg detector hut aleo increases the variances of 

these test quantities, and this second effect tends to oppose the 

first, thus offsetting the iscreaaa in !L • This effect of course 

also manifests itself when the frequency location of the signal 

spoctrum is known exactly and tin's may he considered independently 

of the frequency uncertainty probj.em. 

This suggests the desirability 0? * sore complete analysis 

of the optimum detection problem und%r the assumption of strong 

pre-deteotion SWR vith the aim of answering such questions as the 

following! Oivsn that a stochastic signal, of fixed total power is 

to be detected in a background of spectrally flat noise in a fixed 

length of time, how does the signal detectability (for a fixed 

false alarm probability) v*ry as the band width of the signal is 

mrledt Is maximum detectability obtained by concentrating the 

signal power in an arbitrarily narrow band or is there some non- 

■ro signal bandwidth for which sign«! detectability is a maximum? 

The analysis in Chapter If can be used to find partial answers 

to these questions, under restrictions of either very short 

observation time or very long observation time. On« interesting 

reoult is that if the signal energy and noiee spectral level are 

fixed, signal detectability can be greater at some noi -aero valuer 

of signal bandwidth than is '.h« limiting; case of aero bandwidth. 

That thla can occur may be argued as followsi 
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As the signal bandwidth It steadily reduced while *fee signal 

power it fissd, the ratio of signal to noise power In th» narrow 

signal bond steadily increases, which tends to improve detectabllity. 

However if th« observation tins T la find, than tha correlation 

tine of the signal becomes steadily looser with reapeet to T and 

thus detectabllity depends less upon the averas> signal energy and 

more upon the short-term statistics of the signal energy, e.j., the 

variance of the nlgcal energy appearing in each observation interval. 

For exapjsle in Section IV.2 the detection of a gaaasisn signal was 

considered vith the assumption that the Observation tlae vsa noch 

shorter than the reciprocal of the signal bandwidth. The signal 

amplitude was seen to be essentially constant during each 'beervs&lon 

interval end this amplitude was distributed with a Raylelgb density 

function over the ensemble of all observations. Thus if some 

amplitude is chosen, it can be said that for a certain percentage 

of the observations the signal «ill never rise above that chosen 

amplitude. Therefore it can be seen that the detectabllity for this 

case might be poorer than some case of wider bandwidth (and hence 

shorter correlation tin« ia comparison with the observation time of 

the signal) buv. comparable pre-detection SKR, where detectabllity is 

governed more by the average signal energy than by the variance of 

the signal energy appearing in each observation interval. 

It is apparent from this discussion that a more thorough 

analysis of the optiaun detection problem in the strong signal 

situation is called for. To date no such analysis baa been pre- 

sented in the literature. It is suggested that this might prove 

to be a fruitful subject for further research. 
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APPBtMX   A 

smjcfiom or rem a m pom waits FOB LOO i(x)f 

7 

At ni diteutitd 1B Btot&ea X.fc, tho avtrago   IK Kv), gtwB 

tar H> (I-T) fcr dtttotioo is gAuitlu BOIM, SIB bt tsaaaAtd ta 

a pcirar ttritt lBvolvtaf ttrm of ill povtrt ia   -  J §.' £, j. 

•**  1* E   X •   n>t avarega ^ ).   eta tu*   bt oareiad out ttm 

Iqr ttm.   Zf   log l(g) it «upa&dod la a taevcd power stritt tad 

if ttrat eoBtrlbutlag no dtfltetiea m Aropp* 1, tat rttult It 

♦   0{£6) (A-l) 

Tht dafl«4+.ion of a ton or a ttt of ttrat It Atflatd at tb# ehaagt 

la avtregt valut la going frei tat aoitt-oaly tltuatioa to tat 

tigaal-plut-Boli« tltuatioa•   Tat dafUetloa will bo dtaottd by 

1 [ ]•   Tht relieving dtfltttieat *vt ebtalatA froa Iq. (A-l) 

in gtatral font 

a [ein1! J . it h <d' iV)J I»-« 

u [otfl] . aft, (if *V)^i' &V>' 1 CM) 
Thttt two dtfltotieat vtrt mluatad for tat tartt tlgaal eMti 

outllntd la loot lea X.u,   Xa addition tbt following Atfltotloa vat 

t  Thttt rttultt art taken froa Levtitue (X). 
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evaluated fcr tin- sinusoidal signal, e*M 3)s 

- hfa iV>] (*-») 

This is the most significant ten in at [0{£ )]. 

The reitults are suwmerised in Table A.l, shown on the following 

page. The lymbols used in the table art defined as follow: 

B ■ Width of the hand of signal frequency uncertainty, 

i.e., the hand being processed, in eps. 

R ■ Input or pre-detectlon SIB, defined in this ease 

as 

 Total signal power 

Total noise power in the frequency hand B 

T ■ Integration tine in nee. 

v » Vrequency uncertainty ratio, defined as 

Processing bandwidth B 

Signal bandwidth B_ 

It »'as assumed in the analysis that BT »"!. and, in signal esse 2), 

BT » B-T » 1 . 

It in first sees froa the table that definitions of terns of 
o 

order j_ are identical for the three signal cases. Thus a detector 

constructed on the basis of these lowest-order tens* of the series 

would yield the same performance for the three cases. It can he 

shown that this term represents a Quadratic operation on v , 

i.e., an energy measurement of the «ignal received in the band B. 

Thus detection would depend upon the total power 'n the band an- 

ne use would be made of the narrowband nature of the signal in 

cases 2) and 3). 

c 
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Wh«n deflection» of higher-order term «re considered, the 

three signal cases rvoduoe different results. The deflections In 

ccluan 1) are ell seen to grow linearly with the Integration tiae 

and have v, coefficients progressively higher powers of the Input 

SIR, P. Thus if R « 1 the aajor contribution to the total 

deflection of log l(v) is fron the 0(sf) ten and higher- 

order terns in the series can he neglected. 

When the signal power is confined to a band auch narrower 

than B , it is seen fron eoluan 2) that &E (0(s )] contain« 

terns wtlch grow as the square of the integration tiae. Thus 

for any value of B » however snail, t.ie aagnitude of AS [0(s_ )] 

can be nade equal to or greater than that of &£[0(s_ )] by 

asking the integration tiae sufficiently long. Therefore higher 

order terns in the power series cans "ft be neglected : Imply on 

the basis of low input SHS. Stellar reaarks apply to signal case 3). 

There, AS [0(s_ )] involve« a tern growing as (BT)  and 

dE l0(«6)} grows u (BT)5 . 

I 
I. 

I 
[ 
c 
[ 
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L 

i. 

A i 

1 
] 
I 

1 

3 



C-169 

APPBMX B 

A 8MALL-8I0IAL APPHOXIMAflOH TO TO OPTIMUM MUCK* 

FOR TBI CASE 07 CCBSWR 9BTBCTX0I 

In the pptliuB detection of a signal with unknown parameters, 

tbt detector must calculate the average LR 

t(v) - /e*p I - £ e.' K'1! ♦ i' K"1! J \    {B-D 

vfcsre ( ) isplits \ )8 >   If tbt expeneatiel in 1%. (B-i? is 

expanded ;'a a power •trie«, tbt average over >isnal parameter* 

takan tarn by tan and tha function   log   t(v)   expand«! in a 

■acond pevar series, the result ii 

log   ilv? i $! rt)« <l' S-lS>» J ["<<£' S-1!»2) - <!.' ^ifl o(l3 

(B-2) 

In tha veek-signQ situation, whan tha signal to be detected is 

coherent, the mijor contribution to log t(v) is from the ten 

^ f.' &" I / ■ As u approximation, the terms of the order s 

ctn be replaced by their average* taken with noise only present. 

These averages, tcgether with the term - T h<  K" J\ , are then 

taken as bias tens in threshold test. The three bias terms are 

thus 

t By definition the signal s is described as coherent if 
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t. 

- \ <»■ fli> -<j I v/g"1) 

• IJ <v,> V1 

(B-3) 

■ x,r1<Ei,> rt 

(B-4) 

I <*• rt? 

-H<M><* 

i. 
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Therefore, 

-1. log l(v) ■ (,•) K'S - |(f') K" (l)   (»-«) 

If the signal 1* a sinusoid of known aaplitude «ad phase with sa 

unknown frtquency given by a discrete distribution, then 

(B-T) 

If the B frequencies are equally probable. 

v      i»i   *     i«i 

If, in addition, the noise is white with variance If , 

(B-8) 

log t(7)--i- r it'i- +.r i   »i'i,   (B-9) 
i«i 2a H i«l J-l 

Since   s.    and   s.    represent sinusoids of different frequencies, 

lh'*am °   • it J 

k«l 

(B-10) 

Tfcus, 

log   t(v)    ■ ̂ ■1 
i-1 

, s • v - -Ä- 

ijJU'x-f  -h a   2 i (B-ll) 
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From Eqs. (11-12) and (11-13), 

log l(v) - i I   logLj ♦(l-jjl    (»-W) 

Therefore the veak-signal approximation lead« to the threshold t«S 

J  log L, J  ■ log k - (» - 1) § 
i»l     X 

(B-13) 

As an example, let m ■ 2 , The detector then perform« the 

threshold teat 

log L, ♦ log L2 * 2 log k - | 

If log L. and log L„ are considered as coordinates in a two- 

dimensional decision space, the curve dividing the space into 

"signal" and "no signal" regions is given by 

log I, * log Lg ■ 2log k - jr (B-H.) 

This is seen to represent a straight line with slope -1 
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AftHDXX C 

ERKOR PROBABILITIES FOR A BAID-6PIJTTMQ DfTBCTOR 

VTÜ& mmUBBTS OUTPWB 

The condition»! error probabilities art derived for * band- 

•plittlng defection ncheae.   The following •▼sots art defined: 

8   » Event that noiee only it present. 

8. ■ Event that signal it prtttnt with frequency 

f4, i ■ 1,2,,.^. 

E   ■ Event that til   n   outputs lit below the fixed 

threshold value. 

E, ■ Event that the   1       ootput exceeds ltt threthold 

value,   i ■ 1,2,...j». 

Fait* Alane 

The conditional falty alarm probability it given by 

a ■ P [at least one output exceed! it» threthold 

value, given that noise only it present] 

« 1 -   n   [1 - P<E./8j] 
1-1 *   ° 

(C-l) 

If the m outputs are independent, the probability of an event S. 

is not affect«d by the presence or absence of signal at any frequency 

other then f. Thus 

P(2i/8e) ■ P(Ei/81*) (C-2) 
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The right-hsnd side of Bq. (C-2) 1« SMII to b« the conditional falsa 

th 
aiara probability for the threshold test at th« i  frequency, 

that is 

P(E./8 *) ■ a. ■ P Ithe   itb   output exceeds its 
thrashold, given that no signed 
ia present vith the frequency   f.] 

(C-3) 

THua, frcmlqs. (C-l), (C-2), art (C-3), 

■ 
a • i -   n    (1 - a.) (C-*) 

i-1 l 

If   a,    haa the same value for   i ■ 1,2,...,*, then 

(C-5) 1 - (1 - aj* 

False Dismissal 

The conditional false dianisa&l probability is giv»jn by 

B ■ P [all   n   outputs lie below tke fixed threshold 
value, given that the signal ia present at any 
one of the possible frequencies] 

» P(E /S. ♦ 8« ♦ ... + Sj (C-6) 0     12 B 

If all n outputs are independent and have the same mean and 

variance, th« probability of the event E  in the presence of 

signal is independent of the signal frequency. Thus 

P(E /8. + 8. ♦ ... ♦ 8.) - P(E /8.)   i ■ 1,2 ■ 

(C-7) 

0 
{] 

0 

s: 

.,;  .*» ■;.«*- 
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Tram «os. (C-6) and (C-7) and the definition of   Ifl , 

A - ptysj) i ■ 1,2,...,a 

Pdj», K2
#,  .... «.Vflj)      i - 1,2,...^ 

Sloe« the outputs are Independent, 

a 
S •   n PdZ/S.) 

(C-8) 

i - 1,2,...,«       (C-9) 

For   i ■ J, 

?(E,*/8.) ■   8. ■ Plthe   ,Jtl>   output Is helew It» threshold, 
3     a J        ct-res that a signal le present at the 

frequency   f. ] 

and for   i 4 i , 

P(V/81J * F(,j*/8j*) " x " *) (c"10) 

The first equality is Xq. (C-10) follovs fron the fact th»t the 

event   I,     is independent of the presence or absence of signal 

at any frequency other than   f, .   Since   8.   is assuaad to have 

the seas value far all   J • 1,2,...,»   and   «,   the seas value 

for all   I ■ !,*.,...,■ , H' (0*9) can he rewritten as 

I-   ijU-.j)' »>l (o-u) 
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APPKDIX D 

CORRELATK» COOTICIHH KLATIM Q^ AMD Qg 

Tbe correlation coefficient ia defined M 

0-17* 
V 

f • 
* 

f 

COT. t(W 
*■*,<«!>     Wl(Qj,) 

(»-1) 

vhers 

^«•Af  T,'l7,    ♦   Maa 
1*8* 

H   i.ii (D-2) 

and 

UH2 iC   -ifi v„   *   Mu (S-i) 

where   v.,   J ■ 1,2 ...   repreeenta a vector of eaglet of the 

output of tbe   i       pre-detectic« filter, an idealir?d rertaigular 

filter of bandwidth   B_   centered at tbe frequency   f. .   for 

convenience, p   will be calculate«! in teraa of tbe following 

functional forma: 

dt v^Ct) (D-M 

and T 
i 

da T/(B) (D-5) 
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Thus £4. (D-l) any be rewritten In the following equivalent foia: 

(0-6) p  A 8     T 1  * 

Ä« numerator In Eq. (D-6) Is 

coVj|(X1,X2) dt Y^U) 

/ 

dt v^tt) d. ▼ "(a) 

T      T 

d< 

0        0 

da<v/(t)^(.))   ~     «(^(tj)       d.<,2
2(.J) 

T       T 
t       t      r 

da dt 

0       C 

T        T 

0        0 

The covariroce    nr.(t) v«(a» 
\x        *   /1 

2 ^(t> v2(a^   ♦ S2 dt H dt H 

T       T 

dt     da Ax(t) T2(*)) 

i 'a 
(D-7) 

repreaentt tbt cross-correlation 

b«tvc«n tht outputs of tvo prt-dcttetlon filters, on« centered 

ht   f^   and the other at   f« .    If steady state conditions 
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c 
(I.e., B„T » 1}   are asauaed, the cross-correletioc function 

b 

relating the outputs,   x   and   y , of tvo linear filters having 

as inputs the sane raudae uoise proees-   e«s» be written as 

%K-" doR_(o) df H^IArf) H2(-,12«f) exp [j2»f< —o)] 

where {/[»(<>) is the a.c.f. of the nois* input, end K,(j2«f) 

and H.(j2*f) are the frequency response factions for the tvo 

filters. Here the noise is assumed white, hence 

I 
i. 

I 

(£„(•>» f«W (D-9) 

(D 
Thus 

KM 
2 df H^ frit)  H2(-J2«f) exp(j2iffT)    (D-10) 

In the problsa at hand, K.{J2-f) and Ejfrmt)   are rectangular 

frequency response« of width B_ centered at f. and f,, 

respectively. Thus the product of H-(j2irf) and !U(j2«f) 

indicated in Eq. (D-10) equals sero when R.(j2«f) and HV,(j2«f) 

do not overlap in frequency; and when there is overlap, the 

product is another rectangular frequency response of b«s£vidth 

h - I Va centerttd at the frequency   (f,+f )/2 .   Equation 

'.D-loj expresses the inverse Fourier transfer* of thia product, 

f See, for exasyle, MiddJeton (II, Section 3.^-2), 
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thus 

luv,'" ■ 

B8 - I ^-fgl I «lae J Bg- | f^fgl IT eo« t^ ♦ f2)t 

V 0 

if    !Vf2l<B8 

if    Ifrf2l iBg 

Thii cross-correlation fuaetion is 

ftVaw-\V*>V->>l 

(D-ll) 

(D-12) 

where 
T  • T-  B (D-13) 

The double integral in lEq. (D-7) nay no» be vrittrn as 

T  T 
t 

COY. [Xj,,^] • 2I0
2
(BS- l^-fgl

2 dt |d» ■inc2JB8- (f^lj(t-s) cos^ff^f^t-e) 

0  0 

•»,2fviv'2f 
T  T 

dt 

6   6 
ds sinc^l Bg- |?rf2| \{Ut, 

«2      L ■ H dx 

[Bg~ |frf8|}*    [Bg- if^jjT 

dx 8inez(x-y) 

Therefore 

cov^^.Xg) - »e
Z[BB- |frf2|]T    ,  IV^j.Bg     (Ü-1Ü) 
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c 
Vhe last, approximation leading to Kq. (D-lb) require» fchat 

[Bs - l^-fgl IT » 1.   Siailexly, 

var„U,) 

h 
dt v^(t) dt v^{t)> 

t /T \ 

da *•{*) 

k 
dt v^tt; 

\ 

da v1
2(i)\   -( 

\/f        \ 
dt   v^tt))/      ds v1

2(i)> 

0 0 / \C Al 

r 

T T 

i dt    j ds /v^l't) v^Cs^    -     dt/v^A      da/v^fs^ 
] i 
0 0 

fit rn 

• 1 

dt da 

6     1 ) 
2 ^(t) v^a^    ♦ l2 

T T 
f 

dt I da N 

T T 
t ( 

dt 

6 6 

\2 

da Ajttj ▼1(»)> 

2      2 

"   »o   V 

T T 

dt 

6 Ö 

T T 

dt 

i 6 

du sine2 B„ (t-s) cos2 2 Mt-s) 

ds Bine   Bs (t-s) 
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Therefore 

WB<V   "c2V (D-M) 

Alto 

^iV *o V (B-16) 

Whatt Eqt. (D-lU:, (5-15) «id (D-l6) «re «ubetitu^td into t«. (D-6), 

the i etult it 

B8 * |fl " f2> 
(D-17) 

Vhv.. the frequency retponsat of the two pre«datectior filters 

cverlbp by en »aount 

B. 
8„ - f, - f, 

S 
1 * f2l • t (3-18) 

then 

•"I (D-19) 
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LI8T OP PftXBCXFAL StmßUS 

A2 
-*■ « signal power 

a • a signal eaplltude 

B • width of processing tend 

Bg " width of signal speetna 

b ■ number of filter* in a bead-splitting detector 

D.d.d* ■ detection indices 

G ■ detector coefficient matrix -c 

f ■ »Ignal frequency 

f * signal center frequency c 

K ■ noise covariaace matrix 

k, k' «" threshold settings 

I 

*  * 
i 

L(b,k,p) * standardised bivarieto normal probs-Mlit» 
integral 

L(v/f) ■ likelihood ratio, given the sicnal frequeacy 

t(v)  ■ average likelihood ratio 

B ■ noise variance 
2 

B  ■ noise spectral level, volt /cpe 
o 
n ■ number of tiue staples 

n * noise vector 

F ■ signal covariaace matrix 

Q(f), Q'(f), q(f) * tea. quantities generated by band-splitting 
detectors 

R, R_ ■ pre-detection signal-to-noise ratios 

»\(T5 * an autocorrelation function 

r ■ frequency uncertainty ratio 
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v(t), jr 

♦(t), v 

V 

«. •« 

8. »i 

o 

0 

0.18$ 

signal to be detected 

observation tin» of the received signal 

recfcired ».'.«Lai 

Hilbert transfers* of v(i) and v 

cutoff frequency of the noise spectrta 

condition«! falte-alrra probabilities 

conditional fel»e-dis»isstl probabilities 

a coveriance 

corrtlation coefficient 

that fraction of the signal povar appearing in 
the past band of a pre-detection filter 

output of an envelope Attestor 

a aatriu of tern Aj, 

dot 4 ■ determinant of the aatrix 4 

tr 4 ■ trace of the aetrii 4" sum of tb* Uagcual 
eleMiits of 4 

a.e.f. • autoeprrelation function 

U ■ likelihood ratio 

p.d.f. ■ probability density function 
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This report deals with auboptinal inetrunentatione that epprexiaate the 

| perfornanca of the lik«llhood-rat<io detector ilsaeribed .In Bepcrt Ie. 17.   The 

objective is the detection of a weak target rin the presence of intarferenoa 

fro» a joaaibly very ouch strong*? target u well fa* ambient aoleo.   UM 

proposed instrumentation« eliminate invwfereace by steering to« array on too 

Intorfertmca and tfcm subtracting the optpnta ef various bydropheneo peirwiee. 

The signal component* of the resultant diff•ranees are then aligned by e 

second set of delay eleaente who je output« are added, squared end smoothed in 

conventional manner.   The ireevlt* of the report indie*?* in general that It 

is quite fsasibls to appretca the perforaaaee of the litteiihood-ratio deteotor 

of Report Ho. 1? with inet naamtatione of aederate ooaplaadty. 

The simplest instrumentation investigated aees adjacent hydrophones to 

null the intarference.   For arrays of reasonable else end   *rgeta eeparated 

from the intarferen~e by mere than % certain rnts^ja» engle, the degradation in 

output sigt*l-to-nolse rati* relative to the likelihood-ratio deteotor is 

quite seal?.    Specifically, for a IjQ-elenant linear array with 2-ft hydrophone 

spacing «nd a bandwidth of 2« K $000 rad/seo, it anooats ^s less then 1.$ 4b 

in equivalent input signal-to-ooise ratio nt long es the iat-sr£er*nce ie 

separated by at least 5° from the (broadside) target,   On the other «send, with 

the same parameter values the average bearing response pattern show* a 

significantly reduced paak for target» closer than about 20s5 from tot inter- 

ference.   To overcome this difficulty an analysis was carried out on a modified 

instrumentation that nulls intarference by subtiacting non-adjacent hydrophone 

outputs (after alignment with the interference).   By tils procedure it we« 

possible to obtain only small reductions in target peaks for target« AS close 

as 5° to the intarference. 

B-l 
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»»port lo. 17 dlseassod «to pftwM of an optlnal (llJ^liaood-catl©) 

dsteotor for to» passiv» dttostloa of « sour target la tte proaano» of 

aableut Bflis» sad lotorDarsnos from « »sound target.   Gas rsaalt «f tbls 

study «M the omolnslon that iat»r£»m»» angularly separated fro« tto 

target by nor» than eon« wUtda«! anount oaa b» »liBinated *t«pletely at tto 

«spaa*» of no »or» than an» by*ro?bose.   In ettoer word», It la goasihls to 

design a deteetor whose perform«®» la tte preaenoe of ixstarfermoe is no 

von» than that of a detecting awey osing oaa loos hydrophone sad opsratlag 

voder tte aaa» condition» of aattUnt aoiiw and target signal bit la tte 

ateSBBs of iaterferano».   Mo attoapt «as aads to dst»ndaa tte eoaplaalty 

of tte iastruaeatatloa twqnixwd to rsalia» tte optiaua dstoetor or to find 

siapl» saboptiaal sotenes that «dgLt approxiaat» tte perf waanc* of tte 

likelihood«?atio datootor,   Tte present report daala with two snob auboptinal 

•stones. 

Tte first prcpostd iitstruasatatlon 1« shown eobaaatloally in Fig. 1. 

A line«*» array ooe.sist.tBg of X equally »paoad hydrophob» is assaasd. 

Tte hydrophone outputs   s-tB-»....».^^  toe* delayed to align tte 

Interferon» eoaponent» sad are than eubtrseted pairwiae to »üadnat» th» 

interfere««.   Tb» resulting diffsranoss ft^Xg,...,*^ ar» delayed on«« 

aer» In such • aaanar *• to align tteir signal ooaponenta.   Tb» outputs of 

th» 'iecottd »at of delay» ar» eunaad, aqaared and filt»rad in th« conventional 

Banner. 

Suppoai  thai th« signal tearing is aooh that th» signal deity fron 

hfdropbon» to hydrophone la t .   Tten tb« aignal ooapcaanta ». of th» 

hydrophoa» outputs «r« related by th» equation 

i 

r \ 

k 

,, 
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ijt«)-•1[t»(l.l»J   ,   1-1,2,...,» ft)1 

I, 
I 
I 

auppe «a, further, that Una interfere!*;« tfsaay fraa hydrophone to 

rydroplions is 6.   Thau the delays \ required for interfere»» «llakuitlo» 

an given by 

T& - (i-l)A     ,   i-l,2,...i;« (a)2 

Zt fellows that the oot^-ute of tha subtracting circuit« «arum tfc* fera 

*,,(*) - «^[t + l(te.^ -sjt» (i-l)tte-*)|* n^jt-isl-i^ft- (I-I)AJ    , 

i-l,2,...,M-l       (3) 

Bar« IL (t) ia tha aafeLat   noise oam^cmnt of tha Ith hydrophone output.   Tbs 

parameter t - A i», ?f course, a asAaure of tha taifat bearing relative to 

tha interference bearing.   Thu? if tt* targnt, bearing ia 6L and tha icwrftranc - 

bearing fit. (both *6»sured counterclockwise fron tha broadside condition)* 

*o~* "f*lln »!-■*» ^) (u) 

«tore d is thu tpaoixg fro* hydrophene to hydrophone and o ia tha velocity of 

sound. 

The eets<3Qd set of delays (a. ) is adjusted so that/ 

6t"i(to-o)     ,   i-l,2>...,M-l (5) 

Then the output y(t) of the suamer ia gi*«n. hs 

nils iapllM a target located tc the right of the broadside condition 
if   t   > 0 . o 

Tfcls iapliss interference located to the right of the broadside 
condition if   A > 0 . 
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j **1 Li 

The aatpvt of the sonorer now aw .-ass the font 

>* 
i(t) - Owfkft)-^^*,-*^ 

M-lK-l      • 
1-1 
Efvi^v-^v^ 

£  E[ni,l^-ito>-al(t-lVA3[BM(t'^e'-n^t-VÄii      <*> 
l-l M 

As in previous reports, the perforance of tor systcn «111 bo 

characteriMd by the figure of lorlt   ^flfa^tf ' * *••••» ** **» rtiio «* 

the difference ef the average values of s   xitb and without target divided o 
by the standard deviation of %   {the latter computed in the absence of 

target under the usual smll-signal assumption). 

The dlfferenee for» of the signal tern reflects a loss of signal, duo to 
the interference elimination procedure.   Rote, however, that the noise torn 
«lso contain« combinations such «s   Og(t-tQ)-Oj,[t-t -(♦•-&)] , »o that the 
overall sacrifice in signal-to-noise ratio (and hence dctectabüitv) is net 
us great as night appear at first glance. 
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II.   Computation of the yigaffl» of Marlt 

The massrator of the figure of mtrit it «Mil? aomputmd.   The change 

la DC output is clearly independent of the noise, and if the SC gain of thi 

low-pees filter la unity (as «m be Mwwi without leas of generality), 

th* INN^ of i   la the asM aa the average of s.   It follow that 

&(DC output) - (HUI)' L2(t)| ♦ ik2[t-(t0^)].- 2sk(t; ^[t-^-A^J 

(«j 

where s| > denote» the expectation of the bracketed quality. If the signal 

is a stationary random process with average power 8 «ad normalised auto- 

correlation function p {*), then Sq. (8) becomes 

a(DC output) - 2(11-1 )2 S 1-P.<V^ 

The variance of s is obtained meet conveniently by integr*Ucg the 

(9) 

output power spectrum.   The bandwidth of the low-pus* filtir la undoubtedly 

very narrow compered with the bandwidth of s(t), eo that the spectra« af s 

can be wall approximated for the entire band pasrjed by the low-baas filter 

by ita value 0(0) at aero frequency,    Henoe it suffices to calculate 0(0), 

which for Gaussian signal and noiee ia readily derived from the spectrum 

0 («) of y.   The latter spectrum will therefore be derived first. 

From Iq. (6) the autocorrelation IL(T) of y is 

ay(f) - (H-l)2 8J2p(|(t)-pB(T*t0-ft)-pg["r.(t0-aj]i 
M-2 'j 

* '   E [2Pn^)-Pn(T+VA)"Pn^VA)]    * 2"p
B<T) 

i-1 

T-(to-fl) - (iuirsj2pB(T)-p0;T+to-A)-pi 

- NJ2(H-l)pn(T) -0U2)[pn(T*to-a)* PB<
T
-V

AJ
] (10) 

I 

i. 

[ 
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where Mp (T) ia the autocorrelation of the edw at MO)> SgtfrqptaM, and UM 

noise output« «t different hydrophone* ar« nswmsd tc it* unoarrolatod. 

Ondar the usual asull-eigwü. «ssuapUon |(hVl )6 **. ij   the signal torn ia 

Sq. (10) will be ignored Is further ocnpaUtloas. 

If the noise eoHpunent of each hydrophone output is a Gaussian random 

prooesa, than the entire nolos component of Iq» (6) is a Qeuaslan random 

process,   lor this easo Moo has derived a simple relation between the power 
2 

spectrua 0 (su) of y(t) and the power speetnai 0 (») of   s(t) • y {t) .   In 

tares sf the nomenclature used in this report the desire«! lero-frequepcy 

value of Q (») is 

0,(0) 

m 

2J 0y
2(o) 4» (ll)2 

The spectrua is here defined in suoh « aannsr that the integral over all 

positive freouenciea yields the total power. 

In order to ©airy the atsslysis further, it is neoessary to assuae a 

specific fom for the noisn autocorrelation function P_(T).   2B« would not 

expect this choice to be critical as long as it corresponds to a reasonable 

distribution of noise power over an appropriate frequency band,   k convenient 

idealized version of such a distribution is represented by 

^ 
sin «a t  o 

0 

(12) 

TThe effect of noise correlation fron hydrophone to hydrophone has teen 
studied in several earlier reports (see, e.g., Report Ho. 3) and is not of 
central interest to the present investigation, 

2 
S. 0. Rice, "The Mathematical Analysis of Randoa Noise," B.S.T.J., 

January 1915, Eq. U.5-5. 



which corresponds to the power spectres 

0B(»} ■ ( 
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»    >    «L 

B.8 

(13)1 

4 

1. 
« ■- 

i. 

A somewhat different mdae spectra« «ill be oonsldered later for comparison. 

Under the definitions used her«, spectra «ad oorrelstion fanatics» are 

related V the expression 

B(T) •"** dT (Ik) 

Applying Eqs. (lit) and (12) to Bq. (10) and Ignoring the tarn in S# on« 

obtains 

sin » T 
QJa) - i K(H-l) , f n I      G»AT 

o_ a-M dr 

-SI<K-2) i 
ain «L(i*t -a)     sin a> (x-t +A) 

0 O . 0 o 

» (T»t-A) 
0 9 

«0(T-t0+A) 

.JKT dr (15) 

Using £q,  (13) and the real translation theorem, on» can writ« down *-h« 

result of this integration iamedlatelyt 

0 («) -' 

2i |(M-1; - (M-2) cos a(t9-t)]      for    |»| « *>0 

(16J 
for    [col > e» 

Ttor« generally, this my he regarded as the effective noise spectrum 
after t-h*> customary prtwhitening operation with a band limitation to 
0 < W < CO     . 
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MOM fraiEq.  (11) 
m 

2  f    r V 
0,(0) - £j I    I(M-l) - (M~2 ) cos »(to-&) dm 

a, i(H.i)24(M-2)2-20w)ow) —^-£~ 4.iciwr s-s— 
vVA) 2«»0{to-A) 

(17) 

l.f the low-pass filter Is s finite tiae integrttor averaging i(t) ever 

the past T seconds, then fro» Retort Ho. 3, Bq.  (39)» th* varisr-.«« of *.{t) is 

D-(*e)»$0,(0) 

. &L M2 «R-l f ♦ l;fa.2 )2- 2(H-l )(M-2) 
»oT      I 

sin, » (t -A) 

. 9 sin 2co (t -A) 

2»0<V«> 
as; 

How from Bqs,  (9) »ad (16 )A 

A(DC output) n 

D (output) 

^'Ysr 1-7= 

l - 
sin » (t -A) o   o 

%(VA) 

•A 
2 sin 2a (t -A) ' o   o 

V i       
2'M-1I        'M-ll    »ft -A) 2(K-lJ       2«(t. 

' 0    0 0     0 
■A) 

(19) 

Assvadng the for»   P_(T) " (sin o> T)/W T   for the normalised signal o "  o 
autocorrelation function. 

4 
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-x/5T  S 
tttars I ahowe Eq. (19), noraelised with reepeet to   y^l"  f   ' i^***1 f* 

a function of *At -A) for M-liO.   «so ourtt is labelled «oollir« detector 
0    0 

sith preetoiteaing."1   Also ■bow is the eorreaponding curve for a UkaMbeot* 

ratio detector, takon fro« Report KG. 17, Tig. U.   For large values of 

«• (t-A), Eq. (19) reduce« to o   o 

A(LC gtgtj y fl^a/ST S 1 (20)2 

The radical in the (^nominator of Eq. (20) baa a «Lnlavni value of unity for 

H -2 and a Mudaw value of  y4 for   M—► « .   The expression for large M for 

the likelihood-ratio detector ie fro« Beport No. 17 [lq. (38)] i 

^SSJBBfeESSi v (mA/S^'g (21) 
D(outpui) TZ"    f 

Henoe the degradation of performance of the propoeed nulling detector 

relative to tiie likellhoodUreUo deteeter la equivalent to oSly 0.88 db of 

input aignai-to-cciee ratio for large ;- and for tergrt ajd i&terferenee wall 

aeparated in angle.   While the *nct aaount of degradation obviously dtpenda 

on the relative bearing of target and interference, Fig. 2 suggest« that thia 

dependence la net very strong for relative bearings above a rather anall 

■iiusna value.   Figure 3 clarifies this point fcy showing the degradation (in 

terns of equivalent input signal-to-nolae ratio) as a function of (t -Afc»   • 

The oscillatory behavior for large values of » (t -A) is the result of oo 
ttaa sonewhat artificial assumption of sharp cutoff it the signal band at 

O 

^Thie. 1«   also the e^uet expression for values of <B (t -A) equal to 
integral Multiple« rt n. 
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Tb« curt« show« no drastic deviation froa the asymptotic valu» for « (t -A} 

above th» order cf unity. With a »2* X $000 rad/aec , a hydrophone spacing 

of 2 feet and the target in broadside condition, u^(t -a)-l cor*"**ponds to 

an interference bearing of about 5 . 

If tbe hydrophone output« are not prevhitened, it night be reasonable 

to assume signal and noise spectra of the fom 

and 

08(u) - 
2»S 

2      2 «(»   +0)      ) 

cB(«) - 
2(oaM 

/ 2       2X 

(22) 

(23) 
*(ci> ♦ «a ) 

These correspond to the normalised autocorrelation functions 

-«» IT) 
P,(T) - PU(T) - e   * (2U) 

Following a computational procedure entirely equivalent to that covered 

by Fqe.  (lit)—(19), one arrives at the figure of merit 

V(DC output),^JV|X 

D(output) 

,   -»„Ml 
i ■• 

^j(M)2-^Hv^.]-"Mltt**tiMf[-Mv^l^ e-
2iVK 

(25) 

Equation (25) is shown plotted on Fig. 2 with thf. labol *| nulling dstector 

without prevhituning."    For the reason« discussod in Report Ko. 1? (page 23), 

the paraaster J>   is chosen as   u ■ u /« ,    The ourve exhibits a strikingly 
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nigh pMk nur   o»o jt -A| - 0.3 , « p**k wan «be?« the level reached Jgr tha 

corresponding our«« for the likelihood-ratio detoator.   This dee* not 

represent a oontredlotlon, because tq. '35) l^pli ea Sbet the reeoeaaed 

freauonoy roc« la infinit«, vhereas th« lifcslihood Ktlo detaator [and the 

lB*truMeUtio& of Iq. (19)1 mo llsd-tad rather arciirarlly to th* baad 

0 < » < »   .   Fro» * physical point of vim, UM peak li dw totlw fast 

that each noiaa conponeat («xeept n» and a.) entari twio» into 7, cose with 

positive «ign and OOM with negativ« «ign.    If tha dola/ jatweon theae two 

contributions i. «»all ootyarad «lth th. «omUltoB tie» of pn(T) , tfcara 

ie affective noise oanoallatloa.   Thar« la also signal cancellation, of 

course, but fur a null rang« of values of   w 't -&j tha noise caaoellatlon 

affaet doalnate*.   0M ahould keep in »Led, hovover, that both signal and 

noise levels are wry mall, ao that aran «will .mount« of circuit nolaa 

snUring after tha subtracting circuit« would drastically degrade perfonetnee. 

Qss ahould alee keap in sind that with aharp liidtation of tha proeasaad 

frequency range (probably required in prectie* by the dominance of aelf- 

noiaa at higher frequencies) tha figure sf assrlt cannot exceed that of tha 

likalihoedUratio detector.    It appaare unlikely, therefore, that tha aharp 

peak In th« unprewhitaned ourva can be exploited to practical advantage, 

III.   Tha Bearing Bsapona« Pattern 

The figure of nerit computed in the previous aaoticn Measures datiction 

capability with tha array steered on target.   The result» of that aaotion 

together with the reaulta of Report No. 17 indicate that tha poatulated 

inatruaantation can eliminate the effect of 6 single interfering aignal at 

a coat of one hydrophone and about 1 db of effective input aignal-to-nolae 
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ratio.  A second meaaui« of performance frequently uMd is practice ii the 

average bearing response pattern, the average value of s a* a function of 

staariog angle. If the pattern of the proposed instrumentation la similar 

to that of a simple H-eleaent linear array operatiug in the absenoe of 

interference, then it certainly appear* reasonable to aaaest that, tba nailing 

procedure handles the interference problem effectlvely. On the other band, 

if the average bearing response pattern of the proposed instrumentation show* 

a less pronounced peak at the target bearing, one should net conclude 

immediately that the target la therefore leas detectable. Equations (19) and 

(25) indicate, in fact, that for a given observation tine the output signal- 

to-noise ratio (and hence deteetability) «ill be almost aa great as that of 

the linear M-element array operating In the absence of interfsranm. However, 

what is necessary to lehieve detection is to compere the output for each 

2 
bearing with a threshold preset in accordance with the ambient noise power 

and the allowed false-alarm rate. Simple visual observation of the bearing 

response pattern nay not be the most useful detection procedure. The result« 

of Sections III and IV should be read with these considerations in «led. 

The array is steered on target by adjusting the delays 6_, fig'**'»6^ 

in Fig. 1 to the value& given by Eq, (§}. A general steering angle is 

obtained by chooaixg 

6^ » iC^-c)  ,  i-l,2,...,M-l       (26) 

Except for interference In very «las* angular proxisdty to the target. 

This iatplieo the assumption that the asMsnt noise powet i« known. 
However, the results of Report No. 16 suggest strongly that no seriouJ 
degradation in performance would result fron lack of a priori knowledge of 
the anbirjnt noise power as long as the number of hydrophones is reasonably 
large (M- !;C should be ample \    The ambient noise paver car. than in effect 
be measured to an adequate degree of accuracy during the observation period. 
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and p»jwltti£4 t- to vary.   TIM dela*-; f,,^,.../?     reaain adjueted M 

sposlfled b| Iq, (2) in order to nainttin interference eliadnttlon.   Daing 

to«. (3) «»1 (26), out obteina for the output y(t) of the wa 

y(t) - £ k^Mv^jj- *i[t*1<VV~(Vdil* Vi(t"lti)"ai(wVA) 

(27) 

The output i(t) of tbe cqutiror if 

•(t) - £ E^if^^VH^I" 1
i[

t*i<Vti)-(VA)]* Vx(t^lti)"ai(t"1VA'7x 

(2«) 
{• 

The imri|« bearing response pattern 1« the average value of Mq. (28) plotted 

•i ■ function of t,.   using *b* f*ct that »ach aolso oasponent is unoe**relat«d 

Hith the aignal and with all other noise oonponaut«, ona can «tall? compact* 

the «varage (expected) valae of Bq. (28 )t 

M-l X-l/ 
■A) 

;      i-1 J-l*- 
M-l 1U1|- 

l-i j-ii 

where tha bar indicates an averaging operation over all rands» paraaatsra of 

the functions involved. 

The first two noise tarnt yield non-aero contrlbutlona t® </e average 

only «hen i • j. The laat two tern« yield non-aero oontributiona only when 

J-i+1   and   J»i-1   respectively.   Hanoe 

1 
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»-1 H-l / A 

iUi- 3^] 2<2P§[(i-j)(i0-^^-p.^-axvH^^ip.[^V^V^r 
i-l j-lC ' > 

H-l &j H-l 

* "£ pn(0) - *£ P»(V&) " "£ pn(VA) (30) 

i-l i-l 

Sine« the indLoe? 1 and j in to« double mm appear only la the ooshlnation i-j, 

th« expression «an ba siTsplifUd by th« ohang« of wriabl« 

i-J-q (») 

Hotlng fortbsr teat   P (0) - 1   and that p (t.-&) la independant of i, ona 

obtains 

EJa(t i- s  £  k>B [qfvh] - p.^Vh.^(V&)]"pa[q(Vh *-(V&)] [ <**-*'> 
q--(lU2) ^      " i 

- 23    J]       (pf U^ j - pjq( V*l W VA \i 0"-W > 
r-(K-2)v JJ 

♦ 2» [<H-1)-CK-2 JpB(*,-*)] 

Using 

ona obtain» fron Sq.  (32) 

aln ui T 
P.(T) - p■ (T)  

(0 T 
0 

(32) 

(33 J1 

f     1          £?     ]■*»•» q(t-b,)    tin » fq(t-t.)-(t-a)l 
?f*(ti-2S    V     U     °     °  i j£L-a-J 8-J.loi.i.jql) 

L   J    o--(w)  WV       »ok-H^-M 

♦ a (K-l)-i'M-2) 
•in «^(t^*)! 

<3U/ 

Thia corresponds to flat signal and noise epaetra orar   0 < » < CJ   or, 
■era generally, to «ignal and twice spectra of i.tae am« for» with prew*dtenisig 
filters following «aoh hydrophobe ted a proceaeed frequency ?ange of   ü < <& < «   , 
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GsBveraloa to bearing angle« la asooapllahed through tba »kllsn» 

Ao.lsiafl^ (36) 

^ - - | tin 0 (37) 

CL «ad Oj an target and Interference bearinga relativ« to the broadside 

acndiUon, «1th the tfloveation OB dpa aa dieoueeod on p. 2 (i.a., ami« 

■aaeured ccnateraLockwiae freti broadaide).   0 la tba looting acgla, the 

lnaeyndeat variable of l<he awrag« bearing reeponta pattern, 

Figurea l*~? shoe ;,4ote of tb» average bearing reaponee pattare for the 

following pflTsswterai   H ■ «0, «>  ■ 2*X 5000 rad/aee , d • 2 ft , e • $000 ft/aee, 

flu - 06 ,   Fisuree 4, 5, and 6 give the patten for ixrterfrresee bearing« 

Oj - 3°, 5° tad 30° reepeotivelj «1th  | - -10 db.1   Flgu?©« 7» Ö, aad 9 
8 1 preaent the putfaeraa for ths earn« aet of v&lnee of 0- bat with  • • -20 db. 

for large ansolar aepar£tlona of target «id laterferenoe (30e or «ore), tba 

patten ii quite aladlar is «^ • of a eonventicoal power detettor except for 
2 

the »ill near tha interferenoe bat.ring.     It ahould be noted, however, that «he 

dip in tha patten near the intarfaracot. bearing hat a half-width of tiw 

order of 20° and that a redaction of the peak (on target) vti&a eocore whan 

tha target liaa withia ttda range.   ri<jurec 7 and 8, in particular, repreeent 

aituatlons in which the targat would be very difficult to detect fron 

Tor computational eunvanlenoa S waa ctaoatm a« unity in all eaaea. 

p««ieion oould preewably be made 11 ooHjwnaate for thla effect eo 
•«< to preaent an atxwtieUy flat patten in the abeenoa of a target. 
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I 
inspection of tbe tearing reepoo»* pattern«   The rural for this iUf fiaultj 

I 
arw quit« clear fro» Sq. (32).   To* vidth of the dip and the wagnitarts of the 

or.-target response ara proportional, reepeetively, to the deviation of 

P (t_-&) and p8(t,-A) fro» unity.   In other «erde, the allowable .«ngular 

prccdmity of target and interferenoe la not determined by the width of the 

array pattern a» a whole, but by the width of the pattern formed by 

adjacent hydrophonee.   Thie 1—lUataly «eggest« a remedy t   Instead of 

subtracting the delays output? of adjacent hydrophone«, one oan ebtein a 

null on the interferenoe bearing by peirwieo subtraction of more remote 

hydrophonas.   The resulting instrumentation is analyeed in the following 

section. 

IV.   Bearing Response Pattern of a Modified Icstrumantation 

Let the hydrophones (numbered in order fron 1 to M a« before) be divided 

into the following K groups j 

(1,1*1,21+1,...,M-T*l)8 (2,E*2,2E*2,...,K-K+2),... , (1,21,31,...,«) 

M 
For convenience we postulate that -a is an integer. Each hydrophone clearly 

appears in one end only one group. Each group consists of a linear array 

with spacing Kd between hydrophonas and interference nulling ie achieved for 

each group as in Figure 1. The signal components of all output« are then 

brought in phade by proper delays and added. Figure 10 shows the resultant 

instrumentation for K • 3 . 

In order to achieve interferenoe elimination, one ear,« the delays T. 

as in Sq. (2 )t 

Tt - (1-1 )A  ,  i-l,2,...,M {38) 
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This jields the K group« of iBtarferaaai-frM signal! 

*VJt*l»x2I*l',,''*K-I*l^ * ^^♦2^*2»,*,'V**2*',',*V*2I'x3r'*,'V 

The x^'e are given by 

A *  'if <kf «• • |IW* 

(39) 

The dal ays 6. «re adjoatad w follevat 

a., • (i-i*iK^ - &)   ,   l ■ 1,2,...^K (lo) 

Then .«J« output of the nniwr is 

y(t) - ^<«1[t*(i-i*i)(t0-t1)]"»jb»(i-i*i)(to-t1)-i(t0-a^ 

* Vi [u(i-i*i Hj] " "i [*-(*"*♦*Hi ♦ «*] f (Ui)1 

Hence the output of the aquarer is 

M-K M-K 

s(t)- £   ^k^a-l^JCV^jJ-aJt^i-l+KJCt^J-I^-A) 
i-1 J-ll 1 

* °i*I (Mi-WC*!] -nJt-d-WC)^ + KAJl  X 

^ jt+ (j-i*s Xt^)] - tj^ (j-i*i Xt^) - x(to^)] ♦ n^ [t-(M** HJ 

Tftth X -1 thia expreesira clearly reduces to Sq. (27). 
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UM iwrtg« bailing respoaaa f therefor« 

H-I a-t, i 
lU)j -s£ £ |2PJ(l-j)(to-t1^pf[ii.j)(to.t1>I(t0.&)]-p-^-3)(*0.t1)a(t0^* 

i-l >l <• ' 
K-K H-E 

i-l j-1 

(li?) 

Khar« tfca bar indleatas an £?«raglng operation otor all rand« paroMvors. 

HM tirat two ncioe Um yield noo-M.ro ooctributiana «hm i • J, tha third 

vbaa i+K - J   and tba fourth whan   1 • JtE .   Brno« 

H-K H-X,. 
i(.(t)}- sj j;I*.[(i-a)(t0-t1)]-s[(i.j)(Vtl>i(V^-pi^)(Vt1)-i(t0^| 

♦ » Ax-I ) - (K-2I) pfl jk^-A )1 

i-l J-ll 

Finally, using tha ohanga of variable 

ono obtains 

H-K-l 

!*(t)|- 23   2    kfrVVW^VH^VMfl^w} 
J        q-(M-K-l)l J "r } 

♦ 2lli(H-K)-(M-21) Pn[*(VA3f 

(kk) 

(US) 
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Equation (15) oü e*:-ly redact«« to Iq, (32} *fcen I• 1,     fh» on-teura/rt reopens* 

is v« proportional to th» deflation trm unity of   P..[l(t0-*)j *o ttet the 

interference can bo E time« oloaor in angle to the Urf«t before to» «ass 

degradation in performance occur« as la the original iastnasmtation.   it 

to» sane time tba width of th* soil near tba icierferenoe bearing Is * tiw« 

aa large in the «edified instrumentation,   Ob the deficit aide, CM should 

point oat that the sum in Sq. (15) baa only 2(31-1-1 >1 tenw «8 oppoaad tc 

the 2(M-2>1 terms of Bq. (32).   TM« is,, of sours«, simply a reflection of 

the fact that the ewer in the Modified instrumentation has only IMC input« 

aa eoapered to M-l in th« instrumentation of Tig, 1.   One oould presumably 

improve the situation by forming additional summsr input« through subtraction 

of the output« of other hydrophone pelrs with indieea separated by at least K, 

However, as long aa I is wall compered to K, the entire effect is not 

serious in any case and a nor» elaborate analysis would have little practical 

significance. 

Figures 11 and 12 give the average bearing response pattern of the 

modified instrumentation with 1-5 for the parameter values used in Figs, k 

and 7 respectively.   The target peak is now clearly visible and of a height 

trot greatly diffsrent fron that obtained in Figs. (t and 9 (remote interference). 

V.   Concluding Remarks 

The results of this report indicate taat detection of targets in the 

presence of interference can be achieved with instrumentations of only 

7or comparison, the average barring response pattern of a conventional 
power detector operating in the absenc« of interference is 

fij«(t)U s J]   pJq(Vti>|ö*-l<*l)+MK   • 
1     J      ti-(K-l)' 
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moderate conpltsxity without eerici» loss in performance relativ» to th» 

optima» (likelihood-ratio) technique.   Fro* a practical point of view, th» 

need for an additional aat 'f adjustable del«g- elements la tho aest serfoue 

objection to tfce proposed instrumentation.   Ttals practical difficulty eeuld 

be lessened considerably by the use of digital techniques.   It therefore 
- 

beooraas important to investigate thos effect of sampling and quantising on 

the performance of the dstector.   The most- convenient procedure would be 

to hard-clip the output of each hydrophone and perform all further processing 

on the resultant binary data.   The effect of such a technique ea detector 

performance is currently under Investigation. 

A further extension of son» interest would be the development of 

jrcsctess for flV.rt*T»stf.T.g two or more interfering signals.   No epeoiflo 

work in this direction has been undertaken to dais, but it «spears clear 

from Fig. 1 that the nulling procedure could be iterated by delaying the 
f  1 

signals <aO by amounts appropriate to achieve alignment of the second 

interference components, subtracting pairwiae occe motfe and then aligning 

the signal components with a third set of delay elements. 

i. 

I 
i 
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This report deals with ths pasuivs detection of * UMT target in thes 

presence of a gaussian noim background whose power la unknown or ncn- 

stationary,    A etaeisrd procedure la tola environment la to radnoa the 

data by sampling and then herd limiting.   When the receiving array conair.<ts 

of two hydrophones, this prowfctre leads to the polarity coincidence 

correlator (PCC), which baa been analysed in SOBS detail Is the literature. 

In v»4s r*porc a general clasa of polarity coincidence array deteotirs (PCA), 

which are logical extensiona o£ the two-cfcmnsi FCC, are discussed.   The 

following results are obtained! 

1) Ths optimal PCA detector represents an Implementation of the 

locally optima array detector based on hard-liadicd independent 

samples fro» gauasian inputs.   This implementation is essentially 

that employed in the DIM&S system. 

2) Some suboptimum devices which are only slightly less efficient, 

but which may be more easily implemented, are demonstrated. 

3) When the input data is a sequence of independent samples from 

a stationary gauasian process, the optimum PCA de teeter introduces 

a loss of 1.96 db in the input signal relative to the locally 

optimum detector based en undipped stationary gauasian inputs, 

For the least efficient detector considered, this loss is 3.30 db. 

Aa long as the input samples are independent, however, the PCA 
•a 

detectors are nonparametric and their efficiencies greatly improve 

when the stationary tad/or gaussian assumptions are violated. 

U) When the input samples are dependent, it is necessary to assume 

gauasian inputs in order to analyse tho PCA detectors; however; 

these devices are still unaffected by a nonstationary noise level. 

1-1 
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5)   The lose due to elipi lag la considerably reduoed M %\m aaaple 

dependence (i.e., «sapling trim) increases.   For «xiapl«, «hen 

the inpvt power spsotrua is detenained bjr a aingle-pele, lew- 

pc*« pre-filter and the detector la operated essentially 

continuously, the loss doe to slipping 19 reduced to 0.63 db 

for the optimum PCA detector and not »»eh MOM far the suboptiam 

devices, 

6}   The spectral shapes of the input« wat be known fairly accurately 

if it ia desirable to set the threshold with uoae degree of 

accuracy   and at the aasw tiae to sample fast enough to recover 

sou*) of Ulis los a due to clipping. 

i: 

1.1 
! 

|   I 

! 
i   ; 
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I.    Introduction 

In nodal-water sound detection (SOUS) DM typically deoiäM «bot!«? or 

not a random signal ia com*» to an array of receivers (hydrophone*) «hieb 

contain , «La« processes that are indspends.it bat statistically Identical [l, 
2i3>tU;5j.   As the noise power Is often »»stationary, the iaput date la 

sometimes reduced by sampling and. then hard Uniting [1,2,3,1*].   A detector 

which operates on the polarity coinoidenoe of two cfrarasls is called a 

polarity coincidence correlator (FCC) [l,6j.   This device has interesting 

nonparanetric properties when the inputs are a sequence of Independent 

samples.   The falae-alarm probability can be set for any sequence of samples 

whose amplitude densities have aero nsdlan [6J.   For certain nongaussian 

noise processes, particularly of the impulse type, the PCC can be sore 

efficient than the optimum two-channel detector based on stationary gaussian 

Inputs [6,71.   Furthermore, the PCC is exceedingly nimnla to laalement, 

In sonar practice, however, it ia desirable to consider an array of receivers 

that may be quite large.   Polarity coincidence technion&s can be extended to 

sss, but suggested Kreosfjurss ' 1' are **?=" inefficient for lam the array *aa* 

arrays. Efficient hard Uniting procedures bnf been utilised (i.e., the 

DMJS system [Uj), but they are not regarded as logical extensions of the 

PCC. 

In thia paper a general class of polarity coincidence array detectors 

(PCA), which are logical extensions of the two-channel PCC, are discussed. 

The implementations considered include the locally optimum   detector based 

on stationary gauaaian inputs [loj, as well as some auboptimum cievices that 

may be more easily Implemented and are still quite efficient. 

A locally optimum detector is one that ia eptimum in the Neyman-Pearaon 
sense [8] in the limit as the input signal-to-noljn> ratio in each channel 
approaches zero [9j. 
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II. Terainology 

Under lbs hypothesis H (noise with sere asdian «ad «ignil absent), 

apprcodaetelj half the channels will bar» the SUM sign. under the alter- 

native K {signal present), the nuaber of channels with the eaae el^n «a 

the signal will increase. Let ö(t) be the difference between the number 

of channels having the noot proralent sign at time t and half the nuaber 

of channels. Hence 

6(t) 

M 

IE 
3-1 

v° 
1   } «>o 

(i) 

The PGA detaetoiii where x.(t) are tho M inputs, arid   agn(£j »4 
3 [-1   i K < 0 

i>aaple the inputs and then perfora sons aeaoryless aonotonic operation on 

6.      6, ■ 6(t *iT)   where x IS tae saapling interval].    Thus the PC* test 

statistics are el' the for». 

■C8* 

i-1 
(2) 

where N is the 'total sample sise tad g( ) is son* «.  -  orary aonotonic 

function.   This test statistic is then oonpared with a threshrld c and the 

detector decldjs that tht> signal in present if   S       > c .    Jee Figure 1 
OCA 

for u schematic diagram of these detectors.    With little 3osa in 

generality the function g(  ) can be normalised ao that   g(6) ■ 6   whea 

6 • 0 or 1 .   With thia narialiaaticn ths PCA detectors reduce to the 

PCC detsctor when there are two inputs. 

For large N, S       is approximately normally riiatributed and henc* e 

can be set equal to 

«a^po.}*r1(i-)-\|»^| 5     V poaj (3) 

i; 

i: 

* 
i 



I 
I 
I 

1-5 

# 

 . 
*» 
*M 

*-N 
CM       (4 

> 5 t>» i   1«. 
CM 

> 3 
H 

i 
M 

a 

j? 

1 

* 

\* 

■ 

LL 

■p 

I 



1-6 

wncr« | is the oomliud gauaslan cumulative distribution function, a the 

false~alara probability, £„< I the expected value with respect to the 
i \ hypothecis, and Var^ >the varianc* under th<„ >ypoth9Bis.   Tbue 

a - ?rob(S      > c / H ) . pea        ' 
lbe ouput signal-to~noiae ratio of a detector D is defined as 

ao 

For »any practical applications the input signal-to-noise power ratio 

o_ /or      in each channel is snail (M o Vo_   « 1 /.   This is of course 
B        Q 0        D 

ehe justification for considering locally optimum detectors.   Hence wa 
2      2 Hill canpsre detectors by calculating the limit of SNR^ as   o_ /o_  -t 0 . 

Thus 

6 lim 

"s/on 0 
(5) 

Undsr the assumptions that the cumulative distribution function of the 

noise can ba expanded in a Taylor aeries near the origin and that the 

signal is anplitude limited with aero mean, it is shown in Appendix I that 
2 M 

2 ,2 lim 
2/   2 

°s /ffn - 
h{h} - h{%} 

(6) 

) 

fiN0„2   f5(0)i 
2 p 

4   »Bp«»>} " I "«{«(»»} 

I 

(7) 
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■>ir* f (0) la the value of th» acdss aiaplituds density at th» origin «ad 
f 
0  , M even 

i • < . The relationship between Eqt. (6) and (?) follows 
1/2 , M odd 

I fro« the feet that St > (r -|) with probability X  M| under the 

hypothesis! «here r- is th» nunber of ohannels having the aost prevalent 

sign. Hence aüffd^)} 1« given by V 4j J ] f(r-|) .  Thus for 

• Independent saxplea 

m, - aVT^Vco) \ p— 1   *"' A    . (8) 
o n h^w} - tf{«<8>}] 

We will now consider particular iispleaentattons of the PC*, all of which 

reduce to the FCC for   M>2 . 

Ill,   Polarity Coincidence Array Detectors 

i Consider the detector D   _ , which calculates the test statistic 

H 

"pea." " «-1.1 - E ai2' (9) 

i-1 

M2     2M Since   g(81) - b* ,   si^2} - £ , and   *JfiA ' 3 ^ - fg   [■«• Appendix mj, 

it follows that 

«H^pcij •■! i ^WJ-TS^-
1

* •     <10> 

wd fron Eq. (8), 
2      

am    x - V?iTo* f2(o) ^ VMOUIJ   . (n) poa._ 
n 
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Bat thta is axactly the output signal-to-noise ratio detendned for Um 

locally optima detector for independent clipped gauasian eeaplea [lOJ. 

Therefore D      . is the optima PGA detector end the others will be 

oonpexed to it.   Note that, «hen   M-2 , Eq. (11) holds for all the PCA 

detectors to be considered. 

Let us next analyse the auboptlaum PCA, D      „, which calcilatea the 

.'ollowing test statistic: 

w - T, fii • (12) 
i-i 

It is observed in Appendix II that SUM of the type      V   I'    -^ f(r-y) 

-V,_ Tmrt   2 

approach   2 \    -L, e   7*  ff^r yj dy    for large M (M > 10) .   The later 

integrals are easily evaluated.   Therefore Eq. (8) can be evaluated for 

large H using the fact that   g(6) - 6 , resulting in 

2 
TO

PC..2 ^ YiTVaV f2(o) \ -A-  ,     (13) 
n     T 

where the limit is rapidly approached, particularly for M odd. 

ThuB   Dpc«.2 " V.I   for   M"2 * md for lai*6 apra7B Dpca.2 
introduces a loss of 0.29 db in the input signal power over and above the 

loss inherent in hard limiting.   It follows that the squaring of 6, does 

not imprjve the detectabllity significantly.   Note, however, that 6, is 

defined as the absolute value of some quantity and squaring may not be 

more difficult to implement than the absolute value operation. 



I 
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I 
I 
3 

I 
J 

Finally m wish tc consider the suboptlnw PGA «sat iairoduoss an 

intermediate thr«*hsld.   thus 

Spca.3-E  tttV?)   • (Hi) 

i-1 

1   , «>0 
where   u(5) » < , and 6 la sons constant.   This interawdla«« 

I 0   , « < 0 

threshold reduces the test statistic to a am of O'a and l's and nay 

possibly be BOT« easily lnplwwnted.    In fact, D       , is probably the moat 

natural extension of the two-channel FCC detector.     S mm - is Unosdally pca.j 
distributed under the hypothesis with probability of success p   given by 

I 

I 
I 

-IM 
(15) 

where [x] is the snallest integer greater than x.   The false-alara 

probability a can be set exactly for any N if the threshold c is the 

snallest integer such that 

r-o 

Vfe wish to choose iiat 3 which naxialsea the output signal-to-noise 

ratio.   Since   Var„ S       J - N p (1-p ) , the output signal-to-noise ratio 

is seen fron Eqs„ (£),  (6) and (Ik) to be 

2 M 
SHB pea. 3 yr — —** ~B —.        —i       c «n 

VPo(l-Pc       *        r. 

(r-J)2- f (1?) 

a ■— M 
Paran and Hills consider' this inplementation where they set «-» -1 

Thus the output is 1 only 1? all the channels have the sign. 

i 



As   Vp (1 -p )   is a relatively slowly varying function, we pick 

r« f + M te "2« tb« smallest integer that satisfies 

,_.  M>2 

5 (r» . S)   - J   >   0     . 

It follows 'that 

"opt .3?   • 

Fron Appendix IX it ia seen that 

M 
po"7i 

and 

Y.      Jl  -^*fl-«U> 0.3171, 
•8Pfl 

A*» EJ?)h 
2 Ml       M *"**) -ä   «_1/2ä 0.1210 M 

Hence it follows that 

»-10 

(18) 

(19) 

(2C) 

(a) 

SNR M-4- 
pca.3 

>VN1Vä1on
2 f2(o) -S 

a.   1.360 
(22) 

Thus   D       . - D   . ,    for   M-2 , and for large arrays D _. , pea,3       pca.l poa,3 
introduces a loss of 1.3« 'ü> in the input signal power over and above the 

loss inherent in hard limiting.    Table 1 gives p . SNR. •J3s^Tta* 1' *ad 

the intermediate threshold   L ♦ i^   for different values of M.    Observe 

the random fluctuations caused by the discreteness of the intermediate 

threshold. 
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IV.    Optimum Detection of Undipped Gaussian Samples 

The array detector that approaches a mcnotonio function of the 

likelihood rttio In the Unit as the input algnal-to-no±se ratio epproaehe« 

Mroj whan the samplet have gausaian amplitude densities «1th unknown but 

stationary variance, calculates the following test statistic [llj s 

opt t 
i-1 

N     N 

L Z vt+iT,s«(t*iT) 
(23) 

The output signal-to-noise ratio of this locally optimum detector D. for 

iputa with aero mean is given 

^opt" V? "*! ^M(M"1)"1  • (2U) 

arbitrary stationary inputs with aero mean is given by 
2 

If we define \/D2   
M    ^V^ ' th8fi 

2 JL, 

It also follows that 

Jpc..l/opt ■ K   f <°> 

2   2 
Jpca.3/opt " Hi   f (0) Jpc».3/pca.l 

(25) 

(26) 

It is therefore observed that for gausaian touts OLf(O)  -i 

Jpca l/opt " n   *nd thus the process of hwd limiting introduces an 

inherent loss in input signal power of 1.96 db.    Note that these losnes 

are all based on the assumption of indeper ** .A samples. 

To fix the false-alarm probability, the test statistic S    . must be opt 
compared with a suitable estimate   ,1 the noise power [llj .    In practice, 
however, S    . as given in Eq. (i.j) is displayed as a function of possible 
target direction and the output is compel »d with the off-target output 
by inspection. 
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Let us now compare the PGA detectors with 0^ when the stationary 

gauasian assumption is violated, for lapni probability densities that aro 

peaked at the origin (impulse noise), the PGA detector* nay become «ere 

efficient relative to D opf For example, consider input »oiei processes 

that have the double exponential density 

*7 
v»'fr 

I n 

For theae inputs   J      ^   . • 2   and therefore D   . introduces a loss of 

3.01 db in the input signal power relative to D      ..   Thus the PCA 

detectors can improve greatly relative to D   , when the gauasian assumption 

la violated. 

The analysis of the PCA detectors depends only on the »sqpl* median, 

and hence the PCA is invariant with respect to *ty nanstationarity in the 

noise level <3j.    This is not true of the optima detector based on 

stationary gauailan inputs.   If the ncd.se level varies sinusoidally about 

some mean, thou   7ar„<S   . > increases by an amount which approaches 
2 \ ^      ' 

1 ♦ %     asymptotically, where k is the modulation index.   Thus SbTl. 

decreases by the square root of this amount, and the false-alarm rate 

increases from its assumed value if the threshold waa aet on the 

assumption of stationarity.   Hence   •LM/0Ofc   i* Increased by as much aa 

1.225 for 100 par cent modulation (or a 0.98 db gain in signal power for 

the PCA detectors).   The inoreaae in false-alarm rate is also significant 

for these large modulations. 

V.    Operation of PCA Detector with Dependent Samples 

The nonparamatric properties of the PCA array detectors follow from 

the assumption that independent samples are available.   For realisable 

narrowband signals there is no sampling rate for which the Independent 
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aaraple assumption is valid, although a reasonable approximation mtj be 

obtained with sufficiently »law «sapling. This procedure, however, oan be 

very inefficient given a finite decision tine, and it nay therefore be 

desirable to staple as fast as possible. The false-alarm rats of the PGA 

detectors can be fixed with dependent saaples (and therefore continuously) 

only if the shape of the noise speetiua end the Astribution of aero 

crossings are known [l2,13J. However, there are atill definite advantages, 

other than simplicity of implementation, in using these detector« instead 

of aoae optima* device. 

L«t us assume that the shape of the noise spectrum is essentially 

determined Hj pre-filters that are based on knowledge of the signal spestru». 

If any instantaneous nonstationarity lu th* noise level is slow enough 

relativ« to the ilnvurae of the bandwidth of the pre-filter, then the other 

spectral properties of the noise are essentially stationary. Hence the 

PCi datoctors, while no longer nonparaaetric in the strict sense, are still 

unaffected by k.x? iruffioiently slow nonstatiöäary noise level. For a 

sinusoidally varying noise level that is sufficiently slow but nevertheless 

fast relative to the invars« cf the decision time (not at all unreasonable), 

r k2i1/2 
J_ / . is still increased by the factor  1 + -*■ 

It will now be shown that, under the assumption that the zero crossings 

- same as those from a gaussien process, J  . . increases as the 

samples become more dependent. This improvement is a function of the 

dimpling rate end the spectral shape of the noise. It will be seen that 

for sufficiently fast sampling, or continuous operation, muoh of the cost 

of clipping ia recovered. 
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Whan tii« input samplea are dependent, the only change in the output 

signal-to-noisa ratio« of the detector« considered ia the result of en 

increase in the variance of the teat atatiatica.    For any teat atetistie 

of the foa     S-  V   h(x. ) , where   x. * x,(t + it), j-l,...,M , and h ia 

any aeaoryleaa operation, the variance for independent staples ie given 

by  Var<S> - N Va«h|x(t)H    ,     When the saiaples are dependent; it ia 

easily ahcwn (See Appandtx III) that 

VarJS) - N Var„<h M i*2^d-|)Ri*T) 
k-l 

,      (27) 

«here 

Igjh^t)]   h[x(fkT)]j   - Eg^h^t)]). 
R(kT)-—i _- -J i L     ,    (28) 

v«rH|h[;(tjj 

It follows that the output signal-to-noiae expressions of Eqs.  (6) or (8) 

hold for dependant aanplea if N is replaced by 

%fe S  T —* -Y-1-        '       W eq 

k-l 0 

where T is the decision time.   The function R(kx) depends on the defector 

considered and on tin» spectral shape   or noraalised correlation function 

P„(T)     ot the noise inputs. 

The following results are given in Appendix III.   For arbitrary 

stationary inputs, R   . ia given by 

Ropt(kT) ' P«2(kT)     * (30) 



When the Mro crossing* are those of a gaussian process, R^ - is giirco bjr 

42 

»jw-(!**kH)  • (>1) 

■U 3<^>Jt^ -J— fat*» J. .'*^.tiL 
rO*       rO'< * "0 -I (32) 

where 1-Py 

0(p,y)- I -ke   ' « 

and 

p-f^hH 
These functions are plotted versus p (f) in Figure 2, 

Since H Mm  < R . for p(k-r) / 0 , it follows that, for a given 
pea  opt 

r        T 
decision tins, the equivalent number of uncorrelated saapitts jN    I fcr 

the PCA detectors   is larger than that $*f D   ..     Therefor«, when the 

input samples are dependent, «Lc-/0 ♦ !•■ larger than when they are 

independent.   Observe fron Figure 2 that   R      ., > |-J p     find 

Roca i^14""*") *  | riSÖ     p2    '   ThuS Jt Can ** 4**terained frcB Eo.«  (29) 
that even in ihe limit as T—HO , «L../,, * * 1 •    This is as it should be, 

since we are assuming essentially gauasian inputs.   Nevertheless, mich of 

the loss due to clipping should be recovered Ir. the limit *s   T—>o . 

I. 

;' 

Rpc»-lv*v/ " l«~"   iv*vj]      * ***' 

i 
In the liidt as M approaches infinity, R   . is given by ^ | 

15 •'   ? 
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If we define I as the ratio of JL«/^ *itt» dependent samples to 

that with independent saqples, then f?om Eqa.  (fl) and (29) «mo obtaias 

1+2E(1"i)p»2(kT) 

i2—¥ . 03) L 
1*2Z>-i>WkT) 

k-l 

Under the assumption that tfce decision tins la auch larger than tho «id»* 

of P_(t), this expression can fa* accurately approximated by 
IB 

l + 2^Pn
2(kf) 

I2- *?      . (3iO 
i+2Eiw«(kT) 

pea' 
k-l 

This improvement In the PGA tattctosrs relative to 3   . depends of course 

on the spectral shape. 

In underwater t'oiasd detection one is normally looking for acoustic 

signals, and hence the pre-flltera svo often low-pass filters.   Let us 

consider the single pole low-pass filter that falls off At a rate of 6 db/ 

octave     Pn(kr) - e | , and the ideal low-pass filter 
Sin » kT( a 

p (kr) ■ -r-LT        t where *- is the cut-off frequency or the bandwidth. 
c   ' 

Given a particular sampling rate f , I can be evaluated for either case. 

The improvecAnt of D  » relative to D . versus the sampling rate is 

given in Figure 3> *nd the imjrovenent of D  ,(M-H») relative to 
pca.j 

D  , is given in Figure k. 

Observe first that for a suf.fieier.tly fast sampling rate, or continuous 

operation, auch of the loss due to clipping (as well as the loss due to an 
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(I 
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intermediate threshold) is reoo>t>red,, Thus for essentially gaussian inputs 

•ad continuous operation, D  , introduces • IOM in the signal power 

•a low as 0.63 db for the «ingle pole pre-filter. The loss depend! 

somewhat on the filter shape. In addition, ton* of the remaining lose 

can be recovered If the naLee level la non-stationary. 

It should be pointed oat, however, that when »sizg D . there is 

little point in sampling faster than 2fQ for the ideal filter (Nyqoiat 

rate) or 6f for the single pole filter. For these s—pllng rate« the c 

loss due to clipping is alnoat that amount calculated for independent 

samples. Thus one would have to sample at a rate faster than typical to 

recover sens of the loss dm» to clipping. 

One way of looking at this phenomenon is that the process of clipping 

spreads the spectre« of the Input processes. In order to receive all the 

available infomation, one has to sample faster than the Nyquist rate of 

the undipped inputs. Thus the 2-db loss due to clipping is due in part 

to this spreading of the speetrua and only in part to an actual loss in 

infomation. Practically speaking, the loss due to the change in 

bandwidth is recovered only when the devices are operated essentially 

continuously. Figure 5 is a plot of the equivalent naher of unccrrelated 

sample? for a fixed decision tine versus the sampling rate for D  .. 
pea. J. 

The results Indicate that, when operated continuously, it is necessary 

to know the spectral shape accurately in order to set the threshold 

properly. If the spectral shape is net known and it is desirable to set 

the threshold with r TBS degree of accuracy, then one cannot sample 

significantly faster than 2f . 
c 
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VI. Conoluglona 

Polarity coinddeaee array dttsst-ors have bMD analysed and etapared 

with the optimum parametric detic» tased on ataiicnary gaussian Input«. 

While devices bated on clipped data are inherently 1MS efficient than the 

optimum detector, their nonparametrlc properties can maka them ion 

efficient when the stationary gaussian assumption is violated. In addition, 

whan the PGA detectors are operated «»■ a parametric device with dependant 

samples, the loss due to clipping can be greatly reduced with sufficiently 

faat sampling, Bven under these oondiiiooa, the PGA detectors »re 

unaffected by certain types of noastationaritlM in the noise level. The 

advantages for either mode of operation coupled with the obvious ease ef 

implementation could make the PC* array detectors useful devices for 

undervatar sound detection. There are, however, sons additional problcns 

that have not been considered in this report faat have bearing on the 

usefulness of hard Halting. 

It i? Important to analyse the performance of the PCA detectors when 

tue input eignal-to-noiea ratio is large. The loss due to clipping might 

be radically different in this environment. It is conceivable that 

allowing freedom to set the intermediate threshold of the suboptimum 

device D „. , can be used to advantage in these circumstances. Another 
poa.j ^ 

problem is the effect that herd limiting has on the bearing response 

pattern. If this array pattern is altered, the ability to detect a target 

In the presence of »wrong interfacing targets would be greatly affected. 

This of course bringe up av.il! another problem, navwly how one optimally 

uses the clipped iata in the protease of one or more interference targets. 
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appendix I.    Output Slgnal-to-Mola« Ratio 

Thu PC* teat statistic« have the for» 

Spca " t  8(5i3     ' 
i-i 

where 

6i- | V  agn *j(t ♦ IT) 

I 
>1 

When r chamela have the «oat prevalent aign, 6. - r-v .    If p(r) ia the 

probability that r chamala have the a an aign, then 

M 

HD 
«here [x] *a  the smallest integer greater than or equal to x. Under the 

hypothesis, the m inputs are independent and have aero sadian, and hence 

IMVI\H 

PH(r) - 2|;)j|] . Thua 

Undar the alternative, there ia an additive algnal eoanon to the 

H Channels, hence 

/ |l.F(-u)]r[p(-u)]   'r*[F(-U)]r[l-f(-u)]*   I f,(u) du 
J        \ } 

where F( ) is the cumulative distrirution function of the noise and f ( ) 

ia the amplitude density of the signal. It «ill now be tatiuuM that F( ) 

can be expanded in a Taylor sariea about the origin over a finite range, thus 

i 
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r(-u) - r(o)-ttf(o)* Jjf«(o)-^r(o) ♦ op]  . 

Substituting this «rpresalon Into the previous equation «ad axpandjnt leads 

to th« result, «bare   F(0>| , 

Pl(r) " (r) 4 s1*2 P'-*1^41 f2(0) / «^V**** 0   U\<*>* f     » 

when convergence 1« aasuned.   If the signal is aspütude lis&tedj thaa fox 
2      2 see» sufficiently null input signal-to-noise ratio   (o   /a   i oonrergonce 

is guaranteed and 

P^r) - Pg(r)* 2onV(0) -^ £ j j) [(2rJt)2-MJ ♦ 0 -Sj 
n L ** 

This res\ It lollops fron the fact that 

^s n   0   n 
f°(0)  /    unf8(u)du   <   AoKao^-jftOoJ    [j] 

18 
and hence   — < 4f   is a sufficient condition.   Therefor« 

2   M 

7» 
—to 

2 X 

(r-f) "IT I(r-j)  . 

Recognising that Pu(?) * -o [_ » OJ» can rewrite the last equation in 

the following for«. 
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Ttd* result can be used to calculate the Halting for» of the output 

signal-to-noise ratio fro» Iq. (5) in tho tozt. 

Appendix II.   Malting Results for Certain So— 

W* are concerned with eralaating, for large Taiuea of K« etas of th« 

typ. M 

r«L 

where P»(r) " ~G r • T** ten PoOr) corresponds to the blncaial 

distribution with probability of "success" equal to 0.5 aad is therefore 

closely approximated by the normal distribution with »an *r and variance r. 

Thus the SUBS ean be approxiaated by [lM i 

Changing variable* \& setting (r-jpMT? ■ y $ ®**  obUina 

• 

/ 

i f i - V Js/iT 

2L-Mkl 

i 

!  i 

I.  i 
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In Eq. (1$) ths Urn p   mi dtflnsd M 

P«-2 

■MT 
It folio«» that for large K, 

f    V 

«ban 1' is «quäl to I 2 

-1 < « < 1 . In ths llJdt M M-» • , 

(2 ?*T \-*-Ä/fü i**0» »<*»** U*"7=i) t *»** 

P0"—^
2[1"^(13 "°'317U * 

In Sq. (17) v* w» concsrrad with tha **» 

It fellows that for larga N 

P' 

M 

«2?  — ^•"^ (72-l)d3r . 
V2V 

! 

i 
I 
! 

I 
I 

Integrating by parts, it !• easily shown that 

pi*J,(li), 2 

\8n 

Hanee 

p'-^-T -=£•"*• 0.1210 M  . V8? 
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Appendix III.   Teat Statiatio Variance for Dependent Smplea 

Conaider «n arbitrary teat etatietio of the for» 

1 

3-  JT   h^(t*iT)j     , 
i-1 

where h( ) nay be any nemoryless Operation on the vector x(t + i-r) whoee 

eleaenta are eaaplea (with uniform aawpUng interval T ) of epeoifio 

Independent representations of the SUM stochastic process jx{t)l .   the 

variance of 3 ia given by 

Var(3) - E|S2} - E2jsj 

f I     M 

■* i£ Ti h[*(t+iT3 h[*(tfjT)]" E h[£(t ] 

z 
i-1 

N     K 

- N Var 

p[x<t*iT)]l-B2jh[x(tj| 

|fcfe(t+iT)j  b[x\'t+jT)j| - E2jh[x{t)jj 

(bJl(t)]U £   £  BJhfl(ViT)|h[5{ttj^   - E2|b[xCt)]| 
Mi 

where the second term is »ere if the samples are indejjendent, aesuüting 

|x(t)| ia stationary, and since there are 2(N~k; teraa where   jJ-4J«Jc , one 

obtains 

Var(S) - N 7ar i 6(1)1 
■ L -J 

1+2 S (l"S) R(kr) 
k»l 



! 

i 
i 

s 

I 
I 
I 

l 
I 
! 

I 
1 
1 
i 
I 
I 
! 

i 
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where 

s£i[x(t jj h[x(t*xT jl  - I2|h[x"{t)]| 

I f«fc|3c(tj| 

The function R(k •:) depwada not only r,a the function h( ), but e2*c OB 

the nomtliced correlation function of jx(t)f denoted by p(?). 

Let us now coaaidar the test at«tistid 3   . defined by Eq. (33). 

For t'iia detoctor   h [x(*ä  -   fi fi\(t)«j(t)   »*»«•   «j(**iT)» 

j-l,...,M, are the M components of tha vector I(t*iT) and ubere It is 

assussd that   K<js: (t)| - 0   for an 4.    It follows that 
*•        ' MM 

and 

|h[i(t;^ Ep[x(t)]|- E EEE E{*i(t) XJ(t) Xr(t) X.(t)| 

■2 E EBk2(t) x/(t)i" 2(M2
"

M)
 

V
"

2(x(t)) » 

and 

sjh[x(t)jt[x(Ukrj|« £ EEE* *i(t) X^(t) Xr(UkT) »■'tfkT)f 

" 2 E EK xi(t) xi(t+kT) xj(t) xj(**kT'f 

- 2(M2-M)Var2[x(t)] p2(kr)     . 



1-30 

Hone« by tb» definition ef R{»CT), it is a«« that 

V(kT) •p2(kT)  • 
M«rt 1st us ccMidsr Uw dtt«ctor D      1 in tftdch   h,r{t)J  - 62[x(t)J 

«her«    6 [x(t)]- 

poa. 

Far this t«at statistic jV.gD[xl{t)] 
i-1 

-SE-'f-V'jH • 
«Pd 
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