THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED,

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked. Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

ę

9 Technical publications (15) N123/60530/9602

DDC

OCT 26 1965

TISIA D

(7) RMM04210041216/1FU08/0810

OMPILATION OF DYNAMIC EQUATION OF STATE DATA

FOR SOLIDS AND LIQUIDS .

John S. Rinehart

ABSTFACT. This compilation is a discussion of basic shock wave equations and theory of hydrodynamic impact. The impedance match method for determining Hugoniots is outlined. Empirical data from the Hugoniot can be used to calculate temperatures associated with the passage of shock waves. The bases for these calculations are described. A number of empirical equations, some of which are useful for computer calculations and others for graphical description are tabulated.

SIt has been found that in most instances, a linear relationship exists between shock and particle velocities. Constants appearing in this relationship are listed for a large number of materials.

The bulk of the compilation consists of graphs and tables of shock velocity, particle velocity, pressure, relative volume and temperature associated with shocks. For almost all materials, shock velocity is plotted against pressure and pressure against relative volume. In some instances where shock velocity is not linearly related to particle velocity, graphs relating the two have been drawn.

CThe final section is a reasonably complete bibliography listing the papers, reports, and books which contain dynamic equation of state data.

Qualified requestors may obtain copies of this report direct from DDC.

406

U.S. NAVAL ORDNANCE TEST STATION

China Lake, California

П Мау 165 (2) ЗЗОр.

MBS

U. S. NAVAL ORDNANCE TEST STATION

AN ACTIVITY OF THE BUREAU OF NAVAL WEAPONS

J. I. HARDY, CAPT., USN Commander WM. B. MCLEAN, PH.D. Technical Director

FOREWORD

This report is a compilation that discusses the basic shock wave equations and theory of hydrodynamic impact. It is part of an applied research program that was conducted in earth and rock mechanics in support of explosive ordnance problems at the U. S. Naval Ordnance Test Station.

This publication is a facsimile of the report prepared by Rinehart and Associates. It is issued as a Station technical publication to facilitate distribution to other interested agencies.

This work was accomplished by Rinehart and Associates under U. S. Naval Ordnance Test Station Contract N123-60530-9602 and supported by Bureau of Naval Weapons Task Assignment RMMO 42-004/216-1/F008-08-06.

Released by JOHN PEARSON, Head, Detonation Physics Group 9 March 1965

Under authority of HUGH W. HUNTER, Head, Research Department

NOTS Technical Publication 3798

Published by	Research Department
Collation	Cover, 167 leaves. abstract cards
First printing	
Security classification	UNCLASSIFIED

ii

9

. . . .

UMENT RELEASE STATUS WEPS FORM 3900/3 (REV. 2-64) PAPER IS CHEMICALLY TREATED. NO CARBON PAPER IS REQUIRE	AD NUMBER (To be inserted by DDC)	й Ж. ч. Т.		• •
	UNIGUNATING AGENCY I.S. MAYSI I.L.S. CALIF ENCLOSURE (REPORT TILL COMPILETION iVata for Sol	of Dynamic Eq ids and Liqui	Station, China ua;ion of stat ds	REPORT SERIES AND NUMBER REPORT DATE FAILY 6: COG. BUWEPS CODE (For use in EUREPS only)
TO Administratoi Detense Documentation Center and Technical Information (Bidg #5, Cameron Station Alexandria, Viiginia 22314	for Seventific DDC)		CONTRACT/PROJECT/WE SECURITY CLASSIFICA REPORT TITLE OR SUBJECT ABSTRACT OR SUMMARY	TION UNCLAS CON 1- PECNET
losure is forwarded for distribution subj	ect to limitations ching activity if shown	ecked below Reques below, and two copie	t AD number be insert s be sent to Chief, B	ed in space above, one uicau of Naval Weapons
Qualified requesters may obtain cop direct from DDC Qualified requesters may obtain cop d.rect from DDC Foreign announcement	ies of this report ies of this report and dissemination	US Government direct from DDC through no sour users)	Agencies may obtain Other qualified DDC, ce (Not available	copies of this report users should request to non-Government DDC
of this report by DDC is not authorized I: S Government Agencies may obtain cop direct from DDC Other qualified DDC us through the Chief, Bureau of Naval We D C 20360.	nes of this report ers should request apons, Washington,	US Military direct from DDC through no sour users)	Agencies may obtain Other qualified DDX c (Not available	copies of this report users should request to non-military DDC
U.S. Military Agencies may obtain cop direct from DDC. Other qualified DDC us through the Chief, Bureau of Naval Wei D (20360	pies of this report pers should request apons, Washington,	All distributio DDC users show Naval Weapons,	n of this report is o ld request through Washington, D.C. 2036	ontrolled Qualified the Chief, Bureau of 0
Γ.,	···· Т			
L 				
	~···	,		
UNATUR+		Nead, 114	stribution to	<u>: f</u>
Chief, Bureau of Naval Weap Navy Department	7 Dns (DL1-302)		CODE	Late 20 yet co
Washington, D 4 20360				

ł

•

.

UNCLASSIFIED WHEN ENCLOSURE IS REMOVED -----

٠

ŕ

ŧ

٠

~ - ,

•

1

1

1-10 - 1-10

:

CONTENTS

1 .

.

a stanmanderfö

٠

ľ

Page
1-3
4-8
9-16
17-23
24-25
2 6-34
35
36-41
42-321
322 -329

Tables and Graphs (* indicates temperature data)	
Alluvium, Dry Desert	4344
Alluvium, Nevada	45-48
Aluminum: 24ST, 2S#	49-56
Andesite	57-58
Antimony *	59-6 2

iii

بن ، ۶۵،^{دو مرد} ه

•

	Page
Avgaat Avgoite	63-65
Basalt	66-68
Beryllium*	69 - 72
Bismuth*	73-78
Brass*	79-83
Cadmium*	84-88
Chromium*	89-92
Cobalt*	93-96
Copper*	97-101
Dolomite	102-103
Gold*	104-107
Granite	108-109
Granite, Shoal	110-111
Graphite, Pyrolytic	112-113
Halides*	114-161
Cesium Bromide Cesium Chloride Cesium Iodide Lithium Bromide Lithium Chloride Lithium Fluoride Lithium Fluoride Lithium Jodide Sodium Bromide Sodium Chloride: (Rock Salt; Single crystal) Sodium Iodide	
Indium#	162-165
Iron*	166-171
Kel-F	172-173
Lead*	174-177
Limestone	178-179

1 `

.

.

•

Į

• '

ίv

v

Page

180-198

AcetoneHexaneBenzeneMercuryBromoethaneMethanolCarbon DisulfideMononitrotolueneCarbon TetrachlorideN-Amyl AlcoholEthyl EtherTolueneEthyl AlcoholWaterGlycerine				
Magnes1um*	199-202			
Marble: Dark, Light, USSR	203- 204			
Molybdenum*	205-208			
Nickel*	209-212			
Niobium*	21 3- 216			
Nylon	217-218			
011-Sand	219-220			
Oil-Shale: Dry, Wet	221 - 222			
Palladium*	22 3- 226			
Paraffin	227			
Phenolic: AVCO Phenolic Fiberglass G E Phenolic Fiberglass Chopped Nylon Phenolic Tape Wound Nylon Phenolic	228 - 2 33			
Platinum*	2 34- 237			
Playa	2 38-239			
Plexiglas	240-241			
Polyethylene	242-243			
Polystyrene	244-245			
Quartz: Crystalline, Fused#	246-255			
RAD 58B	256 - 257			
Refrasil, Oblique Tape Wound				

1.

·

٠

Liquids

7

•

	Page	
Resins, Series 124	260-261	
Rhodium*	262 -265	
Sand: Dry Silica (poresity 22%, 41%) Water Saturated (porosity 41%)	266 -269	
Silver*	270-273	
Steel, Low Carbon	274-275	
Taconite	2 76-27 8	
Tantalum*	2 79- 282	
Teflon	28 3- 284	
Thallium*	285 - 288	
Thorium*	28 9-29 2	
Tin*	29 3- 296	
Titanium#	29 7-300	
Tuff: Dry Volcanic, Wet Volcanic	301-304	
Tungsten*	305-3 08	
Vanadium#	309-31 2	
Zinc#	313-317	
Zirconium*	318-321	

1

Į

•

1

Compilation of Dynamic Equation of State Data for Solids and Liquids

INTRODUCTION

١

There has been a rapid accumulation of data pertaining to the behavior of materials, metals, plastics, liquids, and ionic compounds, subjected to intense, dynamic loading. Much of these data relate to the volume changes occurring under compression, known as dynamic equation of state information or Hugoniot data. The experimental results have provided the constants needed to fix in a quantitative fashion, the thermodynamic parameters associated with dynamic compression. These data have been widely scattered and not readily accessible to the numerous investigators who have use for them. This compilation brings all of the available data together in one place in an easily usable form. It contains discussions of the essentials of shock wave theory, numerous tables and graphs, empirical equations, and a comprehensive bibliography.

Most of the empirical data used in determining Hugoniot curves have been obtained by making velocity measurements. In most of the early work, shock velocity and particle velocity were measured simultaneously and the conservation equations were used to compute pressurevolume relationships and other thermodynamic constants. Later, after Hugoniots had been well established for some materials, the impedance match method became more popular since it involved only the determination of shock velocity. Some attempts have been made to measure density changes directly using flash X ray techniques, but, in general, these have not given very accurate results. Direct measurements of pressure are being made successfully at present using piezoelectric quartz crystals, although the upper limit of pressure by this technique is only about forty kilobars.

1

Several methods have been used to generate shocks. In the early tests, an explosive charge was detonated in intimate contact with the material under study using explosive plane wave generators. A severe limitation of this technique was the fact that a wide variation of shock pressure could not be achieved. An important later modification of the method was the introduction of an impactor plate which was propelled by the explosive charge so as to strike the specimen. By judicious choice of impactor plate material, and explosive charge size, a very wide range of pressures were possible.

More recently, a number of laboratories have developed gun impactor devices for generating shocks. These devices have the big advantage of accurately preselecting and controlling initial conditions. With guns, extremely high pressures, several thousand kilobars, are possible.

Pin contactors to measure free surface velocity gave the first quantitative data on particle velocity, the assumption being made that free surface velocity was just twice that of particle velocity. The technology of the

3

pin contactor has reached an exceedingly high level of development although other techniques are gradually replacing this one. One such technique utilizes the fact that argon becomes luminescent when subjected to high intensity shock, making it possible to measure times of arrival by observing, with a streak camera, onsets of luminosity. In another technique, surface velocity is monitored continuously by means of a resistance wire. Condenser techniques have also been found useful.

ŧ

No attempt has been made in this compilation to delineatedetailed experimental methods used in obtaining data. It is felt that anyone interested in full descriptions of experimental methods can obtain these best by going to the original source.

4

Easic shock wave equations

1

A shock wave is in essence a moving discontinuity in pressure, temperature, particle velocity, density, and internal energy. For all practical purposes, the shock wave converts instantaneously a fluid of low density, temperature, and pressure to one of high density, temperature and pressure. The following equations, which can be readily derived on the basis of Newton's laws of motion and the conservation haws, (Cole, 1948; Duvall, 1961) describe fully the progress of the shock wave and the conditions ahead of and behind a shock moving through a material which is initially at rest.

Conservation of mass:
$$\rho(U-u) = \rho_0 U$$
 (1)

Conservation of momentum: $P - P_0 = \rho_0 u U$ (2)

Concervation of energy: $Pu = c_0 U (E - E_0 + u^2 / 2)$ (3)

where U is the velocity with which the shock front is moving; u is the translational particle velocity, the velocity with which a point in the compressed material behind the shock front is moving in the direction of motion of the front; Q o and Q are the respective densities of the material in front of the shock and behind it; and E_0 and E are the respective energies of the material before and after compression.

A most useful equation, from a thermodynamic point of

view, is obtained if equations (1) and (2) are combined, giving the relationship

$$E - E_{0} = 1/2 (P + P_{0}) \left[(1 / \rho_{0}) - (1 / \rho) \right].$$
(4)

This relationship is frequently called the Rankine-Hugoniot relation.

These four equations containing as they do five parameters, are not adequate to determine uniquely the four parameters. Another equation is required, an equation of state which, when combined with equation (4), results in a relation between ρ and v, where $v = 1/\rho$, known as the Hugoniot ρ -v relation, or simply, the Hugoniot. This Hugoniot relation defines the locus of all points that will be reached by a shock transition from the initial state P_{ρ} , ρ_{ρ} .

Solving equations (1) and (2) for shock velocity and particle velocity in terms of the pressure and density behind the front yields

$$U = \left[\left(\frac{q}{q_0} \right) \left(P - P_0 \right) / \left(\frac{q}{q_0} - \frac{q_0}{q_0} \right) \right]^{\frac{1}{2}}$$
(5)

and

$$u = \left[\left(\boldsymbol{\varrho} - \boldsymbol{\varrho}_{0} \right) / \boldsymbol{\varrho} \right] \boldsymbol{\upsilon} \qquad (6)$$

Equations (5) and (6) are useful in calculating shock velocity and particle velocity as a function of pressure when the equation of state is known.

It is also apparent from equations (5) and (6), particularly equation (6), that a simultaneous experimental determination of shock velocity and particle velocity is sufficient to establish a point on the Hugoniot Q-v curve and that a series of such measurements will define the entire curve.

Extensive single Hugoniot measurements on a large number of substances (Al^{*}tshuler, Krupnikov and Brazhnik, 1958) indicate that for almost all substances, shock velocity and particle velocity are linearly related. The reason for this linear relationship:

$$\mathbf{U} = \mathbf{a} + \mathbf{b} \mathbf{u} \tag{?}$$

where a and b are constants characteristic of the material, is not understood. It holds, however, for ionic, molecular, and metallic crystals and includes liquids as well as solids and alloys. Sand (Bass, Hawk and Chabai, 1963) is a notable exception. A specific linear relation holds only for a single phase. When a material undergoes a phase change, the slope changes at the pressure where the phase change occurs. This fact is used to discover and to locate more precisely where phase transitions occur. Such transitions have been observed in bismuth (Walsh, Rice, NcQueen and Yarger, 1957; Al'tshuler, Krupnikov and Brazhnik, 1958), granite (Alder, 1963; Grine, 1960; and Lombard, 1961), iron and steel (Minshall, 1955), marble (Lombard, 1961; Dremin and Adadurov, 1959), playa (Bass, Hawk and Chabai, 1963), pyrolytic graphite (Wagner,

Waldorf and Louie, 1962), taconite (Lombard, 1961), and tuff (Lombard, 1961; Bass, Hawk and Chabai, 1963)

When shock velocity and particle velocity are linearly related, the equation of state can be written explicitly in terms of the constants a and b of equation (7). Substituting in equation (2) the expression for U of equation (7) yields

$$P = \mathbf{Q} \mathbf{o}^{\mathbf{u}} (\mathbf{a} + \mathbf{b}^{\mathbf{u}}) \tag{8}$$

when P_0 , usually equal to one atmosphere, is considered negligibly small compared to P. Equation (6) can then be written in the form

$$v / v_0 = [a + (b - 1) u] / (a + b u)$$
. (9)

Eliminating u between equations (8) and (9) gives

$$P = \rho_0 a^2 \eta / (1 - b \eta_1)^2$$
 (10)

where

$$\tilde{V} = 1 - v / v_0$$

The equation of state, expressed by equation (10) is extremely useful in computing thermodynamic quantities. It should be noted, however, that equation (10) is applicable only when

7

۰۰ ج

. . . .

shock velocity and particle velocity are linearly related. Numerous investigators (Al⁴tshuler, Krupnikov and Brazhnik, 1958; Wagner, Waldorf and Louie, 1962) have expressed their experimental results in the form of equation (10) although other more empirical equations of state are often given. The Los Alamos group (Walsh, Rice, McQueen and Yarger, 1957) for instance, have published much of their equation of state data in the purely empirical and analytic form

$$\mathbf{P} = \mathbf{A}\boldsymbol{\mu} + \mathbf{B}\boldsymbol{\mu}^2 + \mathbf{C}\boldsymbol{\mu}^3$$

where

$$\mu = (\rho/\rho_0) - 1$$

and A, B, and C are material dependent constants.

9

Theory of Hydrodynamic Impact

Consider the hypothetical case of two semi-infinite bodies colliding along a plane interface, one body, medium 1, moving with velocity, V, in a direction perpendicular to the interface (see figure); the other, medium 2, is stationary. Plane shocks will be propagated from the interface into both colliding bodies as indicated in the second figure. For most practical as well as theoretical purposes, each shock front may be considered a zone of infinitesimal width across which there is a discontinuous jump of pressure and velocity of the medium.

The following relationships have been derived for the changes across the shock front, propagated into a body at rest, from the laws of conservation of mass, momentum, and energy:

$$\boldsymbol{v} \boldsymbol{\varrho}_{o} = (\boldsymbol{v} - \boldsymbol{u})\boldsymbol{\varrho} \tag{1}$$

$$\mathbf{P} = \mathbf{\rho}_0 \, \mathbf{U} \, \mathbf{u} \tag{2}$$

and

$$E = P / 2 (1 / c_0 - 1 / c)$$
 (3)

where U is shock velocity; u is particle velocity behind the shock front; ρ_0 is the initial density; ρ is the density behind the shock front; P is the change in pressure across the shock front; and E is the change in internal energy across the shock front. These conditions must hold at all

1.

times during the course of the impact.

Two boundary conditions further connect the shocks in the two bodies: because the two bodies must remain in contact during the collision, the velocities of the two materials on both sides of the interface must be the same, which is the boundary condition of continuity of particle velocity; and secondly, from Newton's third law, action equals reaction, the pressures in the two shocks must be equal -

 $P_1 = P_2$ (continuity of pressure).

Viewed from coordinates fixed with reference to the interface, MN, the particle velocity between the two shocks is zero: the material on each side of the interface appears to an observer, riding on the interface, to be at rest, with shock fronts, AB and CD, moving out into each respective medium at a velocity determined by momentum considerations. In homogeneous media, the shock velocities will remain constant.

Consider now what happens to the several planes: AB, the front of the shock moving upward into medium 1; MN, the plane of common contact between medium 1 and 2; and CD, the front of the shock moving dowaward into medium 2. EF is a fixed plane of reference, at impact being coincident with MN. After unit time, MN will have moved down from EF a distance u, u being the particle velocity in the shock waves; CD will have moved a distance U_2 into medium 2 ...rom EF and will be a distance $(U_2 - u)$ from MN, U_2 being the velocity of the shock

in medium 2; and AB will have moved a distance U_1 into medium 1 and will lie at a distance $(U_1 - v)$ upward from EF where U_1 is the shock velocity in medium 1. AB will lie a distance $(U_1 - V) + u$ from MN.

Look now at the compression of the two bodies:

$$\delta_{1} = (\varrho_{1} - \varrho_{10}) / \varrho_{1} = (\mathbf{v}_{10} - \mathbf{v}) / \mathbf{v}_{10}$$
(4a)
$$\delta_{2} = (\varrho_{2} - \varrho_{20}) / \varrho_{2} = (\mathbf{v}_{20} - \mathbf{v}_{2}) / \mathbf{v}_{20}$$
(4b)

where δ_1 is the compression of medium 1; δ_2 is the compression of medium 2; ϱ_{10} and ϱ_{20} are the original densities of mediums 1 and 2, respectively; ϱ_1 and ϱ_2 are densities of compressed mediums 1 and 2, respectively; and the v's are specific volumes.

The mass, m_{10} of medium 1 which before impact was contained in the volume U_1 , after unit time resides in volume $(U_1 - V + u)$; and the mass, m_2 , of medium 2, originally residing in the volume U_2 , now resides in volume $(U_2 - u)$. Thus, since by definition

$$Q_1 = m_1 / (U_1 - V + u)$$
; $Q_{10} = m_1 / U_1$
 $Q_2 = m_2 / (U_2 - u)$; $Q_{20} = m_2 / U_2$

equations (4 a and b) lead to

ことをわぼやうちます

Ś.

$$\delta_{1} = \left[\begin{array}{c} \mathbf{m}_{1} / (\mathbf{u}_{1} - \mathbf{v} + \mathbf{u}) - \mathbf{m}_{1} / \mathbf{u}_{1} \right] / \left[\begin{array}{c} \mathbf{m}_{1} / (\mathbf{u}_{1} - \mathbf{v} + \mathbf{u}) \right] \\ \delta_{2} = \left[\begin{array}{c} \mathbf{m}_{2} / (\mathbf{u}_{2} - \mathbf{u}) - \mathbf{m}_{2} / \mathbf{u}_{2} \right] / \left[\begin{array}{c} \mathbf{m}_{2} / (\mathbf{u}_{2} - \mathbf{u}) \right] \end{array} \right]$$

which reduce to

 $U_1 = (V - u) / \delta_1$ (5)

ş

and

$$U_2 = u / \delta_2 \qquad (3)$$

From conservation of momentum $m_1 V = u (m_1 + m_2)$

so that

$$m_2 = m_1 (7 - u) / u$$
 (7)

By definition and substitution from equations (5) and (6) it follows that

$$m_{1} = U_{1} \quad Q_{10} = (V - u) \quad Q_{10} / \delta_{1} \tag{8}$$

ang

$$\mathbf{m}_{2} = \mathbf{y}_{2} \, \boldsymbol{\varrho}_{20} = \mathbf{u} \, \boldsymbol{\varrho}_{20} \, / \, \boldsymbol{\delta}_{2} \, . \tag{9}$$

Combining equations (7), (8), and (9) and solving for V yields

$$v = u \left[1 + (q_{20} \delta_1 / q_{10} \delta_2)^{\frac{1}{2}} \right]$$

and as u cannot exceed V under compression, only the positive root has physical significance. Solving for u gives

Ŧ

$$u = v / \left[1 + (\varrho_{20} \delta_1 / \varrho_{10} \delta_2)^2 \right]$$
 (10)

and using equation (6) gives

$$U_{2} = V / \delta_{2} \left[1 + (\varrho_{20} \delta_{1} / \varrho_{10} \delta_{2})^{\frac{1}{2}} \right].$$
(11)

Now from equation (2)

$$P_2 = Q_{20} U_2 U_2$$
 (2a)

where u_2 and U_2 are, respectively, particle and shock velocities measured with respect to the unshocked material. In the original frameof reference, medium 2 is initially at rest so that u_2 equals u, the velocity with which the interface between the two mediums moves, and equation (2a) becomes

 $P = \langle 20 \ U_2 \ U_2 \rangle$

since $P_2 = F_1 = P$. Note, however, that it is not true that particle velocity, v_1 , in medium 1, measured with respect to the unshocked medium, is equal to u. Rather

$$u_1 = V - u$$

and

$$P = Q_{10} U_1 U_1 = Q_{10} U_1 (V - u)$$
.

Use of equation (La) leads finally to

$$\mathbf{P} = (\varrho_{20} / \delta_2) \left\{ \mathbf{v} / \left[1 + (\varrho_{20} \delta_1 / \varrho_{10} \delta_2)^2 \right] \right\}^2$$

which becomes

$$P = \left\{ v / \left[\left(\delta_{2} / \rho_{20} \right)^{\frac{1}{2}} + \left(\delta_{1} / \rho_{10} \right)^{\frac{1}{2}} \right] \right\}^{2} . (12)$$

Equations (11) and (12) permit calculations of shock velocity U₂ and contact pressure P for a given impact velocity V, provided the respective equations of state of the two mediums are known.

On the other hand, by measuring V, the velocity of impact, u, particle velocity at the interface, and U_2 , the velocity of the shock in the impacted medium, equations (11) and (12) contain only two unknowns, δ_1 and δ_2 , hence can be used to compute an equation of state.

If the impact is between two like materials, then from equation (10)

u = V / 2

15

that is, particle velocity or interface velocity is exactly one half the velocity of impact and equation (12) becomes

$$P = (\rho_{20} / \delta_2) (V / 2)^2$$

or

$$\mathbf{F} = (1 / \mathbf{v}_{20}) \left[1 - (\mathbf{v} / \mathbf{v}_{20}) \right] (\mathbf{v} / 2)^2$$

Now employing the condition

$$\mathbf{P} = \left(\begin{array}{ccc} 20 & u & U_2 \\ \end{array} \right) = \left(\begin{array}{ccc} 10 & u_1 & U_1 \\ \end{array} \right) = \left(\begin{array}{ccc} 10 & (\nabla - u) & U_1 \\ \end{array} \right)$$

where u_1 is the particle velocity in medium 1 behind the shock and U_1 is the shock velocity in medium 1, both velocities relative to unshocked medium 1, that is $u_1 = V - u_1$ it can be shown by substitution that

$$V = u_1 \left[1 + (\ell_{10} \delta_2 / \ell_{20} \delta_1)^{\frac{1}{2}} \right]$$

and

$$v = \delta_1 u_1 \left[1 + (q_{10} \delta_2 / q_{20} \delta_1)^{\frac{1}{2}} \right]. \quad (13)$$

Impedance match Method for determining Wegoniot

Mich a shock may encounters an interface between two dissimilar materials, as indicated in the figure, two new waves will be generated, a transmitted shock mave and a reflected wave. The relative intensities of these new waves are governed by the respective compressibilities and densities of the two interacting materials. This fact has been used extensively by emperidental investigators to establish Hugonist curves. (Duvall, 1961; Al^{*}tshuler, Krupnikov and Drazhnik, 1958; Malsh, Rice, McQueen and Yarger, 1957; He usen and Marsh, 1960) Themethod is known as an impedance match method. The butic strataged is to generate a shock of known or measurable strength in a material whose Hugoniot curve is well established, allow the shock to be reflected at an interface between the "luo.m" natorial (medium I in figure) and the material for which the Rugoniot is being sought (medium II in figure), and then measure the velocity of the transmitted shock. This procedure is repeated for shocks of several strengths in order to obtain the points needed to trace a full Percentot curve.

The basis of the method lies in judicious application of the concervation equations and appreciation of the boundary conditions. At the interface, two boundary conditions must be met: continuity of precaure, and continuity of carticle velocity. The system of reflected and transmitted phoche which develops after the shock reaches the interface is

Impedance match method for determining Hygoniot

The second second

いったい ないこう ひろうちょう

a and the second se

When a shock may encounters an interface between two dissimilar materials, as indicated in the figure, two new waves will be generated, a transmitted shock wave and a reflected wave. The relative intensities of these new waves are governed by the respective comprescibilities and densities of the two interacting materials. This fact has been used extensively by emeridental investigators to establish Hugoniot curves. (Duvall, 1961; Al'tshuler, Krupnikov and Brazhnik, 1958; Walsh, Rice, Holueen and Yarger, 1957; Mc usen and Marsh, 1960) Themsthod is known as an impedance match method. The bacic strataged is to generate a shock of known or measurable strength in a material whose Hugoniot curve is well established, allow the shock to be reflected at an interface between the "lmoum" material (medium I in figure) and the material for which the Hugoniot is being sought (modium It in figure), and then measure the velocity of the transmitted shock. This procedure is repeated for shocks of several strengths in order to obtain the points needed to trace a full Figouiot curve.

The basis of the method lies in judicious application of the conservation equations and appreciation of the boundary conditions. At the interface, two boundary conditions must be met: continuity of pressure, and continuity of particle velocity. The system of reflected and transmitted chocks which develops after the shock reaches the interface is

19

illustrated in the figure. The pressure, Fg, at the interface is the pressure of the transmitted shock and at the same time represents the sum of the pressure, P, of the includit wave and T_1^* , the pressure of the reflected wave. The pressure, 1, may be either ositive or negative, depending upon the impedance match between the two materials. The cituation at the interface can be defined by the point (P_2, u_2) on a pressure versus particle velocity diagram. Each shock of a different strength locates a new point and the locus of all such points defines the unknown Hugoniot. The problem is to locate each of the (P_2, u_2) points. Three pieces of information are sufficient to establish any one point such as N in the figure: the pressure, P1, of the incident shock, the Hugoniot curve for medium I, and the velocity of the shock transmitted into medium II. The pressure, P,, the Hugoniot, and conservation equations fix the point S which has the coordinates F_1 and u_1 . A curve, the reflection Hugonict or cross curve, is drawn through S. This curve is a mirror image about the point S of the P-u curve or Hugoniot for medium I, which is assumed known, and portrays on the P-u diagram possible states of material I with respect to the state (P_1, u_1) . The point 1: representing the state (P_2, u_2) must lie on this curve. The point H must also lie on the line

 $I = \mathbf{e} \, \mathbf{J}_2 \, \mathbf{u}$,

where U_2 is the velocity of the chock transmitted in medium II.

A Carlo and a construction of the states. It apart

.

5

÷

唐郡 (B)

20

Constant Control Part Report Constant Constant

This relationship follows 1.77m application of the conservation equations. With Q_0 and U_2 both known, the line can be drawn and its intersection with the reflection Hugoniot locates M.

1

いたいち いたいない ちちちち ちちち ちょうちょう

ł

÷

こうこうとうし、 こうないないないないないできたのとれないというます。 ちゅうちょうないない ちゅうちょう

One of the best established Hugoniots is that for 24 ST aluminum (Rice, McQueen and Marsh, 1958). A number of cross curves for this material are given in the accompanying table.

```
NOTS TP 3798
```

- - ---

Pressure versus particle velocity curves for 24 ST aluminum*

Р	Particle v				veloc	velocity			
0	1.17	1.66	2.10	2.53	2.95	3.38	3.63	-	-
100	0.58	1.08	1.78	1.96	2.35	2.75	3.08	3.45	-
150	0.34	0.03	1.29	1.71	2.10	2.49	2.83	3.19	3.61
200	0.12	0.61	1.06	1.48	1.88	2.26	2.61	2.96	3.38
250	-	0.40	0.85	1.27	1.66	C.04	2.39	2.74	3.13
30 0	-	0.20	0.65	1.07	1.47	1.34	2.20	C .5 4	C.95
350	-	0.01	0.47	0.88	1.28	<u>1.55</u>	2.01	2.35	2.69
400	-	-	0.29	0.70	1.11	1.47	1.83	2.18	2.51
450	-	-	0.12	0.53	0.24	1.30	1.66	2.00	2.34
500	-	-	-	0.36	0.77	1.14	1.50	1.84	2.15

Source: Rice, Mc. con and Walsh, 1958

* Each underlined number is a particle velocity in an/usec for the corresponding shock pressure in Lilobars. Remaining numbers in a given column trace out associated cross curves.

معید بید ہے ہوہد در اس اللہ ہے۔ ا

÷

*** ****

.

3

Contraction of the second seco

and here with the first first

•••

Calculation of temperatures

associated with passage of shock wave

The temperature behind the shock, T_{H} , is calculated from the equation

 $T_{H} = T_{o} \exp (1 - v_{1} / v_{o}) +$

 $\exp^{\delta(v_1/v_0)} \int_{v_0}^{v_1} \left\{ (1/2) \left[(dP/dv)(v_0-v) + P \right] \exp^{\delta(v/v_0)} / C_v \right\} \frac{dv}{HUG}.$

where X is Grüneisen's constant given by

$$\mathcal{Y} = (dP / dT)_{\mathbf{v}} (\mathbf{v}_{0} / C_{\mathbf{v}}) \quad .$$

The integration is performed numerically along the Hugoniot curve.

The equation is exact but the variation of C_V and $(\Im P / \Im T)_V$ with volume is not known. In most calculations these are assumed constant. When the Debye temperature is low, as it is for alkali halides, the assumption of constant specific heat, C_V , is reasonable.

The calculation of the residual or final temperature, T_A , after passage of the shock is made utilizing the relationship

$$T_{\mathbf{A}} = T_{\mathrm{H}} \exp (\partial P/\partial T)_{\mathbf{v}} (1/C_{\mathbf{v}}) (\mathbf{v}_{\mathrm{H}}-\mathbf{v}) = T_{\mathrm{H}} \exp \left\{ \delta \left[(\mathbf{v}_{\mathrm{H}}/\mathbf{v}_{\mathrm{O}}) - (\mathbf{v}/\mathbf{v}_{\mathrm{O}}) \right] \right\}$$

where $T_{\rm H}$ and $v_{\rm H}$ are the known conditions at any point, takes here

24

「「「「「「「」」」」

as the Hugonict point. To fix the final temperature and volume, the known relation

along the P = 0 isobar is used. Here T_0 and v_0 refer to the temperature and specific volume and \checkmark is an average value of the thermal coefficient of volume expansion.

Source: Walsh and Christian, 1955

State and

Impirical equations

Nuch of the Hugoniot data can be summarized in the form of empirical equations and several of the investigators have done this. The equations which they give are extremely useful in making thermodynamic computations. Some, such as the analytical form used by the Los Alamos group (Rice, He queen and Walsh, 1958) are particularly adaptable to computer calculations. Others (Wagner, Waldorf and Louie, 1960; Al'tshuler, Krupnikov and Erazhnik, 1958) have a more theoretical basis, their derivation depending upon the empirical linear relationship between shock velocity and particle velocity.

A number of these empirical relationships plus appropriate constants are given on the following pages.

Empirical equation

Relationship: Pressure versus volume change Material: 6061-T6 aluminum Source: Landergan, 1961a Equation:

ないないであるというないでもあるとうと

Prove P

こうます 小人の教育

$$P = 1046.8 \left[1 - (v / v_0) \right] \text{ kilobarc } P < 6.3$$
$$P = 795.5 - 794.0 (v / v_0) \text{ kilobarc } 6.3 < P < 31$$

Relationship: Pressure as function of free surface velocity Material: 24 ST aluminum Source: Walsh and Rice, 1957 Equation:

$$U = 5.190 + 20.77 \log_{10} \left[(u_{fs} + 10.895) / 10.895 \right]$$

where u_{fs} is free surface velocity. Velocities are in kilometers per second. Equation is applicable in pressure range 30 to 500 kilobars.
Empirical equation

Metals

Relationship: Pressure versus volume change Materials: Several metals and Lucite Sources: Rice, McQueen and Walsh, 1958; Walsh, Rice, McQueen

and Yarger, 1957

Equation: Analytical fits of Hugoniot ourves having form

$$P = A \mu + B \mu^2 + C \mu^3$$

where $\mu = (q/q_0) - 1$ and A, B, and C are constants. Actually this is a two parameter fit of data since the ratio B/A is determined by theory.

Table: Values of constants. Pressure range in which fit has been made is up to about 500 kilobars.

Metal	A	B	σ
Beryllum	1182	1 382	0
Cadmium	479	1087	2829
Chronium	2070	2236	7029
Cobalt	1954	3889	1728
Copper	1407	2871	2335
Gold	1727	5267	0
Lead	417	1159	1010
Magnesium	370	540	186
Molybdenum	2686	4243	733
Nickel	1963	3750	0
Silver	1088	2687	2520

28

- BIL SUBALINARY BARRAN

A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY A REAL PROPERT

Table: continued

and the second of the second second

30.

"Hine

Construction of the second second second

۴

lietal	А	В	C
Thoriam	572	646	855
Tin	432	878	1935
Titanium	990	1158	1246
Zinc	662	1577	1242
24 ST aluminum	765	1659	428
Prass	1037	2177	3 275
Indium	496	1163	0
Niobium	1658	2 786	0
Falladium	1744	3801	15230
Flatinum	2760	7 260	0
Rhodium	2842	6452	0
Tantalum	1790	3023	0
Thallium	317	938	1485
dirconium	934	720	0

Lucite 83 163 322

29

Empirical equation

Netals

Relationship: Pressure verses volume change Materials: Several metals Source: Al'tshuler, Krupnikov and Brazhnik, 1958 Equation:

$$P = a^{2} (v_{0} - v) / (b - 1)^{2} v^{2} \left\{ \left[b / (b - 1) \right] - v_{0} / v \right\}^{2}$$

where a and b are constants in relationship

$$U = a + b u$$

between shock velocity J and particle velocity u. Equation is applicable in range 300 to 3000 kilobars Table: Values of constants

laterial	(mm/µsec)	Ъ	e E cc
Copper	3.90	1.46	8.93
Zinc	3.20	1.45	7.14
Silver	3.30	1.54	10.49
Cadmium	2.65	1.48	8.64
Gold	3.15	1 • 47	19.30
Lead	2.30	1 • 27	11.34
Fixauth	2.00	1 • 34	9.80
Iron	3.80	1 • 58	7.80

Impirical equation Plastics

Relationship: Pressure versus density change Materials: Plastics and plastic composites Source: Wagner, Waldorf and Louie, 1962 Equation:

$$P = A (\eta - 1) \eta / (x - \eta)^2$$
 kilobars

where $\eta = \varrho/\varrho_0$, and A and K are constants given in table. Table: Values of constants

Ma teri al	A	K	Pressure range (kilobars)
Chopped Nylon Phenolic	59.1	2.24	39-274
Series 124 Resin	46.3	1.96	45-147
Avcoat	56.1	2.29	14-150
AVCO Phenolic Fiberglass	2,530	7.44	0-180
Tape Wound Nylon Phenolic	1.020	3.38	20-86
GE Phenolic Fiberglass	60,200	13.0	28-111
Oblique Tape Wound Refrasil	322,000	94.6	20-84
RAD 58B	184	-2.17	5-46
Avcoite	33.6	1.40	34-118
Pyrolytic Graphite	40.8	1.40	50-470
Kel-F	170.2	2.65	32-97
Polyethylene	11.9	1.73	2-65
Nylon	154	2.60	4-80
Plexiglas	217	2.80	17-160
Polystyrene	230	2.66	4-59
Teflon	45•1	2.08	10-76

and a state of

Empirical equation Rocks

Relationship: Pressure versus volume change Materials: Tuff, sand, and shale Source: Anderson, Fisher, McDowell and Weidermann, 1963.

Data taken from Lombard, 1961 Equation:

 $P = c \left[\left(v_{o} / v \right)^{n} - 1 \right] / \left[\mu - \left(v_{o} / v \right) \right]$

where C, μ , and n are constants, values of which are given in table below; v_0 is specific volume of zero pressure; and v is the volume of the same mass at pressure P.

Table: Values of constants

Material	ú	n	C (kb)	vo	Approx. pressure of original data (kilobars)	range
Tuff, Wet Volcanic Tuff, Dry Volcanic Sand (wet) Oil shale (wet) Oil shale (dry)	4 4 4 4 4 4	24222	260 26 317 180 400	0.535 0.588 0.523 0.663 0.607	53-270 31-202 90-26 110-164 100-300	

Empirical equation Granite

Relationship: Pressure versus volume change Material: Granite Source: Lombard and Adelman, 1961 Equation:

$$P = 194 (\Delta v / v_0) / \left[1 - 1.42 (\Delta v / v_0) \right]^2 \text{ kilobars}$$

200 < P < 900

where $\Delta v = v - v_0$

SDEELE ADDRESS

いたいであっていて

Impirical equation

ţ

.

Marble

Relationship: Pressure versus density change Haterial: Harble, light gray with an initial density of

2.70 gm/cc

Source: Dremin and Adadurov, 1959 Equations:

$$P = 42.6 \left[(q/q_0)^{7.23} - 1 \right]$$
 kilobars $0 < P < 147$

and

$$P = 106 \left[(e/e^{-4.1} - 1) \right]$$
 kilobars 156 < P < 500

Phase change occurs between 147 and 156 kilobars

Summary of data and calculations

÷

and S

for metals at 3,500 kilobars

Metal Relative Gram atomic Ratio of gram volume compression atomic volume at 3,500 kb at zero pressure zero 3,500 kb to gram atomic pressure volume at 3,500 kb 1.7 Iron 1.67 4.26 7.12 1.70 4.18 Copper 7.11 1.89 1.9 4.84 Zinc 9.16 1.71 Silver 10.28 6.01 6.72 1.9 13.01 Cadmium 1.93 16.30 10.22 18.27 21.32 2.16 1.59 2.21 7.54 6.43 8.25 2.2 Tin 1.6 Gold 2.2 Lead 2.27 9.39 2.3 Bismuth

Metal	Shock velocity mm/ sec		Ratio of shock velocity at	
	zero	3,500 kb	yelooity at zero	
	pressur	e	pressure	
Iron	4.63	10.53	2.3	
Copper	3.95	9.75	2.5	
Zinc	2.92	10.19	3.5	
Silver	3.08	8.96	2.9	
Cadmium	2.34	9.15	3.9	
Tin	2.64	9.44	3.6	
Gold	2.98	6.99	2.4	
Lead	1.91	7.5	3.9	
Bismuth	1.85	7.99	4.3	

Source: Al'tshuler, Krupnikov and Brazhnik, 1958

35

CONSTANTS RELATING SHOCK VELOCITY, U, TO PARTICLE VELOCITY, U, IN LINEAR RELATIONSHIP

U = a + b u

Material	a (mm/usec)	Ъ	Pressure range (kilobars)	Reference
Alluvium, Dry Desert	1.80	1.11	38-351	(1)
Alluvium, Nevada 🥣	1.3	1.35	39-50 2	(2)
Aluminum, 24 ST	5.30	1.43	42-209	(3)
Aluminum, 2S	5.26	0.70	141-333	(4)
Andesite	4.08	1.54	42-115	(5)
Antimony	2.06	1.61	248-1175	(6)
Avcoat	1.75	1.78	14-150	(7)
Avcoite	3.01	5.53	34-118	(7)
Basalt	5.24 2.58	-0.39 1.64	40-234 234-769	(1);(5)
Beryllium	7.98	1.09	142-283	(8);(9)
Bismuth	2.12 1.26	1.31 2.00	185-446 446-3450	(8);(10)
Brass	3.47	1.69	221-473	(8)
Cadmium	2.44	1.67	228 3490	(6);(8);(10)
Chromium	5.22	1.47	2 35-1379	(6);(8)
Cobalt	4.75	1.33	244-1603	(5);(8)
Copper	3.99	1.50	216-3800	(6);(8);(10)
Dolomite	6.64	0.47	223-417	(5)
Gold	3.11	1.50	27 3-513 0	(6);(8);(10)
Granite	5.41 2.61	0.18 1.41	68-337 337-884	(5);(11);(12)
Granite, Shoal	4.30	0.87	160-285	(1)

•____

v = a + b u

۰

ς.

A start with the second start the before the second start with a second start start and second starts

- Constant production in the second second

STORE &

1.5.5

•,

.

]	Material	a (mm/µsec)	Ъ	Pressure range (kilobars)	Reference
	Graphite, Pyrolytic	2.80 4.75 4.06 4.31	4.66 1.72 1.76 1.69	50-85 85-116 30-470 100-300	(7) (7) (13) (14)
;	Halides: Cesium Bromido (single crystal) Cesium Chloride Cesium Iodide (single crystal) Lithium Bromide L ⁴ Mium Chloride Lithium Fluoride Lithium Fluoride Potassium Bromide Potassium Chloride Potassium Fluoride Potassium Iodide Rubidium Bromiie Rubidium Chloride Rubidium Iodide Sodium Bromide Sodium Chloride (rock salt; single crystal)	2.10 2.14 1.80 2.80 4.15 5.00 2.89 1.50 1.92 2.44 1.55 1.52 1.52 1.52 1.52 1.52 1.52 1.52	1.36 1.50 1.38 1.27 1.25 1.50 0.89 1.75 1.75 1.60 1.50 1.55 1.63 1.50 1.33 1.27	146-328 60-318 140-324 136-300 121-263 155-328 205-320 112-264 40- 229 117-266 110-278 112-286 109-268 117-279 58-305 52-882	(5);(15)
	Sodium Iodide	2.15	1.38	134-312	
	Indium	4.85	1.17	213-405	(8)
]	Iron	3.8	1.58	358-4000	(8);(10)
ł	Kel-F	1.73	1.61	3 2 - 97	(7)

6 T.S. . intern Martin Viensin and Martin

	U = a + b u						
llaterial	a (mm/µsec)	ъ	Pressure range (kilobars)	Reference			
Lead	2.03 2.30	1.52 1.27	203 -1383 390-3700	(6);(8) (10)			
Limestone	1.30 3.92 1.11	3.33 0.95 2.07	53-130 130-420 420-317	(5) (5) (5)			
Liquids; Acetone	1-88	1.39	46-106	(16)			
Benzene	1.98	1.53	52-121				
Broncethane	1.54	1.37	68-157				
Carbon Disulfide	2.02	0.95	59 -13 0				
Carbon Tetrachloride	1.56	1.47	74-171				
Ethyl Ether	1.65	1.47	42-96				
Ethyl Alachol	1.68	1.38	47-110				
Glycerine	2.41	1.63	76 -169				
Hexane	1.87	1.42	42-96				
llercury	1,58	1.96	226-463				
Methanol	1.73	1.50	47-110				
Mononi trotoluene	2.17	1.50	66-152				
N-Amyl Alcohol	1.98	1.55	51-115				
Toluene	1.72	1.66	52-122				
Water	2.20	1.33	32-419				
Magnes1um	4.49	1.27	116	(8);(9)			
Marble (dark)	1.66 6.36	4.00 0.65	1 56-296 296 - 468	(5)			
Marble (light)	5.41 6.63	1.38 0.53	171-297 297-418	(5)			
Narble (USSR)	3.43 4.03	2.00	49-146 146-529	(17)			

1

「あたたいのの

ないないでいっていったい

Ϊ,

64 200-00**5**94

U = a + b u

liaterial	(mm/µsec)	ď	Pressure range (kilobars)	Reference
Molybdenum	5.16	1.24	254-1633	(6);(8)
Nickel	4.65	1.45	235-1490	(6);(8)
Niobium	4.45	1.21	245-482	(8);(9)
Nylon	2.29	1.63	5 - 80	(7)
011-Sand	2.98	1.17	98 -63 4	(5)
Oil-Shale (dry) High grade Medium grade Low grade	3.15 4.23 3.55	1.38 1.01 1.43	96-219 119-279 117-286	(5)
Oil-Shale (wet)	3.34	0.68	110-164	(5)
Palladium	3.76	1.99	263-531	(3)
Phenolic, AVCO Phenolic Fiberglass	c 2.29 1.31	0.37	50-180 0-50	(7)
Phenolic, G E Phenolic Fiberglass	3.27	1.06	28-111	(7)
Phenolic, Chopped Hylon Fhenolic	1.80	1.81	J9-274	(7)
Phenolic, Tape Wound Nylon Phenolic	3.17	1.35	20 -86	(7)
Platinum	3.67	1.41	295-868	(8);(9)
Playa	0.49 2.50	2.00 0.76	40-87 87-271	(1)
Pleriglas	2.38	1.56	17-160	(7)
Folyethylene	1.57	2.38	2-65	(7)
Polystyrene	2.82	1.60	4-59	(7)
RAD 58B	1.20	0.69	5-46	(7)
Refrasil, Oblique Tape Wound	2.45	1.01	2084	(7)
Resins, Series 124	2.02	2.04	45-147	(7)

39

"教育者"的

ş

A STATE OF A STATE OF

ne dominant

U = a + b u

.

Į.

Material	(mm/usec)	Ъ	Pressure range (kilobars)	Reference
Rhodium	4.68	1.65	278-551	(8);(9)
Sand, Dry Silica (porosity 22%)	Is not a straight		58 - 153	(1)
Sand, Dry Silica (porosity 41%)	See		75-197	(1)
Sand, Water Saturated (porosity 41%)	mentary curves.	,	90- 216	(1)
Silver	3.27	1.54	216-4010	(6);(8);(10)
Steel, Low Carbon	indetermi	nable	121-305	(3)
Taconite Iron Rock	3.58 2.80	1.18 1.16	126-1140 74-679	(5)
Tantalum	3.13	1.56	272 -5 47	(8)
Teflon	1.34	1.93	10-76	(7)
Thallium	1.86	1.52	213-1517	(6);(8)
Thorium	2.13	1.28	203-1405	(6);(8)
Tin	2.66	1.47	175-3100	(6);(8);(10)
Titanium	4.78	1.09	168-1060	(6);(8)
Tuff, Dry Volcanic	0.60 2.28	0.52 0.38	31-8 2 82-2 9 2	(1);(5)
Tuff, Wet Volcanic	2.21 4.13	1.38 0.50	5 3- 188 188-270	(1);(5)
Tungsten	4.01	1.27	395-2074	(6)
Vanadium	5.11	1.21	204-1241	(6)
Zinc	3.71	1.45	186 -3 260	(6);(8);(10)
2irconlum	3.95	0.78	208-407	(8)

References

. ۳

- (1) Bass, Hawk and Chabai, 1963 (2) McQueen and Marsh, 1961 (3) Katz, Doran and Curran, 1959 (4) Walsh and Christian, 1955 (5) Lombard, 1961 (6) McQueen and Marsh, 1960 (7) Wagner, Waldorf and Louie, 1962 (8) Walsh, Rice, McQueen and Yarger, 1957 (9) Rice, MuQueen and Walsh, 1958 (10) Al'tshuler, Krupnikov and Brazhnik, 1958 (11)Alder, 1963 (12) Grine, 1960 (13) Coleburn, Drimmer and Liddiard, 1962 (14) Doran, 1963 (15) Christian, 1957
- (16) Walsh and Rice, 1957

A Stransford

and the second state of the second of the se

「「ないない」

(17) Dremin and Adadurov, 1959

TABLES AND GRAPHS

÷.

. •

74, s

Shock velocity, particle velocity, pressure, relative volume, and temperature

42

ABAVE

DRY DESERT ALL VIM*

Contraction of the Contraction of the

Shock Velocity (mm/usec)	Particle Velocity (nm/µsec)	Pressure (kilobars)	Relative Volume
2.66	1.00	38	0.624
2.90	0.97	44	0.666
3.41	1.58	83	0.537
3.65	1.57	86	0.570
3.70	1.52	96	0.589
4.35	2.45	156	0.437
4.36	2.39	171	0.462
5.25	3.27	237	0.377
5.89	3.37	351	0.428

Qo = 1.38 - 1.77 Source: Bass, Hawk and Chabai (1963) * Nevada Test Site Area 3

are the second and the second s

ENERGY

A STATE AND A STATE OF A STATE

43

94

DESERT DRY ALLUVIUM

NEVADA ALLUVIUM

Ţ

A REPORT OF A DESCRIPTION AND A DESCRIPTION AND

Shock	Particle	Pressure	Relative
velocity (mm/µsec)	(mm/usec)	(kilobars)	142MILO
Fine particl	.es		
2.363 2.892 3.656	1.074 1.340 1.770	39.1 59.7 99.7	0 .5 45 0.537 0.516
4.47 6.274 7.042	2•7 37 3•815 4•068	188.4 368.6 441.1	0.388 0.392 ().422

and a state

STREET, AND

Coarse par	ticles		
2•553	1.026	47.1	0,598
3•131	1.274	71.8	0,593
3•882	1.678	117.2	0,568
4.597	2.613	216.0	0.432
6.300	3.651	414.0	0.420
7.226	3.859	501.7	0.466

€° = 1.8

Source: McQueen and Marsh (1961)

45

NEVADA ALLUVIUM — Fine Particles

でいたがないためで

A REAL AND A REAL PROPERTY AND A REAL PROPERTY

47

Contraction Contract

NEVADA ALLUVIUM — coarse particles

24ST ALUMINUM

Shock	Particle	Pressure	Relative Volume
(mm/usec)	(mm/usec)	(kilobars)	102020
5.70	0.266	42.27	0.953
5.72	0.291	46.41	0.949
5.78	0.317	51.04	0.945
5.81	0.341	52.32	0.941
5.86	0.368	60.12	0.937
5.91	0.393	64.75	0.934
5.94	0.423	70.05	0.929
6.00	0.455	76.11	0.924
6.06	0.492	83.21	0.919
6.12	0.531	90.77	0.913
6.17	0.582	100.1	0.906
6.30	0.667	117.2	0.894
6.36	0.781	138.6	0.877
6.43	1.267	209.3	0.818

€o ≈ 2.785

and a second second

مانۇ ياردىر. **ۋ** بې

ないないののないのであるのです。 いちののできる ちょうちょう いちょう

STA WE THE

Source: Katz, Doran and Curran (1959)

¥);

No and the second of the secon

「「「ないないです」と、

24ST ALUMINUM

Shock	Particle	Pressure	Relative
Velocity	Velocity		Volume
(mm/µsec)	(mm/µsec)	(kilobars)	
б.125	0.571	100	0.9043
6.305	0.712	125	0.8873
6.475	0.831	150	0.8716
6.640	0.947	175	0.8573
6.793	1.057	200	0.8441
6.940	1.165	225	0.8322
7.082	1.267	250	0.8210
7.220	1.368	275	0.8104
7.350	1.465	300	0.8008
7.476	1.561	325	0.7912
7.598	1.654	350	0.7824
7.718	1.744	375	0.7740
7.836	1.832	400	0.7661
7.950	1.920	425	0.7585
8.062	2.003	450	0.7513
8.171	2.082	475	0.7445
8.276	2.170	500	0.7380

Po = 2.785

Source: Walsh, Rice, McQueen and Yarger (1957)

Note: The data presented above is <u>not</u> experimental data, but it is calculated from a great wealth of data run on 24ST aluminum, and is probably the most accurate data available.

and a second state

24ST ALUMINUM

A THE SOUTHER ARE AN TRADEMENTIC A WORK IN ADDRESS IN A MARKET A A MARKET A MARKET A MARKET A MARKET A MARKET A

÷

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
6.28	0.765	133.9	0.878
6.32	0.761	134.1	0.880
6.34	0.775	136.8	0.878
6.86	1.140	218.0	0.834
7.12	1.304	258.6	0.817
7.12	1.276	253.2	0.821
7.14	1.282	254.9	0.820
7.27	1.396	282.9	0.808
7.26	1.427	288.7	0.804
7.41	1.546	318.9	0.791
7.47 7,46	1.570 1.556	326.6 323.3 328.4	0.790 0.791 0.789
7.52	1.625	340.2	0.784
7.53	1.646	347.0	0.780

90 = 2.785

1. 并心理理理学学学生的学生。

A STATE STATE AND A STATE STATES

「「「「」」

Source: Walsh and Christian (1955)

25 ALUMINUM

Shock Velocity (mm//usec)	Farticle Velccity (mm/µsec)	Pressure (kilobars)	Relative Volume
6.42	1.627	141.3	0.873
6.94	2.355	221.3	0.830
7.44	2.931	295.0	0.803
7.58	3.250	333.3	0.786

€ o = 2.706

Source: Walsh and Christian (1955)

51

* 17

2.5 ALUMINUM

ind An

Source: Landerga, 1961a

キャー・シー・

1 . .

1

NOTS TP 3798

Temperatures associated with shoch

Aluninun

Tressure (Lilobars)	Tenperature bchind_shock (C ^o)	Residual temperature (C ⁰)
0 100 150 200 250	20 94 153 223 30 8	
300 350 400 450 500	405 513 637 770 209	

Source: Rice, Molueen and Walsh, 1953

.

ALUMINUM

「「ころうちない」やいたってい

ANDESITE*

Shock	Particle	Pressure	Relative
(mm/usec)	(mm/usec)	(kilobars)	VOLUME
2.70	0.51	42	0.815
5.344	0.82	115	0.846

Qo = 2.64

and the second s

Source: Lombard (1961)

* Quarried in Marin County, California

57

ANDESITE

58

ster , madeusine ,

大王を書きていた。

NOTS TP 3798

ANTIMONY

1

Shock	Particle	Pressure	Relative
Velocity	Velocity		Volume
(mil/usec)	(mm/usec)	(kilobars)	
3.61	1.03	248	0.716
3.59	1.03	248	0.713
3.63	1.02	249	0.720
4.30	1.39	400	0.678
4.33	1.38	401	0.681
5.12	1.96	673	0.617
5.06	1.88	637	0.629
5.64	2.19	828	0.611
5.72	2.19	839	0.618
5.71	2.20	843	0.614
6.31	2.70	1142	0.572
6.34	2.73	1158	0.569
6.43	2.73	1175	0.576

e∘ = ^{6.6}

Source: McQueen and Marsh)1960)

1.1

ANTIMONY

the province of the

このことである ちょうちょう

í.,

Temperatures associated with shock

Antimony

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ^O)
0 250 500	20 577 1827	
750 1000 1250	4727 8427 12827	

Source: McQueen and Marsh, 1960

A CONTRACTOR OF A CONTRACTOR O

AVCOAT

Shock	Particle	Pressure	Relative
(mm/psec)	(mm/u sec)	(kilobars)	VOTMIE
2.59	0.477	13.6	0.816
2.83	0.614	19.1	0.784
3.39	0.954	35.6	0.719
4.48	1.46	71.9	0.674
5.82	2.33	149.0	0.600

eo = 1.10

42.6

Source: Wagner, Waldorf and Louie (1962)

AVCOITE

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
4.15	0.345	33.9	0.916
4.64	0.434	47.7	0.906
5.38	0.667	85.0	0.876
5.94	0.841	118.0	0.858

Q o = 2.37

ていたいがい、そうないないとうのうない

Source: Wagner, Waldorf and Louie (1962)

63

and a second second second

, 3°-

· 64

花をまたち とう

al same and

Ą

and the standard

-Yran.

EASALT*

1. A. A. A.

Shock Velocity (mm//(sec)	Particle Velocity (mm/(cec)	Fressure (kilobars)	Relative Volume
5.24 4.85 6.80 6.85	0.29 1.02 2.58	40 127 468 470	0.840 0.621

e o = 2.67

Source: Bass, Hawk and Chabai (1963)

* Buckboard hole no. 3, 36 ft, 40-mile Canyon, Nevada Test Site

BASALT+

. . .

Shock Velocity (mm/usec)	Farticle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
4.867	0.794	103	0.837
5.24	1.63	234	0.689
7.97	3.29	684	0.578
8.588	3.71	769	0.524

e • = 2.67

Source: Lombard (1961)

+ Nevada Test Site, Area 18. The Hugoniot elastic limit 40 kb and elastic precursor velocity 5.24 mm/msec

ないできることで

NOTS TP 3798

E.

Particle Velocity (mm/ μ sec)

BASALT

BERYLLIUM

Shock	Particle	Pressure	Relative Volume
(mm/usec)	(mm/usec)	(kilobars)	
8.934	0.865	142.6	0.9032
9.044	0.847	141.2	0.8659
9.332	1.221	210.2	0.8692
9.633	1.592	282.9	0.8347
9.832	1.609	291.9	0.8244
2.021			

e • = 1.845

Source: Walsh, Rice, McQueen and Yarger (1957)

seens sin and the second s

69

Relative Volume V/V.

BERYLLIUM

Thursday.

۲,

۰,

Temperatures associated with shock

and the second states a

Beryllium

Pressure (kilobarg)	Tenperature behind shock (C ⁰)	Residual temperature (C ^O)
0 100 150 200	20 50 70 9 7	
250 300 350	127 168 213	

Source: R1	ce, hoQuee	en and Ma	lsh, 1953.
------------	------------	-----------	------------

W.A.T

The Real Property of

BERYLLIUM

where the state which

BISMUTH

Shock	Particle	Pressure	Relative
(mm///sec)	(mm/(LSec)	(kilobars)	VOLUME
2.696	0.718	189.5	0.7337
2.585	0.676	171.1	0.7385
3.075	0.914	275.2	0.7028
3.084	0.922	278.4	0.7010
3.682	1.212	436.9	0.6708
3.659	1.122	437.7	0.6660

e • = 9.80 Source: Walsh, Rice, McQueen and Yarger (1957)

BISMUTH

Shock Velocity	Particle	Pressure	Relative
(mm//usec)	(mm//isec)	(kilobars)	AOTUME
3.37	1.05	350	0.690
6.36 7.94	2.47 4.45	1 300 3450	0.539 0.439

eo = 9.80

- TANKA - AND

Source: Al'Tshular, Krupnikov and Brazhnik (1958)

BISMUTH

Shock Velocity	Particle Velocity	Pressure	Relative
(mm//usec)	(mm, Ausec)	(kilobars)	VOLUIIC
3.67	1.23	444	0.665
3.64	1.23	443	0.661
4.44	1.80	786	0.596
4.42	1.79	781	0.594
4.46	1.79	787	0.599
4.75	1.97	923	0.585
4.66	2.06	945	0.558
4.73	2.00	931	0.577
5.33	2.47	1299	0.536
5.36	2.47	1303	0.540
5.51	2.51	1360	0.545
5.49	2.48	1344	0.548
5.49	2.47	1335	0.551

e c = 9.80 Source: McQueen and Marsh (1960)

ß

1. "And

Repair Sal

BISMUTH

76

A DESCRIPTION OF THE PARTY OF T

Temperatures associated with shock

Ĉ.

のでものですの

なるなない。他はいうない

Bismuth

Pressare (Lilobars)	Temperature behind shock (C ^O)	Resid al temperature (C ⁰)
0 500 750	20 2527 6027	
1000 1250 1500	10627 16 327 22827	

Source: Mclucen and Marsh, 1960

50

BISMUTH

BRASS

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Rela tiv e Volume
4.446	0.590	220.7	0.8673
4.440	0.571	213.3	0.8714
4.731	0.791	314.9	0.8328
4.726	0.770	306.2	0.8371
5.2 3 6	1.085	478.0	0.7928
5.220	1.077	473.0	0.7937

Source: Walsh, Rice, Mclueen and Yarger (1957)

Cu/2n/Pb/Fe : 61.5/36.0/2.5/<0.05

Shock Velocity	Particle	Pressure	Relative
(mn/msec)	(mm//sec)	(kilobars)	Volume
4.38	0.45	167	0.897
4.41	0.45	168	0.898
4.50	0.50	192	0.888
4.51	0.50	191	0.889
4.54	0.56	214	0.877
4.56	0.59	229	0.869
4.77	0.70	282	0.853
4.79	0.70	284	0.853
5.10	0.91	3 91	0.822
5.14	0.90	3 89	0.826
5.15	0.96	415	0.814
5.15	0.91	394	0.824
5.17	0.94	411	0.813
5.19	0.94	412	0.819
6.22	1.72	906	0.723
6.29	1.78	947	0.717
6.39	1.82	985	0.715
6.59	1.99	1109	0.698
6.92	2.24	1308	0.677
6.97	2.28	1342	0.673
7.04	2.26	1 3 48	0.679
7.05	2.29	1 3 65	0.675
7.17	2. 3 4	1 4 20	0.674
7•54	2.66	1594	0.648
7•57	2.66	1702	0.649
7•77	2.69	1764	0.654

e • = 8.6

Source: McQueen and Marsh (1960)

0 L 0.6

0.8

RELATIVE VOLUME - V/V.

BRASS

A Contraction of the second

O

3

NOTS TP 3798

81

1.0

17. WERE AND A STREET, S

e,

作品

1

THIS TO LEAD TOLLA

An and a supervised server and the server as a supervised of the server of the server

,

Temperatures	associated wit	h shoch
	Ernes	
lresstre (kilobars)	Tenrerature behind shock (C ⁰)	Residual temperature (C ^O)
0 100 150 200 250	20 89 129 175 235	
300 350 400 450 500	305 382 467 557 651	

A State

. 3743

.....

Source: Rice, he deen and marsh, 19	ic ucen and Haisn, 1950
-------------------------------------	-------------------------

ł

A THE ADDRESS AND ADD

The The France of the second second second

and a state of the second and

CADMIUM

.

Shock Velocity	Particle	Pressure	Relative
(mm/usec)	(mm/msec)	(kilobars)	VOTUME
5.66	i .96	957	0.654
5.78	1 .96	976	0.662
5.77	1 .96	980	0.663
5.77	1 .97	982	0.558
6.45	1 .98	986	0.657
6.48	2.40	1 3 39	0.628
6.48	2.40	1 3 4 5	0.629
6.39	2.43	1 3 3 9	0.620
6.43	2.43	1 3 5 1	0.622

Ro = 8.64 Source: Moducen and Marsh (1960)

CADMIUM

Shock Velocity	Particle	Pressure	Relative
(mu/msec)	(mm/ABec)	(kilobars)	volume
3.599	0.690	214.5	0.8083
3.421 3.018	0.619	182.9	0.8191
4.450	1.190	457.3	0.7326
4.324	1.120	418.2	0.7410

Qo = 8.64

Source: Walsh, Rice, McQueen and Yarger (1957)

84

Ŧ

- うち ちちちょうとうちょう ちょうちょう ないない かいていたい

Carlo Carlos Car あった ちょうちょうこう かいろのます。

CAIMIUM

 $\mathcal{I}^{\mathbb{N}}$

Shock	Particle	Pressure	Relative
(mm/usec)	(mm/usec)	(kilobars)	volume
4.10	1.02	360	0.751
6.32	2.44	1330	0.612
9.14	4.42	4390	0.515

e° = 8.64

St. C. S. C. M. M. Martin Song Volg

2.25

1.5%

· Ser and the second second

Source: Al'tshuler, Erupnikov and Brazhnik (1958)

. When At ... '

ころう いち かんとうちまちちんとないないないないちょうちょうちょうちょうちょう

Temperatures associated with shock

, ²

Cadmium

the second s

AND REAL MARCON

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ⁰)
0	20	20
100	161	55
200	401	157
300	722	283
40 0	980	321
500	1 339	377
600	1974	533
700	2710	687
800	3535	836
900	4431	979
1000 1100 1200 1300 1400	538 3 6379 7403 8453 9503	1117 - - -

Source: McQueen and Marsh, 1960

87

March in Strategy

CADMIUM

VALUE PARTY SA REAL

CHROMIUM

,# ,*

Shock Velocity (mm/µ3ec)	Particle Velocity (mm/µ3ec)	Pressure (kilobars)	Relative Volume
7.63 7.59	1.71	92 4 922	0.777
8.44 8.57 8.63	2.25	1347 1382 1370	0.734 0.735 0.730

° • = 7.10

Source: McQueen and Marsh (1960)

CHROMIUM

Shock	Particle	Fressure	Relative
(mm/µ3ec)	(nn/Asec)	(kilobars)	VOLUME
6.043	0.5448	234.5	0.9098
5.923	0.5395	233	0.9089
6.370	0.7436 0.7449	338	0.8831
6.355	0.7407	336	0.8834
6.357	0.7403	336	0.8835
6.660	1.007	478	0.8488
6.674	1.008	479	0,8490

e = 7.13

Source: Walsh, Rice, McQueen and Yarger (1957)

89

the second s

4

Temperatures associated with shock

PERSONAL AND A DESCRIPTION OF A DESCRIPR

あちまいちん かん あったれい とうちゃくい

「「「「「」」」をきている」

o to the "Million"

*

Chromium

Pressure (kilobars)	Tenperature behind shock (C ^O)	Residual tenperature (C ⁰)
0	20	20
100	41	23
200	73	39
300	123	71
400	194	119
500	285	182
600	396	258
700	523	345
800	666	439
900	820	539
1000	983	643
1 100	1151	746
1 200	1319	846
1 300	1482	938
1 400	1641	1024

Source: McQueen and Marsh, 1960

91

A DESCRIPTION OF THE OWNER OF

CHROMIUM

250.

COBALT

Shock	Particle Volocity	Pressure	Relative
(mm/Asec)	(mm, Msec)	(kilobars)	VOTAIlle
7.15	1.79	1121	0.750
7.15	1.80	1137	0.748
7.12	1.83	1148	0.743
7.50	2.06	1362	0.726
7.45	2.07	1358	0.723
7.43	2.07	1357	0.721
7.81	2.30	1584	0.706
7.79	2.30	1581	0.705
7•77	2.30	1577	0.703
7•88	2.31	1603	0.707
7•83	2.32	1603	0.703

(c = 8.82 Source: McQueen and Marsh (1960)

COBALT

Shock	Particle	Pressure	Relative
(mm, Asec)	(mm, usec)	(kilobars)	vorume
5.445	0.502	241.1	0.9078
5.696	0.683	343.2	0.8801
5.632	0.653	324.4	0.8841
6.019	0.901	478.1	0.0505
0.052	しょソジン	203.0	U.0422

€• = 8.82

and the second second

a factorial a

Source: Walsh, Rice, McQueen and Yarger (1957)

ながないというという

чу. Ту,

94

Temperatures	accociated tri	th shock
	Cobalt	
Tressure (kilobars)	Terverature behind shock (C ⁰)	Residual tenpersture (C)
0	20	20
100	43	22
200	81	34
30 0	127	58
400	190	94
500	270	141
600	368	198
700	431	262
800	609	331
900	749	404
1000	900	430
1100	1059	557
1200	1023	635
1300	1396	711
1400	1571	786
1 <i>5</i> 00	1748	860
1 6 00	1926	9 3 0

مەتىرىكە «د

and the state of

T-NEW P

.....

うちょうこう あるないないないないないないないないないないないないないないない

. 7.

Source: McQueen and March, 1960

95

こう ちょうしょう ちょうしょう

Pressure-Kilobars

COBALT

COPPER

Shock Velocity (mm/µsec)	Particle Velocity (mm/#sec)	Pressure (kilcbars)	Relative Volume
6.23	1.53	875	0.746
6.26	1.57	877	0.749
7.26	2.20	1424	0.697
7.29	2.21	1430	0.698
7. 3 2	2.22	1444	0.697

Qo = 8.90 Source: McQueen and Harsh (1960)

COFFER

Shock Velocity (mm/µsec)	Farticle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
4.768	0.570	241.9	0.8804
5.070	0.711	320.8	0.8598
5.015	0.731	326.3	0.8542
5.508	1.032	505.9	0.8126

€∘ = 8.90

and the second second

100

Source: Walsh, Rice, Mc Lucen and Yarger (1957)

ļ

、ふっちをない、「ないない」、「ないない」、「ないないないない」、「なってもない」、

COPPER

. .

Shock	Particle	Pressure	Relative
Velocity	Velocity		Volume
(mm/usec)	(mm/usec)	(kilobars)	
5 .3 6	0.94	450	0.826
7.13		1460	0.681
10.16	4.19	3800	0.588

e • = 8.93

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

COPPER

Shock Velocity (mm, tisec)	Particle Velocity (mm, (usec)	Pressure (kilobars)	Relative Volume
4.525	0.460	185.1	0.898
4.700	0.547	232.4	0.0055
4.94	0.672	295.3	0.864
4.913	0.684	299.0	0.861
5.258	0.823	356.1	0.848
5.128	0.780	385.0	0.844
5.240	0.835	209.5	0.841
5.285	0.855	402.3	0.838
5.391	0.964	462.0	0.821
5.397	0.969	465.4	0.821

e = 8.903

Source: Walsh and Christian (1955)

98

. The second second

and the second second

NOTS TP 3798

COPPER
Pressure (Hilobars)	Temperature behind shock (C ⁰)	Residual tempe r ature (C ⁰)
0	20	20
100	61	25
200	118	46
300	199	87
400	3 09	144
500	446	214
600	608	295
700	795	383
800	1004	478
900	1233	576
1000	1482	677
1100	1747	780
1200	2028	883
1 30 0	2323	984
1400	2629	1083
1500	2769	1083

Temperatures associated with shock

Copper

Source: Mclueen and Marsh, 1960

100

N 1894 7000 199 1944 - 11499 44

State of the state

DOLOMITE*

Shock Velocity (mm/usec)	Particle Velocity (mm//usec)	Pressure (kilobars)	Relative Volume
7 .1 4	1.10	22 3	0.846
7 .5 46	1.935	417	0.7436

Co = 2.84 Source: Lombard (1961)

* from surface, Nevada Test Site 12

DOLOMITE

GOLD

Shock	Particle	Pressure	Relative
(mm/u sec)	(mm/µ sec)	(kilobars)	volume
3.679	0.380	269.0	0.3967
2.864 4.130	0.505 0.666	375.4 529.2	0.8693 0.8389

€ ∘ = 19.24

Source: Walsh, Rice, McQueen and Yarger (1957)

GOLD

Shock	Particle	Pressure	Relative
(mm/# sec)	(mm/meec)	(kilobars)	VOLUME
4.27	0.71	590	0.834
5.70	1.78	1950	C.690
~•···		2120	U. 392

e = 19.00

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

GOLD

Shock	Particle	Pressure	Relative
(mm/usec)	(mm/usec)	(kilobars)	VOLUME
5.25	1.37	1 387	0.739
5.80	1.41	1410 1932	0.730 0.702
5.78	1.74	1931	0.700
5•10 5•79	1.74	1920	0.699

€0 = 19.24

Source: McQueen and Marsh (1960)

104

日本のないないないないないない

No. of Contraction of

ないていたいとうないで、ないでいたいで、

GOLD

S. Constanting

NOTE CARACTER STATE

.

r

• 5

y J

٠

.

٠

•

.

.

a de la comercia de l La comercia de la come

Gold

Pressure (Eilobars)	Temperatures behind shock (C ⁰)	Residual temperature (C ⁰)
0	20	20
100	74	24
200	146	44
300	246	82
400	37 8	136
500	543	20 1
600	741	277
700	970	359
800	1230	447
900	1518	539
1000	1834	632
1100	2175	727
1200	2539	821
1300	2926	915
1400	3334	1007
1500	3693	1063
1600	3951	1063
1700	4216	1063
1300	4487	1063
1900	4764	1063
2000	5257	1131

Source:	McQueen	and	llarsh,	1960
---------	---------	-----	---------	------

106

CARLES CONTRACTOR OF STREET, ST

Pressure-Kilobars

GOLD

107

é

Sand Lanan

GRANITE

Shock	Particle	Pressure	Relative
(mm/µsec)	(mm/usec)	(kilobars)	TOTATE
5.383	0.485	0.068	0.915 (1)
5.37	1.31	0.182	0.756 (1)
5.825	2.220	0.337	0.6189(1)
5.71	0.490	0.0743	0.914 (2)
5.58	0.822	0.123	0.853 (2)
5.48	0.960	0.143	0.826 (3)
5.506	1.15	0.148	0.791 (4)
5.658	1.63	0.246	(4)
5.64	1.625	0.247	0.712 (3)
5.61	1.715	0.2565	0.693 (4)
6.31	2.63	0.446	0.584 (3)
7.64	3.35	0.680	0.558 (4)
8.27	4.00	0.884	0.516 (2)

Co = 2.61 Source: Lombard (1961)

(1) Pink quartz monzonite, surface, Nevada Test Site Area 15

(2) Origin undetermined

(3) Stanford Research Institute exploratory core, 1005 ft, Nevada Test Site Area 15

(4) Gray grandiorite, surface, Nevada Test Site Area 15

The supplication of the second second

SHCAL GRANITE

Dirty and the second second

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
5.98	1.80	285	0.699
6.15	2.36	386	0.616
6.60	2.38	416	0.639
6.57	2.60	453	0.604
6.81	2.58	466	0.621
7.16	3.02	573	0.578
6.86	3.42	622	0.501
7.04	3.45	644 .	0.510
0.493	0.98	128	0.859
0.500	1.22	160	0.800
Co = 2.65 Source: Bass	, Hawk and Cha	ba i (1963)	

こうちょう しんしょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう

.

PYROLYTIC GRAPHITE

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume	
4.93	0.461	50.1	0.929	
5.88	0.663	85.8	0.904	
6.20	0.852	116	0.883	

eo = 2.20

Source: Wagner, Waldorf and Louie (1962)

PYROLYTIC GRAPHITE

Shock	Particle	Pressure	Relative
(mm/msec)	(mm/msec)	(kilobars)	VOLUME
5.59	0.807	98	0.858
5.91	0.963	123	0.942
5.98	0.961	117	0.851
5.95	0.967	122	0.844
6.65	1.33	193	0.802
7.19	1.78	281	0.752

 $g_{0} = 2.20$ Source: Doran (1963)

Contraction of

的。新闻新的自由的认为和少

2,

ť,

HALIDES

172

Shock Velocity (mn/µsec)	Particle Velocity (mm/Msec)	Pressure (kilobars)	Relative Volume
Cesium Eronide	(single crystal	L)	
3•41 3•33 4•15 4•38	0.97 1.25 1.52 1.69	146 213 280 328	0.716 0.672 0.632 0.614
$e^{\circ} = 4 \cdot 4 \cdot 4 \cdot 4$			
Ceciua Chlorid	<u>e</u>		
2.92 3.75 3.350 4.47 4.70	0.51 1.04 1.13 1.03 1.74	60 154 170 270 313	0.825 C.723 C.707 0.658 0.636
e = 3.960			
Cestur Iodide	(cingle crystal)	
3.12 3.51 3.94 4.19	1.00 1.23 1.55 1.71	140 195 274 324	0.680 0.649 0.608 0.590

$$\mathsf{R}_{\circ} = 4.481$$

HALIDES (cont)

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
Lithium Bromide	2		
4.12 4.51 4.96 4.97	1.02 1.36 1.63 1.805	136 194 267 3 00	0.752 0.712 0.672 0.637
e = 3.30			
Lithium Chlorid	de		
5.49 5.80 6.32 6.57	1.087 1.415 1.780 1.941	121 1 70 230 263	0.802 0.756 0.720 0.704
e ° = 2.06			·
Lithium Fluori	de (single cry	stel)	ø
6.40 6.61 7.28 7.47	0.927 1.071 1.487 1.680	155 185 282 328	0.855 0.838 0.796 0.775
$R_0 = 2.614$			
Lithium Iodide	(single crystal	1)	
4.01 4.24 4.47	1.270 1.575 1.780	205 268 320	0.683 0.628 0.602

eo = 4.016

٠.

A Constant and the second s

THE REPORT OF THE REPORT OF

「お言ろこ」と、

ただったかってい、気味かっ

2

1

Statistic ... Survey and statistics

107 179 - CV V

115

and designed stational and the

102.1 . 10-

「日本のため」ではいいようなからい

HALIDES (cont)

:

5

٠

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Fressure (kilobars)	Relative Volume
Potassium Bromi	Lde (single	crystal)	
3.52 4.06 4.58 4.88	1.16 1.46 1.74 1.97	112 161 218 264	0.670 0.641 0.618 0.596
e o = 2.73			
Fotassium Chlo;	ride		
2 .30 4.04# 4.64	0.67 1.21 1.57	40 97 144	0.77 0.698 0.661
5.19# 5.51 5.54*	1.88 2.13 2.08	194 2 3 2 229	0.636 0.613 0.624
Q = 1.950 * Single crystal			
Fotassium Fluo	ride		
4.03 4.09 5.24 5.54	1.11 1.43 1.78 1.94	117 168 232 266	0.738 0.695 0.661 0.650
e o = 2.485			
Potassium Iodide			
3.28 3.70 4.22 4.47	1.10 1.40 1.72 1.99	1 10 161 227 278	0.668 C.624 C.594 O.555

116 **e** = 3.10

HALIDES (cont)

动行动的

202

100

a filler of the

Sector Stranger -

ļ

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Rela tiv e Volume	
Rubidium Eromi	de		,	
3.16 3.62 4.16 4.44	1.08 1.38 1.73 1.96	112 163 237 286	0.659 0.621 0.585 0.559	
e o = 3.285				
Rubidium Chlor	lde			
3.43 3.91 4,48 4.87	1.16 1.44 1.82 2.04	109 151 222 268	0.663 0.632 0.594 0.581	
e = 2.752				
Rubidium Iodide				
3.01 3 .44 3.95 4.24	1.11 1.37 1.73 1.91	117 163 235 279	0.633 0.601 0.554 0.522	

The second state of the second state of the second state of the second state of the second second second second

y.

HALIDES (cont)

٠

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
Sodium Bromide			
3.38	0.55	58	0.838
3.34	0.54	57	0.839
4.00	1.06	133	0.736
4.29	1.30	177	0.697
4.38	1.36	189	0.689
4.79	1.63	2 47	0.659
5.10	1.83	29 3	0.641
5.06	1.35	295	0.635
5.10	1.89	30 5	0.630

Q = 3.165

Sodium Chloride (see separate tables)

Sodium Iodide (single crystal)

3,58	1.02	134.	0.714
4.03	1.35	202	0.657
4.39	1.61	259	0.634
4.58	1.86	312	0.593

e = 3.64

Source: Christian (1957)

ν_γ_4γ γ_4γ

ROCK SALT

Shock	Particle	Pressure	Relative
Velocity	Velocity		Volume
(mm/ Msec)	(mm/usec)	(kilobars)	
4.652	C.891	89	0.809 (1)
5.018	1.170	126	0.767 (2)
5.382	1.392	161	0.741 (2)
5.325	1.377	162	0.755 (2)
5.511	1.400	166	0.746 (2)
5.874	1•747	220	0.7026(2)
5.870	1•79	226	0.695 (1)
6.07	1•99	258	0.672 (2)
6.122	1•98	260	0.677 (2)
6.088	1•996	262	0.672 (2)
7.07	2.87	437	0.594 (2)
7.10	2.85	436	0.599 (2)
7.17	2.96	45 7	0.587 (2)
7.465	2.98	4 7 9	0.601 (2)
8.24	3.49	620	0.577 (1)
8.425	3.90	709	0.537 (1)
8.73	3.92	735	0.551 (2)
9.118	4.445	856	0.5089(2)
9.157	4.596	865	0.498 (3)
9.025	4.54	882	0.497 (3)

qo = 2.15

キャッシュ イン・

14. Mar 1. 1

- 422 (223)

Source: Lombard (1961)

(1) Louisiana dome salt: Carey Mine

(2) Origin undetermined

(3) New Mexico red potash ore

SODI'D! OHLORIDE (SINGLE ORYSTALS)

hook Velocity (cm/meec)	Particle	Pressure	Relative Volume
	(mm//4Bec)	(kilobars)	
4 19	0.59	53	0.863
4 73	0.98	100	0.794
5 29	1.33	152	0.736
5 41	1.55	182	0.719
5 59	1.59	193	0.714
5.66	1.71	209	0.699
5.96	1.85	236	0.689
6.13	2.07	276	0.666
7.85	3.24	547	0.588
8.91	4.10	790	0.541

(o = 2.16

Source: Al'tshuler, Kuleshova and Pavlowskii (1960)

AL AND THE PROPERTY OF THE WALL AND THE PROPERTY OF THE PROPER

SODIUM CHLORIDE (SINGLE CRYSTALS)

a the second second second

Shock Velocity (mm/µsec)	Particle) Velocity (mm/µsec) (1	Pressure	Rela tiv e Volume
Crystal orient	ation to shock fro	ont: 100	
5.066	1.099	120	0.783
5.860	1.76	223	0.700
5.937	1.73	224	0.710
6.064	1.860	243	0.693
6.237	1.963	2655	0.6853
6.24	2.05	277	0.671
6.34	2.28	313	C.640
6.36	2.35	321	0.613
6.45	2.537	352	0.607
7.22	3.00	473	0.585
7.72	3.32	550	0.570
7.83	3.27	548	0.582
8.624	3.90	725	0.547
8.47	3.98	747	0.530
Crystel orient	ation to shock fro	nt: 111	
5.875	1.88	2 38	0.680
5.980	2.012	2 60	0.664
5.999	2.029	2645	0.6618
6.04	2.09	272	0.656
6.25	2.27	308	0.637
8.66	3.92	730	0.547

Qo = 2.15

, 1, 1 X

- server an time :

a none and a second

Source: Unpublished data: LRL

121

છે. અન

CESIUM BROMIDE

CESIUM CHLORIDE

And Andrews and the second

LITHIUM BROMIDE

NCTS TP 3798

LITHIUM CHLORIDE

LITHIUM FLUORIDE

127

というないないない

We downer .

ł

LITHIUM IODIDE

1.29

ŕ

POTASSIUM FLUORIDE

131

POTASSIUM IODIDE

たちが

RUBIDIUM BROMIDE

0.8

0.9

 \vee / \vee_{o}

0.7

Relative Volume

0

والمراد المتحالية المحالية

0.5

0.6

133

1.0

RUBIDIUM CHLORIDE

200

THE REAL PROPERTY OF

1.850

Relative Volume V/V

RUBIDIUM IODIDE

Alter Standing & - 74

138

ور ۲ م منظر من .

そうちょう、 あったいちょうちょうかんちょう

Ì.

139

Temperatures	s associated wit	th shock
	Halides	
Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ⁰)
Cesium bromi	Lde	
0 146 213 280 328	20 950 1620 2600 3200	20 425 645 (M-2%) 645 (M-80%) 850 (L)
Cesium chlor	ride	
0 60 154	20 265 910	20 100 34 0
172 270 318	1075 2100 2700	390 560 (T) 650 (T, X-50%)
Cesium iodio	ie	
0 140 195 274 324	20 1400 2300 3800 4700	20 490 630 (M-30%) 750 (L) 900 (L)
Source: Chi	ristian, 1957	
(M- %) india "mels	cates the final ting point" with	state is at the n % liquid
(L) indicate	es the liquid s	tate

(T) indicates a transition is assumed to occur in the rarefaction only

. .

Temperatures associated with shock

マーン・マック・ブライン 法がかくかく くったんでし ふかんたいやく ちょう たいしょう かくしょう マイスのない かんのかのなんのない かんのかのなんのない

Halides

l'ressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
Lithium bron	mide	
0 136 194 267 300	20 425 695 1080 1645	20 170 290 435 520
Lithium chlo	oride	
0 121 170 230 263	20 235 425 6 35 805	20 74 170 290 400
Lithium flu	oride	
0 155 185 282 328	20 134 175 315 410	20 62 80 155 200

Source: Christian, 1957

-

· the second states

141

	Halldes		
Pressure (kilobars)	Tenperature behind shock (C ⁰)	Residu tempera	ual ture)
Potascium b	romide		
0 1 12 161 2 18 264	20 1000 1600 2400 3100	20 540 630 750 900	(L) (L)
Potassium el	hloride		
0 40 97 144	20 160 600 1060	20 50 320 620	
194 232 229	1640 2110 2080	750 750 750	(11-45%) (11-70%) (11-70%)
Petassium f.	lu ori de		
0 1 17 168 2 32 2 66	20 400 600 1 100 1 400	20 235 335 630 750	
Potassium ic	odide		
0 1 10 161 227 278	20 1 100 1950 3200 4 400	20 400 600 900 1000	(L) (L)
Source: Chi	ristian, 1957		
(M- 5) indic "melt	cates the final ting point" with	state is % liquid	at the
(L) indicate	es the liquid ph	ase	

Temperatures associated with shock

ŝ.

is materia

いた

1

2 -- 15

A "gift, the electronic Balance

NOTS TP 3798

. ··

Temperatures associated with shock

Halides

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ⁰)
Rubidium 1	promide	
0 112 163 237 286	20 1240 2040 3200 4100	20 695 (M-40%) 810 (L) 1200 (L) 1400 (L)
Rubidium c	hloride	
0 109 151 222 268	20 1080 1600 2700 3400	20 700 725 (11-75%) 1050 (L) 1100 (L)
Rubidium 1	odide	
0 117 163 235 279	20 1 500 2600 4200 51 50	20 670 (L) 1050 (L) 1450 (L) 1850 (L)

Source: Christian, 1957

(N-%) indicates the final state is at the "melting point" with % liquid

(L) indicates the liquid state

143

a source and a source of the s

際で

to all months and

Temperatures associated with shock

۰,

1

Ċ,

Halides

Pressure (kilobars)	Tempe rature behind shock (J ^O)	Residual temperature (C ^O)	
Sodium bron	nide		
0	20	20	
58	150	95	
57	145	95	
133	475	215	
177	750	33 0	
189	830	365	
247	1290	550	
293	1725	725	
295	1725	735	
3 05	1825	775	
Sodium chlo	oride		
0	20	20	
52	120	60	
118	345	155	
120	320	130	
119	345	155	
120	340	150	
120	330	140	
126	395	180	
161	520	240	
223	745	-345	
224	720	320	
237	960	410	
243	880	370	
238	960	410	
260	1100	470	
259	1000	435	
264	1060	450	
270	980	410	
26 4	1100	47 0	

1200

-, •• v •

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C)
Sodium iodio	le	
0 134 202 259 312	20 750 1 350 2000 2675	20 340 650 665 (N-30%) 665 (H 85%)

- · · ·

Source: Christian, 1957

an profession and the second

「「「「「」」、 ころうちょうない ちょうしょう

Sec. 194

(N- %) indicates the final state is at the "melting point" with % liquid 「「ないない」で、

Pressure - Kilobars

.

CESIUM BROMIDE

ţ

ŗ

Pressure - Kilobars

CESIUM CHLORIDE

1. Start -

3

147

ないであるのです

CESIUM IODIDE

M. TREAST

Andrew and a contract

and the state of the second

North States and a state of the

the constitution of the second

語りたく

Pressure - Kilobars

LITHIUM BROMIDE

149

LITHIUM CHLORIDE

- THE PARTY OF

被望

Pressure - Kilobars

LITHIUM FLUORIDE

POTASSIUM BROMIDE

<u>ن ک</u>

A.

Pressure - Kilobars

POTASSIUM FLUORIDE

いない

いいない いちちょうかかい ちかい いちちょう いちまうか

, , Pressure - Kilobars

POTASSIUM IODIDE

愛(、いい

Pressure - Kilobars

RUBIDIUM BROMIDE

PETRON AND AND A

RUBIDIUM IODIDE

· (** 54

and the second sec

SODIUM CHLORIDE

160

and a first of the second of the second s

200-21-

water Say

Pressure - Kilobars

SODIUM IODIDE

Ţ

51. A.A. - 5

1 ---- 2

.

INDIUM

Shock Velocity (mm//sec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
3. 745	0.7837	2 13.5	0.7907
3.965	0.9812	283	0.7525
4.348	1.281	405	0.7054

٠

ℓ • = 7.27

Source: Walsh, Rice, McQueen and Yarger (1957)

- 「「「「「「」」、」、

i

....

- 曹が言。 ふばったって、、、「話を「雪弥散」 (あ)をしていてん も

	Indium	
Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ⁰)
0 100 150 200 250	20 153 260 397 561	
300 350 400 450 500	745 950 1179 1439 1710	
Source: Ri	.ce, McQueen and	Walsh, 1958

Tenperatures associated with shock

٠.

المراجع والمراجع والمراجع

.

.

54 5 •

÷,

2

・ とく たんかい 大田市の市市町町町町ちちちゃがらいな

Shock Velocity (mm/µsec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
5.30	0.97	400	
5.38	1.00	422	
5.54	1.14	500	
7.27	2.26	1290	
7.54	2.38	1410	
8.89	3.25	2270	
9.36	3.56	2620	
9.98	3.83	3000	
10.45	4.20	3440	
10.67	4.32	3620	
11.10	4.59	4000	
11.32	4.03	4290	
12.00	5.17	4870	

IRON

Shock Velocity (mm/45ec)	Farticle Velocity (mm//4sec)	Iressure (kilobarr)	Relative Volume
5•438	0.994	423.8	0.8172
5•458	0.993	424.9	0.8181
5•474	1.013	434.7	0.3149
5•652	1.083	480.8	0.8080

€• = 7.84

Source: Walsh, Rice, Mc.ueen and Yarger (1957)

166

the second s

IRON

Ľ	RON	
---	-----	--

· P.4.4、25 月、 经济济资源 2、438年9月1月1月1月1月1日,1994年2月2日前1月1日,1994年2月1日。

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Fressure (kilobars)	Relative Volume
5.57	1.09	477	0.804
6.54	1.64	843	0.749
6.57	1.66	857	0.748
6.65	1.74	911	0.738
6.71	1.79	943	0.733
6.63	1.86	968	0.720
6.89	1.89	1024	0.726
6.95	1.89	1033	0.728
7.42	2.17	12 67	0.707
7.42	2.19	1276	0.705
7.66 7.58 8.00 8.22 8.20	2.32 2.34 2.57 2.68 2.68 2.63	1 397 1 393 1618 1728 1730	0.697 0.692 0.679 0.675 0.673

€0 = 7.8

and the second second

- いいないであり、 うくいいや おいひょう おうちょう 、 「「おいまれ」ないないないないないないです。 またいます ちょう しょう

Source: Mc.ucen and Marsh (1960)

167

2.3

168

actor wash

ことのたちっていいいうたちのない

169

Was been been and a second

The second second

Jan Martin Martin Carles

C. C. State Stat

1518- W.

A 5- 2

1.

5-

こうではないないないないです。 ちょう ちょうちょう しゅうようしょうしょうがんしょう みかかかく ちち

Temperatures associated with shock

and some appropriate following their street to plant the states

Iron

Pressure (Filobars)	Tenperature bchind _o shock (C ⁰)	Residual temperature (C ⁰)
0 250 500 750	20 227 527 1027	
1000 1250 1500 1750	1477 1927 2377 3127	

Source:	McQueen	and	liarsh	, 1960
---------	---------	-----	--------	--------

小子、人名人名阿斯斯斯英格兰斯里斯人名 化

「「「「「「「「「「「「」」」

- - Nt -

IRON
we want of the second

and the second s

KEL-F

; *

\$

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Rela tiv e Volume
2.60	0.580	31 . 7	0.776
3.61 3.64	1.10 1.27	83.0 96.8	0.697 0.651

€∘ = ²•1

Source: Wagner, Waldorf and Louie (1962)

172

YC40

State Land

いませんできってきてき、うちのののであるのですできます。

173

The Andreas Constant

LEAD

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
2.914	0.590	194.8	0.7975
3.266	0.819	303.2	0.7494
3.250	0.802	295.3	0.7532
3.724	1.118	471.7	0.6998

 $P_0 = 11.34$

Source: Walsh, Rice, McQueen and Yarger (1957)

LEAD

Shock	Particle	Pressure	Relative
(mm/usec)	(mm/µsec)	(kilobars)	AOTUWE
3.52	0.97	390	0.724
5.33	2.34	1410	0.563
		2100	~ • • • • •

eo = 11.74

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

LEAD

Shock Velocity	Particle Velocity	Pressure	Relative Volume
(mm/usec)	(mm/usec)	(kilobers)	
4.52	1.64	838	0.638
4.52	1.64	837	0.638
5.44	2.25	1388	0.587
5.42	2.25	1383	0.585

 $g_0 = 11.34$

Source: McQueen and Marsh (1960)

174

へうごうち ち

1.180

24.02

ŗ

, F.A

なるというで、「ないない」というないです。

Pressure (kilobars)	Temperature behindoshock (C ⁰)	Residual temperature (C ^O)
0 100 200 30 0 400	20 131 628 1070 1589	20 69 214 327 429
500 600 700 800 900	2449 3466 4631 5937 7378	624 818 1007 1192 1369
1000 1100 1200 1300 1400	8945 10637 12447 14367 16397	1540 1703 -

Temperatures associated with shock

Lead

to a call in the second states and a second states and a second states and a second states and a second states a

Source: Mcqueen and Marsh, 1960

176

the stand a w

A CONTRACTOR OF A CONTRACTOR O

LEAD

177

n as bein

LIMESTONE*

Shock	Particle	Pressure	Relative
Velocity	Velocity		Volume
(mm/µsec)	(mm/usec)	(kilotars)	
3.707	0.570	53	0.846
4.927	1.055	1 3 0	0.786
5.83	2.01	294	0.655
6.56	2.64	439	0.598
8.05	3.31	692	0.589
8.60	3.67	817	0.573

po = 2.50 - 2.59

Source: Lombard (1961)

* From third fragmented formation, Pony Creek No. 2 core, Richfield Oil Co., Alberta, Canada

178

and the second se

المركبة المراجر

.

LIQUIDS

ーキュチット うちゅう トット・ショー トー アー かく Pr アイ ふして - してかれたあかん ADV おかれなびかかけになっし も Preationant ひょうれんのはの ひょうえんののののなるなくし アイ・ト・マイル

· · · · ·

.

*

٠

۲

.

•

L

調査の書き

Shock	Particle	Pressure	Relative Volume
(mm/µsec)	(mm/µsec)	(kilobars)	
Acetone			
5.37 3.97	2.510 1.495	105.8 46.4	0.533 0.623
$e^{\circ} = 0.78$			
Benzene	- 1		0 564
5.66 4.10	2.470 1.448	52.4	0,647
eo = 0.87			
Bromosthane			-
4.68 3.40	2.300 1.363	157 . 1 68.0	0.508 0.599
ço = 1.46			
Carbon Disulfi	de		
4.32 3.37	2.412 1.415	129•5 58•5	0.441 0.580
$e_0 = 1.23$			
Carbon Tetrach	loride		
4.85 3.51	2.235 1.325	171.0 73.9	0.539 0.622
e = 1.58			
Ethyl Ether		•	
5.40 3.88	2.550 1.517	96.1 41.8	0.528 0.609

₹ • = 0.70

180

「「「「「「「「」」」」」

ξ

1. 23. At.

京都

LIQUIDS (cont)

ANT PERSONAL PROVIDENTS

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
Ethyl Alcohol			
5.63 4.03	2.500 1.487	110.4 47.3	0.556 0.631
eo = 0.79			
<u>Glycerine</u>			
6.07 4.58	2.240 1.328	170.3 76.6	0.631 0.710
€o = 1.25			
Hexane			
5•54 4•02	2 .59 0 1.517	95•7 41•5	0.533 0.622
e o = 0.68			
Mercury			
2.752 3.101 3.504	0.608 0.772 0.978	226.4 324.0 463.7	0.779 0.751 0.721
$e_0 = 13.5$			
<u>Methanol</u>			
5•51 3•95	2.525 1.483	109.5 46.6	0.542 0.625

Qo = 0.79

2011、 ALL MARTAN AND ALL AND ALL

181

LIQUIDS (cont)

.

*

٠

.

.

•

ŧ.

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
Mononitrotol	<u>uene</u> 2.300	151.5	0 - 592
4.20 $e_0 = 1.17$	1.340	65.8	0.681
<u>N-Amyl</u> <u>Alcoho</u> 5.81 4.26	2.465 1.466	115.9 50.9	0.576 0.656
$Q_o = 0.81$ <u>Toluene</u>			
5.73 4.12 $0_{2} = 0.88$	2.412 1.443	121.5 52.1	0.579 0.650
(0			

<u>Water</u> (see separate table)

Source: Walsh and Rice (1957)

. . . .

10.00

BENZENE

0.8

RELATIVE VOLUME - V/V.

BROMOETHANE

0.6

185

1.0

いた と気が見たらない

188

てたちちょうとうない、うちもものにいたいないないであった

لر r

GLYCERINE

語がいたないないであり

`,

Pressure – Kilobars

HEXANE

191

MERCURY

METHANOL

MONONITROTOLUENE

St. 1

Pressure-Kilobars

N-AMYL ALCOHOL

N.

TOLUENE

·**********

WATER

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
3.354	0.952	31.8	0.716
4.093	1.392	56.8	0.660
4.126	1.411	58.2	0.658
4.536	1.655	74.9	0.635
4.813	1.829	87.8	0.620
4.777	1.806	86.1	0.622
4.757	1.798	85.4	0.622
5.626	2.385	133.9	0.576
5.604	2•370	132.5	0.577
5.601	2•335	130.5	0.583
8.07	4•13	333.0	0.488
8.07	4•24	342.0	0.475
8.45	4.60	388.0	0.456
8.49	4.72	400.0	0.444
8.59	4.72	405.0	0.450
8.74	4.81	419.0	0.450

100

3

Co = 1.0
Source: Walsh and Rice (1957)

WATER

، ۱

1705 BEE

MAGNESIUM

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
5•987	1.121	116.4	0.8128
7•082	2.078	260.4	C.7066

Ro = 1.735

Sec. 3

「「ないないない」

Source: Walsh, Rice, McQueen and Yarger (1957)

199

1.44.6

ALL STREET

Temperatures associated with shock

Hagnesium

. ressure (hilobars)	Tenperature behind shock (J ⁰)	Residual temporature (C ⁰)
0 100 150	20 174 313	
200 250 300	487 691 923	

Scurce: Rice, NoQueen and Walsh, 1958

van standarden in

.

* * *

ころうろうないで、気をないない

i

ingen interfactore a to

Pressure ~Kilobars

MAGNESIUM

į

and the second of a procession of the second s

MARBLE*

Shock Velocity	l'article Velocity	Pressure	Relative Volume
(mm/usec)	(mm/µsec)	(kilobars)	
	Light	Marble	
6.620 7.347 7.658	0.913 1.422 1.93	171 297 418	0.862 0.806 0.748
	Dark	Marble	
5•464 7•304 7•737	0.983 1.425 2.13	156 296 468	0.820 0.805 0.725

eo = 2.84 - 2.90 Source: Lombard (1961)

「ななない」とこう

* From surface, Nevada Test Site Area 15

MARBLE

Shock Velocity (mm/usec)	Particle Velocity (mi//w.cc)	Pressure (kilobars)	Relative Volume
4.26	0.43	50	0.901
4.51	0.56	68	0.877
4.70	0.64	80	0.862
4.92	0.77	102.5	0.846
5.18	0.90	125	0.826
5.26	0.92	131	0.825
5.47	1.125	166	0.794
5.51	1.17	174	0.786
5.66	1.26	193	0.781
5.76	1.33	108	0.781
6.04	1.56	252	0.741
6.27	1.72	291	0.725
6.47	1.85	325	0.715
7.35	2.56	508	0.653

€° = 2.70

Source: Dremin and Adadurov (1959)

203

MARBLE

204

- "Basta" - .

MOLYBDENUM

Shook	Particle	Pressure	Relative
(mm/usec)	(mm/µsec)	(kilobars)	(OTOM6
5.699	0.437	254.0	0.9233
5.647 5.955	0.44/ 0.591	255.2 359.0	0 .9214 0 .9008
5.861	0.606	362.3	0.8966
6.210 6.124	0.850 0.792	538•4 494•7	0.8631 0.8707

MOLYEDENUM

Shock Velocity (mm/µsec)	Particle Velocity (mm/usec)	Pressure	Relative
		(kilobars)	VOTUME
7.29	1.69	1256	0.769
7.29	1.68	1250	0.770
7.65	2.06	1604	0.731
7.75	2.07	1633	0.733

 $Q_0 = 10.20$

105 G 43

「ないたいない」

 and a company

The the the second

Source: McQueen and Marsh (1960)

MOLYBDENUM

In a prodeer and a non-tenery of the desired as the constant designed at the state of the state

Temperatures associated with shock

1.542

به جوجه بالم

And the second s

Holypdenum

Pressure (kilobars)	Temp er ature beh ind shock (C ^O)	Residual temperature (6 °)
0	20	20
100	37	22
200	62	32
300	99	54
400	153	90
500	226	1 39
600	313	202
700	429	276
800	559	362
900	707	457
1000	871	560
1 100	1051	670
1200	1244	786
1 30 0	1449	905
1400	1665	1027
1500	1888	1 149
1600	2116	1270
1700	2 3 47	1 387

	Source:	licqueen	and	Marsh,	, 1960
--	---------	----------	-----	--------	--------

207

調約

MOLYBDENUM

208

ž

NICKEL

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
5•417	0 .490	235.0	0.9095
5•653	0 .678	339.4	0.8801
5•620	0.687	341.8	0.8778
6.031	0.957	511.0	0.8413
5.969	0.982	519.0	0.8355
5.952	0.887	467.4	0.8510

NICKEL

Shock	Particle	Pressure	Relative	
(mm/µsec)	(mm/masec)	(kilobars)	VOILUIC	
6.95	1.64	1009	0.764	
6.99 7.11	1.64 1.62	1014 1022	0.766 0.772	
7.78	2.15	1478	0.724	
7.80	2.16	1490	0.723	

e° = 8.86

Source: McQueen and Marsh (1960)

209

-

÷

- うみ しき し

لارد المرحقة

ł

town by the

210

A SAME A SAME AND A SAME A SAME

Temperatures associated with shock

Nichel

Pressure (lilobars)	Temperature behind shock (C ⁰)	Residual tenperature (C ⁰)
0	20	20
100	48	22
200	83	34
300	132	57
400	198	92
500	281	137
600	381	191
700	495	252
800	624	319
900	767	391
1000	922	466
1100	1087	544
1200	1263	623
1300	1447	703
1400	1640	734
1500	1837	864

Source: McQueen and Harsh, 1960

ちょう しょうちょう ちょうちょう ちょうちょう ちょう

11 1 2

- 化磷酸酸黄素

ST (

.

NIOBIUM

an a contract of the second second

Shock Velocity	Particle	Pressure	Relative
(mm/usec)	(mm/µBec)	(kilobars)	VOLUM C
5.177	0.5489	244 . 5	0.9040
5.311 5.642	0 °7434 ؕ9929	341 482	0 .86 06 0 . 8240

e • = 8.604

ś

Source: Walsh, Rice, McQueen and Yarger (1957)

Sound in 1991 and a state of the state of th

. . . .

大学

Tenperatures associated with shock

Niobium

"Contraction of the second

2.2

Without Sullinger

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ⁰)
0 100 150 200 250	20 49 73 97 133	
300 350 400 450 500	177 227 284 351 427	

Source: Rice, McQueen and Walsh, 19	ce: Rice, McQueen ar	id Walsh, 1	958
-------------------------------------	----------------------	-------------	-----

Pressure - Kilobars

NIOBIUM

216

. ug. -

NYLON

Shock Velocity	Particle Velocity	Pressure	Relative Volume
(mm/µsec)	(mm/usec)	(kilobars)	
2.38	0.135	4.50	0.945
2.40	0.165	3.64	0.930
3.51	0.505	26.6	0.856
3.52	0.665	20.2	0.810
4.56	1.55	80.2	0.661

Q∘ = 1.14

Source: Wagner, Waldorf and Louie (1962)

+ House a state the contract of the

217

Pressure-Kilobars

Relative Volume V/V.

NYLON

OIL SAND#

<u>ر</u>ځ

Shock Velocity	Farticle Velocity	Pressure	Relative	
(mm/usec)	(ma/usec)	(kilobars)	vorume	
4.372 5.69 5.48	1.215 2.21 2.26	98 242	0.722	
7.45	3.80	231 540	0.490	
7.31 7.79	3.78 4.25	546 634	0.483	

 $\rho_0 = 1.84 - 1.98$

Martin Charles and Street Stre

2

a high the shear and

Source: Lombard (1961)

* McMurray formation, Pony Creek No. 2 core, Richfield Oil Co., Alberta, Canada

Pressure-Kilobars

OIL SAND

** ***

OIL SHALE*

日かかわないないないないない、このはあるないなかいなんどくという

÷.

, J

......

و ورو و روسور

" and the set of the s

A second and a second second

Shock Velocity (mm/usec)	Particle Velocity (mn/msec)	Pressure (kilobars)	Rela tive Volume	
	Ore Grade# -	High		
4.86 5.33 5.96 6.23	1.27 1.59 1.97 2.26	96 135 189 219	0.739 0.701 0.669 0.637	
	Ore Grade - Me	edium		
5.30 6.27 6.09 6.29	1.09 1.43 1.75 2.00	119 170 242 279	0.794 0.729 0.713 0.682	
	Ore Grade -	- Low		
5.08 5.36 6.04 6.41	1.09 1.40 1.75 1.98	130 175 241 286	0.725 0.738 0.710 0.691	
	011 Shale -	- Wet		
4.43 5.16 5.25	1.64 2.68 2.11	110 222 164	0.630 0.507 0.590	
Qo = High - 1.6; Medium - 2.2 - 2.3; Low - 2.3; Wet - 1.51 Source: Lombard (1961)				
* Pony Creek No. 2 core, Richfield Oil Co., Alberta, Canada				

Ore grade - a qualitative term denoting the relative oil yield per unit volume of rock

221

The second man

部では語言を強

PALLADIUM

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
4.673	0.4728	262.5	0.8988
5.004	0.6200	372	0.8761
5.374	0.8219	531	0.8471

°o = 11.95

可是在外外的

のないのないであることを

「「「「「」」

E.

3356

Source: Walsh, Rice, McQueen and Yarger (1957)

PALLADIUM

224

ちょう ちょうち

Temperatures associated with shock

「「ないない」というないないです 、

en notes a service apprending the service of the se

Palladium

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ^O)
0 100 150 200 250	20 65 97 135 180	
300 350 400 450 500	231 289 353 423 497	

Sourcet	Rice.	McOueen	and	Marsh.	1958
source:	VTC60	LICARGOIL	and	TICHT OTT	1990

- 、螺旋应、水

18. Y. Y. Y.

PALLADIUM

÷.,

227

· MORE & W

The second s

AVCO PHENOLIC FIBERGLASS

Province States of the Province States

i sing the second s

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Fressure (kilobars)	Relative Volume
2.19	0,444	18.5	0.797
2.43	0.568	2 6 .2	0.766
3.03	0.866	49.9	0.716
3.32	1.38	86.8	0.586
4.28	2.19	178.0	0.488

e = 1.90

Source: Wagner, Waldorf and Louie (1962)

G E PHENOLIC FIBERGLASS

Shock Velocity (mm/µ sec)	Particle	Pressure	Relative
	(mm/µsec)	(kilobars)	AOTUЩG
3.69	0.385	27.5	0.896
3.80	0.500	36.9	0.868
4.09	0.791	62.7	0.306
4.36	1.01	85.7	0.768
4.59	1.25	111.0	0.728

$e_0 = 1.94$

Source: Wagner, Waldorf and Louie (1962)

AVCO PHENOLIC FIBERGLASS

CONTRACTOR OF

PRESSURE - KILOBARS

G.E. PHENOLIC FIBERGLASS

CHOPPED NYLON PHENOLIC

Shock Velocity	Particle Velocity	Pressure	Relative Volume
(mm/usec)	(mm/usec)	(kilobars)	
3. 47	0.928	38.6 169	0.732
7.38	3.09	274	0.581

e • = 1.20

198 1209

A she was the second se

なみちまん

i de la

Source: Wagner, Waldorf and Louie (1962)

TAPE WOUND NYLON PHENOLIC

Shock Velocity	Particle Velocity	Pressure	Relative
(mm//iBec)	(mm/msec)	(kilobars)	
3.83	0.433	20.2	0.889
3.97	0.562	27.2	0.859
4.22	0.891	45.8	0.790
4.64	1.13	64.0	0.755
5.12	1.38	86.1	0.731

 $P_0 = 1.22$

Source: Wagner, Waldorf and Louie (1962)

231

and the second an and the

のためを見たいたちを

とう いちんちょうかい 日の間をしたい しょうかいい いちちん

- · · ·

233

PLATINUM

Shock	Particle	Pressure	Rela tiv e
Velocity	Velocity		Volume
(mm/usec)	(mm/µsec)	(kilobars)	
4.199	0.329	295	0.9238
4.306	0.4550	416.5	0.8943
4.495	0.6102	586	0.8642

Po = 21.37

Source: Walsh, Rice, McQueen and Yarger (1957)

PLATINUM

Temperatures associated with shock

Platinum

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ⁰)
0 100 150 200 250	20 46 60 77 95	
300 350 400 450 500	1 17 144 174 207 244	

Source: Rice, McQueen and Walsh, 1958

236

- MARCING, CONTERNA

Pressure – Kilobars

PLATINUM

PLAYA*

TALLER MONTH

Shock	Particle	Pressure	Relative
(mm/usec)	(mm/#sec)	(kilobars)	vorume
2.70	1.04	40	•• 0.615
4.40	2,48	148	0.436
3.00	1.08	48	0,640
2,58	1.04	39	0.597
3.69	1.60	87	0.566
4.47	2.52	165	0.436
4.36	2.50	160	0.427
5.07	3.54	264	0 .30 2
5.24	3.52	271	0.328

Qo = 1.41 - 1.47
Source: Bass, Hawk and Chabai (1963)
* Samples from 100 ft depth, Nevada Test Site Area 5

PLEXIGLAS

Shock Velocity (mm/µsec)	Particle	Pressure	Relative Volume
	(mm/µsec)	(kilobars)	
3.16	0.454	16.9	
3.26	0.590	22.7	
3.85	0.916	41.6	
4.17	1.17	57.6	
4.52	1.43	76.5	
5.97	2.28	160	

 $P_0 = 1.18$

Source: Wagner, Waldorf and Louie (1962)

240

このない

POLYETHYLENE

· .,

Shock Velocity (mm/usec)	Particle Velocity (mm//sec)	Pressure (kilobars)	Relative Volume
1.86	0.115	1.96	0,938
1.90	0.170	2.95	0.910
3.14	0.625	18.1	0.800
4.30	1.33	58.8	0.723

eo = 0.92

Source: Wagner, Waldorf and Louie (1962)

Devad

1 :16

\$5,

The states and the states

POLYSTYRENE

Shock Velocity (mm/usec)	Particle Velocity (mm/asec)	Pressure (kilobars)	Rela tiv e Volume
2.74	0.140	4.07	0.948
3.72	0.320	12.5	0.914
3.73	0.460	17.9	0.877
4.56	1.24	59.3	0.729

€ ° = 1.05

Source: Wagner, Waldorf and Louie (1962)

S S ave

245

NAR - NARCE

CRYSTALLINE QUARTZ

-

Shock Velocity	Particle	Pressure	Relative	
(mm/usec)	(mm/msec)	(kilobars)	AOTIME	
2.88	0.43	56	0.900	
4.74	0.67	94	0.809	
4.74	0.71	99	0.863	
5.14	0.82	116	0.847	
4.85	0.86	126	0.841	
4.88	0.86	126	0.843	
5.11	0.83	126	0.842	
5.18	0.87	132	0.837	
5.24	0.92	135	0.829	
5.64	1.24	189	0.785	
5.61	1.21	184	0.788	
5.47	1.25	190	0.783	
4.71	1.23	196	0.783	
5.68	1.30	198	0.773	
5.61	1.26	200	0.773	
5.61	1.71	263	0.705	
5.69	1.69	269	0.707	
5.76	1.82	2 77	0.690	
6.12	2.55	414	0.585	
6.29	2.70	430	0.571	
6.66	2.70	511	0.566	
6.95	3.03	558	0.564	
7.76	3.42	703	0.589	
7.70	3.52	708	0.539	
7.75	3.52	714	C.548	
7.76	3.49	718	0.550	
7.75	3.52	723	0.548	

€° = 5∙2

Source: Wackerle (1962)

;

147.0

رمند و در ساست احو الجورسان

「「「「「「「「「「「「」」」」」」」」

いいのの日時間

CRYSTALLINE QUARTZ

247

Source: Wackerle (1962)

· Children and Children

਼

,

FUSED QUARTZ

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
4.52	1.04	117	0.791
4.67	1.40	153	0.717
4.70	1.41	157	0.716
4.97	1.90	211	0.624
4.96	1.95	217	0.614
5.53	2.76	337	0.501
5.62	2.76	342	0.509
5.62	2.78	346	0.512
6.43	3.25	460	0.495
6.44	3.33	482	0.484
7.28	3.81	611	0.477
7.30	3.87	623	0.470

 $Q_0 = 2.204$

Source: Wackerle (1962)

249

AND SAMA

Temperatures associated with shock

Crystalline quartz

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ⁰)
0	20	20
50	36	20
100	117	81
144	203	151
150	206	156
200	238	169
250 262 300 350 383	282 336 398 454	190 214 248 282
400	640	465
450	1 125	780
500	1630	1160
600	2650	1920
700	3665	2670

Source: Wackerle, 1962

and the second second and the second se

Pressure - Kilobars

CRYSTALLINE QUARTZ

Temperatures associated with shock

Fused quartz

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ⁰)
50 100	1 2	0 0
144	-	-
150	3	0
200	4	0
250	5	0
262	5	0
300	495	470
350	1185	1155
383		-
400	1895	1860
450	2560	2610
500	3390	3310
600	4890	4790
700	· · · · · · · · · · · · · · · · · · ·	
1.4.4		

Source: Wackerle, 1962

the second

FUSED QUARTZ

and the second

255

store a Xit

RAD 58B

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
1.43	0.298	5•39	0 .794
1.54	0.503	9•77	0.674
1.60	0.654	13•2	0.591
1.92	1.02	24.7	0.467
2.13	1.31	35.1	0.388
2.28	1.61	46.3	0.296

Ro = 1.26

Source: Wagner, Waldorf and Louie (1962)

in destroyed

OBLIQUE TAPE WOUND REFRASIL

. . .

- • •

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	R elativ e Volume
2.87	0.436	19.6	0.849
3.00	0.565	26.6	0.811
3.41	0.882	47.2	0.742
3.59	1.13	63.9	0.684
3.82	1.39	83.6	0.635

€ ∘ = 1.57

Source: Wagner, Waldorf and Louie (1962)

ł

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

124 RESINS

RHODIUM

- -

÷

Shock	Particle	Pressure	Rela tiv e
Velocity	Velocity		Volume
(mm/usec)	(mm/µsec)	(kilobars)	
5.476	o.4100	278•5	0.9250
5.865	0.7566	551	0.8710

 $g_0 = 12.42$

Source: Walsh, Rice, McQueen and Marger (1957)

RHODIUM

263

法部は、利用

Terperatures associated with shock

ъ

Rhodium

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ⁰)
0 100 150 200 250	20 42 54 69 85	
300 350 400 450 500	104 127 153 181 218	

Source:	Rice,	licQueen	and	Walsh.	1958
---------	-------	----------	-----	--------	------

1. 0.1

ھ

SILICA SAND#

0.655

0.655

Shock Velocity	Particle Velocity	Pressure	Relative Volume
(mm/µsec	(nm/msec)	(kilobars)	
	Dry Silica Sand	- Porosity 419	6
3.13	1.17	58	0.626
3.23	1.16	59	0.641
2.42	1.01	00	0.529
3.47	1.70	93	0.510
4.26	2,25	150	0.472
4.24	2.23	153	0.474
	Dry Silica Sand	- Porosity 229	6
3.45	1.07	75	0.690
3.70	1.46	116	0.605
4.78	2.03	197	0.575
Wa	ter-Saturated Silic	a Sand - Porosi	Lty 41%
4.53	0.98	90	0.784
5.00	1.45	143	0.710

c = Dry (porosity 41%) - 1.6; Dry (porosity 22%) - 2.0; Wet - 2.0 Source: Bass, Hawk and Chabai (1963)

213

216

* Fine, pure silica sand, called oven furnace sand, composed of particles 80% of which have diameters less than 75 microns. Maximum particle size 150 microns. Grain density 2.65 gm/cm², the same as that of crystalline quartz.

1.94

1.93

266

5.63

5.59

Dry Silica Sand — Porosity = 41 %

Dry Silica Sand—Porosity = 22%

267

ころうちゃうないろうちょう

Pressure-Kilobars

WATER SATURATED SILICA SAND

-

يعتبر وترتم

	SILVER		
Shock	Particle Velocity (mm/Msec)	Pressure	Relat iv e Volume
(mm/usec)		(kilobars)	
4.065	0.504	214.9	0.8760
4.113	0.527	227.4	0.8719
4.378	0.717	529•5 500 7	0.7967
4.848	1.010	513.6	0.7917

SILVER

Particle	Pressure	Relative
(mm/usec)	(kilobars)	VULUME
0.93	460	0.800
2.19	1550 4010	0.675 0.572
	Particle Velocity (mm/usec) 0.93 2.19 4.05	Particle Pressure Velocity (mm/µsec) (kilobars) 0.93 460 2.19 1550 4.05 4010

e ° = 10.94

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

SILVER ·

ShockParticleVelocityVelocity(mm/µsec)(mm/µsec)	Particle	Pressure	Relative
	(kilobars)	VOLUME	
5.98	1.77	1107	0.705
5.96 6.73	1.78 2.14	1109 1512	0.702
6.63	2.17	1509 1510	0.673
6.72	2.17	1530	0.677
१०	= 10.94 S	ource: McQueen and	Marsh (1960)

1

調査する

SILVER

271

·... :-

2010

Temperatures associated with shock

· / unit instanting the second state of the second state of the second state of the second state of the second

Silver

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ^O)
0	20	20
100	85	30
200	179	71
300	320	143
400	510	238
500	748	349
600	1029	470
700	1 3 48	596
800	1701	725
900	2083	853
1000	2460	960
1100	2682	960
1200	2903	960
1300	3198	992
1400	3725	1117
1500	4285	1241
1600	4875	1 3 64

Source: McQueen and Marsh, 1960

おたていまちをあるかを言いない

くよがかっぱんなななないない 雪谷 カート・イン・ラート・

1. 1. State

こののないのであるのないであるのである

S. . . .

LOW CARBON STEEL

.

•

، 1933 مىسىغەر يىرىھىرىغ مەھىرىغان ئۇ، 1 كەن مەرەپ يەت

Particle	Pressure	Relative
(mm/µsec)	(kilobars)	VOTUME
0.300	120.8	0.9418
0.305	123.5	0.9408
0.316	127.7	0.9386
0.322	129.9	0.9373
0.329	132.9	0.9343
	Particle Velocity (mm/usec) 0.300 0.305 0.311 0.316 0.322 0.329 0.338	Particle Velocity (mm/usec)Pressure (kilobars)0.300120.80.305123.50.311125.40.316127.70.322129.90.329132.90.338136.7

e = 7.8

Source: Katz, Dorran and Curran (1959)

274

ر ۲۰ محمد

· · ·

and that and the state of the

Second .

4

· · · ·

Pressure-Kilobars 001 8:0 9:0 100 100 100 100 100 100

Relative Volume V/V.

LOW CARBON STEEL

TACONITE

ار دار دار م

The second states a second and the second states and the second second second second second second second second

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relat iv e Volume
Iron			
4.36 5.33 7.51 7.98	0.68 1.61 3.02 3.25	126 246 940 1140	0.843 0.657 0.229 (?) 0.593
$g_0 = 4.15$	- 4.38		
Rock			
4.29 4.23 7.41	0.95 1.59 4.05	7 4 200 679	0.780 0.624 0.453

"Banded Mesabi Range, Erie formation. The banding was of the same dimensions as the sample, hence the "iron" samples are almost pure iron while the "rock" samples contain little iron.

in the state of th

1 - - -

Relative Volume V/V.

TACONITE

ŝ

Particle Velocity mm/µsec

the the provide the second second

TANTALUM

Particle	Pressure	Relative
(mm/µsec)	(kilobars)	VOTUME
0.4327	271.5	0.8865
0.5800 0.7685	383 547	0.8554 0.8222
	Particle Velocity (mm/usec) 0.4327 0.5800 0.7685	Particle Pressure Velocity (mm/µsec) (nm/µsec) (kilobars) 0.4327 271.5 0.5800 383 0.7685 547

 $g \circ = 16.46$

*** ***

いってい オーバットになるとないないのであたいいないがない

۰. г 1

و موجود (الإيران و

こうているのかっていたいであるので、ころいろのできたのであるのであるのであるのであるのであるのであるのです。

1.50

Source: Walsh, Rice, McQueen and Yarger (1957)

TANTALUM

NEW CONTRACTOR

Temperatures associated with shock

and a state water out at the state

読まいちゃう

Tantalun

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temperature (C ^O)
0 100 150 200 250	20 47 69 92 121	
300 350 400 450 500	160 207 260 315 379	

Source: Rice, McQueen and Walsh, 1958

281

لى دەرىچى مەر م

Pressure - Kilobars

TANTALUM

TEFLON

States and the all states

, **.**

Shock	Particle	Pressure	Relative
(mm/usec)	(mm/usec)	(kilobars)	VOLUME
1.85	0.263	10.5	0.859
2.08	0.410	18.4	0.803
2.49	0.578	31.1	0.767
3.03	0.837	54.8	0.723
3.32	1.06	76.4	0.679

eo = 2.16

的现在分词

,

and a construction of the second states of the second states of the second states of the second states of the s

÷

Source: Wagner, Waldorf and Louie (1962)

283

NAME OF

Pressure-Kilobars

TEFLON

THALLIUM

. .

Shock	Particle	Pressure	Relative
(mm/usec)	(mm/µsec)	(kilobars)	VOTUME
2.804 2.817	0.6416 0.6386	213 213	0.7712
3.145	0.8446 0.8406	312 313	0.7293
3.538 3.541	1.090 1.089	456.5 456.5	0.6919 0.6925

 $Q_0 = 11.84$

74次二品档,

and a state of the second second

Source: Walsh, Rice, McQueen and Yarger (1957)

THALLIUM

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
(("",",",",",",",",",",",",",",",",",","	(1320 002 0)	
4.42	1.65	864	0.627
4.41	1.65	862	0.626
4.41	1.65	862	0.626
5.13	2.15	1306	0.581
5.39	2.37	1515	0.560
5.40	2.37	1516	0.561
5.40	2 .37	1517	0.561

 $Q_0 = 11.84$

Source: McQueen and Marsh (1960)

S DESCRIPTION OF THE PARTY OF THE

Temperatures associated with shock

いたちのたちもちちちちち

Thallium

Pressure (kilobars)	Temperature behind shock (C ^o)	Res id ual temperature (C ^O)
0 100 200 300 400	20 211 587 857 1503	20 78 245 303 502
500 600 700 800 900	2374 3412 4614 5988 7552	723 940 1 148 1 345
1000 1100 1200 1300 1400 1500	9340 11417 13897 17067 21607 30627	-

JUNITCO MOUNCON AMA MAINING 190	Source:	Mcueen	and	Marsh,	1960
---------------------------------	---------	--------	-----	--------	------

The Mark

「「「「「「「」」」」、「「」」、「」」、「」」、

141

Andrew State of the second states and a second

・調査がない、おのから、「「「「「「「」」」

THORIUM

Shock Velocity	Particle Velocity	Pressure	Relative
(mm///sec)	(mm/msec)	(kilobars)	VOTUME
3.497 3.192 2.954 2.900	1.043 0.812 0.620 0.571	426.0 302.7 213.9 193.4	0.7017 0.7456 0.7901 0.8031

eo = 11.68

-i-restanting The is a

Source: Walsh, Rice, McQueen and Yarger (1957)

THORIUM

Shock Velocity	Particle Velocity	Pressure	Relative
(mm/Asec)	(mm/Msec)	(kilobars)	volume
4.51	1.90	1003	0.578
4.53	1.94	1026	0.572
5.16	2.32	1400	0.550
5.11	2.31	1378	0.548
5.09	2.33	1384	0.543
5.10	2.36	1405	0.538

€0 = 11.68

and a straight on the

*** P. MA.

Source: McQueen and Marsh (1960)

289

290

سعيي: مر ر

Temperatures associated with shock

ستى چېمەمەسىرى ، بىر بارارىچىلىد چىلىرىد بەن بىرىكىرىيى بىرىكىيىلىكى بىر بەر

Thorium

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual temporature (C ⁰)
0	20	20
100	129	67
200	394	238
300	801	491
400	1304	781
500	1849	1079
600	2435	1366
700	30 09	1632
800	3386	1750
900	3855	1895
1000	4818	2285
1100	5956	2677
1200	6966	3071
1300	8145	3464
1400	9393	3855
1500	10707	4243

Source: Nequeen and Harsh, 1960

4

291

・ ーマーー こうかい

あいため べきないなんない ちちちち ちちょうち

292

したないたい「おし、な

TIN

Shock Velocity (mm/usec)	Particle Velocity (mm/wsec)	Pressure (kilobars)	Relative Volume
4.555	1.290	427.8	0.7168
4.435	1.190	384.2	0.7317
4.004	0.925	269.6	0.7690
3.557	0.705	182.6	0.8018

€∘ = 7.28

North State

Source: Walsh, Rice, McQueen and Yarger (1957)

TIN

Shock Velocity (mm/µscc)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
4.20	1.08	330	0.741
6.36	2.59	1200	0.833
9.02	4.73	3100	0.476

Ro = 7.28

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

TIN

Shock Velocity	Particle Velocity	Pressure	Relative
(mm/Asec)	(mm//sec)	(kilobars)	
5.57	1.95	790	0.651
6.71 6.80	2.80	1 204 1 377	0.591
6.75	2.81	1378	0.584

· ••

Q₀ = 7.28 Source: McQueen and Marsh (1960)

م محمد المرب المحمد

293

. 7

TIN

294

a substantiate the second second as a substant

Temperatures associated with shock

and the second demonstration with the

Tin

a.

A. 4-0. {,

Iressure (kilobars)	Tenperature behind shock (C ⁰)	Res id ual tenperature (6 °)
0	20	20
100	162	63
200	436	198
300	598	232
400	924	341
500	1556	565
600	2312	795
700	3182	1025
800	4169	1252
900	5182	1476
1000 1100 1200 1 3 00 1400	6357 7637 9017 10487 12047	1697 1921 2147

Source: McQueen and Marsh, 1960

正二字の

シークライ むちょ

TIN

296

and a first state and the state of a state of a state of the state of the state of the state of the state of the

TITANIUM

Shock	Particle	Pressure	Relative
(mm/wsec)	(mm/usec)	(kilobars)	AOTOWE
6.329	1.370	390.8	0.7835
5.790	0.980	255.7	0.8307
5.501	0.723	179.3	0.8686
5.469	0.684	168.6	0.8749

€° ^{= 4}•51</sup>

λ×4

「ないないないないないない」

Source: Walsh, Rice, McQueen and Marger (1957)

TITANIUM

Shock	Particle	Pressure	Relative
(mm/usec)	(mm/#sec)	(kilobars)	AOTOTE.
7.35	2 .30	762	0.687
7.40	2.29	764	0.691
7.34	2.29	758	0.689
7.94	2.97	1063	0.626
7.92	2.97	1060	0.625

Q o = 4.51

Source: McQueen and Marsh (1960)

ş

Pressure-Kilobars

Relative Volume V/ V,

a there areas

an the state of the

· . • ...•

Temperatures associated with shock

. When the summary

mentals and a

額

Titanium

Pressure (kilobars)	Temperature behind shock (C ⁰)	Residual tenperature (C ⁰)
0	20	20
100	30	29
200	133	73
300	262	154
400	441	268
500	664	406
600	926	561
700	1217	727
800	1503	877
900	1721	957
1000	2115	1154
1100	2550	1363

Source: Mc Ween and Earsh, 1960

299

300

50

・ ちゅん と たい語の思いい

VOLCANIC TUFF

Shock Velocity (mm/µssc)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
	Volcanic T	u ff - Dry	
2 • 6 27	0.869	39	0.6695(1)
3 • 33	1.340	7 ^{1,}	0.598 (2)
3 • 433	1.329	77	0.613 (2)
3 • 78	1.73	105	0.542 (2)
3.71	1.72	109	0.536 (2)
4.299	1.626	132	0.6218(1)
4.76	2.31	181	0.515 (2)
	Volcanic T	ull - Wet	
4.05	1.236	94	0.695 (2)
4.13	1.27	95	0.692 (2)
4.09	1.230	96	0.699 (3)
4.411	1.61	130	0.635 (2)
4.40	1.60	133	0.636 (2)
4.61	1.59	136	0.655 (2)
5.01	2.02	171	0.597 (2)
4.79	2.24	197	0.542 (2)
5.23	2.25	224	0.570 (2)

 $Q_0 = Dry - 1.60 - 1.88; Wet - 1.79 - 1.90$ Source: Lombard (1961)

(1) Tunnel U12A, Nevada Test Site

(2) Tunnel U12B, Nevada Test Site, mined near Rainier

(3) Origin undetermined

ŗ

1. S. + 1. Mar

4

.

スト ひれざい

S JANEAR

A. Matana

VOLCANIC TUFF

Shock Velocity (mm/k(sec)	Particle Velocity (mn/usec)	Pressure (kilobars)	Relative Volume
ø	Dry Volcar	nio Tuff	
2.24	0.95	31	0.576 (5)
3.70	1.58	85	0.573 (5)
4.28	2.28	143	0.467 (5)
4.20	2.50	153	0.405 (5)
4.78	2.90	202	0.393 (5)
2.68	1.00	39	0.627 (4)
3.56	1.57	82	0.566 (4)
4.03	2.50	147	0.380 (4)
4.24	2.46	152	0.420 (4)

Water-Saturated Volcanic Tuff

3.42	0.90	53	0.737 (4)
4.26	1.45	108	0.660 (4)
5.49	2.81	270	0.488 (5)

Q o = Dry - 1.46; Water-saturated - 1.74
Source: Bass, Hawk and Chabai (1963)

(4) Hevada Test Site Area 16

(5) Nevada Test Site Area 3

302

こうしょう そのないでなかってなないないできないないないです。 ちょうしょうしょう つう

NOTS TP 3798 6 Shock Velocity mm/µsec 4 2 0 0 100 200 Pressure-Kilobars Pressure-Kilobars 200 0 100 0 0.4 0.8 0.6 1.0 **Relative** Volume (∨⁄∿) VOLCANIC TUFF - DRY 303

こうとうないないないないないないないできょう

, r.

and the second s

TUNGSTEN

У. 1.

Shock Velocity	Particle Velocity	Prassure	Relative Volume
* (mm/µsec)	(mm/µsec)	(Luobars)	102-000
4.56	0.45	3 95	0.901
4.55	0.45	394	0.901
4.78	0.04	587	0.866
4.02	0.64	590	0.868
5•47	1.17	1225	0.786
5.49	1.17	1227	0.788
6.21	1.73	2061	0.721
6.19	1.73	2054	0.721
6.24	1,73	2074	0.723

ℓ ∘ = 19.17

「おおおおいたいない いたいでいうかいできたちょうしまうとういう

Source: McQueen and Marsh (1960)

305

-, · .

306

. + ,

Temperatures associated with shock

Tungsten

1. A.

the she is the set of a set of the set

ji na ÷a

Tressur (kilobar	e Temperat s) behind s (C ⁰)	ture Residual shock temperature) (C ^O)
0	20	20
100	35	21
200	56	30
300	89	48
400	136	79
500	199	121
600	279	176
700	375	241
800	488	316
900	617	401
1000	761	494
1100	920	594
1200	1092	700
1300	1277	802
1400	1474	928
1500	1681	1048
1600	1898	1170
1700	2123	1295
1800	2356	1421
1900	2596	1547
2000	2841	1674
2100	3 090	1800
Source:	McQueen and	Marsh, 1960

TUNGSTEN

これなないのであるというないないないとうと

VANADIUM

S. 2-

Shock	Particle	Pressure	Relative
(mm/usec)	(mm/masec)	(kilobars)	Аотище
5.78	0.58	204	0.900
5.73	0.58	203	0.898
6.16	0.80	301	0.870
6.07	0.81	301	0.866
6.08	0.81	302	0.866
6.05	0.82	301	0.865
6.08	0.81	301	0.866
6.49	1.12	441	0.828
6.50	1.11	44 1	0.829
6.46	1.12	44 1	0.827
7.29	1.86	825	0.746
7.28	1.86	825	0.745
7.32	1.85	828	0.747
7.34	1.85	829	0.748
8.20	2.59	1244	0.697
8.17	2.49	1241	0.695

90 = 6.1

and the second second

. 5

Source: McQueen and Marsh (1960)

るななななないのであるというです。

Thursday the way in

;

309

400

0

0.6

0.8

1.0

VANADIUM

water - Interne

1. N. 19 1.

Temperatures associated with shock

Vanadium

Tressure (kilobars)	Tempe rature behind shock (C ^O)	Residual temperature (C ⁰)
0	20	20
100	45	24
200	87	44
30 0	155	84
400	251	144
500	374	222
600	523	314
700	697	419
800	892	533
900	1106	655
1000	1338	783
1100	1584	913
1200	1841	1046
1 300	2109	1178

Source: McQueen and Marsh, 1960

VANADIUM

312

····

in the line is your shirts an and

ZINC

3. 633

Contraction and the second

a netter 2 mars

. .

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Fressure (kilobars)	Relative Volume
4.019	0.673	193.0	0.833
3.850	0.615	169.1	0.840
4.418	0.842	265.6	0.809
4.663	1.008	335.6	0.784
4.684	1.043	348.7	0.777
4.791	1.121	383.5	0.766
4.792	1.172	401.0	0.755
4.815	1.197	411.5	0.751

 $Q_0 = 7.14$ Source: Walsh and Christian (1955)

CINC

Shock Velocity (nm/µsec)	Particle Velocity (mn/usec)	Pressure (kilobars)	Relative Volume
5.82 5.78	1.80	(47 743	0.688
7.22	2.71	1394	0.625
7.30	2.69	1403	0.631

Ro = 7.14

Source: McQueen and Marsh (1960)

313

We have a water a star and the start of the

ZINC

Shock Velocity (mm//sec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
5.014	1.250	447	0.7507
4.870	1.190	414	0.7556
4.481	0.88	281.4	0.8036
4.450	0.894	283.9	0.7991
4.053	0.650	188	0.8396
4.13	0.673	198•3	0.8370
4.022	0.630	180•8	0.8434

 $Q_0 = 7.135$

Source: Walsh, Rice, McQueen and Yarger (1957)

ZINC

Shock Velocity (mm/usec)	Particle Velocity (mm/u.sec)	Pressure (kilobars)	Relative Volume
6.85	2.54	1240	0.629
9.90	4.01	5260	0.535

 $\hat{g} \circ = 7.14$

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

Constant +

Veriller vertaler

ZINC

A. 60 10
Temperatures associated with shock

Zinc

Pressure (kilobars)	Tenperature behind shock (C ⁰)	Res id ual tenperature (C ^O)
0	20	20
100	122	37
200	274	101
300	495	197
400	780	310
500	1102	419
600	1223	419
700	1 3 63	426
800	1810	544
900	2 3 05	660
1000 1100 1200 1300 1400 1500	2846 3431 4060 4734 5454 6225	774 885 - - -

Source: McQueen and Marsh, 1960

316

*

A Supervise + Ast

tu-cal • *

5 M--14. I.N.

CAL 2" 10

ZIRCONIUM

Shock	Particle	Pressure	Relative
(mm/usec)	(mm/usec)	(kilobars)	VOLUME
4.494	0.7117	207.5	0.8416
4.674 4.920	0.9563	290 407	0.7954 0.7408

e ° = 6.49

Source: Walsh, Rice, McQueen and Yarger (1957)

State State State State

319

4 大会

Temperatures associated with shock

Sirconiun

Pressure (kilobars)	Tenperature behind shock (C ^O)	Residual tenperature (3°)
0 100 150 200 250	20 55 92 143 214	
300 350 400 450 500	298 395 503 616 737	

Source:	Rice,	licQueen	and	Walch,	1958
---------	-------	----------	-----	--------	------

320

was a contra an sur h backup a s

「「「「ないないない」」 いったい たい いっしたい

A STATE A STATE A STATE

Pressure-Kilobars

ZIRCONIUM

BIBLIOGRAPHY

B. J. Alder, Physics experiments with strong pressure pulses, in <u>Solids under pressure</u>, ed. by W. Paul and D. M. Warshauer, McGraw-Hill, New York, 1963*

B. J. Alder and R. H. Christian, The behavior of strongly shocked carbon, Phys. Rev. Letters, 7, 367-369, 1961

L. V. Al'tshuler, K. K. Krupnikov and M. T. Brazhnik, Dynamic compressibility of metals under pressures from 400,000 to 4,000,000 atmospheres, Soviet Physics, JETP, Eng. trans., <u>34</u> (7), 614-619, 1958

L. V. Al^{*}tshuler, K. K. Krupnikov, B. N. Ledenev, V. I. Zhuchikhil and H. I. Brazhnik, Dynamic compressibility and equation of state of iron under high pressure, Soviet Physics, JETP, Eng. trans., <u>34</u> (7), 606-614, 1958

L. V. Al'tshuler, L. V. Kuleshova and M. N. Pavlowskii, The dynamic compressibility, equation of state, and electrical conductivity of NaCl at high pressures, Soviet Physics, JETP, Eng. trans., <u>12</u>, 10-15, Jan. 1960

D. C. Anderson, R. D. Fisher, E. L. McDowell and A. H. Weidermann, Close-in effects from nuclear explosions, AFSWC-TDR-63-53, May 1963

ł

E. I. Andriankin and V. F. Koryavov, Shock wave in variable compacting medium, Dokl. Akad. Narek, SSSR, <u>128</u>, 257, 1959

D. Bancroft, E. L. Peterson and F. S. Minshall, Polymorphism of iron at high pressure, J. Appl. Phys., <u>27</u>, 291, 1956

R. C. Bass, H. L. Hawk and A. J. Chabai, Hugoniot data for some geologic materials, SC-4903(RR), Sandia Corp., June 1963

J. Berger and S. Joigneau, Au sujet de la relation linéaire existant entre la vitesse matérielle et la vitesse de l'onde de choc se propageant dans un metal, Compt. rend., <u>249</u>, 2506, 1959

P. J. Blewett, Plane collisions of Murnaghan plastics, AFSWC-TN-61-32, Aug. 1961

J. S. Buchanan, H. J. James and G. W. Teague, The dynamic compression of Perspax, Phil. Mag., 3, 1432, 1958

R. H. Christian, The equation of state of the alkali halides at high pressure, UCRL 4900, May 1957. Doctor's dissertation

R. H. Cole, <u>Underwater explosions</u>, Princeton University Press, Princeton, N. J., 1948

- 27" Jac. 1

N. L. Coleburn, B. E. Drimmer and T. P. Liddiard, Compressibility of pyrolytic graphite, Bull. Am. Phys. Soc., 7, 500, 1962

and the state of the providence of the state of the state

R. D. Dick, Shock compression of liquid carbon tetrachloride and benzene, Abstract, Bull. Am. Phys. Soc., 2, 547, 1964

D. G. Doran, Hugoniot equation of state of pyrolytic graphite to 300 K bars, J. Appl. Phys., <u>34</u>, No. 4, 844-851, 1963

D. G. Doran, G. R. Fowles and G. A. Peterson, Shock wave compression of aluminum, Phys. Rev. Letters, <u>1</u>, 402, 1958

A. N. Dremin and G. A. Adadurov, Shock adiabatic for marble, Dokl. Akad. Narek, SSSR, <u>128</u>, 261-264, 1959

G. E. Duvall, Entropic equations of state and their applications to shock wave phenomena in solids, J. Acoust. Soc. of Am., <u>27</u>, 1054, 1955

G. E. Duvall, Pressure-volume relations in solids, Am. J. of Phys., <u>26</u>, 235, 1958

G. E. Duvall, Shock waves in solids, Science and Technology, April 1963

324

- - と、ころでいたので、「「「「「「」」」

G. E. Duvall, Some properties and applications of shock waves, in <u>Response of metals to high velocity deformation</u>, ed. by P. G. Shewman and V. F. Zackay, Interscience, New York, 1961*

and the second second

きの形ちの気気に 記録

ALLER AND ALLER AND ALLER TO THE

G. R. Fowles, Shock wave compression of hardened and annealed 2024 aluminum, Poulter Labs. Tech. report 011-60, SRI, 1960

G. R. Fowles, Shock wave compression of quartz, Poulter Labs. Tech. report 003-61, SRI, 1960

W. Goranson, D. Bancroft, B. L. Burton, T. Blechar, E. E. Houston, E. F. Gittings and S. A. Landeen, Dynamic determination of the compressibility of metals, J. Appl. Phys., <u>26</u>, 1472, 1955

R. A. Graham, Piezoelectric behavior of impacted quartz, J. Appl. Phys., <u>32</u>, 555, 1961

R. A. Graham, G. E. Ingram and W. D. Ingram, Performance of a high-velocity propellent gun for controlled impacts, SC-4652(RR), Sandia Corp., 1961

D. R. Grine, Dynamic strength of rocks, paper presented to the 29th Shock and vibration Symposium, sponsored by the Office of Naval Research in Oakland, Calif., Nov. 1960

S March 18 March

A. H. Guenther, Production of strong shocks in plastics by ultra-short impulsive loading, in Proc. of Symposium on Dynamic behavior of materials, ASTM Special Tech. Publ., <u>336</u>, 1963

D. S. Hughes and R. G. McQueen, Density of basic rocks at very high pressures, Trans. Am. Geophys. Union, <u>39</u>, 959, 1958

D. S. Hughes, L. E. Gourley and E. F. Gourley, Shock-wave compression of iron and bismuth, J. Appl. Phys., <u>32</u>, No. 4, 624-629, 1961

S. Katz, D. G. Doran and D. R. Curran, Hugoniot equation of state of aluminum and steel from oblique measurements, J. Appl. Phys., <u>30</u>, 568, 1959

D. B. Lombard, The Hugoniot equation of state of rocks, UCRL, 6311, 1961

D. E. Lombard and F. L. Adelman, The Hugoniot equation of state of granite, UOPK 61-4 (UCRL informal report) 1961

C. D. Lundergan, The Hugoniot equation of state of 6061-T6 aluminum at low pressures, SC-4637(RR), Sandia Corp., 1961a

327

C. D. Lundergan, A method of measuring (1) the parameters of impact between two surfaces and (2) the properties of the plane shock waves produced, SC4421(RR), Sandia Corp., 1961b

H. D. Mallory, Propagation of shock waves in aluminum, J. Appl. Phys., <u>26</u>, No. 5, 555-559, 1955

D. J. McCloskey, An analytic formulation of equations of state, Rand Corp. Memo. RM-3905-PR, Feb. 1964*

R. G. McQueen and S. P. Marsh, Equation of state of Nevada alluvium, Los Alamos Scientific Lab., Los Alamos, N. M., LAMS-2760, Nov. 1961

R. G. McQueen and S. P. Marsh, Equation of state of nineteen metallic elements from shock wave measurements to two megabars, J. Appl. Phys., <u>31</u>, No. 7, 1253-1269, 1960

R. G. McQueen, J. N. Fritz and S. P. Marsh, On the equation of state of stishovite, J. Geophys. Res., <u>68</u>, 2319-2322, 1963

R. G. McQueen, E. Zukas and S. P. Marsh, Residual temperatures of shock-loaded iron, in Proc. of Symposium on Dynamic behavior of materials, ASTH Special Tech. Publ., <u>336</u>, 1963

F. S. Minshall, Properties of elastic and plastic waves determined by pin contactors and crystals, J. Appl. Phys., <u>26</u>, 463, 1955

*

D. C. Pack, W. M. Evans and H. J. James, The propagation of shock waves in steel and lead, Phys. Soc. Proc. (London) <u>60</u>, 1, 1948

W. Paul and D. M. Warshauer, <u>Solids under pressure</u>, McGraw-Hill, New York, 1963

M. H. Rice, R. G. McQueen and J. M. Walsh, Compression of solids by strong shock waves, in <u>Solid state physics</u>, wol. 6, ed. by F. Seitz and D. Turball, Academic Press Inc., New York, 1958*

P. G. Shewman and V. F. Zackay, <u>Response of metals to high</u> velocity deformation, p. 165-205, Interscience, New York, 1961

J. Wackerle, Shock wave compression of quartz, J. Appl. Phys., 33, No. 3, 922-937, 1962

M. H. Wagner, W. F. Waldorf, Jr., and N. A. Louie, Determination of Hugoniot equations of state for polymers and reentry vehicle materials and investigations of fracture phenomena, AFSW2-TDR-62-66, 2 vols., Aerojet-General Corp., 1962

J. M. Walsh and R. H. Christian, Equation of state of metals from shock wave measurements, Phys. Rev., <u>97</u>, No. 6, 1544-

J. M. Walsh and M. H. Rice, Dynamic compression of liquids from measurements on strong shock waves, J. Chem. Phys., 26, 1957

J. M. Walsh, M. H. Rice, R. G. McQueen and F. L. Yarger, Shock-wave compressions of twenty-seven metals. Equations of state of metals, Phys. Rev., <u>108</u>, 196, 1957

*Survey articles

· ···Sinaho

white has read

and the second sec