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SUMMARY

A theoretical analysis is presented of the number of launches that are

required to establish and maintain a satellite communication system. A simple

model is used to represent the process in that launches are assumed to take

place with a certain a priori probability whilst the satellites have an

exponential probability distribution of lifetimes.

Graphs and equations are given for the various probability distributions

of the system during the establishment and maintenance phases of the system and

the effect of the time interval between launches is also examined by using a

Markov chain representation of the system. It is noted that many of the

probability distributions are well represented by a Gaussian distribution.

The results quite clearly indicate the manner in which the number of

launches, and hence the cost, depend critically upon the launch success

probability and the ratio of the launch interval to the satellite mean

lifetime.
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1 INTRODUCTION

Several civil and military satellite communication systems have been

proposed in recent years whereby radio signals for telecommunication purposes

are transmitted between ground stations via orbiting satellites. In order to
provide a communication channel which is available at any time of the day these

systems require several satellites to be continually maintained in orbit;

satellites which have failed, as regards communication capabilities, must be

replaced by further satellite launchings so as to maintain sufficient satellites

in orbit. The number of satellites re quired in orbit may vary from a minimum

of three for a geostationary system to between fifty and a hundred for a random

system. Since the running costs for a random system are high, principally on

account of the large number of satellites required, such a system seems rather

unattractive at the moment. Consequently, as far as this Report is concerned,

investigation has been restricted to medium and high altitude station keeping

systems where not more than about 20 satellites are required in orbit.

Of the satellites launched, only a certain proportion will be

operationally satisfactory, in that they will be injected successfully into the

correct orbital position with all their mechanical and electrical systems

working. Present day estimates suggest that the probability of such a

successful launch may be as law as 39 although no doubt this will be improved

with future experience and research on the reliability of components. Even when

a fully operating satellite has been launched successfully into orbit, it will
eventually fail to function due to deterioration or breakdown of its numerous

working components and will have to be replaced by another satellite. Present

design of satellite components aims at achieving a mean lifetime of about five

years and eventually ten years.

For costing purposes, preplanning of launch vehicle pads, components, and

facilities, it is essential to know the likely number of satellite launchings

and the possible launching rates which will be required in order to establish

and maintain the system in operation. In this Report an attempt has been made

to assess these quantities on the basis of a relatively simple model of the

system. It is also shown that many of the probability distributions may be

well approximated, for practical purposes, by Gaussian distributions, thus

enabling rapid estimates of system performance to be made without detailed

calculations.
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2 MATHEMATICAL MODEL OF THE SYSTEM

Having decided upon a particular satellite communication system, let it

be assumed that a total of at least N orbiting satellites are required in order

to provide continuous communications. Thus N satellites must first be established

in their respective orbits and then, when any satellite fails, it must be replaced

as quickly as possible by another. Since a satellite cannot be replaced immediately,

it is evident that more than N satellites must be maintained in orbit to obtain a

high probability of continuous communication or else, perhaps for economic reasons,

an appreciable break in the communication link must be tolerated. One possible

method of attempting to achieve a continuous communication system is simply to

duplicate the satellites in pairs and switch to the remaining satellite when its

neighbour fails. Although a slight break in transmission is still inevitable at

switching it will not mean a complete breakdown unless the neighbour has also

failed. Even so, such a method would only seem feasible for a stationary system,

for example, attempting to maintain six satellites (three pairs) in orbit. For

medium altitude systems demanding a greater number of satellites, a more sensible

compromise would be to maintain one or two spare satellites in the system and

manoeuvre them into position following the failure of a satellite and accepting

the inevitable break in communication. The communication time lost by this

method would most likely be less than in attempting to replace the lost satellite

by a new launching. Rerouting of the communication link following a satellite

failure may also be possible if the increased transmission delays could be

tolerated.

In order to formulate a mathematical model for representing the mechanism

of establishing and maintaining a communication system certain simplifying

assumptions have been made here. In the first place, no account has been taken

of the particular configuration of the communication system considered, i.e.

whether polar, equatorial, stationary, constant ground-track etc, so that a

communication system, for the purposes of this Report, simply consists of a

number of satellites N which must be established and maintained in orbit.

Secondly, as regards the launching of satellites, the location of the launching

pads and time taken to place a satellite into its correct station do not enter

into the analysis. In fact the launching system is considered to be capable

simply of launching satellites into orbit at a certain rate and thus the number

of available launching pads only determines the frequency with which satellites

may be launched. Furthermore, no account is taken of the variation of firing

rates between different launching pads and the probability of successfully

launching an operationally satisfactory satellite into its correct position in

orbit is assumed to have a constant value denoted by p.
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Finally since the operational lifetime of a satellite is determined by

the correct functioning of numerous pieces of equipment it seems very reasonable

to assume that the lifetime of a satellite has a Poisson probability distribution.

Thus we will assume that the probability that a satellite fails in the small

increment of time dt between times t and t + dt is dt/t, independent of the time

t and where Z is the mean lifetime of the satellite. Consequently, the

probability that the satellite operates for a time t and then fails in the

following interval dt is

p(t) dt = et/z dt )

and the probability that it functions for at least time t is

cc

P(t) = f e-t t -= et/4 (2)

t

It may be noted in passing that this type of probability distribution is

particularly convenient mathematically since the initial operational time of a

satellite does not enter into the analysis simply because the probability of

any functioning satellite failing in the following instant is independent of

time. Any other probability distribution would greatly complicate the analysis

since the distribution would depend upon the launch time of the satellite.

3 ESTABLISHMENT OF A SATELLITE SYSTEM USING HIGH LAUNCHING RATES

3.1 Theoretical probability distribution

Let us assume that the probability of failure of any satellite in the

system is negligible over the established phase, or, in other words, that the

launching rate is extremely high. In this limiting case, the number of

satellites which have to be launched depends solely upon the probability of

making a successful launch, p. Now, the probability pN(n,p) that n firings

will have to be made before there are N successful launches is equal to the

probability that the last firing is successful times the probability of (N-I)

successes in the previous (n-I) firings. Hence

PN(n;p) = p BNI (n-I, p) (3)

where B N (n,p) is the binomial distribution function

BN (n,p) = (1n pN,( 1 -p)n-N (4)
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and thus

PN(n;p) =(n)PN(iP) n-N(5)

is the required probability density. Consequently, the probability of obtaining

N satellites in orbit using no more than n launchings is simply

n
e (r-1) pN( 1 -p)r-N (N (6)P (n;p) -- N> 6

r=N

since each term of this series represents the probability of the event that the

Nth success occurs on the rth firing and all these events (r = N, N + 1, ... n)

are mutually exclusive. Equation (6) thus gives the probability distribution

function of the number of satellites successfully launched into orbit as a

function of the number of firings.

An alternative expression for Pe(n;p) can be found from the following
N'

reasoning: in n firings the probability of N successful launchings is BN(n,p)

and, consequently, in n firings the probability of at least N successes is

n n
PNe(n;p) B B(n,p) = (rn) pr(1_p)n-r (7)

N E, r~P E r
r=N r=N

The equivalence of equations (6) and (7), straightforward to prove algebraically,

is evident from the reasoning leading to these expressions since either contains

all the possible ways of obtaining N satellites in orbit without making more

than n attempted launches.

3.2 Evaluation of the probability distribution

As they stand, the expressions (6) and (7) are in an extremely inconvenient

form for calculation purposes but they may be transformed into alternative

tabulated forms. The Taylor expansion of a function f(x) may be written with

remainder in the form

N- r 1 N

f(q+p) f (q) + f (N-N)) (q+tp) dt (8)

r=O 0
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and thus, taking f = (q+p)n with q = I-p, this becomes

N-1 1
) pr(l-p)n-r + (N-)' (n-N)! pN(I- [N-I - (l_-t) ]n-N dt

r=O o

Changing the variable of integration to

Z = p(I-t)

we obtain

N-1 p

, (n)pr( 1_p)n-r + n! ZN-1I(-Z)n-N dZ (9)

r=O o

in which one recognises the integral representation of the incomplete Beta

function in the last term, namely

P

Bp(ap) = Z-1(1-Z)P-1 az (10)

0

But from equation (7) we have

N-1

I -P(n;p) = (rn) pr(_p)n-r

r=O

and thus, by comparison with equations (9) and (10)

F)(~)n! Bp(N, n-N+1)

PN(np) (N-I)! (n-N)! B

B (N, n-N+1)

B("N+1 I p(N, n-N+1) (11)

where B(a.,P) E B1 (c,p) is the usual complete Beta function, defined for integer

a. and P as

B(GP) = * . (12)
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The quantity I (M,P) has been tabulated by Pearson for the range of
e hvariables 0 4 p(O.01) g I and MP < 50. Using these tables PN(n~p) has been

plotted in Figs.1 to 6 for N = 3, 6, 9, 12, 15 and 20 respectively and for p

ranging from 0-3 to 1.0 in steps of 0.1. For p = 1, of course, the distribution

is simply a step function at n = N.

These curves show quite clearly the sharp increase in the number of

launches required when the probability of a successful launch is low even when

no satellites fail between launches.

3.3 Gaussian distribution approximation to PF(n;p)

It is shown in Appendix A that for N large the establishment distribution
Pe (n;p) tends towards a Gaussian distribution with a mean m = N/p and variance

N 2
02=• N(1-p)/p . Thus, if it is assumed that the distribution is Gaussian, the

levels of probability for n are:

P(n < m ±4o) = 50 -49"99%

P(n < m ±3-3) = 50 ±49"85%

P(n < m ±2o-) = 50 t4775% (13)

P(n m o) = 50-±3415%

P(n in) = 5 0%

Using the Gaussian distribution approximation to Pe(n;p) the corresponding

curves have also been plotted for comparison with the exact curves in Figs.1 to 6,

for p = 0-5. From these it is evident that (particularly for N greater than

about 10) the approximation is extremely good for practical purposes(maximum

error for a given probability is about one launching). The main discrepancy

between the true and approximate distributions occurs in the 50F6 probability

region, whereas for high degrees of probability the agreement is fairly good,

even for small values of N. Consequently, as a useful working guide, it appears

that the distribution may be adequately represented by (particularly for high

levels of probability) the Gaussian distribution.

Assuming a Gaussian distribution approximation, Fig. 7 shows the number of

launches required to successfully establish N (< 30) satellites in orbit with

probabilities of 84, 98 and 99"8l and with the probability of a successful

launch ranging from p = 0.3 to 1.
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4 MAINTENANCE OF-THE SYSTEM ASSUMING IEDIATE REPLACEMENT OF FAILED

SATELLITES

4.I Without launch failures

Having established a system requiring N satellites in orbit, let us now

consider the maintenance of the system when it is assumed that a failed

satellite may be replaced immediately by a new one and, furthermore, that the

new launching is perfect. The effect of unsuccessful launchings will be
considered later in this section. Thus, under these ideal conditions, the

number of satellites in orbit is always maintained constant and we wish to

determine the distribution of the firing rate demanded to achieve this. This

assumption is equivalent to assuming that the time to establish a satellite in
-rbit and also the time between possible successful firings are negligible

compared with satellite's mean lifetime.

Now, for a single satellite, since the lifetime has a Poisson distributio4

the probability that the satellite will be replaced exactly k times (immediate

replacement) during a period T is

k
p (k;ea) 7-! (14)

where a, = T/4. This is a well known formula representing, for example, the
2number of changes of state for the 'telegraph signal' . But the sum of two

independent quantities having the Poisson distributions p(kI ;6,) and p(k 2 ;m2 )

also has the Poisson distribution

p(kl+k2 ; a.+c. 2 )"

Consequently, the probability that n replacements will be necessary to maintain

N satellites in orbit for a period T is

p(n;a•N) - •n! e -•N (5

which, of course, is the same distribution as that required for maintaining a

single satellite in orbit for a period NT. The probability distribution for

the maintenance of N satellites in orbit with n launchings during a period T,

assuming immediate successful replacement, is therefore

n n

PN(n;p=1) - p(r;aN) = (a edNr (aL=T/&) • (16)

r--O r=O
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4.2 Allowing for launch failures

Let us now assume that the launchings only have a probability p of being

successful but that the failed satellites may still be immediately replaced.

Thus the assumptions of para 4.1 still hold apart from the proviso that several

instantaneous launchings may have to be made before a successful replacement is

accomplished. As before, the probability that k satellites must be replaced is

p(k;aN) given by equation (15). But the probability that k satellites will be

successfully launched into orbit when not more than n are launched with success

probability p is Pk(n;p) given by equation (6) or (7). Consequently, the

probability distribution for maintaining N satellites in orbit with n launchings

over a period T when it is assumed that there is immediate replacement with

successful launching probability p is simply

n
m eP (n;p) - P k(n;p) p(k;oaN) (17)

k=O

or, explicitly, using equations (7) and (15)

Pm(n;pN)n e (18)

N k

k=O r=k

Alternatively, equation (6) may be used instead of equation (7) giving

n n(r-1)k(,_r-k k aN
P(niP) = Y-kI p1-)k! e ,

k=O r=k

the individual terms of this series now being independent of n.

4.3 Evaluation of the probability distribution PN(n;p)

As we have seen in section 4.1, for p = 1, the distribution P is determined
by the sum of a series of Poisson terms. Several tables of the function x!

exist of which the most comprehensive appear to be those compiled by Molina 3 of

Bell Telephone Laboratories; these tabulate the function for a < 100 besides

giving values of the sum
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Sx -a
P(c, a) a xa P(O,a) I (20)

x=C

Thus, comparing equations (16) and (20), we have

P1(n;1) = I - P(n+-I, NTIS) (21)

and consequently there is no difficulty in plotting the distribution.

The function P(c,a) may also be written in terms of the incomplete Gamma

function, since, if we put f(x) eX, q = -a and p = a in equation (8), it follows

that

N-I a r e-a + a N(l-t)N-1 e-a(1-t) dt
e (N-1) dt

r=0 o

i.e.

N-I rN

1 = ar e + (N) (22)

r=O

where [(N) is the complete Gamma function and r (N) is the incomplete Gammaa

function defined by

I

ra(N) aN e-a(I-t) (1-t)N'I dt

0

Sae-t tN-I dt (23)

0

Consequently, from equations (21) and (22), it follows that the desired

relationship is
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r (N)
P(N,a) = (N

= I( N, ) N-()

in the notation of Pearson's tables of the incomplete Gamma function and hence,

using equations (21) and (24)

lI'(n;1 1 - I /N-, n) . (25)

For p * 1, the distribution is more difficult to calculate since, as is

seen by inspection of equations (18) or (19), it now consists of a coupling

between the binomial and Poisson distributions. Although PN(n;p) may be expressed

in terms of tabulated quantities it is an extremely tedious process to carry out

the calculations involved. For instance, PN(n;p) can be calculated from the

expression

n

PNmk(n;p) I (k, n-k+1) -kN (26)

N L P k
k=O

obtained by substituting equation (11) in (17).

Rather than perform this calculation for many values of n and p a sim-

plification was attempted., Inverting the order of summation in equation (18)

we have

n r

m Zn) Z n (rn) kr(-p)n-r a e-_aPj(n;p) P k!(1  en

r=O k=O

n 00

-•(rn) pr(1-pD)n-r Z, L• e-aN7

r=O k=r+1

n

1- • Qn) pr( 1 _p)n-r P(r+1, aN) (27)

r=O
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But, for n large, the binomial distribution Br(nfp) becomes Gaussian5 with mean

np and variance np(1-p). Consequently, equation (27) may be approximated by

n

PN(n;p) :-1 - Gr P(r+1, aN) (28)

r=O

where G is the Gaussian probability density
r

SI ex _(r-np) 2•(9
Gr_= (29)-(p) - 2np(l-p)j "

In this form, equation (28) takes into account the 'tail' of the Poisson

distribution for large values of n. The quantity P(r, caN) is unity for r = 0

(equation (20)), approximately ½- for r equal to the mean value aN of the

distribution and tends monotonically to zero for r large. Consequently, for

large values of n the Gaussian distribution Gr, with mean np, lies on the 'tail'

of P(r, cmN) and hence one would expect equation (28) to give a fairly good

representation of the distribution P'N(n;p) for n large.
N

Figs.8, 9 and 10 for N = 6, 9 and 12 were constructed using this

approximation for rN(n;p). The curves correspond to a range of values of p.N
from 0-5 to 1 0 and the ratio of the system lifetime T to the mean lifetime -

of each satellite has been taken equal to 4. For instance, for a mean lifetime

per satellite of 5 years the curves indicate the probability distribution of

the number of launches required over a period of 20 years in order to maintain

the system. For p = I the curves were obtained from tabulated values of P(c,a)

directly. Calculations involving the exact formula for PN(n;p) at isolated

points gave extremely good agreement with the values obtained using the

approximate formula.

4.4 Gaussian distribution approximation to PN(n p)
N'

It is well known 5 tlaat the Poisson frequency distribution

(,N)e -N (. = 0,1,2 ., )

tends to the Gaussian distribution for large values of aN. Consequently, one

would expect that the distribution of PN' being a combination of binomial and

.Poisson frequency distributions should also become Gaussian for MN large. That

this is the case is proved in Appendix A where it is shown that the limiting

Gaussian distribution has a mean value



14

aN (30)

and a variance given by

2 aN(2-p) (31)2 (31)

p

m
The distribution curves for p = 0"5 when it is assumed that PN is normal with the
above mean and variance are shown in Figs.8, 9 and 10 for comparison with the

true distribution. It is evident from these that the normality assumption is

quite valid for practical purposes where one really only requires an estimate of

the distribution curve. As expected the agreement is better for large values of

aN. Fig.11 also shows that, even for the low value of aN = 4 and p = 1, the

discrepancy between the Gaussian approximation and the exact distribution is

generally small and for high levels of probability, PN 1, extremely good

agreement is obtained.

Accepting the validity of the Gaussian approximation the number of satellites
that may be required in order to maintain a system over a period of time with a

given degree of reliability may easily be constructed. A typical example of this

is shown in Fig.12 for T/A = 4, for systems requiring up to 30 satellites in

orbit and p ranging from 0-3 to 1; the curves have been plotted for 1, 2 and 3r

probability levels of being able to successfully maintain the system.

5 EFFECT OF FINITE LAUNCH INTERVAL

One of the shortcomings of the analysis carried out so far is the assumption

that any failed satellite may be replaced immediately in the maintenance phase and

that during the establishment phase the launchings take place at infinite rate

until the system has its correct complement of satellites. Although these

simplifying assumptions are acceptable under certain conditions it is of interest

to know the consequences when they are not even approximately true; for example,

when there are only a small number of launch pads and the time between firings

has to be fairly large.

In order to estimate this effect another model of the system has been

considered., differing from the previous model in that launchings may only be

made at intervals T both during the establishment phase and the maintenance phase.

Thus during the establishment phase an attempted launch is made at every launch

interval until the required number of satellites are in orbit. During the

maintenance phase, if the number of satellites in orbit is less than the required

number at the time of a possible launch then a launch is attempted; otherwise no
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action is taken until the next possible launch time when a similar decision to

launch is made. Since the lifetime of the satellites has been assumed to have

a Poisson distribution this means that the probable state of the system at any

firing instant depends only upon the state of the system at the previous possible

firing instant. From a mathematical point of view this means that the system may

be represented by a Markov chain with a transition matrix P depending upon the

possible changes of state of the system during the launch interval '. Appendix B

gives the relevant properties of Markov chains which are required in the following

analysis. If the ith state of the system is defined as that corresponding to i

satellites in orbit immediately after a firing then the transition matrix P will be

of order (N+1), assuming the maximum number of satellites in orbit to be N, with

elements pio corresponding to the state transition i to j.

In general there are two ways in which the transition from state i to j may

occur during the time interval T: (i) either there can be a failure of (i-j)

satellites and an unsuccessful launch, or (ii) a failure of i-j+1 satellites

followed by a successful satellite launching. For cases in which j is greater

than i+1, the transition probability is zero, and for those cases in which j is

equal to i+1 only the transition of type (ii) is possible. Also, if there are N

satellites in orbit at the time of a possible firing, no new launch is attempted.

Consequently, if f = 1 - e-/C is the probability that a single satellite will

fail during the interval T, the elements of the transition probability matrix

are: -

Pu = q()fi- si+p(ji)fi-j+1 sj-1 (I1< j< i < Nor . i= j< N)

N fsN-1 (,i N)

Ps (i + = j <N) (32)

= qf 0 = 0, anyi)

= (j > i + I, any i)

where s I -f e' and q =-p so that P is of the form
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i 0 1 2 3 N

P 0 q p 00 0......... 0

I qf qs+pf ps 0 ......... 0

2 qf2 2qsf+pf2 qs2+2psf ps2 ........ . 0

* • •(33)

N-I• " ps
9 9

NN-I N N N-IN qfN Nqsf +pf N.. . . . . s+NpfsN

This matrix may also be factorized into the product of two matrices in the

form

P = DB (34)

where the elements of the matrices D and B are

D. = 0 (j> i)

= (i) fi- j (j< 1) (35)

and

B. = q 8  .+ p 8 (i* N)

8 ijj (i = N) (36)

where 8.. 0 i j

= I i j

In computing, P may conveniently be obtained by this matrix multiplication

since the elements of the ith row of D are the terms corresponding to the

binomial expansion of (f+s)i and consequently the elements of successive rows of

D may be obtained by multiplying the previous row by (f+s). Also successive rows

of the matrix B may be obtained by single shifts of the elements of the first row

(q, p, 0, .... 0).

It may also be noted in passing that the factorization P = DB gives a

matrix D depending only upon the probability of failure f and thus corresponds

to the tdeatht process of the system whereas B only depends upon the probability

of replacement p and thus represents the 'birth' process of the system in

statis tical language.
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Knowing the basic transition matrix, the probabilities of having various

numbers of satellites in orbit as a function of time may easily be obtained by

repeated multiplication of P by itself, since the probability of having j

satellites in orbit after time n- starting with i in orbit is given by

p~n) =[ni (37)S- [ ij "j

A typical example of these probabilities is shown in Fig.13 which has been

computed for the case N = 12, p = 0-5 and f = 0.02 i.e. for a mean satellite

lifetime of 5 years this would correspond to a launching rate of 10/year since

f -n /t, for f << 1. For purposes of comparison, the probabilities of establish-

ment for infinite firing rates (f -0) are also shown in the same diagram for

p = 0"5 and 0.7. Quite clearly, the firing rate has a significant effect on

the establishment time. For instance, in the case of p = 0°5, the finite firing

rate of 10/year compared with the infinite rate increases by 59 the number of

launches required to establish the system with 95% probability.

Since the computation required by equation (37) is extremely time

consuming on a digital computer and does not give any detailed statistics of

the system an alternative approach was employed. We have already seen that

the probability distributions appear to be well represented by a Gaussian

distribution and consequently, if we make the assumption that the distribution

is approximately Gaussian then the determination of the mean and variance of the

Markov process should give a good indication of the distribution. Fortunately,

the mean and variance, besides certain other statistics, may be obtained by

fairly rapid procedures from the transition matrix. A summary of the relevant

formulae is given in Appendix B.

In order to determine the mean and variance of the number of launchings

for the establishment of the system, one approach is to make the state N into

an absorbing state by putting the elements PNi of the transition matrix equal

to zero for i * N and p. = I i.e. we ignore what happens to the system once it

has been established. This modified transition matrix then generates an

absorbing Markov chain for which we require the mean and variance of the number

of steps from state 0 to reach the absorbing state N. Equations (B6) and (B7)

of Appendix B provide this relevant information and have been programmed for a

digital computer using the fundamental matrix N defined by equation (B2).

An alternative method, which also provides additional useful information,

is to use the formulae given in Appendix B for the regular Markov chain
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generated by the original transition matrix P. Here the fundamental matrix Z

is defined by equation (B9) and is used in equation (BIO) to give the matrix M

with elements min., mij being the mean number of firings starting in state i

before reaching the state j for the first time. In particular m , is the mean

number of firings required to establish j satellites and clearly

mij = mik +i mk

for k lying between i and j. The variance of the number of firings for establish-

ment is given by equation (B12). It is also worth noting that if (N+I) is the

order of the matrix P then the mean and variance of the required number of firings

for given f and p, is obtained for the establishment of all systems requiring no

more than N satellites in orbit. Finally, the elements (a 0 , a, .... a.) of the

row vector a which is the solution of aP = a., represent the fraction of the time

that the satellite system can be expected to be in the state of 0, 1, ... or N

satellites in orbit over a long period of time. Consequently, this provides

information regarding the likely state of the system over the maintenance phase.

A computer programme has been written to calculate these various

quantities. Although only the case of single launchings has so far been

investigated the programme was written for the more general case of multiple

launchings by appropriate modification to the transition matrix P.

Figs.15, 16 and 17 show the expected number of launches which would have

to be made to establish systems of 6, 12 and 20 satellites with probabilities

50, 84, 98 and 99"81 as a function of the launch probability p and the launch

interval parameter f _ t/6, assuming the Gaussian distribution. (For reference

purposes the quantity f has been plotted in Fig.14 as a function of the launch

interval for various mean satellite lifetimes.) It is clear from these diagrams

that the launch rate must be kept quite high, even for systems requiring a few

satellites, if the probability of successfully launching a satellite is not

high, otherwise a very large number of launchings would be required. This is

simply due to the fact that there is a high chance of a satellite failing

during the mean interval 1/p between successful launches. For instance, for a

system consisting of 6 satellites with mean lifetimes of 5 years, if the launch

interval is 3 months i.e. f = 0.05 and the probability of a successful launch

is 0"5, the expected time between successful launchings is 3/0"5 = 6 months.

Consequently the probability of at least one of the satellites failing during

this time is Pf = I - (I-f')6 where f' = f/05 = 01 so that Pf = 47 and it
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is not surprising that 40 launches i.e. 10 years (Fig.15) are needed to

establish the system with 99"8%o confidence. On the other hand, if the

firing interval is halved, i.e. 11- months and f = 0-025, 30 launchings over

nearly 4 years are now required.

The only real remedy for establishing a system, for a given firing rate, in

a reasonably short time is to increase the reliability of the launch or the

mean lifetime oC the satellites. For instance, if p = 0"7 in the last example

above then the number of launches is reduced from 30 to about 18 over 2 years.

But if the launch rate is high, i.e. f small, there is little to be gained, at

least for the establishment phase, by increasing the mean lifetime, as is

indicated by the steep slope of the curves in Figs.15, 16 and 17. This is as

expected since there would now be very few satellite failures during the

establishment period. In fact, although the number of launches must be greater

for f * 0, the effect, as may be seen from the curves in Fig.15, 16 and 17,

only becomes really significant as f is increased above a certain value. On

the other hand, the main disadvantage of increasingri, whilst retaining f

constant by increasing the satellite lifetime, is that the establishment time

is increased and this is usually of prime importance.

For instance, let us assume that a system of 12 satellites is required

in orbit, the mean lifetime of each satellite being 5 years. If there are 4

launch pads, each capable of firing a satellite every 3 months with a success

probability of 07(' = 1/16 year, f = 0.0125) then (Fig.16) the expected number

of firings would be about 26 over a period of 1I- years in order to establish the

system with a probability of 98'A. Increasing the lifetime to 10 years

(f = 0.00625) would save only about 2 launches although, if the mean satellite

lifetime was only 2½ years (f = 0-025), an increase of 8 firings would be

expected. On the other hand, if the firing rate was halved (-6 = 5 years,

f = 0.025) e.g. 2 pads each launching at 4 per year, the establishment time

would be increased to 44 years! Lower launch success probabilities would make

these changes even more dramatic.

Clearly, very little can be said here regarding the best manner in which

to improve the system in general since it depends upon the state of the various

parameters 6, p, f, N and the cost of changing ony of these quantities. Even

so the various curves allow one to determine the time of establishment of a

system, given the various parameters for a particular launch scheme and thus

to judge whether such a process is feasible.
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After establishment, Figs.18 to 22 show, as a function of f, the percentage

of time that there are i satellites in orbit for systems of (nominally) 6, 12

and 20 satellites. Although the objective is to maintain N satellites continuously

in orbit there is always a finite probability that this will not be achieved

unless the firing rate is infinitely fast (f = 0). For instance, for a system of

6 satellites and p = 0"7 (Fig.18) if f is less than 0.02 there is negligible

probability that the number of satellites in orbit would drop below 5 and the

probability of 6 satellites is greater than 86Z. Consequently, for f = 0.02,

it may be concluded that the corresponding firing rate would be quite suitable

for maintaining a system of 5 satellites (although still attempting to maintain

6 satellites) and similarly f = 0Q04 would maintain 4 satellites and so on. On

the other hand, if p was only 0-5, then f = 0.02 would only be suitable for

maintaining 4 satellites and f = 0-04 for 3 satellites. Conversely, for a given

f, one may determine the number of satellites which one should attempt to

maintain in orbit so that at least a certain number should be maintained with a

given probability.

For example, if f = 0.01 and p = 0.7, then from Fig.22(a) in order to

maintain 18 or more satellites in orbit a possible strategy would be to attempt

to retain 20 satellites functioning. The 20 satellites would be maintained with

a probability of 72, at least 19 with 94% and at least 18 vith a probability of

9816 and negligible probability of these being less than 18.

Finally it is worth mentioning two facts which have not been considered in

this Report and which may have a significant effect. In the first place no

account has been taken of the time taken to place a satellite in orbit from its

time of firing. Secondly, the fact has not been included that a launching may

be attempted at any time, rather than at discrete intervals, after the launch

pad preparation time has elapsed from its last firing. In order to assess these

effects an entirely new theoretical approach is required, analogous to the theory

of the maintenance of machines, but so far a satisfactory theory has not been

found.

6 CONCLUSION

During the establishment phase of a satellite system, if the number of

satellite failures is negligible, i.e. the launching interval is very small

compared. with the satellite mean lifetime (,r/,& - 0), then the probability

distribution of establishing the system of N satellites is approximately
2Gaussian (for practical purposes) with a mean of N/p and variance N(1-p)/p

Consequently a fairly rapid estimate of the likely number of launches for a
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given probability of establishment may be obtained without evaluating the exact

distributions which have been given in this Report. As the launch success

probability is decreased there is a drastic increase in the number of required

launches due to the mean of the distribution being inversely proportional to p.

The exact nature of this increase is illustrated in Figs.1 to 7 as a function

of the number of satellites required in orbit.

A finite time interval between launches only affects the number of launches

for establishment significantly when the ratio '/t, and hence f = 1-e-•/ , is

increased above a certain region. This is indicated by the steep slope of the

curves near f = 0 in Figs.15 to 17 and is due to the increased probability of

satellite failures as the time interval between launches is increased or the

mean lifetime is decreased. For a particular satellite system the effect of varyirg

the launch interval, probability of asuccessful launch or mean lifetime on the

number of launches or the establishment time may be obtained from the curves in

these figures.

During the maintenance phase, if it is assumed that any failed satellites

may be replaced immediately (f = 0), then the probability distribution of the

number of firings over a period T is also approximately Gaussian with a mean of

aN/p and variance aN(2-p)/p 2 where a. = T/Z. Using this distribution simple

calculations may be made to estimate the required firing rate after establish-

ment. Low values of p will, of course, have a marked effect on the launching

rate. This is illustrated in Fig.1 2 where the number of launches for maintain-

ing a system of N satellites (N < 30) with agiven level of probability and a = 4

is shown for various values of launch success probability.

Using a launch strategy which attempts to maintain a specific number of

satellites in orbit so that launches are only made when the number of satellites

in orbit falls below this number, gives rise to the probability distribution of

the percentage of time that there are more than a certain number of satellites

in orbit. Consequently, by attempting to maintain a number of satellites in

orbit which is in excess of the number required for communication purposes if

there were no failures, the probability of breaks in communication occurring in

the actual system may be decreased. Estimates of the surplus number of satellites

which must be held in orbit so that a system may function as a communication

system with little loss in transmission time have been discussed in section 5.

One or two excess satellites appear to be sufficient, for satellite systems

requiring less than 20 satellites provided the launch success probability is

greater than 7% ard f less than 0-01.
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Aendix A

MOMENTS AND LIMv1ITING- DISTRIBUTIONS

A.I Establishment hase

The moment generating function M(s) of the establishment distribution,

equation (5), is given by

M(o) op, (np e sn

00

Z (i) N (-p) n-N e

n=N-1

N

Z

ýOO

00

(n-j PN 
(•)~a- e

___pe(Al)

r O

where prt is the rth moment about the origin of the distribution PN(n,p). The

moments about the mean, It are obtained from •r' by means of the relationshiý

r

j--o
or

r

• /r• ' J(A!4)

j=O

In particular,
t2

L2 = ý2 - ý(A5)
and

'3ti 3 = • i 2 + 2ýt (A6)
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It also follows by differentiation of equation (A2) that

[r M(S)] (A7)•; -- LdJ

Thus, from equation (Al),

N
N~s) =11(o) =I

and therefore

1.1s Ne-s N (A8)
MTs) e - q I-qe

Hence, the mean is

SMN'(O) - (A9)I p

Differentiating (A8),

(I - qes) M" (s) - qMt (s) = l'(s)

(i -qe3) M" (s) = (N+q) M'(s) (AlO)

thus gives the second order moment about the origin as

= 14 (0) --N i2)

p

and hence the variance of the distribution is

2 2 N(N+l-p N 2

= 2 2
p p

e2 =.(

p
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Knowing the mean and variance, the moment generating function of the

distribution in standard measure M (s) may be obtained by multiplying M(s) by
nit n

e after replacing s by s/05. Thus, using equations (A9) and (All)

N- ] NsN ýZ

n(S) N eeN-

sN -N

e (j + ( e "I,

and the cumulative funoticn

Kn(S) log M n(s)

s N SP s3

-�--• - Nlog + + +

2Nq 2N 3T

1 2 3
- S + 0

272

2
Thus for any finite s, the cumulative function tends to 8 as N ). oo, i.e. theP 2
distribution becomes Gaussian for N large since all the cumulants Kr for

r > 2 tend to zero.

A,2 Maintenance phase

The probability of maintaining the system with exactly n launchings

(in the time T =a-8) is
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PN(n;p) = PN(n;p) - PN(n-1;p)

and thus with the aid of equation (19), which is more convenient than

equation (18) since only the summations depend upon the variable ni

n

i(cL
p_(n;p) -jpk( 1.p)n-k (k eN (A12)

k--O

Consequently, the corresponding moment generating function is

00

)= P(n;p) ean

n=0

00 n

- pk -P)n-k ! eN ean

n=O k=O

= k(" e 1( L1 -(1-p)eS
k=O

=e GNexp a~
I -(-p) es

iIea M(s) exp (I -[ (1 )(A 3)

Thus

(1 -qes) log M(s) a -CN(1-es)

and differentiating,

(I - qes) •li2 - qea log M(s) = Nes (AI4)
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On putting s = 0 in equation (A14) and noting that M(O) = 1, then the mean of

the distribution is

f = Iu1(0) - Na_ (A15)P1 p

Rewriting equation (A14) in the form

(e- - q) MI(s) - q M(s) log M(s) = cN M(s)

and differentiating once again gives

(e3 - q) M"(s) - e MI'(s) - q M'(s) log M(s) - q M1(s) aN M'(s)

Consequently. on putting s = 0, and using equation (A15), we have

p M"(O) = N_ (aN + I + q)
p

Hence

2 = M"(0) = a--N (aN + 2 -p) (A16)
2

p

and the variance of the distribution is

22 -t 22. (A17)o-2 1 . 2 -
p

As in the previous section, the moment generating function of the

distribution in standard measure may now be found using the mean and variance

as given by equations (A15) and (A17). Thus we have

M(s) 7 • - - \-

= exp( sQNý exp F-cN (1 - es/
ndoneunlq esti

and, consequently, the cumulative function is
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n~s) log Mn(s) = - -_e 'R
PT" I - qes/a-

- -BcN _N I s 2 8
p.+-- + + +0

PT pa 2 2)kjp )r3

= (2 -p)~ s O(L0
2p 2 0,

But a*2  =aN(2_p)/p 2 and thus

22

and the distribution becomes Gaussian as N e oo

It is also to be noted that, since m in equation (13) only appears in the

form aN, the distribution will tend to become Gaussian as a oo also.
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STATISTICS OF A I,,RKOV CHAIN

B.1 Basic conocets

A Markov ohain is defined in terms of the transition probabilities p.i(n)

between state s. at step n and. state s. at step (n+l) where p ij(n) is independent

of n and the outcomes before step nand may therefore be denoted by pij"

Consequently, the probability of being in state s. after n steps starting in

state s. is simply

(n) -. (BI)
Pij ij

where P is the transition matrix with elements pij"

The states of a Markov chain may be divided into transient and ergodic sets#

The former sets, once left, are never entered again, while the latter, once

entered, are never again left. Furthermore, if a state s. is the only element of1

an ergodic set, then it is called an absorbing state and will have the element

Pii = I with all other entries of this row pij = 0. If the only non-transient

states of a chain are absorbing it is called an absorbing chain, On the other

hand, a regular Markov chain is such that it is possible to reach any state

after n step regardless of the initial state and thus contains a single ergodic

set and no transient sets.

The matrix P given by equation (33) in the main text is regular since

whatever the number of satellites in orbit at one instant there is always a

finite probability of getting into any other state at a later time. On the other

hand, if one was only interested in the establishment phase, the elements pNi

could be put equal to zero for i * N and pNN = I so that the state N was

absorbing and thus P would generate an absorbing Markov chain. This is useful

when one is not interested in what happens after reaching state N i.e. we may

consider the attainment of state N as the end of the process.

B.2 Absorbind Markov chains

In what follows, one will only quote some of the more useful results

required in analysing Markov chains. For a proof of the formulae the reader is
6referred to Kemeny and Snell

Let M i (Var i) denote the mean (variance) of a function starting from the

state i and n. the total number of times in the transient state s.. Also leta a
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Q be the transient part of the transition matrix P obtained by deleting all

those rows and columns containing a unit element. Then, for an absorbing

Markov chain, the fundamental matrix N is defined by

N =(IQ) (B2)
and

fIM. [n.11 = N (B3)

Also

where Ndg is the matrix obtained from N by putting all off diagonal elements

equal to zero. Consequently, the variance of n. is
3

SVari[n.B = N(2Ndg - I) - Nsq (B5)

where N is the matrix obtained from N by squaring each element.
sq

Finally, if t is the number of steps in which the process is in a

transient state, then

( t] N- g -- r (B6)

1 Mj t2] 3 - (2N - I) -

so that [Var[tt]I- (2N - I) '- 'sq (B7)

where • denotes a column matrix with unit elements.

For the establishment phase of satellites where the Nth state is con-

sidered absorbing, equations (B6) and (B7) thus give the mean and variance of

the time required to establish the system.

B3 Regular Markov chains

If P is regular then Pn tends to a constant probability matrix A as n -* oo

with all its rows equal to the same probability vector c6 = (ao,al, .... aN) and

M P' = a. .(38)
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This means that any long range predictions are independent of the initial state.

Also a. represents the fraction of time that the system can be expected. to be in

state s. over a long period of time.

For regular chains, the so called fundamental matrix is defined by

z = [I - (P - A)] - 1  (B9)

and. is the basic quantity used to compute most of the interesting descriptive

quantities.

If f. ienotes the number of steps before entering-state s. for the firstqJ

time, and. if we denote [IM3[fj j by the matrix M = m .1, M is given by

1 (1- Z + E Z dg)R (BMO)

where R is the diagonal matrix with elements r.. = I/a.. = m.. and. E is a

square matrix composed of unit entries. Thus M is a measure of the mean number

of steps to the first passage through any state. In particular m . is the mean

number of launchings to establish j satellites in orbit in the context of this

Report.

The variance of the first passage time may also be obtained since, if

W M M.[f.2l, then w is given by

W = M(2Zdg R - I) + 2 (,M - E(ZMI) )(BI)

and oonsequently

Var,[f.] = - M q (B12)
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SYSIBOLS

a. elements of vector a

A matrix with all rows equal to the limiting probability vector a

B 'birth' matrix, see equation (36)

BN(np) binomial distribution, see e quation (4)

B(aI3) complete Beta function = B1 (m,$)

B (q,3) incomplete Beta function
p

D tdeatht matrix, see equation (35)
E square matrix composed of unit entries

f = 1-s satellite failure probability during interval T

f. number of steps before reaching state j for the first time3
Gr Gaussian distribution, see equation (29)

I unit matrix

I(qL,P) incomplete Gamma function (Pearson tables), see equation (25)

I ( (a,.,) incomplete Beta function (Pearson tables), see equation (11)
K(s) cumulative generating function

z mean lifetime of a satellite

m mean of a distribution

mij mean number of steps starting in state i before reaching state j
for the first time

M matrix with elements mi.. defined by equation (BIO)

M i mean of a function starting in state i

M(S) moment generating function

n number of launches

n. number of times in a transient state j

N number of satellites in complete system; fundamental matrix of an

absorbing Markov chain, see equation (B2)
p probability of a successful launch

P.- elements of transition matrix P
p(t) Poisson probability density of satellite lifetime, see equation (I)

PN(n;p) probability density for establishment
pm(n;p) probability density for maintenance

p(k;Ca) Poisson frequency distribution, see equation (14)

P transition matrix

P(t) see equation (2)

PN(n;p) probability distribution for establishment
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PN(n;p) probability distribution for maintenance

P(c,a) see equation (20)

q = 1-p

Q transient part of the transition matrix

R diagonal matrix with elements m..

S = 1-f, satellite survival probability during intervalc

t time

number of launches before system established

T maintenance period

Var. variance of a function starting in state i1

W see equation (B11)

Z fundamental matrix for a regular Markov chain, see equation (B9)

CL T/Z) see section 4

or limiting probability vector a, see equation (B8)

r complete Gamma function

r incomplete Gamma functiona
•r rth moment about the origin

rth moment about the mean

column matrix with unit entries
2

a variance of a distribution

C interval between launches
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