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ABSTRACT

The response of a hollow circular cylindrical shell of arbitrary thickness, in

either an elastic or a viscoelastic medium, to transient dilatational and shear

waves (and their s )erposltlon) is presented. The solution is valid within the

scope of the linear theory of elasticity or viscoelasticity. The technique for

obtaining the solution relies upon 1) the construction of a train of incident pulses

from steady-state components, where each pulse represents the timne history of

the transient stress in the incident ,a'e, and ?) the existence of a physical

mechaxi•,A tUiat, between pulses, r.?stores the disturbed particles of the cylinder

and the surrounding medium to an unstrained state of rest.

TL. .. ;. thc response of the following factors is discussed;

liner thickness, cylinder-medium impedance mismatch, viscoelissicity in the

medium, and incident wave form (step pulse, rectangular, triangular0 linear

rise- exponential decay),

lii



1PtWict •iev blank. t.•er'Co1e not.flm•

Section E2Le
......... ..................................

Statement of the Problem and General
Discussion ...........................

II Discussion of Analysis ........................ 2

III Solution for an Incident Dilatational Plane
Wave .......................................... 4

1. Stresses and Displacements Applied
to the Cylinder by an Incident
DILz-ational Plaze Wave in an
Elastic Medium ,................... 4

2. CanerAl Solution of the Wave Equation
f itCy linLder .; 11

3. Solution of the Wave Equation for
Scattored Wavs in the Surrounding
,MediumS . . . ... 19

4. Correspondeace Betwean Elastic and
VicotLastiu Fl.d Equations ......... 23

5. Viocoelasi.ti Model ............. 29

6. Strasses and Displaceamento Applied
to the Cylindlr by An ['cident
DliAtational Plane Wave Lin a Visco-
elastic Medium ...... .................. 35

7. Solution to the Wave Equation in a
Viscoelastic Me4ium .................. 39

8. Superposition of Solutions to Enforce
the Boundary Conditions .............. 41

IV Solution for an Incident Distortional Plane
Wave ................ 44

1. Discussion of Approach Used .......... 44

2. Stresses and Displacemencs Applied
to the Cylinder by an Incident
Distortional Plane Wave .............. 44

V



1i
I

Section Page

3. Soluticn to the Wave Equation in the
ua•r r o un i•- .di ..................... 55 I.

4. Scattered Wave Solution in the
Surrounding Medium ................... 55 _

5. Superposition of Solutions to Enforce
the Boundary Conditions ........ 57

V Special Features -of the Present Analysis ...... 600

1. initial Conditions ................... 60

2. Convergence Criterion ................ 65

VI Discussion of Numerical Results ............... 67

1. General Considerations 67

2. Computation~s Periormed to ll~ustrAte
tJhe Validity of. the Pressat *fetbod ... 67

the Respoft t~o An Inci14t Wiats-
tioql Se Pulse ....... .. AS.........." A,

4. ResuLts Obtained by the iresent
AnaLysis for the Response to an
Incident Dilatattonal Wave .(Elastic
Mediuam) a........a.h... 71.4j~a

5. Results Obtainezi by the Present
Analysis fo Cb te Cylinder Response to
an Incident: DIL.atatioaL Plane Wave
in £ Viszcoelatic Medium .............. 73

6. Comparisons with Published Data of the
Results Obtained by the Present
Analysis for the Response to an
Incident Shear WLave .................. 79

7. Results Obtained by the Present Method
for the Response to an Incident Shear
Wave (Elastic Medium) ................ 80

8. Results Obtained by the Present
Analysis for the Cylinder Response to
an Incident Shear Wave in a Viscoelas-
tic Medium ............................ .81

vi



Section 1aA&
S i. Kesuirs UDtalned by toe Yresenr

Analysis fnr the Superposition

I••ident Dilatational and Shear
Waves in an Elastic Medium ...... 85

References ...................... 88

Appendices

A Transformations Employed to Facilitate the
Computations ............... . .............. 127

B Representation of the Fourier Coefficients

Distribtion................ ....

Vii



Figure

1 Cylindrical Liner. Coordinate Systems. Lnd
Incoming Plane Waves .............................. 91

2a Traveling Waves in Real Time and Nondimensional
Transit Time Coordinates .......................... 92

2b Rectangular,, Triangular and Linear Rise-
Exponential Decay Wave Forms ............. 93

3a Cylindrical Liner, Incoming Dilatational Wave,
Coordinate System, Stress and Displacement
Notation .......................................... 94

3b LCyldricatl Liner, Znaomi•lg Shear Wave, iCuorddinate
Systeaz, :Stros -and ODispl~aemnt NotZaZion . .. !94

4 Mechanical Model ,of a ,Standard Linear :Solid ......... 95

.5a Hop Sthras Mgponaes, .•t Inner Surface and
'e M 90', to bcident 'Di.atational Rectangular
idave t(Elastiv. Medium) ......... .. . ..... 96

5.b Displacement Reaponse, at Inner Surface and
40W9 0, to Laeident Dilatatiornal Rectangular

Rave O(E]astc ,Medium) . 96

6 Comparis•n of C"av'Ity Displacemants w•ith Those
Obtained by Ref. 3 .(Elastic Medium)................ '97

7a Conparison of Present Computations with Those of
Refs. 2, 4, and 5 for Hoop (Stress at & - 90' Due
to Incident DlatatLonat. Step Pulse, at Boundary
ýof Cavity -in Elastic Medium, e - 1/3 .............. 98

7b Comparison of Present Computations with Those of
Refs. 2, 4, and 5 for Hoop Stress at 0 - 0 Due
to Incident Diiatational Pulse, at Boundary of
Cavity in Elastic Medium, e - 1/3 ................. 99



I
Figure Pg

8a Comparison of Hoop ^tresgeg: (IrtltPd At-
9 - 90' by the Present Method, with Those Givenr
In Ref. 7 for D-latational Step Pulse Impinging I
Upon Thin Shell in Elastic Medium................. 100

8b Comparison of Hoop Stresses, Calct'iated at e - 900
by the Present Method, .:ith Tho!oe CViven in Ref. 7
for Dilatational Step Pulse Impirging Upon Thin
Shell in Elastic t4ediuw . ......................... 100

9 Con.- arison of 4oop Stress and Its Modal Concribu-
tion, at Liner Midule Surface, with Those Given
in Ref. 7 ......................................... 101

10 Effect of Liaer Thickness on tie Maximm Stress
(aee at Inner Surface end e-- 900) for an.
-incident Dilatational Step Pulse in an Elastic
Medium ...................... .. 102

lla, b Displacement Response at Winer inner Surface to
Incident Dilatational Rectangular Wave (Elastic
Medium) ..................... . . . . ............. 10

llc Displacement roponse at Liner Inner Surface to
Incident Dilatational Rectaingular Wave (Elastic
M4edium) . .. .. ........... . .... ..... 104

12 Influence of Cylinder-Medium Impedanrce Mismatch
on Maximum Stress in the Cylinder (a% at e - 900

and Inner Surface) for an Incident Dilatat.on:l
Step Pulse in an Elastic Medium .......... 105

13 Effect of Incident Dilatational Wave Form on
Moxicum Stress (000 at Inner Surface and

0 - 900) for Liner in Elastic Medium .............. 106

14a Effect of Surrounding Medium Viscoelasticity on
Maximum Stress (o., at Surface and 0 - 90') 1t1
Liner for Incident Dilatational Step Pulse ........ 107

14b Effect of Surrounding Medium Visccelasticity on
Maximum Stress (oa. at inner Surface and
0 - 90*) in Liner for Incident Dilatational Step
Pulse ............................................. 10

ix



I
Sigure Pa ge

154 D~ui~p~mLL. apui~e~ ui. z.iner inner Sur-ace •o

Incident Dilatational Step Pulse for Elastic-
L.•re!a ed ......_, .................................. 10

15b Displacement Response of Liner Inner Surface to
Incident Dilatational Step Pulse for Viscoelastic
Medium ............................................ 108

15c Displacement response of Liner Inner Surface to
Incident Dilatational Step Pulse for Viscoelastic
Medium ............................................................. 108

15d Displacement Respgnse ot Liner Inner Surface to
Incident Dilatational Step Pulse ior Elastic-
Relaxed Media ... ........................................ 108

16 Effect of Surrounding Medium Viscoelasticity on
Maximum Stress. (ae e at 900 and Inner Surface) in
Liner for Incident Dilatational Triangular Wave ... 109

17 Effect of. Surrounding Medium Viscoelasticity on
Displacement Response' of Liner Inner Surface to
Iri•cdent Dilatational Tr-iangular Wave ............. 110

18a Effect of Incident Dilatational Wa,%, Form on
Maximum Stress (a 0. at 0 - 90" and Inner Surface)
for Linei, in Elastic-Unrelaxed Medium ............. 111

l3b Effect of Incident Dilatational Wave Form on
Maximum Stress (Goe ac e - 90* and Inner
Surface) for Liner in Viscoelastic Medium ......... 111

18c Effect of Incident Dilatational Wave Form on
Maximum Stress (a0e at e - 900 and Inner
Surface) for Liner in Viscoelastic Medium ......... 111

18d Effect of Incident Dilatational Wave Form on
Maximum Stress (ae. at 900 and Inner Surface)
for Liner in Elastic-Relaxed Medium ... ...... Ill



Figure

19a Effect of Incident Dilatational Wave Form on
Displacement Response of Liner Inner .urfAce
tor Elastic-Unrelaxed Medium ...................... 112

19b Effect of Incident Dilatational Wave Form on
Displacement Response of Liner Inner Surface for
Viscoelastic Medium .... *......................... 112

19c Effect of Incident Dilatational Wave Form on
Displacement Response of Liner Inner Surface for
Viscoelastic Medium .......................... . ......... 112

19d Effect of Incident Dilatational Wave Form on
Displacement Response of Liner Inner Surface for
Elastic-Relaxed Medium .................. .. 112

20 Comparison of Present Computations with Those of
Refs. 2 and 4 for Hoop Stress (at 6 - 450 and
135*) due to Incident Shear Step Pulse, at
Boundary of Cavity in Elastic Medium, e - 1/3 .... 113

21a Effect of Liner Thickness on Lajor Stress Response

(T_. at Inner Surface and e - 450) for an

Incident Shear Step Pulse in an Elastic Medium .... 114

21b Effect of Liner Thickness onMajor Stress Response
(T__ at Inner Surface and e - 1350) for an

InCident Shear Step Pulse in an Elastic Medium .... 114

72a Effect of Liner Thickness on Displacement Response
of the Liner Inner Surface for the Case of an
Incident Shear Rectangular Wave ................... 115

22b Effect of Liner Thickness on Displacement Response
of the Liner Inner Surface for the Case of an
Incident Shear Rectangular Wave .............. . 115

23a Influence of Cylinder-Medium Impedance Mismatch
on Cylinder Stress Response (r__ at Innereo
Surface and & , 450) for Incident Shear Step
Pulse in an Elastic Medium ........................ 116

xj



Figure Page

23b Influence of Cylinder-Medium Impedance Mismatch

on Cylinder Stress Response (T__ at Inner

Surface and 7 - 1350) for Incient Shear Step
Pulse in an Elastic Medium ........................ 116

24a Effect of Stress Wave Form on Cylindej Stress
Response (T__ at Inner Surface and e - 450) for

ee
Incident Shear Step Pulse in an Elastic Medium .... 117

24b Effect of Stress Wave Form on Cylinder Stress
Response (T. at Inner Surface and e - 1350) for

ee
Incident Shear Step Pulse in an Elastic Medium .... 117

25a Effect of Surrounding Medium Viscoelesticity on
Hoop Stress (T.. at Inner Surfaco•) in Liner foree
Incident Shear Step Pulse .................... ,.... 118

25b Effect of Surrounding Medium Viscoelasticity on
Hoop Stress (T.o. at Inner Surface) in Liner foree
Incident Shear Step Pulse 118

26 Effect of Surrounding Medium Viscoelasticity on
Hoop Stress (-r_ at Inner Surface) in Liner for

ee
Incident Triangular Shear Wave .................... 119

27 Effect of Incident Shear Wave Form on Hoop Stress
(. at Inner Surface) for Liner in Viscoelastic

Megium with cdm/a/2 b n 1.0 ........................ 120

28a Displacement Response of Liner Inner Surface to
Incident Shear Step Pulse for Elastic-Unrelaxed
Medium ................ 121

28b Displacement Response of Liner Inner Surface to
Incident Shear Step Pulse for Viscoelastic
Medium ...... ................................... ......... 121

xii



Figure Page

28c Displacement Response of Liner Inner Surface to
Incident Shear Step Pulse for Viscoelastic
Medium ............................................ 121

LOU Displacement RaUbp fiO.a o& JLnr. Inner OUrface to.U

Incident Shear Step Pulse for Elastic Relaxed
Medium ............................................ 121

29 Effect of Surrounding Medium Viscoelasticity on
Displacement Response of Liner Inner Surface for
Incident Triangular Shear Wave .................... 122

30a Effect of Incident Shear Wave Form on Displacement
Response of Liner Inner Surface for Elastic-
Unrelaxed Medium ................................. 123

30b Effect of Incident Shear Wave Form on Displacement
Response of Liner Inner Surface for ViscoelasticMedium 1231

30a Effect of Incident Shear Wave Form on Displacement
Response of Liner Inner Surface for Viscoelastic
"Medium ............ 123

30d Effect of Incident Shear Wave Form on Displacement
Response of Liner Inner Surface for Elastic-
Relaxed Medium .................................... 123

31 Superposition of Cylinder Response (Hoop stresses
at inner boundary) To Incident Dilatational and
Shear Waves in an Elastic Medium .................. 124

32 Superposition of Cylinder Response (Hoop stresses
at inner boundary) To Incident Dilatational and
Shear Waves in an Elastic Medium ................. 125

xiii



I,
LIST OF SYMBOLS ii

a liner inner radius "

A Pcomplex constant of superposition in the series
defining the incident waves, Eq. (3.1.6a) and
(4.2.5)

Ap1 , Bp1  constants of superposition associated with rigid
body displacement in the series defining the
dilatational and distortional solutions in the
cylinder

A complex Fourier coefficient defined by Eqs. (3.1.15a, b)pn for incident dilatational wave and by Eqs. (4.2.16a)

A for incident shear wave

a . Fourier coefficients defining the incident wave form

b liner outer radius-

B complex Fourier coefficient defined by Eq. (3.1.15c)pn for incident dilatational wave and by Eq. (4.2.16b,c)

Bp0 for an incident shear wave

Cpl% Dpl constants of superposition associated with rigid
body displacement in the series defining the
scattered dilatational and distortional solutions
in the medium
complex Fourier coefficient defined by Eq. (3.1.19a,b)

Cpn for an incident dilatational wave and by Eq. (4.2.19a)

CPO for an incident shear wave

Cd, Cdm speed of propagation of dilatational waves in the
liner and medium respectively

ct, ctm speed of propagation of shear waves in the liner
and medium respectively

Dpn complex Fourier coefficient defined by Eq. (3.1.19c)for an incident dilatational wave and by

Dp POEq. (4.2.19b,c) for an incident shear wave

xiv



e jj strain deviator

E. E Youni's modulus for the liner and nmditim
respectively

h liner thickness

(2) Hankel function of the second kind of order n

Jn Bessel functions of the first kind of order n

4 wave numbers for dilatational and shear waves
in the liner and medium respectively

n, n integer, defining the Fourier expansion in
the circumferential direction

p sunnation integer in the representation of
the incident wave form

"P viscoelastic ,linear operators.def.ined in
.... ,q. (3.4.4a) .. -. . _

Pl .**of PP constant coefficients in the viscoelastic
operators defined in Eqs. (3.4.5a,c)

Pl, ..."' PP

qlp q2 ; q3, q4  nondimenuional wave numbers for dilatational
and shear waves in the liner and medium

q 3. qreal part of the nondimensional wave
number for dilatational and shear wave
respectively in a viscoelastic medium

q3 q4  imaginary part of the nondimensional wave
number for dilatational and shear wave
respectively in a viscoelastic medium

Q, Q linear operators defined in Eq. (3.4.4b)

xv



I

Q *P ""#P QQ constant coefficients in the viscoelastic
"operators defined in Eq. (3.4.5b, d)

I I

r radial coordinate

R mean radius of the liner

a j stress deviator

t time coordinate

to rest time parameter, shown in Fig. 2a

t time coordinate with respect to the arrival
of the incident.ave -CE t - to)

t* * time t which• riid body displacements are

reamved for dilatational and shear wave
respectively.

T half-period of the incident wave

Ur, u9  radial and circumferential displaceaunt in
the liner

displacement due to the incident dilatational
"wave

ur Ue nondimensional radial and circumferential

displacements (..ob,.. 2Oub

displacements-; respectively)

x reference coordinate for incident dilatational
wave

xreference coordinate for incident shear wave

Yn Bessel function of the second kind

Ys deviatoric complex modulus

xvi



I
Yy dilatational complex modulus

Yo real. part of Y., and Y

(2) i.mginary part of Y and Y

,y (2)
Bp

C sp matrix defined in Eq. (3.8.2)

Zinpn column vector defined in, Eq. (3.8.2)

D.,1 pn colwuzu vector defined in Eq. (3.8.2)

*% pn -matrix defined in Eq. W3 ~2)

" ,cotu, m vector deaed in Eq (4.5.2)

t., ipn column vector defined in Eq.. (4.5.2)-,

Zl,pn Z6,pa unknown osta of superposition in
the series representation of the soLutions
in the cylinsir and medium

* ratio of inner to o ter radius of the

liner,. .b b

mass density of tae liner

IYM mass density of the medium

duratton of rectangular pulse

G parameter arising .from the transforwtiont
of the incident wave form into polar
coordinates and defined in Eqs. (3.L.12c)
and (3.4.18)

xvii



- I
Sreal and imaginary part of e in a viscoelasctic

medium

a _* comoa.nts of str&iLn in Cartesiju- and polar
Ty- tz coordinates respectively

err CD Ge' Ger

circumferential coordinate for dilatational
wave

6 circumferential coordinate for shear wave

La" constant for liner and medium respectLvely

~, ) real and imaginary part of the co1e Um ImA
modulus. for a viscoelastic tduxM

IA.jishear =odulus ;for liner. and "e"ilia respipetfvely.

real nd. i-sginary tpt of the colAx shear
modulus, for viscoelastic- medium

v, v PoLssona's ratio in the, liner and Ptedau respec-ý
S¢tively

p nicidi4n ional radial coordinate r/b

O0 amplitude of incident dilatational wave

ax direct stress in incident dilatational wave

Orr, 100e fOe polar coordinate components of the stress
tensor associated with a dilatational incident
wave

'19 shear stress in incident distortional wave

,,,, Ir T polar coordinate components of the stress
r•66 tensor associated with a distortitmal incident

wave

T0 amplitude of incident shear wave

xviii



II

1/T1 strain recovery time iih unia"iaI strain case

ratet-v~rv timp fm- ahpim, at-Aln
4

distortional displacement po..ential functi.ms

Z frequency parameter

relaxation time for normal stress in uniaxial strain
case

I/n 2 relaxation time for shear strLss

An limer

stieravriptp de~cribi1.u quantities at the lIner'

wodium intertaca

superscript, denoting distortional solutions in
the liner

( )s . uperscript, denoting dilatAtional solutions in

am etiparscript, denoting distortional solutions. in
.the edium

iXX



Prewvla p* was blank, thsrefor* wt f1lm6d46

SECTION I

St~tit f th Prl T rw'rR ("r1i11. rr Tx

- f as Zrob!2 #and aenral Discussion

7he study reported herein is concerned with the dynamic re-
spouse of deep-burled protective installations subjected to
stress waves resulting from nuclear explosions. As pointed out
elsewhere, for exai le in XeE. I, the actual problem is exceed-
ingly complex. However, certain justifiable idealizations can
be made, that lead to tractable formulations of the subject
problem, th•e solution of which yields information on the princi-
pal effects in the actual problem. For example, the structure
considered is a long thick isotropic elastic cylinder. The sur-
rounding ii'-diuz Ls regarded in two distinct phases of the staLdy
as either elastsc Lc v0scOl-sltic. It is assumed that the
pressure front generated by the -uClear burst travals on the
surface with .uperseisic velacity and thus cAn be considered
to transmit plame seismic waves into the grou*nd (Ref. I). Se-
cause of the depth At whaich the stincture is buried, the influ-
ence of Rayleigh waves I. neglected. For the same reason, it.
is 4assw4 that no appreciable influence is exerted on the peak
response by reflections from the surface. Gravity stresses in
the cylinder are not considered.

ln vie, of the foregoing consideratioms, the ideaLized prob-
lem, which is the subject of the anialytical and computational
investigation described in this report, is that of dateealunig
the stresses and dimplacemuts in an infinitely o1g hollow
cylind4e of Arbitrary thicknuss embedded in An infinite =dium.
The cylinder is enveloped by plane stress waves progressing in
a direction perpendicular to U3 axis (see Fig. I). The problem
i thus one of plane strain. ýThe cyllimer is elastic, homoge-
neous, and isotropic. the surrouding medium is honiogeneous and
isotropic, and in two separate and distinct phases of the analy-
"sis is considered to be either elastic or viscoelastic. The
plane waves impinging on the cylinder are, in succession, dila-
tational and distortiodal (Fig. 1). An analysis is developed
to account for an arbitrary pressure-time history of the incom-
ing waves.

Computations have been carried out for the following wave
forms: 1) a step pulse; 2) a rectangulr wave; 3) a 'triangular
wave; and 4) a linear rise-exponential decay wave iorm.

11



SECTION II

nTDIrUTSI'N nF AWATVCTC

Two limiting cases of the present problem have been studied
by a number of investigators. The diffraction of a stress wave
by a cylindrical cavity in an infinite medium is examined in
Refs. 2, 3, 4, and 5. Using thin shell theory to describe the
behavior of the liner, Ref. 6 treat.s the problem of the diffrac-
tion of a stress wave by a thin cylindrical liner in an elastic
medium.

In the foregoing references, transform or related integral
techniques are employed to obtain solutions. Such techniques,
however, if applied to the present problem, where the cylinder
must be analyzed within the scope of the theory of elasticity
(since it is considered to be of arbitrary thickness), would
lead to formidable difficulties in the inversion process.

The method utilized in the current analysis circumvents
these difficulties. It con'sists of devising a solution to the
transient problem from a superposition of appropriate steady-
state solutions to the wave equation. Its success stems from:
1) the capability of constructing a train of pulses from steady-
state sinusoidal components (Fig. 2a) where eaph pulse represents
with sufficient accuracy the time history of the transient stress
in the incident wave; 2) the existence of a mechanism which,
between pulses, restores the disturbed particles of the cylinder
a,.d the surrounding medium to an unstrained state of rest.
Physically, in the present problem, this mechanism is provided
by the continuous rauiation of energy from the excited cylinder
through the surrounding medl-'. )utward to infinity. Mathemati-
cally, it is implied by solutions of the fiald equations that
enforce zontinuity of stresses and displacements between the
cylinder and the embedding medium, and which at infinity repre-
sent cutgoing, decaying waves. Thus, if time is measured from
the moment of arrival of a pulse at the cylinder, the response
will oe identical to that excited by a transient loading having
the time history of a single pulse. The validity of this tech-
nique is amply demonstrated in the present report.

The use of steady-etate solutions to obtain a transient
response has also becen suggested by Ref. 8 for systems in which
damping provides the mechanism for bringing the syste'% ro rest.

2



As will be seen, the present approach offers greater opportunity
to gain physical insight into the problem than do previous ap-

JUl6.LI t. AUL t ddtIUU.LL.LiULW. uiL uZ dUL p LuýL• iLH Lht prusexiL

approach concerns the number of circumferential modes chosen to

constrain the deformation by .selecting in advance a fLxed number
of modes to apply to all material points and at all times of the
response. In prevent analysis, the accuracy with which the
solution is required to converge determaines the number of modes
selected. This number is permitted to vary with both the
material point" being considered and the time at which its re-
sponse Is calculated. Thus, within the limitations of a Fourier
series representation at the initial discontinuity, the present
method should, in general, be more accurate. This will be shown
to be especially the case during the early part of the response.

The dynamic response of the. cylinder is determined by ob-

tr.ining separately and subseqitently combining several distinct
component parts, each cf which is a solution of the wave equation
in either the cylinder or the surrounding infinite medium. These
are the stresses and displacements associated with: 1) the inci-
"dent wave; 2) the transmitted and ,reflected waves in the cylinder;
and 3) the scattered waves in the surrounding medium. The fore-
going components must be combined so that the inner surface of
the cylinder is traction free, and at the outer surface the normal
stresses in the radial direction, the shear stresses in the cir-
cumferential direction, and the displacements in the cylinder are
continuous with the corresponding quantities in the medium.

3



SECTION III

SOLUTION FOR AN INCIDENT DflATATLONAL PLANE WAVE

i. Stresses and Displacement's Applied to the Cylinder by an
Incident Diletational Plane "tvo1 in4 an alaiLiv Medium

The Cartesian coordinate system in which the incident plane
dilatational wave is described is illustrated in Fig. 3a. The
disturbance is assumed to be traveling in the negative x-direction.
The equation governing the propagation of the wave (which depends
only on the space coordinate x and time coordinate t) is
given by Ref. 9 as

2 2
ri- L. ý: . 0

ax2  C 2  (t.2.)
dm,

where 0 is a displacement potential defined as follows:

ux"• " y .0 (3.1.2)
60 0,

and the pertinent stresses are given by

0,•-(•+ 24m,)-2 (3.163)

2x

ayy W N - (3.1.4)
=m c~2

The quantities Ux, Uyp UZ, T axx and a are ments
and stresses in Csrtesian coordinates, anr" ne
Lame constants of the medium, cdm is the spe; ;ation
of dilatational waves in the elastic medium anc ty

4



+ 2ým

C - 7 (3.1.5)

JanA V iR thp mass density.

A steady state solution of (3.1.1) is

pol
i-pk- 3 (x-b) + w

-= 3 Ape ' P(3.l.6a) •

p-I.

where the frequency w is given by

p H (3.1.6b)p T

and k 3 - ,(3.1.6c)
P3 cdm.

Also, T is an arbitrary time interval and the Ap are complex

constants of superposition that will be expressed in terms of the
Fourier coefficients defining the incoming wave form.

For our purpose, we represent the incident stress wave a
(see Fig. 2) in the form

CO a sin wp[ k+ t] (3.1.7a)

or at x b as

00

a xx a p sin cpt , (3.1.7b)
p-I

where the ap are the coefficients defining the wave form over
the arbitrary half period T.
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2- a sin w t dt (3.1.7c)
p TJ x p

0

An expression for axx identical with (3.1.7a) is the real
part of

Si [k(3 (x-b) w+ c €tJ
a 7 (La a 3 (3.1.8)

p-1

From (3.1.3) and (3.1.6a),

2• :k [3 (x-b) + co t

x " Z (Nm + 24m)k p3 A p e k b p (3.1.9)
p-l

Comparing (3.1.8) and (3.1.9), we obtain

A ( +2)k 2  (3.1.10)

Now, from (3.1.2), (3.1.6a), and (3.1.10) we can write

-ap iac 3 (x-b) + wpt ti
U-1

pu1 m ip3

or, noting (3.1.5) and (3.1.6c),

,"aP [kP3(x-b) + awpt]

ux" e (3.1.11b)
p- a i

p-iimIdl I

i - - . . .. . i - i " i i , . . .. ...6



I
Since the cylinder boundaries are naturally defined by polar

coordinates it will be more convenient to write the stresses and
displacements associated with the incident wavu in volar coordi-
nates. Then

rr - xx(cos 2 e + e sinz2) . (3.1.12a)

re ~ QLT am in 20 (3.1.12b)

where

m2- " (3.1.12c)
m 'm

Substituting (3.1.8) into (3.1.12) and setting x - b cos Oe
we obtain the following expressions for the stresses applied to
the boundary by the incident wave:

®~ ica tp

p'-i

"B " (3.1.13b)
p-i

where

ar - (-ia )(Cos 2 e + e sin2 e) e, (3.3.13c)

are 'PM (-i (- )i 2 e e• iq3 (Cos 0-1)

p) , (3.1.13d)

7I
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with

q 3 a bkp3 - nJ).(3.1.13e)[

In anticipation of matching, later in the analysis, the
tractions applied by the incident train of pulses with the
cylinder stresses and stresses associated with scattered waves
in the medium, we represent the stresses given by (3.1.13),
and acting at the cylinder boundary, as the real part of

Br a W 00 a A cos ne e iWpt(3.1.14a)Orr I p pn

p-i n-0

-B " apBpn sin nO e p (3.1.14b)

p-i n-I

where the complex Fourier coefficients A #n and Bp are
obtained by comparing (3.1.14) with (3.1 .3). They are

2 2 iq 3(co. E)-9)Apn a T (cooe +e Ein2O) e cos nO dO , (3.1.15a)

iT 2 oiq 3(cos e-l)

Ap (Cos2e + e sin 2e) a dO , (3.1.15b)

1(1 •- .)1 i3cS -I)

Bpn - a J" e sin 2e sin nOd6 . (3.1.15c)

0

8



These expressions, (3.1.15), are representable in terms of
Bessel functions if a complex argument of the first kind and
integral order n - as shown in Appendix B.

Conditions of continuity between the cylinder and surround-

ing medium require that we match di pl-tcemente at well as appro-
priate stress components. The radial and tangential displacements
in polar coordinates are related to the Cartesian coordinate
displacement ux as follows:

Ur - cx Cos e U = - ux sin e . (3.1.16)

Substituting (3.1.11b) into (3.1.16) and setting
x -b cose leads to

iW t%- • U%,p. , 3.1.17a)
p,,1

ia) t
_ ep (3.1.17b)

pa'

where

iq3 (cos .-1)
ap cos e 3

Urp - - - p (3.1.17c)

ap sin e iq3(coo

or alternatively,

iq 3 (cos e-1)

Urpp " - e e 3 (3.1.17e)

m p

9



I
eD ak 3 iq 3 (cos 9-1)

apk P3 sin-Et e % 'o 3 1 1 f

UM p'Ymp

As with the stresses, we expand the displacemnts at the
boundary in the form

B 0 anPC c 9 t

uB " " LLn-'0 (3.2..18b)

ur 'YM addsp .o0n

Ba aDp ic t

ue z I 7(cdn~p sin ne e (3.1.18b)

p-l n'1 d.I.

where the complex Fouriir coafficients C. m and Dpn are

obtained by comparing (3.1.18) with (3.1.17). Thus,

J iq3(Cos 8-1)
C 3- cosocoo nOd ,.. (3.1.t9a)
Cpn T

0. n .>,1

J iq3 (cos o-1) c d8 * (3.1.19b)

0

Dpn i 3 8- sin e sin n0 dO (3.1.19c)

10

As in (3.1.15), the complex Fourier coefficients defined
by (3.1.19) are shown in Appendix B to be representable in terms
of Bessel functions of a complex argunmnt.

10



2. General Solution of the Wave Equation in the Cylinder

ihe st waiaa .dIz;I-'--:eint geharat~ed in the 4ilastic cylin-
der are presented in this section. The solution is constructed
froz dilatation*! and distortional displacement potential functions,
Such solutions are discussed in Refs. 9 and 10 for exampie. The
polar coordinate notation of Fig. 3 is used.

The nonvanishing strains are given in terms of the displace-
ments (Ref. 9) as

rr ar re " ;e r '

(3.2.1)
"Z =au au ...

ri9 ar rý rc)ae

The stress strain relations are

a A= (Cr + 6• + 2•,=, ...
rr 12 t>+Irr

Ge -(G + ee) + 24,ce, (3.2.2)

Ore - gre

vhere X and I. are the Lami constant and shear modulus,
respectively, of the cylinder. The equations of equilibrium
are

t2 rrrr r rr

(3.2.3)

a 2inu+ra ac

M --r ea11



Displacements ur and ue, which satisfy (3.2.1) through

(3.2.3) identIcally, and are associated with dilatarional waves,
are given by

in which Ocs the displacement potential, is governed by the
wave equation

V 2  . 1 -- S.. 0 , (3.2. 5a)

d

where

12_ V2 U + +(3.2.5b)

. hd hspeed of propagation of dilatational-vaves In the
cylinder, is ,given by

Cd - (3.2.5c)

where. I is the mass density of the cylinder.

When Eqs. (3.2.4) are introduced into the strain dispLace-
Ment relations (3.2.1), .and these ain turn into the stress strain
tuý.ations (3.2.2), we obtain the stresses associated with dila-
tatLonal waves, in terms of the displacemnt potential 0, as
follows

d d2 2 +

'rr xr 0 c +v'2:1 c ( 2 G2  r6

(3.2.6)

Gd JO

12



A solution of (3.2.5a) may be written as

W O 
im t

) \ z Z1 pJn(kpj~r) + z21pYn(kp r)Icos nOj e I
(3.2.7)

+ A Ap r cos 0

where: 1) k 1 -_ P/Cd; 2) the series I A plr cos e consists

p-1
of a superposition of solutions to (3.2..5 that correspond to rigid
body displacment; 3) the Jn(z) and Yn(z) are Sessel functions

-of-the first and second kind,. respectively, of integral order n;
and 4) the Z. and Z are complex constants of super-

position to be determined from the boundary conditions.

A bar is placed over the integer n in certain subsequent
terms for the following reason: In the analysis to follow, the
potential functions will be differentiated with respect to the
circumferential coordinate, e, and also the radial coordinate,
r. Differentiation with respect to 0 introduces the integer n
as a factor directly into the expressions for the stresses. Dif-
ferentiation with respect to r, and subsequent use of the Bessel
function recursion relations, also introduces the integer n into
the'stress and displacement expressions. It will be convenient
to identify the origin of the integer n because the solutions
for the cylinder and for the scattered response in the mediu%,
appropriate for incoming shear waves, can be obtained from the
corresponding solutions for incoming dilatational waves by:
1) interchanging sin nG and cos ng; and 2) setting I t - n.
In the case of the dilatational wave, we simply set I - n.

It will be noted that 4)c is constructed by a superpositlion
of steady state solutions of the form

S~iW

(P IZl~p".Jfl(k plr) + Z2 ,pnyn(k P r) Jcos ne e (3.2.8)
n-3

13



and a solution describing rigid body displacements. Such solutions
have been used to solve the steady state problemý reported in
Refs. 11 and 12. The use of steady staLe solutions LO construct
the solution to a transient problem has already been discussed.

It Is shown in Ref. 13 that the derivatives of the Bessel

tnZ . • J - (z) , (3.2.9a)Jn (Z) a'z Jn (Z) -Jn+ 1(z

It•Z n(n a
nz 2 n z jn l z.

L Z

ai.id similar relations for the derivatives of Yn(Z). p

As mentioned in the text preceding Eq. (3.2.8), and as d
can be seen in Eqs. (3.2.9), the recursion relations for the
derivatives of the Bessel functions introduce the integer n
into the stress and displacement expressions. Introducing
Eq. (3.2.7) into Eqs. (3.2.4) and (3.2.6), making use of rela-
tions (3.2.9a and b), and definitg a nondime.sional radial
coordinate as

b •(3.2.9c)

and a nondimensional wave number as

q - bk p , (3.2.9d)

we can write the expressions for the displacements and stresses

CO CO

ds 1

udr i i i lqzlpn(qlpJn (qlP) " Jn~l(qlp))

p-i rn-O

iWt+ z Yn(ql) Yl(qyp)))csn p

+2,pn qne e (3.2.10a)

Co

+ A AplCos 0

p-1 14



d 
i0(q sn O t

u jnin(q P) + Z~ Y2 qppf nO e
0 b IZ LPlfL~~ll

p-i n. (3.2.10b) II
AL P sin e

b P-1n-0 (qlp) I n

p-I-p

(3.2.10c)

+ - 2'. (n 2 - JInqp
2..pn~i(qlp)

2pL 1 (q ptics e e iw pt

~00 0

d a - J. I1 ýX2 +2pn (n -1)))

+ 2p± i 3 (qjP)1
(3.2.10d)

+ f 7,q 2 + 2 Ln (n -1)p
2,pn[I 1 P2  n

+ 2i± l Y j ) cos nOe p

15



d 2~ -1 l p [qlpfZI (q p --(n - l)Jn(q '- O k Z Z P

(3.2. tOe)

+ Z pn[qlpYn+(qlp) - (n - I)Yn(qlp)1} sin ne e p t

where the superscript d has been used to designate the con-
tribution from the dilatational solution. The contribution from
the distortional, or shear wave solution, will now be discussed.

A representation of the displacements ur and ue associa-
ted with shear waves is

r , ue U IT, (3.2.11)

in which the displacement potential, T€c is governed by the
wave equation

Vc 2 f2
T2 c . 2 6zt 2 (3.2.12a)

t

where ct, the speed of propagation of shear waves in the
cylinder, is given by

Ct (3.2.12b)

When Eqs. (3.2.11) are introduced into the strain displacement
relations (3.2.1) and these in turn into the stress strain
relations (3.2.2), we obtain the stresses associated with shear
waves in terms of the displacement potential T'c

s C. 2s se]O e " r
arr a 2ý% ýr I r 60 arr

(3.2.13)

6r2 ýe2

16



A solution of (3.2.12a) may be written as

T- Z { , I [z3,pn in (kP2 r) + z4pn(kP2 r)]Isin ne} I
p- •- n--

(3.2.14)

+ I B plr sin e
pal

where: I) kp2 - Wp/Ct; 2) the series I BPlr sin e con-

p-i
sists of a superpusition of solutions to (3.2.12) that corre-
sponds to rigid body displacements; and 3) the Z,3 and

z are complex constants to be determined from the boundary

conditions.

As in the dilatational solution, Tc is constructed from

a superposition of steady-state solutions of the form

*p Z [~3 PnJn(kp r) + 4 p~(kp r) sin ne e P(3.2.15)
n-l

and a solution corresponding to rigid body displacements.

When Eq. (3.2.14) is substituted into Eqs. (3.2.11) and
(3.2.13), and the relations in (3.2.9a and b) and the quantity
defined in (3.2.9c) are introduced along with

q2 - bkp2 , (3.2.16)

we have finally the following expressions for the displacements
and stresses associated with the shear wave solution:

17



U 8 - E f iw iat
r b n 0 p IZ,,J~ P + Z,4 PYýq 2p)Icos ne e

+ Z Bpi Cos e

U-b I. x 2 f3,pn qp 2P 2)P
pai n-i L

+ q 4pn q nY(q 2p) Ytljq 2P)j sin ne e P 3.2.17b)

B Z p1 sin e
p-i

s . \ n 1'ýqpr Z -ý2 f3,p.[kJIqP -q Pnl(2)
bp-l n-0 P'

(3.2.17c)

+ z (n )Yn(qp qp (plcos nOi)
4,pn 2P) 2Pn+liq2P)j

-- arr (3.2.17d)

18



rO b 2 L 2 tZ3 ,pnk[ n2(
p-I. n-I.L (q2 p)

+ .(q, p)
q 2 P LrrL

(3.2. 17e)

z4~(2n (n2 -

+z
+4, pn (q 2p) )nq

2P)

+-2L(.2~ si oa L
q2P n+l ~ 2P) ne '

3. Solution of the Wave Equation for Scattered Waves in the
Surrounding Medium

"As in the cylinder, the solution in the surrounding infinite
medium may be constructed from two displacement potentials, one

dilatational, the other distortional.' However, in addition it is
required that at infinity these solutions represent outgoing,
decaying waves.

After cd is replaced by cdm (the dilatational wave
velocity in the medium), the dilatational potential, namely a
solution of (3.2.5a) that meets the requirements at infinity,
may be taken as

"- m I 5,pn Hn (k 3r)cos ne e + C Cplr cooe (3.3.1)

p-I n-0 pal

where 1) k dm 2) H
p3 c d n Jn~z ln~

are Hankel functions of the second kind; 3) the Zspn are
complex constants of superposition to be determined from the

19



CO
boundary conditions; and 4) the series Cpl, r cos 0 con-

p-i
sists of solutions associated with rigid body displacements.

Substituting Eq. (3.3.1) into Eqs. (3.2.4) and (3.2.6) and
introducing Eqs. (3.2.9a and b) and the definition (3.2.9c) along
with the definition q3 - bk we obtain the following expres-

sions for displacements and stresses:

u z Zn E z,~~ (q3P - q J+(q3 j
p-1 n-0

iW t
-z iZ, 1. Y (q~p q 3Y+(q3PJcos nO e P(3.3.2a)

+ Z C cos -
p-l

l 00 00 t

e b JnI~nq3 i,~[Yn(q pJjsin nO

p-I n-l

(3.3.2b)

C 1 sin e ,
pm.

dm - I-(n -1n
Orr 2 3 5,nq 1 2 1 n( Pb p al ft•(q 3P))

2P-1)
"(q3 p) Jn+ (q3P) 3 5Zpn {mn2 (q3)3p)2

(3.3.2c)

"(q 3p) Y n+l(q 3 p) cos nO e

20



a re _, - zn[(q 3p)J(q 3 P) (n - 1 i (q 3

(3.3.2d)

" izspn (q 3 P)ynl (q3 P - (n- 1)Yn(q 3 P) ]sin nO e mp

where, as already cited,

q3 - bkp3 " (3.3.2e)

After ct is replaced by Ctm (the distortional wave
velocity in the medium), the distortional displacement potential
for the medium, namely, a solution of (3.2.12a) that meets the
requirements at infinity, may be taken as

" Z 6,pn Hn(kp4r)sin nee e + X DP1r i in k3.3.3)
p-I n-1. pul

where, 1) kp4 p/c .,; 2) the series y Dplr sin e consists
of solutions associated with rigid body displacements; and
3) the Z6,pn are complex constants of superposition to be
determined from the boundary conditions.

The displacements and stresses associated with TM are
obtained by substituting (3.3.3) into equations of the form
(3.2.11) and (3.2.13), and introducing (3.2.9a-c). Thus

r bZ I {Z6,pn[Jn(q 4 P)j

p=- n-O

(3.3.4a)

" iz6,pn[Yn(q 4 P)Jlcos ne e P + co D Cos e G
p-l
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am 1q(
ue--b i 1 6,pflp n q 4 p) -j~ P

-iz 6 , n[U Yn (q 4P) - 4Yn~l(q4P)Jisuin ne e.j (3.3.4b)

p-

0m -ý / 2'- f 4 J+( 4 )

rrb 1~ nw Ip 24) ¾n~

(3..3 .4c)'

-zn( -1)( -csn

6, Yn . 4P). .4PYn~l( 4P)JIoIL~

Or -q
2 Z6 .'2n (nk1)-4jq )

bp-i n-i q P

+ (q (3.3.4d)

-i6,pnj (qp 2  4)+ 4q- Yn+i( 4P)l~i 9e

where

q4bk P4(3.3.4e)
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4. Correspondence Between Elastic and Viscoelastic Field Equations

Viscoelastic problems are very often formulated on the basis
l - -' - I. n- I

4:j,. & AIJ'
5  

WLLA 9L;V&WOW5U1JUIULS C. 41 OL-AbL J1LUULJA.Ut. I enr l

the procedure consists of replacing the elastic parameters by
expreAtlnnA invOlving linear operntors that contain the viscoelas-
tic properties of the material being considered. In the case of
steady-state problems, the operator expressions reduce to alge-
braic functions containing the frequency as well as viscoelastic
properties (see, for example, Ref. 14). For the sake of com-
pleteness, we will review the procedure, following, for the most
part, Ref. 14. The linear strain displacement relations, referred
to Cartesian axes (x1 , x2, x3 ), are

=j -(u iB + uJi) ij = l, 2, 3 . (3.4.1a)

The elastic stress strain law is

e + 2gpei • (3.4.Wb)

The equilibrium, equation is

~ 7t 0 . (3.4.2)

In Eqs. (3.4.1), and in what follows, i,j - 1, 2, 3; repeated
indices indicate summation over all the possible values of the
index; commas denote differentiation with respect to the Car-
tesian coordinate associated with the index following the comma,
and 65ij is the Kroneckar delta (6i - 0 when i 0 J, 5 1

when i - j).

The stress deviator, sij, and the strain deviator, eij,
are defined as

S- a- , (3.4.3a)

e - ij - j5ijekk (3.4.3b)ii23

23



The creep laws are written as

Ps4 4 ' Qe44  (3.4.4a)

•kk" Qckk C (3.4.4b)! Ik ' k

where P, Q, P and Q are linear operators with constant
coefficients and are defined as follows:

P - P + P + +P (3.4.5)

P0 -r r . Tr-

+A +

Q". + Q, (3.4.5b)

P' ' + • ' +- (3.4.5c) . .• " PO + 1 6t + ' +P tn

•Q 0.0 + (Zl ot + ""+ Q•v (3.4.5d) ,

The constants POP P1, ""." Q in these equations are determined

on the basis of the viscoelastic model selected.

Since the present analysis utilizes solutions that are har-
monic in time, we select displacements of the form

u Ui ela * (3.4.6a)

where barred quantities are dependent upon space coordinates
only. From the representation (3.4.6a), it follows that

- iWtj -e ij e , where eij - i(£i,J + UJi) (3.4.6b)

eij i t a where eij " 'ij " Jbij kk (3.4.bc)

sij sij a where sij - 'ij - bjjiJkk , (3.4.6d)

"a. -- e 24 (3.4.6e)LiJ J " 2 4



When Eqs. (3.4.6) are introduced into Eqs. (3.4.4), the
creep laws become

P (iW)nij - Q(icL))jj (3.4.1a)

P () Q, (w)z,) (3.4.7b)

where now the symbols P(iw), q(iw), P'(iw), Q'(iw) represent
the polynomials in (iw) that result when the operations defined
by (3.4.5) are carried out, that is,

F(iw) = P0 + (iW)P 1 + (iW) 2 + " + (i)P (3.4.8)

etc.

If we define the following rational functions of (iW),

(i) (devatoric complex modulus) (4.9a)"-s P(i•) (dvaoi ope ouu),(..a

- ( (dilatational complex modulus) , (3.4.9b)

the creep laws (3.4.7) may be written as

s Ys a i (3.4.10a)

"0kk M Yv ikk (3.4.lob)

Then, combining Eqs. (3.4.10) with the definitions of the deviator
amplitudes in Eqs. (3.4.6), gives

a ij " iJ(YV " Ys)7jkk + Y s ij "(23.4.11)
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Comparison of Eq. (3.4.i] with the 'iastic stress strain
Jaw, Eq. (3.4.1b), indicates that the elatiAc field equations
(and corresponding solutions) may be emoloi ' ri in

problems provuided that the elabtic modulii X and k are re-
placed by the corresponding viscoelastic rr.;,dulLi X * and ý IV V

respectively, where

13 " (Yv Y ) (3.4.12a)
V

v y (3.4.12b)

It is to be noted that N and •v are, in general, complex,
and are functions of the frequency, w, and the parameters that
define chv viscoelastic model.

The viscoelastic equivalents v and must replace their

elastic counterparts wherever they occur. This substitution is
necessary not only where ? and Lm appear explicitly, but aLso

m
in those parameterf in which they are implied. namely, kp 3 or

a4d and e. Ln what f3ilows, the subscript v will be dropped,
and a subscript in will be used to distinguish the medium from
the liner.

For convenience of reference we rewrite the dependence of
thesa parameters on 'N •,LQ "

m in

k -W /C [see Eq. (3.1.6c)], which may be put into the
p3  /Cdm

nondimensional form

q 3 - bkp3  [see Eq. (3.3.2e)]

-km/(A + 24m) [see Eq. (3.1.12c)],

(3.4.13"
kp4  

p pt/CitM

or, in the nondimensional form

q4 ' bk p4
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We now jnt':oduce (3.4.12) inco (3.4.13). Recalling thac Yv

and Ys ate rational functions of the pure imaginary variable
iL. and that 1-ho ?,-.,_ .. i, u-ui Lhe inde: or sunas-

Zion p, (i.e., w p-/T) we write

Y (iW y1 + ,. (2)
V p vp Vp '

(3.4.14)

Y (iW Y + iy.(2s F . s p

where

y(1) y(2) y/1) (2

VP VP sp sp

are real, and th3 aubscript p is used to indicate dependence
on the index of summation. In addition, we let

•(1) . V1) +2y
p Vp sp

(3.4.15)
¥(2) . y (2) + 2Y(2)

p Vp sp

Then, if we introduce (3.4.12) into (3.4.13), and take account
of (3.4.14) and (3.4.15), we obtain the viscoelastic equivalents
of k and k in nondimensional form (dropping the subscripts

P3 kP4
p, but keeping in mind the dependence on p), as follows:

q- (bk 3 ) " qj - iq3 - (3.4.16a)

S- (bk 4 ) q 4 - iq 4 , (3.4.16b)

27



I

where

_ /,,, /,,,
"- "Y' + /Y\Li+ Y;• (3.4.t6c)

3p p-p

q - 23 " + (12 p2) (3.4.16d)

/(1)2 12 P -

+ y(2)

P p

_ /-(ib) 2y(2)2 +(3.4.i6e) i,

q4-y " sp sp

()Y2 + y(2) 2  ,pa

sp s _

14b= - +s p () (3.4.16f) 2
+ .( 2) sp +

+ 7 2

sp sp

For the viscoelastic counterparts of the Lame constant NM
and the shear modulus Lm, we obtain

X ,+ iN (3.4.17a)
mP

4m " + i , (3.4.17b)

28

I I I I-I----



where

Y Y

LVP sp '

Si fy(2) .V(2)] (341)

Lt Yp sp I

(2) s(3.4.17d)

sp

And for the viscoelastic counterpart of e,

e - i + iG , (3.4.18a)

where

?ý(X + 4L) + X(?ý + 2p) i
"C2- R- "' 2 (3.4.18b)

( P + )2 + (N, + 2P.)

( + 2i) 2[+L()+2±)2 + (3 .4 .12c)

5. Viscoelastic Modgl.

The standard linear solid viscoelastic model considered inRef. 15 and shown in Fig. 4 was selected for the present arxalysis.
It was chosen because tt is the simplest model that exhibits the
four most common features of viscoelastic behavior: instantaneous
elasticity, creep, stress relaxation and creep strain recovery.
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The operator representation of the nmsdel is

2 + a

lm h2 + •-(3.5.1b)

where the notation of Ref. 15 has been changed, and the symbols
employed above have the following meaning:

cdm velocity of propagation of high frequency
dilatational waves

C tm velocity of propagation of high frequency
distortioaal waves

£- strain recovery time in uniaxial strain case

i__

recovery time for shear strain•2

- relaxation time for normal stress in uniaxial
1£ strain case

i-L relaxation time for shear stress.•2

The choice of the specific model defined by (3.5.1) now
enables us Lo evaluate the operators represented in general form
in Eq. (3.4.5) and associated with the stress strain relaticns
in (3.4.4).
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From (3.4.12b) and (3.4.9a),

-m -
I 

w •

Therefore,

(3.5.2)
6

From (3.4.12) and (3.4.9)

2v± +k Y +(YY 8

or

3 (2 m+ X - 4m,

and from (3.5.1)

Q fm{3c2dm n 42 2 - rz + [3c2(' +

- cm (T 2 + ill)] ý+ dm4 t,• 2}

(3.5.3)
• 2

p -= 1iQ2 + (n 1 2) 6 t 2
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The present analysis is concerned with steady-state solutions
in which the factor e is present. Therefore, when the
operators Q, P, Q', and P', as defined by (3.5.2) and (3.5.3),

LL= - L i1h= ULCUP Liwb k3.4.4), whuy nenurade Ene polynomials
Q(iw ), P(iu p), QI (ic ), P I(iwp) indicated in (3.4.8). These
polynomiais now take the form:

P - 22 + iW ,

-+iwP

' - ' ' 2( 3 . 5 . 4 )

P "P0 + i Pl " % ,

where

-o 2 n - 4c 2 2Tn

-O M ala2 '

-m(" + + 2 "

The deviatoric and dilatational complex modulii Ys and Yv,
Eq. (3.4.9), may be written in terms of the basic properties of
the viscoelastic model by utilizing the polynomials obtained
above.
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P(-)Q(icA•)

By using (3.5.4), the deviatoric modulus, Y " -

may be written in terms of real and imaginary parts as

- Y(.) + iT(2)Ys " so p

where

S2 T 2 2 "Cdm/n2b
p " .c.. + (pi7)2  ( T/b)

2 p +1 + ( 2 (CdMT/b )

(3.5.5)

(2) m.tM. a2 d

¥sp 2

1 + (p'r) (2 c 2T/b)

Q (ia~p)
Similarly, the dilatational complex modulus, v -Pt(j )

may be written in terms of its real and imaginary parts as

Yv M 'Y(1) + i¥ (2)
v vp vp'

where

yl) 2m rm [ý) - Q2 (pT)2][Po- (pir) 2 ] + QiP.(pir)1
yvp [ý -pr 2 j2+-P2 (PO2

(3.5.6)

2 r :21i){Pp - (p7T) - ~w2]FP
,,(2) "miCdm (PT) J [Fo (P~r) 2 QI [- ' 1 2 P 2 'l

SVp " 2. 2. i

V233

i( r )2 J +; ;



I
where, from Eq. (3.5.4),

-. /b - 1 _ •C
, .2 (cm -ZjrUtim 4"' " 1 L dm "2]

my dm

' 2
- C

T 2 c T/b 2

-" PE" (•/% 2 b) (i +

Note that, by the way Eqs. (3.5.5), (3.5.6), and (3.5.7) are

written, we have introduced in the formulation of the problem

the foflowinig nondimeulsional ratios to represent the visco-
elastic propjrtieR of the medium: ,

m dm

•i shear reLaxation time to urniaxial strain
2 relaxation time

0stress relaxation tim. to strain recoveIy 2ane

Pj1 for uniaxial strain

th f shear stress relaxation time co shear strain

2 relaxation time

shear relaxation time to half transit time.
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The ratios TI/n and r2/Q also represent the ratios of the
relaxed to unrelaxed elastic properties of the medium, namely,
in the notation introduced in Eq. (3.4.17),

T. (2u + X T r. ( 1
-,1 M M W + U ; --.1 ,•ý CO p . (3.5.8)(4 M+7 -4 00 ..2 P.

p p

This can be verified by letting p-+ 0 and ® in Eqs. (3.5.5)
and (3.5.6) and referring back to Eq. (3.4.17). Note that for
finite uý, the ratios in (3.5.8) can also be obtained by letting

Cdm/n2b, instead of cp, approach 0 and w.

6. Stresses and Displacements Applied to the Cylinder by an

Incident Dilatational Plane Wave in a Vliscoelastic Medium

In this section, we consider the elastic cylinder to be em-.
bedded in a viscoelastic medium, and obtain the stresses and dis-
placements applied to the cylinder by an incident dilatational,
plane wave, In doing this we use the form of the equations de-
veloped in Section I11.1 for the case of an elastic embedding
medium, and invoke the correspondence principle discussed in
Section 111.4. That is, we take the results obtained for an
elastic medium and replace the parameters involving elastic modulii,
by their viscoelastic equivalents.

For convenience of reference, we rewrite the pertinent results.
obtained in Section II1. From Eqs. (3.1.13) the normal and
shearing stresses applied to the cylinder boundery by the incidenc
plane dilatational wave are given in polar coordinates by

00 iwo t
B 21 Orp e P (3.6.1a)

p-1

iw t
- a " ro~p (3.6.1b)

p-I
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in which

in wah(ios 20 + e sin2 0 e iq 3 (cos U-1)

a~~~i (Co (ea (os(16

" sin 29 e 3  (3.6.1d)

where the viscoelastic parameters q3  and e are given by
Eqs. (3.4.16) and (3.4.18) in the form

q3 q3 - iq 3 , (3.6.2a)

C - +ie . (3.6.2b)

As in previous cases, we expand the boundary tractions in
the Vourier series

L~t

°B a p A pn cos ne e p (3.6.3a)
pal n-0

rO a B sin no a (3.6.3b)re p p
p-i n-i

and, comparing (3.6.3) with (3.6.1), we obtain the coefficients

pn as

J0 eiq3 (cos G-I)
A (cos 2O + e sin 2)e cos nO dOpn 7J (3.6.4a)

0o n>I
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122 iq 3 (Cos H-L)

A 1 i 7T (Cos 24 + C sil 2l••) e d,( (3.6.4b)° II
B i - q3 (Cos 6-l)sin 26 sin nU dO . (3.6.4c)

These expressions are evaluated in terms of Bessel functions
of a complex argument in Appendix B. As given in (3.6.4), they
are identical in form to their elastic counterparts, (3.1.15),
but of course are different in value.

A minor variation is necessary in the development of the
displacement representation. From Eq. (3.1.17),

-ML U*,p eP (3.6.5a)ur - r~

B M u e p (3.6.5b)

p-t

in which we take (3.1.17e and f) as the form appropriate for
the viscoelastic representation of Ur,p, Uop. Thus,

a p c '•'c q ie q 3 (cos 0-1)
Urp ' " c'm dm0 p ( p C e (3.6.5c)

ap pcdmq 3q3(Cos 0-1)

U ap p sin 0 e , (3.6.5d)Osp c bm dmp wp

where we note again that q 3  is a viscoelastic parameter, de-
fined by (3.6.2a) and the symbol Cdn is the speed of propagation
of dilatational waves in an elastic medium that has the unrelaxed
elastic properties of the viscoelastic material.
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i

B H,

Expandi ng thu dislaceenzt.- r; m.d •: -t .A •..a~r
r '.e~

B v r f J a }im~t
U r - W C C c e (3.6 .6a)

r Mp-. n-O Ud cP p

uB 0 a pmCdmCp D s in nO e pt (3.6.6b)

p-i n-I

and comparing (3.6.6) with (3.6.5), we obtain

C M cos e cos nO dO,pnp '.(3.6.7a)

Scdmq) 3 iq 3 (cos e-1)
-0 " r)P Cos e de , (3.6.7b)

0

dm q 3 iq 3 (cos e-1)
D e A J sin e sin nO dO . (3. 6 .7c)

The form of the quaLLIties in (3.6.7) differs from the
counterparts in Eq. (3.1.19) only by the presence of the factor
(cdmq 3 /cupb). When the parameter q3  applies to an elastic

medium, this factor is unity. The explicit representation of
(3.6.7) in terms of Bessel functions of a complex argument is
given in Appendix B.
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iq-Ai (Cos 2 + E sill2 e el3( o - d (3.6 . 4-
ApO ,) C -i , (3.6.4b)

V

i C ) iq(osIi
B-pn T- e sin 20 sin no dO . (3.6.4c)

These expressions are evaluated in terms of Bessel functions
of a complex argument in Appendix B. As given in (3.6.4), they
are identical in form to their elastic counterparts, (3.1.15),
br't of course are different in value.

A minor variation is necessary in the development of the
displacement representation. From Eq. (3.1,17),

iW tuB = .(3.6.5a)Ur Ur•P
Pr-1

p-i

ue - u a p (3.6.5b)
p-i

in which we take (3.1.17e and f) as the form appropriate for
the viscoelastic representation of Ur,p, Ue,p. Thus,

a1. C.4_q.\ iq3 (ccs 6-1)

m dm~p pb

ap cqiq 3 (cos 0-1)

u a- (-dqsin 0 e , (3.6.5d)
01, y " mcdxu.wp pb "

where we note again that q3  is a viscoelastic parameter, de-

fined by (3.6.2a) and the symbol cdm is the speed of propagation
of dilatational waves in an elastic medium that has the unrelaxed

elastic properties of the viscoelastic material.
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7- Solution to the Wave Equation in a Viscoelastic Medium

In Section 111.3, the solution to the wave equation in a
surroundine P.IaRrir mpditm w•a rnnQt--is,,•,. f• ^ A,•*.. ft _ ....

potentials. The displacemenrs and stresses assocLated with
this solution are given by Eqs. (3.3.2) and (3.3.4). By utiliz-
ing the correspondence principle (Section t11.4), we may obtain

the solution in a viscoelastic medium from the solution in the
elastic medium. The modulii appearing in the elastic solution
are simply replaced by their viscoelastic equivalents. Thus,
the desired solution in the viscoelastic medium, that is,
stresses and displacements, are given by Eqs. (3.3.2) and
(3.3.4), provided that the paramneters appearing in these equa-
tions are defned as follows:

k = k 3 - ikp 3

N ?M - + i?' (307.1)

m+

I'A.

•m = • +i4*.-

For convenience of reference, the stressee and displacements
given by Eqs. (3.3.2) and (3.3.4) are rewritten here, with
Eq. (3.7.1) now applying.

dm ~ Z { 5,,[- J(q 3 p) - n,(
p-l n-0O (3.7.2a)

iYn(•p) - 3Yn+l(q 3 P) coo ne e + Cp cos e ,Si5.pn p •nq'p 3n13)Ip

p-l

dm ' -b Z5 ,p[1 3P)]

p-i n-i

(3.7.2b)

- Z(, pn sin nO e P-j Cpl sin )

p=i
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dm 2 n (n .,

2rr D2 fl "1 2 r P;
p- I n-O0[

"(q3 p) Jn+l 3P)

"-(3. 7. 20

_- . , (q3 p) cos1nle
I(q3 p) (n)

1 n-- i .
- q 3F -~ (n 3P) cos n( q 3',si eee P (..

00 w

dm ML r

iZ,,Yl,4 )*~O8~ ~ t c (3.7.3a)

p-[.

2 - b l { ,n Jn'(q4 p) - q4 Jnql(q4P )]

- i6,pn[ yq (q 4 p),- q43) n (q 4 P) ]}iin nO e p (3.7.3b)

00 0

"U a iX Z !~Z6, pn p(qP

- p sin wl
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2.,

_rr bj z n - (c (qc), (q4p -I 2 2) 6,pn[ n 4 4 J (+ 4)

( 3 .7.3c)

iWI t

- iZ6,n[• i) Yn(q4• (q4 ,+[q4 )Ijcos nO e ,

6, pn n2n~ -P 4P) yl4

asm qZ 6  n n 2

p-I n- P
rO b 2  n-. (q1p( (317.3d)+---aJ (cl40:) 1- "fZ[2n (n "2'I.) Y q4) ( d

(q 4 p) n+1 PJpnl ( 2q4 p) n 4P)

+ Y q4p) tin nOe(q4p) n+l 4
4 P . +.)

It is observed that the viscoelastic parameters q 3  and c . ..
"necessitate the computation oi Bessel functions of a complex
argument.

8. Superposition of-Solutions to Enforce the Boundary Conditions

In the preceding sections, we have presented contributions
to the complete solution. These consibted of: 1) stresses and
displacements associated with the incident wave; 2) the solution
to tho wave equation in the elastic cylinder; and 3) the solution
ro the wave equation in the surrounding medium. These contribu-
tions must be combined to enforce the required conditions at the
cylinder boundaries, namely, that: 1) the inner boundary be trac-
tion free; and 2) at tbe outer boundary the cylinder displace-
ments and appropriate stress components be continuous with those
of the surrounding medium.

Recalling the introduction of the nondimensional radial
coordinate p - r/b [Eq. (3.2.9c)], and letting 1 - a/b, we
obtain the boundary conditions at p - • (inner boundary of the
cylinder) in the form
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Orr rr

d . .. a)
U - V kVrAP) -

At p - 1 (outer boundary of the cylinder),

+r () - -" m(l) + ,r

d +~ -m elm() j
arG ur(l) +cSi) rG-' r' r-

(3.8. 1b)Sdm am B.
(1) +u'(l) - U -ur (1) ur ,

d -dm -) am BU(l + u() ,.~() u6 (1) -U 9

where: 1) the superscripts d and s are affixed to quantities
stemning from the dilatational and shear solutions, respectively.
to the wave equation in the cylinder (see Section 111.2); 2) the
superscripts dm and sm are appended to stresses and displace-
ments resulting from the dilatational and shear solutions, respec-
tively, to the wave equation in the medium (for an elastic medium,
these quantities are given in Section 1II.3; for a viscoelastic
medium, they are given in Section 111.7); and 3) the superscripts
B identify the stresses and displacements associated with the
incident wava at the outer boundary of the cylinder (for a wave
traveling through an elastic medium, these quantities are given
in Section III.1; when the wave propagates through a viscoelastic
medium, they are given in Section 111.6).

In the following development, advantage will be taken of the
fact that by an apprcnrlare choice of the values of the visco-
elastic parameters, the viscoelastic solutions in the medium re-
duce to elastic solutions. Therefore, quantities labeled with
the superscripts B, dm, and am will be written as they are
given in Sections 111.6 and I11.7. Thus, the solution presented
will apply to an elastic cylinder embedded in a viscoelastic
medium, and as a limiting case wil contain the solution for an
elastic cylinder embedded in an elasttc medium.
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Atter the terms entr:ring into Eq. (3.6.1) are cUMpuLed from
the appropriate expressions, and the comnon trigonometric and
exponenitial factors are d&vIded out, the resulting nonhomogeneous
system of linear equations in the unknown coefficients of super-

Y 4f 04 4 azs7.s,. *;*-4~ -, 4, .. ~.I-S-- .... . .--- n-J . . .. . . . ... . . ...... .

[C Di,j- 1, 2, ... , 6Lij,pn fj~ p - {Dj~

(3.8.2)
p - 1, 2, 3,... n 0, 1, 2, ...

where Cstems from the coefficient of Z in the :thwhe Jpn " Jpn
equation of Eqs. (3.8.1); D results from the term on the

thi, pt
right-hand side of the ith equation of Eqs. (3.8.1); and
(Z J,pn the solution vect' r, is a 6 x I cQluan matrix, whose
complex elements are the unknown coefficients of superposition.
it should be noted that there is a different matrix equat ion
(3.8.2) for each palr of-values of p and n,.

: The elements C and D are shown in detai.l inij.,pn i,pn
Appendices A andB.

The system (3.8.2) may be solved by m .trix inversion for the
solution vector (Z 'p). Having solved for (Z )p for a suffi-

J ,pn Ja n
cient number of values of p and n to enmure adequate conver-
gence, we may calculate to the desired accuracy the stressc5 and
displacements in the cylinder as:

ar d s d G d E
" = rr +Crr +rT r9 e a' e " e e + o8e ,(3.8.ia)

U ud+ ut8  u + s(3.8.3b)

%r " r r "'1 •

where the terms appearing on the righL-hand siWe of the above
expresstons are given in Eqs. (3.2.10) and (3.2.17).
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SECTION TV

SOLUTION FOR AN INCIDENT DISTORTO19;L PLANE WAVE

This section is concerned with the cylinder response to an
incident shear wave. As discusseG in Section 111.4, the visco-
elastic analysis may be obtained from the corresponding elastic
analysis by using the correspondence principle, that is, by re-
placing the elastic modulii by appropriate viscoelastic modulii.
Conversely, the elastic c;:-e can be obtained as a special case
of the viscoelastic formulation by a proper choice of the value
of certain parameters. Therefore, in treating the response to an
incoming shear wave, we shall regard the cylinder as first em-
bedded in an elastic medium, The viscoe.•astic analysis will then
be obtained by employing the correspondence principle. The numer'-
cal results will be computed from the viscoelastic formulation foz
both the elastic and viscoalaetic case,. tvreatin& the elastic Prpob-
lem as a limiting case of the viscoelastic problem.

The first section in thiB chapter Aeal-s with the -co.tributLon
of the free field quantities, that iv, the stres:ses and displaze-
ments applied to the outer boundary of the cylinder by the inci-
dent shear .wave. This contribution will be :derived independently
of any of the results presented in Section 111. The remaining
contributions to the solution, namely, the solution to the wave
equation in the cylinder and the scattered response in the sur-
rounding medium, will be obtained bymaking minor chaies in the
corresponding solution for an incoming dilatational wave. As
outlined in Section III.2, these alterations involve interchaiAging
Fi/ r and cos nO, and setting F zn. It will be recalled
thai. the N are those integers stemming from differentiation with
respect to 0.

2. Stresses and Displacements Applied to the Cylinder by an
Incident Distortional Plane Wave

To avoid cunfusion with the response to ar incoming dilata-
tional wave, we shall identify corresponding quantities associated
with the response to an incoming shear wave by using notation
that differs slightly from that employed in Section III.
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I

The Cairtesian coordinate system in which the incidenr p"ne
otstorticnal wavy. is described, an we. as sGone of the nota-iou
used, is shown in Fig. 3b. The disturbaace is assumed to be
traveliag in ýhe negative R-directicn. The propagation of the

:ýCP ,,,Z.G O'L- ý'ALv zjj6-t; .UUuzICLM•t X, and tne tiLme coordi-
nate t. r

We may obtain the governing equations of m-tion from a scalar
potential, T, Ref. 9, where f - IF(Rt and is a solotion of

2
'I -2 - 0 (4.2.1)m. 2 Mt2 "

The nonvanishing Cartesian displacement and %. ress .Ianti-
ties v- and T-. are given byy xy

V_ -0 <4.2. 2a)

S(4. 2.2b)

As developed in Ref. 9, Eqs. (4.2.1) and (4.2.2) apply to
an elastic medium, and p is the elastic shear modulu&. How-
ever. on th.- basis of the correspondence principle, these equa-
tions may also be apnlied to a viscoe'lastic medium if : m is
regarded as zhe viscoelastic parameter defined in Section _.I..4
by Eqs. (3.4.17b) and (3.4.17d) and given in terms of the visco-
elastic model representation used In the pre-ent analysis by
Eq. (3.5.5).

Steady state solutions of (4.2.1) may be taken in -..he form

iW t •
T IF p(x) e P, (4.2.3a)

p

where the frequency cw is given by
p•

- -- 
(4.2.3b)

p T
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9IIIi
V.-i t a it uiLt.- ~i t_tq;cr, and T an arbiLrary time int.erv. I
Thus, the wave equaLio:, (4.2.1) beý:unes the Hernhiul equation

, + k 24  0, (4.2.4a)

where

2

k " (4.2.4b)
p4

In the case of a vif;coelastic m dium, kp4 is the comple,

parameter defined in Eq. (3.4.16). Fcr an elastic mediwn, k
reduces to 

p

.2

k2  . (4.2.4c).p4  2

where Ctm is the velocity of propagatiohi of distortional.
waves in that medium, with

c '- -= . (4.2.4d)

Steady-state sol.utions of. (4.2,1I) may be constructed from
the solutions to (4 .2.4a), by sing (4.2.3a). Thus T(3jt)
may be taken as

i(k 4(x-b) + cu t]
T (7x,)t A e p (4.2.5)

p-i

We now represent the incoming shiar wave in the fi,:m

akp (x - b) tj
-, a i p -i nU + , (4.2.6)

p ,1L P
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I

and proceed to relate the coefficients, ap, in thLs equationa to

the coefficients. A_. in Ea. (4.2-5). Tn th•p •1•.•t-ir, t-ne

w_°/kp 4 A tm the uniform speed of propagation of distortional

waves, in the viscceiastic case the paranmter co /k represents
p p4

the limiting value of the velocity of propagation when the fre-
quency tends to infinity. At R - b,

r - ap sin op t . (4.2.7)

p-I

The Fourier coefficients ap define the wave form over the

arbitrary half period, T. In the viscoelastic case, since

attenuation occurs, the wave form is altered as it progresses
through the medium.

An expression for r-_ identical with (4.2.6) is given byxy

the real part of

Si[kp4 (x-b) + w t (4.2])

"p-
1

From (4.2.2b) and (4.2.5),

0 A i (kp4 (x-b) + w t]
S k4 A e p (4.2.9)

p-l

Comparing (4.2.8) and (4.2.9), we obtain

tap
A - 2- - (4.2.10)

im p4

From (4.2.2a) and (4.2.5), and by noting (4.2.10), we get

v ap i[kp4 (x-b) + wrt]v =-2 •. k-~---e

pal m p4
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It will be convenient for the computational effort to rewrite2 Ithe above expression. By (4.2.4b), Lnmkp 4 - (CUm p/kp4 ) and from

the definitions of W [Eq. (4.2.3b)] and q, [Eq. (3.4.16)1.
P

we may rewrite 4mkp4 as

4mkp4 "nmetmwp p

Tht s,

v- ~a p ctnq 4 ý eiQk p4 (xb) + w t]

Sm ci Km Cm p (4.2.11)p -i P

In polar coordinates the stresses and displacements associa-
ted with the incoming wave are given by

TB - B -
T - S 2 , 2e T C Cos 2e (4.2.12)rr XV rj*

B B
rV v sin 6 vg - v. cos e . (4.2.13)

Substituting (4.2.8) into (4.2.12), and setting x = b cos 0,

we obtain the following expressions for the stresses applied to
the boundary by the incident wave:

p-I

o0

TB e p(4,.2.14a)
Trr Tr•'p P

Pa1
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where

q q4 (Cos 0-1)

(-ia_)sin 20 ei, c..... )

iq,(Cos ;-1)
Tr•,p " (-la )(cos 20) e (4.2.14d)

0. p p

with

4- bk 4 , (4.2.14e)

q4 is defincd in Eq. (3.4.16) for the viscoelastic case. In

the elastic case it simplifies to

• .. . .... . . . 4 - c m '
tin

The Fourier expansions of Eq. (4.2.14) in the circumferen-
tial coordinate • are

B

SZ Z aA sinne a (4.2.15a)
r~r p pn
p-i n-l

"apB cos 8n e P " (4.2.15b)r p pn
p-i n-0

Thu complex Fourier coefficients Ap. and Bp, are obtained
by comparing (4.2.15) with (4.2.14), and are

iq 4 .(Cos e-1) _

A " 0 e " sin 20 sin ne d6 , (4.2.16a)
4pn
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eiq4 (cos i cc 27 cos n- dO , n > I (4.2.16b)
pn irJ

A(

_ iq 4 (cos -1) _ -
B J cos 20 de . (4.2.16c)

0

The representation of these coefficients in terms of Bessel
functions of a complex argument is given in Appendix B.

If we introduce (4.2.11) into (4.2.13) and set x - b cos e,
we obtain the following representation for the displacements
vB and vB

0 icn t

Vr- - vr.p e .(4.2.17a)

p=-

B " p
vi- Vp e (4.2.17b)

p- 1

where
ap iq(Cos •l

V "mctb q4 . sin e (4.2.17c)vr,p T mCUm~ 4

- ap c iq4 (cos 6-1)Vj, -7tmp (12--b) q4 cos 0 (4.2.17d)

e rp Ymtm~Ap P

To facilitate the application of conditions of continuity
of displacement at the outer boundary of the cylinder, we expand

v and v! in Fourier series in 0. Thus,r 5
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00 0vB a-- , ap iu•t
V -- )' C__ sii njO e P (4.2.1 Rn•

p- 1 n-i tl

00 00

B - ap iwt
v5 D cos ne e P (4.2.18b)

p-i nm Y mctmW pn

Comparing (4.2.18) with (4.2.17), we obtain for the coeffi-
cients C p arnd Dpn

c iq 4 (cos 071) -
" q4( sin 9,sin ne de , (42.19a)

p 0

Or

pnq 4 { c- cos 9 cos nedO
P (4. 2. 19.b) . .

o "n>1

S e q 4 (cos cos d (4.219c)
p 7" (ýT q4 o . 4+++

These coefficients are represented in terms of Bessel func-
tions of a complex argument in Appendix B.

3. Solution to the Wave Equation in the Elastic Cylinder

We have already discussed the manner in which it is possible
to apply the analysis derived for the response to an incident
dilatational wave to the corresponding analysis for the response
to an incident shear wave (see Section IV.1 and the comments pre-
ceding Eq. (3.2.8) in Section 111.2). Thus, if in the results
obtained in Section 111.2, we interchange sin ne and cos nO
and regard If as equal to -n, we may write the contribution,
associated with waves of dilatation in the cylinder, in response
to an incident shear wave, as follows:
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fzva dJ1- -q(qp)-Jq~
r" b L lf~l,pn[-q'ap n 1 ) J* lJP

nml rimi

.LWJ L.

SYn(qlp) - Y~(q P) ]}sin n8 e P(4.3.1a)

00

+ A sin8

p-I.

00 00

d "I n fiw pt
vd J (qlp) +ZpnY%(qlp)}cos nOee'

(4.3. ib)
Go

+ ZApioose

00 00

rr 2 z. 1. 11,n2 1 i qP
b p-1 n-i(CIP

q~p ni. (qp) J qlnn)
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.d q 2 , + 2in(n n(qlp)-r--" ) q1 ~zi,pr (qip) 2

o• op-I. n-l
2 1 , 2

+ 2i. Ip Jt(q.p)j + z2 p{? + 2ýn(n 1)2}flp (4.3. 1d)

I it 2

qlp ' ,~lP
JJ

00 0

"'-I

d. 2ý X --o Irz1qlp) (n -1) (qlo>

S-- '+ Z~(qtp)Yn (qlp) -(n-l)Y (q%)J.coe n e7 6

-:.where the supeorscipt d has been"usced to -designate the contxibu-
tion from the dilatational wave solution in the cylinder,

The contribution from the shear wave solutioja tin the cylinder
is obtained from Section. 111.2, in a .sitalar mannar, and is given .

.,as follows:

S' : (4.3 .a24)

+ Z 4,pn(q 2P).Yn,(q2p) lain n•e eIp P Bpl •sin 0.

p-1
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* b q q2 1Z3,pn ~q~p) n ( 2p)2)
p-I. n-0 L

+ z~plj Y1 (q P) - Y.j(qzP]os ng e cuPt(4.3.2b)

B P1 coo

00 M.

T z {Z,[(n 1)J (q p) -(q~p)Jt.q~p)i

+Z4 .~(n-.1)Yit(q p) i~PY+~qP]sn ng a 43

-- zrr

a _ ~ (2n(nq -1)
O b2p-i1 ni*O 2Z.p (qhq2 P) 2n

+ z,(q1(211(n1-1
2P)f +q) -4p 2)~qp (4.3.2e)

+ q~ Yn+~q2 P]J~cs (q

q 2P n. 2



4. Scattered Wave Solution in the Surrounding Medium

In this section, we write the stresses and displacements
associated with the scattered wave solutlon in the s. frounding
m,1tim and which contribLte to the response of the cylinder to
an incoming shear wave. In doing this we use the results of
Section 111.3, with sin no and cos no interchanged and
n n. Thus,

00 00

dm. z J'( qJ(q
Vr bLL 5,opnip n 3p 3jn+ 3Pj

p=1 n-1

iW t
-izspn[• Yn(q 3 p)- q3 Yr l 1 (q 3 p) Isin ng e (4.4.1a)

+ C sin s ,

pm n-1

00 00

"(op)? 3p) JP)

dm 2

-r b 5,pntY(qP]}o (qe P 1co. *p

p-1. n- ( 3'p)

(q 3 p) Jn+l(q 3p) r

SA{m - 2 . (n(n -1 ) }1p) (4n q5%pnif M ~ (q 39)2 3P

11ia) t

q 3P) Yn ,(q3p) sin nge P
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dm .... 3 T

re 2 5Zjpnl)Jn~q P)

- (n - n)J(q 3p)J -iZ 5 , pn(q 3 P)yn~l (q 3 P) (4.4. Id)

I In - pw

00 co

yr -- b 2 p
pal] ful~a

(4.4.2a')

ip-

- pfý(p -IJs(q 4 c P 4 ~ 1(~)

co

pm.'

iwt
- [' (pY~ (q~p J -j~snn~ (qeP(..b

7 'ZS, pý P i 4P 56



am Lm - - -1)
T - 2 L Z z6 i I J(q, p)

" I) p-J n-O k[ q4 P)

SJ-(q 1  (q4 P) - t {2n(n 2 1) l1}Y(qp) (4.4.2d)(q4P) nJ ' "Iz . (q-4 P) )LL

2 icu t

+ _2 _(q4-) +l(q4P) cos n e •

in -the preceding expressIons, the superscrip~ts dm and sin
(derote quantit•es -a~ssociated -rith waves ,of di2;atation and waves
*of disturtlon, respectively,. 2he .definitions .of and -are

those .appropriaire ito .a vtiscoelastLic -medium as given in Eq. ,(34 4A6).In the case of an :elast.ic medium, these zxeprneeie ns xeduce to

0.13 .4 A4 P3 9p4
the text iiadiatelly following Eqs. '(3.3. 1) and <(3.3.3), respec-
tively.

5.. Superposition of Solutions to Enforce the Boundary Conditions

The procedure in this sectioon parallels that followed in
Section I1.8. We combine the contributions presented in the pre-
-ceding sections so as to satisfy the :boundary nondirtions, namely,
that the inner boundary of the cylinder be traction free, and t-hat,
at the outer boundary, the cylinder ,displacements and appropriate
.stress components ate continuous with those of the surrounding
medium. Thus,

at p - t (inner boundary of the cylinder),

Trrd + •ra W 0 " (4.5.1a)
rr rr

T d + T a 0 , (4.5.1b)

r5 r;
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and at p 1 (outer boundary of the cylinder),

S.. .. - __ .. .. .- . , (4.5.lc) "

d s dm am B

+ r " - " - " - . , (4.5.1d)
r5 r5 r5 r5 r5

d as " dm am (.le
vr +vr r r 'r (4.5.1e)

d s dm sm B
v +v - v - v v , (4.5.1f)

where, .again- 1) the super sri pts !d and s are affixed to
,quantities :5stemeng from the dilLatati-onal -and shear solutions
to -the wwvB squation in the cylinder; :2)) t•he .s4perscripts Adin
And -am are .appended ,to :streases and displacements -resul-ting
from the ,d.latational .and shear sol.utions to the wave equation
in t-he medium; and 3) •the :super ird.,pt a identifies the tboundary
traction a.and tdisplacements as-sociated ,,ith the incident .wave.

After the terms entering into (4.5. .1) are ;computed from the
appropriate expressions, and the ,common trigonometric and exponen-
tial factors are divided out. the resulting nonhomogeneous sys-
tem of linear squatims in the umown .ctaeff•i•cients Dof super-
position, Z-pn a may be written in matrix form as

[cJ.J Cjn}.pn~.nfei~n ftjp,. _i-&.n1
,(4.5.2)

(p 1 , 2, 3, ... >, < '0, 1, 2, ..

where C, i-jpn stems from the coefficient of ,Pn in the ith

equation of Eq. (4.5.1); bi,pn stems from the term on the

right-hand side of the ith equation of Eq. (4.5.1); ( j~pn),

the solution vector, is a 6 x 1 column matrix, whose complex
elements are the unknown coefficients of superposition. It
sh('1id be noted again that there is a different matrix equation
(4.5.2) for each pair of values of p and n.
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The elements of C ijpn and 0 i,pn are shown in detail in

Appendices A and B.

Afte;: OVIviLL6 fUr J,pn j or a sutticient n'_mber of values

of p and n to ensure adequate convergence, we may calculate,
to the desired accuracy, the stresses and displacements in the
cylinder as

T d, -+ r , . -'.. + I.. , (4.5.3a)rr rr rr r_ I• r e e e

d sd s
v - V + v , v. - V + v , (4.5.3b)r r r a ;

where the terms appearing on the right-hand side of the above
expressions are given in Eqs. (4.3.1) and (4.3.2).
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SECTION V

SPECIAL FEATURES OF THE PRESENT ANALYSIS

1. Tnitial Cnndritonna

We recall that the solution constructed in the preceding sec-
tions is the response of an elastic cylinder to a periodic train
of pulses. However, by measuring time from the moment of pulse
arrival, we may obtain the response to a single pulse acting on
a cylinder initially unstrained and at rest, provided that we
adjust the time between pulses so that, to a sfficient degree
of accuracy, we achieve conditions of vanishing stresses and dis-
placements in the cylinder and its vicinity - prior to the
arrival of each pulse. Indeed, the success of the present tech-
nique depends chiefly on the possibility of obtaining stresses
and displacements, before the pulse arrives, which are negligibly
small compared to significant stress and displacement levels at
later times. Essentially, this end is attained by providing suf-
ficient "rest time," that is, making the time interval between
pulses long enough to permit the cylinder wall to radiate suffi-
cient energy out into the medium and return to an undeformed
state of rest. Because the half period, T, is ar'Ltrary, the
parameters that control the rest time are to some extent arbi-
trary, enabling us to make an optimum choice of the rest time.
Some discussion of this procedure is in order here. The rest
time parameter, to, can be nondimensionalized as (t 0 cdm/b),*

that is, as the ratio of the rest time to the time required by "
the incident wave to perform a transit of the cylinder. By
referring to Fig. 2, it can be seen that the rest time paraneter
can be expressed in terms of two additional nondimensional parame-
ters that appear in the analysis, (cdT/2b) and (cdmA/2b), as

cmtO cdT c A
a - ia-(51)!b 2b 2b (

The pulse duration parameter, (cd.A/2b), while not shown ex-

plicitly in the develorment preceding Eq. (5.1.1), enters into
the Fourier coefficient ap that determines the wave form. As

Eq. (5.i.l) indicates, when the pulse duration is prescribed, the
rest time parameter, and hence the rest time between pulses, may
be varied by varying the parameter (cdmT/2b). This stems from

the fact that the half time, T, enters the analysis as an arbi-
trary parameter. Thus, ir any computations, the stresses and
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displacements are obtained accurately only when by means of trial
,'rnl~t~l * the vlsiueva --, ,F 1.- P/U eA U----. &~-Uc rc

has been so selected as to reduce the initial stresses and dis-
placeruents of the respottse to a au£1ii.ulaLly low level. For-
tunately, it has been found in the many cases presented that
satisfactory results may be obtained if (cdmT/ 2 b) is kept in
the reasonably narrow range 10 < (cdmT/2b) < 100. The cases

considered covered a wide range of cylinder-medium impedance
mismatch and cylinder thicknesses, as well as a variety of pulse
shapes.

Improved accuracy may be obtained by treating separately the
response for small and for large values of the nondimensional
time variable, (cdm/2b), where t - (t - to) and measures

time with respect to the arrival of the incident wave. From
Eq. (5.1.1), it can be anticipated that a decrease in the parame-
ter (cdma/2b) would lead to further improvement in the initial
conditions. Thus, for times less than the pulse duration, it may
be advantageous to assign a value to (cdm/2b) that is less than
the specified pulse duration. The corresponding computations are
valid for times less than this altered pulse duration (for later
times the actual pulse duration parameter must be used). This
techniquc is particularly suitable for the case of a rectangular
pulse, since in that case no change in the value of ap is re-.
quired. The foregoing considerations provide the basis for the
device by which an incoming step pulse may be treated, namely,
by making the pulse duration long enough so that the response
reaches a steady state while cdmE/2b remains less than (cdeA/ 2 b).

One further consideration is necessary to satisfactorily treat
the initial conditions requirement. Since we have not fixed the
cylinder with respect to any frame of reference, it will trans-
late in response to each of the periodic pulses. In order that
the solution be applicable to the case of a single transient
pulse, we must remove from the displacements the rigid body con-
tribution resulting from the preceding pulse. That is, we re-
quire that before the pulse arrives,

ur cos e - ue sin e 0 . (5.1.2)
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Referring to Fig. 2 we note that we may apply this condition at

any tims t where -t 0 < t *< to, provided that the interval

the requirement,. (5.1.2), is enforced is now described. '
Using the dilatational and distortional potentials given by

(3.2.7) and (3.2.14), we may write the displacements in the
cylinder by using (3.2.4) and (3.2.11). The resulting expres-
sions may be put in the form

U r u 11 cos n9 e + 3 (A-P1 + WBlQcos e *(5.1.3a)
p-1 n-0 p-l

iW t
Ue- 3 n u sin nec p P * CAP, +Bip)sin e ,(5 1.3b)
p-i n-l Pal

where the Ui and .Pn are functions of the radial coordinate'
r. Enforcing (5.1.'2) with the displacements (5.1.3) evaluated

at t -t requires that

iW * p1 iLt
3 A ( 1+B 1p). p- 3 ue p ~ up ai e (5.1.4)

pini pint Pal

as well as

po pn co nO p 3 3 n sin ne e O .(5.1.5)
PM. n2I p-i n-2

For convenience, the quantities tir and .1 aperne aparn
in Eq. (5.1.4). are evaluated at r - a. Thus, after substituting
(5.1.4) into (5.1.3), we may calculate the displacements in the
cylinder as
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Ur 1 u~r ujr - -Lz (t-t* )
-~ Ro ~ r ~(a) e jCos 0pal t

(5. J1.6a)
iW t

uPn(r)cos ne} t p

n-2

Ie fl 3 {0u(r) u- (a) e ptt) i

pal

(5.1.6b)
0o

+ k u,(r)sin nn, eP

n=2

For the case of an incident.shear wave we may cast the dis-
"placement expressions, in a form similar to those given by-
(5.1.3), as

vr 3 vp sin n- e + . C (AP - ) isn (5.1.7a)
pal n-i pal

Co(5.1.7b)

+ Ecpl,
p-ipapn

where vpn and vn are functions of the radial coordinate r.

r 9

The term I Epl has been included in the expression for vj to

account for the possibility of a rigid body rotation.
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In this case, since the particle motion is perpendicular to
the direction of wave propagation, the consequence of not fixnie
the cylinder with respect to any frame of reference, is a trans:
lation of the cylinder in response to each of the periodic
pulses - in a direction normal to that of the progression of
the wave. In addition, a rotation of the cylinder may occur.
To remove the translation and rotation, we require that the
following two conditions be satisfied separately:

vsr sin + vT cos - 0, (5.1.8a)

vg M 0 . (5.1.8b)

Again, referring to Fig. 2, we see that we may apply these con-
ditionslat any time t where -to < t < to, provided that
the interval (-to Pt represents a sufficient rest time.

Thus, enforcing (5.1.8), with the displacements evaluated at

t -t and r -. a, leads to

z {[ v~l r - Pl (a) e'wsi'n*)

(5.l.9a)
00 +W t
+ ~(r)sain nej.n e
n-2

-icu (t4*
vg I{ r) vp°r 0 (a) e p

p-ic

+ [V_'(r) - vPl(a) e Cos(5..b)e

+ vP-n(r)cos nG} e P
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2. Convergence Criteria

Criteria to oontrol the degree of convergence of the various

summations invaiveo in caLcuLating the stress and displacement
quantities were introduced into the computer program used in the
prescnt study. The•s criteria are now described.

The stresses and displacements may be represented in the form

j iJ r,

p-i n-0

O Mo

Uj i up(ps e. t) # i- r,e

p-1 n-0

Integers Na' N M H, relatin to the degree of accuracy.

desired, wore selected and the sunuations were carried out so'
that:

1) For each integer p, and for N consecutive terms
in the n summation,

"pk pk
"I, lj(ppt)I -"a lui (p,e,t) -" -N a

k-I <1 o k-i opn - pn

n n

The value N of the integer n. at which the condition required
by step 1) is met, of course varied, with the integer p, the
point (p, e, t), and the subscript iJ, or i.
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2) Using the appropriate value of the summation over n
up to n a N, the summation over p was carried
out so that for K* consecutive terms.

N N

I Z Pn (P.e.t) I U(pnet)I
n I <1j0 n- I •,a

p-I N < ' p-1 N "< 1

kn X~(3~) I uka(p'e,t),
k-l n-I k-I n-l

Control of the computations was maintained to evaluate the
influence of the sumations over n, on the nurrent summation
over p, so that the n-suun"ation (number of circumferential
modes) could be either terminated or increased if ,required.
Codes present in the computer output indicated whether the con-
vergence criterit were. met. All the results presented were
obtained with' at least graph plotting accuracy. In the neighbor-'
"hood of maximim values, accuracy to four figures was obtained
in most cases.
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SECTION VI

DISCUSSION (F NUEICAL. RESULT

1. General Considerations

An IBM digital computer was employed to obtain the solution
of the system of matrix equations (3.8.2) and (4.5.2) and to
carry out the associated ,tress and displacement computations
defined by Eqs. (3.8.3) and (4.5.3). The computer program is
described in Volume II of the present report (Ref. 16). In the
discussion that follows, even though results are presented for
specific dimensional values of geometric and physical parameters,
these results are applicable for the wider class of cases covered
by the nondimensional values of these parameters, namely, the

ratos P 4 and 2. This applies for the cas, of a
viscoelastic medium as well as for an elastic medium.

It should be pointed out that the results presented through-
"out this report are given in nondimensional form. For example,,
in Fig. 5 we have given the hoop stress and displacement tine

and respe-
histories in terms of the quantities O and I b p

tively. The sign of the actual stress, or displacement, is thus
determined by the sign of a., the stress associated with the
incident wave. In the case of the response to an incident shear
wave, it is the sign of T. that determines the sign of the
actual stress or displacement.

2. Computations Performed to Illustrate the Validity of the
Preaent Method

In this section, we illustrate the capability of the present
technique to satisfy the requirements of an initial undeformed
state of rest in the cylinder. For this purpose, the stress and
displacement response to a rectangular pulse lasting five transits
of the cylinder has been computed. The Fourier coefficients a p
which define the incident wave form, are
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I
0 p even

"a a I ncRA c } (Irf.1)

p~r 2 Z t b' Zbj

where ap is the Lanczos factor (Ref. 17) that can be included

as a factor in the Fourier coefficients to improve convergence
of the series representing the incident wave in the neighborhood
of discontinuities. When ap is set equal to unity, Eq. (6.1.1)

leads to the usual Fourier series represemitation.

The results of the computations, and pertinent parameters
employed, are shown in Fig. 5. After the pulse has passed, and
as the disturbed cylinder radiates energy outward into the medium,
the maximum hoop stress, aee at 9 - 90%, Is seen to vanish.

1This shows that, although steady-state solutions are employed by
the present technique, an unstrained state of rest can be attained
"in the cylinder and adjacent medium before the arrival of the next
pulse. Note, for exampl.,,, the circled points in 7ig. Ua. Iihese
represmt the computed values of iae in the intervals

-1 < (c,•t/2b) < o and 11.5 < (cE/2b).- Referring to Fig. 5b,

we note that during early transit times the character of th..edis-
placement response is nonlinear and suggests considerable rapid
deformation of the cylinder. Later, the displacement tine his-
tories of the representative points selected become linear and
parallel - suggesting motion essentially of rigid body charac-
ter - and in response to an infinite step pulse would continue
to exhibit this behavior. After the rectangular pulse has passed,
the cylinder regains its orLginal shape, but remains displaced in
the amount of the rigid body motion. It was precisely this rigid
body displacement that was removed from the periodic so1':tion in
Section V.1, entitled "Initial Conditions.*' Thus, Figs. 5a and
5b illustrate the feasibility of the present technique.

3. Comparisons with Published Data for the Response to an
Incident Dilatational Step Pulse

Comparisons of results obtained for limiting cases of the
present problem with corresponding published data are exhibited
in Figs. 6 through 9. In all comparison cases, the incident
wave is a step pulse. As stated earlier, an incident rectangular

68

------ --



pulse, of duration sufficient for the response to reach static
conditions, can be substituted for an incident step pulse. There-
fore, the Fourier coefficient a has the form given in (6.1.1).p

Figures 6 and 7 are concerned with the response of an infinite
cylindrical cavity in an elastic medium. In Fig. 6, the cavity I
displacements obtained by the present technique at 9 - 0', 900,
and 180, are compared with those given in Ref. 3. Agreement is
excellent except for early times.

The maximum cavity stress response to a step pulse is the
hoop stress at e - 900. In Fig. 7a, values of this :stress cal-
culated by the present analysis are compared with those obtained
in Refs. 2, 4, and 5. For times greater thart the first half
transit, essential agreement prevails between the prenent method
and Refs. 4 and 5. The stresses predicted in Ref. 2 are somewhat
lower than those given by the other analyses up to the time when
maxinmum values are reached. Mhen all results app=oach the static
value given by -the lxreh formulas (let. 8). 'Ihe results of
Refs. 4 and3 5, shown on Fig. 7a, are for various =r ncations of
the repiresentation of -the deformation in c ruinfe~rV~tIAl nodei.
As pointed out previously, the •present anallysLs differs from
those of the other zeferenoes in: that it doýs not cosstrain
"a priori the number of circumferential Modes taken to represent
"the solution. insteadj, it permits this choice to be governed,
at each space and time point, by the condition that the solution
converge to a specified degree of accuracy. For times less than
the first -half transit, there are significant differences between
the results obtained in this faskion and those of the other referen-
ces. By contrast, results from the present analysis for a three-
mode truncation (and which,, therefore, represent less accurate
predictions of the response) are identical with the corresponding
values obtained for the same truncation in Ref. 4 over the entire
range. Thus, it may be inferred from Fig. 7a that, for the case
of an incident step pulse, .a three-mode representation gaves
reasonably satisfactory values during times in the nr I hborhood
of the -mxinsm response, but constitutes a hilghly inaccurate
approximation to the deformation during early -transit time. This
is shown even more forcibly in Fig. 7b. Nevertheless, the close
agreement that, for a three-mode truncation, exists between the
results of the present analysis and those of Ref. 4, indicates
that the time dependence is treated properly by the present tech-
nique.
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In Fig. 7b the hoop stress computed by the present method
at 9 - 0, fer the case of a step pulse impinging on a cylin-
drical cavity, is compared with corresoondin_ data ai-vn in
Refs. 2, 4, and 5. Again, these references present results
obtained by various truncations of the reprdsentation in cir-
cumferentiai modes, and again, some degree of agreement prevails
among these computations during later transit times. However,
wide disagreement exists for earlier times, particularly during
the first transit, when even the sign of the stress response is
in contention.

As in the comparison at e - 90%, the results obtained at
e - 0' by the present method, for a three-mc"e truncation, agree
very closely with those of Ref. 4 over the entire range. .Over
most of the range considered, and especially for the early transit
times, these results are at variance with those obtained when
-the number of modes is adjusted to •comply with 'the rxequrements
of convergence -at -each space point -ad time Ybag.g ,considered.
.hiis shows that the discrepapncy stems from the ecr uerential
node repreantatfLon and not fr=om the treatment of the tic* de-
pendence. It ins .unlIely that a deformation, and hence a stress
-asponse, which, ,during the early stages of transit of the izci-
SMt ,waVe, inVoLVes only part 'of the cavit" <JUieIy, its front),

could be properly represented ,by three modes.. In view 'of this,
and since -the iniLtil value predicted by Che ,present •ethod for
the hoop stress at e - ,0 is zero (pointed ouft Rn ef. 4 to -be
-the correct value), •t is felt that the -early response is more
rea'listically ,escribed by the present teahnLque, •v•n as cb-
pared to Ref. 5, in which six modes were emptluyed. After one
-quarter transit, the -close agreement with Ref. 5 is to be noted.

In Fig. -8 the results of the present method, which stem from
the theory oD elasticity, are compared with ,-he ,corresponding
,data given by Ref. 7 fcr the hoop struss response in a thin cylin-
drical shell of various thicknesses ,(h/R - .0048, .(019, .0381)
at e - '900, to an incoming step pulse. Two media -with signifi-
cantly ,different shear moduli -are considered. The results of
Ref. 7 stem from an analysis of the cylinder by a thin shell
theory in which the cylinder acts as a membrane. For each shell
curve, two sets of points obtained by tnih present technique have
been plotted, one for the hoop stress at the middle surface, and
a second at the inner surface representig -the additional effect
of bending. As can he seen, the difference between the middle
surface and inner boundary stresses appears to be negligible for
the thinnest of the three shells. For the thickest, the differ-
ence reaches a value of about 10 per cent. Moreover, some
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differences exist between the response as determined by the present
analysis and that of Ref. 7. Of course, it is only to be expected
that elasticity theory and thin shell theorieq will yield differing
results. However. it Is observed in FiR. 8 that. as the shell be-
comes thinner, the shell theory predictions do not come into closer
agreement with those of elasticity theory. Therefore, on the basis
of the avaiiabie information, it is not possible to determine at

what value of the thickness to radius ratio the thin shell theory
ceases to be valid. In an effort to determine the source of the
divergence of the results, as the shells become thinner, between
the shell theory predictions and those of the theory of elasticity,
we note that in Ref. 7 the deformation of the shell is constrained
to three modes. In addition to the total response, Fig. 9 shows
the time history of the contribution of each mode as given in
Ref. 7 for the case of the shell with thickness to radius ratio
of .019. Points computed by the present method, but with Lhe
same truncation as in Ref. 7, for the total response and its com-
ponent modes are also shown in Fig. 9, along with the total re-
sponse (present analysis) that satisfies the convergence require-
ments. The agreement that, except for early transit times, pre-
vails between the two responses demonstrates that the discrepancy
between the present results and the case of Ref. 7 is not due to
an insufficient number of circumferential modes in the analysis
of Ref. 7. Figure 9 shows that the major discrepancy resides in,
the third mode (the n - 2, or inextensional, mode). It is
further noted that the results for the cavity case and all the
oi:her shell cases considered in this report (including some of
those of Ref. 7 shown in Fig. 8b) indicate that the number of
transit times required to approach the static condition does not
seem to be significantly'dependent on the material as well as
geometric properties of the shell and the surrounding medium.
This value seems to remain at about six to eight transit times.
By contrast, the response reproduced from Ref. 7 in Fig. 9 de-
parts from this general behavior as the shells become thinner.

4 Results Obtained by the Present Analysis for the Response
to an Incident Dilatational Wave (Elastic Medium)

Figure 10 illustrates the influence of liner thickness on the
response to an incoming dilatational step pulse. The maximum
stress response, the hoop stress at 6 - 900, is shown. When the
incident wave passes from the medium into a relatively stiffer
cylinder (slow granite into concrete), the effect of increasing
liner thickness is to reduce the peak liner stress. When passage
of the incident wave is into a relatively softer cylinder (fast
granite into concrete), increasing the liner thickness increases
the peak stress. The appearance of a more oscillatory response,
with increasing thickness, should be noted for the softer liner.
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The influence of liner thickness on Lta.. displa;WmUWL response,
when the liner material is stiffer than that of the medium, is
illustrated in Figs ila and lib (where, for ease of comparison,
the curves of Fig. 5b are presented again in Fig. lib). An in-
coming diiatatlonaL rectangular wave, five transit times in dura-
tion, is the input for both of these cases. The liners in Figs. lla
and... .... a 1.1bkre=D Lu radius ratio, h/k, equal to .01 and
.2, re.pectively. As expected, the thicker, and hence stiffer,
shell experiences nadc% less deformation of the cross section
(measured by the vertical disrance between the two ur curves).
Also, as can be determined from Figs. lla and llb by the onsdt of
pure rigid body motic~n (parallel portions of the curves), the full
deforms tion is realizad earlier in the thicker shell. it may be
noticed that, as the back of the wave passes over the cylinder, the
front of the cylinder (e - 0*) experiences the sharper variation
in displacement. This effect is acLentudted by an increase in the
liner thickness. After passage of the wave, the thicker shell
regains its original shape first. As expected, the total transla-
tion of the shell is independent of the thickness. Additional
results, Fig. 11c, suggest that when the liner materie1. is suffi-
ciently softer than that of the medium, a change in llner thLckness
does not appreciably influence the over-all deformation.

Figure 12 contains results obtained by the present analysis
* thiat apply to a dilatationa]. step pulse traveling through aii

infinite elastic medium, and impinging upon an elastic cylinder,
"for four separate sets of cylinder and medium elastic properties.
These were selected so as to study the influence of impedance mis-
match. Curves G-O and G-S apply to an elastic environment-
having the properties of granite and lined by concrete and ste2el
cylinders, respectively. In case G-C, the incident wave trans-_
mita energy from a relatively "stiffer" to a softer elastic en-
vironment (value of Young's Modulus). In case G-S, the dis-
turbance is transmitted from a relatively softer to a stiffer
elastic environment, with attendant magnification of peak stress
in the cylinder. Curves Sa-C and Sa-S apply to an elastic
environment having the properties of sandstone and lined also by
concrete and steel cylinders, respectively. Again, the magnifi-
cation of the peak stress is greater as the disturbance passes
from a relatively softer to a stiffer medium. In this case, the
difference in m.ignification of peak response is even more striking
but not surprising, since sandstone is much softer than granite
and has practically the same properties as concrete. The depe'i-
dance of the magnification of the incident stress amplitude upon
irnpeaance mismatch has been demonstrated previously in Ref. 7
for thin shells. In this connection, the impedance ratio parame-
ter, (ymcdm/Ycd), has been indicated, for the case corresrLd-
ing to each curve, on Fig. 12. It will be observed that decreas-
ing values of this parameter are associated with increasing values
of peak response. 72



The effect of th• stress wave form upon the maximum stress
for a liner embedded in an elastic medium is illustrated in
Fig. 13. The results for three cases of incoming dilatational
plane waves are presented. The wave forms (Atp via: 29h __e:

1) a step pulse; 2) a triangular wave; and 3) a linear rise-exponential decay wave form, having the same rise time as the 'I
Lriangular wave. The expressions for ap, which describe wave

forms 2) and 3), are given in Appendix B. All three waves
tave the peak value a0. As can be seen, the step pulse produces
the most critical response, eventually reaching a static va-lue
of 2.37. The response in cases 2) and 3) are identical during
the rise time. The value of the hoop stress in these cases con-
tinues to increase during the passage of the peak of the incident
wave across the liner, and decreases after the peak has passed
the back of the liner. The response to the triangular wave does
not reach nearly as high a peak vaJue and ef-raases more rapidly.
This effect scz= from the rate of docay parameter that ueftnes
the exponential decay and for this case gives a higher valne of
incident stress to that wave form than that of the triangular
wave at corresponding transit, times. All responses should give
a value of d., equal to zero at less than 1/2 transit. The

slight discrepancy from this, shown.by the response to -the step
pulse in Fig. 13, reflects the fact that it is more difficult to
represent a step function by a Fourier series than a linear rise.

5. Results Obtained by the Present Analysis for the Cylinder
Response to an Incident Dilatational Plane Weve in. a
Viscoelastic Medium

Results of a computational effort concerned with the response
of an elastic cylinder, embedded in a viscoelastic medium, to an
incident dilatational plane wave, are presented in Fits. 14
through 19. The values of parameters defining tb- are
identical with those of the concrete cylinder e ." .&
elastic medium discussed in the preceding subsf nnec-
tion with Fig. 12. The viscoolastic propertie: ium are
described by the standard linear solid discusse, ..oa 111.5
(see Fig. 4). The values of the instantaneous el .. arameters
and the mass of the medium were held constant. 7 properties
are identical with those of sandstone considered *•iously as
an elastic medium in the cases treated in Figs. and 13. They
are given by the values of Em. VmR and ym shown in the figures
along with the corresponding values for the elastic liner. Also
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kept constant was the value of the viscoelastic parameter, n/f2s

which was set equal to unity. The three remaining nondimensional
ratios that describe the viscoelastic oroDartipa nf -ho -..a ".
permitted to range through a set of values. The parameters .r /1

and T2/a,: aet equal to each other in each case, took on the

magnitudes .25 and .1. The relaxation-time parnmeter, cdm/P2b,

was assigned the spectrum of values 0: .1, 1, 10, and •. Note
that the lower end of this spectrum, cdm/n 2b - 0, corresponds

to the limiting case of an elastic-relaxed material, while the
upper e nd. dm/n2b -* applies to anOther limiting case, that

of an elastic-unrelaxed material.

It is well known that the model used in the present analysis
describes only the general features of the actual viscoelastic
behavior of soils under dynamic loading., Accordingly, the values
assigned to the viscoelastic parameters should not be construed

- as being fully representative of specific materials.. However,
these values are significant in that they fall within practical
ranges and lead to a spectrum of results from which meaningful
qualitative conclusions can be drawn..

The influence on the response of the cylinder of variation
in the viscoelastic parameters of the medium, when the time history
of the incident stress wave at the front of the cylinder is a step
function, is illustrated in Figs. 14 and 15. The maximum stress
response, a at the inner surface and 9 - 900, is plotted in
Fig. 14. . In9these figures, the upper and lower curves correspond
to elastic media whose properties are described by the unrelaxed
(cdm/n 2b - co) and relaxed (cdm/I 2b - 0) elastic modulit,

respectively.

In general, the effect of viscoelasticity in the surrounding
medium is to increase, in some cases drastically, the stress
response in the liner over that associated with the elastic-
unrelaxed medium. This increase is characterized by two major
trends. One trend is associated with a decrease in the relaxation
time (indicated by a decrease in the value of cdm/I 2 b), the

other with a decrease in the ratios and r2/n2. At early

times, before the maximum response associated with an elastic-
unrelaxed medium is reached, the increase in stress corresponding
to a decrease in the relaxation time is relatively slight for
larger values (of order 100) of the parameter edm/n2b, but
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becomes far more significant as the magnitude of the relaxation
time decreases to the order of one transit time of the elastic-
unrelaxed wave frOL• (edm/'2b - 10, 1). This can be seen,

for example, in Fig. 14a, which corresponds to the case
SIn/1 - 2/n2 - .25. Up to the time when the peak stress is

reached (cdjt/2b < 2.5), the stress response in the case cdm/ i2b 100

is identical with that corresponding to a purely elastic (unre-
laxed) medium. During the same time interval, the stress for
Cdm/n2b - 10 grows to a value about 20 per cent larger than the

peak stress in the case of the purely elastic medium while, for
cdm/n 2 b - 1.0, it reaches a value 100 per cent larger. As

c d/D 2 b -. 0, the stress approaches the value associated with the

purely elastic-relaxed medium,, which is more than double that of
the peak stress in the liner embedded in the purely elastic-
unrelaxed medium. It should be noted that the peak stress in
the case of the elastic-relaxed medium is almost three times
that in the case of f:he elastic-unrelaxed Medium. This pattern
of increased stress response for decreased relaxation time, ob-
served at c •E/2b -2.5, is magnified with time as the material

dm
in the viscoelastic environment continues to relax and the liner
must resist larger deformations in the medium. Ultimately, the
stress can be expected, in all the cases where the medium has a
finite relaxation time, to reach the steady-state conditions
associated with an elastic-relaxed medium. This process, clearly
indicated in Fig.14, is shown to be extremely slow for large
values of cdm/' 2 b, 100 < cdm/n 2 b < W. However, the approach

to the steady-state condition occurs far more rapidly as the
value of Cdm/n 2 b decreases below 10. When this condition is

reached, the stress has about 2-1/2 times the value of the peak
stress associated with the elastic-unrelaxed medium. Setting
T1/ In- T2/In 2 - 1 in the creep laws developed in Section 111.5

is another way to reduce these laws to the stress-strain rela-
tions pertaining to the medium whose properties are purely elas-
tic (unrelaxed). Thus, when T1/1Tn1 and ¶2/fl2 approach unity,
the viscoelastic curves for the entire spectrum of relaxation
times must merge into a common curve - the curve associated with
the elastic-unrelaxed medium. Taking that curve as a basis for
comparison, the sizable spread of the viscoelastic curved in
Fig. 14a gives a clear indication of the magnitude of the magni-
fication experienced by the major stress in the liner due to a
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decrease in the value of Ti/n1 and T 2 I/C2 . Figure 14b, in which

T1/D 1 T 2/22 - .1, gives further evidence of this trend. It can

be noticed in this figure that the peak stress in the case of the
eiastic-rulaAud mIdlutu in nuw ivts iUtmea greacer rhan che peak
stress in the case of an elastic-unrelaxed medium, as compared
to three times greater when r/- 1 T2/.0.2 - .25 (Fig. 14a).
Figures 14a and 14b both show that the curves corresponding to
the two elastic media diverge quickly from each other. Since
the curves corresponding to finite relaxation times range in
between these two curves, it may be concluded that, if the ratios
of T and T2/f 2 are appreciably less than unity, the repre-

sentation of a viscoelastic medium purely by its elastic-unrelaxed
or its elastic-relaxed properties may lead to results that are
either unconservative or too conservative.

In the present discussion, valid conclusions can also be
drawn for step pulses of finite duration. Depending on the pulse
duration and the degree of viscoelasticity in the medium, stresses
may be induced in the buried cylinder that are drastically larger
than the peak stress predicted by Considering the medium to be
purely elastic (unrelaxed). The longer the duration of the pulse
or the smaller the relaxation time, the higher the stress will
be, with the elastic-relaxed condition constituting an upper
bound. Conversely, short pulses in a medium with a sufficiently
long relaxation time may not induce a response appreciably differ-
ent from the response associated with the purely-unrelaxed medium.
As a final note concerning Fig. 14 it should be mentioned that
"the discrepancies between the curves at the time of arrival of
the pulse can be attributed to difficulties sometimes encountered
in approximating, by means of Fourier series, the discontinuity
of the incident step pulse for the values of the parameter b/cdmT
necessary to obtain a sufficient rest time (see Section V).

Figure 15 is concerned with the deformation of the inner
surface of the cylinder (described by ux at 0, 90, and 180*)
due to the incident step pulse. As expected, the trends shown by
the curves in this figure parallel those for the stress response.
It is seen that the principal effect of viscoelasticity of the
medium is to increase the deformations over those predicted for
a purely elastic (unrelaxed) medium, without changing their
character appreciably. The deformation increases with decreasing
relaxation times or decreasing ratios of elastic-relaxed to
elastic-unrelaxed properties (Ti1/i, T2/n2). The full liner

deformation, indicated by the onset of rigid body motion, is
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reached later when the medium is viscoelastic than when the medium
is purely elastic (relaxed or unrelaxed). The rigid body motion
itself increases when the relaxation Hum nr the .,-, , 4 -.=J
to unrelaxed elastic properties are reduced.

The influence of viscoelasticity of the surrounding medium
onthe response of the cylinder to an incident stress wave with
a triangular time history at the front of the cylinder (see Fig. 13)
is shown in Figs. 16 and 17. During the period of increasing
stress responses the family of curves in Fig. 16 shows a magnifi-
cation of the stress with decreasing relaxation time that is very
similar to that observed in the case of the incident step pulse.
The peak stress associated with the elastic-relaxed medium is
nearly 2-1/2 times the peak stress associated with the elastic-
unrelaxed medium. Again, the peak stresses corresponding to
finite relaxation times in the medium are bracketed between these
two stresses. Consequently, results obtained by treating a visco-
elastic medium simply as an elastic-unrelaxed or elastic-relaxed
medium may, for this incident wave form, again be either unconserva-
tiveo or too conservative.

it is interesting to note the combined effect that the rise
time of the incident wave (1/2 transit) and the Value of the re-
laxation time in the medium seem to have in the response of the
cylinder. It is seen in Fig. 16 that early in the response,.
during a time interval comparable to the rise time of the inci-
dent wave, and for a medium with relaxation time at least as long
as the rise time, the stress is identical with that associated,
with the elastic-unrelaxed medium. It should also 'be noted that,
after the passage of the wave over the cylinder (cdmT/2b > 4),

the liner stress decays more slowly in cases involving surrounding
viscoelastic media than in cases involving elastic media. An
explanation for the behavior of the stress response in the case
of a viscoelastic medium is that it must involve primarily the
slow process of creep strain recovery in the medium.

The deformation of the liner inner surface due to the inci-
dent triangular pulse is shown in Fig. 17, and is again described
by Zx at 0, 90%, and 180*. For the sake of simplicity we

have presented only the curves corresponding to the elastic-
relaxed and unrelaxed media and to the viscoelastic medium for
which cdm/n 2b - 10. The deformation for the case Cdm/n 2b - 1.0,
is given in a subsequent figu2. (Fig. 19c). It is seen in Fig. 17
that, as in the case of an incident step pulse, the effect of
viscoelasticity in the medium is to magnify the deformations
without changing their essential character. The lower the relaxa-
tion time the larger the deformation, with the elastic-relaxed
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curves constituting an upper bound. In the viscoelastic case,
after the wave has passed, it is interesting to note how very
long it takes for the cylinder to regain its original undeformed
snape. x8is is inaicarea oy the siow converging o1 the curves
after the maximum deformation has been reached.

We now discuss another point of interest. Referring ahead
to Fig. 19c, and in conjunction with Fig. 17, we note the attenu-
ation of the maximum acceleration with decreasing values of the
relaxation time down to at least cdm/a 2b a 1.0, which the inner

surface at e - 0° experiences just after the passage of the
pulse (cdmE/2b Z 5). However, the sharpness of the peaking of

the displacement response at e = 00 for the case of the elastic-
relaxed medium indicates that, at some value of the relaxation
time in the range 0 < cdm/a2b < 1.0, the maximum acceleration
would start to increase again and, for lower values of the re-
laxation time down to cdm/n2b - 0, would exceed that corre-

sponding to the elastic-unrelaxed medium.

The influence of incident wave history on the response of
a liner embedded in a viscoelastic medium is illustrated in

'Figs. 18 and 19. Figure 18, which is concerned with the maximum
stress response, combines the results plotted in Fig. 14a for
the case of an incident step pulsewith those plotted in Fig. 16
for the case of a pulse of triangular form. It also includes
results for the pulse with the linear rise-exponential decay
history described in Fig. 13 and Sedtion VI.4. For the sake of
comparison, the curves presented in Fig. 13 are reproduced in
Fig. 18a for the case where the medium is purely elastic (un-
relaxed). The only other figure in this set containing results
for a linear rise-exponential decay pulse is Fig. 18c, for the
case cdm/n 2 b - 1.0.

It is seen from these figures that the effect of the visco-
elasticity in the medium is to accentuate the differences between
the stress responses to the three pulses. These differences
increase with decreasing relaxation time. it can also be seen
from the curves in Figs. 18a through 18d that the difficulties
encountered in computing the onset of the stress response to a
step pulse were not encountered in the case of the other two
pulses.

A comparison of the deformations of the inner boundary of
the cylinder due to the three incident stress waves is made in
Fig. 19. This figure combines the curves presented in Figs. 15
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and 17. It also presents the results obtained for the linear
rise-exponential decay incident pulse in the case of the elastic-
unrelaxed medium and the medium for which e. /fh- I Uam- A
all the degrees of viscoelasticity considered, the step pulse
inducei- the largest cylinder defc.mation (a= -. W.urcd by coum-
paring the vertical distances between the 'U" curves) and the

most rapid translation (indicated by P1 at 90*). The triangu-
lar pulse induces the smallest deformations. Of the two pulses
of finite duration (triangular and linear rise-exponential decay),
the triangular pulse causes tle smaller final rigid body displace-
ment of the cylinder and that displacement is attained earlier.
Conversely, the peak acceleration during the decay of these two
pulses shown to occur at e - 00 by the sharper peaking of the
corresponding ur curve, is the greatest in the case of the
triangular pulse. Figure 19 demonstrates that the viscoelasticity
of the medium has the effect of magnifying the differences in the
response to the various pulses. This magnification is accentua-,
ted by reduction of the-relaxation time.

.6. Comparisons with Published Data of the Results Obtained
by the Present Analysis for the Response to an Incident
Shear Wave

"In Fig. 20, the hoop stress response to an incident shear
wave at . - 450 and 135* is compared with the results pre-
sented in Refs. 4 and 19. The-remarks made' in the discussion of
Fig. 7 apply here as well. At times corresponding to the maximum
stresses, the various results do not differ too widely, and all
approach the static value given by the Kirsch formulas. However,
for early times, when the incoming shear wave is still in transit
across the cavity, three circumferential modes do not accurately
describe the deformation. This again can be seen by comparing
with the other references the results obtained by the present
analysis, where we used that number of modes sufficient to ob-
tain convergence of the solution and also a three-mode truncation.
When the present computations were restricted to three modes, it
can be seen that the results duplicated those of Ref. 4. However,
the more accurate solution differs from that of Ref. 4 in that
the maximum is reached at 7 - 1350 at an earlier time than at

4- 5%"
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7. Results Obtained by the Present Method for the Response
to an Incident Shear Wave (Elastic Medium)

Tiae cases presentea In Figs. 7. and 22 were selected so as
to study the influence of liner thickness on the response to an *
inciden: shea-r w•v-v. The .inar a--d medium param•ters are the
same as those selected to obtain the results shown in Fig. 10 for
the case of an incident dilatational wave. The -jajor stresses
are the circumferential stresses, T_ at 6 - 450 and 135'.

- ee
As was noticed in the cavity cowparison case (Fig. 20), the cir-
cumferenti&l stress at 1- 35' reaches its peak more rapidly
than the corresponding response at e - 45*. The stresses at
both angular positions, for these shells, alparently reach the
same maxiimnm. For these cases, the response per unit auplitude
of the incident wave, as well as the overshoot, is greater than
the correslionding response to an incident dilatational wave.
These effects were also observed in the cavity response (Refs. 4

. and 17). As in the case of an incident dilatational wave, an in-
* crease of liner thickness decreases (or increases) the response

when the liner is stiffer (or softer) than the medium.

In Fig. 22, the influence of ILner thickness on the displace-
ment response is shown. Effects similar to those noticed -in the
response to an incident dilatational wave are indicated. As ex-
pected, the path of the rigid body motion is perpendicular to
the direction of motion of the incident wave front. Also, as in
the case of the incident dilatational wave, when the back of the
wave passes over the cylinder, the front of the cylinder (9 - 0)
experiances the sharper variation in displacement.

In Fig. 23, the influence of impedance mismatch on the re-
sponse to an incident shear wave is illustrated. The parameters
of the liner and surrounding medium are identical with those.
utilized to obtain the results presented on Fig. 12. The major
stress response, T.., occurs at 0 - 45* and 1350, the maxi-

mum at 0 - 135' bae'ng reached earlier in time. It was noted in
discussing Fig. 10, and is again observed here, that the magnifi-
cation of peak stress is greater when the wave travels from a
softer into a relatively stiffer medium. Also to be observed are
the indications that the response to the shear wave involves con-
siderably greater deformation effects than the corresponding
response to a dilatational wave. For example, note the sharpness
of the peak response on curve Sa-S, and also the tendency for
the stress to continue to oscillate afterward.
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The influence of wave form on the response to an incident
shear wave is shown in Fig. 24. The liner and medium parameters
are the same an thoRe for u.hierh th. ... vale-a1t -F 1'. "a ... 1.-

tamned for the incident dilatational wave. The major stress
response is that of the hoop stress, T__, and occurs at

ee
S- 450 and 135 , w ith the maxim uim being reached earlier at

e - 135. The general character of the response is similar to
that for the case of an incident dilatational wave. The most
severe response again occurs when the incident wave form is that
of a step pulse; and, again, for the parameters considered, the
linear rise-exponential decay wave form induces a hoop stress
response of greater magnitude, for comparable times - after the
passage of the peak of the incident wave - than does a triangu-
lar wave form. The steeper character of the shear wave response
has already been mentioned in connection with previous filures.
The abrupt vhange in curvature of the response curve At 9 - 135,.
for the case of the step pulse, before the maxiaum is reached
should be aoted. The curves at %e - _35* correspondinSg to the
other wave histories exhibit a s& milar but mor* pronounced trend.
In particular, the curve associated with the lnesar rise-
exponentiaL decay pulse shows a well-defiued double peak.

S. Results Obtained by the Present Analysis for the Cylinder
Response to an Incident Shear Wave in a Viscoelastic Medium

The numerical results for the response of the elastf.c cylin-
der to an incident shear wave, where the cylinder is embedded in
a viscoelastic medium, are prssenced in Figs. 25 through 30. 3hey
were obtained for the same cylinder and viscoelastic media as in
the case of the incident dilatational wave (Section VI.5). The
histories of the incident shear waves are also the same as for the
dilatational waves. 2hey are described in Fig. 24. To assess the
influence of the viscoelasticity of the medium, results for the
elastic-unrelaxed medium are included as a limiting case. These
results have already been presented in Figs. 23 and 24, and dis-
cussed in the preceding section.

The major stress response in the liner, T_ at the inner
ee

surface and • 45* and 135, is shown in Fig. 25 for the case
of the incident step pulse and in Fig. 26 for the case of the tri-
angular pulse. In general, these results indicate that the prin-
cipal effect of viscoelasticity in the surrounding medium is again
to magnify the stress response as compared to that associated with
the elastic-unrelaxed medium. The trends at 4 - 4 5 ' - increasing
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stress response with decreasing relaxation time and also withratios of relaxed to unrelaxed elastic properties - are very
similar to those at 7 - 900 relating to the incident dila-

•_ J___ LJ• .... 5.LU i 3•uLi.LvULIer

taining to Figs. 14 and 16 applies equally to the curves for
450 in Pies. 25 and 26a. T-n Via, 25a,, *tl%^ ia..- u^i.- 4v.-

crease in stress at c T/2b - 2.5 resulting from the decrease
in the relaxatimn time of the medium is practically identical
with that observed previously in Fig. 14a at cdmt/2b - 2.5.

Again, the ratio of the peak stress associated with the elastic-
relaxed medium to that associated with the elastic-unarelaxed
increases from a value of about 3 in the case T~jl- ] 2/ 2 - .25

(Fig. 25a), to a value of about 5 in the case -I/a- T2/n 2 - .10
(Fig. 25b). The hoop stress response at ý - 135%, however, de-
parts significantly from that at 0 - 450 in the case of both
an incident step pulse and an -.incident triangular pu.se. In 'both
these cases, a zompate reversai of the trends of stress magni.-
fication with vt•eoelastLcLty in thae =di occurs at .0
-during a time interval after the arrival of the pulse. mn the
cases. where -'In T /K ,.5 (Fi~gs. 25a and 26&).,o this do-
cvea-ae in theS11 a tras pbLme with 'decreasing xveLazat io timn
stops before the stress assoi0ated with the e~lastc-ureaxem
medium .has reached its aaxilujm :(ct.E/Zb - 2) and gives way to
the more prevalent trend ofi ncreasing stress response. However,
it is -seen in Figs 25b* wbeire TIQ- 2;n- .1, that the
.h•op stress at T - 135° in the case of the elastLe-relaxed
medium remains considerably below the peak stress for the elastic-
unrelaxed medium until about a half transit past this peak. This
indicates that, at least for the case of an incident step pulse,
the effect .of decreasing the ratios T A, and T2/n2 is not

only to mW ify the trend itself but also its duration. As
cm/12b -+ 0, a peculiarity associated with this trend at

1- 35* is the appearance in Figs. 215 and 26a of a stress of
-opposite sign for a short time after the arrival of the pulse.
This stress, barely noticeable in Figs. 25a and 26a, becomes much
more prominent as 1ini and T 2/a 2 decrease (Fig. 25b).

Other effects of the viscoelasticity of the medium on the
stress response at 7 - 135* can be seen in Figs. 25 and 26.
The curve representing the resporse to an inctdent step pulse ii
the purely elastic (unrelaxed) medium goes through abrupt changes
in curvature before reaching its peak. For the case of a triangu-
lar pulse (Fig. 26), these changes in curvature are more pronounced,
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and the curve has what amounts to a double peak. With a decrease
in relaxation time, this behavior is progressively less in evi-
dence. It ceases to be noticeable for Cdm/lgb9t < 1.0.

It was also pointed out in the preceding section that the
stress resnon .. t...n An . .. .' ri L- a.l.•hi-uinrelaxed
medium reaches its maximum earlier at B - 1350 than at T - 45*.
It can be seen in Fig. 25 that this is also the case when the
elastic-relaxed medium is involved. By contrast, the hoop stress
response associated with the viscoelastic media for which
Cdm/P2b - 1.0, is never larger at B - 1350 than at T - 450.

The influence of the shear wave history on the stress response
",C the liner inner surface at -- 450 and 1350 is illustrated

in Fig. 27 for the case of the medium for which c m/n2b = 1.0.

This influence, when the medium is viscoelastic, can be compared
to that when the medium is purely elastic (unrelaxed) by refer-
ring back to Fig. 24. For the finite value of the relaxation
time considered here, it can be seen that the nature of the dif-
ferences between the responses to the three distinct pulses de-
scribed in Section VI.7 is preserved. Again, the effect of
viscoelasticity is to magnify these differences. It can also be
seen that the disappearance of the double peak for the response
at 9 - 135° due to the viscoelasticity in the medium occurs in
the case of the linear rise-exponential deciy incident wave as
well as in the case of triangular incident wave. By contrast with
the responses shown in Fig. 24 for the case of the purely elastic
(unrelaxed) medium, the stress responses at 7 - 450 in the case
of the viscoelastic medium are almo&t identical in character with
those at 9 - 1350.

The nondimensional displacement response perpendicular to
the path of the incident wave, 24v9/T 0 b, at 7 - 00, 900

and 1800, and at the liner inner surface, is piesented in

Figs. 28 through 30. It is given by '. at 00 and 1800 and

V r at 90*. Since Vr is an odd function of 0, the distance

between opposite points along the diameter perpendicular to the
path of the incident wave remains unchanged and v. at 0 - 90' -

the middle curve in each set of three given in Figs. 28 through
30 - represents the translation of the whole cylinrer. When the
vertical distances between this curve and LILth other two curves
(v_ at 0* and 1800) are equal - as they are Lor a substantial

9
portion of the response - the diameter of the cylinder aligned
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with the path of the wave experiences a pure rotation in addition
to a translation equal to that of the perpendicular diameter.

The curves in Figs. 28 through 30 are very similar in charac-
ter to those shown in Figs. LD, LI, and 19 tor the response,
2pux/u 0 b, to incident dilatational pulses. They indicate similar

trends. For all three incident waves - the step pulse, the tri-
angular pulse, and linear rise-exponential decay pulse - the
effect oi a decrease in the relaxation time is to increase the
translation described by vr at 0 - 900 and the rotation de-
scribed by the other two displacements. Figure 28 indicates that,
at least for the case of an incident step pulse, the same effect
is induced by a decrease in the ratios TIn, and i 2 /2 2 . The

curves in Fig. 29 for the case of an incident triangular pulse
indicate that the sharp acceleration of the front of the cylin-
der, just before the intensity of the incident pulse at this
point in the cylinder reduces to zero (c t/2b - 3), is at

tm
first attenuated by decreasing values of the relaxation time. Fig-
ure 30c shows that this trend continues at least until cdmIn2b

reduces to the value 1.0. However, aj implied by the character
of the curve for the displacement at e - 0* in the case of the
elastic-relaxed edium, at some value of cmI/n2 b below unity

the acceleration starts to increase again. It also becomes
sizable at 0 - 900. The very slow recovery of the liner's origi-
nal shape after the passage of the pulse is again indicated in
Fig. 29 for the case cdm/I2b - 1.0, by the slow convergence of

the curves.

Figure 30 illustrates the influence •' thý; incident wave
history on the displacement response. Again, ! decrease in re-
laxation time magnifies the differences between the responses to
the various pulses. It should be noted that for the case of a
viscoelastic medium (Fig. 30c) as well as for the ci.e of the
elastic-unrelaxed medium (Fig. 30a), the sharp acceleration ex-
perienced by the front of the liner in the case of an incident
triangular wave is far less pronounced in the case of the linear
rise-exponential decay incident wave.
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9. Results Obtained by the Present Analysis for the Suparposition
of the Cylinder Responses to Incident Dilatational and Shear
Waves in an Elastic Medium

As formulated in Section 1, the idealized problem with which
the present analysis is concerned, is that of determining the
response in a cylindrical liner buried in an infinite medium, the
cylinder being subject, in succession, to plane dilatational and
shear waves. Results obtained by the present analysis are valid
for different physical situations, provided that effects other
than those postulated can be neglected. For example, an air-
induced ground loading results when a pressure wave, generated by
an above-ground burst, travels along the surface of an elastic
half space with superseismic velocity, V, where V > cm. Then,

the results of Ref. 20 imply that plane dilatational and shear
waves are transmitted into the half space. The transraitted wave
fronts are inclined to the surface by the angles ad - arcsin (cdm/V)
and at - arcsin (ctm/V) respectively. These fronts are inclined

to each other by the angle ( (see Fig. 1) where 4 - a•- a

Thus, the incident shear wave impinges upon the liner at an angle
9 with respect to the dilatational wave, and its time of arrival
is delayed by an amount depending upon the location of the cylin-
der with respect to the surface loading. Now, if the liner is
located at a depth such that the effects upon its response, of
surface waves, as well as reflections from the surface, can be
neglected, then the application of the present ideal.ized analysis
is justified.

Another physical situation for which the present analysis
could be applicable was suggested in Ref. 21 and involves the
direct-induced loading case (burst in direct contact with surface).
In this case, justification for the use of the present analysis
requires the validity of certain approximations. These involve
the lccation of the cylinder with respect to the burst such that,
in the ground effects, a spherical dilatational wave front may be
replaced by a plane dilatational wave front (the previous assump-
tions on surface waves and reflections are also required). If
the half space is assumed to be homogeneous and isotropic, only
the response to an incident dilatational wave is needed to approxi-
mate this case. If the liner is assumed to be located in the
lower level of a two-layered half space, then dilatational and
shear waves will be refracted through the interface (aseumed to
be plane in this case). The angle between refracted dilatational
and shear waves may be calculated in terms of the incident angle
and the seismic velocities of the two layers. The delay between
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arrivel times, at the cylinder, of the refracted dilatational and
shear waves may be calculated from the known location of the cylin-
der with respect to the layered medium interface. Sufficient dia-

may be neglected, is required. 1
Two numerical problems, posed in Ref. 21 to illustrate the

conditions discussed above, were analyied. The parameters involved
have little significance beyond providing somewhat realistic ex-
amples (on empirical grounds, the amplitude of the shear wave was
chosen as one-third the amplitude of the dilatational wave).

As an example of air-induced loading, a concrete cylinder,
50 ft in diameter, is regarded as embedded in a homogeneous slow
granite environment, at a depth that requires the transmitted
waves to travel a distance of 150 ft before contact with the cylin-
der. The surface wave is assumed to be a step pulse, with velocity
V. 8500 ft/sec. From the analysis of Ref. 20, it may be deduced
that o0 and To are negetive with respect to the cylinder co-

ordinate systems of Fig. 1. Results obtained for this case are
illustrated in Fig. 31. From the data presented on these figures,
the angle 9 between wave fronts is 19.70, and the time of
arrival of the shear wave, with respect to the arrival of the
dilatational wave, cdm t/b, is calculated as c dmt/b - 4.38.

On these figures are shown the components of the hoop stress
response at the inner surface to the dilatational and shear waves,
as well as the total response. Because the amplitude of the
dilatational wave dominates, the maximum response for the points
we computed is obtained at e - 90% even though at this angle'
the effect of the shear wave response is to reduce the stress.
At e - 64.70, corresponding to T - 45*0 the shear wave re-
sponse also reduces the stress, while at 0 - 154.7° (- 1350),
an addition to the dilatational response occurs after the arrival
of the shear wave.

As an example of a direct induced loading, a steel cylinder,
50 ft in diameter, is regarded as embedded in a fast granite
layer, separated by a plane interface from a layer having a
seismic dilatational velocity c m - 6000 ft/sec. A plane dila-
tational wave (the approximation' to the spherical wave) impinges
on the interface at an angle of incidence d- 15. The cylin-

der is assumed to be -located in the fast granite layer at a depth
such that the refracted waves travel 100 ft before impinging on
it. Denoting the refraction angles for the transmitted dilata-
tional and shear waves as 9dm and (Ptm, the angle 9 between the
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transmitted wave fronts may be found by utilizing the date in Fig. 32,
along with the relations sin Td/Cdm - sin dm/Cdm - sin tm/c tm. In

this manner the angle T is found to be 9 - 220. The delay time
of the refracted shear wave with respect to the refracted dilata-
tional wave is found to be Cdm t/b - 2.92. Results for this case

are presented in Fig. 32 in which component dilatational and shear
responses, as well as their superposition, are shown. It should be
notelThat the dilatational component is identical with that shown
in Fig. 12. The shear component represents that shown in Fig. 23,
with a different abscissa scale, cdmt/b, rather than the corre-

sponding shear wave parameter, ctmt/b. Again, because of the

dominance of the dilatational wave amplitude, the maximum hoop
stress for the points we computed occurs at e - 900.
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RECTANGULAR WAVE FORM

0 (real tim,, e, o is)

toOo

CmM 1W ktime axis /

TRIANGULAR WAVE FORM

-o ' To

to ,, _ . ,- to)to -

~ ~4.rnto4 2b

LINEAR RISE-EXPONENTIAL DECAY WAVE FORM
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Cm~dm for incoming dilatational wave
c tm for incoming shear wove

Notes It is selected so that the Incidenit stress Is negligeably small of tinT
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Fig. 4 MECHANICAL MODEL OF A STANDARD LINeEAR SOLID.
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LINER CONCRETE, E- 25 it 106 Psi, 1/0 .2 y $4.5 slugs/ft.3

MEDIUM'1 SLOW GRANITE , Fm -1.01t 101 Psi, P'm -. 25, ym '5.2 slugs / fi.5

0 Computed points ~IloStrahifg Sollistocton Of imiltal comdilons criterio,

__ I h
- .2
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I_ _:~ 0 2 4~

(a) HOOP STRESS AT e %900

I I

2b

(b) DISPLACEMENTS

Fig. 5 RESPONSE OF LINER INNER SURFACE TO INCIDENT

DILATATIONAL RECTANGULAR WAVE ( Elastic meodium)
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0 Results obtained by present method, using number of modes

required by convergence criteria
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Ref. 4, using n-O,1,2 for outgoing and first

three modes of incident hoop stress

-l.V

- \..-Ret 2 using na0,1,2

-2.0

Ref. 5, using
n a 0O---0-

-2.5

Refs. 4and 51 unng

-0 I,2 4_•_____ _ _

Cdm t/ 2 0
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Fig.7o. COMPARISON OF PRESENT COMPUTATIONS WITH THOSE OF
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DILATATIONAL STEP PULSE, AT SOUtJDARY OF CAV(TY IN ELASTIC
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* Results obtained by present method, using number of modes

required by convergence criteria

* Results obtained by prevent mehod, using nO0,1,2
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first 3 modes of incident hoop stresses

-0.6 I i _ I___
0 1.0 2.0 3.0 4.0 5.0 6.0

"Cdmi/20
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Fig.7b COMPARISON OF PRESENT COMPUTATIONS WITH THOSE OF

REFS. 2 ,4,AND 5 FOR HOOP STRESS AT *. 0* DUE TO INCIDENT

DILATATIONAL STEP PULSE, AT BOUNDARY OF CAVITY IN ELASTIC

MEDIUM, do 1/3.
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LINER, CONCRETE; E-2.5xlOo psi, v 0.2, y ,4.5 slugs /fl.3
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Fig. 10 EFFECT OF LINER THICKNESS ON THE MAXIMUM STRESS (eot inner
surface and9 900') FOR AN INCIDENT DILATATIONAL STEP PULSE
IN ELASTIC MEDIUM.
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Fig. 1ic DISPLACEMENT RESPONSE AT LINER INNER SURFACE TO INCIDENT

DILATATIONAL RECTANGULAR WAVE (Elastic medium)
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Fig. 22 EFFECT OF LINER THICKNESS ON DISPLACEMENT RESPONSE OF THE LINER

INNErR SURFACE FOR THE CASE OF A INCIDENtr SHEAR RECTANGULAR WAVE.
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Fig. 26. EFFECT OF SURROUNDING MEDIUM VISCOELASTICITY ON

HOOP STRESS AT INNER SURFACE OF LINER FOR

INCIDENT TRIANGULAR SHEAR WAVE.
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I

APPENDIX A f
TRANSOMA TONS EMPLOYED TO FAM.LTATE T rW rrOMPt•TTM'rOIc

T... appendit a number of cranstormations are introduced
to facilitate the computational effort involved in performing
the inversions of the boundary condition matrix equations (3.8.2)
And (4.5.2). For ease of reference, we rewrite these equations
omitting the indices of summation p and n, but understanding
dependence upon them. For the case of an incident dilatational
wave, we have Eq. (3.8.2),

fCiii {zj} n {Di} (A.l1)

and for the case of an incident shear wave we have Eq. (4.4,2),,

I -ijI{,

'The stresses and displacements associated with the response
to the incident dilatational and incident shoat waves, Eqz. (3.8.3)
and (4.5.3), respectively, will now be put in nondimensional form.
As an intermediate stoep La this direction, we define

aiO .2.. .. .
...... J +i = ro 0 (A.3a)

•iJ •iJ J r, ,B P

- b i a r. 9 (Ao3b)
vi vi

where (oaj, ui) are presumee to be calculated by Eq. (3.8.3)

and ('iJi vi) by Eq. (4.5.3).
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I
When introduced into (A.1) and (A.2), the transformati-n

(A.3) nondlmensionalizes the matrix elements on the left-hand
sides, and (A.l) and (A.2) may be written in the form

b~a f

:4) JI-[Z44 1 l,.• I (A-.4)•v •
L 4-oJ t oJ N 1.. 1 .L

[Fiji C~ -i 2P.Q){} (A.5)

where a0 and r, are the amplitudes of stress in the incident

dilatational and shear waves, respectively, and where Cij and
l are ncdipngional. Then, if we let

(A.6) I2
The boundary conditiaons becon

[ii] {zi. {1B , (A.7)

and

where D and are nondimensional. Referring to the ex-

pressions in Sections lII and IV by which the stresses and dis-
placements are represented, we note that they are linearly
homogeneous in the Z and C . Thus, from (A.6), when the

solution vectors to (A.7) and (A.8) are introduced iuto the
expressions defined by (A.3), we obtain the nondimenoional
stress and displacement
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C°ij 2•u.
-i ,. -I (A. 9a)

ij 110 1 a~ b

in - - - - - - - - - -yOi J A - A' I0 -- b I &Vt LO. -

-J " 0 0 a (A.9b)
ij 0rb

in the case of the incident shear wave.

In principle, (A.7), (A.8), and (A.9) may be used directly
to determine the nondimensional stresses and displacements.
However, it has been found that the form of these equations may
lead to computational difficulties. The numerical behavior of
the Bessel functions J3 (z), Y (z), which are constituents of

the atrix elements C1j C.j necessitates a further modifidea-

tion. For'fizad-z,, as -n becomes large, the J (z) becoims

smal and the Y (z) becomes large. To keep -the elements -of

(A.7) and (A.8) within the bounds of the .T3 7094 comuter., and
to ensure calculations -of a* well behaved chacter, amodify
"the construction of Sqs. (A.7)and (A.8). T emphasize that the
elements of these marrice and the solution vectors depead upon
the indices of summation p and n, -we again let these integers
appear explicitly. 7hen we modify the elements in columns I
and 3 by letting

cij,pn -q:1n i¶pq j,pn iJqpn (1,Aij,.p

q 1%1 T'

SJpn 2nkn ppn n ! • pn (

where

k-i when j- I,

k- 2 when j 3.
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I

We modify th2 elements in columns 2, ' 9, ani 6 by letting

1q I 1n _ I q, in

C (A.10d)

Z jbpn -qI j,pfl ' ,pn IqI ýj~pf (A.l0d)

where

k- i when j- 2

k - j - 2 when j - 4, 5, 6.

Aftr. the def iniLtions (A.10) are imposed, .(A. 7) and (A.8) become

.i -(A .1

I+, {} <A.12)

V+ote that the substitutions defined by (A.10) have modified only
the left-hand sides. Ihe right-hand sides have not been alterad.

Because of (A. 10), instead of computing the 3 (z) and
Y (z), in columns I through 4, we compute the functions defined

by

A.,I kl
"n (Z) -m In-i (Z) Y n(Z) - 2 Yn(Z) , (A.13a)

where k - 1i li columib ! autu 2; and k - 2 Jr colurms 3 and 4.
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I
In OlULnns 5 and 6, we compute

J -(z) - n j (Z) y (I- Y (Z) (A.13b)n Iznn n 2 nni n

The elements composing the left- and right-hand sides of
(A.11) and (A.12) are given in Appendices B and C.

For computational purposes, Eqs. (A.11) and (A.12), which
represent sets of six by six complex cquations, were cast respec-
tively inLI the following form, which represents sets of twelve
simultaneous real equations:

"[L {I j i} (A.14)

1- {Xj} - {?}(A. 5)

where, using superscripts R and I to denote real and imagi-
nary par#s, (A.14) is constructed from (A.11) as follows:

L i -C J (1 < i < 6), (1 < J 6)

Li-- j (1 _< i _< 6), (7 _< j _< 12)Limij (1<i

L1,6,J+6 L ij I < i < 6), (1 j 1)< 6)LeiCj- N I.-

Li+6,j -- Lij (1 < i < 6), (1 < J 6)

x = ( j < 6)

xJ+6 -z (1 < j < 6)
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I
Rj (1 < i<6)

I <i <6
Mi.6" Di (1_<i<6).

Similarly (A.15) is constructed from (A.12) in the following
manner:

ij iR (1 < i < 6), (1 < j < 6)

j = ij (1 <i_<6), (7 <j_< 12)

14+6j, J+6 " 2j (1 < i _< 6), (1 < J _< 6)

zi+6,j "j "zij (1 < i _< 6)j (I < j _< 6)

Xj =- (_<j_<6),

+ R (l<j_<6)

T- (11< i<6)

L+6 1 (1 < i<6)

We recall the discussion in Section IV.l and note that L

and Vij stem from the response to incident dilp"ational and

shear waves, respectively. Thus, these elements may te given in
the same form if we regard % - n as pertaining to Lij and

Ux - - n as pertaining to £iJ. Then, the real matrix elements

are given by

132



{fl(n-1) i% (q1 ) 2n)(q )-

L -' q 1lD1 2q j n 2ý(n+1) 0 y (qp1j

L12  ~ 2rii 2 n+1l

IV - q2p
L1, -L j(n-l)jn(q 2- -2 (

lp3 2 20) - 2(nt+1l) l2

L -IL1j(n-l)'Y (q2 ~ - 20(n+1)Yn+M P2 )]

L1,5  10 1,01

L# p ~2t2(n4-1) T tnl

L -I20(n+l)y +(qlp) - (n-l)yn(qp)]2,2 ' 21 n 1 1n

2, q 20___2 2p (n+lV nl 0

L2,4 '-2( 2 n(qp)+ q -~ ( p

L .5 2,26 L 2,1 2 ' 0
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L 3  q, 2 fn-1 1__ - (q 1 ) 2 (r 1 1)J (q 1)

3,2 2q)kŽ n 2__ 2(n+1)

1 . q1
L 30 n n- ) j (q2 2(n+1) Jn+1 ( 2)

L3 4- [(n-1)yn(q)- 2(n+l)Y + (q)3

qfl 2 (~ r

L 3$5 - 2% -ý Z+ 2( n3 - +(-n'

q 3 e

-2(n4 3 (n+1) 3 + (tr-) 3+1)

+ 2 q t I (())n-1+ R

q3 231.f2 ) + -ý +n

27 q + 12 + +

(n (n 3(n1)3 q- '

q-{n 3e~1~ + 2n+ [+1)3 + 3(+)1
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L306  - n[~~9r - T s'

S2

2~- (1)Ac~~ 3R 4 J q ~4i(~

-r n41)~ +ý?ýI 4(+1 +-~+1

en

+ n-1Y4  q 4e((n)4 (t)

2(rwI) 3(n +1) 3 (n1 q

2 (F+ (1 I~ - +

- (n-1) +~( 4

n4 q 4$Y~ [t-4
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n 2

t~~~~e~ --( ){((f 1 )[qJ (n+i) - (n- J~301

+ 2r4)-1 3cq3ý') (n+1)3I - (n-1.) ý0

L4, -(I-)R:e - BTr

where

n2

R-9 '[(4a {2n(n-1) - (q2 ~]R 2q q3'

+ 2n (n-i ~ Y 2q4 q4 YA4

4(n+1) r-I ii
+q~e ~ 4 (n1) 4 - 47(n+1)4 J

ir {1 n [2n(n-i) (jq 4 q4 )13]J4 + 2 J14?n

2q~q I

-[2(n) (n-1) - -q4)]~ + v2II

Sq V'4e 4(n+1)4 + q4y(n$4)4J

L ., L4 ,8  L4, - L4,00

1.37



IVI

L 51 nn "') (n \ 1 S \ n±/ rSJ

L 5,2 - nY (ql) -2(n+1.)Y,, 1.(ql)

L 5,4 n3 ( 2 ) -- -

n 2qr

q3a 1 3'(n+1)3 3(n13

n2

L5,7 L5,8 L5,9 L5,100
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n 2

L 3 - nYlq1

56,11- 2"-(q) fn 2(1n+11)q3(n1)

L6,5 - 2 n,~ 3

2q(k;l) [Z{nJl4  3 + q+y(-rl

nfY~ 2(+)-'

L 4 4,1 -"-) J'4) 4

-6# 6 9 -2

13



n 2

L6 P1 1  n3

"62 n1 \2(n+.)/ L'4 (n+1.) 4  q )4

- + q4 e 4 .1 4 '+(nn4)4

and

7 e 7 iS 12
Ltj" +6 1L < J.< 6 -.

S- - -

In the preceding eqtuations,

3 nk -n(k

k 3, 4

Snk Yn- q

The expressionso in real form, for the stresses and displace-

ments associated with the responses to incident dilatational and

shear waves will be given now. The transformations leading to

Eq, (A.9), in conjunction with the results (A.L10) and (A.13),

yield - when applied to the appropriate terms in the expressioas

defiaed by Eqs. (3.8.3) and (4.5.3) - the following formulation

of the stresses and displacements associated with the response to

an incident dilatational wave. Note that the components of the

solution vector entering into these terms are those obtained from
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I
Eq. (A.14). Ln addition, the rigid body contributions discussed
in Section V.1, have been removed by taking account of Eqs, (5.1.6)
and (5.1.9), and the variable t/T is to be regarded as computed
w!Lh rsupect Lo che time of arrivai of rie Lncident wave as

"7hus,

cor )1nt qq() (-P) -q J°p X,

(q 1  ) (qi 2 )3

2(ýk 21(U1') 2 .(p Y,+(qp

- 2(n-1- 2 1) 2(qP) cos p)

-f M1

+ q -.) (q p) 2  .')jYn (. q I Cos

21 n 2

22

l (n-1) (q 2 p) - 2( Jln+i(q 2 P) x92 n1[n1Y (qn)- 2(+)Y2(q~p)jo si
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fI
incon +r/~ n(n-1)V~ %2 I-p)
ee 9 t2 fin (qlp) + +V

22 (n+l) j~

+ q I + P2 y.(q 1 p) + - Np Yn~1 (qlp)jx 2

'2
+ 1) j (q 2 'p) 2-nl 4 (ijp)

p

22

4 X q (q'p)ý + 2 Yu+l) 'plfJ

U U

+ 2- 2 +(ql) + (~l (

+ - 2(n+1)~n~l(~2P)1lo X8 7T4

12



f 2

2pnl)py qp ( -1 ' (n-!)J (Ip I
p 2f n~ 1. X

2 Is~) - jn(q 2p (n+1) p Jn+l q2)

2
* '2ti(n+-1) J~1 l'n(q .2p) + 4 nl Yn (

2p 2

2r

- (2n(n-1) -i (q +n+ (q.) P)xL

2 q( 2P)2  2p) + (q2  (qpp 9

ily(q~p + (qi+. P)x snp
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2

I ~~nn P) (q,

+ ~ 2kn+'L)Y +(q

+[a 'fl(qp)X x (q2 )] 4}cos[Pki)

21

Jn(qlp) r~+, a~ )x7 nqp -2rflY,,

+ ~J(42p)]'X9 + [p Yl(42P).]X ojsin[pýT~)

J1 (qlp) - ( 2 qlp) (qlp 4 2 ( 1) 4Y(

+ [vl P lpv3 + 1~ Y(q 2 )]4}cos[P' 'T)]I

21

, 1 (q,13) - 3(q 1 p) j + [.~yl(qlp) -
4 Y (q 0)

+ [~ 2Pq) 1'9 + [0 2*1 T~Ohn[7(

wher nl 0 if n 1

1hr if n-i

and T T
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-0 sin nO {[ .J(qlP)JX1 + (qp '

+ J(qp (q 2P)JX

pi C, 2 2 (i:+l) J1+1. 2(3

Yn [~ (q~p - 2 (n+l) Yn~l (qp jXCospi()

- J~(qlp) Jx + Y~(qp) Jx Jn (q~p - Jn+,1 (q2 p)

+ [~ y (q~ 2 (n+l)Y 1 ( 2Pjx}sin[pw(T)J

2

-n1 J(q 1 X) + Y, Y1 qP +[ J,(q 2  & 1 (q 3

p 'q 2 -P 4Y 2 (q 20) ]x~}c:s'p,

-~ {[ J1 (qP)]X 7 +[P Y, (qlp)Ix 8 + Fp J,(q 2 p) 4 - (qp , ]~9

+ , [~ (q2 ~ 4Y (q2 )X1 .1sin[p7r T I

where if n a
01~ if n-i

* tj
and2
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The stresses and displacements associated with the response

to an incident shear wave are obtained from the preceding expres-
sions bv: 1) reizardine a. u. X. and u as T. v. v. and 7.

respectively; 2) n as equal to -n; 3) interchanging sin n,"?

and cos n-; 4) replacing 2by S- "- :Q-- 2 b'm,; and

T ~ by T (C dmT/ \c 2'

5) treating the n - 0 case separately for )po as

V. 2 1 - 1 (q 2p) Xj3 + 2YI(q 2P)1 X4 Tcos p 1

- J(qp)X + [2y' (q p)]'jOlsin'piTL
2 1 P).X9 12P)TJ

* (q P~~J1 j ) X 3 + 2Y 1 (q P) IX ostl 41 T

+ J(q 2 )X 9 + [2Y (q 0)JX osin[prT
•2 1J 2 9146
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I
APPENDIX B

REPRESENTATION OF THE FOURIER COEFFICIENTS

ASSOCIATED WITH THE INCIDENT WAVE

This appendix contains the explicit representations of the
Fourier coefficients that define both the shape of the incident
traveling waves and their Fourier expansion in the circumferen-
tial direction.

The coefficients a define the time history of the incident
p

pulses oxx and Ir (see Fig. 2 and Sections 111.1 and IV.l),

and are determined from the usual expression for the Fourier con-
stants. They are

fc asin. co t •dt (B.1)
p p P

* in the case of an incident dilatational pulse, and

r

ap- 2. r. sin cpt dt (B.2)

40

in the case of an incident distortional pulse.

Since a defines the shape of the pulse, identical values ofpa

will be obtained in both cases if the shapes of the incoming
pulses are identical.

Referring to Fig. 2a for the time histories and associated
parameters of the rectangular, triangular, and linear rise-
exponential decay pulses, we obtain after integrating (B.1) or
(B. 2):
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Rectangular Pulse

a P ain sin2C-A, p odd (8.3)

where cm is the speed of propagation of dilatational waves when

(B.1) is being calculated; and cm is the speed of propagation

of shear waves when (B.2) is being calculated; ap is the Lanczos

factor discussed previously in Section VI.2.

Tn this case, any w of the following parameters may be -

seacted arbitrarily: 'Th '-~. le remaining one
is determined by the relation

"b b b (8.4)""2b. bb

Triangular Wave

a4 -ý Tr [ +(t -t0

Z ) 1 i (8.5)

- ~ c• M- -t 0o pr c ( t
2(cmT \ b k M\1  

b bl
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r (t -t

where the parameters k and -,1 will, in general be pre-b
c T c t

scribed input, and only one of the I= parameters 2b b2b ' b may

be chosen arbitrarily, Lhe other being deter-minsd by uhs relaLion

cT (k + 1) in__ I :MIQ2b +2 b . (B.6)

Linear Uise-Exponential Decay

a i $Pb() si/rý

2i 21 ° 2bIj

(czT) (t)2b

"C , , M

"n 2 2 ( in

.r•) pr)c
Pr coo- 1m T) Cmtp

b b b r
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where the parameters a and mb will., in general, be

prescri bed input; the parameter k is selected so that in the
.4ma 4.,4.~~,n ~rw,- ,4 ht rine4at atPann will have decaved

to a small value (i.e.# a*k «< 1); and only gm of the two '
a T c t

paraeter _2 bM may be chosen arbitrarily,, the other being

determined by the relation

- ~ c3(t .t) c(k

b b+ b b *(.)

The coefficients defining the circumferential expansion,
in Fourier series, of the incident pulses will be discussed now.
'An inidicated in Sections 111.1, 111.6,, and IV.2,. it is possible.
to obtain. representat ions of, these coef~ficisentsv in term= of
..essol functions of a complex argument..

An integral representation of the 'Bessel function. of -the
first kind vith complex argument Is given by Ref. 22 as8

(i)nlJ(Z) a ics coo nOde ,j (nl0,1 2, .. (1.9)'

40

Employing the trigonometric., identities

..Cg e os e co(V a)a+ cs~ 819

sin re sin sO - 2 Ecos(r + 8)19- co.(r 0 )03

in conjunction with (1.9), we are led to the following representa-
tion for the Fourier coefficients defined by Eqs. (3.6.4), (3.6.7);

Apn -n -()' i3{lsJ(q 3)_ .("2-)[J,+ 2 ( 3)+ Jn.2( 3)]
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ApO -O e (l+ 6 )Jo(q 3 ) - (l-e)J 2 (q 3 )] (B.Ob)

u . t 4•n+1 .=iq 3("-[ . ,-
-pn "= - \ 2 / t'n+2 "13'n3-2%%13- I %D. AMU)

C ()+l a 3 ( dui 3)[ - J= 1(q3 )i (B.1Od)pn cub3p_~P
-iq 3 cmq3

"P ( oa ,b )1 (q3 ) (B.10a)

Dp emj~l 5 j i( '[ (q) + J~(q3) (B.l0f)
P

The preceding coefficients are of course complex. For use
on the right-hand side of the equivalent real matrix equations
"discussed in Appendix A. we separate (B.10) into real and
imaglnary parts. (denoted by superscripts I a 4rnd 1, rspec-"
tively). Thus, recalling the definitions of the complex quart-
titles, q3  and c (Eqs. (3.4.16) ando (3.4.18)']# and with Ihe
other barred quanptities defined subsequently, ve obtain-~R .3 ...

Ap-f[A coo q + A; sin q]pn pn-3 n 3

p co . . . .3, 7. . . ..i
Bp a B Cos q3 + B sin

-pn 3 pn

pnAd (B.11)

pn M cos q3  in+ pns 3

R q3  =RH -1D = D caq (1+ D sin (3

pn Lpn c p f q3]
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where

iR .I [lE(% -+1(1In
p0 i- 2{ J(q)+(q 3 )J + (i+')JOI(q3 )(1 jl31

L k,

110 J7[n ( &E4 (.2

rf C':u2 -121

oR (B 
-1), 1 c

p

-n v~qJ( 3 a) b 3 ~q
p

0p -C) b [34 1q%) +' 34q3 %) I

p

-I c~a- i
cPo MA%)+A i 3 I~j (

pq3 152)



where

and, when n is an even integer,

n/..j~l2 7r.[,J(q 3 )]

a.jf/ 2  JE 
- j1 1 q3

~ ()fl2 L[f1( 1 (-q3 )]

i~- (..)f./ j JR(q) I

ic (...1)n/ [J. 2(q3) + 1 ~(13)]

Ila I a~!/2 i 1 4. ( 3) J1 I~(q3

",2 2 v+2 3) +n-2"3q A

a ~ n/2 Ir

a~ ~ (-)~j~. ( 3) - JR-2(q3)j
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whereas, when n is an odId intggerA

ail

-c (-1) 22 [J 4 ( 3) J~n 3 .4:q3) J

I"2[--(-1)

2 - ~ j (-)~J(q 3 ' + l(q,)]

~~2. (n-) 213)qj

ti: 2  -(-3) 2 J!+ 2 (q3 ) + JL 2 (q 3 )

1ý2 2 5 2

2, I-JR 3R (2 u+ %) -2 3
2 fjII (i



The coefficients defining the circumferential expansion, in
Fourier series, of the stresses and displacements associated with
the incident shear wave, are given by Eqs. (4.2.16) and (4.2.19).
In a manner similar to that employed in the case of the incident

- &. . .... tOa 't V....... . I'' -~f i .. h.P .ps.. . .. . . " . . . . . .••'

in terms of Bessel functions of a complex argument. Employing
Ea. (B.9). and the trionometric identities written iunediatelv
below it, we are led to the following representation for the co-
efficients defined by Eqs. (4.2.16) and (4.2.19):

= )n+1 lq 4

Apn w - l e [j2 (q 4) - Jn-2(qj4)] (B.15a)

" (i) n+l e iq 4 [Jn+2(q4) + Jn-2(q4)] (B.15b)Bpn -24•

Se [ J q4  (B 15c)

Cpq q4  [Jn~ 1(q4 ) + Jn. 1(q4)] (B.15d)

Dpn - (,bq 4 e (i)n+l[jn+l(q4) + Jn.(q 4 )])

p

D i(-M) q4 e 4[Jl(q4) ' (B.15f)

where it is noted that the above coefficients, Apn, Bpn, ... p Dpop

associated with an incident wave of distortion are defined differ-
ently from the corresponding coefficients, Eq. (B.11), associated
with an incident wave of dilatation.

As in the case of the coefficients corresponding to the inci-
dent shear wave, we separate the above complex coeffiuients into
real and imaginary parts denoted by superscripts R and I, re-
sectively. Recalling the definition of 1 [Eq. (3.4.16b)],

and with the other barred quantities defined subsequently, we ob-
tain expressions similar to those given by Eq. (B.11):
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A - e [A cos q + sinq

Lpn pn

R q 4 [XI -
A e [m acoB -A sinq

Bpn cos •4 "pn 41

BpR eq 4 [ C cos q + in sin q

pn [pn 4 p 4

-cos q4 s

pn pn pn

_ m e [t cos q + sin

-q-

R-q 8 4 [D R cos q4 + sin q
I., a p 4 pn sn 4J

pn pn Coos U sin '
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with, in this case,

pn r n2

A 2. is
pn " n2

R 27. 1n2

i ., - Zo 1c)
Bpn d 'n2

-R - J1

B PO 
., 

q-

*Bn~m J p4(q4

P
pO 72 4

pn. rWWD LTnL [Qfl+

p

P

P0 - (W b) a 4 byq 4 + 44q

P

-I-=' [- _q R

D R r Ct q jqI q "h',(

-1 57

I 4  14 + 4 14,,
P

where the barred and tilde quantities, £nDc i are func-

tions defined by Eqs. (B.1.3) and (B.14), wIth argumrent q. re-

placed by q 4.
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