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ABSTRACT

The response of a hollow circular cylindrical shell of arbitrary thickness, in
either an elastic or a viscoelastic medium, to transient dilatational and shear
waves (and their s serposition) is presented. The sclution is valid within the
scope of the linear theory of elasticity or viscoelasticity. The technique for
obtaining the golution relies upon 1) the construction of a train of incident pulses
from steady-state components, where each pulse represgents the time history of
the transient stress in the incident waye¢, and 2Z) the existence of a physical
mechanisn. taat, between pulses, r:stores the disturbed particles of the cylinder

and the surrounding medium to an unstrained state of rest.

- The iadlacuce on the cylinder response of the following factors is discussed:
liner thickness, cylinder-medium impeduice mismatch, 'viacoelin‘-i;-i’t){ in the
medium, and incident weve form (step puise, rectangular, triangular, linesr .
rise-exponential decay), o

i
i
1
|
..




e*ore DOY tilmeds |

' Previous Dege va? blank, tbeT L
CONTENTS
Section ?a ge I
I IL'&I:I.'OGUCL ion ® 5 0 85 4 0 4 8 6 0 85800008 s BB E P A LEOSSae R 1 .
Statement of the Problem and General
Discussion ........ e ssseseseaena e s
II Discu“ion of mly‘is F I B AV N A B B R A BN I I B B R I R I A R R ] 2
III Solution for an Incident Dilatational Plane
wave LN I I Y R I I I R I R R LI I I S B B TN Y I R I B A B I I Y B I I I R A 4

1, Stresses and Displacements Applied
to the Cylinder by an Incident
Dilatational Plane Wave in an
Elastic Medlum ,,.........00i00is00nn 4

.f . .. 2. General Solution of the Wave Equation g
o h e v-n-r~"“1—".“1n m cy].mm na;aAAala.popt».ap&pa.-bo”’” 11 _ D !'

S 3. Solution of the Wave Equation for . 0 . |
' . - Seattered Waves in the Surrounding e L
mdﬁ-w nnnlo,oa:ooao‘1“‘40:00“‘04:1-‘ 19

4. Correspondeuce Betweon Elastic and ,
 Viscoelastic Fiuld Equaticns ......... 23

5. Viscoelasiic Model s.sevensnssssssnens 29

6. Stresses and Displacements Applied o
to the Cylinder by an Incident ;
Dilatational Plane ¥Wave in a Visco-

‘ultiﬁ &dm Y S PR SV R AP B PN IV Y IV R RS RSP R Y . 35

7. Solution to the Wave Equation in a _ :
Viacaelantic Medium ..o.vvuesnsvrassnss 39

8. Superposition of Solutions to Enforce
the Boundary Conditions .............. 41

v Solution for an Incident Distortional Plane
wave L B BN B I B A BN I N R B B R I ) F R AN I R R Y P R N I R I A Y I B I BN R B I A 44
1, Discussion of Approach Used ......... . 44

2, Stresses and Displacements Applied
to the Cylinder by an Incident
Distortional Plane Wave .......c000044 1A




Section

Soluticn to the Wave Equaticn in the

Ll IR |
P TP UyLMLHCL ---------------------

Scattered Wave Scolution in the
Surrounding MediUm ........ooorves0sas

Superposition of Solutions to Enforce
the Boundary Conditions ...........u.s

Special Features of tne Present Analysis ......

1.
2.

Initial Conditions
Convergence Criterion ....

Discussion of Numerical Results .

la
2.

QV'

twl sup Pulu ‘C‘l‘l“llnlol“.l“ V
‘Results Obtained by the Present '

General Conslderations sessssssssansan
Computatrions Performed to Ill.usmne

o1

55

57

the Validity of the Preseat Method ...

ermparieons with ?u’budh.ed Bata for

mwmemmmcmm.hn-'

Analysis for the Response to an -
Incident Dilatational Wave (Elsstic

MLW) ERNFRREEFERE IR N IR R IR I I N I I

Results Obtained by the Present
Analysis for the Cylinder Response to
an Incideni Dilatational Plane Wave
in a Viscoelastic Mediun .......0.0...

Comparisons with Published Data of the -

Results Obtained by the Present
Analysis for the Response to an
mci@t Smr mve PR A RN B R R AR A I

Results Obtained by the Present Method
for the Response to an Incident Shear
Wave (Elastic Medium) ......covvs00000

Resulis Obtained by the Present
Analysis for the Cylinder Response to
an Incident Shear Wave in a Viscoelas-
tic Medium ,....eciivincsnscsnnssaanaann

N N




Section

References

Appendices

A

ﬁ&mn%bmunn

Y. Kesults uUbtained by the rresent
Anslysis for the Superposition

~E ol f‘-—1‘u—1 DAanmaneane &

e wuiw - ’--nn-b- Ai\pwr\onauﬁu -’

Incident Dilatational and Shear
Waves in an Elastic Medium ,,....

PO OO B P RO PO PP IO OIE RSN ELSPEPIEST IS GBS PID

Trensformations Employed to Facilitate the
Cmputations O 8 0 5000500000 P 0 P8 SES SNSRI ES S

Representation of the Fourier Coefficlents
M’mhﬁd with the Iﬂcmm WeYE susessava




'1ST OF ILIUSTRATLONS

Figure Do~
et — -— Mo
1 Cylindricsl Liner, Coordinate Svstems, c=d
Incoming Plane Waves ............ciiiinninnnsnennnns 91
2a Traveling Waves in Real Time and Nondimensional
Transit Time Coordinates ........cocvieirinnnnnnnas 92
2b Rectangular, Triangular and Linear Rise-
Exponential Decay Wave FOXrms ........o00n0a. faee e 93
3a Cylindrical Liner, Incoming Dilatational Wave,
Coordinate System, Stress and Displacement
Ao oF - = B = o N 94

| ' 3b Cylindrical Liner, Incemiag Shear Wave, Couerdinate
| _ System, Stress and Displacement NOLALLON .....us... 94

&4 Mechanical Model of a Standard Linear Solid ....... 95 , g

Sa Hoop Stress Mom, at Inner Sur-fane' and
6 = 99°, to Imcident Dilatational Rectangular
Wave (Elastic MEALUM) +.cvmssavcaciassvsssosecsesss 26

5b Displacement Response, at Inner Surface and
! & = 90°, to Incident Dilatatiomal Rectangular :
i m\ve &Elas‘ti‘c mdi‘um) I NI T I B IR I I B R IR IR B R R T R R N LA B I B N 96

| 6 Comparison of Tavity Displacements with Those
Pbtained by Ref. 3 (Elastic Medium) ............... 97

7a Comparison of Present Computations with Those of
Refs., 2, 4, and 5 for Hoop Stress a2t 6 = 90° Due
to Incident Dilatational Step Pulse, a4t Boundary
of Cavity in Elastic Medfum, €= 1/3 ,............ 98

7b Comparison of Present Computations with Those of
Refs. 2, 4, and 5 for Hoop Stress at & = 0° Due
to Incident Dilstational Pulse, at Boundary of
Cavity in Elastic Medium, € = 31/3 ..........00.0.. 99

vim




Page
Comparison of Hoop Ctresses. Calculated at
6 = 90° by rhe Present Method, with Those Giver
‘n Ref. 7 for b*letational Step Fulse Impinging
Upon Thin Shell in Elastic Medium ........ . e.e0e0s 100

Comparison of Hoop Stresses, Calcviated at ¢ = 90°
by the Present Method, .vith Thore (iven in Ref. 7
for Dilatational Step lulse Impirging Upon Thin
Shell in Elastic Medium ., ... . . iciveicreroonnannaas

Conrarison ¢f YHoop Stress and Its Modal Conuribu-
tion, at Liner Midule Surface, with Those Given

Effect of Lianer Thickness on te Maximum Stress

(c at Inner Surface end 6 = 90°) for an.

anident Dilatational Step Pulse in an Elastic .
Medium .OOOC'.I'IC'!.llllll.l....'l‘!‘l‘lll.‘i.....O. V

Displacement Response at riner Inner Surface to
Incident Dilatational Rectangular Wave (Elastic ,
MEdium) .'l...".'.’.'I..ll.'.\“.‘l'..'l‘....“.l..‘

Displacement a@3ponse at Liner Inner Surface to
Incident Dilatational Rectaugular Wave (Elastic
t@diun‘\ "‘C...'.I'!Ilflllll..‘o....OD.0.!0l.l.l...'.a

Influence of Cylinder-Medium ImpzJance Mismatch
on Maximum Stress in the Cylinder (o hg @t 6 = 90°

and Inner Surface)  for an Inciderit Dilatat*on*l

Step Pulse in an Elastic Medium ...ci0vervoncncnnns

Effe-t of Incident Dilatational Wave Form on
Meximum Stress (o,, at Inner Surface and

6 = 90°) for Liner in Elastic Medium .....c.0veieens

Effect of Surrounding Medium Viscoelasticity on
Maximum Stress (069 at Surface and 6 = 99°) iun

Liner for Incident Dilatational Step Pulse ........

Effect of Surrounding Medium Visccelasticity »n
Maximum Stress (099 at inner Surface and

0 = 90°) in Liner for Incident Dilatatiomal Step




N R SRR ' .o

Eigure

kl
Ly
B

15¢
15d

16

17

_18g

19%
18¢

18d

Dispiaceueuni Response ui Liner Ianer Surace to
Incident Dilatational Step Pulse for Elastic-

Inrelaved Medium . . ... . . . .. iiiereninnennnnnn
Displacement Response of Liner Inner Surface to
Incident Dilatational Step Pulse for Viscoelastic
Medium L IR I B IR L B B Y R I I T R RN Y ST I T I R Y R N R N N R B A RN Y A A A RN R N )

Displacement esponse of Liner Inner Surface to
Incident Dilatational Ctep Pulse for Viscoelastic
Medium LI IR IR 2 B I I Y I I O I B N T IR Y T Y R RN R I N R R I I I T I T R NN N WY

Displacement Respinse of Liner Inner Surface to
Incident Dilatational Step Pulse ror Elastic-

Relaxed Mﬂdia .I.Illl!ll‘l.'l_lllfll‘lllllll.l.ll‘ll'

Effect of Surroun&ing Médium Viscoelasticity on
Maximum StrassA(oeé ‘at 90° and Inner Surface) in
-Liner for.;ncident Dilatational Triangular Wave ...

Efféct-oquﬁrrduhding,MediumVVisdoelasticity oﬁ
Displacement Response of Liner Inner Surface to
Inc!dent Dilatational Triangular Wave .....ceveeves

Effect of Incident Dilatational Wav. Form on

Maximum Stress (ao at 6 = 90" and Inner Surface) -

for Line. in ElgSt c~Unrelaxed Medium cssessessenns

Effect of Incident Dilatational Wave Form on
Maximum Stress (o,, act 6 = 90° and Inner

Surface) for Liner in Viscoelastic Medium .........

Effect of Incident Dilatational Wave Form on
Maximum Stress (069 at 9 = 90° and Inner

Surface) for Liner in Viscoelastic Medium .........

Effect of Incident Dilatational Wave Form on
Maximum Stress (099 at 90° and Inner Surface)

for Liner in Elastic-Relaxed Medium ......cvi0ceusus

Page

(3.
©
(4]

108

108

108

109

110

111

111

111

111




Figure
19a

19b
19¢
19d

20

2la

21b

n2a
22b

23a

Page

Effect of Incident Dilatational Wave Form on
Displacement Response of Liner Inner Surface

tor Elastic-Unrelaxed Medium ......000v0nvvvvasenes 112
Effect of Incident Dilatational Wave Form on
Displacement Response of Liner Innmer Surface for
Viscoelastic mdium 0 8 %2 0 0 0 2 U B B8 & a0ty b s 112
Effect of Incident Dilatational Wave Form on
Displacement Response of Liner Inner Surface for
vj-scoelastic Medium 4 8 6 5 6 0 0 ¥ OB BB S IE S0 O P YL s s 112

Effect of Incildent Dilatational Wave Form on
Displacement Response of Liner Inner Surface for
Elastic.Relaxed mdium lI...l‘.l.OQ.l....l'.’lll.... 112

Comparison of Present Computations with Those of

Refs. 2 and 4 for Hoop Stress (at © = 45° and
135°) due to Incident Shear Step Pulse, at _
Boundary of Cavity in Elastic Medium, e =1/3 .... 113

Effect of Liner Thickness on uajor Stress Response
(v._ at Inner Surface and 6 = 45°) for an

69
Incident Shear Step Pulse in an Elastic Medium .... 114

Effect of Liner Thickness on Major Stress Response
(t._. at Inner Surface and 6 = 135°) for an

Incgdent Shear Step Pulse in an Elastic Medium .... 114
Effect of Liner Thickness on Displasement Response

of the Liner Inner Surface for the Case of an
Incident Shear Rectangular Wave ......eceevssvassss 115

Effect of Liner Thickness on Displacement Response
of the Liner Inner Surface for the Case of an
Incident Shear Rectangular Wave R X 115

Influence of Cylinder-Medium Impedance Mismatch
on Cylinder Stress Response (tv__ at Inner

- 6
Surface and 6 = 45°) for Incident Shear Step
Pulse in an Elastic mdium 28 A 0 0 5 0 4 0 8t ¢ U P VB se e 116

xi




Figure
23b

24a
24b
25@
| 25b
26
27

28a

28b

Influence of Cylinder-Medium Impedance Mismatch
on Cylinder Stress Response (7__ at Inner

Surface and 9 = 135°) for Incldent Shear Step
Pulse in an Elastic Medium .....ociceevvnecncconnes

Effect of Stress Wave Form on Cylindeg Stress
Response (t__ at Inner Surface and 6 = 45°) for

88
Incident Shear Step Pulse in an Elastic Mediunm ....

Effect of Stress Wave Form on Cylinder Stress
Response (t_ = at Inner Surface and € = 135°) for
Incident Shear Step Pulse in an Elastic Medium ....

Effect of Surrounding Medium Viscoelasticity on
Hoop Stress (T at Inner Surfaca) in Liner for

Incident Shear Step Pulse teeteisiittseretetasnn

Effect of Surrounding Medium Viscoelasticity on
Hoop Strass (r at . Inner Surface) in Liner for

: 68
Incident shear step Pulse G2 080560084858 80848006006 H0e580

Effect of Surrounding Medium Viscoelasticity on
HOOp Stress (r - at Inner Surface) in Liner for

Incident Triangular Shear Wave .vevvisssrsossrecons

'Effect of Incident Sheaf Wave Form on Hoop Stress

(v.. at Inner Surface) for Liner in Viscoelastic

Megium with cdm/QZb = 1.0 ..........}.....5.......

Displacement Response of Liner Inner Surface to
Incident Shear Step Pulse for Elastic-Unrelaxed

Medium 4 6 6.0 6 0.8 05 050600000805 80008285 00800 ReeeeINCY

Displacement Response of Liner Inner Surface to
Incident Shear Step Pulse for Viscoelastic
Medium ¢ 8 2 906 40 08 % 4550800008 0e 0 e 0 8 6 0 2 0 0000 0 0PV S

Page

116

117

117

118

118

119
120

121

121

. Eeatry rvag: - ns




29

30a

30b

30d

3l

32

Displacement Response of Liner Inner Surface to
Incident Shear Step Pulse for Viscoelastic
Medium ...ccvvevicocnctesrsccocacssensocsssssssnnsns

i -1 - mem B P oo .. -~ - £ ') cen l m o
ULD!JLG(-BHBI.IL AGB}IUI 5€ OL uLiner LllllBL Du&‘.ﬂb

e
Incident Shear Step Pulse for Elastic Relaxed
Medium ....cvieeiaerseveensosonsssencassasasssansa oo

Effect of Surrounding Medium Viscoelasticity on
Displacement Response of Liner Inner Surface for
Inclident Triangular Shear Wave .......o00ev00n00ess

Effect of Incident Shear Wave Form on Displacement
Response of Liner Inner Surface for Elastic-
Unrelaxed Medium ......c.000s00 terersssena cesesena

Effect of Incident Shear Wave Form on Displacement
Responge of Liner Inner Surface for Viscoelastic

M‘dium ’..‘?.....,.._......-...."..—'V...‘.....V.:...V‘...

Effect of Incident Shear Wave Form on Displacement

"~ Response of Liner Inner Surface for Elastic-

Relued mdium ......lVOOOIOOCIO.lll...l‘.....l.l.l.

Superposition ofACylinder Response (Hooprstresses’
at inner boundary) To Incident Dilatational and
Shear waves in an Elﬂstic Medim ......f...‘......l

Superposition of Cylinder Response (Hoop stresses

at inner boundary) To Incident Dilatational and
Shear Waves in an Elastic Medium ssesececsocssscesns

xiii

121
122
123

123

“Effect of Iﬁcident Shéar Wave Form on Displacement .
" Responge of Liner Inner Surface for Viscoelastic .

mdium 00.‘000.0..0.'.0..'.'0...’.1.0Q"..‘......'O.......

123
123
124

125




Apl' Bpl

A
pn

Ap0

cpi’ Dpl

cpn
p0O

€4’ Cdm
t! “tm

Dpn
DpO

LIST OF SYMROLS

liner inner radius

complex constant of superposition in the series
defining the incident waves, BEq. (3.l1.6a) and
(4.2.5)

constants of superposition assoclated with rigid
body displacement in the series defining the
dilatational and distortional solutions in the
cylinder

complex Fourier coefficient defined by Eqs. (3.1.15a, b)
for incident dilatational wave and by Eqs. (4.2,16a)
for incident shear wave

_ :Fburier cdefficients_dpfininglﬁhé_incident'wave'fprh

-linar outer radius

'complex Fourier coefficient dafined by Eq. (3.1. 15c)
- for incident dilatational wave and by Eq. (4.2. 16b,c)

for an 1ncident shear wave

 constants of superposition associated with rigid

body displacement in the series defining the _
scattered dilatational and distortional solutians
in the medium -

complex Fourier coefficient defined by Eq. (3.1. 19a,b)
for an incident dilatational wave and by Eq. (4.2.19a)
for an incident shear wave

speed of propagation of dilatational waves in the
liner and medium respectively

speed of propagation of shear waves in the liner
and medium respectivaly

couplex Fourier coefficient defined by Eq. (3.1.19c)

for an incident dilatational wave and by
Eq. (4.2.19b,c) for an incident shear wave

xiv




eij strain deviator
E. E Young's modulus for the liner and madium ?
“ respectively i
h liner thickness F
Hr(IZ) Hankel function of the second kind of order n
Jn Bessel functions of the first kind of order n
k 1 kp2 , kp3, kp4 wave numbers for dilatational and shear waves g
P in the liner and medium respectively i
|
n, n integer, defining the Fourier expansion in ;
che circumferential directLon . .
P : -' -sumation integer in the representat:ion of
o - the incident ‘wave form =
_ : 3
i R o ‘ _ viscoelastic linear operatoro defined 1n L
St T BQe (3ihube) e
Piy eeey Pp - --const,ant coefficients in the viscoelastic
operators defined in Eqs. (3.4.5a,c)
] . .
Pl' ee ey PP ' ' N
qi, qy3 qs,' q, nondimensional wave numbers for dilatational
and shear waves in the liner and medium !
43, 34 real part of the nondimensional wave - ,‘
number for dilatational and shear wave :
respectively in a viscoelastic medium )
33, '&4 imaginary part of the nondimensional wave 5 ‘
number for dilatational and shear wave
respectively in a viscoelastic medium
II
Q, Q' linear operators defined in Eq. (3.4.4b)

xv




c?

o sy

¢ o0y

&- &

. half-poriod of che anidont wave

constant ccefficients in the viscoelastic
operators defined in Eq. (3.4.5b, d)

radial coordinate
mean radius of the liner

stress deviator

time coordinate

rest time parameter, shown in Fig. 2a

time coordinate with respect to the arrival

“of the incidnnt wave E=t - to)

 time at ‘which: rigid ‘body dioplaccnnntn ata
. removed for dilatational And shear wavu
reopaccively :

radial and circumferantinl displaccmnnt 1n v
the liner

displacement due to the anidcnt dilatacional
wave

'nondimenaional radiai and circumferential

o 2um . 2pu
displacements (-—;:, p be reopectivuly)
' % 0

reference coordina:e for incident dilatational

. wave

reference coordinate for incident shear wave

Bessel function of the second kind

deviatoric complex modulus




Y, dilatational complex modulus

D

! «®
R op

¢(®
vp imaginary purt of Y,

)
2
Ys(p”

real part of Y, and Yé

cij’pn matrix defined in Eq. (3.8.2)

Zj Pn column vector defined in Eq. (3.8.2)
’ . R . -

Di,pn

;{-Vﬁcolumu vector defined iﬁ 3g.,(3;8,2) .

: 'm:nx defined m 2q. '('4‘."5'.2)j_’,— i

'column vcctor def ned in Eq (4 5 2)

"u.pn

e

31 ; column vactdr.defined in Eqa (4.5.2)*9.
2P0 -

Z1 n, coes 26 4 unknewn ‘constants of uuperposition in
sP ’p the series representation of the salutions
in the cylinder and medium '
ratio of inner to a .ter radius of the
liner, P = _ W
‘mass density of tie linexr

mass denﬁity.of the medium

durat{cn of rectangular pulse

paraueter arising from the transformation
of the incident wave form into polar
coordinates and defined in Eqs. (3.1l.12¢c)
and (3.4.18)

xvii




66 ré6

real and imaginary part of ¢ in a viscoelastic
medium

components of strain in Cartesia: and polar
coordinates respectively

circumferential coordinate for dilatational
wave

circunferential coordinate for shear wave

Lamé constant for liner and medium respectfvely

real and imaginary part of -the complex ume

: aodulus for a viscoelastic nedi.ua . _
rshear mdniut for l.i.ner and aedi.un rumti.vely

- real. and hngi.nary parr. of the conphx shoat
B nodaluo, for viscoelastic mdtun B

‘Poilsson's utio {n the, liner and udiun Tespece

tively

'nmdi.mnsional. radLal com:dina:e rlb

anpli.l:ude of incident dilatational wave
diract stress in incident dilatational wave

polar coordinate cbinponenta of the stress
tensor associated with a dilatational incident
wave ' C

shear stress in incident distortional wave

polar coordinate components of the stress
tensor associated with a distortional incident
wvave

amplicude of incident shear wave

xviii




1/1:1 strain recovery time in uniaxial strain case

l./‘l’2 racovery time for shear atrain
t, 0. 2y dilatationzl displacemsut potential funciiuvns
7, Vc, an distortional displacement poiential functions
n? frequency parameter
1/-91 relaxation time for normal stress in uniaxial strain
case
1/92 relaxation time for shear stress
(gj¢r“‘ 'I;_suparscripc, deno:ing dilatattonal soluttons
N © - in-1iner , ,
(-')f'-" _ .nupetlcti.l’t, de.scri%bins qtlanti.ti.es at t:he uneri:":*" :
) : e aadiun tn:e:_ace o o
"t-f" ' ”{ 2 snperscxipt, denoting distortional solutbons Ln
the 1iner
( )d“- 'nupetscript, denoriag dilatational aolu:ions in
“che mediun 4
' ( )'m .+ superseript, denncing dintortional solu:ions in

ixx




} s
Proviews page was blank, therefcre pot filmed.

|

SECTION 1

TNTRODIICTTON

The study reported herein is concerned with the dynamic re-
sponse of deep-buried protective installations subjected to
stress waves resulting from nuclear explosions. As pointed out
elsevhere, for example in Ref. 1, the actual prohlem is exceed-
ingly complex., However, certain justifiable idealizations can
be made, that lead to tractable formulations of the subject
problem, the solution of which ylelds information on the princi-
pal effects in the actual problem. For example, the structure
considered is a long thick isotropic elastic cylinder. The sur-
rounding medium is regarded in two distinct phases of the study
as either elastic or viscoelnstic. It is assuned that the

- I pressure front generated by the nuclear burst trawels on the

surface with superseismic velocity and thus can be considered

to transmit plane seismic waves into the ground {(Ref., 1). Be~
wueofmapmarmmmsmmumm, tha influ-~
ence of Rayleigh waves 1is neglected. For the same reascn, it :
13 assumed that no appreciable influence is axerted on the peak
‘response by reflections from the surface. Gravity stresses in
t:he cyli.n.der are not considered. '

" In view of the foregoing conaiderati.onl, the idealized prob-~

lem, which is the subject of the analytical and computational
_investigation described in this report, is that of determining
the stresses and displacements in an {nfinitely long hollow
cylinder of arbitrary thickness embedded in an infinite medium.
The cylinder is enveloped by plane stress waves progressing in
a direction perpendicular to iis axis (see Fig. 1). The problem
is thus one of plane strain. The cylinder is elastic, homoge-~
neous, and isotropic. The surrounding medium is homogeneous and
isotropic, and in two separate and distinct phases of the analy-
sis i8 considered to be either elastic or viscocelastic. The
plane waves impinging on the cylinder are, in succession, dila-
tational and distortiomal (Fig. l1). An analysis is developed
‘to account for an arbitrary pressure-time history of the incom=
ing waves.

Computations have been carried out for the following wave
" forms: 1) a step pulse; 2) a rectangulur wave; 3) a triangular
wave; and 4) a linear rise-exponential decay wave form,

et




SECTION II

RTICHSQTAN AR ANATVCTC

Two limlting cases of the present problem have been studied
by a number of investigators. The diffraction of a stress wave
by a cylindrical cavity in an infinite medium is examined in
Refs. 2, 3, 4, and 5. Using thin shell theory to describe the
behavior of the liner, Ref. 6 treais the problem of the diffrac-
tion of a stress wave by a thin cylindrical liner in an elastic
medium,

In the foregoing references, transform or related integral
techniques are employed to obtain soluticns. Such techniques,
however, if applied to the present problem, where the cylinder
must be analyzed within the scope of the theory of elasticity
(since it is considered to be of arbitrary thickness), would
lead to formidable difficulties in the inversion process.

The method utilized in the current analysis circumvents
these difficulties. It consists of devising a solution to the
transient problem from a superposition of appropriate steady-
state solutions to the wave equation. 1Its success stems from:
1) the capability of constiucting a train of pulses from steady-
state sinusoidal components (Fig. 2a) where earh pulse represents
with sufficient accuracy the time history of the transient stress
in the incident wave; 2) the existence of a mechanism which,
between pulses, restores the disturbed particles of the cylinder
aid the surrounding medium to an unstrained state of rest.
Physically, in the present problem, this mechanism is provided
by the continuous raulation of energy from the excited cylinder -
through the surrounding med.'» jutward to infinity, Mathemati-
cally, it is implied by solutions of the ficld equations that
enforce continuity of stresses and displacements between the
cylinder and the embedding medium, and which at infinity repre-
sent cutgoing, decaying waves. Thus, 1if time is measured from
the moment of arrival of a pulse at the cylinder, the response
will ve identical to that excited by a transient loading having
the time history of a single pulse. The validity of this tech-
nique is amply cemonstrated in the present report.

The use of steady-state solutions to obtain a transient
response has also bezn suggested by Ref. 8 for systeums in which
damping provides the mechanism for bringing the systew~ to rest.




As will be seen, the present approach offers greater opportunity
to gain physical lnsight int» the problem than do previous ap-
pruaciiey, aAn additivnal polui uli Qepariuse ln ine presenc
approach concerns the number of circumferential modes chosen to
describe the derormation. .11 the afore-mentioned approaches
constrain the deformation by selecting in advance a fixed number
of modes to apply tn all matérial points and at all times of the
response, In the present analysis, the accuracy with which the
solution is required to converge deteruines the number of modes
selected. This number is permitted to vary with both the
material point being considered and the time at which its re-
sponse is calculated., Thus, within the limitations of a Fourier
series representation at the initial discontinuity, the present
method sliould, in general, be more accurate. This will be shown
to be especially the case during the early part of the response,

o

The dynamic response of the cylinder is determined by cb-
toining separately and subsequently combining several distinect
component parts, each cof which is a solution of the wave equation 1
in either the cylinder or the surrounding infinite medium. These - |
are the stresses and displacements associated with: 1) the inci- -]
dent wave; 2) the transmitted and .reflected waves in the cylinder; |
and 3) the scattered waves in the surrounding medium, The fore-
going components must be combined so that the inner surface of -
the cylinder is traction free, and:at the outer surface the normal
stresses in the radial direction, the shear stresses in the cir-
cumferential direction, and the displacements in the cylinder are
continucus with the corresponding quantities in the medium.

P -




SECTION III

SOLUTICN FOR AN _INCIDENT DIIATATIONAL PLANE WAVE

1. Stresses and Displacement.s Applied to the Cylinder by an
Incident Dilatational Plane Wavg in an 2lastic Medium

The Cartesian coordinate system in which the incident plane
dilatational wave is described is illustrated in Fig. 3a. The
disturbance 1s assumed to be traveling in the negative x-direction.
The equation governing the propagation of the wave (which depends
only on the space coordinate x and time coordinate t) 1is
given by Ref. 9 as

2 2
0 . 1 9¢
o 2 (3.1.1)
A
dm .
where ¢ 1s a displacement potential defined”as‘EOIIOWS: '
- R | S .
' ui =0,
and the pertinent stresses are given by
Oy ™ (km + Z“h) sz » (3.1.3)
5
%Y
g - A — 3.104
vy ™ e 52 (3.1.4)
The quantities wu,, Uys Uz, Oy and o y are . - ments
and stresses in Cirtesian coordinates, Km anr ne
Lamé constants of the medlum, ¢4, is the spe. . . - ation
of dilatational waves in the elastic medium anc = . . by




/ N+ 2n
cdm- 'Y ¥ (301-5)

m

and Yo is the mass density.

A steady state solution of (3.1.1) is

i [lcp3 (x-b) + cnpt ]

o= ) Aye (3.1.6a)
p=l
where the frequency w, is given by
- BT
a$ " T (3.1.6b)

Also, T 4is an arbitrary time interval and the Ap ~are vcron'lplex
constants of superposition that will be expressed in terms of the
Fourier coefficients defining the incoming wave form.

For our purpose, we represent the incident stress wave a, .,
(see Fig. 2) in the form :

Oy ™ z ay sin o [(L.b.) + t] , "7 (3.1.7a)
p=1

or at x= b as

- 2]
T ™ 2 ap sin a)pt , (3.1.7b)
p=1
where the ap are the coefficients defining the wave form over
the arbitrary half period T.

n,




- 2
Bp - TJ O sin cupt dt (3.1.7¢)
0
An expression for Tyexc identical with (3.1.7a) is the real
part of
o0 .
ik _,(x=b) + w t])
- O e p3 P

e /) ( :I.ap) e . (3.1.8)

p=l

From (3.1.3) and (3.1.6a),

-]

:I.[k 3(x-b) + W t]

Oy = z O, + 2 )k o3hp © . (3.1.9)
Comparing (3.1.8) and (3.1.9), we obtain
A = EP R - ©(3.1.10)

P © o 2
(?‘m + zum) kp3

Now, from (3.1.2), (3.1.6a), and (3.1.10) we can write

o
-a ik . (x=b) + o t]
p p3 P
u = = e (3.1.11a)
) pel (g ¥ 20p) k1)3 ’
or, noting (3.1.5) and (3.1l.6¢),
a 1[k_,(x=b) + w l:]
- Z ——‘l— p3 (3.1.11b)

p=l




Since the cylinder boundaries are naturally defined by polar
coordinates it will be more convenient to write the stresses and
displacements associated with the incident wave in polar coordi-
nates. Then

— oxx(cosze + e sin‘O) R (3.1.12a)
B, = - o, (Lg—i) sin 20 , (3.1.12b)
where
A
¢ =g - (3.1.12¢)
m “m :

_ Substituting (3.1.8) into (3.1.12) and setting x = b.cos 9,
we cbtain the following expressions for the stresses applied to
the boundary by the 1nciden; wave: o : B

S iw
: - P o . » B
Ce= ) o e P, | (3.1.13a)
p=1 ' '
B ® iait B B
. Opg = " ) %o,p & (3.1.13b)
p=1
where
2 2 iq3(c059-1)'
o} = (~ia_) (cos“e + € sin“g) e , (3.1.13¢)
p p
iq,(cos 6-1)
- (= lL-¢ 4 3
%o ,p (iap)( 5—)sin 20 e , (3.1.13d)




with
q; = bky = n(—~2—) (3.1.13e)

In anticipation of matching, later in the analysis, the
tractions applied by the incident train of pulses with the
cylinder stresses and stresses assoclated with scattered waves
in the medium, we represent the stresses given by (3.1.13),
and acting at the cylinder boundary, as the real part of

B _ iwbt

Oy ™ Z. Z apApn cos nd e , (3.1.14a)
p=1 n=0
z ZaB sinnd e P, (3.1.14b)
P-l n-l ‘ ' - R -

~ where the-complex Fourier ;oefficients \,,, and Bpn are
obtained by comparing (3.1.14) with (3.1.13). They are

i 7 , .
' - 1q.(cos. 9-1) _
_ Apn - - %} (cosze + e einze) e 3 cos nod do , (3.1.15a)
0 n>l
T
iq,(cos 6~1)
ApO - - # (c0829 + € sinze) e 3 dé , (3.1.15b)
0
T
1 - <) 1q3(cos 8-1)
B & —= e sin 29 sin n6 d6 . (3.1.15¢)

T




aaaas |

These expressions, (3.1.15), are representable in terms of
Bessel functions of a complex argument of the first kind and
integral order n - as shown in Appendix B.

Conditions of continuity between the cylinder and surround-
ing medium require that we match diaplacements as well as appro-
priate stress components. The radial and tangential displacements
in polar coordinates are related to the Cartesian coordinate
displacement uy, as follows:

u =u cos8é , u

. =-u sind . (3.1.16)

%

Substituting (3.1.11b) into (3.1.16) and setting
X = b cos 6 leads to

- . et : 7 o ' T -
: .. :p.l,_ - e , i
e e ; | ,
o T lw t o o
Yg - Z' “e;p e P ’ ' C ) S (3.1.17v)

p=l
whefer 7

I iqs(coe 6-1)
ap cos are '

u, = —, (3.1.17¢)

r,p ' Y dm®p

iq3(coa e~-1)
ap sin 6 e
u - » (3.1.174)

e,p Ymcdep

or alternatively,

1q3(cos 6=-1)
. apkp3 cos 6 e

u ’ (3.1.17e)

r,pP w?
mp

Y




iq3 \503 9'1)
PkEl sin v e

wl
T P

u . (3.1.17%)

o,p

As with the stresses, we expand the displacements at the
boundary in the form

i t 3
E: y cosnde P , (3.1.18a) 1
pel n-O ':
-~ ] w0 H
a,.D i ¢t 5-
3o Tl oL
' pel n=l1 mdmp - ' &

;1‘where the complex Fouxiér coafficinnta cpn and Dpn ‘are . . .-
- obtained by comparing (3.1.18) with (3 1 17).. Thus,

T
: 2 : 1q3(cos 9"1) ' o : i s M
cpn-- Tl e. - co8 9. €08 né d9 o o (3.1.19a) T
o : ) . a3t ,
| 1 1q4(cos 6-1) .
cpo - e cos 8 d9 , 7 7(3.1.19b)_
T \
2 iq3(cos 8-1) - ‘
Dpn - J sin 6 gin n6 d9 ., (3.1.19¢)
0

As in (3.1.15), the complex Fourier coefficients defined
by (3.1.19) are shown in Appendix B to be representable in terms .
of Bessel functions of a complex argument.

10




2. General Solution of the Wave Equation in the Cylinder

displacemanta genarated in the élastic cylin-

‘ihe stresses aid aisplagemen
der are presented in this section. The solution {8 constructed

from dilatati{onal and distortional displacement potential functions,
Such solutions are discussed in Refs. 9 and 10 for exampie. The
polar coordinate notation of Fig. 3 1is used.

The nonvanishing strains are given in terms of the displace-
ments (Ref. 9) as

€ - -a—t:: € - l 'a'::e' + :lx

rr dr ’ 66 r ¢ r ?

(3.2.1)
R ) E}.‘ﬁ - ::2 + ) N E-L-ll
"“re "3 T r T rae )
T ’ﬁ-\,‘ ;':gcjegh '- sttain 'i:.ﬁﬁt;l.odé are

Oy ® Mepp t ) ey,

L (a.2.2)

A -'k(en + eee) + Zy.eee »
%0 = Ko "7;

where A and y are the Lamé constant émd' shear modulus, 7
respectively, of the cylinder. The equations of qutlibrium :

2
“u do, do
—t . =3t  l_x6 .1 -
‘Yat2 or +r d8 +r(°rr 099) ?
(3.2.3)
2
o“u do o¢
y -—k 4188 .2,
at2 or r 96 r o
11

- MR FC <+ % sa e e

s




Displacements u, and ug, which satisfy (3.2.1) through

(3.2.3) identlcally, and are assoclated with dilata€ional waves,
are given by

o
d . =< l
U " 3k + U F g 3 (3.2.4)

ia which ¢,, the displacement potential, is governed by the
wave equation

Vo, -5 =0, (3.2.5a)
¢, ot
d
where
R e - T (3.2‘.55)‘_ |
N u a2 T xz 392 e

. (‘

~and’. nd,' tha apocd of propagation of dilatational vaves in the

. c  7cy11ndar, 13 given by ;“f

N el  (3.2.5¢)
_ 4 _ Y.t - ‘
'where v 1s the mass density of the cylinder

Whan Eqs. (3.2. 4) are introduced into the strain displace-
- ment relations (3.2.1), And these in turn into the stress strain
re_ations (3.2.2), we obtain the stresses assoclated with dila-
tational waves, in terms of the displacemant potential ¢, as
follaws .

9 o 2
Upp = WO, + 20 2 Ogg = W7o, + zu(rz 362 tr 3 )
| (3.2.6)
P
d _ 1 B - -
% " W T 36 1f) )

12




A solution of (3.2.5a) may be written as

* r iﬂ) t
‘ J \ v
o, = ) lzl,pu a (k r)Jcos nej e
=)

o-‘ln

l.r) + z2 pn n

3.2.7)

+ z Aplx' cos 6 ,
p=1
[~ -}

where: 1) kpl - mp/cd; 2) the series Z Aplr cos 9 consists
p=1

of a superposition of solutions to (3.2.9 that correspond to rigid

body displacement; 3) the J,(z) and Y,(z} are Bessel functions

-of- ‘the first and second kind, respectively, of integral order n;

-and &) the 21 and zz " are complex constants of supet-' '

Spn
posi.tion to be determi.ned from the boundary condit:iona.

. A bar is placed over t:he integer n in ce:taiu subsequent
terms for the following reason: In the analysis to follow, the
potential functions will be differentiated with respect to the
circumferential coordinate, 6, and also the radial coordinate,’
r. Differentiation with respect to & introduces the integer n
as a factor directly into the expressions for the stresses. Dif~
ferentiation with respect to r, and subsequant: use of the Bessel
function recursion relations, also introduces the integer n into
the stress and displacement expressions. It will be convenient

to identify the origin of the integer n because the solutions
for the cylinder and for the scattered response in the mediuw,
appropriate for incoming shear waves, can be cbtained from the
corresponding solutions for incoming dilatational waves by:

1) interchanging sin n6 and cos nf; and 2) setting W= ~ n,
In the case of the dilatational wave, we simply set @ = n,

It will be ncted that &, 1is constructed by a superposifion
of steady state sslutions of the form

iw €
- Y P
% Z [ 1,pnon (k 15+ zz’pnYn(kplr)]cos né e , (3.2.8)

13




and a solution describing rigid body displacements, Such solutions
have been used to solve the steady state problems repnrted in

Refs. 11 and 12. The use of steady staie solutions Lo construct
the solution to a transient problem has already been discussed.

13 that the derivatives of the Bessel

.
-5
bc cxpressed as

3@ =8 @ -, (3.2.9a)
: R X S S R 1
J_(2) L“ 2 1} I (2z) +23 (2 , (3.2.9b)

and similar relations for the derivatives of ¥,(2).

As mentioned in the text preceding Eq. (3.2.8), and as
can be seen in Eqs. (3.2.9), the recursion relations for the
derivatives of the Bessel functions introduce the integer n
into the stress and displacement expressions. Introducing
Eq. (3.2.7) into Eqs. (3.2.4) and (3.2.6), making use of rela-

tions (3.2.9a and b), and defining a nondime..sional radial
coordinate as

p=%, (3.2.9)

and a nondimensional wave number as

we can write the expressions for the displacements and stresses
as

o

-4
d 1% o -
“r b Z Z ql{zl,pn<qlp Jn(qlp) Jn+1<qlp)>
p-l =0

lw t :
o ] ) R ‘
+ ZZ,pn(qlp Y (4;0) Yn+l(qlp))jcos ng e (3.2.10a)

+ A _cos 9 ,

pl

[ l\/‘l 3

PRI, O e -y




i t

--i 3y §1 } ;
b L 2, P {zl,pn n(qlp) + 22 pn n(<llp) sin n9 e

p=1i n=1

® j ) . -
d _ '_15 y Z 9 Zl,pn[{% - 2u<———_(qlp)2 - 1>}Jn(q1p)

2
- Ef; n+1<q1p)]
+ Zz,pn[{% - ZH(E.(_“.-:-—- - 1>}Y (q]_p)

(q,p)

iw t
P

21
o Yn+1(q19)} i cos né e ,

nln 1)} J,(ayp)

2 z :P"\‘ J}\ql ﬁ’2

p-l n=)
q
i §
W p Jn+1(qlp)l
[ 2|.Ln(n -
l 2 }Yn(qlp)
9 iw t
+ 205 Y (4,p) | { cos no e ,
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(3.2.10b)

(3.2.10c)

(3.2.104)




2~ o
) fg{ Loa|92P3me (10) - (@ = DI (0]

y—; =i -

o

(3.2.10e)
i t
z, pn[qlp +1$@P) = (n - l)Yn(qlp)” sinnée P

where the superscript d has been used to designate the con-
tribution from the dilatational solution. The contribution from
the distortional, or shear wave solution, will now be discussed.

A representation of the displicements u, and u, associa-
ted with shear waves is

[ |

]
o/f Qv
7]2

Y
u - % 359 » U

» o (3.2.11)

in which the displacement potential, -Yc, i1s governed by the
wave equation :

2 , %
vy -=—fao, (3.2,12a)
c 2 ..2
cl ot
t
where ci, the speed of propagation of shear waves in the
cylinder, is given by
c, = /':Yp? . (3.2.12b)

When Eqs. (3.2.11) are introduced into the strain displacement
relations (3.2.1) and these in turn into the stress strain
relations (3.2.2), we obtain the stresses associated with shear
waves in terms of the displacement potential ¥

oY
8 o gy 2| —% 8 o - o8
Oer 2u dr|r 96 ] : % Oy ?
2 (3.2.13)
3¢ 3%y |
Us _u-r.a_l.__.ﬁ +.l.. ('l
2] dr|r or 2 2
r° o9 J
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A solution of (3.2.12a) may be written as

- l ’ ;.wp;
¥, E; { 2 [23,ann(kp2r) + 24’pnYn(kP2r)]sin ne} e
p=l o=l
(3 . 2 . 14)

o0

+ z B,yr sin 6 ,

p=1
o
where: 1) kp2 - a$/ct; 2) the series z Bplr sin 6 con-
p=1
sists of a superpousition of solutions to (3.2.12) that corre-
sponds to rigid body displacements; and 3) the _23 pn and

24 ph are complex constants to be determined from éhe boundafy
conditions.

As in the dilatational solufion, ¥, is constructed from
a superposition of steady-state solutions of the form-

[+:}

o i t
- . p “
b= {ZSJPan(kpzr) + 24’pnYn(kp2r)]s_in nee P, (3.2.15)
n=l

and a solution corresponding to rigid body displacements.

" When Eq. (3.2.14) is substituted into Eqs. (3.2.11l) and
(3.2.13), and the relations in (3.2.9a and b) and the quantity
defined in (3.2.9c¢) are introduced aloag with

q. = bk

s p2 * (3.2.16)

we have finally the following expressions for the displacements
and stresses assoclated with the shear wave solution:




S.d v 7 B/ iw_t
“Y " b Z P 123,ann(q2P) +2, ,pn n(qu) }cos noé e
p=]l n=0
" (3.2.17a) ' I
+ z Bpl cos 6 ,
p=l
8 - - 1l o
"o b L) qz{zf’npn[qu Tnl9pP) - n+1(qu)J
p=1 nel
iw t 3
. + 1 .
o z4.pn[qu ¥ (ag0) - n+1(‘l2")]}““ noe P (3.2.17b)
ZBplsine,rr' | - '.
P=1 . o , o
, o
2 o o |
B _ll- - 5_ .
p=1 n=0 P
(3.2.17¢)
iw t
Z4,Pn[(n = Dy (qp) - quYn_,_l(qu)”cos ne e
8 8
%e = 7 %y o (3.2.17d)
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(3.2.17e)

iw t
}sin né e P .

3. Solution of the Wave Equation for Scattered Wavas 1n the
Surrounding Medium :

As in the cylinder, the solution in the surrounding infinite
medium may be constructed from two displacement potentials, one

- dilatational, the other distortional. However, in addition it is-

required that at infinity these solutions represent outgoing,
decaying waves.

After c4q 1s replaced by cg, (the dilatational wave

velocity in the medium), the dilatational potential, namely a
solution of (3.2.5a) that meets the requirements at infinity,
may be taken as

2) ' iw t
.2 ZZSPnH (k t)cosnee +ZC r cos 6 , (331)

p=1 n=0 p=1_
where 1) kp3 - %z—m H 2) Hr(12) - Jn(z) - iYn(z)

are Hankel functions of the second kind; 3) the 25 pn
3
complex constants of superposition to be determined from the

are
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boundary conditions; and 4) the series Z: Cpl’ r cos 6 con-

p=1
sists of solutions associated with rigid body displaccments.

Substituting Eq. (3.3.1) into Eqs. (3.2.4) and (3.2.6) and
introducing Eqs. (3.2.9a and b) and the definition (3.2.9¢c) along
with the definition qq = bk 03’ we obtain the following expres-

sions for displacements and stresses.

Z Z { N | ERCHORE® AR Y

p-]_ n=0
n iwpt
- 125,pn[p Y (qq40) - q3Yn+1(q3P)]}cos no e (3.3.2a)
+ z cpl cos 6 , : | : . AR i
p=l
f i " Lot |
2 Z 125, pnl Jn(qap)] - 1z, pn[p n(q3p)]}sin no e
p-]_ n=l
@ (3.3.2b)
) Gy ein o, I
p-]_ ,_.//
— dm n(n - l
- 2 z q3 zS,pn {Km 24 ( ( ) 1>}J (94p)
P-l n=0 . q3P
2 -
- —M - - n(n ) . '
(q3P) Jn+1(q3p) izS,pn {Am 2uh& (q3p)2 1>}Yn(Q3P)
] (3.3.2¢) :
ZuE in t
- ]
(@e) Yn1 (130 f{cos o e T,
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: _:'_‘,,. 2 z zg pnr(lz)(k4r)sin no e P + 5 D, rsine, \333)

‘of solutions aasociated with rigid body displacements, and

) fg{zs,pn[(q:,p) S CYORNCERIENCIY

&
U‘N L_E‘l

.a ~1 8

1

’ o (3.3.29)
i t
1z, pn[(43p) nt1(350 = (o - I)Yn(qap)]}sin nee P,

where, as already cited,

qq = bkp3 .

(3.3.2¢)

After c, 1is replaced by c., (the distortional wave
velocity in the medium), the distortional displacement potential
for the medium, namely, a solution of (3.2.12a) that meets the
requirements at infinity, may be taken as

«© 00

1w

p=1 n-l ' ' "~ pwl

where°'1) Vkp4 - W /c ‘; 2) the series Z D 1r 8in 6 consists

3) the 26 are complex constants of superposition to be
determined’ from the boundary conditions. 1

- The displacements and stresses associated with ¥~ are

obtained by substituting (3.3.3) into equations of the form
(3.2.11) and (3,2.13), and introducing (3.2.9a-c). Thus

Z E {26,pn[‘]n(q4p)]

C'.
ll\/l8

(3.3.4a)

-]

iwpt
- 126’pn[Yn(q4p)]}cos nd e + E: Dpl cos 6 ,
p=1

21




Z Z {6,,.,[9 J (a0 - qJ n_,_1(q4f>)]

n-'l n=l

M s P e i e i .

iw t

- n - o
izg,pn[p Y, (q,p) q4Yn+1(¢149)]}sin no e (3.3.4b)
- Z Dpl sin 6 ,
p=1
Gsm..z_‘ig > 2 aj; [(n- DI _(q,p) = 9q,p3 .,(q p)]
rr b‘l. ZJ Z 2{ 6,pn n' 4 4" n+l MG L
,p-l n=0 ) - . ‘ f
: : (3.3.4c) . B
. ‘imPt R - l :
- 126 pn[(n - l)Y (q4p> q,,p +1(q4p)]}cos no e | ) | :
%ro b2 ) z Y )% ,pn'l{ @0l 113,(q,P) , B 7 }
- p=l n=1 [ ‘9P !
+ 9P I €94P) (3.3.44) :
B ) iw t } "
- 2n{n -~ 1 R 2 b _ ;
izs,pn { 2 I}Yn(Q4P) + q,p Yn+1(q49) sin nd e ’ R
(9,p) 4 P
where |
Q4 - bkp4 . (3.3.43)
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4. Correspondence Between Elastic and Viscoelastic Field Equations

Viscoelastic problems are very often formulated on the basis
oL an ii‘ﬁléay wWiti COLiedpunding eclasiic piublews, in generati,
the procedure consists of replacing the elastic parameters by
axprassjona involving linear aperators that contain the viscoelas-
tic properties of the material being considered. In the case of
steady-state problems, the operator expressions reduce to alge-~
braic functions containing the frequency as well as viscoelastic
properties (see, for example, Ref. 14). For the sake of com-
pleteness, we will review the procedure, following, for the most
part, Ref. 14. The linear strain displacement relations, referred
to Cartesian axes (xl, Xy x3), are

€,, = %(ui,j + uj,i) i,j=1, 2, 3. (3.4.1a)

The elastic stress s:fain law is

Qij - Rsij kk + ZueiJ
'-The equilibrium eq¢ation is
; 2
- 9%
— _
13,7 3 _",f’ ' @-4.2)

In Eqs, (3.4, 1), and in what follows, ’ j -1, 2, 3; repeated
indices indicate summation over all the possible values of the
index; commas denote differentiation with respect to the Car--
teslan coordinate assoclated with the index following the comma,
and 51j ‘18 the Kronecker delta (ﬁij w0 when 1 ¢ j, Bij =]

when 1 = j),

The stress deviater, s 13° and the strain deviator, eij ’
are defined as

854 = 04y " iaijdkk R (3.4.3a)

ey = €4 " iaijekk . (3.4.3b)
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—re o

The creep laws are written as

s = Qeij s (3.4.4a)

p’okk Qe , (3.4.4b)

]
where P, Q, P', and Q are linear operators with constant
coefficients and are defined as follows:

;-
P -PO+P1%+"'+P¢>§E’ (3.4.5a)
3 ot
Qo + Ql at + ... + Q‘h g? 3 (30405b)
o - () - D
P =P +P1'§'+...+Pﬂ§—£, ' ' (3.4.5¢)
» Bt: : .

The constants PO’ Pl’ coss Q in these equations are determined
on the basis of the viscoelastic model selented.

Since the present analysis utilizes solutions that are har-
~monic in time, we select displacements of the form

u, =4, e s (3.4.6a)

where barred quantities are dependent upon space coordinates
only. From the representation (3.4.6a), it follows that

- iwt

T , where Eij - %(Ei,j + ;j,i) ’ (3.4.6b)
ey = ;ij elot » Where ;ij - ELJ - ibijzkk , (3.4.bc¢)
5y " ;ij elot , Wwhere ;ij - Bij - fbijakk , (3.4.6d)
05y = Gyy e ” (3.4.6e)




When Eqs. (3.4.6) are introduced into Eqs. (3.4.4), the
creep laws become

P(10)s;y = QUw)E, (3.4.7a)

' (105, = Q UDTy » (3.4.7b)

where now the symbols P(iw), Q(iw), P' (1w, Q' (iw) represent
the polynomials in (iw) that result when the operat:ions defined

by (3.4.5) are carried out, that is,

P(ie) = B + (1)P) + (L) 7p, + «ov + ()PP, (3.4.8)

etc L

. If we define the following rational functions of (iw),

i L S ' S :
Y = M (deviatotic, complex modulus) , (3.4.9a)
s P(iw) .
X, = "‘S‘-l (dilatat:ional complex modulus) » (3.4.9b)
' P (i) '

the creep laws (3.4.7) may be written as

sij - Yseij ’ (3.4.102)

Ok ™ Y€k ° (3.4.10b)

Then, combining Eqs. (3.4.10) with the definitions of the devlator
amplitudes in Eqs. (3.4.6), gives

313 - Jgaij (x, - Ys)Ekk + Ys'é'ij . (3.4.11)
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Comparison of Eq. (3.4.1i]1" with the ~jastic stress strain
Jaw, Eq. (3.4.1b), indicates that the eta-tic field equations
(and corresponding solutions) may be emplo/ed in wiscnelactis
problems provided that the elastic modulii > and p are re-
placed by the corresponding viscoelastic m:dulii Av and s

respectively, where
L 1¢ ML 90 I (3.4.12a)

g.l_
M, = ¥, . (3.4.12b)

It is to be noted that A and K, are, in general, complex,
and are functions of the frequXucy, w, and the parameters that
define che viscoelastic model.

The viscoelastic equivalents %v and W, must replace their
elastic counterparts wherever they occur. This substitution is
necessary not only where Am and b, appear explicitly, but also
in those parameters in which they are implied, namely, k q OF

and €. in what follows, the subscript v will be dropped,
and a subscript m will be used to distinguish the medium from

- i
the liner. . '

For convenience of reference we rewrite the dependence of
thesa parametexs on %m sud

(S

kp3 - wp/cdm, [see Eq. (3.1.6¢) ], which may be put into the
rondimensional form

95 = bkpB [see Eq. (3.3.2e)1] ,

€ = 7\m/(/\m + me) [see Eq. {(3.1.12¢) ],
/ (3.4.13

kp4 - wp/ctm :

or, in the nondimensional form

q4 - bkpa .
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We now .nt:oduce (3.4.12) inco (3.4.13). Recalling thact Y

and Ys are rational functions of the pure imuginarv variable
iw, and that the Trequency o dopends upuu ine index or summas
tion p, (i.e., wp = p7/T) we wri.e

v

Yv(iwb) - Y(l) + iYsg) ’

vp
(3.4.14)
o v (2)
Ys(iwp) Ysp + iYsp »
where
(1) (2) 49 (2)
YVP ’ YVP ’ Ysp ’ YSP

are rcal, and the subscript p 1s used to indicete dependence
on the index of summation. In addition, we let

P vp sp ’
@ @ @ (3.4.15)
Y N va + 2y sp

Then, if we introduce (3.4.12) into (3.4.13), and take account
of (3.4.14) and (3.4.15), we obtailn the viscoelastic equivalents
of k 3 and kp4 in nondimensional form (dropping the subscripts

p, but keeping in mind the dependence on p), as follows:

qy = (bky) = @y - 1§, , (3.4.16a)

q4 - (bk4) - q4 - iq4 ’ (3.4.16b)




where

¢/% Wm bw" //rji

J.? ., 2t
v X )4

-+

P P

V'3 v, bey

2 2
(1) (2)
LA

2
= V//{¥é1) + V//;él)

2
(2)
+ Y

Y T 2 / (0 /Yu)

2 2
" L (2
V/QSP + Yoo

(2)2

SP

Y Ty b Al) /(1)
7T o2
(O3 R ¢’
\/Q” +Y”

and the shear modulus Hge Ve obtain

— (™3
A w A4 LA,
m

- ~
My = B+ ip ,

(2)

For the viscoelastic counterparts of the Lamé constant

(3.4.16¢c)

(3.4.16d)

(3.4.16e)

(3.4.16f)

Am

(3.4.17a)

(3.4.17b)



where

T e e ()]
A - glyvp v | )
‘ (3.4.17¢)
X. ‘i[Y(z) - Y(z)] ;
L vp sp | !
TL - %Ysé) »
(3.4.179)
L= %Yéf)) .

And for the viscoelastic counterpart of €,
€=+ 1€, (3.4.18a)
whexre
— - - ~on ~
AMA 4+ 210 + MDA+ 2p)
— _2 Y] Nz,
(A + 20)% + (N + 2u)

(3.4.18b)

[a¥3

~o . AA+ 2p) - AR+ 20)
F+ 2%+ A+ 20?2

. (3.4.18¢)

5. Yiscoelastic Model

The standard linear solid viscoelastic model considered in
Ref. 15 and shown in Fig. 4 was selected for the present analysis,
It was chosen because it is the simplest model that exhibits the
four most common features of viscoelastic behavior: instantaneous
elasticity, creep, stress relaxation and creep strain recovery,
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The operator representation cof the model is

Y cﬁ lT] + le
n.. [ Y -

Idie] E TN
aum ' '-m - l » A\ odes iy
. [Ql + at]
4% c2 [Tz + le
Moo= ’ (3.5.1b)

: [“2"’52

where the notation of Ref. 15 has been changed, and the symbols
employed above have the following meaning:

€ 4m velocity of propagation of high frequency
dilatational waves
Cem velocity of propagation of high frequency
distortional waves
i;- strain recovery time in uniaxial strain case
1
%‘ recovery time for shear strain
2
é“ relaxation time for normal stress in uniaxial
1 strain case
E}' relaxation time for shear stress.
2

The choice of the specific model defined by (3.5.1) now
enables us to evaluate the operators represented in general form
in Eq. (3.4.5) and associated with the stress strain relaticns
in (3.4.4).
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From (3.4.12b) and (3.4.9a),
Q(1w)
by = 2 = P30
Therefore,
Q= Z'Ymcim[TZ + 382} ! #
5 (3.5.2)
P = Qz + 3¢
From (3.4.12) and (3.4.9)
t
- - - Q]
2+ A =¥ 43, - =3 +2F],
or
Ql
;g— - 3(2|J'm + }‘m) - 4“111 P)
and from (3.5.1) 4
4
¢ =y {ac? o 2
Yo cmeIQZ 4ctmT2Ql + :Scdm('r1 + 92)
2
- 4ol 2 2,2\
been(ty + Q1)] 5+ (3% 4ctm>at2}
(2.5.3)
p' = a0, + (2 +sz)-§-+-32— /
12 1 2/ at at2 *
31




The present analygistts concerned with steady-state solutions

in which the factor e is present., Therefore, when the
operators Q, P, Q', and P', as defined by (3.5.2) and (3.5.3),

are used Lu Lhe Creep 1nwal\3.4.4), they generacte the poiynomiais
Q(iwp), P(iwp), Q (iwb), P (iwp) indicated in (3.4.8). These

polynomials now take the form:

2
. ' ' 9 (3.5.4)
Q = QO + iprl szb )
' 1 1 2
P = P0 + iwbPl wb >

where

2 2 »
ol 3CanT1% ° 4enTa®y) o

&£-

q = ym[acﬁm(rl +0,) - 4c§m(12 + al)] ,

O
()
.

! 2 _ 2
Wmlacdm 4°tm] ,

Py = %% »

o}
[

1 Ql + QZ .
The deviatoric and dilatational complex modulii Yg and Y,,

Eq. (3.4.9), may be written in terms of the basic properties of
the viscoelastic model by utilizing the polynomials obtained
above,
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Q(Luy)
s P(iu.\p) !

may be written in terms of real and imaginary parts as

By using (3.5.4), the deviatoric modulus, Y

- v (2)
Ys Ysp +1Y8_D ’

2
2 T2 2 /San! P
1 2'Ymct:m f + (pm) (c T/b )
v . 2 —dm
sp 2 ?
¢, /a9,b

1+ (Pv)z (cme/b )

2 _ 3.2 ci /sz
(2) ZTmCthW[l Qzl (ci T/b )

2
2 /€ /S.b
L+ (en° (3 o 1/b )

1
Q (Lwp)
- o ’
vV p (:La.)p)
may be written in terms of its real and imaginary parts as

Similaily, the dilatational complex modulus, Y

oy (2)
Y\J va +iYVp »

where

O czm{l—(_lg - Q,(pm) ZJFO - pm?] + :]f]_(pﬂ)z}

vp _ 2 _
[PO - (p7r)2] + P]Z_(pﬂ')2

gy - Eg iy GL(PW)Z]EJ
zJZ

) -
Y(z) . Wmcdm(Pv)jJPO - (pm
vp

[FO - (pm + -l;lz_(p'lr)z
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where, from Eq. (3.5.4),

192 2 r ~ 1
- Yt T/b T Q. T, c, ‘1
Q=" " (cdm/n 5) (52) 3 5‘: ‘*(Fi:) 32 ’

T/b

Note that, by the way Eqs, (3.5.5), (3.5. 6), and (3.5. 7) are
written, we have intrcduced in the formulation of the problem

the following nondimensional ratios to represent the visco-
elastic proparties of the medium:

shear relaxation time to uniaxial strain
relaxation time

stress relaxation tim: to strain recoveyry time
for uniaxial strain

shear stress relaxation time to shear strain
relaxation time

shear relaxation time to half transit time.
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The ratios 11/01 and T /.Q2 also represent the ratios of the

relaxed to unrelaxed elastic properties of the medium, namely,
in the notation introduced in Eq. (3.4.17),

S W Tl :)“’p" ° 2. s \“’p"o . (3.5.8)
Ql (zum + m)wp - ® Q2 (u'm)wp -y 0

This can be verified by letting p— 0 and « in Eqs. (3.5.5)
and (3.5.6) and referring back to Eq. (3.4.17). Note that for
finite W the ratios in (3.5.8) can also be obtained by letting

cdm/QZb, instead of wp, approach 0 and «,

6. Stresses and Displacements Applied to the Cylinder by an
Tncid Dil | L Pl 7 | T el ! 31

In this section, we consider the elastic cylinder to be ¢m-.
bedded in a viscoelastic medium, and obtain the stresses and dis-
placements applied to the cylinder by an incident dilatstional
‘plane wave. In doing this we use the form of the equations de-
veloped in Section III.1 for the case of an elastic embedding
medium, and invoke the correspondence principle discussed in
Section IIL.4. That 1s, we take the results obtained for an -
elastic medium and replace the parameters involving elastic modulii,
by their viscoelastic equivalents. ,

For convenience of reference, we rewrite the pertinent results.
obtained in Secticn I1I.l. From Eqs. (3.1.13) the normal and
shearing stresses applied to the cylinder boundery by the incidenc
plane dilatational wave are given in polar coordinates by

® iw ¢t
oar - §: %,p © P ' (3.6.1a)
p=1
iw t
Z %o, p , (3.6.1b)
p=1
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in which

iq3(cos 8-1)

.. = (-ia )(cos®0 + ¢ sinZG) e (3.6.1¢)
Lap 1 4
iq,(cos 6-1)
- (- Lo ¢ 3
Opg,p = (-12)) (S75) ein 29 e , (3.6.1d)
where the viscoelastic parameters q, and ¢ are given by
Eqs. (3.4.16) and (3.4.18) in the form
— ~
q3 - q3 = iq3 ) (3.6.2a)
€ =e¢ +1ic . (3.6.2b)

As in previous cases, we expand the boundary cractions in
the Pourier series :

iw t

o?r - z z épApn cosngd e P R ' (3.6.3a) N
p=ml n=) : .
® : i t '
Ge= Y 8B, sinnde P, (3.6.3b)
p=l n=l
“and, comparing (3.6.3) with (3.6.1), we obtain the coefficients
T
iq,{cos 6-=1)
A A= &l (cosze + € sinze)e 3 cos no do
P ™ (3.6.4a)
0 n>l
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2 2 iq3(cos t=1)
(cos™@ + ¢ sl v) e d: , (3.6.4b)

i} 1Q1 -_61 eiq3(cos v=1)
pn T

sin 2¢ sin n€ d5 . (3.6.4¢)

0

These expressions are evaluated in terms of Bessel functions
of a complex argument in Appendix B. As given in (3.6.4), they
are identical in form to their elastic counterparts, (3.1.15),
but of course are different in value.

A minor variation is necessary in the development of the
displacement representation. From Eq. (3.1.17),

x
B N iwpt - -
u, = ) ur,p e s | ' _(3.6.58)
p=1 .
- ]
iw ¢t
B _ P
ugy z u9,,p e R (3.6.5b)
p~l

in which we take (3.1.17e and f) as the form appropriate for

the viscoelastic representation of u s U . Thus,
r,p o,p

a c, 94 iq,(cos 06-1)
u - - 4 (-Jknii cos 0 e °

a c, 9 1q,(cos 9=1)
—F /. dm3 . 3
uQ:P - 'Ymcdmwp ( Cpr >Sin v e ’ {3.6.5d)

where we note again that q4 1is a viscoelastic parameter, de-
fined by (3.6.2a) and the symbol <4, 1s the speed of prcpagation

of dilatational waves Iin an elastic medium that has the unrelaxed
elastic properties of the viscoelastic material.
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3
g
: 1 B B o ,
Expanding the dispiacements G ind w0 In the Foeurier
series I

(<] [+]

.B _ - J{ ap 9\ LUth 6 6
p=l n=0 marp
o o]
a iw t
B - { T P } P
u,. - D sin nf} e ’ (3.6.6b)

6 }_ Y dmwp pn

p=1 n=l

and comparing (3.6.6) with {(3.6.5), we obtain
il
| 1q.,(cos ¢-1)
C._ = % (-dgh3> e 3 " cos 6 cos né d9 , .
0 B n>1 ,
T : o | o .
iqs(cos o=-1) . :
e ' : cos 8 do , : : (3.6,7b)

)

“a ( e
, c. g - 1q,(cos 6-1) S

D = 4 (—dm—a-) e 3 sin @ gin né do . (3.6.7¢)

The form of the quautlties in (3.6,7) differs from the
counterparts in Eq. (3.1.19) only by the presence of the factor
(cqu3/mpb). When the parameter 4y applies to an elastic

medium, this factor is unity. The explicit representation of
(3.6.7) in terms of Bessel functions of a complex argument 1is
given in Appendix B.




. iq, (cos  -1)
ApU - - % J (cosz' + < sin2 ) e 3 d (3.6.4b)
R
1(1 - €) 1q3(cos J=1)
Bpn = P e sin 20 sin nv d6 . (3.6.4¢c)
0

These zxpressions are evaluated in terms of Bessel functions
of a complex argument in Appendix B. As given in (3.6.4), they
are identical in form to their elastic counterparts, (3.1.15),
bi:t of course are different in value.

A minor variation is necessary in the development of the
displacement representation., FPFrom Eq. (3.1,17),

R . i
' B iw t . ' A i o
B . P
u, z ur,p e , 7 {3.6.5a) N
Sl R -
[-<]
- iw t
'ug = Z ue,p e p» , | | (3'.6.5b)_
p=1 ' S

"in which we take (3.1.17e and f)"és the form appropriate for

the viscoelastic representation of u s u . Thus,
,p O,p
woooom o ~ap — /c"-.{l}.\ “ou O eiqs(ccs 6-1) i 6 :N-')
e 3 gy ded - ’ - .

a c, .4 iq,(cos 6-1)

P___ (Zdm3\ 3
u - sin 9 e R (3.6.5d)
O,p Vi dnp \ wpb /

where we note again that ¢35 1is a viscoelastic parameter, de-
fined by (3.6.2a) and the symbol cg4, 1is the speed of propagation

of dilatational waves in sn elastic medium that has the unrelaxed
elastic properties of the viscoelastic material.
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7. Solution to the Wave Equation in a Viscuelastic Medium

In Section II1I.3, the solution to the wave equation in a
surrounding elast{ic medium waa conatvuctad from dianlaccom ne
potentials. The displacements and stresses associated with
this solution are given by BEqs, (3.3.2) and (3.3.4). By utiliz~
ing the correspondence principle (Section I1I.4), we may obtain
the solution in a viscoelastic medium from the solution in the
elastic medium. The modulii appearing in the elastic solution
are simply replaced by their viscoelastic equivalents. Thus,
the desired solution in the viscoelastic medium, that is,
stresses and displacements, are given by Eqs. (3.3.2) and
(3.3.4), provided that the parameters appearing in these equa-
tions are defined as follows:

kg = kog-ik s,
A, = A +iX | (37
AT i,

m

' For convenience of referance, the stresses and displacemen:s "
- given by Egqs. (3.3.2) and (3.3.4) are rewritten hera, with
Eq. (3.7.1) now applying. , ,

) “:m ""% 2 Z {5 pn[p In(a3P) - qa 1“13")]
p=1l n=0

| (3.7.2a)
iw ® ' ,
- 1zs'pn[g Yn(q3p) - q3Yn+1(qap)]} cosnée P + Z Cpl cos 6 ,
p=1l
ugm - % Z Z, { 5,pn p (qap)]
p=l n=l
(3.7.2b)
- iw t é
- ‘Zs,pn[g Yn(q3p)]} sinnde P - Z Cpp 840 0,

p=1
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| dm
, T
: ~ em
xr
R .

. L 2 Iy =g, Mo -
="T2 7 U ZS_.pn 'm T AT
D" el ne0 ( | \4q¢)
1
2u
T Tage) Tt (93P

Bﬁﬂ_:_%l - 1>}Yn(q39)

- iz A-2u<
5,pn { m m
’ (35P)

? b iwpt:
" Tap) Yne1ldsp) ) (cos nb e ,
3

i_

p=1

% L\/J 8
o

1

iw t

5 pn[(q39) b1 (93P = (n= DY (q3p)]}sin noe P

5 i | §~ ‘{ 6 pn[J (q4p)J

p=l n=1
Lot ® |
izg’pn[Yn(q4p)]}cos nd e + 2& Dp! c08 6 .
p=L

L) { 6 pn[p 30948~ Gl 940 |
p=l n=1

i
a$t

- 0 - .
126 PO [ [ Yn (q4p) ql"YTH'l (ql‘_P) ] }a in no e
[
- Z Dpl sin 6 ’
pet 40

%{zs;'pn[ (qBP) Jn;l-l (qap) - (n - 1) Jn('q3p)_

1:' }Jn (q'l‘})

(3.7.2¢)

(3.7.24)

(3.7.3a)

(3.7.3b)

tadhi skl utn n‘xn.mllﬂ



2.. _,
smo Tm o
‘rr 2 o
b pel el ¥ O

1
|
| (n - . . i |
Zﬁ,pn[(‘n J)Jn(t.[‘r) (qa'\)JYH‘l(q(o")j o

B Lw t
- s b ) ) 1s X
‘a6’pn[m L)Yntq4P) (qlop)Yn-H. (qap) ”cos nd e ,

@K o0

v - : 4
sm _ _‘m v T 2 2n(n - 1) ;
°ro 12 ) L % 26, pn { (@, 092 Lia(a,e) !

p=l n=1 A ;,

2 l . 2nm - 1) _

t T e (4P | 12 oty 4y 1}Yn(q4p) (3.7.3d)
L
iw t

+ ?afsy Yﬁ+1(q4p) sin ne e P,

It is observed that the viscoelastic parameters q; and .
necessitate the computation of Bessel functions of a complex
argument, B : :

8. Superposition of Soluticns to Enforcé the.Bounda;y Conditionb

In the preceding sections, we have presented contributions
to the complete solution. These consisted of: 1) stresses and
displacements associated with the incident wave; 2) the solution
to the wave equation in the elastic cylinder; and 3) the solution
to the wave equation in the surrounding medium. These contribu-
tions must be combined to enforce the required conditions at the
cylinder boundaries, namely, that: 1) the inner boundary be trac-
tion free; and 2) at the outer boundary the cylinder displace~
ments and appropriate stress components be continuous with those
of the surrounding medium.

Recalling the introduction of the nondimensional radial
coordinate p = r/b [Eq. (3.2.9c) ], and letting £ = a/b, we
obtain the boundary conditions at p = 8 {inner boundary of the
cylinder) in the form
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d 3
' 0 '—-\ -
o )+ o () =-v,

. )
)
\ ,(3.8.1a)
d a8 . 8 .- - O ! !
orL W) T uro\p) v,
At p = 1 (outer boundary of the cylinder),
d 8 . Gm . 8m -
oS (D) + of () - 21y ~ 21y = P,
d s dm sm
0D + (1) - B - ) - &,

(3.8.1b)

]

uwdy + b

W2 - u) =l

Coad 4+ el - u®a) ug (1) = w5

VWhéte:V 1) the superscripts d and s are affixed to quantities ~

stemming from the dilatational and shear solutions, respectively,
to the wave equation in the cylinder (see Section III.2); 2) the
superscripts dm and sm are appended to stresses and displace-
ments resulting from the dilatational and shear solutions, respec~
~ tively, to the wave equation in the medium (for an elastic medium,
these quantities are given in Section II1.3; for a viscoelastic
medium, they are given in Section II1I.7); and 3) the superscripts
- B identify the stresses and displacements associated with the
 incident wavas at the outer boundary of the cylinder (for a wave
traveling through an elastic medium, these quantities are given
in Section IIIL.l; when the wave propagates through a viscoelastic
medium, they are given in Section III1.6).

In the following development, advantage will be taken of the
fact that by an apprerriate choice of the values of the visco-
elastic parameters, the viscoelastic solutions in the medium re-
duce to elastic solutions. Therefore, quantities labeled with
the superscripts B, dm, and sm wil) be written as they are
given in Sections III.6 and III.7. Thus, the solution presented
will apply to an elastic cylinder embedded in a viscoelastic
medium, and as a limiting case w:1il contain the solution for an
elastic cylinder embedded in an elastic medium,




the appreopriate expressions, and the common trigonometric and
exponential factors are divided out, the resulting nonhomogeneous
system of linear cquations in the unknown coefficients of super-

nna‘*(nn 7 masr ha '71-‘0-0-‘:-\ 4n matmlia Lovem -

— - —— ——ee —_—y ~= - e Ade A e st vaA s

i
Alter the terus entering into Eq. (3.6.1) are computed from . ‘
“3,pn i

[Cij,pn] {zj,pn} - {Di,pn} 1,§ = 1,2, ..., 6

P - l’ 2, 3’ * v n L 0' l’ 2‘ LI '

(3.8.2)

g,pn in the 1t |
2 t

results from the term on the .

where cij pn stems from the coefficient of 2
’
equation of Eys. (3.8.1); Di pn
) |

right-hand side of the ith equation of Eqs. (3.8.1); and

[ZJ pn}’ the solution vectur, is a 6 x 1 c¢olum matrix, whose
’ : .
complex elements are the unknown coefficients of superposition,

It should be noted that there is a different matrix equation
(3.8.2) for each pair of velues of p and n,. :

_ The elements cij,pn and Di,pn are shown in detail in )
Appendices A and‘B. S I T , ,

The system (3.8.2) may be solved by m trix inversion for the e

solution vector {Zj,pn} Having solved for {Zj,pn for a sgffi- i.

cient numbef of values of p and n to ensure adequate conver- P
. gence, we may calculate to the desired Accuracy the stressc< and
"digplacements in the cylinder as:

s} S ' S SR ’ d € '

Opp ™ Tpp Cop 2 . " ro F %o , To0 ™ %9 t+ Iyg ,(3.8.3a)
d 8 d 8 :

u_ = u, + u, o, =y duy, (3.8.3b)

where the terms appearing on the right-hand side of the above ;
expressions are given in Eqs. (3.2.10) and (3.2.17). t ]
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SECTION IV
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(1]
(2]

This section is concerned with the cylinder response to an
incident shear wave. As discusseu in Section III.4, the visco-
elastic analysis may be obtained from the corresponding elastic
analysis by ueing the correspondence principle, that is, by re-
placing the elastic modulii by appropriate viscoelastic modulii.
Conversely, the elastic case can be obtained as a special case
of the viscoelastic formulation by a proper choice of the value
of certain parameters, Therefore, in treating the response to an
incoming shear wave, we shall regard the cylinder as first em~
bedded in an elastic medium, The viscoeidstic analysis will then
be obtained by employing the correspondence principle. The numers-
cal resulis will be computed from the viscoelastic formulation for
both the elastic and viscoelastic case, treating the elastic prob- .
lem as a limiting case of the~viscoelastic problem.

The first section im. ;his chapter deals with the contribution -

of the free field quantities, that is, the stresses and displace~ -
ments applied to the outer boundary of the cylinder by the inci-
dent shear wave. This contribution will be derived independently
of any of the results presented in Section III. The remaining
contributicns to the solution, namely, the solution to the wave
equation in the cylinder and the scattered response in the sur-
rounding medium, will be obtained by making minor chaiges in the
corresponding solution for an incoming diflatational wave, As
ouclined in Section III.2, these alterations involve interchaunging
afn n® and cos no, ard setting H s ~ n. It will be recalled
that the T are those integers stemming from differentiation with

respect to -0,

2. Stresses and Displacements Applied to the Cylinder by an

Incident Distoxtional Plane Wave

To avoid counfusion with the response to ar incoming dilata-
tional wave, we shall identify corresponding quantities assnciated
with the response to an incoming shear wave by using notation
that differs slightly from that employed in Section III.

Zasdin u
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The Cartesian coordinate system in which the inciden: piane
cistorticnal wav: (s described, ac well as scme of the notaswon
used, is shown in Fig. 3b. The disturbaace is assumed tou be
traveling in :he negative X-directicn. The propagation of the
wave deponds only Gu Clie spéce cuurdinare X, and the time coordi-
nate ¢t.

We may obtain the governing equations of m-tion from a scalar
potential, ¥, Ref. 9, where ¢ = ¥(¥,t) and is a solv+ion of

2 .
S =0 . 4.2.D
magd w2

The nonvanishing Cartesian displacement and : .ress y»anti-
ties \& and Ti§ are given by

- (4.2.28]

2%
R e D (4+2.2b)
Xy ™ % '

As developed in Ref, 9, Eqs. (4.2.1) and (4.2.2) apply to
an elastic mediuvm, and Fo is the elastic shear modulue. How=
ever, on th. basis of the correspondence principle, these equa-
tions may also be apnlied to a viscoelastic medium 1f p_  1is
regarded as che viscoelastic paramrter defined in Section . II.4
by Eqs. (3.4.17b) and (3.4.17d) and given in terms of the visco-
elastic model representation used in the pre-ent analysis by
Eq. (3.5.5).

Steady state solutions of (4.2.1) may be taken in ihe form

iw t
¥ - \pr(’i) e P, (4.2.3a)

where the frequency wb is given by

pT
wp -7 (4.2.3b)
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with p a pusitive integer, and T an arbitrary time interval.
Thus, the wave equation (4.2.1) becomes the Helmhuls egquation

ek d RN (4.2.4a)

(4.2.4Y)

In the case of a viscoelastic m.dium, kp4 is the cocmplex

parameter defined in Ea. (3.4.,16). Fcr an elastic medium, k /
reduces to P

(4.2.4¢)

where ¢ is the velocity of propagatio’n of distortional
waves in that medium, with

Com © y (4.2.44d)

Steady-state solutions of (4.2.1) may be constructed from
the solutions to (4.2.42), by sing (4.2.3a). Thus Y(%,t)
nay be taken as

Q

_ i i(k , (x=b) + o t]
v(x,t) = Z AP e P4 P
p=1

We now represent the incoming shear wave in the foirm

i (x - b)
Tew = Z ap sinw[w“—""'f-c

Xy D

L4

p=L




and proceed to relate the coefficients, ap, in this equatica to
the coefficients. Ap. in Ea. (4.2.5). Tn the elaatic raae

wp/kp4 “tm’
waves. In the visccelastic case the parameter wp/kp4 represents

the uniform speed of propagation of distortional

the limiting value of the velocity of propagation when the fre-
quency tends to infinity. At X = b,

- Z sin <o t . (4.2.7)
p=1

The Fourier coefficients ap define the wave form over the

arbitrary half period, T. In the viscoelastic case, since
attenuation occurs, the wave form is altered as it progresses
through the medium.

An expression for T, %5 identical with (4.2.6) is given by
the real part of '

s t[k_, (x=b) + w_t]
) (a) e P P, 4.2 )

p=1
From (4.2.2b) and (4.2.5),
1[{k_, (x=b) + o _t]
P4 P
z umkP4Ap e . (4.2.9)
p=1

Comparing (4.2.8) and (4.2.9), we obtain

P
A = - .
P 2
“mkp4

(4.2.10)

From (4.2.2a) and (4.2.5), and by noting (4.2.10), we get

ap i[k 4(x-b) + w t]

Hm p4

Z .

cal oles




2
the above expression. By (4.2.4b), umkp4 - (vmwp/kp4) and from
the definitions of w_ [Eq. (4.2.3b)] and a, [Eq. (3.4.16)1.
r

we may rewrite p k

m p&4

i
;
i
It will be convenient for the computational effort to rewrite §
%
|
I
" |

1 ____1_.(
umkp4 Ymctmwp w b

Thus,
I -
a c i[k_, (x-b) + t
vom s ) B T (4.2.11)
y v w \ wb/ e
p=l m tm p P i 1

In polar coordinates the stresses and displacements associa- S
ted with the incoming wave are given by o -

B = B

vB = v_ sin 8 , vg = v_. co8 6 . (4.2,13)
r y y o

Substituting (4.2.8) into (4.2.12), and setting X = b cos 9,
we obtain the following expressions for the stresses applied to L]

the boundary by the incident wave: "””’,,rﬂaf' -
!
=

iw t
B _ P
Ter Z Te,p € ’ ~—  (4.2.14a)
p=1
T iw t

B P
g erg’pe , (4.2.14b)




where

iqa(cos 5-1)

T, n ™ (-ia_)sin 20 e , 4.2.050
_ 1iq,(cos 8-1)
T5,p = (“18)) (cos 20) e M , (4.2.14d)
with
q;, = bk, | (4.2.14e)

4, is defined in Eq. (3.4.16) for the viscoelastic case. In
the elastic case it simplifies to
bayp

c

e “tm

o The Fouriev axpansions of Eq. (4 2.14) in the circumferen-"
- . tial coordinate & are

et S
Z z apApn sinnfe P , N (4.,2.15a)
p=l n=l ‘ : C '
e _ et
T:g - z ?‘ a B cosnde P ‘ (4.2.15b)
p=1 n-O : :

The complex Fourier coefficients n and Bpn are obtained
by comparing (4.2.15) with (4.2.14), and are

T

1q, (cos 6-1)
A - 24 q, (cos

pn T e sin 29 sin né dé , (4.2.16a)
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s
I

21 r iqa(cos v=1) cos 28 cos ng du , n>l (4.2.16b)

|
:1

n
BTT —
r { iq, (cos 9-1) - =
BpO - e cos 20 49 ., (4.2.16¢)
0

| The representation of these coefficients in terms of Bessgel
functions of a complex argument is given in Appendix B,

If we introduce (4.2.11) into (4.2.13) and set x = b cos 5,
we obtain the following representation for the displacements

vg and vg:

S - e @ ) . : :

Rk - lo ot : ' " : :
LV, == E v._ e Y , : A (4.2.178)
e - L E,p o B e

- pul

Bl
vg = ) Vgp e | | (4.2.176)

iqa(cos 5-1) -
: 8in 6 , (4.2.17¢)

TP YCen®p

a Cc
- — (I:g) 9 e

_ iqa(cos 5-1)

a c
P ;Ee

To faciiitate the application of conditions of continuity é:
of displacement at the outer boundary of the cylinder, we expand <1
B

Ve and vg in Fourier series in 6. Thus,




V=" ) ) T——C_siinfe P, (4.2.18a)
- — - PR ~— P
p-l n=1 m tm p
o« [*]
a ifw t
2] 2 o 'Ymctmwp pn

Comparing (4.2.18) with (4.2.17), we obtain for the coeffi~

cients cpﬂ and Dpn:
‘o‘n- -
c iq, (cos 6~1) ,
4 2 - - - «
cpn”'.ﬁ'(ngb 4% | e | "- v ~sin,6;s1pAp9_dQ »  (4.2.19)
i
PR - o 1q,(eco8 0-1) -~ _ .. =
2/ , 4 " , - - e .
- .Jﬂﬂ> q e . cos 6 cos nd do A
pp T (_.‘pr 4 B S - O (4.2.19p)
o ( _ ’,; o | . .
c iq, (cos 6=1)  _ _ : | o
A DpO - # (ngb q | e 4 o cos Q dao -, “(4.2.19¢)
) '

These coefficients are repreeented in terms of Bessel func-
tions of a complex argument in Appendix B.

3. Solution to the Wave Equation in the Elastic Cylinder

We have already discussed the manner in which it is possible
to apply the analysis derived for the response to an incident
dilatational wave to the corresponding analysis for the response
to an incident shear wave (see Section IV.l and the comments pre-
ceding Eq. (3.2.8) in Section III.2). Thus, if in the results
obtained in Section III.2, we interchange sin né and cos nd
and regard T as equal to -n, we may write the contribution,
associated with waves of dilatation in the cylinder, in response
to an incident shear wave, as follows:
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Vd-l o
r

b L L ql{ .pn[qlp In(31P) - n+1(qlp)}
nme]l nel

_n - - i&.’-p [
+ zz'Pl[qlp Y, (q;0) Yn+1(q1p)]} sin nd e (4.3.1a)
[+°]

8

T nJ lw ¢
L 2., P _lzl po n(qlp> + 22 ,pn n(qlp) }cos né e
- .pm=l neQ

®©

o v”.: L (4.3ab)
- + Z ,__,Aplﬂ_vcog 6, . C
,,,,p,-l_ -

;zl 421 ql tope { i 2“((q19) v 1)}J sqlp)
'_éf; Jo41 (9449

o ' (4.3.1¢)
n(n - 1)
+ z—zopn {7\ B ZL(

-1 (
(9,02 )}Y W

2 e 1ot
) 553 Yn+1(q19)] t“iﬂ nfe P,
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d _ . L v T 42 ., 2un(n - 1)}
.5 ) L %, {’ T el
oy o Q,P)
p=l n=l !

} ‘{}\+4un$n- 12

Y .3.
+ 2u qxp 341 (91P) (qlp) } (4,p)  (4.3.14d)

2,pn

fw t
2 | e P
+ N Yn+l(q1p) I { sinne e * ,

- _ Z z Zizl poi qlpJ 1“119) (m~-1)J fqlp)]
- P'l n-O e :

R

AR

: (Io 3 lc)
| .*z"z;':sr'xl‘,‘ql."?’w‘?;‘?’._" o DY, (84 T
' g-twhare t:he superscript a4 has been'uﬁed ‘to designata the conm:ibu-'

- tion from the dilacational wave solut:i,pn 1n the cyLinder

'Ihe contribution from the shear wave solutios in f:he cylf.ndar
18 obtained from Section II1.2,.in & similaxr manner, and is given
. ..as fnllows. _ e

e

o w . : W
Z z { 3,pn n(qu)
z, pn(qu)Y (qu)}sin ne P - ) B, siné,

p=1
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5 o -1 7 N J . « S
V-TTh L L q2123,pn_[ 2,p) Jnld2P) - Jn-i-l(qu)l
p=1 ney - !
' . lot i
+ Z ,pn[q P Y (qu) n.’_].(qu) }cos née F (4.3.2b)
Z Bpl cos 6 R
p=1

R P AP ks
' p-l n-l ) _ ) » . . o Ii
o+ 24 pn[(n 1)'1 (q29> (qu) 1(q2p) }oin né e --P, B R g
e, .3 20) ;
‘89 - T | | i

s L 2 nin - ' |
e ) q{z ——5= = 1)J_(q,p) 3
I p§1 nZ:O 24%3,pn|( ,(429)2 - 1) n‘d2 .j
. 2n(n - 1 "

+ ;‘2'5 Jn-t-l(qu) + z4,pn (—ELTL - 1>Yn(q2p) (4.3.2e) L

: _ (4,0) g

2 N - ot I

T a,p Yn+1(‘!z")1}°°° nee P |

|
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4. Scattered Wave Solution in the Surrounding Medium

In this section, we write the stresses and displacements
agsoclated with the scattered wave solution in the s.~rrounding
mad{ium and which contribute to the response of the cvlinder to
an incoming shear wave. In doing this we use the results of
Section II1.3, with sin n6 and cos n6 interchanged and
= -n. Thus,

dm _1 T YT
Ve "% L )‘ { 5 pn{p J (45p) - q3Jn+1(q3p)]
p=1 n=l
iw t

- ,pn[p Yn(q3p) q,Y, ’_l(q3p)]}sin nde P (4.4.1a8)

o+ Z; c, bl sin 8 ,
e |
dm n ,7"{F
5' Z Z {5 pn{p n(q.‘ip)r]
p-l n=0 S Co
(4.4.1b)

g ' ot '

- LZ_S',pn{g _‘[n(>q3p).]}cos né e P z c 51 08 e,

=l
dm 1 - m 2 n(n=-1) . ;
R ) 93 ’z [{” - 2 =1) 19,(a5°)
b pa1 ngl et \(q;,p) ) s
2y
ERCH) Jn+1(q3")]
(4.4.10)

(n - 1)
- izs'pn[{Km - 2w (%‘3:2— - 1>}Yn(q3p)

2y - lot
(q3p) n+1(q39)’ !31n nfe P,
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T
dm _ . D y & {z [( ‘
- 9,01 (q,4p)
s b?. H?: "Z:n p2 5,pn| 73" "kl '3 E
- (- i . 1 ]
(0 = DI (a30) | ~125 N (a30)Y ;) (a40) (4.4.1d) [
- 1ot E
- (n - l)Yn(q3p)”rcos nt e P , ;
® o
sm = - l y N\ & :
Vr b L > p {26,pn[Jn(q4p)J
p=l n=l
(4.4.2a) 1
- 1z [Y (CH J}sin ne e -p z 3.1.n 5 » | , S
6,pn] 4 pl v EEREETE
pel N
Z z; {iﬁ Pﬂ[ (Q4P) Q4 u+1(q4p)] ?
p-l n=0 ]
',izb,pn;[p yn(.%.p) - eq4¥ﬂ+1(q4p)]}col nd e : (4.4.2b) 7
- Dpl cos 6 ,
pe=i ,
® ] f
e BeZe ol @ - DI (a0
Ter © b2 z Z 2)76,pn n'9%P ;
p :
p=l n=1
- @34 40 | - 12 T - DY (a0 (424.2¢)

w il t
(qAP) l(q4p)]}sin ns e P ’
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4’211(:1 - 1)
. - l“Jr,_(q,,.p)
1 nw=0 ( T (a,P) s

__2__ _ 2n(n - 1) )
] MECYOIN Ll(qAP)J 126 ,pn {""""“- I}Yn(qap) (4.4.2d)

(a,0)?

1
- lot
cos nd e 14 .

—2 v
+ 7 ) Y 1€9,P)

In the preceding expressions, the superscripts .dm and sm
derote quantities associated with waves of dilatation and waves
of disturtion, respectively. The definitions of 93 and q, are.
those appropriace to 4 wiscoelastic medium as given in Eq. (3.4.16).
_ - In the case of an .elastic medium, these expressions reduce to
. q; = b%pa and q, = = bk D4 where - m?a and 3@4 are defined in
- the text immediately following £qgs, (3.3.1) and (3.3.3), respec~
: 'tively , ,

5. Superposition of Solutions to Enforce the Boundary :Conditions

: The procedure in this section parallels that followed in

o Section II1.8. We combine the contributions presented in the pre-~
¥ ceding sections so as to satisfy the boundary conditions, namely, -
3 ' that the inner boundary of the cylinder be traction free, and that,
at the outer boundary, the cylinder displacements and appropriate
stress components are continuous with those of the surrounding
medium. Thus,

at p = B (inner boundary of the cylinder),

d 8
T - + T - - O » (40541b)
ré ro
57
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and at p = 1 (outer boundary of the cylinder),

TRASTNIW BN PR B

e e s
bl bttt} bttt i ok m ..

Tt T T e T T T (4.5.1¢)

P I LI SR ST S (4.5.1d)
ro ro ro ré b 2] 3
i.
d 8 dm sm , '
v, + Vo v, v, = vi ’ (4.5.1e) i.
d 5 dm _ sm _ B I
v + Vv, sV -V, =y  , (4.5.1f) t
3 8 8 9 & §

where, agains 1) the superscripts «d and ¢ .are affixed to
guantities stemming £rom the dillatational :and ‘shear solutions ;
to the wave equation in the cylinder; :2) the .superscripts «m g
and sm are appended to stresses .and displacements resulting

from the dilatational and shear solutions to the wave equati.on

in the wmedium; and - 3) the superscript B identdfies the boundary i
tractions and displacements associated with the incident wave. i3

After the terms entering into (4.5.1) are computed from the
appropriate expressions, .and the common trigoncmetric and exponen=
tial factors are divided out. the resulting monhomogeneous sys=
tem of linear equations in the wuninown cpefficients of super-
positien, Zj,pn' nay be written in matrix form as

E[Gij.'pn] '{‘j ,pn} - ‘{” 1:-?!1}

p=1, 2, 3, ..J), (a=0, 1, 2, ...) ,

4.5.2)

th
where cij,pn

equation of Eq. (4.5.1); by - stems from the term on the
F

right-hand side of the ith equation of Eq. (4.5.1); [Cj pn}’
L]

the solution vector, is a © x 1 column matrix, whose complex

¢lements are the unknown coefficients of superpcsition. It

gshc'tld be noted again that there is a different metrix equation

(4.5.2) for each pair of values of p and n.

stems from the coefficient of gj P in the 1
>
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The elements of ¢ and B8

ij,pn i,pn are shown in detail in

Appendices A and B,

After osulviuy fur icj pn} for a sutticient n.mber of values
?
of p and n to ensure adequate convergence, we may calculate,
to the desired accuracy, the stresses and displacements in the
cylinder as

Tep ™ T:r + T:r y T _ = 1d~ + 13_ y T = Tf_ + Tf- , (4.5.3a)
r 8 @ ré 66 68 06
v = vd + vS y V_m vd + Ve , (4.5.3b)
x T X 5 5 5

where the terms appearing on the right-hand side of the above
expressions are given in Eqs. (4.3.1) and (4.3.2).
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SECTION V
SPECIAL FEATURES OF THE ERESENT ANALYSIS

1. Initial Conditiana

We recall that the solution constructed in the preceding sec-
tions is the response of an elastic cylinder to a periodic train
of nulses. However, by measuring time from the moment of pulse
arrival, we may obtain the response to a single pulse acting on
a cylinder initially unstrained and at rest, provided that we
adjust the time between pulses so that, to a sufficient degree
of accuracy, we achieve conditions of vanishing stresses and dis-
placements in the cylinder and its vicinity — prior to the
arrival of each pulse, Indeed, the success of the present tech-
nique depends chiefly on the possibility of obtaining stresses
and displacements, before the pulse arrives, which are negligibly
small compared to significant stress and displacement levels at
later times. Essentially, this end is attained by providing suf-.
ficient "rest time," that is, making the tiime interval between
pulses long enough to permit the cylinder wall to radiate suffi-
cient energy out into the medium and return to an underformed '
state of rest. Because the half period, T, is art.trary, the
parameters that control the rest time are to some extent arbi-
trary, enabling us to make an optimum choice of the rest time.
Some discussion of this procedure. is in order here. The rest
time parameter, - ty, can be nondimensionalized as (co dm/b)’

that 1s, as the ratio of the rest time to the time required by

the incident wave to perform a transit of the cylinder. By
referring to Fig. 2, it can be seen that the rest time parameter
can be expressed in terms of two additional nondimensional parame-
ters that appear in the analysis, (c /2b) and (cdmAIZb), as

'b 2

The pulse duration parameter, (cdm4/2b), while not shown ex-

plicitly in the develorment preceding Eq. (5.1.1), enters into
the Fourier coefficient ap that determines the wave form, As

Eq. (5.1.1) indicates, when the pulse duration is prescribed, the
rest time parameter, and hence the rest time between pulses, may
bz varied by varying the parameter (cme/2b). This stems from

the fact that the half time, T, enters the analysis as an arbi-
trary parameter., Thus, ir any computations, the stresses and

1
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displacements are obtained accurately only when by means of trial

romnnitatrdinne tha sralua »f {~ /9% ond hanan tha wane tdoa
e e e eem g wenm v e e = - i -y Emery g weawm ArwreAene AW & T UG g

has been 80 selected as to reduce the initial stresses and dis-
placements of the respouwse Lo & sulllciently low ievel, For-
tunately, it has been found in the many cases presented that
satisfactory results may be obtained if (cme/Zb) is kept in

the reasonably narrow range 10 < (cmeIZb) < 100. The cases

considered covered a wide range of cylinder-medium impedance
mismatch and cylinder thicknesses, as well as a variety of pulse
shapes. -

Improved accuracy may be obtained by treating separately the
response for small and for large values of the nondimensional
time variable, (cdeIZb), where T = (t - to) and measures

time with respect to the arrival of the incident wave. From

Eq. (5.1.1), it can be anticipated that a decrease in the parame- . -
: fter.(cdmA/Zb) would lead to further improvement in the initial

~conditions. Thus, for times less than the pulse duration,'it may-
‘be advantageous to assign a value to.(cdmp/Zb)lrthatiis.lgss‘than

the specified pulse duration. The corresponding computations are

valid for times less than this altered pulse duration (for later

" times the actual pulse duration parameter must be used). This

technique 18 particularly suitable for the case of a rectangular

- pulse, since in that case no change in the value of ap 1is re-

quired. The foregoing considerations provide the basis for the
device by which an incoming step pulse may be treated, namely,

by making the pulse duration long enough so that the response
reaches a steady state while cde/Zb remains less than (cdmAIZb).

One further consideration is necessary to satisfactorily treat
the initial conditions requirement. Since we have not fixed the
cylinder with respect to any frame of reference, it will trans-
late in response to each of the periodic pulses. In order that
the solution be applicable to the case of a single transient
pulse, we must remove from the displacements the rigid body con-
tribution resulting from the preceding pulse. That is, we re-
quire that before the pulse arrives,

u, cos 6 - u, sin 6 »~ 0 , (5.1.2)
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Referring to Fig. 2 we note that we may apply this condition at
* %
any time t where -to <t < tO’ provided that the interval
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the requirement, (5.1.2), is enforced is now described.

Using the dilatational and distortional potentials given by
(3.2.7) and (3.2.14), we may write the displacements in the
cylinder by using (3.2.4) and (3.2.11). The resulting expres-
sions may be put in the form

©

. i t - -
u = 2‘ Z uin cosnd e P + z: (Apl + Bpl)cos e , (5.1.3a)
p=l n=0 p=1
o [- <] o _
iw t . - - ' o
- z ) uP“ s:ln ne c _P =) @G +Bpeine,  (5.1.36)
where thé' upn"and P are £uhctidns of the radial coordinate
6

Enforcing (5.1.2) with the displacements (5 l. 3) evaluated
at t = t* requires that : : : :

® - o %

» pl iw t ' 1w t :

E(A +s)z-zu ~Zu , (5.1.4)
p-]_ p-l 7 p-]_ s
as well as
© © * o ™) . *

i t iw t

z ug°+ E ugn cos nfle P =~ z Zugn sin nQ e P 0.(5.1.5)
p=1 n=2 p=1 n=2

For convenience, the quantities ugl and ugl, appearing

in Eq. (5.1.4), are evaluated at r = a, Thus, after substituting
(5.1.4) into (5.1.3), we may calculate the displacements in the
cylinder as
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~1iv (t-t*)

- Z{ °(r) + upl(r) - upl(a) e P cos 0
p.l L -
. (5.1.6a)
N Z pn iwpt
u. (r)cos nfp e ’
nw2
*
-iw (t=-t )
ug = z { ugl(r) - ugl(a) e P Jain 6
p=1
(5.1.6b)
® lo .t
+ z upn(r)sin ne} e P
na? - : ;
~* " For the case of an tncident shear wave we may cast the dis- -
o placement expreesions, in a form aimilar to those given by
. (5.1. 3), as
vpn i“’p - - : -
- z z sin né e + 2 (A Bpl)ain,e R (5.1.7a)
p=1 n=1 el : :
o« o0 - [ -]
z z \¢] 'c“, né e + 2 (Apl l:’]‘)cos e
p=1 n=0 p-l
x (s.l‘7b)
t
p=l

where v;;n and vgn are functions of the radial coordinate «r.

The term ZEPI has been included in the expression for vz to
account for the possibility of a rigid body rotation.
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In this case, since the particle motion is perpendicular tc
the direction of wave propagation, the consequence of not fixine
the cylinder with respect to any frame of reference, is a trans-
lation of the cylinder in response to each of the periodic
pulses — in a direction normal to that of the progression of
the wave. In addition, a rotation of the cylinder may occur.

To remove the translation and rotation, we require that the
following two conditions be satisfied separately:

vy - 0. (5.1.8b)

Again, referring to Fig. 2, we see that we may apply these con-
- , Ak : g o o
ditions’at any time t* where fto {t <,t0, provided that
5 y ' L ok IR Tt ot ok e T
~ the interval ;(-to)~t ) represents a sufficient rest time,
- Thus, enforcing (5.1.8), with the displacements evaluated at
t = E;f and r = a, Ieadsrto-f ' o - o
' Lo (£=F") :
- Pleyy - PL P
v, = ) { vy ) - viT(a) e Ja;n 0

p=1 ST
o (5.1.9a)
> -y laot o
+ z vin(r)sin ne} e P »
n=2
@ -iw (t-¥*)
vé- - z {vgo(r) - vg,o(a) e P
p=1
1 -ia$(t-?*) -
+ v%l(r) - vg- (a) e cos © (5.1.9b)

® n - iw t
+ 2 vE (r)cos nG} e P |
n=2 d
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2. Convergence Criteria

Criteria to <ontrol the degree of convergence of the various
SUmmMAT10NS Lnvolved 1n calculating the stress and displacement
quantities were introduced into the computer program used in the
prescnt study. These criteria are ncw desciibed,

The stresses and displacements may be represented in the form

z z al;_?(P: 9, t) ’ 1,] = r,0 ,
p=1 n=0

®
u, = \Z Z uzn(P: 6, t) ’ i=r,0.
Lm0

Integers N 0’ N , M ,> relating to the dgg:ee of accuracy

.~ desired, were salected and the summations wera carried out 80’
that' , _

T | _— I -
1) For ggch 1nteger Py and for N_ ‘consecutive terms
in the n summation, ' '

vak( 6,¢t) | N 'lpk( 8,t) | N
Pa9,s ' “ u, (p,9, - -
1<-1!"1 g ? kJ'.l <10 %,
2 z aij(p' nt)| ' Z‘ vy ‘(P,Q,t)l

' n

The value N of the integer n, at which the condition required
by step 1) 1is met, of course varied, with the integer p, the
point (p, 6, t), and the subscript {j, or 1.




2) Using the appropriate value of the summation over n
up to n = N, the summation over p was carried
out so that for M* consecutive terms.

N
EEAOLRY

-N - -N
S <10, g g1 °.
| Z z ij(p’ :t)| ' z 2 u:n(p,e,t)l
k=1l n=l k=1l n=l

Control of the computations was maintained to evaluate the
influence of the summations over n, on the ~urrent summation

‘over p, 80 that the n-summation (number of circumferential

modes) could be either terminated or increased if required.

- Codas present {n the computer output indicated whather the cbn-

vergence critericz were met. All the results presented ware .

~ obtained with at least graph plotting accuracy. In the neighbor- o
~ hood of maximum valuas, accuracy to four figures was obtained =

in most cases.
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SECTION VI

DISCUSSION OF NIMERICAL RESULIS

1. -~ - E * o I.

An IBM digital computer was employed to obtain the solution
of the system of matrix equations (3.8.2) and (4.5.2) and to
carry out the assoclated .tress and displacement computations
defined by Eqs. (3.8.3) and (4.5.3). The computer program is
described in Vclume II of the present report (Ref. 16). In the
discussion that follows, even though results are presented for
specific dimensicnal values of geometric and physical parameters,
these results are applicable for the wider class of cases covered
by the nondimensional values of these parameters, namely, the

, ALK ' o
ratios g, ﬁ"jfh 7fh and '3?. This applies for the case of a

viscoelastic medium as well as for an elastic medium

It should be pointed out that the renults presented through-

.+ . . .. . out this report are given in nondimensional form. For exanple,
' S - in Fig. 5 we have given the hoop stress and displacement time
" histories in terms of the quantities ;22 and/-sg‘if, tospec-

' ' 0 -0

tively. The sign of the actual stress, or displacement, is thus
“determined by the sign of ¢,, the stress associated with the

incident wave. In the case of -the response to an incident shear
wave, it is the sign of To that determines the sign of the

actual stress or displacement,

2. CQqutatiohs Performed torlllustrdte the Validity of the
Bregent Method

In this section, we illustrate the capability of the present
technique to satisfy the rejuirements of an initial undeformed
state of rest in the cylinder. For this purpose, the stress and
displacement response to a rectangular pulse lasting five transits
of the cylinder has been computed. The Fourler coefficients a_,

. which define the incident wave form, are P
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I
a = (6.1.1)
SR S V5 B

PT Z l Zb] ’ r

where op i{s the Lanczos factor (Ref. 17) that can be included

as a factor in the Fourier coefficients to improve convergence
of the series representing the incident wave in the neighborhood

of discontinuities. When ab is set equal to unity, Eq. (6.1l.1)

leads to the usual Fourier series represe..tation.

The results of the computations, and pertinent parameters
employed, are shown in Fig. 5. After the pulse has passed, and
as the disturbed cylinder radiates energy outward into the medium,
the maximum hoop stress, oy, at ¢ = 90°, is seen to vanish.

This shows that, although steady-state solutions are employed by
the present technique, an unstrained state of rest can be attained
{n the cylinder and adjacent medium before the arrival of the next
pulse. Note, for exampl:, the circled points in Fig. 5a. These
represent the campnted values of 699 in the intervals

=1 < (e, tlzb) <0 and '11.5¢ (c £/2b).; Referring to ?13. 51:

we note that during early transit times the character of the dis~
placement response is nonlinear and suggests considerable rapid
deformation of the cylinder. Later, the displacement time his-
. tories of the representative points selected become 1linear and
 parallel — suggesting motion essentially of rigid body charac-
ter — and in response to an infinite step pulse would continue
"to exhibit this behavior. After the rectangular pulse has passed,
the cylinder regains its original shape, but remains displaced in
the amount of the rigid body motion. It was precisely this rigid
body displacement that was removed from the periodic sol-:ticm in
Section V.1, entitled "Initial Conditions.” Thus, Figs. 5a and
5b illustrate the feasibility of the present technique.

3. Comparisons with Published Data for the Response to an
Incident Dilatational Step Pulse

Comparisons of results obtained for limiting cases of the
present problem with corresponding published data are exhibited
in Figs. 6 through 9. In all comparison cases, the incident
wave is a step pulse. As stated earlier, an incident rectangular




pulse, of duration sufficient for the response to reach static
conditions, can be substituted for an incident step pulse. There-
fore, the Fourier coefficient ap has the form given in (6.1.1).

Figures 6 and 7 are concerned with the response of an infinite
cylindrical cavity in an elastic medium, In Fig. 6, the cavity
dispiacements obtained by the present technique at 6 = 0°, 90°,
and 180°, are compared with those given in Ref. 3. Agreement is
excellent except for early times.

RN SR
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The maximum cavity stress response to & step pulse is the
hoop stress at O = 90°, 1In Fig. 7a, values of this stress cal-
culated by the present analysie are compared with those obtained
in Refs. 2, 4, and 5. For times greater than the first half
transit, essential agreement prevails between the prerent method
and Refs. 4 and 5. The stresses predicted in Ref. 2 are somewhat
lower than those given by the other analyses up to the time when
maximum values are reached. Then all results approach the static
value given by the Kirsch formulas (Ref. 18). The results of

. Refs., 4 and 5, shown on Fig. 7a, are for various truncations of
the representation of the deformation in circumferemtial modes.
As pointed out previously, the present analysis differs from
- those of the other references in that it does not comstrain
- . - a priori the number of circumferentisl modes taken to represent -
T - the solution. Instead, it parmits this choice to be governed, ;
' at each space and time point, by the condition that the solutiom : |
converge to a specified degree of accuracy. For times less than
the first half transit, there are significant differences between
the results obtained in this fashion and those of the other referenm-
ces. By contrast, results from the present analysis for a three-
‘mode truncation {and which, therefore, represent less accurate
predictions of the response) are identical with the corresponding
values obtained for the same truncation in Ref. &4 over the entire
range. Thus, it may be inferred from Fig. 7a that, for the case
of an incident step pulse, a three-mode representation gives -~ 1
reasonably satisfactory values during times in the nt:ghborhood '
of the maximum response, but constitutes a highly inaccurate
approximation to the deformation during early transit time. This
is shown even more forcibly in Fig. 7b. Nevertheless, the close
agreement that, for a three-mode truncation, exists between the
results of the present analysie and those of Ref. 4, indicates
that the time dependence is treated properly by the present tech-
nique,
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In Fig. 7b the hoop stress computed by the present method
at 9 = 0°, for the case of a step pulse impinging on a cylin-
drical cavity, is compared with corresponding data given in
Refs. 2, 4, and 5. Again, these references present results
obtained by various truncations of the representation in cir-~
cunferential modes, and again, some degree of agreement prevails
among these computations during later transit times. However,
wide disagreement exists for earlier times, particularly during
the first transit, when even the sign of the stress response is
in contention.

As in the comparison at 6 = 90°, the results obtained at
& = 0° by the present method, for a three-mc ez truncation, agree
very closely with those of Ref. 4 over the entire range. Over
most of the range considered, and especially for the early transit
times, these results are at variance with those obtained when
the number of modes is adjusted to comply with the requirements
of conwvergence at each space point and time being considered.
This shows that the discrepancy stems from the circumierential
mode representation and not from the treatment of the time de-
pendence. 1t 1s unlikely that a deformation, and hence a stress
 vesponse, which, during the early stages of tramsit of the imeci-
dent wave, imvolves only part of the cavity (namely, its froant),
could be properly represented by three modes. In view of this,
and since the initial value predicted by the present method for
the hoop stress at 6 = 0° is zero {pointed out 4n Ref. 4 to be
the correct value), it is felt that the early response is more
realistically described by the present technique, even as com-
pared to Ref. 5, in which six modes were employed. After ome
guarter transit, the close agreement with Ref., 5 is to be noted.

In Fig. B the results of the present method, which stem from
the theory oi elasticity, are comparec with the corresponding -
data given by Ref. 7 fcr the hoop stress response in a thin cylin-
drical shell of various thicknesses (h/R = .0048, .019, .0381)
at 6 = 90°, ¢to an incoming step pulse, Two media with signifi-
cantly different shear modulii are considered. The results of
Ref. 7 stem from an analysis of the cylinder by a thin shell
theory in which the cylinder acts as a membrane. Fcr each shell
curve, two sets of points obtained by the~ present technique have
been plotted, one for the hoop stress at the middle surface, and
a second at the inner surface representing the additional effect
of bending. As can be seen, the difference between the middle
surface and inner boundary stresses appears to be negligible for
the thinnest of the three shells. For the thickest, the differ-
ence reaches a value of about 10 per cent, Meoreover, some
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differences exist between the response as determined by the present
analysis and that of Ref. 7. Of course, it Is only to be expected
that elasticity theory and thin shell theories will yield differing
resuits. However, it is observed in Fig. 8 that. as the shell be-
comes thinner, the shell theory predictions do not come into closer
agreement with those of elasticity theory. Therefore, on the basis
of the availabie information, it 1is not possible to determine at
what value of the thickness to radius ratio the thin stell theory
ceases to be valid. 1In an effort to determine the source of the
divergence of the results, as the shells become thinner, between
the shell theory predictions and those of the theory of elasticity,
we note that in Ref. 7 the deformation of the shell is constrained
to three modes. In addition to the total response, Fig. 9 shows
the time history of the contribution of each mode as given in

Ref. 7 for the case of the shell with thickness to radius ratio

of .019. Points computed by the present method, but with the

same truncation ac in Ref. 7, for the total response and its com-
ponent modes are also shown in Fig. 9, along with the total re-
sponse (present analysis) that satisfies the convergence require-
ments. The agreement that, except for early transit times, pre-
vails between the two responses demonstrates that the discrepancy
between the present results and the case of Ref. 7 is not due to

an insufficient number of circumferential modes in the analysis

of Ref. 7. Figure 9 shows that the major discrepancy resides in'-

the third mode (the n = 2, or inextensional, mode). It is
further noted that the results for the cavity case and all the
ocher shell cases considered in this report (including some of
those of Ref. 7 shown in Fig. 8b) indicate that the number of
transit times required to approach the static condition does not
seem to be significantly dependent on the material as well as
geometric properties of the shell and the surrounding medium.
This value seems to remain at about six to eight transit times.
By contrast, the response reproduced from Ref. 7 in Fig. 9 de-

‘parts from this general behavior as the shells become thinner.

4 Results Obtained by the Present Analysis for the Response
to an Incident Dilatational Wave (Elastic Medium)

Figure 10 illustrates the influence of liner thickness on the
response to an incoming dilatational etep pulse. The maximum
stress response, the hoop stress at 6 = 9G°, 1is shown., When the
incident wave passes from the medium into a relatively stiffer
cylinder (slow granite into concrete), the effect of increasing
liner thickness is to reduce the peak liner stress. When passage
of the incident wave is into a relatively softer cylinder (fast
granite into concrete), increasing the liner thickness increases
the peak stress. The appearance of a more oscillatory response,
with i{ncreasing thickness, shouid be noted for the softer liner.
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The influence of liner thickness on tic displaceuwnu. response,
when the liner material 1is stiffer than that of the medium, is
illustrated in Figs 1ila and 11b (where, for ease of comparison,
the curves oi Fig. 5b are presented again in Fig. 11b). An in-
coming dilatational rectangular wave, five transit times in dura-
tion, 1s the input for both of these cases. The liners in Figs. lla
and 11b have a thickness Lo radius raicio, n/K, equal to .01 and

.2, re.pectively. As expected, the thicker, and hence stiffer,
shell experiences muchi less deformation of the cross section
(measured by the vertical distance between the two ur curves) .

Also, as cau be determined from Figs. lla and 1lb by the onset of
pure rigid body moticn (parallel portions of the curves), the full
deformation is realizad earlier in the thicker shell. It may be
noticed that, as the back of the wave passes over the cylinder, the
front of the cylinder (6 = 0°) experiences the sharper variation
in displacement. This effect is accentuated by an increase in the
liner thickness. After passage of the wave, the thicker shell
regains its original shape first. As expected, the total transla-
tion of the shell 18 independent of the thickness. Additional =
results, Fig. llc, suggest that when the liner materisl is suffi- .
ciently softer than that of the medium, a change in liner thlckness
does not appreciably influence the over-all deformation. _

Figure 12 contains results obtained by ‘the" presLnt analysis
that apply to .a dilatational step pulse traveling through an
infinite elastic medium, and impinging upon an elastic cylinder,
for four separate sets of cylinder and medium elastic properties.
These were selected so as to study the influence of impedance mis-
match. Curves G-C and G-S apply to an elastic environmen:
having the properties of granite and lined by concrete and stcel
cylinders, respectively. In case G-C, the incident wave trans-.
mita energy from a relatively "stiffer" to a softer elastic en-
vironment (value of Young's Modulus). In case G-S, the dis-
turbance is transmitted from & relatively softer to a stiffer
elastic environment, with attendant magnification of peak stress
in the cylinder. Curves Sa-C and Sa-S apply tc an zlastic

‘environment having the properties of sandstone and lined also by

concrete and steel cylinders, respectively. Again, the magnifi-
cation of the peak stress is greater as the disturbance passes
from a relatively softer to a stiffer medium. In this case, the
difference in magnification of peak response is even more striking
but not surprising, since sandstone is much softer than granite
and has practically the same prcperties as concrete, The depen-
dence of the magnification of the incident stress amplitude upon
impecance mismatch has been demonstrated previously in Ref. 7

for thin shells. In this connection, the impedance ratio parame-
ter, (ymcdm/vcd), has been indicated, for the case correspu.ud-

ing to each curve, on Fig., 12. It will be observed that uecreas-
ing values of this parameter are associated with increasing values
of peak response. 72




The effect of th¢ stress wave form upon the maximum stress
for a liner embedded in an elastic medium is illustrated in
Fig. 13. The results for three cases of incoming dilatational
plane waves are presented. The wave forms (ree Fig. 2h) ara:
1) a step pulse; 2) a triangular wave; and 3) & linear rise-
exponential decay wave form, having the same rise time as the
triangular wave, 7lhe expressions for ap, which describe wave

forms 2) and 3), are given in Appendix B. All three waves
t.ave the peak value %* As can be seen, the step pulse produces

the most critical response, eventually reaching a static value

of 2.37. The response in cases 2) and 3) are identical during
" the rise time. The value of the hoop stress in these cases con=-
tinues to increase during the passage of the peak of the incident
wave across the liner, and decreases after the peak has passed
the back of the liner. The response to the triangular wave dozs
not reach nearly as high a peak vaisue and derraases more rapidly.
This effect stems from the rate of cdecay parameter that uefines
the exponential decay and for this case gives & higher value of
incident stress to that wave form than that of the triangular
wave at corresponding transit times. All responses should give

" a value of dgg equal to zero at lass than 1/2 transit. The

slight discrepancy from this, shown by -the response to the step
“pulse in Fig. 13, reflects the fact that it is mora difficult to
_represent & step function by a Fourier series than a linear rise.

5. Results Obtained by the Present Analysis for the gxlinder

Response to an Incident Dilatational Plane Weve in a

Yisqoelastic Medium

Results of a computational effort concerned with the response
of an elastic cylinder, embedded in a viscoelastic medium, to an
incident dilatational plane wave, are presented in Figs. 14 B

through 19, The values of paramgters defining tbh- B are
identical with those of the concrete cylinder er' .- . -
elastic medium discussed in the preceding subse - : anec-
tion with Fig. 12. The viscoelastic propertie: = - - {ium are
described by the standard linear solid discusse. . - woa ILT.S
(see Fig. 4). The values of the instantaneous e. . ‘arameters
and the mass of the medium were held constant. T properties
are identical with those of sandstone considered - -viously as

an elastic medium in the cases treated in Figs. and 13. They
are given by the values of Ep Voo and Ym shown in the figures

along with the corresponding values for the elastic liner. Also




kept constant was the value of the viscoelastic parameter, Qllﬂ ’

which was set equal to unity. The three remaining nondimensional
ratios that describe the viscoelastic pronerties of the madiim wera
permitted to range through a set of values. The parameters 11/91

and lenz, et equal to each othar in each case, took on the
magnitudes .25 and .l. The relaxation-time parameter, cdmlozb,

was assigned the spectrum of values 0, .1, 1, 10, and «. Note
that the lower end of this spectrum, cdmlnzb = (), corresponds

to the limiting case of an elastic-relaxed material, while the _
upper end. cdmjﬂzb w », applies to ansther limiting case, that

of an elastic-~unrelaxed material.

It is well known that the model used in the present enalysis
describes only the general features of the actual viscoelastic
behavior of soils under dynamic loading. Accordingly, the values
_ assigned to the viscoelastic parameters should uot be construed.
~ as being fully representative of specific materials, However,

these values are significant in that they fall within practical
ranges and lead to a spectrum of results from which meaningful -
qualitative conclusiona ecan. be -drawn.: ,

The influence on the response of the cylinder of variation

in the viscoelastic parameters of the medium, when the time history -

of the incident stress wave at the front of the cylinder is a step
function, is illustrated in Figs. 14 and 15. The maximum stress

- ‘response, at the inner surface and 0 = 90°, 1is plotted in
Fig. 14. In @hese figures, the upper and lower curves correspond
to elastic media whose properties are described by the unrelaxed
(cdmjnzb = ») and relaxed (cdm/QZb = 0) elastic modulii,

respectively.

In general, the effect of viscoelasticity in the surrounding
medium is to increase, in some cases drastically, the stress
response in the liner over that assoclated with the elastic~
unrelaxed medium, This incresse is characterized by two major
trends. One trend is associated with a decredse in the relaxation
time (indicated by a decrease in the value of cdm/QZb)’ the

other with a decrease in the ratios rl/nl and 72/02. At early

times, before the maximum response assoclated with an elastic-
unrelaxed medium is reached, the increase in stress corresponding
to a decrease in the relaxation time is relatively slight for
larger values (of order 100) of the parameter cdmjnzb, but

74



becomes far more significant as the magnitude of the relaxation
time decreases to the order of one transit time of the elastic-
unrelaxed wave froni (cdmlﬁzb = 10, 1). Thls can be seen,

for example, in Fig. l4a, which corresponds to the case
rl/nl - 72/9 = ,25, Up to the time when the peak stress is

reached (c t/2b < 2.5), the stress response in the case c, /Q b= 100

is identical with that corresponding to a purely elastic (unre-
laxeﬂ) medium. During the same time interval, the stress for
/Q b = 10 grows to a value about 20 per cent larger than the

peak stress in the case of the purely elastic medium while, for
/Q b = 1.0, it reaches a value 100 per cent larger. As

dm/a b 0, the stress approaches the value associated with the

purely elastic-relaxed medium,  which is more than double that of

- the peak stress in the liner embedded in the purely elastic-
unrelaxed medium. It should be noted that the peak stress in

the case of the elastic-relaxed medium is almost three times

that in the case of f:he elastic-unrelaxed medium, This. pattern

- of increased stress response for decreased relaxation time, ob~ -

served at cdmt/2b = 2.5, 1is magnified with time as the material

" in the viscoelastic environment continues to relax and the liner
must resist larger deformations in the medium. Ultimately, the
stress can be expected, in all the cases where the medium has a
finite relaxation time, to reach the steady-state conditions
assoclated with an elastic-relaxed medium, This process, clearly
indicated in Fig.l4, is shown to be extremely slow for large
values of cdm/Q b, 100 < cdm/n b < =. However, the approach

to the steady-state candition occurs far more rapidly as the
value of cdmlnzb decreases below 10. When this condition is

reached, the stress has about 2-1/2 times the value of the peak
stress associated with the elastic-unrelaxed medium. Setting
1/0 - TZ/Q = 1 in the creep laws developed in Section III.5

is another way to reduce these laws to the stress-strain rela-
tions pertaining to the medium whose properties are purely elas-
tic (unrelaxed), Thus, when 71/01 and 12/5'22 approach unity,

the viscoelastic curves for the entire spectrum of relaxation
times must merge into a common curve —— the curve associated with
the elastic-unrelaxad medium. Taking that curve as a basis for
comparison, the sizable spread of the viscoelastic curves in

Fig. l4a gives a clear indication of the magnitude of the magni-
fication experienced by the major stress in the liner due to a
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decrease in the value of TI/Q1 and 12/32. Figure 14b, in which
11/91 = 12/02 = ,1, gives further evidence of this trend. It can

be noticed in this figure that the peak stress in the case of the
elastic-relaxed medium 18 now Live times greater ctnan the peak
stress in the case of an elastic-unrelaxed medium, as compared

to three times greater when 11/91 - 12/92 = .25 (Fig. l4a).

Figures l4a and 14b both show that the curves corresponding to
the two elastic media diverge quickly from each other. Since

the curves corresponding to finite relaxation times range in
between these two curves, it may be concluded that, if the ratios
of rllnl and Tzlﬂz are appreciably less than unity, the repre-

sentation of a viscoelastic medium purely by its elastic-unrelaxed
or its elastic-relaxed properties may lead to results that are
elther unconservative or too conservative.

In the present discussion, valid conclusions can also be
dravn for step.pulses of finite duration. Depending on the pulse
duration and the degree of viscoelasticity in the medium, stresses

‘may be induced in the buried cylinder that are drastically larger
‘than the peak straess predicted by considering the medium to be ,
. purely elastic (unrelaxed). The longer the duration of the pulse -
~or the smaller the relaxation time, the higher the stress will

be, with the elastic-relaxed condition constituting an upper
bound. Conversely, short pulses in a medium with a sufficiantly

- long relaxation time may not induce a response appreciably differ-

ent from the response associated with the purely-unrelaxed medium.
As a final note concerning Fig. 14 it should be mentioned that .

" the discrepancies between the curves at the time of arrival of

the pulse can be attributed to difficulties sometimee encountered
in approximating, by means of Fourier series, the discontinuity

of the incident step pulse for the values of the parameter b/cme
necessary to obtain a sufficient rest time (see Section V).

Figure 15 is concarned with the deformation of the inner
surface of the cylinder (described by ux at 0° 90° and 180°)

due to the incident step pulse. As expected, the trends shown by
the curves in this figure parallel those for the stress response.
It is seen that the principal effect of viscoelasticity of the
medium 18 to increase the deformations over those predicted for

a purely elastic (unrelaxed) medium, without changing their

" character appreciably. The deformation increases with decreasing

relaxation times or decreasing ratios of elastic-relaxed to
elastic~-unrelaxed properties (11/91, 12/ ). The full liner

deformation, indicated by the onset of rigid body motion, is
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reached later when the medium is viscoelastic than when the medium
is purely elastic (relaxed or unrelaxed). The rigid body motion
itself increases when tiie relaxation time nr tha ratine ~f walawad
to unrelaxed elastic properties are reduced.

The iniluence of viscoelasticity of the surrounding medium
onthe response of the cylinder to an incident stress wave with
a triangular time history at the front of the cylinder (see Fig. 13)
is shown in Figs. 16 and 17. During the period of increasing
stress response, the family of curves in Fig. 16 shows a magnifi-
cation of the stress with decreasing relaxation time that is very
similar to that observed in the case of the incident step pulse.
The peak stress associated with the elastic-relaxed medium is
nearly 2-1/2 times the peak stress assocliated with the elastic~
unrelaxed medium. Again, the peak stresses corresponding to
finite relaxation times in the medium are bracketed between these
two stresses. Consequently, results obtained by treating a visco-
- elastic medium simply as an elastic-unrelaxed or elastic-relaxed
~ medium may, for this incident wave form, again be either unconserva- .
tive or too coneervative. -l . - L S

1t is intareating to note the combined effect that the riae -
utime of the incident wave (1/2 transit) and the value of the re~ "
laxation time in the medium-seem to have in the response of the
cylinder. It is seen in Fig. 16 that early in the response, - -
during a time interval comparable to the rise time of the inci-
dent wave, and for a medium with relaxation time at least as long
as the rise time, the stress is identical with that associated .
with the elastic-unrelaxed medium. It should also be noted that, -
after the passage of the wave over the cylinder (°dﬁ;/2b >4),

the liner stress decays more slowly in cases involving surrounding
viscoelastic media than in cases involving elastic media. An
explanation for the behavior of the stress response in the case
of a viscoelastic medium is that it must involve primarily the
slow process of creep strain recovery in the medium.

The deformation of the liner inner surface due to the inci-
dent triangular pulse is shown in Fig. 17, and is again described
by u at 0°, 90°, and 180°. For the sake of simplicity we

have presented only the curves corresponding to the elastic-
relaxed and unrelaxed media and to the viscoelastic medium for
which cdm/QZb = 10, The deformation for the case cdmlnzb = 1.0,

is given in a subsequent figur. (Fig. 19¢c). It is seen in Fig. 17
that, as in the case of an incident step pulse, the effect of
viscoelasticity in the medium is to magnify the deformations
without changing their essential character. The lower the relaxa-
tion time the larger the deformation, with the elastic-relaxed
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curves constituting an upper bound. In the viscoelastic case,
after the wave has passed, it is interesting to note how very
long it takes for the cylinder to regain its original undeformed
shape. 1his 18 1ndlicated by the sSlLow converging Oor the curves
after the maximum deformation has been reached.

We now discuss another point of interest. Referring ahead
to Fig. 19c, and in conjunction with Fig. 17, we note the attenu-
ation of the maximum acceleration with decreasing values of the
relaxation time down to at least cdm/nzb = 1.0, which the inner

surface at 6 = 0° experiences just after the passage of the
pulse (cdaE/Zb 2 5). However, the sharpness of the peaking of

the displacement responsa at 6 = 0° for the case of the elastic-
relaxed medium indicates that, at some value of the relaxation
time in the range 0 < Cdm/QZb < 1.0, the maximum acceleration

would start to increase again and, for lower values of the re-

~ laxation time down to ¢, /92b = 0, would exceed that corre- f
,sponding to the elastic-unrelaxed medtum.

B
iy

A:\\

The influence of incident wave history on the response of

" a liner embedded in a viscoelastic medium is illustrated in
‘Figs., 18 and 19. Figure 18, which is concerned with the maximum
" stress response, combines the results plotted in Fig. l4a for

~ the case of an incident step pulse with those plotted in Fig. 16

- for the case of a pulse of triangular form. It also includes

results for the pulse with the linear rise-exponential decay
history described in Fig. 13 and Se¢tion VI.4. For the sake of
comparigson, the curves presented in Fig. 13 are reproduced in
Fig. 18a for the case where the medium is purely elastic (un-
relaxed) . The only other figure in this set containing results
for a linear rise-exponential decay pulse is Fig 18c, for the
case cdm/Q bw=1,0,

It is seen from these figures that the effect of the visco-
elasticity in the medium is to accentuate the differences between
the stress responses to the three pulses. These differences
increase with decreasing relaxation time. It can also be seen
from the curves in Figs. 18a through 18d that the difficulties
encountered in computing the onset of the stress response to a
step pulse were not encountered in the case of the other two
pulses.

A comparison of the deformations of the inner boundary of

the cylinder due to the three incident stress waves is made in
Fig. 19. This figure combines the curves presented in Figs. 15
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and 17. It also presents the results obtained for the linear
rise-exponential decay incident pulse in the case of the elastic-
unrelaxed medium and the medium for which cdm/nzh =1.0. Par

all the degrees of viscoelasticity considered, the step pulse
inducea the largest cylinder deformation (a3 measured by com-
paring the vertical distances between the ur curves) and the

most rapid translation (indicated by Uy, at 90°). The triangu-
lar pulse induces the smallest deformations. Of the two pulses

of finite duration (triangular and linear rise-exponential decay),
the triangular pulse causes the smaller final rigid body displace-
ment of the cylinder and that displacement is attained earlier.
Conversely, the peak acceleration during the decay of these two
pulses shown to occur at 6 = 0° by the sharper peaking of the
corresponding ur curve, 1s the greatest in the case of the
triangular pulse. Figure 19 demonstrates that the viscoelasticity
of the medium has the effect of magnifying the differences in the

- ‘response to the various pulses. This mngnification ia accentua-

ted by reduction of the- relaxation time.

© 6. Comarisona with rubnsn'ad na':a of the Results Obtained

by the Present Analygia for the Rcsggnse to an Inctdant
" Shear Wave

' ianig. 20, thé hoop stress réaponée to an incident shear
wave at ¥ = 45° and 135° 1is compared with the results pre-
sented in Refs. 4 and 19. The ramarks made in the discussion of

Fig. 7 apply here as well. At times corresponding to the maximum

stresses, the various results do not differ too widely, and all
approach the static value given by the Kirsch formulas. However,
for early times, when the incoming shear wave is still in transit
across the cavity, three circumferential modes do not accurately
describe the deformation. This again can be seen by comparing
with the other references the results obtained by the present
analysis, where we used that number of modes sufficient to ob-
tain convergence ¢f the solution and also a three-mode truncation.
When the present computations were restricted to three modes, it
can be seen that the results duplicated those of Ref. 4, However,
the more accurate solution differs from that of Ref. 4 in that
the maximum is reached at 7 = 135° at an earlier time than at

G = 45°,
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7. Results Obtained by the Present Method fox the Response
to an Incident Shear Wave (Elastic Medium)

Tie cases presented in Figs. 71 and 22 were selected s0 as
to study the influence of liner thickness on the response to an
incidens shear wave. liner and medlium parameters are the
same as those selected tc obtain the results shown in Fig. 10 for
the case of an incident dilatational wave. The ajor stresses

are the circumferential stresses, T7__ at 6 = 45° and 135°.

- L
As was noticed in the cavity comparison case (Fig. 20), the cir-
cumferential stress at 6 = 135° reaches its peak more rapidly
than the corresponding response at 6 = 45°, The stresses at
both angular positions, for these shells, apparently reach the
same maximum. For these cases, the response per unit amplitude
of the incident wave, as well as the overshoot, is greater than
the corresjionding response to an incident dilatational wave.
These effects were also observed in the cavity response (Refs. 4
and 17). As in the case of an incident dilatational wave, an in- S
~ crease of liner thickness decreases (or increases) the response AN
‘when the lineér is stiffer (or sofcer) than the medium ’

In Fig 22, the influance of liner thickness on the ds.spnce- '

. ment response is shown. Effects similar to those noticed in the
 response to an incident dilataticnal wave are indicated. As ex-

pected, the path of the rigid body motion is perpendicular to
the direction of motion of the incident wave front. Also, as in
the case of the incident dilatational wave, when the back of the
wave passes over the cylinder, the front of the cylinder (¢ = 0°)
experiances the sharper variation in displacement.

In Fig. 23, the influence of impedance mismatch on the re-
sponse to an incident shear wave is illustrated. The parameters
of the liner and surrounding medium are identical with those.
utilized to obtain the results presented on Fig. 12. The major
stress response, T__, occurs at 6 = 45° and 135°, the maxi-

mum at 6 = 135° bggng reached earlier in time. It was noted in
discussing Fig. 10, and is again observed here, that the magnifi-
cation of peak stress is greater when the wave travels from a
softer into a relatively stiffer medium. Also to be obaerved are
the indications that the response to the shear wave involves con-
siderably greater deformation effects than the corresponding
response to a dilatational wave. For example, note the sharpness
of the peak response on curve Sa-S, and also the tendency for
the stress to continue to oscillate afterward.




The influence of wave form on the response to an incident
shear wave is shown in Fig. 24. The liner and medium parameters
are the same as thore for which the raenlte of Pis 13 werzs cb-
tained for the incident dilatational wave. The major stress
response is that of the hoop stress, T__., and occurs at

=}
% = 45° and 135°, with the maximum being reached earlier at
6 = 135°. The general character of the response is similar to
that for the case of an incident dilatational wave. The most
severe response again occurs when the incident wavc form is that
of a step pulse; and, again, for the parameters considered, the
linear rise-exponential decay wave form induces a hoop stress
response of greater magnitude, for comparable times - after the
passage of the peak of the incident wave — than does a triangu-
lar wave form. The steeper character of the shear wave response
has already been mentioned in connection with previous figures.
The abrupt change in curvature of the response curve at o = 135°,.
for the case of the step pulse, before the maximum is reached “
should be noted. The curves at & = 135° corresponding to the
other wave histories exhibit a similar but more pronounced trend.

In particular, the curve asscciated with the linear rise-
~exponential decay pulse shows a well-defined dguble»peak_ :

8. ”Results Obtained by the Present Analysis'for,thz gy;inder

Response to an Incident Shear Wave in a Viscoelastic Medium

' The numerical results for the response of the elastic cylin-
der to an incident shear wave, where the cylinder is embedded in

a4 viscoelastic medium, are presenced in Figs. 25 through 30. They

were ob%ained for the same cylinder and viscoelastic media as in
the case of the incident dilatational wave (Section VI.5). The
histories of the incident shear waves are also the same as for the
dilataticnal waves. They are described in Fig. 24. To assess the
influence of the viscoelasticity of the medium, results for the
elastic-unrelaxed medium are included as & limiting case. These
results have already been presented in Figs. 23 and 24, and dis~
cussed in the preceding section.

The major stress response in the liner, 7__ at the inner
00 :
surface and 6 = 45° and 135°, 1is shown in Fig. 25 for the case
of the incident step pulse and in Fig. 26 for the case of the tri-
angular pulse. 1In general, these results indicate that the prin-
cipal effect of viscoelasticity in the surrounding medium is again
to magnify the stress response as compared to that associated with

the elastic-unrelaxed medium. The trends at 6 = 45° — increasing

81




stress response with decreasing relaxation time and also with
ratios of relaxed to unrelaxed elastic properties — are very
similar to those at 6 = 90° relating to the incident dila-
taticonal wave. Tnerteliore, the dlscussivu iu 3ecilun Vi.3 per- 1
taining to Figs. 14 and 16 applies equally to the curves for ]
6 = 45° in Figs. 25 and 26a. Tn Fig. 253, the par cent in-

crease in stress at ¢ t/Zb - 2.5 resulting from the decrease

in the relaxation time of the medium is practically idemtical
with that observed praeviously in Fig. l4a at ¢ t/ 2b = 2.5,

Again, the ratio of the peak stress assoclated with the elastic- f
relaxed medium to that associated with the elastic-unrelaxed |
increases from a value of about 3 in the case 11/01 - 72/:22 - 25 5

(Fig. 25a), to a value of about 5 in the case 'r]_/Q1 - 'rz/'nz = .10

(Fig. 25b). The hoop stress response at 0 = 135°, however, de-
parts significantly from that at 6 = 45° in the case of both
an incident step pulse and an incident triarmgular pulse. 1In both
these cases, a complete reversal of the trends of stress magni-
fication with viscoelasticity in the medium occurs at © = 135°

during a time ﬁmterval after the arrival of the pulse. In the
cases where Ty T = .25 (Figs. 25a and 26a), this de-
‘crease in the str&u:s rg 3¢ with decreasing relaxation time
stops befcre the stress associam:ad with the elastic-unrelaxed

~ medium has reac *hed its maximum (c tlzb = 2) and gives way to

the more prevalent trend of lncreasing Stress response. However,
, it is seen. in Fig. 25b, where 'rl/ﬂl - lea = ,1, that the

hoop stress at © = 135° inm the case of the elastic-relaxed
medium remains considerably below the peak stress for the elastic-
unrelaxed medium until about a half transit past this peak. This
indicates that, at least for the case of an incident step pulse,
the effect of dJecreasing the ratios 'rll'al and \'rzl-ﬂ2 is nosx

only to magnify the trend itself but also its duration. As
c dm/ Qb+ 0, a peculiarity associated with this tremnd at

D = 135° {s the appearance in Figs. 252 and 26a of a stress of i
opposite sign for a short time after the arrival of the pulss. ;
This stress, barely ncoticeable in Figs. 25a and 26a, becomes much

more prominent as 11/91 and 72/9 decrease (Fig. 25bY.

Other effects cof the viscoelasticity »f the medium on the -
stress response at O = 135° can be seen in Figs. 25 and 26. : ]
The curve representing the resporse to an incident step pulse in .ol
the purely elastic (unrelaxed) medium goes through abrupt changes
in curvature before reaching its peak. For the case of a triangu-
lar pulse (Fig. 26), these changes in curvature are more pronounced,
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and the curve has what amounts to a double peak. With a decrease
in relaxation time, this behavior 1is progressively less in evi-
dence. It ccases to be noticeable for cdm/Q7b < 1.0,

It was also pointed out in the preceding section that the
stress response to an incident step pulsc In the elastic-uureluaxed
medium reaches its maximum earlier at 6 = 135° than at 6 = 45°,
It can be seen in Fig. 25 that this is also the case when the
elastic-relaxed mediumr is involved. By contrast, the hoop stress
response assoclated with the viscoelastic media for which
Cdm/QZb « 1.0, 1is never larger at & = 135° than at 6 = 45°,

The influence of the shear_wave history on the stress response
¢f the liner inner surface at 6 = 45° and 135° 1is illustrated
in Fig., 27 for the case of the medium for which cdmlﬂzb = 1,0,

This influence, when the medium 1s viscoelastic, can be compared :
to that when the medium is purely elastic (unrelaxed) by refer- ;
ring back to }ig. 24. For the finite value of the relaxation !
time considered here, it can be seen that the nature of the dif- )
ferences between the responses to the three distinct pulses de-

scribed in Section VI.7 is preserved. Again, the effect of E v
viscoelasticity is to magnify these differences. It can dlso be =~~~ |
seen_that the disappearance of the double peak for the response :

~at © = 135° due to the viscoelasticity in the medium occurs in

the case of the linear rise-exponential deciy incident wave as

well as in the case of triangular incident wave. By contrast with

the responses shown in Fig. 24 for the case of the purely elastic
(unrelaxed) medium, the stress responses at 5 = 45° in the case

of the viscoelastic medium are almost identical in character with

those at 9 = 135°, 5

The nondimensional displacement response perpendicular to
the path of the incident wave, Zuvy/m b, at = 0° 90°

and 180°, and at the liner inner surface, is pzesented in
Figs. 28 through 30. It is given by V_ at 0° and 180° and

e -
%r at 90°., Since 3r is ean odd function of 6, the distance

between opposite points along the diameter perpendicular to the
path of the incident wave remains unchanged and vr at 6 » 90° —

the middle curve in each set of three given in Figs 28 through

30 — represents the translation of the whole cylinler. When the
vertical distances between this curve and tlhie other two curves

(V. at 0° and 180°) are equal — as they are for a substantial

8
portion of the response — the diameter of the cylinder aligned




with the path of the wave experiences a pure rotetion in addition
to a translation equal to that of the perpendicular diameter.

The curves in Figs. 28 through 30 are very similar in charac~
ter to those shown in Figs. 13, L/, and LY tor the response,
2uux/oob, to incident dilatational puises. They indicate similar

trnds. For all three incident waves -~ the step pulae, the tri-
angular pulse, and linear rise-exponentisl decay pulse — the
effect of a decrease in the relaxation time is to increase the
translation described by vr at 0 = 90° and the rotation de-

scribed by the other two displacements. Figure 28 indicates that,
at least for the case of an incident step pulse, the same effect
is induced by a decrease in the ratios 71/01 and 12/92. The

curves in Fig. 29 for the case of an incident triangular pulse
indicate that the sharp acceleration of the front of the cylin-
der, just before the intensity of the incident pulse at this
point in the cylinder reduces to zero (ctmt/Zb = 3), 1is at

first attenuated by decreasing values of the relaxation time. Fig-
ure 30c shows that this trend continues at least until cdm/Q b

reduces to the value 1,0. However, as implied by the character

~of the curve for the displacement at ® = 0° in the case of the

elastic-relaxed dedium, at some value of ¢ /sz -below unity

the acceleration starts to increase again. It also becomes
sizable at € = 90°, The very slow recovery of the liner's origi~
nal shape after the passage of the pulse is again indicated in
Fig. 29 for the case cdmlnzb = 1.0, by the sluw convergence of

the curves.

Figure 30 illustrates the influence oI thi .incident wave
history on the displacement response. Again, = decrease in re-
laxation time magnifies the differences between the responses to
the various pulses. It should be noted that for the case of a
viscoelastic medium (Fig. 30c) as well as for the cuse of the
elastic-unrelaxed medium (Fig. 30a), the sharp acceleration ex-
perienced by the frout of the liner in the case of an incident
triangular wave is far less pronounced in the case of the linear
rise-exponential decay incident wave.
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9. Results Obtained by the Present Analysis for the Supa2rposition
of the Cylinder Responses to Incident Dilatational and Shear
Waves in an Elastic Medium

As formulated in Section I, the idealized problem with which
the present analysis is concerned, is that of determining the
response in a cylindrical liner buried in an infinite medium, the
cylinder being subject, in succession, to plane dilatational and
shear waves. Results obtained by the present analysis are valid
for different physical situations, provided that effects other
than those postulated can be neglected. For example, an air-
induced ground loading results when a pressure wave, generated by
an above-ground burst, travels along the surface of an elastic
half space with superseismic velocity, V,” where V > € 4m* Then,

the results of Ref. 20 imply that plane dilatational and shear
waves are transmitted into the half space. The transmuitted wave
fronts are inclined to the surface by the angles ay - arcsin (cdm/V)

t

and o, = arcsin (ctmjv) respectively. These fronts are inclined i
‘to each other by the angle @ (see Fig. 1) where ¢ may =oage - . |
‘Thus, the incident shear wave impinges upon the liner at an angle o]
¢ with respect to the dilatational wave, and its time of arrival | ]
is delayed by an amount depending upon the location of the cylin--
der with respect to the surface loading. Now, if the liner is ' |
located at a depth such that the effects upon its response, of . 2
surface waves, as well as reflections from the surface, can be i
neglected, then the application of the present idealized analysis

is justified. :

Another physical situation for which the present analysis
could be applicable was suggested in Ref. 21 and involves the
direct-induced loading case (burst in direct contact with surface).
In this case, justification for the use of the present analysis
requires the validity of certain approximations. These involve
the lccation of the cylinder with respect to the burst such that,
in the ground effects, a spherical dilatational wave front may be
replaced by a plane dilatational wave front (the previous assump=
tions on surface waves and reflections are also required), If
the half space is assumed to be homogeneous and isotropic, only
the response to an incident dilatational wave is needed to approxi-
mate this case. If the liner is assumed to be located in the
lower level of a two-layered half space, then dilatational aad
shear waves will be refracted through the interface (escumed to
be plane in this case). The angle between refracted dilatational
and shear waves may be caiculated in terms of the incident angle
and the seismic velocities of the two layers. The delay between
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arrivel times, at the cylinder, of the refracted dilatational and
shear waves may be calculated from the known location of the cylin-
der with respect to the layered medium interface. Sufficient dis-
Lauce UELWeSH LI +ih6l aihe incteriacs, &0 that interface reflascticns

may be neglected, is required.

Two numerical problems, posed in Ref. 21 to illustrate the
conditions discussed above, were analyzed. The parameters involved
have little significance beyond providing somewhat realistic ex-
amples (on empirical grounds, the amplitude of the shear wave was
chosen as one-third the amplitude of the dilatational wave).

As an example of air-induced loading, a concrete cylinder,
50 ft in diameter, is regarded as embedded in a homogeneous slow
granite environment, at a depth that requires the transmitted
waves to travel a distance of 150 ft before contact with the cylin-
der. The surface wave is assumed to be a step pulse, with velocity
V.= 8500 ft/sec. From the analysis of Ref. 20, it may be deduced
that g, and ‘To are negative with respect to the cylinder co--

ordinate systems of Fig. 1. Results obtained for this case are
illustrated in Fig. 31, From the data presented on these figures,
the angle @ between wave fronts is 19.7°, and the time of
arrival of the shear wave, with respect to the arrival of the .
dilatational wave, - cdmﬁt/b, ‘1s calculated as cdet/b = 4.38. "

On these figures are shown the components of the hoop stress
response at the inner surface to the dilatational and shear waves,
as well as the total response. Because the amplitude of the '
dilatational wave dominates, the maximum response for the points
we computed is obtained at 6 = 90°, even though at this angle
the effect of the shear wave response is to reduce the stress.
At 6 = 64.7°, corresponding to 6 = 45°, the shear wave re~
sponse also reduces the stress, while at O = 154.7° (6 = 135°),
an addition to the dilatational response occurs after the arrival
of the shear wave,

As an example of a direct induced loading, a steel cylinder,
50 ft in diametex, is regarded as embedded in a fast granite
layer, separated by a plane interface from a layer having a
seismic dilatational velocity ¢, = 6000 ft/sec. A plane dila-
tational wave (the approximationd?o the spherical wave) impinges
on the interface at an angle of incidence ¢} = 15°. The cylin-

der is assumed to be located in the fast granite layer at a depth
such that the refracted waves travel 100 ft before impinging cn
it. Denoting the refraction angles for the transmitted dilata-
tional and shear waves as @, and Pem? the angle ¢ between the
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transmitted wave fronts may be found by utilizing the data in Fig. 32,

along with the relations sin Qé/c;m = gin fvdm/cdm = gin ¢tm/ctm‘ In

this manner the angle ¢ 1is found to be ¢ = 22°, The delay time
of the refracted shear wave with respect to the refracted dilata-
tional wave is found to be cdmﬁt/b = 2,92, Results for this case

are presented in Fig, 32 in which component dilatational and shear
responses, as well as their superposition, are shown. It should be

" noted that the dilatational component is identical with that shown

in Fig. 12. The shear component represents that shown in Fig. 23,

. with a different abscissa scale, cdm;/b, rather than the corre-

sponding shear wave parameter, ctmt/b. Again, because of the

dominance of the dilatational wave amplitude, the maximum hoop
stress for the points we computed occurs at 6 = 90°,
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RECTANGULAR WAVE FORM
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O Resulls obtained by present method, using number of modes
required by convergence criterio
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APPENDICES

Teoncfovrations Emnlovad to Facilitate the Computation

L R adand

Representation of the Fourier Coefficients Associated with
the Incident Wave é,
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APPENDIX A

IRANSFORMATIONS EMPLOYED TO FACILITATE THE COMPITTATIONS

In thiz appendix a number of transformations are introduced
to facilitate the computational effort involved in performing
the inversions of the boundary condition matrix equations (3.8.2)
and (4.5.2). For ease of reference, we rewrite these equations
omitting the indices of summation p and n, but understanding
dependence upon them. For the case of an incident dilatational

wave, we have Eq. (3.8.2),

[e4s] {ZJ} - 0.} (A.1)

S -

and for the case of an incident shear wave we have Eq. (4.4.2), -

- kalfal SR C en

The ntralsea and displacements associated with the f"POnge S

" to the incident dilatational and incident shesar waves, Eqs. (3.8.3)
and (4.5.3), respectively, will now be put in nondimensional form.
As an intermediate step in this direction, ve define L

where (oij’ ut) are presume:' to be calculated by Eq. (3.8.3)
and (Tij' vi) by Eq. (4.5.3).

°1 ', , S e
‘-j b;)’ ; {=r, 96 © (A.3a)
T A |
» J-r, 8 , o
" _ _ |
b’ ‘ l=r, 6, (A.3b)

R AR




and

When introduced into (A.l) and (A.2), the transformatica
(A.3) nondimensionalizes the matrix elements on the left-hand
sides, and (A.1) and (A.2) may be written in the form

2
[6441 lel - (BT:Q Jﬁ.l » (A.4)
Lo4Jd [(J) N e 1)
; G
[c’ij] {cj} - () {31} ) (A.S)

where % and T, are the amplitudes of stress in the incident
dilatational and shear waves, respectively, and where Eij and

clj are nondimengional. Then, if we let
2
b g
g m(——NT .
2y ()
ST 4.6)
bzr o
Cr om [ ——d\TF
4= (0 -

The boundary conditions become

[l B i

bl -E). ae

where ‘Si and 31 are nondimensional. Referring to the ex-~

pressions in Sections III and IV by which the stresses and dis-
placements are represented, we note that they are linearly
homogeneous in the ZJ and Cj' Thus, from (A.6), when the

solution vectors to (A.7) and (A.8) are introduced into the
expressions defined by (A.3), we obtain the nondimensional
stress and displacement
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o4 i 2u u.
~ i I e
G, = , U, = (4.9a)
13 7 o 17 gy b

4V memed e a1 oo -
-hu LG L LLIR L WAVE, allUu

s _my
Tij 70 r Yy To b (4.9b)

in the case of the incident shear wave.

In principle, (A.7), (A.8), and (A.9) may be used directly
to determine the nondimensional streeses and displacements.
However, it has been found that the form of these equations may
lead to computational difficulties. The numerical behavior of
the Bessel functions J (z), Y (z), which are constituents of

. the matrix elements C, 42 cij’ vnecessitates a further modifica=- .
‘tion. For fixed =z, 48 0 becomes larse, the J (z) becomes

small and the Y {z) becomes large. To keep the elements of

"(A.7) and (A.8) m.l:hi.n the bounds of the IEM 7094 compmter, and

to ensure calculations of a well behaved character, we modify

"~ the construction of Eqs. (A.7) and (A.8). To emphasize that thc

elements of these matrices and the solution vectors depead upon
the indices of summation p and n, we again let these integers
appear explicitly., Then we modify the elements in columns 1

and 3 by letting - ' ' o

~ n 1 ~ ' n \ _ )
- : : c ’ - .
ciJ:Pn g :|n Eijﬁpn ! ij,pn lq :|n cij,.pn +(4.10a)
T3k 19y
¥ lag 1" 5 Ja, |®
z - z ¥ .._.k_ 'E (5. 1083

jlpn Znﬂ1 len ! j)pn 2 n! Ipn !

where
k=1 when J-lo
k=2 when J=3.
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We modify th2 elements in columms 2, ” 5, ani 6 by letting

n
~ |ql(| -~ ™~ Iql.ln R
C = C c - o
ij,pn .o, “ij,pn  ’ ij,pn " 0 Cii,pn » (A.10c)
n ~ n
v 2n! 3 13
Z - A - A.10d
j.pn lq, |® Jopn? Cj,rm lq, |™ %.pn ! (4.104)
k k
where
k=1 when j = 2 ,

ke 3 -2 when j =24, 5, 6.

- After the definitions (A.10) are imposed, (A.7) and (A.8) become

Lol )-8} ew

[gij] '{?j}- {31} o - Ay

~ Note that the substitutions defined by (4.10) have modified only

the left~hand sides. The right-hand sides have not been alterod.

Because of {A.10), instead of computing the J (z) and
Yn(z')’ in columns 1 through 4, we compute the functions defined
by

n
lq|

la ] n ~
J(2) w AR ), Y (2) =

Y (z) , (A.13a)
n
U

2 n!

where k= 1 i columis { auu 2; and k = 2 in colums 3 and 4.
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In colums 5 and 6, we compute

e ~n . ~. P 4}
J_(2) = LBy @, Y (2) = lﬁi— Y (2) (A.13b)
|z| 2 n!

The elements composing the left~ and right~-hand sides of
(A.11) and (A.12) .are given in Appendices B and C.

For computational purposes, Eqs. (A.ll) and (A.12), which
represent sets of six by six complex equations, were cast respec-
tively int> the following form, which represents sets of twelve
simultaneous real equations:

[Eij] {ij} - {ﬁi} ’ <A.}4)
[.3;';3] {;j} '{ﬁi} .' | o : (.A_.is)_'

where, using superscripts R and I to denote real and imagi-
nary parts, (A.14) is constructed from (A.11l) as follows:

Py =R

L, = Cf (1gig6), WgIgO)
Ly = - ¢ 1<1<6), 7<)<12)
Liss, 146 = Lig 1<1g8), Agige.
Ligg,y = = Lyy Agig®, Ag1gH

X =2 (1<3<6)




-—--—R
M, = D; (1 <1<6)
ﬁi%-ﬁ;_ (L<1<6) . '

e oo [ -

Similariy (A.15) 1is constructed fiom (A.12) in the following
manner:

’ﬁij'c"fitj (1<1<6), (1<3J<H)

Qij--é'{j (1<i<6), (7<3<12) ”
Zis6, 146 = 21y (1<i<6), (1<3<6) b
vy = 2y <18, A<y -
v '_ w0 '
Xiag = CF (1<1<6) .
146 4 L <3<6 | | N
T . i '
n, =5 (1 <1i<6)

My = OF (Lg1g6)

6 = 71 $ig6 .

We recall the discuésion in Section IV.l and note that Iij
and iij stem from the response to incident dilea:ational and

shear waves, respectively. Thus, these elements may be givean in
the same form if we regard T = n as pertaining to Lij and

~
n=~-n as perteining te iig. Then, the real matrix elements

are glven by
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~ A 1P VR N 10t ) B .
Ll,l =9 [é(u) B { 2 1}]Jn(‘qlﬂ)

(q,8)

L
g2
- a2p
~n “n- - ~ - ._2.__. ~
Ly,3 = 23| DI © TaaTy T (92°)
~ .I_L . ~ - ~ A
Ll, 4" "5 (n l)Yn(qZB) 2&(n+1)Yn+1(q2t3).

p

~n ~ o

Ly,s=Lly,e= - =ly,12"0

Rl B - R
L, , = ':fLZ—(nLTE 3148 = (13 (q,8)

p

o
~ 991/ 2n(n-1) ~ 1
Ly,3=- 'zz <( 5 = )3 (00 + 50
| (2,6)
qz[ 2n(n-1 4 (ntl)

~ 2]/ 2n(n-1) ~
L - - - 1)Y_(q,8) + —5—

2,4 2 {( (qZB)Z ) n' 2 qgﬁ
Lyg=Llyg= e =Lyqp=0
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Ly, ™ 2.2ﬁ(n+1)Yn+1(q15) (n-1)Y_(q;P) |

—d 7
2 (n+) B Jn+l(qlﬂ)‘

-1 ~ 2(ntl) ~
L2 s G - e Rl AT -ﬁig'” Yn+1(q1°)!

1

1 (92°)

~

Y 11 (2oF)




. | 2 :
2 A n(n-1 ~ ~
Ly, = - 9|3y - { 2 " I}JJn(ql) T 26D a1 (Yy)

9
[ ] .’ \
iy -2 . meel) _ 2 o
Ly p= -9 %(u) { 2 1} ¥, €9)) 2 Yo (9))

0 7] 9

o

2
~ _ ~ q
Ly3= "[(“'I)Jn(qz) " 2@tD) Jn+1(qz)]

Ly = 8| (-D¥ (9 - 24D, (ay)]

e - u
2(n+1)'93 u) (n+1)3 u)J(n+1)3

-ezaaa;[-wubﬁ—* N +<%>}a RO e EES
5D+ B, - 4D+ Jzz;

(@D D+ O+ 1D + O
- Ofwevil s 2R @)

cl3.':

uﬁmm1ﬁ3+ 2(ntl) . ¥

[qs (m+1)3 T 93 (n+1)3]}
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The expressions; in real form, for the stresses and diapl@cr
ments associated with the responses to incident dilatational and

shear waves will be given now. The transformations leading to

Eq. (A.9), in conjunction w

ith the results (A.100) and (A.13),

yield — when applied to the appropr

fate terms in the expressioas

defined by Eqs. (3.8.3) and (4.5.3) — the following formulation

of the stresses and displacements ass

ociated with the response to

an incident dilatational wave. Note that the components of the
solution vector entering into these terms are those obtained from
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Eq. (A.14). In addition, the rigid body contributions discussed
in Section V.1, have been removed by taking account of Eqs. (5.1.6)
and (5.1.9), and the variable t/T is to be regarded as computed
wiih respect to the rime oI arrival of the incident wave as
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The stresses and displacements associated with the response
to an incident shear wave are obtained from the preceding expres-
sions by: 1) regarding 5. d. Xj and U as T. v. Xj and /.

respectively; 2) n as equal to -n, 3) interchanging sin nv

*

T- -c— -c—- —Q- b \i {—d-lo
and cos n.; 4) replacing T by T 2 ( T/ \2 / and
5) treating the n = 0 case separately for ?Eo as
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APPENDIX B

REPRESENIATION OF THE FOURIER COEFFICIENTS
ASSOCIATED WITH THE INCIDENT WAVE

This appendix contains the explicit representations of the
Fourier coefficients that define both the shape of the incident
traveling waves and their Fourier expansion in the circumferen-
tial directiom.

The coefficients a_ define the time history of the incident
pulses Opex and Tgy (see Fig. 2 and Sections III.l and IV.l),
and are determined from the usual expression for the Fourier con-
stants. They are

_ap =T | Y sin-gbt;dt R .(Bfl)',“

B 6 | S .
~ in the .case of an ihcident~dilatatidnal pﬁlse;-and":f *'~¢‘ SR
a = 2 ,1__“sinﬂgbt~dt' g - - (Be2)

in the case of an incident distortional pulse.

Since ép defines the shape of the pulse, 1dentical values of a

will be obtained in both cases if the shapes of the incoming
pulses are identical.

P

Referring to Fig. 2a for the time histories and associated
parameters of the rectangular, triangular, and linear rise-
exponential decay pulses, we obtain after integrating (B.l) or
(B.2):
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Rectangular Pulse

»n - o

a -{ ’ (B.3) ]
P 40
o ot sm[L(z%-)/ P odd

where ¢, 1s the speed of propagation of dilatational waves when
(B.1) is being calculated; and ¢, 18 the speed of propagation

of shear waves when (B.2) is being calculated; ap is the Lanczos
factor discussed previously in Section VI.2.

~* In this caae, any two of the following parameters may be

h e A ,eT c t o
; selected arbitrari.ly. ('é'{l_’e) ’ (EE_) (_ml;.Q) + 'The -r_mi.ning -onq' S
- is. _detgrmined by the relation ' o L .

C T c t [4] . . . ! . B
R T S

Triangular Wave

o7 |
a, = 1+ t)sin

[c (t:] -tg) _B_Q]

¢ (t:] -t:n)'
‘"3 [ (Zb
) gs.sy
pT__ Smfof _ 1 _.P___ %n (_.Lt __tQ_) _m_Q
- 8in c T ol Bl v sin (ketl)
2(70) 4 2(2b
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c (t.-t.)
where the parameters k and _m_l_Q_ will, in general be pre-
¢c T ct
scribed input, and only gne of the two parameters EE-, -mgn may

De cnosen arvitrarily, the other being determined by tne relation

c T c_(t,=t.) c t

skt 1) “pl 0 nQ

2b 2 s+ (%) (8.6) ;
Linear Rise-Exponential Decay ;

=)

ap - 2 fc (t. -ty sin %{pv
| (pm) -“‘—H
5 sta, 3 P~ (i‘ﬂ”

R

fn,:-q/(:,,]

-'- :Z..i : 7 (-l)P g b
(aT) + (pv) __ )

e o ol (5] |

+ aT sin o|p7T /
(alf) + (W)2 , 2 b ) (Zb .

=) (5|

+ pr cos ']2‘[1)11'

where

c t ¢ T
-y 5|

c t] i} c (t]-tg) . ¢ tQ
b b b !
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c_(t,=t.)
where the parameters o and .IL_l__Q_ will, in general, be

prescribed input; the parameter k is selected so that in the
tima intavrval soneidarad, f-hn incidant atrasaa will hava dacaved

to a small value (i.e., << 1); and only gng of the two
¢ T ¢ tQ
parameters -g-, i S be chosen arbitrarily, the other being .

determined by the relation

T cot c (t.=t,) ¢ (k) o
- J{;Q. _IL_J._SL (B.8)

The coefficients defining the circumferential expansionm,
in Fourier series, of the incident pulses will be discussed now.
“As indicated in Sections III.l, IIL.6, and IV.2, it is possible.
' 'to obtain repraaantations of these coafficients i.n tem of o
S Busel functions of a complex ar;ummt. o

' An integral repreaentation of the Bessel func:ion of the '_"".7 e
-. ﬂrst: ld.nd wit:h complox ugumnt; ia gi.vcn by hf. 22 u o :

ot o T

" Employing the trigonometric identities
. cos 6 cos 80 = % [cos(x + 8)6 + éob(r - s)éj '
sin ro sin 86 = ~ % [cos(x + §)6 = cos(r = 8)6]

in conjunction with (B.9), we are led to the following representa-
tion for the Fourier coefficients defined by Eqs. (3.6.4), (3.6.7):

1 1 |
A== O™ e {<1+e)s (@3 = (559 [3ns2 @9 + 02029 |} .

(B.10a)
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vy
R

- ~iq

Apo = LZQ e 3[(1+e)30(q3) - (l-e)Jz(q3)] (B.10b)

R = iyl -iqall_ﬁ\[v (=) -~ 3 N 3.10¢

-pn N=s 2 /l n+2\ 3) n_z J \D iV
-iq

Con = W™ o 3 [ LC P n.1(q3)] (8.10d)

“iq, ¢, q

oo = ) o 3(11:,;%«,» @100
~iq

Dy =™ e (B3 [ SR CRITSE NNCRY (2.106)

The preceding coefficients are of course complex. For use

on the right=hand side of the equivalent resal matrix equu:i.ons
‘discussed in Appendix A, we separate (B.10) into real and

- - imaginary parts. (denoted by supérscripts R and I, respec-. ..

~ tively). Thus, recalling the definitions of the complex quan-
_tities, qg and ¢ [Eqs. (3.4.16) and (3.4, 18) L and with l:he

other batrcd quanri.ties defined subsequantly. we ‘obtain

A:n- ‘:qa :Kg;co.s'% + AI sinq3 :

N T

Bl;n -e-qs -B:n cos. qa. + BI 8in 331
B;n - .'33 (E;n cos $3 - E:‘n.sin 33] ®.10
C§n - e-q3 E:n cos q3 + cI 8in a.3

C:n - 3'33 ;E:n cos ;3 - Egn sin ESJ

D:'n - e-a3 [B:n cos q3 + DI sin 334

D:n - 3-33 B:n cos 33 - Egn sin -q3J ,
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where
XR 1-[ ) + (1+e)I + (l-e)I ]

~

An = (1, - T5,) - e, - 9T, ]

x:o { [.r‘(q_,) + Jk(q:,)] + (1+6)J (‘13) DL (q3) }

~ I - -
Ao = M[stay + 36| - DRay + @ SEACRY.

J‘[elﬁu =. (1-6)1 J

a:n 7£q3 +q3t'n1> ) R S .

BR--ZJ‘“[%“I*-RI } ‘

pn T wb

Do, = —m[q3nl-aI]"
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where

(Sdmy _ 2 (Saal
\wpb/ pr\ 2b/ ?

and, when n is an even integer,

I - (-1*/2 W{Jz(%)]

1, = D™ 1[5ty ]

Inl “w - (‘1)n/2 I[Jtlﬂ_l(q3) 1.1(_q3)j}

n-

- ( 1)““ I{ ,,H(q,) +3 -1<q3)}

.- (-n“” z J§+1(q3> ¥ J‘ 1(q,,)j

T -- ('l)nlz»lztf‘ﬁ-n-z(qa? + ’:-2(“3)}

EE NG Pk | ECRIEE P URY
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e (DY2 IS ey - 3l @]

15 = - 0V Ial e + 50y |
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, :-"'8

T Inl." (-1)
"Q;I - "('1)

Ty (-1>

s

whereas, when n {s an odd integer,

Feeon 2 alikag)

1= 2 @]

atl | |

I =D 2 I{":u(qs) - Jﬁ.l(q:,)J

ol
2

N

H

I ) L _
1:1 - (~1) [Jm_l(%) - Jn_l(q3)]

»E .
N

' lhae Aaap]

nE

Helaw v daew]

~E

I mz“s) *J:.z(qg)] :

2~ et .ﬂ.,:*z(%) + J‘:_z(q3)]
2t o

B, . 0 2 ik ag -,y

v afl

[nz - - ('1) . JZL[JIIE"Z(q3) - Jl_z(qS)] .
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The coefficients defining the circumferential expansion, in
Fourier series, of the stresses and displacements associated with
the incident shear wave, are given by Eqs. (4.2,16) and (4.2.19).
In a manner similar to that employed in the case of the incident

38V amated e ml remcen chana ama EL. adawmben Anua aAlemean &~ ha onnvnnnnbﬂ‘\‘n
[ry P Y-Sut-Sr Rervt-94 TUY ) CHBP e VL Lab Awiitbt Whle WDitVITit W H o wfe et e

in terms of B=ssel functions of a complex argument., Employing
Eqa. (B.9), and the trigonometric identities written immediately
below it, we are led to the following representation for the co-
efficients defined by Eqs. (4.2.16) and (4.2.19):

Ag=- ™ e “[ ICRICIFRCRY (8.154)
n+l -iq4
B o= W™ e Ol + 3,0 ] (B.15b)
=iq _
Bpo =-ie 4[J2(q4)] (B.ISC) =
. Sem “iq, ()0l + 1 (a. ] (B.15d
cpn = (a$b>q4e (1) [Jn+1(q4) Jn-l(q4) (B.15d)
c -iq
Don ™ (g:{f)% e (i)“+1[Jn+1(q4) - Jn.l(q4)] (B.15e)
T e ~iq 7 T
Do = 1(;;%) q, e 4[Jl(q4)] R (B.15£)

where it is noted that the above coefficients, Apn' Bpn’ ceey Dpo,

assoclated with an incident wave of distortion are defined differ-
ently from the corresponding coefficients, Eq. (B.1ll), associated
with an incident wave of dilatacion.

As in the case of the coefficients correspondiang to the inci-
dent shear wave, we separate the above complex ccefficients into
real and imaginary parts denoted by suverscripts R and I, vre-
spectively. Recalling the definitisn of 1, [Eq. (3.4.16b) ],

and with the other barred quantities defined subsequently, we ob=-
tain expressions similar to those given by Eq. (B.1ll):
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with, in this
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