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Summary

The kinetic theory of Prigogine and Balescu, which was pieviously developed
for a homogeneous plasmia in a magnetic field, is now applied to the problem of dif-
fusion of a plasma column across a magnetic field. The problem of deriving a kinetic
equation is reduced to that of solving a two dimensional Fiedholm-type integral equa-
tion with a complicated kernel. No restriction is made concerning the amplitude or
length scale of the inhomogeneity across the magnetic field. The results are preliminary
in nature, and suggestions are made for furthe: refinements. Some comparisons

with previously existing results are given.
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SECTION 1

INTRODUCTION

The phenomenon of diffusion of a plasma across a magnetic field is of great

importance in the problem of plasma confinement. There have been many theoretical

(1)

papers on the subject; see for example the review articles by Golant” " and Boeschoten

So far, however, there has been ve.y little work done on the kinetic theory of inhomo-
geneous nonequilibrium plasmas in magnetic fields.

We report here some pieliminary results on the diffusion of a plasma cc’umn
across a uniform magnetic field. It is believed that no equivalent results have yet
been published. The problem of deriving an equation for the one particle distribution
function, including a proper treatment of screening effects, has been reduced to that
of solving an integral equation of the F.edholm type, with a complicated kernel. The

(3)(4)

method used is an extension of that of Prigogine, Balescu, and coworkers. It wase

(5), (6), (7)

applied to the homogeneous problem in preceding works ,to be referred to

as papers I, II, and III respectively, We rely heavily on the notation summarized in

the Appendix of paper I ( although some superscripts 4= and z are suppressed, and
gde (4)
4 is

necessary for a detailed examination of this report; the emphasis is on the differences

i

is replaced by _(_),J). Some familiarity with paper I or with Balescu's book

between the present calculation and that of paper I.

Although the plasma is assumed to be homogeneous along the magnetic field, an
arbitrary inhomogeneity is allowed in directions perpendicular to the field. The
infinite order perturbation theory is tractable for this case because the guiding centers
are constants of the unperturbed motion. We have, however, restricted ouiselves
here to the calculation of local effects in a single species plasma. It is an important
problem to refine this model, and to properly take into account internal macroscopic
electric fields.

More details concerning the physical model are given in Section 2. The diagram
perturbation theory is summaiized in Sections 3, 4, and 5. The main results are given

in Sections 6 and 7. They are compared with existing kinetic equations in Section 8,

(2)
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SECTION 2

PHYSICAL MODEL

PIBMRI-1289-65

The theory prescnted here is incomplete in the sense that a very primitive physical
model is used.

We consider a single-species plasma in a region of volume  containing a uniform
magnetic field B. The length of the region in the direction of B is A, and the cross
section is ¥ = Q/A. We will assume that the plasma is homogeneous in the direction

of B. In addition, the limit

N - o, A - 00, N/A constant,
¥ arbitrary (2.1)

(cf. eq. (I.21)) will be taken. Thus end effects ( for example, '"short circuiting") are
not considered. However, an arbitrary inhomogeneity in directions pzrpendicuisr to B
will be allowed. There will be no restrictions on the amplitude or length scaic of the
inhomogeneities, although these scales may effect the plausibility of some of the other
assumptions.

A neutralizing background charge of unspecified density variation across B is
assumed to be present. This is an ill-defined artifice introduced solely for the
purpose of restricting ourselves to the calculaiion of effects due to relatively local
interactions among the plasma particles. The long range interactions and boundary
effects which the perturbation exparsion of paper I cannot take into account are assumed
to effectively cancel each other' we again make assumption (L. 3.26). We use the
Hamiltonian (1. 2. 2) with W set equal to ze:o.

In the homogeneous casec discussed in paper I, the generalization to a more realistic
multi-component plasma would involve only the inclusion of additional indices and
summation signs in appropriate places. In the preseat case, however, such a generaliza-

tion may be a less trivial probl>m. It would involve a careful treatment of the transverse

electric fields" arising from the charge separation due to different diffusion rates of the

Note that for the noninteracting case, the orbits in crossed external electric and

magnetic fields are very simple; sce for example Reference (8), Section 10,1,
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various plasma components. This should lead to the development of a theory of
ambipolar diffusion. While such a treatment is important, itis beyond the scope
of the work reported here.

We will also assume that the one particle distribution function is initially
t'gyrotropic''; that is, isotropic in directions perpendicular to B. This may restrict
the types of diffusion that the theory can predict. However, the theorem that the
initial condition is preserved in time is much stronger than the corresponding
result for the homogeneous plasma. In that case, once it became apparent that
the higher or-ler initial correlations would not appear in the final results, then there
was no way in which a preferred direction perpendicular to B could appear. In the
present case, we always have the preferred directions corresponding to the spatial

density gradients.
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SECTION 3
FORMAL SOLUTION OF THE

LIOUVILLE EQUATION

Our starting point is the same as in Section I. 3, except that we do not introduce
periodic boundary conditions with respect to the il‘.j g 'L} (hereaft:r called i% ! ).
The fundamental reason why the treatment of arbitrary inhomogeneities perpendicular
to B is tractable has already been noted in the paragraph following eq. (I.3.13). The

i Qj } are constants of the unperturbed motion, and hence can be 'reated in the
same way as the velocity cylindrical components {aj C pj z 3 . (Fro— now on, the
superscript z will be suppressed. ) We had no reason to assume any sort of homogeneity
in velocity space (except through the condition of stapility); hence none is needed with
respect to 1-Q-j }

Thus eqs. (I. 3.14) and (I. 3.18) are replaced by

0 = et 2} ghiz g igh

:Z Z 0! (t) exp [12 (kaj - njej)], (3.1)
{k“n} {x} {n} j

‘i;(o)“éo)it) = Dl*k(o)"n(o)} ({-Q—j*’ {aj} *Pj%’t)

= - —2171—1- § d¢ exp(-iCt) { (-ez)Cl
C o

T

1) kj‘°’ p;/m) + u() nj(°") -1t
j :

1

VYT <k eny 1™ pa M
*k(l)nn(l)} h<u

i
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[y kj‘” p,/m) + () nj‘”) et
j j

=% P £

*:k(q)} { n(q)} i<m

(g-1) (-1} 14 (q) (q)
<{kj }{nj }lLimij Hnj >

[(Z kj(q) py/m) + w(z nj‘q’) -t

{k(q)} {n(q)} . (3.2)
j j

Here, the k's are restricted to values of the form (2m//\)(integer), and the n's are

integers.

The matrix elements are defined as follows:

<%kj H nj} IbLhqujI“"j'} =

A Nem™ f a2

exp (-1} (k.z, - n,8,)] 8L, expli z k'z, - n/9,)l
P[‘Z‘JJ JJ)] hu P _(JJ JJ)]
J j
They are operators with respect to iQJ} ) {aji , and {pJ_& . An explicit

expression analogous to eq. (I. 3. 25) can be calculated in the same way:

<fighdngb lony I{x/} fn} >

“lp 85Tk - k) 85 - n))
j(&h, u) ’ P

g
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=
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| $3
(k, + K - K -k)[ﬁ/l‘ a8
[nmwA(/Z’f[k h2+n)]

exp [i(nh o - n}'1 b nxll) Bl { J-nh - n}'] ({ah)

2. 3.
J-(n . n"l)('/au) [mw(kh i} kh) (Bph ) apu)
nh o) u A

SN
-J (La E ai J ,(/éh)

~(n h %% "h” Th

n‘; 3 /

-Jnh'n;, (ﬂh)zx_nsa_u J_(u :)( au)}
exp [i!' Q.0 (3.3)

where Qhu = Qh - gu, and ,_/is the vector defined by the polar coordinates ¢, B

(£°B = 0).
It is possible to perform the integration over 8. Although the result will not be

used, we write it for completeness:

<pih dn b lsn WK {n} >

0 o7 -k tsu"(ni - n’)]
j(yh, u) J 5o

A A

tii WIWWWWWWMWWmnmnammnmmmmwmmmwmmmmrww
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E =

s Kr e
I I
8 (ky +k -k - k') 2n jo £V 4

[-nmm/\{/z + [kh - k}'l'_]2 + ,LZ)]_1

§
-
=
:
3

i3

jo 2N

n
o) 9

{[mu(k N - ol -y By
Aph Apu ah aah

n’ n +n -n’' -n'
u A 0 h u h u
Aa A
a'u u Qhu C)’hu

3! . (/Q
i/ nh + nu - nh - n
iom (79 ) 4
hu n +n - n;l n' Qhu hu

]

I L d (L1l “{1% )

h  h u u h .

"u A
I - ,(/a m—aa ;'g;]}
u u

. 7 7 _TT—
Tl " (4o ) exp [iln, +n -0/ - 0@, +5) 1, (3.4)
where ‘hu = arctan (th / th) (cf. eq.(l.3.8) ff).

(9)

We also note that, according to Barabanenkov' ', egs. (6) and (7), the fntegration
over Z is simple if Qhu >a + a One should however check the range of validity of

those formulae before applying them,

g
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=
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SECTION 4
INITIAL CONDITIONS

P For the physical model described in Section 2, the arguments in Sections
1.4 and 1.5 go through almost without change. All that is necessary is to replace
Qor £'2/81'r3 by A or A/2T in various places, and to include integrations over i Qj }
with the velocity integrals.
The reduced distribution functions can be defined as before:

£ E(zl,...,zr;{gc} v {ag ) ch },ipc }it)

r,

.
ES
=
x
E 3
=
E 3
g
=
=
=
2
EH
£
z
E
-
S

N! ' N-r f, ,N-s N-s _N-s, ,N-s
= d 2| d°Qd "ad "8d p
(N - r)! j(l,.... ,r) J‘C}
. (1 mila g Q a l,|8 t); (4.1)
hestl N A IR L jhot pyhonh '

= = = ;1 0<r<s<N;
cps fo’s‘cp 9 f 0<r<s<N

A1 Y

0,1

with the normalization condition E

n
5

Ids qQ d°a a°¢ a°p(m mzwzao) o ({ o}t (4.2)

o)

They can be expressed in terms of the p’'s:

T T e T AT TR ERR

£ o= Mg Y VoY%

kl. . .kr nO;

-8

it

. p/ l...r {0* exp ('iX nc 90)

kl...krf n}

R

s}

I

exp(i[klzl +... + krzr]), (4. 3)

=

T i

-
H
I
f@
i
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. which is analogous to eq. (I. 4. 7). Here,
N-s N-8 N-s N 2 2
- . Y] - - -
ZJN_S f ._J‘c} d Qd ad p [h=§+12"m wia, Jf . (4. 9)

The Ursell correlation functions Us”o }) are defined by eqs. (I.4.11), with
0 replaced by A.
Our object is to obtain equations for the one particle distribution function ®.

Initial conditions analogous to those of Section L. 5 are imposed:

T

0) = 5 ;
f1,s( ) fr’r(O)Tn= i +1co(QT,a._r,GT,p,r.O)_ (4.5) :

o(Q_,a .GT,pT;0)= ©(Q, 2

T T

- PLi0), | (4. 6)

Us({c} . 0) is finite in the limit (2.1), and

lim Us(...,a,...,s,...;O)zofor lza- zB| >> W (4.7)
Av-oCX)
fN(sz},...,0)=fN({zj+z},...,0). (4.8)

It is assumed that there are no initial correlations among the guiding centers or
. velocities which are independent of the distances { |zi - zj| } , in the limit A - oo,
The condition (4. 6) is stronger than for the homogeneous case, because

. of the preferred directions corresponding to density gradients across B. However,

a strong theorem can be established; namely, that the condition is preserved in time

in the modified weak coupling approximation,

We can then easily cstablish the analogue of the result (L 5. 22): If

ke




iH!
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i lL..r {o}_,N r-w ,l...r io}

= A A/ZTI’ )

pk...q {n} ( ) pk...q {n}
kt...+q=0, k$0,...,q %0, (4. 9)

then
I

er/nyYy Y l...r {ol (0) remains finite in the limit (2.1), (4.10)

N-s"k.. . q {n}

where w and w’ have the same meaning as before. This follows from expressions

f[L8LEf T

such as that analogous to (I, 5,13):

U020 = @r/nYy Y Un-2

m““” NSRBI

k($0) {n}
' pi _,12( :11 iz (0) exP['iz n, 90] exp |:ik(z1 - zz) 1. (4.11)
o]
.F: .
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SECTION 5
SELECTION OF THE DOMINANT TERMS

The diagram representation of the formal solution (3.1), (3.2), (3. 3) is
almost identical to that for the homogeneous case. The ""semi-connection'' property
(I, 77) remains valid, because although there is an extra term in (3. 3) containing
»_/X a/aghu, there is no dependence on Q, or C_)u to the left of this factor.

By calculating the A dependences of the various diagram contributions to

yN_sp g K ‘ {i ‘ (t) (using condition (4.10)), we can establish that condition (4. 10)
remains valid for t > 0.

As for the e2 dependence of the initial distributions, there is no essential
change. In equations such as (I.7.20), one replaces I dN_:EQ/QN by Jsz/AN, and
(4ﬂ2/2)z by I d_/‘ (It is then possible to integrate over B to obtain a simpler

Z*

result; cf. eq. (3.4)) We therefoie assume that

1) Zr-w-w' 1]
0 0), 5.1

which is similar to eq. (I.7.24).

Let us w1ite the equation for the contribution to (2, t) corresponding to
(I.81) or (1.8.3):

Pt = ... - Yo, @) ch dC exp(-iCt)

o™y T T ened

DO

) (@ .
<{ot}fol |6Lha|kh=—k, k, =k, né), na),{o‘} >

(lpy - ppd/m +ulnl +all1- 07 ) (ne®)
@)

n
u

00 T
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| k

1]
&

1) _( /
<k =-kk =k nc(l), b {o}’ JsL -k, k

P uh

o, o {0} > (xlp - plim +u () 2l 7

a )

(-ey <k =k k =k al), ) {0t Jor, [{o}{ol>

-1
(-9 ®lo}{o }(0), (5.2)
where ’ 0 * ’ means that all suppressed variables are zero. We replace n‘(ll),
n{\l) ‘(12\ by n < = and make the following abbreviations in notation:
- <0|ah]>s-Ne2iZ Z
Ta ™h
. - - 1 _ A0
<fo o} e, Ik =-k k =k n"=n, n nh{o}
(with certain terms that vanish under yN-l omitted)
zz‘[ /d/ qu exp(l[n-n]B)
"a ™ °
e?'N exp(i/ - Q.,.)
= h =na 3
g T Lmukg-
7 inmwM/h + k" +y) Pa
/ Az na
-( £ hxg-é-;) +-a—a- a_a_]J /haa)Jnh(/hah)’ (5. 3)
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<|hu|>a -Neziz <l = -k k =k,

n
u

nt().Z) =n_, n£2)= -n . {0">

() _  _ . o
ng =Ny Ay -..nh,{ o} ‘oL |k =-kk =k .

a

(with similar terms omitted)

il

0 2m
z J / d { I dBu exp(i[nu - nh]Bu)
u
) )

n
u

2 .

e N expli ’—/u' g-uh) Y /s
2 2 2 Jn ( ual’x) Jn ( uau)

inmwA(/u+k +u ) h u

d 3 .z, h _d
[muk (Lx==)+— —], (5. 4)
Py ut aQy 3y, 33y,

a? on n® - n, follen, | {0} o} >

o 2n
= J'o L d P IO dB exp (i[nCL - nu]B)

ezexp(i/ go.u)

I (La) T (L)

Zinzmwffz + kz + u,z) Tu a

110 il 7

e

alil]HHEIT
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A 3
‘[mmk(é-— v I (/ x‘é—g—‘ )?
pu pa =uQ
n n
+ ai s aa 1. (5.5)
u u 22 %a
Then eq. (5.2) becomes:
P .
wla,t) = ...+ yN_l = yc d¢ exp(-iCt) 2
_2,-1 2m . -1 =
(1¢h™ 25 ) <o fan] > GlG, - €D b
. 1 :
\ i - < . :
< jhu|> (ila, - ¢ lua] 0 >0 OHM(O), (5. 6) :
wher i0) = /‘N ! (0) can be replaced by ¢ ®(j, 0) (cf. eq.(I.10.3)) %
o ep{OHO“ i Dio} {0} ) ep. yJ ’ cf. eq. (1. 10. . %
The arguments from cq. (I. 8. 8) to eq. (I. 8.18) can then be repeated. In the %

asymptotic limit t > > tc' eq. (5. 6) becomes

o :

ola,t) = ... +t J'm d Yo < olahl>5_(Gah)<lhul>6_(Gau)<lual°>§lco(j,0) : %
(5.7) i

g

_;E;

b

In selecting the dominant terms, we again make the modified weak coupling
approximation. Out of all the diagrams proportional to particular powers of N/A
and t, we select the ones proportional to the lowest power of ez. Then the arguments

of Section I. 9 can be repeated (see, however, the footnote at the end of Section IL 2).

F =3

1 i

il
|

e B i = e
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The dominant diagrams are semiconnected chains of ring diagrams.

In particular, we have the result analogous to eq. (I. 9. 9):

) ()

(
It kj‘ = 0, then n.j = 0, for any j and A.

This implies that the isotropy condition (4. 6) is preserved in time.

(5.8)

e e e e

il
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SECTION 6
THE SINGULAR INTEGRAL EQUATION

The major mathematical comylication arising from the presence of the
inhomogeneity across B is already apparent from eq. (5. 7). The matrix elements
contain two labels instead of one, corresponding to the labels to the right and left
of the diagram vertex. This feature cannot be rectified by shifting tae position of
the Bessel functions, as was done for the homogeneous case, because of the presence

of different dummy variahles '—/h' '—/u' and 4 instead of a single variable 5"'

This complication seems to prevent the derivation of a kinetic equation
of the same simple form as for the homogeneous casc. Howevel, some progress
has been made, as will be seen below,

It can be shown that the analogue of eq. (1.10.1) is
0

o, t) = ...+ gzN_lt.{ dk < 0]a1| >

(o o]

4G ) < 112} > 8_(Gy,) < la3| > 6 (Gy,)

< |34] 5 8.(G,,) < |45] oG, < |26] >

WWWWHHIFWWWllﬂ!NIWWWWWHWmi!llllllllllITEHRIWWWWWWWWWWWW&W&WWWWWWWWWWWWM'

7]

6.(Gg ) < 157 3 5(G,,) < 168]> £.(Gyg)

< |79] > 6_(Ggg) < 1810} > 6 (Gy o) < |10 11} >

B R T TR

) ' i
5.(Gg ) < '912] > 8(Gy, ) < || >

. < Y i

6 (Gyj 13) 1312} 0 >0 ®(j, 0), | (6.1)
m‘g&*&;ﬁa&nﬂﬁi‘gw e — = :2%




ik

PIBMRI-1289-65 17

where the asterisks denote the complex conjugate. The arguments leading to eq.
JI.” .15) are not affected by the more complicated expressions for the vertices; the
cha’ f ring diagrams can be factorized as before. In particular the condition (4.5)
is preserved in time, at least for r = 0.

However, we cannot express the results in a form exactly analogous to egs.
(1.10.18), (I.10.25). Instead, we define a new quantity ¥(a, Y), which is related to

the binary correlation function by a Fourier transformati- 1

roo
Uz(a,Y) = | dk

- Y Fle,Y) expliklz -z Dexp (~iln o - n.8,1).
n

" [~}

Y

(6.2)

(We suppress the parameters k and t from the arguments from now on, since the

equaticns no longer involve the initial time t = 0.) Then it can be shown that

i) 17
2 _J'_m dk fh <0 |ah| > F(a, h), (6. 3)

F(o,h) = qla, h) + 5—(Gah).[ < |hu| > o(h) F(a, u)
u

+6(G_) [ <lou] > p(@) F (u,h), ‘ (6. 4)
u
where
q(@,h) = 8 (G ;) < |hal 0 > @(h) v(a), (6. 5)
) o0 (o o)
' f:-;J-" do. JP da, J" dp. 2m m a1, (6. 6)
J. o 3 I J J
k] 2, (o] [00]
e e SR S L e TR R = - e

§
g

,W%@gﬁﬁﬁgmWﬂmtmﬂlﬁmkﬂﬂﬂ%WWW"“W'W"”""“'“‘W"W'W“'"M
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Note that if the matrix elements did not depend on the second labels, then ¢ne could

express Jp(a)/3t in terms off T(a,h), and derive an integral equation for r F(a, h).
h h

The singular integral equation (6. 4) is very complicated, and docs not seem readily
amenable to the treatment described in Section II. 4. By making transformations
similar to those in Section 7 below, we c‘ould eliminate some of the variables by a
sort of "barring" operation, and derive a very lengthy equation for a quantity

$(a, gy) which is indcpendent of O.Y. py, and which determines F(Q, y) through the

following relations:

Fv) = [ da, [da explita,- @ -a,- )1 Flav,

(6.7)

|

ES

and simila.ly for q(c, v) and a'(a,y); §

.

=

2 w q dq 2

A A 4ne N € ‘e E

F@,v) =l y) + | 55 6(G ) | »

' ‘o q tk +2y g

en a %

I cwe Jn (qgay) cxp(-mY\ue)[mwkgp—- g

o Y Y -

|

n 3

. z Y 9 A z

+ P 3 = - :

ilg_ % _qY] = 3. el S = L gY)) :

Y Y i

£

\- {3 i %gé

\4 Iy (qaaa) J, (q,a.) exp (in ¥ ) ¥(a, q.) %

a a a £

(o4 i
+ a<—>vz (6. 8)

_— - I - S - N = g i ———e— T e e e = 35'3:‘;
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where © is the Fourier transform of :
(v) l p (i ) ®(y) ( )
o(y) = {dk exp (ik_ + Q ) ®(y), 6.9

=y =y =y Y

and 9, is defined by the polar coordinates 9. \be. Such transformations have been
used extensively by Rostoker and coworkers, and others; see for example Reference
(10).

We do not bother to write out the =quation for @(a,gy), because a simpler
set of equations can be found in another way. In the next section, we use the sum-
mation procedure developed by Résibois (1) in order to derive equations equivalent

to (6.3), (6.4), but having a more explicit form.

ERE, e R T S e T
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SECTION 7
THE FREDIIOLM-TYPE INTEGRAL EQUATIONS

() has been described very clearly and

The Résibois summation procedure
corncisely by Balescu (Reference (4), Appendix 1¢). Singular integral equations are
avoided, and kinetic equations are obtained directly. The method is largely independent
of the nature of the matrix elements (vertices). It generalizes immediately to the
present physical model, provided that we can consider the integrations term by term
in the n's. The n's are held fixed until we actually sum the "primitive diagrams'.

The complication mentioned 1n the last section also appears here, but we are

able to proceed much farther. We do not get simple geometric series, .and therefore

no simple kinetic equation is obtained. However, we can reduce the problem to that

of solving a two dimensional integral equation of the Fredholm type but with a complicated

kernel. Further progress has not been seriously attempted at the time of writing; it
would seem that some approximation may be necessary for the derivation of a kinetic
equation in a closed form.

We replace 6—(G0«Y) by the equivalent form [i((:‘rCLY - ie)]-l, and write, according

to the Résibois theorem,

1 ’ ry hS, . ’
Fe.b) = Y, 5 §C, a¢’ ) ey 9 tie - ¢)
1S

< |s1}0 > 7 wlj), (7.1)
j

where
’ 5 I'4 "1 w2
Y () = [iGy - ¢ <[o2]>
) I , -1 s . ? -1
Lil, - 51917 < |23]>" ... LilG - €917,

2

whs(ie - = [i(-Gh - ig + g')]'1<|h I+1]>

L R S N
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' -Gy, - e+ N vt 2] >

[i(-Gs - i€+ t;')]'1 .

Here, C’ is a path of integration which consists of a straight line from (’=-otig/2 to

€' = + oo +i€/2, together with the usual semicircle in the lower half plane. (The

orientation is opposite to that of path C in eq. (5.2).)
From eq.(7.1), it is a straightforward matter to obtain recurrence relations,
and the resulting integral equations:
1 r ‘-
F(a, h) = 5= dC” 7(o, h), (7.2)
i

PALEEN
C

e ) = UG, - 7 e, h + J” <lau] > (a) Nu,h) ],
u

0 R P SR

(7.3)
Aayh) @ [3(-G -ict 7l e, n)s J"u< |hu |>o(h) Ala, w) ],
(7. 4)
o(a, h) = < |hajo> = (hyp(a). (7.5)
# It is claimed thal the set of equations (6. 3), (7. 2), (7. 3),(7.4), (7.5) is simpler than

the set (6.3), (6.4), (6.5). Note that if one can solve eq. (7. 4), then there is no
trouble in solving cq. (7. 3), because it has cssentially the same kernel.

P

Let us now investigate bricfly the 7 integration in eq. (7.2). It is relatively

-1
easy to perform the integration for the [i(Ga - ¢") 7 A(a, h) contribution (eq. (7. 3)).

- 3
=
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The factor [i(-Gh -1+ C')]-1 in eq. (7. 4) has no poles in the area enclosed by C!
Hence it is very plausible to assume that 4(a, h) has no singularities there either; at

worst there is some sort of stability condition involved. We can write

\

L § ag'lic - e e = sl g
C .
= 4 (a, h), (7. 6)
where
A (a, h) = 6_(Gah)[®(a,h) + L <|hul> @(h) A, u) 1. 1.7

%
ES
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S
=
£
ES
=
g
E
=
ES
g
£
£
=
E
g
E
£
£
H
z
H
:
g
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2
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£
=
=
=
|
%

The other contribution to !'(a,h) iz more difficult to calculate. We merely note that
the contribution from the semicircular portion of C’may be neglected, and then change
notation. Replacing ¢’ by Gx +ie/2, we get!

00}

Flah=i@m+ ] a6 (814G ) [ <lau|>nla) Tl hix]

oo

(7. 8)
“(o,hix) = 8.(G ) (A, hix) + fu<|au|>”‘m(a) Dl, b )7

(7.9)
Aahix) = 6G ) [ o (a,h) + [u< |hul > o (h) ala, hix) ],

- (7.10)

T
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. ~ [¢ o]
A (e, h) = A, hid) = J 4G 5(C, IA(, hix). (7.11)
-Q0

We now examine the problem of simplifying the integral equations(7.3) and
(7.4), or (7.9) and (7.10). All these equations have essentially the same kernel, and
can in principle be solved in the same way. We consider eq. (7.10) as an example,
and abbreviate 4(a, h;x) by A(h), since a and Gx appear only as parameters. Also,

6_(th) @ (o, h) will be written as = (h), so that
= = <
AR) = ) +6.(G ) [ <Ihul >om) 8. (7.12)
The following expansions are carried out for  =z(h) as well as for A(h):

A(h) = ‘[ dg exp(-ig, Qh)’/t (h),

(so that An) = (2m)° [ dQ, explig, - Q,) AR,

o) = [ dk_exp (ik, - Q,) Blh);

A s '
Ah) = ) To v, pap) 3y (ayey) e (-in 4,) 8'()

Yh

b Hmﬁu%leltmniwmﬁmuWmnwmwmmmummumwmmmuwmmmwnw»wmmwmmmmmwwmmwmm MO KR

(7.13)

A
where by = arctan (qi/q;), and A’ (h) depends on v, instead of n,. Then

S
i

J\ll 4
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' . 2
B(h) = &(h) + 5_(G ) FEET J'dw T, (aay) exp(-iny ) [k,
o 9 +k +n .

[mwk-a—g;-i(_qu k)* +;hh-—a}-]6(_qh k, -a)émE(g)

(7.14)

where

BHH| T

e ®
- 2 2
big)s| da [ dp 2mmu®a T () B ], L,

l [o] =00 u

(7.15)

and we have used the relation

Kr
z T J =),
n

R

Furthermore, eq.(7.13) yields

- 2 2
A (gh) -Z J; dah Im dp, 2mm w a,

‘ Jnh(qhéh) explin, ¥,) & (h). . (7.16)

Therefore eq. (7.14) may be reduced by means of this barring operation to

~
=
-
-
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2

N B = 4me N |

A(g'h) i = (gh) iTmwA

"h
(o o] (o o)
2 2
j da J' ap, 2rm°u’a, T (qy2,)
) o h

+ exp (inh dth) 6__(Gx-[(kph/m) + nhW])

.q dq 2T
U u
S qi+k2 _‘_KZ J; uon u h

s exp (-inh\hu) [muwk S:’_h + i(gu xgh)z

4 b

% 'a'%‘ 19 @y Py = 8y 3,8 @)

kL

This equation can be written ina notation that may be more familiar:

_ _ © _
F@= T@+] [ aa'K@a)s@
‘oo oo
where
2 Jo'e) Jo}
4me N
K(g,q') = 2mp, dp dp
i[\(q'2+k2+u2)L > "'-'L I

|
~|
|
i
E
ey
o]
€ E‘
A
o
"
o
B
o]
=
<
1
E‘\
—d

(7.17)

(7.18)

T I == - : i =
e
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‘ o) nmy 5 i ’
kL ¢ 2 Lgfag)y ]
By P PR mu @)
A 4
‘olp,k = g" - q) (7.19)

and p is the kinetic momentum.
Equation (7.17) or (7.18) is of the F:edholm type, but the kernel K is rather

complicated. We give it some study in the next section, but no detailed examination

has yet been carried out.

}E
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SECTION 8
COMPARISON OF RESUL IS WITH EXISTING
KINE TIC EQUATIONS

Our results reduce to the homogeneous kinetic equation(l.11.17), or (L 1L 1},
(I1. 4. 9), when ©(j) is independent of Qj. The easiest way to show this is to return
to eq. (7.1), and perform the integrations over the |{ Q } . We obtain factors
6(/ / ). 6(/ / ), etc., so that the mtegrat;ons over all but one of the
{/ }are tr1v1a1 we may set / / /and B = B =...=B, Then the

Résibois summation procedure yields geometric series, and the final result is
precisely eq. (II. 4. 9).
In order to see that this is plausible without going througn the details, one

should note that eq. (7.17) reduces to

8(ay)= E(@p)/n (xike=g)

when Q(h) b(k kp(h), if the normalization of © is changed by a factor T. Roughly
speaking, the term q(a)/n(a) of eq. (11. 4. 9) comes from the term A(a h) of eq.(7.8),
and the integrand 6.(Gau)[q(l)(u)/n(u)]/n (u) in the other term comes from the factor
T(u, h;x) in eq. (7. 8).

Let us now return to the diffusion problem. ESo far as we are aware, no
equivalent results have yet been published. The only comparable results are those of
Eleonskil, Zyryanov, and Silin(lz), especially their equation (17). They made a
quantum mechanical calculation of the collision integral, using the firs: Born approxima-
tion and the Landau representation (Landau levels), and laisr took the classical limit,
The collective effects were taken into account through the ad hoc introcuction of a
dielectric tensor. They simplified the results by assuming that x(j) is independent of

Q;( , depending only on Qy(or ng

, in our previous notation), aj.pj, and t. If we set
the collective factor equal to 1 (so that the results are analogous to the Landau equation),

their collision integral for the single species plasma may be written as follows:

P 2 2 S
J I d J dph 2mm w ay Z Zr
o

=00 ﬁ.‘h

S S S T
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4 00 X n
.(.‘?E.)I d/x (ka_a— L 3_ a f )
i1 an

p, ™M BQZ mua  da
kp “kp
a h
[Re & ( — + nuw- -nh&)]

N [al? [al) (kz+,/"2+,/’(;,/z)'1

«

. exp(i[naﬁa- nhﬁh])exp(i[ /Z‘ QZ - /z Qz o

2, 3 3 L 3
LT (La)T L) Tk -k -
n,6 ~ G o’ ny h h apa aph me o a Y
ah
n n

= Qa 3 h [ N
= + - ) [= «h)lv(a)
: muwa aaa mma.h aah A

VARV SRR g 8.1

This is to be compared with our result for 2~ 0);

R [ dk J‘ de 7 da ?m d anz' za 5
e h ) “n J_ “n v hz L
n
a "h

mﬂiummﬂﬁ%mumHmunnﬂlWmmmﬂmlmnmtmumumwmmmwuwumwmnmmwm»mmmmmmwm&nmmmmnumw&w&uwmmmﬂwuﬂwmw

4 (s ¢} 77X n
A
'ez)f d/x(kaa _{nw b2 a)
n ‘o Py aoc’; o %%a

‘ ?_9_+ E.p_*z w)rf‘d/de/y
R e A R ” h

G L S5 N
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. expliln_-n 1ls_ - 8 NexpLAY - £710Q )

3, | /aaa)Jna(/haa)Jnh(/aah”nh( L2

X n
ke k2 L 2o 2

apa aph muy anh mua, aaa

n

.——b— _a_. ﬂ. e n { 2
oy aa1h) [ @ () Je(@. (8.2)

Expressions (8.1) and (8.2) are very similar, but seem to be slightly
different. We have not vet traced the origin of the differences.

In (8.1) or (8. 2), the coefficient of Bz/aQay +3 proportional to w-z, or
B . Hence the results may be in qualitative agrecement with Fick's law with a
collisional diffusion coefficient. (See References (1), (2), and (12) for more complete
discussions.) Our hope is that by properly taking into account the collective effects,
as we have done, we may eventually be able to understand better the phenomenon of

, - . -2
anomalous diffusion, where the diffusion coefficient decreases less :apidly than B

for increasing magnetic field strength.
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SECTION 9
CONCLUSION

We have provided here a basis for kinetic theoretical studies of the diffusion
of a plasma across a magnetic field. The main result contained in this report is a
demonstration that the problem of deriving a kinetic equation for the one particle
distribution function can be reduced to the problem of solving an equation of the Fredholm
type (7.18). The demonstration, which is believed to be original, contains no explicit
restriction on the amplitude or length scale of the inhomogeneity across the magnetic
field.

Much further work, however, remains to be done on the refinement of the

physical model, and on the qualitative and quantitative examination o1 the properties

of the resulting equations.,
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wErrata:
Page 1977, line 26: the last two lines of the expression for 6Lhu should read

as follows:
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+ [ (cos [Jh 8] ,/Bah
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Page 2000, line 6 and line 9: '"(8.15)" should be ''(8.14)"
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+ Errata:

Page 2008, line 12: "'q =1,2,2,2,1" should be "q =1,2,2,1,1",

the footnote on page 130 of paper IIL
. 2 6
Page 123, line 5: "m " =hould be "m™ ',
line 10: "(Zn)-l" should be "(211)-2".
Page 125, Fig. 2:"I" should be " "7 ",

ag =1

Page 128, line 6: "mz" should be "m()".

Se also

Page 128, last paragraph: 'first order e2" should read '"first order in e2".

H « M a eq eq (1] (4] (9 eq eq it
Page 129, line 21: Jh 8(G @ (@)o '(h)" should be b 8(G )G 0 (@) " (R)"

2 2
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2 2 2 2
k t+u k *tx
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Page 129, line 26: "
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Research Report No. PIBMRI-1289-65 by Michael J. Haggerty
(Department of Physics, Polytechnic Institute of Brooklyn,
Contract No. NONR 839(38), ARFA Order No. 529,

August 10, 1965.,)

On the Kinetic Theory of Diffusion of a

Plasme Column across a-%agnetic Field,
ERRATA (as of 12 January 1966):

fourth line after eq. (2.1): repiace "effect" by "affect".

third paragraph: replace "assumption (I.3.26)" by "assumptions (I.3.26)

and (I.8.12)",

end of third paragraph: replace "with W set equal to zero" by "with
W chosen so as to cancel the contribution of V(kz-O) to the inter-

action matrix elements."

second last line before footnote: replacé "may be a less trivial

problem' by "is a less trivial problem".

add at bottom of page:

"It should be observed that the matrix elements that are diagonal
with respect to the k's are not necessarily zero. However, in
accordance with the discussion in Section 2, we ignore these contributions

by replacing (22 + [kh-kﬂ]z + KZ)-l by O when kh - kﬂ M
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Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

11,

12,

14,

17,

21,

22,

22,

25,

25,

26,

third line of eq. (4.1): "{zj" should read "{zJ}".
left side of eq. (4.5) should read "fr s(O)".
»

third line from bottom: replace X by , and include a marginal

k k(§0)
note referring to the paragraph added at the bottom of page 7.

line 3: "ku = k" should read "ku a k",
gecond line of eq. (5.6): replace z by

K k(40)

add a dagger after "binary correlation function'", and write the following

footnc ... at the bottom of the page:

"tThe appearance of U2 at this stage, instead of f2 99 implies that
1

the self-consistent electric field is being ignored (ef. Sections 2 and

3"

line 2: "Gs" should read "GS".

eq. (7.8): replace "de" by "(de/Zﬂ)".

eq. (7.1C): replace "¢(h) A(a,h;x)" by "¢(h) A(a,usx)".
eq. (7.18): "-E-(%)" should read "-E;Q)".

add " ) " at end of last line.

last line of eq. (7.19): replace "k" by 'j%‘: -




Pase 28,

Page 29,

Page 29,

Page 31,

Page 32,

-3 -

eq. (8.1): replace ”dlz e Ty Gy L ”dﬂ.y(kz + 251

| YoY 2
exp(i[_-nu n#]B) exp(iL Quh) Jnu(lau) Jnh(lahDI .
line 3: "kalapa" should be "kd/3p_".

Jines 5 and 6: replace "Expressions (8.1) and (8.2) ... differences."

by "The results (8.1) and (8.2) are identical."

add at bottom of page:
"Page 1996, eq. (7.21): replace Z(e2) by 2(0), and add '+ O(ea)*.
Eq. (7.22): add '+ O(ea)‘.

Lines 15 to 17: replace 'and, as it happens, is independent of ez?

by 'to first order'.

last correction: replace '"d" by '"D" in two places.

The present address of the author is:

Institute for Fluid Dynamics and Applied Mathematics

University of Maryland, College Park, Maryland 20742, U.S.A.



