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SUMMARY

A theoreticel analysis is presented of the number of launches that are
required to establish and maintain a satellite communication system. A simple
model is used to represent the process in that launches are assumed to take
place with a certain & priori probability whilst the satellites have an
exponential probability distribution of lifetimes.

Graphs and equations are given for the various probability distributions
of the system during the establishment and maintenance phases of the system and
the effect of the time interval between launches is also examined by using a
Markov chain representation of the system., It is noted that many of the

probability distributions are well represented by a Gaussian distribution.

The results quite clearly indicate the manner in which the number of
launches, and hence the cost, depend critically upon the launch success
probability and the ratio of the launch interval to the satellite mean
lifetime.
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1 INTRODUCTION

Several civil and military satellite communication systems have been
proposed in recent years whereby radio signals for telecommunication purposes
are transmitted between ground stations via orbiting satellites. In order to
provide a communication channel which is available at any time of the day these
systems require several satellites to be continually maintained in orbit;
satellites which have failed, as regards communication capebilities, must be
replaced by further satellite launchings so as to maintain sufficient satellites
in orbit. The number of satellites required in orbit may vary from a minimum
of three for e geostationary system to between fifty and e hundred for a random
system. Since the running costs for a random system are high, prineipally on
account of the large number of satellites required, such a system seems rather
unattractive at the moment. Consequently, as far as this Report is concerned,
investigation has been restricted to medium and high altitude station keeping

systems where not more than about 20 satellites are required in orbit.

Of the satellites launched, only a certain proportion will be
operationally satisfactory, in that they will be injected successfully into>the
correcf orbital position with all their mechanical and electrical sys tems
working., Present day estimates suggest that the probability of such a
successful launch may be as low as 30% although no doubt this will be improved
with future experience and research on the reliability of components. Even when
a fully operating satellite has beén launched successfully into orbit, it will
eventually fail to function due to deterioration or breakdown of its numerous
working components and will have to be replaced by another satellite. Present
design of satellite components aims at achieving a mean lifetime of about five

years and eventually ten years.

For costing purposes, preplanning of launch fehicle'pads, components, and
facilities, it is essential to know the likely number of satellite launchings
end the possible launching rates which will be requiredvin order to estasblish
ard maintain the system in operation. In this Report an attempt has been made
to assess these quantities on the basis of a relatively simple model of the
system. It is also shown that many of the probability distributions may be
well approximated, for practical purposes, by Gaussian diétributions, thus
enabling rapid estimates of system performance to be made without detailed

calculations,



2 MATHEMATICAL MODEL OF THE SYSTEM

Having decided upon a particular satellite communication system, 1et'it
be assumed that a total of at least N orbiting satellites are required in order
to provide continuous communications. Thus N satellites must first be established
in their respective orbits and then, when any satellite fails, it must be replaced
es quickly as possible by another. Since a satellite camnot be replaced immediately
it dis evident that more than N satellites must be maintained in orbit to obtain' a
high probability of continuous communication or else, perhaps for economic reasons,
an appreciable break in the communication link must be tolerated. One possible
method of attempting to achieve a continuous communication system is simply to
duplicate the satellites in pairs and switch to the remaining satellite when its
neighbour fails. Although a slight break in transmission is still inevitable at
switching it will not mean a complete breakdown unless the neighbour has also
failed. Even so, such a method would only seem feasible for a stationary system,
for example, attempting to maintain six satellites (three pairs) in orbit. TFor
medium altitude systems demerding a greater number of satellites, a more sensible
compromise would be to maintain one or two spare satellites in the aystém and
manoeuvre them into position following the failure of a satellite and accepting
the inevitable bresk in communication. The communication time lost by this
method would most likely be less than in attempting to replace the lost satellite
by a new launching. Rerouting of the communication link following a satellite
Pailure may also be possible if the increased transmission delays could be

tolerated.

In order to formulate a mathematical model for representing the mechanism
of establishihg and maintaining a communication system certain simplifying
assumptions have been made here, In the first place, no account has been taken
of the particular configuration of the communication system considered, ie€e
whether polar, equatorial, stationary, constant ground-track etc, so that a
communication system, for the purposes of this Report, simply consists of a
number of satellites N which must be established and maintained in orbit.
Secondly, as regards the launching of satellites, the location of the launching
pads and time taken to place a satellite into its correct station do not enter
into the analysis. In fact the launching system is considered to be capsable
simply of launching satellites into orbit at a certain rate and thus the number
of avallable launching pads only determines the frequency with which satellites
may be launched. Furthermore, no account is taken of the variation of firing
rates between different launching pads and the probability of successfully
launching an operationally satisfactory satellite into its correct position in

orbit is assumed to have a constant value denoted by p.



Finally since the operational lifetime of a satellite is determined by
the correct functioning of numerous pieces of equipment it seems very reasonable
to assume that the lifetime of a satellite has a Poisson probability distribution.
Thus we will assume that the probability that a satellite fails in the small
increment of time dt between times t and t + dt is dt/¢, independent of the time
t and where £ is the mean lifetime of the satellite. Consequently, the
probability that the satellite operates for a time t and then fails in the
following interval dt is

p(t) at = e-t/6 '%? (1)

and the probability that it functions for at least time t is

P(t) = f ot/ & . ot (2)
t

It may be noted in passing that this type of probability distribution is
particularly convenient mathematically since the initial operational time of a
satellite does not enter into the analysis simply because the probability of
any functioning satellite failing in the following instant is independent of
‘time. Any other probability distribution would greatly complicate the analysis

since the distribution would depend upon the launch time of the satellite.

3 ESTABLISHMENT OF A SATELLITE SYSTEM USING HIGH LAUNCHING RATES

3.1 Theoretical probability distribution

Let us assume that the probability of failure of any satellite in the
system is negligible over the established phase, or, in other words, that the
launching rate is extremely high. In this limiting case, the number of
satellites which have to be launched depends solely upon the probability of
making a successful launch, p. Now, the probability p§(n,p) that n firings
will have to be made before there are N successful launches is equal to the
probability that the last firing is successful times the probzbility of (N=-1)

successes in the previous (n-1) firings. Hence

p;(n;p) = P BN"'1 (n"1’ P) (3)
where By (n,p) is the binomial distribution function

. n = n\ N, N, (&)
By (n,p) (N/. p (1-p)




and thus
syemse) = (1) 00" (5)

is the required probability density. Consequently, the probability of obtaining

N satellites in orbit using no more than n launchings is simply

n

Pe(n;p) = X G::) p(1-p)" N (x >1) (6)

r=N

since each term of this series represents the probability of the event that the
Nth success occurs on the rth firing and all these events (r = N, N+ 1, .., n)
are mutually exclusive, Equation (6) thus gives the probability distribution
function of the number of satellites successfully launched into orbit as a

function of the number of firings.

An alternative expression for P 'e(n;p) can be found from the following
reasoning: in n firings the probablllty of N successful launchings is BN(n,p)

and, consequently, in n firings the probability of at least N successes is

P;(n;p) = iBr(n,p) = i <§> P (1-p)"7" . (7)
r=N r=N

The equivalence of equations (6) and (7), straightforward to prove algebraically,
is evident from the reasoning leading to these expressions since either contains
all the possible ways of obtaining N satellites in orbit without meking more

than n attempted launches.

3.2 Evaluation of the probability distribution

As they stand, the expressions (6) end (7) are in an extremely inconvenient
form for calculation purposes but they may be transformed into alternative
tabulated forms. The Taylor expansion of a function £(x) may be written with

remainder in the form

N-1

o) = ) E (g / 2= 00 (gt at (8)
=0
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and thus, taking f = (q+p)n with q = 1-p, this becomes
N1 1 '
n\ _r n-r n! N N-1 n=N
‘ r=0 ) ‘ '
Changing the varisble of integration to
z = p(1-t)
) we obtain
N-1 p |
n\ r n-r n! N1 n-N .,
1 = 2ZJ (?) p (1-p) * TRT)T ()t /“ z7 (1-2) dz (9)
r=0 o)
in which one recognises the integral representation of the incomplete Beta
function in the last term, namely
P
ar-1 -1
. Bp(a.,ﬁ) = j Z (1--z)B azZ . (10)
)
But from equation (7) we have
N-1
er . _ n\ r., _yn-r
1o Rme) - ) (z) ¥t
r=0
and thus, by comparison with equations (9) and (10)
e n!
Py(nsp) = YT (oo BP’(N, n-N+1)
] Bp(N, n-N+1) J
5(F o). S IP(N, n-N+1) - (11)

where B(a,B) = B1(a,B) is the usual complete Beta function, defined for integer

a and B as

Bo,8) = mEPhT - (12)




The quantity I (a,B) has been tabulated by Pearson1 for the range of
variables O < p(0O- 01) <1 and a,B € 50, Using these tables P (n,p) has been
plotted in Figs.1 to 6 for N = 3, 6, 9, 12, 15 and 20 resPeotlvely and for p
ranging from 0+3 to 1:0 in steps of 0-1. TFor p = 1, of course, the distribution

is simply a step function at n = N.

These curves show quite clearly the sharp increase in the number of
launches required when the probability of a successful launch is low even when

no satellites fail between launches.

3,3 Geussian distribution approximation to P;(n;p)

It is shown in Appendix A that for N large the establishment distribution
P (n,p) terds towards a Gaussian distribution with a mean m = N/p and veriance
= N(1-p)/b « Thus, if it is assumed that the distribution is Gaussian, the

levels of probability for n are:

P(n € m #o) = 50 #49-9%

P(n <m #30) = 50 #49-85% A

P(n <m #26) = 50 *47-75% (13)
Pln €m *0) = 50 *34+15%

P(n sm) = 50% .

Using the Gaussian distribution approximation to P;(n;p) the corresponding
curves have &lso been plotted for comparison with the exact curves in Figs.1 to 6,
for p = 0+5. From these it is evident that (particularly for N greater than
about 10) the epproximation is extremely good for practical purposes(maximum
error for a given probability is about one launching). The main discrepancy
between the true and approximate distributions occurs in the 50% probsbility
region, whereas for high degrees of probability the agreement is feirly good,
even for small values of N. Consequently, as a useful working guide, it appears
that the distribution may be adequately represented by (particularly for high
levels of probability ) the Gaussian distribution._

Assuming a Gaussian distribution approximation, Fig.7 shows the number of
launches required to successfully estsblish N (< 30) satellites in orbit with
probabilities of 84, 98 and 99:8% and with the probability of a successful
launch ranging from p = 0+3 to 1.



4 MAINTENANCE OF THE SYSTEM ASSUMING IMMEDIATE REPLACEMENT OF FATLED

SATELLITES

Lo Without leunch failures

Having'established a system requiring N satellites in orbit, let us now
consider the maintenance of the system when it is assumed that e failed
satellite may be replaced immediately by a new one and, furthermore,‘that the
new launching is perfect. The effect of unsuccessful launchings will be
considered later in this section. Thus, under these ideal conditions, the
number of satellites in orbit is elways maintained constant and we wish to
determine the distribution of the firing rate demanded to achieve this. This
assumption is equivalent to assuming that the time to establish a satellite in
2rbit and also the time between possible successful firings are negligible

compared with satellite's mean lifetime,

Now, for a single satellite, since the lifetime has a Poisson distribution,
the probability that the satellite will be replaced exactly k times (immediate
replacement) during a period T is

k

p(ksa) = e

(14)
where a = T/¢. This is a well known formula representing, for example, the
number of changes of state for the 'telegraph signal'z. But the sum of two
independent quantities having the Poisson distributions p(k 5“3) and p(kz;az)

also has the Poisson distribution
p(k, +k; a%+a2) .

Consequently, the probébility that n replacements will be necessary to maintain
N satellites in orbit for a period T is
n .
aN -aN -

p(n;aN) = 1;;;-)-e - (18)
which, of course, is the same distribution as that required for maintaining a
‘single satellite in orbit for a period NT. The probability distribution for
the meintenance of N satellites in orbit with n launchings during a period T,

assuming immediate successful replacement, is therefore

Pnspet) = Z plmsar) = Y L () L (46)

r=0 r=0
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L.2 Allowing for launch failures

Let us now assume that the launchings only have a probability p of being
successful but that the failed satellites may still be immediately replaced.
Thus the assumptions of para 4.1 still hold apart from the proviso that several
instantaneous launchings may have to be made before a successful replacement is
asccomplished. As before, the probsbility that k satellites must be replaced is
p(k;aN) given by equation (15). But the probability that k satellites will be
successfully launched into orbit when not more than n are launched with success
probability p is P;(n;p) given by equation (6) or (7). Consequently, the
probability distribution for maintaining N satellites in orbit with n launchings
over a period T when it is assumed that there is immediate replacement with

successful launching probsbility p is simply

Pg(n;p) = Z P;(n;p) p(k; oY) (17)

k=0
or, explicitly, using equations (7) and (45)

n n

R = ) ) (3)F ™ o (18)

k=0 r=k

Alternatively, equation (6) may be used instead of equation (7) giving

n n
k
m -1 k r-k SaN! ~alN
Py(nsp) = X X (k_,,>p(1—p) e (19)
k=0 r=k

the individual terms of this series now being independent of n.

4.3 Evaluation of the probebility distribution Pﬁ(n;p)

As we have seen in section 4.1, for p = 1, the distribution PE is determined
‘ X =-a
by the sum of a series of Poisson terms. Several tables of the function & x?

exist of which the most comprehensive appear to be those compiled by Molinad of
Bell Telephone Laboratories; these tabulate the function for a < 100 besides

giving values of the sum
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Plc,a) = z axx?-a ; P(O,a) = 1 . (20)

X=C

Thus, comparing equations (16) and (20), we have
PE(n;1) = 1 - P(n#1, NT/&) (21)

and consequently there is no difficulty in plotting the distribution.

The function P(c,a) may elso be written in terms of the incomplete Gamma
function, since, if we put f£(x) = e, q = -a end p = a in equation (8), it follows
that

= or DNy N -a(1et) -
1 = a e, a (1-t) e it
= Y @=1)!
r=0 o}

i.e,

r I (W)
1 = z —i-!- e—a-i--f%ﬁy- , o (22)

r=0

where I(N) is the complete Gamma function and I‘a(N) is the incomplete Gamma
function defined by

1
ra(N) - aN/ e-a(1-t) (1__t)N—1 it
- [ ot gy (23)

Consequently, from equations (21) and (22), it follows that the desired
relationship is
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r_(v)

T(N)
1(%1 , N—-1> (24)

in the notation of Pear"son's‘,+ tables of the incomplete Gamma function and hence,

P(N,a)

[t}

{t

using equations (21) and (24) .
NT
Pi(ns1) = 1-1<Hn,n> : (25 :

For p # 1, the distribution is more difficult to calculate since, as is
seen by inspection of equations (18) or (19), it now consists of a coupling
between the binomial and Poisson distributions. Although Pﬁ(n;p) may be expressed
in terms of tabulated quantities it is an extremely tedious process to carry out
the calculations involved. For instance, PE(n;p) can be calculated from the

expression

n

k
PE(n;p) = Z Ip(k, n-k+1) Latt) o=l s | (26)

k!
k=0
obtained by substituting equation (11) in (17).

Rather than perform this calculation for many values of n and p a sim=
plifiecation was attempteds Inverting the order of summation in equation (18)

we have

Py(nsp) = i i@) p (1-p)" " S-ETN)-I-C N

r=0 k=0
n ] X
n\ r n-r alN =N
EENCEEEE -
r= k=r+1
n

(27)

= 1 - j{: <i> " (1-p)"" P(r+1, alN)

r=0
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But, for n large, the binomial distribution Br(nyp) becomes Gaussian5 with mean

np and veriance np(1-p). Conseqently, equation (27) may be approximated by

n
Pﬁ(n;p) a2 1] - j{: G, P(r+1, aN) (28)
r=0

where Gr is the Gaussian probability density

2
4 -1
o /27 np(1-p) 2npi1-p

In this form, equation (28) takes into account the 'tail' of the Poisson

distribution for large values of n. The quantity P(r, al) is unity for r = 0
(equation (20)), approximately & for r equal to the mean value oN of the
distribution and tends monotonically to zero for r large. Consequently, for
large values of n the Gaussian distribution Gr’ with mean np, lies on the 'tail'
of P(r, aN) and hence one would expect equation (28) to give a fairly good
representation of the distribution Pﬁ(n;p) for n large.

Figs.8, 9 and 10 for N = 6, 9 and 12 were constructed using this
approximation for Fﬁ(n;p). The curves correspond to a range of values of p
from 0+5 to 1+0 and the ratio of the system lifetime T to the mean lifetime ¢
of each satellite has been taken equal to L4 For instance, for a mean lifetime
per satellite of 5 years the curves indicate the probability distribution of
the number of launches required over a period of 20 years in order to maintain
the system. For p = 1 the curves were obtained from tabulated values of P(c,a)
directly. Calculations involving the exact formula for Pﬁ(n;p) at isolated
points gave extremely good agreement with the values obtained using the

approximate formula.

L. Gaussian distribution approximation to Pﬁ(n,p)

5

It is well known” that the Poisson freguency distribution

alN ~N .
%!-)_ e (J = 0’1’2 see )

tends to the Gaussian distribution for large values of al, Consequently, one
would expect that the distribution of Pm, being a combination of binomial and
Poisson frequency distributions should also become Gaussian for aoN large. That
this is the case is proved in lAppendix A where it is shown that the limiting

Gaussian distribution has a mean value
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alN
n o= 3 | (30)

and a variance given by

2 aNSZ-QZ
o = ) .
P

(31)

The distributién curves for p = 0+5 when it is assumed that Pg is normal with the
sbove mean and variance are shown in Figs.8, 9 and 10 for comparison with the
true distribution. It is evident from these that the normality assumption is
quite valid for practical purposes where one really only requires an estimate of
the distribution curve. As expected the agreement is better for large values of
aN. Fig.11 also shows that, even for the low value of aN = 4 and p = 1, the
discrepancy between the Gaussian approximation and the exact distribution is
generally small end for high levels of probability, Pﬁ ~ 1, extremely good

egreement is obtained.

Accepting the validity of the Gaussian approximation the number of satellites
that may be required in order to maintain a system over a period of time with a
given degree of relisbility may easily be constructed. A typical example of this
is shown in Fig.12 for T/¢ = 4, for systems requiring up to 30 satellites in
orbit and p renging from O+3 to 1; the curves have been plotted for 1, 2 and 3o
probability levels of being able to successfully maintain the system.

5 EFFECT OF FINITE LAUNCH INTERVAL

One of the shortcomings of the analysis carried out so far is the assumption
thet any failed satellite may be replaced immediately in the maintenance phase and
that during the establishment phase the launchings teke place at infinite rate
until the system has its correct complement of satellites. Although these
simplifying assumptions are acceptable under certain conditions it is of interest
to know the consequences when they are not even approximately true; for example,
when there are only a small number of launch pads aend the time between firings

has to be fairly large.

In order to estimate this effect another model of the system has been
considered, differing from the previous model in that leunchings may only be
made at intervals T both during the establishment phase and the meintenance phase.
Thus during the establishment phase an attempted launch is made at every launch
interval until the required number of satellites are in orbit. During the
meintenance phase, if the number of satellites in orbit is less than the required

number at the time of a possible launch then a launch is attempted; otherwise no
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action is taken until the next possible launch time when a similar decision to
launch is made, Since the lifetime of the satellites has been assumed to have

& Poisson distributicn this means that the probable state of the system at any
firing instant depends only upon the state of the system at the previous possible
firing instant. From a mathematical point of view this means that the system may
be represented by a Markov chain with a trensition matrix P depending upon the
possible changes of state of the system during the leunch interval T Appendix B
gives the relevant properties of Markov chains which are required in the following
enalysis. If the ith state of the system is defined as that corresponding to 1
satellites in orbit immediately after a firing then the transition matrix P will be
of order (N+1), assuming the meximum number of satellites in orbit to be N, with

elements pij corresponding to the state transition i to J.

In general there are two ways in which the transition from state i to j may
occur during the time interval T: (i) either there can be a failure of (i=j)
satellites and an unsuccessful launch, or (ii) a failure of i-j+1 satellites
followed by a successful satellite launching, For cases in which j isvgreater
than 1+1, the transition probability is zero; end for those cases in which j is
equal to i#1 oniy the trensition of type (ii) is possible, Also, if there are N
satellites in orbit at the time of a possible firing, no new launch is attempted.

. Consequently, if £ =1 - e"r"-/'6

is the probability that a single satellite will
fail during the interval 7, the elements of the transition probability matrix

arei -

Py * q<:;> pi=d g p<jf1> pm 1 (1 e jei1eNori1g i jeN)
= & 4 Np £ (i=3=N)
= pst (1+1=j<0N) (32)
= qft (5 =0, any 1)
= 0 (j> 1+ 1, any 1)

- where 8 =1 - f = e_T/e and g =1 - p so that P is of the form
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N O | 1 2 > N
P = O q P 0 0] e o o o & o s o o 0
1 qf qs +pf ps O e o ¢ o o ¢ © o o O
2 qu 2qsf+pf2 qsz+2psf ps2 P N O
| . (33)
.. N-1
s
N qu NquN-1 +pr ¢ ® ¢ o o & s & s ¢ o 0 o o 0@ SN+NPfSN—1
This matrix may also be factorized into the product of two matrices in the
form

P = DB (34)

where the elements of the matrices D and B are

Dy = O (3> 1)
= <§> p1md g9 (53¢ 1) (35)
and
15 = 4 61’j+ P 61,3-1 (1% N)
- s 4
= Si,j (1 =N) (36)
where 8. . = O O
.l,J
= 1 =7 o

In computing, P may conveniently be obtained by this matrix multiplication
since the elements of the ith row of D are the terms corresponding to the
binomial expansion of (f+S)i and consequently the elements of successive rows of
D may be obtained by multiplying the previous row by (f+s). Also successive rows

of the matrix B may be obtained by single shifts of the elements of the first row
(ay Py Oy eses O).

It may also be noted in passing that the factorization P = DB gives a

matrix D depending only upon the probability of failure f and thus corresponds
to the 'death' process of the system whereas B only depends upon the probability
of replacement p and thus represents the 'birth! process of the system in

statistical language.
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Knowing the basic transition matrix, the probabilities of having various
numbers of satellites in orbit as a function of time may easily be obtained by
repeated multiplication of P by itself, since the probability of having 3

satellites in orbit after time nt starting with i in orbit is given by
SR A (37)
LJ iJ

A typical example of these probabilities is shown in Fig.13 which has been
computed for the case N =12, p = 0+5 and £ = 0-02 i.e. for a mean satellite
lifetime of 5 years this would correspond to a launching rate of 10/year since
f ~ /¢ for £ << 1. Por purposes of comparison, the probabilities of establish-
ment for infinite firing rates (f = 0) are also shown in the same diagram for

= 05 and O-7. Quite clearly, the firing rate has a significant effect on
the establishment time. For instance, in the case of p = 05, the finite firing
rate of 10/year compared with the infinite rate increases by 504 the number of

launches required to establish the system with 95% probability.

Since the computation required by equation (37) is extremely time
consuming on a digital computer andl does not give any detailed statistics of
the system an alternative approach was employed. We have already seen that
the probebility distributions appear to be well reprcsented by a Gaussian
distribution and consequently, if we make the assumptlon that the dlgtrlbutlon
is approximately Gaussian then the determination of the mean and variance of the
Markov process should give a good indication of the distribution. Fortunately,
the mean and variance, besides certain other statistics, may be obtained by
feirly rapid procedures from the transition matrix, A summary of the relevant

formulae is given in Appendix B,

In order to determine the mean and variance of the number of launchings
for the establishment of the systemy, one approach is to make the state N into
an absorbing state by putting the elements Pyi of the transition matrix equal |
to zero for 1 # N and Py = 1 i.e. we ignore what happens to the system once it
has been established. This modified transition matrix then generates an
ebsorbing Markov chain for which we require the mean and variance of the number
of steps from state O to reach the a@bsorbing state N. Equatiohs (B6) and (B7)
of Appendix B provide this relevant informetion and have been programmed for a

digital computer using the fundamental matrix N defined by equation (B2).

An alternative method, which elso provides additional useful information,

is to use the formulae given in Appendix B for the regular Markov chain
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generated by the original transition matrix P, Here the fundamental matrix Z
is defined by equation (B9) ard is used in equation (B10) to give the matrix M
with elements mi"mij being the mean number of firings starting in state 1
before reaching the state j for the first time. In particular moj’ is the mean

number of firings required to establish j satellites and clearly
Mi5 ik ¥ Mg

for k lying between i and j. The variance of the number of firings for establish-
ment is given by equation (B12). It is also worth noting that if (N+1) is the
order of the matrix P then the mean and variance of the required number of firings
for given f and p, is obtained for the estsblishment of all systems requiring no
more than N satellites in orbit. Finally, the elements (ao, 8y eeos aN) of the
row vectar o which is the solution of aP = a, represent the fraction of the time
that the satellite system can be expected to be in the state of O, 1, «e. or N
satellites in orbit over a long period of time. Consequently, this provides

information regarding the likely state of the system over the maintenance phase.

A computer programme has been written to calculate these various
quentities. Although only the case of single launchings has so far been
investigated the programme was written for the more general case of multiple

launchings by eppropriate modification to the transition matrix P,

Figs.15, 16 and 17 show the expected number of launches which would have
to be made to establish systems of 6, 12 and 20 satellites with probabilities
50, 84, 98 and 99:8% as a function of the launch probebility p and the launch
interval paremeter f = 7/¢, assuming the Gaussian distribution. (For reference
purposes the quantity f has been plotted in Fig.1l as a function of the launch
intervel for various mean satellite lifetimes.) It is clear from these diagrams
that the launch rate must be kept quite high, even for systems requiring a few
satellites, if the probability of successfully launching a satellite is not
high, otherwise a very large number of launchings would be required. This is
simply due to the fact that there is a high chance of a satellite failing
during the mean interval 1/p between successful launches. For instance, for a
system consisting of 6 satellites with mean lifetimes of 5 years, if the launch
intervel is 3 months i.e. £ = 0:05 and the probability of a successful launch
is 0+5, the expected time between successful launchings is 3/0+5 = 6 months.
Consequently the probability of at least one of the satellites failing during

this time is Pf =1 - (1—f')6 vhere ' = £/0+5 = 0+1 so that Pf = L% and it
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is not surprising that 40 launches i.e. 10 years (Fig.15) are needed to
establish the system with 99:8% confidence. On the other hand, if the
firing interval is halved, i.e. 1% months and £ = 0:025, 30 launchings over

nearly 4 years are now required.

The only real remedy for establishing a systém, for a given firing rate, in
a reasonably short time is to increase the relisbility of the launch or the
mean lifetime of the satellites. For instance, if p = 0°7 in the last example
above then the number of launches is reduced from 30 to agbout 18 over 2 years.
But if the launch rate is high, i.e. f small, there is little to be gained, at
least for the establishment phase, by increasing the mean lifetime, as is
indicated by the steep slope of the curves in Figs.15, 16 and 17, This is as
expected since there would now be very few satellite failures during the
establishment periods In fact, although the number of launches must be greater
for £ * 0, the effect, as may be seen from the curves in Fig.15, 16 and 17,
only becomes really significant as f is increased above a certain value. On
the other hand, the main disadvantage of increasingt, whilst retaining £
constant by increasing the satellite lifetime, is that the establishment time

is increased and this is usually of prime importance.

For instancé, let us assume that a system of 12 satellites is required
in orbit, the mean lifetime of each satellite being 5 years. If there are 4
launch pads, each capable of firing a satellite every 3 months with a success
probability of 0:7(z = 1/16 year, f = 0:0125) then (Fig.16) the expected number
of firings would be about 26 over a period of 1% years in order to establish the
system with a probability of 98%. Increasing the lifetime to 10 years
(£ = 0°00625) would save only about 2 launches although, if the mean satellite
lifetime was only 2% years (f = 0-025), an increase of 8 firings would be
expecteds On the other hand, if the firing rate was halved (£ = 5 years,
- f = 0°025) e.g. 2 pads each launching at 4 per year, the establishment time
would be increased to 4% years! Lower launch success probabilities would meke

these changes even more dramatic.

Clearly, very little can be said here regarding the best manner in which
to improve the system in general since it depends upon the state of the various
parameters £, p, £, N and the cost of changing any of these quantities. Even
8o the various curves allow one to determine the time of establishment of a
system, given the various parameters for a particular launch scheme ard thus

to judge whether such a process is feasible.
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After esteblishment, Figs.18 to 22 show, as a function of f, the percentage
of time that there are i satellites in orbit for systems of (nominally) 6, 12
and 20 satellites, Although the objective is to maintain N satellites continuously
in orbit there is always a finite prcbability that this will not be achieved
unless the firing rate is infinitely fast (f = 0). For instance, for a system of
€ satellites and p = 07 (Fige18) if f is less than 0+02 there is negligible
probability that the number of satellites in orbit would drop below 5 and the
probability of 6 satellites is greater than 86%. Consequently, for £ = 002,
it may be concluded that the corresponding firing rate would be gquite suitable
for maintaining a system of 5 satellites (although still attempting to maintain
6 satellites) and similarly £ = 0-:04 would maintain 4 satellites amd so on. On
the other hand, if p was only 0+5, then f = 0-02 would only be suitable for
maintaining L satellites and f = 0+OL4 for 3 satellites. Conversely, for a given
f, one may determine the number of satellites which one should attempt to
maintain in orbit so that at least a certain number should be maintained with a

given probability,

For example, if £ = 0+01 and p = 0+7, then from Fig.22(a) in order to
maintain 18 or more satellites in orbit a possible strategy would be to attempt
to retain 20 satellites functioning. The 20 satellites would be maintained with
a probability of 72%, at least 19 with 94% and at least 18 with a probability of
98% and negliglible probability of these being less than 18.

Finally it is worth mentioning two facts which have not been considered in
this Report and which may have a significant effect. In the first place no
account has been taken of the time taken to place a satellite in orbit from its
time of firing. Secondly, the fact has not been included that a launching may
be attempted at any time, rather than at discrete intervals, after the launch
pad preparation time has elepsed from its last firing. In order to assess these
effects an entirely new theoretical approach is required, analogous to the theory
of the maintenance of machines, but so far a satisfactory theory has not been

found,
6 CONCLUSION

During the establishment phase of a satellite system, if the number of
satellite failures is negligible, i.e. the launching intervel is very small
compared with the satellite mean lifetime (7/& = 0), then the probability
distribution of establishing the system of N satellites is approximately
Gaussian (for practical purposes) with & mean of N/b and variance N(1-p)/b2.

Consequently a fairly rapid estimate of the likely number of launches for a



21

given probability of establishment may be obtained without evaluating the exact
distributions which have been given in this Report. As the launch success
probability is decreased there is a drastic increase in the number of required
launches due to the mean of the distribution being inversely proportional to p.
The exact nature of this increase is illustrated in Figs.1 to 7 as a function

of the number of satellites required in orbit.

A finite time interval between launches only affects the number oﬁ launches
-1/ 4
3

for establishment significantly when the ratio ©/4, and hence £ = 1-e is
increased above a certain region. This is indicated by the steep slope of the
curves near £ = O in Figs.15 to 17 and is due to the increased probability of
satellite failures as the time interval between launches is increased or the

mean lifetime is decreased. For a particular satellite system the effect of varying
the launch interval, probsbility of asuccessful launch or mean lifetime on the
number of launches or the establishment time may be obtained from the curves in

these figures.

During the maintenance phase, if it is assumed that any failed satellites
may be replaced imnediately (f = O), then the probability distribution of the
number of firings over a period T is also approximately Gaussian with a mean of
al/p and variance a.N(Z-p)/p2 where a = T/4. Using this distribution simple
calculations may be made to estimate the required firing rate after establishe
ments Low values of p will, of course, have a marked effect on the launching
rate. This is illustrated in Fig.12 where the number of launches for maintain-
ing a system of N satellites (N < 30) with agiven level of probability and a = 4

is shown for various values of launch success probability.

Using a launch strategy which attempts to maintain a specific number of
satellites in orbit so that launches are only made when the number of satellites
in orbit falls below this number, giveé rise to the probability distribution of
the percentage of time that there are more than a certain number of satellites
in orbit. Consequently, by attempting to meintain a number of satellites in
orbit which is in excess of the number required for communication purposes if
there were no failures, the probability of breaks in communication occurring in
the actual system may be decreased. Estimates of the surplus number of satellites
which must be held in orbit so that a system may function as a communication
system with little loss in transmission time have been discussed in section 5.
One or two excess satellites appear to be sufficient, for satellite systems
requiring less than 20 satellites provided the launch success probability is
greater than 70% and f less than 001,

marere———
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MOMENTS AND LIMITING DISTRIBUTIONS

A.,1  Establishment phase

The moment generating function M(s) of the establishment distribution,

equation (5), is given by

o0

M(s) = Z‘ p; (n;p) e
n:b
_ Z <11\T:\! pN (4-p)™ - _sn
Nn=N=1
N
= ( (a1)
1-e (‘I-p)
o0
=0

where p;‘ is the rth moment about the origin of the distribution P;(n,p). The

moments about the mean, ., are obtained from p; by means of the relationshi

r
b = ) @ ey (7047 (43)
PN BN
J=0
or
r
-\ 'S
320 .
In particular,
12
b, = BY-p (85)
and
by = 3—3pf1pé+2p1 . (26)
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It also follows by differentiation of equation (A2) that

- [Go]

Thus, from equation (A1),

M(s) {: —} M(FO) =

and therefore

w(s) _ _Ne° _ N
- ®
M(s o3 1_qu

Hence, the mean is

=

-
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=
~~
o
g
t

g i=
*

Differentiating (A8),

(1-qe®) 1Mt (s) = qut(s) = Nut(s)

(4 -ge®) Ut (s) = (Ntq) M*(s)

thus gives the second order moment about the origin as

py o= Mo (0) = ﬁg\lﬁgﬁl
P

and hence the variance of the distribution is

i.e
oCo 0-2==1§g,.2_£2
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(a7)

(48)

- (49)

(a10)

(a1 )



2 Appendix A

Knowing the mean end variance, the moment generating function of the
distribution in standard measure M (s) may be obtained by multiplying M(s) by
i)
e & after replacing s by s/0‘5. Thus, using equations (A9) and (A11)

r- - N
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and the cumulative funotion
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Thus for eny finite s, the cumulative function tends to %—- as N - co, ises the

distribution becomes Gaussian for N large since all the cumulants Kr for

r> 2 tend to zero.

A.2 Maintenance phase

The probability of maintaining the system with exactly n launchings
(in the time T =a 4 ) is
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m, - m Mme -
Py(n;p) = Pylngp) = Pyln~t;p)

and thus with the aid of equation (19), which is more convenient than

equation (18) since only the summations depend upon the variable n,

k!

n
D ek i’ ko oy
py(nsp) = ZJ (E_: PF(ep)t e G ol (a12)
/

k=0

Consequently, the corresponding moment generating function is

o0
: m sn
() = ) Hftuse) e
n=0
co n
k

~ n~1 k(1._ )n-_k @N)_ -oN o5
= )], k) PR )

n=0 k=0

0o k s k
i @) e""N<1{> (1~pJe S]
-/, k! 1 = (1=p)e

k=0

]

M(s). = exp[-‘-’:-lﬂiiﬁl—g} . o (413)
1 « (1-p)e
Thus

(1 -ge®) log M(s) = - aN(i-e")

and differentiating,

]
(1 = qe°) %(-Si - ge® log M(s) =aNe® , (A1)
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On putting s = O in equation (A1L) and noting that M(0) = 1, then the mean of
the distribution is

By = Nt(o) = %IY . (415)

Rewriting equation (A14) in the form

(e7° = ) M'(s) = q M(s) log M(s) = aN M(s)

and differentiating once again gives

(67 = ) M"(s) = e ° M'(s) = q M'(s) Log M(s) = q M'(s) = alN M'(s) .
Consequently, on putting s = O, and using equation (A15), we have
p M"(0) = °-='I-)I=-\T (@N +1+4q) e
Henoe
v " alN
wh = M (0) = =3 (oN + 2 = p) (a16)
iy
and the variance of the distribution is
o® = uy-pt? = allZ=p) (417)
P

As in the previous section, the moment generating function of the
distribution in standard measure may now be found using the mean and variance

as given by equations (A15) and (A17). Thus we have

9
=(-) (@

i

M (s)

oo (- 22 exp(_aw-es/")}

po L 4agq esﬁf

and, oonsequently, the cumulative function is
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s/
= = 8ol l-e
Kn(s) = log Mn(s) = alN i--—z-gz%

i

1 -qe
_ sa%ﬂ/s@&f\ (1,, 12 2.0 o
- o p \o 20_2/\ p o) Gj
3
aN ( s s N
2P2 ] o
2 2
But ¢ = aN(2-p)/p° and thus

s s
Kn(s) = 0<-==-7=-I\I,l 2)
and the distribution becomes Gaussian as N oo,

It is also to be noted that, since a in equation (13) only appears in the
form aN, the distribution will tend to become Gaussian as a = o also,
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Appendix B
STATISTICS OF A MARKOV CHATN

B.1 Basic concepts

A Markov chain is defined in terms of the transition probabilities pij(n)
between state 85 at step n and state sj at step (n+1) where Pij(n) is independent
of n and the outcomes before step n,and may therefore be denoted by pij'
Consequently, the probability of being in state Sj after n steps starting in

state Sy is simply

pg) = [P1,. (B1)

1J

where P is the transition matrix with elements pij'

The states of a Markov chain may be divided into transient and ergodic sets,
The former sets, once left, are never entered again, while the latlter, once
eﬁtered, are never again left. Furthermore, if a state S is the only element of
en ergodic set, then it is called an ebsorbing state and will have the element
Py = 1 with all other entries of this row Pij = 0, If the only non~transient
states of a chain are absorbing it is called an sbsorbing chain, On the other
hand, a regular Markov chain is such that it is possible to reach any state
after n step regardless of the initial state and thus contains a single ergodic

set and no transient sets,

The matrix P given by equation (33) in the main text is regular since
whatever the number of satellites in orbit at one instant there is always a
finite probability of getting into any other state at a later time. On the other
hand, if one was only intercsted in the establishment phase, the elements Pys.
could be put equal to zero for i+ N and Py = 1 so that the state N was
absorbing and thus P would generate an absorbing Markov chain., This is useful
when one is not interested in what happens after reaching state N i.e, we may

consider the attainment of state N as the end of the process,

Be2  Absorbing Markov chains

'In what follows, one will only quote some of the more useful results
required in analysing Markov chains, For a proof of the formulae the reader is

referred to Kemeny and Snellé.

Let Mi (Vari) denote the mean (variance) of a function starting from the

state 1 and nj the total number of times in the transient state sj. Also let
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Q be the transient part of the transition matrix P obtained by deleting all
those rows and columns conteining a unit element, Then, for an absorbing

Markov chain, the fundamental matrix N is defined by

N = (::--Q)"1 (2)

and
{Mi[nj]} = N . (BB)“

Also
{1, [n§]} = (2 Ny, - 1) (Bl

where ng is the matrix obtained from N by putting all off diagonal elements

equal to zero. Consequently, the variance of n, is

§ Vari[ nj]} = N(2ng

-I) - L (85)
where qu is the matrix obtained from N by squaring each element,

Finally, if t is the number of steps in which the process is in a

transient state, then

{Mi[t]} = NE = 7, | (6)
{Mi[t2]} = (2N =1I)7
50 that {Vart]}= (W =T)s -7 @)

where £ denotes a column matrix with unit elements.

For the establishment phase of satellites where the Nth state is con-
sidered sbsorbing, equations (B6) and (B7) thus give the mean and variance of

the time required to establish the system,

B3 Regular Markov chains

If P is regular then P tends to a constant probability matrix A as n+>
with all its rows equal to the same probability vectora = (ao,a1, rene aN) and

aP = a . (B8)
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This means that any long range predictions are independent of the initial state,
Also a. represents the fraction of time that the system can be expected to be in

state Sj over a long period of time,

For regular chains, the so called fundamental matrix is defined by

z = [T-(-a)"" (39)

end is the basic quantity used to compute most of the interesting descriptive

quantities,

Ir fj denotes the number of steps before entering.state s, for the first

time, and if we denote {Mi[fj]§ by the matrix M = {mij}, M is given by

M = (I-24+E ng)R (B10)

where R is the diagonal matrix with elements r., = 1/aii = m, . ard E is a
square matrix composed of unit entries, Thus M is a measure of the mean number
of steps to the first passage through any state, In particular moj is the mean
number of launchings to establish j satellites in orbit in the context of this

Report,

The variance of the first passage time may also be obtained since, if

W= {Mi[ fi]} , then W is given by
W o= M(deg R-1I)+2 (21~ E(ZM)dg) (B11)

and consequently

Vari[fj] = w-qu . (B12)

-l
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STBOLS

elements of vector a ‘

matrix with all rows equal to the limiting probability vector a
*birth! matrix, see equation (36) |

binomial distribution, see e quation (i)

complete Beta function = B161,B)

incomplete Beta function

t3eath! matrix, see equation (35)

square matrix composed of unit entries

satellite failure probability during interval «

number of steps before reaching state j for fhe first time
Geussian distribution, see equation (29)

unit matrix

incomplete Gamme function (Pearson tables), see equation (25)
incomplete Beta function (Pearson tables), see equation (11)
cumtlative generating function

mean lifetime of a satellite

mean of a distribution

mean number of steps starting in state i before reaching state J
for the first time

matrix with €lements mij defined by equation (B10)

mean of a function starting in state i

moment generating function

number of launches

number of times in a transient state j

number of satellites in complete system fundamental matrix of an
absorbing Markov chain, see equation (B2)

probability of a successful launch

elements of transition matrix P

Poisson probability density of satellite lifetime, see equation (1)
probability density for establishment

probability density for maintenance

Poisson frequency distribution, see egquation (14)

transition matrix

see equation (2)

probability distribution for establishment
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Pﬁ(n;p) probability distribution for maintenance

P(c,a) see equation (20)

q = A-p
Q transient part of the transition matrix
R diagonal matrix with elements m

1-f, satellite survival probability during interval T
time v

number of launches before system established

T maintenance period

Vari variance of a function starting in state i

W see equation (B11)

Z fundamental matrix for a regular Markov chain, see equation (B9)

Q
u

T/¢, see section L
or limiting probability vector a, see equation (B8)
complete Gamma function

incomplete Gamma function

®

rth moment about the origin
rth moment about the mean

column matrix with unit entries

N

variance of a distribution

4 q e T W oW
H~H

interval between launches
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FIG.17 NUMBER OF LAUNCHES FOR THE ESTABLISHMENT
OF 20 SATELLITES AS A FUNCTION OF f
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