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Summary 

The kinetic theory of Pngogine and Balescu,  which was pieviously developed 

for a homogeneous plasma in a magnetic field,  is now applied to the problem of dif- 

fusion of a plasma column across a magnetic field.    The problem of deriving a kinetic- 

equation is reduced to that of solving a two dimensional Fiedholm-type integral equa- 

tion with a complicated kernel.    No restriction is made concerning the amplitude or 

length scale of the inhomogeneity across the magnetic field.    The results are preliminary 

in nature,  and suggestions are made for furthe i  refinements.    Some comparisons 

with previously existing results are given. 
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SECTION 1 

INTRODUCTION 

I 

The phenomenon of diffusion of a plasma across a magnetic field is of great 

importance in the problem of plasma confinement.    There have been many theoretical 

papers on the subject;   see for example the review articles by Golant      and Boeschoten    . 

So far,  however,  there has been ve  y little work done on the kinetic theory of inhomo- 

geneous nonequilibrium plasmas in magnetic fields. 

We report here some pieliminary results on the diffusion of a plasma column 

across a   uniform magnetic field.    It is believed that no equivalent results have yet 

been published.    The problem of deriving an equation for the one particle distribution 

function,  including a proper treatment of screening effects,  has been reduced to that 

of solving an integral equation of the F - edholm type, with a complicated kernel.    The 

method used is an extension of that of Prigogine,   Balescu, and coworkers.   '      It was 

applied to the homogeneous problem in preceding works       '       '       .to be referred to 

as papers I,  II,  and III respectively,    We rely heavily on the notation summarized in 

the Appendix of paper I ( although some superscripts   X-   and z  are suppressed, and 

x. *       is replaced by Q).    Some familiarity with paper I or with Balescu's book       is 

necessary for a detailed examination of this report; the emphasis is on the differences 

between the present calculation and that of paper I. 

Although the plasma is assumed to be homogeneous along the magnetic field,  an 

arbitrary inhomogeneity is allowed in directions perpendicular to the field.    The 

infinite order perturbation theory is tractable for this case because the guiding centers 

are constants of the unperturbed motion.    We have,  however,   restricted oui selves 

here to the calculation of local effects in a single species plasma.    It is an important 

problem to refine this model,  and to properly take into account internal macroscopic 

electric fields. 

More details concerning the physical model are given in Section 2.    The diagram 

perturbation theory is summarized in Sections 3,  4,  and 5.   The main results are given 

in Sections 6 and 7.    They are compared with existing kinetic equations in Section 8. 



PIBMRM289-65 ^^ 2 

PHYSICAL MODEL 

The theory presented here is incomplete in the sense that a very primitive physical 

model is used. 

We consider a single-species plasma in a region of volume Q containing a uniform 

magnetic field B.  The length of the region in the direction of B is A,  and the cross 

section is £ = ^M.    We will assume that the plasma is homogeneous in the direction 

of B.    In addition,  the limit 

N - oo,  A - oo,   N/A constant, 
£ arbitrary (2.1) 

(cf.  eq.  (1.2.1)) will be taken.    Thus end effects ( for example,   "short circuiting") are 

not considered.    However,  an arbitrary inhomogeneity in directions perpendica^r to B 

will be allowed.    There will be no restrictions on the amplitude or length scaic of the 

inhomogeneities,  although  those scales may effect the plausibility of some of the other 

assumptions. 

A neutralizing background charge of unspecified density variation across B is 

assumed to be present.    This is an ill-defined artifice introduced solely for the 

purpose of restricting ourselves to the calculation of effects due to relatively local 

interactions among the plasma particles.    The long range interactions and boundary 

effects which the perturbation exparsion of paper I cannot take into account are assumed 

to effectively cancel each other- we again make assumption (1.3.26).  We use the 

Hamiltonian (I. 2. 2) with W set equal to 7,e: o. 

In the homogeneous case discussed in paper I,   the generalization to a more realistic 

multi-component plasma would involve only the inclusion of additional indices and 

summation signs in appropriate places.    In th-j preso it case,   however,   such a generaliza- 

tion may be a less trivial probJem, It would involve a careful treatment of the transverse 

electric fields^ arising from the charge separation due to different diffusion rates of the 

Note that for the noninteracting case,  the orbits in crossed external electric and 

magnetic fields are very simple; see for example Reference (8), Section 10.1. 
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B 
various plasma components.    This should lead to the development of a theory of 

ambipolar diffusion.    While such a treatment is important,  it is beyond the scope 

I 
of the work reported here. 

We will also assume that the one pai-ticle distribution function is initially 

"gyrotropic"; that is,  Isotropie in directions perpendicular to B.   This may restrict 

the types of diffusion that the theory can predict.    However,  the theorem that the 

initial condition is preserved in time is much stronger than the corresponding 
is s 

result for the homogeneous plasma.    In that case, once it became apparent that 

the higher or "".er initial correlations would not appear in the final results,  then there 

was no way in which a preferred direction perpendicular to B could appear.    In the 

present case, we always have the preferred directions corresponding to the spatial 

density gradients. 
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SECTION 3 

FORMAL SOLUTION OF THE 

LIOUVILLE EQUATION 

Our starting point is the same as in Section I. 3,  except that we do not introduce 

periodic boundary conditions with respect to the    \ x.        j    (hereafter called    ^Q \   )• 

The fundamental reason why the treatment of arbitrary inhomogeneities perpendicular 

to B  is tractable has already been noted in the paragraph following eq.  (I. 3.13).   The 

«   Q.  p  are constants of the unperturbed motion, and hence can be treated in the 

same way as the velocity cylindrical components    ^a. ,  p       J   .   (Fro-i now on,  the 

superscript z will be suppressed. ) We had no reason to assume any sort of homogeneity 

in velocity space (except through the condition of staoility); hence none is needed with 

respect to     |Q- 1   ■ 

Thus eqs.  (I. 3.14) and (I. 3. 18) are replaced by 

= 7    7      P' {t)exp [iV (kz. - n9 )], (3.1) 

)k||„|     lkIM ' 

1>Wf50'|k
WHn'°'|(,QjMaiMPjl■,, 

CO 

C q=o 

[([  k.Mp./mj + ^n.^-C]- 

I    I        I    <l^WMnj'°'||6Lhu||k.<')||„.<')| 
,k(l)|tn(l),h<u 
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[(^k.^p./ml + ^^n.^-C]"1' 

I I I 
ik(q)f      in

(q)|        i< m 

<(k.<''-"Hn."'-1'M6L.m||k.<'!'|t„.<'",> 

Mi   .n-l .< [(^Wp./^.^n.'^-O-'p^^^O)    . (3.2) 

J 

Here,  the k's are restricted to values of the form (2n/A)(iiiteger),  and the n's are 

integers. 

The matrix elements are defined as follows: 

<}k. ||n.}    |6L.    Ijk.'fjn.'}    > 
j ' '   J ' hu''   j • <   j ' 

= A-N(2.rNJdNzdNe 

exp [-iV   (k.z. - n.e.)] 6L,       exp[i  y(k./z. - n.' 9.)]. r L      i i        J J hu       r      L    i   i        J    J 
j j 

They are operators with respect to   |Q . J ,    \a\    > and   \p. J   ■    An explicit 

expression analogous to eq. (1. 3. 25) can be calculated in the same way: 

<|kjf  |n.|   jfiLjlk/j    jn.'f   > 

= [TI 6Kr(k   -k;)6Kr(n   -n')] 
j^h.u) i       3 J       J 
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2TT 

6Kr(k   +k    -k'-k')   \ A^L     d3 h       u       h       u    «to .)0 

[.TtmujA tfZ + iK -k/^+H2)]'1 
h      h 

exp[i(nh + nu-n;-n;)8]{j .C^) 
h       n 

J   . '.(>^a      [mii){k    - k  ) ( ——  - r*-) 
-(n    - n )        u h       h     ap,        ap u       u h u 

=hu h        h u       u 

h    a 
-(n    - n  ) '       u    a.     Sa        nu ' nv, h 

* u       u n       r.       n       n 

a,   - n/    '      h   a,,  Sa        -(n    - n   ) u J 
\-\ u       u u        a 

;xp[il-   ^u], (3.3) 

where Q       = Q     - Q   ,   and ^is the vector defined by the polar coordinates vf,   8 
— hu      — h      — u — 

(^B = 0). 

It is possible to perform the integration over 8.    Although the result will not be 

used,  we write it for completeness: 

<|k.[   {n. |   ULjik!}   |n.'}   > 

[     H 6Kr (k. - k.') ^{Ti   - n.')] 
jC^h.u) J        J j        J 
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6  r(k,   + k    - k' - k') 2TT 
h       u       h       u        J 

.00 

jftjf 

[-nmujA^ + t^- k^ + H2)]'1 

{ rh        ru h       h 

n        ^         n,   + n    - n,   - n . 
u     ?* n       u       h u_     0 

a     ^a 
u        u Q, 

1U 
>Qhu 

J'                ,       , t/Q,   ) ^n,   +n-rL-n               hu 
1 J*        h       u       h       u S__ -j 

hu     n,    + n    - n,   -  n      -*/    Tua      rhu 
n u        h        u 

[J /(ya,)J. n,J4^a,)3 + tJ„        n'^v,) n,   - n, h     -(n    - n  ) u n,   - n,        h 
h       h u       u h       h 

J.{n -n'l^V^r-^r^gr1} (n    - n') 
u        11 h      h       u      u 

J      , ,        , (V^Q,   ) exp [i{nt ^ n    - n' - n')^      +^-) ], (3.4) 
n,   + n    - n,   -  n hu        r h        u        h        u   Thu      2 
h        u        h        u 

where ^^ arctan (Q^ /  ^ ) (cl.   eq. (I. 3. 8) ff). 

(9) 
We also note that,  according to Baiabanenkovx    ,   eqs.   (6) and (7),  the integration 

over 2. is simple if Q,     > a,   + a   .   One should however check the range of validity of r nu       h        u 
those fovmulae before applying them. 
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SECTION 4 

INITIAL CONDITIONS 

For the physical model described in Section 2. the arguments in Sections 

I. 4 and I. 5 go through almost without change.   All that is necessary is to replace 

n or n/Sn3 by A or A/2TT in various places,  and to include  integrations over | Q.  | 

with the velocity integrals. 

The reduced distribution functions can be defined as before: 

N! rJ'      dN-M. 
N-r    T,   dN-SQ  dN-8adN-SedN-8P 

(N-r)!   J(l r) iof 

[   n       mVa^yjz.     .{Qj}. {a.}. 19.1.1   P. | ,  t); (4.1) 
h=s+l 

cp=f      .cp = cp=f    1;0<r<s<N: 
s      o, s' 1      o, 1      — 

with the normalization condition 

s
2m2

a   Ico  (I  0 Lt) = 1. (4-2) J dB Q    dSa   dS9   dSp (A m^uj ij cps(|  o [ . t) = 1. 
a 

They can be expressed in terms of the p   's 

k....k    in | 
1        r 1   a' 

p'l"'*   \°\      exp(.i^    noea) 

exp(i[k1z1 + ...  +krzr]), (4.3) 
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which is analogous to eq. (I. 4. 7).    Here, 

U        f . f'    dN-S Q  dN-8a   dN-Sp   [h.8n+12nmVah]f   . (4.4) 

The Ursell correlation functions U^jö () are defined by eqs.   (1.4.11). with 

Q replaced by A. 
Our object is to obtain equations for the one particle distribution function cp. 

Initial conditions analogous to those of Section I. 5 are imposed: 

f    (o) = f    (o) n        ü(g_.a .1 .p ;o), <4-5) 

i.s r.r      Tlr + 1 .     T     T     T 

^9T.VVpTi0)= ^^T'S' PT1^' 
(4.6) 

U  (|o[  ,   0) is finite in the limit (2.1),  and 

lim     U  (...,a ^...;0) = Ofor l7.a- zBl >>   HCO 

A " ^ 

- 1 
rr 

(4.7) 

f  (  \z.\ 0) = f  (|  z   +Z|. .  0). (4.8) 

It is assumed that there are no initial correlations among the guiding centers or 

velocities which are independent of the distances  {   1 z. - z. 1} ,  in the limit A - co. 

The condition (4.6) is stronger than for the homogeneous case,  because 

of the preferred diiections corresponding to density gradients across B.    However, 

a strong theorem can be established; namely,  that the condition is preserved in time 

in the modified weak coupling approximation. 

We can then easily establish the analogue of the result (I. 5.22):   If 
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1. . . r      jal     .N r-w    ^...r    jo} 
pk...q     {n|=A   (A/2TT) Pk...q    |nf' 

k+.. .+q = 0,  k ^ 0, .. .,q ^ 0, (4.9) 

then 

(2IT/A)
W

       ^^    pf***1   1°       (0) remains finite in the limit (2.1).    (4.10) wJN-s  k. ..q   Jnl 

where w and w' have the same meaning as before.    This follows from expressions 

such as that analogous to (I. 5.13): 

U2(1.2;0)=(2n/A)^        I £N_2 

k(i0)  |n} 

plk -k L n, (0) ^P^1! na ea ] exp Cik(2l ' z2) ] 

"l^ 
(4.11) 
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11 

SECTION 5 

SELECTION OF THE DOMINANT TERMS 

The diagram representation of the formal solution (3.1), (3. 2), (3. 3) is 

almost identical to that for the homogeneous case.    The "semi-connection" property 

(I. 7»7) remains valid,  because although there is an extra term in (3. 3) containing 

^X a/äQ.   , there is no dependence on Q    or Q    to the left of this factor. 
— "~hu ft ^ 

By calculating the A dependences of the various diagram contributions to 

^       Pi      I li (*) (using condition (4.10)), we can establish that condition (4.10) 
N-s    j k | j n | 

remains valid for t > 0. 

As for the e' dependence of the initial distributions,  there is no essential 
P    N  B    N        P N       N 

change.    Inequations such as (I. 7. Z0),  one replaces J  d   xs/n    by j d   z/A   ,  and 

(Ar\  IZ)S     by   j  d^ .   (It is then possible to integrate over 6 to obtain a simpler 

result; cf.  eq.  (3.4)0   We theiefoie assume that 

< ,/M /  2.r-w-w     / /rt. 
>}    jn|(0)   ^^   ) P   i0H0|(0)' 

(5.1) 

which is similar to eq.  (1.7.24). 

Let us wiite the equation for the contribution to cp(a, t) corresponding to 

(1.81) or (1.8.3): 

cp(a,t) 

<-^1 III l-^2) 
n      n, 

a      h 

(1)    J1) <|0MM     |6Lhalkh=-k.  ka-k,  n^,   nj/.jo)'    > 

(k[p    -   p ]/m + («[n^ + ^l 
-i r 0 * 7      (-Ne4) 

J2) 
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ß)    _(1) ^^V^-h'M'Kh'V ■ k, k    = k, '  a 

.0)    J2) (1)^(2),    ,,-1 na •  V ' I 0 1 ' X ^Pa - Pj/m + . [n- + n^']- C) 

(-e
2
)<ku = k,ka = k(n^n^|0r|6Lau||0M0l> 

("9"  0lo[|o} (0). (5.2) 

where   j 0 | ' means that all suppressed variables are zero.    We replace na 

n; '    n'     bv n  ,   -n, ,-n  ,  and make the following abbreviations in notation: 
h       u      'a h     u 

(1) 

< 0 lah| > s - Ne i 7   J 

a     h 

•<i0   H0l   ISL^l^-.-k,  ka = k. n^ = nal  ^ - -%> \  o\' > 

(with certain terms that vanish under  yN  i omitted) 

oo 2n 

•I II    A" ^h J d\ «> (i[nn - "0i 
Sh' 

n    n,      o 
a   h 

-?*Nexp(i/     •  Q, J h    - ha' 
2 2       2 

iTTmuuA^.    + k   + H  ) 
[muük 

sp. 

<A^>i+r .T^V^VVAV' - a a      a       a 
(5.3) 
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< I hu I > ■  - Ne i V    < kv = -k' ka 
= k' 

n 
u 

*{?-\' «f'-v^i'i^Jv^v^ -f-v »r'=-vio>'> 
(with similar terms omitted) 

*l   f   jfuJ   $       dßu exp(i[nu - r^]^) 
u       u no o u 

^ exp{i / •  Q   , ) 
V^T1-   J    (^aj J    {^fa  ) 

. / ^»2  , . 2  ,    2.       n. x    u Ä     n        u u 

[m^f-.^XTl-)2^^]. (5.4) 

<    ua    0 > = 
A     2- Ae i < k   = -k.k = k, 

2TT u '   a 

^—    -(2)--n.    joriöL     1  JO}   10|> n       = n , n 
a        a    u au 

oo     .        -  _2TT 

s J    ^d ^    [      dP exp (i[na - n^S) 

e exp^^^) 
J      (^Ta )   J      U?aJ 

s-  2      ,^2 ^ , 2 ^    2.     n    '        u      n a 
lirr muuj^T   + k   + H )      u a 



PIBMRI-1289-65 14 

r u a — ua 

a     fta        a      äa,, u        u        ex        u 

Then eq.   (5. 2) becomes: 

cD{a, t) = • ■ • + ^ N.! if j»   dC exP(-iCt) 

(5.5) 

.2,-1   2TT 

k 

-1 

<, ihul>(i[Gau- Q])-l< |ua| 0>p     ,,0j(0), (5.6) 

where P»0ll0l-0) SAN
 P'jol    jol(0, Can be rePlaced by f ^'0) (cf-  eq. (1.10, 3)). 

The arguments from cq. (I. 8. 8) to eq. (I. 8.18) can then be repeated.  In the 

asymptotic limit t > > t  .  eq. (5. 6) becomes 

00 

CD(a,t) = ...  +t  J      dk     ^J^J   <0lahl>6.(Gah)<|hul>6.(Gau)<|ua|0>ncp(j.0) 

(5.7) 

In selecting the dominant terms,  we again make the modified weak coupling 

approximation.    Out of all the diagrams proportional to particular powers of N/A 
2 

and t,  we select the ones proportional to the lowest power of e  .    Then the arguments 

of Section I. 9 can be repeated (see,  however,  the footnote at the end of Section II. 2). 
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The dominant diagrams are semiconnected chains of ring diagrams. 

In particular,  we have the result analogous to eq. (1. 9. 9): 

If k'^ = 0,  then n!  ) = 0, for any j and X. 
J J 

(5.8) 

This implies chat the isotropy condition (4. 6) is preserved in time. 

Ü 
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SECTION 6 

THE SINGULAR INTEGRAL EQUATION 

The major mathematical complication arising from the presence of the 

inhomogeneity across B is already apparent from eq. (5. 7).    The matrix elements 

contain two labels instead of one.  corresponding to the labels to the right and left 

of the diagram vertex.    This feature cannot, be rectified by shifting t.re position of 

the Bessel functions,  as was done for the homogeneous case,  because of the presence 

of different dummy variables   /^ ^  and ^ instead of a single variable K 

This complication seems to prevent the derivation of a kinetic equation 

of the same simple form as for the homogeneous case.    However,   some progress 

has been made,  as will be seen below. 

It can be shown that the analogue of eq.  (I. 10. 1) is 

cp(a.t)= ... +   Vl'I     dk<0lal1 > 

oo 

■6-{Gal) < l12! > 6-(Ga2) < la3l >   6-(G32) 

'< 1341 >   MG.2)< l45l > 6JG52)< 1*61 > 

6_{G56) < !571 > 6JG76) < 168|> iJG^) 

• < |79l > 6jGgJ < 18 10l > 6JG9 10) < 1 10 ll| > 

MG911)-:9l2l >   L(G12 u) < 1 11 13 1 > 

6 (G., ,,)< ! 13 12l 0>tl cp(j.O), 
—    i2 13 J 
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where the asterisks denote the complex conjugate.    The arguments leading ro eq. 

XI,"   .15) are not affected by the more complicated expressions for the vertices; the 

cha        ->i ring diagrams can be factorized as before.    In particular the condition (4. 5) 

is preserved in time,  at least for r = 0. 

However, we cannot express the results in a form exactly analogous to eqs. 

(1.10.18),   (1.10.25).    Instead,  we define a new quantity ^(a. Y). which is related to 

the binary  correlation function by a Fourier transformati' v. 

i.00 -, 

U2(a,Y)=J       dk    ^ ^     F(a>Y) exp(ik[Za-2Y])exp(-iCnaöa- nYeY]). 
-oo 

n     n 
a    Y 

(6.2) 

(We suppress the parameters k and t from the arguments from now on,   since the 

equaticns no longer involve the initial time t = 0. ) Then it can be shown that 

^cp(a) 
at 

CO 

= J       dk J    < 0 |ahl > F(a1h), 
ao h 

(6.3) 

'(a.h) = q(a,h) + 6_(Gah) J     < |hul > ^(h) F(a, u) 

§ 
i -: 
I 

+6.(G    ) J <|au| > cp(a) F  (u.h), (6.4) 

where 

q(a1 h) = 6_(G    ) < lhai 0 > cp(h) cp(a)j ah 
(6.5) 

GO .00 re n 
i    f H        dQ      j       da 

J E o -00 

2   2 
dp. 2TT m Uü a.f. 

J J 
(6.6) 
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Note that i£ the matrix elements did not depend on the second labels, then cne could 

express äcp(a)/öt in terms of f   F(a,h), and derive an integral equation for    |   F(a. h). 

The singular integral equation (6.4) is very complicated,  and docs not seem readily 

amenable to the treatment described in Section 11. 4.    By making transformations 

similar to those in Section 7 below,  we could eliminate some of the variables by a 

sort of "barring" operation,  and derive a very lengthy equation for a quantity 

$(a, q  ) which is independent of a  .p  ,  and which determines F(a, y) through the 

following relations: 

F{a,Y) = J  d^  J d^   expCi^ •   9a ' aY '   9Y)] F(ct. Y) . 

and simila ly for q^., y) and q(a, y); 

(6.7) 

F(aI y) = q(a,y) + 
4 ne N 

6 (G     ) 

oo    q dq 
r e n€ 

ima^A      -   ay   J 2 . i2 x   2 

o      q    + k    + M, 

,2Tr s 

d(||   J     (q a ) exp(-in r )[miDk—-- 
e    n       f.   y Y e op%, o y Y 

^^xs,]^!1^-]^^ =s -i)) 
Y        Y 

a      a a 

+     a<—>Y (6.8) 
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A  . 
where CD is the Fourier transform of cp: 

cp(Y) = Jdk    exp (ik    ■   Q   )$(Y), (6.9) 

and £e is defined by the polar coordinates q . 4 .    Such transformations have been 

used extensively by Rostoker and coworkers,  and others; see for example Refe 

(10). 
rence 

We do not bother to write out the equation for $(a,£   ),  because a simpler 

set of equations  can be found in another way.    In the next section,  we use the sum- 

mation procedure developed by Rlsibois   (11) in order to derive equations equivalent 

to (6, 3), (6.4),  but having a more explicit form. 

maaiB^^m ■---: 



I 
i 

PIBMRI-li:89-65 20 

SECTION 7 

THE FREDHOLM-TYPE INTEGRAL EQUATIONS 

The Resibois    summation procedure       has been described very clearly and 

concisely by Balescu (Reference (4),  Appendix 10).    Singular integral equations are 

avoided, and kinetic equations are obtained directly.  The method is largely independent 

of the nature of the matrix elements (vertices).    It generalizes immediately to the 

present physical model,  provided that we can consider the integrations term by term 

in the n's.    The n's are held fixed until we actually sum the "primitive diagrams". 

The complication mentioned in the last section also appears here,  but we are 

able to proceed much farther.    We do not get simple geometric series,  and therefore 

no simple kinetic equation is obtained.    However,  we can reduce the problem to that 

of solving a two dimensional integral equation of the Fredholm type but with a complicated 

kernel.    Further progress has not been seriously attempted at the time of writing; it 

would seem that some approximation may be necessary for the derivation of a kinetic 

equation in a closed form. 

We replace 6_(G    ) by the equivalent form [i(G     - ic)]' ,  and write,  according 

to the Resibois    theorem, 

hS, 

c      i,s 

where 

^■v- K-zh I.«' I v^^"6-5'' 

'< lSl|0 >T\ coO), C7-1) 
j 

^aI(C')= [i(Ga- C')]"1^!^ 

•[i(G    - r,,)rl< l23l>*...   [KGj-C')]' , 

T/^ic - C')= CM-G. - ic + C'n^lhl+il: 
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[i(-GI + 1- ie + C')]'^ [1 + 11 +2| 

[i(-G. - ie +C')]'1 

Here,  C   is a path of integration which consists of a straight lint from   ^'^-M+ic/Z   to 

C' = + oo + ic/2,  together with the usual semicircle in the lower half plane.   (The 

orientation is opposite to that of path C in eq. (5. 2). ) 

From eq. (7.1),  it is a straightforward matter to obtain recurrence relations, 

and the resulting integral equations; 

| 

I 

F(a,h) = ^- I    dC'   (a,h) 
c 

(7.2) 

Itr  h) = [i(Ga - C')]'1 U(a.h) +  [ < jau | >S^a)r(u,h) ]  . 
u 

(7.3) 

(a.h) - [i(-G.-i.:+ C')!'1   r?(a)h)+   f < Ihu l>cp{h) Ä(a. u) ]  , 

(7.4) 

9 (a.h) |ha|0>.'r(h)rp(a). (7.5) 

It is claimed thai the set of equations (6. 3), (7. 2). (7. 3), (7. 4), (7. 5) is simpler than 

the set (6. 3),   (6. 4),   (6. 5).    Note that if one can solve eq. (7. 4),   then there is no 

trouble in solving cq. (7. 5),   because it has essentially the same kernel. 

Let us now investigate briefly the '' integration in eq. (7. 2).   It is relatively 

easy to perform the integration for the [i(G    - C')]'   Md, h) contribution (eq. (7. 3)). 
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The factor [i(-Gu - ic + C')]"1 in eq. (7. 4) has no poles in the area enclosed by C? 
n 

Hence it is very plausible to assume that ACa.h) has no singularities there either; at 

worst there is some sort of stability condition involved.    We can write 

4-   f      dC'Li(G   - C'n^Ma.h)^   Ma.h)|   , 
2TT   J_/ a ^   ' ua 

Ma.h), 

where 

Ä{a,h) = 6_(Gah)[e(a,h) + j^ < lhu|> cp(h) S(a.u)]. 

(7.6) 

(7.7) 

The other contribution to r(a,h) is more difficult to calculate.    We merely note that 

the contribution from the semicircular portion of C'may be neglected,  and then change 

notation.   Replacing C' by G    4 ic/2,   we gef. 
x 

00 

J-00 
F(a)h) = Ma.h) + dG   [5JGrtv)       <lau 1 >'rp(a)Hu,h; x) ]   , 

'(a ,h;x) = 6 (G   .) [A(a,h;x) +   f < lau|>"'^(a) r(u, h; x)] 

&(a,h;x) - 6jPxh) [  8 (a'h) +   I < lhu! > w(h) A(a, h;x) ]   , 

(7.8) 

(7.9) 

(7.10) 
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00 

Afa.h) = Aia.h-.a) = f     dG     6{C    )&(<!, h;x). 
J X u>x 
-oo 

(7.11) 

We now examine the problem of simplifying the integral equations(7. 3) and 

(7.4),  or (7.9) and (7.10).    All these equations have essentially the same kernel,  and 

can in principle be solved in the same way.    We consider eq. (7.10) as an example, 

and abbreviate A(a, h;x) by A(h),  since a and G   appear only as parameters.    Also, 

6 (G    )    ©  (a.h) will be written as    "• (h),   so that 
—    xh 

A(h) =     S (h) + 6_(Gxh) Ju <lhu| > cp(h) A(u). (7.12) 

The following expansions are carried out for       H(h) as well as for A(h): 

A(h) = [   d£h   exp(-i£h •   Qh) A (h). 
1 

.-2 r (so that A(h) = (2n)'    j dQh exp(i£h •   Qh) A(h)), 

cp(h) = [ dkh exp {ikh •   Qh) cp(h); 

^h)-y       Jn    +v    (Vh)Jv    Vh)   exp(-inh^h)r(h) 
h       h 

(7.13) 

,y/,* ^/ where if    = arctan (q^/q  ),  and A   (h) depends on   vh   instead of   nh.    Then 

^=^- .. 35 -. 
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,00 ,       2TT 

m - i(h) + 6.(0^) ^1 J "^ J d*u J    (q^) exp(.inh tu) Jdkh 

[mu)k_|_. i(3uxkh)z + ^ ^3 6(flh+kh -su) a(h)Ä(au) . 

where 

(7. 14) 

00 oo 

A K) 3I    dau  J     dpu   2TTm W \JoKan)E'{u) lv    = 0   ' 
O -00 u 

(7.15) 

and we have used the relation 

I Jn+V Jn = 6     <V>' 
n 

Furthermore,   eq. (7.13) yields 

oo oo 

t^'l       J     dahJ       ^ 
"h 

da     I       dp,    2Trm uu a, 
O - 00 

\K\> -p^hV& (h)- 
h 

(7.16) 

Therefore eq. (7.14) may be reduced by means of this barring operation to 
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Ä(3h) = 

25 

2 
•z i ) + lug N \ 3 *%i       inmuDA L 

op .00 

di 
h 

2  2 J      dph   2TTm Vah J      (qh ah) 
oo 

. exp (i^ th) 6_(Gx-[(kph/m) + ry)]) 

rq dq »
2TT 

 JL^i— f     d^f    J      (q i 
2  , , 2  ,    2 J        "n   TL    ^n 

©   a   + K    + H o n 
•hi 

«cpH^yCm*^ ^(^»a/ 

h       h 

This equation can be written in a  notation that may be more familiar: 

OO 00 _        / 

Ä   (ä) =       H (q) + J       J      da' K^a') A (£ ), 
^00       -00 

(7.17) 

(7.18) 

where 

Kia.a'»'      T2^ 2, f 
2"p^ C dpll 

iA(q     +k  +H )    o -» 

00 
Y 5JG - [kpn/m + nw]) 

n = -oo 

> j   i-32*) J    (£-Efe) exp (inCilf - *' ] 
nvmuJ      n lmu) 
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[k-—      +   + —  (q   » q)|| 

tp(£,k   - £' - £), (7.19) 

and £ is the kinetic momentum. 

Equation (7.17) or (7.18) is of the Fiedholm type,  but ths kernel K is rather 

complicated.    We give it some study in the next section,  but no detailed examination 

has yet been carried out. 
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SECTION 8 

COMPARISON OF RESULTS WITH EXISTING 

KINETIC EQUATIONS 

Our results reduce to the homogeneous kinetic equation(1.11.17),  or (1.11.1), 

(II. 4. 9), when cp(j) is independent of 0..    The easiest way to show this is to return 

to eq. (7.1), and perform the integrations over the  | Q.   } .   We obtain factors 

6(^'     - £  ).  6(<^'   "   ^ ).  etc-.  so that the integrations over all but one of the 

| ^ j are trivial; we may set ^ =>/=... = .-^and ^ = ßu = - • • =ß.    Then the 

Rlsibois    summation procedure yields geometric series,  and the final result is 

precisely eq. (II. 4. 9). 

In order to see that this is plausible without going through the details,  one 

should note that eq. (7.17) reduces to 

when  cp(h) = 6(k  )cp(h),  if the normalization of CD is changed by a factor £ . Roughly —h ~ 
speaking,  the term q(a)/Ti(a) of eq. (II. 4. 9) comes from the term Ma, h) of eq. (7. 8), 

and the integrand 6.(Gau)[q    {U)/TI(U)]/TI*(U) in the other term comes from the factor 

r(u,h;x) in eq. (7.8). 

Let us now return to the diffusion problfc:m.    So far as we are aware,  no 

equivalent results have yet been published.    The only comparable results are those of 

Eleonskii,   Zyryanov,  and Silin^12',  especially their equation  (17).    They made a 

quantum mechanical calculation of the collision integral,  using the firs; Born approxima- 

tion and the Landau representation (Landau levels),  and later took the classical limit. 

The collective effects were taken into account through the ad hoc introduction of a 

dielectric tensor.    They simplified the results by assuming that cp(j) is independent of 

QX ,  depending only on QT{or y^ .  in our previous notation),  »..?■.  and t.    If we set 

the collective factor equal to 1 (so that the results are analogous to the Landau equation), 

their collision integral for the single species plasma may be written as follows: 

r        r      v    f P0 2 E      r V JdkJdQ?    J    dah     J    dp^nma-a^^ 
00 "a "h 



PIBMRI-1289-65 28 

/  , f0    ,/x   „ ^.    ^1 ^_ +-i  ^-) 

kP, kPv a -h 
—   +   n u) - —— - •., m a        m n [Re 6 (—-   +   n ID - —- - nu it) ] 

2  .   >'x2 ^  >?y    y^Yr1 .|Jd^   Jdyv^^xz^yyv, 

y ^y .  >>» oV • 
• "PCt-a^" "heh])<!Xp(i[ < Qa ■ -^h S. •' 

.j (>/.OJ. (Avl^if-1-8 ^JL 
n   Vy^a a'    n, '       h h    '        öp^ oPt. an a " 

muu 
'^ah 

miijaa    9aa      mUUah      h 

■^    ~ * a      -^ h 

This is to be compared with our result (for  *- 0); 

oo „oo 2  2       v1      V 

J dk  J   dQh  I   dah  J    dphETTm m^L    L Re 
-oo 

na    \ 

(8.1) 

TT -0O 

kP. 
kPv a h 

-v m a m 
v)Cj^Jd^ 

^^^^ry^^"1*^'1 



PIBMRM289-65 29 

•   -P(iLna-V
[pa-y^{i[<-^h]Sxh 

J    (/a  )J    (^.a )J    (>/a )J    ( ^. a. )] 
n,.   ** a a   n„        h a    n,        ahn h h a a 

(k ap 3p ma.        y       maJaa  Saa 

ah 

miia,    da A (8.2) 

Expressions (8.1) and (8. 2) arc very similar,  but seem to be slightly 

-2 
different.    We have not yet  traced the origin of the differences. 

In (8.1) or (8.2),   the coefficient of d   /dQ^       13 proportional to a'     ,  or 
-2 a 

B     .    Hence the results may be in qualitative agreement with Pick's law with a 

collisional diffusion coefficient.    (See References (1), (2),   and (12) for more complete 

discussions. )   Our hope is that by properly taking into account the collective effects, 

as we have done,  wc may eventually be able to understand better the phenomenon of 
-2 anomalous diffusion,  where the diffusion coefficient decreases less lapidly than B 

for increasing magnetic field strength. 
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SECTION 9 

CONCLUSION 

We have provided here a basis for kinetic theoretical studies of the diffusion 

of a plasma across a magnetic field.    The main result contained in this report is a 

demonstration that the problem of deriving a kinetic equation for the one particle 

distribution function can be reduced to the problem of solving an equation of the Fredholm 
I 

type (7.18).    The demonstration,  which is believed to be original,  contains no explicit 

restriction on the amplitude or length scale of the inhomogeneity across the magnetic 

field. 
I Much further work,  however,   remains to be done on the refinement of the 

physical model,  and on the qualitative and quantitative examination of the properties 

of the resulting equations. 
I ■ 
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:';Errata: 
Papc 1977,   line 26: the last two lines of the expression for 6L,     should read 

f  n hu 
as follows: 

{[mi  iza/ap^ -{t% b/***x ) 

+   ^(cos [eh - ß] ö/3ah 

-[1/a. ]8in[9, -S ]a/ä9, ]-[h <—> u] ]. 
n n n J 

Pago 2000,   line 6 and line 9: "(8.15)" should be "(8.14)' 
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+ Errata: 

Page 2008.   line 12: "q -- 1, 2, 2, 2,1"    should be "q = 1. 2, 2,1, 1".    Se.^lso 

the footnote on page 130 of paper II. 

Page 123,   line 5: "m2" -hould be "m  ". 

line 10: ,l(2n)'1" should be "(2n)'2", 
s-1 

Page 125,  Fig.   2:'Tl"     should be "   n   "• 

a a =1 

Page 128,   line 6: "m   " should be "rn >". 
2 2 

Page 128,   last paragraph: "first order e   " should read "first order in e   ". 

Page 129,  line 21: "    J*    5(G wcpeq(a)Cpeq(h),l   should be "   ^U6(G„, )G , cpeq(a)cpeq(h), 
n        ein n      Qn    an 

Page 129,  line 26:   " 
s-1 

should be 
2^2, 

ik   +H 

_ 
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ERRATA (as of 12 January 1966): 

Page 2,  fourth line after eq. (2.1): replace "effect" by "affact". 

Page 2,  third paragraph: replace "assumption (1.3.26)" by "assumptions (1.3.26) 

and (1,8.12)". 

Page 2,  end of third paragraph: replace "with W set equal to zero" by "with 

W chosen so as to cancel the contribution of V(kz>0) to the inter- 

action matrix elements." 

Page 2,  second last line before footnote: replace "may be a less trivial 

problem" by "is a less trivial problem". 

Page 7,  add at bottom of page: 

"It should be observed that the matrix elements that are diagonal 

with respect to the k's are not necessarily zero. However, in 

accordance with the discussion in Section 2, we ignore these contributions 

by replacing U2 + [k^]2 + K2)'1 by 0 when ^ - k£ ." 



Page 8,  third line of eq. (4.1): "{z " should read "i«.}"« 

Page 9,  left side of eq. (4.5) should read "f  (0)". 
r ,8 

Page 11, third line from bottom: replace ^ by   I , and include a marginal 
k    k(?0) 

note referring to the paragraph added at the bottom of page 7. 

Page 12, line 3: "k - k" should read "k « -k". 

Page 14, second line of eq. (5.6): replace ^ by   £  . 
k    kW) 

Page 17, add a dagger after "binary correlation function", and write the following 

foofnc „ at the bottom of the page: 

"tlhe appearance of U. at this stage, instead of f* * i Implies that 

the self-consistent electric field is being ignored {of.  Sections 2 and 

3)." 

Page 21, line 2: "G " should read "Gg". 

Page 22, eq. (7.8): replace "dG " by "(dG„/2ir)". 
X X 

Page 22, eq. (7.1C): replace "0(h) A(a,h;x)" by "0(h) A(a,u;x)". 

Page 25, eq. (7.18): "Hty)" should read "1^)". 

Page 25, add " ) " at end of last line. 

Page 26, last line of eq. (7.19): replace "k" by "k " . 



Pajie 28, eq. (8.1): replace 

- 3 

K \W by  |dly(k2 
2 t„ IL.y„.2 + l2).l 

2 
exP(i[no - njß) «pd^) J iU)  J (ia^) 

a     Ti 

Page 29, line 3: "k3/3p " should be "ka/apj'. 

Page 29, lines 3 and 6; replace "Expressions (8.1) and (8.2) ... differences." 

by "The results (8.1) and (8.2) are Identical." 

Page 31, add at bottom of page: 

"Page 1996, eq. (7.21): replace Z(e2) by Z(0), and add '+ 0(eV. 

Eq. (7.22); add '+ 0(e4)1. 

Lines 15 to 17: replace 'and, as It happens. Is Independent of e ' 

by 'to first order'." 

Page 32, last correction: replace "d" by "D" In two places. 
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