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Chaptnr 1 

LARGE PROJECT SCHEDULING:  THE PROBLEM 

Introduction 

Large projects, as a class of human endeavor, have tested 

men's organizing abilities at least since the time of the Tower of 

Babel and Noah's Ark.  Modern logistics problems have an ancient 

predecessor in the formidable project Moses undertook of planning 

the delivery of the Israelites from Egypt.  One is impressed, in 

reading the history of civilization, that some of the most impor- 

tant periods of history are associated with the completion of 

large projects—from the building of the Egyptian pyramids to the 

explosion of the first atom bomb.  The rapid advances of science 

and technology in our own age have led to a great acceleration in 

large project activities—evidenced, for example, by the construc- 

tion of numerous dams, bridges, highway systems, and (more spec- 

tacularly) by the development and launching of space satelites. 

Given such a long history of human involvement in large 

projects, it seems somewhat remarkable that, until quite recently, 

comparatively little has been written on the subject of large pro- 

ject scheduling.  Perhaps the growing size and complexity of space- 

age projects has intensified the need for better methods of plan- 

ning and scheduling such activities, which might explain the 

greatly increased attention devoted to this subject during the past 

three or four years.  And computer technology has made easier the 

handling of large amounts of data associated with large projects. 

But one still wonders why researchers—at least in this century— 

have not earlier found the problems of large project scheduling an 

interesting area for study.  Whatever the reason, the importance 

of the problem is presently evidenced by the widespread interest 

in it; and the modest amount of progress made thus far leaves it 

/ 



still a fruitful area for research. 

In the present volume, we have chosen to study, within the 

complex (and largely unstructured) field of large project manage- 

ment, the problem of project scheduling.  We will not be concerned, 

for example, with questions of project design or technology, nor 

will we discuss implementation of a scheduling system or (in an 

explicit manner) the problems of project control.  Further, we 

will deal with the case of certainty—that is, we will work with 

single job times rather than probability distributions or PERT- 

type estimates. 

The specific goals of this volume are two-fold: 

1) To develop a conceptual framework for the problem of large 

project scheduling, and to extend the concepts of critical path 

analysis to the general case of limited resources; and 

2) To develop and test some computer models for scheduling 

large projects with limited resources, drawing on the concepts 

developed in 1). 

Definition of Large Project 

The nature of large projects is evident, in part, from the 

examples we have cited, to which we might add the construction of 

buildings and plants, large maintenance projects (e.g., a turn- 

around in an oil refinery, in which the refinery is shut down for 

a few day for numerous repairs and alterations), research and 

engineering design projects, production of large, special-order 

equipment (e.g., power generating equipment), and so forth. 

Usually such projects are one-of-a kind, which means that sched- 

ules must be tailor-made for each project.  Large projects typi- 

cally consist of several hundred (or thousand) separate but tech- 

nologically related jobs or activities.  That is, the jobs are 



partially ordared by predecessor-successor relationships; some 

jobs must be performed in a given sequence while others may be 

performed in parallel.  Consider, for example, the following 

"project graph" of a simple project: 

Figure 1 

Each arrow represents a job or activity that requires certain 

resources and a given time to be completed.  The connections of 

arrows and nodes indicate predecessor-successor relations.  For 

example, job 1 is an immediate predecessor of job 3 and must be 

completed before 3 can begin.  Jobs 4 and 5 are immediate suc- 

cessors of 2 and immediate predecessors of 6 and 7, respectively, 

and so forth.  The completion of 10 marks the end of the project. 

A single due-date is of interest—the finish date of the entire 

project. 

Structurally, the size of a project is not its dominant 

characteristic, of course.  By defining a project simply as a 

collection of independent, partially-ordered jobs, we extend the 

application of our present analysis to projects of any size.  In- 

deed, most of our illustrative examples throughout (as in Figure 1 

above) involve trivially small projects.  But it is the size of 

large projects that makes them interesting and worthy of our 

analysis.  When we speak of the "large project problem," we mean 

to emphasize not only the structural aspects of a project but 

also the complexities that result from its size. 

i^HBHmvama^^HH^H ■^^^■■■■WBSOBEBB "    ■WaHMHHMnHn^HIHni^B^Hi 
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We should also note that our categorization of "project" 

and "job" is relative to one's point of view.  Consider the Navy's 

task of scheduling ship repairs.  From a top-level viewpoint, each 

ship to be repaired comprises a job, and ch- project consists of 

scheduling all the ship (jobs) that need repair in a given period 

of time.  At the shipyard level, each ship which arrives is a pro- 

ject, and each major item to be repaired on the ship is a job. 

At an even lower level, such a job (e.g., overhauling the ship's 

engine) becomes a project with many separate, smaller jobs that 

must be scheduled.  At each of these "levels of indenture," the 

essential structure of a project exists as we have defined it and 

our analysis is equally applicable.  Thus the "size" of a project 

refers essentially to the number of Jobs it contains, rather than 

to some physical or monetary measure of the project's importance. 

The Large Project Problem vs. the Job-Shop Problem 

The large project problem differs in several respects from 

the job-shop scheduling problem, in which the Jobs, each of which 

may comprise one or more activities, are technologically independ- 

ent (or are assumed to be), and the due-date of each Job is of 

concern.  A simple "job-shop graph" (comparable to the above pro- 

ject graph) might appear as follows: 

Figure 2 

O-^-O 
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Of the four jobs, 1 and 3 have a   single activity, while 2 and 4 

have several activities which must be performed in the sequence 

shown.  A typical job-shop problem, of course, would involve 

hundreds or thousands of such jobs and activities.  We will later 

have more to say about the relationship of the large-project and 

job-shop problems; suffice it now to observe that the former dif- 

fers Trom the latter by virtue of the partial ordering of project 

jobs and the single due-date characteristic. 

The Large Project Problem vs. the Line Balancing Problem 

From a managerial viewpoint, the large project problem 

differs considerably from the line balancing problem.  The latter 

is concerned with repetitive operations and large numbers of identi- 

cal products, with the possibility of production for inventory, as 

one would find in mass-production type Indus'ries.  On the other 

hand, a large project is, by definition, a onn-of-a kind, single 

"product" effort.  No attempt is made to group jobr. or tasks into 

work stations, since the sequence of such Jobs would be performed 

only once.  Such effores at sequencing in a mass production indus- 

try would likely be worth while because of large production runs. 

Thus line balancing is concerned with rate of production (units 

per time period).  As an additional difference, each job in a pro- 

ject may require a different resource (skilled operator, machine, 

etc.), while the line balancing problem as ordinarily formulated 

implicitly assumes all operators are capable of performing any 

task at any work station. 



Corabinatorial Problems 

In certain respects, however, the line balancing problem 

resembles both the large project problem and the job-shop problem. 

A similar directed graph representation may be made of the former, 

in which the arrows represent elemental tasks making up the assem- 

bly operations, and the nnde connections display precedence rela- 

tionships among the elemental tasks (see Tonge [45]).   Thus Fig- 

ure 1 might illustrate an assemply problem in which arrow 2 rep- 

resents an elemental task requiring a given operations time per 

unit of product, which must be completed before elemental tasks 

4 and 5 are performed on the same unit, and so forth.  The problem 

is to assign tasks to work stations in such a way as to minimize 

the number of such work stations given the constraints of task 

times, ordering, and production rate.  As Tonge notes, the line 

balancing and job-shop problems (and we might add, the large pro- 

ject problem) are representative of a class of combinatorial pro- 

blems in which elements of a set are to be ordered or grouped 

according to some criterion.  In job shop scheduling, groups of 

jobs are assigned to machines in such a way to observe sequencing 

and to minimize time pest due-dates.  In the large project problem, 

jobs are ordered in time in such a way that resources required do 

not exceed those available in any time period; the object is to 

minimize the project length given limited resources and the order- 

ing constraints among the jobs. 

The directed graph representation employed by Tonge is actually 
the reverse of that described above—i.e., nodes are elemental 
tasks and arrows represent precedence relationships.  A project 
graph could also be drawn in this manner, of course (see Levy, 
Thompson, and Wiest [26]).  While such a method of drawing a 
project graph avoids the necessity for "dummy jobs" (as described, 
for example, by Kelley [21]), the method used throughout this 
volume was chosen because it has certain advantages for purposes 
of illustration and because it has become so firmly established 
and widely accepted since the advent of PERT (Project Evaluation 
and Review Technique) and CPM (Critical Path Method). 

mmMBMMH^H^^HI nKMVfW..i»ii  ^■MM^H^V ■^■MM^^MB^^B^Bmi IflMVUWmlSB 
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One may conceive of the line balancing problem as one of 

ordering the elemental tasks along a time scale marked off into 

blocks determined by the desired production rate (e.g., a block 

would be tv/o minutes if the production rate is 30 items/hour) . 

Tasks may not be split between time blocks, and ordering con- 

straints must be observed.  The object is to minimize the nun.bor 

of time blocks (work stations), which amounts to assigning tasks 

in such a way as to maximize the proportion of time used for tasks 

in all of the blocks. 

An attempt to structure the large project problem in a 

similar manner points out the differences in the two problems. 

Since the project is performed just once, the concept of time 

blocks established by a production rate has no meaning.  But we 

might conceive of resource blocks consisting of the amount, of 

a resource available during one day (or whatever the smallest 

scheduling period may be);  If jobs were all just one day long, 

they could be ordered along the resource scale in such a way that 

precedence relations were observed and resource requirements of 

jobs grouped into a resource block would never exceed the amount 

available in the block.  The object would be to minimize the 

number of such blocks. 

The difficulty with this formulation, of course, is that 

jobs are usually more than one day long.  Additional complica- 

tions arise from the fact that projects usually involve many 

resource types, jobs may require several resources, resources 

may vary over the schedule period (the resource "blocks" would 

be of different sizes), and resource requirements on many jobs 

1 The formulation is due to Bowman [4] 
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c.rc variable.  Thus, C.G cr.r.rriplcr, of combinatorial problems, line 

balancing and large project scheduling resemble each other only 

suoeri iciallv. 

Structure of the Large Project Problem 

We turn now to examining the structure of large projects 

and the important constraints associated with them.  The project 

scheduler, in assigning a start time to each job in a project, 

must consider 

1) The partial ordering of jobs (i.e., no job may be started 

until all of its predecessors have been completed)• 

2) The resourcp requirements of each job (e.g., crew size, 

machine type, etc.); 

3) The time required to complete the job (which often is a 

function of the resource requirement—i.e., the more resources 

assigned to a job, the less time it takes) ; 

4) Resource limitations during any time period (which may 

be varied by hiring, lay-offs, overtime, etc.)* 

5) A due-Date or projected completion time for the entire 

project (sometimes with penalties attached for failure to meet it)? 

6) Other projects which may overlap the time period of the 

project being scheduled and thus compete for resources. 

We could make our list much longer and more detailed, of 

course, but these are among the major constraints facing the 

project scheduler.  Their relative importance may vary according 

to the nature of the project and the organizations involved.  For 

example, general contractors scheduling a construction project 

typically are less concerned about resource limitations than with 

meeting the contract due-date.  Construction workers—carpenters. 
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brick, layers, etc.—are often obtained in an" ■./.or-ireO nxabe:: 

through union hiring halla, and the contractor does not have to 

worry much about costs of hiring, firing and training.  Resource 

limits, in other words, can be varied quite inexpensively.  At 

the opposite extreme.  Naval shipyards find it expensive, because 

of Civil Service regulations and labor contract requirements, to 

vary their shop crews to any great extent.  Once a man is hired, 

it is difficult to release him.  Thus shop crews tend to be rela- 

tively stable in size—usually large enough to handle peak manpower 

loads.  The Navy, therefore, is concerned with smoothing out mar- 

power requirements—lowering the peaks and filling the valleys— 

so as to obtain more efficient utilization of shop crews.  The 

same is usually true of manufacturing enterprises engaged in the 

production of large items (e.g., hydro-electric generators).  Costs 

of hiring, training, and layoffs (including "bumping," unemployment 

insurance, supplementary unemployment benefits) make many firms 

reluctant to vary work force levels to any great extent; although 

the possibility of overtime and (in some cases) subcontracting 

give a measure of flexibility to resource limits.  Other examples 

may be cited where the limits on resources are even more inflexible— 

as, for example, where resources are already used extensively and 

overtime or subcontracting cannot be employed; where certain skilled 

workers are scarce and firms can hire no more (nor do they desire 

to lose the ones they have)• where projects are intermittent and, 

by themselves, do not justify varying the existing work force (as 

in the month-end project of closing the accounting records in large 

firms). 
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Critorion Function 

Because of the above differences in project types, the 

same criteria for a "^ood" schedule would nor necessarily apply 

in every situation.  Consider these three cases: 

1) A contractor building a missile "site" for launching 

ICBM's works under a strict deadline and is quite willing to hire 

enough men to assure meeting the due date.  Thus his goal is a 

schedule which optimizes resource levels—e.g., minimizes man- 

power costs (wages, idle time, overtime,, etc.), given a fixed 

due date. 

2) At the other extreme is a project manager who cannot vary 

his resource levels; he wishes to find the schedule that minimizes 

the project length given fixed resources. 

3) Other projects may fall in between these extremes; the 

manager desires to find some combination of resource levels and 

due date that will minimize resource costs, overhead costs, and 

penalties for exceeding the due date.  The latter problem is the 

most difficult, of course, because it has the fewest constraints. 

The multi-dimensional space of possible schedules which must be 

searched is much larger due to the greater number of variables. 

It is possible, of course, to write a criterion function 

.that would apply to all three cases.  If it includes all relevant 

costs, then the first case could be represented by assigning an 

extremely high penalty to extending the project pasL the due date. 

Variations in resource levels would thus be less expensive to ex- 

plore than changes in due date.  Likewise, in the second case, 

high costs attached to increases in resources would lead to the 

consideration, instead, of changes in due date.  And in the third 

case, cost parameters would be such as to permit variations in 

lPlpiM!»'«.W«MM,W*(^*r 
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both due date and resource levels.  Thus by altering the cost 

parameters in our criterion function, v;e can make it applicable 

to various project types or situations and reduce a possible 

multiplicity of functionals to the simple criterion, "minimize 

costs."  This enables us to give a concise and general statement 

to the scheduling problem with which we are concerned. 

The Problem;  A Definition 

Given a) a project consisting of a known, partially-ordertd 

set of jobs, and b) limited resources with which to complete the 

jobs, find the schedule of job start times ana  crew assignments 

that minimizes all costs associated with the project. 

We should immediately state that our goals are more modest 

than the above paragraph implies.  We do not seek for a scheduling 

procedure that guarantees an optimum solution; we will be content 

with good solutions.  In a later chapter we deal with the question, 

'What is a good schedule?"  Suffice it now to state that we seek 

an improvement over present scheduling procedures.  The problem 

with which we are dealing is immense.  Even modest sized projects 

have an enormous number of possible solutions, and there are no 

analytical techniques which can feasibly be applied.  At times we 

may find it advisable, if not necessary, to simplify the problem 

by imposing constraints that narrow the range of possible solu- 

tions.  Yet we intend to preserve as many of the essential char- 

acteristics of the project scheduling problem as possible, so that 

we end up with a procedure that can deal with a "real world" problem 

rather than an overly simplified and abstracted version of it.  With 

the use of mathematical tools and the computational power of a modern 

digital computer, our goal is to develop scheduling procedures or 

models that aret 
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1) Sufficiently rich to take account of important job data 

(manpower requirements, time spans—with possible adjustments by- 

varying the manpower, shop or skill requirements, and technological 

ordering) and shop characteristics (resource limits, regular and 

overtime labor costs, overhead costs); 

2) Sufficiently general to be applicable to projects of dif- 

ferent types or characteristics (and their associated criterion 

functions), and to multi-project situations in which each project 

has a unique due date (thus including, conceptually, the job-shop 

scheduling problem)r 

3) Computationally feasible for projects of reasonable size; 

4) Superior, in an economic sense, to present methods of 

scheduling. 
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Chapter 2 

CURRENT PRACTICES AND PROPOSALS IN LARGE PROJECT SCHEDULING 

In this chapter we will explore and comment on the litera- 

ture—traditional and current—dealing with topics related to 

large project scheduling.  We will then examine an analytic formu- 

lation of the large project problem and finally present our argu- 

ment for a heuristic approach to its solution. 

Traditional Literature 

Many large projects are carried on by manufacturing enter- 

prises (e.g., makers of large turbo-electric generators, steel 

work prefabrications for bridges and buildings, large units of 

mining equipment, ships, etc.).  Yet one looks with little success 

through books on manufacturing and production management for some 

explicit exposition of large project planning and scheduling. 

They generally deal instead with a related problem:  intermittent 

manufacturing, the essential characteristic of which is "the 

quantity of any product made on any one order" (Moore [34], p. 21). 

The dividing line between "large project" and "intermittent 

manufacturing," however, is a hazy one (Moore describes "special 

projects of gigantic size" as "intermittent manufacturing carried 

to its extreme")j hence the literature dealing with intermittent 

production scheduling is of interest to us.  The traditional 

approach found in almost every book on production scheduling is 

to decentralize the assigning of specific start times of jobs in 

a project (or order).  Moore, after describing the advantages of 

centralized  ^heduling (namely, better coordination and control), 

notes that t.._ numerous, detailed directives necessary in inter- 

mittent manufacturing lead to decentralization of some production 

contra■' work ([34], p. 54? see also [1,24 , 46]).  The production 

JIHHIIillMT "' 
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and sales departments determinG what is to be produced at some 

aggregate level,  and detailed planning and scheduling is often 

left to the foremen and in some cases, to the workers.  Daily 

o- weekly progress reports are made out by the foremen for the 

central office, which often finds it necessary to employ "stock 

chasers" or "expediters" to push delinquent jobs which threaten 

to delay completion of the project.  "Order scheduling is con- 

cerned more with the setting of deadline dates than with setting 

exact time assignments for operations," the latter being estab- 

lished by foremen or local dispatchers essentially on the basis 

of urgency of need for items and availability of resources.  Graphic 

tools, such as Gantt charts, are often used to keep track of resource 

assignments over a period of time and for measuring actual against 

planned progress (see Alford and Bangs [l, p.llO]). 

Thus only a preliminary or rough schedule of the project 

(order) is made centrally, while the more refined and detailed 

schedules are worked out by those nearer the operating level. 

The more decentralized the scheduling, the more cushion or slack 

time must be allowed at the operating level for juggling start 

dates within precedence requirements.  This method of absorbing 

uncertainty has its costs in uneven shop loading, higher in-pro- 

cess inventories, and more distant completion dates.  Decentralized 

scheduling also make'i more difficult the prediction of manpower 

requirements.  The decentralized scheduler has little means of 

determining the effects of his decisions on manpower loads of 

subsequent shops.  Larger than necessary work forces and exces- 

sive idle time are often the result. 

These disadvantages of decentralized scheduling have long 

been recognized, of course- but the problems associated with 

uiuiMKuuM wnin iimniriurmwrfi—■-   "- 
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centralized scheduling of iarje projects have, until recently, 

seemed intractable.  The data-handling problem alone is immense. 

Projects typically contain 200 to 2,000 or more jobs.  (Many job 

shops engaged in intermittent manufacturing have more than 5,000 

jobs in process at one time.)  Resource groups (shops) usually 

number between 8 and 20 or more, and the scheduling horizon ex- 

tends in most cases beyond 150 days or time periods.  A central 

scheduler faces a tremendously complex task if he attempts to 

establish a start date for each job in such a way as t<- observe 

job requirements (shop, number of men, machines, time, etc.), job 

sequence relationships, resource limitations (which may be changed 

by hiring, overtime, etc.), due date, and some criterion function 

such as minimal manpower requirements. 

Manpower loads on various shops (or skill groups) typically 

are quite uneven.  Production for inventory is, of course, unavail- 

able as a method of smoothing peaks and valleys.  Hence the schedu- 

ler must use the more difficult device of juggling jobs backwards 

or forwards, within the constraints of technological ordering, 

resource availability, and due date.  The number of possible sched- 

ules he can devise is astronomical and of course beyond his ability 

to explore.  Hence the dilemma:  over-all smoothing of manpower 

(and other resource requirements)can best be done, conceptually. 

For example, assume a modest project of 200 jobs, consisting 
of 10 independent chains of 20 jobs linearly ordered, with 
one critical chain 100 days long and the other chains having 
10 per cent slack.  We can calculate the number of possible 
schedules by first counting for each chain the number of ways 
10 "units" of .slack can be distributed among 20 "units" of 
jobs.  The answer is 

I lo. 20 1 = io; 201 = 1-4a  X 10 

Thus, the total number of schedules for the whole project is 

(1.48 x 108)9 - 3.4 x IO73. 
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by  a  central   scheduler;   but   the  mass of  data  and  the  complex 

relationships of  jobs   in  large  projects  are  usually beyond his 

human  capabilities   to handle.     Kost often   the   result  is   a  sub- 

optimum compromir.e:     rough  scheduling,   with   lots  of  cushion be- 

tween  jobs,   is  done  centrally,   while detailed  schedules  are 

generated at the operating level. 

Recent  Developments   in  Large   Project Scheduling 

More  recent  efforts   to   solve  various  scheduling problems 

have  drawn on new  (or  newly applied)   mathematical   techniques, 

the  computational power of   large   digital  computers,   and  various 

heuristic  devices.     Analytical  solutions  to  the  line  balancing 

problem,   for example,   have been  published by Jackson  [19],   who 

devised an enumerative  algorithm,   and Bowman  [4],   who  developed 

Admittedly,   there are other valid reasons  for decentralized 
scheduling apart  from the  problems of data processing.     Job 
times  are often rough estimates;  actual work  time may be more 
or  less  than expected.     Resources available may also  change 
unexpectedly,  when men become   sick,  machines break down, 
materia]   shortages  develop,   and  so on.     Decentralized  schedul- 
ing, it  is  argued,   is more  flexible;   a foreman  can  respond to 
unusual circumstances  faster  than can a production control 
man  at head office   (even  if  he has  a computer at his  finger 
tips)   by juggling  the  start  times  and crews  assigned to  jobs 
on hand.     But the  ability  to   juggle  jobs  at  the operating 
level   is  not inconsistent,   necessarily,   with centralized 
scheduling.     In  fact,   if  a central  scheduler can adequately 
process  the  job data   (e.g.,   by means of  a  computer model), 
he  can do better  than provide  the foreman with  large  amounts 
of  cushion  in the  schedule:     he can  tell   the  foreman  the 
likely effects of delaying  each of  the  jobs—which  jobs  have 
the most  "slack"  and can be  delayed the  longest without  inter- 
rupting due dates,   and which are critical  and must be  expe- 
dited.     Much of  the cushion built into  schedules  at present 
is  not  just to allow the  foreman more flexibility  in meeting 
unforseen contingencies,   but rather  it reflects  the uncer- 
tainties of a  scheduling  system  that cannot accurately predict 
daily   (or hourly)   resource  needs  for the  number of   jobs  that 
have  to be  scheduled,   and match them against  resource  avail- 
abilities. 
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a linear programming model.  The computational requirements of 

both vjould strain the capacity of the largest computers on even 

moderate-sized problems.  A heuristic approach—more flexible 

and practical than the present analytical methods—is described 

by Tonge [44]. 

In the job-shop scheduling problem (more closely related 

to large project scheduling than is the line balancing problem), 

the same situation exists.  Analytic solutions—mainly linear 

programming models—have been devised by Bowman [5], Kanne [31], 

Wagner [47] and others, but at present they are computationally 

impractical and mainly of academic interest.  Giffler and Thomp- 

son [IG] describe an algorithm which generates from the set of 

all possible schedules a subset containing the optimal schedules. 

Computational effort is thus reduced, and in problems of small 

size the optimal schedule can be found.  A heuristic approach to 

job-shop scheduling has been explored recently by Gere [15]. 

Programmed for a computer, it can handle reasonably large pro- 

blems . 

PERT, CPM, and Related Techniques 

There has been a great deal written on the subject of 

large project scheduling since the fairly recent development of 

PERT (Project Evaluation and Review Technique) [30, 33, 50, 51], 

CPM (Critical Path Method) [21, 22, 23], and the flood of similar 

techniques which have followed.  All are based on arrow diagrams, 

which show the jobs or activities of a project and their techno- 

logical relationships.  It will be useful for us to briefly 

review a number of these techniques, noting the approaches they 

take and their unique characteristics. 

UMWUMIUfUPM 
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Ori'jinr.lly designed for use on tha Mrvy's Polaris missile 

research and development program, PERT was more of a planning 

and control technique than a scheduling tool, and it V7a3 essen- 

tially "time-oriented,", i.e., it paid little explicit attention 

to factors of cost and resource availability.  Its most recent 

version—PERT/COST [51, 54] —is the result of government efforts 

to unify the many variations of PERT developed by the armed ser- 

vices and various businesses for use on weapon systems develop- 

ment projects contracted by the government (e.g., PERT II, PERT 

III, PEP, PEPCO, Super PERT, etc.).  Essentially, PERT/COST adds 

the consideration of resource costs to the schedule produced by 

the PERT/Time procedure (as the earlier version is now called). 

There is no attempt to use cost data in such a v.'ay as to optimize 

total project costs, except by "manual" job shifting: where pro- 

ject costs indicate the necessity for excessive overtime or 

hiring, "manpower smoothing is accomplished by rescheduling slack 

activities to periods when the skills are not required by criti- 

cal activities" [51, p.4].  PERT/COST is an example of an "enumer- 

ative" cost model.   All costs are merely enumerated, to facili- 

tate comparison of projected and actual costs as the project pro- 

gresses, rather than being used as parameters in an analytical 

cost-minimizing model.  In this and other respects, the systems 

of PERTCO [11, 49] and SCANS [18] are quite similar, although the 

latter program has a routine for distributing slack in order to 

balance manning levels. 

A "time-cost option" and a "resource allocation supplement" 

to PERT/COST are described in the DOD/NASA Guide [5l].  A similar 

approach is recorded by Alpert and Orkand of ORI [2].  Alternative 

1 The classification used here was proposed by Operations 
Research Inc. [?0]r see also Clarke [S]. 
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time-cost trade offs are estimated Hor each activity, and the 

schedule is shortened by "crashing" jobs on the critical path 

tüat cos u tuS xeas u per *uay suaveva OJLI. tne sCi'ieciUxe, wicViout 

regard to resource availability.  When the desired due date is 

achieved, then resource leveling may be required.  Slack jobs 

are shifted off peak days, or additional resources are applied 

to such jobs in an attempt to move them off the peak days.  Smooth- 

ing is performed, after the computer program has produced a sched- 

ule, at management's option.  Thus the computer program seeks to 

minimize required resources; it does not schedule by allocating 

given, limited resources.  The methods proposed apparently have 

not yet reached the stage of a working model.  The USAF PERT COST 

Svstem Description Manual [March 1953] states, "Development and 

implementation of the Time Cost Options and the Resource Allo- 

cations Supplement have been considered a subject for future 

study" [54, p. i]. 

The Critical Path Method, developed by Kelley and others 

[21, 22, 23], represents a second major approach to the large 

project scheduling problem developed in recent years.  Similar 

in many respects to PERT, which also uses a network graph to 

detect the "critical path" of jobs in a project, CPM differs mainly 

in that (a) it is a deterministic system (job times are assumed 

to take place without variations in planned tine) as opposed to 

PERT's probabilistic approach (in which three times are estimated 

for each job—pessimistic, most likely, and optimistic, with 

associated probabilities)? (b) it focuses explicitly on job costs, 

and presents an algorithm for minimizing project costs given a 

fixed due date. 
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Thus G?' rcnroscntn ? "Tinjle ocramotor ooti-nization model" 

[c, 50],  Xelley describas the mathematical modGl upon which GPM 

iz  based as a parametric linear program [?2].  Its solution de- 

pends on the Ford-Fulkerson algorithm for finding maximal network 

flows [13],  Basic to CPK is the assumption that a time-cost trade 

off exists for every job, and that the time-cost function is mono- 

tonic decreasing and concave between a job's normal and "crash" 

durations.  (A linear relationship is usually assumed.)  Although 

the model yields a minimum cost schedule for a project of fixed 

length, it assumes (as does PERT-Time) that resources are un- 

limited.  The resulting schedule may be quite impractical in 

terms of available manpower or machines, and costs not included 

in the model (overtime, idle time, etc.) may be prohibitive. 

Other related techniques are numerous.  LESS [40] developed 

by IBK, uses essentially the Kelley approach.  AMPERE [50] (an 

ORI system) calculates a schedule and cost data similar to PERT/ 

COST, and then provides alternative courses of action management 

might take, utilizing normal, minimum and maximum loading for each 

skill group.  PECOS [43], a more recent IBM program, combines 

some features of PERT and GPM:  it still utilizes the probabil- 

istic job times to calculate expected job times, and then seeks 

for the most efficient method of decreasing project duration by 

crashing critical jobs.  Time-cost trade-off curves are assumed 

to be linear between normal and crash times.  Based on an algo- 

rithm derived by Fulkerson [14], the program plots for a project 

an optimum time-cost curve, which is always piecewise linear 

under the assumption noted.  As in CPM, the program assumes that 

resources are available as required. 
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T'cGee and Karkarian [-3?] describe an "analytic technique" 

which they claim achieves an optimum allocatiun of manpower in 

a research/engineering project.  It utilizes minimum and maximum 

manning levels for each job (activity) and assumes a linear rela- 

tionship between the two in a time/manning plot.  The method 

starts by assigning the minimum manning level to each job and 

calculating a critical path network.  If the scheduled alloca- 

tion of manpower exceeds given limits on any day, an attempt is 

first made to delay slack jobs on peak days.  This failing, addi- 

tional men are added as indicated.  If the projected completion 

time is gree.ter than the required due date, additional men are 

added to the jobs which compress the work at minimum cost.  As 

with CPM, however, costs of varying resources are not considered. 

Essentially, the procedure smooths only by shifting slack jobs» 

beyond that it adds men as needed on peak days, without regard 

to costs of increased resource levels, idle time, etc.  It does 

not consider the possibility of extending the due date (at some 

penalty). 

A similar approach is taken by IMPACT, a model developed 

by Lockheed [48].  Activities are first scheduled at minimum 

loadings, and then the resulting schedule is compressed by in- 

creasing the manpower loading of activities which produce the 

maximum shortening per increment of added cost.  Manpower limits 

are never exceeded, however? the model stops loading an activity 

when its shop limit is reached, and looks tc the next cheapest 

activity to crash.  The model does not consider the possibility 

of adding more manpower through hiring or overtime. 

mömmmmwmm MHEMi^MHnnnHH 
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The main shortcoming that we see in many of the above 

scheduling models is that they do not take into account limited 

resources.  Cost optimization, v;here attempted, is based on a 

single cost parameter:  the premium for "crashing" jobs.  In 

the models where limited resources are recognized explicitly, 

there is generally no attempt to consider alternatives of in- 

creasing resources or using overtime along with their associated 

costs? nor do they allow for comparison of penalty costs for ex- 

tending the due date vs. the premium costs of adjusting resource 

levels. 

While there are interesting features in many of the models, 

none of them have all of the "essential characteristics" we estab- 

lished earlier for an operationally useful scheduling model.  such 

a model, we believe, should deal more adequately with the major 

constraints generally associated with large projects. 

A recent and ambitious computer model for project scheduling 

that does explicitly consider the restraints described earlier is 

RAMPS (Resource Allocation and Kulti Project Scheduling) , developed 

by duPont and CEIP, Inc. [52, 53].  As RAKPS is the proprietary 

program of CEIR, its details are carefully guarded, but the general 

approach it takes to scheduling is described in literature avail- 

able from CEIR.,  RAKPS uses the basic network notions of PERT 

and CPM, though job times are deterministic rather than proba- 

bilistic.  The program is designed to handle several projects 

with different due dates, taking into account (a) three different 

resource utilization rates for each job, with corresponding iob 

times and work efficiances, (b) resource teaming on jobs, (c) 

penalties for splitting jobs, (d) resource limits for all shops 

—I^ME^M 
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by periods, (c) costs of normal tine, icllo time, overtime and 

subcontracting in each shop, (f) project delay penalties, end 

(g) various management objectives (which can be ordered in im- 

portance) , such as "minimize idle resources," "give priority 

to critical jobs," "work on as many jobs simultaneously as 

possible," and several others.  We shall have more to say 

about RAMPS after we describe out own scheduling models in 

Chapter 4, when we will be in a better position to compare the 

two approaches to project scheduling. 

A Linear Programming Approach to Project Scheduling 

We have yet to investigate another avenue to the problem: 

the use of analytic techniques.  The mathematical tool which seems 

best suited to minimizing some cost criteria given the constraints 

of a project setting is linear programming.  Not only are com- 

puter programs readily available for the simplex algoritlrn, but 

an L.p. formulation has the advantage of providing the r:.ch mana- 

gerial interpretations that are available from the duality and 

sensitivity analysis features of the method.  Its application 

to the large project scheduling problem is worth our investigation. 

Charnes and Cooper have described a network interpretation 

and a directed dubdual algorithm for critical path scheduling 

[6].  The arrow diagram is viewed as a flow network, in which 

the initial node has unit input and the final node unit output. 

Flow variables, x. . (which are restricted to the integers 0 and 

1), are assigned to each link (job).  Constraints reflect Kirchoff 

node conditions for conservation of flows over the system, i.e., 

the flow into each node equals the flow out of it.  The function 

to be maximized is the sum of all x. ., each weighted by a 

temMMioAusmmm^B^m^m^mm^^nmBa^mm^^mmtmtmmmmm 
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coefficient equal to the time span of the associated link.  In 

the dual problem, the variables w. can be interpreted as the 

(nccTQtivc) early start times assigned to each nods.  The dif- 

ference between the w. values for the first and last nodes is 

minimized, subject to the constraints that the difference be- 

tween the wH values of two connected nodes must be equal to or 

greater than the time required for the link (job) connecting 

the nodes.  The value of the functional, then, is the total 

project time (and hence the length of the critical path), and 

the critical Jobs are identified in the direct problem by pos- 

itive x. . values. 

Unfortunately, this formulation of the problem does not 

include such data as resources required by each job and limits 

on shop resources.  Implicit in the network flow interpreta- 

tion is the assumption that all jobs along the critical path 

start at their early start times.  As we will see in Chapter 

3, when resources are limited, there may not be a critical path 

as ordinarily defined (a path of zero-slack, technologically 

related jobs from start to finish).  In effect, the coeffi- 

cients in the functional of the direct problem (and thus the 

stipulation constants in the constraints of the dual) lose 

their meaning. 

It is possible, however, to write an L.P. formulation 

of the pr.oject problem which takes account of resource con- 

straints.  Using an approach similar to Bowman's for the job 

shop problem [54], we may develop a model as follows: 

mmam,^mn^m^mm,^0ma*mi^mmmmwmmmajta^mi 
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Subscripts: 

s   shop (resource group) 

>-*   ^< 

s = 1, 2, . . . , m 

ay   (or other time period)  d = 1, 2,.,,,   z 

j   job 

p  immediate predecessor of j; p e P , = [all immediate 

j = 1, 2, . . , , n 

predecessors of JJ 

Variables: 

x. , activity of job j on day d; constrained to the 

integer values 1 (if job j is active) or 0 (if 

job j is Inactive). 

Constants» 

a , men available in shop s on day d 

c .  crew size; men of shop s required on job J 

t.   time length of job j, in days 

Constraints: 

1) 0 < x., < 1  (and by integer programming techniques, 

x is constrained to equal either 0 or 

1 [see Gomory, 17] ) 

2) Jobs will be performed: 

z 
E 
d=l 
£    ^jd = tj , j = 1,. .., n 

3)  Capacity of shops will not be exceeded: 

S  c . x., : a , , 
jtl  sj  jd - sd 

d = 1,.. . , z 

s = 1, • .. , m 

4)  No job will be started before its predecessors 

are completed; 

d-1 

P Xjd -  £].  Xpi 
t_ x all p e P. 

d = 1,.. . , z 

j = 1,. . . , n 



25 

5)      No   jobs  v/ill bo   split: 

t.   x,.   -   t.   X./,.,N    + j      ja J      JVU-rx) 

z 
n 

i-d+2 
x44   <  t.   , 

J-
1
-          J 

J =  1,...,   n 
d =  1,... ,   z 

Objective Function: 

n n 
Minimize 1  Y, x.  + 4 y! x 

j=l  ^ 

n 

p1   Äj(k4l) + 16 ^ Xj(k+2) 

+ . . . + R  TÜ x.  ,  where k is some number such 
z J=l  Jz 

that 0 < k < z, and R = 4 R(?._1) • 

Thus, the model seeks to find the shortest schedule given 

fixed resource constraints.  For simplicity, no allowance is 

made for premium cost resources, such as overtime, hiring, 

subcontracting, etc.  Nor is "crashing" or "stretching" a job 

allowed. 

Not shown above are the additional constraints necessary 

to assure integer solutions (either 0 or 1) for the x.,.  Even 

without these constraints, however, the problem is a formidable 

one in terms of sheer size.  If we assume the simplest version, 

consisting of constraints 1 through 4 only, even a small pro- 

ject is beyond the capacity of any present computer to handle. 

As an example, a project with 55 jobs in 4 shops with a time 

span of 30 days has some 5275 equations and 16 50 variables 

(not counting slack variables or the additional equations and 

variables necessary to assure an integer solution).  If Job 

splits are not allowed, the number of equations increases to 

about 6870.  Many of these equations, or course, are redundant; 

■'■■■■■■'■■■^■■■■■■■■^■■■^»■■■»«■■»Bl 
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and many of the variablen could be eliminated from the start 

by calculating the early start times for all jobs assuming un- 

limited resources.  Then all x., =0, 1 < d < Es..  Nevertheless, 

even a trimmed-down formulation would exceed the capacity of 

most computers.  A large machine—such as the IBM 7090 with 

32 K storage—can handle a maximum of about 1000 variables in 

an L.P. program, thus limiting the application of this model 

to rather simple, small projects.  The use of L.P. and a 7090 

for such problems would be somewhat akin to using a bulldozer 

to move a pebble. 

Linear programming formulations other than the ones 

above could be devised, of course, but the same difficulty 

would be faced: the scheduling of even medium sized projects 

(200 to 500 jobs) is an enormous problem, especially if re- 

source limitations and other commonly encountered constraints 

are considered. 

As for enumerative techniques, which exhaustively search 

the space of all possible schedules, none have been proposed— 

no doubt for the same reason that makes the L.P. approach 

impractical.  We thus come to the same conclusion reached by 

Tonge after his examination of analytical and exhaustive methods 

for solving the line balancing problem [45, p. 15], and his 

words are appropriate in our own cases 

An approach that concentrates effort on those parts 
of the problem which seem to require it, rather than 
indiscriminately spinning out and eliminating possi- 
bilities at all stages of the solution process, 
would seem to be, a priori, a more feasible problem- 
solving procedure. 
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:Icuristlc Programs 

Many of the scheduling models discussed earlier in this 

chapter use so-called heuristic techniques for problem solving, 

and it is upon this general approach to the large project sched- 

uling problem that we will focus our efforts in the remainder 

of this volume.  We use the term "heuristic" to mean, as sug- 

gested by Newell and Simon [37], a device or "rule of thumb" 

that reduces search in problem solving activity (e.g., "sched- 

ule all jobs at early start and move siack jobs off peak days"). 

In a more formal way [38], they define a heuristic program as 

a program for some relevant problem domain that "has some pro- 

blem-solving efficiency for that domain—is capable of solving 

at least some problems," in contrast to an algorithm which 

they define as a program that "will produce a solution of any 

problem in D [the problem domain] in a finite number of steps." 

They further note that "the terms 'algorithm' and 'heuristic' 

program' are not antonyms, but designate different properties 

a program may possess." Often we may be primarily concerned 

with a program's heuristic power—"its capacity to find solu- 

tions rapidly," (relative to other programs applied to the 

same problem domain), which is quite independent of the pro- 

gram 's algorithmic properties.  Thus the simplex method of 

linear programming is an algorithmic program we could use 

(theoretically) for solving the large project problem, but it 

has little heuristic power in this application. 

Our desire, however, is to develop a program which pos- 

sesses the latter property—i.e., the ability to rapidly gen- 

erate solutions—rather than algorithmic characteristics.  In 

essence, we are sacrificing a guaranteed optimum solution for 
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reduced problem-solving effort.  Rather than trying to ex- 

haustively search the space of possible schedules for the: 

best one, we will use cues in the problem environment to 

narrow our search to a sub-space rich in good schedules— 

though we risk the chance of missing the optimum solution 

altogether. 

Before discussing the heuristic devices employed in 

our scheduling model, we tarn first to a consideration of 

some of the properties of large project schedules in the 

case of limited resources. 

1 For more extended discussions of the use of heuristics 
in problem solving, and resumes of heuristic programs 
in use, see Simon and Newell [41], Simon [42], Newell, 
Shaw, and Simon [36], Gere [15], and Tonge [45]. 
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SOME P'AOP'raTIE-? OF -C-I'iDULi7;-, FOR LAllC-S PROJECT1 

'JITH LIMITED RESOURCES 

Kost of the recent methods proposed for scheduling 

large project;: make use of a project graph (e.g., the arrow 

diagram basic to PERT and the Critical Path Method; see [22, 

25, 51, 52] ).  The project graph is useful both for keeping 

track of the technological ordering of jobs in a project and 

for determining the degree of flexibility (i.e., the job slack 

values) available to the scheduler of the jobs.  Given a pro- 

ject graph, which displays the predecessor-successor relation- 

ship of jobs in a project, and the times necessary to complete 

each of the jobs, one can then calculate the "critical path" 

or the longest ordered sequence of Jobs through the project 

graph.  Each of the Jobs on the path is said to be "critical" 

or slackless; to delay any one of them would delay the com- 

pletion date of the project.  Other jobs with positive slack 

can be delayed up to the amount of their slack without such 

an effect, thus giving the scheduler some freedom in assign- 

ing start dates for each of the Jobs. 

This notion of criticality assumes, however, that un- 

limited resources are available for assignment to the project 

jobs (or at least that sufficient resources are available for 

each Job to be scheduled some time between its earliest and 

latest start dates ).  In the more usual (and general) case 

Earliest start is defined as the earliest date a job can 
begin, given a project start date and the technological and 
time constraints of its predecessors.  Latest start is the 
latest date a job can begin, given the same constraints of 
its   successors, without delaying the project completion 
date.  The difference between these two is the job's total 
slack. 

^B^HH^HIH^^^Hi^H^BB^HHMHnn^MBnWISMHmHHi 
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where resources are limited, the above concept of criticality 

loses its meaning.  Some jobs on a critical path may have to 

be delayed because of insufficient resources.  If this occurs, 

then there no longer exists a start-to-finish path of techno- 

logically connected, slackless jobs.  Under certain circum- 

stances, however, one can identify a "critical sequence" of 

jobs in a project.  As in a critical path, jobs in a critical 

sequence have zero slack,  and the length of the sequence de- 

termines the minimum length of the project.  Unlike a critical 

path, a critical sequence is determined not by just the tech- 

nological ordering and the set of job times, but also by re- 

source constraints; furthermore, it is also a function of a 
2 

given feasible schedule. 

As we proceed in this chapter, we will develop in detail 

the concept of a critical sequence and discuss some of its 

implications for project scheduling.  It will first be neces- 

sary for us to explore the structure and properties of a pro- 

ject schedule, classifying several kinds of schedules and 

defining some operations we will perform on schedules.  We will 

then extend the concept of slack to the case of limited resources 

and discuss the relationship of slack to schedule-generating 

rules.  With this necessary groundwork laid, we will be able 

to define rigorously the concept of a critical sequence and to 

set forth the conditions which must be met in a project schedule 

1 By a new procedure for calculating slack, which we will 
develop later. 

2 The concept of "critical sequence" is a generalization of the 
Thompson-Giffler [16] concept of an "active chain" of opera- 
tions in the job-shop scheduling problem.  Other similarities 
will be evident as we proceed.  We will later consider more 
carefully the relationship of the job shop and multi-project 
scheduling problems. 
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for a critical sequence to exist.  We will complete the chapter 

by explaining how these concepts enable us to relate the job- 

shop and large project problems. 
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The Schedule and the Schedule Chart 

We start with a project X characterized in the following 

manners 

1) The project consists of n separate, clearly-identifiable 

jobs or activities. 

2) Associated with each job j is a time t required to com- 

plete the job,  a crew size cs, and a shop (or skill group, or 

machine group) s.  If job j requires y different resources, 

then cs and s become y-dimensional vectors associated with j. 

3) Also associated with each job j is a set P . of jobs 

which are immediate predecessors of j, or jobs that must be 

completed before j begins. (P. may be empty, in which case j 

is a starter job.)  From the predecessor sets of all j's, we 

can infer for each J a set S, of immediate successors.  (S. 

may be empty, in which case j is a final job.)  A list of all 

P.'s (or of ail S 's) defines an ordering or techno.Logical 

relationship on the set of all jobs in X.  We will use the 

symbol « to represent the relation "is an immediate prede- 

cessor of." 

4) The jobs in X will be performed in m resource groups 

(shops, skill groups, machines, etc.), each containing a 

limited amount, a, of homogenous resources.  Resource limits 

may vary from day to day, as men or machines are added or 

1 We earlier noted our certainty assumption regarding job times. 
If PERT-type, three-point estimates are available (or any 
other distribution of job times), then E(t), the expected value 
for t, may be substituted for t in this analysis.  See p. 86. 
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removed.  We will henceforth refer to reaources as men and a 

resource group as shop s.  Thus th3 number of men available in 

shop s on day d is a ,. J sd 

Since "critical sequence" is a function of a project 

schedule, we must define more precisely what we mean by a sched- 

ule. 

Definition:  A schedule is a set of start times (AS) assigned 

to the jobs in X (one start time for each job).  The length 

of a schedule z is the difference between the earliest of the 

start times of all jobs and the latest of the finish times of 
2 

all jobs.  We will hereafter assume that the project start 

date S = 0; then the finish date F = z. 

For purposes of clarity and simplicity in illustrating 

a project schedule, we will throughout this chapter make use 

of what we will call a Schedule Chart.  It is in reality a com- 

bination of a traditional Gantt chart, which displays Jobs 

scheduled along a horizontal time scale, and a project graph, 

which shows the technological ordering of jobs.'  The following 

is an example of a Schedule Chart. 

Day i 

Figure 3 

2    3    4 

6 > 

2   , 
/ 

/ —./ 

7 4   j 

It: 1 

8    V 

1 If probability distributions for resource limits are avail- 
able, then E(a ,) may be used in place of a ,. 

sd sa 

2 Jobs, once started, are completed without interruption.  Split 
jobs are considered as separate jobs, each with its own AS. 
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The time scale begins with day 0 on the left; each vertical 

line marks the end of one day and the beginning of the next. 

Jobs are shown by solid lines with an arrow marking the com- 

pletion of the job.  The horizontal span of a job represents 

its time length in days.  Above each job is a number which 

represents its resource requirements, i.e., the crew size 

(cs) needed for the job.  For convenience we will sometimes 

refer to the job by this number, e.g., "the 6-job."  (In other 

cases where this would be ambiguous, we will further identify 

the jobs.  If the jobs are performed in a number of shops, we 

could also label each job arrow with a shop number, or with 

several shop numbers if the job requires multiple resources.) 

Technological orderings are shown by connecting the jobs, 

either directly or by dotted lines.  Thus the above chart 

summarizes the following information: 

Job Numbe r Length Predecessors Start Finish 
(same  as  Crew Size) (days) 

2 

Date 

0 

Date 

6 _ 2 
4 2 ,* 0 2 
2 1 4 2 3 
3 1 4 2 3 
5 1 4 2 3 
8 1 _ 3 4 
1 3 5 3 6 
7 2 2, 3 4 6 

Associated with a given Schedule Chart we could draw, 

for each resource group employed, a Resource Requirements 

vector Q = (q q. . . . q ), showing the total resources of 

shop s required on each day d of the schedule.  For example, 

if all jobs in the above project occur in the same shop s, the 

resource requirements vector for the schedule would be Q = 

( 10 10 10 9 8 8),  In a similar manner, we could draw a Re- 

source Availability vector A = (a, a« . . . a ) , showing the 
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resources available in shop s on each day d.  Note that A may 

be considered a row vector in an m x 2 matrix A whose entries 

are a , as defined earlier.  Similarly, Q is a row vector in 

a resource requirements matrix Q having the same shape, with 

q , analogously defined. 

For the present we will be concerned with the special 

case where shop limits are constant over time (i.e., a , = 

a (d+1) , ■] < d < z) .  Later we will relax this restriction and 

discuss the more general case where shop resources may vary 

over the schedule period. 

The Schedule Chart now assists us in classifying dif- 

ferent types of schedules, and in defining the operation of 

"Job shifting." 

Definition:  A feasible schedule is a schedule for which a 

Schedule Chart can be drawn and for which Q < A.  That is, 

1) the technological ordering and job times are observed 

(i.e., no job is scheduled until all of its predecessors have 

been completed)• 

2) the resource constraints are not violated (i.e., the 

number of men scheduled never exceeds the number available? 

and 

3) the length of the schedule is finite. 

Definition:  An optimum schedule is a feasible schedule whose 

length is at least as short as the length of any other feasible 

schedule. 

Definition:  Consider the Schedule Chart of a feasible schedule 

and a set of shop limits A.  Pick any job j starting on day d 

and reschedule it to begin on day d-1 (keeping within the bounds 

of the original start and stop dates of the project).  If J 

occurs in shop s, crlculate the new manpower loading for shop s 

on day d-1.  If this is <q ,, then the schedule is still feasible 
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and wa say that we have left shifted job j by one day.   Like- 

wise if J can be delayed to begin on d+1 without delaying the 

project finish date and without q , being exceeded on day d+t 

where t is the length of job j), then j can be right shifted 

one day.  A left shift of i days (i > 1 ) is a local left shift 

if it can be accomplished by a series of one-day left shifts, 

each of which maintains the feasibility of the schedule.  A 

local right shift of i days is defined analogously.  A global 

left shift is a left shift of any job j that results in a 

feasible schedule which could not be obtained by local left 

shifting of j.  (Thus a global left shift is always a shift 

of more thin one day.)  A global right shift is defined analo- 

gously. 

Consider the following example: 

2    > 8    . 

6    . 

The 6-job can be locally left shifted one day.  If it were 

left shifted 3 days, the resulting schedule would be feasible, 

but the left shifting would be global rather than local. 

36 

Definition: A left-justified schedule is a feasible schedule 

in which, because of technological orderings and/or resource 

constraints, no Job can be started at an earlier date by local 

left shifting of that job alone.  (Figure 3 above is left Jus- 

tified if the shop has a resource limit of 10.)  A right- 

lustified schedule is analogously defined. 

Definition:  An associated right-lustified schedule is a right- 

justified schedule that can be derived from a given left-justi- 

fied schedule by a series of local right shifts.  An associated 

left-justified schedule is similarly derived from a right-Jus- 

tified schedule by local left shifting. 

If j is a multi-resource job, the new manpower loading for 
each relevant shop must be calculated and compared with 
q - of that shop. 
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Slack 

In the case where resources are not limiting, the notion 

of slack is simple and unambiguous? there is a single slack 

value associated with each job.  This derives from the defini- 

tion of slack and from the fact that there is a unique left- 

justified schedule and a unique right-justified schedule for a 

given project.  Thus the early start (E3) and late start (LS) 

values for each job are independent of the order in which jobs 

are scheduled (technological restraints being observed, of 

course). 

Such is not always the case when resources are limited. 

There may be several right and left-justified schedules for 

every project.  In general, for each project and set of shop 

limits there is a non-empty set J, of left-justified schedules 

and a non-empty set J of right-justified schedules.  And for 

each schedule x in J,, there are one or more associated right- 

justified schedules which comprise a proper subset of J . 

Consider, for example, the simple project that follows, 

in which all jobs are performed in the same shop; 

Job Number 
(same as Crew Size) 

3 
2 
4 

10 
5 

Predecessors 

2 
10 

Length 
(days) 

1 
1 
1 
1 
1 

With unlimited resources, the project would have the follow- 

ing schedules: 

We are here talking about total slack, which is defined as 
the difference between the late start and early start of a 
job.  Other types of slack have also been defined, e.g., 
free slack, the difference between a job's early finish 
and the earliest start of any of its successors.  See 
Kelley [2?]. 
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Left-justified: 

,      2 10    > 5      > 

4      * 

Right-justified! 3 

2 10    . 5 

  4 

Jobs 3 and 4 would each have slack of two days and the other 

jobs, being critical, would have zero slack.  If the shop has 

a resource limit of 10, however, then J, contains six differ- 

ent schedules: 



39 

1. 3    . 
1 

2 10    > 5    > 

4    J 

10 

3. 3         ;, 

2    ^ 10   > 
5    J 
4    J 

4. 3    ^ 

2    . 10   > 5         y 

4         >  . 

5. 

10 

6. 3   J 
'         2    ^ 10   y 

5   J 
  

4   ^ 

If we allow local shifting only, schedules 1, 2 and 3 are also 

right justified, since no jobs can be right shifted? then all 

jobs in these three schedules are "critical"—i.e., they have 

zero slack.  (Note that in schedule 1, a global right shift of 

job 3 past job 10 would result in a feasible righl- and left- 

justified schedule—i.e., schedule 2.)  Schedules 4, 5 and 6 



—--^'-''-—"^ immimiimnMiMiniiiiMnmiiiiiiiiiiiinii IIIWIIIIIHI'IIHIMIIIIIIIIIIIIIHIIIIIIIIHIIIIIII iiniiiiiiiiiiiimiiuiiLi  

40 

each have two associated right-justified schedules.  For ex- 

ample, schedule 6 has the following associated right-justified 

schedules t 

3 

2      . 10    ^ 5 

4_^ 

3            y 

5            J- 
2      y 10    y 

4            j 
Thus the traditional notion of slack is ambiguous.  For three 

of the jobs (3, 4, 5) ES and LS depend on the particular sched- 

ules we choose, and thus no single values for slack (in the 

usual sense) exist for these jobs. 

Obviously, then, the ordinary methods of calculating 

slack do not suffice in the limited resource case.  If we re- 

tain the idea that slack represents the amount of time a job 

can be delayed from its early start without delaying the pro- 

ject completion date, then we must recognize the conditional 

nature of slack when resources are limited.  Slack values are 

related to a given pair or right and left-active schedules and 

are thus conditional upon the rules or procedures for generat- 

ing these schedules.  While this notion adds some complexity 

to the simple slack calculation of the unlimited resource case, 

it still preserves much of the operational utility of the slack 

concept.  And by a judicious choice of schedule-generating rules, 

one may retain, if he desires, some of the useful characteristics 

that slack has in the unlimited resource case.  For example, in 
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the latter case: 

1) Slack is easily and unambiguously calculated:  a unique 

set of slack values aro associated with a gtvfin project? and 

2) Slack is continuous (convex) over its range—i.e., a 

job with k days of slack may be delayed anywhere from 0 to 

k days without delaying non-successor jobs of the project 

finish date (thus giving the scheduler or shop foreman some 

flexibility in assigning job start times) . 

We could easily preserve characteristic 1) above, in 

the limited resource case, by devising a set of rules or pro- 

cedures for generating a single left-justified schedule and a 

single right-justified schedule.  Then a unique set of slack 

values could easily and unambiguously be calculated from the 

two schedules.  Further, if we chose our rules in such a way 

that the right-active schedule was associated with the left- 

active schedule—i.e., derived from the latter by local right 

shifts only—then characteristic 2) would also be maintainRd. 

It is obvious, however, that we could devise many dif- 

ferent scheduling rules or procedures that would result in 

quite different schedules, and there is no a priori way of 

deciding which rules are best.  One set of rules may result 

in a "fortunate" assignment of slack values for one project 

(e.g., slack values that enhance the possibility of smoothing 

the schedule through juggling the slack jobs) but may work less 

satisfactorily than another set of rules when applied to a sec- 

ond project.  (We will later see an example of this.)  And 

situations can easily be imagined where global shifts, if per- 

mitted, might be operationally preferable to local shifts only, 

even though the convex property of slack might be lost.  For 
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example, a foreman might find his work scheduling easier if he 

were told that job j could be delayed either exactly 7 days or 

between 1 and 3 days. If convex slack only were allowed, the 

possibility of a 7-day delay would not be discovered. 

For large and complex projects, one would have difficulty 

even enumerating all the elements of J and J, with their associ- 

ated conditional slack values.  However, one could fairly easily 

devise several sets of rules that represent reasonable alter- 

native approaches for generating schedules, apply each of them 

to the project, and compare the resulting slack values, using 

some measure or criteria of suitability of results (e.g., do 

the slack values obtained permit juggling which results in more 

efficient use of resources?) .  Another approach would be to apply 

the rules probabilistically.  One could keep track of slack values 

thus generated to obtain the bounds on slack given certain re- 

source limitations.  The slack (TS) for any job J satisfies 

TS . < max LS . (y) - min ES. (x) 
J  yeJr  

J      KSJ1    
J 

where x and y are feasible schedules of the project.  The upper 

bound on TS . is the slack value for j given unlimited resources. 

Whatever the method used to calculate slack, it should 

be clear that any set of slack values is based on a given pair 

of right and left-active schedules and hence is conditional on 

the schedule-generating rules. 

Schedule-Generating Rules 

The problem of developing "reasonable" rules or procedures 

for generating left and right-active schedules deserves come com- 

ment here.  Obviously, all left-justified schedules for a given 

project are not equally "good," in general, if we assume some 
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measure of "goodness" such as minimum schedule length or maximum 

utilization of resources.  Using these criteria, for example, we 

would conclude that schedule 1 in the above project is better 

than schedules 4, 5 or 5; it is shorter and has a higher daily- 

average utilization of resources. 

As we noted in Chapter 2, only an analytic solution would 

guarantee us an optimum schedule (ar defined above); the heuris- 

tic methods aim at a satisfactory solution with more reasonable 

computational effort.  Most of the network-based methods for 

project scheduling discussed in Chapter 2 would probably gener- 

ate a left-justified schedule, however, since they either assume 

unlimited resources and schedule all jobs at early start (in 

which case slack calculations are unambiguous), or they attempt 

to schedule all jobs at early start, delaying those that occur 

on peak days only enough to reduce the peak loads to some de- 

sired level.  However, our concern here is not how to generate 

a left-Justified schedule, but rather, how to calculate job 

slack values for some given schedule. 

If we assume, then»that a left-justified feasible sched- 

ule has been generated by some means, what would be a reasonable 

approach to determining a set of slack values for the jobs? 

This amounts, of course, to defining a procedure for obtaining 

a related right-justified schedule.  As we previously noted, 

several different right-justified schedules may be related to 

a given left-justified schedule.  The order in which jobs are 

right shifted accounts for these differences.  As an example 

of a procedure that might be used, we describe below some rules 

that generate a right-active schedule from a given left-active 

schedule by a series of local right shifts.  The rules are 

simple and unambiguous, and have several other virtues that 
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will become apparent. 

1) Given a left-justified schedule, select from it the set 

of jobs whose finish time (EF)  is a maximum (there will be 

one or more jobs in this set; their EF determines the project 

finish date F) .  For each of these jobs, set LS = ES, LF = EF, 

and TS = 0.  Set 1=1. 

2) Consider now the jobs whose EF = F - i.  If the set is 

empty, go on to the next step.  If the set contains exactly one 

member, right shift the job until it meets a technological or 

resource constraint of jobs already considered in previous steps 

(or, if none exist, until the job's finish date = F).  At this 

point, set LS = ES + the number of days the job was right 

shifted, LF = LS + t, and TS = LS - ES.  If there is more than 

one job in the set, the priority of right shifting is determined 

as follows:  calculate for each job separately an LS (assuming 

in each case that no other jobs in the set have been right 

shifted). Arrange the jobs in descending order of their LS 

(i.e., the latest LS first) and right shift the jobs in that 

order.  In case of a tie in LS's, arrange the tied jobs in ascend- 

ing order of manpower requirements (i.e., the smallest crew-size 

jobs first) and right shift the jobs in that order.  If there 

are still ties, then decide on the order of shifting by random 

selection from the tied jobs.  As each job is right shifted, 

calculate its LS, LF, and TS as above. 

3)  Set i=i+l.  Ifi<F, then return to step 2).  If 

i = F, then stop? all jobs have beea considered, and a unique 

slack value assigned to each of their» 

1  The following notation is used throughout:  ES (early start), 
EF (early finish), LS (late start), LF (late finish), TS 
(total slack). 
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The main advantage of these priority rules is that they 

tend to move first the shortest jobs and/or the jobs that can 

be right shifted the furthest*  In general this will tend to 

distribute potential slack to the largest number of jobs, rather 

than distributing larger amounts of slack to fewer jobs.  (We 

will see later that local suboptimalities in a ichedule can be 

removed if all jobs in a local group have slack.)  Consider the 

following example: 

(shop limit = 10) 

In this left-justified schedule, if the 2-job is right shifted 

first, then the 4 and 1-jobs will have no slack.  But if the 

above priority rules are followed, the 1-job will be right 

shifted first (2 days), then the 2-job (1 day) and the 4-job 

(1 day).  Hence all three end up with slack.  The resulting 

right-justified schedule (below) could obviously be shortened 

jf all Jobs were left shifted one day. 

4   „ 1    „ 

8 

2 

> 

r  

4    , i 

2 

a 
(shop limit = 10) 

It should be noted that right shifting jobs in decreas- 

ing order of their EF has the advantage of sometimes removing 

resource "bottleneck:;"—for example: 
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4^ 

1 - 

a 

I 2 (shop limit = 10) 

The 2 job forms a bottleneck past which the 1-job cannot be 

moved.  (This assumes, of course, only local right shifting 

is permitted, so that slack values obtained are convex.  Rules 

allowing global right shifts would ignore such bottlenecks 

and might have some advantages, if slack convexity is not re- 

quired.)  The 1-job can be right shifted, however, if the 2- 

job is moved first (as the priority rules dictate)—hence the 

advantage of shifting jobs as they are encountered, going from 

right to left across the Schedule Chart. 

The priority rules above will not bring such favorable 

results with all schedules, however.  For example, the schedule 

—1-* 

3  > 

6  * 

(shop limit = lO) 

would be right shifted as follows according to the priority rules: 

1 

*k 

I 

V-i^ (shop limit = lO) 
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One of the l-jobs end^ up with no slack.  Had all of the 1-jobs 

been righv shifted before the 3-job, however, the schedule 

would appear thus: 

7 

i 

/ 
/ 1 

1 
\ 
\ 
\  1 

3 
*Y 

tt G 
'1 

and all but the 6-job would have slack.  The schedule could 

obviously be shortened.  A different set of priority rules 

would be needed to discover such situations.  As suggested 

above, some combination of priority rules, perhaps applied 

probabilistically, might lead to the best overall results. 

Another approach would be to construct, alternately, a right- 

Justified schedule, then a left-justified schedule, another 

right-justified schedule, and so forth, back and forth, each 

one derived from (i.e., associated with) the previous sched- 

ule, with the hope of finding larger slack values.  Thi? 

procedure could be continually repeated until one approaches 

the maximum slack values for each job (or an "optimum" dis- 

tribution of slack, according to some criteria). 

We have now accomplished our immediate objective of 

extending the concept of job slack to the limited resource 

case, noting its reliance upon a set of schedule-generating 

priority rules and giving an example of such a set of rules. 

Formally, we may define slack, in either the limited or un- 

limited case, as follows; 
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D.-jf inition: x e J, , y e J . 1  ^    r T^ (K.V) = LI Ay)   -  SS^x) , 

That is, the total slack of job j, relative to schedules x and 

y, equals the late start of j in schedule y minus the early 

start of j in schedule x.  If x and y are associated with each 

other, the slack values are convex.  If resources are not limit- 

ing, then J, and J  each contain just one schedule and the slack 

values are unique. 

We are now prepared to discuss the concept of critical 

sequence. 

The Critical Sequence 

In the case of unlimited resources, the string of criti- 

cal jobs which determines the minimum project length is aptly 

named the "critical path."  On the project graph it can be 

traced as an unbroken sequence of technologically ordered jobs? 

it forms a literal path from start to finish.  The analogous 

concept we are developing for the limited resource case differs 

in that a technologically connected path of critical jobs does 

not always (in fact, does not usually) exist? but a sequence 

of critical jobs can nevertheless be identified—hence the term 

"critical sequence."  Further, it is composed of one or both of 

two types of sequences which we shall now define: 

Definition:  Given a project X, a technological sequence of 

jobs is a set T of two or more jobs technologically connected 

in a linear (non-branching) sequence (i.e., the i   job in the 

sequence is the immediate predecessor of the (i+1)   job) . 

In a given feasible schedule, a technological sequence is joint 

if there are no intervening time periods between the completion 

time of one job and the start time of its immediate successor 

(when both are in the sequence).  That is, 

ASj + tj = ASk, j « k. j and k e T. 
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If AS  >■ t. < A3  for any two jobs j and k e T, j « k, the 
J    J     ^ 

sequence is disjoint at their juncture. A joint technological 

sequence is in essence a local critical path; to delay any job 

in the sequence would delay the completion of the whole sequence, 

Definition:  Given a feasible schedule, a resource sequence of 

jobs is a set R of two or more jobs that require the resources 

of the same shop s and that do not overlap in time.  (A job 

which requires multiple resources may be a member of several 

resource sequences.)  A resource sequence is joint if the Jobs 

in the sequence span an interval of time Z with no overlaps or 

gaps.  That is, if the jobs are arranged in increasing order 

of AS, then 

AS. + t. = AS  for any two adjacent jobs j and k 

in the ordered list, and 2  t. = Z.  Such a sequence of jobs 
ieR  1 

s 
may or may not be technologically related. 

We are now able to define critical sequence. 

Definition: In a given feasible schedule, a critical sequence 

(if it exists) is a set CS of one or more jobs that has the 

following properties: 

1) All jobs in CS have zero slack. 

2) If CS contains more than one job and if the jobs are 

arranged in ascending order of AS, then 

a) any two adjacent jobs in the list are co-members 

of either a joint technological sequence or a joint 

resource sequence (or both); 

b) the first job in the list is also the first mem- 

ber of every joint technological and/or resource se- 

quence to which it belongs; and 

c) the last job in the list is also the last member 

of every joint technological and/or resource sequence 

to which it belongs. 

1 As calculated by the procedure outlined above, or some 
other schedule generating procedure. 
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As a consequence of these properties and previous defini- 

tions, we can observe the following features of a critical se- 

quence: 

l)  The length of the critical sequence (and hen:e the pro- 

ject) is 

z = 
ieCS 

2)  In more descriptive terms, a critical sequence (of two 

or more jobs) follows either a joint technological sequence or 

a joint resource sequence, or an alternating combination of both. 

Note that, as a consequence of 2) - a) above, when a shift from 

one to the other occurs, the two sequences share at their junc- 

ture a job which is common to both.  Thus if a given technologi- 

cal sequence is followed by a resource sequence, the last job 

in the former occurs in the shop of the latter and is therefore 

also a member of the latter sequence.  To illustrate, consider 

the following portion of a critical sequence. 

 £-_* 
d  > 

Assume job a is in shop 1 and jobs b, c, and d are in shop 2. 

As the schedule graph indicates, a « b and a and b form a joint 

technological sequence.  But b is also a member of a joint re- 

source sequence, b - c - d.  The same sharing condition holds 

when a resource sequence is followed by a technological sequence« 

the first member of the latter is also a member of the former. 

1 Since  a multi-resource job belongs to several resource se- 
quences, the one of relevance here involves the resource 
which constraina the job from left or right shifting. 
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Not every left-justified schedule will have a critical 

sequence of zero slack Job.j.  Consider the following left- 

iustified schedule: 

(shop limit = 10) 

2      , 

7      . 8      y 

3      „ 

Both the 2 and 3 jobs have unconditional slack (by our established 

procedure, 2 would have three days and 3 would have two days slack) 

A critical sequence, therefore, does not exist.  However, the 

schedule can easily be shortened as follows: 

3      > 

2      > 

8      . 7      . 

And in this schedule, a critical sequence does exist (consisting 

of the 7 and 8 jobs).  The first schedule exhibits what we will 

call a local suboptimality.  We will see that local suboptimali- 

ties may be removed easily, and that a left-justified schedule 

with no local suboptlmalities always has a critical sequence. 

We need first to define some terms. 

1 ]:  Given a left justi- n Definition:  Local Set L = [1^ 1^,   . 

fied schedule, a local set is any set of one or more jobs which 

(a) have the same early start (we will refer to it as ESj), (b) 

are in the same shop, and (c) are resource constrained only. 

(If the set contains one job only, requirements (a) and (b), 

of course, are superfluous.) 

Definition: Constraining Set, of a loi J1 set G = [g. , g2/ ... g ]f 

Given a local set in a left-justified schedule, a constraining 

set consists of those jobs which constrain the local set from 

further left shifting, i.e., all jobs using the same resource 

as L such that EF0 = ES.. 
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Definition:  Concurrent Set or a local set C = [cA .   cn,    .... c 1:   '- 1 '  2       n 
Given a local set in a left-justified schedule, a concurrent set 

consists of those jobs which are concurrent to the beginning day 

of the local set (but not members of that set)• i.e., all Jobs 

c such that ES  < ES, < EF . c X L. 

Definition:  Local Suboptimallty:  A left-justified schedule is 

said to contain a local suboptimality if it contains a local 

set for which all jobs in the constraining set and concurrent 

set have slack. 

Definition:  Left-Active Schedule:  A left-justified schedule 

will be called a left-active schedule if it contains (a) no 

local suboptimalities and (b) no jobs which can be started 

earlier by global left shifting. 

Although all five definitions above apply to a left- 

justified schedule, they are symmetrical in the left-right 

dimension.  Thus the definition of a right-active schedule 

follows from the above definitions by changing "left" to 

"right," "earlier" to "later," "beginning" to "ending," "ES" 

to "LF," and "EF" to "LS." 

With the aid of the above definitions, we may now for- 

mally prove the existence of a critical sequence in a left- 

active schedule,  (The following theorems and corollary assume 

We should note here the similarity of "critical sequence" 
to the Giffler-Thompson notion of an "active chain" in the 
job-shop problem [16, p. 493].  Likewise, our "left-active 
schedule" is analogous to their "active schedule," which 
they define as "a feasible schedule having the property that 
no operation can be made to start sooner by permissable left 
shifting,"  Our additional requirement of no "local subopti- 
malities," (noted above for a left-active schedule) reflects 
the more complex nature of the project scheduling problem. 
In the latter case, a job (operation) may be scheduled on 
any one of several identical facilities (e.g., machines) 
that are available in a given shop.  (In the Giffler-Thomp- 
son case, each facility is unique.)  Thus it is possible for 
a schedule to be "active" in the sense that no jobs can be 
left shifted (locally or globally) and still not contain a 
critical sequence, as noted above (p. 51).  The Giffler- 
Thompson Job-shop problem, then, may be considered a special 
case of the large project problem. 
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that resource limits are constant over the schedule period,) 

Theorem 1;  A schedule can always be shortened if it contains 

a local suboptimality. 

Proof:  It is obvious that if all jobs in a Schedule Chart 

that occur on a given day  are left shifted one day, then 

the project finish date may be reduced by one day, for all 

succeeding jobs may then also be left shifted one day.  Thus 

if we can prove that a local set and all its concurrent jobs 

can be left shifted one day, we have proved the theorem. 
2 

Begin by right shifting  all the concurrent jobs and con- 

straining predecessors of the local set.  This is possible 

since, by the definition of local suboptimality, all have 

slack.  The new feasible schedule obtained has, of course, 

the same finish date as the old.  Now left shift by one day 

the local set (L) plus all of the jobs presently concurrent 

with it (C),  (Some of the jobs previously right shifted-- 

including all jobs globally right shifted—may have moved 

beyond the point of concurrence with L).  The legality of 

this move may be examined by considering the two possible 

types of constraints:  (a) technological and (b) resource 

constraints.  Since we have assumed the level of resources 

in all shops is constant over the scheduling period, then 

technological and resource constraint points to left shift- 

ing occur only at the tail-end of jobs on the Schedule Chart, 

i.e., at their EF. 

Consider constraints of type (a):  Note that the jobs in 

C originally had ES < ESL, or else they would not be con- 

concurrent with L after the right shifting.  And since no 

jobs with EF < ESL were right shifted, then none of the 

1 This includes both jobs that start on the given day and jobs 
started earlier, but still active (unfinished) on that day, 

2 The order of shifting outlined in whatever procedure was 
used for calculating slack values may be followed, or any 
other order that will allow all jobs involved to be locally 
or globally moved at least one day. 
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predecessors of C vere n.oved.  Hence there are no techno- 

logical constraints to a one-day left shift of jobs in G. 

Nor are there like constraints for L, since jo-?s in this 

set were resource constrained only. 

Now consider type (b) constraints.  Note that all jobs 

originally right shifted had EF > ESL.  Thus, that shifting 

could not have caused any of the constraints to the left of 

EST to become more severe; i.e., right shifting of those 

jobs could not have increased the resource load on any day 

prior to ES-, in any shop.  And since jobs in C are to be 

left shifted no more than they were right shifted, then the 

left shifting cannot increase resource loads on days prior 

to EST above the.:r original levels.   Therefore no new 

resource constraints are created by left shifting and the 

jobs may be moved the one day required.  The proof is com- 

plete. 

Note that the resulting schedule is not necessarily left 

justified, and local suboptimalities may st.ill exist.  Additional 

left shifting and continued application of the above procedure 

will lead eventually to the removal of all suboptimalities.  We 

may state this as a corollary: 

Corollary;  Any left-justified schedule may be converted into 

a left-active schedule by continued right and left shifting. 

Proof:  If the left-justified schedule has no suboptimalities 

and no possibilities for global left shifting, it is already 

left active.  If global left shifts are possible, perform 

them.  If the schedule contains a suboptimality, then shorten 

the schedule by the above procedure and left justify the result. 

1 Except for the day just prior to ESL which may be increased 
by left shifting of the local set; however, as we have noted, 
this creates no problems as there are no jobs with EF = ES- 
and hence no constraints to left shifting on that day. 
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If it still contains a suboptimality or possible global left 

shifts, repeat the process.  By a series of such moves (finite 

in number) all suboptimalities may eventually be removed and 

v.Ti 11 be left—active * 

Theorem 2;  Every left-active schedule contains at least one 

critical sequence. 

Proof:  The proof is based on the observation that no job J 

can have zero slack unless one or more of its constraining 

successors also has zero slack; for if all such jobs could 

be right shifted, then so could j.  Thus, if we can identify 

a zero-slack job anywhere in the left-active schedule, we 

can trace a joint sequence of zero slack jobs from that 

point in the schedule to its termination.  More specifically,, 

we shall prove that at least one of the jobs which begin on 

day zero has zero slack, and therefore, by the above reason- 

ing, a critical sequence of zero slack jobs exists from 

start to finish. 

The proof will be presented in the form of an algorithm: 

(A) Consider the set J of all jobs having EF = F.  All have 

TS = 0. 

Pick one of these jobs and call it j, 

' If ES  = 0, go to (E). 

Since ES, > 0, then there must exist a left-constraining 

set of j. 

(B) Examine G. (the constraining set of j). 

If TS > 0 for all g e G, go to (C). 

Pick a job g for which TS  = 0; call it j. 

If ES  = 0, go to (E). 

Since  ES.  >  0,   then   j must have  a   constraining  set.     Go 

to   (B) . 

(C) Examine C. (the concurrent set of j). 

If TSc > 0 for all c e C , go to (D). 

Pick a job c for which TS  = 0? call it j. 
c 

If E3  = 0, go to (E) . 

Since ES. > 0, then j must have a constraining set.  Go 

to (B) . 
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(D) A local Guboptimality exists, contrary to the hypothesis 

of a left-active schedule.  Therefore, both TS  > 0, all 
g 

g 6 G., and TS  > 0, all c 6 C., cannot hold. J   j       r. • y 
(E) We have found a job (j) which begins on day 0 .and has 

zero slack.  Therefore, a critical sequence exists and 

the proof is complete. 

Note that each time the search cycles through step (B), 

the job being examined has an earlier ES than the previous 

job considered, since all jobs in either G, or C. have 

ES < ES..  Thus one is assured of eventually reaching a job 

whose ES = 0, since the schedule is finite in length. 

Implications of the Critical Sequence Concept 

for Project Scheduling 

Identification of a critical sequence has much of the 

same utility, for purposes of scheduling, as the designation 

of a critical path in the unlimited resource case.  In order 

to shorten a schedule, for example, only jobs on the critical 

sequence need to be considered.  Where critical sequences 

exist in parallel, all must be contracted to have any effect 

on the project finish date.  Critical jobs may be shortened 

by improved technology or by additional assignment of resources 

("crashing".the job).  The latter is possible, of course, only 

if resource limits have not been reached on "crash" days (or 

if overtime or subcontracting is allowed).  The Kelley approach 

[22] to minimizing project costs by "crashing" critical jobs 

(until the costs of doing so exceed the savings that result) 

may a'.'o be used in the limited-resource problem, if ''crash" 

costs are modified when necessary to include costs of over- 

time and subcontracting. 
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Variable Resource Limits 

We have thus far considered the special case of resource 

availability where resource levels are constant throughout the 

scheduling period.  In this case constraint points to left shift- 

ing occui only at the project start date and at terminal points 

(AF) of already scheduled jobs; likewise, constraints to right 

shifting occur only at the project finish date and at the begin- 

ning points (AS) of already scheduled jobs.  However, if the 

available resources are uneven over the scheduling period (i.e., 

if ad / a,  , for any 1 < d < z, where the a's are entries in 

the resource availability vector Ao), then constraint points 

can occur on days when resources change, whether or not jobs 

end or start on the same days.  To illustrate: 

Day 

Shop Limits 

0 ; L I 

10 10 

3 

10 

4 •«- 

1 
1 

1 

Ooviously, job 2 could be left shifted to start at day 2, job 1 

to day 0, and job 6 to day 1.  In ev^ry case, the constraining 

point is either the terminal point of another job or the start 

date of the project.  Consider an example where resources are 

uneven, however. 
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Day O 

Shop Limits 8 

3            ;, 

4 3 

*       > 

Job 2 could be left shifted to start at day 1 and Job 1 to day 0, 

but job 6 could not be moved at all—even though no job ends at 

day 3 to constrain it.  Job 5 is effectively constrained by the 

reduced resources on day 2 (as compared to day 3).  Thus, the 

previously described notion of a critical sequence doe.3 not 

readily apply here.  The schedule cannot be shortened (if the 

original start date is observed), yet no critical sequence of 

jobs from start to finish exists. 

In general, a critical sequence may or may not exist in 

a project with variable resources.  If a schedule may be shortened 

from either end (start or finish), sometimes a critical sequence 

may be created (as is possible in the example above)• but this 

is not always possible.  For example: 

Day 

Shop Limits 

0 

10 10 

8 

Both jobs 7 and 8 have zero slack, but no critical sequence 

exists and the schedule may not be shortened given the resources 

available. 
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Theorem 3;  If resources available are a decreasing function 

of time (i.e., a, > a ... ■■ , 1 < d < z) , a critical sequence always 

Proof:  Since a, > ad+i/ there is no possibility of left 

shifts being constrained by reduced resources.  Hence the 

only points of restraint are job terminal points, and the 

proof given for Theorem 2 applies. 

Whether or not a complete critical sequence exists, there 

will always be in every project one or more jobs with zero slack 

(e.g., every job whose early finish in a left-active schedule 

equals the project finish date).  The limited-resource concept 

of slack discussed above applies equally well in the variable 

resource case, and the operational utility of slack is unchanged. 

Conceptually, one could calculate slack values for jobs in a 

project (following some rules or procedures for generating right 

and left-active schedules) and attempt to minimize project costs 

using the methods discussed on p.56. 

Relationship of Job-Shop and Large Pro -ect Problems 

We have earlier noted the similarities between "active 

chain" in the job-shop problem and "critical sequences" in the 

large project problem.  Here we will consider the relationship 

of the two problems in greater detail; 

Typically a "job" in a job-shop consists of a sequence 

of operations to be performed in a given order on some object; 

Each operation requires a different facility (machine or other 

resource) for a given time period.  Conceptually, a job can be 

pictured as a simple, single chain network: 
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Each operation (except the beginning or endinj one) has 

one predecessor and one successor operation.  (In some cases, 

the exact order of operations is arbitrary, but only one opera- 

tion is performed at a tJxne.) 

In contrast, the large project problem is typically char- 

acterized by a more complex technological ordering.  Each Job 

may have several predecessors or successors; jobs may be per- 

formed in series or parallel, as indicated by their partial 

ordering: 

In the job-shop problem, the finish date of each job is 

of concern; in the large project problem, only the project com- 

pletion date is important. 

Note that a project may look like a number of job-shop 

chains connected at the start and finish: 

And by use of dummy jobs (having given time lengths but zero 

resource requirements), the job-shop chains can be constrained 

to start no sooner, and finish no later, than any desired start 

and stop dates (which, of course, must be sufficiently separated 

to permit completion of all operations in a job chain).  Thus 

the job-shop problem can be considered a special case of the 

large project problem.  An analytic solution to the latter pro- 

blem conceptually may be applied to the former.  Likewise, a 
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given heuristic approach to large project scheduling should be 

applicable to job-shop scheduling problems, though its power 

in t1-"3 i =ii-<-er case mav differ from that in the former. 

a 
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Chapter 4 

COKPUTER KOD2L9 FOR LARGE PROJECT SCHEDULING 

As we have noted, those who follow a so-calied neuristic 

approach to problem solving are interested in gaining "heuris- 

tic power" in their program—i.e., computational efficiency. 

They do this either because an algorithmic program is unavail- 

able or because such a program is computationally infeasible. 

In the latter case, they may "sacrifice" an optimum solution 

(if indeed the calculations could ever be completed) for the 

program's capacity to rapidly find a satisfactory solution. 

Similarly, our goal has been to develop a combination 

of scheduling rules into a program which can quickly generate 

a good project schedule.  This "heuristic power" of the program 

enables us to include probabilistic elements in the program 

rules (explained below) , so that a number of different sched- 

ules can be generated in a reasonable length of time and the 

best one selected from the group.  In this manner we hope to 

increase the probability of finding an optimum schedule, or 

at least a good one. 

The heuristics we use in our models were developed 

first from ideas which, intuitively, seemed to be reasonable 

approaches to scheduling, later from additional ideas which 

grew out of experience in applying the models, and finally 

from the theoretical considerations discussed in Chapter 3. 

The models described in this chapter follow two differ- 

ent approaches to project scheduling.  We will refer to the 

1  See, for example, Clarkson [9], Fischer and Thompson [12], 
Gere [15], Karg and Thompson [20], Kuehn and Hamburger [25], 
Tonge [45], 
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the models as 

1) Resource smoothinq programs and 

2) Limited resource allocating programs. 

In the first approach, jobs are scheduled without re- 

gard to resource limits.  The resulting manpower requirements 

on peak workload days are then reduced by shifting suitable 

Jobs beyond the peak days.  The focus of the program is on the 

required resources of a given schedule and how these require- 

ments may be leveled.  In the second approach, however, the 

focus is on the available resources, which are serially allo- 

cated, day by day, to jobs ordered according to their early 

start times.  The finish date is variable, since it may be 

extended when jobs are delayed for lack of resources.  The 

rest of this chapter will be devoted to describing in some 

detail the scheduling models based on these two approaches. 

The MS2 Models 

The first of the models programmed were  the so-called 

.2 
KS models (for Multi-Ship, Multi-Shop),  originally developed 

for scheduling ship repairs in a Navy shipyard.   They are 

generally applicable, however, to industrial or other types 

of problems which involve several projects and a number of 

different skill groups or shops.  As the reader will note, the 

2 
MS models are examples of resource smoothing programs. 

Data inputs are minimal: each job in each project is 

identified by a number j, a time length t, a shop or resource 

group s, and a set of immediate predecessors.  Multi-skill jobs 

1 The models were the joint development of Mssrs. F. K. Levy, 
G. L. Thompson, P. R. Winters, and the author.  The first 
of the MS2 models was reported in [28], 



BaHHaHBHBSBBHH^^HEBHHHBHHHHBBHBaiBBHaBXI 

64 

are handled as separate, sinjlc-skill jobs; the program is so 

written as to insure they will all be started on the same day. 

Each project., consisting of a set of jobs, is identified by a 

start date and a duo date.  Below is an outline of two varia- 

tions of the model describing the heuristics they use for gen- 

erating a schedule. 

M52-l 

A) Schedule all jobs at early start and plot manpower re- 

quirements in each shop, by day. 

B) Calculate peak manpower requirements in each shop, and 

set "trigger levels" for all shops one unit below their respec- 

tive peaks. 

C) Once again start scheduling jobs (in technological order), 

calculating the manpower loading charts simultaneously.  Stop 

when the trigger level of any shop (call it s) is exceeded. 

D) Examine the jobs that are active on the peak day in shop 

s.  Compile a list of jobs which have sufficient slack to move 

them beyond the peak day without delaying the due date, and 

arrange them in descending order of their total slack.  Pick 

one of these jobs (by a selection process  that favors the jobs 

highest on the list), and move it to the right on the Schedule 

1 Jobs are technologically ordered if no job appears in a list 
until all of its predecessors have been listed. 

2 The selection procedure contains random elements and operates 
as follows:  With a probability of P > 0, select the first 
job in the list for the desired operation.  If the first Job 
is not selected, place it at the bottom of the list and se- 
lect the second (now the top) job with the same probability 
P.  Ultimately a job will be selected, as P is greater than 
zero.  The probability of selecting any one job in repeated 
trials is a function of P and the number of Jobs in the list, 
n.  Thus the probability of selecting the it" Job is 

P(l-P)i+1  . 

1-(1-P)n 
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Chart a rsndom number of dayr. ]iGtv;..f.n the r.iinir.ur, : eve pec- 

333.".Ty to push the job past the peak day and the maximum 

move allowed by its total slack. 

E) Continue with the scheduling of other jobs and plot- 

ting of the manpower loading chart.  If additional peaks 

are generated, apply the procedure of D).  If all jobs are 

successfully scheduled, then lower the trigger levels of 

all shops one more unit and return to C).  If job shifting 

is not successful in removing peaks below the trigger levels, 

then restore the previous set of feasible trigger levels and 

attempt to reduce them shop by shop.  As soon as no further 

redaction in trigger levels is possible, then print out the 

schedule. 

F) Repeat the above process (as many times as is compu- 

tationally feasible).  Because of the random elements in 

the program, it is likely that different schedules will 

result from each application of the program.  Select as the 

final schedule the one having the lowest manpower costs 

(which are assumed to be proportional to the trigger levels— 

i.e., sufficient men are hired to meet peak loads and are 

paid whether idle or active on all days). 

Note that the program does not assume limited resources. 

In essence, it attempts to minimize the peak shop require- 

ments given a fixed due date (and is therefore subject to 

some of the same limitations we noted in Chapter 2 for simi- 

lar scheduling models).  A variation of the above model— 

2 
MS -2 —reverses the constraints: resources are limited and 

the due date is variable. 
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M32-2 

A) Schedule jobs at early start, one at a time, plotting 

manpower requirements in each shop, by days,- until the require- 

ments exceed the established resource limit in some shop. 

B) Attempt to right shift slack jobs in the same manner as 

D) above. 

C) If job shifting is successful and a feasible schedule 

is produced, then print the schedule and repeat the program (as 

many times as is possible).  If manpower requirements cannot be 

brought below fixed resource limits, then move the due date out 

one day (or some other increment of time) and return to A). 

Eventually enough time will be allowed to schedule all jobs 

without exceeding resource limits. 

D) After repeating the program several times, pick the best 

schedule (in general, the shortest one).  Costs here include 

not only manpower charges but a "penalty fee" for each day the 

project is delayed beyond the initial due date.  (The cost 

function for penalties need not be linear; an exponentially in- 

creasing function might be more appropriate for some project 

situations.) 
2 

Thus MS -2 is a limited resource model, but not of type 

two described above; resources are allocated job by job down a 

technologically ordered list, rather than day by day to jobs 

ordered according to their early start times. 

1 A job list ordered by early start times (in ascending order) 
is also technologically ordered; but the reverse is not 
necessarily true. 

HmBHSVHMHI 
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The 3PAR Kodels 

More sophisticated in terms of scheduling heuristics and 

data handling ability are the SPAR series (Scheduling Program 

for Allocating Resources) developed by the author.  They were 

specifically designed to consider the constraints of limited 

resources, the possibilities of variable crew sizes on jobs in 

a project, and additional alternatives (besides shifting slack 

jobs) for dealing with peak load periods.  The basic program 

is quite straight forward.  The early start (ES) and slack (TS) 

are calculated for each job in a project, based on technological 

constraints only.  Then jobs are scheduled, day by day, starting 

with d = 1, by selecting jobs from the list of those currently 

available (i.e., jobs with ES = d) and ordered according to 

their slack.  The most critical jobs have the highest probability 

of being scheduled first, and as many jobs are scheduled as 

available resources permit.  (It is possible that not even 

critical jobs on a given day may be scheduled, because of jobs 

scheduled on previous days which are still active.)  If an avail- 

able job fails to be scheduled on day d, its ES is increased to 

d + 1 and an attempt is made to schedule it the next day.  Eventu- 

ally all jobs so postponed become critical and move to the top 

of the priority list of available jobs.  In each day's list of 

available and active jobs, there are always one or more zero- 

slack jobs (see Levy, Thompson and VJiest [27]); they receive 

special treatment in some of the models described below.  Proba- 

bilistic elements built into the program provide some randomness 

of job assignments and the likely production of different sched- 

ules each time the model is applied to a project—similar in 
2 

this respect to the MS models. 

■MHMiHnM 
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As is evident from the c.bove description, the jPaR models are 

ex?jnples of the second approach to project scheduling described 

earlier. 

Kodifying Heuristics 

The basic program described above is enriched by a num- 

ber of additional scheduling heuristics or subroutines designed 

to ircrease the use of available resources and/or decrease the 

length of the schedule. 

A)  Crew Size Selection;  With each job is associated a nor- 

mal crew size cs  (the number of men or other resources normally 

assigned to the job), a maximum crew size csM (the maximum number 

of men required for "crashing" the job), and a minimum crew 

size cs  (the smallest number of men which can be assigned to m 

the job) .  Normally cs  < cs cs,,.  In some cases. Jobs can be J m    n  M 

neither stretched out nor crashed, in which case cs = cs  = cs..; 

or they can be stretched nut but not crashed (cs < cs  = csw\ * m    n    M) , 

or vice versa (cs  = cs < cs^.) .  Some jobs may have m    n    M 

cs < cs < csM but not permit changes in cs once a given crew 

size has been assigned; this information is also fed into the 

model with other job data.  The rules for crew size selection 

are as follows: 

1)  If the job has zero slack and if resources available 

a , are > cs.., then schedule j with cs = cs...  If 

cs^ < a , < csM, then schedule j with cs = a ,.  If n — sd    M ■* sd 

a , < cs , then set cs = cs  and go to the Borrow and sa    n n 

Reschedule routines (described below) .  If j is still 

not scheduled, set cs = cs  and try the same routines. 
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If j is ;jtill not scheduled, then set E3   =  £3  +   1  and 

attempt to schedule the job the next day. 

2)  If j has positive slack and a , > cs , then schedule sd —  n 

j with cs = cs .  If cs  < a , < cs , set cs = a , and J n       m — sd    n sd 

schedule j.  If a , < cs , then two approaches are used 
sd    m 

(according to the particular SPAR model):  (a) set cs = cs 

and try the Bcrrow and Reschedule subroutines, or (b) set 

ES = ES + 1. 

B) Add-On to Critical Jobs;  Before any new jobs are scheduled 

on a given day, examine jobs previously scheduled and still active. 

If any of these jobs have zero slack and cs < csM/ and if resources 

are available, increase cs as much as possible up to cs. ,  (Jobs 

which do not permit changes from an initial cs assignment are 

excluded from crnsideration in this subroutine. 

C) Multi-Resource Jobs;  Sometimes a number of different 

resources (men, machines, etc.) .^re • ^quired for a given job, 

each of which may be limited in quantity.  In such cases, create 

separate jobs for each resource and assign the jobs to start 

on the same day, by means of the following device.  If n jobs 

are created out of an n-resource job, then append to each job j 

in the group the number of the (j+1)   job, except for the n 

job, to which append the number of the first job in the group. 

Thus if n = 3 and the three jobs created are numbered 5, 6, and 

7, they would appear in the job list with multi-resource nota- 

tion as follows: 
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'ulti-Ro-ourco Reference 

5 
6 
7 

6 
7 
5 

(Single resource jobs carry "0" in the multi-resource reference 

column.)  All jobs in a multi-resource group have the same prede- 

cessors (and the same successors), so all become available for 

scheduling on the same day d.  As each job j is scheduled, 

check to see if any other jot  in the multi-resource group has 

been postponed to day d + 1.  If not, schedule j on day d« if 

so, then postpone job j by setting ES. = d+1.  If an attempt 

to schedule job j fails because of limited resources, then de- 

schedule all other jobs in the multi-resource group which have 

already been scheduled, and reset their ES to d+1. 

D)  Borrow from Current Active Jobs: When a , < cs  for          scj    n 

some available zero-slack job j (or < cs if the job has slack, 

in some variations of SPAR), the model enters into a subroutine 

for searching currently active jobs to see if sufficient men 

might be borrowed from them for scheduling j an day d.  In 

order to qualify for consideration a job k must 

1) have AS < d and AF > d  (that is, it must be active)• 

2) use the same resources as J; 

3) have cs > es^ 

1 After a job has br:en scheduled, its start and finish times 
are noted by AS (ensign start) and AF (assign finish)- 
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4) be a job for which assigned crew sizes may be altered 

during the Job's active period? 

5) have TS  > TS ., where TS  is the slack of k after 
K. J ri ■ 

its crew size has been reduced to cs . 
m 

Compile a list of such jobs and sort in descending order of TS. 

Select jobs from this list by the random device described earlier 

(jobs with the most slack have the highest probability of being 

selected), and reduce their cs to cs  until sufficient men are 
m 

available for scheduling job j.  Return then to the main routine 

and schedule j. 

The subroutine also has a "count first and see" feature: 

check to see that borrowing will actually produce enough men to 

schedule j before actually making the adjustments.  The sub- 

routine is also tied to the Reschedule subroutine (below):  if 

some (but not enough) men can be borrowed, examine the possibility 

of also, rescheduling jobs before abandoning as a failure the 

borrow subroutine.  Finally, if the number of men that can be 

obtained by borrowing and rescheduling is insufficient to sched- 

ule j, then set ES. = d+1. 

E)  Back Up and Reschedule Active Jobs;  Sometimes a Job j 

could be scheduled if other jobs previously scheduled which use 

the same resources had been postponed to a later start date.  In 

order to qualify for this rescheduling, a job k must 

1)  have AS < d and AF > d.  (that is, it must be active)j 

2)  use the same resources as J? 

1 In the SPAR-1 models (see p. 77), cs is reduced only from 
day d on;  in SPAR-2, the reduction is also retroactive to 
ASk. 
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3)  have T3. > T3  + b, wh3rc T3, is the slack of k after 
K      j K 

it has been rescheduled to start on d+1,  (b is a parameter 

which may be used to increase or decrease the number of 

jobs considered for rescheduling; a large b v/ould result 
* 

in the consideration only of jobs with large T3 values 

as compared to TS , reflecting the possibility that such 

jobs may have to be further postponed [beyond d+l] because 

of resource limitations.) 

The subroutine operates as follows:  Sort all Jobs which 

qualify according to the above criteria in descending order of 

ES, and further sort the list, in each group of jobs with the 

same ES, in descending order of TS .  From this list, select 

jobs to be rescheduled, exhausting jobs whose ES = d-1 before 

going to jobs with ES = d-2, and so forth.   Thus the tendency 

is to first reschedule jobs which have the most slack and which 

have to be postponed the fewest number of days.  When sufficient 

Jobs have been rescheduled to permit the scheduling of j, then 

return to the main routine and schedule j. 

Note that the rescheduling of a job k does not affect 

the TS . of any Jobs in the set of available Jobs to be scheduled 

(i.e., jobs whose ES. = d).  TS . is a function of the early 

finish of job J's immediate predecessors and of the late start 

of .its immediate successors.  However, k belongs to neither set, 

and it can be Jelayed up to its LS without affecting Jobs in 

either set.  Before k is rescheduled, AS < ES. < EF., and 
^    J    J 

1 The random selection device is again used. 

tHJ^'AlttWU^*!-.^''' 
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AF . > ES,.  But A3  < EF. —> K X [successors of j], and 

AF  > ES. —>k X [predecessors of j].  The only way rescheduling 

k could affect TS . would be to delay the project finish date and 

hence the late start of all jobs in S,.  According to the routine 

above, however, k will not be rescheduled unless it has—after 

rescheduling—at least as much slack as j.  Thus no job k will 

be rescheduled if doing so would extend the finish date.  Since 

the TS of jobs in the available set is not affected by reschedul- 

ing, then there is no need to go through the "housekeeping routine" 

(below) of recalculating new values for ES, LS, TS, etc. after 

each job is rescheduled; the order in which available jobs are 

scheduled is thus unchanged. 

The reschedule routine has much the  same effect as a 

"look-ahead" feature.  Instead of attempting to look ahead to 

future needs of critical jobs (which would be difficult to do 

in the limited resource case, since jobs are not always scheduled 

at their E3), the model schedules all jobs possible as it moves 

along from day to day, "repenting" of previous scheduling "errors" 

if jobs are encountered which have more critical need of resources 

than the jobs to which the resources were assigned at earlier dates. 

F)  Add-On Unused Resources;  After as many as possible of 

the available jobs are scheduled, there may still be unused 

resources in some shop s.  The program attempts to assign these 

resources to active jobs.  In order to qualify for additional 

resources, a job j must 

1) have AS . < d and AF . > d+1    (it must be active 

with at least one more day to go) ; 

2) use the resources of shop sj 

. ^^ama^i^^^j^^^^m 
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3) have en  <  crs • 

4) be a job for v/hich assigned crew sizes may be altered 

during the Job's active period. 

Examine the remaining resources r of each shop in turn, after 

all available jobs have been considered.  If r  > b  (a parameter 

reflecting the per cent utilization of resources which is de- 

sired) , then compile a list of jobs which meet the above criteria. 

Order the list in ascending order of TS, pick a job (by the ran- 

dom device, favoring the jobs wich the lowest TS), and increase 

its cs to cs., (or to cs + r if cs., - cs > r ) .  Continue increas- 
M s     M        s 

ing the cs of jobs in the list, until the list or r is exhausted. 

The increment is temporary; jobs so supplemented return to their 

assigned cs the next day (unless unused resources are available 

then also). 

The program contains three additional major subroutines 

which do not properly belong in the abo^e list of modifying 

heuristics.  They are listed below, however, for completeness 

in describing the program. 

G)  Housekeeping Subroutine;  After going through the above 

scheduling routines each day d, the model then records the re- 

sults in a manpower loading table (resources used in each shop) 

and in a job assignment table (number of men assigned on each 

job)? and it updates the critical path data (ES, LS, EF, LF, 

AS, AF, TS, and man days remaining) for each job.  Note that 

several of the above subroutines may alter a job's total slack? 

e.g., when csM is assigned to a critical job, the shortering oi 

the job may result in its gaining positive slack (and some other 

job or jobs becoming critical). 

j-mj^ugBMfWMllWgtlPMUlJ.IIJ 
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H)  Cost Calculatlongj  The Functional;  In all of the SP.\R 

models, the finish date is a variable; and in those with a search 

routine (described below), shop resource levels are also variable. 

The functional can take any desired form, but two have been used 

thus far: 
m  * 

1) Total Cost = K'Z +  S q  w , 
s=l 

where K is a daily cost (e.g., overhead expenses and/or due date 

penalties, charged on a per-day basis), z is the length of the 

schedule, q  is the maximum crew size required in shop s, and 

w is the average daily wage in shop s.  The implicit assumption 

is that crew sizes are maintained at peak loads and are paid 

whether active or idle.  Should the circumstances of a specific 

project justify it, a non-linear cost function of z could be 

substituted for the linear one above—e.g., when penalties for 

exceeding the due date increase exponentially. 

m  * 
2) Total Cost = F-z +  2 a  w 

* 
where K, z and w are as above, and a is the optimum shop crew s s 

size based on a premium rate v for overtime or subcontracting 

* when manpower requirements exceed a .  (v is a multiplying factor; 

thus overtime would cost vw per day.)  The assumption is made 

that regular crew sizes are maintained at a , even during slack 

periods.  If we let F  represent the number of days out of z 
Si 

B 

that manpower requirements  in  shop  s  equal or exceed a   ,   then 

a     is  that manpower  level  for which 

V   '   v >  z > F(   *   ^      •   v 
s s 

^HMH^^Hl^BH^H^^Hn^BaMaH 
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That is to say, if a  is raised ons clay above a , then the 

regular wage rate paid the extra man for z days (z-v; ) exceeds s 

the costs of oaving a man at overtime rates for F, * ,* days (as+l) 

( F(a*+1) ' v • ws ). 
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1^  Shop Resource Level Search Rules;  It is possible that, 

in some cases, the costs of increasing shop resource levels 

v/ould b^; more than offset by the resulting decrease in overhead 

charges and/or due date penalty fees.  The reverse situation 

might also be true.  Hence we have developed some search rules 

for trying to find some optimum combination of shop resource 

levels and resulting finish date.  Two approaches have been 

explored: 

1)  Start with minimal resource levels (just sufficient 

to insure that all jobs can be scheduled, serially if 

not in parallel).  Generate a schedule and calculate its 

cost.  Then increase the resource level in all shops 

associated with jobs having zero slack.  Generate a new 

schedule and calculate its cost.  If lower than the first 

schedule's cost, repeat the same process.  If higher/ 

restore the previous resource levels and increase them 

shop by shop, selecting shops associated with jobs having 

zero slack (or, alternately, shops with the most "filled- 

up" days).  Keep raising resource levels in a given shop 

until schedule costs increase« then restore the previous 

best level and try a new shop.  When all shops have been 

considered, then select the best schedule of those pre- 

viously generated and stop. 
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?)  Start with ample resource levels (e.g., levels high 

enough to Just permit starting all jobs at 33).  Generate 

a schedule and calculate its cost.  Then decrease the 

resource levels of all shops one unit and generate a 

nev/ schedule.  If its cost is lower than that of the 

first schedule, reduce resource levels again.  Repeat 

until the cost increases, then restore the previous best 

levels.  Next reduce shop levels one shop at a time, pick- 

ing first the shop with the fewest "filled-up" days.  Con- 

tinue reducing the level in each shop as long as an im- 

provement in schedule cost results.  After reductions 

have been attempted in all shops, then pick the best 

previous schedule and stop. 

SPAR-1 

The first of the SPAR models is outlined below in a 

simplified flow diagram (Figure 4).  It uses the above scheduling 

heuristics and may be modified to handle single or multiple pro- 

jects, fixed or variable crew sizes, constant or variable shop 

limits (over the scheduling period), and various functionals 

and search routines as described above.  These modifications 

(all of which have been programmed and tested) are useful in 

fitting the model to a particular project situation. 
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SPAR-2 

3PAR-2 is a major modification of SPAR-l and is based on 

the concepts discussed in Chapter 3.  The first part of ^Pi\R-2 

is quite similar to SPAR-l, with the following exceptions and 

restrictions:  (a)  all jobs are initially started at cs ; 

(b) resource levels are assumed to be constant over the schedule 

period (to assure the existence of a critical sequence)? (c) 

there is no add-on routine, and the borrow routine adjusts 

the cs of job k from ES rather than from day d only (to assure 

that constraints to left and right shifting occur only at the 

terminal points of jobs); (d)  a multi-resource job, while 

divided into separate jobs for programming purposes, is still 

considered a single job when determining if a schedule is left- 

justified.  Note that a job in a multi-resource group may be 

neither resource nor technologically constrained (and hence, 

by itself, not left-justified), but restrained only because it 

must start at the same time as another job in the group which 

is resource constrained. 

SPAR-.2 first generates a schedule that is left-justified 

(essentially by the SPAR-l routine).  Then an associated right- 

justified schedule is generated (according to the rules described 

in Chapter 3) and conditional slack values calculated.  A recur- 

sive search is made for local suboptimalities which, if found, 

are removed.  In the resulting left-active schedule, the critical 

sequence(s) of jobs is identified, and an attempt is made to 

shorten the schedule by crashing one or more of these jobs. 

Two criteria are used in selecting jobs to crash:  first. Jobs 

are picked whose cs can be increased to csM without exceeding 

the shop limits (or with the least required overtime), and, xn 
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case of ties, the job is selected whose cost-time curve has the 

least slope (after the manner of Kelley [22]).  After a critical 

job is crashed, a new schedule is generated and the above routine 

applied again—repeating the process as long as there are improve- 

ments in the cost of the schedule. 

A simplified flow diagram of SPAR-2 follows in Figure 5. 

A Cnmnarison of RAMPS and SPAR 

Having described the basic SPAR program, we are now in 

a better position to compare it with CElR's scheduling model, 

RAMPS.  The two programs represent independent, parallel efforts 

to solve the same problem? each was c'impleted before its author(s) 

had any knowledge of the other.  Both take a similar approach to 

scheduling, but there are basic, important differences in the 

programs, and each can claim some advantages not enjoyed by the 

other. 

First we will note the similarities in data-handling 

ability and design.  Both SPAR and RAMPS 

1) employ a network technique for determining technological 

ordering of jobs; 

2) use deterministic rather than probabilistic time estimates; 

3) consider three resource utilization rates for each job, 

with associated job times; 

4) consider resource availabilities, which may vary during 

the scheduling period; 

5) handle multiple projects, each with a different due date; 

6) allow resource teaming on Jobs; 

1 At the time of this writing, SPAR-2 was being programmed for 
the Bendix G-20.  "Debugging" and trial runs had not been 
completed. 
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7) consider costs of normal time, idle time, overtime (or 

other premium resources), and due date penalties; 

8) have approximately the same job-handling capacity. 

Furthermore, both are "type 2" models (see p. 63); i.e., they 

serially allocate available resources, day by day, to jobs which 

are available tor scheduling.  Due date is variable and a function 

of given limited resources.  Beyond these similarities, there are 

important differences in the programs, a few of which we note. 

On each day examined, RAMPS schedules resource by resource, 

starting with the one in most critical demand.  (Each resource 

has a "criticality index," calculated before any scheduling is 

done, which is based on the total man-days required for a resource 

[summed over all jobs and all days] and the man-days of that re- 

source available.  The index is unchanged by the scheduling pro- 

cess.)  The program generates, for each resource on each day, 

all non-trivial assignment patterns that exist (i.e., all feasible 

combinations of current jobs), given the jobs available for schedul- 

ing on that day fincluding jobs already started and still active), 

the three utilization rates for each job, and the resources avail- 

able.  Each assignment pattern is -cored according to functional 

equations which include as variables total float, free float, 

number of jobs scheduled, number of jobs split, idle resources, 

and criticality (in terms of resource needs) of immediate suc- 

cessor jobs.  The pattern with the highest score is selected, 

and the program proceeds to the next resource, or to the next 

day.  Thus costs are minimized each day (but not necessarily 

over the whole schedule period) .  Once a job is scheduled, it 

remains so.  There are no provisions for adjusting earlier Job 

assignments.  The program is completely deterministic; it 
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contains no probabilistic elements in its job—election routine. 

We observe, then, that R-J^'PS has a more elaborate decision- 

rule for selecting jobs to be scheduled than has SPAR.  The 

greater number of variables considered gives it some flexibility, 

for purposes of studying the effects of these variables, not 

enjoyed by SPAR.  Additionally, RAMPS considers not only three 

utilization rates for each job, but also different work efficiencies 

associated with these rates.  SPAR-1 implicitly assumes that "crash" 

and "slow-down" rates are as efficient as the normal rate. (SPAR-2 

takes into account possible inefficiencies of non-normal rates 

in its cost function.)  RAMPS thus reflects the U-shaped cost 

curve commonly described by economists in their analysis of 

production functions. 

On the other hand, SPAR has some important features not 

paralleled in RAMPS—e.g., the add-on, borrow, reschedule and 

search routines.  While a RAMPS schedule is "optimal" each day, 

one can easily think of projects for which day-by-day optimizing 

will lead to a suboptimal overall result.  Consider for example 

the following schedule graph of a project in which all jobs 

require the same resource (the numbers indicate the amounts of 

resource  required by each job): 

01234557 

7 

1^ 8 2 

If the resource limit is 10, and if job-splits are disallowed 

(by a high penalty for such splits), RAMPS would generate the 

following schjdule: 
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O 10 

7 

lj     8 2 

with  a  due  date  of   10.     While   SPAR would originally  schedule 

the  7   and  the  1   jobs  on  day 0,    the  Reschedule  Routine would 

lead  it  to postpone   job  7   and generate  a   seven-day  schedule, 

as  follows: 

01234557 

7 •*,! 

1-. 8 2 

The probabilistic elements or SPAR models also aid them 

in finding optimal schedules which would otherwise be missed. 

Assume, for example, the following project: 

0   12    3    4    5   6 

7 1 

4J 8 

With a resource limit of 10, both RAMPS and SPAR (if it had no 

probabilistic elements) would generate the following ten-day 

schedule (job splits are again disallowed): 

012    3    4    56    7    8    910 
7 1 ! J 

8  . 4, 

Because of the random elements in the job-selection routine, 

however, in repeated applications SPAR would sometimes schedule 

job 7 first and find the following optimal schedule: 
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Thus the random elements generally increase the probability of 

finding an optimum schedule (though they do not guarantee that 

such a solution will in fact be found [the probability may be 

very small] or even that the probability of finding an optimal 

schedule is always positive). 

Not only does SPAR seek an optimum schedule for a given 

set of shop limits, but by means of its Search routine, it also 

seeks more efficient combinations of shop limits and resulting 

due dates. 

Finally,. SPAR-2 incorporates the critical sequence con- 

cepts developed in Chapter 3.  We anticipate that a model which 

explicitly takes account of the effects of limited resources on 

critical path analysis should prove superior to a model—similar 

in other respects--which does not.  We have yet to test this 

hypothesis, however. 

We observe, in summary, that RAMPS and SPAR are similar 

in data-handling ability and in their general approach to sched- 

uling? but they each have unique features which are interesting 

and deserving of experimentation.  We expect that both will ad- 

vance our ability to deal more adequately with the large pro- 

ject problem, and that experience gained from their applications 

will lead to more powerful heuristics for project scheduling. 

Hn ■HHraanamraanHBa mm      mmaa^mmammmmmmm 
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Some Comments on the Certainty Assumption 

We might veil be asked if the practical usefulness of 

our models (a point we have often stressed) is not significantly 

lessened by our certainty assumption.  Would not our schedules 

be more realistic and useful if we recognized the probabilistic 

nature of Job times?  Our answer is threefold: 

1) Job times themselves are often difficult to estimate, 

let alone their probability distributions.  A frequent criti- 

cism made of PERT, which uses a simple, three-point distribu- 

tion of job times, is that the "pessimistic time" estimates 

are often too pessimistic, biasing downward the calculated 

values for "expected time." The value of probabilistic times 

and computed figures for variance is questionable, it seems tö 

us, when little is known about the probability distributions 

for job times. 

2) Even if reasonably accurate probability distributions 

were available, the added requirements on computer space and 

time to incorporate such data in the models would have necessi- 

tated the omission of other project data (such as variable job 

times), or restrictions in the size of projects that could be 

scheduled, or a simpler program in terms of scheduling heuris- 

tics.  We felt the potential advantages of incorporating proba- 

bilistic times were not worth the above sacrifices in the 

scheduling models. 

The advantage of using probabilistic times in the related 
problem of job shop scheduling was questioned in a study 
by Muth [35].  He concluded that "the schedule span is not 
very sensitive to moderately large errors in estimated job 
times." 

_,.., ^^-^mmmvMmäm&mmmm-m mm W——^—^—^^^^^^ ssssrass 
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3)  Th2 main use of probabilistic Job times in PERT-type 

models is for calculating an expexted project completion time, 

with an associated variance.  Jf this information is of parti- 

cular value to the user of a project schedule, then it would 

be relatively simple to generate such figures after the models 

described earlier have developed a schedule (based on deter- 

ministic job times).  In PERT fashion [30], expected times for 

jobs along the critical path (or critical sequence) could be 

calculated from the probability distributions of these jobs 

and added to obtain the expected due date for the project, 

with variance being determined similarly.  Or a simulatio', 

approach could be used ^as reported by Levy and Wiest [29] ) 

in which job times are selected from relevant probability dis- 

tributions by Monte Carlo techniques and project due dates 

calculated.  From the resulting distribution of due dates, 

the expected due date and variance can be determined, for 

whatever managerial purposes they seem useful. 

1  The simulation approach described in [29] assumes that all 
jobs are started at early start.  The method could still be 
used in projects with limited resources if jobs along the 
critical sequence only are considered.  As in the PERT 
approach, this ignores the possible effects of near-critical 
jobs on the expected due date and variance. 
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Chapter 5 

OPERATING RESULTS FROM THE PROJECT SCHEDULING KODSLS 

Computer Requirements of the Scheduling Models 

All of the models discussed in Chapter 4 have been pro- 

grammed in 20-•GATE, an algebraic language for the Bendix G-20 

Computer at Carnegie Institute of Technology.  In its latest 
p 

formulation, the MS  program requires approximately 3,000 

machine locations, leaving about 22,300 locations for data. 

Thus it can handle a project with up to 1,030 multi-resource 

jobs in 12 shops, extending over a scheduling period of up to 

300 time periods.  Alternately the program can handle 2,650 

single skill jobs in 1.°. shops over the same scheduling period. 

Trade-off between the number of jobs, shops, and time units may 

be made according to the following formula for the number of 

machine locations (W) required for data: 

W = (No. of mulfci- resource jobs)(6 + No. of shops) + 

(No. of days)(No. of shops) + 75. 

The most recent SPAR-1 program, including necessary com- 

puter subroutines, requires approximately 5,000 machine loca- 

tions, leaving about 19,200 locations available for data in 

core storage.  Data space requirements of a project can be 

computed as follows: 

W = (No,, of single-resource jobs) (14) + (No. of nodes) (2) 

+ ^No. of shops)(No. of time periods) + 1,200. 

For example, the model could be dimensioned to handle 

a project with 940 single-resource jobs, 500 nodes and 12 shops 

1  The Bendix G-20 at C.I.T. has core storage of 32 K single 
precision words.  The algebraic compiler and subroutines 
occupy the space not accounted for above. 
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over- a time span of 300 days.  Thus the Job handling ability 

of MS  is somewhat greater than SPAR-1, due to the longer pro- 

gram of the latter and greater amount of job data considered by it. 

It would be possible, of course, to program both models 

more efficiently by using machine language; and their data- 

handling ability could be increased considerably by more exten- 

sive use of tapes, "packing" of data, and other programming de- 

vices.  Targer and faster computers than the Bendix G-20 would 

further extend the range of projects which could feasibly be 

scheduled by the models. 

Project Scheduling Experience 

Operating experience with the models has been derived 

largely from their application to four different projects, 

which we may identify as follows: 

Project A:  A fictitious project, formulated in part from 

a random number table, containing 55 jobs performed ibn 4 shops. 

Project B:  A fictitious project similar to A, containing 

100 jobs performed in 4 shops. 

Project C:  A construction project, containing 97 multi- 

resource jobs (or 131 single-resource jobs) involving 12 differ- 

ent resource groups ("shops"). 

Project D:  An accounting project, consisting of 691 Jobs 

required for the month-end closing of accounting records in a 

large manufacturing company; the jobs involve 20 different Eikill 

groups ("shops"). 

We will consider the results of applying the models to 

| these projects, each in turn. 

■Wllllllll'l WI^«IJ^MII^M^tmM4>.j»li^^ III I   I     |   11      II       lllllllllll IIIIIIIIIIIlT 
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Shoo 1 Shoo 2 Shop _3 Shop 4 

24 18 16 24 

9 0 9 9 

Pro jects A and B 

2 
The initial results of applying MS -1 to Project A are 

reported  elsewhere (Levy, Thompson and Wiest [28]  ); these 

results are summarized in Figure 6 below.  Thus with a project 

due date of 47,  shop limits were reduced from their original 

levels (with all jobs plotted at early start) as follows: 

_ Maximum Resource Requirements, 

All jobs at early start 
2 

After smoothing with MS -1 

The due date of 47 assured that the jobs would have generous 

amounts of slack, in order to give the program some flexibility 

in moving Jobs.  (In real-life projects, such flexibility would 

generally accrue from the large number of jobs involved, rather 

than from ample due dates.)  Running time for the program was 

approximately three minutes. 
2 

The minimum shop limits reached by MS -1 were used as 

fixed resource limits in the SPAR-1 model which was then applied 
2 

to Project A.  To produce results comparable to MS -1, job man- 

power assignments were first assumed to be non-variable (i.e., 

"crashing" or "stretching" jobs was not permitted).  The re- 

sulting schedule is shown below in Figure 7 along with the 
2 

MS -1 schedule.  Thus SPAR generated a schedule only 39 days 

in length, a considerable improvement in this instance over 
2 

the MS -1 schedule.   Running time ior the program was just 

under 1 minute. 

When variable crew sizes were allowed, a further improve- 

ment in the schedule was obtained.  As indicated by Figure 0, 

1 Throughout this chapter, projects are assumed to start on day 
0, so that the schedule length is the same as the due date. 
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project length was reduced to 31 days, 

2 
As noted earlier, the MS -1 model attempts to minimize 

shop limits given a fixed due date? the SPAR models can seek 

for an optimum combination of shop limits and due date (with 

delay penalties).  Two SPAR-1 programs, each with a different 

search routine (see p. 75), were applied to Project A with 
2 

the following results: 

Table 1 

3PAR-1 A2£±. led to Pro ]ect A: 55 Jobs 1 

tit 3) (Search Routi ne It Increasing Shop Lin 

Shop Limits Total 
Cost Iteration ShoP-Ji Shop _2 Shop 3 ShO£_ 4 Due Date 

1 9 9 9 9 33 41,780 

2 9 9 9 lo 30 39,023 

3 9 9 10 11 30 40,832 

4 9 9 10 10 32 42,408 

5 9 9 9 11 31 41,568 

1 The schedule reported here is the best of seven iterations 
(each requiring about 50 seconds including print-outs)r 
results ranged from 31 to 35 days. 

2 Labor costs were assumed to be as follows: 

Shoo Number Dollars/Hour 

1 3.50 
2 4.75 
3 2.80 
4 5.00 

In addition, an overhead charge (including delay penalty) of 
$150/day was assumed. 
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Table 2 

SPAR-l Applied to Project A; 55 Jobs 

(Search Routine 2: Decreasing Shop Limits) 

 Shop Limits  

Iteration Shop 1 Shop 2 Shoo 3 Shop 4 

1 15 15 15 15 

2 14 14 14 14 

3 13 13 13 13 

4 13 14 14 14 

5 12 14 14 14 

6 13 13 14 14 

7 13 12 14 14 

8 13 11 14 14 

9 13 10 14 14 

10 13 11 13 14 

11 13 11 12 14 

12 13 11 13 13 

95 

Date 
Total 
Cost 

24 47,743 

24 44,795 

26 45,480 

24 44,151 

26 47,290 

24 43,277 

24 42,403 

24 41,529 

27 45,958 

24 41,014 

25 42,260 

26 43,580 

Due to the nature of the search routines, the search for 

optimum shop levels stops when a local optimum has been found. 

Note that the lowest cost schedules found by the two routines 

differ by only 5 per cent in cost, but that the due dates and 

shop levels are quite different.  Quite probably there are other 

combinations of shop limits and due dates in the same vicinity 

that would result in similar (perhaps lower) total costs? re- 

peated applications of the program would likely discover some 

of these combinations, due to the probabilistic elements in 

the program. 

Results from the application of MS "-2 to Project A were 

generally less favorable than the SPAR results.  Repeated 
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applications of MS -2 to Project A with resource lirr.its of nine 

men in each shop resulted in schedules whose lengths ere plotted 

in the following frequency distribution: 

Figure  9 
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Thus the shortest schedule produced was 49 days long, 

found once in 35 iterations of the program (each iteration re- 

quired about 1.7 minutes).  By contrast, a single application 

of SPAR-1 to Project A with the same shop limits produced o,  34 

day schedule in less than a minute of computer time.  A second 
2 

application of MS -2 to Project A with resource limits of 10 in 

each shop resulted in a minimum schedule length of 44 days (nine 

iterations); SPAR-1, with the same shop limits, generated a 29 

day schedule. 
2 

Although experience with MS -2 was limited to applications 

to Project A, the results were so clearly inferior to SPAR-1 re- 

sults (both in terms of schedule lengths and computational time 

2 required;  that the MS -2 approach to resource allocation was 

abandoned in favor of the SPAR-1 models. 

Project B was devised to increase operating experience 

with SPAR-1 on a larger project and to test the multi-project 

feature incorporated in that model.  The major results can be 
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summarized briefly in the following tables: 

Table 3 

SPAR-1 Applied to Project B; 100 Jobs, One Pro 1ect 

(Search Routine 1: Increasi ig Shop Limits) 

Shop Limits Total 
Cost Iteration Shop 1   Shop _2 Shop 3 Shop 4  Due Date 

1 10 10 10 10 51 71,700 

2 10 11 10 10 47 67,712 

3 10 12 10 10 45 67,950 

(Search Routine 2: Decreasing Shop Limits) 

Iteration Shop 1 

., -^ "bi- 

shop 2 Shop 3 Shop 4 Due Date 
Total 
Cost 

1 13 15 14 13 41 71,402 

2 12 14 13 12 41 66,651 

3 11 13 12 11 42 68,093 

4 11 14 13 12 41 64,004 

5 10 14 13 12 44 72,945 

6 11 13 13 12 42 69,078 

7 11 14 12 12 44 74,769 

a 11 14 13 11 41 64,135 

In this application. Search Routine 2 produced the best 

schedule in terms of total costs (iteration 4).  Running time 

per iteration was about 1.5 minutes. 

For the next run. Project B was divided into a 45 job 

project and a 55 job project. 

1  Shop rates and overhead charges are the same as for Project A. 
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Table 4 

5PAR-1 Applied to Project B; 100 Jobs, Two Projects 

(Search Routine 2: Decreasing Shop Limits) 

Shop Limits         Due D^.te 

Iteration Shop 1 Shop 2 Shop 3 SI iO£_4 Proj. 1 Proj. 2   Cost 

1 13 15 14 13 32 44 87,107 

2 12 14 13 12 32 45 85,164 

3 11 13 12 11 35 49 84,819 

4 10 12 11 10 42 53 85,835 

5 10 13 12 11 45 45 78,444 

5 9 13 12 11 44 52 88,295 

7 10 12 12 11 46 49 83,301 

8 10 13 11 11 47 45 80,679 

As can be noted, the shop levels of iteration 5 produced the 

lowest cost schedule. 

Evaluation of Results:  Projects A and B 

The most important result to come from the above applica- 

tions (and others not recorded here) was the demonstration of 

the models' feasibility in project scheduling.  Protocols of 

the problem-solving process indicated that the various sub- 

routines were operating as planned, and the rather short compu- 

tational times required gave encouragement for application of 

the models to larger projects. 

Whether the schedules produced were "optimal" by some cri- 

terion function is more difficult to access.  Hand simulation 

of the project with variable crew sizes and variable shop limits 

is, for all practical purposes, impossible; the number of combi- 

nations to investigate is too large.  However, when crew sizes 
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and shop limits arc held constant, the measure of a schedule's 

optimality is simply the length of the schedule? and for Project 

A, at least, hand simulation is feasible.  The author performed 

two such simulations with different shop levels, and compared 

them with corresponding SPAR-1 schedules.  Hand simulation of 

Project A with shop limits of 9, 8, 9, and 9, in shops one 

through four, respectively, indicated that the optimum schedule 

has a due date of 37 days? this compares to a due date of 39 

in the schedule produced by SPAR-1.  The SPAR-1 schedule for 

Project A when shop limits were 10, 9, 10, and 10, however, was 

optimal at a due date of 34.  While it would be foolhardy to 

draw any strong conclusions from these two examples, the results 

were encouraging, at least. 

Project C 
2 

Both MS -1 and SPAR-1 were applied to Project C, an actual 

construction project for which job data had been collected and 

a network drawn by the contractor. The length of the critical 

pa oh through the network, with all jobs at normal crew size, was 

94 days.  With this as a due date, the project was first sched- 
2 

uled by the MS -1 model in an attempt to level resource require- 

ments.   The results are shown in Figure 10, which displays the 

manpower loading charts for the 12 resources, comparing manpower 

requirements with all jobs scheduled at early start with require- 
2 

ments after smoothing by MS -1. 

1  The author is indebted to Jack Trawick for the results of 
this application of the MS2_i nodel.  For Project C, Mr. 
Trawick reprogrammed the model to use computer time and 
memory space much more efficiently than the earlier formu- 
lation. 
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Peak resource requirements were considerably reduced, as 

is evident in the following summary of data; 

Maximum Resource Requirements 

Shops 1   2   3   4   5   6   7   89  10  11  12 

All jobs at ES 12 3 20 7 8 12 14 8 4-2 4 1 

After smoothing 73 13 477 12 44221 

(Computer running time was 15 minutes.) 

After the above results were obtained, the project was 

scheduled by the SPAR-1 model.  Variable crew sizes were allowed 

when job times could reasonably be expected to be a function of 

manpower assigned.  When determined by technical requirements, job 

times were held constant (e.g., tha job of cement pouring).  Search 

Routine 2 (decreasing shop limits) was used, and initial resource 

levels were adequate to meet the maximum crew size of any job. 

Successive iterations of the model produced the following results. 

1 Total costs are based on overhead charges of $200/day and shop 
hourly rates as follows (in order, beginning with shop 1):  4.50, 
5.00, 2.50, 3.00, 2.25, 4.50, 4.50, 25.00, 4.50, 4.00, 4.00, 
4.50. 

SPAR 

Table 5 

-1 Applied to Proiect C: 131 Jobs 

■Pv,. « m« *. ^ l •*• Shop Limit s 

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 Date  Cost        [ 

1 12 3 20 7 8 12 14 8 10 2 4 1 72 249,700       | 

2 11 3 19 5 7 11 13 7 9 2 3 1 78 248,800       [ 

3 10 3 18 5 7 10 12 6 8 2 2 1 80 234,400       [ 

4 9 3 17 4 7 9 12 5 7 2 2 1 79 215,300 

5 8 3 16 4 7 8 12 4 6 2 2 1 77 197,900 

5 7 3 15 4 7 7 12 4 5 2 2 1 81 197,800 

7 7 3 14 4 7 7 12 4 4 2 2 1 100 238,600       |l 

8 7 3 14 4 7 7 12 4 5 2 2 1 81 196,200       | 

9 7 3 13 4 7 7 12 4 4 2 2 1 100 236,600       t 

10 7 3 13 4 7 7 12 4 5 2 2 1 81 194,600      t 

^^'-'^■-^^—r-T^^^ 

■^^■■■■■■1 
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Note that Iteration 9 has shop limits identical to those 
2 

resulting from the M3 -1 application, but that the due date is 

100 instead of 94.  (Repeated iterations of the SPM*-! program 

with these shop limits failed to produce a schedule with a due 
2 

date lower than 100.)  Thus the MS -1 schedule for this set of 

-.hop limits is superior to (i.e., shorter than) the SPAR-1 sched- 

ule.  However, the SPAR-1 program was able to find several less 

expensive combinations of shop levels and due dates (based on 

the given cost parameters), all with earlier due dates than that 
2 

produced by the MS   -1  program.      For  example,   iteration   10 uses 
2 the   same   shop   levels   as   the MS   -1  program,   except  that   the  re- 

source   level  in  shop  9   is   increased  from  4  to   5 men.      The  result- 
2 

ing due date is 91—compared to the MS -1 schedule due date of 

94.  As a result, the project cost based on the SPAR-1 schedule 

2 
^$194,600) is considerably lower than that based on the MS -1 

schedule ($222,200).  Manpower loading charts comparing the 

MS2-1 schedule with the SPAR-.l schedule (10  iteration) are 

shown in Figure 11. 

Machine time per iteration was about 4 minutes, including 

schedule print-outs.  Computation time was increased, relative 

to Projects A and B, not only because of the greater number of 

jobs involved, but also because of the longer schedule length 

and the presence of multi-skill jobs. 

Evaluation of Results; .Project C 

Unfortunately, it was impossible to compare the schedules 

produced by our computer models with the actual schedule employed 

by the contractor for Project C, for two reasons:  changes were 

made in the project after the original plans (which we used) 

T^rrm^HHBa^H nmiWUHMAIAUUMUWMLi; ■■■■HHHHnBNMMÜ 
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10 B 

were drawn, and adequate records of actual work performance were 

not kept.  However, some measure of the program's effectiveness 

was obtained from the contractor's reactions to the schedules 

they produced.  The contractor had used two (and sometimes, 

three) schedulers for a period of two weeks hand-smoothing jobs 

in the project.  Thus the computer schedules were prepared much 

more rapidly and at less expense, even when data preparation 

time necessary for the computer models was considered.   The 

contractor was further impressed with the extent of smoothing 

which the model achieved----especially on Resource Nc. 8, whose 

peak of 8 units unsmoothed was reduced to 4.  This resource 

involved the use of large and expensive machines (e.g., bull- 

dozers, cranes, tractors, etc.) which had to be rented for the 

period of use, inclr-ding short periods of inactivity.  Thus if 

peak requirements for the resource could be reduced, and more 

intensive  (i.e., less interrupted) use made of the machines, 

considerable savings would result.  Not only did the computer 

models reduce the peak resources required, but (in the case o^ 

the SPAR-1 applications) they also indicated how the project 

length could be appreciably shortened by utilizing variable 

crew sizes on some jobs--with little or no increase in maximum 

resource requirements.  To the extent that a schedule is shortened 

with no increase of resource levels, resources are used more 

tensively and idle time is minimized. 

The contractor indicated his desire to use one of the 

computer models for scheduling a much larger, multi-million 

dollar project.  It would be in such an application that the 

1 See p. 114, 
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advantages of a computer approach would be most notable. Hand 

smoothing of a relatively small project—like Project C—is 

feasible,■ but the difficulties of manual smoothing increase 

exponentially with the size of the project and they greatly 

reduce the potential effectiveness of this approach on large 

projects. A computer is needed to explore, in a reasonable 

length of time, the many possible combinations of job start 

times and crew sizes for such projects. 

Project D 

By far the largest of the projects scheduled by the 

computer models was Project D, containing 591 jobs performed 

in 19 shops.  The project consisted of jobs required for month- 

end closing of the accounting records in a large manufacturing 

company.  Time periods scheduled were one-half hour long, and 

the schedule horizon was six days, or 288 time periods.  The 

project was complicated by the fact that resource levels varied 

over the scheduling period; some shops (i.e., manpower skill 

groups) worked one shift only, while others worked two or 

three, or irregularly.  Shop limits often varied from day to 

day or from shift to shift (and in some cases during a shift). 

As we noted in Chapter 3, when resource levels are irregular, 

the concepts of critical path, critical sequence and job slack 
p 

lose their normal meaning.  The MS -1 model smooths resource 

levels by shifting jobs with positive slack? implicit in the 

slack calculations is the assumption of constant resource limits 

over the scheduling period.  Consequently MS -1 could not be 

applied to Project D.  Although the job-selection subroutine 

in the SPAR models is based on job-slack calculations (which 
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in turn are based on technological orderings only), such calcu- 

lations affect only the priority of jobs to be scheduled; actual 

Job scheduling is done only if resources are available on the 

day being considered.  Thus the SPAR models can readily sched- 

ule projects in which resources are not only limited, but variable 

as well. 

The schedule resulting from the application of SPAR-1 to 

Project D is not reproduced here, because of the size of the 

project and length of the schedule, but the results may be 

summarized.  The length of the schedule was 250 days and the 

computation time 51 minutes (including S minutes for printing 

out the schedule).  Given the job requirements and resource 

restraints of the project, the schedule was as short as possible. 

If unlimited resources were available, the project could be 

scheduled 1      185 time periods.  With the limits as given, how- 

ever, each of two jobs on the critical path was delayed 32 time 

periods (i.e., two 8-hour shifts) by the total unavailability 

of resources during those periods. 

Because of the rather long computational time and the 

fact that an optimal schedule for the given resource limits had 

been found on the first run, only two runs were made.  Both 

resulted in the same due date, although start times of some 

jobs differed in the two schedules. 

Evaluation of Results;  Prolect D 

As with Project C, time estimates for jobs in Project D 

did not accurately reflect subsequent experience, so that com- 

parison of the computer schedule with the actual schedule was 

of little worth.  The significance of the results from applying 
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SPAR-1 to the project may be measured, rather, in terms of its 

ability to handle a comparitively large project with complex 

scheduling constraints (e.g., variable resource limits ai.d var- 

iable crew sizes) in a reasonable length of time.  The 51 min- 

utes required for a single run en the computer could be reduced 

significantly by more efficient progranniing (and possibly by 

the use of a larger computer), permitting the use of multi- 

runs and the exercise of the probability features of the model. 

Even with a single, 51 minute run, however, the model produced 

a minimum length schedule that would have required many man- 

weeks of manual effort to reproduce by regular scheduling means. 

We should note, also, that the company which provided the pro- 

ject had abandoned efforts to use PERT and similar techniques 

for scheduling the project, as the variable resource limits 

rendered such methods inapplicable. 

Problem;  What is a "Good" Schedule? 

It should be clear by now that our heuristic approach 

to project scheduling does not guarantee an optimum solution, 

nor does it provide a means of determining how near a given 

schedule is to optimum.  Only when projects are sufficiently 

small or constrained to be solved by exhaustive search techni- 

ques is it possible to make a precise statement about the opti- 

mality (or near optimality) of a heuristic, non-algorithmic 

solution.  For most projects of practical interest, however, 

this approach to evaluating a schedule is simply not feasible. 

Even our simplest test project (Project A) has an enormous 

numbe- of possible schedules; it would probably take many days 

to find an optimum by exaustive search.  (Only when we severely 
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constrained the project by holding crew sizes and resource 

levels constant were we able to discover the optimum schedules 

by this technique, as we noted above.) 

Thus we are left with the less satisfying, but surely 

not unreasonable, method of evaluating our schedules by com~ 

paring them with those resulting from current scheduling prac- 

tices.  By this criterion, we will conclude that a schedule 

produced by our models is "good" if it is measurably better 

than a schedule for the same project produced by conventional 

scheduling methods—-i.e., if it requires lower resource limits 

for the same due date, or if it permits an earlier due date with 

the same resource limits, or if it results in some lower cost 

combination of due date and resource limits. 

Summary of Results 

How well do our models perform in generating "good" 

schedules?  The evidence we reported above is limited but 

encouraging, and we may summarize as follows.  In the case 

where exhaustive search methods could be applied, schedules 

produced by our models fared well: of the two computer schedules 

for which optimal solutions were found "by hand," one was opti- 

mal and the o^her nearly so.  Our schedule for Project C, 

although not directly comparable to the schedule actually used, 

was sufficiently "good" to interest the contractor in further 

applications of the model on more important projects.  In all 

of the schedules for projects A, B and C generated by our model, 

resource limits were significantly reduced below the levels re- 

quired by schedules of the PERT and CPM variety (all jobs sched- 

uled at early start).  While users of such scheduling methods 
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may reduce resource levels by hand-shifting of slack Jobs, 

this juggling becomes an enormous task with large projects and 

the extent to which it may be used is limited.  We may safely 

conclude that our models generated schedules significantly bet- 

ter thciii those that would V"= produced by PERT, CPM, and similar 

techniques—methods that are widely used today.  Additionally, 

SPAR-1 was able to find an optimum schedule (in terms of due 

date) for Project D—a project which could not be scheduled at 

all by present PERT-type programs, because of the variable re- 

source limits which had to be considered. 

Thus we conclude from our experience with the ücheduling 

models that they do produce "good" schedules, but our evidence 

is limited to a few examples.  We would profit from more experi- 

ence in applying the models to a variety of project types and 

sizes, and from additional comparisons of the schedules pro- 

duced with those resulting from current practice. 
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CONCLUSION 

In this final chapter, we point to some of the economic 

and practical advantages of our scheduling  'dels, compare the 

heuristic procedures we used in our programs with those which 

have been applied to related scheduling problems, and make 

some suggestions for future work.  We close with a summary of 

what we consider to be the main contributions of our study to 

the problem of large project scheduling with limited resources, 

Economic Feg.sibility of the Models 

Although we have not made a detailed cost-feasibility 

study, our preliminary calculations indicate that the costs of 

applying the models (including data preparation costs and com- 

puter time) to projects of the size we have considered is eco- 

nomically attractive, as compared to manual methods of sched- 

uling. 

For example, the schedule for project C was generated 

2 
by HS -1 in 15 minutes on the G-20.  If we wished to obtain 

the refinements resulting from the SPAR-1 model, we would add 

to this time an additional 10 minutes for a SPAR-1 schedule 

(with the search routine abbreviated by starting with the out- 

put data of the MS -1 schedule), thus totaling 25 minutes or 

about $85 in machine time.  (This could be reduced considerably 

by.more efficient programming of the models.)  Keypunching of 

data required two to three hours, bringing the total cost to 

something under $100.  Converting computer output to job orders 

and other forms operationally useful wouxd require additional 

time? but presumably much of this work could be done by the 
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computer itself, through proper programming of output, at 

little additional expense.  By comparison, the two (and sometimes 

three) schedulers assigned to hand-smooth jobs in the project 

spent more than a man-month doing so.  Their salary expense 

along was over $600.  Thus the computer scheduling was consid- 

erably less expensive, required a small fraction of the time, 

and resulted in better smoothing (according to the contractor), 

as compared with the conventional methods. 

Computational time appears to increase roughly in pro- 

portion to (n-d), where n is the number of jobs and d the number 

of days in a schedule.  If this relationship may be safely extra- 

polated to larger projects, then the models would still be eco- 

nomically feasible for scheduling such projects, as conventional 

scheduling expenses would be expected to increase at least by 

the same proportion.  However, the size of projects which can 

be handled by the models is presently limited by computer mem- 

ory capacity rather than by costs of computer time. 

Although difficult to evaluate in dollar terms, the advan- 

tages of a model which produces a schedule in a matter of minutes 

rather than weeks are of considerable worth to a manager of a 

large project.  At the time a project is being planned (or 

when a contractor is preparing bids), the model could simulate 

the effects of various resource limits on project costs and due 

dates, a feat that would be quite difficult and much more time 

consuming to do by hand.  As a project is started and work pro- 

ceeds, almost inevitably the actual work performed varies in 

some degree from the most carefully planned schedule, due to 

unanticipated delays or inaccurate time estimates.  Schedules 

must be updated, and the computer model would permit this to be 
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done rapidly.—perhaps on a daily or weekly basis.  Manual re- 

scheduling, especially of quite large projects, would likely 

lag behind work being accomplished; each new schedule would be 

obsolete at its completion.  Computer-generated schedules should 

thus permit closer coordination and control of project activities. 

Heuristics for Scheduling Problems 

We earlier explored the relationship (and differences) 

between three scheduling problems—assembly line balancing. Job 

shop scheduling, and large project scheduling.  Since attempts 

have been made to solve all three problems by heuristic programs, 

it is reasonable to ask if the programs are comparable—if at 

some level the heuristics are similar—and if in any way they 

build on each other and collectively contribute to our ability 

to deal with these ill-structured problems.  We will answer these 

questions by comparing three examples of heuristic programs: 

Gere's job shop scheduling model [15], Tonge's line balancing 

model [45], and our own large project scheduling models. 

We would anticipate that specific similarities in the 

heuristics of the programs would exist to the extent that the 

problems are themselves similar, or have similar features, since 

the heuristics involved were developed with a high degree of 

specificity for the problems at hand.   Such proves to be trues 

the heuristics in the job shop and large project programs have 

more in common with each other than with the heuristics of the 

line balanceing program.  For example, both of the former pro- 

grams contain rules for giving precedence to jobs with the least 

slack.  (The slack concept has no meaning in the line balancing 

1  Such need not be the case with heuristic methods.  See 
Newell, Shaw and Simon on the General Problem Solver [36]. 
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problem.)  Ths Look Ahead heuristic in the job shop program is 

desi'.jned to avoid future conflicts in the demand for a resource 

which result from a current decision that otherwise appears 

optimal.  By comparison, the Borrow and Reschedule heuristics 

of the SPAR program attempt to resolve current conflicts in the 

demand for resources by changing Job assignments previously made, 

that seemed optimal at the time.  The intent and effect of these 

heuristics in both programs is much the same.  The Insert rule 

of Gere's program and the Add-on rule of our own, while differ- 

ent In their approach, both attempt to achieve more intensive 
i 

use of resources end to minimize idle time.  While the SIO rule" 

of the job shop program has no counterpart in our own, it is 

logically applicable to the large project problem and could be in- 
2 

corporated easily in either the r'S or SPAR program. 

It is difficult to find, on the other hand, any such close 

similarities between the heuristics of the above scheduling pro- 

grams and those of the line balancing problem.  In part this is 

due to the substantial differences in the problems concerned, 

and in further part by the distinctively different approaches to 

problem solving represented in the three programs—especially in 
2 

the line balancing program as compared to the other two. 

1 SIO stands for Shortest Imminent Operation? by this rule, 
the job requiring the shortest processing time for its next 
operation has highest scheduling priority. 

2 In this respect, it is interesting to note that Tonge found 
it desirable to write his computer program in IPL, a symbol 
manipulation language (without which, he stated, he "would 
never have attempted mechanizing a line balancing procedure 
such as this").  The other two programs were written in 
algebraic languages. 
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ht   ?. more general level of .n:lysi3, however, it 1:3 pos- 

sible to point out some similarities in the three programs. 

Tonge cites a number of characteristics of existing heuristic 

procedures, two of which have particular relevance for our pur- 

poses.  The first characteristic he refers to is the 

Factorization of the problem into a number of smaller 
problems and subproblems (often through means-end analy- 
sis) , with a corresponding goal-sub-goal organization 
of behavior.1 

For example, in his line balancing program, groups of elements 

are aggregated into single compound elements, creating simpler 

line balancing problems which are more easily solved.  The pro- 

gram assigns groups of av/ailable workmen to elemente and takes 

as subproblems those compound elements which have been assigned 

more than one man. 

In a similar vein, we may regard the major goal of the 

3PAR program as the completion of the project (the scheduling 

of all jobs) within the constraints of limited resources.  This 

goal is factored into the smaller problems of scheduling subsets 

of Jobs that become available as the program progresses over a 

sequence of time periods.  If, on a particular day, some job j 

cannot be scheduled for lack of resources, the program sets up 

a second-level subgoal of providing the necessary resources, 

through the Borrow and/or Reschedule routines.  If these attempts 

fail, the (sub)goal of scheduling job j on day d is modified. 

An analogous example may be found in Gere's job shop pro- 

gram, in which the goal of minimizing costs of late jobs is fac- 

tored into the subgoals of utilizing available machine capacity 

each period, by scheduling individual jobs according to some 

priority rules. 

1  See [45, p. 17]. 
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The second characteristic Tonge citas Is the 

Use of cues in the enrivonment to determine the particu- 
lar behavior evoked from a wide set of possible alterna- 
tives available to the program, that is, a high degree 
of interdependence between the specific problem (from 
a more general class) being considered and the particu- 
lar problem-solving methods used.l 

He notes that the methods Cor selecting elements to shift between 

groupings in the assembly balancing program depend on the particu- 

lar characteristics of the groupings.  Similarly, in our project 

scheduling model (SPAR), the behavior evoked in selecting a job 

to be scheduled depends on the precedence relationship of the 

Job to other jobs in the network and on the current availability 

of resources.  Critical jobs evoke a different heuristic than 

jobs with slack, for example, and the pattern of jobs scheduled 

by a given time period determines whether the Add-on, Borrow, 

and Reschedule routines are called into play at that period. 

And in Gere's program, the effects of job selection priority 

rules are modified by a number of "overriding" heuristics which 

take cues from the immediate environment of the schedule.  For 

example, the Alternate Operation heuristic considers the effect 

that scheduling one job has on others that compete for the same 

machine; and the Look Ahead heuristic attempts to anticipate 

conflicts that will be created in the future by the present 

scheduling of a given job. 

We could cite further examples, but these serve to illus- 

trate the point which we now make.  While it is possible to find 

quite similar heuristics in some programs (especially if the pro- 

blems dealt with are related), and while the experience with such 

heuristics may be transferable in some degree fom one problem 

to another, it is in terms of the general characteristics of 

1 op. cit. 
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heuristic programs that one is  most apt to find helpful guides 

to the solving of specific problems by heuristic procedures. 

Vie may answer our earlier question by concluding that the 

three programs examined contribute individually, rather than 

collectively, to our ability to deal with the problems they 

were designed to solve; but that, collectively, they illus- 

trate and give us further experience in the use of general 

heuristic procedures for problem solving. 

Future Work 

The results of our work, as could be expected, point to 

additional areas of research that seem promising for the further 

development of large project scheduling methods.  We suggest 

the following as logical and potentially fruitful extensions of 

the present study; 

1) Completion and Testing of SPAR-2.  The theoretical con- 

siderations of Chapter 3 open up new avenues of project schedul- 

ing to explore.  SPAR-2 represents one approach to scheduling 

that utilizes the notion of "critical sequence;" we are hopeful 

that it will prove to be a fruitful approach, and intend to 

continue the development and testing of this model.  Many other 

approaches, of course, are possible. 

2) Additional Decision Rules.  SPAR-1 employs a single de- 

cision rule for selecting jobs to be scheduled each time period 

(modified by the probability feature) .  Other rules could easily 

be substituted (e.g., pick first the job having the most succes- 

sors using "bottleneck" resources), and their effects studied. 

Thompson and Fisher [12] report that probabilistic combinations 

of two decision rules yield the best results in scheduling pro- 

lems they have studied. 

 ""■■i — 
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3) Learning Features,  The use in the program of several 

decision rules, various parameter;;, and probability constants 

(see Chapter 4) suggests that the program can be written so as 

to modify itself as a result of its experience in repeated iter- 

ations on a project.  Thus the program could successively ex- 

plore the effects of changes in a given decision rule or para- 

meter and alter itself to use the decision rules or parameters 

that yield the best schedules.   TVo problems can be anticipated: 

small projects would have to be employed, so that scheduling 

time is short enough to base "learning" on more than limited 

experience.  More important, perhaps, is the problem of general- 

ization.  Could "learning" experience on one project be extended 

to a different project?  Would the particular decision rules and 

parameters which proved successful on a given project be equally 

successful on all projects, or would the learning process have 

to start anew with each project studied? 

4) Improved Search Routines.  The Search routines for SPAR-1 

described in Chapter 4 worked reasonably well on the projects 

tested, but we can think of improvements that would be desirable 

to work out.  Essentially the routines operate by taking trial- 

and-error samples from the space of all schedules the model is 

capable of generating.  At present, a search procedure may be 

halted prematurely when it reaches a local optimum; methods of 

reaching beyond these points to more favorable schedules would 

add to the effectiveness of the search routines.  Secondly, a 

means of moving more rapidly towai ..<;  optimum points (and then 

1  Of particular interest is the work of Fischer and Thompson, 
who explored the subject of "learning" in the job-shop 
scheduling problem [12]. 
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searching more methodically in their immediate vicinity) would 

reduce the number of iterations needed in the search procedure 

and improve its efficiency—extending the potential use of the 

tool to larger projects. 

5)  Improved Reschedule Routine.  It is possible to think of 

projects in which the Reschedule routine in SPAR-1 fails to post- 

pone a Job that, if rescheduled, would lead to an earlier due- 

date.  For example: 

0 8 

 1 * 1>l 
7> 2 \ 1 

With a resource limit of 10, 3PAR-1 would generate the follow- 

ing schedule: 

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14 

8 

1, 7, 2 

The due date of 14 compares unfavorable with that of the optimum 

solution 

012        3        456789 

8 

-i- ̂ u 2  > 

which has a due date of 9. A slightly more sophisticated search 

routine would discover such situations and select the best order 

for Jobs to be scheduled. 

5)  Additional Emperical Studies.  We have already mentioned 

the need to test further the models and study results from their 

applications to a variety of actual projects.  The above sugges- 

ted expansions of scheduling heuristics in the models would also 

add to the need for additional emoirical studies. 
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Our study was prompted initially by the need wöJ-aa-w for 

more effective methods of large project scheduling.  Because 

most recent advances in this field have paid little explicit 

attention to the probleiji of limited resources, w&**!tevot&d  much 

of  our effort to developing a theoretical system for dealing 
4 

with project scheduling when resources are scarce.  We—eiassi- 
'-■'..f.Air' .-..'. ~4—'-'- 

fied different types of schedules according to their properties, -* 
A " ■ 

d££i««d operations useful for generating and altering schedules, .. 

extended the concepts of critical path analysis to the limited 

resource case—including the useful notion of slack/v-ctewaÄfflwertä 

the concept of a critical sequence, ahd ^eowasi. several theorems 
■ -     ■   4       i.i   ,     .    . . 

regarding its existence in certain types of schedules.  In so 

doing we related our work with that of Giffler and Thomgso^ 

for the Job-shop problem, and showed how the latter could'' 

considered a special case of the large project problem. 

Additionally, we developed some scheduling models for 

large projects using a heuristic approach and taking advantage 

of the computational powers of a large computer.  The models 

employ several of the concepts mentioned above and were designed 

to handle many features of scheduling problems not previously 

considered (or incorporated all in one model)—e.g., variable 

crew sizes, limited (and in some cases, variable) resources, 

multi-resource Jobs, costs of regular and idle time, overtime, 

and due date penalties, the possibility of trade-offs between 

resource limits and due date, multiple projects, and so forth. 

Although applications of the models have been somewhat limited 

to date, the results from these applications have been gratify- 

ing.  In trial runs on several projects, the models generated 

'7 / I 
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schedules notably hotter than those that would be generated 

by PERT and related programs—methods widely employed in the 

United States today and currently required by the Government 

for use on many large defense contracts.  We are confident 

that our computer models have msar rably advanced the techni- 

ques of large project scheduling. 

While there are many improvements that can be made in 

the programming ^nd logic of the models (and we have made some 

specific suggestions in this regard), they are presently feasible-- 

economically and operationally—for use on projects of medium- 

large size (about 1,000 jobs).  Our experience has demonstrated 

to our satisfaction that a heuristic approach to project schedul- 

ing, aided by the computational power of a digital computer, can 

contribute in an important way to solving some of the complex 

scheduling problems of large project management. 

A Final Comment 

Although our attention has been focused mainly on indus- 

trial problems, it would be appropriate as we conclude our study 

to emphasize that the concepts we have developed and the models 

tested are not limited to an industrial setting.  The allocation 

of limited resources is a ubiquitous economic problem, and one 

can find examples of large project scheduling problems in many 

guises.  We may note one as an example.  Economic planning for 

the development of a country's resources and productive capacity 

is essentially a problem of allocating limited resources over a 

period'of time.  For many underdeveloped countries, the building 

of an industrial society may be viewed as a project consisting 

of a partially ordered set of "jobs:"  steel mills come before 
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appliance factories/ school buildings before super highways, 

tractors before TV sets, and so forth.  The concepts of Chapter 

3 v/ould enable the economic planner to analyze the precedence 

network of such "jobs" in the context of limited resources, 

and the models of Chapter 4, drawing on these concepts, would 

assist him in finding feasible allocations of these resources 

over a planning horizon.  While his problems are much more com- 

plicated than those of an industrial project planner and his 

"project" less clearly delineated, the tools and techniques 

discussed here should still be useful to him—and to others 

concerned with the planning of large projects where available 

resources are limited. 
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GL0 3 3ÄUY OF Ss'MBOLS 

A    Resource availability matrix; dimension m x z 

aoH  h  component of A; the resources available in shop s 
on day d 

» 

i 

A Vector of   resource  availability,   by  days,   in shop  s; 
corresponds   to   row  s   in A 

a , A comoonent of  A a "■                          s 

A3, Assigned   start of   job  j 

AF Assigned  finish of   job  j 

b A parameter   in   the   SPAR model 
s '■ 

C 3et of  jobs  concurrent to a  local  set 

c An  element of   C 

CS Set of jobs comprising a critical sequence 

cs Crew size (i.e., resources required for a job) 

cs Minimum crew size 
m 

cs,. Maximum crew size 
M 

cs Normal crew size 
n 

d Day 

ES. E.irly start of   job  j 

EF. Early  finish of   Job  j 

F Project  finish date 

G Set of  jobs  constraining a  local  set 

g An  element of   G 

i Iteration variable 

J. Set of left-Justified schedules for project X 

J Set of right-justified schedules for project X 

j Job 

K Overhead  expenses   and due  date  penalty,   per day   (SPAR model) 
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,     1 

L Local set of jobs 

1 An element of L 

LS , Late start of job j 

I,F . Late finish of job j 

m Number of shops or resource groups required by jobs in X 

n Number of jobs in X 

P, Set of jobs which are immediate predecessors of j 

Q Resource requirements vector; dimension m x z 

q , A comoonent of Qr the resources required in shop s, 
30 day d" 

Q Vector of resource requirements, by days, in shop s; 
'" corresponds to row s in Q 

q^ A component of Q 

R Set of jobs comprising a resource sequence in shop s 

r Remaining resource in shop s on day d (SPAR model) 
s 

S Project start time (usually S = 0) 

S. Set of jobs which are immediate successors of j 

s Shop (resource group) 

T Set of jobs comprising a technological sequence 

t Time required to complete a job 

v Overtime premium factor (SPAR model) 

w Average wage rate in shop s 
s 

X A set of jobs comprising a project 

x A schedule which is a member of J, 

y A schedule which is a member of J 

Z A span of time 

z    The number of days in a Schedule Chart (the length 
of the schedule) 

«   Is an immediate predecessor of 



 I iiMiiMiiiiiiiiiiiiMiiiiiMiMlllliMllllllilllMMIIIIWi™ TrTir 

123 

BIBLIOIRAOHV 

1. Alford, L. P., and John R. Bangs, (Editors), Production 
Handbook, The Ronald Press Company, New York, 1951. 

2. Alpert, L, , and D. S. Orkand, "A Time Resource Trade-Off 
Model for Aiding Management Decisions," Technical Paper 
No. 12, Operations Research Inc., Silver Spring, Maryland 
(1962). 

3. Avots, Ivars, "The Management Side of PERT," California 
Management Review, Vol. 4, No. 2 (Winter 1962) .     "" 

4. Bowman, E. H., "Adsembly-Line Balancing by Linear Pro- 
gramming," Operations Research, Vol. 8, No. 3 (May - 
June, 1960). 

5. Bowman, E. H. , "The Schedule-Sequencing Problem," 
Operations Research, Vol. 7, No. 5 (September-October 1959). 

6. Charnes, A., and W. W. Cooper, "A Network Interpretation 
and a Directed Subdual Algorithm for Critical Path 
Scheduling," Journal of Industrial Engineering, (July- 
August 196 2).  ' ~"       " """  ' 

7. Clark, C. E., "The Optimum Allocation of Resources Among 
Activities of a Network," Journal of Industrial Engineer- 
ing, (January-February 19^1). 

8. Clarke, Roderick W,, "Management Systems for the Economic 
Accomplishment of System Development Projects," Graduate 
School of Business, Stanford University, Stanford, Cali- 
fornia (July, 1962). 

9. Clarkson, Geoffrey P. E., Portfolio Selection;  A Simu- 
lation of Trust Investment, Prentice Hall, Englewood 
Cliffs, N. J., 1960. 

10. Clarkson, G. P., end A. H. Meltzer, "Portfolio Selection: 
A Heuristic Approach," Journal of Finance (December, 1960). 

11. Davis, Fischer and Marvin, "PLRTCO I (PERT Plus Cost) 
A Report of Progress, Capability and Conclusions to Date," 
Douglas Aircraft Company, Santa Monica, California, 
(October, 1961) . 

12. Fischer, Henry, and Gerald L. Thompson, "Probabilistic 
Learning Combinations of Local Job Shop Scheduling Rules," 
O.N.R. Research Memo No. 80, Graduate School of Industrial 
Administration, Carnegie Institute of Technology, (February 
1951). 

13-.  Ford, L. R. , and D. R. Fulkerson, "A Simple Algorithm for 
Finding Maximal Network Flows and an Application to the 
Hitchcock Problems," Canadian Journal of Mathematica, 9, 
(1957). 



 mBmmimtmammimmmaMa!mt^F—~,,~~~~~m~~,~-~~~~'~~'~~B~*~'m"m'm '"'" II 

129 

14. Fulkerson, D. R., "A Kctv.vork. Flow Computation for Project 
Cost Curves." Kan.-'.^'-mcnt Science, Vol.7, No. 2, (January 
1961). 

15. Gere, William S. Jr., "Pi Heuristic Approach to Job Shop 
Scheduling," Doctoral Thesis, Carnegie Institute of 
Technology (1962)= 

16. Giffler, B. and G. L. Thompson, "Algorithms for Solving 
Production Scheduling Problems, " Operations Research, 
Vol. 8, No. 4, (July-August, 1960]^ 

17. Gomory, Ralph E., "Outline of an Algorithm for Integer1 

Solutions to Linear Programs," Bulletin of the American 
Mathematical Society, 64, (September, 1958). 

18. Grossman, H., "The Development of SCANS - A Network System 
for Management Control," Systems Development Corporation, 
Santa Monica, California (February 1961). 

19. Jackson, J. R., "A Computing Procedure for a Line Balancing 
Problem," Management Science, Vol.2, No. 3 (April, 1956). 

20. Karg, Robert, and G. L. Thompson, "A Heuristic Program 
for the Traveling Salesman Problem," Graduate School of 
Industrial Administration, Carnegie Institute of Technology, 
(September 1952). ' 

21. Kelley, J. S., Jr., "Critical-Path Planning and Scheduling: 
An Introduction," Mauchly Associates, Inc., Ambler, Penn- 
sylvania (1959). 

22. Kelley, James E., Jr., "Critical-Path Planning and 
Scheduling:  Mathematical Basis," Operations Research, 
Vol. 9, No. 3 (May-June 196:^       "" "  " " "'   >j ■ . 

23. Kelley, J. E., Jr., and M. K. Walker, "Critical-Path 
Planning and Scheduling," Proceedings of the Eastern 
Joint Computer Conference, Boston, December 1-3, 1959. 

24. Koepke, Charles A., Plant Production Control, John Wiley 
X Sons, Inc., New York, 1961. 

25. Kuehn, A. A., and M. Hamburger, ">. Heuristic Program for 
Locating 'Warehouses," Graduate School of Industrial 
Administration, Carnegie Institute of Technology, (Septem- 
ber 1962). 

26." Levy, F. K., G. L. Thompson, and J. D. Wiest, "An Intro- 
duction to the Critical Path Method," Factory Scheduling, 
(edited by J. F. Muth and G. L. Thompson) , Prentice Hall, 

. Englewood Cliffs, N. J. (forthcoming). 

27.  Levy, F. K., G. L. Thompson, and J. D. Wiest, "Mathematical 
Basis of the Critical Path Method," Factory Scheduling, 
(edited by J. F. Muth and G. L. Thompson), Prentice Hall, 
Englewood Cliffs, N. J. (forthcoming). 

mmmmmmrmmm 



130 

28. Levy, F. K., G. L. Thompson, and J. D. Wiest, "Multi-Ship, 
Kulti-Shop Workload - Smoothing Programs," Naval Research 
Logistics Quarterly  (March 1962). 

29. Levy, F. K., and J. D. Wiest, "A Simulation Approach to 
Determining the Stochastic Characteristics of a Project," 
Graduate School of Industrial Administration, Carnegie 
Institute of Technolcgv (1963). 

30. Malcolm, D. G., J. H. Roseboom, C. E. Clark, andW. Fazar, 
"Application of a Technique for Research and Development 
Program Evaluation," Operations Research, Vol. 7, 1959. 

31. Manne, Alan S., "On the Job Shop Scheduling Problem," 
Operations Research, Vol. 8, No. 2 (March-April I960). 

3?.  McGee, A. A., and M. D. Markarlan, "Optimum Allocation of 
Research/Engineering Manpower Within a Multi-Project 
Organization Structure," IDM File Number 61-907-171, 
International Business Machines Corporation, Federal 
Systems Division, Owego, New York (1961). 

33. Miller, Robert W., "How to Plan and Control With PERT," 
Harvard Business Review, Vol. 40, No. 2 (March-April 1962) 

34. Moore, Franklin G., Production Control, McGraw-Hill Book 
Company, Inc., 1951; Revised Edition 1959. 

35. Muth, John F., "The Effect of Uncertainty in Job Time on 
Optimal Schedules," 0. N. R, Research Memorandum No. 88, 
Graduate School of Industrial Administration, Carnegie 
Instituteof Technology (January 1962). 

36. Newell, A., J. C. Shaw, and H. A.. Simon, "Report on a 
General Problem Solving Program," Proceedings of the 
International Conference on Information Processing, 
UNESCO, Paris (1959). 

37. Newell, A., and H. A. Simon, "The Logic Theory Machine," 
Transactions on Information Theory, Vol. IT-2, No. 3 IRE 
Tseptember 1956). 

38. Newell, Allen, and Herbert A. Simon, "Heuristic Programs 
and Algorithms," C.I.P. Working Paper No. 39, Graduate 
School of Industrial Administration, Carnegie Institute 
of Technology (May 1962). 

39. Reitman, Walter R., "Heuristic Programs, Computer Simu- 
lation and Higher Mental Processes," Behavioral Science 
(October 1959). ~ 

40. Sauer, Ray N., "Least Cost Estimating and Scheduling 
(LESS) - Scheduling Portion," International Business 
Machines Corporation, Houston, Texas (February 1961). 

41. Simon, Herbert A., and Allen Newell, "Heuristic Problem 
Solving:  The Next Advance in Operations Research," 
Operations Research, Vol. 6, No. 1 (January-February, 
1958). 



zsmstsmmmBBBoa&aä 

131 

42.  Simon, H. A., T] 
Harper jL  Bros . , 

ig Hsw gcior.c.? of K.'.n.v'ernent Decision, 
New York, 1960. 

43. Snyder, Charles J., Jr., "PEC03 - Project Evaluation and 
Cost Optimization System, " International Business Machines 
Corporation, Akron, Ohio (August 1952) . 

44. Tonge, Fred, "The Use of Heuristic Programming in Management 
Science," Management Science, Vol. 7, No. 1.(October I960). 

45. Tonge, Fred M., A Heuristic Program for Assembly Line 
Balancing, Prentice Hall, Inc. Englewood Cliffs, N. J., 
1961. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53, 

54. 

Voris, L. P., Production Control, Text and Cases, 
Richard D. Irwin, Inc., Homewood, Illinois 
(1961). 

vragner, H. M. , "An Integer Linear Programming Model for 
Machine Shop Scheduling," Naval Research Logistics 
Quarterly, Vol. 5, (1959). 

Anonymous, "Integrated Management Planning and Control 
Technique (IMPACT)" Lockheed Report 14693, Lockheed Air- 
craft Corporation, Burbank, California (September 1950). 

Anonymous, "Nortronics Approach to PERTCO," Nortronlcs 
Division of Northrop Corporation, Hawthorne, California 
(May 1961). 

Anonymous, "PERT:  An Integrated Management Information 
Control System," Operations Research, Inc., Silver Spring, 
Maryland (September 1961) . 

Anonymous, "PERT/COST Systems Design, POD and NASA Guide, Office 
of the Secretary of Defense, National Aeronautics and 
Space Administration (June 1962). 

Anonymous, RAMPS Training Text, C-E'I'R Inc., Arlington, 
Va. (1962). 

Anonymous, RAMPS Users Guide, C 
Va. (1963). 

'S-I-R Inc., Arlington, 

Anonymous, US.AF PERT COST System Description Manual, 
AFSC PERT Control Board, Hq. AFSC (SCCS), Washington, 
D.C. (March, 1963) 


