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SUMMLARY

First-order relationships between the position and velocity errors at

start and end of a Hohmann transfer are derived in a two-dimensional analysis.

The results are then used to evaluate the effects of uncorrected first injec-

tion errors upon the mean radius and eccentricity of the final (nominally

circular) orbit, assuming perfect application of the final impulsive velocity.

Finally the mean radius and eccentricity errors are expressed in terms

of post-orbital velocities required for nulling, such as would be required in

station-keeping communication satellite systems.
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1 INTRODUCTION

Then placing satellites into high circular orbits, the flight plan

usually adopted consists of two phases of propelled motion (neglecting any

specific requirements for parking). The first phase extends from launch to a

condition in which propulsion ceases, resulting in the launch vehicle entering

an elliptic orbit with a low perigee height and apogee close to the height of

the final orbit. In practice the vehicle will enter the intermediate or

"transfer" orbit close to perigee3 and will coast until, just before apogee

is reached, the second propulsive phase begins. This phase (of comparatively

short duration compared with that of coasting transfer) continues until the

vehicle has attained circular orbital speed at which time final injection is

considered to have occurred.

High circular orbits are of prime interest in communication satellite

systems, and in such cases it is often operationally difficult to monitor the

parameters of the transfer ellipse, since this requires coverage by ground

tracking stations. Consequently injection errors at the start of transfer

(velocity and position) may remain uncorrected, resulting in final orbit errors

additional to those incurred by imperfect propulsion during the second phase.

The object of this report is to determine the effect of errors at the

start of transfer upon the errors in the major parameters of the final

(nominally circular) orbit. The analysis is two-dimensional, and consequently

the results are confined to in-plane errors* In order to simplify the analysis

consideration is confined to the special case of Hohmann transfer. In this

special caseIP2 coasting starts at perigee of the transfer ellipse and continues

until apogee is reached, where application of a horizontal velocity impulse

completes the injection.

The analysis contained in this report is divided into three logical

phases.

(i) The derivation of first-order relationships between position and

velocity errors at start of transfer to those at the end of transfer, using

the well-established properties of ballistic trajectories 4 '5. In the first

instance the relationships are expressed in a polar earth-centred axis system,

but for the sake of completeness, these results are later transformed into a

cartesian reference system. The latter system is likely to be the most suit-

able one in which to evaluate the error contributions of an inertial guidance

system.
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(ii) From the first phase it is possible to evaluate the consequent

injection errors into thie final orbit, assuming that the only errors are those

at the start of transfer (i.e. the apogee impulse is applied as in the case of

error-frcc transfer). ilinal injection errors are then transformed into the

equivalent errors of the mean radius and eccentricity of the final (nominally

circular) orbit.

(iii) Since many communication satellite systems involve accurate

station-keeping for periods of years, it follows that such systems must be

placed in orbits of exceedingly high accuracy. In order to achieve this

accuracy in practice it will be necessar-% make post-orbital velocity adjust-

ments7 by means of small thrn'ust jet forces, located in the satellite itself.

The velocity renuirement from such a systeC will reflect in a direct loss of

potential payload for communication purposes, and it is therefore useful to
transform the orbit parameter errors of (ii) into ecuivalent velocity correc-

tions. The corrections are defined as -Laoe necessary *to null the mean radius

and eccentricity errors of the final orbit.

2 BASIC ASSUS±ITIO, 0i t
'T 7 ',TLYSIS

2.1 Axis sstm

As has already been mentioned, the present analysis is limited to two

dimensions, and consequently does not cover the evaluation of the effects of

errors normal to the plane of injection (which is also assumed to be the plane

containing the final orbit). The primary analysis is undertaken in a polar

axis system (see Fig.1 ) in which position is defined by two co-ordinates

r geocentric radius

and 0 ang;ular range

and velocity is defined by a further two

V magnitude of velocity vector

and 0 direction of vector relative to the local horizontal

(termed "•olimb angle")

2.2 The Hohmann transfer

The coasting transfer is considered to consist of an ellipse (termed

"transfer ellipse"). The first phase of propulsion is assuLmed to terminate

(in the error-free or nominal case) at the perigee of the ellipse, and the

second phase begins at the apogee of the ellipse. Thus the vehicle coasts

over exactly half of the ellipse. The second propulsive phase is taken as
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consisting of an impulsive addition of velocity (locally horizontal in the

error-free case), such that after the impulse has been applied the vehicle has

achieved circular orbital velocity. At this point the vehicle is considered

to be injected into the final orbit, and in the error-free case this orbit will

beexactly circular. The transfer just described was first proposed by Hohmann

The mathematical characteristics of such a transfer are well known '2 and are

listed in Appendix A, and illustrated in Fig.2.

At first sight the assumption of using a Hohmann transfer in practice may

seem to be rather sweeping. However, many practical launching systems will

employ transfers which are close approximations to this ideal (e.g. the ELDO

system described in Ref.3). Firstly, for optimum performance with real (finite

thrust) vehicles it transpires that entry into the transfer ellipse occurs very

close to perigee, especially if no altitude restrictions are placed on the first

injection point from the point of view of obtaining satisfactory radio tracking

coverage. Secondly, the finite acceleration encountered during the second

propulsive phase is likely to be sufficiently high to approximate this phase to

an impulse, especially if a spin-stabilised solid-propellant stage is used.

Typically the angular range change during propulsion may be 5 , compared with

1800 during the coasting transfer.

In view of these practical considerations, a Hohmann transfer is taken as

the reference trajectory in the analysis of this report. The resulting simplifica-

tion is considerable and the loss of accuracy in predicting the precise effect of

injection errors negligible.

2.3 Manitude of the errors

In the whole analysis of this report (see Appendices A, B and C) the rela-

tionships between input disturbances (i.e. position and velocity errors at start

of transfer) and output quantities (i.e. errors at end of transfer or final orbit

parameter errors or necessary corrective velocities) are linearised. Therefore

the resulting equations can only be applied strictly if the perturbations are

infinitely small, since second and higher order terms are neglected by implica-

tion. The approximation involved by such procedures is not likely to be serious

hoaever, since in practical launching systems the velocity injection errors at the

start of transfer are likely to be of the order of tens of ft/sec compared with

actual velocities of several thousands.

2o4 thication of imulive vcl t urin~thc second burning phase

In the analysis it is assumed that the velocity impulse is added perfectly

i.e. we are only investigating the effect of first injection errors upon the
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final orbit. However, it is necessary to clarify what is meant by "perfect"

application of the impulse. In the nominal case (i.e. no injection errors at

the start of transfer) the impulse is applied at a time T o/2 after start of

transfer (where T is the orbital period of the nominal transfer ellipse) in

a direction which is simultaneously parallel to the local horizontal and normal

to the radius vector at the start of transfer (see Fig.2). The magnitude is

(Vo0 1 2 ) where V is the circular orbital speed at the final radius r 2 and V2

is the velocity at the end (apogee) of transfer (all values nominal). In the

general perturbed case however, i.e. when first ejection errors are present,

the local horizontal at the end of transfer (transfer being still considered to

terminate after a time T /2 since no more tracking information is available)

does not coincide with the direction nominal to the radius vector at nominal

transfer start (e.g. see Fig.O), due to position errors at the end of transfer.

We must therefore differentiate between two cases of "perfect" impulse applica-

tion:- the first one in which the impulse is aligned parallel to the local

horizontal at time T /2 after start of transfer, and the second one in which

it is aligned in a space-fixed direction normal to the radius vector at nominal

transfer start. Both methods of alignment are covered in this analysis since

both can be achieved in practice. For example the first one is appropriate to

alignment using sensors detecting the local horizontal (optical horizon sensors),

and the second method would be realised using either inertial guidance or a spin

stabilised final burning stage.

3 RESULTS OF T11E INALYSIS

3.1 Darivatives rnlatinVposinji and velocity errors at start of transfer
to those at the end

3.1 .1 Polar axis system

The detailed analysis is contained in Appendix A. The results enable the

perturbations at beginning and end of transfer to be related in the form

18y 21 = I-K1yJl 0•

where 18y J is the perturbation state vector at the start and I18y that at the

end. Each of these vectors is four-dimensional, containing two position

co-ordinates (r, 0) and two velocity co-ordinates (V, e) as shown in Fig.2.

The 4 x 4 matrix III contains sixteen derivatives, all of which are evaluated

in Appendix A and arc tabulated, for the sake of completeness, in Table 1(a).

The derivatives (other than those which arc zero or unity) arc plotted in
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Figs.11, 12 and 13. The evaluation is in terms of a dimensionless parameter,

termed "transfer ratio"

r
n =r2 (2)

where r 1 is the radius at start of transfer

r2 is the radius at end of transfer (also equal to the radius of the

final circular orbit).

For gencrality to derivatives and normalised with respect to quantities which

are dependent only upon the initial radius r 1 , e.g. rI and v1 where

I - (3)
°l r11

V 0 is the circular orbital speed at rI

and [ is the earth's gravitational constant.

In Figs.11, 12 and 13 the derivatives arc plotted non-dimensionally, but

additional dimensional scales are provided for the special case in which the

altitude at start of transfer is 300 nm. The numerical values taken in deriving

the scaled derivatives are

Earth radius 3437.75 nautical miles

16 3 21.40673 x10 fft3/sec

I m = 6080 ft

3.1.2 Cartesian axis sLte~m

The results obtained in Appendix A have been transformed into an cartesian

axis system, as shown in Fig.2. The detailed analysis of the transformation is

contained in Appendix B and the results summarised in Table 1(b). The geometrical

relationships between small perturbations in polar and cartesian axis are

illustrated in Fig.8.

3.2 Derivatives relating position and vye errors at start of transfer
to mean radius and eccentricity errors of final orbit

In Appendix C, errors at the end of transfer are related to injection

errors for the final orbit (assuming the two cases of "perfect" impulse

previously described) and hence to errors in mean radius and eccentricity.
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The results are shown (both dimensionally and. non-dimensionally) in

Figs.14, 15, 17., 19 and 20. Since, as is shon in Appendix C, eccentricity is

a non-linear function of injection errors, we cannot apply the usual formula

be 8V (+2 0 + 8r + 4

In the presence of a single input error it can be shown that a linear relation-

ship will exist between input error and resulting eccentricity, provided the

input error is replaced by its modulus, since positive eccentricity is produced

by either positive or negative inputs, i.e.

See etc. (5)

where (ac/3v1 ) is positive.

In the presence of multiple input errors, equation (4) must be replaced

by a more complex expression which will not be pursued here.

3.3 Derivatives relatin p osition and velooit]T errors at start of transfer
to Post-orbital velocity corrections required to null orbital errors

In Appendix C the relations between post-orbital corrective velocity

requirements and orbital errors are established, thereby making it possible to

derive expressions for the corrective velocities in terms of errors at the

start of transfer. Two velocity corrections arc calculated., 6 u that necessarya

to null mean radius error, and 6 u , that for correcting eccentricity. Further-

more it is shown that both radius and eccentricity errors can be eliminated by

a total impulse application equal to either 6 ua or 8 u e, which ever is the

larger nwuerical quantity.

Once again, since 6 u is a non-linear function of 6V1 , 6%, 6r1 and .0

(even for small perturbations) it cannot be evaluated from a linear relation

of the form of equation (4) when multiple inputs are present at the start of

transfer.

Corrective velocity derivatives are plotted in Figs.16, 18 and 23. In

Fig.18, au 0/la is normalised by dividing by V1 (rather than V 0) since V 160

is directly vertical velocity error. Hence Figs.16 and 18 now form a direct

comparison of the relative effects of vertical and horizontal cut-off velocity

errors. Similarly, in Fig.23 the scaled quantity plotted in the ordinate is

(u e/r1601). Now r 1 5o,. is the longitudinal position error, so that again we
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can compare the relative effects of position errors in two directions from

Figs.21 and 23,

4 DISCUSSION

4.1 Relations between errors at be innD$n 2and end of transfer

There is little comment that can be passed upon these results, except to

mention their possible use in the overall detailed evaluation of any launcher

guidance system that contains a Hohmann transfer (or a close approximation) in

the flight plan. It was for this type of evaluation that the derivatives in

Appendix A were converted into a cartesian axis system. Such a system of axes

is the obvious choice for detailed investigation of inertial guidance errors,

since most inertial navigators for space launchers will measure and navigate in

these axes (e.g6 Section 8 of Ref.7).

It is worth noting that initial errors in beI and 8€% perturb the transfer

ellipse in a different way to errors in 8VI and r 1. The former produce no

first order change in the mean radius of that orbit (resulting in zero change

of radius or velocity at the end of transfer) while the latter produce changes

in most of the transfer parameters (resulting in changes to all the co-ordinates

at the end of transfer).

4.2 Errors in Darameters of the final orbit

Errors in mean radius (5a) are only produced by 8VI and 8rI inputs

(Figs.14 and 19), and these errors are independent of the method of aligning

the apogee impulse (this only affects vertical velocity errors at injection).

The mean height error for a given initial velocity error increases with transfer

ratio, as does mean height error for a given initial radius error. Typical

values for injection into a geo-stationary orbit (19450 nm altitude), assuming

transfer to start at 300 nm altitude are

8aaav1 - 10 nm/ft/sec

and

aa_
-r 53 nm/nm

Eccentricity 8 e results from any type of initial perturbation (Figs.15,

17, 20 and 22). For 8V and 8ri, be, for a given initial disturbance, increases

with transfer ratio. Also eccentricity can be minimised by aligning the apogee

impulse to a fixed space direction rather than to the local horizontal, since

in the former case the vertical velocity error at the end of transfer is partially
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compensated by a locally opposite application of velocity during the impulse

(i.e. 2 /s2/I is of opposite sign

to 8€ 2/8r 1 ). The effect of 8eI or 5¢ errors is considerably different from

that of 8VI or 8 r,. Firstly, the increasing effect with increasing transfer
ratio is much less marked ([ae/aOlIkt actually decreases with increasing n,*)

and secondly, the minimum eccentricity error is produced by aligning the

apogee impulse to the local horizontal, rather than to a fixed space direction

(actually (0e/0l)k:° is zero for all value of n).

For the geo-stationary orbit eccentricity derivatives are

= 0.00056 per ft/sec

8(')kz1 = 0.00037 per ft/sec

b(__Igk_ = 0.00285 per nm

( FIIO = 0.0018 pcr nm

ýa_ :0.09 per radian (or 0.0000027 per ft/sec of vertical velocity error)V-i/k=o

O= 1.17 per radian (or 0.000036 per ft/seoc of vertical velocity error)

OIAk=o = 0 (or zero per nm of range error)

( )kL 1 = 0.46 per radian (or 0.00012 per nm of range error)

VWe can see from these figures that horizontal velocity error (8VI) has a

larger effect upon final orbit eccentricity than vertical velocity error

(V1 801) even for k=1(apogce impulse aligned in space), which is the case most

favourable to 5VI and least favourable to 80.

,:lThe suffix k=o refers to the system with the apogee impulse aligned to

the local horizontal, while k=1 corresponds to space alignment (see Appendix C,
para. A3.2).
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Similarly radial position error (8r 1 ) has a larger effect than range

position error (r 1 80 1 ).

4.3 Post-orbital corrective velocities

Before discussing the numerical values (Figs.16, 18, 21 and 23) it is

appropriate to review the possible implications of corrective velocities upon

a practical communication satellite launching system.

Firstly it must be noted that orbital period must be corrected to a very

high degree of accuracy, since relative station keeping between individual

satellites in the complete system must be maintained to within a few degrees

over a period of several years. Since orbital period is directly related to

mean radius (e.g. Ref.5), this implies that any initial mean radius error (8a)

must be subsequently corrected to an extremely high degree of accuracy. In

fact the final accuracy must be of the order of a fraction of an inch per second

(in terms of velocity error) so that 8u is, in practice, a good measure of thea

contribution that can be expected from first injection errors (other contribu-

tions can be expected from errors in the impulse itself, but these are not the

subject of the present investigation). It must be remembered that 8 u isa

calculated here on the basis of tangential impulse, so that it is essential

that practical post-orbital corrections should be capable of representation by

such impulses.

Regarding correction of initial eccentricity error (be) the situation is

by no means so well defined. Residual eccentricity errors result only in cyclic

station keeping errors (an eccentricity be produces a sinusoidal phase error of

amplitude ±28e and period equal to that of the nominal orbit). Some degree of

cyclic error may be permissible in an actual communication system, although this

will depend upon such details as the permissible movement of the ground aerials.

Therefore the values of 8u given here represent an upper limit to the correctivee

velocity that would be required.

Turning now tothe present results, let us examine bu and bu required
a e

from an initial error 8V1 (Fig.16). Generally speaking both au/WVi and au/aV

increase with increasing transfer ratio, but with some slight variation to this

rule for n between I and 2. For a synchronous orbit 8u is larger than 8u whena e

the apogee impulse is aligned in space, while the reverse is true if the impulse

is aligned to the local horizontal. As is explained in Appendix C, 8u > 8ua e

implies that the perturbed final orbit does not intercept the desired nominal

circular orbit, while 8u < 8u implies that interception does occur. Further-
a e

more, if Su > Su it means that eccentricity error can be nulled during the
a e
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mandatary process of orbital period correction. Also the positive margin

between 8u and 8u allows some additional vertical velocity error to occur
a e

(e.g. from mis-dircction of the apogee impulse) and still permit eccentricity

nulling within the capability of 5u aa

From Fig.16, au /aVI = 2.2 in a synchronous orbit. This emphasizes the

importance of keeping uncorrected first injection forward velocity errors as

small as possible, since their effect is magnified in relation to post-injection

velocity requirements.

For an initial vertical velocity error (V Iel) (see Fig.18), no correction

is necessary for mean radius (Su = 0), and the correction for eccentricity is

quite small (i/V 1 aue/aGI = 0.18 in the most unfavourable impulse alignment

case).

For an initial radius error (8r1 ) (see Fig.21), the corrective velocities

are similar in form to those for 8VI. In a synchronous orbit

au
a _11.5 ft/sec per nmarI

and the eccentricity correction is slightly larger for the case of horizontal

impulse alignment, a-nd smaller for space alignment.

For a range error (r 1 86¢1 ) there is no period correction required, and no

eccentricity correction in the case of horizontal impulse alignment. For the

case of space alignment &ue/r I I = 0.62 ft/sec per nm (synchronous orbit)

indicating that the effect of range errors is considerably smaller than that

of height error.

4.4- Orbital errors and. corrective velocities in the Drescnce of multi
input errors

In any practical launching system errors will exist in all four co-ordinates

at the first injection point (in addition to errors of the apogee impulse).

Usually these individual errors will be defined statistically and it is desired

to evaluate the effect of such errors upon final orbit parameters and corrective

velocities. Such effects will again be derived in statistical form. Often it

is possible to suppose that the "input" quantities are normally distributed, and

uncorrelated with one another. If the "input"/"output" relationships are linear

it is easy to show that the "output" quantities are also normally distributed and

the standard deviation of the "output" is readily obtained in terms of the "input"

standard deviation and the appropriate linear relationship. If the relationship

is non-linear the statistical evaluation of "output" is more complex and no
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general solution exists. Unfortunately, such is the case in the case of our

"outputs", eccentricity (8e) and corrective velocity (8ue), This problem has

already been encountered in Ref.7. No solution is suggested here, the sole

object of mentioning it being to advise exercise of caution in applying the

results of this report.

5 CONCLUSIONS

(1) Derivatives have been evaluated, relating errors (position and

velocity) at the start of a Hohmann transfer to those at the end. Such

derivatives are of use in the detailed investigation of the accuracy of any

guidance system employed in injecting satellites into high circular orbits

(such as those required for communication satellite systems).

(2) These derivatives have been used to determine the effect of single

errors at first injection upon the parameters of the final orbit, and the

resulting necessary post injection corrective velocities. For large values of

transfer ratio (final orbit radius divided by first injection radius) it has

been shown that horizontal velocity errors are considerably more significant

than vertical ones, while radial position errors have a larger effect than

range position errors. As an example, for injection into a geo-stationary

orbit cach unit of horizontal velocity error will require at least 2.2 units

of post orbital correction and each nautical mile of radial position error

needs 11.5 ft/sec correction after injection.
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Aipe ndix A

PROPERTIES OF THEi HOHMaMTRANSFER, NCLTUrIN' ELLTIONISBETIUEEN

SMA1LL PERTUTRBATIONS AT TEE BEGINNTING- AND END OF TEE

TIURASFER EPISP_ DERIVED AN ", POLJaR AYIS SYSTEM

A.- 1 eneral yroperties of the Hohmann transfer orbit

The ideal transfer (described in Refs.1, 2) consists of ballistic flight,

extending over half of an ellipse, commencing at perigee and ending at apogee

(Fig.2). The initial and final velocities of the transfer are defined in terms

of the earth's gravitational constant (ti) and the initial and final geocentric

radii (rI and r 2 ). Th-e appropriate relations are

V1 V ~ N = ý2n (A.1)-'1 = V 1 ,il 0 V 1 'n+1

12
vp V°+1 (A.2)

where V = N/r 1 is the circular orbital speed at the initial radius r

and V = jI/r2 is the circular orbital speed at the final radius r2&

The parameter p has been previously used in Ref.4 and is defined as the square

of the ratio of speed to the circular orbital speed at the appropriate radius.

It will be noted that

V
2

-- = n~
V2 V2

02

where n = r 2/rI

The dimensionless parameter n (ratio of final to initial radii) will be

termed the transfer ratio, and all derivatives relating initial and final

perturbations will be expressed as a function of this quantity.

The transfer time is given by T0 /2A, T being the orbital period of the

transfer ellipse. Now orbital period is related simply to the mean radius of

the orbit5:-

T = 2,7- (A.3)

0 a2

where a =-:f(r I + r 2) (A.4)
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The establishment of a circular orbit at radius r2 is effected by adding
a locally horizontal velocity impulse (of magnitude V 0-V2 ) on arrival at the

end of the transfer.

A*2 The effect of a small velocity perturbation 8VI at the start of transfer

Consider the situation presented in Fig.4. Point S represents the start
of the transfer and point E is the end point of the nominal (i.e. unperturbed)
transfer. Now point A represents the apogee of the perturbed transfer ellipse.

As illustrated, A is shown for a positive perturbation in VI • Since A will

occur later in time than E, the actual perturbed transfer will end at point E',

assuming the impulsive velocity (V 0-V 2 ) is added at the instant corresponding

to the end of the nominal transfer.

A.2.1 V and r perturbation at end of transfer

Let 8t be the perturbation in the half-period of the transfer ellipse, due
to initial perturbation 8VI . Since i = 0 at point A, the difference of radius
vector between A and E' is of order i:(8t) , where * is described near to apogee.
Since 8t will be proportional to 8VI (for small 8V ), we can neglect the differ-

ence between radius vectors at A and E' when evaluating derivatives describing
the first order relationship between 8V and radius perturbation at E'. Similarly,

since radii changes between A and E' are of 2nd order, compared with radii changes

between E and A, we may also conclude that to a first order the velocity magnitude
perturbation at E'(8V2 ) equals that at A. This follows from the conservation of

total energy (kinetic plus potential) between A and E'.

We may therefore conclude that the velocity and radius perturbations at
El are equal to those at A, provided that 8VI is small. Let us assume that the

perturbations at A or El are 8V2, 8r 2 respectively. Then from the conservation
6

of angular momentum between perigee and apogee , we have

V1rI = V2r 2  (nominal case)

(v1 + 6vI) rI = (v2 + 8v2 ) (r 2 + 8r 2 ) (perturbed case)

By differencing these equations:-

rI8V I r28V2 + V2 8r 2 (A.5)

Note that again we have neglected the second order term 8V2 br2
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Similarly from the conservation of total energy between apogee and

perigee,

-I.; V2 2 -r2 (nominal case)

-f(v1 +6V) 2 -+ - (V ) 2  -I + (perturbed case)

Again, by differencing and neglecting 2nd order terms

V 8V IT 8V + br(A6
1 1 2 2 2 2 . (A.6)r 2

By solving equations (5) and (6) simultaneously,

V 2V Ir\221

(r, 2)
8vv2 = 8•1  2 (A'7)

2 22>
r 2

and

2 V2rlr 2

2 1 2 r (.8)

The derivatives resulting from these two equations can be written in a

more convenient, and non-dimensional form, using the formula for start and end

velocities as given in equations (i) and (2):-

aV 2  (2 + ~~ (A.9)

"Ir r 2n(1+n) 3  (A.10)

r d

A.2.2 0 and .certurbation at the end of transfer

We have already seen that the apogee of the perturbed transfer ellipse is

attained at a later time than the end of the nominal transfer (for positive 8V )°
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This is because the mean height of the perturbed transfer ellipse is higher

than that of the nominal one. If the perturbed apogee occurs 8t later than
1 8T

that for the nominal, then bt = f o, where 8T is the increase in orbital0
period of the perturbed ellipse. Using equations (3) and (4) it is possible

to relate 6t to br2 and hence to 6V (for small perturbations). The result

is

2

bt = 8V1  I n (1+n) 2 . r (A.11)'4

Now one of the equations of motion describing ballistic flight is

VO = - cose +Zcos err

Also 0 = 0 at point A, so that at El

8e28 (A.12)

2

Combining equations (1i) and (12) we obtain the following non-dimensional

derivative relating terminal climb angle error to initial velocity error:-

aeo - (i+n) 3/2 (1-n) . (A.13)Vo

To obtain 802 at the end of the perturbed transfer, we multiply -02 by 8t (the

negative sign indicating that 8¢2 is negative for positive 8VI). Again we0

obtain a normalised derivative (using ¢2 = Yr2):"

V 0 , /2 4 +• 3  (A.2(-)

The derivatives given by equations (9), (IO), (13) and (14) are plotted in

Fig.1I.
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A.3 The effect of a small climb ath ~erturbation at the start of transfer

This situation is presented in Fig.5. Point S represents the start of

nominal and perturbed transfers. E is the end of the nominal transfer and P

is the perigee of the perturbed transfer. For a positive 80 1 perturbation, P

will occur before the start of transfer (as illustrated in Fig.5). Let P occur

at a time -8t (i.e. 8t before start, where 8t is not related to the bt used in

para. A.2). Now from the equation of motion used previously, i.e.

VO - cCos e + Cos0r
r

o near perigee equals (V -/r I/V1 which is positive, so that

6 1
at = near perigee

i.e*

8t = - 1v1  (A.15)
-2

Now the radius r at perigee P is of the form

rI - K~t 2

22

i.e. of the form r - K50 2, so that to a first order the perigee radius is

unaltered from the nominal value rI. Also the total energy of the perturbed

transfer orbit is unaltered from that of the nominal one since the potential

energy is unaltered and the velocity vector at S is only changed through a small

angle 801 • It also follows that the orbital period is unaltered as is the

apogee radius (to a first order).

Let A be the apogee of the perturbed transfer (at radius r 2). This

occurs at time (T,/2 - at) after start of transfer. Point E' represents the

end of perturbed transfer, where E' occurs at after apogee A. (As previously,

we are assuming that the perturbed transfer terminates at the same time instant

as for the nominal transfer, i.e. T /2 after start.)

A.3.1 V and r perturbation at end of transfer

Since the total energy, perigee and apogee radii are identical for nominal

and perturbed transfers, V and r at point A will be identical to the values at E.
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Also, since Et occurs at a time bt after A, the radius at El will differ from
2 2

that A by a term proportional to t J, i.e. proportional to 6e I Hence there

is no r perturbation at E' compared with E, to a first order. Also, since

there is no change in total energy due to perturbation there is no V perturba-

tion at E' compared with E. \7e can simply write:-

' _ v2 0 A.•

v0  aet (

�er , 0 (A.17)
60 1

A.3.2 e and perturbations at end of transfer

Near apogee, from the previously used equation of motion

0 V2

2

0
so that at Et, 802 equals 0 8t. From equation (A.15) this gives

2V2

20 2 2

Using the previously established relations between V,, V2 , r, and r2 this

reduces to the dimensionless form:-

2 = (A.18)

Referring to Fig.5, the angular range perturbation at El is 802, where

8¢2 = -8a + 8P3.
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Now

St v•
8 = St x angular velocity near perigee -

r1

and Sf = 8t x angular velocity near apogee = bt V2
r 2

So that

V vi
5¢2 = 6t r lr(.9

Substituting for St from (A.15), we can obtain the dimensionless form

I =-2 (A.20)

The derivatives ce02 /a0 1 and ao2/a 01 are plotted in Fig.12.

A.4 The effect of a small radial perturbation at the start of transfer

Fig.6 illustrates the geometry of the nominal and perturbed transfer; S

is the nominal start point and S' the perturbed one. E represents the nominal

transfer end and A the apogee of perturbed transfer ellipse. Since A occurs at

time (To/2 + st), once again we have the perturbed end occurring at E', some

distance before A.

As was shown in para. A.2, the V and r perturbations that exist at A are,

to a first order, identical to those at E' since E, is close to apogee.

A.4.1 V and r -erturbations at end of transfer

Let the perturbations at A (or E') be SV2 in velocity and Sr2 in radius.

Pursuing the same technique as was used in para. 1L.2.1 we have, from the

conservation of angular momentum, and total energy

VI r V2 r2

VI (rI + r I) (V2 + 8V2) (r2 + 8r)2

giving

V1 Sr = r 2 6V2 + V r (A.21)
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and also

, -/ rl+ 1  = (V2 + .V2

2V2
2I Wir 1 +br 1  2= /r+8

giving

W/r2 8 rr V2 6V2 + •/r 2 8r2 (A.22)
1 1=V2'2+'I22

Solving equations (A.21) and (A.22) simultaneously we obtain the dimensionless

derivatives: -

. = 2 2 1, (A.23)

=r - n(n + 2) 
(A.24)

arJ

A.4.,2 0 and_ Aperturbations at end of transfer

Since A occurs at time T0 /2 + 8t, where 28t = 8T, the perturbation in

the orbital period of the transfer ellipse, we can obtain 8t from equations

(A.3), (A.4) and (A.24):-

= 8r P~ 2in (A.25). 1[• 2

But the perturbed end occurs at time To/2, so that at E'

0
80 = -Onear apogee x 8t

But

r 2V

2
so that

Ir5 V2

802 = 4rI 1 21 2 _( 2)

2
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This can be reduced to the non-dimensional form:-

2 35K (n-i) (n+l)2 (A.26)
1 8n In

Also, the perturbed transfer end occurs at an angular range with

perturbation

80¢2 = -8t x angular velocity near apogee

But the angular velocity near apogee is V2 /r 2 , so that

V
v0 -8t I (A.27)¢2 r -& 2 .

Substituting (A.25) in (A.27), we obtain the non-dimensional derivative

¢2 3•(+n)2 (.8
'I arI 4 n 7n-

The derivatives from equations (A.23), (A.24), (A.26) and (A.28) are plotted in

Fig.13.

A.5 The effect of a smalan~ular ran perturbation at the start of transfer

The effects of this initial perturbation are simple to visualise (see

Fig.7). Since the apogee and perigee radii and the corresponding velocities

are independent of the angular position at first injection it is reasonable to

conclude that the only perturbation to the transfer ellipse is in respect of

the orientation of the major axis. This resulting change in orientation equals

the initial perturbation 6.

Thus, quite simply

I aV 2I
= 0 (A.29)

1 2 i
S- = o (A.3o)r• aoi
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0] 2 
(A.31)

'-.2 (A.32)
€I
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A edix B

DER.IVATIVES RELATII12- PERTULBLTIOiTS AT START OF TRANTSFER TO THOSE

AT T'11E END: CONVERSION 7,RO•, POLAR TO CA,.RTESIAN AXES SYSTEMS

B.1 Definition of axes sV-stens

The relevant systems are illustrated in Fig.1. In the polar system posi-

tion is defined r (geocentric radius) and angular range 0 (the datum of which

is arbitrarily taken as the vertical at the point of commencing the nominal

Hohmann transfer). Velocity is defined by magnitude V and climb path relative

to local horizontal, 0.

In the cartesian system, position is defined by two co-ordinates x. and z.

These axes are orthogonal and inertially fixed. The origin is at the earth

oentre 0 and Ox is parallel to the velocity vector at nominal transfer start.

Consequently Oz is parallel to the 0 datum in the polar system and is arbitrarily

considered to be positive when vertically upwards at this point. The nominal

start and end conditions for transfer, in the two systems are obvious, and are

illustrated in Fig.2 for the polar case. In cartesian axes the conditions are

given in Fig.3, and are as follows:-

Initial x x = 0

Z z = r

o 0 V

o o0
=z 0

Final x = x2 = 0

z= Z2 :-r2

0 o

o 0o oz2  = 0

B.2 Relation between Dolar and cartesian perturbations

These are shown in Fig.8. At the start of transfer the relationships are

(for small perturbations)

8r, = 8z (B.1)

-= 1 5x. (B.2)
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8V = 8I (B.3)

86 = -L b°I + -I 8xI (B.4)
V, 1  ri

The above relations are derived from geometrical considerations together with

the assumption that sin 8eI n 8eI and cos 80 - 1.

At the end of transfer the inverse expressions can be derived by similar

considerations: -

8x2 = -r 2 8¢2  (B.5)

8z2 = -br2 (B.6)

8 - -87 (B.7)
X2 2(B7

0802= -V2 802 + V2 802 2 (B.8)

B.3 Basic expressions relatina cartesian and polar derivatives

In polar co-ordinates, initial and final perturbations are related by the

following expressions

8r2 +r2 8rr2 r2

8 2 ar I2 I ao2 I V1 1 I I

•v2 + 602 + 2 V 2

6V2 5r1  i+ a•8 + V2 + i V2 801  (B.11)

=ae 2  ae 2  + a02 + a02 61 •
2  6r I d% I aV (B.I)

Substituting in equations (B.9) to (B.12) for the expressions of bri, 801P
6VV, 86, and 8r2P 802-' 8V2, 82 obtained in equations (B.i) to (B.8) we can

now relate start and end perturbations in the cartesian axis systemo i.e.
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x (r 8x rr2 8¢2+
2 2 WT I I 8¢2 12 1 1 Ir I" I I

(B.13)

ar 2 0 ar2 ar 8r 2
2 8 ..8... + 8x -. 8x (0.14)

z2 aVII TrI1 301 TrI r\I a

av 2 o z V 1 6oI + 'V2 I 8x (B.15)

8a82 + x2 8x2 (2

z xI 8x 8 1z2 2 aV, z2 2+oV2 ar

a, 1 o I r° ao
'2 fl C1 6 j -x, (B.16)

+V o 2- 0,V I r, 8ax 1+V TOIr

But by definition

ax ax ax ax
8 _ -a~ 8x+-- + 2ai8X + -28 O
2 ax I az 1 0 1 0 1

-i1 axi azi

az a 2 az 3z2
2 ax1  I az 1  0 0~ '1

etc,

By equating terms we can first relate cartesian and polar derivatives in the

following dimensional form: -

ax2  r2  ao~ ao

ax2 8¢2
-2 r - ar2

az 2 Y
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a)X'2  2

aI I

ax2  r 2  a02

az IaI

aCaX. ar

axaO 1 0,

az 2ar2

az I rI

az2 ar2

0axv
axI

az 21 ar2
0 V, aE)az I

2v ae2

_ax av2
azi arl

0
ax av,

8XI

ax2  I aV2
o V, asaz1 I

a0  V r 'a j 02  ausv2] V2  8' 0"2  as(ý2]- = - _ -T _- - -_ax1 r~ Ias a r1 I a 1
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0

V u [r952 'r'23

0

oza ae2
ax 1  2 vj

0a z 2 _ V 2  a2  a e 2 0]

azI

B.4 Normalised cartesian derivatives

These cartesian derivatives can be normalised, using the previously

established normalised polar derivatives and the various relationships between

V1, V2 , r, and r 2 (see Appendix A). The results are as follows:-

ax2ax = n+2
ax1

ax2 ýa!i+n) 2

-- ý: 2 (0 +n) 3
Vo ax2  /21+)

0 4ax1I

Va
0 1a2 /21n3

1 azI

az

al 8 _n (n+2)
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o az - -2 , 2n(l~n)3
r1 2°

-0

I ax1

oI azx2
-1 = 0r 0

1 2

Vo zI A 2
V ax 0

0

0

o 1

r I axz2 :__•2(~)/
Vo 0Z az "2 (1

'°2 (2,• (+n

axI
0

ax

0

0

ax

0
r, az

-1 2 - (I+n)52
V 0  ax 3 1

0r 1 az 25 2

0

-z 2 (1+i2n)

0 2az n
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Alpend•i x C

DERIVATIVES RELATINCG ERRORS IN FIIaL (NOMilNALLY CIRCULAR) ORBIT

TO ERRaORS AT START OF H-OHALIN TIAIL\SFER - FINAL IMPULSE

ASSMMeD TO BE APPLID WITHOUT ERROR

C.1 Errors in the orbital parameters of a nominally circular orbit, expressed
in terms of njection errors

We shall consider only the effects upon two orbital parameters, namely

mean radius and eccentricity.

General expressions for these parameters, in terms of cut-off conditions

have been given in many forms, but equations in a convenient manner for our

present purposes can be found in Refs.5, 6. They are:

Mean radius

aa - 2-p

Eccentricity

e ( (1-))2 + p(2-p) sin2 0 (C.2)

where

p rV 2  (C.3)

[I

is a non-dimensional parameter already introduced in Appendix A. r, V and 0

describe position and velocity at injection, in a polar axis system (see Fig.1).

For injection into a perfectly circular orbit p= I and O= 0. Let us now

consider the effects of small errors in r, V and 0 upon the resulting errors in

a and e.

Let the small perturbations be 6r, 8V, 60 respectively. Then, from

equation (C03), and neglecting second order terms,

8r 28V ( .+
p= 1~ + •-+-x(04

r V
0

where V0 = I•i/r is circular orbital speed at radius r.

Substituting in equation (C.I) we get
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a + 8a = r + a = 8r 26V

r V

Hence

8a = 28r+ Vt- (0.5)V
I 0

be = v+ + 2 (C.6)

It will be noted that &a is independent of 8e. This is to be expected since

a is a direct measure of the total energy of the orbit, which depends upon V

and r, but not upon 0, the direction of the velocity vector.

In equation (C.3), the positive sign is taken outside the square root.

This is because injection perturbations can only produce positive eccentricity;

negative eccentricity has no physical significance.

C.2 Relation between perturbations at end of Hohmann transfer and those at
injection into final orbit

We have already seen, in Appendix A, that the conditions at the end of

the Hohmann transfer are as follows:-

Quantity Nominal value Perturbation

V v2 6v2

0 50

r r br
2____ 2

' : 2

Following the application of an impulsive velocity at the end of transfer

the position parameters (r, 0) will not change, but those describing velocity

(V, 0) will, and the resulting velocity vector must be defined before we can
formulate the injection errors into the final (nominally circular) orbit. The

vector addition of velocities at the end of transfer is described in Fig.9.

Vector I represents the velocity at end of transfer (V = V2 + 8V2, : = 602).
Vector 2 represents the impulse added, and since this is assumed to be perfect

(i.e. the same as that required for nominal transfer) its magnitude is (V02-V 2 )
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However, its direction can be defined in two ways, both of which are correct for

the nominal transfer case. The first way is to define the direction of impulse

relative to the local horizontal at the end of transfer. Obviously the impulse

(V0 2-V 2 ) should be applied parallel to the local horizontal and we shall assume

that in the perturbed transfer it is still applied parallel to the local horizon-

tal (such would be the case if, in practice, the apogee rocket were aligned by

means of horizon sensors). The second way is to define the direction of the

impulse as fixed ins2e, and to assume that this inertial direction is main-

tained even in the perturbed transfer condition. (This would correspond to the

practical case in which an inertial reference, such as a gyro or spin stabilisa-

tion was used to align the apogee rocket.) Clearly the space-fixed direction

along which the impulse (V 2-V 2) would act is parallel to the local horizontal

at the end of nominal transfer, but in general this inertial direction does not

coincide with the local horizontal in the perturbed transfer condition.

Referring to Fig.9 we see that the velocity vector after adding the impulse

(vector 3, which is the sum of vectors I and 2) has the following properties:-

Magnitude

(v2 + 8v2 ) + (V v2) = V + 8v2

(assuming 80 2 , 802 are small so that cos 80 2' 003 2 C ).

Vertical component (relative to local horizontal)

(v2 + 5V2) 802 + X(V - v) 22

where K = 0 corresponds to the case in which the impulse is aligned along the

local horizontal

and K = I corresponds to the case in which the impulse is aligned in a space-

fixed direction.

The resulting climb angle 60' is given by
2

= vertical velocity component

2 V
02
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i.e*

V -V
V2 o 2 v¢ = - 8o 20 + K (I ) , 2

be, -Vo2 2
2 V 2

(neglecting second order terms).

We can now tabulate all four perturbations at injection into the final orbit:-

Quantity Nominal value Perturbation

V V 8
v_____ 02 __________________

oo,(i-VT) 089

r ro2 8r 2

i 6€2

C.3 Relations between errors at start of transfer and errors in final orbit
parameters-

C.3.1 Mean radius

Using equation (C.5) and the tabulation of perturbations at injection

into the final orbit we can derive the mean radius error of the final orbit,

i.e.

2r2

ba = 28r + _ 28 (C.7)2 V 202

Consider as an example, the effect of a perturbation 6V at the start of transfer.

Then

ar2
8r 2 = av2 6V

i2 82 a V I

where the derivatives 6r 2/aV, 8V 2 /aVI have been derived in Appendix A.

Substituting these expressions in equation (C.7) we get:
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8a r 2r av
ba - 8V (2-Z + Vo2av,\ 1 v 0 2 ý

so that

aa = r2 2r2 aV2
avi - v1  V 0 V1  (c.2)

This relationship between derivatives can be expressed in a more convenient

non-dimensional form

-Vo ar aV

i.e. 8a 2 2ri (222 (C.9)
r 3V I jn, ~

- I -( r-ýI v

This expression is derived by remembering that

2
r2 01
r 2 n (see Appendix A)

o2
0 2

Similar expressions relating mean radius error to other perturbations at the

start of transfer can also be derived by a similar process. The results are

as follows:

I 8a I 1 " r 2\ + /V2 av
r1  ao1  2 ely ae1)+nfn I ae (C.I0)

\i/ii

r a - 2.-= + 2) (c.12)

r~~ ) rnv av 1 /

I aa I

Two points are of immediate interest. Firstly, mean radius error is, to a first

order�, independent of K (the method of aligning the impulse) since the direction

of this impulse only effects vertical velocity at final injection. Secondly
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2( aa\ _/ aar 1a0 1 / = 0 for all values of n

since in Appendix A it was shown that ar 2/6e 1, aV./ae, ar./ao1 , and aV2/a,
are all zero.

The results of equations (C.9) and (C.11) are plotted in Figs.14 and 19

respectively.

C.3.2 Eccentricity

Using equation(C.6) and the tabulation of perturbations at injection

into the final orbit we have the eccentricity of the final orbit, i.e.

/r2 28V 2 \2

8e + i) + [K Ir-/,], . (C.13)

Consider now the effect of a perturbation 8V :-

we have 8r = a2 8VI
2 av2

aV2

'V2 = -9V 'VI

8e 2 8vI

2 771  1

and 2 = 8V02 av, I

Giving

rV 2 ae a2\2
8e I (r2 [+.. 72] '--¢2) (C.14)

The sign on the right hand side of equation (0.14) needs some explanation.

Clearly, since negative eccentricities cannot exist, the positive sign must

ýipply if 8VI is positive and the negative sign is used if 6VI is negative.
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We can therefore define 8e/aVI as

( 1 ar 2 2e aV 2\ 6 ) 8
+j - - + + 2f-2 KV , 7ri a, •V• o av) a v K, -% •

2 0 2'

provided that the eccentricity is obtained from this derivative using

( e \be = Mav) 16VI I

rather than

Qe = .I-)

As in the case of mean radius error, the eccentricity derivative can be

expressed in the dimensionless form

V L ar 2 - a26 2

2F () 1(.~ ) + v +K (I~4 (Vol yV-2]
V 01l "V + 1 "2) +l-/_v,

(c.15)

and similarly

I e ~ a V 2 \/ ar2~ 2 F ' 0 'K1- a 2\-
[21-n~ ~~ '7)+i/I p2 ý+K Ir

(C.16)

(rae f' (I ý2>1)+r r2 (12) (+ 2]

•.. (C.17)

ae 2 v2)r 2 /"A0/I 02. -. 28[21L 2(V I7-] [ 2 ( + K (I) (t-)]
(C.18)



Appendix C 37

Equations (C.15) to (C.18) are plotted in Figs.15, 17, 20 and 22. It should be

noted that (ae/aoI) for the case of the apogee impulse aligned to the local

horizontal (K= 0) is zero, since the only non-zero term in equation (C.18) is

802/a¢I (see Appendix A).

C04 Impulsive velocities reguired to null mean radius and eccentricity
errors of final orbit

C.4.1 Nulling radius error

Mean radius error may be nulled by application of a post injection

tangential impulse. For an orbit of small eccentricity it is of no consequence

at which point on the orbit the impulse is applied, and provided it is applied

along the direction of motion the resulting change in mean radius is given by

2rbat :: 8u .(c.19)
V a
02

This formula is provided by an examination of equation (C.5). 8u is takena

here as the corrective tangential velocity and in order to null any initial

error ba, 6a' must be made equal and opposite to ba.

Therefore
V

02
bu = - I18al (C.20)

a 2r2

ba appears in the modulus sign since, for practical purposes, we are at present

concerned with evaluating the magnitude of the impulsive correction rather than

its vectorial value. Of course, if the initial error be is positive 8u must

be applied in a retrograde manner, while if it is negative the required correc-

tion will be forward.

Using 8a = (3a/aVI) 8VI, for an initial velocity perturbation and substitut-

ing this in equation (C.20) we get

V

02 18a 2r 2 a

so that

a
8ua 6 8 (0.21)

where

V

S 2 1(C.22)
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We note that 6 u must be evaluated using the modulus of the input perturba-a

tion. Again, this is because we are concerned with evaluating the magnitude of

the velocity correction, which is positive for either positive or negative inputs.

Equation (C.22) may be expressed in the following non-dimensional form:-

du V

aua o( 1 a (C.23)

1 2njn di

and similarly,

au( 1 a'1 I L (Ca24
do 2n n Kr1  3)(2)

a) 1 Kar (C.25)

Vo arl 2n~n 71,

au1 l a (C.26)
V 0 ao1  2n1'f1n AýrL, Tat'

These results are plotted in Figs.16 and 21. a ua/a6 and aua/d¢I are both zero

for all values of n.

C.4.2 Nulling eccentricit, error

A tangential impulse can also be used to null a small eccentricity error.

The magnitude of such an impulse, 8u is given bye

V

8u 0 be . (C.27)e 2

This result is seen from equation (C.6). It is interesting to note that if

eccentricity error was corrected by a vertical impulse, rather than a tangential

one, the velocity required would be twice as large, since be = vertical

velocity/V . Eccentricity error can be reduced by either a forward impulse at

apogee or a retrograde impulse at perigee.

From equation (C.27) we can see that
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au a V02.2e 2 (C.28)

7I 6VI * 2

Again we must remember to evaluate 8 u from the relation
e

C)u

8tI = -2 j8v1me : a' I 1

rather than

au8u = _2 5V
e 8V II

Equation (C.28) can be expressed in the non-dimensional form:-

01a (C.29)

and similarly,

V ( n ) I _e) (C-*30)I!

(L ) = • ri ,) (0.3"1)

= (
0~ )

7-e 8 (C.32)

It should be noted that there is no need to include a modulus sign on the right

hand side of equations (C.29) to (C.32), since eccentricity derivatives are

already positive. These derivatives are plotted in Figs.16, 18, 21 and 23.

C.4.3 Simultaneous nulling of radius and eccentricity errors

In general this type of correction will require two tangential impulses
8 uI and 8u2 (see Fig.t0). The impulses must be allocated in such a manner that:

(i) the algebraic sum (taking into account whether the impulses are

forward or retrograde) must null the radius error,

(ii) the two impulses must be split between apogee and perigee so that

the nett eccentricity correction equals the initial eccentricity error.

S '- 1 , 3
BYID ' IT J -U
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In Fig.1O(a) the perturbed orbit lies wholly outside the desired circular

orbit and hence both impulscs are retrograde (or forward). Thus the total

impulse requirement in this case is dictated by radius correction and the

eccentricity correction can be accommodated within this requirement.

In the other case (Fig.1O(b)) the pertturbed orbit intercepts the desired

one, and both impulses are instrumental in nulling eccentricity. Thus the

total requirement is dictated by the initial eccentricity and mean radius

correction can be accommodated within this requirement.

The condition that the perturbed ellipse does not intercept the desired one

is that

r 2 (I-8e) + ba > r2

or

r 2 (1+8e) + ba < r2

i.e.

16a] > r2 6e . (C.33)

Comparison of this equation with equations (C.20) and (C.27) shows that this is

equivalent to the condition

au > 8u

a e

as would be expected.

To summarise we can suppose that in general 8u can be either greater ora

less than u e, depending upon the nature of the perturbed orbit. Both mean

radius and eccentricity errors can be nulled by application of two tangential

impulses whose arithmetical sum equals the larger of 8u and 8u , provided thee a

impulses are applied at the correct places.

It will be seen by examining the curves of Figs.16, 18. 21 and 23 that
8 u may indeed be larger or smaller than au , depending upon the nature of the

perturbation.
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SYBOLS

a mean radius of orbit

e eccentricity

K coefficient defining method of alignment of apogee impulse

r2
n =2 transfer ratio

rI

rV2p =--- dimensionless parameter relating speed to circular orbital speed

r geocentric radius

T orbital period of transfer orbit0

8u amagnitude of post-orbital velocity correction required to null meana

radius error
8 ue magnitude of post-orbital velocity correction required to null

eccentricity error

V velocity magnitude

V0 =Nv'-/7 circular orbital speed at radius r

cartesian position co-ordinates

e flight path angle relative to local horizontal

angular range

earth's gravitational constant

Subscripts:-

I point at which Hohmann transfer starts

2 point at which Hohmann transfer ends
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