
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD469503

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; MAY 1963. Other
requests shall be referred to Office of Naval
Research, Washington, DC 20360.

onr memo 7 Jan 1966

HH^m^H m^BMiam^m&mmam&ma mmmmmsrnmu^^i

SEC

The classiüeä or limited status of this report applies

to each page, unless otherwise marked.

Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF
THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18,
U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF
ITS CONTENTS IN ANY MANNER TO AM UNAUTHORIZED PERSON IS PROHIBITED BY
LAW.

NOTICE: When government or other dr
data are used for any purpose other
nitely related government procuremen
thereby incurs no responsibility, no
the fact that the Government may hav
way supplied the said drawings, spec
to be regarded by implication or oth
the holder or any other person or co
or permission to manufacture, use or
may in any way be related thereto.

awings, specifications or other
than in connection with a defi-
t operation, the U. S. Government
r any obligation whatsoever; and
e formulated, furnished, or in any
ifications, or other data is not
erwise as in any manner licensing
rporation, or conveying any rights
sell any patented invention that

i
■

:•

_J

I
^BHBMB^M^l^M^^MB '-

Best
Available

Copy

Unclassified

%

^*r -Defense DöCfflmeetatioM
r Defense Supply Agency

r
c:_.

Cameron Station • Alexa.naria, Virginia

P5, liu

n o C

SEP ü 3 ^65

liüiA R

Unclassified

——■—■———

UNCLASSIFIED

A
ftrf I .-iil»

/Tb /f>v p* /TX ^>,

}^JJ ■-i^j' ■^'.■' "Kjf %^Jt-'J -iC ^ W

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

UNCLASSIFIED

-■■Jfj..^i^H,..-.^lj; —HMIM———M

n

^-~oH ud

,j o ^-1-^
■A

/; rW, vLJ) e^^.. fi {]
"-\ i 4J iJ &JJ \l ß UX ^U^ ^/ ^4

Carnegie Imtilute of Technology
PiHihurgh 13, Panmylyonlo

GRADUATE SCHOOL 0/ /NDLISTRIAL ADMINISTRATION
Wil/iam tarimer Mo/Ion, Foundtr

lu^invinMrw

■ ■-? . - - ■

CuN^^.-'fRGsearch Memorandum-Mo-. 113

(wjtf/Sti -Hm - U3

4V THE SCHEDULING OF LARGE PROJECTS

WITH LIMITED RESOURCES -

'JO by

i Jerome D' Wiest .

1
1 J.

I':' May I'&r-igSZj

I
Graduate School of Industrial Administration

' Carnegie Insti-tute of Technology

Pittsburgh 13, Pennsylvania- •

This paper was written as part of the contract, "Planning
and Control of Industrial Operations," with the Office of
Naval Research, at the Graduate School of Industrial Admin-
istration, Carnegie Institute of Technology. Reproduction
of this paper in whole or in part is permitted for any pur-

■^ pose of the United States Government. Contract ONR-23

nRtaHHHMOBiKHMiRninnMHivMMiBMivaMaBnHnnM

■■ ■■■»■IM^^MHnjllllMailBMBaB ■ JV.:-;.«v.tw

THE SCHEDULING OF LARGE PROJECTS

WITH LIMITED RESOURCES

1

A Thesis

Sutmitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

at the Carnegie Institute of Technology

■

by

Jerome Douglas Wiest

May, 1963

1

 ^iiiiiiMiiTfwiTiiiiiMmnnTiinMiiimiiiiiinirninriiiiiiiiiiiii 11 iiiiiiinimiiii iiiiiiiiiini

1

ACKKO.LJO^'.r.NTi

The work reported here v/as accomplished with the gener-

ous support of the Ford Foundation, which provided Predoctoral

Fellowships in 19^0-62 and a Doctoral Dissertation Fellowship

in 19^2-63, and the Office of Naval Research, whose grants to

the Graduate School of Industrial Administration supported

{.-imcng several projects) my research during two summers and

assisted in other ways. I am very grateful to both organiza-

tions.

The faculty committee under whom the thesis was writ-

ten was a continual source of helpful suggestions. Professor

G. L. Thompson, Chairman, fostered my interest in the topic;

his steady guidance and stimulation were invaluable. Pro-

fessors G. L. Bach, M. B. Nicholson, and F. M. Tonga provided

a diversity of talents and viewpoints that I much appreciated.

Their thoughtful comments are reflected in many ways through-

out the thesis.

Several others could be mentioned who influenced my

work at various stages. In particular, I would like to thank

Ferdinand K. Levy, a fellow student. My research had its ori-

gin in some ideas we Jointly developed during the summer of

1951; and in many discussions of my work we have had since

then, he has been an interested and stimulating critic.

On my wife, Yvonne, fell the concurrent responsibilities

of typing the thesis through its several drafts and final copy,

managing a household and a husband, and caring for our new

daughter, Merrilee, born in March of this year. (Moreover,

llllllllllllllllllllMlllllill ^—^^—■^

she successfully completed the: numerous, pertinlly-ordGrad

jobs of these large projects without the aid of a computer,

which speaks well of her own heuristic scheduling methodsl)

Throughout the years we have spent at Carnegie Tech, she has

been a constant source of encouragement and inspiration, for

which I am most grateful. That my work moved steadily to

its completion is due in no small part to her sympathetic

support.

]

)

BBa^^^martoBeü^—.

CONTENTS

Chapter 1

LARGE PROJECT SCHEDULING: THE PROBLEM 1

Introduction 1

Definition of Largo Projects 2

The Large Project Problem vs. the Job Shop Problem 4

The Large Project Problem vs. the Line Balancing

Problem 5

Combinatorial Problems 6

Structure of the Large Project Problem 8

Criterion Function 10

The Problem: A Definition 11

Chapter 2

CURRENT PRACTICES AND PROPOSALS

IN LARGE PROJECT SCHEDULING 13

Traditional Literature 13

Recent Developments in Large Project Scheduling 16

PERT, CPM and Related Techniques 17

A Linear Programming Approach to Project Scheduling 23

Heuristic Programs 28

Chapter 3

SOME PROPERTIES OF SCHEDULES FOR LARGE PROJECTS

WITH LIMITED RESOURCES 30

The Schedule and the Schedule Chart 32

Slack 37

Schedule Generating Rules 42

Critical Sequence 48

Implications of the Critical Sequence Concept

for Project Scheduling 56

Variable Resource Limits 57

Relationship of Job Shop and Large Project Problems 59

■^wiiwgr ■ -... •. - • " ■ ••• "■■■^■A" ■

Chapter 4

COKPUTZR :-:0Dr-;L3 FOR LM-^E PROJECT SCHEDULING

The M32 Models

MS'-l
2

MS -2

The 1PAR Kodels

Modifying Heuristics

SPAR-1

'i;PAR-2

A Comparison of RAMPS and SPAR

Some Comments on the Certainty Assumption

62

63

64

66

67

58

77

79

00

86

Chapter 5

OPERATING RESULTS FROM THE PROJECT SCHEDULING MODELS 88

Computer Requirements of the Scheduling Models 83

Project Scheduling Experience 89

Projects A and B 90

Evaluation of Results: Projects A and B 98

Project C gg

Evaluation of Results: Project C 104

Project D 109

Evaluation of Results: Project D 110

Problem: What Is a "Good" Schedule? Ill

Summary of Results 112

Chapter 6

CONCLUSION

Economic Feasibility of the Models

Heuristics for Scheduling Problems

Future Work

Summary

A Final Comment

114

114

116

120

123

124

APPENDIX: Glossary of Symbols 126

BIBLIOGRAPHY 128

HBIfllHHIIttBHaiB ii iiiiiii im iiTnfrmiMiiimiiimni mmniiiiii—iimniiinniiiiiiiiiiiiii

L I OF FIGURE"

Figure 1

Figure ?

Figure 3

Figure 4

Figure 5

Figure S

Figure 7

Figure 3

Figure 9

Figure 10

Figure 11

Simple Project Graph 3

Simple Job-Shop Graph 4

Example of a Schedule Graph 33

Flow Diagram - 3PAR-1 7 3

Flow Diagram - SPAR-? 81
2

Project A - Unsmoothod Schedule vs. KS ~1

Schedule 91
o

Project A - MS -1 Schedule vs. SPAR-1

Schedule (Fixed Crew Size) 92

Project A - KS -1 Schedule vs. SPAR-1

Schedule (Variable Crew Size) 93
2

Frequency Distribution of Lengths of MS -2

Schedules 9*5
2

Project C - Unsmoothed Schedule vs. MS -1

Schedule 100

Project C - MS2-1 Schedule vs. SPAR-1

Schedule 10 5

L I O F TABLE

Table 1

Table ?

Table 3

Table 4

Table 5

3PAR-1 Applied to Project A: 55 Jobs

(Search Routine 1: Increasing Shop Limits)

^PAR-l Applied to Project A: 55 Jobs

(Search Routine ?: Decreasing Shop Limits)

94

95

SPAR-1 Applied to Project 3: lOO Jobs, One Project

(Search Routine Is Increasing Shop Limits)

(Search Routine ?: Decreasing Shop Limits) 97

SPAR-1 Applied to Project B: 100 Jobs, Two Projects

(Search Routine 2: Decreasing Shop Limits) 98

SPAR-1 Applied to Project C: 181 Jobs

(Search Routine 2: Decreasing Shop Limits) 103

rwy Bwwi»«!iiwr"j"j| iijil .1 iJllW BMW wm mmmHmmmaiimtimmium^^

■,^M^"8 ——■^—■—■—■—^IM^^SSä^, , .-: u-,:_

I

Chaptnr 1

LARGE PROJECT SCHEDULING: THE PROBLEM

Introduction

Large projects, as a class of human endeavor, have tested

men's organizing abilities at least since the time of the Tower of

Babel and Noah's Ark. Modern logistics problems have an ancient

predecessor in the formidable project Moses undertook of planning

the delivery of the Israelites from Egypt. One is impressed, in

reading the history of civilization, that some of the most impor-

tant periods of history are associated with the completion of

large projects—from the building of the Egyptian pyramids to the

explosion of the first atom bomb. The rapid advances of science

and technology in our own age have led to a great acceleration in

large project activities—evidenced, for example, by the construc-

tion of numerous dams, bridges, highway systems, and (more spec-

tacularly) by the development and launching of space satelites.

Given such a long history of human involvement in large

projects, it seems somewhat remarkable that, until quite recently,

comparatively little has been written on the subject of large pro-

ject scheduling. Perhaps the growing size and complexity of space-

age projects has intensified the need for better methods of plan-

ning and scheduling such activities, which might explain the

greatly increased attention devoted to this subject during the past

three or four years. And computer technology has made easier the

handling of large amounts of data associated with large projects.

But one still wonders why researchers—at least in this century—

have not earlier found the problems of large project scheduling an

interesting area for study. Whatever the reason, the importance

of the problem is presently evidenced by the widespread interest

in it; and the modest amount of progress made thus far leaves it

/

still a fruitful area for research.

In the present volume, we have chosen to study, within the

complex (and largely unstructured) field of large project manage-

ment, the problem of project scheduling. We will not be concerned,

for example, with questions of project design or technology, nor

will we discuss implementation of a scheduling system or (in an

explicit manner) the problems of project control. Further, we

will deal with the case of certainty—that is, we will work with

single job times rather than probability distributions or PERT-

type estimates.

The specific goals of this volume are two-fold:

1) To develop a conceptual framework for the problem of large

project scheduling, and to extend the concepts of critical path

analysis to the general case of limited resources; and

2) To develop and test some computer models for scheduling

large projects with limited resources, drawing on the concepts

developed in 1).

Definition of Large Project

The nature of large projects is evident, in part, from the

examples we have cited, to which we might add the construction of

buildings and plants, large maintenance projects (e.g., a turn-

around in an oil refinery, in which the refinery is shut down for

a few day for numerous repairs and alterations), research and

engineering design projects, production of large, special-order

equipment (e.g., power generating equipment), and so forth.

Usually such projects are one-of-a kind, which means that sched-

ules must be tailor-made for each project. Large projects typi-

cally consist of several hundred (or thousand) separate but tech-

nologically related jobs or activities. That is, the jobs are

partially ordared by predecessor-successor relationships; some

jobs must be performed in a given sequence while others may be

performed in parallel. Consider, for example, the following

"project graph" of a simple project:

Figure 1

Each arrow represents a job or activity that requires certain

resources and a given time to be completed. The connections of

arrows and nodes indicate predecessor-successor relations. For

example, job 1 is an immediate predecessor of job 3 and must be

completed before 3 can begin. Jobs 4 and 5 are immediate suc-

cessors of 2 and immediate predecessors of 6 and 7, respectively,

and so forth. The completion of 10 marks the end of the project.

A single due-date is of interest—the finish date of the entire

project.

Structurally, the size of a project is not its dominant

characteristic, of course. By defining a project simply as a

collection of independent, partially-ordered jobs, we extend the

application of our present analysis to projects of any size. In-

deed, most of our illustrative examples throughout (as in Figure 1

above) involve trivially small projects. But it is the size of

large projects that makes them interesting and worthy of our

analysis. When we speak of the "large project problem," we mean

to emphasize not only the structural aspects of a project but

also the complexities that result from its size.

i^HBHmvama^^HH^H ■^^^■■■■WBSOBEBB " ■WaHMHHMnHn^HIHni^B^Hi

»^t-^KSiäa^ais ■iiin i—iiM ■iwiiiiiiiiniiiiiwi Mumwiiiiiiiliiiiiiiiiiiiiiiiiiw ~————^——

We should also note that our categorization of "project"

and "job" is relative to one's point of view. Consider the Navy's

task of scheduling ship repairs. From a top-level viewpoint, each

ship to be repaired comprises a job, and ch- project consists of

scheduling all the ship (jobs) that need repair in a given period

of time. At the shipyard level, each ship which arrives is a pro-

ject, and each major item to be repaired on the ship is a job.

At an even lower level, such a job (e.g., overhauling the ship's

engine) becomes a project with many separate, smaller jobs that

must be scheduled. At each of these "levels of indenture," the

essential structure of a project exists as we have defined it and

our analysis is equally applicable. Thus the "size" of a project

refers essentially to the number of Jobs it contains, rather than

to some physical or monetary measure of the project's importance.

The Large Project Problem vs. the Job-Shop Problem

The large project problem differs in several respects from

the job-shop scheduling problem, in which the Jobs, each of which

may comprise one or more activities, are technologically independ-

ent (or are assumed to be), and the due-date of each Job is of

concern. A simple "job-shop graph" (comparable to the above pro-

ject graph) might appear as follows:

Figure 2

O-^-O

,■,-.....■ ^^^^g^mrfirawnw i IIM^M i ■ai^M^MWIWyiHIIII

Of the four jobs, 1 and 3 have a single activity, while 2 and 4

have several activities which must be performed in the sequence

shown. A typical job-shop problem, of course, would involve

hundreds or thousands of such jobs and activities. We will later

have more to say about the relationship of the large-project and

job-shop problems; suffice it now to observe that the former dif-

fers Trom the latter by virtue of the partial ordering of project

jobs and the single due-date characteristic.

The Large Project Problem vs. the Line Balancing Problem

From a managerial viewpoint, the large project problem

differs considerably from the line balancing problem. The latter

is concerned with repetitive operations and large numbers of identi-

cal products, with the possibility of production for inventory, as

one would find in mass-production type Indus'ries. On the other

hand, a large project is, by definition, a onn-of-a kind, single

"product" effort. No attempt is made to group jobr. or tasks into

work stations, since the sequence of such Jobs would be performed

only once. Such effores at sequencing in a mass production indus-

try would likely be worth while because of large production runs.

Thus line balancing is concerned with rate of production (units

per time period). As an additional difference, each job in a pro-

ject may require a different resource (skilled operator, machine,

etc.), while the line balancing problem as ordinarily formulated

implicitly assumes all operators are capable of performing any

task at any work station.

Corabinatorial Problems

In certain respects, however, the line balancing problem

resembles both the large project problem and the job-shop problem.

A similar directed graph representation may be made of the former,

in which the arrows represent elemental tasks making up the assem-

bly operations, and the nnde connections display precedence rela-

tionships among the elemental tasks (see Tonge [45]). Thus Fig-

ure 1 might illustrate an assemply problem in which arrow 2 rep-

resents an elemental task requiring a given operations time per

unit of product, which must be completed before elemental tasks

4 and 5 are performed on the same unit, and so forth. The problem

is to assign tasks to work stations in such a way as to minimize

the number of such work stations given the constraints of task

times, ordering, and production rate. As Tonge notes, the line

balancing and job-shop problems (and we might add, the large pro-

ject problem) are representative of a class of combinatorial pro-

blems in which elements of a set are to be ordered or grouped

according to some criterion. In job shop scheduling, groups of

jobs are assigned to machines in such a way to observe sequencing

and to minimize time pest due-dates. In the large project problem,

jobs are ordered in time in such a way that resources required do

not exceed those available in any time period; the object is to

minimize the project length given limited resources and the order-

ing constraints among the jobs.

The directed graph representation employed by Tonge is actually
the reverse of that described above—i.e., nodes are elemental
tasks and arrows represent precedence relationships. A project
graph could also be drawn in this manner, of course (see Levy,
Thompson, and Wiest [26]). While such a method of drawing a
project graph avoids the necessity for "dummy jobs" (as described,
for example, by Kelley [21]), the method used throughout this
volume was chosen because it has certain advantages for purposes
of illustration and because it has become so firmly established
and widely accepted since the advent of PERT (Project Evaluation
and Review Technique) and CPM (Critical Path Method).

mmMBMMH^H^^HI nKMVfW..i»ii ^■MM^H^V ■^■MM^^MB^^B^Bmi IflMVUWmlSB

«UMH^^BHMUai '^■"■^■■HiBM«>ii«^^^B;„_„;_._^J_,j__,.„.,:_^

One may conceive of the line balancing problem as one of

ordering the elemental tasks along a time scale marked off into

blocks determined by the desired production rate (e.g., a block

would be tv/o minutes if the production rate is 30 items/hour) .

Tasks may not be split between time blocks, and ordering con-

straints must be observed. The object is to minimize the nun.bor

of time blocks (work stations), which amounts to assigning tasks

in such a way as to maximize the proportion of time used for tasks

in all of the blocks.

An attempt to structure the large project problem in a

similar manner points out the differences in the two problems.

Since the project is performed just once, the concept of time

blocks established by a production rate has no meaning. But we

might conceive of resource blocks consisting of the amount, of

a resource available during one day (or whatever the smallest

scheduling period may be); If jobs were all just one day long,

they could be ordered along the resource scale in such a way that

precedence relations were observed and resource requirements of

jobs grouped into a resource block would never exceed the amount

available in the block. The object would be to minimize the

number of such blocks.

The difficulty with this formulation, of course, is that

jobs are usually more than one day long. Additional complica-

tions arise from the fact that projects usually involve many

resource types, jobs may require several resources, resources

may vary over the schedule period (the resource "blocks" would

be of different sizes), and resource requirements on many jobs

1 The formulation is due to Bowman [4]

 ■«im r — IIIIIIHIIIIIIIIIIIIIIIWIII iiiniTrMtrnr —-^.

c.rc variable. Thus, C.G cr.r.rriplcr, of combinatorial problems, line

balancing and large project scheduling resemble each other only

suoeri iciallv.

Structure of the Large Project Problem

We turn now to examining the structure of large projects

and the important constraints associated with them. The project

scheduler, in assigning a start time to each job in a project,

must consider

1) The partial ordering of jobs (i.e., no job may be started

until all of its predecessors have been completed)•

2) The resourcp requirements of each job (e.g., crew size,

machine type, etc.);

3) The time required to complete the job (which often is a

function of the resource requirement—i.e., the more resources

assigned to a job, the less time it takes) ;

4) Resource limitations during any time period (which may

be varied by hiring, lay-offs, overtime, etc.)*

5) A due-Date or projected completion time for the entire

project (sometimes with penalties attached for failure to meet it)?

6) Other projects which may overlap the time period of the

project being scheduled and thus compete for resources.

We could make our list much longer and more detailed, of

course, but these are among the major constraints facing the

project scheduler. Their relative importance may vary according

to the nature of the project and the organizations involved. For

example, general contractors scheduling a construction project

typically are less concerned about resource limitations than with

meeting the contract due-date. Construction workers—carpenters.

 ;„,_z,^^.„^. ggft^K^^amam^mmtmmmmmi^^i^^aema^a^^^m^^m^^^m^m

brick, layers, etc.—are often obtained in an" ■./.or-ireO nxabe::

through union hiring halla, and the contractor does not have to

worry much about costs of hiring, firing and training. Resource

limits, in other words, can be varied quite inexpensively. At

the opposite extreme. Naval shipyards find it expensive, because

of Civil Service regulations and labor contract requirements, to

vary their shop crews to any great extent. Once a man is hired,

it is difficult to release him. Thus shop crews tend to be rela-

tively stable in size—usually large enough to handle peak manpower

loads. The Navy, therefore, is concerned with smoothing out mar-

power requirements—lowering the peaks and filling the valleys—

so as to obtain more efficient utilization of shop crews. The

same is usually true of manufacturing enterprises engaged in the

production of large items (e.g., hydro-electric generators). Costs

of hiring, training, and layoffs (including "bumping," unemployment

insurance, supplementary unemployment benefits) make many firms

reluctant to vary work force levels to any great extent; although

the possibility of overtime and (in some cases) subcontracting

give a measure of flexibility to resource limits. Other examples

may be cited where the limits on resources are even more inflexible—

as, for example, where resources are already used extensively and

overtime or subcontracting cannot be employed; where certain skilled

workers are scarce and firms can hire no more (nor do they desire

to lose the ones they have)• where projects are intermittent and,

by themselves, do not justify varying the existing work force (as

in the month-end project of closing the accounting records in large

firms).

10

Critorion Function

Because of the above differences in project types, the

same criteria for a "^ood" schedule would nor necessarily apply

in every situation. Consider these three cases:

1) A contractor building a missile "site" for launching

ICBM's works under a strict deadline and is quite willing to hire

enough men to assure meeting the due date. Thus his goal is a

schedule which optimizes resource levels—e.g., minimizes man-

power costs (wages, idle time, overtime,, etc.), given a fixed

due date.

2) At the other extreme is a project manager who cannot vary

his resource levels; he wishes to find the schedule that minimizes

the project length given fixed resources.

3) Other projects may fall in between these extremes; the

manager desires to find some combination of resource levels and

due date that will minimize resource costs, overhead costs, and

penalties for exceeding the due date. The latter problem is the

most difficult, of course, because it has the fewest constraints.

The multi-dimensional space of possible schedules which must be

searched is much larger due to the greater number of variables.

It is possible, of course, to write a criterion function

.that would apply to all three cases. If it includes all relevant

costs, then the first case could be represented by assigning an

extremely high penalty to extending the project pasL the due date.

Variations in resource levels would thus be less expensive to ex-

plore than changes in due date. Likewise, in the second case,

high costs attached to increases in resources would lead to the

consideration, instead, of changes in due date. And in the third

case, cost parameters would be such as to permit variations in

lPlpiM!»'«.W«MM,W*(^*r

nnwiiiiMiiiiiiHiiiiiiiiii ifiiwiBiiü rMBMMMni^^a^ ;

11

both due date and resource levels. Thus by altering the cost

parameters in our criterion function, v;e can make it applicable

to various project types or situations and reduce a possible

multiplicity of functionals to the simple criterion, "minimize

costs." This enables us to give a concise and general statement

to the scheduling problem with which we are concerned.

The Problem; A Definition

Given a) a project consisting of a known, partially-ordertd

set of jobs, and b) limited resources with which to complete the

jobs, find the schedule of job start times ana crew assignments

that minimizes all costs associated with the project.

We should immediately state that our goals are more modest

than the above paragraph implies. We do not seek for a scheduling

procedure that guarantees an optimum solution; we will be content

with good solutions. In a later chapter we deal with the question,

'What is a good schedule?" Suffice it now to state that we seek

an improvement over present scheduling procedures. The problem

with which we are dealing is immense. Even modest sized projects

have an enormous number of possible solutions, and there are no

analytical techniques which can feasibly be applied. At times we

may find it advisable, if not necessary, to simplify the problem

by imposing constraints that narrow the range of possible solu-

tions. Yet we intend to preserve as many of the essential char-

acteristics of the project scheduling problem as possible, so that

we end up with a procedure that can deal with a "real world" problem

rather than an overly simplified and abstracted version of it. With

the use of mathematical tools and the computational power of a modern

digital computer, our goal is to develop scheduling procedures or

models that aret

■■Hi iiiMtiiMim—iiiamiiiiiniii! ■• • -^^^mei^amMmimmK^m^^BKKmum^amaaammi^t^nmm^määiiiiä^m^r

12

1) Sufficiently rich to take account of important job data

(manpower requirements, time spans—with possible adjustments by-

varying the manpower, shop or skill requirements, and technological

ordering) and shop characteristics (resource limits, regular and

overtime labor costs, overhead costs);

2) Sufficiently general to be applicable to projects of dif-

ferent types or characteristics (and their associated criterion

functions), and to multi-project situations in which each project

has a unique due date (thus including, conceptually, the job-shop

scheduling problem)r

3) Computationally feasible for projects of reasonable size;

4) Superior, in an economic sense, to present methods of

scheduling.

■HHW^anBuam .^^■. ^„^L^:^^i-:^j^^--^^^i^>l'l,*B,^B,BB^^^H
^sgg^Baam^B^au^BmtBBBfBS

Chapter 2

CURRENT PRACTICES AND PROPOSALS IN LARGE PROJECT SCHEDULING

In this chapter we will explore and comment on the litera-

ture—traditional and current—dealing with topics related to

large project scheduling. We will then examine an analytic formu-

lation of the large project problem and finally present our argu-

ment for a heuristic approach to its solution.

Traditional Literature

Many large projects are carried on by manufacturing enter-

prises (e.g., makers of large turbo-electric generators, steel

work prefabrications for bridges and buildings, large units of

mining equipment, ships, etc.). Yet one looks with little success

through books on manufacturing and production management for some

explicit exposition of large project planning and scheduling.

They generally deal instead with a related problem: intermittent

manufacturing, the essential characteristic of which is "the

quantity of any product made on any one order" (Moore [34], p. 21).

The dividing line between "large project" and "intermittent

manufacturing," however, is a hazy one (Moore describes "special

projects of gigantic size" as "intermittent manufacturing carried

to its extreme")j hence the literature dealing with intermittent

production scheduling is of interest to us. The traditional

approach found in almost every book on production scheduling is

to decentralize the assigning of specific start times of jobs in

a project (or order). Moore, after describing the advantages of

centralized ^heduling (namely, better coordination and control),

notes that t.._ numerous, detailed directives necessary in inter-

mittent manufacturing lead to decentralization of some production

contra■' work ([34], p. 54? see also [1,24 , 46]). The production

JIHHIIillMT "'

14

and sales departments determinG what is to be produced at some

aggregate level, and detailed planning and scheduling is often

left to the foremen and in some cases, to the workers. Daily

o- weekly progress reports are made out by the foremen for the

central office, which often finds it necessary to employ "stock

chasers" or "expediters" to push delinquent jobs which threaten

to delay completion of the project. "Order scheduling is con-

cerned more with the setting of deadline dates than with setting

exact time assignments for operations," the latter being estab-

lished by foremen or local dispatchers essentially on the basis

of urgency of need for items and availability of resources. Graphic

tools, such as Gantt charts, are often used to keep track of resource

assignments over a period of time and for measuring actual against

planned progress (see Alford and Bangs [l, p.llO]).

Thus only a preliminary or rough schedule of the project

(order) is made centrally, while the more refined and detailed

schedules are worked out by those nearer the operating level.

The more decentralized the scheduling, the more cushion or slack

time must be allowed at the operating level for juggling start

dates within precedence requirements. This method of absorbing

uncertainty has its costs in uneven shop loading, higher in-pro-

cess inventories, and more distant completion dates. Decentralized

scheduling also make'i more difficult the prediction of manpower

requirements. The decentralized scheduler has little means of

determining the effects of his decisions on manpower loads of

subsequent shops. Larger than necessary work forces and exces-

sive idle time are often the result.

These disadvantages of decentralized scheduling have long

been recognized, of course- but the problems associated with

uiuiMKuuM wnin iimniriurmwrfi—■- "-

■■^■■M^—^—^«Et ' V- '--■--« ^!^i^a^BB8»»..^.";-i-.!M^^^^^^^^B^«t; __

15

centralized scheduling of iarje projects have, until recently,

seemed intractable. The data-handling problem alone is immense.

Projects typically contain 200 to 2,000 or more jobs. (Many job

shops engaged in intermittent manufacturing have more than 5,000

jobs in process at one time.) Resource groups (shops) usually

number between 8 and 20 or more, and the scheduling horizon ex-

tends in most cases beyond 150 days or time periods. A central

scheduler faces a tremendously complex task if he attempts to

establish a start date for each job in such a way as t<- observe

job requirements (shop, number of men, machines, time, etc.), job

sequence relationships, resource limitations (which may be changed

by hiring, overtime, etc.), due date, and some criterion function

such as minimal manpower requirements.

Manpower loads on various shops (or skill groups) typically

are quite uneven. Production for inventory is, of course, unavail-

able as a method of smoothing peaks and valleys. Hence the schedu-

ler must use the more difficult device of juggling jobs backwards

or forwards, within the constraints of technological ordering,

resource availability, and due date. The number of possible sched-

ules he can devise is astronomical and of course beyond his ability

to explore. Hence the dilemma: over-all smoothing of manpower

(and other resource requirements)can best be done, conceptually.

For example, assume a modest project of 200 jobs, consisting
of 10 independent chains of 20 jobs linearly ordered, with
one critical chain 100 days long and the other chains having
10 per cent slack. We can calculate the number of possible
schedules by first counting for each chain the number of ways
10 "units" of .slack can be distributed among 20 "units" of
jobs. The answer is

I lo. 20 1 = io; 201 = 1-4a X 10

Thus, the total number of schedules for the whole project is

(1.48 x 108)9 - 3.4 x IO73.

 .„———————— imiiimiimiiiiiiMiiiiiiiiii ""THiTmirT I

16

by a central scheduler; but the mass of data and the complex

relationships of jobs in large projects are usually beyond his

human capabilities to handle. Kost often the result is a sub-

optimum compromir.e: rough scheduling, with lots of cushion be-

tween jobs, is done centrally, while detailed schedules are

generated at the operating level.

Recent Developments in Large Project Scheduling

More recent efforts to solve various scheduling problems

have drawn on new (or newly applied) mathematical techniques,

the computational power of large digital computers, and various

heuristic devices. Analytical solutions to the line balancing

problem, for example, have been published by Jackson [19], who

devised an enumerative algorithm, and Bowman [4], who developed

Admittedly, there are other valid reasons for decentralized
scheduling apart from the problems of data processing. Job
times are often rough estimates; actual work time may be more
or less than expected. Resources available may also change
unexpectedly, when men become sick, machines break down,
materia] shortages develop, and so on. Decentralized schedul-
ing, it is argued, is more flexible; a foreman can respond to
unusual circumstances faster than can a production control
man at head office (even if he has a computer at his finger
tips) by juggling the start times and crews assigned to jobs
on hand. But the ability to juggle jobs at the operating
level is not inconsistent, necessarily, with centralized
scheduling. In fact, if a central scheduler can adequately
process the job data (e.g., by means of a computer model),
he can do better than provide the foreman with large amounts
of cushion in the schedule: he can tell the foreman the
likely effects of delaying each of the jobs—which jobs have
the most "slack" and can be delayed the longest without inter-
rupting due dates, and which are critical and must be expe-
dited. Much of the cushion built into schedules at present
is not just to allow the foreman more flexibility in meeting
unforseen contingencies, but rather it reflects the uncer-
tainties of a scheduling system that cannot accurately predict
daily (or hourly) resource needs for the number of jobs that
have to be scheduled, and match them against resource avail-
abilities.

17

a linear programming model. The computational requirements of

both vjould strain the capacity of the largest computers on even

moderate-sized problems. A heuristic approach—more flexible

and practical than the present analytical methods—is described

by Tonge [44].

In the job-shop scheduling problem (more closely related

to large project scheduling than is the line balancing problem),

the same situation exists. Analytic solutions—mainly linear

programming models—have been devised by Bowman [5], Kanne [31],

Wagner [47] and others, but at present they are computationally

impractical and mainly of academic interest. Giffler and Thomp-

son [IG] describe an algorithm which generates from the set of

all possible schedules a subset containing the optimal schedules.

Computational effort is thus reduced, and in problems of small

size the optimal schedule can be found. A heuristic approach to

job-shop scheduling has been explored recently by Gere [15].

Programmed for a computer, it can handle reasonably large pro-

blems .

PERT, CPM, and Related Techniques

There has been a great deal written on the subject of

large project scheduling since the fairly recent development of

PERT (Project Evaluation and Review Technique) [30, 33, 50, 51],

CPM (Critical Path Method) [21, 22, 23], and the flood of similar

techniques which have followed. All are based on arrow diagrams,

which show the jobs or activities of a project and their techno-

logical relationships. It will be useful for us to briefly

review a number of these techniques, noting the approaches they

take and their unique characteristics.

UMWUMIUfUPM

1"

Ori'jinr.lly designed for use on tha Mrvy's Polaris missile

research and development program, PERT was more of a planning

and control technique than a scheduling tool, and it V7a3 essen-

tially "time-oriented,", i.e., it paid little explicit attention

to factors of cost and resource availability. Its most recent

version—PERT/COST [51, 54] —is the result of government efforts

to unify the many variations of PERT developed by the armed ser-

vices and various businesses for use on weapon systems develop-

ment projects contracted by the government (e.g., PERT II, PERT

III, PEP, PEPCO, Super PERT, etc.). Essentially, PERT/COST adds

the consideration of resource costs to the schedule produced by

the PERT/Time procedure (as the earlier version is now called).

There is no attempt to use cost data in such a v.'ay as to optimize

total project costs, except by "manual" job shifting: where pro-

ject costs indicate the necessity for excessive overtime or

hiring, "manpower smoothing is accomplished by rescheduling slack

activities to periods when the skills are not required by criti-

cal activities" [51, p.4]. PERT/COST is an example of an "enumer-

ative" cost model. All costs are merely enumerated, to facili-

tate comparison of projected and actual costs as the project pro-

gresses, rather than being used as parameters in an analytical

cost-minimizing model. In this and other respects, the systems

of PERTCO [11, 49] and SCANS [18] are quite similar, although the

latter program has a routine for distributing slack in order to

balance manning levels.

A "time-cost option" and a "resource allocation supplement"

to PERT/COST are described in the DOD/NASA Guide [5l]. A similar

approach is recorded by Alpert and Orkand of ORI [2]. Alternative

1 The classification used here was proposed by Operations
Research Inc. [?0]r see also Clarke [S].

im iiiiiM—^—BTW' i—"" TT—*™I III ill I ■■■■■■«—»MMM^^Mna^MBM

19

time-cost trade offs are estimated Hor each activity, and the

schedule is shortened by "crashing" jobs on the critical path

tüat cos u tuS xeas u per *uay suaveva OJLI. tne sCi'ieciUxe, wicViout

regard to resource availability. When the desired due date is

achieved, then resource leveling may be required. Slack jobs

are shifted off peak days, or additional resources are applied

to such jobs in an attempt to move them off the peak days. Smooth-

ing is performed, after the computer program has produced a sched-

ule, at management's option. Thus the computer program seeks to

minimize required resources; it does not schedule by allocating

given, limited resources. The methods proposed apparently have

not yet reached the stage of a working model. The USAF PERT COST

Svstem Description Manual [March 1953] states, "Development and

implementation of the Time Cost Options and the Resource Allo-

cations Supplement have been considered a subject for future

study" [54, p. i].

The Critical Path Method, developed by Kelley and others

[21, 22, 23], represents a second major approach to the large

project scheduling problem developed in recent years. Similar

in many respects to PERT, which also uses a network graph to

detect the "critical path" of jobs in a project, CPM differs mainly

in that (a) it is a deterministic system (job times are assumed

to take place without variations in planned tine) as opposed to

PERT's probabilistic approach (in which three times are estimated

for each job—pessimistic, most likely, and optimistic, with

associated probabilities)? (b) it focuses explicitly on job costs,

and presents an algorithm for minimizing project costs given a

fixed due date.

 MiiiiTiaiiiigriiriiiiin'~~'~~'~~'~~~~~~~~~~~~~~~™™'*~~~'~~'~~'l~*''*~,,~*~*'

?0

Thus G?' rcnroscntn ? "Tinjle ocramotor ooti-nization model"

[c, 50], Xelley describas the mathematical modGl upon which GPM

iz based as a parametric linear program [?2]. Its solution de-

pends on the Ford-Fulkerson algorithm for finding maximal network

flows [13], Basic to CPK is the assumption that a time-cost trade

off exists for every job, and that the time-cost function is mono-

tonic decreasing and concave between a job's normal and "crash"

durations. (A linear relationship is usually assumed.) Although

the model yields a minimum cost schedule for a project of fixed

length, it assumes (as does PERT-Time) that resources are un-

limited. The resulting schedule may be quite impractical in

terms of available manpower or machines, and costs not included

in the model (overtime, idle time, etc.) may be prohibitive.

Other related techniques are numerous. LESS [40] developed

by IBK, uses essentially the Kelley approach. AMPERE [50] (an

ORI system) calculates a schedule and cost data similar to PERT/

COST, and then provides alternative courses of action management

might take, utilizing normal, minimum and maximum loading for each

skill group. PECOS [43], a more recent IBM program, combines

some features of PERT and GPM: it still utilizes the probabil-

istic job times to calculate expected job times, and then seeks

for the most efficient method of decreasing project duration by

crashing critical jobs. Time-cost trade-off curves are assumed

to be linear between normal and crash times. Based on an algo-

rithm derived by Fulkerson [14], the program plots for a project

an optimum time-cost curve, which is always piecewise linear

under the assumption noted. As in CPM, the program assumes that

resources are available as required.

nmmumimamimM

?!

T'cGee and Karkarian [-3?] describe an "analytic technique"

which they claim achieves an optimum allocatiun of manpower in

a research/engineering project. It utilizes minimum and maximum

manning levels for each job (activity) and assumes a linear rela-

tionship between the two in a time/manning plot. The method

starts by assigning the minimum manning level to each job and

calculating a critical path network. If the scheduled alloca-

tion of manpower exceeds given limits on any day, an attempt is

first made to delay slack jobs on peak days. This failing, addi-

tional men are added as indicated. If the projected completion

time is gree.ter than the required due date, additional men are

added to the jobs which compress the work at minimum cost. As

with CPM, however, costs of varying resources are not considered.

Essentially, the procedure smooths only by shifting slack jobs»

beyond that it adds men as needed on peak days, without regard

to costs of increased resource levels, idle time, etc. It does

not consider the possibility of extending the due date (at some

penalty).

A similar approach is taken by IMPACT, a model developed

by Lockheed [48]. Activities are first scheduled at minimum

loadings, and then the resulting schedule is compressed by in-

creasing the manpower loading of activities which produce the

maximum shortening per increment of added cost. Manpower limits

are never exceeded, however? the model stops loading an activity

when its shop limit is reached, and looks tc the next cheapest

activity to crash. The model does not consider the possibility

of adding more manpower through hiring or overtime.

mömmmmwmm MHEMi^MHnnnHH

22

The main shortcoming that we see in many of the above

scheduling models is that they do not take into account limited

resources. Cost optimization, v;here attempted, is based on a

single cost parameter: the premium for "crashing" jobs. In

the models where limited resources are recognized explicitly,

there is generally no attempt to consider alternatives of in-

creasing resources or using overtime along with their associated

costs? nor do they allow for comparison of penalty costs for ex-

tending the due date vs. the premium costs of adjusting resource

levels.

While there are interesting features in many of the models,

none of them have all of the "essential characteristics" we estab-

lished earlier for an operationally useful scheduling model. such

a model, we believe, should deal more adequately with the major

constraints generally associated with large projects.

A recent and ambitious computer model for project scheduling

that does explicitly consider the restraints described earlier is

RAMPS (Resource Allocation and Kulti Project Scheduling) , developed

by duPont and CEIP, Inc. [52, 53]. As RAKPS is the proprietary

program of CEIR, its details are carefully guarded, but the general

approach it takes to scheduling is described in literature avail-

able from CEIR., RAKPS uses the basic network notions of PERT

and CPM, though job times are deterministic rather than proba-

bilistic. The program is designed to handle several projects

with different due dates, taking into account (a) three different

resource utilization rates for each job, with corresponding iob

times and work efficiances, (b) resource teaming on jobs, (c)

penalties for splitting jobs, (d) resource limits for all shops

—I^ME^M

23

by periods, (c) costs of normal tine, icllo time, overtime and

subcontracting in each shop, (f) project delay penalties, end

(g) various management objectives (which can be ordered in im-

portance) , such as "minimize idle resources," "give priority

to critical jobs," "work on as many jobs simultaneously as

possible," and several others. We shall have more to say

about RAMPS after we describe out own scheduling models in

Chapter 4, when we will be in a better position to compare the

two approaches to project scheduling.

A Linear Programming Approach to Project Scheduling

We have yet to investigate another avenue to the problem:

the use of analytic techniques. The mathematical tool which seems

best suited to minimizing some cost criteria given the constraints

of a project setting is linear programming. Not only are com-

puter programs readily available for the simplex algoritlrn, but

an L.p. formulation has the advantage of providing the r:.ch mana-

gerial interpretations that are available from the duality and

sensitivity analysis features of the method. Its application

to the large project scheduling problem is worth our investigation.

Charnes and Cooper have described a network interpretation

and a directed dubdual algorithm for critical path scheduling

[6]. The arrow diagram is viewed as a flow network, in which

the initial node has unit input and the final node unit output.

Flow variables, x. . (which are restricted to the integers 0 and

1), are assigned to each link (job). Constraints reflect Kirchoff

node conditions for conservation of flows over the system, i.e.,

the flow into each node equals the flow out of it. The function

to be maximized is the sum of all x. ., each weighted by a

temMMioAusmmm^B^m^m^mm^^nmBa^mm^^mmtmtmmmmm

24

coefficient equal to the time span of the associated link. In

the dual problem, the variables w. can be interpreted as the

(nccTQtivc) early start times assigned to each nods. The dif-

ference between the w. values for the first and last nodes is

minimized, subject to the constraints that the difference be-

tween the wH values of two connected nodes must be equal to or

greater than the time required for the link (job) connecting

the nodes. The value of the functional, then, is the total

project time (and hence the length of the critical path), and

the critical Jobs are identified in the direct problem by pos-

itive x. . values.

Unfortunately, this formulation of the problem does not

include such data as resources required by each job and limits

on shop resources. Implicit in the network flow interpreta-

tion is the assumption that all jobs along the critical path

start at their early start times. As we will see in Chapter

3, when resources are limited, there may not be a critical path

as ordinarily defined (a path of zero-slack, technologically

related jobs from start to finish). In effect, the coeffi-

cients in the functional of the direct problem (and thus the

stipulation constants in the constraints of the dual) lose

their meaning.

It is possible, however, to write an L.P. formulation

of the pr.oject problem which takes account of resource con-

straints. Using an approach similar to Bowman's for the job

shop problem [54], we may develop a model as follows:

mmam,^mn^m^mm,^0ma*mi^mmmmwmmmajta^mi

25

Subscripts:

s shop (resource group)

>-* ^<

s = 1, 2, . . . , m

ay (or other time period) d = 1, 2,.,,, z

j job

p immediate predecessor of j; p e P , = [all immediate

j = 1, 2, . . , , n

predecessors of JJ

Variables:

x. , activity of job j on day d; constrained to the

integer values 1 (if job j is active) or 0 (if

job j is Inactive).

Constants»

a , men available in shop s on day d

c . crew size; men of shop s required on job J

t. time length of job j, in days

Constraints:

1) 0 < x., < 1 (and by integer programming techniques,

x is constrained to equal either 0 or

1 [see Gomory, 17])

2) Jobs will be performed:

z
E
d=l
£ ^jd = tj , j = 1,. .., n

3) Capacity of shops will not be exceeded:

S c . x., : a , ,
jtl sj jd - sd

d = 1,.. . , z

s = 1, • .. , m

4) No job will be started before its predecessors

are completed;

d-1

P Xjd - £]. Xpi
t_ x all p e P.

d = 1,.. . , z

j = 1,. . . , n

25

5) No jobs v/ill bo split:

t. x,. - t. X./,.,N + j ja J JVU-rx)

z
n

i-d+2
x44 < t. ,

J-
1
- J

J = 1,..., n
d = 1,... , z

Objective Function:

n n
Minimize 1 Y, x. + 4 y! x

j=l ^

n

p1 Äj(k4l) + 16 ^ Xj(k+2)

+ . . . + R TÜ x. , where k is some number such
z J=l Jz

that 0 < k < z, and R = 4 R(?._1) •

Thus, the model seeks to find the shortest schedule given

fixed resource constraints. For simplicity, no allowance is

made for premium cost resources, such as overtime, hiring,

subcontracting, etc. Nor is "crashing" or "stretching" a job

allowed.

Not shown above are the additional constraints necessary

to assure integer solutions (either 0 or 1) for the x.,. Even

without these constraints, however, the problem is a formidable

one in terms of sheer size. If we assume the simplest version,

consisting of constraints 1 through 4 only, even a small pro-

ject is beyond the capacity of any present computer to handle.

As an example, a project with 55 jobs in 4 shops with a time

span of 30 days has some 5275 equations and 16 50 variables

(not counting slack variables or the additional equations and

variables necessary to assure an integer solution). If Job

splits are not allowed, the number of equations increases to

about 6870. Many of these equations, or course, are redundant;

■'■■■■■■'■■■^■■■■■■■■^■■■^»■■■»«■■»Bl

27

and many of the variablen could be eliminated from the start

by calculating the early start times for all jobs assuming un-

limited resources. Then all x., =0, 1 < d < Es.. Nevertheless,

even a trimmed-down formulation would exceed the capacity of

most computers. A large machine—such as the IBM 7090 with

32 K storage—can handle a maximum of about 1000 variables in

an L.P. program, thus limiting the application of this model

to rather simple, small projects. The use of L.P. and a 7090

for such problems would be somewhat akin to using a bulldozer

to move a pebble.

Linear programming formulations other than the ones

above could be devised, of course, but the same difficulty

would be faced: the scheduling of even medium sized projects

(200 to 500 jobs) is an enormous problem, especially if re-

source limitations and other commonly encountered constraints

are considered.

As for enumerative techniques, which exhaustively search

the space of all possible schedules, none have been proposed—

no doubt for the same reason that makes the L.P. approach

impractical. We thus come to the same conclusion reached by

Tonge after his examination of analytical and exhaustive methods

for solving the line balancing problem [45, p. 15], and his

words are appropriate in our own cases

An approach that concentrates effort on those parts
of the problem which seem to require it, rather than
indiscriminately spinning out and eliminating possi-
bilities at all stages of the solution process,
would seem to be, a priori, a more feasible problem-
solving procedure.

 ,——————.———— ■——-————»i—»—-——^M»™—n—»jm

23

:Icuristlc Programs

Many of the scheduling models discussed earlier in this

chapter use so-called heuristic techniques for problem solving,

and it is upon this general approach to the large project sched-

uling problem that we will focus our efforts in the remainder

of this volume. We use the term "heuristic" to mean, as sug-

gested by Newell and Simon [37], a device or "rule of thumb"

that reduces search in problem solving activity (e.g., "sched-

ule all jobs at early start and move siack jobs off peak days").

In a more formal way [38], they define a heuristic program as

a program for some relevant problem domain that "has some pro-

blem-solving efficiency for that domain—is capable of solving

at least some problems," in contrast to an algorithm which

they define as a program that "will produce a solution of any

problem in D [the problem domain] in a finite number of steps."

They further note that "the terms 'algorithm' and 'heuristic'

program' are not antonyms, but designate different properties

a program may possess." Often we may be primarily concerned

with a program's heuristic power—"its capacity to find solu-

tions rapidly," (relative to other programs applied to the

same problem domain), which is quite independent of the pro-

gram 's algorithmic properties. Thus the simplex method of

linear programming is an algorithmic program we could use

(theoretically) for solving the large project problem, but it

has little heuristic power in this application.

Our desire, however, is to develop a program which pos-

sesses the latter property—i.e., the ability to rapidly gen-

erate solutions—rather than algorithmic characteristics. In

essence, we are sacrificing a guaranteed optimum solution for

29

reduced problem-solving effort. Rather than trying to ex-

haustively search the space of possible schedules for the:

best one, we will use cues in the problem environment to

narrow our search to a sub-space rich in good schedules—

though we risk the chance of missing the optimum solution

altogether.

Before discussing the heuristic devices employed in

our scheduling model, we tarn first to a consideration of

some of the properties of large project schedules in the

case of limited resources.

1 For more extended discussions of the use of heuristics
in problem solving, and resumes of heuristic programs
in use, see Simon and Newell [41], Simon [42], Newell,
Shaw, and Simon [36], Gere [15], and Tonge [45].

Chaoter 3

SOME P'AOP'raTIE-? OF -C-I'iDULi7;-, FOR LAllC-S PROJECT1

'JITH LIMITED RESOURCES

Kost of the recent methods proposed for scheduling

large project;: make use of a project graph (e.g., the arrow

diagram basic to PERT and the Critical Path Method; see [22,

25, 51, 52]). The project graph is useful both for keeping

track of the technological ordering of jobs in a project and

for determining the degree of flexibility (i.e., the job slack

values) available to the scheduler of the jobs. Given a pro-

ject graph, which displays the predecessor-successor relation-

ship of jobs in a project, and the times necessary to complete

each of the jobs, one can then calculate the "critical path"

or the longest ordered sequence of Jobs through the project

graph. Each of the Jobs on the path is said to be "critical"

or slackless; to delay any one of them would delay the com-

pletion date of the project. Other jobs with positive slack

can be delayed up to the amount of their slack without such

an effect, thus giving the scheduler some freedom in assign-

ing start dates for each of the Jobs.

This notion of criticality assumes, however, that un-

limited resources are available for assignment to the project

jobs (or at least that sufficient resources are available for

each Job to be scheduled some time between its earliest and

latest start dates). In the more usual (and general) case

Earliest start is defined as the earliest date a job can
begin, given a project start date and the technological and
time constraints of its predecessors. Latest start is the
latest date a job can begin, given the same constraints of
its successors, without delaying the project completion
date. The difference between these two is the job's total
slack.

^B^HH^HIH^^^Hi^H^BB^HHMHnn^MBnWISMHmHHi

_ . _ .,...._ «um HI m i ii ii

31

where resources are limited, the above concept of criticality

loses its meaning. Some jobs on a critical path may have to

be delayed because of insufficient resources. If this occurs,

then there no longer exists a start-to-finish path of techno-

logically connected, slackless jobs. Under certain circum-

stances, however, one can identify a "critical sequence" of

jobs in a project. As in a critical path, jobs in a critical

sequence have zero slack, and the length of the sequence de-

termines the minimum length of the project. Unlike a critical

path, a critical sequence is determined not by just the tech-

nological ordering and the set of job times, but also by re-

source constraints; furthermore, it is also a function of a
2

given feasible schedule.

As we proceed in this chapter, we will develop in detail

the concept of a critical sequence and discuss some of its

implications for project scheduling. It will first be neces-

sary for us to explore the structure and properties of a pro-

ject schedule, classifying several kinds of schedules and

defining some operations we will perform on schedules. We will

then extend the concept of slack to the case of limited resources

and discuss the relationship of slack to schedule-generating

rules. With this necessary groundwork laid, we will be able

to define rigorously the concept of a critical sequence and to

set forth the conditions which must be met in a project schedule

1 By a new procedure for calculating slack, which we will
develop later.

2 The concept of "critical sequence" is a generalization of the
Thompson-Giffler [16] concept of an "active chain" of opera-
tions in the job-shop scheduling problem. Other similarities
will be evident as we proceed. We will later consider more
carefully the relationship of the job shop and multi-project
scheduling problems.

■—"M»™' i iiiiiiii imsaBBBua^aatgKama «■— BBBSBanBaBRBHB

for a critical sequence to exist. We will complete the chapter

by explaining how these concepts enable us to relate the job-

shop and large project problems.

32

The Schedule and the Schedule Chart

We start with a project X characterized in the following

manners

1) The project consists of n separate, clearly-identifiable

jobs or activities.

2) Associated with each job j is a time t required to com-

plete the job, a crew size cs, and a shop (or skill group, or

machine group) s. If job j requires y different resources,

then cs and s become y-dimensional vectors associated with j.

3) Also associated with each job j is a set P . of jobs

which are immediate predecessors of j, or jobs that must be

completed before j begins. (P. may be empty, in which case j

is a starter job.) From the predecessor sets of all j's, we

can infer for each J a set S, of immediate successors. (S.

may be empty, in which case j is a final job.) A list of all

P.'s (or of ail S 's) defines an ordering or techno.Logical

relationship on the set of all jobs in X. We will use the

symbol « to represent the relation "is an immediate prede-

cessor of."

4) The jobs in X will be performed in m resource groups

(shops, skill groups, machines, etc.), each containing a

limited amount, a, of homogenous resources. Resource limits

may vary from day to day, as men or machines are added or

1 We earlier noted our certainty assumption regarding job times.
If PERT-type, three-point estimates are available (or any
other distribution of job times), then E(t), the expected value
for t, may be substituted for t in this analysis. See p. 86.

iiiimiiii iiiiiiiiiiiiiiilllilllllllllllinill III ■ >,-: mmamamBmrtitj,

33

removed. We will henceforth refer to reaources as men and a

resource group as shop s. Thus th3 number of men available in

shop s on day d is a ,. J sd

Since "critical sequence" is a function of a project

schedule, we must define more precisely what we mean by a sched-

ule.

Definition: A schedule is a set of start times (AS) assigned

to the jobs in X (one start time for each job). The length

of a schedule z is the difference between the earliest of the

start times of all jobs and the latest of the finish times of
2

all jobs. We will hereafter assume that the project start

date S = 0; then the finish date F = z.

For purposes of clarity and simplicity in illustrating

a project schedule, we will throughout this chapter make use

of what we will call a Schedule Chart. It is in reality a com-

bination of a traditional Gantt chart, which displays Jobs

scheduled along a horizontal time scale, and a project graph,

which shows the technological ordering of jobs.' The following

is an example of a Schedule Chart.

Day i

Figure 3

2 3 4

6 >

2 ,
/

/ —./

7 4 j

It: 1

8 V

1 If probability distributions for resource limits are avail-
able, then E(a ,) may be used in place of a ,.

sd sa

2 Jobs, once started, are completed without interruption. Split
jobs are considered as separate jobs, each with its own AS.

n-TTmaamainMaa IIIMUIUIJ ■ IIIIIMIIM ■ ■Hill IIIHIIIIIIll"-n"BWB*-IBTJ

34

The time scale begins with day 0 on the left; each vertical

line marks the end of one day and the beginning of the next.

Jobs are shown by solid lines with an arrow marking the com-

pletion of the job. The horizontal span of a job represents

its time length in days. Above each job is a number which

represents its resource requirements, i.e., the crew size

(cs) needed for the job. For convenience we will sometimes

refer to the job by this number, e.g., "the 6-job." (In other

cases where this would be ambiguous, we will further identify

the jobs. If the jobs are performed in a number of shops, we

could also label each job arrow with a shop number, or with

several shop numbers if the job requires multiple resources.)

Technological orderings are shown by connecting the jobs,

either directly or by dotted lines. Thus the above chart

summarizes the following information:

Job Numbe r Length Predecessors Start Finish
(same as Crew Size) (days)

2

Date

0

Date

6 _ 2
4 2 ,* 0 2
2 1 4 2 3
3 1 4 2 3
5 1 4 2 3
8 1 _ 3 4
1 3 5 3 6
7 2 2, 3 4 6

Associated with a given Schedule Chart we could draw,

for each resource group employed, a Resource Requirements

vector Q = (q q. . . . q), showing the total resources of

shop s required on each day d of the schedule. For example,

if all jobs in the above project occur in the same shop s, the

resource requirements vector for the schedule would be Q =

(10 10 10 9 8 8), In a similar manner, we could draw a Re-

source Availability vector A = (a, a« . . . a) , showing the

U' -,■ ^,i^ ■ Äffv-

35

resources available in shop s on each day d. Note that A may

be considered a row vector in an m x 2 matrix A whose entries

are a , as defined earlier. Similarly, Q is a row vector in

a resource requirements matrix Q having the same shape, with

q , analogously defined.

For the present we will be concerned with the special

case where shop limits are constant over time (i.e., a , =

a (d+1) , ■] < d < z) . Later we will relax this restriction and

discuss the more general case where shop resources may vary

over the schedule period.

The Schedule Chart now assists us in classifying dif-

ferent types of schedules, and in defining the operation of

"Job shifting."

Definition: A feasible schedule is a schedule for which a

Schedule Chart can be drawn and for which Q < A. That is,

1) the technological ordering and job times are observed

(i.e., no job is scheduled until all of its predecessors have

been completed)•

2) the resource constraints are not violated (i.e., the

number of men scheduled never exceeds the number available?

and

3) the length of the schedule is finite.

Definition: An optimum schedule is a feasible schedule whose

length is at least as short as the length of any other feasible

schedule.

Definition: Consider the Schedule Chart of a feasible schedule

and a set of shop limits A. Pick any job j starting on day d

and reschedule it to begin on day d-1 (keeping within the bounds

of the original start and stop dates of the project). If J

occurs in shop s, crlculate the new manpower loading for shop s

on day d-1. If this is <q ,, then the schedule is still feasible

——_^———--———-Mm.—.! ■■»■—-■—~-...i- .—i ■■■-■ m »■JllU'.miMM^MaME

and wa say that we have left shifted job j by one day. Like-

wise if J can be delayed to begin on d+1 without delaying the

project finish date and without q , being exceeded on day d+t

where t is the length of job j), then j can be right shifted

one day. A left shift of i days (i > 1) is a local left shift

if it can be accomplished by a series of one-day left shifts,

each of which maintains the feasibility of the schedule. A

local right shift of i days is defined analogously. A global

left shift is a left shift of any job j that results in a

feasible schedule which could not be obtained by local left

shifting of j. (Thus a global left shift is always a shift

of more thin one day.) A global right shift is defined analo-

gously.

Consider the following example:

2 > 8 .

6 .

The 6-job can be locally left shifted one day. If it were

left shifted 3 days, the resulting schedule would be feasible,

but the left shifting would be global rather than local.

36

Definition: A left-justified schedule is a feasible schedule

in which, because of technological orderings and/or resource

constraints, no Job can be started at an earlier date by local

left shifting of that job alone. (Figure 3 above is left Jus-

tified if the shop has a resource limit of 10.) A right-

lustified schedule is analogously defined.

Definition: An associated right-lustified schedule is a right-

justified schedule that can be derived from a given left-justi-

fied schedule by a series of local right shifts. An associated

left-justified schedule is similarly derived from a right-Jus-

tified schedule by local left shifting.

If j is a multi-resource job, the new manpower loading for
each relevant shop must be calculated and compared with
q - of that shop.

H^MW^m^HM^H^OnHH OiBB^HH^HHHH

37

Slack

In the case where resources are not limiting, the notion

of slack is simple and unambiguous? there is a single slack

value associated with each job. This derives from the defini-

tion of slack and from the fact that there is a unique left-

justified schedule and a unique right-justified schedule for a

given project. Thus the early start (E3) and late start (LS)

values for each job are independent of the order in which jobs

are scheduled (technological restraints being observed, of

course).

Such is not always the case when resources are limited.

There may be several right and left-justified schedules for

every project. In general, for each project and set of shop

limits there is a non-empty set J, of left-justified schedules

and a non-empty set J of right-justified schedules. And for

each schedule x in J,, there are one or more associated right-

justified schedules which comprise a proper subset of J .

Consider, for example, the simple project that follows,

in which all jobs are performed in the same shop;

Job Number
(same as Crew Size)

3
2
4

10
5

Predecessors

2
10

Length
(days)

1
1
1
1
1

With unlimited resources, the project would have the follow-

ing schedules:

We are here talking about total slack, which is defined as
the difference between the late start and early start of a
job. Other types of slack have also been defined, e.g.,
free slack, the difference between a job's early finish
and the earliest start of any of its successors. See
Kelley [2?].

38

Left-justified:

, 2 10 > 5 >

4 *

Right-justified! 3

2 10 . 5

 4

Jobs 3 and 4 would each have slack of two days and the other

jobs, being critical, would have zero slack. If the shop has

a resource limit of 10, however, then J, contains six differ-

ent schedules:

39

1. 3 .
1

2 10 > 5 >

4 J

10

3. 3 ;,

2 ^ 10 >
5 J
4 J

4. 3 ^

2 . 10 > 5 y

4 > .

5.

10

6. 3 J
' 2 ^ 10 y

5 J

4 ^

If we allow local shifting only, schedules 1, 2 and 3 are also

right justified, since no jobs can be right shifted? then all

jobs in these three schedules are "critical"—i.e., they have

zero slack. (Note that in schedule 1, a global right shift of

job 3 past job 10 would result in a feasible righl- and left-

justified schedule—i.e., schedule 2.) Schedules 4, 5 and 6

—--^'-''-—"^ immimiimnMiMiniiiiMnmiiiiiiiiiiiinii IIIWIIIIIHI'IIHIMIIIIIIIIIIIIIHIIIIIIIIHIIIIIII iiniiiiiiiiiiiimiiuiiLi

40

each have two associated right-justified schedules. For ex-

ample, schedule 6 has the following associated right-justified

schedules t

3

2 . 10 ^ 5

4_^

3 y

5 J-
2 y 10 y

4 j
Thus the traditional notion of slack is ambiguous. For three

of the jobs (3, 4, 5) ES and LS depend on the particular sched-

ules we choose, and thus no single values for slack (in the

usual sense) exist for these jobs.

Obviously, then, the ordinary methods of calculating

slack do not suffice in the limited resource case. If we re-

tain the idea that slack represents the amount of time a job

can be delayed from its early start without delaying the pro-

ject completion date, then we must recognize the conditional

nature of slack when resources are limited. Slack values are

related to a given pair or right and left-active schedules and

are thus conditional upon the rules or procedures for generat-

ing these schedules. While this notion adds some complexity

to the simple slack calculation of the unlimited resource case,

it still preserves much of the operational utility of the slack

concept. And by a judicious choice of schedule-generating rules,

one may retain, if he desires, some of the useful characteristics

that slack has in the unlimited resource case. For example, in

■■■HHIMBHHBHRnK^BHI^^HBH^HBHMHBHB^^^WMHVBHB

41

the latter case:

1) Slack is easily and unambiguously calculated: a unique

set of slack values aro associated with a gtvfin project? and

2) Slack is continuous (convex) over its range—i.e., a

job with k days of slack may be delayed anywhere from 0 to

k days without delaying non-successor jobs of the project

finish date (thus giving the scheduler or shop foreman some

flexibility in assigning job start times) .

We could easily preserve characteristic 1) above, in

the limited resource case, by devising a set of rules or pro-

cedures for generating a single left-justified schedule and a

single right-justified schedule. Then a unique set of slack

values could easily and unambiguously be calculated from the

two schedules. Further, if we chose our rules in such a way

that the right-active schedule was associated with the left-

active schedule—i.e., derived from the latter by local right

shifts only—then characteristic 2) would also be maintainRd.

It is obvious, however, that we could devise many dif-

ferent scheduling rules or procedures that would result in

quite different schedules, and there is no a priori way of

deciding which rules are best. One set of rules may result

in a "fortunate" assignment of slack values for one project

(e.g., slack values that enhance the possibility of smoothing

the schedule through juggling the slack jobs) but may work less

satisfactorily than another set of rules when applied to a sec-

ond project. (We will later see an example of this.) And

situations can easily be imagined where global shifts, if per-

mitted, might be operationally preferable to local shifts only,

even though the convex property of slack might be lost. For

42

example, a foreman might find his work scheduling easier if he

were told that job j could be delayed either exactly 7 days or

between 1 and 3 days. If convex slack only were allowed, the

possibility of a 7-day delay would not be discovered.

For large and complex projects, one would have difficulty

even enumerating all the elements of J and J, with their associ-

ated conditional slack values. However, one could fairly easily

devise several sets of rules that represent reasonable alter-

native approaches for generating schedules, apply each of them

to the project, and compare the resulting slack values, using

some measure or criteria of suitability of results (e.g., do

the slack values obtained permit juggling which results in more

efficient use of resources?) . Another approach would be to apply

the rules probabilistically. One could keep track of slack values

thus generated to obtain the bounds on slack given certain re-

source limitations. The slack (TS) for any job J satisfies

TS . < max LS . (y) - min ES. (x)
J yeJr

J KSJ1
J

where x and y are feasible schedules of the project. The upper

bound on TS . is the slack value for j given unlimited resources.

Whatever the method used to calculate slack, it should

be clear that any set of slack values is based on a given pair

of right and left-active schedules and hence is conditional on

the schedule-generating rules.

Schedule-Generating Rules

The problem of developing "reasonable" rules or procedures

for generating left and right-active schedules deserves come com-

ment here. Obviously, all left-justified schedules for a given

project are not equally "good," in general, if we assume some

aw^l^^B^—^^^M^^l^^B^^^gii:: ■ ;:-.^ :.J;;--; ;;:.,^:- ■: ^^Y:^/ A,.; ■. ■■™™IIM™°1 iiiiiiiii—iiiiiiin——i—fflr-^

43

measure of "goodness" such as minimum schedule length or maximum

utilization of resources. Using these criteria, for example, we

would conclude that schedule 1 in the above project is better

than schedules 4, 5 or 5; it is shorter and has a higher daily-

average utilization of resources.

As we noted in Chapter 2, only an analytic solution would

guarantee us an optimum schedule (ar defined above); the heuris-

tic methods aim at a satisfactory solution with more reasonable

computational effort. Most of the network-based methods for

project scheduling discussed in Chapter 2 would probably gener-

ate a left-justified schedule, however, since they either assume

unlimited resources and schedule all jobs at early start (in

which case slack calculations are unambiguous), or they attempt

to schedule all jobs at early start, delaying those that occur

on peak days only enough to reduce the peak loads to some de-

sired level. However, our concern here is not how to generate

a left-Justified schedule, but rather, how to calculate job

slack values for some given schedule.

If we assume, then»that a left-justified feasible sched-

ule has been generated by some means, what would be a reasonable

approach to determining a set of slack values for the jobs?

This amounts, of course, to defining a procedure for obtaining

a related right-justified schedule. As we previously noted,

several different right-justified schedules may be related to

a given left-justified schedule. The order in which jobs are

right shifted accounts for these differences. As an example

of a procedure that might be used, we describe below some rules

that generate a right-active schedule from a given left-active

schedule by a series of local right shifts. The rules are

simple and unambiguous, and have several other virtues that

 -— mil IIIIM-^fllllllllTITTrl™,,l~~™,~—'*'—""'—"'l^—,"'—l*"'''ll''l'"''llM'l^^BB*^B^

44

will become apparent.

1) Given a left-justified schedule, select from it the set

of jobs whose finish time (EF) is a maximum (there will be

one or more jobs in this set; their EF determines the project

finish date F) . For each of these jobs, set LS = ES, LF = EF,

and TS = 0. Set 1=1.

2) Consider now the jobs whose EF = F - i. If the set is

empty, go on to the next step. If the set contains exactly one

member, right shift the job until it meets a technological or

resource constraint of jobs already considered in previous steps

(or, if none exist, until the job's finish date = F). At this

point, set LS = ES + the number of days the job was right

shifted, LF = LS + t, and TS = LS - ES. If there is more than

one job in the set, the priority of right shifting is determined

as follows: calculate for each job separately an LS (assuming

in each case that no other jobs in the set have been right

shifted). Arrange the jobs in descending order of their LS

(i.e., the latest LS first) and right shift the jobs in that

order. In case of a tie in LS's, arrange the tied jobs in ascend-

ing order of manpower requirements (i.e., the smallest crew-size

jobs first) and right shift the jobs in that order. If there

are still ties, then decide on the order of shifting by random

selection from the tied jobs. As each job is right shifted,

calculate its LS, LF, and TS as above.

3) Set i=i+l. Ifi<F, then return to step 2). If

i = F, then stop? all jobs have beea considered, and a unique

slack value assigned to each of their»

1 The following notation is used throughout: ES (early start),
EF (early finish), LS (late start), LF (late finish), TS
(total slack).

^^^^^^^^^^^m^^^^^^m^^s^m^^^^^^^i^^^^^ami^^i^mi^^^^^^^^t^^^m^^^^^mKm^^Kt:^_^^^.,.:.:^__^^

45

The main advantage of these priority rules is that they

tend to move first the shortest jobs and/or the jobs that can

be right shifted the furthest* In general this will tend to

distribute potential slack to the largest number of jobs, rather

than distributing larger amounts of slack to fewer jobs. (We

will see later that local suboptimalities in a ichedule can be

removed if all jobs in a local group have slack.) Consider the

following example:

(shop limit = 10)

In this left-justified schedule, if the 2-job is right shifted

first, then the 4 and 1-jobs will have no slack. But if the

above priority rules are followed, the 1-job will be right

shifted first (2 days), then the 2-job (1 day) and the 4-job

(1 day). Hence all three end up with slack. The resulting

right-justified schedule (below) could obviously be shortened

jf all Jobs were left shifted one day.

4 „ 1 „

8

2

>

r

4 , i

2

a
(shop limit = 10)

It should be noted that right shifting jobs in decreas-

ing order of their EF has the advantage of sometimes removing

resource "bottleneck:;"—for example:

sammaaaaaeHasmm "^8KS^e

4^

1 -

a

I 2 (shop limit = 10)

The 2 job forms a bottleneck past which the 1-job cannot be

moved. (This assumes, of course, only local right shifting

is permitted, so that slack values obtained are convex. Rules

allowing global right shifts would ignore such bottlenecks

and might have some advantages, if slack convexity is not re-

quired.) The 1-job can be right shifted, however, if the 2-

job is moved first (as the priority rules dictate)—hence the

advantage of shifting jobs as they are encountered, going from

right to left across the Schedule Chart.

The priority rules above will not bring such favorable

results with all schedules, however. For example, the schedule

—1-*

3 >

6 *

(shop limit = lO)

would be right shifted as follows according to the priority rules:

1

*k

I

V-i^ (shop limit = lO)

—"»—~™-~~-——- IIIIIIHMI1lllllliaHIIIIIIIMHIIII«lllllllllllll»B»Hllim»IIIIIH1lllll

47

One of the l-jobs end^ up with no slack. Had all of the 1-jobs

been righv shifted before the 3-job, however, the schedule

would appear thus:

7

i

/
/ 1

1
\
\
\ 1

3
*Y

tt G
'1

and all but the 6-job would have slack. The schedule could

obviously be shortened. A different set of priority rules

would be needed to discover such situations. As suggested

above, some combination of priority rules, perhaps applied

probabilistically, might lead to the best overall results.

Another approach would be to construct, alternately, a right-

Justified schedule, then a left-justified schedule, another

right-justified schedule, and so forth, back and forth, each

one derived from (i.e., associated with) the previous sched-

ule, with the hope of finding larger slack values. Thi?

procedure could be continually repeated until one approaches

the maximum slack values for each job (or an "optimum" dis-

tribution of slack, according to some criteria).

We have now accomplished our immediate objective of

extending the concept of job slack to the limited resource

case, noting its reliance upon a set of schedule-generating

priority rules and giving an example of such a set of rules.

Formally, we may define slack, in either the limited or un-

limited case, as follows;

43

D.-jf inition: x e J, , y e J . 1 ^ r T^ (K.V) = LI Ay) - SS^x) ,

That is, the total slack of job j, relative to schedules x and

y, equals the late start of j in schedule y minus the early

start of j in schedule x. If x and y are associated with each

other, the slack values are convex. If resources are not limit-

ing, then J, and J each contain just one schedule and the slack

values are unique.

We are now prepared to discuss the concept of critical

sequence.

The Critical Sequence

In the case of unlimited resources, the string of criti-

cal jobs which determines the minimum project length is aptly

named the "critical path." On the project graph it can be

traced as an unbroken sequence of technologically ordered jobs?

it forms a literal path from start to finish. The analogous

concept we are developing for the limited resource case differs

in that a technologically connected path of critical jobs does

not always (in fact, does not usually) exist? but a sequence

of critical jobs can nevertheless be identified—hence the term

"critical sequence." Further, it is composed of one or both of

two types of sequences which we shall now define:

Definition: Given a project X, a technological sequence of

jobs is a set T of two or more jobs technologically connected

in a linear (non-branching) sequence (i.e., the i job in the

sequence is the immediate predecessor of the (i+1) job) .

In a given feasible schedule, a technological sequence is joint

if there are no intervening time periods between the completion

time of one job and the start time of its immediate successor

(when both are in the sequence). That is,

ASj + tj = ASk, j « k. j and k e T.

iiimfiii1miiirmrimrt
,m"rririTTr''',,~~~~~''''''^^ —™

49

If AS >■ t. < A3 for any two jobs j and k e T, j « k, the
J J ^

sequence is disjoint at their juncture. A joint technological

sequence is in essence a local critical path; to delay any job

in the sequence would delay the completion of the whole sequence,

Definition: Given a feasible schedule, a resource sequence of

jobs is a set R of two or more jobs that require the resources

of the same shop s and that do not overlap in time. (A job

which requires multiple resources may be a member of several

resource sequences.) A resource sequence is joint if the Jobs

in the sequence span an interval of time Z with no overlaps or

gaps. That is, if the jobs are arranged in increasing order

of AS, then

AS. + t. = AS for any two adjacent jobs j and k

in the ordered list, and 2 t. = Z. Such a sequence of jobs
ieR 1

s
may or may not be technologically related.

We are now able to define critical sequence.

Definition: In a given feasible schedule, a critical sequence

(if it exists) is a set CS of one or more jobs that has the

following properties:

1) All jobs in CS have zero slack.

2) If CS contains more than one job and if the jobs are

arranged in ascending order of AS, then

a) any two adjacent jobs in the list are co-members

of either a joint technological sequence or a joint

resource sequence (or both);

b) the first job in the list is also the first mem-

ber of every joint technological and/or resource se-

quence to which it belongs; and

c) the last job in the list is also the last member

of every joint technological and/or resource sequence

to which it belongs.

1 As calculated by the procedure outlined above, or some
other schedule generating procedure.

 imiminn««»—i—TM—m *m*^—xm^^^m

50

As a consequence of these properties and previous defini-

tions, we can observe the following features of a critical se-

quence:

l) The length of the critical sequence (and hen:e the pro-

ject) is

z =
ieCS

2) In more descriptive terms, a critical sequence (of two

or more jobs) follows either a joint technological sequence or

a joint resource sequence, or an alternating combination of both.

Note that, as a consequence of 2) - a) above, when a shift from

one to the other occurs, the two sequences share at their junc-

ture a job which is common to both. Thus if a given technologi-

cal sequence is followed by a resource sequence, the last job

in the former occurs in the shop of the latter and is therefore

also a member of the latter sequence. To illustrate, consider

the following portion of a critical sequence.

 £-_*
d >

Assume job a is in shop 1 and jobs b, c, and d are in shop 2.

As the schedule graph indicates, a « b and a and b form a joint

technological sequence. But b is also a member of a joint re-

source sequence, b - c - d. The same sharing condition holds

when a resource sequence is followed by a technological sequence«

the first member of the latter is also a member of the former.

1 Since a multi-resource job belongs to several resource se-
quences, the one of relevance here involves the resource
which constraina the job from left or right shifting.

-rr. :? , .■..:■. J1:—^1—gl f———>f» nrin—r—m—"-~ I' I

51

Not every left-justified schedule will have a critical

sequence of zero slack Job.j. Consider the following left-

iustified schedule:

(shop limit = 10)

2 ,

7 . 8 y

3 „

Both the 2 and 3 jobs have unconditional slack (by our established

procedure, 2 would have three days and 3 would have two days slack)

A critical sequence, therefore, does not exist. However, the

schedule can easily be shortened as follows:

3 >

2 >

8 . 7 .

And in this schedule, a critical sequence does exist (consisting

of the 7 and 8 jobs). The first schedule exhibits what we will

call a local suboptimality. We will see that local suboptimali-

ties may be removed easily, and that a left-justified schedule

with no local suboptlmalities always has a critical sequence.

We need first to define some terms.

1]: Given a left justi- n Definition: Local Set L = [1^ 1^, .

fied schedule, a local set is any set of one or more jobs which

(a) have the same early start (we will refer to it as ESj), (b)

are in the same shop, and (c) are resource constrained only.

(If the set contains one job only, requirements (a) and (b),

of course, are superfluous.)

Definition: Constraining Set, of a loi J1 set G = [g. , g2/ ... g]f

Given a local set in a left-justified schedule, a constraining

set consists of those jobs which constrain the local set from

further left shifting, i.e., all jobs using the same resource

as L such that EF0 = ES..

UOIBBBBB&BB

52

Definition: Concurrent Set or a local set C = [cA . cn, c 1: '- 1 ' 2 n
Given a local set in a left-justified schedule, a concurrent set

consists of those jobs which are concurrent to the beginning day

of the local set (but not members of that set)• i.e., all Jobs

c such that ES < ES, < EF . c X L.

Definition: Local Suboptimallty: A left-justified schedule is

said to contain a local suboptimality if it contains a local

set for which all jobs in the constraining set and concurrent

set have slack.

Definition: Left-Active Schedule: A left-justified schedule

will be called a left-active schedule if it contains (a) no

local suboptimalities and (b) no jobs which can be started

earlier by global left shifting.

Although all five definitions above apply to a left-

justified schedule, they are symmetrical in the left-right

dimension. Thus the definition of a right-active schedule

follows from the above definitions by changing "left" to

"right," "earlier" to "later," "beginning" to "ending," "ES"

to "LF," and "EF" to "LS."

With the aid of the above definitions, we may now for-

mally prove the existence of a critical sequence in a left-

active schedule, (The following theorems and corollary assume

We should note here the similarity of "critical sequence"
to the Giffler-Thompson notion of an "active chain" in the
job-shop problem [16, p. 493]. Likewise, our "left-active
schedule" is analogous to their "active schedule," which
they define as "a feasible schedule having the property that
no operation can be made to start sooner by permissable left
shifting," Our additional requirement of no "local subopti-
malities," (noted above for a left-active schedule) reflects
the more complex nature of the project scheduling problem.
In the latter case, a job (operation) may be scheduled on
any one of several identical facilities (e.g., machines)
that are available in a given shop. (In the Giffler-Thomp-
son case, each facility is unique.) Thus it is possible for
a schedule to be "active" in the sense that no jobs can be
left shifted (locally or globally) and still not contain a
critical sequence, as noted above (p. 51). The Giffler-
Thompson Job-shop problem, then, may be considered a special
case of the large project problem.

HaBflmaBWfli

53

that resource limits are constant over the schedule period,)

Theorem 1; A schedule can always be shortened if it contains

a local suboptimality.

Proof: It is obvious that if all jobs in a Schedule Chart

that occur on a given day are left shifted one day, then

the project finish date may be reduced by one day, for all

succeeding jobs may then also be left shifted one day. Thus

if we can prove that a local set and all its concurrent jobs

can be left shifted one day, we have proved the theorem.
2

Begin by right shifting all the concurrent jobs and con-

straining predecessors of the local set. This is possible

since, by the definition of local suboptimality, all have

slack. The new feasible schedule obtained has, of course,

the same finish date as the old. Now left shift by one day

the local set (L) plus all of the jobs presently concurrent

with it (C), (Some of the jobs previously right shifted--

including all jobs globally right shifted—may have moved

beyond the point of concurrence with L). The legality of

this move may be examined by considering the two possible

types of constraints: (a) technological and (b) resource

constraints. Since we have assumed the level of resources

in all shops is constant over the scheduling period, then

technological and resource constraint points to left shift-

ing occur only at the tail-end of jobs on the Schedule Chart,

i.e., at their EF.

Consider constraints of type (a): Note that the jobs in

C originally had ES < ESL, or else they would not be con-

concurrent with L after the right shifting. And since no

jobs with EF < ESL were right shifted, then none of the

1 This includes both jobs that start on the given day and jobs
started earlier, but still active (unfinished) on that day,

2 The order of shifting outlined in whatever procedure was
used for calculating slack values may be followed, or any
other order that will allow all jobs involved to be locally
or globally moved at least one day.

"—n——iwiiniiiiiw—iiiiiiimi u

54

predecessors of C vere n.oved. Hence there are no techno-

logical constraints to a one-day left shift of jobs in G.

Nor are there like constraints for L, since jo-?s in this

set were resource constrained only.

Now consider type (b) constraints. Note that all jobs

originally right shifted had EF > ESL. Thus, that shifting

could not have caused any of the constraints to the left of

EST to become more severe; i.e., right shifting of those

jobs could not have increased the resource load on any day

prior to ES-, in any shop. And since jobs in C are to be

left shifted no more than they were right shifted, then the

left shifting cannot increase resource loads on days prior

to EST above the.:r original levels. Therefore no new

resource constraints are created by left shifting and the

jobs may be moved the one day required. The proof is com-

plete.

Note that the resulting schedule is not necessarily left

justified, and local suboptimalities may st.ill exist. Additional

left shifting and continued application of the above procedure

will lead eventually to the removal of all suboptimalities. We

may state this as a corollary:

Corollary; Any left-justified schedule may be converted into

a left-active schedule by continued right and left shifting.

Proof: If the left-justified schedule has no suboptimalities

and no possibilities for global left shifting, it is already

left active. If global left shifts are possible, perform

them. If the schedule contains a suboptimality, then shorten

the schedule by the above procedure and left justify the result.

1 Except for the day just prior to ESL which may be increased
by left shifting of the local set; however, as we have noted,
this creates no problems as there are no jobs with EF = ES-
and hence no constraints to left shifting on that day.

55

If it still contains a suboptimality or possible global left

shifts, repeat the process. By a series of such moves (finite

in number) all suboptimalities may eventually be removed and

v.Ti 11 be left—active *

Theorem 2; Every left-active schedule contains at least one

critical sequence.

Proof: The proof is based on the observation that no job J

can have zero slack unless one or more of its constraining

successors also has zero slack; for if all such jobs could

be right shifted, then so could j. Thus, if we can identify

a zero-slack job anywhere in the left-active schedule, we

can trace a joint sequence of zero slack jobs from that

point in the schedule to its termination. More specifically,,

we shall prove that at least one of the jobs which begin on

day zero has zero slack, and therefore, by the above reason-

ing, a critical sequence of zero slack jobs exists from

start to finish.

The proof will be presented in the form of an algorithm:

(A) Consider the set J of all jobs having EF = F. All have

TS = 0.

Pick one of these jobs and call it j,

' If ES = 0, go to (E).

Since ES, > 0, then there must exist a left-constraining

set of j.

(B) Examine G. (the constraining set of j).

If TS > 0 for all g e G, go to (C).

Pick a job g for which TS = 0; call it j.

If ES = 0, go to (E).

Since ES. > 0, then j must have a constraining set. Go

to (B) .

(C) Examine C. (the concurrent set of j).

If TSc > 0 for all c e C , go to (D).

Pick a job c for which TS = 0? call it j.
c

If E3 = 0, go to (E) .

Since ES. > 0, then j must have a constraining set. Go

to (B) .

■KianBHmmBBBBMHBMIIWBMf "~"~~-""'-,TmiiiiBMrniiii

55

(D) A local Guboptimality exists, contrary to the hypothesis

of a left-active schedule. Therefore, both TS > 0, all
g

g 6 G., and TS > 0, all c 6 C., cannot hold. J j r. • y
(E) We have found a job (j) which begins on day 0 .and has

zero slack. Therefore, a critical sequence exists and

the proof is complete.

Note that each time the search cycles through step (B),

the job being examined has an earlier ES than the previous

job considered, since all jobs in either G, or C. have

ES < ES.. Thus one is assured of eventually reaching a job

whose ES = 0, since the schedule is finite in length.

Implications of the Critical Sequence Concept

for Project Scheduling

Identification of a critical sequence has much of the

same utility, for purposes of scheduling, as the designation

of a critical path in the unlimited resource case. In order

to shorten a schedule, for example, only jobs on the critical

sequence need to be considered. Where critical sequences

exist in parallel, all must be contracted to have any effect

on the project finish date. Critical jobs may be shortened

by improved technology or by additional assignment of resources

("crashing".the job). The latter is possible, of course, only

if resource limits have not been reached on "crash" days (or

if overtime or subcontracting is allowed). The Kelley approach

[22] to minimizing project costs by "crashing" critical jobs

(until the costs of doing so exceed the savings that result)

may a'.'o be used in the limited-resource problem, if ''crash"

costs are modified when necessary to include costs of over-

time and subcontracting.

^^—Ü^BBÜ^^^^M^^I^MMM^— i^ij^y!!^^!!,!^!!!!^^^!^^^^^!!^!!!

57

Variable Resource Limits

We have thus far considered the special case of resource

availability where resource levels are constant throughout the

scheduling period. In this case constraint points to left shift-

ing occui only at the project start date and at terminal points

(AF) of already scheduled jobs; likewise, constraints to right

shifting occur only at the project finish date and at the begin-

ning points (AS) of already scheduled jobs. However, if the

available resources are uneven over the scheduling period (i.e.,

if ad / a, , for any 1 < d < z, where the a's are entries in

the resource availability vector Ao), then constraint points

can occur on days when resources change, whether or not jobs

end or start on the same days. To illustrate:

Day

Shop Limits

0 ; L I

10 10

3

10

4 •«-

1
1

1

Ooviously, job 2 could be left shifted to start at day 2, job 1

to day 0, and job 6 to day 1. In ev^ry case, the constraining

point is either the terminal point of another job or the start

date of the project. Consider an example where resources are

uneven, however.

v —^ ■ .aBHOJMB^JjmiimmMIMII I«—B^n»™- f»

58

Day O

Shop Limits 8

3 ;,

4 3

* >

Job 2 could be left shifted to start at day 1 and Job 1 to day 0,

but job 6 could not be moved at all—even though no job ends at

day 3 to constrain it. Job 5 is effectively constrained by the

reduced resources on day 2 (as compared to day 3). Thus, the

previously described notion of a critical sequence doe.3 not

readily apply here. The schedule cannot be shortened (if the

original start date is observed), yet no critical sequence of

jobs from start to finish exists.

In general, a critical sequence may or may not exist in

a project with variable resources. If a schedule may be shortened

from either end (start or finish), sometimes a critical sequence

may be created (as is possible in the example above)• but this

is not always possible. For example:

Day

Shop Limits

0

10 10

8

Both jobs 7 and 8 have zero slack, but no critical sequence

exists and the schedule may not be shortened given the resources

available.

"^^^■■■■■^^K^^se^nSBaanas^^^HI^^^BSSSSSHBSSBB^^^ttn&iidHBHM^BflB^^HH

59

Theorem 3; If resources available are a decreasing function

of time (i.e., a, > a ... ■■ , 1 < d < z) , a critical sequence always

Proof: Since a, > ad+i/ there is no possibility of left

shifts being constrained by reduced resources. Hence the

only points of restraint are job terminal points, and the

proof given for Theorem 2 applies.

Whether or not a complete critical sequence exists, there

will always be in every project one or more jobs with zero slack

(e.g., every job whose early finish in a left-active schedule

equals the project finish date). The limited-resource concept

of slack discussed above applies equally well in the variable

resource case, and the operational utility of slack is unchanged.

Conceptually, one could calculate slack values for jobs in a

project (following some rules or procedures for generating right

and left-active schedules) and attempt to minimize project costs

using the methods discussed on p.56.

Relationship of Job-Shop and Large Pro -ect Problems

We have earlier noted the similarities between "active

chain" in the job-shop problem and "critical sequences" in the

large project problem. Here we will consider the relationship

of the two problems in greater detail;

Typically a "job" in a job-shop consists of a sequence

of operations to be performed in a given order on some object;

Each operation requires a different facility (machine or other

resource) for a given time period. Conceptually, a job can be

pictured as a simple, single chain network:

HBinHaBeSBHBHBGHB)HBB8inHHBBSSWiBHHUBH!BHBBBHSBHBl.L

50

Each operation (except the beginning or endinj one) has

one predecessor and one successor operation. (In some cases,

the exact order of operations is arbitrary, but only one opera-

tion is performed at a tJxne.)

In contrast, the large project problem is typically char-

acterized by a more complex technological ordering. Each Job

may have several predecessors or successors; jobs may be per-

formed in series or parallel, as indicated by their partial

ordering:

In the job-shop problem, the finish date of each job is

of concern; in the large project problem, only the project com-

pletion date is important.

Note that a project may look like a number of job-shop

chains connected at the start and finish:

And by use of dummy jobs (having given time lengths but zero

resource requirements), the job-shop chains can be constrained

to start no sooner, and finish no later, than any desired start

and stop dates (which, of course, must be sufficiently separated

to permit completion of all operations in a job chain). Thus

the job-shop problem can be considered a special case of the

large project problem. An analytic solution to the latter pro-

blem conceptually may be applied to the former. Likewise, a

' Tiinr.W irii- ■BSBBiHBSU^^BH ^^^^mmmmm^i^^^m^a^^^^^^ammm iiiiiiniiiiilliio

given heuristic approach to large project scheduling should be

applicable to job-shop scheduling problems, though its power

in t1-"3 i =ii-<-er case mav differ from that in the former.

a

'^-^-'8*;y~~rtiiiaTiimrTTmBirriiinwi 'i_.._

Chapter 4

COKPUTER KOD2L9 FOR LARGE PROJECT SCHEDULING

As we have noted, those who follow a so-calied neuristic

approach to problem solving are interested in gaining "heuris-

tic power" in their program—i.e., computational efficiency.

They do this either because an algorithmic program is unavail-

able or because such a program is computationally infeasible.

In the latter case, they may "sacrifice" an optimum solution

(if indeed the calculations could ever be completed) for the

program's capacity to rapidly find a satisfactory solution.

Similarly, our goal has been to develop a combination

of scheduling rules into a program which can quickly generate

a good project schedule. This "heuristic power" of the program

enables us to include probabilistic elements in the program

rules (explained below) , so that a number of different sched-

ules can be generated in a reasonable length of time and the

best one selected from the group. In this manner we hope to

increase the probability of finding an optimum schedule, or

at least a good one.

The heuristics we use in our models were developed

first from ideas which, intuitively, seemed to be reasonable

approaches to scheduling, later from additional ideas which

grew out of experience in applying the models, and finally

from the theoretical considerations discussed in Chapter 3.

The models described in this chapter follow two differ-

ent approaches to project scheduling. We will refer to the

1 See, for example, Clarkson [9], Fischer and Thompson [12],
Gere [15], Karg and Thompson [20], Kuehn and Hamburger [25],
Tonge [45],

smsimsaaBaasai^mm&mmBBma^amaaaamaBmaiBmmmaii^mmmmmmmmmmmiä

63

the models as

1) Resource smoothinq programs and

2) Limited resource allocating programs.

In the first approach, jobs are scheduled without re-

gard to resource limits. The resulting manpower requirements

on peak workload days are then reduced by shifting suitable

Jobs beyond the peak days. The focus of the program is on the

required resources of a given schedule and how these require-

ments may be leveled. In the second approach, however, the

focus is on the available resources, which are serially allo-

cated, day by day, to jobs ordered according to their early

start times. The finish date is variable, since it may be

extended when jobs are delayed for lack of resources. The

rest of this chapter will be devoted to describing in some

detail the scheduling models based on these two approaches.

The MS2 Models

The first of the models programmed were the so-called

.2
KS models (for Multi-Ship, Multi-Shop), originally developed

for scheduling ship repairs in a Navy shipyard. They are

generally applicable, however, to industrial or other types

of problems which involve several projects and a number of

different skill groups or shops. As the reader will note, the

2
MS models are examples of resource smoothing programs.

Data inputs are minimal: each job in each project is

identified by a number j, a time length t, a shop or resource

group s, and a set of immediate predecessors. Multi-skill jobs

1 The models were the joint development of Mssrs. F. K. Levy,
G. L. Thompson, P. R. Winters, and the author. The first
of the MS2 models was reported in [28],

BaHHaHBHBSBBHH^^HEBHHHBHHHHBBHBaiBBHaBXI

64

are handled as separate, sinjlc-skill jobs; the program is so

written as to insure they will all be started on the same day.

Each project., consisting of a set of jobs, is identified by a

start date and a duo date. Below is an outline of two varia-

tions of the model describing the heuristics they use for gen-

erating a schedule.

M52-l

A) Schedule all jobs at early start and plot manpower re-

quirements in each shop, by day.

B) Calculate peak manpower requirements in each shop, and

set "trigger levels" for all shops one unit below their respec-

tive peaks.

C) Once again start scheduling jobs (in technological order),

calculating the manpower loading charts simultaneously. Stop

when the trigger level of any shop (call it s) is exceeded.

D) Examine the jobs that are active on the peak day in shop

s. Compile a list of jobs which have sufficient slack to move

them beyond the peak day without delaying the due date, and

arrange them in descending order of their total slack. Pick

one of these jobs (by a selection process that favors the jobs

highest on the list), and move it to the right on the Schedule

1 Jobs are technologically ordered if no job appears in a list
until all of its predecessors have been listed.

2 The selection procedure contains random elements and operates
as follows: With a probability of P > 0, select the first
job in the list for the desired operation. If the first Job
is not selected, place it at the bottom of the list and se-
lect the second (now the top) job with the same probability
P. Ultimately a job will be selected, as P is greater than
zero. The probability of selecting any one job in repeated
trials is a function of P and the number of Jobs in the list,
n. Thus the probability of selecting the it" Job is

P(l-P)i+1 .

1-(1-P)n

—MWi^——^MW—^^^^—^B^—i^M^—^K ;/:/'.:

55

Chart a rsndom number of dayr.]iGtv;..f.n the r.iinir.ur, : eve pec-

333.".Ty to push the job past the peak day and the maximum

move allowed by its total slack.

E) Continue with the scheduling of other jobs and plot-

ting of the manpower loading chart. If additional peaks

are generated, apply the procedure of D). If all jobs are

successfully scheduled, then lower the trigger levels of

all shops one more unit and return to C). If job shifting

is not successful in removing peaks below the trigger levels,

then restore the previous set of feasible trigger levels and

attempt to reduce them shop by shop. As soon as no further

redaction in trigger levels is possible, then print out the

schedule.

F) Repeat the above process (as many times as is compu-

tationally feasible). Because of the random elements in

the program, it is likely that different schedules will

result from each application of the program. Select as the

final schedule the one having the lowest manpower costs

(which are assumed to be proportional to the trigger levels—

i.e., sufficient men are hired to meet peak loads and are

paid whether idle or active on all days).

Note that the program does not assume limited resources.

In essence, it attempts to minimize the peak shop require-

ments given a fixed due date (and is therefore subject to

some of the same limitations we noted in Chapter 2 for simi-

lar scheduling models). A variation of the above model—

2
MS -2 —reverses the constraints: resources are limited and

the due date is variable.

mtm^^^^Kmmm

M32-2

A) Schedule jobs at early start, one at a time, plotting

manpower requirements in each shop, by days,- until the require-

ments exceed the established resource limit in some shop.

B) Attempt to right shift slack jobs in the same manner as

D) above.

C) If job shifting is successful and a feasible schedule

is produced, then print the schedule and repeat the program (as

many times as is possible). If manpower requirements cannot be

brought below fixed resource limits, then move the due date out

one day (or some other increment of time) and return to A).

Eventually enough time will be allowed to schedule all jobs

without exceeding resource limits.

D) After repeating the program several times, pick the best

schedule (in general, the shortest one). Costs here include

not only manpower charges but a "penalty fee" for each day the

project is delayed beyond the initial due date. (The cost

function for penalties need not be linear; an exponentially in-

creasing function might be more appropriate for some project

situations.)
2

Thus MS -2 is a limited resource model, but not of type

two described above; resources are allocated job by job down a

technologically ordered list, rather than day by day to jobs

ordered according to their early start times.

1 A job list ordered by early start times (in ascending order)
is also technologically ordered; but the reverse is not
necessarily true.

HmBHSVHMHI
^■VMWHmHHiaaHBanRMMMM ■nMMMaH ■MMMRHKm

nran^KiBHHBBHHH

67

The 3PAR Kodels

More sophisticated in terms of scheduling heuristics and

data handling ability are the SPAR series (Scheduling Program

for Allocating Resources) developed by the author. They were

specifically designed to consider the constraints of limited

resources, the possibilities of variable crew sizes on jobs in

a project, and additional alternatives (besides shifting slack

jobs) for dealing with peak load periods. The basic program

is quite straight forward. The early start (ES) and slack (TS)

are calculated for each job in a project, based on technological

constraints only. Then jobs are scheduled, day by day, starting

with d = 1, by selecting jobs from the list of those currently

available (i.e., jobs with ES = d) and ordered according to

their slack. The most critical jobs have the highest probability

of being scheduled first, and as many jobs are scheduled as

available resources permit. (It is possible that not even

critical jobs on a given day may be scheduled, because of jobs

scheduled on previous days which are still active.) If an avail-

able job fails to be scheduled on day d, its ES is increased to

d + 1 and an attempt is made to schedule it the next day. Eventu-

ally all jobs so postponed become critical and move to the top

of the priority list of available jobs. In each day's list of

available and active jobs, there are always one or more zero-

slack jobs (see Levy, Thompson and VJiest [27]); they receive

special treatment in some of the models described below. Proba-

bilistic elements built into the program provide some randomness

of job assignments and the likely production of different sched-

ules each time the model is applied to a project—similar in
2

this respect to the MS models.

■MHMiHnM

. -:, ^^^^j^mnmBBHBHMnas^HawBMMnBaBBnanHaHH

68

As is evident from the c.bove description, the jPaR models are

ex?jnples of the second approach to project scheduling described

earlier.

Kodifying Heuristics

The basic program described above is enriched by a num-

ber of additional scheduling heuristics or subroutines designed

to ircrease the use of available resources and/or decrease the

length of the schedule.

A) Crew Size Selection; With each job is associated a nor-

mal crew size cs (the number of men or other resources normally

assigned to the job), a maximum crew size csM (the maximum number

of men required for "crashing" the job), and a minimum crew

size cs (the smallest number of men which can be assigned to m

the job) . Normally cs < cs cs,,. In some cases. Jobs can be J m n M

neither stretched out nor crashed, in which case cs = cs = cs..;

or they can be stretched nut but not crashed (cs < cs = csw\ * m n M) ,

or vice versa (cs = cs < cs^.) . Some jobs may have m n M

cs < cs < csM but not permit changes in cs once a given crew

size has been assigned; this information is also fed into the

model with other job data. The rules for crew size selection

are as follows:

1) If the job has zero slack and if resources available

a , are > cs.., then schedule j with cs = cs... If

cs^ < a , < csM, then schedule j with cs = a ,. If n — sd M ■* sd

a , < cs , then set cs = cs and go to the Borrow and sa n n

Reschedule routines (described below) . If j is still

not scheduled, set cs = cs and try the same routines.

^HH^HncH^saiHHSKUllflWBn ___ ÜUüiS

6 9

If j is ;jtill not scheduled, then set E3 = £3 + 1 and

attempt to schedule the job the next day.

2) If j has positive slack and a , > cs , then schedule sd — n

j with cs = cs . If cs < a , < cs , set cs = a , and J n m — sd n sd

schedule j. If a , < cs , then two approaches are used
sd m

(according to the particular SPAR model): (a) set cs = cs

and try the Bcrrow and Reschedule subroutines, or (b) set

ES = ES + 1.

B) Add-On to Critical Jobs; Before any new jobs are scheduled

on a given day, examine jobs previously scheduled and still active.

If any of these jobs have zero slack and cs < csM/ and if resources

are available, increase cs as much as possible up to cs. , (Jobs

which do not permit changes from an initial cs assignment are

excluded from crnsideration in this subroutine.

C) Multi-Resource Jobs; Sometimes a number of different

resources (men, machines, etc.) .^re • ^quired for a given job,

each of which may be limited in quantity. In such cases, create

separate jobs for each resource and assign the jobs to start

on the same day, by means of the following device. If n jobs

are created out of an n-resource job, then append to each job j

in the group the number of the (j+1) job, except for the n

job, to which append the number of the first job in the group.

Thus if n = 3 and the three jobs created are numbered 5, 6, and

7, they would appear in the job list with multi-resource nota-

tion as follows:

■^^Hmn^^HHMBHHH HaHHKa^^HCHMBS^HHaB^aHHHHHH^HH

Job Number

70

'ulti-Ro-ourco Reference

5
6
7

6
7
5

(Single resource jobs carry "0" in the multi-resource reference

column.) All jobs in a multi-resource group have the same prede-

cessors (and the same successors), so all become available for

scheduling on the same day d. As each job j is scheduled,

check to see if any other jot in the multi-resource group has

been postponed to day d + 1. If not, schedule j on day d« if

so, then postpone job j by setting ES. = d+1. If an attempt

to schedule job j fails because of limited resources, then de-

schedule all other jobs in the multi-resource group which have

already been scheduled, and reset their ES to d+1.

D) Borrow from Current Active Jobs: When a , < cs for scj n

some available zero-slack job j (or < cs if the job has slack,

in some variations of SPAR), the model enters into a subroutine

for searching currently active jobs to see if sufficient men

might be borrowed from them for scheduling j an day d. In

order to qualify for consideration a job k must

1) have AS < d and AF > d (that is, it must be active)•

2) use the same resources as J;

3) have cs > es^

1 After a job has br:en scheduled, its start and finish times
are noted by AS (ensign start) and AF (assign finish)-

lllliTIII«lllllllllllllllllllllllllllllllllMlimillllllB|ililllH|BIII|ln|||lni|HH||||ii|| «"IVif f-fr»

71

4) be a job for which assigned crew sizes may be altered

during the Job's active period?

5) have TS > TS ., where TS is the slack of k after
K. J ri ■

its crew size has been reduced to cs .
m

Compile a list of such jobs and sort in descending order of TS.

Select jobs from this list by the random device described earlier

(jobs with the most slack have the highest probability of being

selected), and reduce their cs to cs until sufficient men are
m

available for scheduling job j. Return then to the main routine

and schedule j.

The subroutine also has a "count first and see" feature:

check to see that borrowing will actually produce enough men to

schedule j before actually making the adjustments. The sub-

routine is also tied to the Reschedule subroutine (below): if

some (but not enough) men can be borrowed, examine the possibility

of also, rescheduling jobs before abandoning as a failure the

borrow subroutine. Finally, if the number of men that can be

obtained by borrowing and rescheduling is insufficient to sched-

ule j, then set ES. = d+1.

E) Back Up and Reschedule Active Jobs; Sometimes a Job j

could be scheduled if other jobs previously scheduled which use

the same resources had been postponed to a later start date. In

order to qualify for this rescheduling, a job k must

1) have AS < d and AF > d. (that is, it must be active)j

2) use the same resources as J?

1 In the SPAR-1 models (see p. 77), cs is reduced only from
day d on; in SPAR-2, the reduction is also retroactive to
ASk.

IHHl^^^HBI^H^HHff ^^^^Mmmi^mmma. . ^ ^^^';

72

3) have T3. > T3 + b, wh3rc T3, is the slack of k after
K j K

it has been rescheduled to start on d+1, (b is a parameter

which may be used to increase or decrease the number of

jobs considered for rescheduling; a large b v/ould result
*

in the consideration only of jobs with large T3 values

as compared to TS , reflecting the possibility that such

jobs may have to be further postponed [beyond d+l] because

of resource limitations.)

The subroutine operates as follows: Sort all Jobs which

qualify according to the above criteria in descending order of

ES, and further sort the list, in each group of jobs with the

same ES, in descending order of TS . From this list, select

jobs to be rescheduled, exhausting jobs whose ES = d-1 before

going to jobs with ES = d-2, and so forth. Thus the tendency

is to first reschedule jobs which have the most slack and which

have to be postponed the fewest number of days. When sufficient

Jobs have been rescheduled to permit the scheduling of j, then

return to the main routine and schedule j.

Note that the rescheduling of a job k does not affect

the TS . of any Jobs in the set of available Jobs to be scheduled

(i.e., jobs whose ES. = d). TS . is a function of the early

finish of job J's immediate predecessors and of the late start

of .its immediate successors. However, k belongs to neither set,

and it can be Jelayed up to its LS without affecting Jobs in

either set. Before k is rescheduled, AS < ES. < EF., and
^ J J

1 The random selection device is again used.

tHJ^'AlttWU^*!-.^'''
MMMBMI—— mamwmmmm

a^BBmmmmm^m

73

AF . > ES,. But A3 < EF. —> K X [successors of j], and

AF > ES. —>k X [predecessors of j]. The only way rescheduling

k could affect TS . would be to delay the project finish date and

hence the late start of all jobs in S,. According to the routine

above, however, k will not be rescheduled unless it has—after

rescheduling—at least as much slack as j. Thus no job k will

be rescheduled if doing so would extend the finish date. Since

the TS of jobs in the available set is not affected by reschedul-

ing, then there is no need to go through the "housekeeping routine"

(below) of recalculating new values for ES, LS, TS, etc. after

each job is rescheduled; the order in which available jobs are

scheduled is thus unchanged.

The reschedule routine has much the same effect as a

"look-ahead" feature. Instead of attempting to look ahead to

future needs of critical jobs (which would be difficult to do

in the limited resource case, since jobs are not always scheduled

at their E3), the model schedules all jobs possible as it moves

along from day to day, "repenting" of previous scheduling "errors"

if jobs are encountered which have more critical need of resources

than the jobs to which the resources were assigned at earlier dates.

F) Add-On Unused Resources; After as many as possible of

the available jobs are scheduled, there may still be unused

resources in some shop s. The program attempts to assign these

resources to active jobs. In order to qualify for additional

resources, a job j must

1) have AS . < d and AF . > d+1 (it must be active

with at least one more day to go) ;

2) use the resources of shop sj

. ^^ama^i^^^j^^^^m

—^I^^IM^^—rr

74

3) have en < crs •

4) be a job for v/hich assigned crew sizes may be altered

during the Job's active period.

Examine the remaining resources r of each shop in turn, after

all available jobs have been considered. If r > b (a parameter

reflecting the per cent utilization of resources which is de-

sired) , then compile a list of jobs which meet the above criteria.

Order the list in ascending order of TS, pick a job (by the ran-

dom device, favoring the jobs wich the lowest TS), and increase

its cs to cs., (or to cs + r if cs., - cs > r) . Continue increas-
M s M s

ing the cs of jobs in the list, until the list or r is exhausted.

The increment is temporary; jobs so supplemented return to their

assigned cs the next day (unless unused resources are available

then also).

The program contains three additional major subroutines

which do not properly belong in the abo^e list of modifying

heuristics. They are listed below, however, for completeness

in describing the program.

G) Housekeeping Subroutine; After going through the above

scheduling routines each day d, the model then records the re-

sults in a manpower loading table (resources used in each shop)

and in a job assignment table (number of men assigned on each

job)? and it updates the critical path data (ES, LS, EF, LF,

AS, AF, TS, and man days remaining) for each job. Note that

several of the above subroutines may alter a job's total slack?

e.g., when csM is assigned to a critical job, the shortering oi

the job may result in its gaining positive slack (and some other

job or jobs becoming critical).

j-mj^ugBMfWMllWgtlPMUlJ.IIJ
wm^wrmfimmfmm IMM——M

^^^■^■■HH^^HHHm^H^HIMIBrJMBWHi^Ba^aK

75

H) Cost Calculatlongj The Functional; In all of the SP.\R

models, the finish date is a variable; and in those with a search

routine (described below), shop resource levels are also variable.

The functional can take any desired form, but two have been used

thus far:
m *

1) Total Cost = K'Z + S q w ,
s=l

where K is a daily cost (e.g., overhead expenses and/or due date

penalties, charged on a per-day basis), z is the length of the

schedule, q is the maximum crew size required in shop s, and

w is the average daily wage in shop s. The implicit assumption

is that crew sizes are maintained at peak loads and are paid

whether active or idle. Should the circumstances of a specific

project justify it, a non-linear cost function of z could be

substituted for the linear one above—e.g., when penalties for

exceeding the due date increase exponentially.

m *
2) Total Cost = F-z + 2 a w

*
where K, z and w are as above, and a is the optimum shop crew s s

size based on a premium rate v for overtime or subcontracting

* when manpower requirements exceed a . (v is a multiplying factor;

thus overtime would cost vw per day.) The assumption is made

that regular crew sizes are maintained at a , even during slack

periods. If we let F represent the number of days out of z
Si

B

that manpower requirements in shop s equal or exceed a , then

a is that manpower level for which

V ' v > z > F(* ^ • v
s s

^HMH^^Hl^BH^H^^Hn^BaMaH

iBlMBWaUHiHBHB*WM><HBBKS

That is to say, if a is raised ons clay above a , then the

regular wage rate paid the extra man for z days (z-v;) exceeds s

the costs of oaving a man at overtime rates for F, * ,* days (as+l)

(F(a*+1) ' v • ws).

75

1^ Shop Resource Level Search Rules; It is possible that,

in some cases, the costs of increasing shop resource levels

v/ould b^; more than offset by the resulting decrease in overhead

charges and/or due date penalty fees. The reverse situation

might also be true. Hence we have developed some search rules

for trying to find some optimum combination of shop resource

levels and resulting finish date. Two approaches have been

explored:

1) Start with minimal resource levels (just sufficient

to insure that all jobs can be scheduled, serially if

not in parallel). Generate a schedule and calculate its

cost. Then increase the resource level in all shops

associated with jobs having zero slack. Generate a new

schedule and calculate its cost. If lower than the first

schedule's cost, repeat the same process. If higher/

restore the previous resource levels and increase them

shop by shop, selecting shops associated with jobs having

zero slack (or, alternately, shops with the most "filled-

up" days). Keep raising resource levels in a given shop

until schedule costs increase« then restore the previous

best level and try a new shop. When all shops have been

considered, then select the best schedule of those pre-

viously generated and stop.

^^^■^^»^■■^"--•■■•'-■-••^■■■•■^•'■"^-^^ ,,

77

?) Start with ample resource levels (e.g., levels high

enough to Just permit starting all jobs at 33). Generate

a schedule and calculate its cost. Then decrease the

resource levels of all shops one unit and generate a

nev/ schedule. If its cost is lower than that of the

first schedule, reduce resource levels again. Repeat

until the cost increases, then restore the previous best

levels. Next reduce shop levels one shop at a time, pick-

ing first the shop with the fewest "filled-up" days. Con-

tinue reducing the level in each shop as long as an im-

provement in schedule cost results. After reductions

have been attempted in all shops, then pick the best

previous schedule and stop.

SPAR-1

The first of the SPAR models is outlined below in a

simplified flow diagram (Figure 4). It uses the above scheduling

heuristics and may be modified to handle single or multiple pro-

jects, fixed or variable crew sizes, constant or variable shop

limits (over the scheduling period), and various functionals

and search routines as described above. These modifications

(all of which have been programmed and tested) are useful in

fitting the model to a particular project situation.

H^n^HMMi w^mmmt^mm^^^^K^^mam ■■n^^^K^HHHlMM^HMRU

'i'ure 4

FLO.- Dl.-VTSU; ;p.\R-l

3TART -^-
Rced

Job Dr.ta

Calculate
Tentative
Schedule

Search Rou-
tine for
adjusting
shop levels

^3-

Calculate
cost of
schedule

yes

^Z Is cost i
' |. < best p

of schedule ^
rev. sched.7;

fno^

-^lU, no
Increase
men on cri-
tal jobs
routine

j- Set E =E +1

Routine for
adding-on
unassigned
men

Have all search pro-
cedures been tried? ko

yes

STOP

Print out
test sched.

Bookkeeping
Routine:
Recalculate
Schedule

Gi j csn?)
no Ti

(^ > csM?

ves r

no t
;et cs=cs r^*~ n !

A ai ^ C3m?)
yyes

Set cs-cs m
■St-

yes]1

Set cs=cs.

(a. > cs < V 1 — n

)
no

no
Borrow men
from active
jobs routine

Wyes

Set cs=cs
successful

Schedule job
j on day i

successful

v

unsuccessful ^

unsucessful

Reschedule
active jobs
routine

79

SPAR-2

3PAR-2 is a major modification of SPAR-l and is based on

the concepts discussed in Chapter 3. The first part of ^Pi\R-2

is quite similar to SPAR-l, with the following exceptions and

restrictions: (a) all jobs are initially started at cs ;

(b) resource levels are assumed to be constant over the schedule

period (to assure the existence of a critical sequence)? (c)

there is no add-on routine, and the borrow routine adjusts

the cs of job k from ES rather than from day d only (to assure

that constraints to left and right shifting occur only at the

terminal points of jobs); (d) a multi-resource job, while

divided into separate jobs for programming purposes, is still

considered a single job when determining if a schedule is left-

justified. Note that a job in a multi-resource group may be

neither resource nor technologically constrained (and hence,

by itself, not left-justified), but restrained only because it

must start at the same time as another job in the group which

is resource constrained.

SPAR-.2 first generates a schedule that is left-justified

(essentially by the SPAR-l routine). Then an associated right-

justified schedule is generated (according to the rules described

in Chapter 3) and conditional slack values calculated. A recur-

sive search is made for local suboptimalities which, if found,

are removed. In the resulting left-active schedule, the critical

sequence(s) of jobs is identified, and an attempt is made to

shorten the schedule by crashing one or more of these jobs.

Two criteria are used in selecting jobs to crash: first. Jobs

are picked whose cs can be increased to csM without exceeding

the shop limits (or with the least required overtime), and, xn

■^■^HMm^HHnn m^HHH«* MM—i^—T^^^——Mi——M^^^^^—B—BW

■'--—''^-iPiT

ao

case of ties, the job is selected whose cost-time curve has the

least slope (after the manner of Kelley [22]). After a critical

job is crashed, a new schedule is generated and the above routine

applied again—repeating the process as long as there are improve-

ments in the cost of the schedule.

A simplified flow diagram of SPAR-2 follows in Figure 5.

A Cnmnarison of RAMPS and SPAR

Having described the basic SPAR program, we are now in

a better position to compare it with CElR's scheduling model,

RAMPS. The two programs represent independent, parallel efforts

to solve the same problem? each was c'impleted before its author(s)

had any knowledge of the other. Both take a similar approach to

scheduling, but there are basic, important differences in the

programs, and each can claim some advantages not enjoyed by the

other.

First we will note the similarities in data-handling

ability and design. Both SPAR and RAMPS

1) employ a network technique for determining technological

ordering of jobs;

2) use deterministic rather than probabilistic time estimates;

3) consider three resource utilization rates for each job,

with associated job times;

4) consider resource availabilities, which may vary during

the scheduling period;

5) handle multiple projects, each with a different due date;

6) allow resource teaming on Jobs;

1 At the time of this writing, SPAR-2 was being programmed for
the Bendix G-20. "Debugging" and trial runs had not been
completed.

^mmmmmmi^^m^^u

laBB^ammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Flaute 5

FLO-'/ DIAO^' 1PAR-2

START
Read
Job
Data

Calculate
Tentative
Schedule rr Calculate right justi-

fied sched.
and total
slack values
for all jobs
in schedule

JKake schsdul
left active

Increase
csn to csM

Are there any local
suboptiraalities?

^
no

Are there, resources
available to increase
cs to csr/ for any 1

j8bs on the critU
al sequence? ^^

no

Calculate <Si_

new schedule-^

-^-

Increase cs
on crit. job^
with least
slope cost-
time curve

yes

Is cost of schedule \np
< best prev. sched?yT

(a. > c7Vy—&\^S^07 J yeS C>;

yes

Set cs=cs.

Schedule job
j on day i

I

no

Borrow men
from active
jobs
routine

Set ES=ES+1

successful]
 Es-

unsuccessful

t
unsuccessful

Reschedule
active jobs
routine

successful v

Set cs=cs.

^
STOP

Print out
best
schedule

'f"'™" ■■"■■"«■M»MM«MM»i»iwoB»i»M>MMw»»MM».MM1-»M» niwiiiiiniiir—■-—imr

82

7) consider costs of normal time, idle time, overtime (or

other premium resources), and due date penalties;

8) have approximately the same job-handling capacity.

Furthermore, both are "type 2" models (see p. 63); i.e., they

serially allocate available resources, day by day, to jobs which

are available tor scheduling. Due date is variable and a function

of given limited resources. Beyond these similarities, there are

important differences in the programs, a few of which we note.

On each day examined, RAMPS schedules resource by resource,

starting with the one in most critical demand. (Each resource

has a "criticality index," calculated before any scheduling is

done, which is based on the total man-days required for a resource

[summed over all jobs and all days] and the man-days of that re-

source available. The index is unchanged by the scheduling pro-

cess.) The program generates, for each resource on each day,

all non-trivial assignment patterns that exist (i.e., all feasible

combinations of current jobs), given the jobs available for schedul-

ing on that day fincluding jobs already started and still active),

the three utilization rates for each job, and the resources avail-

able. Each assignment pattern is -cored according to functional

equations which include as variables total float, free float,

number of jobs scheduled, number of jobs split, idle resources,

and criticality (in terms of resource needs) of immediate suc-

cessor jobs. The pattern with the highest score is selected,

and the program proceeds to the next resource, or to the next

day. Thus costs are minimized each day (but not necessarily

over the whole schedule period) . Once a job is scheduled, it

remains so. There are no provisions for adjusting earlier Job

assignments. The program is completely deterministic; it

BK

33

contains no probabilistic elements in its job—election routine.

We observe, then, that R-J^'PS has a more elaborate decision-

rule for selecting jobs to be scheduled than has SPAR. The

greater number of variables considered gives it some flexibility,

for purposes of studying the effects of these variables, not

enjoyed by SPAR. Additionally, RAMPS considers not only three

utilization rates for each job, but also different work efficiencies

associated with these rates. SPAR-1 implicitly assumes that "crash"

and "slow-down" rates are as efficient as the normal rate. (SPAR-2

takes into account possible inefficiencies of non-normal rates

in its cost function.) RAMPS thus reflects the U-shaped cost

curve commonly described by economists in their analysis of

production functions.

On the other hand, SPAR has some important features not

paralleled in RAMPS—e.g., the add-on, borrow, reschedule and

search routines. While a RAMPS schedule is "optimal" each day,

one can easily think of projects for which day-by-day optimizing

will lead to a suboptimal overall result. Consider for example

the following schedule graph of a project in which all jobs

require the same resource (the numbers indicate the amounts of

resource required by each job):

01234557

7

1^ 8 2

If the resource limit is 10, and if job-splits are disallowed

(by a high penalty for such splits), RAMPS would generate the

following schjdule:

i«MBaaM«IIIIIIIIIIIIIIIIIIIIIIIIIIIBl«MaBMMMMBMBBM—MUM

84

O 10

7

lj 8 2

with a due date of 10. While SPAR would originally schedule

the 7 and the 1 jobs on day 0, the Reschedule Routine would

lead it to postpone job 7 and generate a seven-day schedule,

as follows:

01234557

7 •*,!

1-. 8 2

The probabilistic elements or SPAR models also aid them

in finding optimal schedules which would otherwise be missed.

Assume, for example, the following project:

0 12 3 4 5 6

7 1

4J 8

With a resource limit of 10, both RAMPS and SPAR (if it had no

probabilistic elements) would generate the following ten-day

schedule (job splits are again disallowed):

012 3 4 56 7 8 910
7 1 ! J

8 . 4,

Because of the random elements in the job-selection routine,

however, in repeated applications SPAR would sometimes schedule

job 7 first and find the following optimal schedule:

am—ii i Mii^aBB——Bi ^**B^*^^*^^^^^—*^mmmmmmmti^mmtm^^^mm^ __ _

-I— J. pL-j J

 1—I—UJ— . 4 >
Thus the random elements generally increase the probability of

finding an optimum schedule (though they do not guarantee that

such a solution will in fact be found [the probability may be

very small] or even that the probability of finding an optimal

schedule is always positive).

Not only does SPAR seek an optimum schedule for a given

set of shop limits, but by means of its Search routine, it also

seeks more efficient combinations of shop limits and resulting

due dates.

Finally,. SPAR-2 incorporates the critical sequence con-

cepts developed in Chapter 3. We anticipate that a model which

explicitly takes account of the effects of limited resources on

critical path analysis should prove superior to a model—similar

in other respects--which does not. We have yet to test this

hypothesis, however.

We observe, in summary, that RAMPS and SPAR are similar

in data-handling ability and in their general approach to sched-

uling? but they each have unique features which are interesting

and deserving of experimentation. We expect that both will ad-

vance our ability to deal more adequately with the large pro-

ject problem, and that experience gained from their applications

will lead to more powerful heuristics for project scheduling.

Hn ■HHraanamraanHBa mm mmaa^mmammmmmmm

»■■■MBBB^MBri mrnniiii miiii

86

Some Comments on the Certainty Assumption

We might veil be asked if the practical usefulness of

our models (a point we have often stressed) is not significantly

lessened by our certainty assumption. Would not our schedules

be more realistic and useful if we recognized the probabilistic

nature of Job times? Our answer is threefold:

1) Job times themselves are often difficult to estimate,

let alone their probability distributions. A frequent criti-

cism made of PERT, which uses a simple, three-point distribu-

tion of job times, is that the "pessimistic time" estimates

are often too pessimistic, biasing downward the calculated

values for "expected time." The value of probabilistic times

and computed figures for variance is questionable, it seems tö

us, when little is known about the probability distributions

for job times.

2) Even if reasonably accurate probability distributions

were available, the added requirements on computer space and

time to incorporate such data in the models would have necessi-

tated the omission of other project data (such as variable job

times), or restrictions in the size of projects that could be

scheduled, or a simpler program in terms of scheduling heuris-

tics. We felt the potential advantages of incorporating proba-

bilistic times were not worth the above sacrifices in the

scheduling models.

The advantage of using probabilistic times in the related
problem of job shop scheduling was questioned in a study
by Muth [35]. He concluded that "the schedule span is not
very sensitive to moderately large errors in estimated job
times."

_,.., ^^-^mmmvMmäm&mmmm-m mm W——^—^—^^^^^^ ssssrass

■rmiiTiiiriiiriirimmiiiiiniiiiiiiiiiiiiiiiimiiiiMiiMiTiiniiiiiiniirniiniii ~- ^r,-r--iCi^

3) Th2 main use of probabilistic Job times in PERT-type

models is for calculating an expexted project completion time,

with an associated variance. Jf this information is of parti-

cular value to the user of a project schedule, then it would

be relatively simple to generate such figures after the models

described earlier have developed a schedule (based on deter-

ministic job times). In PERT fashion [30], expected times for

jobs along the critical path (or critical sequence) could be

calculated from the probability distributions of these jobs

and added to obtain the expected due date for the project,

with variance being determined similarly. Or a simulatio',

approach could be used ^as reported by Levy and Wiest [29])

in which job times are selected from relevant probability dis-

tributions by Monte Carlo techniques and project due dates

calculated. From the resulting distribution of due dates,

the expected due date and variance can be determined, for

whatever managerial purposes they seem useful.

1 The simulation approach described in [29] assumes that all
jobs are started at early start. The method could still be
used in projects with limited resources if jobs along the
critical sequence only are considered. As in the PERT
approach, this ignores the possible effects of near-critical
jobs on the expected due date and variance.

87

snaMBHi^HHBaBaHHHHMnBBnnaaBMHHHBHl 'u*,"

-""-.■...r..- ■■■—■■ ' •"•] "-- ' -~1BMIimBl-~~~'l~~,°--,-~m=°:=™-~~,~l~'~~~'ll™""ll"MI'M

Chapter 5

OPERATING RESULTS FROM THE PROJECT SCHEDULING KODSLS

Computer Requirements of the Scheduling Models

All of the models discussed in Chapter 4 have been pro-

grammed in 20-•GATE, an algebraic language for the Bendix G-20

Computer at Carnegie Institute of Technology. In its latest
p

formulation, the MS program requires approximately 3,000

machine locations, leaving about 22,300 locations for data.

Thus it can handle a project with up to 1,030 multi-resource

jobs in 12 shops, extending over a scheduling period of up to

300 time periods. Alternately the program can handle 2,650

single skill jobs in 1.°. shops over the same scheduling period.

Trade-off between the number of jobs, shops, and time units may

be made according to the following formula for the number of

machine locations (W) required for data:

W = (No. of mulfci- resource jobs)(6 + No. of shops) +

(No. of days)(No. of shops) + 75.

The most recent SPAR-1 program, including necessary com-

puter subroutines, requires approximately 5,000 machine loca-

tions, leaving about 19,200 locations available for data in

core storage. Data space requirements of a project can be

computed as follows:

W = (No,, of single-resource jobs) (14) + (No. of nodes) (2)

+ ^No. of shops)(No. of time periods) + 1,200.

For example, the model could be dimensioned to handle

a project with 940 single-resource jobs, 500 nodes and 12 shops

1 The Bendix G-20 at C.I.T. has core storage of 32 K single
precision words. The algebraic compiler and subroutines
occupy the space not accounted for above.

09

over- a time span of 300 days. Thus the Job handling ability

of MS is somewhat greater than SPAR-1, due to the longer pro-

gram of the latter and greater amount of job data considered by it.

It would be possible, of course, to program both models

more efficiently by using machine language; and their data-

handling ability could be increased considerably by more exten-

sive use of tapes, "packing" of data, and other programming de-

vices. Targer and faster computers than the Bendix G-20 would

further extend the range of projects which could feasibly be

scheduled by the models.

Project Scheduling Experience

Operating experience with the models has been derived

largely from their application to four different projects,

which we may identify as follows:

Project A: A fictitious project, formulated in part from

a random number table, containing 55 jobs performed ibn 4 shops.

Project B: A fictitious project similar to A, containing

100 jobs performed in 4 shops.

Project C: A construction project, containing 97 multi-

resource jobs (or 131 single-resource jobs) involving 12 differ-

ent resource groups ("shops").

Project D: An accounting project, consisting of 691 Jobs

required for the month-end closing of accounting records in a

large manufacturing company; the jobs involve 20 different Eikill

groups ("shops").

We will consider the results of applying the models to

| these projects, each in turn.

■Wllllllll'l WI^«IJ^MII^M^tmM4>.j»li^^ III I I | 11 II lllllllllll IIIIIIIIIIIlT

^uaai^HaHaBw^BiB^aBaaBaBmBi

90

Shoo 1 Shoo 2 Shop _3 Shop 4

24 18 16 24

9 0 9 9

Pro jects A and B

2
The initial results of applying MS -1 to Project A are

reported elsewhere (Levy, Thompson and Wiest [28]); these

results are summarized in Figure 6 below. Thus with a project

due date of 47, shop limits were reduced from their original

levels (with all jobs plotted at early start) as follows:

_ Maximum Resource Requirements,

All jobs at early start
2

After smoothing with MS -1

The due date of 47 assured that the jobs would have generous

amounts of slack, in order to give the program some flexibility

in moving Jobs. (In real-life projects, such flexibility would

generally accrue from the large number of jobs involved, rather

than from ample due dates.) Running time for the program was

approximately three minutes.
2

The minimum shop limits reached by MS -1 were used as

fixed resource limits in the SPAR-1 model which was then applied
2

to Project A. To produce results comparable to MS -1, job man-

power assignments were first assumed to be non-variable (i.e.,

"crashing" or "stretching" jobs was not permitted). The re-

sulting schedule is shown below in Figure 7 along with the
2

MS -1 schedule. Thus SPAR generated a schedule only 39 days

in length, a considerable improvement in this instance over
2

the MS -1 schedule. Running time ior the program was just

under 1 minute.

When variable crew sizes were allowed, a further improve-

ment in the schedule was obtained. As indicated by Figure 0,

1 Throughout this chapter, projects are assumed to start on day
0, so that the schedule length is the same as the due date.

I iimiii ■ IIIIIIIHIIIIIIf "" IMI—WM«« _.- ^ J , l£u.-

. I ri'7uri 2 «S y i.

--

_ »o - ; -

r- \

1 1

3H0P

|

1 _••• -•}

^ t I L
-

1

._..

Ac

—

i

.O

 r- —\
— —

_ — _

1
_

 ::

b

0 4!_
__, —

15

t-|_ ^
--- — - — — - - -1 -

C £
" "D,: y s

4 2

<o

4B

—

■i<J

• • ••«■>>

 SI- 10 p 2
— — — -

rs -
 He n_

LO
 _

r'"';

-5

"1 Lrr,^,

•« J-

„

—
I"

i
n I ^TTZ ! ! 1

c f 15 2 } 3 > 4() 4 3

po
■ DEys "

• • SF 3CP 3

M« n._

LO . J- - • •••
• • . • *»*

^.
-i ; t

1

T

_Q. -*
* i • 1 1

c
r

-] 6 2 1 3 > 4) 4 3

• • •
- p£ yg

«

1 s
« • • % « SI iOP 4

-M ttr
10 _i_

; i n • 1

c
I '• T "
 • • 1 . —

... u.4.
t

00
""-§"" ii ä 4 3 2 4i \ 48

Days

WmmmUBBmB^^^mBB^mmammmmmammm^mmammmm^^^m ^n^mmmBmam^^mmmmi^mitoama^^mi^mm^mmmm^mmmmatmamm^^mmmm^^Mmi'xmmmp^rrrte

Figure 8

;
.

.:
20 11

i

S

-

 1

- -— — _
iJ _i ^f-hmdii 1 1

—J —
" 1 " i

HOP 1 ! Variable Crew Size
1 1 > ' < 1

--H jn-

■ir%l
T ~l —H ~ H —

—-
1

:
 —

_ —
— —

\—

1
;

4—j-| "Tl
! !

"• 1 ;— — VJ .
— —_. - j • i * * * t • • t * *1

c L

V ••« 1

•-" — - — - []
"1 "*!

— . -1. — --' — __.j —1
• a

 •_ J

• {

-H
__; 0 f-

r _L.: L. L [. 1
.
'_

~DGyd
2k 3: > 1

—J 4<) 48

2Ü| "

p j: SHOP 2

: ':[_ —
— — —

15 - _..

-M- — —
uJ

1—h - |

| 1 ._.

: •
1 (•*■"

- n

—

4~ — u ;

— • •

»•
"""jr. •

• • •

— —
•••• ' ' • • • • •

L>±. I
*
• r

r'T
1

i 1

p 3

1 S

?yi-
2h 3 3 4(3 41 i

20j- _ — _ _1 __
JJ

— —
SHOP 3

-M

151-

Jii

__ j.... — l^j
1 i'i

r 1 1 1

i—l

IT
i

11
V"

• •• »
• •-

;— 1 -j- . L_ I

Li
• hi ~i 1 ■J 1 1"S

I • «
i*«^ ; — —

r " ** pi i—
Lcv-Ci

r Q 1 P 2t1 3 3 4 p 4 3

Da
rs

KUj"

1 SHOP 4 !
1 "

— M pn
1 nl J

■ 11
* g

H-L
Jt

r
,—

•
1 ft

T
: r

f ■•«4 L I* • • *•• i "•• iL_i
1—1 ■L

1=1 I

*t 1

L 1 $ •
I * * * •

* ! 1 *
1 • « •

101 i„
1 * *la * " k * * K** * i

" 0 (3 1 6 24 3 2 —% 0 a
Days

UBMJWIM^^MjMWMaBl—O—aBM—i ■i^HBtaH^^HHm

atfaaHKaBaMBBKBBMKaBai

Figure 7
93

— 20 —

i

— — - -

OP 1

:

— —

|

— —

.T

-
ris —j. ouueuu-Lt;

1 R
SH

- StAR-l Scneaule
Fixed Crew Size ,

— ~M in-

10

— —

«ifii:

1
i

_____ -JZ 1 '-•
"I"""

—
»••»

s
• M

o_
3

-f

— __ !=_-_ —1—
... •—. • -. 1.

— — — — — — —
j

•s
—

3
1

0 i 3 > 4() 4!i

^n

ua; /S

I
1

1 O

SH OP 2

V in-

r
S

• •■

.... »••■• ■••

p
•

'T*
•., J • ••< •

• • *
-f- • •

n
■\

3 "'

1 • •

3 1) 2 1 3 > 4() 411
u iys

-•—

T ^
SH OP 3

IM jii

io

J X_J *••
..

• « •
~\

J •

•
-.1

• • » ^\
•

*

;
L- j ..; •

• • •
"■^ 1 ••■ ''I

) ä 1 1 j 2 I 3 > 4<) 4!

on

—D lyt

SH OP 4

M ;n

in

r-
••i

• ■• ■ .• If 11 _ , J" ür — « •
c.

-T "i p i > • •« ;~ •
i I

—<
• •*• *

1
>* • • • .

-o-
• •

i ■ • L J *■' It«* • »* * •
EL

o 15 24 32 40 48

Days

BmaHBHH
w^a^mm^^t^mmmmlmmmmimBm^^mmmmmami^m^mimaii^mmm?n^

94

project length was reduced to 31 days,

2
As noted earlier, the MS -1 model attempts to minimize

shop limits given a fixed due date? the SPAR models can seek

for an optimum combination of shop limits and due date (with

delay penalties). Two SPAR-1 programs, each with a different

search routine (see p. 75), were applied to Project A with
2

the following results:

Table 1

3PAR-1 A2£±. led to Pro]ect A: 55 Jobs 1

tit 3) (Search Routi ne It Increasing Shop Lin

Shop Limits Total
Cost Iteration ShoP-Ji Shop _2 Shop 3 ShO£_ 4 Due Date

1 9 9 9 9 33 41,780

2 9 9 9 lo 30 39,023

3 9 9 10 11 30 40,832

4 9 9 10 10 32 42,408

5 9 9 9 11 31 41,568

1 The schedule reported here is the best of seven iterations
(each requiring about 50 seconds including print-outs)r
results ranged from 31 to 35 days.

2 Labor costs were assumed to be as follows:

Shoo Number Dollars/Hour

1 3.50
2 4.75
3 2.80
4 5.00

In addition, an overhead charge (including delay penalty) of
$150/day was assumed.

■IIUIMM - -WJM STTTTT^CTras?—»®£IMIliMMIMfiiMlöiM mimi HIM ■ n

Table 2

SPAR-l Applied to Project A; 55 Jobs

(Search Routine 2: Decreasing Shop Limits)

 Shop Limits

Iteration Shop 1 Shop 2 Shoo 3 Shop 4

1 15 15 15 15

2 14 14 14 14

3 13 13 13 13

4 13 14 14 14

5 12 14 14 14

6 13 13 14 14

7 13 12 14 14

8 13 11 14 14

9 13 10 14 14

10 13 11 13 14

11 13 11 12 14

12 13 11 13 13

95

Date
Total
Cost

24 47,743

24 44,795

26 45,480

24 44,151

26 47,290

24 43,277

24 42,403

24 41,529

27 45,958

24 41,014

25 42,260

26 43,580

Due to the nature of the search routines, the search for

optimum shop levels stops when a local optimum has been found.

Note that the lowest cost schedules found by the two routines

differ by only 5 per cent in cost, but that the due dates and

shop levels are quite different. Quite probably there are other

combinations of shop limits and due dates in the same vicinity

that would result in similar (perhaps lower) total costs? re-

peated applications of the program would likely discover some

of these combinations, due to the probabilistic elements in

the program.

Results from the application of MS "-2 to Project A were

generally less favorable than the SPAR results. Repeated

96

applications of MS -2 to Project A with resource lirr.its of nine

men in each shop resulted in schedules whose lengths ere plotted

in the following frequency distribution:

Figure 9

Frequency

5 •-

4 ■-

3 ■-

2 --

1 --

0 I I I I

t
i
i *

* * * ****** ****** ****** ****** *****;,*** ********* *********

* * * * * * * * * *
* * * * * * * * * * * * * * * * * * ** ******* * ** ******* * ** ******* *

44_pr r r T r r i 11 r i-r r r r r r r i i r i i
45 50 55 60 65

Schedule Length in Days

70

Thus the shortest schedule produced was 49 days long,

found once in 35 iterations of the program (each iteration re-

quired about 1.7 minutes). By contrast, a single application

of SPAR-1 to Project A with the same shop limits produced o, 34

day schedule in less than a minute of computer time. A second
2

application of MS -2 to Project A with resource limits of 10 in

each shop resulted in a minimum schedule length of 44 days (nine

iterations); SPAR-1, with the same shop limits, generated a 29

day schedule.
2

Although experience with MS -2 was limited to applications

to Project A, the results were so clearly inferior to SPAR-1 re-

sults (both in terms of schedule lengths and computational time

2 required; that the MS -2 approach to resource allocation was

abandoned in favor of the SPAR-1 models.

Project B was devised to increase operating experience

with SPAR-1 on a larger project and to test the multi-project

feature incorporated in that model. The major results can be

97

summarized briefly in the following tables:

Table 3

SPAR-1 Applied to Project B; 100 Jobs, One Pro 1ect

(Search Routine 1: Increasi ig Shop Limits)

Shop Limits Total
Cost Iteration Shop 1 Shop _2 Shop 3 Shop 4 Due Date

1 10 10 10 10 51 71,700

2 10 11 10 10 47 67,712

3 10 12 10 10 45 67,950

(Search Routine 2: Decreasing Shop Limits)

Iteration Shop 1

., -^ "bi-

shop 2 Shop 3 Shop 4 Due Date
Total
Cost

1 13 15 14 13 41 71,402

2 12 14 13 12 41 66,651

3 11 13 12 11 42 68,093

4 11 14 13 12 41 64,004

5 10 14 13 12 44 72,945

6 11 13 13 12 42 69,078

7 11 14 12 12 44 74,769

a 11 14 13 11 41 64,135

In this application. Search Routine 2 produced the best

schedule in terms of total costs (iteration 4). Running time

per iteration was about 1.5 minutes.

For the next run. Project B was divided into a 45 job

project and a 55 job project.

1 Shop rates and overhead charges are the same as for Project A.

93

Table 4

5PAR-1 Applied to Project B; 100 Jobs, Two Projects

(Search Routine 2: Decreasing Shop Limits)

Shop Limits Due D^.te

Iteration Shop 1 Shop 2 Shop 3 SI iO£_4 Proj. 1 Proj. 2 Cost

1 13 15 14 13 32 44 87,107

2 12 14 13 12 32 45 85,164

3 11 13 12 11 35 49 84,819

4 10 12 11 10 42 53 85,835

5 10 13 12 11 45 45 78,444

5 9 13 12 11 44 52 88,295

7 10 12 12 11 46 49 83,301

8 10 13 11 11 47 45 80,679

As can be noted, the shop levels of iteration 5 produced the

lowest cost schedule.

Evaluation of Results: Projects A and B

The most important result to come from the above applica-

tions (and others not recorded here) was the demonstration of

the models' feasibility in project scheduling. Protocols of

the problem-solving process indicated that the various sub-

routines were operating as planned, and the rather short compu-

tational times required gave encouragement for application of

the models to larger projects.

Whether the schedules produced were "optimal" by some cri-

terion function is more difficult to access. Hand simulation

of the project with variable crew sizes and variable shop limits

is, for all practical purposes, impossible; the number of combi-

nations to investigate is too large. However, when crew sizes

99

and shop limits arc held constant, the measure of a schedule's

optimality is simply the length of the schedule? and for Project

A, at least, hand simulation is feasible. The author performed

two such simulations with different shop levels, and compared

them with corresponding SPAR-1 schedules. Hand simulation of

Project A with shop limits of 9, 8, 9, and 9, in shops one

through four, respectively, indicated that the optimum schedule

has a due date of 37 days? this compares to a due date of 39

in the schedule produced by SPAR-1. The SPAR-1 schedule for

Project A when shop limits were 10, 9, 10, and 10, however, was

optimal at a due date of 34. While it would be foolhardy to

draw any strong conclusions from these two examples, the results

were encouraging, at least.

Project C
2

Both MS -1 and SPAR-1 were applied to Project C, an actual

construction project for which job data had been collected and

a network drawn by the contractor. The length of the critical

pa oh through the network, with all jobs at normal crew size, was

94 days. With this as a due date, the project was first sched-
2

uled by the MS -1 model in an attempt to level resource require-

ments. The results are shown in Figure 10, which displays the

manpower loading charts for the 12 resources, comparing manpower

requirements with all jobs scheduled at early start with require-
2

ments after smoothing by MS -1.

1 The author is indebted to Jack Trawick for the results of
this application of the MS2_i nodel. For Project C, Mr.
Trawick reprogrammed the model to use computer time and
memory space much more efficiently than the earlier formu-
lation.

Flcjure 10
100

(cont.)
lül

Days

Figure 10 (cont.)
102

;: ;| : 1
::i iii

ii: :: ii

iii! :i:l
Proiect c

iiii M ii
:::

rrfi
■m

riii üi iii -üi iiii iii!
iii 'iii 1 iiii i Unsmoothed Schedule|ITjj

'••
SHOP 9 2 iffl ■MS -1 Schedule -li

Iii! iri 4i
•'■

üii jiii
i::

1 • ■ 1 iü iii iü iii iü mi tin • . 11 ,l.l|U(tt IU 'i'Mll inlu" • '-ill

n iii! iii !;: iii iii1' • ■it iiii i;i ji ■ 'll
m riiil iii !!• iii !•• ii- üi iii iji! ii: .11: il:j iii üi Kt t

in iii Ü i jjij

4:: : 1: üi] Tp] ii i I üi in Üii iTTl üi 'iii ; i J li! !:; li! i üi
: ::; ::: iii :ii iiii M

nt

Tu
ili| iii lull

t 1111

::!i .::?!
:::

r) \ ::.l
*ij iii iii -j !li' iii iiiji!

[■'-: iii 4— Uli
iii: -i-

i; f C;;
üi" iü: ; '.i\ 5ii

w y.g
iif Oil (iii

rni-l
iif] 0;.:

iii
iii

]ii! iii

1C diil iiiii i ji
i 1 Hi illl

~ ~: rür ~r — : ii! üi;
iii iii

ÜT 4:T- —i iii iii iii iii iii iii ii ii iiii
SHOP 10 iii

11! iii iii
iii
i ■ i iiiii ii 1 tJ

i -li

••■

ii: m
i:: -:: - — iü iii iii n:

■;; üi !' ■

Ill iii iii üi ii ii iii]
iii iii

^:

■ t • :i; 111* :i; ill If: 111 ij: ;j . .. ; 1.. ...

Lili it? nii iii
i:: i:; ~- —-

üI ;;i
1 1 r

iii
4ü[ü ii 1

liJ ::: iiii iii
' i • in

mi

liii -üi ~

j.

4-
'. • - iii

ü~ iii

T
::; iii • iii ii: iiij ii- iii iii i *; 1 • i in ii ii iii ;:r :::: iii

■ t -
iii • 11 iii ii 1 ii!

!'. '.
:;[i ;::

üir
. i ', ^ Oii

j

if^'
iiif Oil iiii ii£ Oi; iii ilc qii iiiii 1 '1 4ü Hir

u.

11 ; ; ;
'. ''.

:i;i i:ii :i:
up;?

nil iii li ■ iiii iiii üii iii ii i Ilq
j::: i'i:

i-iir - -iü
1! t ■

iii: iiii -ÜÜ
1 1 1 1 iiii iiii iii; üii iiiii ü ÜI

|! •: • Hi] , SHOP 11 iiii '*!; iiii iiii iii iiii iii i! ii ill
liii '•'''• iii;

15. iii: :: i:
t: i: • I 1 1 iiii 11! i : i i i •iii|i.

i ill liii' iiii iiii i n
;!•; :::: iiii iiii iii1 iiii n;: üii :"i ii .in iiii II*] ■

11*1 •
111'' In: iiHt inii

r i *! i ::::
iiii

::i: iiii iii' 'iii iiii iiii iiii iiii I'-t-i jn n i iii
1 i 1 !

iiii 5
:ii; iiii

'111 iiii 1111 iiii iiii iiii iiii iiii
i'-t ;:ii iiiii 1 ill

iiii iiiii ;ü-:

T i
iiii Iiiii iiii i;i;i iii: ,1111 iiii m; iiii iiii iiii iiii nt n

ml: i i||
liii ill: [iiii

Ö'' ^
1:1: : 1:1 iü- iiii 1U1

:!:: ::;i iii! iiii iii n iii
■'

iiii iiii iiii iiiii i': i i i iiii 1: i! i |Dii \-* [Oii li::: iiif oii iiii iiiE QÜ ÜÜ iiii m idii iii ii l- ill
liii iii: :: i:

iiii i i i i i;:: iiii i; i j iiii !• * i iii: baj |ai: ::ii • T -' iiii iiii riH iiiii iiii Hi:
11 Ul pi

üi ;i I ii
iiii iiii iiii

i:;:
ll::: I -11: •ii1 iiii iiii iiii üÜ iiii iiii Hi: i i ii iiii iiii iiii .iiii 11111

iii i. ji It-lj
liii iiii 1: i: i 1 3H0P 12 Iiiii iiii iiii iiii ÜÜ till iii' hin

iiii I iifl i iffl

iiii ::i:
pi" 1; *':

tt.i?:
Iiiii j;ii: iiii i:: * iii- iiii i * t * ■ iiii i.-ii

iiii 'iji
[ÜÜ iiii r; • :

::1! ! i iii
iii! iii' fi iiii Iiiii :;:: iiii iiii '!:1 iiii iiii iiii iiii iiii im

ni: •Iii iii! i ii
::: pHf ": i.

in: w iii iii' Iiiii iii' hi iiii jiii: iii:
hiu iiii iiii

11 ii iiij iii i ii {i|
[■■I

3: jiii iii jiii ii; iiii iiii iiii iiii i " ' M
!! 1 ■ iiii iiii iiii ijlji i ■ ill

iü liii u: I:XL.

tli t Hii-
i:i; jiii i:::

iii: till! iiii
11 n» • 3

ii Jiii iii
;:i

ioi ! iiipii- liT tni jiji 1 iii iii iiii
:i:i

r. 1! 1
lit!
Uli iiiii iiii

J i: 11 liiili 1 \\\:
20 40 60

Days
80 100

-^

103

Peak resource requirements were considerably reduced, as

is evident in the following summary of data;

Maximum Resource Requirements

Shops 1 2 3 4 5 6 7 89 10 11 12

All jobs at ES 12 3 20 7 8 12 14 8 4-2 4 1

After smoothing 73 13 477 12 44221

(Computer running time was 15 minutes.)

After the above results were obtained, the project was

scheduled by the SPAR-1 model. Variable crew sizes were allowed

when job times could reasonably be expected to be a function of

manpower assigned. When determined by technical requirements, job

times were held constant (e.g., tha job of cement pouring). Search

Routine 2 (decreasing shop limits) was used, and initial resource

levels were adequate to meet the maximum crew size of any job.

Successive iterations of the model produced the following results.

1 Total costs are based on overhead charges of $200/day and shop
hourly rates as follows (in order, beginning with shop 1): 4.50,
5.00, 2.50, 3.00, 2.25, 4.50, 4.50, 25.00, 4.50, 4.00, 4.00,
4.50.

SPAR

Table 5

-1 Applied to Proiect C: 131 Jobs

■Pv,. « m« *. ^ l •*• Shop Limit s

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 Date Cost [

1 12 3 20 7 8 12 14 8 10 2 4 1 72 249,700 |

2 11 3 19 5 7 11 13 7 9 2 3 1 78 248,800 [

3 10 3 18 5 7 10 12 6 8 2 2 1 80 234,400 [

4 9 3 17 4 7 9 12 5 7 2 2 1 79 215,300

5 8 3 16 4 7 8 12 4 6 2 2 1 77 197,900

5 7 3 15 4 7 7 12 4 5 2 2 1 81 197,800

7 7 3 14 4 7 7 12 4 4 2 2 1 100 238,600 |l

8 7 3 14 4 7 7 12 4 5 2 2 1 81 196,200 |

9 7 3 13 4 7 7 12 4 4 2 2 1 100 236,600 t

10 7 3 13 4 7 7 12 4 5 2 2 1 81 194,600 t

^^'-'^■-^^—r-T^^^

■^^■■■■■■1

104

Note that Iteration 9 has shop limits identical to those
2

resulting from the M3 -1 application, but that the due date is

100 instead of 94. (Repeated iterations of the SPM*-! program

with these shop limits failed to produce a schedule with a due
2

date lower than 100.) Thus the MS -1 schedule for this set of

-.hop limits is superior to (i.e., shorter than) the SPAR-1 sched-

ule. However, the SPAR-1 program was able to find several less

expensive combinations of shop levels and due dates (based on

the given cost parameters), all with earlier due dates than that
2

produced by the MS -1 program. For example, iteration 10 uses
2 the same shop levels as the MS -1 program, except that the re-

source level in shop 9 is increased from 4 to 5 men. The result-
2

ing due date is 91—compared to the MS -1 schedule due date of

94. As a result, the project cost based on the SPAR-1 schedule

2
^$194,600) is considerably lower than that based on the MS -1

schedule ($222,200). Manpower loading charts comparing the

MS2-1 schedule with the SPAR-.l schedule (10 iteration) are

shown in Figure 11.

Machine time per iteration was about 4 minutes, including

schedule print-outs. Computation time was increased, relative

to Projects A and B, not only because of the greater number of

jobs involved, but also because of the longer schedule length

and the presence of multi-skill jobs.

Evaluation of Results; .Project C

Unfortunately, it was impossible to compare the schedules

produced by our computer models with the actual schedule employed

by the contractor for Project C, for two reasons: changes were

made in the project after the original plans (which we used)

T^rrm^HHBa^H nmiWUHMAIAUUMUWMLi; ■■■■HHHHnBNMMÜ

—i^M^^^—^^—MBW^M^^g—^B^—Bi^—^H^^^—^M^J^BBI^iWlllitiynWB—M

Fl ure 11
105

:H<

L^

P.C.

U::

:.:

-e-

is

1
ilj'l

SHOP 1

fQ:

i^TiT
:x.'v*.

:::■ ::::j- ;^0;

StIOP ?

:!:

^f yn

ntr
h

:;:U

Project C
M32-l Schedule

SPAR Schedule

I

mm

mi

i

iiii

nt

!]i"!"

i:; ill!

Ii::

til

iiülii

nu

if
: :l!i

i
i
1

-^m
■Hrm:

!■!

(II
tjil

::c

:;: :Mf

Hi!
Ii!

to-
~J

li.
■ ■■■c

o;;

if I
•'K-
ln

':Q
:

0.T yn

SHOP 3

fil m
11

;a .TI

Ap-

M tfr

a;::!

ü

:::;

•ül ^.0: Hi iiii
ilil

X ill: till
n ; iJ

Ii J

;:;!
HI

ir i; i !i;
in

J.... ■l:; iii'
li!

0-: ■■■ •tCri Hi II :

;;i:
iii

TJ
::i: ii

i:;;

1
iiii :;i;

t;i

nr:
It,:

Iiii
—hK-

SHOP 4
—ttr

i;it
Hf

in, ::i
mTTTi"
ür-tö-

!:i

iiii ii!:
In "Ai

:;i iiii

Ii

;ii :ii: iii

ii

;:::
TTt i!i; it!

iii'
iTi
iii iliio IE

n; :;::

20
iiii t;:::: :i:i iiü i ii iii1 iiii iii

40 60

iiT

8<T
mm m rtä iff

H

Days

ii ■ iMimiiimiTiiiiiMiinrirwiriiwiiwiii^^ 2

Figure 11 (cont.) 106

iiiliiii
:[;::;

■[-■ ■:J "i-ii:: iiii iiii ii"iii:ii:iiiiiii|;iii
::T: : ::;: '.'.'. ::: :— ■ '

 i;;::|;„:i;.;;:i::::;:-:

iii iiii ::: :;: ::. : :::: ::: Project C ;
:;: : :::: i! '• ;;; ','.'. w. : 43 -1 Schedule ilU

iii! !' ■ ■ i ■ iii iii
r1 ■

"irf H-: 'rrr -~
:i: l!!l

iii iii
. i

iiii iiii i SHUf S

~:r rr.
iii" iii

-ri™
iiii

IM; : ;:::;.: i:::: iiii iiii H-t;
in:

Tl,.

:ii; iii! Il]] it ■i:;. O—
i iiii

ii;-rir M-iii
Hi I iiii iiii ii iiii iiii I 'i:

i::: iiii

Efie X~
:F5::

•iii ii iiii iiii "i i i;:ii;-; iiiii

Hri
iiii :r.: iiii ::i: iiii iiii ■.'.it

Hti nit

iii:
:iii ii i iiii iili ii i iiii iiii iiii i'i!

iiii ; i *' iiii illl III
iiii ::i:

"

•■ij ii
' II iii; p -, :«.; iiii

j::- r-jd.-:;
iiii iiii :;:i

.:! 1 iiii • i: i iiii ilil
im;

i
.......

•tin iili iii: iillil i
,-™..,r...r

:

ilii

iiii
riri •ri: ?i:i ? vi i i][}$?:i:

DH /3 '"

r)5.:ii
~

ÜP 3:1:
T71 ■

iiii

100' iiii

iiii

iiii iff;
llilii

iii: iiii iii
.:;:

'. : i:: _ j :~ —i
1.

i-TTT ~
iii: ::i; iiii

iiii

ilili
■tiil
tii i

-rrr ~rr TTT" 77 1' *; ::::
c: SHOP S ii-i

l]T:

'■',','. '.'.'.'.

rv.

iüiii : ill: ■ • I ■ i
:~: 'r-:

:;:; ,i;; :i:: !|1|:
iii; : ■:

ii'i iii: T1"
in:
t j ■ ■ fc rv';;

c;

. iii:fi
~'r

iiii WM
M>*t ■• U

:: r ii r iiii w "iTi"! iili ill
,l;i iiii

Q Ü - ■

—i r

4" 1 ;
■ t "r '.-. •■iii

V
^-i IT-

::: i Iiii ijii Ij}:
i::i :: S' 1 . I ; iiii iiiiSli ■

rrrr —'■

:::
:: C

--
2D__ P.-

Ö'i fisi ::
6 :■. i i j; i:: lie /::: ill K3 J'; ■ iiliü! —:---

iiii iili
i::; '•.')':'■

~~ ;
-T:

:- -—
:;:;

S
3H0P 7 .;;; i;.:: iiii iij

it:i
:iii

rrri
0

■-- ~4 ~ --
j ■■•■

iiii iiii iiii Ft
Uli t

t ,...1 m ■;.!■■■ i:;: :::: iiii Hi! iili
iili irn on

— —

1—"H
i '-~i i:!]

- ■"■

\l irr r
' Hi?

1
ill- ~H —; — rüi rrn -iii- i :ii: Uli ill:

iüi üif

i * i ■ -ii: rir:
:ri

r
-:•■ f ;::: ;

i. —p_j
: JT ii:i ;;ü i^r.

::"3
■ I

:i:i

Iiii iij-
"777": T TT T7T7 7777 TTTt mrT n^t-

iiii iili Ifll ,.

iii iiii iiiC :i:
: ?3 ii iii4 0;:

O'
*y. j ■:■ ; I c -■:i; iii: ii1 30i iiii lilt i

!!;; 'i\'< iiii i 11 i : i iii
7 >■»;

iiii tii; iiii i.ii il
; 11

iiji

iiii ii iii- ü iiii iiii
rfi-

::: j iiii iiii iiii
n:;
';::

-rr: ~T
iiilij-
Iili lit ii! i; :i SHOP 8 iiii iiii iiii iii iiii

;i::
iiii

lf.'-'.

ill
iii

iii ii; iii ii iii iiii i

ii HTi rrr' TTTT rir- i
iili

i:;:

iii:

: j i:

iiii iii' iiii
• 1 • ;

iii ■111 Pi1
:i: :i:

i;ii 'ii M M i iiii iiii ;:i: iiii iiii i i1 III i
ii: ii:- -ni;

.0
;i-r irr trr -:rir :

iiTiiT
iii iii

iiii i iiii
iiii -ill iiii

■riH
:::i

iiii t*ii '.l'\ mi
iiij.iii

| j] i'i iii iiii iiii ii
Hi iii

"Til III
ir- put i:i: i hü iiii fl-i:

iiii ;;:t
•'il iji) i:

::;: la ffii : "t TTT ■TTT' - rrr ;•••'"
ii rj : :i i 11 i~i.

: fvr
iiii ;li; lid

r-'-'-r:

o 20 40 ^O
Days

80 100

-"——— -■■■»---—-—---—^p—— .I„I HUIIIHMMB^M^^M MBM __

i-"i uro 11 (cont.) 107

—.':] irn
:::, i
... i

ifii
i < - ■

: i 1:1 ■Iii ;[ii
rr- •:rr

in
iii ILii iiii

Proi ect C
uiiiiii

.i::::i;;:,i:i;i|

;HT* rnr lU-t
i iii; I! I' 1 iiii :iii| iiii

ii'.'.i

i:;;
:ii: iiii iiii MS -1 Schedule jijj jljii

^
iiii iiii „ i

iiii *'!' 1 i^nno r>^v.„j..l„ riiitli.illJ
:;;:>.::: 'jiiuf y jiiui ouwcuua.« HI; l|iH

i;:; i

—-
fö 1 :

iiii iirr] fi-i4 irr iii- rr;- rir:
. 11 11

ri-i-j irr
iiii iiii iü iiii !l: Wmm
iiii iiii iii! ill ill ilpi

prl' iilfl ri:: |i: 1 :
:5 1 :

-ii-iri iTii t • • <

iiiil iii: iii; iiii iiiil iiiil i i i i iiii ::i.
:;:: iii ii Hljiliililjl

iiii iii- iiii iiii iiii| iiii iiii iiii iiii iiiil iiiiii iplilill
[':-::'

:ii:
r^

■0 L,
i'i'4 ^

iiii iiii
^1

:'.:;

W\ irri f—j
vv]

■■n
.•.•r!l

t ■ ! 'I iül!
qji

iii!
iiii hi
ii i if wmm

iii:| iiii
ill! iii' i:iil ii i iii; ii|i iillj

:::: ini 0 :::2 Q::
rrr^ rr,T

:::f1 Oii:
V'\ y.X

ii .^ 0:: iihl iifeiiili|i|ii|!iiti
iiii iiii i;i: iiii ii!: iiii iijl j) ill iii iii!
; i ; i :; i: -H^ri- irii

:t:. : :i: i:: - ~r
:::.,:[':■

TTT- :rr: füi
:;i:
::i:

~: ütT
iiii iii ii .iiiii iiii iii!

:;:,i
li'S j: SHOP 10 iiiiii iiiiippl

; i; ^
•;■:

::::'

n

:::
üii ::;: • M ■ iiiiiii iiiiii iiii iii j

LCLI ;
;: I: ;ij; :::;

iiii iii! :::;:; Iiiiii iiii ill 3
:i:: ;:ir

^ j 1 i— -ii— ~: ::::
::::

.': ' :::: iiii iiii ii:: ;: I pin piji mil
;iii • I*!

iiii Uli ii |ij|i|ij|ijiiji|

:';: i

III-
~

o

iii: :::. ::::
:■::

~; ■*' ■ ;i : iiiiii iiiiiipli
T ■I 1 ; : r~~ 1 ■' ■

■■ iiJilj! Sillli
;; i:

~ir
■':. [o ü;? 0:. :::/ 0:

ys;
:5 D ■!

'■.'■<■

iir-
y.:; i iiipc)i iiii iiii ilti

;.:::. ;:ii
tlz. iiii iii'; ;

i:: iiii ii lilili ill! li
[~: rH:

$
i-i- inl

:.i: iii: ii iiii 111! ii!}
SHOP 11 iiii ii iiii iiii iilij

;;;: \ 4~ ~-.
jjii ' I •; iii! iiii ii ii iiii ijii iiij

i'!; ill:
I'O j: iiii iiii iiii ii

11 • ■' ; ii: Üii iiii ii iiiiii iii-iill
iipiiiP ':;:

■rH^ a_

^ 1 iiii iiii i • <:
iiii

i 11: '•

i-ii

\iJ:
! I i 1 ' '• J • iiii ii ;:hi;: ;:;i ;;|ti

1! im Hi: in 1

o p{ k Fit iiii iiii • * I i ;:!: Illlli Ij ill:h:: ::ilj :i|i!i:|-,iii|iiiil

ii;2 b.:: B':'
Pii

::6 Piii ::C D:i: h ;'; liiit ̂ iiiii iiii iiii
:H; i i 1 i i i i iiii

Mti; iiii iiii iiii iiii I •;; i| t' •i:i il iiiiiiiillij

jrn- —
I'«" 1

ii iiii iiii iiii i:;; iiii ij!i ii'i iiii b iiiii ;; ;;: :i;i i
!: iii: ;:il ill!

SHOP 12 riii iiii iiii iiii iiii iiii FT ii iiii iiii iii

~i ü iiii iiii ;::: iiii iiii iiii iiii iiii h • • i iiii III;
III:

jii; iiii i iilteffl
iä; : iii' iii:

iii: !••■ iiii 1 t 11 • ijii iiii
1:::
till iiiii iiiplilil

H~
kc pi:

r
4Hrn- :::

Iiii
]rü:

iii ijii iiii iiii lli + i iiii pi :i Mi: iiii H
ii ;r.i in; i ii]

iii
1 ■ i • ^ !;?! iiii ;ii:

i: i: iiii :ii: iiii i iiiiii iiii iiii
li!! ^ ' [ii-i- iiii

III!- k iii Ftt
iii iiii ijii iiii Iiii iijl iii i ii ijii iiiii}!

Iff !: ILL
j M • '

m m jjj; iül! pi Uli iiii ;
Mill

1' t 1 t< ■ : r

lllüilllilüill
20 40 60

Days
80 100

 ^—P--—-—--—^-----—-~l-i-^-^-^~---^--——■-—————^—-—-————^-»—ffll I lllllglllly

10 B

were drawn, and adequate records of actual work performance were

not kept. However, some measure of the program's effectiveness

was obtained from the contractor's reactions to the schedules

they produced. The contractor had used two (and sometimes,

three) schedulers for a period of two weeks hand-smoothing jobs

in the project. Thus the computer schedules were prepared much

more rapidly and at less expense, even when data preparation

time necessary for the computer models was considered. The

contractor was further impressed with the extent of smoothing

which the model achieved----especially on Resource Nc. 8, whose

peak of 8 units unsmoothed was reduced to 4. This resource

involved the use of large and expensive machines (e.g., bull-

dozers, cranes, tractors, etc.) which had to be rented for the

period of use, inclr-ding short periods of inactivity. Thus if

peak requirements for the resource could be reduced, and more

intensive (i.e., less interrupted) use made of the machines,

considerable savings would result. Not only did the computer

models reduce the peak resources required, but (in the case o^

the SPAR-1 applications) they also indicated how the project

length could be appreciably shortened by utilizing variable

crew sizes on some jobs--with little or no increase in maximum

resource requirements. To the extent that a schedule is shortened

with no increase of resource levels, resources are used more

tensively and idle time is minimized.

The contractor indicated his desire to use one of the

computer models for scheduling a much larger, multi-million

dollar project. It would be in such an application that the

1 See p. 114,

____^^^^BIMHi^HB^BBaBalBHH^HHMBBBBBaBlalBI^^uwMBaH^HaHHnHnHBBai

109

advantages of a computer approach would be most notable. Hand

smoothing of a relatively small project—like Project C—is

feasible,■ but the difficulties of manual smoothing increase

exponentially with the size of the project and they greatly

reduce the potential effectiveness of this approach on large

projects. A computer is needed to explore, in a reasonable

length of time, the many possible combinations of job start

times and crew sizes for such projects.

Project D

By far the largest of the projects scheduled by the

computer models was Project D, containing 591 jobs performed

in 19 shops. The project consisted of jobs required for month-

end closing of the accounting records in a large manufacturing

company. Time periods scheduled were one-half hour long, and

the schedule horizon was six days, or 288 time periods. The

project was complicated by the fact that resource levels varied

over the scheduling period; some shops (i.e., manpower skill

groups) worked one shift only, while others worked two or

three, or irregularly. Shop limits often varied from day to

day or from shift to shift (and in some cases during a shift).

As we noted in Chapter 3, when resource levels are irregular,

the concepts of critical path, critical sequence and job slack
p

lose their normal meaning. The MS -1 model smooths resource

levels by shifting jobs with positive slack? implicit in the

slack calculations is the assumption of constant resource limits

over the scheduling period. Consequently MS -1 could not be

applied to Project D. Although the job-selection subroutine

in the SPAR models is based on job-slack calculations (which

^^.y:.,.. t, f..lM..l.,j5.-,:.^llVa^.^i;ti^H^lT^i-V.:.T- ■ ,■» r^V -J/. ..■. -■:■■ ..: ■ :: ..-■>...■.■ ..jV .^Aü«^^^ . v.--. ■. '. -

110

in turn are based on technological orderings only), such calcu-

lations affect only the priority of jobs to be scheduled; actual

Job scheduling is done only if resources are available on the

day being considered. Thus the SPAR models can readily sched-

ule projects in which resources are not only limited, but variable

as well.

The schedule resulting from the application of SPAR-1 to

Project D is not reproduced here, because of the size of the

project and length of the schedule, but the results may be

summarized. The length of the schedule was 250 days and the

computation time 51 minutes (including S minutes for printing

out the schedule). Given the job requirements and resource

restraints of the project, the schedule was as short as possible.

If unlimited resources were available, the project could be

scheduled 1 185 time periods. With the limits as given, how-

ever, each of two jobs on the critical path was delayed 32 time

periods (i.e., two 8-hour shifts) by the total unavailability

of resources during those periods.

Because of the rather long computational time and the

fact that an optimal schedule for the given resource limits had

been found on the first run, only two runs were made. Both

resulted in the same due date, although start times of some

jobs differed in the two schedules.

Evaluation of Results; Prolect D

As with Project C, time estimates for jobs in Project D

did not accurately reflect subsequent experience, so that com-

parison of the computer schedule with the actual schedule was

of little worth. The significance of the results from applying

■iWimMllfWWWFf.r^.'.Wl.MMa«»,».»

111

SPAR-1 to the project may be measured, rather, in terms of its

ability to handle a comparitively large project with complex

scheduling constraints (e.g., variable resource limits ai.d var-

iable crew sizes) in a reasonable length of time. The 51 min-

utes required for a single run en the computer could be reduced

significantly by more efficient progranniing (and possibly by

the use of a larger computer), permitting the use of multi-

runs and the exercise of the probability features of the model.

Even with a single, 51 minute run, however, the model produced

a minimum length schedule that would have required many man-

weeks of manual effort to reproduce by regular scheduling means.

We should note, also, that the company which provided the pro-

ject had abandoned efforts to use PERT and similar techniques

for scheduling the project, as the variable resource limits

rendered such methods inapplicable.

Problem; What is a "Good" Schedule?

It should be clear by now that our heuristic approach

to project scheduling does not guarantee an optimum solution,

nor does it provide a means of determining how near a given

schedule is to optimum. Only when projects are sufficiently

small or constrained to be solved by exhaustive search techni-

ques is it possible to make a precise statement about the opti-

mality (or near optimality) of a heuristic, non-algorithmic

solution. For most projects of practical interest, however,

this approach to evaluating a schedule is simply not feasible.

Even our simplest test project (Project A) has an enormous

numbe- of possible schedules; it would probably take many days

to find an optimum by exaustive search. (Only when we severely

■^■■^■"^■»»»■■■■■■BHM^BB^BIHB^^Ba^^^BBBiMII^MaBHaH^^M^BI

1x2

constrained the project by holding crew sizes and resource

levels constant were we able to discover the optimum schedules

by this technique, as we noted above.)

Thus we are left with the less satisfying, but surely

not unreasonable, method of evaluating our schedules by com~

paring them with those resulting from current scheduling prac-

tices. By this criterion, we will conclude that a schedule

produced by our models is "good" if it is measurably better

than a schedule for the same project produced by conventional

scheduling methods—-i.e., if it requires lower resource limits

for the same due date, or if it permits an earlier due date with

the same resource limits, or if it results in some lower cost

combination of due date and resource limits.

Summary of Results

How well do our models perform in generating "good"

schedules? The evidence we reported above is limited but

encouraging, and we may summarize as follows. In the case

where exhaustive search methods could be applied, schedules

produced by our models fared well: of the two computer schedules

for which optimal solutions were found "by hand," one was opti-

mal and the o^her nearly so. Our schedule for Project C,

although not directly comparable to the schedule actually used,

was sufficiently "good" to interest the contractor in further

applications of the model on more important projects. In all

of the schedules for projects A, B and C generated by our model,

resource limits were significantly reduced below the levels re-

quired by schedules of the PERT and CPM variety (all jobs sched-

uled at early start). While users of such scheduling methods

^^^■Hw^Huomu^^^^^HBHaOi nn^msm.:*..:^i:^~~--±''- ; ■'.■■'■■■■■''■rinir\ttf*hvi^hjn-:-rVl.i"^\-:^

113

may reduce resource levels by hand-shifting of slack Jobs,

this juggling becomes an enormous task with large projects and

the extent to which it may be used is limited. We may safely

conclude that our models generated schedules significantly bet-

ter thciii those that would V"= produced by PERT, CPM, and similar

techniques—methods that are widely used today. Additionally,

SPAR-1 was able to find an optimum schedule (in terms of due

date) for Project D—a project which could not be scheduled at

all by present PERT-type programs, because of the variable re-

source limits which had to be considered.

Thus we conclude from our experience with the ücheduling

models that they do produce "good" schedules, but our evidence

is limited to a few examples. We would profit from more experi-

ence in applying the models to a variety of project types and

sizes, and from additional comparisons of the schedules pro-

duced with those resulting from current practice.

^^^^■^■■■■■^^■^^M^^: __

Chaoter 6

CONCLUSION

In this final chapter, we point to some of the economic

and practical advantages of our scheduling 'dels, compare the

heuristic procedures we used in our programs with those which

have been applied to related scheduling problems, and make

some suggestions for future work. We close with a summary of

what we consider to be the main contributions of our study to

the problem of large project scheduling with limited resources,

Economic Feg.sibility of the Models

Although we have not made a detailed cost-feasibility

study, our preliminary calculations indicate that the costs of

applying the models (including data preparation costs and com-

puter time) to projects of the size we have considered is eco-

nomically attractive, as compared to manual methods of sched-

uling.

For example, the schedule for project C was generated

2
by HS -1 in 15 minutes on the G-20. If we wished to obtain

the refinements resulting from the SPAR-1 model, we would add

to this time an additional 10 minutes for a SPAR-1 schedule

(with the search routine abbreviated by starting with the out-

put data of the MS -1 schedule), thus totaling 25 minutes or

about $85 in machine time. (This could be reduced considerably

by.more efficient programming of the models.) Keypunching of

data required two to three hours, bringing the total cost to

something under $100. Converting computer output to job orders

and other forms operationally useful wouxd require additional

time? but presumably much of this work could be done by the

^»«^^^^■^■■^^■MMMlKa ;- ^ :!/■ - :--:^ v -r :V '■■

115

computer itself, through proper programming of output, at

little additional expense. By comparison, the two (and sometimes

three) schedulers assigned to hand-smooth jobs in the project

spent more than a man-month doing so. Their salary expense

along was over $600. Thus the computer scheduling was consid-

erably less expensive, required a small fraction of the time,

and resulted in better smoothing (according to the contractor),

as compared with the conventional methods.

Computational time appears to increase roughly in pro-

portion to (n-d), where n is the number of jobs and d the number

of days in a schedule. If this relationship may be safely extra-

polated to larger projects, then the models would still be eco-

nomically feasible for scheduling such projects, as conventional

scheduling expenses would be expected to increase at least by

the same proportion. However, the size of projects which can

be handled by the models is presently limited by computer mem-

ory capacity rather than by costs of computer time.

Although difficult to evaluate in dollar terms, the advan-

tages of a model which produces a schedule in a matter of minutes

rather than weeks are of considerable worth to a manager of a

large project. At the time a project is being planned (or

when a contractor is preparing bids), the model could simulate

the effects of various resource limits on project costs and due

dates, a feat that would be quite difficult and much more time

consuming to do by hand. As a project is started and work pro-

ceeds, almost inevitably the actual work performed varies in

some degree from the most carefully planned schedule, due to

unanticipated delays or inaccurate time estimates. Schedules

must be updated, and the computer model would permit this to be

115

done rapidly.—perhaps on a daily or weekly basis. Manual re-

scheduling, especially of quite large projects, would likely

lag behind work being accomplished; each new schedule would be

obsolete at its completion. Computer-generated schedules should

thus permit closer coordination and control of project activities.

Heuristics for Scheduling Problems

We earlier explored the relationship (and differences)

between three scheduling problems—assembly line balancing. Job

shop scheduling, and large project scheduling. Since attempts

have been made to solve all three problems by heuristic programs,

it is reasonable to ask if the programs are comparable—if at

some level the heuristics are similar—and if in any way they

build on each other and collectively contribute to our ability

to deal with these ill-structured problems. We will answer these

questions by comparing three examples of heuristic programs:

Gere's job shop scheduling model [15], Tonge's line balancing

model [45], and our own large project scheduling models.

We would anticipate that specific similarities in the

heuristics of the programs would exist to the extent that the

problems are themselves similar, or have similar features, since

the heuristics involved were developed with a high degree of

specificity for the problems at hand. Such proves to be trues

the heuristics in the job shop and large project programs have

more in common with each other than with the heuristics of the

line balanceing program. For example, both of the former pro-

grams contain rules for giving precedence to jobs with the least

slack. (The slack concept has no meaning in the line balancing

1 Such need not be the case with heuristic methods. See
Newell, Shaw and Simon on the General Problem Solver [36].

 timiTiiMiiiiiin llllilll m M^———a^^—^—^————^———i—M

117

problem.) Ths Look Ahead heuristic in the job shop program is

desi'.jned to avoid future conflicts in the demand for a resource

which result from a current decision that otherwise appears

optimal. By comparison, the Borrow and Reschedule heuristics

of the SPAR program attempt to resolve current conflicts in the

demand for resources by changing Job assignments previously made,

that seemed optimal at the time. The intent and effect of these

heuristics in both programs is much the same. The Insert rule

of Gere's program and the Add-on rule of our own, while differ-

ent In their approach, both attempt to achieve more intensive
i

use of resources end to minimize idle time. While the SIO rule"

of the job shop program has no counterpart in our own, it is

logically applicable to the large project problem and could be in-
2

corporated easily in either the r'S or SPAR program.

It is difficult to find, on the other hand, any such close

similarities between the heuristics of the above scheduling pro-

grams and those of the line balancing problem. In part this is

due to the substantial differences in the problems concerned,

and in further part by the distinctively different approaches to

problem solving represented in the three programs—especially in
2

the line balancing program as compared to the other two.

1 SIO stands for Shortest Imminent Operation? by this rule,
the job requiring the shortest processing time for its next
operation has highest scheduling priority.

2 In this respect, it is interesting to note that Tonge found
it desirable to write his computer program in IPL, a symbol
manipulation language (without which, he stated, he "would
never have attempted mechanizing a line balancing procedure
such as this"). The other two programs were written in
algebraic languages.

 ■ iiiwiiimiiiiiirMiiiiiaiiiiiniiiiiiiiiiiiMwiiin

118

ht ?. more general level of .n:lysi3, however, it 1:3 pos-

sible to point out some similarities in the three programs.

Tonge cites a number of characteristics of existing heuristic

procedures, two of which have particular relevance for our pur-

poses. The first characteristic he refers to is the

Factorization of the problem into a number of smaller
problems and subproblems (often through means-end analy-
sis) , with a corresponding goal-sub-goal organization
of behavior.1

For example, in his line balancing program, groups of elements

are aggregated into single compound elements, creating simpler

line balancing problems which are more easily solved. The pro-

gram assigns groups of av/ailable workmen to elemente and takes

as subproblems those compound elements which have been assigned

more than one man.

In a similar vein, we may regard the major goal of the

3PAR program as the completion of the project (the scheduling

of all jobs) within the constraints of limited resources. This

goal is factored into the smaller problems of scheduling subsets

of Jobs that become available as the program progresses over a

sequence of time periods. If, on a particular day, some job j

cannot be scheduled for lack of resources, the program sets up

a second-level subgoal of providing the necessary resources,

through the Borrow and/or Reschedule routines. If these attempts

fail, the (sub)goal of scheduling job j on day d is modified.

An analogous example may be found in Gere's job shop pro-

gram, in which the goal of minimizing costs of late jobs is fac-

tored into the subgoals of utilizing available machine capacity

each period, by scheduling individual jobs according to some

priority rules.

1 See [45, p. 17].

iii»j—iium.»j—luj im um 11, ,|,

119

The second characteristic Tonge citas Is the

Use of cues in the enrivonment to determine the particu-
lar behavior evoked from a wide set of possible alterna-
tives available to the program, that is, a high degree
of interdependence between the specific problem (from
a more general class) being considered and the particu-
lar problem-solving methods used.l

He notes that the methods Cor selecting elements to shift between

groupings in the assembly balancing program depend on the particu-

lar characteristics of the groupings. Similarly, in our project

scheduling model (SPAR), the behavior evoked in selecting a job

to be scheduled depends on the precedence relationship of the

Job to other jobs in the network and on the current availability

of resources. Critical jobs evoke a different heuristic than

jobs with slack, for example, and the pattern of jobs scheduled

by a given time period determines whether the Add-on, Borrow,

and Reschedule routines are called into play at that period.

And in Gere's program, the effects of job selection priority

rules are modified by a number of "overriding" heuristics which

take cues from the immediate environment of the schedule. For

example, the Alternate Operation heuristic considers the effect

that scheduling one job has on others that compete for the same

machine; and the Look Ahead heuristic attempts to anticipate

conflicts that will be created in the future by the present

scheduling of a given job.

We could cite further examples, but these serve to illus-

trate the point which we now make. While it is possible to find

quite similar heuristics in some programs (especially if the pro-

blems dealt with are related), and while the experience with such

heuristics may be transferable in some degree fom one problem

to another, it is in terms of the general characteristics of

1 op. cit.

iww^wwnwpm

^^BHm^HHnHH^^^^HnmmBsiaBaMHHBi^Ha!^

120

heuristic programs that one is most apt to find helpful guides

to the solving of specific problems by heuristic procedures.

Vie may answer our earlier question by concluding that the

three programs examined contribute individually, rather than

collectively, to our ability to deal with the problems they

were designed to solve; but that, collectively, they illus-

trate and give us further experience in the use of general

heuristic procedures for problem solving.

Future Work

The results of our work, as could be expected, point to

additional areas of research that seem promising for the further

development of large project scheduling methods. We suggest

the following as logical and potentially fruitful extensions of

the present study;

1) Completion and Testing of SPAR-2. The theoretical con-

siderations of Chapter 3 open up new avenues of project schedul-

ing to explore. SPAR-2 represents one approach to scheduling

that utilizes the notion of "critical sequence;" we are hopeful

that it will prove to be a fruitful approach, and intend to

continue the development and testing of this model. Many other

approaches, of course, are possible.

2) Additional Decision Rules. SPAR-1 employs a single de-

cision rule for selecting jobs to be scheduled each time period

(modified by the probability feature) . Other rules could easily

be substituted (e.g., pick first the job having the most succes-

sors using "bottleneck" resources), and their effects studied.

Thompson and Fisher [12] report that probabilistic combinations

of two decision rules yield the best results in scheduling pro-

lems they have studied.

 ""■■i —

31 l11! Uli—K—^^^—

UOHMBBH ^^w^aMMMfc^i—■—MMM HÜB il'IM

121

3) Learning Features, The use in the program of several

decision rules, various parameter;;, and probability constants

(see Chapter 4) suggests that the program can be written so as

to modify itself as a result of its experience in repeated iter-

ations on a project. Thus the program could successively ex-

plore the effects of changes in a given decision rule or para-

meter and alter itself to use the decision rules or parameters

that yield the best schedules. TVo problems can be anticipated:

small projects would have to be employed, so that scheduling

time is short enough to base "learning" on more than limited

experience. More important, perhaps, is the problem of general-

ization. Could "learning" experience on one project be extended

to a different project? Would the particular decision rules and

parameters which proved successful on a given project be equally

successful on all projects, or would the learning process have

to start anew with each project studied?

4) Improved Search Routines. The Search routines for SPAR-1

described in Chapter 4 worked reasonably well on the projects

tested, but we can think of improvements that would be desirable

to work out. Essentially the routines operate by taking trial-

and-error samples from the space of all schedules the model is

capable of generating. At present, a search procedure may be

halted prematurely when it reaches a local optimum; methods of

reaching beyond these points to more favorable schedules would

add to the effectiveness of the search routines. Secondly, a

means of moving more rapidly towai ..<; optimum points (and then

1 Of particular interest is the work of Fischer and Thompson,
who explored the subject of "learning" in the job-shop
scheduling problem [12].

122

searching more methodically in their immediate vicinity) would

reduce the number of iterations needed in the search procedure

and improve its efficiency—extending the potential use of the

tool to larger projects.

5) Improved Reschedule Routine. It is possible to think of

projects in which the Reschedule routine in SPAR-1 fails to post-

pone a Job that, if rescheduled, would lead to an earlier due-

date. For example:

0 8

 1 * 1>l
7> 2 \ 1

With a resource limit of 10, 3PAR-1 would generate the follow-

ing schedule:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8

1, 7, 2

The due date of 14 compares unfavorable with that of the optimum

solution

012 3 456789

8

-i- ̂ u 2 >

which has a due date of 9. A slightly more sophisticated search

routine would discover such situations and select the best order

for Jobs to be scheduled.

5) Additional Emperical Studies. We have already mentioned

the need to test further the models and study results from their

applications to a variety of actual projects. The above sugges-

ted expansions of scheduling heuristics in the models would also

add to the need for additional emoirical studies.

123

'iurmatty -•"

 T /■
Our study was prompted initially by the need wöJ-aa-w for

more effective methods of large project scheduling. Because

most recent advances in this field have paid little explicit

attention to the probleiji of limited resources, w&**!tevot&d much

of our effort to developing a theoretical system for dealing
4

with project scheduling when resources are scarce. We—eiassi-
'-■'..f.Air' .-..'. ~4—'-'-

fied different types of schedules according to their properties, -*
A " ■

d££i««d operations useful for generating and altering schedules, ..

extended the concepts of critical path analysis to the limited

resource case—including the useful notion of slack/v-ctewaÄfflwertä

the concept of a critical sequence, ahd ^eowasi. several theorems
■ - ■ 4 i.i , . . .

regarding its existence in certain types of schedules. In so

doing we related our work with that of Giffler and Thomgso^

for the Job-shop problem, and showed how the latter could''

considered a special case of the large project problem.

Additionally, we developed some scheduling models for

large projects using a heuristic approach and taking advantage

of the computational powers of a large computer. The models

employ several of the concepts mentioned above and were designed

to handle many features of scheduling problems not previously

considered (or incorporated all in one model)—e.g., variable

crew sizes, limited (and in some cases, variable) resources,

multi-resource Jobs, costs of regular and idle time, overtime,

and due date penalties, the possibility of trade-offs between

resource limits and due date, multiple projects, and so forth.

Although applications of the models have been somewhat limited

to date, the results from these applications have been gratify-

ing. In trial runs on several projects, the models generated

'7 / I

124

schedules notably hotter than those that would be generated

by PERT and related programs—methods widely employed in the

United States today and currently required by the Government

for use on many large defense contracts. We are confident

that our computer models have msar rably advanced the techni-

ques of large project scheduling.

While there are many improvements that can be made in

the programming ^nd logic of the models (and we have made some

specific suggestions in this regard), they are presently feasible--

economically and operationally—for use on projects of medium-

large size (about 1,000 jobs). Our experience has demonstrated

to our satisfaction that a heuristic approach to project schedul-

ing, aided by the computational power of a digital computer, can

contribute in an important way to solving some of the complex

scheduling problems of large project management.

A Final Comment

Although our attention has been focused mainly on indus-

trial problems, it would be appropriate as we conclude our study

to emphasize that the concepts we have developed and the models

tested are not limited to an industrial setting. The allocation

of limited resources is a ubiquitous economic problem, and one

can find examples of large project scheduling problems in many

guises. We may note one as an example. Economic planning for

the development of a country's resources and productive capacity

is essentially a problem of allocating limited resources over a

period'of time. For many underdeveloped countries, the building

of an industrial society may be viewed as a project consisting

of a partially ordered set of "jobs:" steel mills come before

125

appliance factories/ school buildings before super highways,

tractors before TV sets, and so forth. The concepts of Chapter

3 v/ould enable the economic planner to analyze the precedence

network of such "jobs" in the context of limited resources,

and the models of Chapter 4, drawing on these concepts, would

assist him in finding feasible allocations of these resources

over a planning horizon. While his problems are much more com-

plicated than those of an industrial project planner and his

"project" less clearly delineated, the tools and techniques

discussed here should still be useful to him—and to others

concerned with the planning of large projects where available

resources are limited.

^HB^^HHBn '^^■■HMMmaHMMMOMMmaiBHI

125

lsd

GL0 3 3ÄUY OF Ss'MBOLS

A Resource availability matrix; dimension m x z

aoH h component of A; the resources available in shop s
on day d

»

i

A Vector of resource availability, by days, in shop s;
corresponds to row s in A

a , A comoonent of A a "■ s

A3, Assigned start of job j

AF Assigned finish of job j

b A parameter in the SPAR model
s '■

C 3et of jobs concurrent to a local set

c An element of C

CS Set of jobs comprising a critical sequence

cs Crew size (i.e., resources required for a job)

cs Minimum crew size
m

cs,. Maximum crew size
M

cs Normal crew size
n

d Day

ES. E.irly start of job j

EF. Early finish of Job j

F Project finish date

G Set of jobs constraining a local set

g An element of G

i Iteration variable

J. Set of left-Justified schedules for project X

J Set of right-justified schedules for project X

j Job

K Overhead expenses and due date penalty, per day (SPAR model)

K '^^^^^"■■^■■^■^■^■i^^MMiMMMHHMMMiaaHB^B

127

, 1

L Local set of jobs

1 An element of L

LS , Late start of job j

I,F . Late finish of job j

m Number of shops or resource groups required by jobs in X

n Number of jobs in X

P, Set of jobs which are immediate predecessors of j

Q Resource requirements vector; dimension m x z

q , A comoonent of Qr the resources required in shop s,
30 day d"

Q Vector of resource requirements, by days, in shop s;
'" corresponds to row s in Q

q^ A component of Q

R Set of jobs comprising a resource sequence in shop s

r Remaining resource in shop s on day d (SPAR model)
s

S Project start time (usually S = 0)

S. Set of jobs which are immediate successors of j

s Shop (resource group)

T Set of jobs comprising a technological sequence

t Time required to complete a job

v Overtime premium factor (SPAR model)

w Average wage rate in shop s
s

X A set of jobs comprising a project

x A schedule which is a member of J,

y A schedule which is a member of J

Z A span of time

z The number of days in a Schedule Chart (the length
of the schedule)

« Is an immediate predecessor of

 I iiMiiMiiiiiiiiiiiiMiiiiiMiMlllliMllllllilllMMIIIIWi™ TrTir

123

BIBLIOIRAOHV

1. Alford, L. P., and John R. Bangs, (Editors), Production
Handbook, The Ronald Press Company, New York, 1951.

2. Alpert, L, , and D. S. Orkand, "A Time Resource Trade-Off
Model for Aiding Management Decisions," Technical Paper
No. 12, Operations Research Inc., Silver Spring, Maryland
(1962).

3. Avots, Ivars, "The Management Side of PERT," California
Management Review, Vol. 4, No. 2 (Winter 1962) . ""

4. Bowman, E. H., "Adsembly-Line Balancing by Linear Pro-
gramming," Operations Research, Vol. 8, No. 3 (May -
June, 1960).

5. Bowman, E. H. , "The Schedule-Sequencing Problem,"
Operations Research, Vol. 7, No. 5 (September-October 1959).

6. Charnes, A., and W. W. Cooper, "A Network Interpretation
and a Directed Subdual Algorithm for Critical Path
Scheduling," Journal of Industrial Engineering, (July-
August 196 2). ' ~" " """ '

7. Clark, C. E., "The Optimum Allocation of Resources Among
Activities of a Network," Journal of Industrial Engineer-
ing, (January-February 19^1).

8. Clarke, Roderick W,, "Management Systems for the Economic
Accomplishment of System Development Projects," Graduate
School of Business, Stanford University, Stanford, Cali-
fornia (July, 1962).

9. Clarkson, Geoffrey P. E., Portfolio Selection; A Simu-
lation of Trust Investment, Prentice Hall, Englewood
Cliffs, N. J., 1960.

10. Clarkson, G. P., end A. H. Meltzer, "Portfolio Selection:
A Heuristic Approach," Journal of Finance (December, 1960).

11. Davis, Fischer and Marvin, "PLRTCO I (PERT Plus Cost)
A Report of Progress, Capability and Conclusions to Date,"
Douglas Aircraft Company, Santa Monica, California,
(October, 1961) .

12. Fischer, Henry, and Gerald L. Thompson, "Probabilistic
Learning Combinations of Local Job Shop Scheduling Rules,"
O.N.R. Research Memo No. 80, Graduate School of Industrial
Administration, Carnegie Institute of Technology, (February
1951).

13-. Ford, L. R. , and D. R. Fulkerson, "A Simple Algorithm for
Finding Maximal Network Flows and an Application to the
Hitchcock Problems," Canadian Journal of Mathematica, 9,
(1957).

 mBmmimtmammimmmaMa!mt^F—~,,~~~~~m~~,~-~~~~'~~'~~B~*~'m"m'm '"'" II

129

14. Fulkerson, D. R., "A Kctv.vork. Flow Computation for Project
Cost Curves." Kan.-'.^'-mcnt Science, Vol.7, No. 2, (January
1961).

15. Gere, William S. Jr., "Pi Heuristic Approach to Job Shop
Scheduling," Doctoral Thesis, Carnegie Institute of
Technology (1962)=

16. Giffler, B. and G. L. Thompson, "Algorithms for Solving
Production Scheduling Problems, " Operations Research,
Vol. 8, No. 4, (July-August, 1960]^

17. Gomory, Ralph E., "Outline of an Algorithm for Integer1

Solutions to Linear Programs," Bulletin of the American
Mathematical Society, 64, (September, 1958).

18. Grossman, H., "The Development of SCANS - A Network System
for Management Control," Systems Development Corporation,
Santa Monica, California (February 1961).

19. Jackson, J. R., "A Computing Procedure for a Line Balancing
Problem," Management Science, Vol.2, No. 3 (April, 1956).

20. Karg, Robert, and G. L. Thompson, "A Heuristic Program
for the Traveling Salesman Problem," Graduate School of
Industrial Administration, Carnegie Institute of Technology,
(September 1952). '

21. Kelley, J. S., Jr., "Critical-Path Planning and Scheduling:
An Introduction," Mauchly Associates, Inc., Ambler, Penn-
sylvania (1959).

22. Kelley, James E., Jr., "Critical-Path Planning and
Scheduling: Mathematical Basis," Operations Research,
Vol. 9, No. 3 (May-June 196:^ "" " " " "' >j ■ .

23. Kelley, J. E., Jr., and M. K. Walker, "Critical-Path
Planning and Scheduling," Proceedings of the Eastern
Joint Computer Conference, Boston, December 1-3, 1959.

24. Koepke, Charles A., Plant Production Control, John Wiley
X Sons, Inc., New York, 1961.

25. Kuehn, A. A., and M. Hamburger, ">. Heuristic Program for
Locating 'Warehouses," Graduate School of Industrial
Administration, Carnegie Institute of Technology, (Septem-
ber 1962).

26." Levy, F. K., G. L. Thompson, and J. D. Wiest, "An Intro-
duction to the Critical Path Method," Factory Scheduling,
(edited by J. F. Muth and G. L. Thompson) , Prentice Hall,

. Englewood Cliffs, N. J. (forthcoming).

27. Levy, F. K., G. L. Thompson, and J. D. Wiest, "Mathematical
Basis of the Critical Path Method," Factory Scheduling,
(edited by J. F. Muth and G. L. Thompson), Prentice Hall,
Englewood Cliffs, N. J. (forthcoming).

mmmmmmrmmm

130

28. Levy, F. K., G. L. Thompson, and J. D. Wiest, "Multi-Ship,
Kulti-Shop Workload - Smoothing Programs," Naval Research
Logistics Quarterly (March 1962).

29. Levy, F. K., and J. D. Wiest, "A Simulation Approach to
Determining the Stochastic Characteristics of a Project,"
Graduate School of Industrial Administration, Carnegie
Institute of Technolcgv (1963).

30. Malcolm, D. G., J. H. Roseboom, C. E. Clark, andW. Fazar,
"Application of a Technique for Research and Development
Program Evaluation," Operations Research, Vol. 7, 1959.

31. Manne, Alan S., "On the Job Shop Scheduling Problem,"
Operations Research, Vol. 8, No. 2 (March-April I960).

3?. McGee, A. A., and M. D. Markarlan, "Optimum Allocation of
Research/Engineering Manpower Within a Multi-Project
Organization Structure," IDM File Number 61-907-171,
International Business Machines Corporation, Federal
Systems Division, Owego, New York (1961).

33. Miller, Robert W., "How to Plan and Control With PERT,"
Harvard Business Review, Vol. 40, No. 2 (March-April 1962)

34. Moore, Franklin G., Production Control, McGraw-Hill Book
Company, Inc., 1951; Revised Edition 1959.

35. Muth, John F., "The Effect of Uncertainty in Job Time on
Optimal Schedules," 0. N. R, Research Memorandum No. 88,
Graduate School of Industrial Administration, Carnegie
Instituteof Technology (January 1962).

36. Newell, A., J. C. Shaw, and H. A.. Simon, "Report on a
General Problem Solving Program," Proceedings of the
International Conference on Information Processing,
UNESCO, Paris (1959).

37. Newell, A., and H. A. Simon, "The Logic Theory Machine,"
Transactions on Information Theory, Vol. IT-2, No. 3 IRE
Tseptember 1956).

38. Newell, Allen, and Herbert A. Simon, "Heuristic Programs
and Algorithms," C.I.P. Working Paper No. 39, Graduate
School of Industrial Administration, Carnegie Institute
of Technology (May 1962).

39. Reitman, Walter R., "Heuristic Programs, Computer Simu-
lation and Higher Mental Processes," Behavioral Science
(October 1959). ~

40. Sauer, Ray N., "Least Cost Estimating and Scheduling
(LESS) - Scheduling Portion," International Business
Machines Corporation, Houston, Texas (February 1961).

41. Simon, Herbert A., and Allen Newell, "Heuristic Problem
Solving: The Next Advance in Operations Research,"
Operations Research, Vol. 6, No. 1 (January-February,
1958).

zsmstsmmmBBBoa&aä

131

42. Simon, H. A., T]
Harper jL Bros . ,

ig Hsw gcior.c.? of K.'.n.v'ernent Decision,
New York, 1960.

43. Snyder, Charles J., Jr., "PEC03 - Project Evaluation and
Cost Optimization System, " International Business Machines
Corporation, Akron, Ohio (August 1952) .

44. Tonge, Fred, "The Use of Heuristic Programming in Management
Science," Management Science, Vol. 7, No. 1.(October I960).

45. Tonge, Fred M., A Heuristic Program for Assembly Line
Balancing, Prentice Hall, Inc. Englewood Cliffs, N. J.,
1961.

46.

47.

48.

49.

50.

51.

52.

53,

54.

Voris, L. P., Production Control, Text and Cases,
Richard D. Irwin, Inc., Homewood, Illinois
(1961).

vragner, H. M. , "An Integer Linear Programming Model for
Machine Shop Scheduling," Naval Research Logistics
Quarterly, Vol. 5, (1959).

Anonymous, "Integrated Management Planning and Control
Technique (IMPACT)" Lockheed Report 14693, Lockheed Air-
craft Corporation, Burbank, California (September 1950).

Anonymous, "Nortronics Approach to PERTCO," Nortronlcs
Division of Northrop Corporation, Hawthorne, California
(May 1961).

Anonymous, "PERT: An Integrated Management Information
Control System," Operations Research, Inc., Silver Spring,
Maryland (September 1961) .

Anonymous, "PERT/COST Systems Design, POD and NASA Guide, Office
of the Secretary of Defense, National Aeronautics and
Space Administration (June 1962).

Anonymous, RAMPS Training Text, C-E'I'R Inc., Arlington,
Va. (1962).

Anonymous, RAMPS Users Guide, C
Va. (1963).

'S-I-R Inc., Arlington,

Anonymous, US.AF PERT COST System Description Manual,
AFSC PERT Control Board, Hq. AFSC (SCCS), Washington,
D.C. (March, 1963)

