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PREFACE 

Recent studies of mass-transfer rates associated with various re- 

entry environments have pointed out the need for understanding the 

flow-fle'td phenomena related to massive Injection Into boundary layers. 

Perhaps the simplest problem of the type that can be examined, without 

recourse to large-scale computation, concerns the effect of large mass 

Injection on the constant-property laminar boundary layer. 

In this Memorandum, the principal goal Is to consider the effects 

of pressure gradient and large mass-Injection rates for certain bound- 

ary-layer flows, and to explore the nature of the shear layer which may 

join the invlscld outer potential flow to the Invlscld flow dominated 

by mass transfer near a wall. In addition, the similar problem In nat- 

ural convection Is considered, where temperature difference plays the 

role of the driving mechanism for flow acceleration. 

I 
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SUMMARY 

The problem of the constant-property laminar boundary-layer flow 

with large mass-injection rates and favorable pressure gradient is con- 

sidered. Approximate solutions for the structure of blowing-induced 

shear layers are obtained for flows that satisfy the requirements of 

Falkner-Skan similarity. For small pressure gradients (ß < 1/2), the 

asymptotic structure is shown to consist of a viscous shear layer im- 

bedded in &n inviscid flow. 

A preliminary analysis of the natural-convection problem with large 

injection is performed, and the way in which the ideas used In the Falk- 

ner-Skan analysis may be extended to this problem is suggested. 



-^ 

Previous page was blank, therefore not filmed. 
**—  ■—II     —IH I  ■        »       HII       b  im"       '"    '  "    ■'■■   «——Jf *Wh>II^WiWBMli^MW^M^J—WT 

-vli- 

CONTENTS 

PREFACE    Hi 

SUMMARY    v 

LIST OF SYMBOLS   i> 

Section 
I.  INTRODUCTION   1 

II. ANALYSIS   4 

III. FREE-CONVECTION BOUNDARY LAYERS WITH INJECTION   11 

REFERENCES   17 



Previous page was blank, therefore not filmed. 
*.- . .      I,, mi i^i i   i        ifc— i  '- "'       ~   n*i *<<iii-JWIi,^__-—J_u ■ 

•ix- 

LIST OF SYMBOLS 

C ■ injection rate at surface, -f(0) 

f • Falkner-Skan stream function 

f ■ f/C, inner variable 

g = 1 - s 

g = first term of outer expansion 

Pr »= Frandtl number 
* 

*                    II L 
Re  = Reynolds number,   

r  = distance between surface and axis of symmetry for axisym- 
metric flow, or distance between surface and reference 
plane which is parallel to body force in two-dimensional 
flow 

T ■ temperature 

U ■ velocity in boundary layer 

Ü •» reference velocity (Eq. (24) or (25)) 

U ■ velocity at edge of boundary layer 

U , V = parabolic cylinder functions 

u ■ df/dT) = U/U 
e _____ 

v ■ normal velocity in boundary layer, -^/Pr Re v 

it 
v  = inner velocity variable 

* 
y  = inner distance variable 

/ * 
y ■ normal distance in boundary layer, vF* Re Y 

Z » distance In direction of body force (height) 

2 
z " u 

z  » first term of Inner solution 
o 

ß » Falkner-Skan pressure-gradient parameter 

ß  B volumetric expansion coefficient 



11 ■ Falkner-Skan similarity variable 

it 
ii      m    stream function (Eq. (36)) 
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I.  INTRODUCTION 

In the  absence of pressure gradient, the flat-plate boundary layer 

"blows" off the surface If the Injection of mass into the boundary layer 

is sufficiently high. This "blow-off" point occurs as a singularity in 

the solutions: it is not possible to find solutions of the boundary- 

layer equations for blowing rates larger than some critical value. 

For flows with favorable pressure gradient, no such critical "blow- 

off" injection rate seems to exist. For a certain class of such flows, 

the Falkner-Skan wedge flows, it is possible to obtain solutions to the 
it 

boundary-layer equations for arbitrarily large blowing rates. 

For more general boundary-layer flows, with large mass injection 

and favorable pressure gradient, the solution of the equations of mo- 

tion in the neighborhood of the surface is essentially inviscid, and 

a simplified Bernoulli equation, obtained by neglecting the component 

of the kineC/c energy associated with the normal velocity component, 

is an approximate solution of the equations of motion. 

A remarkably simple solution to the problem of the incompressible 

similar laminar boundary layer with asymptotically   large injection 
(2) was proposed by Pretsch   in 1944. The Falkner-Skan equation for wedge 

flows with favorable pressure gradient ([3 > 0) 

fW] + ffTlTl + ßd - f^) - 0 (1) 

was considered subject to the boundary conditions 

yo) - o   f(o) - -c   y«) -1        (2) 

A more complete discussion of these points, as well as a discus- 
sion of the Falkner-Skan flows, is given in Ref. 1, p. 243. 

** 
See Ref. 1, p. 347, for the development of these ideas. 

Asymptotic, in this case, refers to blowing rates which are 
large but can still be considered within the context of boundary-layer 
theory. 



where C -»».    New variables were introduced. 

h(C)  B fdD/C 

S -Tl/C 
(3) 

and a simplified equation was obtained by neglecting terms of order 

1/C . The resulting equation, essentially the inviscid version of the 

Falkner-Skan equation omits the viscous term fTm-> and consequently 

it is possible to satisfy the two boundary con-litions at T| R 0, and 

the one at T] -• <», by a discontinuous solation. Pretsch's solution is 

valid in the region between the zero streamline, which separates in- 

jected fluid from free-stream fluid, and the wall, but it gives no in- 

formation about the outer flow between the ? ito  streamline and the po- 

tential flow. 

Several properties of Pretsch's solution are worth noting: 

1. The velocity at the bounding streamline is given correctly, 

in fhat f- = U/U -* 1 as f -» 0. For nonsimilar incompressible boundary 

layers, with large injection, this is not necessarily the case. As 

the bounding streamline is approached from the wall with arbitrary fav- 
/"2     2 

orable pressure gradient, U.    -^/U (x) - U (x = 0). For wedge flows, 

U (x » 0) =0, since ü ~ x11 and U.    -» U (x) on the bounding stream- 

line. 

2. For values of 0 > 1/2, the oounding streamline is approached 

from the wall with zero shear stresp; for 0 = 1/2, with finite shear; 

and for g < 1/2, with infinite shear. 

In this Memorandum we re-examine the problem posed by Pretsch and 

indicate how his solution may be matched to a simple viscous solution 

which is valid in the outer flow, and which is necessary to smooth out 

the discontinuity in shear resulting when ß < 1/2. This outer solution 

is shown to be a uniformly valid approximation to the inner flow as 

well. The blowing rate C enters into the outer solution only as a 

multiplicative constant. The outer flow consists of a viscoi i  shear 

layer imbedded in a large inviscid mass-transfer layer only for small 

values of ß. 



In addition, we indicate how the inviscid approximation of Pretsch 

can be applied to free-convection boundary layers with large mass-trans- 

fer rates to obtain simple solutions for various flow quantities in 

terms of a simplified Bernoulli integral. 



II. ANALYSIS 

We shall find it convenient to work with modified Von Mises 

variables u(f), f, which are appropriate for similar flows: 

f „ - u 

f s f 

(4) 

In these variables, Eq. (1) becomes 

u(uuf)f + fuuf + ß(l - u2) = 0 (5) 

The boundary conditions become 

u = 0    f = -C 

U -• 1      f -♦ oo 
(6) 

2 
Letting u   = z, we obtain 

vQzff) + fZf + 20(1 - z) = 0 (7a) 

z(-C) = 0 

z(oo)   -»1 

For the inner region near the wall, a new, independent variable, f s f/C, 

is introduced. The resulting equation and boundary conditions are 

^2 y^(z—) + fz~ + 20(1 - z) = 0 (7b) 
Li 

z(-l) = 0 

z(oo) -♦ 1 

3fe- aiSf 
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: 

An inner solution that is valid for fixed 1 and 1/C -♦ 0 is con- 

sidered. The first term of the inner solution, z (f), is the one pro- 

posed by Pretsch and results from the inviscid equation obtained by 

neglecting the terms of 0 ll/C j * 

fzo~ +  2B(1 - 2o) = 0 (8) 

The no-slip condition is retained: 

zo(-l) = 0 (9) 

The solution of Eq. (8), subject to the boundary condition of Eq. (9), 

is 

2o = 1 - (-f)2^ (10) 

This solution is sketched in Fig. 1. 

For values of f in the neighborhood of 0, this solution has the 
~    ~2B-1 

property that f__ -• f ^ , and consequently there is a radical differ- 

ence in the shear profile as ß is less than or greater than 1/2, as 

noted earlier. The outer solution of Eqs. (8) and (9) is u = 1 for 

all values of f > 0. The viscous outer solution, which smooths out 

the shear profile, joins a potential flow at large positive values of 

f to an inner rotational flow at large negative values of f, and corre- 

sponds to a 'Vorticity-interaction" problem, where the vorticity arises 

from the total pressure variation along the wall which is convected 

along the streamlines of the injected fluid. 

The solution of Eq. (10) cannot really be continued to f > 0. At 

1 " Of z    reaches the value at infinity. However, the resultant pro- 

file has a corner at z = 1, f = 0. This corner is removed by construct- 
o 

ing an expansion that is valid near z - 1, which is matched to the first 

term of the inner expansion. The matching takes place as f -♦ 0- in z , 

and f -• -a» in the outer expansion. Although the second term in the 

inner expansion has a singularity as f -♦ 0-, it can be shown that in 

the region of matching, ius contribution is negligible. 
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Thus a new variable g(£) Is Introduced: 

2(f) - 1 - g(f) (11) 

where 

(Srr£)gff +  fgf - 2pg = 0 

gC») -*o 

g(-c) = i 

(12) 

This suggests that the first term for the outer expansion of g Is 

8. outer B\cl     8o<f>+--- (13) 

The resulting equation for g (f) Is then 

8off + f8of " 2K '  0 (14) 

g0(») -0 

g0(f - "») - ^-f)
20 

The solution to the equation and boundary conditions of Eq. (14) Is 

go = A|exp (^|-)J [üp(2p+ 1/2. f)+ BVp(20 + 1/2, f)     (15) 

where ü (2ß + 1/2, f) and V (2ß + 1/2, f) are the parabolic cylinder 
P P ^ 

functions described In Ref. 3, and A and B are constants of Integra- 
tion. 

'In the notation of Ref. 3, U s U and V s y. 
P       P 
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We note from Ref. 3 that 

TTV(2p + 1/2, x) - r(l + 2ß) sin TT(2ß + 1/2) * U (2ß + 1, x) + U (2ß + 1, -x) 

From the asymptotic expansions for Ü and V, it is clear that the con- 

stant B must be zero, since 

Vp(2ß+ 1/2, x)~y|e4    x29    1 + 0 Ajj + ... as x -• + oo 

and 

U (2ß + 1/2, x) 
4  -1-2B 

e   x   M 1 + 0(T) x X ' 
+ ... as x -♦ co 

The asymptotic behavior as x -* -oo 

Up(20 + 1, x) 
Try- e  (-x) ß 

r(l + 20) 1 + 

"(?) 

fixes the constant A to be 

m + 2B) 
2TT 

The one-term outer solution is thus 

\2e .£ 
8o(f) ~(c)     r(1 2TT

2B)
 

e 4 V20 + 1/2' f) (16) 

The shear function corresponding to this outer flow is 

^^■ter^v*-■*.«• 
£ 
"4 

V^iT 
(17) 



where the recurrence relation 

^(20 + 1/2, x) - (l/2)xUp(2ß + 1/2, x) + U (2p - 1/2, x) - 0 

has been used. 

Since the Inner solution, Eq.  (10), Is contained within the outer 
solution, Eq.  (16),  then 

8o(C'  f) = (c)     ra/l
2ß? e'4 V20 + 1/2' f) (18) 

•>/2T7 

Is a uniformly valid one-term expansion. 

Figure 2 Indicates the shear-function variation for various values 

of the pressure-gradient parameter 0. The shear function 

(C) 
dg (f) 20 Zä 

df 

Is equal to 

(c)20 zf^cn) 

In the usual Falkner-Skan variables. 

We note that for ß < 1/2 (In this case 0 = 0.1), a genuine shear 
(2) 

layer appears, as suggested by Pretsch s Invlscld solution,   but for 

larger values of the pressure-gradient parameter, the shear Is a maxi- 

mum at the wall, and the boundary layer remains on the wall rather than 

being "blown off" Into a shear layer. 
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III. FREE-CONVECTION BOÜKDARY LAYERS WITH INJECTION 

The inviscid approximation may be applied to free-convection bound- 

ary layers if injection rates are sufficiently large. 

(For convenience, we will use the notation and coordinate system 

of Ref, 4.) 

For a free-convection boundary layer on a two-dimensional or axisym- 

metric body, the equations of motiou in dimensional form are 

uu + vu = vu  + B g(T - T )A/I - r' 
x    y    yy  ^oON    OB'V    o 

uT + vT = ^- T 
x    y  Pr yy 

(rju) + (r^v) = 0 x o x  N o y 

(19) 

(20) 

(21) 

where j ■ 0 for two-dimiensional flow or 1 for axisymmetric flow. The 

appropriate reduced variables for a free-convection boundary layer 

are 

Pr Re y 

Pr Re v 

(22) 

(23) 

where 

* 
Re* = ^ 

v 

and U    is some reference velocity. 

U*- yPoSATL 

u*- JSSüSL V   p- 

for Pr ~ 0(1) 

for ^ - 0 

(24) 

(25) 
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In these reduced variables, the equations of motion become 

uux + ^ - Pr u~ + eog(T - Tj^/l - (r;)2 

(r^u) + (rJv)_ = 0 
^ o 'x v o 'y 

V(x, 0) = Cv (x) 
w 

T(x, 0) = T (x)     T(x, «) = T 
w 

(26) 

uTx + VTy = Tyy (27) 

(28) 

The boundary conditions for asymptotically large blowing are 

u(x, 0) = 0        u(x, a.) = 0 

(29) 

where C -» », and v (x) ~ 0(1). 

Our discussion centers around mass-injection rates which are much 

larger than l/VPr Re but are still sufficiently small for the boundary- 

layer equations to be valid. 

New variables are introduced: 

*  v 
v -* (30) 

*  Z 
y =c öD 

and we consider solutions to Eqs. (26) to (28), subject to the boundary 

conditions of Eqs. (29) valid for C -• «, which are of the form 

u = u(x, y*, C) = uo(x, y*) + ... 
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v = v (x, y , C) = Ovo(x, y ) + ... 

T = T (x, y , C) = T (x, y ) + ... 

The equations for u (x, y ), v (x, y ), T (x, y ) become 

3u * ouo    * ouo      ,      s r "oir^orr^o^'-^V1 
oy 

<ro>2 
(32) 

uo ÖT + vo -* " 0 
By 

(33) 

B(A ) a(riv*) 
3x 
O O'    ~' O O' 

ay 
(34) 

with boundary conditions 

v0(x. 0) = vw(x) 

uo(x, 0) = 0 U0(X, <») = 0 (35) 

T*(x, 0) = T*(x) T0(x, «) = Ta 

The solution of these equations and boundary conditions can be obtained 
it 

easily by the introduction of Von Mlses variables x, i|r as Independent 

variables. 

Introducing 

* * 

ax o'     ^     ^ 0 o 
(36) 
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and noting that 

a      *ja        a     a      *ia 
*   uoro, *'     ax   ax   Vo. * ay a^r at 

results In 

ax 
u 
f- <x. O ■ Png(T*(x.  **)  - T ) o"    o Z7? (37) 

ax [^(x,  ^)j = 0 (38) 

It Is convenient to use the variable x , which marks the position on 
•k 

the body «here the if    streamline crosses the body surface 

dx = 
dilr 

rj>*)v(x*) 
(39) 

In the x, x    coordinates, 

-3. r       *S _ r 
J ^ -o 0og(T(x*) - Tjjl - r'2(Tl) dT) (40) 

*,       *v       *, *^ 
To(x, x ) = Tw(x ) (41) 

«here the no-sllp condition at the wall for u has been applied. The 
it ^ 

solution for u (x. y ) 
* ox ' -^ ' 
y Is determined from 

it ^ ^ 
solution for u (x, y ) Is given parametrlcally In terms of x, x , where 
* 0 

* 1 
4   *   *    • *     x rJ(5)v (C) 

rj(x)y*(x, x*) - rjy*0(x) - J -^^ * (42) 
o   o 

I 
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royo(x) J 
x ro(x )vw(x ) dx 

o   uo(x, X ) 
(43) 

Note that y.(x) = Cy (x) is the location of the dividing streamline. 
*   * * 

For y > y,,, u = 0 and T = T . The dividing streamline X3  a surface 
O   O O    oo 

of discontinuity in both temperature and velocity if the temperature 

at x = 0 is not T . If the temperature at x = 0 is T , then there may 
ft 

be a discontinuity in either rhear or temperature gradient at y (x). 

We observe that 

f Jl -  (r;)2 dTl = Z(x) - Z(x*) (44) 

«here Z(x) - Z(x ) is the difference in height of the points on the 
* 

body surface, x and x . 

Equation (40) is e  simplified Bernoulli equation which can be 

written as 

f  (x, x*) = Pg[T*(x*) - T^  [z(x) - Z(x*)]      (45) 

For a vertical flat plate, to give an example, Z(x) = x.    Then 

^ (x, x ) = Pog[To(x )  - TJL (x - x ) (4f) 

and 

Y0(x) ■I 
x   vw(x ) dx 

o      u  (x, X ) 
(47) 

^m^^mi^msii^is»!^""^^^^ 
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If T(x ) = T , constant, and v (x ) = v , constant, then 
w w      w 

Y (x) =  J-TS 2- (48) 
2 • (e g)i/Z(T - T ) Z 

Using the came Ideas which we have Introduced In the calculation of 

the viscous correction for forced flow. It should be possible to ob- 

tain the viscous correction which smooths out thr discontinuity at 

Y (x) for certain wall-temperature dlstrlbutlcas. However, It appears 

that the problem of constant wa1l temperature would require a full dis- 

cussion of a thermally driven free shear layer at y = y . 

Since It Is not at all clear that the natural-convection problem 

with large Injection rates has technical applications or significance, 

we have Included the Invlscld analysis only to Indicate how the usual 

Ideas of boundary-layer theory for both forced and natural flow can be 

simplified If problems Involving larger mass-transfer rates are con- 

sidered. 

The principal simplification results from the observation that the 

flow in the neighborhood of the boundary is Invlscld, so that the bound- 

ary layer, which occurs at the wall for small mass-transfer rates, can 

now become a shear layer. For the forced-flow case, the skin-friction 

parameter is determined completely by the invlscld solution, while for 

the natural-flow case, the heat transfer to the boundary is zero. 
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