
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD471246

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors; Critical Technology; AUG
1965. Other requests shall be referred to
Bureau of Naval Weapons, Washington, DC 20360.
This document contains export-controlled
technical data.

APL ltr, 3 Oct 1966



TU. . i.Ji,.i.fi mgpmRm i PPHRRKRI n ,^i»^i HPprn^^Piww'fwiipiTOci!«! 

SECURITY 
MÄRKING 

The classified or limited status of this report applies 

to each page, unless otherwise marked. 

Separate page printouts MUST be marked accordingly. 

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF 
THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS  TITLE 18 
U.S.C., SECTIONS 793 AND 794.  THE TRANSMISSION OR THE REVELATION OF* 
ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY 
LAW. 

NOTICE:  When 
data are used 
nitely related 
thereby incurs 
the fact that 
way supplied t 
to be regarded 
the holder or 
or permission 
may in any way 

government or other dr 
for any purpose other 
government procuremen 
no responsibility, no 

the Government may hav 
he said drawings, spec 
by implication or oth 

any other person or co 
to manufacture, use or 
be related thereto. 

awings, speci 
than in conne 
t operation, 
r any obligat 
e formulated, 
ifications, o 
erwise as in 
rporation, or 
sell any pat 

fications or other 
ction with a defi- 
the U. S. Government 
ion whatsoever; and 
furnished, or in any 

r other data is not 
any manner licensing 
conveying any rights 
ented invention that 



v.,.jaMiuiK^u.-i.lLiu..^.%4iiia>j.l.,ijjuj UUL^ ———"^"^^^»»»«ü™»«««™«««»™ ^^«"■^^^^■üi 

TG-721 

AUGUST 1965 

Cop^y N0.37 

^1 

1'' 

THIS DOCUMENT IS SUBJECT TO 
SPECIAL EXPORT CONTROLS AND EACH 
IRANSMITTAL TO FOREIGN GOVERNMENTS 
OR FOREIGN NATIONALS MAY BE MÄDB 
ONLY WITH THE PRIOR APPROVAL OP 
gHE BUREAU OF NAVAL WEAPONS, 

Technical Memorandum 

THERMAL STRESS ANALYSIS 
OF SANDWICH CYLINDERS 

(  ) 
C/' 

by R. M. RIVELLO 

P P C 
3 ^; - . 

ill 
til OCT U ^65 

THE JOHNS HOPKINS UNIVERSITY ■ APPLIED PHYSICS LABORATORY 



-ln»»wi^^w,,TO,^^.w.^.,M.,,»,,1,j.l..rjiil|..juj,....l,ili.iiW.,.ii.,it; I.,,        wm i      ii ii ~^^mmmmmmmmi^mm^m^mmmmmmimillimilllllllllllllllim^/K 

TG-721 

AUGUST 1965 

Technical Memorandum 

THERMAL STRESS ANALYSIS 
OF SANDWICH CYLINDERS 

by R. M. RIVELLO 

Consultant, Applied Physics Laboratory and 
Associate Professor of Aerospace Engineering, 
University of Maryland 

THE JOHNS HOPKINS UNIVERSITY • APPLIED PHYSICS LABORATORY 

8621 Georgia Avenue, Silver Spring, Maryland 20910 

Operating under Contract NOw 62-0604-c, Bureau of Naval Weapons, Department of the Navy 



T'..r,TV^rTx!!l;P--i-'-.-'il^1'--—■■^■■■.l-  ■r--T-"-".»EfM".'1VlMirT","^l" wmmmimmmmmmm*''f*^m,*sa 

The Johns Hopkim University 
APPLIED  PHYSICS LABORATORY 

Silver Spring. Maryland 

TABLE OF CONTENTS 

SUMMARY „...1 

INTRODUCTION 2 

RESULTS 3 

DISCUSSION. 3 

CONCLUDING REMARKS 6 

APPENDIX A - Derivation of Equations for Concentric 

Thick-Walled Cylinder Theory.. 7 

APPENDIX B - Derivation of Equations for Axially 

Loaded Concentric Thick-Walled Cylinders,,12 

APPENDIX C - Derivation of Equations for Membrane-Face 

Theory , .15 

APPENDIX D - Derivation of Equations for Nonhomogeneous 

Shell Theory 22 

REFERENCES .29 

ii 

, ^wv , J-..1.1.„, 



Thu Johns Hopkins Univenity 
APPLIED  PHYSICS  LABORATORY 

Silver Spring, Maryland 

■■^^^^^^^^^^"■■■■■■■i 

LIST OF ILLUSTRATIONS 

Figure Page 

1 Sandwich Cylinder Typical of Alumina Eadome . 

2 Temperature Distribution    .... 

5     Comparison of Theoretical Results . 

k Geometry and Notation for Concentric Thick 
Wall Cylinder Theory  ..... 

5 Geometry and Notation for Membrane-Face Theory 

6 Geometry and Stress-Resultants in a Thin Shell 
of Revolution  ...... 

7 Coordinates and Geometry of a Thin Shell of 
Revolution ....... 

8 Displacement of a Thin Shell of Revolution 

9 Geometry Showing that dr = (r.. d<P) cos <P . 

30 

31 

32 

33 

3k 

3k 

35 

36 

37 

iii 



-""■-'""'■"'•IWPIWIISHiBi^ t^^mma^—mmmmm 

The Johni Hopkins Univertily 
APPLIED  PHYSICS LABORATORY 

Silvtr Spring, Maryland 

SUMMARY 

Three theories are developed for computing the  thermal stresses 

in sandwich cylinders with a continuous  Isotropie core.    These are based 

upon the following  idealizations:     (1) dividing the cylinder Into con- 

centric constant modulus  sub-cylinders which are analyzed by thick 

cylinder theory,   (2)  treating the faces  as membranes and the core as a 

thick cylinder,  and   (3) using a modified  thin-shell  theory which accounts 

for  the variable modulus.     Results from the theories are compared-for an 

alumina sandwich which is   typical of radome construction.    It is  found  that 

the  thin-shell  formulation results in a simple equation but is  only 

accurate at large values of  the mean radius  to  total  thickness  ratio.    The 

membrane-face equations  agree veil with the  concentric-cylinder theory 

but computational difficulties are comparable  to the  latter method.    The 

concentric-thick-cylinder theory has   therefore been selected to be pro- 

grammed for machine computation.    It may also be used  to analyze homogeneous 

cylinders  in which  the modulus  is  temperature dependent and therefore 

varies  through  the wall  thickness. 

Sm 
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INTRODUCTION 

The aerodynamic heating associated with high speed flight produces 

large temperatures and thermal gradients in missile structures.  Refractor}' 

materials capable of operating at high temperatures usually have low 

strength/weight ratios and are therefore structurally inefficient. One 

method of increasing their structural effectiveness is to employ them in 

sandwich configurations in which the core material is made porous to de- 

crease its density. As an example, laminated slip cast ceramic radoraes 

are currently under development by several companies. The electrical band- 

width and cost advantages that these radomes appear to hold over homogeneous 

wall radomes have been discussed in Ref. (1). The structural advantages 

that such radomes have in resisting aerodynamic and inertial loads are 

also apparent, but the effectiveness with regard to thermal stresses is 

not so obvious and requires quantitative investigation. The work reported 

herein was undertaken to develop the analytical methods to be used in such 

a study. 

Weckesser and Suess have used the cylinder as an analytical model to 

compare the thermal shock characteristics of various materials for homogeneous 
I 

wall radomes (Ref. 2). They find that the thermal stresses are critical in 

the region of transition from laminar to turbulent flow. Since the ratio 

of the cylinder radius to the wall thickness is small at the transition 

point they use thick-walled cylinder theory (Ref. 3) to compare stresses. 

Their results have been found to be in reasonable agreement with limited 

wind tunnel tests (Ref, 4), The cylindrical configuration was also 

selected for the sandwich investigation so that the results could be directly 

compared with the previously determined data for homogeneous wall con- 

struction. 

The theories which have been considered are based upon the following 

idealizations of the sandwich cylinder: 

1, Dividing the cylinder into concentric sub-cylinders with constant 

mechanical properties in each region. The regions are then 

treated as thick-walled cylinders and radial displacements and 

stresses are matched at their interfaces. 
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2. The thin faces layers of the sandwich are treated as membranes 

and the core as a thick-walled cylinder. Radial forces and 

displacements are matched at the junction of the faces and the 

core, 

3, The sandwich is analyzed by the Love's theory of thin shells 

modified to include the effects of the non-homogeneity of the 

wall. 

The derivations for the above theories are contained in Appendices A 

through D. A comparison of the results obtained by using the theories 

is given in the next section, 

RESULTS 

In order to obtain a comparison of the accuracy and relative com- 

putational difficulties of the three theories, thermal stresses were 

determined in the sandwich cylinder shown in Figure 1, The geometry aiyd 

mechanical properties are typical of an alumina sandwich radome having a 

core with a porosity of 677o, The temperature distribution was taken from 

Refo (5) and is shown in Figure 2, Mechanical properties and thermal 

expansion data for the alumina were obtained from Refs, (6) and (7) 

assuming that Poisson's ratio and thermal expansion are not affected 

by porosity. 

Circumferential stresses (CTQ) and axial stresses (CT ) were computed 

at the inner radius, and radial stresses (a ) were found at the juncture 

of the inner face with the core by each of the theories. Results are 

shown in Figure 3 for a range -x outside radii assuming the same thermal 

gradient and wall geometry in all cases. 

DISCUSSION 

The equations for the concentric thick-walled cylinder are derived 

in Appendices A and B. The results in Figure 3 were obtained using 3 

■;i 
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4. 

cylinders, one for each of the face layers and one for the core. This 

development of the problem utilizes the three-dimensional theory of 

elastic bodies in both the faces and the core and is therefore the most 

exact of the three theories. However, it is not convenient to ootain a 

closed font- solution by this method since this would require a general 

solution of 6 simultaneous linear algebraic equations to evaluate the 

constants of integration. The analysis is therefore only practical when 

a digital computer is used to solve the equations for a particular design. 

The concentric thick-wall cylinder solution is also useful in the analysis 

of homogeneous cylinders since it is possible to take into account the 

variation of modulus of elasticity with temperature« This is done by 

dividing the homogeneous wall into concentric cylinders and evaluating 

the modulus in each region at the mean temperature for that region. 

The membrane face theory derived in Appendix C is restricted to those 

cases in which the face thicknesses are very small compared to the radius. 

It assumes that the radial stresses in the faces are negligible compared to 

the axial and circumferential stresses so that a two-dimensional stress- 

strain law can be used. It further assumes that the axial and circumferential 

stresses are constant through the face thicknesses. Uncertainties are 

introduced into the analysis by lumping the faces into membranes at dis- 

crete radii.  It is not clear if the radial stresses and displacements 

of the membrane and core should be matched at the outer surface of the 

face layer, the center of this layer, or at its interface with the core. 

The results in Figure 3j which are for the membranes at the interfaces, 

show good agreement with the more exact concentric cylinder theory over 

the range of radii investigated. While the membrane-face theory results 

in a closed form solution the equations are lengthy and time consuming 

to evaluate. 

The non-homogeneous thin shell theory is derived in Appendix D. The 

development assumes that normals to the reference surface remain normal, 

straight, and unchanged in length.  Radial thermal strains are thereby 

ignored.  Radial stresses are considered negligible compared to the axial 

i 
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and circumferential stresses throughout the body so that the stress-strain 

relations are two-dimensional. Equilibrium is only satisfied on a macroscopic 

scale by the stress resultauts rather than on an infinitesimal basis by the 

stresses. The resulting closed form solution is simple to evaluate but it 

is seen from Figure 3 that it is grossly in error when the radius to 

thickness ratio is small. For the case which was studied the error relative 

to the concentric cylinder solution reduces to 6% for a sandwich mid-radius 

to total thickness ratio of 5 and is less than 4% for a ratio of 10,  It is 

interesting to note from Appendix D that, except in the edge regions, the 

stresses in a thin shell of revolution do not depend upon the shape of the 

shell if the temperature only varies through the thickness. Furthermore, 

results obtained by using an AVCO computer program (Ref, 8) show that this 

is also true when the temperature variation in the mendional direction is 

gradual, in which case the stresses depend only upon the local temperature 

distribution through the thickness and may be computed from Eq. (D.14). 

The behavior displayed by the circumferential and axial stresses in 

Figure 3 at small radii is interesting.  It is seen that the circumferential 

stresses decrease, but that the axial stresses increase. This same situation 

does not prevail in a homogeneous cylinder where the circumferential and 

axial stresses are equal regardless of the radius and both increase with a 

decrease in radius. The reduction of core modulus appears to be effective 

in decreasing the circumferential stresses since it increases the relative 

radial motion between the inner and outer faces. However, significant 

changes do not occur in the relative axial motions except in the edgp. 

regions so that the axial stress in the inner face remains high. The lengths 

of the edge region where reduced axial stresses occur will increase but 

for the length to thickness ratios used in radomes there will still be 

a central portion where plane sections remain plane as assumed in the 

theories. The thin shell theory does not admit to relative radial motions 

and therefore does not show the reduction of the circumferential stresses 

for small values of the ratio of mean radius to total thicknes-s-. 

■! 
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CONCLUDING REMARKS 

Three theories have been developed for the analysis of sandwich 

cylinders.    As would be expected,   the modified  thin shell theory results 

in the simplest equation but gives  large    errors  at values of the mean 

radius  to total thickness  ratio less  than 5.    The membrane face  theory 

is  in good agreement with the concentric thick cylinder analysis but 

requires considerable computational effort making  it impractical for 

repeated calculations unless  it is programmed for machine computation, 

in which case the  concentric-cylinder analysis  is preferable.    As a 

result the theoretical analysis described  in Appendices A and B, which is 

also useful in analyzing homogeneous radomes  in which the modulus  is 

temperature dependent,  has been selected for machine programming. 

On the basis  of  limited computations  it appears  that the low modulus 

core is effective in reducing the circumferential stress at low values 

of  the mean radius  to total thickness ratio but  that the axial stresses 

are not decreased . 

^ 
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APPENDIX A 

Derivation of Equations for Concentric Thick-Walled 
Cylinder Theory 

The non-homogeneous cylinder is assumed to be divided into concentric 

sub-cylinders as shown in Figure 4 so that the modulus of elasticity is 

constant within each layer. To identify the layers they are numbered 

consecutively from 1 for the inner to n for the outer cylinder. The 

inner and outer radii of the ith cylinder are designated by b. and b. . 

respectively. 

It is assumed that the materials are Isotropie and that Poisson's 

ratio, v, is constant in all layers. This assumption does not impose 

severe restrictions on the theory for v of most structural materials 

(within the elastic limit) falls between 0.25 and 0.33. For a given 

material moderate changes in porosity do not affect v and the temperature 

dependency is slight so that this assumption is fully justified in sand- 

wich cylinders made of a single material but with different porosities in 

the various layers. Since E. is constant in the ith cylinder, we may 

apply the Duhamel equations (Ref. 3) for thermal deflections and stresses 

in a homogeneous hollow cylinder to the region. If we assume the ends 

of the cylinder to be restrained against axial displacement these are 

given by Eqs. (c) through (f) from page 409 of Ref. (3). For the ith 

region we obtain 

1+v 
Ui = l^J 

I 
r 

(a  T)rdr + C^ r+Ci2 
r 

(A-l) 

CT      i 
ri = - TTv 

(a T)rdr + h    ( Cil « Ci2 \ 
1+v \ l-2v  ~P7 

(A-2) 
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E. 
 l_ 

1-v (aT)rdr- 
(aT)E.       E 

1"V i+v\i-2v    r
sy 

(A-3) 

(a'T)E. 

1-v 

2vE.C.n 

(l+v)(l-2v) 
(A-4) 

In these equations C.'    and C.„ are constants  of integration which apply to 

the ith region. 

The coefficient  of expansion has been brought under the integral sign 

in writing  these equations  since it is always  permissible to consider aT 

(the unrestrained  strain due to temperature)  as  a single quantity.    As  a 

result a need not be  linear over the range of  temperature changes. 

Since  there are n regions a total of 2n constants  of integration must 

be found.    These constants are determined so  that equilibrium and com- 

patability are satisfied on the faces and  interfaces of the layers. 

Equilibrium on the   inner and outer faces  requires  that 

a      (b.) = -P, (A-5) 
i 

and 

ar    «Vl* = -Pnfl n 
(A-6) 

where p, and p ,, are the external pressures on the inner and outer faces. 
1     nfl 

At each of the interfaces the equilibrium condition 

ax  03i+l) = ar      (bi+1); i=l,2,...,(n-l) (A-7) 
i i+1 

and the compatability condition 

Ui(bi+1) = Ui+l(bi+l); i=1.2,...,(n-l) (A-8) 
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must be satisfied, 

(A-8) gives 

Substituting Eqs, (A-l) and (A-2) into (A-5) through 

P, (1+V) 

U-2V /  1'1  b2   '       E1 
(A-9) 

LJL\C    ■,     -    1_    C      =    (l+v)/^.    -    !nfl\ 
n+1 \ "Vx n / 

(A-10) 

U   c        .4.    C        - 
l-2v ' b ' 

' i+1 

E 
i+1 

E^l-Zv) i+1'1 

Ei+1 :
i+l>2=a+v) Zi   ;   i=l,2,...,(n-l) 

i+1 

(A-ll) 

Ci,l +    ba
i+1      Ci,2 " Ci+l.l " ba

i+1    Ci+1,2 

(1+v) - i = 1,2,,..,   (n-1) 
i+1 

(A-12) 

where 

'i+1 
Ai = ife    ' ^^ (A-13) 

Solution of the 2n simultaneous equations generated by Eqs,   (A-9)  through 

(A-12) gives  the C,,   and C.-  coefficients.    Substitution of these into 

Eqs.   (A-3) and   (A-4) yields (JQ    and a      for restraineä ends. 
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The resultant axial force for restrained ends is 

b 

which by using Eq. (A-A) becomes 

b, 
X-'    I    v I 

R = -2TT 

From Eq. (A-13) we find 

2VE.C., 
i il 

(1+v) (l-2v) 
a 

R = 
TT 

I[Vi vE.C. 
i il 

i=l (l+v)(l-2v) 
(b i+1 -b=)] (A-14) 

To determine the axial stresses for unrestrained ends we determine the 

stresses due to an axial force of -R and superimpose these upon the 

previously determined stresses. The stresses due to -R are (Appendix B, 

Eq. (B-l)). 

a = 
zi 

E.R 
i 

n      f   E. 
; afl=0; a =0 

(b* -b2.) 
J+l J 

In the ith  region the radial and circumferential stresses  for unrestrained 

ends are then given by Eqs.   (A-2)  and   (A-3).    The axial stress  is 

■ 

■v 

aTE, 2VE.C.- 
 i   + i ll    + 
1-v (l+v)(l-2v) 

Ei(R/TT) 

3=1 

(A-15) 5 

\ 
i 
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The quantity A.   defined by Eq.   (A-13) will usually have to be evaluated 

by a numerical integration procedure such as Simpson's rule.    When the wall 

thickness of the  ith cylinder is small it is sufficiently accurate to assume 

that aT varies  linearly through the thickness so that 

aT(r)    = 
(b ̂

-TTT)   |bi+1 aXCb,) - b.cTCb.^) +L^(bi+1) - aT(bt)]r j        (A- 

Substituting this into Eq, (A-13) we find for a thin wall 

16) 

■i 

Ai ~    6(l-v)(b i+rbi D [aT(^>^+r
3bI^+i

+2bi)-toT<bi+P(2bai+r
3bib2i+i

+b3i)] (A-17) 

This equation is poorly suited for numerical computations since it results in 

small differences of large numbers. An equation of improved numerical accuracy 

may be obtained by substituting the relation b,,. = b + t. (where t. is the 

thickness of the wall of the ith cylinder) into Eq. (A-17) which upon simplifica- 

tion becomes 

A. _ 
i - 6(l-v) 

i [aT(bi) (3bi+t.)-toT(bi+1) (3b.+2^)] (A-18) 

i: 

■ 

^,1 
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APPENDIX B 

Derivation of Equations for Axially Loaded 
Concentric Thick-Walled Cylinders 

In the thermal stress analysis for non-homogeneous cylinders given in 

Appendix A, the stresses due to an axial load were required. In this 

appendix we shall show by the inverse method that Eq, (A-15) correctly 

describes the stresses. 

The cylinder, which is the same as described in Appendix A and shown 

in Figure 4, is assumed to be subjected to normal forces distributed over 

the ends which have a resultant tensile force R directed parallel to the 

axis. The cylinder is long so that, except in the immediate vicinity of the 

ends, a state of generalized plane strain exists. The stresses therefore 

only depend upon the resultant of the end forces and not upon their dis- 

tribution. We assume R to be divided among the regions in proportion to 

their stiffnesses so that 

a  = 
z. 

E.R 
i \ 

n 
i   n  ^ E.(b*+1-b*) 

j=l 

a      =crö=Tn  ='r   = 0 
r.   a.   öz.   zr. 
i    i     i     i 

>   (B-l) 

/ 

describes the stresses in the ith region. These stresses satisfy the equations 

of equilibrium 

öa 

or 

ÖT a - a. 
rz.  , r.  9,   r. _! + i +  i   i = 0 

öz       r 

3T 
rz. L 

ba 
rz i = 0 

dr     öz      r 

which apply to axially symmetrical stress distributions in a solid of revolution 

(Eqs. 177, Ref. 3). Eqs. (B-l) also satisfy the following compatibility 

equations (Eq, (g), page 346, Ref, (3) 

:. 

SK: 
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V*  a      .2      (CT      -a,   )+-f-     f|   =0 
r.       r

s     v r. *i. 1+v      or 
i      r i i Ui: 

^a     +i     (ar>  -ae>)+1^ 1 
r 

Ji© 
= 0 

rTa .     1      a3® = 0 

^ T     .I + ^. aü   = o 
rz.      ra    rzi      1+v    araz 

where 0 is   the  sum of the normal stresses, which from Eqs,   (B-l)  is equal 

to a    , and z. 
i 

or53 V3 = ai   + i L. + ai 
-s r    or        a-,2 

is the Laplacian operator for axial symmetry. The boundary conditions to 

be satisfied on the cylindrical faces are given in Appendix A by Eqs. (A-5) 

through (A-8). Eqs. (A-5) through (A-7) are identically satisfied because 

a  =0. Since cr  is the only non-zero stress, the strains are given by 
i i 

the uniaxial stress-strain laws 

va 
z. 

zi= T i 
;  'r. = ee. =- 

The strain displacement equations are   (Eqs,   178,  Ref.  3) 

(B-2) 

äu,       &a        u.      e          äw.      Y        _ 3u.   .  aw. 
=  i   ,    ej  = _i >    z.  =  i   ;    rz.  =  i + i 

or r öz 3z      5r 
(B-3) 

au 
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By simultaneously solving Eqs. (B-l) through (B-3) we find the displacements 

to be 

Ul = 
vRr 

TT  E E.(b3^ -b2) 
j=l y j+i  j" 

(B-4) 

wi = 
Rz 

n 

n ^ E.(b2 -b2.) 
j=l J J+l J 

The first of these equations satisfies the remaining boundary condition (A-8) 

at each of the interfaces of the cylindrical surfaces. The second equation 

indicates that, as supposed, plane sections remain plane. Finally we see 

Eqs, (B-l) satisfy the equation 

b, 
i+1 

R = 2TT 

11 

i=l 

a  rdr 
z. 
i 

thereby assuring a state of equilibrium between the applied force R and 

the internal stresses 

M! 

au 
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APPENDIX C 

Derivation of Equations for Membrane-Face Theory 

In sandwich structures the face layers are often thin compared to the 

core layer. This suggests a simplified theory in which the faces are treated 

as membranes while the core is analyzed as a thick-walled cylinder. The 

geometry and notation are shown in Figure 5. The following assumptions are 

made. 

(1) The temperatures in the face layers are uniform through their 

thicknesses. These temperatures are designated T.. and T„; the 

moduli E1 and E„ are determined at the corresponding temperatures. 

Average temperatures are used when there are gradients through 

the face layers. 

(2) The only stresses of importance in the membrane faces are CJQ and 

a , and these stresses are constant through the membrane thicknesses. 

(3) The core region 2 is a "thick" cylinder, i.e. the effects of radial 

stresses are considered, 

(4) The temperature distribution in the core is arbitrary but E„ is 

constant and is evaluated at the mean temperature of region 2, 

(5) The membrane stiffnesses are lumped at a and b, the inner and outer 

radii of the core respectively. 

As a result of assumption (3) the deflections and stresses in the core 

for restrained ends are given by Eqs, (c) through (f), page 409 of Ref. (3), 

which are 

■r 

u = m    .    lj    aTrär + C,r + 
C-l ^ 

1-v    r / 1   r 

E2  .  1  r^T,,, , E2 ( V - C2l (C-2) ar = -~    >    aTrdr + iTvli^  pn 

f 
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'9 = 
1-v 

oiTrdr - aTEs 
-v 

2 
1+v l-2v ' "? 

(C-3) 

aTEr 

0= - 
2vE2C1 

z      1-v (l+v)(l-2v) 
(C-4) 

From Eqs.   (C-l) and  (C-2),  the radial displacements and stresses at a and 

b are given by 

u (a) = (^ a + ^2 
a 

(C-5) 

u (b) = (1+v) | + C1 b + ^ (C-6) 

1+v   I l-2v 
(C-7) 

CT
r(b)=.V,       E2 r -r— +  

1+v    I   l-2v ^ 
(C-8) 

where 

A = T—j /     aTrdr (C-9) 

Because of assumption (2) the strains  in the inner face are given by 

the two-dimensional stress-strain equations 

(C-10) 
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- 

where v is assumed to be the same as for the core. With restrained ends 

e = 0 and it follows from the second of Eqs, (C-10) that 

i 

\ - Vt\ - <«>i h (c-u) 

Substituting this  into the first of Eq,   (C-10) gives 

Jei =*~1   aQ1+ (l+v)(aT)1 (C-12) ■I 

The circumferential strain in the inner membrane face is related to its 

radial displacement u.. by 

a 
(C-13) 

The radial stress in the core at r = a imposes a bursting pressure on the 

inner membrane so that aQ is given by the hoop stress equation 
ei 

afl   =   £S 

where p,   is  the  inside pressure. 

From Eq,   (C-7)  this may be written 

^(a) + pj 

;   i 

'e, = 
E2a 

1      t1(l+v) 
'A.    cJ+hl 

l-2v a2}     ^ 
(C-14) 

I 

In a similar fashion, for the outer face we find 

E-A     E9b 
ö3  bt3 " t3(l+v) 

/ C, C 

1-2V  b 

P3b 

where p„  is  the outside pressure. 

(C-15) 
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18. 

By combining Eqs, (C-12) through (C-14) we obtain 

Ui = a 

E2a 

vT (l-v) 
1 

l-2v 'i- Pla 
(l-v3) + (1+ v)   (otT)x j (C-16) 

and by the same procedure the radial displacejient of the outer face is 

u3 = b 

EJ^ E,b 

3 3 3 3 

1 
l-2v 

2 
l-2v E3t3 

(l-v2)+(l+v)(cyT)/ (C-17) 

Noting that u, = u(b) for compatible deformations of the faces and core we 

find the following simultaneous equations for C. and C„ by equating Eqs, 

(C-5) with (C-16) and (C-6) with (C-17) 

DCl + EC2 = J 

where 

FCl  + GC = K 

D = as 
Eia ikvl 

E1t1  (1-2V) 

E„a 
E = 1 + ■—- (l-v) 

F = b' [ 

hh 

1 + £3^ (l-2v) 

E.b 
G = 1- /-  (l-v) 

= (1+v) [a3(aT)1 +^- (l-v)J 

[ba^>3- ife a-v)-AG] K = (1+v) b"(aT) 

COB 
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Solving the simultaneous equations leads to the results 

C = (JG - EK)/(DG - EF) 

C = (DK - FJ)/(DG - EF) 

\    (C-18) 

The a stresses in the core for restrained ends are obtained by sub- 
z J 

stituting C. into Eq. (C-4). The resultant restraining force in the core 

is found by integrating Eq, (C-4) over the core area so that 

R= 2TT / a rdr 

= - 2TT 
vE^Cb^) 

(1+v) (l-2v) 

For restrained ends, the axial stress in the inner face is found by sub- 

stituting Eq. (C-14) into Eq, (C-ll) giving 

VaE2  ( Cl 
z, = 1   (l+v)t1| l-2v   a

; (aT)1 E1 
(C-19) 

which produces a resultant force 

R1 = 2nat1 IIT^FJT^ - F! ■ ^Vi] 
In a similar fashion we find 

CT
Z    =    VE2 3      Ti1 

t3 

A 
b 

VE2A 
R3 = 2TTbt:3 | "^b 

[VE. 

l+v \l-2v     b; 

vE2b 

(l+v)t3 \ l-2v 

-   (aT)3E3 

W      -  (CVT)3E3 

(C-20) 

i^äi* 
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The. total restraining force is then 

R = Rl + ^ + R3 

which gives 

^ = -2 [(l-v)E2A + (aT)1E1at1+(aT)3E3bt3] (C-21) 

The sLrcssej for unrestrained ends are determined by superimposing the 

stresses for an axial load of -R, By following the method of Appendix B 

we find these stresses to be 

a = z 

Ei(R/TT) 
a _a. 2E1at1+E2 (b^ -&" )+2E3bt3 

ar = ae = 0 

(C-?2) 

The total stresses for unrestrained ends are obtained by substituting 

ehe stresses from Eqs, (0=22) upon the previously determined stresses for 

restrained ends. The results are: for the inner face 

1      (l+v)t1 \ l-2v SI 
VE9a 

(l+v)^ I l-2v 

,    (C-23) 

-   (aT)1E1 

E^R/n) 

2E1at1+E2 (bd -aa )+2E3bt3 
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' ■■■••.■ 

if: 

for the outer face 

E9b CTe   -  -2_ 
3 ~    t3 

VE2b 

z3=  "TT 

l+v   I l-2v 
[2 
2 

1+V   1 l-2v 

E3(R/TT) 

i5" 11- 
2E1at1+E2 (b2 -aS )+2£3bt3 

T)3E3 
>     (C-24) 

n 

and for the core 

■•■.i 

\- 

r„ = - 

E 
_2 
1-v 

2 
1-v 

(Q'T)E 

cvTrdr + 

•s   a 

Z2 = 

aTrdr - 

2    +      2VE2C1 

i^Eg.+    Jl 
1-v 1+v 

1+v   I l-2v 

A.      '2 
l-2v + 7" 

E2(R/TT) 

1-v (l+v)(l-2v)       2E1at1+E2(b3-a,d)+2E3bt3 

>(C-25) 
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APPENDIX D 

Derivation of Equations for Nonhomogeneous 
Shell Theory 

In this appendix the equations for the stresses  and displacements   in 

a nonhomogeneous  thin shell  of  revolution subjected to a temperature dis- 

tribution which only varies   through the  thickness are derived.    The non- 

homogeneity is assumed  to occur in the thickness direction only. 

The thermal stresses give rise  to the stress  resultants  shown in 

Figure 6.    These are defined as  follows 

N   =     |  a cp       J    cp 

M    = 

dz 

a    zdcp 

Ne= / ae dz 

Me = 

^=  / 
T,     dz 

Yz 

/ 
dg zdz )       (D.l) 

where cp and 6 are coordinates shown in Figure 7 and z is a coordinate 

measured from, and normal to the reference surface (defined later) of the 

shell. The integrals extend over the shell thickness h. 

Force and moment equilibrium conditions for the differential element 

of Figure 6 lead to the following equations (pp. 534, Ref. 9) 

1    \ 

7- (N r )  - N    r    cos «p - r    Q„ + r    r.Y = 0 
dcpcpo 81 T        ocp        ol 

N r    + NQ rn   sin cp + cp    o 9    1 T 

d(Q r  ) 
CP_o_ 

d(p 
+ Zr.r    = 0 

1 o 

— (M    r )  - MQ rn  cos cp - Q    r^r    = 0 dcp       «p    o' 0     1 ^       xcp     1  o 



..Al.rl^^^M.■l^;||i■^.iJ^||JWlWUJ^'llll,|||Wl|UlJ"|»■^-Pn^|^ll■-^lUll^^^-^.^tJ|Jtl-JU. mmmmmmmmmifff!ß ■■■ 

Th« John« Hopkins Univenity 
APPLIED PHVSIC8 LABORATORY 

Silver Spring, Maryland 

23. 

where the radii r and r.. are shown in Figure 7. No external loading is 

applied so that the surface forces Y and Z in these equations are zero. 

The material is considered to be linearly elastic. In addition the 

following assumptions which are usual in shell theory are made: (a) the 

material is isotropic in the surface of the shell, (b) the modulus of 

elasticity in the z direction and the shear modulus which relates T  to 
zcp 

y      are infinite, and (c) the coefficient of expansion in the z direction, 

and the Poisson's ratio which relates the strain in the z direction to the 

strains in the surface directions of the shell are zero. This is equivalent 

to the Kirchoff assumptions that normals to the reference surface remain 

normal and unchanged in length during deformation of the sh6ll. As a 

result the plane-stress Hooke's law equations 

% = i (V VCTe) + aT 

ee = i (ae " VV + aT 1 (D.3) 

apply. Solving these for the stresses gives 

cp  1-v   cp    9   1-v 

E  ,  ,   s  aET CTe = T^? (ee + V " T^ 

(D.4) 

Using the previously mentioned shell assumptions that normals to the 

reference surface remain normal and unchanged in length during deformation 

of the shell, the strains may be expressed as (p. 431, Ref. 9) 

e = e (0) - x z 
cp   cp     cp 

% = vo) - V 
where 6.(0) and eQ(0) are the strains in the reference surface (z=0) and Cp ö 

X. and Xo are  the changes of curvature of the reference surface. 
cp Ü 

(D.5) 
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Placing  these  into Eq.   (D.4) gives 

", = iV [ ^ + -e<0> " z % + ^e'] " fS 

24. 

= iV ['eW + V^-'^^^l-S "s' 

By substituting the equation for a into the relationship .'or N and M 
cp cp    cp 

from Eqs. (D.l) we find 

h 

Mcp = T^? lecp(0) + veeWl j zEdz " T^? % + 

VXe)  / zEdz 

h 

■ Ä jaETdz ] 
h 

vxe)  / z3Edz -^-^r: /aETzdz 

h h 

where it is assumed that E may vary through the shell thickness. These 

equations are simplified if z is measured from a surface such that 

j  zEdz = 0, The distance to this surface from an arbitrary initial surface 

is given by 

/ 
z" = h 

E ^ z — dz 
oE1 

i 
(D.7) 

E   A 

where z is the distance measured from the arbitrary initial surface and E.. 

is an arbitrarily chosen reference modulus. When E is piecewise constant 

within layers of the shell the last equation may be written 

E zo. 
Ji h. 

z' = i=l  i Ei (D.8) 
n 
y "i h. 
i=l Ei 
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In this E. is the modulus in the ith layer which has a thickness h.. The 

distance z  is measured to the middle surface of the ith layer and the 

sums extend over all layers. We note that z' is the distance to the 

modulus-weighted centroidal surface. When the shell is homogeneous z' 

reduces to z, the distance to the middle surface of the shell. 

Measuring z from the reference surface Eqs. (D.6) become 

-v 
1   NT 

N = K1 fe (0) + veQ(0) - ~ 
cp   L cp    ev 'j  i-\ (D.9a) 

MT 
(D.9b) 

and  in a similar fashion 

Ne = K'[ee (0)^(0)]-^ 

Me = -^ ^e + ^cp) " A 

(D.9c) 

(D.9d) 

where the following definitions apply 

E    r 
K' =ri2-   /| dz, 1-v2 J  E1 

h 

NT = JaETdz, 

1-v^ J E1 

MT= / aETzdz 

dz 

•(D.10) 

The quantities K' and D' are the extensional and bending rigidities of the 

nonhomogeneous shell. When E is piecewise constant in layers the first 

two of Eqs. (D.10) may be written 

El V       Ei 
1-v ifi      E1       i 

E 
i^   r   »i i-i_4. ,2 hs D   = T^   ^  i^ 1 IT+ zi   hd 

(D.ll) 
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When the shell is homogeneous, K1 and D' reduce to Y  aad D, the usual 

shell stiffnesses defined by (Ref. 9) 

K' = K = -^ 
1-v 

, D' = D = 
Eh3 

12(1^) 

The displacement of an arbitrary point in the reference surface is 

resolved into two components: v which is tangent to the meridian through 

the point and w in the direction of the inward normal to the reference 

surface (Figure 8). The strains and changes of curvature of the reference 

surface may be expressed in terms of the displacements as follows (pp. 

534 - 535, Ref. (9) 

e  (0) = i   ^ - H } 
cp r-|   acp      r 

ee(0) = -   cotcp - - 
1 2 2 

(D.12) 

_ 1    d_ 
xcp     r1 dcp rl 

dw 
r1dcp| 

Iv dw 
r1 

+ r^cp 
cotco 

where r_  is   the principal radius of curvature shown in Figure 7.    Substituting 

Eqs.   (D.12)  into  (D.9) we find 

dv - -   + v    -    cotu - - dtp      r- r, - -J 
w     ,     |   1    dv      w cotcp -—   + v    —  
r9 I    ri    dCP ri 

N    = K' I- 

;   = .D.fl   1 (v   +jd2_]+v|v   +^_]££ 
cp [r1 dcpj r1      r^tpj | r1      r^tp |    r 

N, _T 
1-v 

Nm __T 
1-v 

&+   1     i -+ dw 
r dtp 

1-V 

1-v 

)(D.13) 

By substituting these into Eqs. (D.2) the equilibrium equations may be 

ssed in terms of v, w, i 

the solution to the problem. 

expressed in terms of v, w, and Q . A solution to these equations is then 

■:| 
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The solution for the stresses in a homogeneous clamped flat plate 

of uniform thickness subjected to a temperature distribution which only 

varies through the thickness is the same as for a cylinder or sphere with 

the same thickness and temperature distribution (Ref. 9), One would 

therefore suspect that the stress would be the same for any shell of 

revolution and that a similar situation may also be true for nonhomogeneous 

plates and shells. 

The thermal stresses in a nonhoirogeneous plate with clamped edges and 

constant K', D', N , and M,^ is (Ref. 10) 

N = NQ = 0 9   9 

MT 
M = M0 = - T^ (D.15) 

cp   6   1-v 

Q = 0 

These identically satisfy the first two of Eqs. (D.2) and the third reduces 

to 

I 
E   /    1 NT \ 

a   = a   = -—   ■:—s   • 77    - aT , a   = T      =T      =T      =0 
x       y     1-v I 1-v       K' /      z       xy       yz       zx 

i 
<¥ I 

One would be led to believe  that 

a   = aa = -r-\ 7^-2   •TT-aT, a=TQ = Tß=T     =0 (D.14) 
cp        9      i-v \ 1-v        K1 /'       z        cpö 6z        zcp 

may be the solution for a nonhomogeneous shell of revolution in which K1, 

D', N , and M- are constant. It will be shown that this is true. 

The stress resultants associated with Eq. (D,14) are found by sub- 

stituting them into Eqs, (D.l), to give 

I 
■' 
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From Figure  9 we see that if there  is no discontinuity in the tangent to 

the meridian curve dr    = r, cosco dco,   or o 1        '     x 

 o _    r1   cos cp = 0 
dep 

so that  the  last equation is also identically satisfied and Eq,  (D.14) is 

the solution. 

The deflections are found by integrating the strains.    By substituting 

Eq.   (D.14)   into   (D.3) we find 

1 N' 
% " ee " i^? • K 

which, from the first 2 of Eqs. (D,12) gives 

1 dv  w N„ 

r1  dtp " ^  l-v^ ' K' 

(D.16) 

v ,    w 
— cot CD - ~ r ~      T 

2 r2 

i  fr 
T^v2 * K' 

By eliminating w from these equations we obtain the following differential 

equation for v 

 v cot cp = -;—s TT, (r, - r„) dtp       r  1-v  K' ^ 1   2 

Integrating (pp. 446 - 447, Ref. 9) we find 

1    NT ( (rl " r2) dcP 

(D.17) 

v = sin cp 
1    ^T ( 

TZ?   '  K' J smep 
+ C ] 

where C is a constant of integration to be determined from the known value 

of v at the support. By substituting Eq. (D.17) into the second of Eqs. 

(D.16) the following equation for w is obtained 

w i   M     r r(ri: r2) g    i    \ = T^'V[COS^[J   s4    +cJ-r2l 
(D.18) 

■J 

9 
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E = 3.075 x l(f 

Fig,   1     SANDWICH CYLINDER TYPICAL  OF  ALUMINA RADOME. 

; 
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Distance  through wall,   inches 

Fig,   2     TEMPERATURE DISTRIBUTION. 
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Fig. 4  GEOMETRY AND NOTATION FOR CONCENTRIC 
THICK WALL CYLINDER THEORY. 

Life 

33. 

Fig.   5     GEOMETRY  AND NOTATION FOR. MEMBRANE-FACE  THEORY, 
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Fig.   6     GEOMETRY AND STRESS-RESULTANTS   IN A  THIN SHELL 
OF REVOLUTION. 
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Fig.   7     COORDINATES  AND  GEOMETRY OF A THIN ^HFT T 
OF REVOLUTION. SHELL 
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Fig. 8 DISPLACEMENT OF A THIN SHELL OF REVOLUTION. 



u*.«J,M.*»,'UUAUmMat,^!Uliu«,ull|».»l*uiJ.ll!.li|t,il!,,,.ill, ,111. II.,J.1.|IIIPI     II .I^^^^^JI       I  ■ m^^^m^mmm mmmmmmmmmmmm^mm 

\        37. 

Fig. 9  GEOMETRY SHOWING THAT dro = (r dcp)   cos (ß. 
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