UNCLASSIFIED

AD NUMBER

AD471246

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors; Critical Technol ogy; AUG
1965. Ot her requests shall be referred to
Bureau of Naval Wapons, Washi ngton, DC 20360.
Thi s docunent contains export-controlled

t echni cal dat a.

AUTHORITY

APL Itr, 3 Cct 1966

THISPAGE ISUNCLASSIFIED




SECURITY
MARKING

The classified or limited status of this repert applies
to each page, unless otherwise marked.
Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF
THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18,
U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF

{X% CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY

NOTICE: When government or other drawings, specifications or other
data are used for any purpose other than in connection with a defi-
nitely related government procurement operation, the U. S. Government
thereby incurs nc responsibility, nor any obligation whatsoever; and
the fact that the Government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or other data is not
to be regarded by implication or otherwise as in any manner licensing
the holder or any other person or corporation, or conveying any rights
or permission to manufacture, use or sell any patented invention that
may in any way be related thereto.

VLB

s R
G s o

e




NN T T A
prsi e .

T

PR AR
G SR e

THIS DOCUMENT IS SUBJECT TO
SPECIAL EXPORT CONTROLS AND EACH
TRANSMITTAL TO FOREIGN GOVERNMENTS
OR FOREIGN NATIONALS MAY BE NADE
ONLY WITH THE PRIOR APPRGVAL OF

ZHE BUREAU OF NAVAL WZAPONS,

TG-721
AUGUST 1965

T TS R S

. i . .
’ 5 2

2
. ?] Technical Memorandum
B e
s BB
‘) THERMAL STRESS ANALYSIS

OF SANDWICH CYLINDERS

by R. M. RIVELLO

ATt ATy Ty
- —-—"
o

'
L
}

g
m

THE JOHNS HOPKINS UNIVERSITY = APPLIED PHYSICS LABORATORY

L ey ot Tty s s TP i e e s




TG—721
AUGUST 1965

Technical Memorandum

THERMAL STRESS ANALYSIS
OF SANDWICH CYLINDERS

by R. M. RIVELLO

Consultant, Applied Physics Laboratory and
Associate Professor of Aerospace Engineering,
University of Maryland

THE JOHNS HOPKINS UNIVERSITY « APPLIED PHYSICS LABORATORY
8621 Georgia Avenue, Silver Spring, Maryland 20910

Operating under Contract NOw 62-0604-c, Bureau of Naval Weapons, Department of the Navy




The Johas Hopkins University
i APPLIED PHYSICS LABORATORY
: Silver Spring. Maryland

TABLE OF CONTENTS
SUMMARY s eeecocessceccoscsccssosscossoacsccsssoscecsasceanl
INTRODUCTION e eecosooscecsccocsassocacscsassceassenssasel
RESULIS........................................o.......3
DISCUSSIONeesoescosssscsoosscacsscsacscssccsasassosssosscs

CONCLUDING REDMRKS..O..................................6

APPENDIX A - Derivation of Equations for Concentric
Thick-Walled Cylinder TheOrYeoeeceescooecee?
APPENDIX B - Derivation of Equations for Axially

Loaded Concentric Thick-Walled Cylinders..lz

APPENDIX C

Derivation of Equations for Membrane-Face

meory......ﬁ....................Q.QQ.‘.Q.~15

APYENDIX D

Derivation of Equations for Nonhomogeneous
Shell Tl‘leory..............‘...........‘..‘ 22

REFERENCES......0........................‘......‘.0...0 29

ii

_- o i ﬁ-l i oo PV e o e By S ——




SAALL AR

The Johns Hopkins University
APPLIED PHYBICS LABORATORY
Silver Spring, Maryland

LIST OF ILLUSTRATIONS

Figure

1 Sandwich Cylinder Typical of Alumina Radome .,

2 Temperature Distribution g g o

3 Comparison of Theoretical Results .

b Geometry and Notation for Concentric Thick

Wall Cylinder Theory . c c c c

5 Geometry and Notation for Membrane-Face Theory

6 Geometry and Stress-Resultants in a Thin Shell
of Revolution ., . . . c .

7 Coordinates and Geometry of a Thin Shell of
Revolution . . . . . . .

8 Displacement of a Thin Shell of Revolution .

9 Geometry Showing that dr_ = (rl d®) cos © ,

iii

Page

30
31
32

33
3k

3k

35
36
37




The Johns Hopkins University
APPLIED PHYSICS LABORATORY
Silver Spring, Maryland

SUMMARY

Three theories are developed for computing the thermal stresses
in sandwich cylinders with a continuous isotropic core. These are based
upon the following idealizations: (1) dividing the cylinder into con-
centric constant modulus sub-cylinders which are analyzed by thick
cylinder theory, (2) treating the faces as membranes and the core as a
thick cylinder, and (3) using a modified thin-shell theory which accounts
for the variable modulus. Results from the theories are compare&-for an
alumina sandwich which is typical of radome construction. It is found that
the thin-shell formulation results in a simple equation but is only
accurate at large values of the mean radius to total thickness ratio. The
membrane-face equations agree well with the concentric-cylinder theory
but computational difficulties are comparable to the latter method. The
concentric~thick~cylinder theory has therefore been selected to be pro=
grammed for machine computation. It may also be used to analyze homogeneous

cylinders in which the modulus is temperature dependent and therefore

varies through the wall thickness.
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INTRODUCTION

The aerodynamic heating associated with high speed flight produces
large temperatures and thermal gradients in missile structures. Refractory
materials capable of operating at high temperatures usually have low
strength /weight ratios and are therefore structurally inefficient. One
method of increasing their structural effectiveness is to employ them in
sandwich configurations in which the core material is made porous to de-
crease its density. As an example, laminated slip cast ceramic radomes
are currently under development by several companies. The electrical band-
width and cost advantages that these radomes appear to hold over homogeneous
wall radomes have been discussed in Ref. (1). The structural advantages
that such radomes have in resisting aerodynamic and inertial loads are
also apparent, but the effectiveness with regard to thermal stresses is
not so obvious and requires quantitative investigation. The work reported
herein was undertaken to develop the analytical methods to be used in such

a study.

Weckesser and Suess have used the cylinder as an analytical model to
compare the thermal shock characteristics of various materials for homogeneous
wall radomes (Ref. 2). They find that the thermal stresses are critical in
the region of transition from laminar to turbulent flow. Since the ratio
of the cylinder radius to the wall thickness is small at the transition
point they use thick-walled cylinder theory (Ref. 3) to compare stresses.
Their results have been found to be in reasonable agreement with limited
wind tunnel tests (Ref. 4). The cylindrical configuration was also

selected for the sandwich investigation so that the results could be directly

compared with the previously determined data for homogeneous wall con-

struction,

The theories which have been considered are based upon the following
i dealizations of the sandwich cylinder:
1, Dividing the cylinder into concentric sub-cylinders with constant
mechanical properties in each region. The regions are then
treated as thick-walled cylinders and radial displacements and

stresses are matched at their interfaces.

e - S e
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2. The thin faces layers of the sandwich are treated as membranes
and the core as a thick-walled cylinder. Radial forces and
displacements are matched at the junction of the faces and the
core,

3. The sandwich is analyzed by the Love's theory of thin shells
modified to include the effects of the non-homogeneity of the
wall.

The derivations for the above theories are contained in Appendices A
through D. A comparison of the results obtained by using the theories

is given in the next section,

RESULTS

In order to obtain a comparison of the accuracy and relative com-
putational difficulties of the three theories, thermal stresses were
determined in the sandwich cylinder shown in Figure 1. The geometry and
mechanical properties are typical of an alumina sandwich radome having a
core with a porosity of 67%. The temperature distribution was taken from
Ref, (5) and is shown in Figure 2. Mechanical properties and thermal
expansion data for the alumina were obtained from Refs. (6) and (7)
assuming that Poissun's ratio and thermal expansion are not affected

by porosity.

Circumferential stresses (Ge) and axial stresses (Gz) were computed
at the inner radius, and radial stresses (cr) were found at the juncture
of the inner face with the core by each of the theories, Results are
shown in Figure 3 for a range .. outside radii assuming the same thermal

gradient and wall geometry in all cases,

ISCUSSION

The equations for the concentric thick-walled cylinder are derived

in Appendices A and B, The results in Figure 3 were obtained using 3
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cylinders, one for each of the face layers and one for the core. This
development of the problem utilizes the three-dimensional theory of
elastic bodies in both the faces and the core and is therefore the most
exact of the three theories., However, it is not convenient to optain a
closed form: solution by this method since this would require a general
solution of 6 simultaneous linear algebraic equations tc evaluate the
constants of integration. The analysis is therefore only practical when
a digital computer is used to solve the equations for a particular design.
The concentric thick-wall cylinder solution is also useful in the analysis
of homogeneous cylinders since it is possible to take into account the
variation of modulus of elasticity with temperature, This is done by
dividing the homogeneous wall into concentric cylinders and evaluating

the modulus in each region at the mean temperature for that region.

The membrane face theory derived in Appendix C is restricted to those
cases in which the face thicknesses are very small compared to the radius,
It assumes that the radial stresses in the faces are negligible compared to
the axial and circumferential stresses so that a two-dimensional stress-
strain law can be used. It further assumes that the axial and circumferential
stresses are constant through the face thicknesses, Uncertainties are
introduced into the analysis by lumping the faces into membranes at dis=
crete radii, It is not clear if the radial stresses and displacements
of the membrane and core should be matched at the outer surface of the
face layer, the center of this layer, or at its interface with the core.
The results in Figure 3, which are for the membranes at the interfaces,
show good agreement with the more exact concentric cylinder theory over
the range of radii investigated., While the membrane-face theory results
in a closed form solution the equations are lengthy and time consuming

to evaluate.

The non-homogeneous thin shell theory is derived in Appendix D. The
development assumes that normals to the reference surface remain normal,
straight, and unchanged in length. Radial thermal strains are thereby

ignored. Radial stresses are considered negligible compared to the axial
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and circumferential stresses throughout the body so that the stress~strain
relations are two-dimensional, Equilibrium is only satisfied on a macroscopic
scale by the stress resultaits rather than on an infinitesimal basis by the
stresses, The resulting closed form solution is simple to evaluate but it
is seen from Figure 3 that it is grossly in error when the radius to
thickness ratio is small, For the case which was studied the error relative
to the concentric cylinder solution reduces to 6% for a sandwich mid~radius
to total thickness ratio of 5 and is less than 4% for a ratio of 10, It is
interesting to note from Appendix D that, except in the edge regions, the
stresses in a thin shell of revolution do not depend upon the shape of the
shell if the temperature only varies through the thickness. Furthermore,
results obtained by using an AVCO computer program (Ref, 8) show that this
is also true when the temperature variation in the mendional direction is
gradual, in which case the stresses depend only upon the local temperature

distribution through the thickness and may be computed from Eq. (D.14).

The behavior displayed by the circumferential and axial stresses in
Figure 3 at small radii is interesting. It is seen that the circumferential
stresses decrease but that the axial stresses increase. This same situation
does not prevail in a homogeneous cylinder where the circumferential and
axial stresses are equal regardless of the radius and both increase with a
decrease in radius. The reduction of core modulus appears to be effective
in decreasing the circumferential stresses since it increases the relative
radial motion between the inner and outer faces., However, significant
changes do not occur in the relative axial motions except in the edge
regions so that the axial stress in the inner face remains high. The lengths
of the edge region where reduced axial stresses occur will increase but
for the length to thickness ratios used in radomes there will still be
a central portion where plane sections remain plane as assumed in the
theories., The thin shell theory does not admit to relative radial motions
and therefore does not show the reduction of the circumferential stresses

for small values of the ratio of mean radius to total thickness.

e
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CONCLUDING REMARKS

Three theories have been developed for the analysis of sandwich
cylinders. As would be expected, the modified thin shell theory results
in the simplest equation but gives large errors at values of the mean
radius to total thickness ratio less than 5. The membrane face theory
is in good agreement with the concentric thick cylinder analysis but
requires considerable computational effort making it impractical for
repeated calculations unless it is programmed for machine computation,
in which case the concentric-cylinder analysis is preferable. As a
result the theoretical analysis described in Appendices A and B, which is
also useful in analyzing homogeneous radomes in which the modulus is

temperature dependent, has been selected for machine programming.

On the basis of limited computations it appears that the low modulus
core is effective in reducing the circumferential stress at low values

of the mean radius to total thickness ratio but that the axial stresses

are not decreased,

6.

e el
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APPENDIX A

Derivation of Equations for Concentric Thick-Walled
Cylinder Theory

The non-homogeneous cylinder is assumed to be divided into concentric
sub=cylinders as shown in Figure 4 so that the modulus of elasticity is
constant within each layer. To identify the layers they are numbered
consecutively from 1 for the inner to n for the outer cylinder. The
inner and outer radii of the ith cylinder are designated by bi and bi+1
respectively.

It is assumed that the materials are isotropic and that Poisson's
ratio, v, 1s constant in all layers. This assumption does not impose
severe restrictions on the theory for v of most structural materials

(within the elastic limit) falls between 0.25 and 0.33. For a given

material moderate changes in porosity do not affect v and the temperature
dependency is slight so that this assumption is fully justified in sand- 4
wich cylinders made of a single material but with different porosities in ;
the various layers. Since Ei is constant in the ith cylinder, we may
apply the Duhamel equations (Ref. 3) for thermal deflections and stresses
in a homogeneous hollow cylinder to the region. If we assume the ends
of the cylinder to be restrained against axial displacement these are
given by Eqs. (c) through (f) from page 409 of Ref. (3). For the ith

region we obtain

r
_ 14y 1 C,
wu=TN * I (@ T)rdr + Cil r+ iZ (A-1)
b,
i
E t E C C
o, _ .M .1 (@ T)rdr + _i ( il 12> (A-2)
Ty 1-v 2 T+ \1T2v  #
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r
I S | . DB B (S Sy (a-3)
ei 1-v r2 1-v I+v \ 1-2v r°
by
o, =- («:rT)Ei .\ 2\JEiCil (A-4)
i T ) (1-29)

In these equations Cil

and Ci2 are constants of integration which apply to

the ith region,

The coefficient of expansion has been brought under the integral sign
in writing these equations since it is always permissible to consider aT
(the unrestrained strain due to temperature) as a single quantity. As a

result @ need not be linear over the range of temperature changes.

Since there are n regions a total of 2n constants of integration must
be found. These constants are determined so that equilibrium and com=-
patability are satisfied on the faces and interfaces of the layers.,

Equilibrium on the inner and outer faces requires that

Uri (bi) = -p]. (A"S)

and

cr (bn+1
n

) = = (A-6)

Pl

where Py and p are the external pressures on the inmer and outer faces.

nt+l
At each of the interfaces the equilibrium conditioa

Y=g (b 105 11,2000, (o) (A-7)

ag_ (b,
ri i+l ri+1

and the compatability condition

); i=1,2,44.,(n-1) (A-8)

l ug(byg) = vy, (i

X
o ang da

P

S a e
s et
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must be satisfied. Substituting Eqs. (A-1) and (A-2) into (A-5) through
(A-8) gives

1 ) €, -1l ¢ ,=. Py (1+V) (4-9)
1-2v 2 b 2 E
1 1
[ 1 \c 1 c.= (1w A Pr+1 (A-10)
) n,]- - < n2 = -
1-2v b b3 E
n+l ol n
(1)011-—1— Ciz-——-E-hi—— Cit1.1
1=2V 2 2 2 E,(1-2v ?
b1+1 i( )
Eiip ¢C =(14v) A4 5 11,2 (n-1) (A-11)
+ — i+1,2 —_— ) 3L yeee,
Eibi+1 b?
+ i+l
1 1
c, .+ C -C -—= C
i,1 3 i,2 i+1,1 b3 i+1,2
5 bi41 5 , b3 41 ,
Ay
= - () 5= ; 1=1,2,.0., (n-1) (A-12)
b
i+1
where
. bin
| Ai =T aTrdr (A-13)
. bi

Solution of the 2n simultaneous equations generated by Eqs. (A-9) through

(A-12) gives the C,, and Ci coefficients., Substitution of these into

il 2

Eqs. (A-3) and (A-4) yields Cg and Gz for restrained ends.
. i i

o o L et g e st b i e
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The resultant axial force for restrained ends is

n i+l
R =2nm 2 oz rdr
i=1 1
by
which by using Eq. (A-4) becomes
n i+1 i+1
R=-=2m Z Ei oTrdr - i\l)f'\j;(; 1(1 ) rdr]
i=1 [ 1-v
From Eq. (A-13) we find
n
2= =2 }: [EAy - VECy) ®2,, -] (A-14)
i=1 (1+v)(1-2v)

To determine the axial stresses for unrestrained ends we determine the
stresses due to an axial force of =R and superimpose these upon the
previously determined stresses. The stresses due to =R are (Appendix B,
Eq. (B-1)).

E.R
c = - 3 0g=03 or=0

zi b2
T .]2‘ E, (bJ_‘_1 )

In the ith region the radial and circumferential stresses for unrestrained

ends are then given by Eqs. (A-2) and (A-3). The axial stress is

TE 2VE . C, E. (R
o, =20 o, Mita 1 (R/m) (A-15)
i 1=v (1+v) (1-2v) n

j;IE )

e s
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The quantity Ai defined by Eq. (A-13) will usually have to be evaluated
by a numerical integration procedure such as Simpson's rule., When the wall
thickness of the ith cylinder is small it is sufficiently accurate to assume

that oT varies linearly through the thickness so that

Q’T(r) = (b—i--'-i—-br—) {b CYT(b ) - b Q’T(b +1) +LQ’T(b +1) = cyT(bi)]r} (A-16)

Substituting this into Eq. (A-~13) we find for a thin wall

_ 1
i~ 6(1-v)(b

5) [aT(b )(bi+1 i i+1+2b3)+aT(b -3b, b +b3)] (A-~17)

) (218
T i+1 i+l i

This equation is poorly suited for numerical computations since it results in
small differences of large numbers. An equation of improved numerical accuracy

may be obtained by substituting the relation b, = b, + ti (where t, is the

i+l i i
thickness of the wall of the ith cylinder) into Eq. (A~17) which upon simplifica=-

tion becomes

A, = 1 [t (ot T, ) (3b +2¢)] (A-18)
6(1=-v) )

AL T

£

Sl
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APPENDIX B

Derivation of Equations for Axially Loaded
Concentric Thick-~Walled Cylinders

In the thermal stress analysis for non-homogeneous cylinders given in
Appendix A, the stresses due to an axial load were required. In this

appendix we shall show by the inverse method that Eq. (A-15) correctly

describes the stresses.,

The cylinder, which is the same as described in Appendix A and shown
in Figure 4, is assumed to be subjected to normal forces distributed over
the ends which have a resultant tensile force R directed parallel to the
axis. The cylinder is long so that, except in the immediate vicinity of the
ends, a state of generalized plane strain exists. The stresses therefore
only depend upon the resultant of the end forces and not upon their dis-

tribution., We assume R to be divided among the regions in proportion to

their stiffnesses so that

EiR \

O’ =
zZ, n 2 2
n E.(b5, ,~b"
* ): J(J+1 J)
j=1
Y @D
or = 09, = Tez, = Tzr =0
i i i i
/

describes the stresses in the ith region. These stresses satisfy the equations

of equilibrium

aor BTrz or - O
i 4+ i + i i =20
or oz T
a¢rz Boz L
i + i+ i =0
or dz T

which apply to axially symmetrical stress distributions in a solid of revolution
(Eqs. 177, Ref. 3). Eqs. (B-1) also satisfy the follpwing compatibility
equations (Eq. (g), page 346, Ref. (3)

- o e G s i = e s e e g e - et ..
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3 2 -
Voo - 2 (cr. 09.) * T 3° O
1 1
1 1 0
v2°91+r2 (<:1-<:e)+1+\).r 5 =0

2
v oT --l-a'r +-L 8 -
rz, ° rz, +v 3raz

where ® is the sum of the normal stresses, which from Eqs. (B-1) is equal

to O , and
z,

1
2 _22 132 3
\7..31‘;3 +rar+az2

is the Laplacian operator for axial symmetry. The boundary conditions to

be satisfied on the cylindrical faces are given in Appendix A by Eqs. (A-5)

through (A-8). Egs. (A-5) through (A-7) are identically satisfied because

o. = 0. Since Gz is the only non-zero stress, the strains are given by
i i

the uniaxial stress-strain laws

0} vO
i (B-2)

VA
i €
1 r. = °0, ==
i Ei i

The strain displacement equations are (Eqs. 178, Ref., 3)

-
N
|4
|
-
H
N
I

du; 4 dwy (B-3)
r

i = TH T =T =

dz 0
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By simultaneously solving Eqs. (B-1) through (B-3) we find the displacements
to be

ui = . VRr
3 2
m ; E, (0F,,755)
j=1
(B-4)
- Rz
wi n
T z E (b2 _-b°
3=1 J(J"'l J)

The first of these equations satisfiecs the remaining boundary condition (A-8)
at each of the interfaces of the cylindrical surfaces. The second equation
indicates that, as supposed, plane sections remain plane., Finally we see
Eqs. (B-1) satisfy the equation

bi-+1

n
R=2m E: Gz rdr
i=1 /b N

thereby assuring a state of equilibrium between the applied force R and

the internal stresses

e e e
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APPENDIX C

Derivation of Equations for Membrane-Face Theory

In sandwich structures the face layers are often thin compared to the
core layer. '[fiis suggests a simplified theory in which the faces are treated
as membranes while the core is analyzed as a thick-walled cylinder. The
geometry and notation are shown in Figure 5. The following assumptions are

made,

(1) The temperatures in the face layers are uniform through their

thicknesses, These temperatures are designated 'l‘1 and T3;
moduli E1 and E3 are determined at the corresponding temperatures.

the

Average temperatures are used when there are gradients through

the face layers.

(2) The only stresses of importance in the membrane faces are g and

o> and these stresses are constant through the membrane thicknesses.

(3) The core region 2 is a "thick" cylinder, i.e. the effects of radial

stresses are considered,

(4) The temperature distribution in the core is arbitrary but E, is

constant and is evaluated at the mean temperature of region 2,

(5) The membrane stiffnesses are lumped at a and b, the inner and outer

radii of the core respectively.

As a result of assumption (3) the deflections and stresses in the core

for restrained ends are given by Eqs. (c) through (f), page 409 of Ref., (3),

which are

r

c
v 1 2 (c-1)
u = T:; - aTrdr + Clr + =
a
E r E c c .
2,1 2|1 .2 (c-2}
% =T N A ] ey rz)
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r

o . 2 1] omdr-omg , B [ & |G (c-3)
1-v ° 2 T-v +v | 1-2v
a
_ U YE, 2VE,C, (C-4)

z 1ov T ) (1=29)

From Eqs. (C-1) and (C-2), the radial displacements and stresses at a and
b are given by

u (a) = C,a+ 2 (c-5)
a
A C,
u (b) = (1+v) 7t C1 b + 5 (Cc-6)
o (a) = E S . C_z (c-7)
1+v | 1-2v as
o =24 % | & | f:g) (c-8)
b 1+v 1-2v b2
where
b
A= A oTrdr (C-9)
l-v
a

Because of assumption (2) the strains in the inner face are given by

the two-dimensional stress-strain equations

%, =1 (% .o ) -
91 = E]_ 91 z, ]+ (afT)l (C-10)
e, _1 (o _ Vo .

2, = % zg 61)+ (arT)1

1
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where Vv is assumed to be the same as for the core. With restrained ends

e, = 0 and it follows from the second of Eqs. (C-~10) that

ag vag E

z) = 91 - GYT)I E1 (C-11) |

Substituting this into the first of Eq. (C-10) gives

BTNk A bk

€ 1-v3) o
e1 = el + (1+v)(oz'r)1 (C-12)
The circumferential strain in the inner membrane face is related to its

radial displacement Uy by

0. =1 (C-13)
a

The radial stress in the core at r = a imposes a bursting pressure on the

inner membrane so that 9 is given by the hoop stress equation
1

g
e1

i Pi{_%r(a)+p]]a
Tt t)

where Py is the inside pressure.

From Eq. (C-7) this may be written

oy - 12 T IS b (c-14)
1 t,(1+v) 1-2v P t
1 1
In a similar fashion, for the outer face we find
o JFA B [ & G B (c-15)
3 7 b, () | T2 TR £ 5

where Pg is the outside pressure.
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By combining Egqs. (C-12) through (C-14) we obtain

Pla

By

+

E2a C1 C2 5.
u, = a (1-v) - - (1-v) + (1+v) (aT)y
i Eltl 1-2v - 4

and by the same procedure the radial displaceunent of the outer face is

(c-16)

EZA E2b C1 C2 p3b
uy = b [(1-v9) T (1-v) E;E;'(T:EG - 1-2v) g (1-v2)+(1+v)(aT)€] (c-17)

Noting that u = u(b) for compatible deformations of the faces and core we
find the following simultaneous equations for C1 and C2 by equating Eqs.
(C-5) with (C~16) and (C-6) with (C-17)

DC1 + EC2

n
o

FC1 + GC2

it
~

where

151 (1-2v)
E2a
E=1+ ot (1-v)
171

E3t3 (1-2v)
E2b
G = 1- et (1-v)
373

P 83
1
J = (14v) [ aa(aT)1 + Et, (l-v)]

pyb3
K = (1+v) [ba(ozT)3 - Tt (1-v) = AG
373

F e e s Ayt PPV ettt g e~ e 0 g e

g s e PO 2 PN

et

4G -
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Solving the simultaneous equations leads to the results

1 (JG - EK)/(DG - EF)
(Cc-18)

(DK - FJ)/(DG - EF)

(@]
it

)

The c, stresses in the core for restrained ends are obtained by sub=-

stituting C1 into Eq. (C=4). The resultant restraining force in the core
is found by integrating Eq. (C=4) over the core area so that
b
R2 = 21 0  rdr
z
a
= - 2 [ EA - vEZCI(ba-aa)
2 (V) (1-2v)

For restrained ends, the axial stress in the inner face is found by sub-

stituting Eq. (C-14) into Eq. (C-1l) giving

o, . vaE, ( ¢, -EZ) . @T). E (c-19)
1 (1+v)t1 1-2v a° 171
which produces a resultant force
Ry = Znatl[(\l)f-\z)?tl( 13_\) " Z_g) " (“T)lEl]
In a similar fashion we find
(C-20)

b Trv rz:b—) - (@T)4E,

t2
VE A VE, b C C
) A VB 1 _ S .
By = 2"“3[ t.b (1+\))t3(1-2\) ba) (“T)sEs]

St e e e O e e

S
,.

it

P RO I A
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. - ek -
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The total restraining force 1is then
R =.R1 + R2 + R3

which gives

R__[a- ] -
i 2 [(1 v)EZA + (o:T)lElat1+(OtT)3E3bt3 (c-21)
The stresses for unrestrained ends are determined by superimposing the
stresses for an axial load of -R., By following the method of Appendix B
we find these stresses to be
E, (R/m)
o = - )
z 2E1at1+E2(b -g )+2E3bt3
(C=27)
Ur = Ce =0 J

The total stresses for unrestrained ends are obtained by substituting
the stresses from Eqs. (C<22) upon the previously determined stresses for

restrained ends, The results are: for the inner face

o_e _ Eza ( Cl 9—2.: l
1 (1+\))t1 1-2\) aa
L (C-23)
5 VE,a ( c:1 02) El(R/'rr)
Y, = = . - =) - (@T).E, - R
L (1+))t1 1-2v a 171 2Elat1+E2(b a )+2E3bt3 )

P ot o s P ot g PP ok i e s —
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for the outer face

21,

S PR B \
3 ts b2 1l+v | 1-2v b
o, . e o [ _ S ene ) (C-24)
3 ty b2 I+v | 1-2v B2 373
E3(R/‘IT) /
- 2 3
2E1at1+E2(b -3 )+2E3bt3
and for the core
E * E C C )
o _ 2 i 2 1 __2
T2 77 1oy 2 oTrdr + 739 (1-2v ra)
a
r
E E C c
o _ 2,1 eng . B4 2) }(c-25>
= Tov° 2 afrdr - 207+ 45 v T F
a
s __ QyT)E2 2vE2ClL,, _ E2(R/n)
Zy 1-v (1+v) (1-2v) ~ 2E at +E, (b7 =a" )+2E bty
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APPENDTX D

Derivation of Equations for Nonhomogeneous
Shell Theory

In this appendix the equations for the stresses and displacements in
a nonhomogeneous thin shell of revolution subjected to a temperature dis-
tribution which only varies through the thickness are derived. The non=-

homogeneity is assumed to occur in the thickness direction only.

The tnermal stresses give rise to the stress resultants shown in

Figure 6, These are defined as follows

N‘p=fc(pdz Ne=fcedz \
h

Mcp = jcw zdeg Me = jce zdz > (D.1)
h

where ¢ and © are coordinates shown in Figure 7 and z is a coordinate
measured £vom, and normal to the reference surface (defined later) of the

shell. The integrals extend over the shell thickness h.

Force and moment equilibrium conditions for the differential element

of Figure 6 lead to the following equations (pp. 534, Ref. 9)

d

@ (Ncpro) - Ny r cosg-rx Qcp+ r, ¥ =0
d(Q“ro)
th r + Ng r sin ¢ + 0 +arr = 0

d =
ap (M:p r ) - My r, cos ¢ - Qcp rr =0

NP F et e s e et



The Jnhns Hopkins University
APFLIED PHYSICS LABORATORY
Silver Spring, Maryland

23.

where the radii r, and r, are shown in Figure 7. No external loading is

applied so that the surface forces Y and Z in these equations are zero.

The material is considered to be linearly elastic,

following assumptions which are usual in shell theory are made:

In addition the
(a) the

material is isotropic in the surface of the shell, (b) the modulus of

elasticity in the z direction and the shear modulus which relates Tz¢ to

Y., are infinite, and (c) the coefficient of expansion in the z direction,
29

and the Poisson's ratio which relates the strain in the z direction to the

strains in the surface directions of the shell are zero.

This is equivalent

to the Kirchoff assumptions that normals to the reference surface remain

normal and unchanged in length during deformation of the shell,

As a

result the plane-stress Hooke's law equations

=1 .
e:(p = (0¢ voe) + aT
(D.3)
€, = & (o, - Vo) + oT
8 E ‘0 ®
apply. Solving these for the stresses gives
_ E QET
ocp =755 (etp + vee) =
(D.4)

= & - QET
Oy = TP (ee + ve¢) Ty

oET

Using the previously mentioned shell assumptions that normals to the

reference surface remain normal and unchanged in length during deformation

of the shell, the strains may be expressed as (p. 431, Ref. 9)

€
®

g

I

0 -
ew() x(pz

(D.5)
ee(o) - XGZ

where €¢(0) and ee(O) are the strains in the reference surface (z=0) and

X.. and Xg are the changes of curvature of the reference surface.

¢
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24,
Placing these into Eq. (D.4) gives
. _E aET
ccp—l_-\)g [e (0)+ve 0 -z (X +vxe)]
__E gr
% = 1e7 [ ¢ 69(0) + Ve (0) - 2 <><e+\’><>] -
By substituting the equation for ccp into the relationship V:r Nw and M
from Eqs. (D.1l) we find
— 1 [ ] 7 = 1
NQp = TF €¢(0) + \)69(0) [Ed_. To0 (ch + Vxe) zEdz = T-v «ETdz
h h h
D.6)
[ 0) + vee(O)][zEdz - (x + vxe) Z°Edz -1%-\7 aETzdz/
h

h

where it is assumed that E may vary through the shell thickness.

These
equations are simplified if z is measured from a surface such that
J/-zEdz = 0, The distance to this surface from an arbitrary initial surface
h
is given by

1
z'=h (D.7)
JL % dz
1

where z

is the distance measured from the arbitrary initial surface and E
is an arbitrarily chosen reference modulus.

When E is piecewise constant
within layers of the shell the last equation may be written

n
5: z Ei h
°. E i
z' = i=] 1 (D.8)
n
Yy Zing
i=1 E1

oy o e gyt B i ieas
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In this Ei is the modulus in the ith layer which has a thickness hi' The
distance z, is measured to the middle surface of the ith layer and the
sums extend over all layers. We note that Z' is the distance to the
modulus~weighted centroidal surface. When the shell is homogeneous z'

reduces to z, the distance to the middle surface of the shell.

Measuring z from the reference surface Eqs. (D.6) become

NT
= ! - a—— -
N, = K [e 0 + veg @] - =, (D.9a)
Mcp D (ch + xe) Toy (D.9b)
and in a similar fashion
[ 2
— 1 - —
N = K' [ 5@ + ve, @] - £, (0.9¢)
M
= Nt - —
Me D (xe + VX¢) Tov (D.9d)
where the following definitions apply
E E
1 _ 1 _E_ [ - 1 2 E_
K =17 jEldz’ Dl =1F jz Eldz 1
h h
L(DQlO)
NT = jcrEsz, MT = jozETzdz
h h ’

The quantities K' and D' are the extensional and bending rigidities of the
nonhomogeneous shell, When E is piecewise constant in layers the first

two of Egs. (D.10) may be written

n
K = —L Ly,
1=V i{=1 E1 i
E, o E [h 2 )
| - F———) —
D=gor L B olTteE Ny
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When the shell is homogeneous, K' and D' reduce to } aad D, the usual

shell stiffnesses defined by (Ref. 9)

Eh _ _En®

! —4 ! = —3
Ki=k=737F 0 =D=7709)

The displacement of an arbitrary point in the reference surface is

resolved into two components:

the point and w in the direction of the inward normal to the reference

surface (Figure 8).

surface may be expressed in terms of the displacements as follows (pp.

534 - 535, Ref. (9)

26.

v which is tangent to the meridian through

The strains and changes of curvature of the reference

l dv w v W
€ (0) == — ==, €,4(0) == cotyp - =
r;dp 1, C r, T,
(D.12)
1 d jv , dw =¥ cotey
x¢ - r, do ( r, * r1d¢) > Xg ( r, * T.dg d¢ ) )
where r, is the principal radius of curvature sﬁown in Figure 7. Substituting
Eqs. (D.12) into (D.9) we find
1 dv w v w\] NT
N =K'|= Pl +\)—cotcp-';2) " Tov
@ e I S "9 ]
- N
N9=K'[% cotcp-—+v(%gy--¥ -1—'_1:\)
2 2 1% T
_ C Pl d v dw v cotg- MT >(D°13)
Mo =D Q| T, Toae) T V|, T T d0 d T, =Y
¢ R W B R 1 1
M:_D'-X+ dw .‘io_‘:_‘Q_l.X g .! _ﬁ
r r d¢ J 1-v

r2 1 dep

By substituting these into Eqs. (D.2) the equilibrium equations may be

expressed in terms of v, w, and Q .

the solution to the problem,

oo e et gy o 4

[

A solution to these equations is then

it
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The solution for the stresses in a homogeneous clamped flat plate
of uniform thickness subjected to a temperature distribution which only
varies through the thickness is the same as for a cylinder or sphere with
the same thickness and temperature distribution (Ref. 9). One would
therefore suspect that the stress would be the same for any shell of

revolution and that a similar situation may also be true for nonhumogeneous
plates and shells,

The thermal stresses in a nonhorigeneous plate with clamped edges and

constant K', D', NT’ and MT is (Ref. 10)

N
= ~E (X I _ = = = =
%7 % SIS T ° K oy, a, Ty = Tyz = Tax T 0
One would be led to believe that
E (1 N
% =% " Tv T "X "I % = T ™ Tz = Tap = O (D.14)

may be the solution for a nonhomogeneous sheli of revolution in which K',

D', NT’ and M, are constant. It will be shown that this is true.

The stress resultants associated with Eq. (D.14) are found by sub=-
stituting them into Eqs. (D.1l), to give

N, = Ng = 0
My
M= Mg = - o (D.15)
=0
Q¢

These identically satisfy the first two of Eqs. (D.2) and the third reduces
to

A
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From Figure 9 we see that if there is no discontinuity in the tangent to

the meridian curve drO = r,c080 dy, or

dro . I cosgp=0

dep 1

28.

so that the last equation is also identically satisfied and Eq. (D.14) is

the solution,

The deflections are found by integrating the strains. By substituting

Eq. (D.14) into (D.3) we find

U N
%9 % "I * T

1l dv w =—1\P _T
- ¢ I

r1 v r1 1

Y ocorgp-¥ =ty "y

- I * r!

s r2 1=-v

(D.16)

By elimirating w from these equations we obtain the following differential

equation for v

N

dv =L _I -
ap vV cot ¢ = TV T (r1 r2)

Integrating (pp. 446 - 447, Ref, 9) we find

N (r; - r,) dy
1 T 1 2
V=Sin¢[-]:;2"i(_" _—;_;Zp—-{.c]

(D.17)

where C is a constant of integration to be determined from the known value

of v at the support. By substituting Eq. (D.17) into the second of Egs.

(D.16) the following equation for w is obtained

1 N (x; - 7)) do
v = TR '-I-(:T{cos;p _——sin:p + C -I,

i e N Y S i i T = T

(D.18)
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E = 3.075 x 1F ps

E = 48,5 x 1¢° psi e

Fig. 1 SANDWICH CYLINDER TYPICAL OF ALUMINA RADOME.
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Fig, 4 GEOMETRY AND NOTATION FOR CONCENTRIC j
THICK WALL CYLINDER THEORY.

Fig. 5 GEOMETRY AND NOTATION FOR. MEMBRANE-FACE THEORY,
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Fig. 6 GEOMETRY AND STRESS~RESULTANTS IN A THIN SﬁELL
OF REVOLUTION,
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Ngricosgde is

Fig, 7 COORDINATES AND GEOMETRY OF A THIN SHELL
OF REVOLUTION.
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Fig. 8 DISPLACEMENT OF A THIN SHELL OF REVOLUTION.
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Fig. 9 GEOMETRY SHOWING THAT dr = (r1 do) cos o,
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