## UNCLASSIFIED

## AD NUMBER

### AD472860

## LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; JUL 1963. Other requests shall be referred to Army Electronics Research and Development Laboratory, Fort Monmouth, NJ. Document partially illegible.

AUTHORITY

usaec ltr, 15 oct 1868

THIS PAGE IS UNCLASSIFIED

## SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked. Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

## BEST AVAILABLE COPY

÷,

July 1963



#### Research Memorandum 3

#### FIELD TESTS ON MAN-PACK RADIOS 1N A TROPICAL ENVIRONMENT

by

W. R. Vincent

Contract DA-36-039-AMC-00040(E) Order No. 5384-PM-63-91(6109) PR&C No. 63-ELNR-6109 Sponsored by ARPA Order No. 371

SRI Project 4240

Prepared for

United States Army Electronics Research and Development Laboratory Fort Monmouth, New Jersey

> STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA



Ind 2.

2 8 OCT 1955

AMSEL-NL-R-4

SUBJECT: Request for Scientific and Technical Reports

TO:

Administrator Defense Documentation Center ATTN: DDC-OSR-2 Cameron Station, Bldg 5 Alexandria, Virginia 22314

1. Reference is made to your letter, dated 6 October 1965, requesting twenty (20) copies of Stanford Research Institute Research Memorandum 3 under Contract Nr. DA-36-039 ANC-00040(E).

2. Inclosed is one (1) copy Research Memorandum 3, "Field Tests on Man-Pack Radios In A Tropical Environment" dated July 1963 by Stanford Research Institute, Menlo Park, California.

3. The availability/limitation notice should read, "Qualified requestors may obtain copies of this report from DDC. DDC release to CFSTI not authorized."

4. This report had a limited distribution and was not made available to DDC at that time.

5. Your Agency has been included in our distribution list for all future technical reports on Contract DA 36-039 AMC-00040(E).

FOR THE COMMANDER:

2 Incls.

- 1. Form 1tr dtd 6 Oct 65 re: Req for Scientific & Tech. Reports
- 2. Cy Res Memo 3, atd July 1963, Fld Tests on Man-Pack Radios In A Tropical Environment by SRI



FIELD TESTS ON MAN-PACK RADIOS IN A TROPICAL ENVIRONMENT.

16, SRI4240, ARPA Order 371

SRI Project 4240

Prepared for:

United States Army Electronics Research and Development Laboratory Fort Monmouth, New Jersey

Contract DA 36 039 AMC 100040 (E) Order No. 5384 - PM-63-91 (6109) PR&C No. 63-ELNR-6109 Sponsored by ARPA Order No. 371

(1) Jul 63,

Prepared by:

(10)W. R. Vincent, Manage

Communication Laboratory

ec,

#### CONTENTS

| LIST | OF ILLUSTRATIONS                              | iii |
|------|-----------------------------------------------|-----|
| LIST | OF TABLES                                     | v   |
|      |                                               |     |
| •    |                                               | I   |
| I    |                                               | I   |
| II   | DESCRIPTION OF TEST AREAS                     | 3   |
|      | A. Tropical Forest Area                       | 3   |
|      | B. Flat Delta Ares                            | 6   |
|      | C. Mountain Area                              | 6   |
| 111  | TEST CONDITIONS                               | 8   |
| IV   | TEST RESULTS                                  | 13  |
| -    | A. General                                    | 13  |
|      | B. Results from Tropical Forest Test 1        | 14  |
|      | C. Results from Tropical Forest Test 2        | 26  |
|      | D. Results from Delts Ares Test               | 38  |
|      | E. Results from Mountain Ares Test            | 58  |
|      | F. Results from CW Test                       | 78  |
|      | G. VHF Test Results                           | 85  |
|      | H. Interference Test Results                  | d 6 |
| v    | DISCUSSION OF TEST RESULTS                    | 87  |
| • ,  | A. Special Comments on the AN/TRC-88          | 87  |
|      | B. Comparison of Sets                         | 87  |
|      | C. Comparison of Antennss                     | 89  |
|      | D. Variation of Results with Time of Day      |     |
|      | ss Shown by Histograms                        | 92  |
|      | E. Comparison of Results for Various Terrains | 92  |
|      | F. Compariaon of Results for Various Ranges   | 93  |
|      | G. CW Tests                                   | 93  |
|      | H. Limitations of Tests                       | 94  |
| VI   | CONCLUSIONS                                   | 95  |
|      | A. HF Radio Sets                              | 95  |
|      | B. VHF Sets                                   | 96  |

ii

#### **ILLUSTRATIONS**

| Fig. | 1  | Map Showing Test Areaa                                                                         | 2          |
|------|----|------------------------------------------------------------------------------------------------|------------|
| Fig. | 2  | Map Showing Location of Tropical Forest Area Sites                                             | 4          |
| Fig. | 3  | Map Showing Location of Delta Region Sites                                                     | 5          |
| Fig. | 4  | Map Showing Location of Mountain Area Sites                                                    | 7          |
| Fig. | 5  | Histogram Showing Communication Success vs. Time of Day—5-Mile<br>Forest Test 1                | 17         |
| Fig. | 6  | Histogram Showing Communication Succeas vs. Time of Day—10-Mile<br>Forest Test 1               | 21         |
| Fig. | 7  | Histogram Showing Communication Success vs. Time of Day—22-Mile<br>Forest Test 1               | 25         |
| Fig. | 8  | Histogram Showing Communication Succeas vs. Time of Day—5-Mile<br>Foreat Test 2                | 29         |
| 5.   | 9  | Histogram Showing Communication Success vs. Time of Day—10-Mile<br>Forest Test 2               | <b>3</b> 3 |
| Fig. | 10 | Histogram Showing Communication Success vs. Time of Day—22-Mile<br>Foreat Test 2               | 37         |
| Fig. | 11 | Histogram Showing Communication Success vs. Time of Nay—5-Mile<br>Delta Test                   | 41         |
| Fig. | 12 | Histogram Showing Communication Succesa vs. Time of Day—10-Mile<br>Delta Teat                  | 45         |
| Fig. | 13 | Histogram Showing Communication Succesa vs. Time of Day—15-Mile<br>Delta Test                  | 49         |
| Fig. | 14 | Histogram Showing Communication Success vs. Time of Day—20-Mile<br>Delta Test                  | 53         |
| Fig. | 15 | Histogram Showing Communication Success vs. Time of Day—25-Mile<br>Delta Teat                  | 57         |
| Fig. | 16 | Hiatogram Showing Communication Succesa vs. Time of Day—5-Mile<br>Mountain Teat                | 61         |
| Fig. | 17 | Hiatogram Showing Communication Succeaa vs. Time of Day—12-Mile<br>Mountain Test               | 65         |
| Fig. | 18 | Histogram Showing Communication Succesa vs. Time of Day—25-Mile<br>Mountsin Test               | 69         |
| Fig. | 19 | Histogram Showing Communication Succesa <i>vs</i> . Time of Day—50-Mile<br>Varied-Terrain Teat | 73         |
| Fig. | 20 | Hiatogram Showing Communication Succeas vs. Time of Day—100-Mile<br>Varied-Terrain Test        | 77         |
| Fig. | 21 | Comparison in Performance of Man-Pack Madio Sets                                               | 88         |
| Fig. | 22 | Comparison in Performance of Seta in Forest Test 1 and Forest Test 2                           | 89         |

iii

#### ILLUSTRATIONS

| Fig. | 23 | Comparison of Performance of Sets Using Dipole and Slant-Wire<br>Antennas—Forest Tests 1 and 2 | 90 |
|------|----|------------------------------------------------------------------------------------------------|----|
| Fig. |    | Comparison of Performance of Sets Using Dipole, Slant-Wire, and<br>Whip Antennas—All Tests     | 91 |

TABLES

| Table 1  | General Characteristics of Man-Pack Badio Sets        | 9  |
|----------|-------------------------------------------------------|----|
| Tahle 2  | Score Sheet of 5-Mile Forest Test 1-Site 0 Noceiving  | 14 |
| Tahle 3  | Score Sheet of 5-Mile Forest Test 1-Site 1 Receiving  | 15 |
| Tahle 4  | Summary of 5-Mile Forest Test 1                       | 16 |
| Tahle 5  | Score Sheet of 10-Mile Forest Test 1-Site 0 Receiving | 18 |
| Tahle 6  | Score Sheet of 10-Mile Forest Test 1—Site 2 Receiving | 19 |
| Table 7  | Summary of 10-Mile Forest Test 1                      | 20 |
| Table 8  | Score Sheet of 22-Mile Forest Test 1—Site 0 Receiving | 22 |
| Table 9  | Score Sheet of 22-Mile Forest Test 1—Site 3 Receiving | 23 |
| Table 10 | Summary of 22-Mile Forest Test 1                      | 24 |
| Table 11 | Score Sheet of 5-Mile Forest Test 2—Site 0 Receiving  | 26 |
| Table 12 | Score Sheet of 5-Mile Forest Test 2—Site 1 Receiving  | 27 |
| Table 13 | Summary of 5-Mile Forest Test 2                       | 28 |
| Table 14 | Score Sheet of 10-Mile Forest Test 2—Site 0 Receiving | 30 |
| Table 15 | Score Sheet of 10-Mile Forest Test 2—Site 2 Receiving | 31 |
| Table 16 | Summary of 10-Mile Forest Test 2                      | 32 |
| Table 17 | Score Sheet of 22-Mile Forest Test 2—Site 0 Receiving | 34 |
| Table 18 | Score Sheet of 22-Mile Forest Test 2—Site 3 Neceiving | 35 |
| Table 19 | Summary of 22-Mile Forest Test 2                      | 36 |
| Table 20 | Score Sheet of 5-Mile Delta TestSite 0 Peceiving      | 38 |
| Table 21 | Score Sheet of 5-Mile Delta TestSite 1 Receiving      | 39 |
| Table 22 | Summary of 5-Mile Delta Test                          | 40 |
| Table 23 | Score Sheet of 10-Mile Delts Test-Site 0 Neceiving    | 42 |
| Table 24 | Score Sheet of 10-Mile Delta Test-Site 2 Receiving    | 43 |
| Table 25 | Summary of 10-Mile Deita Test                         | 44 |
| Table 26 | Score Sheet of 15-Mile Delta Test—Site O Receiving    | 46 |
| îahle 27 | Score Sheet of 15-Mile Delta Test—Site 3 Neceiving    | 47 |
| Table 28 | Summary of 15-Mile Delta Test                         | 48 |
| Table 29 | Score Sheet of 20-Mile Delta Test-Site 0 Receiving    | 50 |
| Table 30 | Score Sheet of 20-Mile Delta Test-Site 4 Receiving    | 51 |
| Tahle 31 | Summary of 20-Mile Delta Test                         | 52 |
| Table 32 | Score Sheet of 25-Mile Delta Test-Site O Receiving    | 54 |
|          |                                                       |    |

v

TABLES

| Table 33 | Score Sheet of 25-Mile Delta Test-Site 5 Receiving           | 55         |
|----------|--------------------------------------------------------------|------------|
| Table 34 | Summary of 25-Mile Delta Test                                | 56         |
| Table 35 | Score Sheet of 5-Nile Mountain Test-Site 0 Receiving         | 58         |
| Table 36 | Score Sheet of 5-Mile Nountain Test-Site 1 Receiving         | 59         |
| Table 37 | Summary of 5-Mile Mountain Test                              | 60         |
| Table 38 | Score Sheet of 12-Mile Mountain TestSite 0 Receiving         | 62         |
| Table 39 | Score Sheet of 12-Mile Mountain TestSite 2 Receiving         | 63         |
| Table 40 | Summary of 12-Mile Mountain Teat                             | 64         |
| Table 41 | Score Sheet of 25-Mile Mountain TestSite 0 Receiving         | <b>6</b> 6 |
| Table 42 | Score Sheet of 25-Mile Mountain TestSite 3 Receiving         | 67         |
| Table 43 | Summary of 25-Mile Mountain Test                             | 68         |
| Table 44 | Score Sheet of 50-Mile Varied-Terrain Teat—Site 0 Receiving  | 70         |
| Table 45 | Score Sheet of 50-Mile Varied-Terrain Test-Site 4 Receiving  | 71         |
| Table 46 | Summary of 50-Mile Varied-Terrain Test                       | 72         |
| Table 47 | Score Sheet of 100-Mile Varied-Terrain Test-Site 0 Receiving | 74         |
| Table 48 | Score Sheet of 100-Mile Varied-Terrain Test—Site 5 Receiving | 75         |
| Table 49 | Summary of 100-Mile Varied-Terrain Test                      | 76         |
| Table 50 | CW Test-Score Sheet of 10-Mile Delta Test                    | 78         |
| Table 51 | CW Test-Score Sheet of 15-Mile Delta Test                    | 79         |
| Table 52 | CW Test-Score Sheet of 5-Mile Mountain Test                  | 80         |
| Table 53 | CW Test-Score Sheet of 12-Mile Mountain Test                 | 81         |
| Table 54 | CW Test-Score Sheet of 25-Mile Mountain Test                 | 82         |
| Table 55 | CW Test-Score Sheet of 50-Mile Varied-Terrain Test           | 83         |
| Table 56 | CW Test—Score Sheet of 100-Mile Varied-Terrain Test          | 84         |
| Table 57 | Summary of CW Test                                           | 85         |

vi

Maryanian

Participant -

#### **I** INTRODUCTION

The light decires He results of Under the direction of the Advanced Research Projects Agency and the United States Army Electronic Research and Development Laboratory, Stanford Research Institute conducted a field test program to compare the performance of selected man-pack radio sets under various tropical terrain, vegetation, and weather conditions. Research Memorandum 2 under this contract describes results obtained in a tropical forest area. This memorandum contains data on all tests completed to its date of issue, including those data presented in Research Memorandum 2, so that all test data can be available in one report and comparisons can be made.

Initial steps had been taken to establish a Communication Laboratory as a portion of the Combat Development and Test Center (CDTC) in Thailand. The formation of the basic laboratory was hastened and personnel assignments altered to provide adequate field test crews. Laboratory equipment did not become available to support the field effort until the later stages of the test program. However, the availability of a central beadquarters, a temporary laboratory, and the meager repair facilities and support did facilitate the field tests somewhat.

This report dependent the results of voice and CW tests on selected man-pack sets. Tests were conducted in the topical forest area in southern Thailand, the rice paddy area of the low delta region near Bangkok, and the mountains about 100 miles north of Bangkok. Figure 1 shows the location of the test areas. More detailed maps of the test areas are shown in Sec. II.

`**1** 





#### **II DESCRIPTION OF TEST AREAS**

#### A. TROPICAL FOREST AREA

The test series was started in a tropical forest area because of interest expressed by Advanced Research Projects Agency and United States Army Electronic Research and Development Laboratory personnel and the desire of Stanford Research Institute to become familiar with what was commonly believed to be the most difficult tropical communication situation. Two tropical forest areas were considered, the Korat National Forest and the forest region south of Bang Sapan. Both areas contain relatively dense tropical forest useful for the field testing of man-pack radio sets. The Bang Sapan area was selected because of access by both road and railroad. A Bangkok business man generously donated his hunting camp as a headquarters and living area, which relieved housing publems. While improvements is living facilities were required, such as the construction of adequate cooking facilities, toilets, and showers, the hunting camp has proved entirely adequate.

Small test station huts were constructed at sites 0, 5, 10, and 22 miles from the base camp shown on the map in Fig. 2. These huts were constructed of local material by local labor. They were placed in areas of dense ground vegetation, which was cleared for an area a few feet around a hut. All huts were accessible by side road or jeep trail. Some side road repair was necessary to prevent jeeps and trucks from scraping bottom; this was accomplished by local hand labor.

Slant-wire antennas were erected between the hut and trees, with an elevation angle of about 30 degrees. The orientation of antennas was generally in the direction most free of surrounding vegetation. Doublet antennas were erected between trees, about 25 feet above ground, generally broadside to the other test sites.

Adequate sites could not be found at 15 and 25 miles, because of conditions of terrain and lack of vegetation and of access roads.

Although the space between the sites is largely forest area with dense undergrowth, there are occasional fields cleared for bananas and



## FIG. 2 MAP SHOWING LOCATION OF TROPICAL FOREST AREA SITES

other tropical crops. The location of sites was based on visual aerial survey, to minimize the occurrence of cleared land between them. Figure 3 illustrates the general nature of vegetation in the test region. The trees are very tall and generally at some distance from each other. The ground is densely covered with bamboo and other tropical plants. Since the ground vegetation extends upward for 25 to 40 feet, all antennas. except the VHF whips, were, for all practical purposes, immersed in the vegetation. No vegetation was allowed to touch an antenna wire.



FIG. 3 MAP SHOWING LOCATION OF DELTA REGION SITES

#### **B. FLAT DELTA AREA**

The large, flat delta region surrounding Bangkok provided an excellent test area. The delta region consists of extensive rice paddy land with few obstructions and little change in elevation. The road network was adequate to enable sites to be chosen at ranges of 5, 10, 15, 20, and 25 miles. The location of sites used is shown on Fig. 3.

Portable wooden and canvas huts were constructed by a Bangkok firm. One hut, installed at Site 0, was used as the base site for all tests. A second hut was moved from site to site. Local labor could disassemble and reassemble the hut at a new site in one day, thus providing a convenient test shelter at each location. All sites were located on rice paddy land clear of obstructions. No obstructions or built-up areas existed between the sites.

#### C. MOUNTAIN AREA

The mountains north of Bangkok, which elthough low, are quite rugged, can be reached via highway in a few hours time. Sites were selected along the access road, constructed to service various military installations and to open the area for development. The map of Fig. 4 shows the location of the sites chosen at ranges of 0, 5, 12, 25, 50, and 100 miles.

The base camp was located in a new resort area at Kao Yai, where personnel housing and support could be obtained without construction facilities. The portable wooden and canvas shelters constructed for the flat delta land tests were transported to the mountains and assembled at the required locations.

The 50- and 100-mile tests can more properly be described as variedterrain tests, rather than mountain tests, because one terminal for these tests was located in the delta region. Since these tests were carried out as an extension to tests with both terminals in mountains, the results are given with those of the mountain tests.



FIG. 4 MAP SHOWING LOCATION OF MOUNTAIN AREA SITES

**4** ()

#### **III TEST CONDITIONS**

The priority and emphasis placed on immediate testing of man-pack radio sets made it necessary to use short cuts and abbreviated test procedures. Consequently, the tests described in this memorandum have inadequacies and, to some extent, limited results It is hoped that the conditions and limitations of the tests are so presented that the results can be adequately evaluated.

One each of the radio sets described in Table 1 were installed in a base hut at Site 0, except for the experimental AN/PRC-35 set. The wellknown AN/GRC-9 set is not shown in the table. Additional sets were moved from Site 1 to Sites 2 or 3, depending upon the range desired. A gasoline motor generator at each location provided power for battery charging, lights, auxiliary equipment, and other needs. Spare sets, spare batteries, and minor repair facilities were kept at the base camp, near Site 0.

The antennas required the first compromise. All sets were designed to operate with a slant-wire antenna. The 77-AM and AN/TRC-88 sets were not specifically designed to feed a doublet antenna. The 77-AM and AN/TRC-88 sets used the same slant-wire antenna kit; however, the HC-162 slant-wire was somewhat different in design. Because of the late arrival of HC-162 sets in Thailand, the slant-wire antenna for the 77-AM and AN/TRC-88 sets was installed in the field and was used for all sets. A doublet was cut to the test frequency and fed with a length of RG59/U coaxial cable. No attempt was made to properly match the single-end coaxial cable to the dipole, because adequate matching transformers or baluns were not available, and seem not to be used in field military installations. The doublet-feed coaxial cable was connected directly to the antenna terminals of the 77-AM and AN/TRC-88 sets and to the coaxial output of the HC-162 and TRP-4 sets.

Adequate test messages or word lists could not be assembled in time for the field tests. Consequently, groups of ten random digits were employed as test messages. Although this closely approximates certain types of military messages, it can by no means be considered a comprehensive test.

#### Table 1

GENERAL CHARACTERISTICS OF MAN-PACK RADIO SETS

|               |                                     |                |                                    | <u>_</u> .       |                                                                                  |                                                                   |                                |                                                          | _                   |                                     |                                                                                                                                                                                                                |
|---------------|-------------------------------------|----------------|------------------------------------|------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|----------------------------------------------------------|---------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RADIO<br>SET  | MANUFACTURER                        | WEIGHT<br>(15) | POWER<br>OUTPUT                    | MODU-<br>LATION  | FREQUENCY<br>RANGE<br>(Mc)                                                       | NUMBET. OF<br>CHANNELS                                            | BAND<br>PASS<br>(kc)           | IF<br>FREQUENCY                                          | UNITS<br>ON<br>HAND | UNITS CAN<br>BE RUN FROM<br>VEHICLE | BATTERY I                                                                                                                                                                                                      |
| 77-AM         | Sylvania                            | 28             | 6-7 w                              | CW<br>AM         | 3-8<br>Separate<br>plug-in<br>crystals for<br>transmitting<br>and receiv-<br>ing | 6<br>Can be<br>changed with<br>plug-in<br>crystals                | 5-6                            | 455 kc                                                   | 10                  | Yes<br>on 12 v<br>syatem            | Rechargeable<br>Voltage: 12 v<br>Capacity: 4 ah<br>Receiving curr<br>Transmitting c<br>Charge time: 4<br>charger; 2 hr<br>charger; 2 hr<br>charger; 16 lb<br>Has 12 v exter<br>for auxiliary<br>Interchangeabl |
| AN/TRC-<br>88 | Sylvania                            | 27             | 10-14 w<br>on CW<br>10 w<br>on SSB | CW<br>SSB<br>FSK | 3-8<br>Separate<br>plug-in<br>crystals for<br>transmitting<br>and receiv-<br>ing | 6<br>Can be<br>changed with<br>plug-in<br>cryatals                | 5-6                            | 455 kc                                                   | 4                   | Yes<br>on 12 v<br>system            | Rechargeable<br>Voltage: 12 v<br>Capacity: 14 a<br>Receiving curr<br>Transmitting c<br>Charge time: 4<br>charger; 2 hr<br>charger; 2 hr<br>charger; 10 lb<br>Has 12 v exter<br>for auxiliary<br>Interchangeabl |
| TRP-4         | Oki Radio                           | 30             | 2 w                                | SSB              | 2.5-7.5                                                                          | 6<br>Ca., be<br>changed with<br>plug-in<br>crystala               | 3                              | 455 kc                                                   | 4                   | No                                  | Rechargeable<br>Voltage: 6 v<br>Capacity: 10 a<br>Receiving curr<br>Transmitting c<br>Charge time: 1<br>meter on from<br>Weight: 17.6 1<br>Duty cycle: 5                                                       |
| HC-162        | Hughes                              | 20<br>or<br>25 | 15 w                               | C₩<br>SSB        | 2-11.99                                                                          | Tunes to<br>1-kc incre-<br>menta from 2<br>to 12 Mc               | 2.7<br>at 3 db<br>3<br>at 6 db | 1750 kc<br>3250 kc<br>(upper or<br>lower fre-<br>quency) | 3                   | No                                  | Rechargeable<br>2 typea:<br>(1) Voltage:<br>Charge ti<br>¼ ah<br>Weight: 7<br>(2) Voltage:<br>Capacity:<br>Charge ti<br>5 ah<br>Weight: 1                                                                      |
| AN/PRC-<br>25 | RCA                                 | 17             | 1.5 w                              | FM               | 30-75.95<br>13 crystals                                                          | Continuoua<br>50-kc incre-<br>ments                               | 35                             | 11.5 Mc                                                  | 2                   | Yea<br>on 24 v<br>syatem            | Dry, disposable<br>Voltage: 2 type<br>(1) 0 + 3 + 15<br>DC converte<br>(2) +3 + 15 + 1<br>Capacity: 20 ah<br>Weight: 3 1b 12<br>Duty cycle: 9-1                                                                |
| AN/PRC-<br>35 | RCA<br>(Experi-<br>mental<br>model) | 10             | 30 mw                              | FM               | 30-69.9<br>19 cryatala                                                           | 4<br>800 poaaible<br>in 50-kc<br>incrementa<br>with crya-<br>tala | 40                             | 10 Mc                                                    | 3                   | No                                  | Dry, dispoaable<br>Voltage: 26 v<br>Capacity: 10 Gh<br>Weight: 1.25 lb<br>Duty cycle: 9-1                                                                                                                      |
| AN/PRC-<br>10 | Admirs1                             |                | 1 w                                | FM               | 38-55                                                                            | Continuous<br>tuning                                              |                                |                                                          | 8                   | No                                  | Dry, diapoaable<br>Voltage: -6 + 1.<br>135 v                                                                                                                                                                   |

and the

#### Table 1

GENERAL CHARACTERISTICS O. MAN-PACK RADIO SETS

| U-<br>On | FREQUENCY<br>R <sub>6</sub> , 'GE<br>(Mc)                                        | NUMBER OF<br>CHANNELS                                             | BAND<br>PASS<br>(kc)           | IF<br>FREQUENCY                                          | UNITS<br>ON<br>HAND | UNITS CAN<br>BE RUN FROM<br>VEHICLE | BATTERY INFORMATION                                                                                                                                                                                                                                                                                                        | ANTENNA INFORMATION                                                                                                                      |
|----------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|----------------------------------------------------------|---------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|          | 3-8<br>Separate<br>plug-in<br>crystala for<br>transmitting<br>and receiv-<br>ing | 6<br>Can be<br>changed with<br>plug-in<br>crystals                | 5-6                            | 455 kc                                                   | 10                  | Ϋ́es<br>on 12 v<br>system           | Rechargeable<br>Voltage: 12 v<br>Capacity: 4 ah<br>Receiving current: 16 ma<br>Transmitting current: 3.5-4 a<br>Charge time: 4 hr using AC<br>charger; 2 hr using DC<br>charger; 2 hr using DC<br>charger (24 v)<br>Weight: 16 lb<br>Has 12 v external terminals<br>for auxiliary equipment<br>Interchangeable with TRC-88 | 3 slant-wire antennas: 28,<br>40, and 57 ft<br>2-wire counterpoise<br>50 ft long<br>Interchangeable with TRC-88                          |
| BK       | 3-8<br>Separate<br>plug-in<br>crystals for<br>transmitting<br>and receiv-<br>ing | 6<br>Can be<br>changed with<br>plug-in<br>crystals                | 5-6                            | 455 kc                                                   | 4                   | Yes<br>on 12 v<br>system            | Rechargeable<br>Voltage: 12 v<br>Capacity: 14 ah<br>Receiving current: 16 ma<br>Transmitting current: 2-3.7 a<br>Charge time: 4 hr uaing AC<br>charger; 2 hr using DC<br>charger; 2 hr using DC<br>charger (24 v)<br>Weight: 10 lb<br>Has 12 v external terminals<br>for auxiliary equipment<br>Interchangeable with 77-AM | 3 slant-wire antennas: 25,<br>40, and 57 ft<br>2-wire counterpoise<br>50 ft long<br>Interchangeable with 77-AM                           |
| В        | 2.5-7.5                                                                          | 6<br>Can be<br>changed with<br>plug-in<br>crystala                | 3                              | 455 kë                                                   | 4                   | No                                  | Rechargeable<br>Voltage: 6 v<br>Capacity: 10 ah<br>Receiving current: 4 ma<br>Transmitting current: 1 a<br>Charge time: 10 hr(has charge<br>meter on front panel)<br>Weight: 17.6 1b<br>Duty cycle: 5-1                                                                                                                    | 3 types:<br>(1) Whip<br>(2) ¼-wave wire with<br>counterpoise<br>(3) ½-wave wire; uae on<br>4 Mc only                                     |
| в        | 2-11.99                                                                          | Tunes to<br>1-kc incre-<br>menta from 2<br>to 12 Mc               | 2.7<br>at 3 db<br>3<br>at 6 db | 1750 kc<br>3250 kc<br>(upper or<br>lower fre-<br>quency) | 3                   | No                                  | Rechargeable<br>2 types:<br>(1) Voltage: 12 v<br>Capacity: 4 ah<br>Charge time: 24 hr at<br>¼ ah<br>Weight: 7 1b<br>(2) Voltage: 12 v<br>Capacity: 14 ah<br>Charge time: 4 hr at<br>5 ah<br>Weight: 12 1b                                                                                                                  | 4 slant-wire antennaa: 19,<br>31, 43, and 63 ft<br>80-ft counterpoiae wire<br>Dipole output at 72 ohma<br>provided                       |
|          | 30-75.93<br>13 crystala                                                          | Continuous<br>50-kc incre-<br>ments                               | 35                             | 11.5 Mc                                                  | 2                   | Yes<br>on 24 v<br>ayatem            | Dry, disposable<br>Voltage: 2 typea<br>(1) 0 + 3 + 15 v with DC-to-<br>DC converter<br>(2) +3 + 15 + 150 v<br>Capacity: 20 ah<br>Weight: 3 1b 12 oz (HV type)<br>Duty cycle: 9-1                                                                                                                                           | Whips, 3 and 10 ft<br>3-ft whip interchangeable<br>with PRC-35 antenna whipa                                                             |
|          | 30-69.9<br>19 cryatala                                                           | 4<br>800 poasible<br>in 50-kc<br>incrementa<br>with crya-<br>tala | 40                             | 10 Mc                                                    | 3                   | No                                  | Dry, diapomable<br>Voltage: 26 v<br>Capacity: 10 ah<br>Weight: 1.25 lb<br>Duty cycle: 9-1                                                                                                                                                                                                                                  | Steel-tape whip, 3 ft<br>2 typea:<br>(1) One has flexible baae<br>(2) Other doea not<br>Both interchangeable with<br>3-ft whip on PBC-25 |
|          | 38-55                                                                            | Continuoua<br>tuning                                              |                                |                                                          | 8                   | No                                  | Dry, dispoaab}e<br>Voltage: -6 + 1.5 + 67.5 +<br>135 v                                                                                                                                                                                                                                                                     | 2 typea:<br>(1) Steel-tape short whip<br>(2) Long whip                                                                                   |

Jus

Operators were relied upon to manually record received messages. In all cases the score was tabulated from the observations of single operators on 8-hour shifts. Also, operators were used to modulate the transmitters. It is recognized that inaccuracies can occur in the results of tests using such gross manual techniques. Time did not permit the accumulation of gear required to use prerecorded test messages designed to simulate the conditions of military message structures, and to tape record received signals for later evaluation by listening teams.

In an effort to keep test conditions constant, an attempt was made to carry out each test sequence with the operators in an environment that was as pleasant as possible. Field representatives from the manufacturers of the various radio sets were requested to be absent while testing was going on. Visitors were asked to review the results between test sequences. Changes in the test crews were not permitted during a sequence. The test sequences were so arranged that there was adequate time to properly conduct a test and to make antenna changes and tuning adjustments with reasonable care. These precautions at least minimized the problem of human interpretation of received signals in noise.

While the receiver operator did not know the contents of the test message, he was well aware of the use of ten-digit groups and knew he was to listen at a specific time.

Laboratory facilities to measure characteristics of set performance, such as receiver sensitivity, receiver bandwidth, power output, modulation index, antenna patterns, and antenna VSWR, were not available at the beginning of the test series. Consequently, the sets were unpacked, inspected, checked for general performance, and then placed directly into the test series.

The general capability of test personnel was high, and they were familiar with many kinds of communication gear. This was, however, their first experience with man-pack sets.

A field service representative from Hughes Aircraft for the HC-162 arrived several days before the test series began. In fact, he arrived several days before the HC-162 radio sets, and participated in the establishment of a temporary service and repair center in Bangkok. A representative from the Sylvania Corporation for the 77-AM and AN/TRC-88 sets arrived during the test sequence. Both representatives were capable

and experienced in the maintenance of their radio sets. Both visited the field site area between tests, provided helpful information on the operation of their sets, and promptly corrected maintenance problems.

The following operating frequencies were employed on the first test in the tropical forest area.

| Set       | Frequency<br>(Mc) |
|-----------|-------------------|
| 77-AM     | 3.567             |
| AN/TRC-88 | 3.567             |
| TRP-4     | 3.570             |
| HC-162    | 3.575             |
| AN/PRC-10 | 40                |
| AN/PRC-25 | 40                |

On all other tests, the following operating frequencies were employed.

| Set       | Frequency<br>(Mc) |
|-----------|-------------------|
| 77 - AM   | 3.567             |
| AN/TRC-88 | 3.567             |
| TRP-4     | 3.570             |
| liC-162   | 3.567             |
| AN/PRC-10 | 40                |
| AN/PRC-25 | 40                |

The VHF sets employed in the tests were designed as line-of-sight communication equipment; consequently, they could not be expected to operate over the ranges used by the HF sets. Quarter-wave whip antennas were installed on the end of 30-foot bamboo masts to elevate antennas and extend the range of the VHF sets. To further improve their range, the bamboo masts were lashed to the tops of trees, resulting in a whip elevation of about 70 feet. RG58/U coaxial cable was used to connect the whip to the radio sets. One whip was used for all VHF sets at a site.

The ability of each set to handle a brief random message was checked every hour or every second hour of a 24-hour period. The sets were

シュセル

checked in sequence, and the sequence was not changed during a test. As has been stated, the receiver operator knew when a message would start and that it would consist of groups of ten random digits. After the completion of a test series, the log sheets were examined to compare the received message with the transmitted message. The total number of digits received correctly for each trial is showr in the score sheets. Thus, if seven were received correctly out of the ten transmitted, then a score of 7 is shown. If all ten were correctly received, then a score of 10 is shown. A zero indicates that no message was received or that all digits were wrong.

S

The short time schedule did not permit the design of a good CW test that eliminated the problem of large variations hetween human operators. Since teams of operators whose CW operating characteristics were wellknown could not be established, alternate tests were devised. An attempt was made during early tests to obtain signal strength recordings of the CW tone so that amplitude comparisons could be made. This failed because of the insensitivity of available recording devices.

A team of two copied CW and attempted to set up standards of signal strength and tone readebility which would allow a message to be copied. These standards, established by field operation and necessarily course, were used in all tests.

The results of the CW test must be treated with caution, and small differences in data are probably not relevant. A summary chart given in Sec. V-G illustrates only the gross effects of the CW tests.

#### IV TEST RESULTS

#### A. GENERAL

Two separate tests were conducted in the tropical forest area south of Bang Sepan, the first and last tests of the series. The results of the first test (published in Research Memorandum 2) are included in this memorandum.

The procedure for scoring the tests has been discussed in Sec. III. The scoring procedure was identical for all tests described in this report.

Occasionally, a set was not used during a portion of the test due to battery replacement or another problem not related to the radio sets. These periods are shown in the score sheets as horizontal dashes.

bo that a complete record of results can be reviewed by those interested, the score sheets are presented; each score sheet is foilowed by a summary showing the performance of each set for that test (Tables 2 through 49). The performance summary is followed by a histogram showing the relationship between communication performance and time of day (Figs. 5 through 20). A measure of communication performance can be obtained by adding the scores of the sets during each period. Test periods where incomplete data were obtained have been ignored.

Score sheets for the CW test are given as Tables 50 through 56, followed by a summary chart (Table 57).

| LOCAL TIME                                                                                                  | 77                                                      | - AM                                                                 | AN/TE                                                            | C-88                                                                  | TR                                                           | -4                                                         | HC-                                                            | 162                                                     |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| LOCAL TIME                                                                                                  | D*                                                      | st                                                                   | D                                                                | s                                                                     | D                                                            | S                                                          | D                                                              | s                                                       |
| 0900 12 Mar<br>1100<br>1300<br>1500<br>1700<br>1900<br>2100<br>2300                                         | 10<br>10<br>9<br>10<br>0<br>0<br>10                     | 10<br>10<br>10<br>10<br>10<br>0<br>0<br>10                           | 9<br>10<br>10<br>0<br>0<br>0<br>0                                | 10<br>10<br>10<br>9<br>0<br>0<br>0                                    | 9<br>10<br>10<br>0<br>10<br>0<br>(                           | 8<br>10<br>10<br>9<br>0<br>0<br>0                          | <br><br><br>10<br>9                                            | <br><br><br>10<br>9                                     |
| 0100 13 Mar<br>0300<br>0500<br>0700<br>0900<br>1100<br>1300<br>1500                                         | 0<br>0<br>10<br>10<br>10<br>10<br>10                    | 0<br>0<br><br>9<br>9<br>10<br>10<br>9                                | 0<br>0<br>10<br>10<br>10<br>10                                   | 0<br>0<br><br>10<br>10<br>10<br>9                                     | 0<br>0<br>10<br>10<br>10<br>10<br>10                         | 0<br>0<br><br>10<br>10<br>10<br>10<br>10                   | 10<br>10<br>10<br>10<br>10<br>10<br>9<br>10                    | 8<br>10<br><br>10<br>10<br>10<br>10<br>10               |
| 1200 14 Mar<br>1300<br>1400<br>1500<br>1600<br>1700<br>1800<br>1900<br>2000<br>2100<br>2200<br>2300<br>2400 | 10<br>10<br>9<br>10<br>10<br>0<br>0<br>0<br>0<br>0<br>0 | 9<br>10<br>9<br>10<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 10<br>10<br>9<br>10<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 10<br>9<br>10<br>9<br>8<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 10<br>10<br>10<br>9<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 10<br>10<br>9<br>8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 9<br>9<br>10<br><br>8<br>10<br>10<br>10<br>10<br>10<br>10<br>9 | 9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| 0100 15 Mar<br>0200<br>0300<br>0400<br>0500<br>0600<br>0700<br>0800<br>0900<br>1000<br>1100                 | 0<br>0<br>0<br><br>9<br>10<br>10<br>10<br>10            | 0<br>0<br>0<br>10<br>10<br>10<br>10                                  | 0<br>0<br>0<br><br>9<br>9<br>10<br>10<br>10                      | 0<br>0<br>0<br>0<br><br>9<br>10<br>10<br>10                           | 0<br>0<br>0<br>10<br>10<br>10<br>10<br>10                    | 0<br>0<br>0<br>10<br>10<br>10<br>10                        | 10<br>10<br>10<br>10<br>10<br>9<br>9<br>10<br>10<br>10<br>10   | 9<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10        |

#### Table 2 SCORE SHEET OF 5-MILE FOREST TEST 1 SITE 0 RECEIVING

\* Doublet antenna.

† Slant-wire antenna.

の語の記録ので、「「「「「」」のためにの目に

|                                                                                                             | 71                                                    | -AM                                                    | AN/TI                                            | 1C-88                                                        | TRI                                                        | P-4                                                         | HC-                                                         | 162                                                        |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| LOCAL TIME                                                                                                  | D*                                                    | st                                                     | D                                                | s                                                            | D                                                          | S                                                           | D                                                           | S                                                          |
| 0900 12 Mar<br>1100<br>1300<br>1500<br>1700<br>1900<br>2100<br>2300                                         | 10<br>10<br>9<br>10<br>10<br>0<br>0<br>10             | 10<br>10<br>10<br>10<br>10<br>0<br>0<br>0              | 10<br>10<br>10<br>0<br>0<br>0<br>0               | 10<br>10<br>9<br>0<br>10<br>0<br>0<br>0                      | 10<br>10<br>8<br>0<br>8<br>0<br>0<br>0                     | 10<br>10<br>9<br>0<br>7<br>0<br>0<br>0                      | <br><br><br>10<br>10                                        | <br><br><br>10<br>10                                       |
| 0100 13 Mar<br>0300<br>0500<br>0700<br>0900<br>1100<br>1360<br>1500                                         | 0<br>0<br>10<br>10<br>10<br>10<br>10                  | 0<br>0<br>10<br>10<br>10<br>10<br>10                   | 0<br>0<br>10<br>10<br>10<br>10                   | 0<br>0<br><br>10<br>10<br>10<br>10                           | 0<br>0<br>10<br>10<br>10<br>10                             | 0<br>0<br>10<br>10<br>10<br>10                              | 10<br>10<br><br>5<br>10<br>10<br>10                         | 8<br>9<br><br>7<br>10<br>9<br>10<br>10                     |
| 1200 14 Mar<br>1300<br>1400<br>1500<br>1600<br>1700<br>1800<br>1900<br>2000<br>2100<br>2200<br>2300<br>2400 | 10<br>7<br>7<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 10<br>10<br>9<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 10<br>7<br>7<br>10<br>0<br>0<br>0<br>0<br>0<br>0 | 10<br>10<br>9<br>10<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>10<br>9<br>9<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 10<br>9<br>10<br>10<br>8<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 10<br>10<br><br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 9<br>10<br>10<br><br>10<br>10<br>10<br>9<br>10<br>10<br>10 |
| 0100 15 Mar<br>0200<br>0300<br>0400<br>0500<br>0600<br>0700<br>0800<br>0900<br>1000<br>1100                 | 0<br>0<br>0<br>0<br>10<br>9<br>10<br>10<br>10         | 0<br>0<br>0<br>0<br>10<br>7<br>8<br>10<br>10           | 0<br>0<br>0<br>0<br>10<br>10<br>10<br>10<br>10   | 0<br>0<br>0<br>0<br>10<br>8<br>8<br>9<br>7                   | 0<br>0<br>0<br>0<br>10<br>10<br>10<br>10                   | 0<br>0<br>0<br>10<br>10<br>10<br>10                         | 10<br>10<br>8<br>10<br>10<br>10<br>10<br>10<br>10           | 10<br>10<br>9<br>7<br>9<br>10<br>10<br>10<br>10<br>10      |

#### Table 3 SCORE SHEET OF 5-MILE FOREST TEST 1 SITE 1 RECEIVING

\* Doublet antenna. † Slant-wire antenna.

|                 | 7   | 7 <b>-</b> AM | AN/TRC-88 |     | TRP-4 |     | HC-162 |     |
|-----------------|-----|---------------|-----------|-----|-------|-----|--------|-----|
| SITE RECEIVING  | D*  | st            | D         | s   | D     | s   | D      | s   |
| Site 0          |     |               |           |     |       |     |        |     |
| Total Messages  | 380 | 380           | 380       | 380 | 380   | 380 | 320    | 320 |
| Number Correct  | 217 | 214           | 175       | 183 | 188   | 182 | 301    | 302 |
| Percent Correct | 57% | 56%           | 46%       | 48% | 49%   | 48% | 94%    | 94% |
| Site 1          |     |               |           |     |       |     |        |     |
| Total Messages  | 390 | 390           | 390       | 390 | 390   | 390 | 320    | 320 |
| Number Correct  | 201 | 194           | 173       | 180 | 173   | 182 | 310    | 294 |
| Percent Correct | 52% | 50%           | 44%       | 46% | 44%   | 47% | 97%    | 92% |

Table 4 SUMMARY OF 5-MILE FOREST TEST 1

\* Doublet antenna. † Slant-wire antenna.





| LOCAL TIM         |              | 7-AM | AN/T | RC-88 | TR | TRP-4 |    | HC-162 |  |
|-------------------|--------------|------|------|-------|----|-------|----|--------|--|
| LUCAL IIM         | D*           | st   | D    | S     | D  | S     | D  | s      |  |
| 1100 26 M         | nr 10        | 10   | 10   | 10    | 10 | 10    | 10 | 10     |  |
| 1300              | 10           | 10   | 10   | 10    | 10 | 10    | 10 | 10     |  |
| 1500              | 8            | 9    | 9    | 6     | 10 | 8     | 6  | 0      |  |
| 1700              | 10           | 8    | 8    | 8     | 8  | 9     | 10 | 10     |  |
| 1900              | 6            | 0    | 2    | 0     | 9  | 0     | 10 | 10     |  |
| <b>21</b> 00      | 0            | 0    | 0    | e     | 8  | 0     | 10 | 10     |  |
| 2300              | 0            | 0    | 0    | 0     | 0  | 0     | 0  | 0      |  |
| 0100 27 Ma        | 1 <b>r</b> 0 | 0    | 0    | 0     | 10 | 0     | 10 | 10     |  |
| 0300              | 0            | 0    | 8    | 0     | 10 | 0     | 8  | 10     |  |
| 0500              | 0            | 0    | 0    | 0     | 0  | 0     | 10 | 0      |  |
| 0700              | 0            | 0    | 10   | 8     | 9  | 6     | 10 | 10     |  |
| 0900              | 10           | 9    | 10   | 10    | 10 | 9     | 10 | 10     |  |
| 1100              | 10           | 10   | 10   | 10    | 10 | 10    | 10 | 10     |  |
| 1300              | 10           | 10   | 10   | 10    | 10 | 10    | 10 | 10     |  |
| 1500              | 0            | 0    | 0    | 0     | 10 | 7     | 10 | 9      |  |
| 1700              | 6            | 5    | 9    | 9     | 7  | 0     | 10 | 0      |  |
| 1900              | 0            | 0    | 0    | 0     | 9  | 0     | 10 | 10     |  |
| 2100              | C            | 0    | 0    | 0     | 0  | 0     | 10 | 10     |  |
| 2300              | 0            | 0    | 0    | 0     | 0  | 0     | 10 | 10     |  |
| 0100 <b>28</b> Ma | .r 0         | 0    | 0    | 0     | 0  | 0     | 0  | 0      |  |
| 0300              | 0            | 0    | 9    | 0     | 10 | 0     | 10 | 10     |  |
| 0500              | e            | 0    | 0    | 0     | 0  | 0     | 10 | 0      |  |
| 0700              | 10           | 10   | 10   | 10    | 10 | 8     | 10 | 10     |  |
| 0900              | 9            | 10   | 10   | 10    | 10 | 10    | 10 | 10     |  |

#### Table 5 SCORE SHEET OF 10-MILE FOREST TEST 1 SITE 0 RECEIVING

\* Doublet antenna. † Slant-wire antenna.

|           |       | - A M | AN/TI | 1C - 88 | TRP-4 |    | HC-162 |    |
|-----------|-------|-------|-------|---------|-------|----|--------|----|
| LOCAL TIM | E D*  | st    | D     | s       | D     | s  | D      | 8  |
| 1100 26 M | ar 10 | 10    | 10    | 8       | 10    | 10 | 10     | 10 |
| 1300      | 9     | 10    | 10    | 5       | 10    | 5  | 9      | 10 |
| 1500      | 9     | 8     | 8     | 6       | 10    | 2  | 10     | 0  |
| 1700      | 10    | 9     | 10    | 10      | 10    | 10 | 10     | 9  |
| 1900      | 0     | 0     | 0     | 0       | 10    | 0  | 8      | 10 |
| 2100      | 0     | 0     | 0     | 0       | 9     | 0  | 10     | 8  |
| 2300      | 0     | 0     | 0     | 0       | 0     | 0  | 0      | 0  |
| 0100 27 M | ar 0  | 0     | 7     | 0       | 5     | 0  | 9      | 5  |
| 0300      | 0     | 0     | 9     | 0       | 9     | 0  | 10     | 7  |
| 0500      | 0     | 0     | 0     | 0       | 0     | 0  | 7      | 0  |
| 0700      | 0     | 0     | 9     | ų.      | 10    | 9  | 10     | 9  |
| 0900      | 10    | 10    | 10    | 6       | 10    | 10 | 10     | 10 |
| 1100      | 10    | 10    | 10    | 7       | 10    | 9  | 10     | 10 |
| 1300      | 10    | 10    | 9     | 9       | 10    | 10 | 10     | 10 |
| 1500      | 0     | 0     | 0     | 0       | 10    | 8  | 10     | 10 |
| 1700      | 5     | 7     | 8     | 8       | 7     | 0  | 10     | 0  |
| 1900      | 0     | 0     | 0     | 0       | 9     | 0  | 10     | 10 |
| 2100      | 0     | 0     | 0     | 0       | 0     | 0  | 10     | 10 |
| 2300      | 0     | 0     | 0     | 0       | 0     | 0  | 10     | 10 |
| 0100 28 M | ar 0  | 0     | 0     | 0       | 6     | 0  | 0      | 0  |
| 0300      | 0     | 0     | 10    | 0       | 9     | 0  | 10     | 10 |
| 6500      | 0     | 0     | 0     | 0       | 0     | 0  | 8      | 0  |
| 0700      | 10    | 7     | 10    | 10      | 10    | 10 | 10     | 10 |
| 0900      | 10    | 10    | 10    | 10      | 10    | 10 | 10     | 10 |

#### SCORE SHEET OF 10-MILE FOREST TEST 1 SITE 2 RECEIVING

Table 6

\* Doublet antenna. † Slant-wire antenna.

| SITE RECEIVING  | 77-AM       |     | AN/TRC-88   |     | TRP-4 |     | HC-162 |     |
|-----------------|-------------|-----|-------------|-----|-------|-----|--------|-----|
|                 | D*          | st  | D           | s   | D     | s   | D      | s   |
| Site 0          |             |     |             |     |       |     |        |     |
| Total Messages  | <b>24</b> 0 | 240 | 240         | 240 | 240   | 240 | 240    | 240 |
| Number Correct  | 99          | 91  | <b>ì2</b> 5 | 101 | 170   | 97  | 214    | 179 |
| Percent Correct | 41%         | 38% | 52%         | 42% | 71%   | 40% | 89%    | 75% |
| Site 2          |             |     |             |     |       | [   |        |     |
| Total Messages  | <b>24</b> 0 | 240 | 240         | 240 | 240   | 240 | 240    | 240 |
| Number Correct  | 93          | 91  | 130         | 88  | 168   | 93  | 211    | 168 |
| Percent Correct | 39%         | 38% | 54%         | 37% | 70%   | 39% | 88%    | 70% |

Table 7 SUMMARY OF 10-MILE FOREST TEST 1

Hank E

\* Doublet antenna. † Slant-wire antenna.



FIG. 6 HISTOGRAM SHOWING COMMUNICATION SUCCESS vs. TIMEOF DAY 10-MILE FOREST TEST 1

|             | 77 | 77 - AM |    | AN/TRC-88 |    | TRP-4 |    | 162 |
|-------------|----|---------|----|-----------|----|-------|----|-----|
| LOCAL TIME  | D* | s†      | D  | S         | D  | S     | D  | s   |
| 1100 19 Mar | 10 | 2       | 0  | 0         | 10 | 0     | 9  | 0   |
| 1300        | 10 | 9       | 0  | 0         | 10 | 9     | 10 | 10  |
| 1500        | 10 | 8       | 0  | 0         | 10 | 0     | 9  | 7   |
| 1700        | 9  | 8       | 10 | 0         | 10 | 0     | 10 | 7   |
| 1900        | 0  | 0       | 0  | 0         | 0  | 0     | 7  | 0   |
| 2100        | 0  | 0       | 0  | 0         | 0  | 0     | 9  | 0   |
| 2300        | 0  | 0       | 0  | 0         | 0  | 0     | 10 | 10  |
| 0100 20 Mar | 0  | 0       | 0  | 0         | 0  | 0     | 10 | 10  |
| 0300        | 0  | 0       | 0  | 0         | 0  | 0     | 0  | 0   |
| 0500        | 0  | 0       | 0  | 0         | 0  | 0     | 0  | 0   |
| 0700        | 0  | 0       | 0  | 0         | 10 | 0     | 10 | 4   |
| 0900        | 9  | 10      | 10 | 10        | 10 | 7     | 10 | 8   |
| 1100        | 10 | 3       | 10 | 0         | 10 | 0     | 10 | 0   |
| 1300        | 10 | 0       | 10 | 0         | 10 | 0     | 10 | 0   |
| 1500        | 10 | 10      | 9  | 0         | 10 | 5     | 10 | 8   |
| 1700        | 10 | 10      | 10 | 10        | 10 | 10    | 10 | 10  |
| 1900        | 9  | 0       | 10 | 0         | 10 | 0     | 10 | 10  |
| 2100        | 0  | 0       | 8  | 0         | 10 | 0     | 10 | 0   |
| 2300        | 10 | 0       | 0  | 0         | 9  | 0     | 10 | 10  |
| 0100 21 Mar | 0  | 0       | 0  | 0         | 10 | 0     | 10 | 7   |
| 0300        | 6  | 0       | 7  | 0         | 10 | 0     | 10 | 10  |
| 0500        | 0  | 0       | 0  | 0         | 0  | 0     | 0  | 0   |
| 0700        | 10 | 10      | 10 | 7         | 10 | 9     | 10 | 0   |
| 0900        | 10 | 7       | 10 | 8         | 10 | 10    | 10 | 10  |

#### Table 8 SCORE SHEET OF 22-MILE FOREST TEST 1 SITE 0 RECEIVING

\* Doublet antenna.

f Slant-wire antenna.

|             | 77 | -AM | AN/TI | AC-88 | TRI | P-4 | HC-162 |    |  |
|-------------|----|-----|-------|-------|-----|-----|--------|----|--|
| LOCAL TIME  | D* | st  | D     | S     | D   | S   | D      | S  |  |
| 1100 19 Mar | 10 | 10  | - 0   | 0     | 10  | 0   | 10     | 10 |  |
| 1300        | 8  | 9   | 0     | 0     | 10  | 0   | 10     | 10 |  |
| 1500        | 8  | 10  | 0     | 0     | 0   | 0   | 10     | 10 |  |
| 1700        | 9  | 10  | 6     | 9     | 8   | 0   | 10     | 10 |  |
| 1900        | 0  | 0   | 0     | 0     | 0   | 0   | 9      | 0  |  |
| 2100        | 0  | 0   | 0     | 0     | 0   | 0   | 10     | 0  |  |
| 2300        | 0  | 0   | 0     | 0     | 0   | 0   | 9      | 9  |  |
| 0100 20 Mar | 0  | 0   | 0     | 0     | 0   | 0   | 10     | 10 |  |
| 0300        | 0  | 0   | 0     | 0     | 0   | 0   | 0      | 0  |  |
| 0500        | 0  | 0   | 0     | 0     | 0   | 0   | 0      | 0  |  |
| 0760        | 0  | 0   | 0     | 0     | 0   | 0   | 10     | 10 |  |
| 0900        | 10 | 10  | 10    | 10    | 8   | 10  | 10     | 10 |  |
| 1100        | 10 | 9   | 10    | 0     | 10  | 0   | 10     | 0  |  |
| 1300        | 10 | 0   | 10    | 0     | 10  | 0   | 10     | 0  |  |
| 1500        | 7  | 10  | 10    | 0     | 9   | 7   | 10     | 9  |  |
| 1700        | 10 | 10  | 10    | 10    | 9   | 10  | 10     | 10 |  |
| 1900        | 10 | U   | 5     | 0     | 9   | 0   | 5      | 8  |  |
| 2100        | 0  | 0   | 10    | 0     | 9   | 0   | 10     | 0  |  |
| 2300        | 10 | 0   | 0     | 0     | 10  | 0   | 10     | 10 |  |
| 0100 21 Mar | 0  | 0   | 0     | 0     | 9   | 0   | 10     | 70 |  |
| 0300        | 9  | 0   | 7     | 0     | 9   | 0   | 10     | 10 |  |
| 0500        | 0  | 0   | 0     | 0     | 0   | 0   | 0      | 0  |  |
| 0700        | 10 | 9   | 10    | 9     | 10  | 10  | 10     | 10 |  |
| 0900        | 10 | 8   | 10    | 9     | 10  | 10  | 10     | 10 |  |

# Table 9SCORE SHEET OF 22-MILE FOREST TEST 1SITE 3 RECEIVING

\* Doublet antenna.

† Slant-wire antenna.

|                 | 77-AM |             | AN, TRC-88 |     | TRP-4 |     | HC-162 |     |
|-----------------|-------|-------------|------------|-----|-------|-----|--------|-----|
| SITE RECEIVING  | D*    | st          | D          | S   | D     | S   | D      | S   |
| Site 0          |       |             |            |     |       |     |        |     |
| Total Messages  | 240   | 240         | 240        | 240 | 240   | 240 | 240    | 240 |
| Number Correct  | 133   | 77          | 104        | 35  | 169   | 50  | 204    | 121 |
| Percent Correct | 55%   | 32%         | 43%        | 15% | 70%   | 21% | 85%    | 50% |
| Site 3          |       |             |            |     |       |     |        |     |
| Total Messages  | 240   | <b>24</b> 0 | 240        | 240 | 240   | 240 | 240    | 240 |
| Number Correct  | 131   | 95          | 98         | 47  | 140   | 47  | 20     | 156 |
| Percent Corvect | 55%   | 40%         | 41%        | 20% | 58%   | 20% | 85%    | 65% |

Table 10 SUMMARY OF 22-MILE FOREST TEST 1

\* Doublet antenna. † Slant-wire antenna.


## C. RESULTS FROM TROPICAL FOREST TEST 2

## Table 11 SCORE SHEET OF 5-MILE FOREST TEST 2 SITE 0 RECEIVING

|              | 1  | +C-162 | 2   |    | 77-A | M  | AN | /TRC- | 88 |    | FRP-4 |   | AN | /GRC- | 9   |
|--------------|----|--------|-----|----|------|----|----|-------|----|----|-------|---|----|-------|-----|
| LOCAL TIME   | D• | st     | y\$ | D  | s    | W  | D  | S     | W  | D  | S     | W | D  | S     | W   |
| 1300 15 June | 10 | 8      | 10  | 10 | 7    | 10 | 10 | 8     | 10 | 10 | 0     | 8 | 0  | 0     | n   |
| 1500         | 10 | 10     | 10  | 10 | 10   | 10 | 10 | 9     | 10 | 10 | 7     | 5 | 10 | 8     | · * |
| 1700         | 10 | 10     | 8   | 10 | 10   | 10 | 10 | 9     | 10 | 10 | 8     | 3 | 9  | 8     | 5   |
| 1900         | 10 | Û      | 0   | 10 | 8    | 2  | 10 | 10    | 8  | 10 | 2     | 0 | 10 | 0     | 0   |
| 2100         | 10 | 0      | 0   | 9  | 0    | 6  | 10 | 7     | 0  | 9  | 0     | 0 | 10 | 0     | 0   |
| 2300         | 10 | 0      | 0   | 10 | 0    | 0  | 10 | 9     | 0  | 10 | 0     | 0 | 9  | 0     | 0   |
| 0100 16 June | 10 | 0      | 0   | 10 | 0    | 0  | 10 | 0     | 0  | 10 | C     | 0 | 10 | 0     | 0   |
| 0300         | 0  | 0      | 0   | 0  | 0    | 0  | 0  | Û     | 0  | 0  | 0     | 0 | 0  | 0     | 0   |
| 0500         | 0  | 0      | 0   | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0   |
| 0700         | 10 | 9      | 9   | 10 | 1    | 0  | 10 | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0   |
| 0900         | 10 | 9      | 10  | 9  | 0    | 0  | 10 | 10    | 10 | 10 | 0     | 0 | 8  | 0     | 0   |
| 1100         | 10 | 10     | 10  | 10 | 4    | 0  | 10 | 10    | 10 | 10 | 0     | 0 | 10 | 0     | 0   |
| 1300         | 9  | 0      | 10  | 10 | 5    | 5  | 10 | 7     | 9  | 8  | 6     | 5 | 10 | 0     | 0   |
| 1500         | 10 | 4      | 9   | 10 | 9    | 4  | 10 | 10    | 8  | 9  | 0     | 3 | 10 | 0     | 0   |
| 1700         | 10 | 10     | 10  | 10 | 10   | 9  | 10 | 9     | 9  | 10 | 10    | 6 | 10 | 10    | 0   |
| 1900         | 10 | 7      | 6   | 10 | 5    | 4  | 10 | 8     | 8  | 10 | 7     | 0 | 10 | 0     | 0   |
| 2100         | 10 | 0      | 0   | 10 | 0    | 0  | 10 | 0     | 0  | 10 | 0     | 0 | 9  | 0     | 0   |
| 2300         | 2  | 0      | 0   | 0  | 0    | 0  | 10 | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0   |
| 0100 17 June | 0  | 0      | 0   | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | n | 0  | 0     | 0   |
| 0300         | 10 | 0      | 0   | 0  | 0    | 0  | 10 | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0   |
| 0500         | 10 | 0      | 0   | 0  | 0    | 0  | 9  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0   |
| 0700         | 10 | 9      | 10  | 10 | 10   | 0  | 10 | 10    | 10 | 9  | 10    | 0 | 10 | 0     | 0   |
| 0900         | 10 | 9      | 8   | 8  | 7    | 9  | 10 | 10    | 10 | 10 | 5     | 7 | 10 | 0     | 0   |
| 1100         | 10 | 10     | 9   | 10 | 10   | 10 | 10 | 10    | 9  | 10 | 8     | 0 | 10 | 0     | 0   |

\* Doublet entenna.

† Slant-wire antenna.

S Whip entenna.

|              |         | HC | C-162 |    |    | 77 - A | M  | AN/ | TRC-8 | 8  | Ţ  | RP- ! |    | AN | /GRC- | 9 |
|--------------|---------|----|-------|----|----|--------|----|-----|-------|----|----|-------|----|----|-------|---|
| LOCA         | L TIME  | D. | st    | w§ | D  | s      | W  | D   | s     | W  | D  | s     | W  | D  | s     | w |
| 1300         | 15 June | 10 | 10    | 10 | 10 | 8      | 10 | 9   | 10    | 10 | 10 | 0     | 9  | 0  | 0     | 0 |
| 1500         |         | 10 | 10    | 10 | 10 | 10     | 10 | 10  | 10    | 10 | 10 | 10    | 9  | 9  | 4     | 0 |
| 1700         |         | 10 | 10    | 10 | 10 | 10     | 10 | 9   | 10    | 9  | 10 | 9     | 7  | 9  | 6     | 7 |
| 1900         |         | 10 | 0     | 0  | 10 | 9      | 7  | 10  | 10    | 10 | 10 | 2     | 0  | 10 | 0     | 0 |
| <b>21</b> 00 |         | 10 | 0     | 0  | 9  | 0      | 0  | 10  | 10    | 0  | 5  | 0     | 0  | 7  | 0     | 0 |
| <b>2</b> 300 |         | 9  | 0     | 0  | 9  | G      | 0  | 10  | 9     | 0  | 9  | 0     | 0  | 8  | 0     | 0 |
| 0100         | 16 June | 10 | 0     | 0  | 10 | 0      | 0  | 10  | 0     | 0  | 5  | 0     | 0  | 9  | 0     | 0 |
| 0300         |         | 0  | 0     | 0  | 0  | 0      | 0  | 0   | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0 |
| 0500         |         | 0  | 0     | 0  | 0  | 0      | 0  | 0   | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0 |
| 0700         | 1       | 10 | 10    | 9  | 10 | 9      | e  | 10  | 8     | 0  | 0  | 0     | 0  | 0  | 0     | 0 |
| 0900         |         | 9  | 9     | 10 | 10 | 0      | 0  | 10  | 10    | 10 | 8  | 0     | 0  | 8  | 0     | 0 |
| 1100         |         | 10 | 10    | 10 | 10 | 10     | 10 | 10  | 10    | 10 | 10 | 0     | 0  | 8  | 0     | 0 |
| 1300         |         | 10 | 10    | 10 | 10 | 9      | 10 | 10  | 10    | 10 | 9  | 7     | 10 | 10 | 0     | 0 |
| 1500         |         | 10 | 10    | 10 | 10 | 10     | 10 | 10  | 10    | 10 | 10 | 0     | 10 | 10 | 0     | 0 |
| 1700         |         | 10 | 10    | 10 | 10 | 10     | 10 | 10  | 10    | 10 | 9  | 10    | 8  | 10 | 9     | 0 |
| 1900         |         | 9  | 10    | 10 | 10 | 8      | 8  | 10  | 8     | 9  | 10 | 8     | 0  | 6  | 0     | 0 |
| 2100         |         | 10 | 5     | 0  | 9  | 0      | υ  | 10  | 0     | 0  | 9  | 0     | 0  | 4  | 0     | 6 |
| <b>2</b> 300 |         | 6  | 0     | 0  | 0  | 0      | 0  | 8   | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0 |
| 0100         | 17 June | 0  | 0     | 0  | 0  | 0      | 0  | 0   | U     | 0  | 0  | 0     | 0  | 0  | 0     | 0 |
| 0300         |         | 10 | 0     | 0  | 0  | 0      | 0  | 10  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0 |
| 0500         |         | 0  | 0     | 0  | 0  | 0      | 0  | 10  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0 |
| <b>0700</b>  |         | 10 | 10    | 10 | 10 | 7      | 0  | 10  | 10    | 10 | 8  | 3     | 0  | 10 | 0     | 0 |
| 0900         |         | 9  | 8     | 10 | 10 | 7      | 10 | 10  | 10    | 16 | 10 | 8     | 10 | 10 | 0     | 0 |
| 1100         |         | 10 | 9     | 8  | 10 | 9      | 9  | 10  | 10    | 9  | 10 | 8     | 0  | 10 | 9     | 0 |

## Table 12 SCORE SHEET OF 5-M/LE FOREST TEST 2 SITE 1 RECEIVING

\* Doublet antenna.

† Slant-wire.

\$ Whip antenna.

|                 |     | HC-16 | 2   |      | 77-A | 4   | A   | TRC. | - 8 8 |     | TRP-4 | ۱ ا  | AN  | /GRC- | 9   |
|-----------------|-----|-------|-----|------|------|-----|-----|------|-------|-----|-------|------|-----|-------|-----|
| SITE RECEIVING  | D•  | st    | w\$ | D    | S    | W   | D   | S    | W     | D   | S     | W    | D   | s     | w   |
| Site 0          |     |       |     |      |      |     |     |      |       |     |       |      |     |       |     |
| Total Messages  | 240 | 240   | 240 | 240  | 240  | 240 | 240 | 240  | 240   | 240 | 240   | 240  | 240 | 240   | 240 |
| Number Correct  | 201 | 105   | 119 | 176  | 96   | 73  | 209 | 136  | 121   | 165 | 63    | 37   | 155 | 26    | 14  |
| Percent Correct | 84% | 44%   | 50% | 7 3% | 40%  | 30% | 87% | 57%  | 50%   | 69% | 26%   | 1 5% | 65% | 11%   | 6%  |
| Site 1          |     |       |     |      |      |     |     |      |       |     |       |      |     |       |     |
| Total Messages  | 240 | 240   | 240 | 240  | 240  | 240 | 240 | 240  | 240   | 240 | 240   | 240  | 240 | 240   | 240 |
| Number Correct  | 192 | 131   | 127 | 177  | 116  | 104 | 206 | 155  | 127   | 152 | 65    | 177  | 138 | 28    | 7   |
| Percent Correct | 80% | 55%   | 53% | 74%  | 48%  | 43% | 86% | 65%  | 53%   | 63% | 27%   | 26%  | 58% | 12%   | 3%  |

Table 13 SUMMARY OF 5-MILE FOREST TEST 2

\* Doublet antenna.

† Slant-wire antenna.

§ Whip antenna.

茶を、「おおまたのないないない」

うちょうかか はななななななない いちょうちょう あんない ないない





うちののないないないない

|              |    | HC-162 | 2   |    | 77 - AI | À  | AN | /TRC - | 88 |    | TRP-4 |    | AN | /GRC- | .9 |
|--------------|----|--------|-----|----|---------|----|----|--------|----|----|-------|----|----|-------|----|
| LOCAL TIME   | D• | st     | w\$ | D  | s       | W  | D  | s      | W  | D  | S     | W  | D  | s     | W  |
| 1300 12 June | 10 | 0      | 0   | 10 | 7       | 0  | 10 | 10     | 10 | 10 | 3     | 0  | 9  | 0     | 0  |
| 1500         | 8  | 9      | 9   | 9  | 2       | 0  | 9  | 10     | 10 | 2  | 0     | 0  | 0  | 0     | 0  |
| 1700         | 8  | 0      | 0   | 0  | 0       | 0  | 10 | 9      | 9  | 0  | 8     | 0  | 9  | 0     | 0  |
| 1900         | 8  | 8      | 0   | 0  | 0       | 0  | 10 | 7      | 7  | 0  | 0     | 0  | 0  | 0     | 0  |
| 2100         | 10 | 0      | 0   | 0  | 0       | 0  | 9  | 1      | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 2300         | 9  | 0      | 0   | 0  | 0       | 0  | 4  | 0      | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 0100 13 June | 0  | 0      | 0   | 0  | 0       | 0  | 0  | 0      | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 0300         | 0  | 0      | 0   | 0  | 0       | 0  | 0  | 0      | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 0500         | 0  | 0      | 0   | 0  | 0       | 0  | 0  | 0      | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 0700         | 10 | 8      | 10  | 9  | 0       | 0  | 10 | 7      | 10 | 10 | 0     | 0  | 9  | 0     | 0  |
| 0900         | 9  | 9      | 10  | 30 | 0       | 0  | 9  | 0      | 0  | 10 | 7     | 10 | 10 | 0     | 0  |
| 1100         | 10 | 10     | 10  | 10 | 7       | 9  | 10 | 0      | 0  | 7  | 0     | 0  | 9  | 0     | 0  |
| 1300         | 10 | 10     | 10  | 9  | 10      | 10 | 10 | 10     | 10 | 9  | 9     | 9  | 10 | 9     | 10 |
| 1500         | 10 | 10     | 10  | 10 | 5       | 10 | 10 | 8      | 9  | 9  | 0     | 0  | 7  | 0     | 0  |
| 1700         | 10 | 9      | 10  | 10 | 8       | Û  | 10 | 9      | 9  | 7  | 0     | 0  | 10 | 0     | 0  |
| 1900         | 10 | 10     | 0   | 0  | 0       | 0  | 10 | 10     | 0  | 8  | 0     | 0  | 0  | 0     | 0  |
| 2100         | 9  | 0      | 0   | 4  | 0       | 0  | 10 | 7      | 0  | 5  | 0     | 0  | 0  | 0     | 0  |
| 2300         | 10 | 0      | 0   | 0  | 0       | 0  | 10 | 0      | 0  | 0  | 0     | 0  | 0  | Û     | Ú  |
| 0100 14 June | 10 | 0      | 0   | 0  | 0       | 0  | 7  | 0      | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 0300         | 0  | 0      | 0   | 0  | 0       | 0  | 0  | 0      | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 0500         | 0  | 0      | 0   | 0  | 0       | 0  | 0  | 0      | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 0700         | 10 | 10     | 0   | 10 | 4       | 0  | 10 | 0      | 0  | 10 | 10    | 0  | 10 | 4     | 0  |
| 0900         | 10 | 10     | 10  | 10 | 8       | 10 | 10 | 10     | 7  | 10 | 9     | 0  | 10 | 8     | 0  |
| 1100         | 10 | 10     | 10  | 10 | 9       | 10 | 10 | 0      | 0  | 10 | 5     | 0  | 10 | 9     | 0  |

## Table 14 SCORE SHEET OF 10-MILE FOREST TEST 2 SITE 0 RECEIVING

\* Doublet antenna.

† Slant-wire antenna.

\$ Whip antenna.

金融を見た

|              | · · · · · · · · · · · · · · · · · · · |    | IC - 1 62 | 2  |    | 77-A | м  | AN | /TRC- | 88 |    | TRP-4 |    | AN | /GRC | .9  |
|--------------|---------------------------------------|----|-----------|----|----|------|----|----|-------|----|----|-------|----|----|------|-----|
| LOC          | AL TIME                               | D* | st        | ψŞ | D  | s    | W  | D  | s     | W  | D  | s     | w  | D  | s    | W   |
| 1300         | 12 June                               | 10 | 0         | 0  | 10 | 0    | 0  | 10 | 10    | 10 | 10 | 10    | 0  | 10 | 0    | 0   |
| 1500         |                                       | 10 | 10        | 10 | 10 | 7    | 0  | 10 | 10    | 10 | 10 | 0     | 0  | 0  | 0    | 0   |
| 1700         |                                       | 10 | 0         | 0  | 0  | 0    | 0  | 10 | 10    | 10 | 10 | 0     | 0  | 10 | 0    | 0   |
| 1900         |                                       | 10 | 7         | 0  | 0  | 0    | 0  | 10 | 10    | 9  | 0  | 0     | 0  | 0  | 0    | 0   |
| <b>2</b> 100 |                                       | 10 | 0         | 0  | 0  | 0    | 0  | 10 | 9     | 0  | 0  | 0     | 0  | 0  | 0    | 0   |
| 2300         |                                       | 6  | 0         | 0  | 0  | 0    | 0  | 10 | 0     | 0  | 0  | 0     | 0  | 0  | 0    | 0   |
| 0100         | 13 June                               | 0  | 0         | 0  | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0    | 0   |
| 0300         |                                       | 0  | 0         | 0  | υ  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0    | · 0 |
| 0500         |                                       | 0  | 0         | 0  | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0    | 0   |
| 0700         |                                       | 10 | 10        | 10 | 10 | 0    | 0  | 10 | 10    | 10 | 10 | 0     | 0  | 10 | 0    | 0   |
| 0900         |                                       | 10 | 10        | 10 | 10 | 0    | 0  | 10 | 0     | 0  | 10 | 9     | 9  | 9  | 0    | 0   |
| 1100         |                                       | 10 | 9         | 10 | 10 | 6    | 5  | 10 | 0     | 0  | 10 | 0     | 0  | 10 | 0    | 0   |
| 1300         |                                       | 10 | 10        | 10 | 10 | 10   | 10 | 10 | 10    | 10 | 9  | 8     | 10 | 10 | 6    | 6   |
| 1500         |                                       | 10 | 10        | 10 | 10 | 9    | 10 | 10 | 10    | 10 | 10 | 0     | 0  | 10 | 0    | 0   |
| 1700         |                                       | 10 | 9         | 8  | 9  | 10   | 0  | 9  | 10    | 10 | 10 | 0     | 0  | 8  | 0    | 0   |
| 1900         |                                       | 10 | 0         | 0  | 0  | 0    | 0  | 10 | 10    | 0  | 10 | 0     | 0  | 0  | 0    | 0   |
| 2100         |                                       | 8  | 0         | 0  | 9  | 0    | 0  | 10 | 3     | 0  | 10 | 0     | 0  | 0  | 0    | 0   |
| 2300         |                                       | 9  | 0         | 0  | 5  | 0    | 0  | 10 | 0     | 0  | 0  | 0     | 0  | 0  | 0    | 0   |
| 0100         | 14 June                               | 10 | 0         | 0  | 0  | 0    | 0  | 10 | 0     | 0  | 0  | 0     | 0  | 0  | 0    | 0   |
| 0300         |                                       | 0  | 0         | 0  | 0  | 0    | 0  | 0  | 0     | 0  | 0  | Ű     | 0  | 0  | 0    | 0   |
| 0500         |                                       | 0  | 0         | 0  | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0    | 0   |
| 0700         |                                       | 10 | 8         | 0  | 10 | 2    | 0  | 10 | 0     | 0  | 10 | 8     | 0  | 10 | 2    | 0   |
| 0900         |                                       | 10 | 10        | 10 | 10 | 9    | 10 | 10 | 10    | 9  | 10 | 9     | 0  | 10 | 7    | 0   |
| 1100         |                                       | 10 | 10        | 9  | 10 | 10   | 10 | 10 | 10    | 0  | 10 | 6     | 0  | 10 | 5    | 0   |

## Table 15 SCORE SHEET OF 10-MILE FOREST TEST 2 SITE 2 RECEIVING

\* Doublet antenna. † Slant-wire antenna. § Whip antenna.

の出るの

|         |    | Table 1 | l6     |      |   |
|---------|----|---------|--------|------|---|
| SUMMARY | OF | 10-M1LE | FOREST | TEST | 2 |

|                 |     | HC-16 | 2   |     | 77-AN       | 1   | AN  | /TRC- | 88  |     | TRP-4 |     | A   | N/GRC | - 9 |
|-----------------|-----|-------|-----|-----|-------------|-----|-----|-------|-----|-----|-------|-----|-----|-------|-----|
| SITE RECEIVING  | D*  | st    | w\$ | D   | S           | W   | D   | s     | W   | D   | s     | w`  | D   | S     | w   |
| Site 0          |     |       |     |     |             |     |     |       |     |     | Ì     |     |     |       |     |
| Total Messages  | 240 | 240   | 240 | 240 | 240         | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 240 |
| Number Correct  | 181 | 113   | 89  | 111 | 60          | 49  | 178 | 98    | 81  | 107 | 56    | 19  | 103 | 30    | 10  |
| Percent Correct | 75% | 47%   | 37% | 46% | 25%         | 20% | 74% | 41%   | 34% | 44% | 23%   | 8%  | 43% | 12%   | 4%  |
| Site 2          |     |       |     |     |             |     |     |       |     |     |       |     |     |       |     |
| Total Messages  | 240 | 240   | 240 | 240 | 240         | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 240 |
| Number Correct  | 183 | 103   | 87  | 123 | 63          | 45  | 189 | 122   | 88  | 139 | 50    | 19  | 107 | 20    | 6   |
| Percent Correct | 76% | 43%   | 36% | 51% | <b>2</b> 6% | 19% | 79% | 51%   | 37% | 58% | 21%   | 8%  | 45% | 8%    | 3%  |

\* Doublet antenna. † Slant-wire antenna. \$ Whip antenna.



33

N.

|              |         |    | HC - 162 |     |    | 77-AM |   | AN | /TRC• | 88 |    | TRP•4 |   | AN | /GRC· | 9 |
|--------------|---------|----|----------|-----|----|-------|---|----|-------|----|----|-------|---|----|-------|---|
| LOC          | AL TIME | D* | st       | w\$ | D  | S     | W | D  | s     | W  | D  | s     | w | D  | s     | W |
| 0900         | 9 June  | 10 | 0        | 0   | 10 | 7     | 0 | 10 | 10    | 6  | 4  | 0     | 0 | 10 | 0     | 0 |
| 1100         |         | 6  | 0        | 0   | 9  | 0     | 0 | 10 | 8     | 0  | 9  | 0     | 0 | 10 | 0     | 0 |
| 1300         |         | 7  | 0        | 0   | 10 | 0     | 0 | 10 | 10    | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 1500         |         | 9  | 7        | 0   | 10 | 0     | 0 | 10 | 8     | 0  | 9  | 0     | 0 | 9  | 0     | 0 |
| 1700         |         | 10 | 10       | 0   | 10 | 10    | 0 | 8  | 7     | 0  | 6  | 0     | 0 | 10 | 0     | 0 |
| 1900         |         | 9  | 0        | 0   | 0  | 0     | 0 | 10 | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| <b>21</b> C0 |         | 8  | 0        | 0   | 5  | 0     | 0 | 10 | 0     | 0  | 8  | 0     | 0 | 0  | 0     | Ü |
| <b>230</b> 0 |         | 0  | 0        | 0   | 0  | 0     | 0 | 9  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0100         | 10 June | 10 | 10       | 0   | 7  | 0     | 0 | 9  | 9     | 7  | 10 | 3     | 0 | 0  | 0     | 0 |
| 0300         |         | 10 | 0        | 0   | 0  | 0     | 0 | 9  | 10    | 0  | 4  | 0     | 0 | 10 | 0     | 0 |
| 0500         |         | 0  | 0        | 0   | 0  | 0     | 0 | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0700         |         | 10 | 9        | 0   | 10 | 10    | 8 | 10 | 9     | 10 | 10 | 3     | 0 | 7  | 0     | 0 |
| 0900         |         | 10 | 10       | 0   | 10 | 6     | 0 | 10 | 9     | 9  | 10 | 0     | 0 | 0  | 0     | 0 |
| 1100         | •       | 10 | 0        | 0   | 10 | 0     | 0 | 10 | 10    | 0  | 10 | 0     | 0 | 0  | 0     | 0 |
| 1300         |         | 10 | 8        | 0   | 10 | 0     | 0 | 10 | 10    | 4  | 10 | 0     | 0 | 10 | 0     | 0 |
| 1500         |         | 10 | 10       | 8   | 10 | 0     | 0 | 10 | 10    | 0  | 9  | 0     | 0 | 10 | 0     | 0 |
| 1700         |         | 10 | 10       | 9   | 9  | 9     | 0 | 10 | 10    | 7  | 8  | 0     | 0 | 9  | 0     | 0 |
| 1900         |         | 10 | 10       | 0   | 8  | 9     | 0 | 10 | 9     | 7  | 1  | 0     | 0 | 6  | 0     | 0 |
| 2100         |         | 6  | 0        | 0   | 0  | 0     | 0 | 10 | 10    | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 2300         |         | 8  | 1        | 0   | 0  | 0     | 0 | 10 | 6     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0100         | 11 June | 0  | 0        | 0   | 0  | 0     | 0 | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0300         |         | 0  | 0        | 0   | 0  | 0     | 0 | 7  | 0     | 0  | 0  | U     | 0 | 0  | 0     | 0 |
| 0500         |         | 0  | 0        | 0   | 0  | 0     | 0 | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0700         |         | 9  | 8        | 0   | 8  | 0     | 0 | 10 | 0     | 0  | 6  | 0     | 0 | 9  | 0     | 0 |

## Table 17 SCORE SHEET OF 22-MILE FOREST TEST 2 SITE 0 RECEIVING

\* Doublet antenna.

† Slant-wire antenna.

S Whip antenna.

「「ないないないない」のない

|              |         | 1  | HC - 16 | 2   |    | 77 - AM |   | AN | /TRC- | 88 |    | TRP-4 |   | AN | /GRC- | 9 |
|--------------|---------|----|---------|-----|----|---------|---|----|-------|----|----|-------|---|----|-------|---|
| LUCA         | LTIME   | D* | st      | w\$ | D  | s       | W | D  | S     | W  | D  | s     | W | D  | s     | W |
| 0900         | 9 June  | 10 | 0       | 0   | 10 | 10      | 0 | 10 | 10    | 10 | 10 | 0     | 0 | 10 | 0     | 0 |
| 1100         |         | 10 | 0       | 0   | 10 | 0       | 0 | 10 | 9     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 1300         |         | 10 | 0       | 0   | 10 | 0       | 0 | 10 | 9     | 0  | 10 | 0     | 0 | 9  | 0     | 0 |
| 1500         |         | 10 | 10      | 0   | 10 | 0       | 0 | 10 | 9     | 0  | 10 | 0     | 0 | 0  | 0     | 0 |
| 1700         |         | 10 | 10      | 0   | 10 | 7       | 0 | 10 | 9     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 1900         |         | 9  | 0       | 0   | 6  | 0       | 0 | 10 | 0     | 0  | 8  | 0     | 0 | 0  | 0     | 0 |
| 2100         |         | 10 | 0       | 0   | 7  | 0       | 0 | 10 | 0     | 0  | 10 | 0     | 0 | 0  | 0     | 0 |
| <b>23</b> 00 |         | 10 | 0       | 0   | 0  | 0       | 0 | 10 | 0     | 0  | 0  | í o   | 0 | 0  | 0     | 0 |
| 0100         | 10 June | 9  | 0       | 0   | 9  | 0       | 0 | 10 | 10    | 9  | 10 | 0     | 0 | 0  | 0     | 0 |
| 0300         |         | 9  | 0       | 0   | 0  | 0       | 0 | 10 | 10    | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 0500         |         | 0  | 0       | 0   | 0  | 0       | 0 | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0700         |         | 10 | 10      | 0   | 10 | 10      | 8 | 10 | 10    | 9  | 10 | 10    | 0 | 4  | 0     | 0 |
| 0900         |         | 10 | 10      | 0   | 9  | 9       | 0 | 10 | 10    | 10 | 9  | 0     | 0 | 0  | 0     | 0 |
| 1100         |         | 0  | 0       | 0   | 10 | 0       | 0 | 10 | 10    | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 1300         |         | 10 | 10      | 0   | 10 | 0       | 0 | 10 | 9     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 1500         |         | 10 | 10      | 9   | 10 | 0       | 0 | 10 | 6     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 1700         |         | 10 | 10      | 10  | 10 | 10      | 0 | 10 | 10    | 9  | 8  | 0     | 0 | 10 | 0     | 0 |
| 1900         |         | 10 | 10      | 0   | 6  | 0       | C | 10 | 10    | 9  | 10 | 0     | 0 | 9  | 0     | 0 |
| 2100         |         | 10 | 0       | 0   | 0  | 0       | 0 | 10 | 10    | 0  | 0  | 0     | 0 | 9  | 0     | 0 |
| 2300         |         | 10 | 3       | 0   | 0  | 0       | 0 | 10 | 4     | 0  | 10 | 0     | 0 | 0  | 0     | 0 |
| 0100         | 11 June | 0  | 0       | 0   | 0  | 0       | 0 | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0300         |         | 0  | 0       | 0   | 0  | 0       | 0 | 9  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0500         |         | 0  | 0       | 0   | 0  | 0       | 0 | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0700         |         | 10 | 10      | 0   | 10 | 0       | 0 | 10 | 0     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |

## Table 18 SCORE SHEET OF 22-MILE FOREST TEST 2 SITE 3 RECEIVING

\* Doublet antenna. † Slant-wire antenna. \$ Whip antenna.

|         |    | Table 1 | L9     |      |   |
|---------|----|---------|--------|------|---|
| SUMMARY | OF | 22-MILE | FOREST | TEST | 2 |

|                 |     | HC-16 | 2   |     | 77 - AN |     | AN  | /TRC- | 83  |     | TRP-4 |     | A   | N/GRC | • 9 |
|-----------------|-----|-------|-----|-----|---------|-----|-----|-------|-----|-----|-------|-----|-----|-------|-----|
| SITE RECEIVING  | D*  | st    | w\$ | D   | s       | W   | υ   | 8     | W   | D   | s     | W   | D   | s     | w   |
| Site 0          |     |       |     |     |         |     |     |       |     |     |       |     |     |       |     |
| Total Messages  | 240 | 240   | 240 | 240 | 240     | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 240 |
| Number Correct  | 172 | 93    | 17  | 130 | 51      | 8   | 202 | 145   | 50  | 124 | 6     | 0   | 110 | 0     | 0   |
| Percent Correct | 72% | 39%   | 7%  | 57% | 21%     | 3%  | 84% | 60%   | 21% | 52% | 3%    | 0%  | 46% | 0%    | 0%  |
| Site 3          | 1   |       |     |     |         |     |     |       |     |     |       |     |     | i i   |     |
| Total Messages  | 240 | 240   | 240 | 240 | 240     | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 240 |
| Number Correct  | 187 | 93    | 19  | 147 | 46      | 8   | 209 | 145   | 56  | 165 | 10    | 0   | 111 | 0     | 0   |
| Percent Correct | 78% | 39%   | 8%  | 61% | 19%     | 3%  | 87% | 60%   | 23% | 69% | 4%    | 0%  | 46% | 0%    | 0%  |

\* Doublet antenna. † Slant-wire antenna. \$ Whip antenna.

36

「日本のない」の「「日本のない」」の「日本のない」」





37

「「「「「「「「」」」」」

## D. RESULTS FROM DELTA AREA TEST

•

## Table 20 SCORE SHEET OF 5-MILE DELTA TEST SITE 0 RECEIVING

|      |        |    | HC-16 | 2               |    | 77-A | M  | AN | /TRC- | 88 |    | TRP-4 |    | A  | N/GRC | .9 |
|------|--------|----|-------|-----------------|----|------|----|----|-------|----|----|-------|----|----|-------|----|
| LOCA | L TIME | D* | st    | <sub>w</sub> \$ | D  | s    | ₩  | D  | s     | W  | D  | s     | W  | D  | s     | W  |
| 1100 | 22 Apr |    |       |                 | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 0  | 0     | 0  |
| 1300 |        |    |       |                 | 10 | 10   | 19 | 0  | 10    | 10 | 10 | 10    | 10 | ່ງ | 0     | 0  |
| 1500 |        | 10 | 10    | 10              | 10 | 10   | 10 | 10 | 10    | 10 | 9  | 10    | 10 | 0  | 0     | 0  |
| 1700 |        | 10 | 10    | 10              | 0  | 10   | 10 | 0  | 10    | 10 | 9  | 10    | 10 | 0  | 0     | 0  |
| 1900 |        | 10 | 10    | 10              | 0  | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 0  | 10    | 10 |
| 2100 |        | 10 | 10    | 10              | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 0  | 10    | 0  |
| 2300 |        | 10 | 10    | 10              | 6  | 10   | 10 | 9  | 8     | 10 | 8  | 0     | 9  | 7  | 10    | 10 |
| 0100 | 23 Apr | 10 | 10    | 10              | 0  | 9    | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 8  | 10    | 10 |
| 0300 | •      | 2  | ,     | 0               | 0  | 7    | C  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 0501 |        | 0  | 10    | 10              | 0  | 0    | 0  | 0  | 10    | 10 | 0  | 8     | 10 | 0  | 10    | 10 |
| 0700 |        | 10 | 10    | 10              | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 10 | 10    | 10 |
| 0900 |        | 10 | 10    | 10              | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 10 | 10    | 0  |
| 1100 |        | 10 | 10    | 10              | 10 | 10   | 10 | 0  | 10    | 10 | 10 | 10    | 10 | 10 | 10    | 10 |
| 1300 |        | 10 | 10    | 10              | 8  | 10   | 10 | 0  | 10    | 10 | 10 | 10    | 10 | 10 | 9     | 10 |
| 1500 |        | 10 | 10    | 10              | 10 | 10   | 10 | 9  | 10    | 10 | 10 | 10    | 9  | 7  | 5     | 9  |
| 1700 |        | 10 | 10    | 9               | 0  | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 10 | 10    | 9  |
| 1900 |        | 10 | 10    | 10              | 0  | 10   | 10 | 0  | 10    | 10 | ?  | 10    | 10 | 10 | 10    | 10 |
| 2100 | •      | 0  | 10    | 10              | 10 | 10   | 10 | 9  | 10    | 10 | 9  | 10    | 10 | 10 | 10    | 10 |
| 2300 |        | Ú  | 10    | 10              | 0  | 10   | 10 | 0  | 10    | 10 | 0  | 10    | 0  | Û  | 0     | 0  |
| 0100 | 24 Apr | 0  | 10    | 10              | 0  | 0    | 9  | 0  | 10    | 9  | 0  | 10    | 10 | 0  | 10    | 9  |
| 0300 |        | 9  | 10    | 10              | 0  | 10   | 10 | 0  | 10    | 8  | 0  | 10    | 10 | 0  | 10    | 10 |
| 0500 |        | 0  | 10    | 10              | 0  | 10   | 10 | 0  | 10    | 10 | 0  | 10    | 10 | 0  | 10    | 10 |
| 0700 |        | 10 | 9     | 10              | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 10 | 10    | 10 |
| 0900 |        | 10 | 9     | 10              | 10 | 10   | 10 | 0  | 10    | 10 | 10 | 10    | 10 | 0  | 7     | 7  |

\* Doublet antenna. † Slant-wire antenna. § Whip antenna.

|              |    |         |     |    |      |    |    |       |    |    |       |    | r <u> </u> |       |     |
|--------------|----|---------|-----|----|------|----|----|-------|----|----|-------|----|------------|-------|-----|
|              |    | HC - 16 | 2   |    | 77-A | M  | AN | /TRC- | 88 |    | TRP-4 |    | A          | N/GRC | - 9 |
| LOCAL TIME   | D* | st      | w\$ | Ð  | s    | W  | D  | s     | W  | υ  | s     | w  | D          | s     | W   |
| 1100 22 Apr  |    |         |     | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 0          | 0     | 0   |
| 1300         |    |         |     | 10 | 10   | 10 | 0  | 10    | 10 | 10 | 10    | 10 | 0          | 0     | 0   |
| 1500         | 0  | 10      | 10  | 10 | 10   | 10 | 9  | 10    | 10 | 10 | 10    | 10 | 0          | 0     | 0   |
| 1700         | 9  | 10      | 9   | 0  | 10   | 10 | 0  | 10    | 10 | 9  | 10    | 10 | 0          | 0     | 0   |
| 1900         | 10 | 10      | 10  | 0  | 10   | 10 | 6  | 9     | 4  | 10 | 7     | 9  | 0          | 10    | 0   |
| 2100         | 10 | 10      | 10  | 9  | 10   | 10 | 5  | 5     | 6  | 9  | 9     | 8  | 0          | 0     | 0   |
| 2300         | 10 | 10      | 10  | 0  | 10   | 6  | 6  | 9     | 8  | 4  | 0     | 0  | 10         | 10    | 0   |
| 0100 23 Apr  | 10 | 10      | 10  | 7  | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 8  | 8          | 10    | 10  |
| 0300         | 0  | 10      | 0   | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0          | 0     | 0   |
| 0500         | 0  | 10      | 10  | 0  | 0    | 0  | 0  | 8     | 10 | 0  | 10    | 10 | 0          | 10    | 10  |
| 0700         | 10 | 10      | 10  | 9  | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 10         | 10    | 10  |
| 0900         | 10 | 10      | 10  | 5  | 10   | 10 | 4  | 10    | 10 | 10 | 10    | 10 | 10         | 10    | 0   |
| 1100         | 10 | 10      | 10  | 10 | 10   | 10 | 0  | 10    | 10 | 10 | 9     | 10 | 10         | 10    | 10  |
| 1300         | 10 | 10      | 10  | 9  | 10   | 10 | 0  | 10    | 10 | 10 | 10    | 10 | 10         | 10    | 10  |
| 1500         | 10 | 10      | 7   | 8  | 10   | 10 | 0  | 10    | 10 | 10 | 10    | 10 | 10         | 10    | 8   |
| 1700         | 8  | 10      | 10  | 0  | 10   | 9  | 9  | 10    | 10 | 10 | 10    | 10 | 10         | 10    | 10  |
| 1900         | 8  | 10      | 10  | 0  | 10   | 10 | 0  | 9     | 8  | 5  | 8     | 3  | 10         | 10    | 5   |
| <b>21</b> 00 | 0  | 10      | 10  | 10 | 10   | 10 | 3  | 8     | 9  | 3  | 6     | 3  | 10         | 0     | 10  |
| 2300         | 0  | 10      | 2   | 0  | 10   | 10 | 0  | 10    | 10 | 0  | 7     | 0  | 0          | 0     | 0   |
| 0100 24 Apr  | 0  | 10      | 10  | 0  | 10   | 10 | 0  | 10    | 10 | Û  | 10    | 7  | 0          | 10    | 10  |
| 0300         | 10 | 10      | 9   | 0  | 10   | 10 | 0  | 10    | 10 | 0  | 10    | 8  | 0          | 9     | 10  |
| 0500         | 0  | 10      | 10  | 0  | 10   | 10 | 0  | 10    | 10 | 0  | 4     | 10 | 0          | 10    | 10  |
| 0700         | 10 | 10      | 10  | 6  | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 10         | 10    | 10  |
| 0900         | 10 | 10      | 9   | 10 | 9    | 10 | 0  | 10    | 10 | 10 | 10    | 9  | 0          | 10    | 10  |

#### Table 21 SCORE SHEET OF 5-MILE DELTA TEST SITE 1 RECEIVING

\* Doublet antenna,
† Slant-wire antenna,
\$ Whip antenna.

PARTICIPACIÓN DE LA COMPACIÓN DE LA COMPACIÓN

39

|                 | L   | HC-16 | 2   |     | 77 <b>-</b> AM |     | AN  | /TRC- | 88  |     | TRP-4 |     | A1  | N/GRC | - 9 |
|-----------------|-----|-------|-----|-----|----------------|-----|-----|-------|-----|-----|-------|-----|-----|-------|-----|
| SITE RECEIVING  | D*  | st    | WŞ. | D   | s              | W   | D   | s     | W   | D   | S     | W   | D   | 8     | W   |
| Site 0          |     |       |     |     |                |     |     |       |     |     |       |     |     |       |     |
| Total Messages  | 220 | 220   | 220 | 240 | 240            | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 24  |
| Number Correct  | 161 | 217   | 209 | 124 | 216            | 219 | 117 | 228   | 227 | 172 | 218   | 218 | 102 | 171   | 15  |
| Percent Correct | 73% | 99%   | 95% | 52% | 90%            | 91% | 49% | 95%   | 95% | 72% | 91%   | 91% | 43% | 71%   | 64  |
| Site 1          |     |       |     |     |                |     |     |       |     |     |       |     |     |       |     |
| Total Messages  | 220 | 220   | 220 | 240 | 240            | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 24  |
| Number Correct  | 145 | 220   | 196 | 113 | 219            | 215 | 82  | 218   | 215 | 160 | 200   | 185 | 108 | 159   | 13  |
| Percent Correct | 66% | 100%  | 89% | 47% | 91%            | 90% | 34% | 91%   | 90% | 67% | 83%   | 77% | 45% | 66%   | 55  |

Table 22 SUMMARY OF 5-MILE DELTA TEST

\* Doublet antenna.

Slant-wire antenna.
Whip antenna.

Sec.





## Table 23 SCOBF SHEET OF 10-MILE DELTA TEST SITE 0 RECEIVING

| <u>, , , , , , , , , , , , , , , , , , , </u> | 1  | HC-162 |    |    | 77 - AI | n  | AN | /TRC- | 88  |    | TRP-4 |    | AN     | /GRC- | 9  |
|-----------------------------------------------|----|--------|----|----|---------|----|----|-------|-----|----|-------|----|--------|-------|----|
| LOCAL TIME                                    | D* | st     | ₩Ş | D  | s       | W  | D  | s     | w   | D  | S     | W  | D      | s     | W  |
| 1000 2 May                                    | 10 | 10     | 10 | 10 | 10      | 10 | 10 | 10    | 10  | 10 | 10    | 10 | b      | 10    | 10 |
| 1200                                          | 10 | 10     | 10 | 10 | 9       | 9  | 10 | 10    | 9   | 10 | 9     | 0  | 0      | 0     | 0  |
| 1400                                          | 10 | 10     | 10 | 10 | 10      | 10 | 10 | 10    | 10  | 9  | 10    | 10 | 0      | 8     | 0  |
| 1600                                          | 10 | 10     | 10 | 7  | 10      | 10 | 9  | 10    | 9   | 9  | 10    | 8  | 6      | 9     | 7  |
| 1800                                          | 10 | 10     | 10 | 10 | 10      | 10 | 10 | 10    | , c | 10 | 10    | 0  | 10     | 9     | 0  |
| 2000                                          | 10 | 10     | 10 | 7  | 10      | 10 | 10 | 10    | 10  | 7  | 0     |    | ····-9 | 10    | 0  |
| 2200                                          | 0  | 0      | 0  | 9  | 10      | 10 | 10 | 10    | 10  | 0  | 0     | 0  | 10     | 9     | 0  |
| 2400                                          | 10 | 10     | 0  | 7  | 10      | 10 | 10 | 0     | 0   | 0  | 0     | 0  | 0      | 0     | 0  |
| 0200 3 May                                    | 10 | 10     | 7  | 10 | 10      | 10 | 0  | 0     | U   | 0  | 0     | 0  | 0      | 0     | 0  |
| 0400                                          |    |        |    | 0  | 10      | 10 | 0  | 0     | 0   | 10 | 10    | 10 | 0      | 0     | Û  |
| 0600                                          |    |        |    | 9  | 10      | 10 | 0  | 0     | 0   | 0  | 10    | 10 | 9      | 0     | 0  |
| 0800                                          |    |        |    | 10 | 10      | 10 | 10 | 10    | 10  | 0  | 0     | 0  | 9      | 10    | 0  |
| 1000                                          |    | -,-    |    | 9  | 9       | 10 | 10 | 9     | 10  | 9  | 10    | 10 | 10     | 10    | 0  |
| 1200                                          | 10 | 10     | 10 | 10 | 10      | 10 | 10 | 10    | 10  | 10 | 10    | 10 | 10     | 10    | 10 |
| 1400                                          | 10 | 10     | 10 | 10 | 10      | 10 | 10 | 10    | 10  | 10 | 10    | 10 | 9      | 10    | 10 |
| 1600                                          | 9  | 10     | 10 | 10 | 10      | 10 | 10 | 10    | 10  | 9  | 10    | 8  | 4      | 10    | 10 |
| 1800                                          | 10 | 10     | 10 | 10 | 10      | 10 | 10 | 10    | 10  | 10 | 10    | 5  | 3      | 10    | 0  |
| 2000                                          | 10 | 10     | 10 | ç  | 10      | 10 | 10 | 10    | 10  | 6  | 8     | 0  | 0      | 0     | 0  |
| 2200                                          | 0  | 0      | 0  | 0  | 10      | 10 | 0  | 10    | 10  | 0  | 0     | 0  | 0      | 0     | 0  |
| 2400                                          | 0  | 0      | 0  | 10 | 10      | 10 | 10 | 10    | 10  | 10 | 10    | 6  | 0      | 0     | 0  |
| 0200 4 May                                    | 0  | 0      | 0  | 0  | 0       | 0  | 0  | 0     | 0   | 0  | 0     | 0  | 0      | 0     | 0  |
| 0400                                          | 0  | 0      | 0  | 0  | 0       | 0  | 0  | 0     | 0   | 0  | 0     | 0  | 0      | 0     | 0  |
| 0600                                          | 0  | 0      | 0  | 0  | 0       | 0  | 0  | 0     | 0   | 0  | 0     | 0  | 0      | 0     | 0  |
| 0800                                          | 0  | 0      | 0  | 0  | 0       | 0  | 0  | 0     | 0   | 0  | 0     | 0  | 0      | 0     | 0  |

Doublet antenna.

† Slant-wire antenna.

§ Whip antenna.

|       |       | ŀ  | IC-162 |     |    | 77-A     | M  | AN | /TRC- | 88  | ·  | TRP-4 |    | A  | I/GRC | .9 |
|-------|-------|----|--------|-----|----|----------|----|----|-------|-----|----|-------|----|----|-------|----|
| LOCAL | TIMF  | D• | st     | w\$ | n  | s        | w  | n  | s     | w   | D  | s     | w  | D  | s     | w  |
| 1000  | 2 May | 10 | 10     | 10  | 10 | 10       | 10 | 10 | 10    | 10  | 10 | 10    | 10 | 10 | 10    | 10 |
| 1200  |       | 10 | 10     | 10  | 10 | 10       | 9  | 10 | 10    | 10  | 9  | 10    | 10 | 0  | ()    | 0  |
| 1400  |       | 10 | 10     | 10  | 10 | 10       | 10 | 10 | 10    | 10  | 10 | 10    | 8  | 10 | 10    | 0  |
| 1600  |       | 10 | 10     | 10  | 9  | 10       | 10 | 9  | 10    | 10  | 8  | 10    | 10 | 10 | 10    | 10 |
| 1800  |       | 10 | 10     | 10  | 8  | 10       | 10 | 10 | 10    | 8   | 10 | 8     | 0  | 10 | 4     | 0  |
| 2000  |       | 10 | 10     | 10  | 10 | 10       | 10 | 10 | 9     | 10  | 5  | 0     | 0  | 10 | 10    | 0  |
| 2200  |       | 0  | 0      | 0   | 6  | 10       | 10 | 10 | 10    | 10  | 0  | 0     | 0  | 9  | 10    | 0  |
| 2400  |       | 0  | 0      | 0   | 9  | 10       | 10 | 8  | 0     | 0   | 7  | 0     | 0  | 0  | 0     | 0  |
| 0200  | 3 May | 0  | 0      | 0   | 7  | <br>  10 | 10 | 9  | 8     | 10  | 0  | 0     | 0  | 0  | 10    | 0  |
| 0400  |       |    |        |     | 0  | 10       | 10 | 10 | 10    | 10  | 0  | 0     | 0  | 5  | 10    | 9  |
| 0600  |       |    |        |     | 10 | 9        | 10 | 10 | 8     | 8   | 0  | 0     | 0  | 10 | 10    | 10 |
| 0800  |       |    |        |     | 10 | 10       | 10 | 10 | 10    | į o | 0  | 0     | e  | 10 | 10    | 0  |
| 1000  |       |    |        |     | 8  | 10       | 10 | 10 | 10    | 10  | 9  | 10    | 10 | 10 | 10    | 0  |
| 1200  |       | 10 | 10     | 10  | 10 | 10       | 10 | 10 | 10    | 10  | 10 | 10    | 10 | 10 | 10    | 10 |
| 1400  |       | 10 | 10     | 10  | 10 | 10       | 10 | 10 | 10    | 10  | 10 | 10    | 10 | 10 | 10    | 10 |
| 1600  |       | 9  | 10     | 10  | 7  | 10       | 10 | 10 | 10    | 10  | 10 | 10    | 10 | 10 | 10    | 10 |
| 1800  |       | 8  | 10     | 10  | 8  | 10       | 6  | 10 | 10    | 10  | 9  | 9     | 0  | 8  | 10    | 9  |
| 2000  |       | 10 | 10     | 10  | 9  | 10       | 10 | 10 | 10    | 10  | 6  | 10    | 0  | 0  | 0     | 0  |
| 2200  |       | 0  | ð      | 0   | 0  | 10       | 10 | 10 | 10    | 10  | 0  | 0     | 0  | 0  | 0     | 0  |
| 2400  |       | 0  | 0      | 0   | 10 | 10       | 9  | 10 | 10    | 10  | 0  | 6     | 0  | 9  | 0     | 0  |
| 0200  | 4 May | 0  | 0      | 0   | 0  | 0        | 0  | 0  | 0     | 0   | 0  | 0     | 0  | 0  | 0     | 0  |
| 0400  |       | 0  | 0      | 0   | 0  | 0        | 0  | 0  | 0     | 0   | 0  | 0     | 0  | 0  | 0     | 0  |
| 0600  |       | 0  | 0      | 0   | 0  | 0        | 0  | 0  | 0     | 0   | C  | 0     | 0  | 0  | 0     | 0  |
| 0800  |       | 0  | 0      | 0   | 0  | 0        | 0  | 0  | 0     | 0   | 0  | 0     | 0  | 0  | 0     | 0  |

## Table 24 SCORE SHEET OF 10-MILE DELTA TEST SITE 2 RECEIVING

Doublet antenna.
 f Slant-wire antenna.
 § Whip antenna.

|                 |     | HC-16 | 2   |     | 77-AI | N   | AN  | /TRC- | 88  |     | TRP-4 |     | AN AN | I/GRC | 9   |
|-----------------|-----|-------|-----|-----|-------|-----|-----|-------|-----|-----|-------|-----|-------|-------|-----|
| SITE RECEIVING  | D*  | st    | w\$ | D   | 8     | W   | D   | S     | W   | D   | s     | W   | D     | s     | W   |
| Site 0          |     |       |     |     |       |     |     |       |     |     |       |     |       |       |     |
| Total Messages  | 200 | 200   | 200 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240   | 240   | 240 |
| Number Correct  | 129 | 130   | 117 | 167 | 198   | 199 | 159 | 159   | 157 | 129 | 137   | 97  | 97    | 115   | 47  |
| Percent Correct | 64% | 65%   | 58% | 70% | 83%   | 83% | 66% | 65%   | 65% | 54% | 57%   | 40% | 40%   | 48%   | 20% |
| Site 2          |     | j     |     |     |       |     |     |       |     |     |       |     |       |       |     |
| Total Messages  | 200 | 200   | 200 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240   | 240   | 240 |
| Number Correct  | 107 | 110   | 110 | 161 | 199   | 194 | 196 | 185   | 176 | 113 | 113   | 78  | 132   | 144   | 78  |
| Percent Correct | 54% | 55%   | 55% | 67% | 83%   | 81% | 82% | 77%   | 73% | 47% | 47%   | 32% | 55%   | 60%   | 329 |

Table 25 SCORE SHEET OF 10-MILE DELTA TEST

\* Doullet antenna.

† Slant-wire antenna.

§ whip antenna.

44

東京法法は法法法院を正法





「「ない」は、「ない」のです。

## Table 26

#### SCORE SHEET OF 15-MILE DELTA TEST SITE 0 RECEIVING

|             |    | HC162 | 2   |    | 77-4 | M  | AN | /TRC- | 88 |    | TRP-4 |    | A  | i/GRC- | 9  |
|-------------|----|-------|-----|----|------|----|----|-------|----|----|-------|----|----|--------|----|
| LOCAL TIME  | D. | st    | w\$ | D  | s    | W  | D  | s     | W  | D  | s     | W  | D  | s      | W  |
| 0900 30 Apı | 10 | 10    | 10  | 10 | 10   | 10 | 10 | 10    | 9  | 10 | 10    | 10 | 0  | 0      | 0  |
| 1100        | 10 | 10    | 10  | 9  | 10   | 10 | 0  | 10    | 9  | 10 | 10    | 10 | 0  | 0      | 0  |
| 1300        | 10 | 10    | 10  | 10 | 10   | 9  | 7  | 10    | 10 | 9  | 10    | 10 | 0  | 0      | 0  |
| 1500        | 10 | 10    | 10  | 2  | 10   | 10 | 0  | 10    | 9  | 7  | 9     | 9  | 0  | 0      | 0  |
| 1700        | 10 | 10    | 10  | 9  | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 10 | 0      | 0  |
| 1900        | 10 | 10    | 10  | 10 | 10   | 0  | 8  | 9     | 7  | 10 | 0     | 0  | 10 | 0      | 0  |
| 2100        | 10 | 10    | 6   | 0  | 0    | 0  | 10 | 10    | 4  | 10 | 0     | 0  | ò  | 0      | 0  |
| 2300        | 10 | 10    | 10  | 10 | 9    | 8  | 10 | 10    | 8  | 10 | 5     | 0  | 10 | 0      | 0  |
| 0100 l May  | 10 | 10    | 7   | 10 | 0    | 10 | 10 | 10    | 10 | 10 | 7     | 0  | 10 | 0      | 0  |
| 0300        | 0  | 0     | 0   | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0      | 0  |
| 0500        | 0  | 0     | 0   | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0      | 0  |
| 0700        | 10 | 10    | 10  | 10 | 10   | 10 | 10 | 10    | 10 | 9  | 10    | 10 | 10 | 9      | 9  |
| 0900        | 10 | 10    | 10  | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 10 | 10     | 10 |
| 1100        | 9  | 10    | 10  | 9  | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 0  | 0      | 0  |
| 1300        | 0  | 10    | 10  | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 0  | 0      | 0  |
| 1500        | 0  | 10    | 10  | 8  | 10   | 10 | 0  | 10    | 10 | 8  | 10    | 10 | 0  | 0      | 0  |
| 1700        | 10 | 10    | 10  | 9  | 10   | 10 | 10 | 9     | 10 | 10 | 10    | 9  | 9  | 10     | 10 |
| 1900        | 10 | 10    | 9   | 10 | 10   | 10 | 9  | 9     | 7  | 8  | 0     | 0  | 10 | 0      | 0  |
| 2100        | 10 | 10    | 7   | 9  | 10   | 6  | 10 | 10    | 10 | 10 | 0     | 0  | 10 | 0      | 0  |
| 2300        | 10 | 9     | 9   | 10 | 10   | 10 | 10 | 10    | 10 | 1  | 0     | 0  | 0  | 0      | 0  |
| 0100 2 May  | 0  | 10    | 9   | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 10    | 0  | 10 | 0      | 0  |
| 0300        | 0  | 0     | 0   | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | e      | 0  |
| 0500        | 0  | 0     | 0   | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0      | 0  |
| 0700        | 0  | 0     | 0   | 0  | 0    | 0  | 0  | 0     | 0  | Û  | 0     | 0  | 0  | 0      | 0  |

\* Doublet (rtenna. † Slant-wire antenna.

S Whip antenna.

|             |     | IC- 1 52 | 2  |    | 77-AM |    | AN | /TRC- | 88       |    | TRP-4 |    | AN | /GRC- | 9 |
|-------------|-----|----------|----|----|-------|----|----|-------|----------|----|-------|----|----|-------|---|
| LOCAL TIME  | D+  | st       | *S | D  | s     | ¥  | D  | S     | W        | D  | s     | W  | D  | S     | W |
| 0900 30 Apr | 10  | 10       | 10 | 8  | 10    | 10 | 10 | 10    | <br>  10 | 9  | 10    | 10 | 0  | 0     | 0 |
| 1100        | 5   | 10       | 10 | 10 | 10    | 10 | 0  | 10    | 10       | 10 | 10    | 9  | 0  | 0     | 0 |
| 1300        | 10  | 10       | 9  | 10 | 10    | 9  | 0  | 10    | 10       | 7  | 9     | 9  | 0  | 0     | 0 |
| 1500        | 10  | 9        | 10 | 8  | 9     | 10 | 0  | 8     | 10       | 8  | 9     | 8  | 0  | 0     | 0 |
| 1700        | 10  | 10       | 10 | 8  | 10    | 10 | 10 | 10    | 10       | 9  | 4     | 7  | 9  | 0     | 0 |
| 1900        | 10  | 9        | 10 | 10 | 0     | 0  | 10 | 6     | 1        | 9  | 0     | 0  | 10 | 0     | 0 |
| 2100        | 10  | 10       | 10 | 0  | 0     | 0  | 10 | 6     | 10       | 10 | 0     | 0  | 9  | 0     | 0 |
| 2300        | 10  | 10       | 8  | 10 | 8     | 10 | 10 | 10    | 10       | 9  | 7     | 0  | 8  | 0     | 0 |
| 0100 1 May  | 10  | 10       | 10 | 10 | 10    | 10 | 10 | 10    | 10       | 6  | 0     | 0  | 10 | 0     | 0 |
| 0300        | 0   | 0        | 0  | 0  | 0     | 0  | 0  | 0     | 0        | 0  | 0     | 0  | 0  | 0     | 0 |
| 0500        | 0   | 0        | 0  | 0  | 0     | 0  | 0  | 0     | 0        | 0  | 0     | 0  | 0  | 0     | 0 |
| 0700        | 10  | 10       | 10 | 9  | 10    | 10 | 10 | 10    | 10       | 10 | 10    | 8  | 10 | 8     | 9 |
| 0900        | 10  | 10       | 10 | 10 | 10    | 10 | 9  | 10    | 10       | 10 | 10    | 10 | 7  | 7     | 0 |
| 1100        | 10  | 10       | 10 | 10 | 10    | 10 | 0  | 10    | 10       | 10 | 10    | 10 | 0  | 0     | 0 |
| 1300        | 0   | 10       | 10 | 9  | 10    | 10 | 10 | 10    | 10       | 10 | 10    | 9  | 0  | 0     | 0 |
| 1500        | 0   | 10       | 10 | 10 | 9     | 9  | 0  | 9     | 10       | 7  | 7     | 7  | 0  | 0     | 0 |
| 1700        | .10 | 10       | 9  | 8  | 10    | 10 | 10 | 10    | 10       | 10 | 4     | 5  | 8  | 7     | 0 |
| 1900        | 10  | 8        | 10 | 10 | 10    | 6  | 10 | 9     | 10       | 10 | 0     | 0  | 10 | 0     | 0 |
| 2100        | 10  | 9        | 10 | 10 | 9     | 8  | 9  | 8     | 9        | 10 | 0     | 0  | 10 | 0     | 0 |
| 2300        | 10  | 10       | 10 | 10 | 9     | 6  | 9  | ìŨ    | 10       | 10 | 0     | 0  | 0  | 0     | 0 |
| 0100 2 May  | 10  | 9        | 10 | 0  | 0     | 0  | 0  | 0     | 0        | 0  | 0     | 5  | 10 | 0     | 0 |
| 0300        | 0   | 0        | 0  | 0  | 0     | 0  | 0  | 0     | 0        | 0  | 0     | 0  | 0  | 0     | 0 |
| 0500        | 0   | 0        | 0  | 0  | 0     | 0  | 0  | 0     | 0        | 0  | 0     | 0  | 0  | 0     | 0 |
| 0700        | 0   | 0        | 0  | 0  | 0     | 0  | 0  | 0     | 0        | 0  | 0     | 0  | 0  | 0     | 0 |

## Table 27 SCORE SHEET OF 15-MILE DELTA TEST SITE 3 RECEIVING

\* Doublet antenna.

† Slant-wire antenna.

§ Whip antenna.

|                 | 1   | IC-162 | 2   |     | 77-A | M   | AN  | /TRC- | 88  |     | TRP-4 |     | A?  | /GRC | 9   |
|-----------------|-----|--------|-----|-----|------|-----|-----|-------|-----|-----|-------|-----|-----|------|-----|
| SITE RECEIVING  | D+  | st     | w\$ | D   | s    | w   | D   | s     | W   | D   | 8     | *   | D   | s    | W   |
| Site 0          |     | İ      |     |     |      |     |     |       |     |     |       |     |     |      |     |
| Total Messages  | 240 | 240    | 240 | 240 | 240  | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240  | 240 |
| Number Correct  | 159 | 189    | 177 | 155 | 159  | 153 | 144 | 177   | 163 | 162 | 131   | 107 | 108 | 29   | 29  |
| Percent Correct | 66% | 79%    | 74% | 65% | 66%  | 64% | 60% | 74%   | 68% | 68% | 55%   | 45% | 45% | 12%  | 129 |
| Site 3          |     |        |     |     |      |     |     |       |     |     |       |     |     |      | ļ   |
| Total Messages  | 240 | 240    | 240 | 240 | 240  | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240  | 240 |
| Number Correct  | 165 | 184    | 186 | 160 | 154  | 148 | 127 | 166   | 170 | 164 | 100   | 97  | 101 | 22   | q   |
| Percent Correct | 69% | 77%    | 78% | 67% | 64%  | 62% | 53% | 69%   | 71% | 68% | 42%   | 40% | 42% | 9%   | 4%  |

Table 2<sup>p</sup> 

\* Doublet antenna. † Slant-wire antenna. \$ Whip antenna.

- 190



15-MILE DELTA TEST

|             |    |       |     |    |         |          | ·  |      |    | r  |       |    |    |        |   |
|-------------|----|-------|-----|----|---------|----------|----|------|----|----|-------|----|----|--------|---|
|             |    | HC-16 | 2   |    | 77 - Al | <u> </u> |    | /TRC | 88 |    | TRP-4 |    |    | V/GRC- | 9 |
| LOCAL TIME  | D# | st    | w\$ | D  | s       | w        | D  | s    | W  | D  | s     | W  | D  | s      | w |
| 1500 11 Apr | 10 | 10    | 10  | 10 | 10      | 10       | 0  | 10   | 10 | 0  | 9     | 10 | 0  | 0      | 0 |
| 1700        | 10 | 10    | 0   | 10 | 20      | 10       | 10 | 10   | 10 | 10 | 10    | 10 | 0  | 0      | 0 |
| 1900        | 0  | 0     | 0   | 0  | 0       | 0        | 10 | 0    | 0  | 0  | 0     | 0  | 0  | 0      | 0 |
| 2100        | 10 | 0     | 0   | 0  | 0       | 0        | 10 | 0    | 0  | 9  | 0     | 0  | 0  | 0      | 0 |
| 2300        | 9  | ر'    | 0   | 0  | 0       | n        | 9  | 0    | 0  | 0  | Û     | 0  | 0  | 0      | 0 |
| 0100 12 Apr | 10 | 0     | 0   | 7  | 0       | 0        | 0  | 0    | 0  | 10 | 0     | 0  | 0  | 0      | 0 |
| 0300        | 9  | 10    | 9   | 5  | 0       | 0        | 10 | 0    | 0  | 10 | 0     | 0  | 3  | 0      | 0 |
| 0500        | 0  | 0     | 0   | 0  | 0       | 0        | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0      | 0 |
| 0700        | 10 | 10    | 10  | 10 | 10      | 10       | 10 | 0    | 0  | 10 | 10    | 10 | 10 | 0      | 0 |
| 0900        | 0  | 10    | 10  | 10 | 17      | 10       | 0  | 0    | 0  | 10 | 10    | 10 | 10 | 10     | 0 |
| 1100        | 0  | 10    | 10  | 10 | 10      | 10       | 0  | 8    | 8  | 10 | 10    | 0  | 0  | 0      | 0 |
| 1300        |    |       |     | 10 | 10      | 10       | 0  | 8    | 10 | 10 | 10    | 10 | 0  | 0      | 0 |
| 1500        |    |       |     | 10 | 8       | 10       | 7  | 10   | 10 | 8  | 10    | 10 | 0  | 0      | 0 |
| 1700        | 9  | 9     | 10  | 10 | 10      | 10       | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10     | 0 |
| 1900        | 10 | 0     | 0   | 10 | 0       | 10       | 10 | 10   | 0  | 9  | 0     | 0  | 10 | 0      | 0 |
| 2100        | 10 | 10    | 8   | 0  | 0       | 0        | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0      | 0 |
| 2300 13 Apr | 0  | 0     | 0   | 0  | 0       | 0        | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0      | 0 |
| 0100        | 10 | 0     | 0   | 7  | 0       | 0        | 10 | 0    | 0  | 0  | 0     | 0  | 0  | 0      | 0 |
| 0300        | 0  | 0     | 0   | 0  | 0       | 0        | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0      | 0 |
| 0500        | 10 | 0     | 0   | 7  | 0       | 0        | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0      | 0 |
| 0700        | 10 | 10    | 10  | 10 | 10      | 10       | 10 | .10  | 10 | 10 | 10    | 10 | 10 | 0      | 0 |
| 0900        | 9  | 10    | 10  | 10 | 10      | 10       | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 8      | 0 |
| 1100        | 9  | 10    | 10  | 10 | 10      | 9        | 10 | 9    | 10 | 10 | 10    | 0  | 0  | 0      | 0 |
| 1300        | 10 | 10    | 10  | 10 | 10      | 10       | 9  | 10   | 10 | 10 | 10    | 10 | 0  | 0      | 0 |

## Table 29 SCORE SHEET OF 20-MILE DELTA TEST SITE 0 RECEIVING

\* Doublet antenna.

† Slant-wire antenna. § Whip antenna.

## Table 30 SCORE SHEET OF 20-MILE DELTA TEST SITE 4 RECEIVING

|             |    | IIC - 16 | 2   |    | 77 - AN | (  | AN | /TRC- | 88 |    | TRP-4 |    | A  | N/GRC | -9  |
|-------------|----|----------|-----|----|---------|----|----|-------|----|----|-------|----|----|-------|-----|
| LOCAL TIME  | D. | st       | w\$ | D  | s       | W  | D  | S     | W  | D  | S     | W  | D  | S     | W   |
| 1500 11 Apr | 6  | 10       | 7   | 6  | 10      | 10 | 0  | 10    | 8  | 0  | 10    | 10 | 0  | 0     | 0   |
| 1700        | 10 | 9        | 0   | 10 | 10      | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 0  | 0     | 0   |
| 1900        | 0  | 0        | 0   | 0  | 0       | 0  | 10 | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0   |
| 2100        | 9  | 0        | 0   | 0  | 0       | 0  | 8  | U)    | 0  | 8  | 0     | 0  | 0  | 0     | 0   |
| 2300        | 6  | 0        | 0   | 0  | 0       | 0  | 8  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0   |
| 0100 12 Apr | 10 | 0        | 0   | 9  | 0       | 0  | 0  | 0     | 0  | 10 | 0     | 0  | 0  | 0     | 0   |
| 0300        | 10 | 9        | 10  | 9  | 0       | 0  | 4  | 0     | 0  | 10 | 0     | 0  | 10 | 0     | 0   |
| 0500        | 0  | 0        | 0   | 0  | 0       | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0   |
| 0700        |    | 10       | 10  | 10 | 10      | 10 | 10 | 0     | 0  | 10 | 10    | 10 | 10 | 0     | 0   |
| 0900        | 0  | 10       | 10  | 10 | 10      | 10 | 0  | 0     | 0  | 10 | 10    | 10 | 9  | 7     | 0   |
| 1100        | 0  | 10       | 10  | 10 | 10      | 10 | 0  | 9     | 10 | 9  | 9     | 6  | 0  | 0     | 0   |
| 1300        |    |          |     | 10 | 10      | 9  | 0  | 10    | 9  | 10 | 10    | 10 | 0  | 0     | 0   |
| 1500        |    |          |     | 10 | 10      | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 0  | 0     | j o |
| 1700        | 10 | 10       | 10  | 10 | 10      | 10 | 9  | 10    | 10 | 10 | 8     | 10 | 10 | 10    | 0   |
| 1900        | 7  | 0        | 0   | 10 | 0       | 10 | 8  | 9     | 0  | 9  | 0     | 0  | 4  | 0     | 0   |
| 2100        | 9  | 10       | 8   | 0  | 0       | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0   |
| 2300        | 0  | 0        | 0   | 0  | 0       | 0  | Ū  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0   |
| 0100 13 Apr | 10 | 0        | 0   | 8  | 0       | 0  | 10 | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0   |
| 0300        | 0  | 0        | 0   | 0  | 0       | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | υ   |
| 0500        | 7  | 0        | 0   | 10 | 0       | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0   |
| 0700        | 10 | 10       | 10  | 10 | 10      | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 10 | 0     | 0   |
| 0900        | 10 | 0        | 10  | 10 | 10      | 9  | 8  | 10    | Q  | 10 | 10    | 10 | 10 | 0     | 0   |
| 1100        | 9  | 9        | 10  | 10 | 10      | 10 | 10 | 10    | 10 | 8  | 10    | 0  | 0  | 0     | 0   |
| 1300        | 10 | 10       | 9   | 6  | 10      | 10 | 6  | 9     | 10 | 10 | 10    | 10 | 0  | 0     | 0   |

\* Doublet antenna.
\* Slant-wire antenna.
\$ Whip antenna.

糖蜜

| 1   | HC-16                  | 2                                                                                                                                                 |                                                                                                                                                                                                 | 77-AN                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                           | AN                                                                                                                                                                                                                                                                                                                                                                                                                                                | /TRC-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88                                                    |                                                        | TRP-4                                                 | ,                                                     | A                                                     | N/GRC                                                 | • 9                                                    |
|-----|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| D*  | st                     | ws                                                                                                                                                | D                                                                                                                                                                                               | s                                                                                                                                                                                                                                                                                                    | w                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W                                                     | D                                                      | s                                                     | w                                                     | D                                                     | s                                                     | w                                                      |
|     |                        |                                                                                                                                                   |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                        |                                                       |                                                       |                                                       |                                                       |                                                        |
| 220 | 220                    | 220                                                                                                                                               | 240                                                                                                                                                                                             | 240                                                                                                                                                                                                                                                                                                  | 240                                                                                                                                                                                                                                                                                                                                                                         | 240                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 240                                                   | 240                                                    | 240                                                   | 240                                                   | 240                                                   | 240                                                   | 240                                                    |
| 155 | 119                    | 107                                                                                                                                               | 156                                                                                                                                                                                             | 118                                                                                                                                                                                                                                                                                                  | 129                                                                                                                                                                                                                                                                                                                                                                         | 135                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98                                                    | 146                                                    | 119                                                   | 100                                                   | 68                                                    | 28                                                    | 0                                                      |
| 70% | 54%                    | 49%                                                                                                                                               | 65%                                                                                                                                                                                             | 49%                                                                                                                                                                                                                                                                                                  | 54%                                                                                                                                                                                                                                                                                                                                                                         | 56%                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41%                                                   | 61%                                                    | 50%                                                   | 42%                                                   | 28%                                                   | 12%                                                   | 0%                                                     |
|     |                        |                                                                                                                                                   |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                        |                                                       |                                                       |                                                       |                                                       |                                                        |
| 220 | 220                    | 220                                                                                                                                               | 240                                                                                                                                                                                             | 240                                                                                                                                                                                                                                                                                                  | 240                                                                                                                                                                                                                                                                                                                                                                         | 240                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 240                                                   | 240                                                    | 240                                                   | 240                                                   | 240                                                   | 240                                                   | 240                                                    |
| 143 | 107                    | 104                                                                                                                                               | 158                                                                                                                                                                                             | 120                                                                                                                                                                                                                                                                                                  | 128                                                                                                                                                                                                                                                                                                                                                                         | 121                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96                                                    | 144                                                    | 117                                                   | 106                                                   | 63                                                    | 17                                                    | 0                                                      |
| 65% | 49%                    | 47%                                                                                                                                               | 66%                                                                                                                                                                                             | 50%                                                                                                                                                                                                                                                                                                  | 53%                                                                                                                                                                                                                                                                                                                                                                         | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40%                                                   | 60%                                                    | 49%                                                   | 44%                                                   | 26%                                                   | 7%                                                    | 0%                                                     |
|     | D* 220 155 70% 220 143 | D*         S <sup>†</sup> 220         220           155         119           70%         54%           220         220           143         107 | 220         220         220         220           155         119         107           70%         54%         49%           220         220         220           143         107         104 | D*         S <sup>†</sup> W <sup>\$</sup> D           220         220         220         240           155         119         107         156           70%         54%         49%         65%           220         220         220         240           13         107         104         158 | D*         S <sup>†</sup> W <sup>\$</sup> D         S           220         220         220         240         240           155         119         107         156         118           70%         54%         49%         65%         49%           220         220         220         240         240           143         107         104         158         120 | D*         S <sup>†</sup> W <sup>\$</sup> D         S         W           220         220         220         240         240         240           155         119         107         156         118         129           70%         54%         49%         65%         49%         54%           220         220         220         240         240         240           143         107         104         158         120         128 | D*         S <sup>†</sup> W <sup>\$</sup> D         S         W         D           220         220         220         240         240         240         240         240           155         119         107         156         118         129         135           70%         54%         49%         65%         49%         54%         56%           220         220         220         240         240         240         240           143         107         104         158         120         128         121 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Table 31 SUMMARY OF 20-MILE DELTA TEST

\* Doublet antenna. † Slant-wire antenna.

S Whip antenna.

「「「「「」」



HISTOGRAM SHOWING COMMUNICATION SUCCESS vs. TIME OF DAY 20-MILE DELTA TEST

## Table 32

SCORE SHEET OF 25-MILE DELTA TEST SITE 0 RECEIVING

|              |        |            | HC•16 | 2   |    | 77-AM |    | AN | /TRC- | 58 |    | TRP-4 | •  | AI  | V/GRC | .9 |
|--------------|--------|------------|-------|-----|----|-------|----|----|-------|----|----|-------|----|-----|-------|----|
| LOCA         | L TIME | D <b>*</b> | st    | w\$ | D  | 8     | W  | D  | S     | W  | D  | s     | W  | D   | S     | W  |
| 1100         | 25 Apr | 10         | 10    | 10  | 10 | 10    | 9  | 10 | 10    | 10 | 9  | 10    | 10 | - • |       |    |
| 1300         |        | 10         | 10    | 10  | 8  | 10    | 9  | 0  | 10    | 9  | 9  | 7     | 10 | 7   | 10    | 0  |
| 1500         |        | 10         | 10    | 10  | 7  | 10    | 10 | 10 | 7     | 4  | 10 | 10    | 10 | 0   | 0     | 0  |
| 1700         |        | 10         | 10    | 10  | 10 | 10    | 10 | 9  | 9     | 0  | 10 | 6     | 0  | 0   | 0     | 0  |
| 1900         |        | 10         | 10    | 10  | 9  | 0     | 0  | 10 | 6     | 0  | 9  | 0     | 0  | 10  | 0     | 0  |
| 2100         |        | 10         | 9     | 4   | 10 | 3     | 0  | 10 | 0     | 0  | 10 | 0     | 0  | 10  | 0     | 0  |
| 2300         |        | 8          | 0     | 0   | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0   | 0     | 0  |
| 0100         | 26 Apr | 0          | 0     | ກ   | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0   | 0     | 0  |
| 0300         | -      | 10         | 10    | 10  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0   | 0     | 0  |
| 0500         |        | 10         | 10    | 10  | 9  | 10    | 10 | 0  | 10    | 10 | 2  | 10    | 0  | 0   | 0     | 0  |
| 0700         |        | 10         | 10    | 10  | 10 | 9     | 10 | 10 | 10    | 10 | 10 | 10    | 10 | 10  | 10    | 10 |
| 0900         |        | 10         | 10    | 10  | 10 | 10    | 10 | 10 | 9     | 10 | 8  | 10    | 10 | 10  | 10    | 9  |
| 1100         |        | 10         | 10    | 10  | 0  | 10    | 10 | 9  | 9     | 10 | 7  | 9     | 10 | 10  | 10    | 9  |
| 1300         |        | 6          | 10    | 10  | 0  | 9     | 10 | 3  | 10    | 10 | 9  | 10    | 9  | 10  | 10    | 10 |
| 1500         |        | 9          | 10    | 9   | 9  | 10    | 8  | 6  | 7     | 2  | 8  | 9     | 4  | 9   | 10    | 0  |
| 1700         |        |            |       |     |    |       |    |    |       |    |    |       |    |     |       |    |
| 1900         |        | 10         | 9     | 8   | 10 | 6     | 0  | 8  | 0     | 0  | 9  | 0     | 0  | 9   | 0     | 0  |
| 2100         |        | 8          | 9     | 7   | 10 | 10    | 8  | 8  | 6     | 0  | 10 | 0     | 0  | 9   | 0     | 0  |
| <b>23</b> 00 |        | 5          | 7     | 9   | 10 | 5     | 5  | 10 | 7     | 0  | 0  | 0     | 0  | 9   | 0     | 0  |
| 0100         | 27 Apr | 10         | 10    | 5   | 10 | 9     | 9  | 3  | 8     | 7  | 10 | 0     | 0  | 9   | 0     | 0  |
| 0300         |        | 0          | 10    | 10  | 0  | 10    | 10 | 0  | 8     | 8  | 0  | 0     | 0  | 0   | 0     | 0  |
| 0500         |        | 10         | 10    | 9   | 10 | 10    | 10 | 4  | 9     | 10 | 10 | 8     | 8  | 9   | 0     | 0  |
| 0700         |        | 10         | 10    | 10  | 10 | 9     | 10 | 10 | 10    | 10 | 10 | 10    | 9  | 10  | 10    | 10 |
| 0900         | 7      | 10         | 10    | 8   | 10 | 10    | 10 | 9  | 10    | 10 | 8  | 10    | 9  | 0   | 0     | 0  |

\* Doublet antenna.
\* Slant-wire antenna.
\$ Whip antenna.

|             |        |    |     |    | SITE  | 5 RI | ECEIV | ING   |    |    |       |    |    |       |     |
|-------------|--------|----|-----|----|-------|------|-------|-------|----|----|-------|----|----|-------|-----|
|             | HC-162 |    |     |    | 77-AN | I    | AN    | /TRC- | 88 |    | TRP-4 |    | A  | N/GRC | • 9 |
| LOCAL TIME  | D*     | st | w\$ | D  | S     | W    | D     | s     | ₩  | D  | s     | W  | D  | s     | W   |
| 1100 25 Apr | 10     | 10 | 10  | 10 | 10    | 10   | 10    | 10    | 10 | 8  | 10    | 10 |    |       |     |
| 1300        | 10     | 10 | 10  | 10 | 10    | 10   | 10    | 10    | 10 | 10 | 10    | 10 | 10 | 10    | 10  |
| 1500        | 10     | 10 | 10  | 10 | 0     | 10   | 10    | 10    | 10 | 10 | 10    | 10 | υ  | 0     | 0   |
| 1700        | 10     | 10 | 10  | 9  | 10    | 10   | 10    | 10    | 10 | 10 | 7     | 0  | 0  | 0     | 0   |
| 1900        | 10     | 9  | 10  | 9  | 0     | 0    | 10    | 10    | 0  | 10 | 0     | 0  | 10 | 0     | 0   |
| 2100        | 10     | 8  | 9   | 8  | 6     | 10   | 0     | 0     | 0  | 10 | 0     | 0  | 10 | 0     | 0   |
| 2300        | 10     | 0  | 0   | 0  | 0     | 0    | 0     | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0   |
| 0100 26 Apr | 0      | 0  | 0   | 0  | 0     | 0    | 0     | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0   |
| 0300        | 9      | 10 | 10  | 0  | 0     | 0    | 0     | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0   |
| 0500        | 10     | 10 | 10  | 5  | 10    | 10   | 0     | 10    | 10 | 0  | 9     | 0  | 0  | 0     | 0   |
| 0700        | 10     | 10 | 10  | 10 | 10    | 10   | 10    | 9     | 10 | 10 | 10    | 10 | 10 | 10    | 10  |
| 0900        | 10     | 10 | 10  | 10 | 10    | 10   | 10    | 10    | 9  | 10 | 9     | 10 | 9  | 10    | 10  |
| 1100        | 10     | 10 | 10  | 10 | 10    | 10   | 10    | 10    | 10 | 10 | 10    | 10 | 10 | 10    | 10  |
| 1300        | 10     | 10 | 10  | 10 | 10    | 10   | 10    | 10    | 10 | 10 | 10    | 10 | 10 | 10    | 10  |
| 1500        | 10     | 10 | 10  | 9  | 10    | 10   | 6     | 10    | 8  | 9  | 7     | 9  | 8  | 4     | 0   |
| 1700        |        |    |     |    |       |      |       |       |    |    |       |    |    |       |     |
| 1900        | 10     | 5  | 9   | 10 | 6     | 0    | 10    | 0     | 0  | 9  | 0     | 0  | 4  | 0     | 0   |
| 2100        | 10     | 9  | 8   | 10 | 10    | 7    | 10    | 8     | 0  | 10 | 0     | 0  | 8  | 0     | 0   |
| 2300        | 10     | 10 | 10  | 7  | 10    | 10   | 10    | 10    | 0  | 0  | 0     | 0  | 6  | 0     | 0   |
| 0100 27 Apr | 10     | 10 | 10  | 10 | 10    | 9    | 10    | 8     | 9  | 9  | 0     | 0  | 10 | 0     | 0   |
| 0300        | 0      | 10 | 9   | 0  | 8     | 9    | 0     | 9     | 9  | 0  | 0     | 0  | 0  | 0     | 0   |
| 0500        | 10     | 10 | 10  | 9  | 10    | 10   | 6     | 8     | 9  | 7  | 8     | 9  | 9  | 0     | 0   |
| 0700        | 10     | 10 | 10  | 10 | 10    | 10   | 10    | 10    | 10 | 10 | 10    | 10 | 10 | 10    | 10  |
| 0900        | 10     | 10 | 10  | 8  | 10    | 10   | 9     | 9     | 8  | 10 | 10    | 10 | 0  | 0     | 0   |

## Table 33 SCORE SHEET OF 25-MILE DELTA TEST

\* Doublet antenna.
\* Slant-wire antenna.
\$ Whip antenna.

|                 | HC-162 |     |     |     | 77-AN |     |     | AN/TRC-88 |     |     | TRP-4 | •   | N/GHC - 9 |                |     |
|-----------------|--------|-----|-----|-----|-------|-----|-----|-----------|-----|-----|-------|-----|-----------|----------------|-----|
| SITE RECEIVING  | D*     | st  | w\$ | D   | s     | W   | D   | s         | W   | D   | s     | W   | D         | S<br>230<br>70 | W   |
| Site 0          |        |     |     |     |       |     |     |           |     |     |       |     |           |                |     |
| Tutal Messages  | 230    | 230 | 230 | 230 | 230   | 230 | 230 | 230       | 230 | 230 | 230   | 230 | 230       | 230            | 230 |
| Number Correct  | 196    | 204 | 189 | 162 | 170   | 158 | 145 | 155       | 120 | 158 | 119   | 99  | 131       | 70             | 48  |
| Percent Correct | 85%    | 89% | 82% | 70% | 74%   | 69% | 63% | 67%       | 52% | 69% | 52%   | 43% | 57%       | 30%            | 219 |
| Site 5          |        |     |     | 1   |       |     |     |           |     |     |       |     |           |                |     |
| Total Messages  | 230    | 230 | 230 | 230 | 230   | 230 | 230 | 230       | 230 | 230 | 230   | 230 | 230       | 230            | 230 |
| Number Correct  | 209    | 201 | 205 | 174 | 170   | 175 | 161 | 171       | 142 | 162 | 120   | 108 | 124       | 64             | 60  |
| Percent Correct | 91%    | 87% | 89% | 76% | 74%   | 76% | 70% | 74%       | 62% | 70% | 52%   | 47% | 54%       | 28%            | 269 |

Table 34 SUMMARY OF 25-MILE DELTA TEST

\* Doublet antenna.

† Slant-wire antenna. \$ Whip antenna.

語を注意が行う





## E. RESULTS FROM MOUNTAIN AREA TEST

# Table 35

|              |        |    | HC-163 | 2   |    | 77-A | M  | AN | /TRC- | 88 |    | TRP-4 |    | A  | N/GRC | .9 |
|--------------|--------|----|--------|-----|----|------|----|----|-------|----|----|-------|----|----|-------|----|
| LOCA         | LTIME  | D. | st     | ÷\$ | D  | s    | W  | D  | s     | W  | D  | s     | W  | D  | s     | ¥  |
| 1300         | 10 May | 10 | 10     | 10  | 10 | 10   | 9  | 10 | 16    | 10 | 10 | 9     | 9  | 10 | 10    | l  |
| 1500         |        | 10 | 0      | 0   | 10 | 9    | 10 | 10 | 10    | 10 | 10 | 5     | 10 | 10 | 9     | 7  |
| 1700         |        | 9  | 9      | 9   | 10 | 8    | 0  | 10 | 9     | 8  | 10 | 6     | 4  | 10 | 2     | 0  |
| 1900         |        | 8  | 0      | 0   | 7  | 0    | 0  | 10 | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 2100         |        | 10 | 0      | 0   | 10 | 0    | 0  | 0  | 0     | 0  | 10 | 0     | 0  | 10 | 0     | 0  |
| 2300         |        | 4  | 0      | C   | 7  | 0    | 0  | 8  | 0     | 0  | 10 | 0     | 0  | 6  | 0     | 0  |
| 0100         | 11 May | 10 | 0      | 0   | 9  | 0    | 0  | R  | 0     | 0  | 9  | 0     | 0  | 10 | 0     | 0  |
| 0300         |        | 7  | 0      | 0   | 0  | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0  |
| 0500         |        | 10 | 0      | 0   | 0  | 0    | 0  | 10 | 0     | 0  | 9  | 0     | 0  | 0  | 0     | 0  |
| 0 <b>700</b> |        | 10 | 0      | 0   | 10 | 9    | 0  | 10 | 0     | 0  | 10 | 0     | 0  |    |       |    |
| 0900         |        | 10 | 9      | 0   | 10 | 10   | 10 | 10 | 0     | 0  | 10 | 0     | 0  | 10 | 0     | 0  |
| 1100         |        | 10 | 0      | 0   | 10 | 10   | 9  | 10 | 10    | 10 | 10 | 0     | Ú  | 10 | 0     | 0  |
| 0900         | 13 May | 10 | 10     | 0   | 10 | 10   | 9  | 10 | 10    | 10 | 10 | 10    | 10 | 10 | 9     | 0  |
| 1100         |        | 10 | 10     | 9   | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 9  | 10 | 7     | 8  |
| 1300         |        | 9  | 10     | 10  | 10 | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 9  | 10 | 9     | 4  |
| 1500         |        | 10 | 10     | 10  | 10 | 10   | 9  | 10 | 10    | 10 | 10 | A .   | 7  | 10 | 0     | 0  |
| 1700         |        | 8  | 10     | 8   | 10 | 5    | 0  | 10 | 6     | 0  | 10 | 0     | 0  | 10 | 0     | 0  |
| 1900         |        | 10 | 9      | 0   | 10 | 0    | 0  | 7  | 0     | 0  | 10 | 0     | 0  | 0  | 0     | 0  |
| <b>2</b> 100 |        | 10 | 9      | 0   | 10 | 5    | 0  | 10 | 0     | 0  | 10 | 0     | 0  | 0  | 0     | 0  |
| 2300         |        | 10 | 10     | 0   | 10 | 0    | 0  | 10 | 0     | 0  | 9  | C     | 0  | 0  | 0     | 0  |
| 0100         | 14 May | 10 | 9      | 0   | 10 | 0    | 0  | 10 | 0     | 0  | 10 | 0     | 0  | 0  | 0     | 0  |
| 0300         |        | 10 | 8      | 0   | 10 | 0    | 0  | 10 | 0     | 0  | 10 | 0     | 0  | 0  | 0     | 0  |
| 0500         |        | 10 | 0      | 0   | 10 | 0    | U  | 10 | 0     | 0  | 10 | 0     | 0  | 0  | 0     | 0  |
| 0700         |        | 10 | 10     | 10  | 10 | 9    | 6  | 10 | 10    | 8  | 10 | 0     | 0  | 0  | 0     | v  |

SCORE SHEET OF 5-MILE MOUNTAIN TEST SITE 0 RECEIVING

\* Doublet antenna.

Slant-wire antenna.

\$ Whip antenna.

「「「「「「「「「「」」」」

|      |        |    | HC-16 | 2   |      | 77-A | M  | AN | /TRC- | 88 |    | TRP-4 |     | AN/GRC-9 |    |    |  |
|------|--------|----|-------|-----|------|------|----|----|-------|----|----|-------|-----|----------|----|----|--|
| LOCA | LTIME  | D* | st    | w\$ | D    | s    | W  | D  | S     | W  | D  | s     | W   | D        | S  | W  |  |
| 1300 | 10 May | 10 | 10    | 10  | 10   | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 9   | 10       | 9  | 10 |  |
| 1500 |        | 10 | 0     | 0   | 10   | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 8   | 10       | 9  | 9  |  |
| 1700 |        | 10 | 10    | 10  | 10   | 10   | 7  | 10 | 10    | 9  | 9  | 10    | 8   | 10       | 6  | 0  |  |
| 1900 |        | 10 | 0     | 0   | 8    | 0    | 0  | 9  | 0     | 0  | 0  | 0     | 0   | 9        | 0  | 0  |  |
| 2100 |        | 10 | 0     | 0   | 9    | 0    | 0  | 9  | 0     | 0  | 7  | 0     | 0   | 8        | 0  | 0  |  |
| 2300 |        | 7  | 0     | 0   | 2    | 0    | 0  | 10 | 0     | 0  | 9  | 0     | 0   | 3        | 0  | 0  |  |
| 0100 | 11 May | 10 | 0     | 0   | 9    | 0    | 0  | 10 | 0     | 0  | 10 | 0     | C   | 10       | 0  | 0  |  |
| 0300 |        | 10 | 0     | 0   | 0    | 0    | 0  | 0  | 0     | 0  | 0  | 0     | 0   | 0        | 0  | 0  |  |
| 0500 |        | 10 | 0     | 0   | 0    | 0    | 0  | 10 | 0     | 0  | 2  | 0     | 0   | 0        | 0  | 0  |  |
| 0700 |        | 10 | 9     | 7   | 0    | 5    | 0  | 10 | 6     | 0  | 10 | 0     | 0   |          |    |    |  |
| 0900 |        | 10 | 10    | 10  | 10   | 10   | 9  | 10 | 0     | 0  | 10 | 0     | 0   | 10       | 0  | 0  |  |
| 1100 |        | 10 | 10    | 0   | 10   | 10   | 10 | 10 | 10    | 7  | 10 | 0     | 0   | 9        | 0  | 0  |  |
| 0900 | 13 May | 10 | 10    | 0   | i0   | 8    | 10 | 9  | 10    | 10 | 10 | 10    | 10  | 10       | 10 | 0  |  |
| 1100 |        | 9  | 10    | 10  | 10   | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 9   | 10       | 10 | 9  |  |
| 1300 |        | 10 | 10    | 10  | 10   | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 10  | 10       | 10 | 9  |  |
| 1500 |        | 9  | 10    | 10  | 9    | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 6   | 9        | 0  | 0  |  |
| 1700 |        | 9  | 9     | 8   | . 10 | 9    | 0  | 9  | 9     | 8  | 10 | 0     | 0   | 9        | 0  | 0  |  |
| 1900 |        | 10 | 8     | 0   | 10   | 0    | 0  | 9  | 0     | 0  | 9  | 0     | 0   | 0        | 0  | 0  |  |
| 2100 |        | 10 | 10    | 0   | 9    | 6    | 0  | 10 | 0     | 0  | 7  | 0     | 0   | 0        | 0  | 0  |  |
| 2300 |        | 10 | 6     | 0   | 8    | 0    | 0  | 6  | 0     | 0  | 3  | 0     | · 0 | 0        | 0  | 0  |  |
| J100 | 14 May | 10 | 7     | 0   | 10   | 0    | 0  | 10 | 7     | 0  | 10 | 0     | 0   | 0        | 0  | 0  |  |
| 0300 |        | 10 | 7     | 0   | 10   | 3    | 0  | 10 | 0     | 0  | 8  | 0     | 0   | 0        | 0  | 0  |  |
| 0500 |        | 1  | C     | 0   | 9    | 0    | 0  | 9  | 0     | 0  | 10 | 0     | 0   | 0        | 0  | 0  |  |
| 0700 |        | IJ | 9     | 7   | 10   | 10   | 10 | 10 | 10    | 10 | 10 | 10    | 0   | 0        | 0  | 0  |  |

#### Table 36 SCORE SHEET OF 5-MILE MOUNTAIN TEST SITE 1 RECEIVING

\* Doublet antenna.

† Slant-wire antenna. \$ Whip antenna.

|         |    | Table  | 37       |      |
|---------|----|--------|----------|------|
| SUMMARY | OF | 5-MILE | MOUNTAIN | TEST |

| SITE RECEIVING  | HC-162 |     |     |     | ??-AM |     |     | AN/TRC-88 |     |     | TRP-4 |     |     | AN/GRC-9 |     |  |
|-----------------|--------|-----|-----|-----|-------|-----|-----|-----------|-----|-----|-------|-----|-----|----------|-----|--|
| SITE RECEIVING  | D*     | st  | ws  | D   | S     | ₩   | D   | s         | W   | D   | S     | W   | D   | s        | W   |  |
| Site 0          |        |     |     |     |       |     |     |           |     |     |       |     |     |          |     |  |
| Total Messages  | 240    | 240 | 240 | 240 | 240   | 240 | 240 | 240       | 240 | 240 | 240   | 240 | 230 | 230      | 230 |  |
| Number Correct  | 225    | 133 | 66  | 213 | 115   | 82  | 213 | 95        | 86  | 217 | 54    | 58  | 126 | 46       | 25  |  |
| Percent Correct | 94%    | 55% | 28% | 89% | 48%   | 34% | 89% | 40%       | 36% | 90% | 22%   | 24% | 55% | 20%      | 11% |  |
| Site 1          |        |     |     |     |       |     |     |           |     |     |       |     |     |          |     |  |
| Total Messages  | 240    | 240 | 240 | 240 | 240   | 240 | 240 | 240       | 240 | 240 | 240   | 240 | 230 | 230      | 230 |  |
| Number Correct  | 234    | 145 | 82  | 193 | 121   | 96  | 220 | 112       | 94  | 194 | 80    | 60  | 127 | 54       | 37  |  |
| Percent Correct | 98%    | 60% | 34% | 80% | 50%   | 40% | 92% | 47%       | 40% | 81% | 33%   | 25% | 55% | 24%      | 16% |  |

\* Doublet antenna. † Slant-wire antenna.

\$ Whip antenna.

No. of Concession, Name


FIG. 16 HISTOGRAM SHOWING COMMUNICATION SUCCESS vs. TIME OF DAY 5-MILE MOUNTAIN TEST

ı

|             |    |       |     |    |       |    | IECEI V |       |    |    |       |            |    |       |   |
|-------------|----|-------|-----|----|-------|----|---------|-------|----|----|-------|------------|----|-------|---|
| LOCAL TINE  |    | HC-16 | 2   |    | 77-AN | 1  | AN      | /TRC- | 88 |    | TRP-4 |            | AN | /GRC- | 9 |
| LOCAL TIME  | D* | st    | *\$ | D  | S     | w  | D       | s     | w  | D  | S     | W          | D  | S     | w |
| 0900 20 May | 10 | 10    | 10  | 10 | 10    | 10 | 10      | 10    | 10 | 10 | 10    | 0          | 9  | 0     | 0 |
| 1100        | 10 | 10    | 10  | 10 | 10    | 10 | 10      | 10    | 10 | 10 | 10    | 0          | 10 | 0     | 0 |
| 1300        | 10 | 10    | 10  | 10 | 10    | 10 | 10      | 9     | 10 | 10 | 10    | 0          | 10 | 0     | 0 |
| 1500        | 10 | 10    | 9   | 10 | 10    | 9  | 10      | 9     | 8  | 10 | 9     | 0          | 9  | 0     | 0 |
| 1700        | 10 | 8     | 0   | 10 | 3     | 0  | 10      | 0     | 0  | 10 | 0     | 0          | 6  | 0     | 0 |
| 1900        | 10 | 5     | 0   | 10 | 1     | 0  | 10      | 0     | 0  | 10 | 0     | <b>(</b> 1 | 10 | 0     | 0 |
| 2100        | 10 | 10    | 0   | 8  | 0     | 0  | 8       | 0     | 0  | 0  | 0     | P          | 0  | 0     | 0 |
| 2300        | 10 | 0     | 0   | 0  | 0     | 0  | 0       | 0     | 0  | 0  | 0     | 0          | 0  | 0     | 0 |
| 0100 21 May | 5  | 0     | 0   | 0  | 0     | 0  | 0       | 0     | 0  | 0  | 0     | 0          | 0  | 0     | 0 |
| 0300        | 0  | 0     | 0   | 0  | 0     | 0  | 0       | 0     | 0  | 0  | 0     | 0          | 0  | 0     | 0 |
| 0500        | 0  | 0     | 0   | 0  | 0     | 0  | 0       | 0     | 0  | 0  | 0     | 0          | 0  | 0     | 0 |
| 0700        | 10 | 10    | 9   | 10 | 9     | 0  | 10      | 0     | 0  | 10 | 0     | 0          | 9  | 0     | 0 |
| 0900        | 9  | 10    | 10  | 9  | 10    | 8  | 10      | 9     | 9  | 10 | 10    | 8          | 10 | 0     | 0 |
| 1100        | 10 | 10    | 10  | 9  | 10    | 10 | 10      | 10    | 10 | 10 | 7     | 10         | 10 | 10    | 0 |
| 1300        | 10 | 10    | 10  | 8  | 9     | 10 | 10      | 10    | 10 | 10 | 9     | 2          | 8  | 8     | 0 |
| 1500        | 10 | 10    | 6   | 9  | 1     | 0  | 10      | 9     | 0  | 10 | 0     | 0          | 10 | 0     | 0 |
| 1700        | 10 | 8     | 5   | 9  | 7     | 1  | 10      | 10    | 8  | 10 | 0     | 0          | 10 | 5     | 0 |
| 1900        | 10 | 8     | 0   | 10 | 8     | 0  | 10      | 10    | 0  | 10 | 1     | 0          | 9  | 0     | 0 |
| 2100        | 10 | 5     | 0   | 0  | 0     | 0  | 9       | 0     | 0  | 4  | 0     | 0          | 4  | 0     | 0 |
| 2300        | 10 | 9     | 0   | 0  | 0     | 0  | 9       | 0     | C  | 5  | 0     | 0          | 0  | 0     | 0 |
| 0100 22 May | 10 | 9     | 0   | 6  | 0     | 0  | 10      | 9     | 0  | 8  | 0     | 0          | 6  | 0     | 0 |
| 0300        | 10 | 0     | 0   | 7  | 0     | 0  | 0       | 0     | 0  | 0  | 0     | 0          | 0  | 0     | 0 |
| 0500        | 10 | 10    | 0   | 7  | 3     | 0  | 10      | 7     | 0  | 10 | 0     | 0          | 10 | 0     | 0 |
| 0700        | 10 | 10    | 9   | 9  | 0     | 0  | 10      | 0     | 0  | 9  | 1     | 0          | 9  | 8     | 0 |

Table 38 SCORE SHEET OF 12-MILE MOUNTAIN TEST SITE 0 RECEIVING

\* Doublat antenna. † Slant-wire antenna.

\$ Whip antenna.

|             |         | HC-16 |     |    | 77-A     | <u> </u> |    | /TRC- |    |    | TRP• 4 |   | 41 | /GRC |     |
|-------------|---------|-------|-----|----|----------|----------|----|-------|----|----|--------|---|----|------|-----|
| LOCAL TIME  | <b></b> | _     | ¥\$ |    | <u> </u> |          |    |       |    | -  |        |   |    |      |     |
|             | D*      | st    | ₩8  | D  | s        | W        | D  | S     | W  | D  | S      | W | D  | S    | W.  |
| 0900 20 May | 10      | 9     | 10  | 9  | 10       | 8        | 10 | 10    | 10 | 10 | 10     | 0 | 0  | 0    | 0   |
| 1100        | 10      | 10    | 9   | 10 | 10       | 10       | 10 | 10    | 9  | 10 | 10     | 0 | 9  | 0    | 0   |
| 1300        | 10      | 10    | 10  | 10 | 10       | 9        | 9  | 10    | 10 | 10 | 10     | 0 | 10 | 0    | 0   |
| 1500        | 10      | 10    | 9   | 10 | 10       | 9        | 10 | 8     | 6  | 10 | 7      | 0 | 9  | 0    | 0   |
| 1700        | 10      | 10    | 0   | 10 | 10       | 0        | 10 | 10    | 0  | 10 | 0      | 0 | 8  | 0.   | 0   |
| 1900        | 10      | 10    | 0   | 10 | 9        | 0        | 7  | 0     | 0  | 5  | 0      | 0 | 7  | 0    | 0   |
| 2100        | 10      | 9     | C   | 10 | 0        | 0        | 10 | 0     | 0  | 0  | 0      | 0 | 0  | 0    | 0   |
| 2300        | 10      | 0     | 0   | 0  | 0        | 0        | 0  | 0     | 0  | 0  | 0      | 0 | 0  | 0    | 0   |
| 0100 21 May | 8       | 0     | 0   | 0  | 0        | 0        | 0  | 0     | 0  | 0  | 0      | 0 | 0  | 0    | 0   |
| 0300        | 0       | 0     | 0   | 0  | 0        | 0        | 0  | 0     | 0  | 0  | 0      | 0 | 0  | 0    | 0   |
| 0500        | 0       | 0     | 0   | 0  | 0        | 0        | 0  | 0     | 0  | 0  | 0      | 0 | 0  | 0    | 0   |
| 0700        | 10      | 10    | 10  | 9  | 10       | 0        | 10 | 0     | 0  | 10 | 0      | 0 | 9  | 0    | 0   |
| 0900        | 10      | 10    | 10  | 10 | 9        | 10       | 10 | 10    | 10 | 9  | 9      | 8 | 1  | 0    | 0   |
| 1100        | 10      | 10    | 10  | 10 | 10       | 10       | 10 | 10    | 10 | 10 | 10     | 8 | 10 | 9    | 0   |
| 1300        | 7       | 9     | 10  | 10 | 5        | 9        | 9  | 10    | 10 | 7  | 6      | 3 | 6  | 9    | 0   |
| 1500        | 10      | 10    | 8   | 3  | 1        | 0        | 10 | 4     | 0  | 8  | Ð      | 0 | 10 | 0    | 0   |
| 1700        | 10      | 10    | 8   | 10 | 10       | 0        | 10 | 10    | 7  | 10 | 7      | 0 | 10 | 10   | 6   |
| 1900        | 10      | 10    | 0   | 9  | 9        | 0        | 10 | 9     | 0  | 10 | 4      | 0 | 10 | 0    | 0   |
| 2100        | 10      | 7     | 0   | 9  | 0        | 0        | 10 | 0     | 0  | 0  | 0      | 0 | 8  | 0    | 0   |
| 2300        | 10      | 6     | 0   | 10 | 0        | 0        | 10 | 0     | 0  | 4  | 0      | 0 | 0  | 0    | 0   |
| 0100 22 May | 9       | 4     | 0   | 9  | 0        | 0        | 10 | 4     | 0  | 9  | 0      | 0 | 8  | 0    | 0   |
| 0300        | 9       | 0     | 0   | 0  | 0        | 0        | 2  | 0     | 0  | Ó  | 0      | 0 | Ő  | Ő    | 0   |
| 0 500       | 10      | 10    | 0   | 10 | 7        | Ő        | 2  | 5     | Ő  | 10 | ő      | Ő | 10 | Ő    | l ő |
| 0700        | 10      | 9     | 10  | 10 | 0        | 0        | 10 | 0     | 0  | 10 | 10     | 0 | 10 | 9    | 0   |
|             |         |       |     |    |          |          |    |       |    |    |        |   |    |      |     |

Table 39 SCORE SHEET OF 12-MILE MOUNTAIN TEST SITE 2 RECEIVING

• Doublet antenna.

Slant-wire antenna.

\$ whip entenne.

| OTTE BECETVING  |     | 4C-16 | 2   |     | 77•A | M   | 14  | /TRC- | 88  |     | 1'RP- 4 | ļ   | A   | N/GRC | - 9 |
|-----------------|-----|-------|-----|-----|------|-----|-----|-------|-----|-----|---------|-----|-----|-------|-----|
| SITE RECEIVING  | D*  | st    | ws  | D   | s    | W   | D   | S     | ¥   | D   | s       | W   | D   | s     | W   |
| Site 0          |     |       |     |     |      |     |     |       |     |     |         |     |     |       |     |
| Total Messages  | 240 | 240   | 240 | 240 | 240  | 240 | 240 | 240   | 240 | 240 | 240     | 240 | 240 | 240   | 240 |
| Number Correct  | 214 | 172   | 98  | 161 | 101  | 68  | 186 | 112   | 75  | 166 | 67      | 20  | 149 | 31    | 0   |
| Percent Correct | 89% | 72%   | 41% | 67% | 42%  | 28% | 78% | 47%   | 31% | 69% | 28%     | 8%  | 62% | 13%   | 0%  |
| Site 2          |     |       |     |     |      |     |     |       |     |     |         |     |     |       |     |
| Total Messsges  | 240 | 240   | 240 | 240 | 240  | 240 | 240 | 240   | 240 | 240 | 240     | 240 | 240 | 240   | 240 |
| Number Correct  | 213 | 173   | 104 | 178 | 120  | 65  | 179 | 110   | 72  | 152 | 83      | 19  | 135 | 37    | 0   |
| Percent Correct | 89% | 72%   | 43% | 74% | 50%  | 27% | 75% | 46%   | 30% | 63% | 35%     | 8%  | 56% | 15%   | 0%  |

Table 40 SUMMARY OF 12-MILE MOUNTAIN TEST

\* Doublet antenna.

† Slant-wire antenna. § Whip antenna.

.

.

64

言語をないたい





|             |    | HC-163 | 2   |    | 77 - AI | M | AN | /TRC- | 88 |    | TRP-4 |   | AN | I/GRC- | 9  |
|-------------|----|--------|-----|----|---------|---|----|-------|----|----|-------|---|----|--------|----|
| LOCAL TIME  | D  | st     | w\$ | D  | S       | W | D  | S     | W  | D  | S     | W | D  | S      | W  |
| 0900 15 May | 10 | 10     | 9   | 10 | 10      | 1 | 10 | 5     | 0  | 10 | 0     | 0 | 0  | 0      | 0  |
| 1100        | 10 | 10     | 8   | 10 | 8       | 0 | 10 | 9     | 0  | 10 | 0     | 0 | 0  | 0      | 0  |
| 1300        | 10 | 10     | 9   | 10 | 10      | 0 | 10 | 9     | 5  | 7  | 0     | 0 | 0  | 0      | 0  |
| 1500        | 10 | 4      | 0   | 9  | 7       | 4 | 10 | 8     | 0  | 10 | 0     | 0 | 10 | 0      | 0  |
| 1700        | 10 | 0      | 0   | 9  | 1       | Û | 9  | 7     | 0  | 10 | 0     | 0 | 10 | 0      | 0  |
| 1900        | 9  | 0      | 0   | 10 | 0       | 0 | 10 | 10    | 0  | 0  | 0     | 0 | 0  | 0      | 0  |
| 2100        | 9  | 0      | 0   | 6  | 0       | 0 | 9  | 0     | 0  | 4  | 0     | 0 | 0  | 0      | 0  |
| 2300        | 10 | 0      | 0   | 10 | 0       | 0 | 8  | 7     | 0  | 8  | 0     | 0 | 0  | 0      | 0  |
| 0100 16 May | 9  | 0      | 0   | 3  | 0       | 0 | 9  | 0     | 0  | 0  | 0     | 0 | 0  | 0      | 0  |
| 0300        | 10 | 0      | 0   | 0  | 0       | 0 | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0      | 0  |
| 0500        | 10 | 3      | 0   | 9  | 0       | 0 | 10 | 0     | 0  | 7  | 0     | 0 | 0  | 0      | 0  |
| 0700        | 10 | 9      | 0   | 10 | 4       | 0 | 10 | 10    | 0  | 10 | 0     | 0 | 10 | 4      | 0  |
| 0900        | 10 | 10     | 5   | 9  | 7       | 0 | 10 | 9     | 0  | 10 | 0     | 0 | 10 | 6      | 0  |
| 1100        | 10 | 10     | 0   | 10 | 0       | 0 | 10 | 9     | 0  | 10 | 0     | 0 | 0  | 0      | 0  |
| 1300        | 10 | 10     | 0   | 10 | 0       | 0 | 10 | 4     | 0  | 6  | 0     | 0 | 0  | 0      | 0  |
| 1500        | 7  | 0      | 0   | 0  | 0       | 0 | 7  | 0     | 0  | 7  | 0     | 0 | 0  | 0      | 0  |
| 1700        | 10 | 0      | 0   | 4  | 0       | 0 | 0  | 0     | 0  | 9  | 0     | 0 | 0  | 0      | 0  |
| 1900        | 10 | 8      | 0   | 7  | 0       | 0 | 9  | 6     | 0  | 10 | 0     | 0 | 0  | 0      | 00 |
| 2100        | 10 | 0      | 0   | 0  | 0       | 0 | 4  | 0     | 0  | 6  | 0     | 0 | 0  | 0      | 0  |
| 2300        | 10 | 7      | 0   | 0  | 0       | 0 | 9  | 0     | 0  | 9  | 0     | 0 | 7  | 0      | 0  |
| 0100 17 May | 10 | 0      | 0   | 0  | 0       | 0 | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0      | 0  |
| 0300        | 10 | 0      | 0   | 0  | 0       | 0 | 10 | 0     | 0  | 10 | 0     | 0 | 0  | 0      | 0  |
| 0500        | 0  | 0      | 0   | 0  | 0       | 0 | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0      | 0  |
| 0700        | 10 | 10     | 0   | 10 | 9       | 0 | 9  | 10    | 0  | 10 | 0     | 0 | 9  | 0      | 0  |

Table 41 SCORE SHEET OF 25-MILE MOUNTAIN TEST SITE 0 RECEIVING

\* Doublet antenna. \* Slant-wire antenna. \$ Whip antenna.

66

the local data

|             | ห  | C-162 |     |    | 77-A | M  | AN | /TRC- | 88 |     | TRP-4 | • | AN | /GRC- | 9 |
|-------------|----|-------|-----|----|------|----|----|-------|----|-----|-------|---|----|-------|---|
| LOCAL TIME  | D  | st    | *\$ | D  | S    | W  | D  | S     | W  | D   | S     | W | D  | S     | W |
| 0900 15 May | 10 | 10    | 9   | 9  | 9    | 10 | 10 | 10    | 0  | 10  | 10    | 0 | 0  | 0     | 0 |
| 1100        | 10 | 10    | 10  | 10 | 10   | 0  | 9  | 9     | 0  | .10 | 0     | 0 | 0  | 0     | 0 |
| 1300        | 10 | 10    | 10  | 9  | 10   | 0  | 10 | 10    | 0  | 10  | 10    | 0 | 0  | 0     | 0 |
| 1500        | 10 | 10    | 0   | 10 | 10   | 10 | 10 | 9     | 4  | 9   | 0     | 0 | 10 | 0     | 0 |
| 1700        | 9  | 0     | 0   | 10 | 8    | 0  | 9  | 8     | 0  | 10  | 0     | 0 | 10 | 0     | 0 |
| 1900        | 10 | 0     | 0   | 10 | 0    | 0  | 6  | 0     | 0  | 10  | 0     | 0 | 10 | 0     | 0 |
| 2100        | 10 | 0     | 0   | 10 | 0    | 0  | 10 | 0     | 0  | 8   | 0     | 0 | 0  | 0     | 0 |
| 2300        | 5  | 0     | 0   | 0  | 0    | 0  | 10 | 8     | 0  | Э   | 0     | 0 | 0  | 0     | 0 |
| 0100 16 May | 10 | 0     | 0   | 7  | 0    | 0  | 10 | 0     | 0  | 7   | 0     | 0 | 0  | 0     | 0 |
| 0300        | 8  | 0     | 0   | 0  | 0    | 0  | 0  | 0     | 0  | 0   | 0     | 0 | 0  | 0     | 0 |
| 0500        | 9  | 9     | 0   | 10 | 3    | 0  | 9  | 0     | 0  | 10  | 0     | 0 | 6  | 0     | 0 |
| 0700        | 9  | 8     | 0   | 10 | 0    | 0  | 10 | 9     | 0  | 10  | 0     | 0 | 10 | 5     | 0 |
| 0900        | 10 | 10    | 8   | 10 | 10   | 0  | 10 | 9     | 0  | 10  | 0     | 0 | 4  | 0     | 0 |
| 1100        | 10 | 10    | 0   | 10 | 8    | 0  | 5  | 8     | 0  | 10  | 0     | 0 | 0  | 0     | 0 |
| 1300        | 9  | 9     | 0   | 7  | 0    | 0  | 9  | 7     | 0  | 9   | 0     | 0 | 0  | 0     | 0 |
| 1500        | 8  | 0     | 0   | 0  | 0    | 0  | 10 | 0     | 0  | 10  | 0     | 0 | 9  | 0     | 0 |
| 1700        | 10 | 0     | 0   | 10 | 0    | 0  | 7  | 0     | 0  | 10  | 0     | 0 | 0  | 0     | 0 |
| 1900        | 10 | 10    | 0   | 10 | 0    | 0  | 8  | 10    | 0  | 10  | 0     | 0 | 0  | 0     | 0 |
| 2100        | 10 | 0     | 0   | 0  | 0    | 0  | 9  | 0     | 0  | 10  | 0     | 0 | 0  | 0     | 0 |
| 2300        | 10 | 0     | C   | 0  | 0    | 0  | 10 | 0     | 0  | 10  | 0     | 0 | 10 | 0     | 0 |
| 0100 17 May | 10 | 0     | 0   | 0  | Û    | 0  | 0  | 0     | 0  | 0   | 0     | 0 | 0  | 0     | 0 |
| 0300        | 10 | 0     | 0   | 0  | 0    | 0  | 10 | 0     | 0  | 10  | 0     | 0 | 0  | 0     | 0 |
| 0500        | 0  | 0     | 0   | 0  | 0    | 0  | 0  | 0     | 0  | 0   | 0     | 0 | 0  | 0     | 0 |
| 0700        | 10 | 9     | 0   | 10 | 9    | 0  | 10 | 10    | 0  | 10  | 0     | 0 | 2  | 0     | 0 |

# Table 42 SCORE SHEET OF 25-MILE MOUNTAIN TEST SITE 3 RECEIVING

\* Doublet entenne. f Slant-wire autenne.

\$ Whip antenna.

語考えば日本語

|                 | H   | C-162 |     |     | 77-AI | 4   | AN  | /TRC- | 88  | Т   | 'RP - 4 |      | AN  | /GRC- | 9   |
|-----------------|-----|-------|-----|-----|-------|-----|-----|-------|-----|-----|---------|------|-----|-------|-----|
| SITE RECEIVING  | D   | st    | wS  | D   | s     | w   | D   | S     | W   | D   | S       | W    | D   | S     | w   |
| Site 0          |     |       |     |     |       |     |     |       |     |     |         |      |     |       |     |
| Total Messages  | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240     | 240  | 240 | 240   | 200 |
| Number Correct  | 224 | 101   | 31  | 146 | 56    | 5   | 183 | 103   | 5   | 163 | 0       | 0    | 56  | 10    | 0   |
| Percent Correct | 93% | 42%   | 13% | 61% | 23%   | 2%  | 76% | 43%   | 2%  | 68% | 0%      | 0%   | 23% | 4%    |     |
| Site 3          |     |       |     |     |       |     |     |       |     |     |         |      |     |       |     |
| Total Messages  | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240     | 240  | 240 | 240   | 240 |
| Number Correct  | 217 | 105   | 37  | 152 | 77    | 20  | 191 | 107   | 4   | 202 | 20      | 0    | 71  | 5     | l o |
| Percent Correct | 90% | 44%   | 15% | 63% | 32%   | 8%  | 80% | 45%   | 2%  | 84% | 8%      | · 0% | 30% | 2%    | 0%  |

Table 43 SUMMARY OF 25-MILE MOUNTAIN TEST

\*Doublet antenna. †Slant-wire antenna. \$Whip antenna.





|             |    | HC-162 |                |    | 77-AN |    | AN/ | TRC- 8 | 88 | 1  | FRP - 4 |   | AN | /GRC- | 9 |
|-------------|----|--------|----------------|----|-------|----|-----|--------|----|----|---------|---|----|-------|---|
| LOCAL TIME  | D  | st     | ₩ <sup>₽</sup> | D  | s     | w  | D   | s      | W  | D  | S       | W | D  | S     | W |
| 0900 24 May | 10 | 9      | 0              | 9  | 3     | 0  | 10  | 10     | 0  | 10 | 0       | 0 | 10 | 0     | 0 |
| 1100        | 10 | 10     | 8              | 10 | 6     | 0  | 9   | 8      | 0  | 10 | 9       | 0 | 10 | 0     | 0 |
| 1300        | 10 | 10     | 0              | 10 | 0     | 0  | 10  | 0      | 0  | 10 | 0       | 0 | 7  | J     | 0 |
| 1500        | 10 | 10     | 0              | 9  | 0     | 0  | 10  | 0      | 0  | 9  | 0       | 0 | 9  | 0     | 0 |
| 1700        | 10 | 7      | 0              | 7  | 0     | 0  | 10  | i o    | 0  | 7  | 0       | 0 | 3  | 0     | 0 |
| 1900        | 10 | 9      | 0              | 7  | 0     | 0  | 9   | 0      | 0  | 0  | 0       | 0 | 5  | 0     | 0 |
| 2100        | 9  | 9      | 0              | 8  | 0     | 0  | 9   | 0      | 0  | 0  | 0       | 0 | 0  | 0     | 0 |
| 2300        | 0  | 0      | 0              | 0  | ļo    | 0  | 0   | 0      | 0  | 0  | 0       | 0 | 0  | Ľ     | 0 |
| 0100 25 May | 6  | 0      | 0              | 0  | 0     | 0  | 0   | 0      | 0  | 0  | 0       | 0 | 0  | 0     | 0 |
| 0300        | 10 | 0      | 0              | 10 | 0     | 0  | 10  | 0      | Ō  | 10 | 0       | 0 | 8  | Ō     | 0 |
| 0500        | 10 | 0      | 0              | 5  | 0     | 0  | 7   | 0      | 0  | -9 | 0       | 0 | 10 | 0     | 0 |
| 0700        | 10 | 10     | 7              | 10 | 8     | 9  | 10  | 10     | 10 | 10 | 7       | 0 | 10 | 10    | 0 |
| 0900        | 10 | 8      | 8              | 10 | 10    | 10 | 10  | 10     | 9  | 10 | 7       | 0 | 8  | 0     | 0 |
| 1100        | 10 | 10     | 10             | 10 | 10    | 9  | 10  | 10     | 10 | 10 | 0       | 0 | 10 | 10    | 0 |
| 1300        | 10 | 9      | 9              | 8  | 7     | 3  | 10  | 8      | 8  | 0  | 0       | 0 | 6  | 0     | 0 |
| 1500        | 10 | 7      | 10             | 6  | 0     | 0  | 7   | 0      | 0  | 0  | 0       | 0 | 6  | 0     | 0 |
| 1700        | 10 | 0      | 0              | 10 | 0     | 0  | 0   | 0      | 0  | 0  | 0       | 0 | 0  | 0     | 0 |
| 1900        | 10 | 0      | 0              | 8  | 0     | 0  | 10  | 0      | 0  | 8  | 0       | 0 | 8  | 0     | 0 |
| 2100        | 10 | 0      | 0              | 9  | 0     | 0  | 9   | 0      | 0  | 10 | 0       | 0 | 10 | 0     | 0 |
| 2300        | 10 | 0      | jo             | 6  | 0     | 0  | 7   | 0      | 0  | 10 | 0       | 0 | 0  | 0     | 0 |
| 0100 or N   | 10 |        |                |    |       |    |     |        |    |    |         |   |    |       |   |
| 0100 26 May | 10 | 0      | 0              | 0  | 0     | 0  | 8   | 0      | 0  | 0  | 0       | ( | 0  | 0     | 0 |
| 0300        | 10 | 0      | 0              | 0  | 0     | 0  | 9   | 0      | 0  | 7  | 0       | 0 | 0  | 0     | 0 |
| 0500        | 0  | 0      | 0              | 0  | 0     | 0  | 0   | 0      | 0  | 0  | 0       | 0 | 0  | 0     | 0 |
| 0700        | 10 | 10     | 0              | 10 | 9     | 0  | 9   | 0      | 0  | 6  | 0       | U | 10 | 0     | 0 |

# Table 44 SCORE SHEET OF 50-MILE VARIED-TERBAIN TEST SITE 0 RECEIVING

\*Doublet antenna. †Slant-wire antenna. \$Whip antenne.

| TTUE | 1001   | ł    | IC-162 |     |    | 77-AM |    | AN | /TRC- | 88 |    | TRP-4 | · | AN | /GRC- | 9 |
|------|--------|------|--------|-----|----|-------|----|----|-------|----|----|-------|---|----|-------|---|
| IIMC | LOCAL  | D    | st     | w\$ | D  | S     | W  | D  | s     | W  | D  | S     | W | D  | S     | W |
| 0900 | 24 May | 10   | s      | 0   | 10 | 7     | 0  | 10 | 7     | 0  | 10 | 0     | 0 | 9  | 0     | 0 |
| 1100 |        | 10   | 6      | 9   | 9  | 10    | 0  | 9  | 9     | 0  | 9  | 7     | 0 | 10 | 0     | 0 |
| 1300 |        | 10   | 9      | 0   | 10 | 0     | 0  | 8  | 0     | 0  | 10 | 0     | 0 | 9  | 0     | 0 |
| 1500 |        | 10 i | 8      | 0   | 10 | 0     | 0  | 9  | 0     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 1700 |        | 10   | 8      | 0   | 8  | 0     | 0  | 8  | 0     | 0  | 10 | 0     | 0 | 9  | 0     | 0 |
| 1900 |        | 10   | 5      | 0   | 9  | 0     | 0  | 10 | 0     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 2100 |        | IJ   | 6      | 0   | 0  | 0     | 0  | 5  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 2300 |        | 0    | 0      | 0   | 0  | 0     | 0  | 0  | 0     | 3  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0100 | 25 May | 8    | 0      | 0   | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0300 |        | 10   | 0      | 0   | 10 | 0     | 0  | 9  | 0     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 05CÛ |        | 10   | 0      | 0   | 10 | 0     | 0  | 10 | 0     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 0700 |        | 10   | 8      | 9   | 10 | 10    | 10 | 10 | 9     | 9  | 10 | 9     | 0 | 10 | 10    | 0 |
| 0900 |        | 10   | 9      | 10  | 9  | 10    | 9  | 0  | 10    | 8  | 9  | 6     | 0 | 8  | 0     | 0 |
| 1100 |        | 10   | 10     | 10  | 10 | 10    | 9  | 10 | 10    | 10 | 9  | 0     | 0 | 5  | 10    | 0 |
| 1300 |        | 10   | 10     | 6   | 10 | 7     | 7  | 9  | 6     | 0  | 0  | 0     | 0 | 9  | 0     | 0 |
| 1500 |        | 8    | 5      | 0   | 9  | 9     | 0  | 3  | 0     | 0  | 0  | 0     | 0 | 4  | 0     | 0 |
| 1700 |        | 10   | 0      | 0   | 10 | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 1900 |        | 10   | 0      | 0   | 8  | 0     | 0  | 9  | 0     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |
| 2100 |        | 10   | 0      | 0   | 8  | 0     | 0  | 9  | 0     | Ð  | 10 | 0     | 0 | 9  | 0     | 0 |
| 2300 |        | 10   | 0      | 0   | 9  | 0     | 0  | 9  | 0     | 0  | 10 | 0     | 0 | 9  | 0     | 0 |
| 0100 | 26 May | 9    | 0      | 0   | 0  | 0     | 0  | 10 | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0300 |        | 10   | 0      | 0   | 0  | 0     | 0  | 9  | 0     | 0  | 7  | 0     | 0 | 0  | 0     | 0 |
| 0500 |        | 0    | 0      | 0   | 0  | 0     | 0  | 0  | 0     | 0  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0700 |        | 10   | 10     | 0   | 10 | 10    | 0  | 10 | 0     | 0  | 10 | 0     | 0 | 10 | 0     | 0 |

# Table 45 SCORE SHEET OF 50-MILE VARIED-TERRAIN TEST SITE 4 RECEIVING

\* Doublet antenna. † Slant-wire antenna. \$ Whip antenna.

「「「「「「「「「」」」」

|                 |     | HC-16 | 2   | 7   | 7 - AM |     | AN  | / TRC- | 88  |     | TRP- 4 | ,   | A   | N/GRC | • 9 |
|-----------------|-----|-------|-----|-----|--------|-----|-----|--------|-----|-----|--------|-----|-----|-------|-----|
| SITE R. LEIVING | D.  | st    | w\$ | D   | S      | W   | D   | s      | W   | D   | s      | w   | D   | s     | W   |
| Site 0          |     |       | 111 |     |        |     |     |        |     |     |        |     |     |       |     |
| Total Messages  | 240 | 240   | 240 | 240 | 240    | 240 | 240 | 240    | 240 | 240 | 240    | 240 | 240 | 240   | 240 |
| Number Correct  | 215 | 118   | 52  | 162 | 53     | 31  | 183 | 56     | 37  | 136 | 23     | 0   | 130 | 20    | 0   |
| Percent Correct | 90% | 49%   | 22% | 68% | 22%    | 13% | 76% | 23%    | 15% | 57% | 10%    | 0%  | 54% | 8%    | 0%  |
| Site 4          |     |       |     |     |        |     |     |        |     |     |        |     |     |       |     |
| Total Messages  | 240 | 240   | 240 | 240 | 240    | 240 | 240 | 240    | 240 | 240 | 240    | 240 | 240 | 240   | 240 |
| Number Correct  | 215 | 103   | 44  | 162 | 73     | 35  | 166 | 51     | 27  | 154 | 22     | 0   | 151 | 20    | 0   |
| Percent Correct | 90% | 43%   | 18% | 70% | 30%    | 15% | 69% | 21%    | 11% | 64% | 9%     | 0%  | 63% | 8%    | 0%  |
|                 |     | 1     |     |     |        |     |     |        |     | 1   |        |     |     |       |     |

Table 46 SUMMARY OF 50-MILE VAHIED-TERMAIN TEST

Doublet antenna.

† Slant-wire antenna.

§ Whip antenna.



FIG. 19 HISTOGRAM SHOWING COMMUNICATION SUCCESS vs. TIME OF DAY 50-MILE VARIED-TERRAIN TEST

|             |    | IC-16 | 2   |    | 77-AN |    | A  | /TRC | -88 |    | TRP-4 |   | AN | /GRC- | 9 |
|-------------|----|-------|-----|----|-------|----|----|------|-----|----|-------|---|----|-------|---|
| LOCAL TIME  | D* | st    | w\$ | D  | S     | w  | D  | S    | W   | D. | s     | W | D  | s     | W |
| 0709 31 May | 10 | 10    | 7   | 10 | 0     | 0  | 9  | 8    | 0   | 10 | 0     | 0 | 9  | 0     | 0 |
| 0900        | 10 | 9     | 9   | 9  | 7     | 3  | 10 | 8    | 4   | 10 | 0     | 0 | 10 | 0     | 0 |
| 1100        | 10 | 9     | 9   | 7  | 0     | 0  | 9  | 8    | 0   | 8  | 0     | 0 | 10 | 2     | 0 |
| 1300        | 10 | 9     | 8   | 10 | 9     | 8  | 9  | 8    | 0   | 10 | 0     | 0 | 10 | 0     | 0 |
| 1500        | 10 | 1     | 0   | 10 | 7     | 9  | 6  | 6    | 10  | 9  | 0     | 0 | 0  | 0     | 0 |
| 1700        | 10 | 8     | 9   | 10 | Û     | 0  | 9  | 0    | 0   | 0  | 0     | 0 | 7  | 0     | 0 |
| 1900        | 9  | 0     | 0   | 7  | 0     | 0  | 0  | 0    | 0   | 0  | 0     | 0 | 4  | 0     | 0 |
| 2100        | 10 | 0     | 0   | 9  | 0     | 0  | 0  | 0    | 0   | 9  | 0     | 0 | 10 | 0     | 0 |
| 2300        | 10 | 0     | 0   | 0  | 0     | 0  | 0  | 0    | 0.  | 0  | 0     | 0 | 0  | 0     | 0 |
| 0100 1 June | 10 | 10    | 0   | 9  | 0     | 0  | 0  | 0    | 0   | 9  | 0     | 0 | 10 | 0     | 0 |
| 0300        | 10 | 0     | 0   | 0  | 0     | 0  | 0  | 0    | 0   | 0  | 0     | 0 | 0  | 0     | 0 |
| 0500        | 0  | 0     | 0   | 0  | Э     | 0  | 0  | 0    | 0   | 0  | 0     | 0 |    | 0     | 0 |
| 0700        | 10 | 10    | 10  | 6  | 0     | 0  | 0  | 0    | 0   | 10 | 0     | 0 | 10 | 0     | 0 |
| 0900        | 10 | 9     | 10  | 9  | 10    | 8  | 10 | 10   | 10  | 10 | 4     | 0 | 9  | 0     | 0 |
| 1100        | 10 | 9     | 10  | 10 | 10    | 9  | 10 | 9    | Û   | 10 | 5     | 0 | 10 | 0     | 0 |
| 1300        | 10 | 10    | 10  | 10 | 10    | 0  | 8  | 9    | 5   | 7  | 0     | 0 | 9  | 0     | 0 |
| 1500        | 10 | 10    | 10  | 10 | 10    | 10 | 10 | 6    | 0   | 10 | 0     | 0 | 4  | 0     | 0 |
| 1700        | 10 | 10    | 10  | 10 | 3     | C  | 8  | 5    | 0   | 9  | 0     | 0 | 10 | 0     | 0 |
| 1900        | 10 | 10    | 0   | 10 | 5     | 0  | 7  | 0    | 0   | 0  | 0     | 0 | 0  | 0     | 0 |
| 2100        | 10 | 0     | 0   | 6  | 0     | 0  | 10 | 0    | 0   | 9  | 0     | 0 | 6  | 0     | 0 |
| 2300        | 10 | 0     | 0   | 0  | 0     | 0  | 8  | 0    | 0   | 10 | 0     | 0 | 9  | 0     | 0 |
| 0100 2 June | 0  | 0     | 0   | 0  | 0     | 0  | 0  | 0    | 0   | 0  | 0     | 0 | 0  | 0     | 0 |
| 0300        | 0  | 0     | 0   | 0  | 0     | 0  | 0  | 0    | 0   | 0  | 0     | 0 | 0  | 0     | 0 |
| 0500        | 0  | 0     | 0   | 0  | 0     | 0  | 0  | 0    | 0   | 0  | 0     | 0 | 0  | 0     | 0 |

# Table 47 SCORE SHEET OF 100-MILE VARIED-TERRAIN TEST SITE 0 RECEIVING

\* Noublet entenna. †Slant-wire antenna. §Whip antenna.

| 10041  |       |    | HC - 16 | 2   |    | 77-AM |   | AN | /TRC - | 88 |    | TRP-4 |   | AN | I/GRC | -9 |
|--------|-------|----|---------|-----|----|-------|---|----|--------|----|----|-------|---|----|-------|----|
| LOCAL  | TIME  | D. | st      | w\$ | D  | S     | W | D  | S      | W  | D  | S     | W | D  | s     | W  |
| 0700 3 | 1 May | 10 | 10      | 10  | 10 | 10    | 0 | 10 | 10     | 0  | 10 | 0     | 0 | 10 | 0     | 0  |
| 0900   |       | 10 | 10      | 8   | 10 | 10    | 0 | 9  | 6      | 4  | 10 | 0     | 0 | 10 | 0     | 0  |
| 1100   |       | 10 | 10      | 9   | 10 | 0     | 0 | 10 | 6      | 0  | 10 | 0     | 0 | 10 | 0     | 0  |
| 1300   |       | 10 | 10      | 0   | 10 | 10    | 5 | 10 | 9      | 5  | 10 | 1     | 0 | 9  | 0     | 0  |
| 1500   |       | 10 | 10      | 0   | 10 | 10    | 4 | 10 | 7      | 0  | 10 | 0     | 0 | 0  | 0     | 0  |
| 1700   |       | 10 | 10      | 9   | 10 | 0     | 0 | 10 | 0      | 0  | 0  | 0     | 0 | 9  | 0     | 0  |
| 1900   |       | 10 | 0       | 0   | 10 | 0     | 0 | 0  | 0      | 0  | 0  | 0     | 0 | 0  | 0     | 0  |
| 21 00  |       | 9  | 0       | 0   | 9  | 0     | 0 | 0  | 0      | 0  | 9  | 0     | 0 | 9  | 0     | 0  |
| 2300   |       | 9  | 0       | 0   | 0  | 0     | 0 | 0  | 0      | 0  | 0  | 0     | 0 | 0  | 0     | 0  |
| 0100 1 | June  | 10 | 9       | 0   | 9  | 0     | 0 | 0  | 0      | 0  | 8  | с     | 0 | 9  | 0     | 0  |
| 0300   |       | 10 | 0       | 0   | 0  | 0     | 0 | 0  | 0      | 0  | 0  | 0     | 0 | 0  | 0     | 0  |
| 05C0   |       | 0  | 0       | 0   | 0  | 0     | 0 | 0  | 0      | 0  | 0  | 0     | 0 | 0  | 0     | 0  |
| 0700   |       | 10 | 8       | 7   | 8  | 0     | 0 | 0  | 0      | 0  | 9  | 0     | 0 | 9  | 0     | 0  |
| 0900   |       | 10 | 10      | 10  | 9  | 10    | 9 | 10 | 9      | 9  | 10 | 6     | 0 | 10 | 0     | 0  |
| 1100   |       | 10 | 10      | 9   | 10 | 10    | 4 | 10 | 8      | 0  | 10 | 2     | 0 | 10 | 0     | 0  |
| 1300   |       | 10 | 10      | 9   | 10 | 10    | 0 | 10 | 3      | 0  | 10 | 10    | 0 | 9  | 0     | 0  |
| 1500   |       | 10 | 9       | 6   | 10 | 8     | 9 | 9  | ò      | 0  | 10 | 0     | 0 | 8  | 0     | 0  |
| 1700   |       | 10 | 10      | 9   | 10 | 9     | 0 | 10 | 4      | 0  | 10 | 0     | 0 | 10 | 0     | 0  |
| 1900   |       | 10 | 10      | 0   | 10 | 7     | 0 | 9  | 0      | 0  | 0  | 0     | 0 | 0  | 0     | 0  |
| 2100   |       | 10 | 0       | 0   | 10 | 0     | 0 | 10 | 0      | 0  | 10 | 0     | 0 | 7  | 0     | 0  |
| 2300   |       | 10 | 0       | 0   | 0  | 0     | 0 | 9  | 0      | 0  | 10 | 0     | 0 | 10 |       | 0  |
| 0100 2 | June  | 0  | 0       | 0   | 0  | 0     | 0 | 0  | 0      | 0  | 0  | 0     | 0 | 0  | 0     | 0  |
| 0300   |       | 0  | 0       | 0   | 0  | 0     | 0 | 0  | 0      | 0  | 0  | 0     | 0 | 0  | 0     | 0  |
| 0500   |       | 0  | 0       | 0   | 0  | 0     | 0 | 0  | 0      | 0  | 0  | 0     | 0 | 0  | 0     | 0  |

Table 48 SCORE SHEET OF 100-MILE VARIED-TERRAIN TEST SITE 5 RECEIVING

\* Doublet antenna.
\* Slant-wire antenna.
\$ Whip antenna.

75

「大大山」

|                 | H    | C-162 |     |     | 77-AM |     | AN  | /TPC- | 80  | т   | RP - 4 |     | A   | N/GRC | - 9 |
|-----------------|------|-------|-----|-----|-------|-----|-----|-------|-----|-----|--------|-----|-----|-------|-----|
| SITE RECEIVING  | D    | st    | wS  | D   | S     | w   | D   | S     | W   | D   | S      | W   | D   | S     | W   |
| Site 0          |      |       |     |     |       |     |     |       |     |     |        |     |     |       |     |
| Total Messages  | 240  | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240    | 240 | 240 | 240   | 240 |
| Number Correct  | 199  | 124   | 102 | 152 | 71    | 47  | 123 | 77    | 29  | 140 | 9      | 0   | 137 | 2     | 0   |
| Percent Correct | 83%  | 52%   | 43% | 63% | 30%   | 20% | 51% | 32%   | 12% | 58% | 4%     | 0%  | 57% | 0.8%  | 0%  |
| Site 5          |      |       |     |     |       |     |     |       |     |     |        |     |     |       |     |
| Total Messages  | 240  | 240   | 240 | 240 | 240   | 240 | 240 | 240   | 240 | 240 | 240    | 240 | 240 | 240   | 240 |
| Number Correct  | 198  | 136   | 86  | 165 | 94    | 31  | 136 | 71    | 18  | 146 | 19     | 0   | 139 | 0     |     |
| Percent Correct | 8 3% | 57%   | 36% | 69% | 39%   | 13% | 57% | 30%   | 8%  | 61% | 8%     | 0%  | 58% | 0%    | 09  |

Table 49 SUMMARY OF 100-MILE VARIED-TERRAIN TEST

Doublet antenna. Slant-wire antenna. Whip antenna.



# F. RESULTS FROM CW TEST

|       |       |    | HC-16 | 2   |   | 77-1           | A.M. | AN | /TRC | - 88 | 1 | RP- | 4 | AN | /GRC | - 9 |
|-------|-------|----|-------|-----|---|----------------|------|----|------|------|---|-----|---|----|------|-----|
| LOCAL | TIME  | D* | st    | wS  | D | s              | W    | D  | S    | W    | D | s   | W | D  | s    | W   |
| 1000  | 2 May | 1  | 1     | 1   | 1 | 1              | 1    | 1  | 1    | 1    | 1 | 1   | 1 | 1  | 1    | 0   |
| 1200  |       | 1  | 1     | 1   | 1 | 1              | 1    | 1  | 1    | 1    | 1 | 1   | 1 | 0  | 0    | 0   |
| 1400  |       | 1  | 1     | 1   | 1 | 1              | 1    | 1  | 1    | 1    | 1 | 1   | 1 | 0  | 0    | 0   |
| 1600  |       | 1  | 1     | 1   | 1 | 1              | 1    | 0  | 1    | 1    | 1 | 1   | 1 | 1  | 1    | 1   |
| 1800  |       | 1  | 1     | 1   | 0 | 1              | 0    | 0  | 1    | 1    | 1 | 1   | 0 | 1  | 0    | 0   |
| 2000  |       | 1  | 1     | 1   | 1 | 1              | 1    | 1  | 1    | 3    | 1 | 0   | 0 | 1  | 1    | 0   |
| 2200  |       | 0  | 0     | 0   | 1 | 1              | 1    | 1  | 1    | 1    | 0 | 0   | 0 | 1  | 1    | 0   |
| 2400  | •     | 0  | 1     | 0   | 0 | C              | 0    | 0  | 0    | 0    | 0 | 0   | 0 | 0  | 0    | 0   |
| 0200  | 3 May | 1  | 1     | 0   | 1 | 1              | 1    | c  | 0    | 0    | 0 | 0   | 0 | 0  | 0    | 0   |
| 0400  |       |    |       | • • | 0 | 1              | 1    | 0  | 0    | 0    | 1 | 1   | 1 | 0  | 0    | 0   |
| 0600  |       | •- |       |     | 1 | 1              | 1    | 0  | 0    | 0    | 0 | 1   | 1 | 0  | 1    | 1   |
| 0800  |       |    |       |     | 1 | 1              | 1    | 1  | 1    | 1    | 0 | 0   | 0 | 1  | 1    | 0   |
| 1000  |       | •• |       |     | 1 | 1              | 1    | 1  | 1    | 1    | 1 | 1   | 1 | 1  | 1    | 0   |
| 1200  |       | 1  | 1     | 1   | 1 | <sup>•</sup> 1 | 1    | 1  | 1    | 1    | 1 | 1   | 1 | 1  | 1    | 1   |
| 1400  |       | 1  | 1     | 1   | 1 | 1              | 1    | 1  | 1    | 1    | 1 | 1   | 1 | 0  | 1    | 1   |
| 1600  |       | 1  | 1     | 1   | 1 | 1              | 1    | 1  | 1    | 1    | 1 | 1   | 1 | 1  | 1    | 1   |
| 1800  |       | 1  | 1     | 1   | 1 | 1              | 0    | 1  | 1    | 1    | 1 | 1   | 0 | 1  | 0    | 0   |
| 2000  |       | 1  | 1     | 1   | 1 | 1              | 1    | 1  | 1    | 1    | 1 | 1   | 0 | 0  | 0    | 0   |
| 2200  |       | 0  | 0     | 0   | 0 | 1              | 1    | 0  | 1    | 1    | 0 | 0   | 0 | 0  | 0    | 0   |
| 2400  |       | 0  | 0     | 0   | 0 | 1              | 1    | 1  | 1    | 1    | 1 | 1   | 0 | 0  | r    | 0   |
| 0200  | 4 May | 0  | 0     | 0   | 0 | 0              | 0    | 0  | 0    | 0    | 0 | 0   | 0 | 0  | 0    | 0   |
| 0400  |       | 0  | 0     | 0   | 0 | 0              | 0    | 0  | 0    | 0    | 0 | 0   | 0 | 0  | 0    | 0   |
| 0600  |       | 0  | 0     | 0   | 0 | 0              | 0    | 0  | 0    | 0    | 0 | 0   | 0 | 0  | 0    | 0   |
| 0800  |       | 0  | 0     | 0   | 0 | 0              | 0    | 0  | 0    | 0    | 0 | 0   | 0 | 0  | 0    | 0   |

Table 50 CW TEST SCORE SHEET OF 10-MILE DELTA TEST

\* Doublet antenna.

<sup>†</sup> Slant-wire antenna.

S Whip entenne.

|       |       | Ta | ble 51  |       |      |
|-------|-------|----|---------|-------|------|
|       |       | C  | TEST    |       |      |
| SCORE | SHEET | OF | 15-MILE | DELTA | TEST |

|             |    | HC-16 | 2  |   | 77-AI | 1 | AN/1 | rRC- | 88 | T | RP - 4 |   | AN/      | GRC- | 9  |
|-------------|----|-------|----|---|-------|---|------|------|----|---|--------|---|----------|------|----|
| LOCAL TIME  | D+ | st    | wS | D | S     | W | D    | s    | W  | D | S      | W | D        | s    | W  |
| 0900 30 Apr | 1  | 1     | 1  | 1 | 1     | 1 | 1    | 1    | 1  | 1 | 1      | L | 0        | 0    | IJ |
| 1100        | 0  | 1     | 1  | 1 | 1     | 1 | 0    | 1    | 1  | 1 | 1      | 1 | 0        | 0    | 0  |
| 1300        | 1  | 1     | 1  | 0 | 1     | 0 | 0    | 1    | 1  | 0 | 1      | 0 | 0        | 0    | 0  |
| 1500        | 1  | 1     | 1  | 0 | 0     | 0 | 0    | 0    | 0  | 1 | 1      | 1 | 0        | 0    | 0  |
| 1700        | 1  | 1     | 1  | 0 | 0     | 1 | 0    | 1    | 1  | 1 | 1      | 1 | 1        | 0    | 0  |
| 1900        | 1  | 1     | 1  | 1 | 0     | 0 | 1    | 0    | 0  | 1 | 0      | 0 | 1        | 0    | 0  |
| 2100        | 1  | 1     | 1  | 0 | 0     | 0 | 1    | 0    | 1  | 1 | 0      | 0 | 1        | 0    | 0  |
| 2300        | 1  | 1     | 1  | 1 | 0     | 1 | 1    | 1    | 0  | 1 | 0      | 0 | 0        | 0    | 0  |
| 0100 1 May  | 1  | 1     | 1  | 1 | 1     | 0 | 1    | 1    | 0  | 1 | 1      | 0 | 1        | 0    | 0  |
| 0300        | 0  | 0     | 0  | 0 | 0     | 0 | 0    | ē.   | ^  | 0 | 0      | 0 | 0        | 0    | 0  |
| 0500        | 0  | 0     | 0  | 0 | 0     | 0 | 0    | į,   | 0  | 0 | 1      | 0 | 0        | 0    | 0  |
| 0700        | 1  | 1     | 1  | 1 | 1     | 1 | ·    | 1    | 1  | ٦ | 1      | • | 1        | 1    | 1  |
| 0900        | 1  | 1     | 1  | 1 | 1     | 1 |      | L    | 1  | 1 | 1      | 1 | 0        | 0    | 0  |
| 1100        | 1. | 1     | 1  | 1 | 1     | 1 | Û.   | n    | C  | 1 | 1      | ι | <u>n</u> | 0    | 0  |
| 1300        | 0  | 1     | 1  | 1 | 1.    | 1 | 0    | 1    | Ţ  | 1 | 3      | 1 | 0        | 0    | 0  |
| 1500        | 0  | 1     | 1  | 1 | 1     | 1 | j o  | 1    | •  | 1 | 1      | 1 | 0        | 0    | 0  |
| 1700        | 1  | 1     | 1  | 1 | 1     | 1 | 1    | 1    | 1  | 1 | 1      | 0 | 1        | 1    | 0  |
| 1900        | 1  | 1     | 1  | 1 | 1     | 1 | 1    | 1    | 0  | 1 | 0      | 6 | 1        | 0    | 0  |
| 2100        | 1  | 1     | 1  | 1 | 1     | 1 | 0    | 0    | 0  | 1 | 0      | 0 | 1        | 0    | 0  |
| 2300        | 1  | 1     | 1  | 1 | 1     | 0 | 0    | 0    | 0  | 1 | 0      | 0 | 0        | 0    | 0  |
| 0100 2 May  | 1  | 1     | 1  | 0 | 0     | 0 | 0    | 0    | 0  | 0 | 0      | 0 | 0        | 0    | 0  |
| 0300        | 0  | 0     | 0  | 0 | 0     | 0 | 0    | 0    | 0  | 0 | 0      | 0 | 0        | 0    | 0  |
| 0500        | 0  | 0     | 0  | 0 | 0     | 0 | 0    | 0    | 0  | 0 | 0      | 0 | 0        | 0    | 0  |
| 0700        | 0  | 0     | 0  | 0 | 0     | 0 | 0    | 0    | 0  | 0 | 0      | 0 | 0        | 0    | 0  |

\* Doublet antenna.

† Slant-wire antenna.

§ Whip antenna.

|             |    | HC-16 | 2   | 7 | 7 - AM |   | AN/ | TRC | 88 | 1 | RP- | • | AN | /GRC | - 9 |
|-------------|----|-------|-----|---|--------|---|-----|-----|----|---|-----|---|----|------|-----|
| LOCAL TIME  | D* | st    | w\$ | D | S      | W | D   | S   | W  | D | s   | W | D  | s    | W   |
| 1300 10 May | 1  | 1     | 1   | 1 | 1      | 1 | 1   | 1   | 1  | 1 | 1   | 1 | 1  | 1    | 0   |
| 1500        | 1  | 0     | 0   | 1 | 1      | 1 | 1   | 1   | 1  | 1 | 1   | 1 | 1  | 1    | 1   |
| 1700        | 1  | 1     | 1   | r | 1      | 1 | 1   | 0   | 0  | 1 | 1   | 1 | 1  | 1    | 0   |
| 1900        | 1  | 0     | 0   | 1 | 0      | 0 | 1   | 0   | 0  | 0 | 0   | 0 | 1  | 0    | 0   |
| 2100        | 1  | 0     | 0   | 0 | 0      | 0 | 0   | 0   | 0  | 0 | 0   | 0 | 1  | 0    | 0   |
| 2300        | 0  | 0     | 0   | 0 | 0      | 0 | 0   | 0   | 0  | 0 | 0   | 0 | 0  | 0    | 0   |
| 0100 11 May | 1  | 0     | 0   | 0 | 0      | 0 | 0   | 0   | 0  | 1 | 0   | 0 | 1  | 0    | 0   |
| 0300        | 1  | 0     | 0   | 0 | 0      | 0 | 0   | 0   | 0  | 0 | 0   | 0 | 0  | 0    | 0   |
| 0500        | 1  | 0     | 0   | 0 | 0      | 0 | 0   | 0   | 0  | 0 | 0   | 0 | 0  | 0    | 0   |
| 0700        | 1  | 1     | 1   | 1 | 1      | 0 | 1   | 0   | 0  | 1 | 0   | 0 |    |      | -   |
| 0900        | 1  | 1     | 1   | 1 | 1      | 1 | 0   | 0   | 0  | 1 | 0   | 0 | 1  | 0    | 0   |
| 1100        | 1  | 1     | 0   | 1 | 1      | 1 | 1   | 0   | 1  | 1 | 0   | 0 | 1  | 0    | 0   |
| 0900 13 May | 1  | 1     | 0   | 1 | 1      | 1 | 1   | 1   | 0  | 1 | 1   | 1 | 1  | 1    |     |
| 1100        | 1  | 1     | 1   | 1 | 1      | 1 | 1   | 1   | 1  | 1 | 1   | 1 | 1  | 1    | 1   |
| 1300        | 1  | 1     | 1   | 1 | 1      | 1 | 1   | 1   | 1  | 1 | 1   | 1 | 1  | 1    | 1   |
| 1500        | ì  | 1     | 1   | 1 | 1      | 1 | 1   | 1   | 1  | 1 | 1   | 1 | 1  | 0    | 0   |
| 1700        | 1  | 1     | 0   | 1 | 1      | 0 | 1   | 0   | 0  | 1 | 0   | 0 | 1  | 0    | 0   |
| 1900        | 1  | 0     | 0   | 1 | 0      | 0 | 1   | 0   | 0  | 1 | 0   | 0 | 0  | 0    | 0   |
| 2100        | 1  | 1     | 0   | 1 | 1      | 0 | 0   | 0   | 0  | 1 | 0   | 0 | 0  | 0    | 0   |
| 2300        | 1  | 0     | 0   | 1 | 0      | 0 | 0   | 0   | 0  | 1 | 0   | 0 | 0  | 0    | 0   |
| 0100 14 May | 1  | 1     | 0   | 1 | 0      | 0 | 1   | 0   | 0  | 1 | 0   | 0 | 1  | 0    | 0   |
| 0300        | 1  | 0     | 0   | 1 | 0      | 0 | 1   | 0   | 0  | 1 | 0   | 0 | 0  | 0    | 0   |
| 0500        | 1  | 0     | 0   | 1 | 0      | 0 | 1   | 0   | 0  | 1 | 0   | 0 | 0  | 0    | 0   |
| 0700        | 1  | 1     | .0  | 1 | 1      | 1 | 1   | 1   | 1  | 1 | 1   | 0 | 0  | 0    | 0   |

Table 52 CW TEST SCORE SHEET OF 5-MILE MOUNTAIN TEST

. Doublet antenna.

Slant-wire antanna. Whip antenna.

# Table 53 CW TEST SCORE SHEET OF 12-MILE MOUNTAIN TEST

|             | 1  | HC-16 | 2   |   | 17-A) | t | AN/ | TRC | 88 | 1 | rap-4 | L | AN | /GRC | - 9 |
|-------------|----|-------|-----|---|-------|---|-----|-----|----|---|-------|---|----|------|-----|
| LOCAL TIME  | D* | st    | w\$ | D | S     | W | D   | S   | W  | D | 8     | W | D  | s    | W   |
| 0900 20 May | 1  | 1     | 1   | 1 | 1     | 1 | 1   | 1   | 1  | 1 | 1     | 0 | 1  | 0    | 0   |
| 1100        | 1  | 1     | 1   | 1 | 1     | 1 | 1   | 1   | 1  | 1 | 1     | 0 | 1  | 0    | 0   |
| 1300        | 1  | 1     | 1   | 1 | 1     | 1 | 1   | 1   | 1  | 1 | 1     | 0 | 1  | 0    | 0   |
| 1500        | 1  | 1     | 1   | 1 | 1     | 1 | 1   | 1   | 1  | 1 | 0     | 0 | 1  | 0    | 0   |
| 1700        | 1  | 1     | 0   | 1 | 1     | 0 | 1   | 1   | 0  | 1 | 0     | 0 | 1  | 0    | 0   |
| 1900        | 1  | 1     | 0   | 1 | 1     | 0 | 0   | 0   | 0  | 0 | 0     | 0 | 1  | 0    | 0   |
| 2100        | 1  | 1     | 0   | 1 | 0     | 0 | 1   | 0   | 0  | 0 | 0     | 0 | 0  | 0    | 0   |
| 2300        | 1  | 0     | 0   | 0 | 0     | 0 | 0   | 0   | 0  | 0 | 0     | 0 | 0  | 0    | 0   |
| 0100 21 May | 1  | 0     | 0   | 0 | 0     | 0 | 0   | 0   | 0  | 0 | 0     | 0 | 0  | 0    | (   |
| 0300        | 0  | 0     | 0   | 0 | 0     | 0 | 0   | 0   | 0  | 0 | 0     | 0 | 0  | 0    |     |
| 0500        | 0  | 0     | 0   | 0 | 0     | 0 | 0   | 0   | 0  | 0 | 0     | 0 | 0  | 0    | (   |
| 0700        | 1  | 1     | 1   | 1 | 1     | 0 | 1   | 0   | 0  | 1 | 0     | 0 | 1  | 0    | 0   |
| 0900        | 1  | 1     | 1   | 1 | 1     | 1 | 1   | 1   | 1  | 1 | 1     | 1 | 1  | 0    | (   |
| 1100        | 1  | 1     | 1   | 1 | 1     | 1 | 1   | 1   | 1  | 1 | 1     | 1 | 1  | 1    | (   |
| 1300        | 1  | 1     | 1   | 1 | 1     | 1 | 1   | 1   | 1  | 1 | 1     | 1 | 1  | 1    |     |
| 1500        | 1  | 1     | 1   | 1 | 0     | 0 | 1   | 1   | 0  | 1 | 0     | 0 | 1  | 0    |     |
| 1700        | 1  | 1     | 1   | 1 | 1     | 1 | 1   | 1   | 1  | 1 | 1     | 0 | 1  | 1    | 0   |
| 1900        | 1  | 1     | 1   | 1 | 0     | 0 | 1   | 1   | 0  | 1 | 1     | 0 | 1  | 0    |     |
| 2100        | 1  | 0     | 0   | 1 | 0     | 0 | 0   | 0   | 0  | 0 | 0     | 0 | 1  | 0    | 0   |
| 2300        | 1  | 0     | 0   | 1 | 0     | 0 | 0   | n   | 0  | 0 | 0     | 0 | 0  | 0    | 0   |
| 0100 22 May | 1  | 0     | 0   | 0 | 0     | 0 | 0   | 0   | 0  | 1 | 0     | 0 | 1  | 0    | (   |
| 0300        | 1  | 0     | 0   | 0 | 0     | 0 | 0   | 0   | 0  | 0 | 0     | 0 | 0  | 0    | (   |
| 0500        | 1  | 1     | 0   | 0 | 0     | 0 | 0   | 0   | 0  | 1 | 0     | 0 | 1  | 0    |     |
| 0700        | 1  | 1     | 1   | 1 | 0     | 0 | 1   | 0   | 0  | 1 | 0     | 0 | 1  | 1    |     |

Doublet entenne. Slant-wire antenna. Whip antenna.

|           |        | H | IC-162 | 2   |   | 7-AI | 1 | AN/ | TRC | 88 | 1 | 'RP-4 |   | AN | /GRC | - 9 |
|-----------|--------|---|--------|-----|---|------|---|-----|-----|----|---|-------|---|----|------|-----|
| LOCAL TIN | E D    | • | st     | w\$ | D | S    | W | D   | S   | W  | D | S     | W | D  | S    | W   |
| 0900 15 N | ay ]   |   | 1      | 1   | 1 | 1    | 1 | 1   | 1   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 1100      | 1      |   | 1      | 1   | 1 | 1    | 0 | 1   | 1   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 1300      | 1      |   | 1      | 1   | 1 | 1    | 0 | 1   | 1   | 1  | 1 | 0     | 0 | 0  | 0    | 0   |
| 1500      | 1      |   | 1      | 0   | 1 | 1    | 1 | 1   | 1   | 0  | 1 | 0     | 0 | 1  | 0    | 0   |
| 1700      | 1      |   | 0      | 0   | 1 | 0    | 0 | 1   | 1   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 1900      | 1      |   | 0      | 0   | 1 | 0    | 0 | 1   | 1   | 0  | 0 | 0     | 0 | 0  | 0    | 0   |
| 2100      | 1      |   | 0      | 0   | 1 | 0    | 0 | 1   | 0   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 2300      | 1      |   | 0      | 0   | 1 | 0    | 0 | 0   | 0   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 0100 16 N | ay   1 |   | 0      | 0   | 0 | 0    | 0 | 1   | 0   | 9  | 0 | 0     | 0 | 0  | 0    | 0   |
| 0300      | 1      |   | 0      | 0   | 0 | 0    | 0 | 0   | 0   | 0  | 0 | 0     | 0 | 0  | 0    | 0   |
| 0500      | 1      |   | 0      | 0   | 1 | 0    | 0 | 1   | ð   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 0700      | 1      |   | 1      | 0   | 1 | n    | 0 | 1   | 1   | 0  | 1 | 0     | 0 | 1  | 0    | 0   |
| 0900      | 1      |   | 1      | 1   | 1 | 1    | 0 | 1   | 1   | 0  | 1 | 1     | 0 | 1  | 1    | 0   |
| 1100      | 1      |   | 1      | 1   | 1 | 0    | 0 | 1   | 1   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 1300      | 1      |   | 1      | 0   | 1 | 0    | 0 | 1   | 0   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 1500      | 1      |   | 0      | 0   | 0 | 0    | 0 | 1   | 0   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 1700      | 1      |   | 0      | 0   | 0 | 0    | 0 | 0   | 0   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 1900      | 1      |   | 0      | 0   | 0 | 0    | 0 | 0   | 0   | 0  | 1 | 0     | 0 | 0  | 0    | 0   |
| 2100      | 1      |   | 0      | 0   | 0 | Q    | 0 | 0   | 0   | 0  | 0 | 0     | 0 | 0  | 0    | 0   |
| 2300      | 1      |   | 1      | 0   | 0 | 0    | 0 | 1   | 0   | 0  | 1 | 0     | 0 | 1  | 0    | 0   |
| 0100 17 N | ay   1 |   | 0      | 0   | 0 | 0    | n | 0   | 0   | n  | 0 | 0     | 0 | 0  | 0    | 0   |
| 0300      | 1      |   | 0      | 0   | 0 | 0    | 0 | 1   | 0   | 0  | 1 | 0     | 0 | 0  | e    | 0   |
| 0500      | 0      |   | 0      | 0   | 0 | 0    | 0 | 0   | 0   | 0  | 0 | 0     | 0 | 0  | 0    | 0   |
| 0700      | 1      |   | 1      | 0   | 1 | 1    | 0 | 1   | 0   | 0  | 1 | 0     | 0 | 1  | 0    | 0   |

Table 54 CW TEST SCORE SHEET OF 25-MILE MOUNTAIN TEST

Doublet antenna. † Slant-wire antenna. \$ Whip antenna.

|              |        |    | HC-16 | 2   | 7 | 7 - AN |   | AN/ | TRC | - 88 |   | rRP- | 4 | AN | /GRC | - 9 |
|--------------|--------|----|-------|-----|---|--------|---|-----|-----|------|---|------|---|----|------|-----|
| LOCAL        | . TIME | D• | st    | w\$ | D | S      | W | D   | S   | W    | D | s    | ₩ | D  | S    | W   |
| 0900         | 24 May | 1  | 1     | 0   | 1 | 1      | 0 | 1   | 1   | 0    | 1 | 0    | 0 | 1  | 0    | 0   |
| 1100         |        | 1  | 1     | 0   | 1 | 1      | 0 | 1   | 1   | 0    | 1 | 1    | 0 | 1  | 0    | 0   |
| 1300         |        | 1  | 1     | 0   | 1 | Ù      | 0 | 1   | 0   | 0    | 1 | 0    | 0 | 1  | 0    | 0   |
| 1500         |        | 1  | 1     | 0   | 1 | 0      | 0 | 1   | 0   | 0    | 1 | 0    | 0 | 1  | 0    | 0   |
| 1700         |        | 1  | 1     | 0   | 1 | 0      | 0 | 1   | 0   | Û    | 1 | 0    | 0 | 0  | 0    | 0   |
| <b>19</b> 00 |        | 1  | 1     | 0   | 1 | 0      | 0 | 1   | 0   | 0    | 1 | 0    | 0 | 1  | 0    | 0   |
| 2100         | 1      | 1  | ì     | 0   | 1 | 0      | 0 | 1   | 0   | 0    | 0 | 0    | 0 | 0  | 0    | 0   |
| 2300         |        | 0  | 0     | 0   | 0 | 0      | 0 | 0   | 0   | 0    | 0 | e    | 0 | 0  | 0    | 0   |
| 0100         | 25 May | 0  | 0     | 0   | 0 | 0      | 0 | 0   | 0   | 0    | 0 | 0    | 0 | 0  | 0    | 0   |
| 0300         |        | 1  | 0     | 0   | 1 | 0      | 0 | 1   | 0   | 0    | 1 | 0    | 0 | 1  | 0    | 0   |
| 0500         |        | 1  | 0     | 0   | 1 | 0      | 0 | 1   | 0   | 0    | 1 | 0    | 0 | 1  | 0    | 0   |
| 0700         |        | 1  | 1     | 0   | 1 | 1      | 1 | 1   | 1   | 1    | 1 | 1    | 0 | 1  | 1    | 0   |
| 0900         |        | 1  | 1     | 0   | 1 | ì      | 1 | 1   | 1   | 1    | 1 | 0    | 0 | 1  | 0    | 0   |
| 1100         |        | 1  | 1     | 1   | 1 | 1      | 0 | 1   | 1   | 1    | 1 | 0    | 0 | 1  | 1    | 0   |
| 1300         |        | 1  | 1     | 1   | 1 | 1      | 0 | 0   | 1   | 0    | 0 | 0    | 0 | 1  | 0    | 0   |
| 1500         |        | 1  | 1     | 1   | 1 | 0      | 0 | 1   | 0   | 0    | 0 | 0    | 0 | 1  | 0    | 0   |
| 1700         |        | 1  | 0     | 0   | 1 | 3      | 0 | 0   | 0   | 0    | 0 | 0    | 0 | 0  | 0    | 0   |
| 1900         |        | 1  | 0     | 0   | 1 | 0      | 0 | ï   | 0   | 0    | 1 | 0    | 0 | 1  | 0    | 0   |
| 2100         |        | 1  | 0     | 0   | 1 | 0      | 0 | 1   | 0   | 0    | 1 | 0    | 0 | 1  | 0    | 0   |
| 2300         |        | 1  | 0     | 0   | 1 | 0      | 0 | 1   | 0   | 0    | 1 | 0    | 0 | 0  | 0    | 0   |
| 0100         | 26 May | 1  | 0     | 0   | 0 | 0      | 0 | 0   | 0   | 0    | 0 | 0    |   | 0  | 0    | 0   |
| 0300         |        | 1  | 0     | 0   | 0 | 0      | 0 | 0   | 0   | 0    | 0 | 0    | 0 | 0  | 0    | 0   |
| 0500         |        | 0  | 0     | 0   | 0 | 0      | 0 | 0   | 0   | 0    | 0 | 0    | 0 | 0  | 0    | 0   |
| 0700         |        | 1  | 1     | 0   | 1 | 1      | 0 | 1   | 0   | 0    | 1 | 0    | 0 | 1  | 0    | 0   |

# Table 55 CW TEST SCORE SHEET OF 50-MILE VARIED-TERRAL'S TEST

\* Doublet antenna. † Slant-wire antenna. § Whip antenna.

|                | Table 56                |      |
|----------------|-------------------------|------|
|                | CW TEST                 |      |
| SCORE SHEET OF | 100-MILE VARIED-TERPAIN | TEST |

|       |        | ł  | IC- 1 6 | 2  | 7 | 7 - AM |   | AN/ | TRC- | 88 | 1 | rRP-4 |   | AN | /GRC | .9 |
|-------|--------|----|---------|----|---|--------|---|-----|------|----|---|-------|---|----|------|----|
| LOCAL | . TIME | D• | st      | wŞ | D | s      | W | D   | s    | w  | D | s     | W | D  | S    | W  |
| 0700  | 31 May | 1  | 1       | 1  | 1 | 0      | 0 | 1   | 1    | 0  | 1 | 0     | 0 | 1  | 0    | 0  |
| 0900  |        | 1  | 1       | 1  | 1 | 1      | 0 | 1   | 1    | 0  | 1 | 0     | 0 | 1  | 0    | 0  |
| 1100  |        | 1  | 1       | 1  | 1 | 0      | 0 | 1   | 1    | 0  | 1 | 0     | 0 | 1  | 0    | 0  |
| 1300  |        | 1  | 1       | 1  | 1 | 1      | 1 | 1   | 0    | 0  | 1 | 0     | 0 | 1  | 0    | 0  |
| 1500  |        | 1  | 0       | 0  | 1 | 1      | 1 | 1   | 1    | 1  | 1 | 0     | 0 | 0  | 0    | 0  |
| 1700  |        | 1  | 0       | 1  | 1 | 0      | 0 | 1   | 0    | 0  | 0 | 0     | 0 | 0  | 0    | 0  |
| 1900  |        | 1  | 0       | 0  | 0 | 0      | 0 | 0   | 0    | 0  | 0 | 0     | 0 | 0  | 0    | 6  |
| 2100  |        | 1  | 0       | 0  | 1 | 0      | 0 | 0   | 0    | 0  | 1 | 0     | 0 | 0  | 0    | 0  |
| 2300  |        | 1  | 0       | 0  | 0 | 0      | 0 | 0   | 0    | 0  | 0 | 0     | 0 | 0  | 0    | 0  |
| 0100  | l June | 1  | 0       | 0  | 1 | 0      | 0 | 0   | n    | 0  | 1 | 0     | 0 | 1  | 0    | 0  |
| 0300  |        | 1  | 0       | 0  | 0 | 0      | 0 | 0   | 0    | 0  | 0 | 0     | 0 | 0  | 0    | 0  |
| 0500  |        | 0  | 0       | 0  | 0 | 0      | 0 | 0   | 0    | 0  | 0 | 0     | 0 | 0  | 0    | 0  |
| 0700  |        | 1  | 1       | 1  | 1 | 0      | 0 | n l | 0    | 0  | 1 | 0     | 0 | 1  | 0    | 0  |
| 0900  |        | 1  | 1       | 1  | 1 | 1      | 1 | 1   | 1    | 1  | 1 | 1     | 0 | 1  | 1    | 0  |
| 1100  |        | 1  | 1       | 1  | 1 | 1      | 1 | 1   | 1    | 0  | 1 | 1     | 0 | 1  | 1    | 0  |
| 1300  |        | 1  | 1       | 1  | 1 | 1      | 0 | 1   | 1    | 0  | 1 | 0     | 0 | 1  | 0    | 0  |
| 1500  |        | 1  | 1       | 1  | 1 | 1      | 1 | 1   | 1    | 0  | 1 | 0     | 0 | 1  | 0    | 0  |
| 1700  |        | 1  | 1       | 1  | 1 | 0      | 0 | 1   | 0    | 0  | 1 | 0     | 0 | 1  | 0    | 0  |
| 1900  |        | 1  | 1       | 0  | 0 | 0      | 0 | 0   | 0    | 0  | 0 | 0     | 0 | 0  | 0    | 0  |
| 2100  |        | 1  | 0       | 0  | 0 | 0      | 0 | 0   | 0    | 0  | 1 | 0     | 0 | 0  | 0    | 0  |
| 2300  |        | 1  | 0       | 0  | 0 | 0      | 0 | 0   | 0    | 0  | 0 | 0     | 0 | 1  | 0    | 0  |
| 0100  | 2 June | 0  | 0       | 0  | 0 | 0      | 0 | 0   | 0    | 0  | 0 | 0     | 0 | 0  | 0    | 0  |
| 0300  |        | 0  | 0       | 0  | 0 | 0      | 0 | 0   | 0    | 0  | 0 | 0     | 0 | 0  | 0    | 0  |
| 0500  |        | 0  | 0       | 0  | 0 | 0      | 0 | 0   | 0    | 0  | 0 | 0     | 0 | 0  | 0    | 0  |

\* Doublet antenna.

† Slant-wire antenna.

§ Whip antenna.

| Tal    | ble | 57 |      |
|--------|-----|----|------|
| UMMARY | OF  | C₩ | TEST |

|                                              | HC-162 | 77-AM | AN/TRC-88 | TRP-4 | AN/GRC-9 |
|----------------------------------------------|--------|-------|-----------|-------|----------|
| Delta area over-all<br>success percentage    | 68%    | 63%   | 53%       | 53%   | 25%      |
| Mountain area over-all<br>success percentage | 61%    | 46%   | 42%       | 37%   | 23%      |

#### G. VHF TEST RESULTS

Because of the line-of-sight propagation characteristics of the VHF sets, it was not possible to directly compare the HF and VHF sets. The VHF sets were used with somewhat different test procedures than the HF sets and were tested extensively only during Forest Test 1.

During short-range special tests, it was found very advantageous to elevate the base-station antenna. Significant range increases were noted when 30- and 70-foot base-station antenna heights were used. The higher antenna always outperformed the lower antenna.

The use of a base-station antenna height of 30 feet resulted in about 3 miles of reliable range in communication with a man-pack unit in moderate to dense undergrowth: In one case, however, an area was found where VHF communication failed at less than one-half mile. The terrain was generally flat, but the undergrowth between the base station and the man-pack units can be described as truly formidable. Penetration of this area by man was not possible because of the extremely dense growth.

The VHF sets were used in direct competition with the HF sets during the first forest test on a 5-mile range and with antennas elevated 70 feet above ground. The results were excellent and no diurnal effect was observed. The signal was at about the FM threshold level, and a small increase in range would probably have resulted in a total failure. Trials at 10 miles separation resulted in total failure of signal reception.

No difference could be detected in the capability of the AN/PRC-10 and -25 sets to establish a communication channel. The AN/PRC-10 set did drift slightly in frequency, resulting in distorted speech. The distortion could elways be eliminated by a small adjustment in tuning.

No attempt was made to evaluate the magnitude of the drift, because of the lack of adequate measuring equipment

## H. INTERFERENCE TEST RESULTS

Severe interference was common during all tests, causing some inaccuracy and variation in the test results given in this memorandum. Neither equipment or techniques were available to adequately record or describe the effects of interference on the test results. The everchanging character of interfering signals made it an almost impossible task to evaluate on the spot the effect on a particular test, and adequate time was not available during a test series to identify and make notes on specific causes of interference.

Several special tests were conducted on interference during periods between test series. The HC-162 l-kc tuning steps proved to be a useful tool in dodging interference.

The effect of interforence on the limited number of channels of the 77-AM, AN/TRC-88, and TRP-4 sets is the reduction of channels available for successful communication. Brief samples were made on the signals noted in the channels of a 77-AM. The observations of one evening are summarized as follows:

| LOCAL TIME | CHANNEL | COMMENTS                                  |
|------------|---------|-------------------------------------------|
| 2100       | 1       | Strong carrier with no modulation         |
|            | 2       | Modulation splatter from adjacent channel |
|            | 3       | Broadcast station                         |
|            | 4       | Several stations—all strong               |
|            | 5       | Weak CW signals                           |
|            | 6       | Broadcast station—speech                  |
| 2145       | 1       | Static—no interference                    |
|            | 2       | Static and popping noise—no interference  |
|            | 3       | Music                                     |
|            | 4       | CW station                                |
|            | 5       | Static-no interference                    |
|            | 6       | Strong carrier signal with no modulation  |

## **V DISCUSSION OF TEST RESULTS**

## A. SPECIAL COMMENTS ON THE AN/TRC-88

The AN/TRC-88 radio sets were given a routine check between the mountain test and the last forest area test. During this routine check, the Sylvania technical representative found the transmitter carrier to be on the edge of the receiver IF bandpass, resulting in a loss of approximately 15 db to the desired signal. To reduce the IF bandwidth from 6 to 3 kc, new receiver IF filters had already been ordered by Sylvania, so that a more reasonable bandwidth could be used for SSB modulation employed in the AN/TRC-88.

Due to the discovery and correction of the faulty match between the transmitter frequency and the receiver IF frequency and the installation of new receiver filters, a significant improvement in performance was obtained from the AN/TRC-88 sets. This can clearly be seen by examining their performance for the second tropical forest test, and comparing the results of this test with those of the other tests. All three AN/TRC-88 sets were modified and all showed similar improvement in performance.

The AN/TRC-88 sets were carefully checked by the Sylvania representative several times between previous tests, with the limited test gear on hand. Only after laboratory equipment had arrived in Thailand could adequate checks be performed to discover the specific situation that had occurred. Stable frequency-counting equipment was required to enable bandpass characteristics to be matched to transmitter frequency.

#### B. COMPARISON OF SETS

The data summary tables for each test environment and range given in Sec. IV can be used to establish the relative performance of the sets under test. The modification of the AN/TRC-88 sets between the mountain test and the second forest test changes its relative position in a significant way, and this must be considered in a final judgment of the relative merits of the various sets.

A gross method of comparison is shown in Fig. 21, where the total performance of each set is shown. This illustration, of course, tends to neglect the increased performance of the AN/TRC-88 set after its modification.



#### FIG. 21 COMPARISON IN PERFORMANCE OF MAN-PACK RADIO SETS

One way of reviewing the increased performance of the AN/TRC-88 in relation to the other tests is to compare the performance of the sets during the first forest test to that during the second forest test. These tests were carried out under similar conditions and in the same general area. Figure 22 shows such a comparison of the sets. In Fig. 23 the performance of the sets with dipole and with slant-wire antennas is distinguished. Results for the whip are not shown since it was not used during Forest Test 1. Both Fig. 22 and Fig. 23 illustrate the increased performance of the AN/TRC-88 during Forest Test 2. The 77-AM and TRP-4 sets remained at about their same performance level; however,



FIG. 22 COMPARISON IN PERFORMANCE OF SETS IN FOREST TEST 1 AND FOREST TEST 2

the HC-162 appears to have suffered a performance degradation during Forest Test 2.

## C. COMPARISON OF ANTENNAS

To illustrate the effect of antennas on communication capability, the percentage of messages received correctly for each set for the dipole, slant-wire, and whip antennas is shown in Fig. 24. This illustration has been made from data from situations when antennas







FIG. 24 COMPARISON OF PERFORMANCE OF SETS USING DIPOLE, SLANT-WIRE, AND WHIP ANTENNAS -- ALL TESTS

of all three types were used. The dipole always gives the maximum success level. The slant wire provides the next-best success level and the whip antenna the lowest level of success.

An examination of the score sheets and of the histograms showing performance vs. time of day (see Sec. IV) shows that all antennas gave generally poor performance ratings for early morning hours.

## D. VARIATIONS IN RESULTS WITH TIME OF DAY AS SHOWN BY HISTOGRAMS

To better examine the variation in communication success level with time of day, histograms have been prepared for each individual with time of day, histograms have been prepared for each individual distinct of the success show a definite diurnal variation in success levels, with little success in early morning hours and considerable success during daylight hours. The diurnal effect is noted on all histograms including those illustrating results at 5-mile ranges.

Special tests conducted during non-test periods have convinced the author that failures in performance during the nighttime are related to normal ionospheric changes which alter propagation conditions. These changes usually cause significant increases in interference levels during the early evening and night hours, due to the removal of D-region absorption from the interference path geometry. Also, the normal nighttime decrease in ionospheric ionozation density results in the failure of normal layers to support assigned frequencies during early morning hours.

#### E. COMPARISON OF RESULTS FOR VARIOUS TERRAINS

A direct comparison in results obtained for the various terrain features is very difficult, due to the normal ionospheric variations from day to day. Adequate numbers of man-pack sets and test crews were not available to conduct simultaneous measurements for various terrain conditions. Ionospheric sounding equipment was not available to compare propagation conditions for the various tests.

A crude estimate can be established by reviewing the summary tables of Sec. IV. No significant differences can be found by the author that can be attributed to terrain.

The conclusion reached in Sec. V-D, that the significant propagation mode was via the ionosphere, even at a range of 5 miles, probably rules out any important effect of terrain between communication sites. The terrain and vegetation conditions near each antenna are probably very important, due to their potential effect on antenna radiation pattern. This appears to be the only major terrain effect that can affect performance results of the HF man-pack radios.

## F. COMPARISON OF RESULTS FOR VARIOUS RANGES

A direct comparison in results obtained for the various ranges is very difficult, since the tests at different ranges occurred on different days. Normal daily ionospheric variations can alter results of tests of the type undertaken. Thus it is impossible to arrive at precise values of comparative performance at varying ranges. Adequate numbers of man-pack sets and test crews were not available to conduct simultaneous measurements at the various ranges.

A crude estimate of the effect of range can be established by reviewing Figs. 5 through 20. These histograms seem to indicate a more predictable or more stable situation at shorter ranges; however, the general success levels do not vary in any significant manner for tests at ranges out to 25 miles. The two examples of longer-range tests accomplished under the mountain test do not provide adequate data to be confident about success levels for longer ranges, since it was impossible to measure ionospheric stability during the test period. Ionospheric sounding equipment was not available to determine variations in propagation equipment during the test.

#### G. CW TESTS

Comments concerning the limitations of the CW tests given in Sec. III should be carefully noted prior to a detailed review of CW results.

In general, performance followed roughly that of the voice tests. Identical time-of-day phenomena were noted during early morning hours, when it was impossible to communicate. The success percentage of CW results was not higher than that of voice tests. More experienced operators would no doubt increase the CW success levels to some extent; however, the failure to communicate in early morning hours would limit the success level percentages.

An examination of the data sheets shows smaller variations between antennas for the delta area tests than for the mountain tests. The significance of this observation has not been determined by the author.

It has been observed that none of the sets tested reduces the IF bandwidth for CW operation. This reduction is a common practice in fixed station, commercial, and amateur operations and results in a significant increase in CW signal over noise.

Since CW tests results are not available for the AN/TRC-88 after its modification, no comment can be made on the improvement that should be anticipated.

## H. LIMITATIONS OF TESTS

1

The test series described in this memorandum does not, of course, constitute a complete study of all the factors that require consideration in evaluation of a radio set. It would have been desirable to consider the following if time and equipment availability had permitted:

- A review of circuit parameters to determine safety factors used in component design to determine if weak spots and potential servicing problems might occur.
- (2) A review of construction practices to see if mechanical design is consistent with requirements for long life and for ease of field maintenance.
- (3) A field survivability test to insure that sets will survive the hazards of field operation.
- (4) A complete measurement of all electrical parameters to dctermine if the sets perform in accordance with their capability. (See AN/TRC-88 comments in Sec. V-A.)
- (5) A general laboratory evaluation of the circuits and use of components. For example, the HC-162 sct contains a very compact frequency synthesizer. The level of unwanted spurious frequencies should be carcfully measured. This can cause undesired signals in its transmitter output and cause a reduction of sensitivity on some of its receiver frequencies. Adequate instrumentation was not available in Thailand for this type of check during this test series.

## VI CONCLUSIONS

The test series provided an opportunity to conduct extensive field tests on several types of new man-pack radio sets. During the series, data were accumulated permitting certain fairly definite conclusions, and the experience gaired from special tests supplemented the actual data gathered.

The following conclusions were reached:

- A. HF RADIO SETS
  - The HC-162 and AN/TRC-88 sets have demonstrated a superior performance level over the other sets tested.
  - (2) The AN/TRC-88 set is simple and easy to tune and from this standpoint superior to the HC-162.
  - (3) The HC-162 has frequency flexibility not found in the other sets, which can be used to dodge interference. In the crowded spectrum of Southeast Asia, the frequency flexibility is a definite advantage.
  - (4) The HC-162 frequency flexibility makes it possible to reach any assigned frequency without cyrstal changing and subsequent alignment.
  - (5) The antenna tuning mechanism of the HC-162 is unduly complicated and difficult to adjust. It has three controls which interact, compared to two controls which do not interact for the other sets. Also, the adjustment of the HC-162 set requires an increased time factor of three to five for tuning when compared to the other sets. This results in waste of battery power.
  - (6) Doublet antennas gave the best performance. Slant-wire antennas were considerably lower in performance and whip antennas very poor in performance.
  - (7) The nature of terrain between sites is not a significant factor.
  - (8) Terrain features and vegetation near an antenna are probably important. (More detailed investigation of this factor is required.)

- (9) Propagation via the ionosphere was the major mode observed on all tests. No ground-wave signal could be identified with certainty, even at 5-mile ranges.
- (10) The HF spectrum is crowded in Southeast Asia. From the tests conducted, it appears impossible to guarantee interference-free channels. While it might be possible to clear a channel in Thailand, most of the interference observed originated in neighboring countries.
- (11) Radio propagation predictions such as those developed and distributed by the United States Army Propagation Agency can be altered to apply to man-pack radio sets and can be used to predict their average performance.
- (12) All man-pack sets can be monitered from long distances. The manuals contain no precaution concerning potential monitoring action. The inclusion of such a warning in the manuals and in a sign on the side of the set seems advisable.
- (13) The tests clearly indicate that more consideration should be given to the specifications for antennas and propagation characteristics under which sets are constructed.

#### B. VHF SETS

The VHF tests were made using the AN/PRC-10 and -25 sets.

1. USE OF ANTENNAS

Using their long whip antennas, both the AN/PRC-10 and -25 sets generally worked well at ranges up to 3 miles in moderate forest areas.

Elevation of one or both whip antennas above ground gave decided range improvements. With both whip antennas 70 feet above the ground and lashed to the tops of trees, 5-mile range was established 24 hours a day. With both antennas elevated 30 feet above ground, 5-mile communication through moderate forest could not be established.

On one test conducted through extremely dense undergrowth, with a long whip on the base station set and a short or long whip on a handcarried set, total loss of signal occurred at less than one-half mile range. Only one such location was found in the test area.

# 2. COMPARISON OF AN/PRC-10 AND -25

Little difference could be found between the capability of an AN/PRC-25 and an AN/PRC-10 to establish a useful voice channel. No range difference was noted.

The AN/PRC-10 did drift in tuning with time. This resulted in speech distortion which was corrected by occasional retuning. Drift rate tests on several units would be required to establish the magnitude of this problem.