AD NUMBER
AD471052

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; 28 SEP 1965. Other requests shall be referred to US Army Medical Biomechanical Research Laboratory, Walter Reed Army Medical Center, Washington, DC 20012.

AUTHORITY
WRAC, d/a ltr, 28 Aug 1969

THIS PAGE IS UNCLASSIFIED
SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked. Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
ANNUAL PROGRESS REPORT
1 July 1964-30 June 1965

Reported by: Colonel Peter M. Margetis, DC, Director
Fred Leonard, PhD, Scientific Director

28 September 1965

U.S. ARMY MEDICAL BIOMECHANICAL RESEARCH LABORATORY
WALTER REED ARMY MEDICAL CENTER
Washington, D.C. 20012
Qualified requesters may obtain copies of this report from DDC.

Destroy this report when it is no longer needed. DO NOT RETURN TO ORIGINATOR.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
ANNUAL PROGRESS REPORT
Fiscal Year 1965

Fiscal Year 1965 Projects:

3A014501A71E 03 (090-096)
3A014501B71P 03 037
3A013001A91C 01 (010-012)

Reported by: Colonel Peter M. Margetis, DC, Director
Fred Leonard, PhD, Scientific Director

28 September 1965

U.S. ARMY MEDICAL BIOMECHANICAL RESEARCH LABORATORY
WALTER REED ARMY MEDICAL CENTER
Washington, D. C. 20012
SUMMARY

The research program of the U. S. Army Medical Biomechanical Research Laboratory is devoted to the development of internal and external body biomechanical devices and to special AMEDS projects as assigned.

The various research projects described in this report are directed toward the implementation of this program.
FOREWORD

During FY 1965 the Laboratory continued to carry out research toward the development of internal and external body biomechanical materials and devices.

The year was marked by several major accomplishments. These were:

1. The development of more biologically receptive tissue adhesives and hemostasis inducing compounds.

2. The synthesis of L(+) polylactic acid, a biodegradable polymer, and the casting and extruding of films and fibers therefrom.

3. The design and fabrication of electrically powered arm components including a proportional control prehension device suitable for use in hybrid electrical and body powered prostheses as well as in all-electrical systems.

4. The development of a mechanical hand incorporating a soft feel and outstanding cosmesis.

5. The design, development, and procurement of 200 all-plastic optical inserts for the NBC protective mask.

6. The development of a foam-in-place splint and packaging system.

During the year a pathologist and an electronics engineer were added to the Laboratory's staff. With these additions the Laboratory now has the chemical, mechanical, and electronic medical evaluation capability suitable for coping with a variety of biomedical engineering problems.

In conducting the research described in this report the investigators adhered to the "Principles of Laboratory Animal Care" as established by the National Society for Medical Research.
TABLE OF CONTENTS

Externally Powered Devices	2
Externally Powered Prostheses	3
Electric Elbow Unlock	
Externally Powered Prosthesis	
Optical Inserts for Protective Masks	5
Foam in Place Splints	6
Foam splint	
Mandibular Foam Splint	
Cosmetic Prosthetics	8
Facial Prostheses	
Materials for Cosmetic Gloves	
External Prosthetic Devices	10
Foam Foot	
Graded Prehension Hook	
Lower Extremity Plastic Bracing	
Porous Below-Knee Socket with Soft Distal End	
Step-up Elbow Hinge with Lock	
Transmission System	
Size IV Active Resilient Hand	
Mechanical Hands	
Voluntary Opening Hook with Finger Flexion	
Stress Distributing Foot Support	
Hand Splint Materials	
Proximal Interphalangeal Assist Finger Splint	
Soft Foamed Hand Splint	
Pronation-Supination Sandblock	
Graded Resistance Exercise Unit	
Burn Bed	
Stretcher Modification	
Military Identification Tag Cover	
Miscellaneous AMedS Projects	
Biomechanical Devices	22
Internal Prostheses	

iv
Combat Surgery
RESEARCH AND TECHNOLOGY RESUME

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10-09-65</td>
<td>C. Terminated</td>
<td>07-65</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10A. CURRENT NUMBER/CODE</th>
<th>10B. PRIOR NUMBER/CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>62156011</td>
<td>3A025601A21 01 090</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. TITLE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U) Externally Powered Devices (09)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. SCIENTIFIC OR TECH. AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>002400 Bioengineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. START DATE</th>
<th>14. CRIT. COMPL. DATE</th>
<th>15. FUNDING AGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-64</td>
<td>07-65</td>
<td>DA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. PROCUREMENT METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Other Gov.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. CONTRACT/GRANT # DATE</th>
<th>18. RESOURCES EST.</th>
<th>19. PROFESSIONAL MAN-YEARS</th>
<th>20. FUNDS (in thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>65.</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21. GOV'T LAB/INSTALLATION/ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headquarters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. COORDINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthotics, Prosthetics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23. KEYWORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplification; Amputees; External Power; Fluid Amplifier; Orthotics, Prosthetics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24. (U) Technical Objective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>To conduct a pilot study on the feasibility of the application of fluid amplifiers to the operation of prosthetic and orthotic devices for the severely handicapped.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25. (U) Approach:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A detailed literature survey and site visits to laboratories concerned with the application of external power to prosthetic devices were made and the problems discussed. Laboratory models were fabricated and studied.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>26. (U) Progress:</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the course of research, the application of fluid amplifiers as a control source for the operation of prosthetic and orthotic devices was considered to be unfeasible. After discussion it was decided to devote the balance of the contract period to the development of electric and pneumatic elbow locks. Breadboard models were built and preliminarily evaluated. A final report summarizing the work was prepared.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>27. COMMUNICATIONS SECURITY</th>
<th>28. OSD CODE</th>
<th>29. BUDGET CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ COMMERCE RELATED</td>
<td>DT</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>30. MISSION OBJECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>31. REQUESTING AGENCY</th>
<th>32. SPECIAL EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33. EST. FUNDS (in thousands)</th>
<th>34.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DD FORM 1498 (Item 1 to 26 identical to NASA Form 1123) REPLACES DD FORMS 812 & 718 WHICH ARE OBSOLETE.
RESEARCH AND TECHNOLOGY RESUME

<table>
<thead>
<tr>
<th>1. DATE OF RESUME</th>
<th>2. GOVT. ACCESSION</th>
<th>3. AGENCY ACCESSION</th>
<th>REPORT CONTROL SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 07 65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. KIND OF RESUME</th>
<th>5. SECURITY</th>
<th>6. REGIDING</th>
<th>7. RELEASE LIMITATION</th>
<th>8. LEVEL OF RESUME</th>
<th>9. A. Work Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. CURRENT NUMBER/CODE</th>
<th>11. Sa PRIOR NUMBER/CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>62156011</td>
<td>3A025601A821-01-091</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. SCIENTIFIC OR TECH. AREA</th>
<th>13. START DATE</th>
<th>14. CRIT. COMPL. DATE</th>
<th>15. FUNDING AGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>002400 Bioengineering</td>
<td>01 64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. PROCUREMENT METHOD</th>
<th>17. CONTRACT/GRANT # DATE</th>
<th>18. RESOURCES EST. # PROFESSIONAL MAN-YEARS</th>
<th>19. FUNDS (in thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In House</td>
<td>N/A</td>
<td>Prior FY 65</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current FY 66</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. GOVT. LAB/INSTALLATION/ACTIVITY</th>
<th>20. PERFORMING ORGANIZATION</th>
<th>21. TECHNOLOGY UTILIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Headquarters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USAMRII</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, D. C. 20315</td>
<td></td>
</tr>
<tr>
<td>RESP. INDIV.</td>
<td>Kovacic, J. J., Lt Col</td>
<td></td>
</tr>
<tr>
<td>FAX</td>
<td>202-0X 66082</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. KEYWORDS</th>
<th>23. COORDINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Transducers; Electromyography; External Control; Prosthetics, External Power; Prostheses, Electrically Powered</td>
<td>CFRD, VA, NPRL, HSW</td>
</tr>
</tbody>
</table>

(U) Externally Powered Prostheses (09)

Technical Objective: To develop electrically powered prostheses and methods for their control.

Approach: The approach will consist of designing and developing electrically powered prosthetic components which will be incorporated into mechanically controlled prostheses to make hybrid arms. The functional regain then will be determined. A study of the possibility of electromyographic signal control or pressure transducer control will be made.

Progress: The laboratory has developed an electric elbow unlocking device and a powered forearm lift. Instruments are being obtained for studying and analyzing the amplitude and frequency of the electromyographic signal and several unique switches have been designed.
TITLE: Electric Elbow Unlock

INVESTIGATORS: Victor T. Riblett
 Roy I. Katsuren, SP4

DESCRIPTION: An electrically operated solenoid type elbow lock, requiring minimal forces and excursion, is under development.

PROGRESS: Several models have been prepared. Engineering drawings and specifications have been compiled and three production prototypes ordered. These units will be evaluated on amputees. Two units have been fitted to female forequarter amputees.

SUMMARY: This unit provides the severely handicapped amputee having minimal force and excursion with the elbow locking function. The velocity-lock mechanism obviates the need for simultaneous control of two functions during the locking phase.

PUBLICATIONS: Dwg. T-666

TITLE: Externally Powered Prosthesis

INVESTIGATORS: Victor T. Riblett
 Roy I. Katsuren, SP4
 Lloyd L. Salisbury, Jr.

DESCRIPTION: The purpose of this project is to develop an externally powered artificial arm, with proportional-controlled terminal device.

PROGRESS: An electrically operated arm has been designed and built. Final drawings and specifications are being prepared for procuring several prototype models. A breakthrough in the development of a poropportional-control, electrically powered terminal device system has been achieved and a breadboard model which demonstrates the feasibility of the system has been prepared. See Project 3A013001A91C 01, Biomedical Electronics.

SUMMARY: An electric arm and a proportional-controlled electrically powered, terminal device system have been developed. These items will be evaluated for use by severely handicapped amputees.

PUBLICATIONS: Dwg T-679
RESEARCH AND TECHNOLOGY RESUME

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01-07-65</td>
<td>D. Change</td>
<td>01-07-65</td>
<td>U U</td>
<td>NA</td>
<td>NL</td>
<td>NA</td>
<td>62156011 3A025601A821 01 092</td>
<td>61145011 3A014501A71E 03 092</td>
</tr>
</tbody>
</table>

(U) **Optical Inserts for Protective Masks (09)**

16. **SCIENTIFIC OR TECH. AREA**

013300 Protective Equipment

16. **PROCUREMENT METHOD**

C. **In-House**

NA

18. **RESOURCES EST.**

PROJ FY: 65

CURRENT FY: 68

NAME

Headquarters

ADDRESS

USAMRDC

Washington, D. C. 20315

RESP. INDIV.

Kovaric, J. J., Lt Col

TELEPHONE

202 66082

19. **GOVT LAB/INSTALLATION/ACTIVITY**

Optical Inserts for NBC Masks

DIRECT

Army Materiel Command

TYPE

DA

20. **PERFORMING ORGANIZATION**

USAMBR

ADDRESS

Walter Reed Army Medical Center

Washington, D. C. 20012

INVESTIGATORS

Albert B. Colman

TELEPHONE

202 576-5154

21. **TECHNOLOGY UTILIZATION**

Optical Materials; Optical Insert, Military Protective; Masks, Protective; Polyallomer

22. **COORDINATION**

CDOG 1412 a

23. **KEYWORDS**

Optical, Materials; Optical Insert, Military Protective; Masks, Protective; Polyallomer

TECHNICAL OBJECTIVE

To design and develop inexpensive lightweight optical inserts for NBC Masks.

APPROACH

To design and fabricate plastic inserts to make lightweight functional inserts for NBC Masks.

PROGRESS

Type I has been type classified and the project is completed. Type 2R1 has been replaced by the polyallomer insert (Type 3R1 short temporal struts). Type 3R1 - Short Temporal Struts is currently being evaluated at USAMRDC. Results of the evaluation will indicate further research or type classification for use in the M14 Tanker's NBC Mask and M25 Helicopter Pilot's NBC Mask.
(U) Foam-in-Place Splints (09)

Title: Foam-in-Place Splints

Scientific or Technical Area: Bioengineering

Procure Method: In-House

Contract/Grant No.: NA

Type: NA

Number: 002400

Number of Resources Estimated: 65

Professional Man-Years: 1

Funds (In thousands): 15

Start Date: 06 63

Crit. Compl. Date: NA

Funding Agency: Other

Performing Organization: Walter Reed Army Medical Center

Address: Washington, D. C. 20315

Investigators: F. Leonard, PhD

Type: DA

Tel.: 202 66082

Coordination: Medical Material Div., USAMRDC, OTSG

Keywords: Polyurethane foams; Mylar Bags; Velcro Tape

(U) Technical Objective: To develop a foam-in-place splint for immobilization of fractures in the field.

(U) Approach: To evaluate polyurethane foaming resins and to develop a packaging system for use in a foam-in-place splint.

(U) Progress: A polyurethane foam-in-place splint package has been developed for immobilizing fractured limbs. The splint may be molded to the contours of the extremity and permits immobilization around joints. Engineering design is being frozen at this stage pending medical evaluation on patients.
TITLE: Foam Splint

INVESTIGATORS: F. Leonard, PhD
J. T. Hill
D. R. Ingenito

DESCRIPTION: A lightweight, low bulk splint kit has been developed which could be used under combat conditions by the field soldier to make a strong immobilization splint.

PROGRESS: Foam-in-place arm and leg splints have been prepared and arrangements made for demonstration of the splints before qualified medical personnel for opinions on medical feasibility.

SUMMARY: The engineering feasibility of a foamable splint for field use has been demonstrated. Medical evaluation is necessary before further engineering design is undertaken.

TITLE: Mandible Foam Splint

INVESTIGATORS: Colonel P. M. Margetis, DC
J. T. Hill
D. R. Ingenito

DESCRIPTION: A lightweight, small bulk, easily removable splint for the immobilization of fractured mandibles was designed and fabricated.

PROGRESS: This item is undergoing testing.

SUMMARY: A polyurethane foam-in-place mandibular splint has been developed.
RESEARCH AND TECHNOLOGY RESUME

<table>
<thead>
<tr>
<th>1.</th>
<th>2. GOVT ACCESSION</th>
<th>3. AGENCY ACCESSION</th>
<th>4. DATE OF RESUME</th>
<th>5. KIND OF RESUME</th>
<th>6. SECURITY DESC</th>
<th>7. REG FILING DATE</th>
<th>8. RELEASE LIMITATION</th>
<th>9. LEVEL OF RESUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 07 65</td>
<td>DA 06056</td>
<td>CSRCR 103</td>
<td>01 07 65</td>
<td>D. Change</td>
<td>U</td>
<td>NA</td>
<td>RL</td>
<td>NL</td>
</tr>
</tbody>
</table>

10D. CURRENT NUMBER/CODE

62156011- 3A025601A821 01 094

10B. PRIOR NUMBER/CODE

61145011 3A014501A71E 03 094

11. TITLE

(U) Cosmetic Prosthetics (09)

12. SCIENTIFIC OR TECH. AREA

002400 Bioengineering

13. START DATE

01 48

14. CRIT. COMPL. DATE

NA

15. FUNDING AGENCY

Other DA

16. PROCURE. METHOD

C. In-House

17. CONTRACT/GRANT# DATE

RA

18. RESOURCES EST.

PROFessional MAN-YEARS

19. GOVT LAB/INSTALLATION/ACTIVITY NAME

USAMRDC

20. PERFORMING ORGANIZATION NAME

Walter Reed Army Medical Center

21. TECHNOLOGY UTILIZATION

Maxillofacial Prosthetics

22. KEYWORDS

VA, HEW

Prosthetics, Facial; Maxillofacial; Stain & Dye Resistant Elastomers, Adhesives, Facial; Translucent Elastomers

23. (U) Technical Objective

To develop materials and techniques to fabricate maxillofacial prostheses for patients who have lost a portion of the face as a result of trauma or disease.

24. (U) Approach

The major difficulties to be overcome in the fabrication and wear of facial prostheses may be attributable to deficiencies in available materials. The synthesis of durable elastomers resistant to staining and weathering has been achieved. Techniques for molding these materials have been developed.

25. (U) Progress

One of continuing investigation. Material has been synthesized and is being evaluated clinically with very encouraging results.

28. MISSION OBJECTIVE

CDG 1412 a

30. BUDGET CODE

1

32. PARTICIPATION

NA

34. SPECIAL EQUIPMENT

NA

35. EST. FUNDS (in thousands)

1

DD FORM 1498

(form 1 to 26 identical to NASA Form 1132) REPLACES DD FORMS 613 & 613C WHICH ARE OBSOLETE.
TITLE: Facial Prostheses

INVESTIGATORS: J. J. Urban
Joshua Nelson
Joseph E. Ouellette

DESCRIPTION: A two component prosthesis has been developed using an acrylate terpolymer skin, synthesized at the laboratory and a flexible foam filler foundation.

PROGRESS: During this period facial prostheses of all types have been fitted to patients referred by the Division of Plastic Surgery, Walter Reed General Hospital. Satisfactory results continue to be obtained. A report detailing this work is nearing completion.

SUMMARY: The materials and prosthesis designs will continue to be evaluated on patients. As soon as the report has been completed it is planned to set up cooperative programs with other centers for a more complete evaluation of the techniques developed.

TITLE: Materials for Cosmetic Gloves

INVESTIGATORS: Carl A. Nielson
James C. Eaton, Jr.

DESCRIPTION: Development of materials for stain-resistant cosmetic gloves is continuing.

PROGRESS: A resin-rich vinyl plastisol formulation was developed, field tested and found to be superior to presently manufactured cosmetic gloves. The new formulation was published and gloves prepared by commercial manufacturers were procured by New York University and tested for the Committee on Prosthetics Research and Development. The results of the tests were satisfactory.

SUMMARY: A new cosmetic glove formulation was developed. It was found to be more stain-resistant and stronger than presently used formulations.

PUBLICATIONS: MR 10-64 Production of RREP dilaminar gloves
11-64 Viscosity of RREP plastisol at elevated temperatures
13-64 Modification of plastisol RREP for decreased viscosity
Research and Technology Resume

<table>
<thead>
<tr>
<th>RESEARCH AND TECHNOLOGY RESUME</th>
<th>GOVT ACCESSION</th>
<th>AGENCY ACCESSION</th>
<th>REPORT CONTROL SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Change</td>
<td>DA 06057</td>
<td>CSCRD 103</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE OF RESUME</th>
<th>KIND OF RESUME</th>
<th>SECURITY</th>
<th>READING</th>
<th>RELEASE LIMITATION</th>
<th>LEVEL OF RESUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 07 65</td>
<td>D. Change</td>
<td>U</td>
<td>U</td>
<td>NA</td>
<td>NL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT NUMBER/CODE</th>
<th>PRIOR NUMBER/CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>62156011 3A025601A821</td>
<td>01 095</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SET. KIND OF RESUME</th>
<th>SECURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SET. SECURITY</th>
<th>SECURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GOVT ACCESSION</th>
<th>AGENCY ACCESSION</th>
<th>REPORT CONTROL SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>61145011 3A014501A71E</td>
<td>03 095</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITLE</th>
<th>SCIENTIFIC OR TECH. AREA</th>
<th>START DATE</th>
<th>CRIT. COMPL DATE</th>
<th>FUNDING AGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U) External Prosthetic Devices (09)</td>
<td>Bioengineering</td>
<td>06 45</td>
<td>NA</td>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROCUREMENT METHOD</th>
<th>CONTRACT/GRANT</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. In-House</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESOURCES EST.</th>
<th>PROFESSIONAL MAN-YEARS</th>
<th>FUNDS (In-thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>65</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>START DATE</th>
<th>CRIT. COMPL DATE</th>
<th>FUNDING AGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 45</td>
<td>NA</td>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESOURCES EST.</th>
<th>PROFESSIONAL MAN-YEARS</th>
<th>FUNDS (In-thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>65</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERFORMING ORGANIZATION</th>
<th>NAME</th>
<th>ADDRESS</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAMRDL</td>
<td>Walter Reed Army Medical Center</td>
<td>Washington, D. C. 20012</td>
<td>202 576-5153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCIENTIFIC OR TECH. AREA</th>
<th>INVESTIGATION</th>
<th>PRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioengineering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INVESTIGATORS</th>
<th>PRINCIPAL ASSOCIATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kovaric, J. J., Lt Col</td>
<td>F. Leonard, PhD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>202 66082</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTRACT/GRANT</th>
<th>AGENCY</th>
<th>FUNDAMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>001840</td>
<td>VA</td>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TERMINOLOGY UTILIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosthetics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEYWORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Devices; Elbow Units; Porous Plastics; Orthotics; Prosthetics</td>
</tr>
</tbody>
</table>

Technical Objective:
1. To design and fabricate prototype upper and lower extremity prosthetic and orthotic devices;
2. To develop materials and techniques applicable to the fitting and harnessing of prostheses; and
3. To develop accelerated test methods for laboratory evaluation of upper extremity components.

Approach:
To first evolve design criteria through a study of amputee needs and then to design the device to meet the criteria. The device is then evaluated both in the laboratory and on the amputee.

Progress:
The laboratory is engaged in the design of new and improved terminal devices, wrist units, elbow and shoulder units, both conventionally and externally powered. In addition, the laboratory is developing and applying porous laminating techniques to the fabrication of patellar tendon-bearing below-knee prostheses and above-knee porous suction sockets as well as all-plastic lower extremity braces. The laboratory is serving as an evaluation agency for accelerated testing of upper-extremity components in a cooperative national program. The laboratory develops performance specifications for upper-extremity components.

<table>
<thead>
<tr>
<th>COMMUNICATIONS SECURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISSION OBJECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C06G 1412 a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REQUESTING AGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFYH 1498</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EST FUNDS (In thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
TITLE: Foam Foot

INVESTIGATORS: Fred Leonard, PhD
 J. T. Hill
 Donald R. Ingenito
 V. T. Riblett

DESCRIPTION: The development of a flexible urethane solid ankle, cushion heel foot (SACH) has been undertaken.

PROGRESS: A high density sponge composition has been developed that shows promise of meeting the Veterans Administration specifications for the SACH type molded foot. The mold used for these feet has been redesigned and has been cast. Several foot moldings have been made.

SUMMARY: The new mold design in conjunction with the foam sponge compositions should make it possible to fabricate foam feet that will meet the Veterans Administration specifications.

PUBLICATIONS: Dwg T-638

TITLE: Graded Prehension Hook

INVESTIGATORS: Fred Leonard, PhD
 Albert B. Colman

DESCRIPTION: A terminal device, with provision for easily obtaining variable prehension forces which can be adjusted to suit the amputee's daily needs, is under development.

PROGRESS: A model with a roller to adjust prehension force from 1 to 5 lbs. is in the design stage.

SUMMARY: This device will undergo further design studies to increase efficiency and to provide a better method of adjusting prehension force.

PUBLICATIONS: Preliminary design sketches
TITLE: Lower Extremity Plastic Bracing

INVESTIGATORS: James T. Hill

DESCRIPTION: Efforts are being made to develop materials and techniques for the preparation of all-plastic lower extremity braces, to replace aluminum and steel.

PROGRESS: A technique has been developed in which a paper tracing is transferred to wood which is used as a mandrel about which the plastic side bars may be laminated. Filament winding is being tested as a possible method for preparing all-plastic braces.

SUMMARY: Preliminary observations indicate that all-plastic braces may be feasible.

PUBLICATIONS: Patent Application

TITLE: Porous Below-Knee (BK) Sockets with Soft Distal End

INVESTIGATORS: Fred Leonard, PhD
 Robert E. Plumb
 Chester T. Shelton

DESCRIPTION: This laboratory developed a porous below-knee hard socket with a soft distal end. The socket is patellar-tendon-bearing and is composed of a polyester laminate with a soft silicone end.

PROGRESS: This socket has been fitted to several amputees at USAMBRIL and is undergoing clinical evaluation on four amputees at New York University.

SUMMARY: The socket is lighter, more comfortable and cooler than the conventional patellar-tendon bearing socket.
TITLE: Step-up Elbow Hinge with Lock

INVESTIGATORS: V. T. Riblett
 J. W. Hodge, Jr.

DESCRIPTION: This hinge is designed to increase the amount of forearm flexion available to the amputee who has considerably less than the normal amount of flexion about the elbow and to provide locking. A step-up ratio of 1.5:1 is incorporated into the hinge. Locking is achieved by inserting a plunger in a notched sector at a specific degree of forearm flexion.

PROGRESS: Two sets of hinges and a laminating jig have been designed and fabricated. These have been submitted to New York University for amputee evaluation.

SUMMARY: This unit will enable an amputee with a very short stump with limited stump force and flexion to lock the forearm in position. In the locked position no load is sustained by the stump.

PUBLICATIONS: T. R. 6417 Fabrication procedures for split socket prosthesis using the AMBRL step-up hinge with lock

TITLE: Transmission System

INVESTIGATORS: John W. Hodge, Jr.
 V. T. Riblett

DESCRIPTION: A prototype all-plastic cable transmission system for controlling upper extremity prosthetic devices has been developed. The system consists of nylon ball and cable connectors, dacron cord cable, Teflon housing, and nylon retainers, and is currently undergoing laboratory evaluation. The dacron cord has a strength in tension of 117 lbs. and exhibits minimal wear when cycled 100,000 times. Force transmission efficiency was observed to be 90 percent. An adequate means of stabilizing the Teflon housing in the nylon retainers is being given special attention at this time. The system has been packaged and submitted to three testing agencies for clinical evaluation.

SUMMARY: The all-plastic cable transmission system has adequate strength, good efficiency, and was cycled with satisfactory results. It is expected that this system will replace in some instances the currently used steel cable transmission system, and in other instances work in conjunction with the steel transmission system. Repair is greatly facilitated by the use of the plastic system.

PUBLICATIONS: TR6507-Plastic cable transmission system for upper extremity prosthesis.
SIZE IV Active Resilient Hand

INVESTIGATORS: Theodore J. Bushey
 John J. Urban
 Joseph E. Ouellette

DESCRIPTION: A functional resilient soft hand prosthesis has been designed. The resilient hand consists of a voluntary opening type operating mechanism enclosed in a metal, hand-shaped shell which operates the 1st and 2nd fingers. The metal shell, fingers and thumb are fitted into a foam cover which duplicates the contours of the human hand. This is then covered with a USAMBRL Cosmetic Glove, making a terminal device which approximates the appearance and feel of a human hand and which incorporates prehension function.

PROGRESS: The operating mechanism, mechanism shell, fingers and a two-position thumb have been designed, fabricated, and assembled into a hand-shaped foam covering. A number of these hands, both right and left, have been built and are under evaluation.

SUMMARY: The adaptation of a simple voluntary opening (VO) mechanism to the space restrictive requirements of a hand, which has soft feel and has the cosmetic features of a human hand, provides the amputee with a soft functional terminal device.

PUBLICATIONS: M. R. 9-65 Resilient hand evaluation
 Dwg. T-658
TITLE: Mechanical Hands

INVESTIGATORS: A. H. Brown
 V. T. Riblett

DESCRIPTION: Four of the five sizes of functional mechanical hands are under active development. Hand Size IV is in commercial production.

PROGRESS: Hand Sizes I and II have been completed and are manufactured commercially. Hand Size III is 98 percent complete. The parts for Hand Size V have been received from the foundry and will be assembled.

SUMMARY: The complete range of hand sizes made in accordance with the recommendations of the Committee on Prosthetic Research and Development, National Research Council, should be completed during the next report period.

PUBLICATIONS:

T. R. 6416 Evaluation of No. II Size hand
T. R. 6419 Hand Size No. I - Voluntary opening with single position stop
T. R. 6501 Hand Size No. II - Voluntary opening with single position stop
T. R. 6503 Improved technique for the fabrication of a double wall single laminated porous arm socket
MR 3-65 Adjustable torsion spring hook
MR 4-65 No. II Size Hand check-out
MT 10-65 Locking bar test

Dwg. T-659
Dwg. T-670
Dwg. T-673
TITLE: Voluntary Opening Hook with Finger Flexion

INVESTIGATORS: Fred Leonard, PhD
Albert B. Colman

DESCRIPTION: A terminal device which will provide 0 to 35 degree flexion of the hook fingers is being developed. Such a device will eliminate an additional arm component, the wrist flexion unit, from the prosthesis. In addition, the control systems for the terminal device will not be affected when the amputee requires the fingers of the hook to be in the flexed position.

PROGRESS: Drawings and specifications were prepared to procure 3 right and 3 left models of the locking type flexion hook.

SUMMARY: Hooks with lock-in flexion are being procured for amputee evaluation.

PUBLICATIONS: Dwg. T-660

TITLE: Stress Distributing Foot Support

INVESTIGATOR: John J. Urban

DESCRIPTION: A quick setting dynamic arch support has been developed. The base elastomer is a filled silicone rubber which is placed in the patient's shoe. The filled elastomer sets within 15 minutes while the patient is walking.

PROGRESS: Materials and techniques have been developed and a report written. The technique has been submitted to the Veterans Administration for clinical evaluation.

SUMMARY: Preliminary patient evaluation is satisfactory. Plans are being made with the Veterans Administration for clinical evaluation.
TITLE: Hand Splint Materials

INVESTIGATORS: Fred Leonard, PhD
 Captain Mary H. Yeakel, AMSC

DESCRIPTION: Various plastic materials are being tested for feasibility for use in hand splints.

PROGRESS: Two materials, a rigid vinyl and polypropylene, have been obtained and are currently being tested on patients. The vinyl material can be cut to shape on a hand saw, with hand tools, or even with scissors, when the material is heated. It can be shaped by heating in boiling water and may be formed directly on the patient, thereby eliminating the necessity of molds and numerous fittings. It seems to have many fine qualities and field tests are favorable. Polypropylene rod, 3/16" diameter, is being tested as a substitute for metal hinges. Since this material can be cold-formed, the entire splint can be fabricated and the wrist hinge formed when the splint is on the patient. This makes alignment of the anatomical hinge of the wrist and the splint hinge more accurate and simpler to fabricate. Clinical evaluation has been successful.

SUMMARY: An all-plastic opponens splint has been prepared and is being evaluated on patients.

TITLE: Proximal Interphalangeal Assist Finger Splint

INVESTIGATORS: Captain Mary H. Yeakel, AMSC
 Mr. Theodore J. Bushey

DESCRIPTION: A dynamic splint has been developed to assist the weakened or destroyed extensor tendon of the proximal interphalangeal joint. The splint is designed so that it will not impede use of the hand and is attached on the dorsum of the involved finger.

PROGRESS: The splint consists of two contoured aluminum discs which are adhered to the proximal and medial phalanges by adhesive tape. Each disc supports a post 3/4" in height. The distal post is slotted to accept a torsion spring which is held stationary by a set screw. The post on the proximal portion is slotted and permits the torsion spring to slide freely.

SUMMARY: Clinical evaluation at the University of North Carolina, Chapel Hill, North Carolina has been favorable. This project has been completed.
TITLE: Soft Foamed Hand Splint

INVESTIGATORS: Captain Mary H. Yeakel, AMSC
John J. Urban

DESCRIPTION: A solid foam splint is being designed for static positioning of the severely burned hand. Size standards will be determined and the splint will be stocked for use at the Surgical Research Unit, Brooke Army Medical Center.

PROGRESS: Six splints have been field tested at SRU. Several designs and material combinations have been used. The outer protective, impervious skin of the splint was originally made from Dow-Corning room temperature vulcanizing silicone rubber and the inner core from a silicone foam and silicone rubber combination. Resilient polyurethane foams have been substituted for the silicones to provide a lighter, more easily fabricated splint. A metal hinge was incorporated at the wrist to provide a method of changing the wrist position to meet the needs of the patient. Field testing and design modification of this splint will continue.

SUMMARY: A solid foam, static, positioning splint is being developed for the severely burned hand. It is felt that most of the criteria for positioning can be incorporated into the device and that it will prove to be more desirable than the splints currently available for this task.

TITLE: Pronation-Supination Sandblock

INVESTIGATORS: Captain Mary H. Yeakel, AMSC
V. T. Riblett

DESCRIPTION: A sandblock which requires the isolated motions of pronation and supination is being developed. These motions are difficult to encourage in woodworking activities with equipment presently available to the Occupational Therapist.

PROGRESS: Design specifications have been established, the device fabricated and submitted for testing and evaluation.

SUMMARY: A sandblock which required forearm pronation and supination was developed and clinically evaluated at Fort Knox, Ky. and found satisfactory. Project is terminated.

PUBLICATIONS: Dwg. T-656
Dwg. T-664
TITLE: Graded Resistance Exercise Unit

INVESTIGATORS: Captain Mary H. Yeakel, AMSC
V. T. Riblett
A. H. Brown

DESCRIPTION: A small portable exercise unit, which can be used to provide graded resistance for therapeutic exercise, is being developed in cooperation with the Hunter Spring Company.

PROGRESS: Negotiations are being worked out with the Hunter Spring Company to modify the standard spring reel unit to meet specifications desired for exercise equipment. A pilot study, with limited units available, was quite encouraging with positive reactions from patients and therapists. A larger number of models are being procured for more extensive field trials.

SUMMARY: A small, lightweight exercise unit is being developed which should prove useful in clinic, ward, or home.

PUBLICATIONS: Dwg. T-663

TITLE: Burn Bed

INVESTIGATORS: Captain Mary H. Yeakel, AMSC
Carl A. Nielson
Victor T. Riblett

DESCRIPTION: An attempt is being made to construct a bed which will permit circulation of air about the circumferential burn wound. This will be accomplished by modification of a Stryker frame so that a coarse mesh, woven or knitted fabric, or plastic net can be attached to the frame. The frame must provide a simple method of changing tension in the net to permit equal distribution of pressures against the patient.

PROGRESS: Several knit and woven fabrics and polyallomer net samples have been obtained; however, none of these have been satisfactory. A dacron fabric has been obtained. This is to be silicone coated and evaluated.

SUMMARY: An attempt is being made to develop a bed which will permit circulation of air around the circumferential burn wound.
TITLE: Stretcher Modification

INVESTIGATORS: Fred Leonard, PhD
Theodore J. Bushey
Stanley W. Baker

DESCRIPTION: A medical field stretcher is being modified to decrease its length and cube. A design modification is being considered that will shorten the overall length to 77 inches when not in use. This is being accomplished by designing a set of carrying handles that will retract into the side rails thereby shortening the overall length by 13 inches.

PROGRESS: The prototype handles were made and installed on the stretcher. Professional consultants at the Office of the Surgeon General commented that the design appeared too complex and that dirt may get in the mechanism, causing a malfunction.

SUMMARY: Because of preliminary professional staff comments, further work was halted.

PUBLICATIONS: Dwg. T-662

TITLE: Military Identification Tag Cover

INVESTIGATORS: Fred Leonard, PhD
A. H. Brown

DESCRIPTION: Military identification tag covers containing provision for refraction data were prepared and submitted to the Natick Laboratories, Natick, Massachusetts for evaluation. The covers were prepared from a plasticized polyvinyl chloride.

PROGRESS: Approximately 300 covers were made.

SUMMARY: This item was found to be highly satisfactory as a result of tests conducted by the Natick Laboratories and is ready for type classification.
TITLE: Miscellaneous

INVESTIGATORS: Laboratory Staff Members

DESCRIPTION: The laboratory engaged in a variety of short term development projects of interest to AMEDS activities. These included the development of an Amniocentosis Needle, Dental Forceps, evaluation of insulation material for the MUST unit, evaluation of Corfam, small animal container, surgical suction device, ear inserts, and medical apparatus.

PUBLICATIONS:

T. R. 6502 Stress-strain characteristics and water vapor permeability of leather vs. Corfam
T. R. 6509 Evaluation of failures in the aluminum-polyurethane foam composite used in MUST unit
MR 8-64 The use of cyanoacrylate adhesive for luting gold dental castings
MR 14-64 Improved ear inserts
MR 6-65 Teflon utero-cervical vaginal pessary cannula (Dwg T-667)
MR 7-65 Filter for use with the Cobalt 60 Irradiator, 'Radiation Therapy, WRGH (Dwg T-675)
MR 8-65 Device for insertion of contact lenses (Dwg T-675)

Dwg T-661-1 Monkey vacuum chamber
Dwg T-665 Mouthstick
Dwg T-668 Surgical suction device-nozzle
(U) Biomechanical Devices (09)

10a. CURRENT NUMBER/CODE: 62156011
10b. PRIOR NUMBER/CODE: 3A025601A821
14. START DATE: 07 57
17. CONTRACT/GRANT # DATE: NA
18. RESOURCES EST. # PROFESSIONAL MAIN-YEARS: 65 3
19. FUNDING AGENCY: 30
20. PERFORMING ORGANIZATION NAME: Waller Reed Army Medical Center
21. TECHNOLOGY UTILIZATION: Internal Prostheses
22. COORDINATION: WRAIR
24. (U) Technical Objective: To design and fabricate devices for biomechanical applications to replace tissue and organs which have been damaged as a result of trauma or disease.
25. (U) Approach: Design criteria are obtained from interested surgeons and the medical literature where possible. The devices are molded from tissue receptive materials and submitted to the surgeon for evaluation in experimental animals. Design changes are made as required.
26. (U) Progress: At present artificial arteries, bile ducts, tracheas, femoral hip caps and bandages for wounds and burns are being prepared and evaluated. Heart valves are under study.

DD FORM 1498 (Replaces DD Forms 112 & 613 which are obsolete.)
TITLE: Internal Prostheses

INVESTIGATORS: Carl A. Nielson
Joshua Nelson
K. C. Pani, MD

DESCRIPTION: Current efforts are directed toward the development of internal body prostheses, such as tracheae, esophagi, vascular grafts, and bile ducts.

PROGRESS: During this period, assorted lengths of 4 mm, 6 mm, 8 mm, and 10 mm synthetic vascular grafts were submitted to Brooke Army Medical Center. Samples of synthetic vascular grafts and bile ducts were submitted to Dr. R. T. Sherman of the University of Tennessee. Both the synthetic vascular grafts as well as the synthetic bile ducts continue under evaluation at the Walter Reed Army Institute of Research and the University of Tennessee.
Biochemistry
RESEARCH AND TECHNOLOGY RESUME

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DATE OF RESUME</td>
<td>01 07-65</td>
</tr>
<tr>
<td>2. KIND OF RESUME</td>
<td>A. New</td>
</tr>
<tr>
<td>3. SECURITY U T</td>
<td>U</td>
</tr>
<tr>
<td>4. RECODING</td>
<td></td>
</tr>
<tr>
<td>5. RELEASE LIMITATION</td>
<td>NA</td>
</tr>
<tr>
<td>6. LEVEL OF RESUME</td>
<td>A. Work Unit</td>
</tr>
<tr>
<td>10A. CURRENT NUMBER/CODE</td>
<td>61145011</td>
</tr>
<tr>
<td>10B. PRIOR NUMBER/CODE</td>
<td>34014501871F 01 037</td>
</tr>
<tr>
<td>11. TITLE:</td>
<td>(U) Materials for Biomechanical Applications (09)</td>
</tr>
</tbody>
</table>

Artificial Internal Organs and Tissues

Internal Prostheses; Surgical Materials; Biological receptivity

(U) Technical Objective: To develop materials which can be utilized in replacing tissues or organs which have been damaged as a result of trauma or disease.

(U) Approach: To study the tissue receptivity-structure relationships as well as to fabricate internal body prostheses from known tissue-receptive materials.

(U) Progress: Presently the laboratory is engaged in research toward the development of materials for use in internal body prostheses.
TITLE: Fabrics for Prosthetic Devices

INVESTIGATORS: Laboratory Staff Members

DESCRIPTION: This laboratory has continued the project with the Philadelphia College of Textiles Sciences. The College knits research textiles for the laboratory's use in fabricating internal and external body prostheses upon request.

PROGRESS: Textiles for internal body and external body biomechanical devices are being fabricated.

SUMMARY: Specialty textiles will be prepared as required.

TITLE: Implant Materials

INVESTIGATORS: Carl A. Nielson
James C. Eaton, Jr.

DESCRIPTION: The purpose of this project is to develop a latex dispersed elastomer which would be utilized in the fabrication of reproducible cellular foam material for internal prosthetics.

PROGRESS: Both commercial and AMBRL batches of standard acrylate-amide latices have been evaluated for foam fabrication. Reproducibility of foam fabrication from batch to batch has not been satisfactory. The original 90/7.5/2.5 MA/MMA/MAD terpolymer latex has been modified to include poly vinyl alcohol in the polymerization medium. Results of experiments with several batches of this modified latex on reproducibility of foams are encouraging.

SUMMARY: Additional batches of the modified recipe will be evaluated for foam reproducibility and other additives such as poly (acrylic acid) will be evaluated as latex modifiers. In addition, other acrylate recipes will be polymerized in an attempt to produce an elastomeric material for possible utilization in internal body prostheses.

PUBLICATIONS:
MR - 12-64 Terpolymer latex X-10E
MR 15-64 Fabrication of grafts
MR 5- 65 Foaming of terpolymer latices produced by American Cyanamid Co.
MR 11 - 65 Acrylate amide foams prepared for evaluation as tissue prosthesis in orofacial surgery

26
TITLE: Biodegradable Polymers

INVESTIGATORS: Fred Leonard, PhD
Ramchandra Kulkarni, PhD
Kaniambakam Pani, MD

DESCRIPTION: Biodegradable polymers for use in internal body prostheses are being synthesized. It is planned to synthesize polypeptides and polymers of such compounds as lactic acid and hydroxy butyric acid.

PROGRESS: Poly L (+) lactic acid has been synthesized and its physical properties studied. Initial implantation experiments have indicated that the polymer is well tolerated in the biological system and it may accelerate healing of wounds. Radioactive poly L (+) lactic acid has been synthesized and implanted in rats. Its gross metabolic fate is being determined by monitoring techniques.

SUMMARY: If poly lactic acid is biodegradable, efforts will be made to prepare sutures and vascular prostheses from the material. Films will also be prepared and evaluated as dressings for wounds and burns.

TITLE: Burn Dressing

INVESTIGATORS: Fred Leonard, PhD
George Brandes
Kaniambakam C. Pani, MD

DESCRIPTION: The preparation of evaluation of the higher alpha cyanoacrylates homologs as spray on dressings for burns has been undertaken.

PROGRESS: Excellent progress has been made on the synthesis of the hexyl, heptyl, and octyl cyanoacrylates in purities of 98.5% or higher. Spray guns have been developed for spraying these monomers.
DESCRIPTION: The homologous series of the alpha cyanoacrylates is under study as tissue adhesive from the viewpoint of effectiveness in wound closure, histotoxicity, biodegradability, and structure reactivity relations.

PROGRESS: The homologous series of alpha cyanoacrylates from methyl to decyl were prepared in purities of 98.5% and higher. The mechanism of degradation has been studied in vitro and in vivo. A series of spray guns have been devised for delivering the monomers to wounds. Surgeons at the Walter Reed Army Institute of Research are studying the tissue closure characteristics of these materials in a variety of tissue, including bone, pancreas, liver, spleen, kidney, oral vascular, nerve, and oral cavity. During this period several research institutions were supplied with samples of monomers manufactured in this laboratory. These were: WRAIR, WRGH, AFIP, AIDR, Picatinny Arsenal, University of Pennsylvania, and Johns Hopkins University. The samples were: Methyl - 152 cc; Ethyl - 90 cc; Butyl - 190 cc; Methyl C14 tagged - 30 cc; Heptyl - 35 cc; Propyl - 25 cc; Octyl-25 cc.

SUMMARY: Excellent progress is being made in this field of research. Promising hemostasis inducing compounds can be expected from this series of compounds.

PUBLICATIONS: A spray gun for tissue adhesive Surgery, 57:749, May 1965

T. R. 6415 The preparation of radioactive methyl alpha cyanoacrylate
T. R. 6505 Estimation of alkyl alpha cyanoacrylates by volumetric and hydrogenation procedures
T. R. 6508 Degradation of alpha cyanoacrylates by water
MR 16-64 Adsorption of butyl alpha cyanoacrylate onto Bio-Gel HT
MR 2-65 Preparation of polymers from alpha cyanoacrylates.

Dwg. T-674-1
Dwg. T-674-2
3A013001A91C 01

In-House Laboratory Independent Research
(U) Mechanism of the Degradation of Poly Alpha Cyanoacrylates (09)

(U) Title: (U) Mechanism of the Degradation of Poly Alpha Cyanoacrylates (09)

(U) Scientific or Tech. Area: Biochemistry

(U) Start Date: 07 63

(U) Critical Completion Date: NA

(U) Funding Agency: Biochemistry

(U) Other: DA

(U) Procurement Method: Contract/Grant

(U) Contract/Grant #: NA

(U) Number of Scientists Involved: NA

(U) Amount of Funds Involved: 25

(U) Rate of Degradation of C_{14} alpha carbon tagged poly methyl alpha cyanoacrylate and poly butyl cyanoacrylate have been measured in vivo. The rates of degradation in distilled water of the various members of the homologous series from methyl to octyl are under study. It has been demonstrated that the alpha cyanoacrylate polymers degrade by hydrolytic chain scission. Formaldehyde is one of the derivatives.

(U) Technical Objective: To study the mechanism of the in vivo and in vitro degradation of alpha cyanoacrylate polymers.

(U) Approach: The kinetics of the degradation of the homologous series of alpha cyanoacrylate polymers are under study.

(U) Progress: The rates of degradation of C_{14} alpha carbon tagged poly methyl alpha cyanoacrylate and poly butyl cyanoacrylate have been measured in vivo. The rates of degradation in distilled water of the various members of the homologous series from methyl to octyl are under study. It has been demonstrated that the alpha cyanoacrylate polymers degrade by hydrolytic chain scission. Formaldehyde is one of the derivatives.
(U) Mechanism of Degradation of Poly (L+) Lactic Acid (09)

12. SCIENTIFIC OR TECH. AREA: Biochemistry

14. START DATE: 07 63

18. RESOURCES EST.

a. PROFESSIONAL MAN-YEARS: NA

b. FUND (in thousands): 10

20. PERFORMING ORGANIZATION NAME: USAMRDC

ADDRESS: Washington, D.C. 20315

21. TECHNOLOGY UTILIZATION: Kinetics of Degradation

22. COORDINATION: WRGH WRAIR

24. (U) Technical Objective: To study the mechanism of degradation of poly L (+) Lactic Acid.

(U) Approach: Poly L(+) Lactic Acid ^{14}C tagged is to be implanted in rats to study the in vivo degradation and gross metabolic fate. Experiments will be started on the hydrolytic degradation of poly (L+) Lactic Acid.

(U) Progress: Radioactive poly (L(+) Lactic Acid) has been implanted in rats. It has been preliminarily observed that 15% of the initial radioactivity has disappeared after 2 months.
RESEARCH AND TECHNOLOGY RESUME

1. DATE OF RESUME 14 07 65
2. KIND OF RESUME A. New
3. GOVT ACCESSION DAOA6060
4. AGENCY ACCESSION CSCRD 103
5. CONTROL SYMBIOL
6. SECURITY U U
7. REGRADING U U
8. RELEASE LIMITATION NA
9. LEVEL OF RESUME A. Work Unit
10. SECURITY ALMOST NA
11. PRIOR NUMBER/CODE 6113001I 3A013001A91C 01 012
12. TITLE (U) Biomedical Electronics (09)
13. SCIENTIFIC OR TECH. AREA 002400 Bioengineering
14. PROCUREMENT PROJECTION 01 65
15. START DATE 01 65
16. CNTROL COMPL. DATE NA
17. FUNDING AGENCY DA
18. SECURITY NA
19. PROCUREMENT METHOD
20. CONTRACT/GRANT 1T 6113001I
21. NUMBER NA
22. IN-HOUSE
23. TYPE NA
24. AMOUNT NA
25. GOV'T LAB/INSTALLATION/ACTIVITY
26. NAME USAMRDC
27. ADDRESS Headquarters
28. ADDRESS USAMRDC
29. NAME Washington, D. C. 20315
30. ADDRESS Washington, D. C. 20315
31. RESP. INDIV Kovaric, J. J., Lt Col
32. TEL. 202 OK 66082
33. TEL. 202 576-5266
34. INVESTIGATORS Lloyd L. Salisbury, Jr.
35. PRINCIPAL ASSOCIATE
36. TEL. 202 576-5266
37. TYPE DA
38. TECHNOLOGY UTILIZATION Orthotics-Prosthetics
39. LOCATION CPER, VA
40. COORDINATION
41. KEYWORDS External Power; Prosthetics; Orthotics; Amputees; Prehension; Terminal Device
42. TECHNICAL OBJECTIVE
43. (U) Technical Objective: To develop a hand prosthesis incorporating automatic proportional control of grasp.
44. APPROACH
45. (U) Approach: Incorporating in an electrically powered hand prosthesis a transducer for detecting slippage between the hand and the object grasped. The transducer output is used to actuate the power source to increase the pinch force until slippage ceases.
46. PROGRESS
47. (U) Progress: To date a hook prosthesis has been instrumented with a transducer for feasibility studies. Coefficient of friction measurements for standard cosmetic glove material vs. various common surfaces are being made. This will define the design parameters. The thumb from a standard hand is being modified to accept a transducer.
48. PUBLICATIONS: Patent Application
49. COMMUNICATIONS SECURITY
50. CONSEC OR CONSEC RESTRICTED NO
51. NOT RELATED
52. MISSION OBJECTIVE NA
53. REQUESTING AGENCY NA
54. SPECIAL EQUIPMENT
55. EST. FUNDS (In thousands) 00 00
56. FORM 1498 (Item 1 to 26 identical to NASA Form 1122) REPLACES DD FORMS 613 & 613C WHICH ARE OBSOLETE.
Annual Progress Report, FY 1965

Abstract

The research program of the U.S. Army Medical Biomechanical Research Laboratory is devoted to the development of internal and external body biomechanical devices and to special AMedS projects as assigned. Research and Technology Resumes on the following projects are submitted:

1. Externally Powered Devices
2. Externally Powered Prostheses
3. Optical Inserts for Protective Masks
4. Foam in Place Splints
5. Cosmetic Prostheses
6. External Prosthetic Devices
7. Biomechanical Devices
8. Materials for Biomechanical Applications
9. Mechanism of the Degradation of Poly Alpha Cyanoacrylates
10. Mechanism of Degradation of Poly (L+) Lactic Acid
11. Biomedical Electronics
UNCLASSIFIED

Security Classification

<table>
<thead>
<tr>
<th>Key Words</th>
<th>Link A</th>
<th>Link B</th>
<th>Link C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amputee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prosthetics</td>
<td>Surgical Materials</td>
<td>Degradation</td>
<td></td>
</tr>
<tr>
<td>Electromyography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masks, Protective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyallomer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyurethane foams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastomer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elbow Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porous Plastics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostheses, Internal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, e.g., 1 April 1963. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

8c. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

8d. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"
 4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"
 5. "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

UNCLASSIFIED

Security Classification