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SUMMARY

First-order relationships between the position and velocity errors at
start and end of a Hohmamn transfer are derived in a two-dimensional analysis.
The results are then used to evaluate the effects of uncorrected first injec-~
tion errors upon the mean radius and eccentricity of the final (nominally

circular) orbit, assuming perfect application of the final impulsive velocity.

Finally the mean radius and eccentricity errors are expressed in terms
of post-orbital velocities required for nulling, such as would be required in

station~keeping communication satellite systems.

Departmental Reference: Space 102

N e AT
i ERATIID D




5

COMTENTS

o i e weiweTy

IWNTRODUCTION
BASTIC ASSUMPTIONS O THE ANALYSIS
2.1 Axis system
»2 The Hohmann transfer
2.3 Magnitude of the criors
2.+ Application of impulsive velocity during the second burning
phase
RESULTS OF TiE ANALYSIS

31 Derivatives relating wosition and velocities at start of
transfer to those at the end

3.1e1 Polar axis system
3142 Cartesian axis cystem

3,2 Derivatives relating position and velocity errors at start
of vransfer to mcan raedius and eccentricity errors of final
orbit

3.% Derivatives rclating position and velocity errors at start
of transfer to posit-orblital velocity corrections required to
null orbital ecrrors

DISCUSSTON

Lol Relations between errvors at begimning and cnd of transfer

he2 Irrors in peramcters of final orbit

4.3 Post~orbital corrcetive velocitics

Lol Orbital errors and corrcctive velocities in the presence of
multiple input errors

CONCLUSIONS

Appendix A Propertics of Hohnonn tironsfer including relations between

small perturbations at the be '1nnlnb and cnd of the
transfer phasce derived in a polar axis systenm

Appendix B Derivatives relating perturbations at start of transfer to

those at end; conversion from poler to cartesian axes
systoems

Appendix C Derivatives relating crrors in final (nord inally 01foular)

orbit to crrors at start of Ilohmann transfer - final impulse
assumed to be applicd without error

Table 1 Formulac for derivatives relating position and velocity errors

at  start of transfcr to those at end

Symbols

References

Illustrations

Detachable abstract cards

=~ 0 W O

12
13

14

2k

30

L3

Figures 1- 23

15




1 DFRODUCTION

When placing satellites into high circular orbits, the flight plan
usually adopted consists of two phases of propelled motion (neglecting any
specific requirements for parking)., The first phase extends from launch to a
cendition in which propulsion ceases, resulting in the launch vehicle entering
an elliptic orbit with a low perigee height and apogee close to the height of
the final orbit. In practice the vehicle will enter the intermediate or
"transfer" orbit close to perigee3 end will coast until, Jjust before apogee
is reached, the second propulsive phase begins. This phase (of comparatively
short duration compared with that of coasting transfer) continues until the
vehicle has attained circular orbital speed at which time final injection is

considered to have occurred.

High circular orbits are of »nrime interest in communication satellite
systems, and in such cases it is of'ten operationally difficult to monitor the
paramncters of the transfer ellipce, since this requires coverage by ground
tracking stations. Consequently injection errors at the start of transfer
(veloeity and position) nay remain uncorrected, resulting in final orbit errors

additional to those incurred by imperfect propulsion during the second phasee.

The object of this report is to determine the effect of errors at the
start of transfer upon the errors in the major paramcters of the final
(nominally circular) orbite. The enalysis is two-dimensional, and conscquently
the results are confined to in-plane errors. In order to simplify the analysis
consideration is conf'ined to the special case of Hohmann transfer. In this
special case1’2 coasting starts at perigee of the transfer ellipsc and continues
until apogee is rcached, where application of a horizontal velocity impulse

completes the injection.

The anclysis contained in this report is divided into three logical

phases,

(i) The derivetion of first-order relationships between position and
velocity errors at stert of transfer to those at the end of transfer, using
the wellwestablished properties of ballistic trajectoriesh’s. In the first
instance the relationships arc expressed in a polar carth-centred axis system,
but for the sske of completeness, these results are later transformed into a
cartesian refercnce systems. The latter system is likely to be the most sult-
able one in which to ecvaluate the error contributions of an inertial guidance

systems




(ii) From the first phase it is possible to evaluate the consequent
injection errors into the {inal orbit, assuming that the only errors are those
at the start of transfer (i.e. the apogec impulse is applied as in the case of
error-frecec transfer). Final injection errors are then transformed into the
cquivalent errors of the mean radius and eccentricity of the final (nominally

circular) orbit.

(iii) Since nany communication satellite systems involve accurate
station~keeping for periods of years, it follows that such systems must be
placcd in orbits of excecaingly high cccuracy. In order to achieve this
accuracy in practicc it will be necessary to nske post-orbital velocity adjust-
mcnts7 by mcans of small thrust jot forccs, locatcd in the satellite itsclf.
The velocity reguircment from such a systen will rceflect in a direct loss of
potential payload for communicstion purposcs, and it is thercfore uscful to
transform the orbit paramcter crrors of (ii) into equivalent velocity correc=-
tions. The corrcctions arc defiancd as those necessary to null the mean radius

and cccentricity errors of the final orbit.

2 65IC ASSUNETLIONS
241 \xis systems

.

thie present analysis is limited to two

As has alrcady been mentioned,
dimensions, and conscoucently docs not cover the evaluation of the effects of
crrors normal to the planc of injecction (which is also assumed to be the plane
containing the final orbit). The primary analysis is undertaken in a polar

axis system (sce Figel1) in which position is dcfincd by two co-ordinates

r geocentric radius

and ¢ angular range
and velocity is defincd by a further two

V magnitude of wvclocity vector
and 0 dircection of wvector rcelative to the local horizontal

(termed Yolimb angle™)

2.2  The Hohmann transfer

The coasting transfcr is considered to consist of an ellipse (termed
"{ransfcr CllipS‘"). The first phasc of propulsion is assumecd to torminate
(in the crror-frce or nominal casc) at the perigee of the ellipse, and the
sccond phasc begins at the apogee of the c¢llipsc. Thus the vehicle coasts

over exactly half of the ellipsc. The sccond propulsive phase is taten as



consisting of an impulsive eddition of velocity (locally horizontal in the
error-free case), such that after the impulse has been applied the vehicle has
achieved circular orbital velocity. At this point the vehicle is considered

to be injected into the final orbit, and in the-error-free case this orbit will
be exactly circular. The transfer just described was first proposed by Hohmann1.

H

The mathematical characteristics of such a transfer are well known and are

listed in Appendix A, and illustrated in Fig.2.

At first sight the assumption of using a Hohmarm transfer in practice may
seem to be rather sweeping. However, many practical launching systems will
employ transfers which are close approximations to this ideal (e.g. the ELDO
system described in Ref,3). Firstly, for optimum performance with real (finite
thrust) vehicles it transpires that entry into the transfer ellipse occurs very
close to perigee, especially if no altitude restrictions are placed on the first
injection point from the point of view of obtaining satisfactory radio tracking
coverages OSccondly, the finite acceleration encountered during the second
propulsive phase is likely to be sufficiently high to approximete this phase to
an impulse, especially if a spin-stabilised solid~propellant stage is used.
Typically the angular range change during propulsion may be 50, compared with

180° during the coasting transfer.

In view of these practical considerations, a Hohmann transfer is taken as
the reference trajectory in the analysis of this report. The resulting simplifica-
tion is considerable and the loss of accuracy in predicting the precise effect of

injection errors negligible.

243 Magnitude of the errors

In the whole analysis of this report (sce Appendices A, B and C) the rela=
tionships betwcen input disturbances (i.e. position and velocity errors at start
of transfer) and output quantitics (i.e. errors at end of transfer or final orbit
parameter errors or necessary corrective velocities) are linearised. Therefore
the resulting equations can only be applicd strictly if the perturbations are
infinitely small, since sccond and higher order tecrms are neglected by implica-
tion. The approximation involved by such proccdures is not likely to be serious
however, since in practical launching systems the velocity injection errors at the
start of transfer are likely to be of the order of tens of fi/sec compared with

actual velocities of several thousands.

244 Application of impulsive velocity during the sccond burning phase

In the analysis it is assumed that the velocity impulse is added perfectly

i.e. we are only investigating the effect of first injection errors upon the




final orbit. However, it is necessary to clerify what is meant by "perfect"
application.of the impulse. In the nominal case (i.e. no injection errors at
the start of transfer) the impulse is applied at a time Td/2 after start of
transfer (where TO is the orbital period of the nominal transfer ellipse) in

a direction which is simultaneously parallel to the local horizontal and normal
to the radius vector at the start of transfer (sec Fig.2). The magnitude is

(Vo ~Vé) where Vb is the circular orbital speed at the final radius r, and Vé

2 2
is the velocity at the end (aPOgce) of transfer (all values nominal). In the

general perturbed case however, l.e. when {irst ejectlon errors are present,

the local horizontal at the e¢nd of transfer (transfer being still considered to
terminate aftcr a timc Td/2 since no more tracking information is available)
does not coincide with the dircction nominal to the radius vector at nominal
transfcr start (e.g. sce Fig.h), due to position errors at the end of transfer.
We must therelorc diffcrentiate between two cases of '"perfect" impulse applica-~
tion:- the first onc in which the impulse is aligned parallel to the local
horizontal at timc Td/2 aftcr start of transfer, and the second one in which

it is aligned in a space-fixcd dircction normal to the radius vector at nominal
transfer start. Both methods of alignment are covered in this analysis since
both can be achieved in practice. Tor examplc the first one is appropriate to
alignment using sensors detccting the local horizontal (optical horizon sensors),
and the sccond method would be realisced using cither inertial guldance or a spin

stabiliscd final burning stage.

Lo ULT TR ANMALYS
3 RESULTS O THE AMATLYSIS
o1 Derdvatives rcelating position and velocity errors at start of transfer

to those at the end

a o

3.741 Eolar axis systcnm

o

The detailed analysis is contained in Appendix A. The results enable the

perturbations at beginning and end of transfer to be related in the form
r = |1
|83, | |l 8y, | (1)

where l6y1l is the perturbation state vector at the start and l@yzl that at the
ends Each of {thesc vectors is four-dimensional, containing two position
co-ordinates (r, ¢) and two vclocity co-ordinatcs (V, 8) as shown in Fig.2.

The I x 4 matrix ]Ml contains sixteen derivatives, all of which arc cvaluated
in Appendix A and arc tabulatcd, for thc sakc of completcncss, in Table 1(a).

The derivatives (other than thosc which arc zcro or unity) arc plotted in



Figse11, 12 and 13+ The evaluation is in terms of a dimensionless parameter,

termed "transfer ratio

r

2
n—;‘; (2)

where r1 is the radius at start of transfer

r, is the radius at end of transfer (also equal to the radius of the

final circular orbit),.

For gencrality to derivatives and normalised with respect to quantities which

are dependent only upon the initial radius r,; Cege T and Vg where

1 y

Vo= & (3)

VO is the circular orbital speced at r
1

and W is the earth's grovitational constant.

1

In TFigs.?1, 12 and 13 the derivatives arc plotted non-dimensionally, but
additional dimcnsional scalcs are provided for the special case in which the
altitude at start of transfer is 300 nm. The numerical values taken in deriving

the scaled derivatives are

Barth radius 3437.75 nautical miles

il

i 140673 x 1010 £17 /sec”

1 nm 6080 £t .

it

3,742 Cartesian axis system

The results obtained in Appendix A have been transformed into an cartesian
axis system, as shown in Fig.2. The detailed analysis of the transformation is
contained in Appendix B and the rcsults summarised in Table 1(b)e. The goometrical
relationships between small perturbations in polar and cartesian axis are
illustrated in FigeGe

3.2 Derivatives relating position and velocity errors at start of transfer
to mean radius and eccentricity errors of final orbit

In Appendix C, errors at the cnd of transfer are related to injection
errors for the final orbit (assuming the two cases of "perfect" impulse

previously described) and hence to errors in mean radius and eccentricity.




The results arc shown (both dimensionally and non-dimensionally) in
Tigssi4, 15, 17, 19 and 20. Since, as is shown in Appendix C, eccentricity is

a non-linear function of injection errors, we cannot apply the usual formula

de \ s de \ . de_ /e
de = <6~V~;’> 6\/1 + <B‘OT> 061 -+ <6r1) 61‘1 + Ka¢1> 6?51 ¢ (l*')

In the presence of a single input error it can be shown that a linear relation=-
ship will exist between input error and resulting eccentricity, provided the
input error is replaced by its modulus, since positive eccentricity is produced

by either positive or negative inputs, i.e.

de \

de = (ﬁ:») 16V1[ ete. (5)
1/

where (ae/EVﬁ) is positive.

In the presence of multiple lnput errors, equation (k) must Dbe replaced

by a more complex expression which will not be pursued here.

343  Derivatives relating position and velocity errors at start of transfer

e .

1o post-orbital velocity corrcctions required to null orbital errors

In Appendix C the relations between post-orbital corrective velocity
requirements and orbital errors arc established, thereby making it possible to
derive expressions for the corrective velocities in terms of errors at the
start of transfer. Two velocity corrections arc calculated, Bua that necessary
to null mean radius error, and 6uc, that for correcting eccentricity. Further-
morc it is shown that both radiuvs and cccentricity errors can be eliminated by
a total impulse application cqual to either Sua or 5ue, which ever is the
larger numcrical guantity.

Once again, since 6ue is a non-linear function of 6VH, 661, 6r1 and. 6¢1
(even for small perturbations) it cannot be evaluated from a lincar relation
of the form of equation (1) when multiple inputs are present at the start of
transfer.

Corrective velocity derivatives are plotited in Figs.16, 18 and 23. In

Fig.16, aue/ae1 is normalised by dividing by V1 (rather than Vb ) since Va661
1
is directly vertical velocity errore. Hence Figs.16 and 18 now form a dircct

comparison of the rclative effccts of vertical and horizontal cut-off velocity
errors. oSimilarly, in Fig.23? the scaled quantity plotted in the ordinate is

(aue/r16¢1). Now r16¢1 1s the longitudinal position crror, so that again we



can compare the relative effects of position errors in two directions from

Figs.21 and 23.
L DISCUSSION

L1 Relations between errors at beginning and end of transfer

There is little comment that can be passed upon these results, except to
mention their possible use in the overall detailed evaluation of any launcher
guidance system that contains a Hohmann transfer (or a close approximation) in
the flight plan. It was for this type of evaluation that the derivatives in
Appendix A were converted into a cartesian axis system. Such a system of axes
is the obvious choice for detailed investigation of inertial guidance errors,
since most inertial navigators for space launchers will measure and navigate in

these axes (e.g. Section 8 of Ref.7).

It is worth noting that initial errors in 561 and 6¢1 perturb the transfer
ellipsc in a different way to errors in 5V% and 6r1. The former produce no
first order change in the mean radius of that orbit (resulting in zero change
of radius or velocity at the end of transfer) while the latter produce changes
in most of thc transfer paramcters (resulting in changes to all the co-ordinates

at the end of transfer),

L.2  Errors in paramcters of the final orbit

Errors in mean radius (8a) are only produced by 5V& and 6r1 inputs
(Figs.14 and 19), and thesc errors are independent of the method of aligning
the apogee impulse (this only affeccts vertical velocity errors at injection)s.
The mean height error for a given initial velocity error increases with transfer
ratlo, as doecs mecan height error for a given initial radius error. Typical
values for injection into a gco-stationary orbit (19450 nm altitude), assuming

transfer to start at 300 nm altitude are

SV: = 10 nm/ft/sec
and
;tz = 53 nm/nmn .

Eccentricity d¢ results from any type of initial perturbation (Figs.15,
17, 20 and 22). For SV% and 6r1, be, for a given initial disturbance, increases
with transfer ratio. Also cccentricity can be minimised by aligning the apogee
impulse to a fixed space direction rathcr than to the local horizontal, éince

in the former case thc vertical velocity error at the end of transfer is partially
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compensated by a locally opposite application of velocity during the impulse
(i.e. GOZ/GV} is of opposite sign to a¢2/av1 and 662/8r1 is of opposite sign
to 6¢2/6r1). The effect of 661 or 6¢1 errors is considerably diffcrent from
that of SVH or 6r1. Firstly, the increasing effcct with increasing transfer
ratio is much less marked ([56/661]k—o actually decercases with increasing n,*) *
and sccondly, the minimum cccentricity crror is produced by aligning the
apogee impulse to the local horizontal, rather than to a fixed space direction Y
(actually (aq/a¢1)k_o is zcro for all valuc of n).
For the gco-stationary orbit cccentricity derivatives are
de 5E
ESi = 0.00056 per ft/scc
1/ k=0
de 2
T = 0.00037 per ft/scc
1/ k=1
5
<§~“> = 0.00285 per nm
r
1/ k=0 .
dc
FrN = 0,0018 per nm .
1/ k=1
<§éL> = 0.09 per radian (or 0.0000027 per ft/sec of vertical velocity error)
1/ k=0
9
<§é§> = 1,17 per radian (or 0,000036 per £t/sec of vertical velocity error)
1/ k=1
de
Sa = 0 (or zcro per nm of rangec error)
¢
1/ k=0
de .
SEf) = 0.46 per radian (or 0.00012 per nm of range error)
1/ k=1
We can sec from these figures that horizontal velocity error (6V&) has a .
larger effcet upon final orbit cccentricity than vertical velocity error
(V%661) even for k=1(apogee impulsc aligned in spaoe), which is the case most .

favourable to SV% and lecast favourable to 661.

- o o —

*The suffix k=0 rcfers to the system with the apogee impulse aligned to
the local horizontal, while k=1 corresponds to spacc alignment (see Appendix C,
P&I‘a. A3.2)0
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Similerly radial position error (6r1) has & larger effect than range

position error (r,I 6¢1).

ko3 Post-orbital corrective velocities

Before discussing the numerical values (Figs.16, 18, 21 and 23) it is
appropriate to review the possible implications of corrective velocities upon

a practical communication satellite launching system.

Firstly it must be noted that orbital period must be corrected to a very
high degree of accuracy, since relative station keeping between individual
satellites in the complete system must be maintained to within a few degrees
over a period of several years., Since orbital period is directly related to
mean radius (e.gs Ref.5), this implies that any initial mean radius error (8a)
must be subsequently corrected to an extremely high degree of accuracy. In
fact the final accuracy must be of the order of a fraction of an inch per second
(in terms of velocity error) so that du_ is, in practice, a good measure of the
contribution that can be expected from first injection errors (other contribu=
tions can be expected from errors in the impulse itself, but these are not the
subject of the present investigation). It must be remembered that Sua is
calculated here on the basis of tangential impulse, so that it is essential
that practical post—orbital corrections should be capable of representation by

such impulses,

Regarding correction of initial eccentricity error (8e) the situation is
by no means so well defined. Residual eccentricity errors result only in ecyclic
station keeping errors (an eccentricity de produces a sinusoidal phase error of
amplitude *28e and period equal to that of the nominal orbit). Some degrec of
cyclic error maey be permissible in an actual communication system, although this
will depend upon such details as the permissible movement of the ground aerials.
Thercfore the values of Sue given here represent an upper limit to the corrective

velocity that would be required.

Turning now to the present results, let us examine Bua and 6u.e required
from an initial error 5V1 (Fige16). Generally speaking both aua/ava and aue/av5
increase with increasing transfer ratio, but with some slight variation to this
rule for n between 1 and 2. For a synchronous orbit éua is larger than Bué when
the apogee impulse is aligned in space, while the reverse is true if the impulse
is aligned to the local horizontal. As is explained in Appendix C, Bua > 8ue
implies that the perturbed final orbit does not intercept the desired nominal
circular orbit, while Sua < 6ue implies that interception does occur. Further-

more, if 8ua > éSu.e it means that eccentricity error can be nulled during the




mandatary process of orbital period correction. Also the positive margin
between Sua and 6ue allows some additional vertical velocity error to occur
(e.g. from mis~dircction of the apogee impulse) and still permit eccentricity
nulling within the capability of 6ua.

From Fig.16, aua/ava = 242 in a synchronous orbit. This emphasizes the
importance of keeping uncorrccted first injection forward velocity crrors as
small as possible, since their cffect is magnified in relation to post-injection
velocity requircments,

For an initial vertical velocity crror (V1661) (sce Figs18), no correction
is necessary for mean radius (Buq = 0), and the corrcction for cccentricity is
guitc small (1/V& aue/861 = O.18uin the most unfavourable impulse alignment

casc).

For an initial radius error (6r1) (see Fig.21), the corrective velocities

are similar in form to those for BVH. In a synchronous orbit

ou
2

ar1

= 11.5 ft/sec per nm

and the eccentricity correction is slightly larger for the case of horigontal

impulse alignment, and smaller for space alignment.

For a range error (r16¢1) there is no period correction required, and no
eccentricity correction in the case of horizontal impulse alignment. For the
case of space alignment aue/r1a¢1 = 0,62 ft/sec per nm (synchronous orbit)
indicating that the effect of range errors is considerably smaller than that
of' height error.

Lo Orbital errors and corrective velocities in the prescnce of multiple
input errors

In any practical launching system errors will exist in all four co-ordinates
at the first injection point (in addition to errors of the apogee impulse).
Usually these individual errors will be defined statistically and it is desired
to evaluate the effect of such errors upon final orbit parameters and corrective
velocities. Such effects will again be derived in statistical form. Often it
is possiblc to suppose that the "input" quantities are normelly distributed, and
uncorrelatced with one another. If the "input"/"output" rclationships are linear
it is easy to show that the "output" quantities are also normally distributed and
the standaerd deviation of the "output" is rcadily obtained in terms of the "input"
standard deviation and the appropriate linear relationship. If the relationship

is non-lincar the statistical evaluation of "output" is more complex and no
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general solution exists. Unfortunately, such is the case in the case of our

"outputs", eccentricity (8e) and corrective velocity (Sue). This problem has

already been encountered in Ref.7. No solution is suggested here, the sole
object of mentioning it being to advise exercise of caution in applying the

results of this report.
5  CONCLUSIONS

(1) Derivatives have been evaluated, relating errors (position and
velocity) at the start of a Hohmann transfer to those at the end. Such
derivatives are of use in the detailed investigation of the accuracy of any
guidance system employed in injecting satellites into high circular orbits

(such as those required for communication satellite systems).

(2) These derivatives have been used to determine the effect of single
errors at first injection upon the parameters of the final orbit, and the
resulting necessary post injection corrective velocities. For large values of
transfer ratio (final orbit radius divided by first injection radius) it has
been shown that horizontal velocity errors are considerably more significant
than vertical ones, while radial position errors have a larger effect than
range position errors. As an example, for injection into a geo-stationary
orbit cach unit of horizontal velocity error will require at least 2.2 units
of post orbital correction and each nautical mile of radial position error

needs 11.5 ft/sec correction after injectione
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Appendix A

PROPERTIES OF THE HOHMANN TRANSFER, INCLUDING RELATIONS BETWEEN
SMALL PERTURBATIONS AT THE BEGINNING AND END OF THE
TRANSFER PHASE, DERIVED IN 4 POLAR AXIS SYSTEM

At EGeneral properties of the Hohmann transfer orbit

The ideal transfer (described in Refs.1, 2) consists of ballistic flight,
extending over half of an ellipse, commencing at perigee and ending at apogee
(Fig.2)s The initial and final velocities of the transfer are defined in terms
of the earth's gravitational constant (1) and the initial and final geocentric

radii (r1 and rz). The appropriate relations are

; = 20,
Vo= T P F Vo, o (4.1)
1 1
o f o
- ; = . A,
Vé Vo P2 Vo v n+1 (8.2)
2 2
where VO = Vb/f1 is the circular orbital spced at the initial radius r,
1
and V= Vp/rz is the circular orbital speed at the final radius r,e
2

The paramecter p has been previously used in Ref.h and is defined as the square

of the ratio of speed to the circular orbital speed at the appropriate radius.

It will be noted that

2
v vo
B .
A
2

where n = r2/b1.

The dimensionless paramcter n (ratio of final to initial radii) will be

termed the transfcer ratio, and all derivatives rclating initial and final

perturbations will be expressed as a function of this quantity.

The transfer time is given by'TO/Q, TO being the orbital period of the
transfer c¢llipse. Now orbital period is rclated simply to the mean radius of

¢
the orbit”:-—

T = 2 ’éz (A.3)
o T Ty )
where a = =(r, +1v.) (&4)
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The establishment of a circular orbit at radius r, is effected by adding

2
a locally horizontal velocity impulse (of magnitude Vo -Vz) on arrival at the

end of the transfer. 2

A.2 The effect of a small velocity perturbation 6‘V1 at the start of transfer

Gonsider the situation presented in Figeh. Point S represents the start
of the transfer and point E is the end point of the nominal (i.e. unperturbed)
transfer., Now point A represents the apogee of the perturbed transfer ellipse.
As illustrated, A is shown for a positive perturbation in VH. Since A will
occur later in time than E, the actual perturbed transfer will end at point E',

assuming the impulsive velocity (Vo ¥V2) is added at the instant corresponding
2
to the end of the nominal transfer.

Ad241 V and r perturbation at end of transfer

Let 6t be the perturbation in the half-period of the transfer ellipse, due
to initial perturbation 5VH. Since # = O at point A, the difference of radius
vector between A and E' is of order ﬁ(&t)z, where ¥ is described near to apogee.
Since 8t will be proportional to 6V% (for smell BVH), we can neglect the differ-
ence between radius vectors at A and E' when eveluating derivatives describing
the first order relationship between 6V} and radius perturbation at E'. Similarly,
since radii changes between A and B' are of 2nd order, compared with radii changes
between E and A, we may also conclude that to a first order the velocity magnitude
perturbation at E‘(BVé) equals that at A. This follows from the conservation of

total energy (kinetic plus potential) between A and E',

We may therefore conclude that the velocity and radius perturbations at
E' are cqual to those at A, provided that 6V1 is smalls Let us assume that the
perturbations at A or E' are SVZ, 5r2 respectively. Then from the conservation

of angular momentum between perigee and apogee , we have

v, = Vr, (nominal case)

(V1+~6V1) r, (V2+ 6V2) (r2+ 6r2) (perturbed case)

By differencing these ecquations:=-

I‘1 5V1 = I‘25V2 + V26r2 . (A.B)

Note that again we have neglected the second order ternm SVé Srz
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Similarly from the conservation of total energy between apogee and

perigee,

2
£ V., - <4~ (nominal case)
2 r,

3V, -

i

St

1 2 _u,
2(V1 + 6V.1 ) I‘1

SN\
%(V2+'6V2) - T;;:ggré (perturbed case) .

Again, by differencing and neglecting 2nd order terms

S B
.\/1 6V1 = Vz 6V2 + r2 6:['2 . (.A.p 6)
2

By solving equations (5) and (6) simultaneously,
2

< VQV1 I‘2>
r, - TR
(A7)

i
[og]
<

and
2 -
r
(i ! 2r1r2>
H H
6I‘ — 6V ..\ SV —— - - (A.8)
2 © % 7

The derivatives resulting from these two equations can be written in a
more convenient, and non-dimensional form, using the formula for start and end

velocities as given in equations (1) and (2):-

1 dV
i 2 . . il
aV)] = (2 + n> (A. 9 )

/S —
S T G B (4.10)

A.2.2 6 and ¢ perturbation at the end of transfer

We have already seen that the apogee of the perturbed transfer ellipse is

attained at a later time than the end of the nominal transfer (for positive 6V&).
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This is because the mean height of the perturbed transfer ellipse is higher

than that of the nominal one. If the perturbed apogee occurs &t later than

that for the nominal, then &t = '%STO, where STO is the increase in orbital

period of the perturbed ellipse, Using equations (3) and (&) it is possible
to relate 6t to 6r2 and hence to SVH (for small perturbations). The result

is
.2
. . 3% RN Aot
8t = bV, * Cn (14n) - (a.11)

Now one of the equations of motion describing ballistic flight is
o - M
Vo = - 5 08 0 +——cos & .
r
r
Also © = O at point A, so that at B!

(ﬁ% - ;%) %ﬁ . (A.12)

Combining equations (11) and (12) we obtain the following non-dimensional

derivative relating terminal climb angle error to initial velocity error:-

36 |
v avf = % G 22 (1- 2 ’

°4

(A.13)

t

o)
To obtain 6¢2 at the end of the perturbed transfer, we multiply ~¢2 by &t (the
negative sign indicating that o¢ is negatlve for positive 6V )e Again we

obtain a normalised derivative (u51ng ¢2 = Vé/f )i

3 e
2 % 3
V61 gﬁ: i j2(1+n) . (Ae14)

The derivatives given by equations (9), (10), (13) and (14) are plotted in
Fig.11 [ ]
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A.3 The effect of a small climb path perturbation at the start of transfer

This situation is presented in Fig.5. Point S represents the start of
nominal and perturbed transfers. E is the end of the nominal transfer and P
is the perigee of the perturbed transfer. For a positive 861 perturbation, P
will occur before the start of transfer (as illustrated in Fig.5). Let P ocour
at a time -8t (i.e. 8t before start, where 8t is not related to the 8t used in
para. A.2). Now from the equation of motion used previously, i.c.
V8 = - cos O + %i cos ©

2
r

o
0 near perigee equals (V,lz/r1 - H/rf) 1/V5’ which is positive, so that

661
6t = e==- near perigee
8
1a€e
00,V
5t = c,,?.ﬁ.ﬁm . (4415)
V
i3
4 r?

l.cs of the form r, - K‘&Gf, s0 that to a first order the perigee radius is
unaltered from the nominal value rye Also the total energy of the perturbed
transfer orbit is unaltercd from that of the nominal one since the potential
energy is unaltered and the velocity vector at 8 is only changed through a small
angle 661. It also follows that the orbital period is unaltered as is the
apogece radius (to a first order).

Let A be the apogee of the perturbed transfer (et radius rz)_ This
occurs at time (Td/2 - &t) aftcr start of transfer. Point B! represents the
end of perturbed transfcr, wherc E' occurs 8t after apogee A. (As previously,
we arc assuming that the perturbed transfer terminates at the same time instant

as for the nominal transfer, i.c. Td/2 after starto)

A341 V and r perturbation at cend of transfer

Sincc the total encrgy, perigee and apogee radii are identical for nominal

and perturbed transfers, V and r at point A will be identical to the values at E.
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Also, since E' occurs at a time &t after A, the radius at E' will differ from
that A by a term proportional to 6t2, i.e. proportional to 66?. Hence there
is no r perturbation at E' compared with E, to a first order. Also, since
there is no change in total energy due to perturbation there is no V perturba-

tion at E' compared with E. Ve can simply write:=

v
. 2 _ ’
} o1 1
or
2 _
W, = 0 . (A.17)

A,3.2 0 and ¢ perturbations at end of transfer

Near apogee, from the previously used equation of motion

- V. 2 r

2 5 2
. ‘
so that at B!, 662 equals © 8t. From equation (A.15) this gives

e

C 2T
V
T

Using the previously established relations between Va, Vé, r, and r, this

it

662

reduces to the dimensionless form:=—

20 ”;
2 _ _1
-5-51» = n! . (1.18)

Referring to Fig.5, the angular range perturbatlon at E! is 8¢2, where
6¢2 = “'8@ + 65.
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Now
5t V}
o = &t x angular velocity near periges = T
1
ot V
and 58 = &t x angular velocity near apogee = =
2 ~
S0 that
V2 V1
6¢2 = 6't {m" - ‘“‘—‘} . (A-19)
o T

Substituting for &t from (A.15), we can obtain the dimensionless form

T
DR <1 +i->§ : (4.20)

The derivatives aez/ae ) and 3¢ Z/ae 4 8re plotted in Fig.12.

Ay The effect of a small radial perturbation at the start of transfer

Fig.6 illustrates the geometry of the nominal and perturbed transfer; S
is the nominal start point and S' the perturbed once. E represents the nominal
transfer end and & the apogec of perturbed transfer ellipse, Since A occurs at
time (TG/Z + 0t), once again we have the perturbed end occurring at B, some
distance before A.

As was shown in para., A.2, the V and r perturbations that exist at A are,

to a first order, identical to thosc at E', since E' is close to apogee.

Avo1 V and r perturbations at end of transfer

Let the perturbations at A (or E') be 6V2 in velocity and 6r2 in radius,
Pursuing the samc technique as was used in para. £.2.1 we have, from the
conservation of angular momentum, and total energy

Vi o= VT

<
Y
—
H
-
+
(o]
]
-~
~
It

(V2 + 6Vé) (r2 + 6r2)

giving

<
o
5

a—
i

r, 6V2 + V2 6r2 (A.21)
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and also
%Vf-u/lq = %Vg-u/rz
1y° - wr, +dr, = % (V. + &V )2 - u/(r, + 6r,)
2 7 1 1 22 2 2 2
giving
p/r2 &r, = V_, &V, + p/r2 Sr . ‘ (a.22)
1 1 2 2 2 72

Solving equations (A.21) and (A.22) simultaneously we obtain the dimensionless

derivatives:—

r oV | .
‘ 1
| ?’_1.,3-;% = -ﬂ!z(u;) (4.23)
o1 1
ar2 i
B—;:; = n(n + 2) | (a.24)

AJLe2 O and ¢ perturbations at end of transfer

Since A occurs at time T /2 + 0t, where 26t = OT o? the perturbation in
the orbital period of the transfer ellipse, we can dbtaln 6t from equations

(A.3), (A.4) and (A.2L):-

5[ g )
bt 'H‘ . (4.25

But the perturbed end occurs at time T0/2, so that at E!

0
662 = = 0 near apogee x 0t .

But

9
"
N
n?gm
i
okt
m<!i._;

so that

86

H

|
o 2|3 PR (5-2)
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Thiis can be reduced to the non-dimensional form:-

i - .
vt = 28 L) L) . (£.26)
1 '\/-l'l ;

Also, the perturbed transfer end occurs at an angular range with

perturbation

6¢2 = =0t x angular velocity near apogee .

But the angular veloclty near apogee is V5/r2,so that

v

R SRS
8, = =bt 5o (A.27)

Substituting (A.25) in (A,27), we obtain the non-dimensional derivative

i S
i a¢ 2 :
o2 - L3n Qe
II‘,I ar1 = L;. n.\/_n : - (A028)

The derivatives from equations (4.23), (&4.24), (4.26) and (A.28) are plotted in
Figo13.

AH  The effect of a small angular range perturbation at the start of transfer

The effects of this initial perturbation are simple to visualise (sce
Fig.?). Since the apogee and pcrigee radii and the corresponding velocities
arc independent of the angular position at first injection it is reasonable to
conclude that the only perturbation to the transfer ellipse is in respect of
the orientation of the major axis, This rcsulting change in orientation equals

the initial perturbation 6¢1.

Thus, quite simply

5
! e 2 2 0 (£.29)
Y o

o] 1 :

1 3
T e )
! 1 % _
| T O (4.30)
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ApEeqdix B
DERTVATIVES RELATTING PERTURBATIONS AT START OF TRANCFER TO THOSE
AT TIT BND:  CONVERSION 1ROLI POLAR TO CARTESTAIT AXES SYSTEMS

Ba1 Definition of axes systenms

presy

The relevant systems are illustrated in Figels In the polar system posi-
tion is defined r (geocentric radius) and angular range ¢ (the datum of which
is arbitrarily taken as the vertical at the point of commencing the nominal
Hohmann transfer). Velocity is defined by magnitude V and climb path relative

to local horizontal, 6.

In the cartesian system, position is defined by two co-ordinates x, and z.
These axes arc orthogonal and inertially fixed. The origin is at the carth
centre O and Ox is parallel to the velocity vector at nominal transfer start.
Consequently Oz is parallel to thc ¢ datum in the polar system and is arbitrarily
considered to be positive when vertically upwards at this point. The nominal
start end end conditions for transfer, in the two systems arce obvious, and are
illustrated in Fig.2 for the polar case. In cartesian axes the conditions are

given in Fig.3, and are as follows:-

Il’lltlal X = X1 = e}
z = z1 = r1
0 0
X = _(.1 = Vl
2 = 21 = 0
Final X = x2 = ]
z = 22 = "Z!f‘~
°o _ 9 N V2
=5 2
o) o
Z = 2 = 0
2

B.2 Relation between polar and cartcsian perturbations

These are shown in Fig.8, Al the start of transfer the relationships are

(for small perturbations)

6r1 = 6z1 (B.1)
&, = Losx (B.2)
y ry *

-8
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Y

66

it

0
6x1

1 0 1
= 82 4 = 0x. .
VH 1 r, 1

25

(B.3)

(Bok)

The above relations are derived from geometrical considerations together with

the assumption that sin 661 2~ 661 and cos 661 ~ 1,

At the end of transfer the inverse expressions can be derived by similar

considerations: -

-r, 6¢2

-6r2

=5V,
0 2

-V, 80, + V, 88, .

B.3 Basic expressions relating cartesian and polar derivatives

(B.5)
(B+6)
(B.7)

(B.8)

In polar co-ordinates, initial and final perturbations are related by the

following expressions

or

6¢2

&V,

86

Substituting in equations (B.9) to (B.12) for the expressions of 8r1, 5¢1,

or
2
5 or

ab

2 &

or

1

1

1

1

6r2 6r2 or
56, + SV, + «—2 86

56, M T, T T, T
a¢26 29, a¢26
55, 1t 57, O 5, %
oV oV 3V

2 2 "
55, 0% 37 OV s O,

1 1 1
36 0, %0,

(B+9)

(B.10)

(Bo11)

(B.12)

&V, 5 661 and &r,, 6¢2, 6Vé, 662 obtained in equations (B.1) to (B.8) we can

now relate start and end perturbations in the cartesian axis system, i.ce




26
3¢ ¢
e ey 289 . 2
bx, = -7, 5, 0%, =, 55 02
or r
2 <9 2
: R o5
652 5 71 - z1
1 1
o aVé o "
) 2 e s
bx, = 57, I
]
o¢. 3¢
o _ AR Y
b2, = T, {av 5V } %, + ¥
1 1
+V {S—?—Z- o jfi—z.} {“1;.
2 601 861 V&
But by definition
ox
. ol
6XZ T oox bx
1
dz
4
822 = 5 bx
1
etce

52, + 1 dx

Appendix B

d
r, 9%

- =5 =5 0x

r, 5¢1 1

vees (Bal13)

&x Bo1h)

&x (B.15)

L 6 . (B.16)

By equating terms we can first relate cartesian and polar derivatives in the

following dimensional form:i-

ox

.

d

ox

=

0z
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Bl

Normalised cartesian derivatives

Appendix B

v (2P
2 | or or

1 1

3
S22
eV oV

1 1

0 o
V% 601 661

These cartesian derivatives can be normalised, using the previously

established normalised polar derivatives and the various relationships between

V1,

V2, r,

and T, (see Appendix A)e The results are as follows:—

%
ax1

i

n+2
3% (14n)7
4 i

-n (n+2)
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Appendix C
DERIVATIVES RELATING ERRORS IN FINAL (NOMINALLY CIRCULAR) ORBIT
T0 ERRORS AT START OF HOHMANN TRANSFER ~ FINAL IMPULSE
ASSUMED TO BE APPLIED WITHOUT ERROR

Ceol Errors in the orbital parameters of a nominally circular orbit, expressed -
in terms of injection errors

Ve shall consider only the effects upon two orbital parameters, namely

mean radius and eccentricity.

General expressions for these parameters, in terms of cut-off conditions
have been given in many forms, but equations in a convenient manner for our

present purposes can be found in Refs.5, 6. They are:

Mean radius

r
a = 3 (c.1)
Bceentricity
e = j(1—p)2 + p(2~-p) sin2 0 (Cc.2) )
where
2
rv
- I Ce
p m (Ce3)

is a non-dimensional parameter already introduced in Appendix A. r, V and ©

describe position and velocity at injection, in a polar axis system (see Figel)s
For injection into a perfectly circular orbit p=1 and 6= 0. Let us now

consider the effects of small errors in r, V and © upon the resulting errors in

a and e,

Let the small perturbations be 6r, 0V, 60 respectively. Then, from

equation (0.5), and neglecting seccond order terms, .
) 20V

p = 1+ Ly T (C.k) .
o)

where Vb = Yu/r is circular orbital speed at radius r.

Substituting in cquation (Cu1) we get
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a+% = r+da = - Sr . 257 °
r Vo
Hence

da = 26r + 23yr (005)

)

- -

be = [<_§_1;+g§_\_l) . 862 . (C.6)

N" r VO

It will be noted that da is independent of 66, This is to be expected since
a is a direct measure of the total energy of the orbit, which depends upon V

and r, but not upon 0, the direction of the velocity vectors

In equation (C.3), the positive sign is taken outside the square root.
This is because inJjection perturbations can only produce positive eccentricity;
negative eccentricity has no physical significance,

Ce.2 Relation between perturbations at end of Hohmann transfer and those at
injection into final orbit

We have already seen, in Appendix A, that the conditions at the end of

the Hohmann transfer are as follows:=

Quantity | Nominal value | Perturbation
v Vé 6V2
4] 0] 662
r : r, 5r2
¢ | & ! ¢,

Following the application of an impulsive velocity at the end of transfer
the position parameters (r, ¢) will not change, but those describing #elocity
(v, 0) will, and the resulting velocity vector must be defined before we can
formulate the injection errors into the final (nominally circular) orbit. The
vector addition of velocitieé at the end of transfer is described in Fig.9.
Veotor 1 represents the velocity at end of transfer (V = Vé + 5Vé, 0 = 562)-
Vector 2 represents the impulse added, and since this is assumed to be perfect

(i.e. the same as that requircd for nominal transfer) its megnitude is (Vb -Vé).
2
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However, its direction can be defined in two ways, both of which are correct for
the nominal transfer case., The first way is to define the direction of impulse
relative to the local horizontal at the end of transfere. Obviously the impulse
(VO ~Vé) should be applied parallel to the local horizontal and we shall assume

2
that in the perturbed transfer it is still applied parallel to the local horizon-

tal (such would be the case if, in practice, the apogee rocket were aligned by
means of horizon sensors). The second way is to define the direction of the
impulse as fixed in spaoce, and to assume that this inertial direction is main-
tained even in the perturbed transfer condition. {This would correspond to the
practical case in which an inertial reference, such as a gyro or spin stabilisa-~
tion was used to align the apogee rocket. ) Clearly the space~fixed direction

along which the impulse (Vb —Vé) would ect is parallel to the local horizontal

2
at the end of nominal transfer, but in general this inertial direction does not

coincide with the local horizontal in the perturbed transfer condition.

Referring to Fig.9 we sce that the velocity vector after adding the impulse

(veotor 5, which is the sum of vectors 1 and 2) has the following properties:-

Magnitude

(v2 + an) + (vO - vz) = Vo + 6V2

2 2

(assuming 602, 6¢2 are small so that cos 662, cos 6¢2 =1).

Vertical component (relative to local horizontal)

(Vé + 6v2) 80, + 1«.(v02 - Vé) 8¢,

where K = O corresponds to the case in which the impulse is aligned along the
local horizontal

and X = 1 corresponds to the case in which the impulse is aligned in a space-

fixed directione.

The resulting climb angle 665 is given by

vertical velocity component

Vb
2

t -
662 =
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i.e,

v

o} 2
2 2
1 _ e——
662 = Vo 662 + K ( 7 >

(neglecting second order terms).

5¢2

= @ 562 + K (1«~/’p‘2) 5¢2

33

We can now tabulate all four perturbations at injection into the final orbiti=

Ce3

Quantity | Nominal value Perturbation
v Vbz 6V2
0 0 86} = W/—f)_; 80, + K(']-w/'fi;) 6¢2
r ry 5r2
¢ T i 5¢,

Relations between errors at start of transfer and errors in final orbit

parameters

Ce3e1 Mean radius

Using equation (C.5) and the tabulation of perturbations at injection

into the final orbit we can derive the mean radius error of the final orbit,

i.€.

(c.7)

Consider as an example, the effect of a perturbation 6V1 at the start of transfer.

Then

6V2 =

&V

6V&

where the derivatives arz/ava, aVé/ava have been derived in Appendix A,

Substituting these expressions in equation (C.7) we get:
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or 2r v
da 2 2 2
1 1 o) 1
2
so that
L2 2 8r2 + 2r2 aVé . (c.8)
oV ov v aV
1 1 o,

This relationship between derivatives can be expressed in a more convenient

non-~dimensional form

1le€a '1171” ‘5:\‘},";‘ = 2 Ql\}*r 3;\71:] + nwfn <§$f;>:l . (0.9)

v 2
T2 %4
£ = e = n ({see Appendix A) .
r 2
1 v
2

Similar expressions relating mean radius error to other perturbations at the
start of transfer can also be derived by a similar process. The results are

as follows:

or oV |
2 1 1 |
;}- am{;i- = 2 [5 (‘r” -a-e—2~> + n/n <\-/:_' g@'g') jl‘l (C-?O)

Jor r Ve — |
gEL = 2 [ﬁ<}ﬂ£> + n'n <74— 3;§>:]
r1 r1 o, 1 (C.11)
- F V.« —
1 da ' <1 2> <1 2>]
o e e 21 it e B & n'\/—n E-ananl-esransd . (C .12 )
ry 9 L \Fq 99y Vo1 9%,

Two points are of immediate interest. Firstly, mean radius error is, to a first
order, independent of K (the method of aligning the impulse) since the direction

of this impulse only effects vertical velocity at final injection. Secondly



35

(.L @.)
ry 661

(1 iﬁL) = 0 for &ll values of n
r a¢1

since in Appendix A it was shown that ar2/661, aVé/661, ar2/6¢1, and aVé/6¢1

are all zero,

) The results of equations (C.9) and (C.11) are plotted in Figs.14 and 19

respectively.

Ce3e2 Beccentricity

Using equation@3.6) and the tabulation of perturbations at injection

into the final orbit we have the eccentricity of the final orbit, i.e.

; r, 26Vé 2 ; 2
de = ,} -;=2-- + V2 > + <'\/i)—2‘ 662 + K [1“@] 6¢2> . (0013)

Consider now the effect of a perturbation 6V, :i-

1
. : ar2
we have 5r2 = Sﬁ: 5V}
BVé
5V2 = Fﬁ- 6V1
662
6¢2
and. (Q)¢2 = S'.'V_:l‘ 8V1 .
Giving
dr V2 36 3¢ 2
. 1 2 2 2 - 2 2 ' :
- + P -— : ) v
be = *5V1J<r2 57, "V, av1> * (‘/1’2 57, * K [1-/p, av1> . (c.14)

The sign on the right hand side of equation (Cu1k4) needs some explanation,
Clearly, since negative eccentricities cannot exist, the positive sign must

apply if BV% is positive and the negative sign is used if 6V} is negative,.
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We can therefore define ae/av1 as

or 3V . 2 36 3¢ N2
/A 2 2 2\ —_ 2 = 2
. <r 3V, YT av) + <P2 57+ & (1/p,) av>

i 1 °, 1 1

N
-

provided that the eccentricity is obtained from this derivative using

oe
(5%) 1o
1
de
(),

As in the case of mean radius error, the eccentricity derivative can be

Se

i

rather than

Se

fl

expressed in the dimensionless form

1

Vi

AV, 0, dA—2 26 3\ —2
7 [ ( 2> 1< 1 2>] _ 2 ¢ ;
voo28 L | ovn () ¢ LA 2 Ve (v =R) +K (1) (V. =2
| o, 3V, = V,) " a\7; 3, 2 \ o, 3, 2’ \ o, 3V,

cee (Ca15)
and similarly
| v v, — 2 6 g — 2
0 1 1 .
& [ (@2t E D)) [ @) o) () ]
1y o, 1 171 1 1
ons (0016)
! 3V /a 2 36 35073
R R G R G I R A CE A R G
r, =) = n et =S\t = (==} | 4| VD ==)+X (1=p.) (r, ==
(1 ar1 \J] V°1 6:1:'1 n \ar1 2 1 ar1 2 1 8r1
ces (€a17)

- Vv or, —2 0 S 2’
2o N 1/ - (% -y (222
o4, LZ\/-n <Vo a¢1>+ n <r1 a¢1>J i [@2 C¢1>+K (1-/y) <2¢1>J )

(c.1”8)

1
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Equations (C.15) to (C.18) are plotted in Figs.15, 17, 20 and 22. It should be
noted that (ae/a¢1) for the case of the apogee impulse aligned to the local
horizontal (K=0) is zero, since the only non-zero term in equation (C.18) is
a¢2/a¢1 (sce Appendix A).

C,.h Inpulsive velocities required to null mean radius and eccentricity
errors of final orbit

Coliel Nulling radius error

Mean radius error may be nulled by application of a post injection
tangential impulse. For an orbit of small eccentricity it is of no consequence
at which point on the orbit the impulse is applied, and provided it is applied

along the direction of motion the resulting change in mean radius is given by

2r2 )
6&' = ‘.‘}g— Sua . (0019)
2

This formula is provided by an examination of equation (Cu5)e Sua is taken
here as the corrective tangential velocity and in order to null any initial

error da, 8a' must be made equal and opposite to Oa.

Therefore
\Y
-2 |5 (C.20)
6ua = op. 108 * *

da appears in the modulus sign since, for practical purposes, we are at present
concerned with evaluating the magnitude of the impulsive correction rather than
its vectorial value, Of course, if the initial error Oe is positive Bua must

be applied in a retrograde manner, while if it is negative the required correc-

tion will be forward.

Using Sa = (aa/ava) SVH, for an initial velocity perturbation and substitut=-

ing this in equation (C.20) we get

Vﬁ
2 Jda
du = o= == |6V, |
a 2r2 5V& 1
so that
au.a
Bua = ﬁ; I6V1l (C.21)
where
V
Ju 0
a _ _2 |82
Cll A (c.22)
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We note that 6ua nust be evaluated using the modulus of the input perturba-
tion. Again, this is because we are concerned with evaluating the magnitude of

the velocity correction, which is positive for either positive or negative inputs.

Equation (C.22) nay be expressed in the following non-dimensional form:-

d Vﬁ v
a1 < 1 aa> (c.23)
W, 2/ I\NT1 9V

and similarly,

ou [ f
ey o (/A le
<V 36 ) T 2nvn <% 06 > (G.2k)
01 1 H 1 1
r ou t
Loay L LAl |/2a
<& or > T 2n/n <§r > (0.25)
o, 1 1/
ou
1 a /1 6a> (
P i = - — T Y C026)
v01 34, eafn \\r, 99,

These results are plotted in Figs.16 and 21. aua/ae1 and aua/a¢1 are both zero

for all values of ne.

Coelre2 Nulling eccentricity error

A tangential impulse can also be used to null a small eccentricity error.

The magnitude of such an impulse, 6ue is given by

Su = =% be . (C.27)

This result is seen from equation (C.6)s It is interesting to note that if
eccentricity error was corrected by a vertical impulse, rather than a tangential
one, the velocity required would be twice as large, since 66 = vertical

VelOCitY/Vb . Bececentricity error can be reduced by either a forward impulse at

2
apogee or a retrograde impulse at perigee.

From equation (C.27) we can see that
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(c.28)
Again we must remember to evaluate 8ue from the relation
aue
bu, = gy, 1V,
rather than
aue
e e B
6ue oV 6‘1 *
1
Equation (C.28) can be expressed in the non-dimensional form:-
du
e _ de
3V, = oVa <Vo av) (.29)
1 171
and similarly,
du ]
1 e\ _ A1 _[oe
(=) - o (3) (0-30)
o 1 1
| 1
r, du
e\ Al e
<v sr) = wa <I‘1 r> (c.51)
o 1 1
1
ou '
1_e) . L[l
<v a¢> ~ oVn <a¢> . (c.32)
0, 1 1

It should be noted that there is no need to include a modulus sign on the right
hand side of equations (C.29) to (C.32), since eccentricity derivatives are

already positive., These derivatives are plotted in Figs.16, 18, 21 and 23.

Cels3 Simultaneous nulling of radius and eccentricity errors

In general this type of correction will require two tangential impulses

6UH and 5u2 (see Fig.10)e The impulses must be allocated in such a manner that:

(i) the algebraic sum (taking into account whether the impulses are

 forward or retrograde) must null the radius error,

(1) the two impulses must be split between apogee and perigee so that

the nett eccentricity correction equals the initial eccentricity error.
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In Fig.10(a) the perturbed orbit lies wholly outside the desired circular
orbit and hence both impulscs are retrograde (or forward)e Thus the total
impulse requirement in this case is dictated by radius correction and the

eccentricity correction can be accommodated within this requirement.

In the other case (Fig.10(b)) the perturbed orbit intercepts the desired
one, and both impulses are instrumental in nulling eccentricity. Thus the
total requirement is dictated by the initial eccentricity and mean radius

correction can be accommodated within this requirement.

The condition that the perturbed ellipse does not intercept the desired one

is that
r, (1-8e) + da > r,
or
r, (1+8e) + da < r,
l.e.

|6a] > r, Be . (c.33)

Comparison of this equation with equations (C.20) and (C.27) shows that this is

eqguivalent to the condition
du_ > du
a e

as would be expected.

To summarise we can suppose that in general Bua can be either greater or

less than 6ue, depending upon the nature of the perturbed orbit. Both mean
radius and eccentricity errors can be nulled by application of two tangential
impulses whose arithmctical sum equals the larger of Bue and Bua, provided the

impulscs are applied at the correct places.

It will be scen by examining the curves of Figs.16, 18, 21 and 23 that .
6ue may indeed be larger or smaller than 6ua, depending upon the nature of the

perturbation. .
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SYMROLS

mean radius of orbit
eccentricity

coefficient defining method of alignment of apogee impulse

transfer ratio

dimensionless parameter relating speed to circular orbital speed

geocentric radius

orbital period of transfer orbit

magnitude of post-orbital velocity correction required to null mean
radius error

magnitude of post-orbital velocity correction required to null
eccentricity error

velocity magnitude

ciroular orbital speed at radius r

cartesian position co~ordinates

flight path angle relative to local horizontal
angular range

earth's gravitational constant

Subscripts:-

1
2

point at which Hohmann transfer starts

point at which Hohmann transfer ends
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