
UNCLASSIFIED

AD NUMBER

AD469269

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Jul 1965.
Other requests shall be referred to
Director, Rome Air Development Center,
Attn: RTD, Griffiss AFB, NY.

AUTHORITY

RADC ltr, 31 May 1966

THIS PAGE IS UNCLASSIFIED

SECURITY
MARKING

The classified or limited status of this report applies

to each page, unless otherwise marked.

Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF
THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18,
U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF
ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY
LAW.

NOTICE: When government or other drawings, specifications or other
data are used for any purpose other than in connection with a defi-
nitely related government procurement operation, the U. S. Government
thereby incurs no responsibility, nor any obligation whatsoever; and
the fact that the Government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or other data is not
to be regarded by implication or otherwise as in any manner licensing
the holder or any other person or corporation, or conveying any rights
or permission to manufacture, use or sell any patented invention that
may in any way be related thereto.

RADC-TR-65-189, Vol ,1
"Final Report

S)~IO DESIGN OF RELIABILITY CENTRAL DATA

MANAGEMENT SUBSYSTEM

Dr. J. Sable
et al

(Auerbach Carp)

C7
TECHNICAL REPORT NO. RADC.TR-65-189

Sc" July 1965

~SEP~ 9

Information Processing Branch
Rom Air Development Center

Research and Technology Division
Air Force Systems Command

Griffiss Air Force Base, New York

When US Gov"rnmcnt drawings, specifications, or other data are used for any iu*r.poseother than a definitely related govemmen: procurement operation, the governmient therebyincurs no responsibility nor any obligation whatsoever; anti the fact that the governmentmay have formulated, furnished or in any way supplied the said drawings. specifications.or other data is not to be regarded by implication or otherwise, as in any manner licensingthe holder or any other person or corporation, or conveying any rights or permission tomanufacture, use, or sell any patented invention that may in any way be related thereto

Do not return this copy. Retain or destroy.

DESIGN OF RELIABILITY CENTRAL DATA

MANAGEMENT SUBSYSTEM

Dr. J. Sable
et al

16

VOLUME II

TABLE OF CONTENTS

Paragraph Title

SECTION I. INTRODUCTION

1.1 GENERAL I-1
1.2 ORGANIZATION OF VOLUME II 1-2
1.3 RECENT DEVELOPMENTS TOWARD GENERALIZ ED

DATA MANAGEMENT 1-3
1.4 SUMMARY OF CONCLUSIONS 1-8

SECTION II. DATA MANAGEMENT SYSTEM COMPARISON CHART

2.1 A CLASS OF DATA PROCESSING SYSTEMS 2-1
2.2 COMPONENTS OF THE DATA MANAGEMENT SYSTEM 2-1
2.3 SYSTEM CONCEPTS AND TERMINOLOGY 2-3
2.4 COMPARISON CHART 2-8

SECTION 11. DESCRIPTION OF TIlE RELIABILITY
CENTRAL DATA MANAGEMENT SUBSYSTEM

3.1 OBJECTIVES OF TIHE RELIABILITY CENTRAL 3-1
3.2 CHARACTERISTICS OF TIHE DATA BASI :3-3
3.3 DESIGN OBJECTIVES OF THlE DATA MANAGEMENT

SUBSYSTEM 3-4
3.4 CHARACTERISTICS OF TIlE DATA MANAGEMlENT

SUBSYSTEM 3-12

SECTION IV. SYSTEM DESCRIPTIONS AND COMPARISONS

4.1 GENERAI 4-1
4.2 RETRIEVAL COMMAND ORIENTED LANGUIAGE (RECOL) 4-3
4.3 ACSI-MATIC COLLATION SYSTIE.M 4-10
4.4 NAVAL AVIATION SUPPLY OFFICE SYSTEM (AS)) 4-22
4.5 INFORMATION PROCESSING SYSTEM (Ih)k 4-29
4.6 IIQ, USAF COMMAND & CONTROL SYSTEM (473L) 4-40
,1.7 COMPILE ON-LINE AND GO SYSTEM (COLINGO) 4-54
1.•.8 ILANGUAGE USED TO COMMUNICATE INFOI(MATION

SYSTEM DIESIGN (LUCID) 4-65
4.9 AI)VANCED MANAGEMENT SYSTEM (ADAM) 4-74

SECTION V. SUMMARY 01F COMPAIIISONS ANI) CONCIUSION

5.1 PIROCESSING CAPABILITY 5-1
5.2 USER LANGUAGES 5-3
5.3 FILE STRUCTURE 5-5
5.4 PRO(GRIIAMMER INTER1FACE,. 5-7
5.5 RESPONSI: TIME. 5-9
5.6 CONCLUSIONS 5-11

iii

SECTION I. INTRODUCTION

1.1 GENERAL

AUERBACH Corporation has been retained by Rome Air Development Center*

to design a file structure and an information storage and retrieval system for the planned

U.S. Air Force Reliability Central. Volume I of this Final Report presents a functional

description of the system, called the Reliability Central Data Management Subsystem

(RCDMS). A second basic task under the contract is to show:

(1) how the design has met the specific operational objectives

of the Reliability Central,

(2) how the design has drawn on the available state of the art, and

(3) where the design philosophy and design techniques advance the

state of automated data management and data analysis technology.

Volume II of this Final Report is presented in response to the second contract requirement.

Volume H compares the design of the Reliability Central Data Management Subsystem

(RCDMS) with other major data management systems in existence or currently under

development.

It is difficult to present a comparative report of many systems in one technical

area, without giving the erroneous impression that judgment is being passed on the systems

under consideration. There is no such intent in this report. In order to make comparative

analysis meaningful, the functions, design features, and operational capabilities being

designed into the RCDMS are compared separately with each of the other systems. These

comparisons should be treated as comparisons of factsnot as judgments as to whether the

*Under Contract AF 30(602)-3433

features planned for the RCDMS should have been present in the other systems. Each of

the systems discussed has been designed in response to a different set of objectives:

some as experimental systems, some in response to specialized requirements, some

as technique-proving vehicles. They have all been designed at different points in the

evolution of data management technology. During the analysis of the systems, AUERBACH

Corporation was impressed with the extent to which the designers met their objectives

while advancing the state of the art. Therefore, the comparison of features present in

the planned RCDMS design against the features present in all the other systems must not

be interpreted as a criticism of these systems. The set of objectives for RCDMS are

quite demanding since it has to be a user-oriented production system. Therefore, it

was necessary to draw on all that is best in the technology. The design of the system

consolidates concepts, design techniques, and approaches to data management which

were often originally developed by the designers of the systems with which it is now

being compared.

Furthermore, thr" RCDMS design was initiated much later than the systems

with which it is being compared. RCDMS is now in its design stage, even though concepts,

techniques, and operational objectives are firmly defined. The designers were in an ex-

cellent position to draw on the experience of others and to take the experience a step

forward, instead of merely duplicating the past.

1.2 ORGANIZATION OF VOLUME II

This Section (Section I) contains general information and background on the

development of data management systems, and a summary of report conclusions.

Section II provides a consolidated chart summarizing the system comparisons

from which the conclusions are drawn.

1-2

Section III contains a description of the objectives and design of the Reliability

Central Data Management Subsystem (RCDMS). (Section HI has been extracted from

Sections HII and IV of Volume I in order to add continuity to Volume II).

Detailed comparisons between the RCDMS and each of the other systems

are in Section IV.

A comprehensive discussion of all comparisons and conclusions will be

found in Section V.

1.3 RECENT DEVELOPMENTS TOWARD GENERAUIZED DATA MANAGEMENT

The RCDMS is being designed to perform as a general-purpose data management

system, in order to meet economically the anticipated growth and changing analytical needs

of the Reliability Central Program. Data management systems are an outgrowth of the

dynamic history of data processing development, and the generalized data management

system approach now represents the most advanced method of handling and providing for

the use and analysis of large volumes of data. Recent developments leading to the concepts

and development of general-purpose data management systems are outlined below.

1.3.1 Early Query Systems

Whereas procedure-oriented languages had solved many file maintenance

and programming problems, they had not solved retrieval problems. Users wanted to

retrieve data in several different ways, not just by the name of the data but by the

characteristics of the data - the values of data items. In addition, program designers

were aware of the user demands that data often had to be processed only when it satisfied

certain logical conditions. Prior to the introduction of query languages and systems,

programs had to be rewritten each time the set of logical conditions was changed. An

1-3

effort was made to apply the generalized program approach to the handling of queries.

The goal was to prepare a single program responsive to a flexible language which

expressed complex logical conditions by means of Boolean operators. One of the

first such languages called QUERY was published in late 1960. QUERY permitted

flexible English-like requests to be stated for retrieval processi. .. Although never

implemented, QUERY was influential in the development of other query languages.

Other efforts in the early 1960's included the original language developed

for ASCI-MATIC, which used a kind of basic English, and initially permitted the AND

operator only. It was one of the first languages developed which permitted the use of

magnetic disc storage, and was designed with a multi-list structure with link addresses

appearing in a directory rather than in the data records. BASEBALL was another

generalized query system designed for a special purpose. BASEBALL used the

generalized program approach to accept statements very close to normal English,

but was restricted to the special environment imposed by the words and data involved

with the game of baseball. BASEBALL was a limited experiment to show what language

could do to help the interplay between man and machine.

The first general-purpose query system was developed during 1961 and 1962

at the David Taylor Model Basin. Called TUFF-TUG, it was the predecessor of IPS

(Information Processing System). Other examples of languages permitting general

queries to any kind of file are RECOL and GIRLS. Different users could connect their

own file to those systems; they could present their file description to the system, and could

then process a query without any additional programminfl The languages permitted the

unrestricted nesting of logical conditions, as well as the use of relational operators such

as "equal to," "greater than, " and the like. The languages did not permit algebraic

3itatements. Since no 'if" statement was avail:able in the user langu1ge, selective Irint

formiiatting and selective output ordering were not :available.

1-,I

1.3.2 File Management Systems

A new level of data processing power and generalization was conceived when

system designers realized that many files could be handled if the system were given a

directory describing the format of the files and where the files were located. Such

systems as IPS, COLINGO, and 473L were developed with the notion that once the files

were defined, the system could perform both maintenance and retrieval functions on

many different files on an automatic basis. Thus was born the concept of file

management. The systems possessed an extended language and system capability, as

well. For instance, algebraic and functional operators were permitted in search questions.

Complex file maintenance tasks could be performed using Boolean operators in the language

to control the tasks. For example, complex output formats and arrangements could be

achieved with the extensive display capability of the Air Force 473L system. The IPS

system used only magnetic tape. COLINGO had its programs on magnetic disc but its

files were on tape. The 473L system employed only discs, but the system did not utilize

their random access potential. Consequently, it can be said that the early file manage-

ment systems were essentially tape-oriented.

1.3.3 Data Management Systems

The notion has emerged that the functions of data maintenance and retrieval

(as discussed in the previous paragraph) are not ends in themselves. They must be com-

bined with other user functions in order to realize their full potential. Queries, for

instance, need not show only the status of the data; their output can be used as input

to complex computations for any number of analytical purposes. Data management

systems attempt to make it easy for the untrained user to link many tasks together

for his use, without having to reprogram any part of the system. Such systems have

within their framework a large repertoire of task-oriented programs which can be linked

1-5

together in order to perform a wide variety of specialized jobs. The systems employ

corimand languages with which the user states the parameters and the sequence of

the ,-c ograms to be run. The systems contain large, generalized executive routines which

link the task-oriented programs. In this manner, such data management systems as

ADAM and LUCID have incorporated many specific tasks into a flexible, generalized

and general-purpose framework which can change responses from one user to the next

with minimum change to the system. However, they are not entirely production-

oriented because they are designed for a specif-Ic task - that of testing system

designs. Thus far, no truly general-purpose data management systems have been

reported.

Random access storage devices and deep indexing are changing the nature

of data management systems. The use of random access devices permits data to be

extracted and combined from many files, thereby blurring the distinction between files,

and causing all data to become part of a large, single entity called a data base. The

combination of random access with the kind of indexing that goes deeply into the content

of the data adds power to data management systems. Communication between man and

the computer is increased as never before, because man is able to call up large volumes

of information and have it processed according to his wants while he is on-line with the

computer.

1.3.4 RCDMS as a General Data Management System

RCDMS treats the design of a data management system as a unified whole,

n whi-! the accessibility of data to the user, and the ease of its subsequent manipulation

and atnlysis in a production rather than an experimental environment are paramount design

considerations. rhe design also takes advantage of the resources, both software and hard-

ware, of the RADC EDP complex, in which die design is to be initially implemented. The

key distinguishing characteristics of the design are as follows:

1-6

(1) Provision of a data description language for entering into

the system data definitions which subsequently govern the

input and structuring of data which the definition describes.

This permits the user to enter into the system any data

structured in response to the user's anticipated need of the

data.

(2) A command language which permits the user to describe

jobs composed of one or more pre-stored program tajks,

by stating data parameters, and identifying the sequence

ifi which the tasks are to be executed. The command

language further permits the user to call for the execution

of any job by naming it and supplying data parameters to

be bound at job run time.

(3) Provisions for extracting from the data base any data re-

quired for the execution of user-defined jobs by means of

complex Boolean expressions using A), OR, >,<, =, range,

and functional operators.

(4) Provision of a directory system with in-depth indexing

capability which permits the retrieval of any indexed d&ata

from anywhere in the data base without the need to

search the data itself.

1-7

(5) Structuring the data base logically and independently of

the physical location of the data. This makes the dynamic

maintenance of a large data base possible. The changes

in logical structure of the data base, as described by the

directories, need not require physical movement of the

data itself. Correspondingly, physical relocation of the

data need not involve the changes in the logical structure

of the data, as given by the directories.

(6) The structure of the data base lends itself directly to the

application of a Boolean search strategy system which

optimizes retrieval. The search strategy system provides

a flexible interface for a query system with a high level

user language.

1.4 SUMMARY OF CONCLUSIONS

(1) The RCDMS design has drawn heavily on the advances in the state

of the art already achieved in the field of data retrieval and data

management.

(2) The basic contribution made by RCDMS is that it has drawn

together into one system many major aspects currently

associated with data management. This consolidation of system

features should make RCDMS more responsive to user needs

and more of a general-purpose production system than the

other systems surveyed.

1-8

(3) The RCDMS design helps to divorce the user from the com-

plexities of the system. RCDMS deals with the data base more

as a single entity than as a collection of files. By permitting

nesting and cross referencing of data, by indexing data auto-

matically, by keeping statistics on data usage, and by providing

the user with flexible and easily-used languages, the RCDMS

design permits the user to alter his data easily when his needs

change. More rigid systems require the user to plan ahead

more carefully, and to become more familiar with the details

of the system so he will be sure his plans can be implemented.

(4) Several original contributions to data management systems are

contained in the RCDMS design:

(a) RCDMS makes full use of the potential of random

access storage by keeping indexing data efficiently

stored in the directory and by using an optimized

search strategy which accesses only pertinent data

from peripheral storage devices.

(b) RCDMS separates the logical address of data from

the physical addresses so that minimal directory

maintenance is required when data is moved from

one physical location to another, and so that actual

data movement is minimized when the logical structure

of the data base is modified.

1-9

II

(c) Of all the systems surveyed, RCDMS appears to have

the most flexible user-oriented method for having

jobs specified by the user. Further, the jobs can be

pre-defined and stored before run time. The program

library directory contains sufticient parametric data to

permit automatic linking of programs as specified by the

job description.

(d) RCDMS will keep track of and analyze the frequency of

access to various kinds of data, and will automatically

notify operating personnel of data structure changes

which might be more, efficient. Eventually it is hoped

that these changes can be made automatically within

the system. A further by-product of the statistical

analysis is that RCDMS will automatically report the

level of accessibility best suited to a segment of data

and will transmit this information to the RADC Local

Control and Executive Control Programs for their

discretionary use when the data segment is to be stored.

1-10

SECTION IT. DATA MANAGEMENT SYSTEM COMPARISON CHART

2.1 A CLASS OF DATA PROCESSING SYSTEMS

The specific class of automatic data processing systems discussed in this

report has been called "data management systems." In a data managerment system

(DMS), the software environment of a data processing center provides a tool to a staff of

users, programmers, and operators for maintaining and interrogating a large data base.

The data processing center, on the other hand, exists in a problem environment that

places stringent functional requirements upon it - requirements for the rapid and

accurate assimilation of new data for changes in the data structure, for interrogation

of the data contents, and for analytic results based on data content.

2.2 COMPONENTS OF THE DATA MANAGEMENT SYSTEM

A DMS has a number of elements which can be identified and are discussed

below. The capability of a DMS as a whole depends on how these elements have been

implemented, their flexibility, capability, etc. It is the purpose of this report to attempt

to catalog and evaluate these elements in a number of systems being designed, implemented,

and operated. The system comparison chart included at the end of this section is a summary

of the evaluation of nine data management systems.

The following elements can be identified in a DMS.

(1) User Language. The user language is the vehicle for

communicating job requests, queries, and, in some

systems, new data structures to the system.

2-1i

I
(2) File Structure. The data base is the main resource of the

DMS. The data base has logical structure and content. The

logical structure is represented by the named elements of the

data base and their interrelationships. The content is the data

itself, mapped onto the physical storage media of the data

processing center. In some systems this mapping is explicit,

in the form of directories and indexes. In other systems the

mapping is implicitly contained in the program logic of the

data management programs.

(3) Processing Capability. The DMS contains programs which

search the data base, maintain the data and its directories,

format the output, and manage the specialized jobs of the center.

(4) Programmer Interface. Libraries of macros and programs,

and procedural language compilers are provided for the pro-

grammer.

(5) Response Time. A major result of designing a DMS as an

integratLl whole is an increase in the responsiveness to the

user, usually via direct on-line inquiry consoles. This is

accomplished by providing various levels of priority and

accessibility and using search strategies that take advantage

of the data structures, directories, and random access storage

devices in the system.

2-2

2.3 SYSTEM CONCEPTS AND TERMINOLOGY

Since there are no terminology standards in the data management field, and

since many concepts and philosophies of data management are still in their formative

phase, some terminological obstacles have arisen in the description of these data

management systems.

In general, the terminology of the designers has been preserved in describing

the various systems in this report. In some cases, two groups use similar terms to

describe different things and, in other cases, new terms have been given familiar con-

cepts. An effort has been made to guard against confusion through the use of footnotes

and parenthetical remarks when these situations arise. The following remarks are designed

to serve as further guideposts in reading and evaluating this report.

2.3.1 User Language

The term "user" itself is used ambiguously, due to the different orientations

of the various systems. In RCDMS, COLINGO, and the HQ,USAF system, for example,

the user is the operational staff member who is querying the data base or running a job.

However, in LUCID or ADAM the "user" is the programmer or system designer who

is modeling or constructing a system.

The user language is sometimes characterized as a Query Language and

sometimes as a Job Request Language. The following approaches in the designs of

the user language can be observed:

(1) TheQuery Imbedded in the Job Request Language. This is the

approach adopted by RCDMS. The Job Request Language has

components which can be used to define data structure, modify

data, enter command vocabulary, store data descriptions, and

run jobs which bind the parameters of job descriptions. In this

view, a query is a particular job which assigns parameters to a

query routine.

2-3

(2) Job Requests Imbedded in the Query. In this approach, the

query is seen as the more generic element and specific

system actions can be requested in what is called a query.

This is the approach used in COLINGO and the HQ, USAF

systems.

(3) Separate Job Request and Query Languages. The treatment

of queries and jobs as two separate entities is evident in the

IPS system which treats the query function and the data ny..An-

tenance function in two separate systems: the IRS (Information

Retrieval System) and the FMS (File Maintenance System).

(4) User-Constructed Languages. Finally, there are systems

such as ADAM which treat the relationship of the Job Request

Language and the Query Language as something to be modelled

by the designer, with no a priori languages built into the system.

It is also illuminating to categorize user languages along two additional

dimensions:

(1) Flexibility with Regard to Language Restrictions. In the

dimension of language flexibility a spectrum of (query) languages

exists. They range from fixed, push-button initiated responses

(which, for example, associate a given fixed status report with

a console push-button) to a natural "near-English"' language which

is entered via a keyboard and is capable of eliciting a wide range

of responses. An example of a language close to the fixed end of

the spectrum is the ASO qupery system. COLINGO, on the other

hand, lies near the multiple-response end.

2-4

(2) Process versus Goal Orientation. With respect to the

degree of process orientation, a spectrum of languages

exists. They range from procedure-oriented "algebraic"

compiler languages such as JOVIAL to completely process-

independent, goal-oriented languages such as RECOL.

2.3.2 Data Structure Terminology

One aspect in all data management systems (and essential to their under-

standing) is the clear distinction between data content and data structure. The data

content is referred to as the data base, or as the set of data values that comprise the

declarative statements in the system which are concerned with the outside world (some-

times referred to as the "real world"). The data base makes up what is usually the

majority (but by no means all) of the data in the data management system. A large

part of the data in the system concerns the vocabulary, structure, definition, and location

nf data items in the data base. This data descriptive data (data about data) is located

in the system directory (or directories). The data base is sometimes called the system

files, and a directory is sometimes referred to as a system table, glossary, thesaurus,

index, or (as in ADAM) a roll.

In discussing data structure, i", is important to distinguish clearly between 4

physical structure and logical structure. (A failure to make this distinction clear usually

results in a good part of the confusion and "semantic noise" in this area.) Physical

structure refers to the disposition of data on the storage media. This covers the

location and disposition of physical data elements usually connotated by such words

as: bits, characters, bytes, words, segments, blocks, tracks, tape reels, etc. These

words refer to the physically accessible data elements that are recognizable by the

hardware at various levels of accessibility.

2-5

Logical structure refers to the named data elements and their relationships.

The named data elements are called items and can be categorized into compound

(structured) items and simple (elementary and/or terminal) items. Compound items

are items made up of other items; that is, they have a nested structure. Simple items

are variables or names of properties or attributes of outside-world elements. They take

data values, that is, they are unstructured fields in the data base which can be characterized

as to type (binary, integer, alphanumeric, etc.) and length (fixed length or variable

length).- For example, MANUFACTURER may be the name of a simple item or field

whichin a particular instance, in the data base has the value RCA. Synonomously, one

may say the attribute MANUFACTURER has the value RCA. The outside-world elements

that are described by the declarative data of the data base are messages, events, and/or

objects which form the reason-for-being of the system and are the main concern of its

users.

The term "data-base" itself can be thought of as the name of the maximum item

of data - the root of a data structure tree and all its subnames. The datv- base is composed

of lesser compound items called statements, files, records, and links. A file is a com-

pound statement made up of an arbitrary number of statements called records which have

the same logical structure. That is, a replicated item and its parent are callcd a record

and a file, respectively. A link is an item which refers to another item which is physically

remote, logically imbedded but physically non-imbedded. That is, a link is a reference

to an item with more than one parent.

In some systems, the term "repeated group" or "repeated set" Is used to

refer to files that occur within records. The number of nesting levels of items within

items is logically unlimited and may reflect the hierarchic structure of objects in the

outside world (e.g., assemblies and sub-assemblies of components in equipment and

systems).

2-6

In early tape-oriented data processing systems there tended to be a synonymy

between logical and physical structure which led to unclear terminology and, unfortunately,

some persistent confusion. For example, records and blocks, and files anld tapes were

not distinguished one from the other. Later, the term "physical record" was used for

block and "physical file" for tape reel.

2.3.3 Directory Terminology

Although the data management system may have directories for other thal

data-base functions (e. g., program and job directories), the primary function of this

paragraph is to discuss direetorir,• used for data access.

The scope of directories differs in different systems. A single directory

(ordered listing) may cover the entire data base (as in RCDMS) or only a single file

(as in IPS). A restricted directory scope may have the effect of requiring additional

qualifying information from the user and a knowledge of the data structure, or files,

in the system.

In addition to their scope, directories diffei as to the type and depth of infor-

mation derivable from them, and they are usually categorized in this way. Directories

that are ordered by the names of items are called glossaries, term encoding tables,

thesauri, term lists, etc. When restricted to terminal items, they may be called f
property lists, property rolls, attribute tables, etc.

Directories that supply physical format information are sometimes called

format tables (e.g., IPS). When they supply information on logical structure, they are

called logical indexes, ite-n lists, or item position indexes. To point to specific records

and fields, indexes are ordered by attribute and values.

2-7

Directory size and growth are dependent on both data structure complexity

and data base size.

Term lists are primarily dependent on data structure complexity or vocabulary

size, while indexes tend to have a base size which is dependent on data structure complexity

and a variable component dependent on data base size. These relationships are summarized

in Figure 2-1. When a data structure has been definedthe directory contains at least

a term list, even w'h no data in the data base. This accounts for the intercept on the

ordinate of Figure 2-1(b), which shows how the total directory size varies with the data

base size for a fixed data structure complexity.

2.4 COMPARISON CHART

The aspects of data management systems listed in Paragraph 2. 1 were

evaluated for nine systems. A summary of the characteristics of these systems is

given in the Comparison Chart (Figure 2-2) at the end of this section. In order tc

establish more clearly what system aspects were sought, a listing of these factors,

under each chart heading, is given below:

2.4.1 User Languages

(1) Job Specification Language:

(a) Simplicity of job specification for the user.

(b) The ability to define multi-program jobs and their

parameters.

(2) Query Language:

(a) Simplicity and format convenience for the user.

(b) Use of English vocabulary.

(c) The ability to integrate qaery output into other functions.

(d) The ability to specify search criteria of arbitrary logical

complexity.

(e) The ability to specify format of output akid display.

2-8

All fields indexed

/

S• Few fields indexed

Data Structure Complexity Data Base Size

(a) (b)

Figure 2-1. Directory Size and Growth

2.

-9

(3) Data Description Langtage:

(a) Ease of entry of new data terms, structure, and

format into the system.

2.4.2 File Structure
(1) Directory:

(a) The existence of term dictionary, data structure,

and format tables.

(b) The use of logical (structure defining) codes for

data items.

(2) Data Indexing:

(a) The use of tables of addresses of data items by

names and value.

(b) The ability to index selectively and thereby control

index size.

(3) Data Structure:

(a) The ability to define fixed, variable, and optional items.

(b) The ability to define items which are imbedded (nested)

in a parent item to an arbitrary depFh.

(c) The ability to have a number of imbedded items at a

given level in the structure of a parent item.

(d) The ability to cross reference, or link, to items having

more than one parent item.

2-10

2.4.3 Processing Capability

(1) Search Logic:

(a) The use of logic operators AND, OR, and NOT in

search criteria.

(b) The use of relational operators #, < , etc. as part

of search condition terms.

(c) The use of functional and algebraic operators in

search condition terms.

(2) Data/Directory Maintenance:

(a) System routines for generating and updating data and the

directory.

(b) The ability to process data in on-line and batched modes.

(3) Output Formatting

(a) The existence of flexible output format generators.

(b) Sort routines.

(c) Generalized statistical routines.

(4) Job Management Services:

The existence of a system executive routine offering the

following services:

(a) User job run control including program linkage.

(b) Program parameter binding.

(c) I/O services.

(d) Stored job descriptions (multiple prograni job descriptions)

(e) Priority scheduling.

(f) Expandable job repertoire.

2-11

2.4.4 Programmer Interface

(1) Procedural Language: The compilers or special

languages provided.

(2) Program/Macro Library: The user-specific

and service routines available.

(3) System Program Library Directory: Storage and

maintenance of program parameter lists.

2.4.5 Response Time

(1) S43rage Device: Tapes, Piscl, etc.

(2) Search Strategy: Th. use of sequential versus

random access techniques.

(3) Priority Processing: The existence of a quick-

response mode.

(4) Levels of Accessibility: The use of more than one

storage medium, and a file structure to take advantage

of various media of different access times.

2-12

\a

jC.ARACT ITC "CSTEREMS ACSI-MATIC ASO IPS

Generaliz.ed and/or iueer-speclfic Various, inventry central Greatn -1 el teele Greato
analytical Programs proccee roui~tnes. stad/o ue.SmANALYTICAL query outputi Wodr control of job Arithmeteic meal. only. NoneIdbd/nioe

FUNCTIONS ap""B"eaUl" M~axima

me only
AN OR: NOT operators ~ AND, OR, NOT operator.; AND operator only, lint other AND operator; AND OR, NOT operators, AND. 0

SEARCH I ranges; "Equal" relational operator oplerators could be added. r ange relallosa. 0 allon
LOGIC~~~~p Ioeloa relationse;ld oi

queries can search at moy level uatoaopree.FNot
In the dam. Nn pr

Off-line or on-line fIIe genceallio,a NoIne Noth directory and dale Oc-Ilore updating .l both dale Automaicnaloulenooce routines: Automatic dIrectory Data
PRCEWSING DATA/DIRECTORY Oa-line date and directory up- maust be maintineld olf-line by and directory; Off-line file general-c oaiocerrounee bY ape
CAPABILITY MAINTENANCE deacln ze epeolai prgoua.Gtine.e.pdlldre~n. Dae cpdale by useer programa..oo

neod of

Genneraliaed report reclhne loe Records may be mereged, sorted Several diffarent apeclual reports Ocoerelled meon. Query
printer aod display; aed printed; weoreoaellable:

OUT PUIT Eve.mlell, -er-direcetd Formattineg is conetrolled by the Generalizod print ronlino. Fixed repon eoutine.. Qicry-direcned forman control. for-mar
FORMATTING format ocoIcol.tr query languageo. toeg

Remote latecley; Pr-niored lob Ceateolized I/O package; Twoo priority levels, - File mabdeoaoce end query Rtermoe
JOB deocrlptluns; Parameter binding; Dynassac allocatione of core Sad interrupt sod savae capa~biliy. maike under control of IPS I/O P.
MANAGEMENT Job ran voetrol; Eopandable lot, None peripberal a.orge,;.. oncilv.
SERVICES rpeprtolra; I/O provided by Miniamum Job apecification.

environmsent.

JBAn expandable, uaer-oriented Noce (It ounce Incan operating No sopor
SOB job request laongage; ytmJb.-
SECIFICATION Syntax deivea seafloor cean procesa Noew None aaoc c.a

LANGUAGE yonoely of lanoguages. A symoe. "language with a limited
repertoire of Joh coonnuord. foe

______________- peffc syse m fun00 ctioins, end ______________

(Net developed) Natuarl English-ikhe query wihsei--qurfo-t M 14 -iredIdE lkeuryanag; Assi
USER QUERY ~~Exeoutiva rouline pecoldes for language; Oobi. se tacC ga 10t eolo 'cml ormerl with coded fiel~ds. Croln oml n alUSRinterface withb query langalge. Arbitrary degree of neatiog for attribut vluesra OC'. on enmoe fil pee qr. EnlrigdLANGUAGES LANGUAGEO, o.dfl poger quedry.n untutored-~

Many fle laI

Data specialist-oriented data
DATA . languages.
DESCRIPTION User-oriented del. format.a. Noew Nowe None None None
LANGUAGE

Term dictionary; Separate, simlele dircolry for Term directory; Hieraechic directory ofAapet 0mdltoey icle
Inden frounmrstnou re code 10 eaob file, gliving formal loden fine strocture code t0 aritbum.es Savalues. formal leble, aed physieal Isonfis

DIROECTORY logical address; definitioc tablesancd field S.amo physical adldren .I index for reacb1i1e.
Format definition table.; floaded by .. or at one lime). No formal definition tables. e dire
Cnonverion to phyaicel address. form

Oplional odenIog by value to Optional Indexnig by value to No inedinig of leatrt
FIEaAT ýnehilenry depth ; n. arhitrary depth. field values.

STRUCTURE INDEXING G. eoieI~g nidg aLne itsrcue o

Aerbitrary nesting; Flood field and rcord Data related hierarchically; Sigle-lenel I Ficoible file Mletulre; Nermlo-pa
DATA Ucimitod number of cneted ites lenglth.. Cross retereneing; cunstrnctured dale. Unolimited mtnellg 0n depth with no oru

DAAFixed, variahlo end optimoal FrMe daeaecraeand ctber of items u0 true.
STRCTUE tomes; no formalt definition tels.Vrable..oi mf o - hloreI o

Cross referonced structuree. Varioable llama. tnoht- f eo

JOVIAL; A special ACNI-MATIC Specia peobb'm-orionied No procar
PROCEDURAL CS-i; programming laanguage wcith. langu~age for file mainenaneel Programs
LANGUAGE TRM Not applitnblo alttendant assembler. None rottoala... Saerbly

Actomaio ma~laleatee Macro library c-loolled by 55kme towoeclled program ISystem coatrolied macrc Programo
PROGRAMMER PROGRAM/MACRO of ilbrary; assembly program. libeary. library, e nd library of easier cnet
INTERFACE LIBRARY Eopandablea program repertoire. NOON pdot, roatnilo... eancion.

S97 Complete program directory No progrem directory; Automatic
SYSTEAM nontainiog anffileeo Paramaetri Library leer is asesumad to progreams
LIBRARY ofporm aselidb o oeN~e ~llie.fnd segment associated wcith Freqasaily

DIRETORY description.

Aeniliary core; Not more thea one rasgoelic Dist;
STORAGE NiH-ed drsilpe rearl for each Iii.. Diosmlidmgei as ime
DEVICE D. ; Mclti-reei magnetic, tape. Dis..

Diso-silaclaled toadilroe lape.

SEARCH Oimad, direstolo-drlon Liaaar searoh through a serial Oireatolr-drivell random moes.. Combined Index and Lirrar sosrab ibemgh a Lineer se

STAEY reandom C,.,as seasehoatenlay file usiag a single, Imensborald somurob strategy using a hls-type aerial searoh. serial file gsoing a ainglae parallel
uTAEG sing i. oarted list armatumres ma~ch rouline. structure. toaneraliand smach routine,

TIME
Priority Mo preneasieg eon- None (except that proviedei Prioarity p

PRIORITY trolled by facility mlanagementay"rtngsse airm rg
PROCESSING andl users Queries may bs belched. None Twa-loala priority. mount). levels.

Munlti-level accesiability on dimc; Single rei..n ompagntic Tn Is'.l. on dine "Andtc

LEV ELS OF Tape bac-np; laps, Staane tilaps
ACCENB1IIUT Y Fast .anes spatsm drumn and Sisgia laeve on disc. Single cnn on laps. Niegi. fees

spats. 0m

COL ACSI-MATIC A.O J IS 473L COLINGO LUCID ADAM

Various, inventory control I creat circle distancec; Gireat circle diictaccc; Mathematicat ccnd logical Sumanicd arithtmetic mosm, as Analyticalfunsctioncs ca be
routines~. slattucd/longltade. So..;n operation. wider contlrol of the part of quiery. acccmmonditsd wenm defined

aRonly. Noner Molietwo/mulifietre~ value$. query language. 1as Part of asstem befng
--eaaid byADAM.

operator.; AND operator only, but other AND, ot,*ercfe AND OR NOT 0010.5: AND, OR operators; AND, OR operator.; A~DOR: NOT operaotrs; Handles geeneral ..oa-
ore operator poerntor- cvould be added. = ,range relations. " *0 , ealn: relrelatonie = , . , 0 reltitons;,/, ,c reateiosis. criteria cuo specified by wacr.

Funeti..aI operators..Fct~a operatrs: Search at may level;
No orating. Functioasl operato'ra require

two peace. of fie..

rotory and data On-line updating v bath data Auanatomlate aitenance rontine.; Auoatoo ic directory Dotmainteattnoce pereformed Auom~atic system inaInfrenuent Changes to data baea Otf-tine dasa gresradie

nod of-ie oyad dire-,Iry; Oil-line file generation. aonaican-ce; by sapecial service programs. roatince for hoth direotory sand description reqaire a complete Auotmatic directory o
s.Geveralized updlating rouatines. Dote update by aser programs. data. reconmpilitiofn. maintenance of stracacre

(eases) changes.

merged, sorted Several difterent special reports ilcocolicod 00ev: Query-directed sort and Report gene:ratorc: Genaeralized outpat tcoilbte. Output oontrol pronided;

"Io available; tyney-directed formot control. format control. Sort rmnlnr for consolr display eAM Output roalionee sees user
conirolled by the Goneralired print routine. Fixed report routines. printing, provided.

Centralizod 1/O packaoge; Two proroity lrvel,, Fite naintenance and query Rcrmotc inquiry; Executive routine execute. No oaircont provision for Joh ran cintrol prord~ded
Dynamic Oliovclloo of oore aod interrupt and save capability. tacks undear control of IFS t/O Package. oontrol tanguage messages. exceeting Indepetndeat user Entice Joh meat Jeat In ccurc
peripheral storage; excutaive. analyticat programs cgninst Rssmote inquiry.
Mlinimunm Joh peritleation. data bare.

None (i; runs icoan operating No separate job lac~nguage ADAM tesnolistor ateoreom

Noeycte m. John arc Ivitiated hy query. aonwer-defined lmnguage.

A cysi.m language with .limitred UsDer job and qorry funoctions
rrpertoire ot job commando tor definedl ood Initiated with a control
specific syetemv tanction., and hingumigo:
with a ncmni-firec query format Machico-oriented lined wnItcb-iiko query loogoge; A simplte, uniform punctuation Ar aiyirva oury sompuctureo An Clngtth-tibe ieguango witlb Aalomntio transatinon of

whichues tg o identif formawt o h coded fields. isoncecicot tormat; and Evglish-like syntax foe orsml rcmlxqeis 0 convenient accr format. ucer-deficd sorry lingualp.
ofsiin o ttribole valu.o. Only weo named file pec qurry. uviutored acorn; A mvrec powerful Execution of Wanry fattoows

inn:g~c~ foe comlexn querires;
Many file. par pier,.

COROI,-typ, dame User -otcentd dote ADAM transltolr aooerts
dreecripton, language. format.. asce-defiried! icguasgr.

None None None None

edirecotry for Term directory; Hiceracrhit directory ot A separate term dictionary, Dircctocy la the rome and File direvtory givivg name, Concordlance dchtionary Term dicttonary;
format Index froma structure code to attiebute. and valaues. format table, and! Physical location vI --c Iflic. l11-lio, and format of with complete cr,.aW s Loial a sm to physical

a id fid came. Physicat address:;oe o ec i, natom file.. reference of dcta values. locatio deig
at ran lime). No format definition tebles, Format definition tabte..

Options) indextng by valae to No tndexing of Complete indexaing by . T.. first level hInmo
anarbitrary drpth. fiteld cclarn. dat alae only.

Livbed lint structure. Seare None

record D te renated bileracohiecaly; Single-loovel Flnafile file itructurt; Serial-parallel data stcorge, Too-level damo structure; Na im~plied sicactaco I, date bane; Arbiteary depsth of Posting;
Cross referencing; acefilat r d dcin. Unlimited veoling In depth with ye vnesting of filet and One vei"e item with up to No embedded structare 10 con- Unlimited nambor of nested
Frozee data stractere, darms and number of Roms: voaon ocrrco vf .1d.la 14 ecord.. cardoiare; Items imposrt groups).
no format definition tablss. Variable lengthbutt no beiweco filca Suabeosoce organization into Fixed and vartable ttems.

oPtI.Ronilrns too level..

A special ACSI-MATIC I 5voali problein-orienied No p-eordaal language:
programming languagewth lan icguage for filec maintenance Programs coded in a basic
aiendocl wiveriblor. None routines. a.srably pastuare COBOL. JOVIAL; FAP FORTtRAN; DAMSEL.

"calle LA.

Macro library controlled by System controlled program 1system cantlelmf msorv Program and ninero library Program/macro tlibrary Rstidam pr'qgtn aleIn Macro library;

assembly program. library. Ilibrary, and library of ander control of lbh, cystem maintaived by syetem. library ait no automatic Service routitne..
apdate routines. . .exeutiv,c maiint-enac.

NP- program directory: Automaticaessignment of
Libeary tape is sccatned to programs to .0stisy qaeries;

Bycemmantene. ivsegc~t ssoinedaih heeortlyasd oees en Sytemmantind. on i piotocsin. omiir rnIoled
None fil being proressd. be caved.

..sgnii D sc: t'~rogcm o disc:
Iti UP Dts-laas tagnli tp. Dsitafss.o magnetic taps:

ý-iuae antctp icMaltiI-re maghetictiotpe. Disc, Sorme dstat on dIce. Ifigh-slperd dram; Tapes. Disc: Magnetic tape.

sertia Uteentery-deteen rcandom aecor.s Comainad edea sod Linear @..ellbthrough . LIn..ir earch of &.0-1- Lech througha . Rnd.m acre. arech Raondom oer... to named irem;

In, gsnralefsd "archb strategy asitng a int-type setial search. nertat file acing balstogi, parallel daia an ratadom aoens., serla file asing a single, trracgy a:Ieg conuordcn.r flna st e . Itc foe

structure. p nralted soarh routine. g cn..rilood search rettrns. No linar searc requitred' specific criteria.

None (@escept Ithat provided Priority procressing hy Ptriority (sic processing
ho opera ling epstei environ' program categorp, bhres controlled by facility

boacobd. meang o-ee prtority. metal Wless. lones None, n pilafotein momngpmend and osers,

ten Two lsvels on dine and
Too lefavrsI fl ror .non dram ;mingle leail an disc. Single ir-1 Ill.y. SUnilg lve acs n disc high periottp dtina knee dsfod.

2-i3 or, i-i. C-ntpericion Chlien

SECTION III. DESCRIPTION OF THE RELIABILITY
CENTRAL DATA MANAGEMENT SUBSYSTEM

3.1 OBJECTIVES OF THE RELIABILITY CENTRAL

The Reliability Central Data Management Subsystem (RCDMS) is that part of the

Reliability Central which handles all reliability data to be processed by electronic means.

To understand the objectives of RCDMS, It is important first to understand the objectives

of the Reliability Central as a whole. These objectives are listed below in terms of the

functions assigned to the Reliability Central:

(1) Mission - The Reliability Central will serve the Air Force

as the central management activity for the control of reliability

information, with the objective of improving the reliability of

Air Force equipment.

(2) Data Management - The Reliability Central will provide a

repository of reliability information which will include

validated manufacturers' reliability data, acceptance test

data and field evaluations of parts used, and expected to be

used, in Air Force systems. The responsibility of managing

the repository will include acquisition, validation, reduction,

correlation, analysis, storage, and dissemination of the

reliability data.

(3) Analysis - The repository of the Reliability Central, will

not only contain raw test data describing parts reliability,

but it will also contain summaries and analyses of the data

stored in the forms most convenient for the users of the

Reliability Central. The Reliability Central will analyze

3-1

ItI

data at the time of conversion from raw form to summary

form, and it will also perform analyses on a demand basis

in conjunction with queries initiated by users of the system.

The system will be designed so that a single analysis can be

made from data which resides in several different files.

(4) Dissemination - The Reliability Central will disseminate

the data on both an automatic and demand basis to System

Project Officers, contractors, subcontractors, and other

authorized users. Automatic dissemination will be in the

form of predefined reports issued periodically on all aspects

of reliability qualification, part design, selection, test, and

application. Demand dissemination will be in the form of

specific responses to queries which can have an arbitrary

logical complexity.

(5) Maintenance - The Reliability Central will provide for the

maintenance of the data base in a fashion sufficiently flexible

and dynamic to permit the creation of new file structures from

old data with minimum cost and delay. There will be many

kinds of files, each with its own structure. The ultimate goal

is that the system will be responsive to changes in usage habits

so that the system can be self-adjusting. The adjustment wouhl

consist of an automatic restructuring of any file to miale it Ibetor

suited for anticipated usage in the future. There are no constraints

on the format, structure, or content of new information to he added

3-2

to the data base. New information must be able to be added

by creating new files or records in the data base or by

incorporating new information in existing data structures.

(6) Query Access - The Reliability Central will stress the

importance of giving the user convenient access to the data

in two ways. First, the user will be permitted to state his

query in a manner which is simple and which requires no

knowledge about the operation of he system. Second, the

user will be given the choice of having almost immediate

access to the data or of having his query processed on a

scheduled basis. Ultimately, the design will permit the user

to state in his query the analytical functions to be carried out

on the data retrieved in response to his query.

3.2 CHARACTERISTICS OF THE DATA BASE

A description of the data base to be managed by the Reliability Central Data

Management Subsystem will give the reader a better understanding of the objectives and

functions of RCDMS. The specific structure of the data base cannot be described because

it will be evolutionary and will depend on the needs of the users. The general nature can

be described, however, and is set forth below in terms of size and structure. Detailed

treatment of the file structure design is available in AUERBACH Technical Report,

1193-TR-2, produced under AF contract AF30(602)3433.

3.2.1 Data Base Size

The designplaces no restriction on the ultimate size of the data base. The

Reliability Central Data Management Subsystem is designed to accommodate an interim

operation called the Test Operation. The Test Operation vill include all the basic

system functions and a large part of the ultimate data base.
3-3

The size of the data base for the Test Operation is estimated to be up to 440

million characters, of which 400 million characters are expected to be raw data and

40 million characters are expected to be summary data. In addition, there will be an

estimated need for at least 20 percent of the data base to store the directories which

control the data base. If an extensive depth of individual field indexing is called ior, the

storage requirement for directories could expand substantially.

3.2.2 Data Base Structure

The data in the data base will require varying degrees of accessibility. The

raw reliability data resulting from manufacturers' tests, acceptance testsand field

tests will be accessed relatively infrequently. After the data has been analyzed and

reduced, it will be retained in test summary form and will be accessed more frequently.

The most frequently used data will be placed in component summaries. It is anticipated

that the component summaries will be arranged by major component type (e.g., transistor),

generic class code or IDEP number (e.g., silicon, NPN, power), manufacturer's process

family (e.g., Fairchild Type 100), and part number (e.g., 2N1605). This general

arrangement will have a number of variations depending on the type of data being

retained and on the use to which it is being put.

3.3 DESIGN OBJECTIVES OF THE DATA MANAGEMENT SUBSYSTEM

The general objective of RCDMS is to provide the Reliability Central with

the data management capabilities outlined below. Since the Reliability Central will be

an operational rather than a research facility, it is imperative that the objectives of

RCDMS remain pragmatic rather than take on a speculative tone. In order to meet

overall Reliability Cdetral objectives, the RCDMS designers have had to incorporate

many general-purpose data ,nw.nagement concepts. As a result, when the

design is implen-.ented,it will not only serve the Reliability Central effectively and

efficiently but it should be equally appl!cable to a variety of other problems which

require management of a large data base.

3-4

RCDMS is designed to meet tho following specific objectives:

3.3.1 Convenience to the User

The overriding theme of RCDMS is that it be a service to•ol to a multitude

of different users who must be accommodated quickly, effectively, and inexpensively.

This theme permeates all of the design objectives below.

It is assumed that the types of users will range from those who know nothing

about the system (and who wish to use it without learning more) to those who understand

the system well (and who wish to manipulate its inner workings to their advantage).

Consequently, the system will have a convenient, user-oriented language which shields

some users from the complexities of the system. On the other hand, the system will

be sufficiently flexible (and well documented) to permit the knowledgeable user to exploit

facilities of the system in order to achieve more than the usual results.

3.3.2 Capability

A subsystem design must be capable of meeting the objectives of the system

as a whole. The RCDMS objectives for a capability which meets the Reliability Central

objectives are discussed below:

(1) Job Specification - The system will have the capability of

storing both generalized system programs and specialized

user programs so that they can be called upon by a user to

be run in the sequence he desires. This job specification

capability should be effected by means of a command language

which is both easy to use and comprekkensive in its ability

to specify jobs. Each job will be checked out to the fullest

extent possible at the time of storing so that the system can

assure the maximum probability that a job will run successfully

when it is called.

3-5

(2) File Strctr - The system does not specify or imply a

data structure constrained by the nature of the system's

design, but will provide a framework for building any

reasonable logical data structure desired by the user.

A data description language will be provided which is

easy to use and which permits specification of any data

to be included in the data base in a logical and consistent

manner. The system design wiD provide for a wide

variety of files, each with its own data structure. The

records of the files may contain such vw.' ed data items

as variable length fields, embedded files, linked files,

optional fields, and the like. The system will also be

able to convert a structure from one form to another,

at the direction of the data base management staff.

Regardless of the file structure in existence at any one

time, the totality of the data base is accessible to the user

for retrieval of any elements specified in a query statement.

(3) Query Language - RCDMS is being designed to incorporate

user oriented query languages or other user-specified

languages. It achieves this capability by utilizing an input

interpreter which is driven by a syntax table. RCDMS

provides tfie bazsic capability of handling conditional

searches of arbitrary logical complexity, in anticipation

of the query language. RCDMS design provides for an

interface with the anticipated query lAnguage through a

flexible interface among the query language, the search

s'rategy system, and the RCDMS supervisor.

3-6

(4) Compatibility With Environment - RCDMS will be operating

at least during the Test Operation on the Rome Air Develop-

ment Center computer complex in Rome, New York. It is

designed to interface with, and take full advantage of, the

RADC Executive Control System.

3.3.3 Adaptability

All systems exist in an environment of change. The systems that adapt are

those that continue to give useful service. Rigid systems soon outlive their usefulness,

and are replaced. Several adaptive aspects of RCDMS are discussed below:

(1) Modular Design - The design of RCDMS is modular in

concept so that it can oe expanded with minimum cost and

effort. The initiai implementation of the design will be for

the Test Operationwhich is an interim operation involving

the basic operation of the system without full capacity or

full capability. At a later time, the size of the data base

will be increased and the capability of the system will be

extended. The design provides for incremental growth of

the data base and the capability and functions of the system,

without the need to redesign and reprogram the initially

implemented basic elements of the system.

(2) Restructuring of Data - It is anticipated that the needs of

the reliability specialists and contractors using the system

will change and expand, thereby requiring dynamic changes

in the structure of the data base in order to maintain operational

3-7

effectiveness. In response to a user command, RCDMS

will be able to extract data from its existing logical structure

and reari"4nge it into a structure more suitable to current

use. Furthermore, the system will retain statistics on

data usage so that it will be able to respond autonmatic•)lly

to significant changes in usage patterns, and will be able to

assist the data management personnel in changing data structure.

It is conceivable that ultimately the system will be able to analyze

the new usage need, formulate its own request for the change

in data structure, and execute the change automatically, how-

ever, this is not an initial design objective.

(3) General Purpose - The primary responsibility of the RCDMS

is to manage the data base and processing functions of the

Reliability Central. However, the RCDMS design will be

able to manage many kinds of data bases and functions,

following its initial application in the Reliability Central.

As previously noted, no truly general-purpose data

management system has hitherto been implemented for pro-

duction opetration, even though the need for data management

is pressing in most branches of the Government. The

Reliability Central hopes to make a significant contribution

beyond the present state of the art in this are..

31-8

3.3.4 Cost

The reduction of cost is a major objective in all system design. Since the

Reliability Central is an operational rather than a research facility, cost takes on

added importance. There are two large areas of potential cost reduction in RCDMS:

(1) Implementation Cost - The RCDMS design will con,;qt of a large

number of generalized task subroutines. Many subroutines will be

suitable for use in several parts of the system under varying

circumstances. This multiple utilization of subroutines will

tend to result in a reduction in programming cost during the

implementation stage. A further cost reduction should result

from the modular design. When the system is expanded from

the Test Operation capability to the ultimate system capability,

the modular design should provide a stable foundation to which

new functions can be added with minimum cost.

(2) Operating Cost - By making RCDMS job-oriented (as

described in Paragraph 3.3.2 (1) above), the cost of

operating the system should be reduced significantly

because new jobs can be initiated with relatively little

new programming.

If all of the system functions are performed by generalized

programs that can be linked together in many comibinations

the user is required to program only the special functions

associated with his particular need. RCDMS would serve

these special functions in a supporting role with no need

for costly reprogramming of the system.

3-9

3.3.5 Response Time

In line with the objective of giving maximum convenience to the user, RCDMS

is designed to communicate its -esults back to the user at the earliest possible moment,

consistent with reasonable cost. The design objective of RCDMS is to provide the fastest

response time possible with the stqtl of the art 1w a-eans of console access. Many questions

and jobs directed toward the data base will require a r;)id response for the information to

be entirely useful. In addition, experience]as 3how, oeu. ries become more effective

if the user is provided with immediate feedback. '"he user has the ppportunity to improve

the query by modifying it. Where schedulc l outputs are called for which require stepping

through the data base in an orderly manner, the system also provides facilities for stepping

through the data using techniques which minimize directory search.

To achieve the system speed and balance commensurate with the concept of

console access, RCDMS is designed to meet the following objectives:

(1) Random Access - Effective console access demands

random access to the data base. The advantages of

console access can be quickly vitiated if the system

must take the time to perform a linear search through

a serial data store, such as a magnetic tape, while the

user waits at the console.

(2) Data Indexi g - Random access storage, in turn, demands

a powerful data indexing scheme in order to reap the full

processing potential from the storage medium. If a

restrictive data indexing scheme is employed, an in-

appropriate portion of time is spent to access data,

thereby increasing response time and cost. RCDMS *
3-10

S

employs a data indexing scheme which permits the system

to retrieve from storage only those data items that meet

the exact criteria of the query or search regardless of the

distribution of the indexed data sought among the files

comprising the data base.

(3) Levels of Accessibility - A corollary to the problem of

logical access optimization is the problem of physical

accessibility of the data. A large computer facility,

such as the RADC complex, normally employs several

levels of storage media - each with its own access speed.

To reduce overall response time, it is important to allocate

frequently accesped data to the storage medium with the

fastest access time. RCDMS will record the access

frequency of various data groups, and transmit this

information to the RADC complex executive system in

a manner compatible with the complex, to guide the

physical location of data.

(4) Priority Proces3ing - Some queries or jobs are more

important than others. A set of priorities will be established

by data management personnel. Ultimately, RCDMS will be t
designed to recognize the priorities and to stack the queries

or jobs according to their priority. The RCDMS design is |

consistent with a processing capability which organizes

requests for parallel processing of queries with like priority,

and can poss'ess this capability itself, if the system is modified.

3-11

3.4 CHARACTERISTICS OF THE DATA MANAGEMENT SUBSYSTEM

The Reliability Central Data Management Subsystem has been designed with

sufficient flexibility to handle many types of data in addition to reliability data. The

principal objective of the system, however, is to provide a framework within which

reliability data may be analyzed, evaluated, summarized, and stored in such a way that

it may be retrieved easily and quickly by reliability specialists. Two of the system

elements required to perform this function are the common data base and the five user

job request types with their attendant programs. The other system elements are the

dii ectories which point to the data, the system programs which use the directories to

manipulate the data, and the Supervisor program which controls the entire Reliability

Central Data Management Subsystem.

This section summarizes the functions of the five system elements in order to

illustrate how they work together. More detailed information on the subject can be found

in Volume I of this Final Report, specifically in Sections V and VI.

3.4.1 Common Data Base

Since reliability data is the basic element, or resource, of the Reliability

Central Data Management Subsystem, the fundamental strategy of the system is to retain

the data in as flexible and accessible a form as possible. The RCDMS data description

language not only permits the use of variable length fields and optional items, but it also

permits nested structures such as the nesting of a variable length file within a record of

another file. Another feature is the ability to logically link to items that are stored

physically with other generically related items, so that a given item may be part of

more than one parent item, in the sense of a lattice-.type hierarchy. These links are kept

in the RCDMS directory so that the identity of all items to be retrieved is known before any

data access is made, and no access need be made to the parent data which originates the link.

3-12

The data itself will be either in random access or in magnetic tape storage

under the control of the Local Control Program (LCP) of the RCDMS computer and

Executive Control Program (ECP) of the RADC EDP Complex. A preference for one

medium or the other may be stated by RCDMS. Since the ECP can change the physical

location of the data without having to notify RCDMS, data will be requested by means of

a logical name which will not change in spite of any physical data movement.

The logical name of a data item is derived from the relative position of the

item within the structure of the data base. A unique code may be created for each item

in the data base. The logical code is a numeric representation of the nodes in the multi-

list tree structure of the data base, and is called the Item Position Code. Figure 3-1

shows a hypothetical part of the Reliability Central data base. The data items are in-

dicated as branches off a central stem. Each branch is numbered, in relation to other

branches. A file contains records, or repeated items, which can represent an indefinite

number of -i nches. Each node has its own code.

RCPMS supplies a standard language for defining the logical structure of data

in the common data base. The language is supplied in two versions. The first is a

simpitited version vhich uses an indented outline type structure on a standard form to

signify the treiationsidps between data items and subitems. The second is a more

comple- version which uses a formal parenthetic punctuation to signify data class

relatioimiiij. This .'er-ion is intended for Ihose users who have more knowledge

of thc sy ý4t, ,•md WLw,, wish to use a linear parenthetic string input rather than a

columar plige fomat. (Trhe system may make a translation from the simple to the

complex v,,tsion outei'ally before using it for processing.)

3-13

raw
0

00

00 0

M 14

0

C"d

Q0

444
'-44

44.

pw E E-4

Ci:
004 14

'-4

'-44

~~44

In addition to the standard language, RCDMS has the capability of translating

and understantin• a data description (or other command) language which the user himself

has created. o •er can specify the syntactical and semantic rules which are appropriate

for his miE; -. 'c 'an inform the system of these rules by means of action graphs

(which must - - iji.iled with the system). The system uses the action graphs to control

its scan of the user's input, and the system actions specified by the user are taken at the

appropriate time.

3.4.2 Directories

RCDMS provides the user with a definitive data description language which

permits him to specify a very wide range of data structures. The structural description

of the data is implemented by means of the RCDMS directories, which tie the system to

the data base. By giving the user a flexible language for defining the data logically,

isolated from the problems of handling the data physically, RCDMS achieves a new level

of generality.

The reliability data can be recalled to core memory only by means of system

directories. A function of the directories is to translate the names of data items, first,

into logical codes which describe the relative or logical positions of the items, and,

second, into the name of the segment which can be used by the RADC Local Control

Program (LCP) to fetch the data. A segment is a block of 1024 M1218 words, equivalent

to three blocks of 512, 12-bit words, used as the RADC data transfer standard. All

system functions of file maintenance and retrieval depend on the directories to locate

the desired data and to describe it once it has been found. There are four main directories

to the system. Most of the directories will be quite large and will themselves be kept in

random access storage, thereby requiring their own small subsidiary directory in core

to permit fast access to the main directories by the system.

3-15

Figure 3-2 shows what each directory requires as input, and 'hat each is

designed to provide. There are several functions of the data directories:

(1) They are utilized to focus in on the data;

(2) They are utilized to give a description of the data

in the record (e.g., whether the data is a floating

point or an alphanumeric number);

(3) They are utilized to permit extraction of the data,

(4) They contain the index values for the data items so

that searches can be performed within the directories

without having to access the data until the end of the

search, when only the correct data items are drawn

from storage.

The description given by the directories is general in nature so that many

types of file structures are permitted and the programs that operate upon the directories

do so in a general manner.

(1) Term Encoding Table - The basic function of the Term

Encoding Table is to convert the name of a data item from

its alphanumeric input form to a coded form which describes

the logical position of the item in the data structure. 'The

coded form, called an Item Class Code (ICC), consists of

integers which represent the nodes on the tree structure

describing the data. For example, the ICC for the Transistor

File in Figure 3-1 would be 1.2. The code may be derived ir,

reverse by tracing the nodes back through the tree structure

to the root. Thus, the Transistor File is the second node of

the first node, or 1.2.

3-16

INPUT TABLE OUTPUT

item Term
Name Encoding -- to Item Class Code (ICC)

(Term) Table

Item Position Code (IPC)

ICC Item Item Name
Position

Field Index Item Type

Values 1 Fixed Field Length

Segment

IPC - Name 0 RADC Segment NameList

IPC x Data Item

Figure 3-2. Directory Inputs and o(utputt

Si: I-,i

When a node is a file, it may contain any number of

records, each of which is a subordinate node. This

class of nodes is represented by the letter R in the ICCs

for items within a record. For instance, the field called

TYPE in Figure 3-1 would have an ICC of 1. 2.R. 1. When

a series of files are nested within the records of other files,

several Rs can be contained in one ICC, such as the fields

of Test Point Record in Figure 3-1. The ICC in this case

is not unique to any one item, but it describes a class of

items within the files; hence the name: Item Class Code

(ICC).

A given term will have more than one ICC associated with it

if it is used more than once in the -* ,a structure. This

would be the case if TYPE were the name of a field in both

the Transistor File and the Diode File. Part of the program

function will be to resolve such ambigaities, using qualifying

context or names.

(2) Item Position Index - The Item Class Code must be

converted into a unique code by supplying values for the

R's before a specific item can be retrieved from random

access storage. The conversion is performed by the Item

Position Index, which is arranged by ICC and contains all of

the values by which certain data items have been indexed.

When the ICC has been changed into a unique oet of integers

with no R values, it is called an Item Position Code (IPC).

J 3-18-A

The Item Position Index has two alternate ways of creating

an EPC. First, it can allow a program to generate a series

of successive R values for an ICCwhich creates a series of

IPCs and permits the system to step through a file one record

at a time. Second, it can provide the one R value for the unique

IPC which points to 'he record satisfying some search criteria

(by means of field value and R-val- e index tables).

The Item Position Index supplies other information descrip-

tive of the data, such as the Item Type. The item may be

specified as either a required or optional statement, file,

record, ;r field. If the item is a field, it is specified either as

a fixed or variable length field. The length of fixed fields

is also specified. The Item Type also describes whether

the data is floating or fixed point, alphanumeric, or other

mode.

A vital function of the Item Position Index is to retain

indexing data. This data corresponds to the addresses

of data items which have certain indexed values. Since

logical addresses are being used instead of physical addresses,

the RCDMS design can retain the address in a very small space,

often as little as one digit. The powe" of these indexes comes in-

to play when complex searches for data items can be accomplished

without making aay unnecessary accesses to peripheral storage.

The Item Position index can retain index data to any desired level.

3-19

I

Frequently accessed data can be more fully indexed,

for instance, than data which is needed less frequently.

This flexibility permits the personnel operating the

Reliability Central to specify the level of indexing which

will produce the minimum expense in the trade-off between

storage cost for the index data and accessing cost for

retrieving unindexed data.

Another function of the Item Position Index is to retain

the statistical tallies of data usage since all usage must

pass through the Item Position Index. It is from these

tallies that the need for data restructuring will become

evident. The restructuring will be done by reliability

specialists in the beginning. Ultimately it is hoped that

the system will perform its own restructuring. The

tallies are also used to communicate the frequency of

usage to the data base manager of the RADC complex to

indicate where the data should be stored physically in

terms of accessibility.

When the Item Class Code has been converted into a

specific Item Position Code, it is ready for further

conversion into the name of a specific segment of data

which contains the item.

3-20

(3) Segment Name List - An Item Position Code is a code for

a unique data item. It embodies sufficient information to be

able to call for its appropriate data segment, which

is a section of the data base with 1024 18-bit words. De-

termining the name of the segment to be called is the task

of the Segment Name List. When the name has been

determined, it is given to the Local Control Program

(LCP) along with a request for the segment, and the LCP

retrieves the segment from peripheral storage placing it

in a prescribed input area in core memory where the exact

data item can be located.

(4) Segment Index - The final step in retrieving a data item

is taken with the aid of the Segment Index. Each segment

of data begins with a Segment Index which points to the

data items contained in the segment. The Segment Index

uses the IPC and auxiliary information from the Item Position

Index to find its way to the desired item. At this point, there

are several things which may be done with the data. The

item may simply be retrieved, it may I-- deleted from the

segment, or it may be used as a foundation upon which to

add new data items to the file.

3.4.3 Job Specification

A job is defined as a sequence of program tasks that accomplishes some

desire:d user action. The Reliability Central Data Management Subsystem is designed

I

SI

to perform a variety of different jobs with a minimum of programming through the use

of many generalized programs. The user will be able to call on these programs in the

sequence he desires. It is this aspect which gives RCDMS much of its general-purpose

nature. The user accomplishes this variety of uses by means of a Job Request. The

Job Requests perform the functions of item definition, data entry, program entry, job

entry, and job running. The first four Job Request types perform system maintenance

functions. The fifth Job Request type permits the user to run jobs of his own on the

system. A standard command lai-vage is provided for the user to specify each job he

wishes accomplished. An additional feature of RCDMS is that the user can also request

creation of his own command language, using syntactical and semantic rules which are

more closely associated with his mission than is the standard language.

Job specification affords both a dynamic and modular expansion to RCDMS.

As to the data base, new data can be added in batches or on-line, with few constraints

on the type of data. As to the system functions, modular additions can be made which

incorporate new task-oriented programs. The Job Request types are summarized below:

(1) Item Definition Reqtuest -- The logical structure of the

data base can be altered through an Item Definition Request.

An alteration is made in the directory entry which describes

the relationship of the data item to the data base. Possible

alterations include the addition or deletion of data items such

as statements files, records, or fields.

(2) Data Entry Request - Data may be added or deleted by

issuing a Data Entry Request. This type of request would

normially be used for transactions where the data in thi data

3-22

II

base does not have to be examined in order to complete

the transaction. More complex transactions may be

effected by combinin6 the Job Entry Request and Job

Run Request described below. Data may be entered by

means of a console or by magnetic tape. The data may be

in the internal format of the system, or it may be in the

external format of the data description language.

(3) Program Entry Request - Descriptions of programs are

entered into the system with the Program Entry Request.

The programs and the descriptions of their parameters

are given a unique name and are placed in the Program

Description List, where they are on call for the execution

of jobs at a later time. Program Descriptions are used for

checking purposes to be certain that subsequent jobs, which

call on the programs do so correctly and with the proper

parameter specifications.

(4) Job Entry Request - The Job Entry Request is used to

bring a Job Description into the system. A Job Description

specifies the programs to be run for a job, and the sequence

for running the programs. Any predetermined program

parameters for the job may also be entered by this means.

A Job Description is usually entered for a job which is run

frequently, so that the job does not have to be specified each

i
:,• 3-23

. i. .

time it is run. A Job Entry Request causes a Job Description

to be stored so that it may be called later by a Job Run Request.

Job Descriptions are checked carefully by the system upon entry

to be certain that they are compatible with the requirements of

the programs they use.

(5) Job Run Request - A Job Run Request asks for a particular

job to be run. The job must have been described previously

in a Job Description by means of a Job Entry Request. If the

Job Description specifies all parameters, the Job Run Request

can be as brief as to simply identify the job name to be run.

However, if the Job Description refers to several programs

requiring parameters which have not been pre-assigned in

the Job Description, the Job Run Request must specify these

parameters in detail.

3.4.4 Supervisor Program

The Reliability Central Data Processing Subsystem derives its primary

control from the Supervisor Program. A graphic representation of the Supervisor Program

may be seen in Figure 3-3. The Supervisor Program is subservient to a Local Control

Program (LCP) which in turn is subservient to the RADC Executive Control Program (ECP).

The ECP supplies all inputs and receives all outputs through the Local Control Program

(LCP).

(1) Job Request Processor - The portion of the Supervisor

Program which receives all Job Requests from the user iz

3-24

0) 4J

00

$4.

P.4 4h C 0I~ r
5-25 4

called the Job Request Processor. The first function of

the Job Request Processor is to interpret the Job Request

and determine which job is to be done. The Input Scanner,

a subroutine in the Job Request Processor, plays a large

part in this by analyzing the syntax and meaning of the

Job Request. The Input Scanner is driven by a table called

an Action Graph which specifies the syntax of the input

language and the actions to be taken by the Input Scanner.

New user languages can be introduced into the system by

preparing new action graphs for the Input Scanner. This

capability permits system specialists to make evolutionary

changes in the user language without having to reprogram

the Input Scanner.

The Job Description which matches the Job Request is

fetched from the Job Description List. The Job Description

is comprised of the program names required to do the job,

along with the sequence of the programs and any prescribed

program parameters. The parameter values which have been

presented to the system by the Job Request are used to bind

the remaining unbound parameters in the Job Description.

The program information in the Job Description is formatted

on the Task List and is forwarded, along with program control,

to the Job Manager.

(2) Job Manager - The Job Manager is responsible for putting

the job together and seeing that it runs accurding to specifications.

3-26

The Job Manager calls those programs which are given in the

Task List, and gives them the required parameters from the

Task List or from previous programs. The Job Manager

continues to monitor the job until all tasks are completed.

During this time, new tasks may be created by the Task

Processor in the form of a Job Extension. When this occurs,

new tasks are passed back to the Job Request Processor for

inclusion on the Task List, and the cycle repeats itself.

For example, a query job may call for a query translation

and the query translation program may use a job extension

when it has established the programs and parameters needed

to execute the query.

(3) Task Processor - A task processor may be any of the

job programs in the system, and it is responsible for

performing the useful processing in the system. The

job programs are executed under their own control. In

addition, all accesses to peripheral storage through the

LCP for the processing of the job itself are controlled

by the task processors or job programs. Reference is

made back to the Job Manager when the task is completed,

when an unsolvable error condition occurs, or when a new

task is encountered which requires an additional p-ogram.

3.4.5 System Programs

The programs in the system consist of two types:

(1) System-oriented programs are relatively stable, and

provide the basic framework for processing data and for

3-27

implementing other programs. They constitute the underlying

programming foundation upon which all other systems tasks

are based. Examples of system-oriented programs are those

which scan input data, which access and manipulate system

directories, which locate data in the data base, and which do

routine jobs such as sorting and merging.

(2) Task-oriented programs are components of user jobs. They

use the system-oriented programs to help them accomplish

the tasks required of the Reliability Central users. The

task-oriented programs are less stable in that they may be

changed to suit the needs of an evolving task or the user,

and may be added to or deleted from with much less effect

on the system than the system-oriented programs. Examples

of task-oriented programs are those which summarize and

analyze reliability data, those which generate specialized

reports, etc.

The two types of programs are combined by a Job Description and work

together to accomplish useful work. The data manager or reliability specialist respon-

sible for accomplishing a task creates a Job Description through a Job Entry Request.

Although many system-oriented programs concern themselves with system maintenance

only, many others can be used as subroutines in user-oriented programs.

The use of the two program types may be illustrated by the following example.

A reliability specialist may wish to extract some prescribed fields of data from a

permanent file in order to build a temporary file more suited to his purposes. He may

plan to perform a series of analyses on the new file and have the results reported in a

3-28

certain order and format. The specialist would issue a set of Job Entry Requests to pro-

duce the necessary Job Descriptions to tell the system what to do. The Job Descriptions

would consist of a list naming both system-oriented and task-oriented programs. The

system-oriented programs would scan the inputs which have been written in a user

language, locate and extract data from the old file, construct the new file structure, and

extract from the new file those data items desired by the analysis routines. If a generalized

report generator were used, it too would be system-oriented in that it would be available

to all system users. The task-oriented programs would permit the system to select the

data according to the Boolean logical condition, summarize the data, analyze it, and

prepare the desired output if a specialized report routine were used.

System-oriented programs which deserve special mention are the File Search

and the Table Access Packages. These generalized programs are responsible for all

basic data manipulations and searches. They use the directories for extracting, storing

and altering data in the data base, and for restructuring data into a new form. One

of the prime features of these programs is that they can make full use of the index

data found in the Item Position Index, to perform conditional searches of the data base.

Further, they can manipulate the index data and reduce the number of accesses to

peripheral storage to the absolute minimum. This feature provides the foundation for

accepting a query in any defined query language, and for processing it in an efficient manner.

3-29

SECTION TV. SYSTEM DESCRIPTIONS AND COMPARISONS

4.1 GENERAL

Eight data handling systems are described in thi section with each system

compared with the Reliability Central Data Management Subsystem. The systems have

been chosen because they represent or illustrate significant contributions to the state

of the art of data management. Several other systems were reviewed but were omitted

from the survey for several reasons. The AIS file management system was excluded

because the non-proprietary part of its documentation is insufficient to describe it in

detail. The Army CCIS-70 project was not included because its programs do not have

the sai,,. degree of generality found in the other systems. It is felt that the descriptions

of the eight systems and RCDMS cover the major contributions to data management, and

that inclusion of any further systems would be redundant.

No attempt has been made to classify the eight systems. Too many overlapping

characteristics exist to make a classification meaningful. Rather, they represent a

spectrum of achievement from the limited query capability of RECOL to the advanced

data management capabilities of ADAM. The other systems can be placed somewhere

in the middle of the spectrum. Their position in the spectrum depends very much on

what system characteristics are important to the user, rather than upon some inherent

rankiug.

The authors of this report assume full responsibility for its contents, but

they acknowledge that the system descriptions may contain certain inaccuracies, brought

about by the following conditions:

(1) Most of the systems are in the design or dc\.elopment stage

and are constantly being changed and improved.

(2) Due to restrictions of budget and time, some of the

material has been taken from summaries and reviews

rather than from definitive source material.

(3) The report completion schedule did not permit time for

the system descriptions to be submitted for review to the

designers of the systems treated in the report.

4-2

IS

4.2 RETRIEVAL COMMAND ORIENTED LANGUAGE (RECOL)

4.2.1 Objectives

RECOL is the acronym for REtrieval Command Oriented Language. It was

designed and implemented for an RCA 501 Tape System by W.D. Climenson in 1962.

RECOL more properly belongs under the general heading of a General-Purpose Query

System rather than a Data Management System, since it does not update files nor alter

their structure. It is a generalized system in which queries can be posed to the system

in a natural English-like language termed RECOL. RECOL is somewhat limited with

respect to what can be achieved within the present state of the art, but its importance

lies in the historical fact that it is onc of the first general query schemes that utilizes

a natural English-like language. Its basic objective was to provide a sophisticated means

of interrogating a linear (i.e., tape) file which would permit the user to state a complex

query conveniently, using any arbitrary combinations of the connectives AND, OR, or

NOT with any degree of nesting. A further objective was to utilize a generalized program

which would be capable of operating on any file which met the constraints of the system.

4.2.2 File Structure

The file structure utilized in RECOL is rather simple. The program can operate

upon only one file at a time. A file is restricted to a single tape. Records within a file

are unlinked. That is, one record cannot point to another record. The maximum record

size has been restricted to 160 characters (or two puncijed cards) in length. Each record

is subdivided into fields. The length of each field within a record is fixed. Each field

may have a different field size. At the time of loading the file, a description of the

record is provided which specifies the name of the field, its length, and the type of

information contained in the field (e.g., integer, alphanumeric, floating point number).

4-3

The pro .ra us have been written around the data description so that many file i having

different formats may be utilized hy the same program. The program does not permit

data to be stored on disc. Data cannot exceed one tape in length.

4.2.3 Language

There is only one language permitted in the system. This is the retrieval

language called RECOL. No maintenance commands can be. ,ecified. The user must

maintain his own file prior to placing the data into the computer.

RECOL permits an English-like language expression to be presented to the

computer. An interrogation consists of a group of orders to be executed in sequence.

Five basic orders are permitted. These are SELECT, NAME, ASSOC, EDIT, and SUM.

(1) SELECT - The SELECT order retrieves data records specified

by a logical condition. The logical conditions consist of the following:

Boolean Operators: AND, OR, NOT

Relational Operators: =

The logical condition is unrestricted by the number of

Boolean or relatinnal operntors or by the nesting permitted.

(2) NAME - The NAME order permits a field to be named

and a value to be placed in the field by stating a series of

logical conditions. Thus, a new field can be created in a

record. The logical condition is identical to that in SELECT.

(3) ASSOC - The ASSOC order permits records to be associated

if they are related under certain conditions. The ASSOC order

is specified by a set of maximum or minimum differences

permitted between values of file recoi J items. For each

4-4

record, the order will examine the rema.inder of the

file to determine if any records satisfy these comparison

limits.

(4) EDIT - The EDIT order causes a file to be sorted and

printed (usually a file of selected, named, or associated

records). The ordering of the printed data is specified

by listing the record items from the most significant

criterion to the least. No capability exists for specifying

a logical condition and selection of a field based upon the

logical condition.

(5) SUM - The SUM order counts records and finds average

values. The EDIT order contains SUM.

The basic orders may be combined in various ways to

form an interrogation statement. The orders NAME

and EDIT may be cascaded. It was not possible to determine

the precise syntax for utilizing orders, or all the ways in

which the orders may be presented. Each command to the

machine is preceded by a semicolon. Attril;utes are separated

from values by a colon. A typicaA order might be

SELECT - PAY-TYPE. WEEKLY, SEMI-MON, MON

The order name Is separated from the attribute PAY-TYPE by

an Item separator. The attribute PAY-TYPE can take on any

of the values listed and be selected. The values are separated

S• 1- 5

4.2.4 Implementation Aspects

A batch capability has been designed into the program to týKe advantage of a

file record while it is in core. Up to five SELECT and/or NAME orders can be executed

in a single pass. The logical conditions specified by the SELECT and NAME orders cause

an executive routine to generate an object program to match the file records against the

conditions. The logical condition is first scanned from left to right and translated into

a Polish prefix format. The prefix form is scanned from right to left to generate a closed

subroutine with true and false exits. The generated subroutines are added to a skeleton

supervisory program which controls the input-output and record typing functions.

4.2.5 Comparison with Reliability Central Data Management Subsystem

As an early query system, RECOL met its own objectives with considerable

success. As a total system, however; RECOL is not germane to the RCDMS objectives

because it deals only with data retrieval. It does not provide a maintenance function or

any of the controlling functions which comprise data management. Other aspects which

make RECOL inappropriate for the RCDMS are the following:

(1) Because RECOL is tape-orientedall query processing

is performed serially, without the advantage of random

access storage. RCDMS anticipates a short response

time and must utilize random access storage at least

for those items which are accessed most frequently.

(2) RECOL can operate on only one iile at a time. RCDMS

will often have queries and data analysis jobs that operate

on several files. The RCDMS provides for access to any

combination of files at any time.

4-6

(3) The files used by RECOL are in a frozen format. Once they

have been defined to the system, they cannot be altered

except by means of a separate file maintenance routine.

RCDMS permits files to be redefined by means of a regular

system job request.

(4) Each record in a RECOL file must have the same fixed

format with no variable or optional fields. Files cannot

be contained within files. The data processed by RCDMS

is too varied for such major restrictions. The RCDMS

directories are sufficiently flexible to permit almost any

combination of variable fields, optional fields, and embedded

files within the framework of only minor system conventions.

(5) RECOL contains no data indexing. Since RECOL searches

serially rather than by using random access, it must scan

each data record in the file to be certain that all pertinent

data is retrieved. RCDMS requires data indexing in its

directory because it uses random access storage devices.

The index scheme employed permits the system to fetch

from random access storage only those data items that

satisfy the criteria of the query being processed.

Although RECOL is not germane to the Reliability Central as a total system,

RECOL still contains several query aspects common to the Reliability Central objectives.

Consequently, RECOL experience has contributed to the design of the Reliability Central

Data Management Subsystem. Some of the RECOL conceptual achievements on which

RCDM8 designerb have drawn are:

(1) The format of each file can be described to the RECOL

processing program so that a single, generalized program

4-7

can be used to process all files. This concept is

also a basic theme of RCDMS.

(2) A number of data manipulations are provided by RECOL,

other than the selection of data by Boolean operators:

(a) Records may be matched and collated as

determined by specified fields.

(b) Records may be sorted by a predefined sort

key, and printed in a prescribed format.

(c) Data may be summed.

These functions, and several others, will be provided

for in RCDMS by means of generalized system programs

which can be sequenced and controlled by the user to meet

his requirements.

(3) RECOL queries can be batched. With RCDMS, there is

less need for batching because 4,onsole and random

access tend to dispose of the queries quickly enough.

In the ultimate system planned for after the Test

Operation, query requests will be organized for

p-arallel processing by priorities.

(4) Queries can be posed to the RECOL system iiý a natural

English-like language. Arbitrary combinations of the

logical connectives AND, OR or NOT can be specified

to any degree of nesting by the RECOL user. The program

coding for responding to each query is compiled by the

RECOL system at the time of input.

,I-8

k|

These three aspects of RECOL concern the query language

and will not relate directly to the RCDMS until the query

language for RCDMS is procured. However, these aspects

are of great importance because the RCDMS must provide

the query language with a compatible interface, and with a

means of searching for data using complex logical conditions.

4-9

Wll

4.3 ACSI-MATIC COLLATION SYSTEM

4.3.1 Objectives

The ASCI-MATIC Collation System is an information storage and retrieval

system designed and implemented by RCA for the Department of the Army, Office of the

Assistant Chief of Staff, Intelligence. A prototype of the full system was imiplemented

on a Sylvania 9400 Computer with a Data Products Disc File. Design of the system

commenced in 1960-1961 and the prototype was implemented in 1963.

The objective of the information storage and retrieval system was to provide

a common data base which could be utilized by intelligence analysts with different area

responsibilities. The prototype system was to be designed to handle all the complexities

of the full system with certain exceptions. The full system was designed to reduce the

amount of effort required of analysts to evaluate, associate,and file new data. The latter

function was to be achieved by automatically collating new information with prcviously

stored information on the basis of information content. The ability to automatically

collate new information was not part of the prototype system

At the time of the design of the system (1960-61) little previous work existed

in this area. The system is of considerable interest since it is organized to utilize disc,

and effectively accomplishes this objective (within the scope of the system).

The specific system of objectives for the prototype was as follows:

(1) Executive Control - The executive control system was

intended to provide:

(a) Transfer of control between programs to take advantage

of idle time between disc seeks.

4-10

I - -

(b) A centralized input-output package.

(c) An operating system which scanned inputs to

determine the type of activity to run and to

automatically retrieve and initiate the program.

(d) A dynamically allocated core memory (a trivial

scheme was to be developed and should not be

confused with the full system objective).

(e) A dynamically allocated disc storage.

(2) File Structure - The file structure was to be designed to:

(a) Facilitate data retrieval by indexing the data in

great depti.

(b) Permit the retrieval of data which are related

hierarchically.

(c) Permit the manipulation of lattice-structured

information.

(d) Permit the addition of new terms, the deletion of

old terms, and the addition of relationships of

old terms.

(e) Effectively utilize disc to store the data and indexes

to the data.

(3) Laguage to be Utilized - An English-like languagp was

to be designed to:

(a) Query the system.

(ii Boolean 'AND' statements were to be permitted.

(ii) A specialized. sumrmiary of data was to be permitted

depending upon secarity.

4-11

(iii) Retrieval of hierarchically related data

was to be permitted in the retrieval statement.

(iv) Print statements were to be permitted.

(v) Data was to be extracted from records satisfying

queries.

(b) Establish new information

(i) ADD new data to a record.

(ii) DELETE data from records.

(iii) REPLACE data in records.

4.3.2 File Structure

To permit the rapid retrieval of data, the ACSI-MATIC file structure was

patterned after a list type structure in which the record links were extracted from the

data records and placed in a directory. Thus, the ACSI-MATIC file structure consisted

of a directory (or th'-sauras) and the data base. The unit of information in the data base

was termed the Information Record of which there were to be different types such as

Military Organization and Personality. Data entering the system might be pertinent

to several such records. Each record type had a set of allowable information that could

be stored in it. However, no data description language existed in the system so that

frequent changes in system requirements meant program changcs. Information Records

of a particular type (i.e., Military Organization) could be linked to one another by containing

an address in a particular field locating the linked record. Information Records of one

type could also be linked to another type (e.g., Military Organization could be linked to

Personality). Formation of a new Information Record could be achieved explicitly through

an order (analyst order) or implicitly by the entry of a new message bearing information

to the system.

4-12

The system directory consisted of two major entities: a Glossary and a

Hierarchy Index List.

The Glossary served as a list of terms that were acceptable to the system.

For each attribute class (e.g., Personality Name or Job Title), there appeared a listing

of all values acceptable to the class, together with their encodings. The encoding expressed

a hierarchical arrangement of terms within the class. Thus, a tree structure (and more

generally, a lattice structure) of terms was permitted within the Glossary. The position

of a term in the tree was specified by a binary code called Flexicode, which had the

property that both vertical and horizontal coordinates were well specified. Further,

given any two codes, it is possible to insert a new code between them at the same level.

Codes could not be inserted convenie,,tly between two levels. A special symbol denoted

that a lattice condition was reached in the tree. Glossaries were maintained in alpha-

numeric sequence.

The aforementioned Flexicodes were maintained in "hierarchical" order in the

Hierarchy Index List. Each term in the list contained the Flexicode for the term it

represented, plus pointers to the Information Records in the file containing information

about the term, and to the glossary record. The pointer to the Information Record

listed the physical address of the record on disc. It was found by the designers that a

modification which would have listed logical names of records in a table consisting of

logical names and their physical names would have saved considerable time in file

maintenance since updating represented a significant portion of the system processing.

The directory (Glossary and Hierarchy Index List) was stored on disc.

Since the Hierarchy Index List and Glossary could be quite long (extending over many

4-13it

disc addresses) a method of focusing-in upon the term desired was developed. The

technique involved utilizing subdirectories to the directory proper. For each Glossary

or Hierarchy, the first word in the Glossary or Hierarchy of each group on disc is

extracted from the Glossary and set up in a sub-directory. If the sub-directory extended

over several disc accesses, it was subdivided in a similar manner. The main directory,

which consisted of names of Glossaries and the name of the Hierarchy, pointed to the

appropriate sub- directories.

4.3.3 System Processing of Messages, Orders, and Queries

The system inputs were designed to be independent of the input media. The

system executive routine scanned the input media (paper tape, card) to determine if

inputs existed. If an input was found, it was read ink' memory and scanned by a general-

purpose scan routine to determine the input type. The following input types could exist:

(1) An input message.

(2) An analyst's order to operate on data records.

(3) An order to perform thesaurus maintenance.

(4) A query to the data base (in a complex manner).

(5) A report (several different special reports were possible).

Responses from the system were made on a monitor typewriter and a high speed printer.

The input language for message inputs, analyst orders, and queries was similar,

while thesaurus maintenance orders had a somewhat different form. The language for the

former utilized a unique name followed by a delimiter (a colon) to terminate the name

(e.g., INTER: would r" present an interrogation to the system). Following the delimiter

w&M a series of tags and sub-tags representing several types of information. The first

type represented auxiliary data such as the security of the input, the analyst's name,

4-14

the area he represented, the source document, and the date of entry. A tag was

identifiable by terminating delimiter (e.g., : :). The tag represented an attribute.

Following the attribute was a value. A second class of tags represented information

about the message, order, or query. A tag (or attribute name) would have had several

sub-tags belonging to it. Thus, for example, the tag PER for personality could have

sub-tags for name, job, age, etc. Thus, a record could be considered to have sub-

records belonging to it. In addition to tags representing attributes, other tags relevant

to queries, such as subsumption; and to orders, such as to add a term to a record were

permitted. Tags could be presented in any sequence and the system was capable of

interpreting the input.

Messages were to be the normal method of adding information to the system

files on a continuous basis. To enter a message, knowledge was required only of the

message syntax and tags. System processing was to automatically associate data

with other stored data, if pertinent, to automatically cross index the data, and to

update the file. This feature was to be part of the extended system and was not imple-

mented in the prctotype.

The data base for the prototype system was to be entered using analyst

orders. The orders were fully automated. That is, a new piece of data could be

specified by an order, and the system set up the record, stored it on disc, and cross

referenced the appropriate records in the directory. Orders permitted addition of new

data, modification of an existing Information Record, and deletion of a record. A printout

of the results was submitted upon completion. As a debugging aid, a monitor was de-

signed to permit the system user to obtain a trace of the processing. Since several

centralized packages were utilized (such as I/O, a thesaurus access package, and an

input processor) it was found that unless one kept track of the processing, it would be

exceedingly difficult to determine where errors had arisen.

4-15

Queries were designed to permit only AND operations for the prototype

system. Apparently little consideration was given to OR and NOT operations and

relational operators other than subsumption and equality. It is apparent, however, that

other relational operators such as /, >, <, and the OR operation could have been added

quite easily. Thus, one can consider that the prototype could have been modified with

ease to permit Boolean statements consisting of a series of AND's followed by a series

of OR's followed by another series of AND's in an alternating fashion. Queries consisted

of an AND search criterion followedbyan extract command and a print statement. Although

a sort/merge routine was developed for the system, the scope of the prototype 'lid nct

consider utilizing the sort/merge with queries and was to be part of the extended system.

Basic retrieval operations involved the manipulation of indices rather than the viewing of

all records during the data selection process. For example, consider the query, "List all

physicists who are at a particular university." The job glossary would be retrieved to

get the term physicists. The Hierarchy Index List would be entered to retrieve the list of

addresses of all records containing physicists. The university glossary would be

retrieved on the name of the specific university. The Hierarchy Index List for the

university would list the names of all records containing the university name. Matching

these two lists of addresses yielded the address of records containing both terms.

An input processor was developed to:

(1) Handle input format errors.

(2) Check for appropriate tags and sub-tags.

(3) Look up glossary terms to determine the system encoding.

(4) Resolve ambiguities (e.g., the location name NEWARK

is ambiguous since many locations in many states can

have the name NEWARK; however, if more information were

provided on input, such as NEWARK, NEW JERSEY, the

4-16

processor could resolve the discrepancy to determine

a unique encoding).

(5) Structure the data for further system processing.

4.3.4 Orders to Perform Directory Maintenance and Directory Use

The prototype system permitted several maintenance orders. The orders

were designed primarily to add new terms to the Glossary and Hierarchy Index List.

The addition of a new term meant that sections of the Directory had to be updated

including the subdirectories an main directory. The orders utilized a parenthesized

format. To add a term to a Glossary, or to modify an existing term, the name of the

Glossary had to be given, the name of the term and its hierarchic encoding. A hierarchy

term to be entered into the system had to contain the hierarchic encoding of the term,

the glossary term corresponding to the term,and information as to whether the term

regularly was subsumed or subsumed other terms. The latter was needed in the event

that the term was part of a lattice structure. A subroutine termed MAINT was utilized

by the order to perform the physical maintenance of records and to maintain the directory.

To permit expansion of the prototype data base, space was left in the disc

addresses assigned to glossary and hierarchy terms to minimize maintenance time.

A central package termed the Thesaurus Access Package (TAP) provided a

means for accessing the data. TAP permitted files to be locked out while maintenance

was performed, took advantage of the fact that a routine required sequencing through

a Glossary or Hierarchy so that directory records already in core did not have to be

reaccessed, and looped through the main directory and subdirectories to get at the

appropriate terms. Programmers requiring use of the directory did not have to

concern themselves with the structure of the directory and merely requested the

ipertinent information and were provided with the appropriate records.

j 4-17

4.3.5 Programming System

Several general-purpose utility routines were developed. The executive

control routine was designed to permit transfer of control between routines, allocate

core storage dynamically (a primitive storage allocation routine was developed), cen-

tralize input-output calls, and allocate disc storage.

The programming system for ACSI-MATIC was composed for an input-command

package, an executive control package, an input-output package, and a collection of

utility packages.

The input-command package accepted and interpreted commands for the

execution of major system functions and for establishing the appropriate programs to

effect the execution of those functions.

The executive control package for ACSI-MATIC furnished a collection of functions

to enable the linking, loading, binding, and execution of system tasks. In addition, func-

tions to enable parallel processing (up to sixty-four tasks) and dynamic allocation (i. e.,

requests for more space generated at execution time) were available. Basic blocks for

loading, linking, and parallel processing control were kept in terms of chairs of descrip-

tions; i.e., lists of descriptive information were organized via chain links to reflect

program relations, resource allocations, and priority for execution.

The ACSI-MATIC programming system furnished the user with a variety of

utility packages. For example, requests for retrieval of items from the disc file by

name were accepted and handled by the Thesaurus Access Package. In addition to

retrieving data from the files by name via indices, this package furnished all of the

machinery for adding and deleting entities of the files. Techniques for interlocking accessing

during maintenance and for preserving ancessed information in core for subsequent use

were developed.

4-18

A second utility package was a comprehensive sort/merge package which was

available to the user. This program allowed sorting on the basis of complex user-

furnished ordering criteria.

A programming language and an assembly program were also developed. The

assembly produced relocatable code and sufficient descriptive infnrmation to satisfy the

requirements of the dynamic allocation and linking algorithms.

4.3.6 Comparison with Reliability Central Data Management Subsystem

The Reliability Central Data Management Subsystem has utilized several

concepts and features in its design that appear in the ACSI-MATIC data retrieval and

query system. In almost all cases, the concepts and features utilized have been

generalized in order to increase the power and scope of their application. The

following aspects of ACSI-MATIC have been used and expanded:

(1) The RCDMS file structure is a generalization of the

ACSI-MATIC system. The Term Encoding Table of the

RCDMS is equivalent to the totality of glossaries in the

ACSI-MATIC system. The RCDMS directory will contain

subdirectories, as in the ACSI-MATIC system, to permit

one to focus in on the data rapidly.

(2) The concept of a centralized directory access package

of the ACSI-MATIC system was a very useful feature

which has been adopted in a more complex form for ihe

RCDMS.

4-19

Ii

(3) The hierarchic encoding scheme, Flexicode, was a

successful concept. The Item Class Code is its

counterpart in the RCDMS.

(4) The advanced search strategies being developed for

the RCDMS are outgrowths of the manipulation of

indices performed by ACSI-MATIC.

(5) The concept of a generalized executive control routine

has been carried forward to RCDMS.

Some of the aspects of ACSI-MATIC from which RCDMS departs in order

to meet its own design objectives are given below:

(1) Data in ACSI-MATIC could not be restructured without

extensive reprogramming of the system because no data

description language.was available. RCDMS has such a

language and will permit logical restructuring of the daLa

base.

(2) ACSI-MATIC did not utilize the concept of forming jobs

from a series of generalized, task-oriented programs

although a good measure of program generality was used.

(3) In ACSI-MATIC the Hieralrchy Index List pointed to the

physical address of the (kdta rather than to a logical name

for a record. This nieant that moving a data record from

one disc location to another required an excessive amount

of time to be spent in perlbrming maintenance on the directory.

4-20

.,

In RCDMS, a table has been placed in the directory to

translate logical names of data items into physical names.

This feal-',e separates the main directory from the physical

address of the data, and significantly reduces directory

maintenance.

I

I

I

4-21 1

4.4 NAVAL AVIATION SUPPLY OFFICE SYSTEM (ASO)

4.4.1 Objectives

The ASO (Naval Aviation Supply Office, Philadelphia) System is an inventory

information retrieval pilot system designed by the Moore School of Electrical Engineering

(University of Pennsylvania) under sponsorship of the Systems Research'Division of the

Bureau of Supplies and Accounts and the Information Systems Branch of the Office of

Naval Research.

The ASO System~desigif concept (executive routine, file structure, and

query laguage)6 has been applied experimentally as a pilot model solution to the

Sea Surveillance problem at FOCCLANT. The work on Sea Surveillance was done

by Computer Command and Control Company for the Advanced Planning Division of

the Office of Naval Research. The system description and conclusions presented here

can, therefore, be considered applicable to the Sea Surveillance application.

The ASO is a supply control point responsible for the supply and inventory

of items concerned with naval aviation. It presently maintains eleven major categories

of files but the system discussed here is concerned only with a small part of one of them,

the Master Data File (MDF). The MDF concerns some 460,000 inventory items to which

there are approximately 190,000 changes made each month. Of the 460,000 items in the

MDF only 4, 100 items, less than 1%, are involved in the pilot system discussed here.

Although the system is not a full-capability data management system, it is being

briefly discuased in this survey because of the unique "multi-list" file structure it

employs.

4-22

The objective of the ASO system is to furnish a user on-line query system

for a random-access data file. Although the system is designed for technical, inventory,

and contract management files, it is applicable to other management problems. The data

in the files was to be accessible through many different categories of retrieval keys or

combinations of retrieval keys in a logical AND/OR specification. The ability to enter

the files by means of remote inquiry stations was to be provided.

A file maintenance capability was required that could accommodate

approximately 10,000 changes in the technical data per quarter and 3,500 transaction

cha).ges daily in the file of 4, 100 items. The information retrievqol capability was to

accommodate some 200 data requests per day. Periodic output consisting of 15 reports

sequenced by a variety of keys was to be accommodated.

4.4.2 Implementation and Status

The present system consists of an IBM 1410 computer with two 1301 disk

files, console, printer, tape units, and six IBM 1014 remote inquiry stations. The

system is now operational at the ASO w-th a small portion of their data base, representing

active, quick-response, high cost inventory items, on disk. The system described here

supports a larger, conventional tape-oriente6 inventory control system.

4.4.3 Components

The system consists of a file structure, a query language, an executive

routine, and various "worker" programs.

4.4.4 File Structure

The unique aspect of the ASO System is its file structure. There are two

components to the file structure: a set of hierarchical index files and a data file.

The data file is compcsed of records (sets of information relating to one 2objec, for

example, an airplane part, identified by its federal stock number (FSN)). The format

4-23

of a record describing one object is similar, but not identical to, the format oi all other

records. Each record contains values or descriptors (the smallest units of information

that are of interest to the user). A value is a record for a particular attribute such as the

number of parts in stock. The data file is stored sequentially according to values for one

of the attributes (FSN) so that whenever interrogations and changes accumulate, routine

processing can be facilitated by presorting the collected data according to that attribute.

The file may then be treated as a single list comparable to the storage of information on

magnetic tape.

An important feature of the system is the facility to enter the files by the

specification of many different attributes. The way in which this is accomplished is the

essence of the ASO system. It is accomplished through the use of hierarchical index

files, called trees, and the use of a link field (address) associated with each attribute

(other than the main sequencing attribute and other unique attributes) in every record.

Because the link is the address of the next record with the same descriptor (value for the

attribute), the data file is called the "multi-association" area.

There is one tree for each attribute in the system. The final level of the

tree for each attribute is the list of values that the attribute can take (descriptors) and,

for each value, a pointer (link) to the record address of the Tst record which contains

that descriptor value. A link field associated with that attribute in the record contains the

address of the next record with that descriptor (the link field is omitted for those descriptors

known to be unique, such as FSN), and so on so that all records with that descriptor are

on a linked list. A higher level in the tree serves as an index to the lower level when

the value list is too large for one track. That is, it is a list of the last data value for

each attribute that can be found on a given track with a link to that track.

4-24

S4.4.5 Q~uery _Language

The query language in the ASO is process-oriented rather than user-oriented.

A query is made up of a fixed sequence of nine numeric and mnemonic fields. The fields

are numbered and a "/" is used as a word separator within a field. The format is as

"follows:

/H 1/ (process) // 2/ (key) H 3/ (conditions)/1

4/ (elements) /5/ (priority) // 6/ (security)/1

7/ (requester) /8/ (input identification) // 9/ (output identification) /I

Fields two through nine are optional. The nine fields have the following

significance:

Field (1) Process. A four-character mnemonic for the process

name.

Field (2) Key. A number indicating whether a single value,

list, or range is desired, and the mnemonic of the

key (FSN, FUN, etc.).

Field (3) Conditions. A three-character numeric identifying

the attribute, a single digit for the relation (equal,

less-than, etc.), followed by the field values. A :,st

of conditions which are interpreted as a logical AND

criterion may be specified.

Field (4) Elements, A list of three-digit numbers identifying

the elements to be output.

4-25

Field (5) P . A two-digit priority level.

Field (6) Security. A one-digit level.

Fields (7) through (9) are not implemented at present.

4.4.6 Executive Routine

The executive routine stacks requests and executes them according to

priority. Since the computer is not capable of parallel processing, the executive routine

is not designed to cope with such a facility. Requests may be made from the console or

a remote inquiry station. Answers to a query are made to the unit which is making the

query. There is no real-time interrupt but programs are written so that they transfer to
the executive routine quite frequently (e.g., twice per second). The executive routine

then checks to see if there is a service request at an input device. A low-priority query

program will be interrupted and saved to permit a high priority query to be answered.

4.4.7 Comparison with the Reliability Central Data Management Subsystem

The ASO system is a technically significant subset of a file management

system. However, in its present form the design is not directly applicable to the objec-

tives of RCDMS for the following reasons:

(1) The input capabilities of the ASO system do not provide a

job specification language or a data description language.

The wide variety of jobs and data structures in the Reliability

Central operation require that RCDMS have both types of

languages.

(2) The ASO query language requires strict sequencing

of tagged fields. When preparing a query, recourse

4-26

must be made to a handbook of codings for attributes,

descriptors, relations and the like, as well as for the

format of the query itself. The objective of the Reliability

Central is to give the user a more flexible, less demanding

query language.

(3) The search strategy of the ASO system employs the list

structure method. Similar attributes in the data base are

linked by addresses in the data record. This method results

in many accesses to disc while following the chain of linked

data attributes. RCDMS has, in effect, taken all the link

addresses out of the data records and rp'it them in a list

form in the directory. The RCDMS search strategy is,

first, to manipulate these lists at high speed in core

storage to determine the addresses of all data records

which satisfy all the query criteria. Only the pertinent

data records are then retrieved from disc, eliminating

all needless accesses.

(4) The ASO system data structure is limited to a single

level file with no nested or embedded structures. This

restriction reduces the ease of user communication in

problem areas where the data structure is naturally

complex. The Reliability Central data base will require

the flexibility afforded by the embedded structures in

the RCDMS design.

4-27

The "tree area" of the ASO system directory has a structure which is quite

similar to the RCDMS directory. The system keeps track of data names and groups

by means of a hierarchy of indexes which can be accessed quite efficiently. Thus, it is in

the data structure that searches become inefficient (as discussed in Item (3) above) because

the links are contained in the data records instead of in the directory. Accessing specific

data values involves chaining through links contained in the data itself. Only the first

link of each chain is kept in the ASO system directory.

4-28

}'i 4.5 INFORMATION PROCESSING SYSTEM.(IPS)

4.5.1 Objectives

IPS (Information Processing System) is a data management system designed

by NAVCOSSACT (Naval Command and Control System Activity) and implemented by

IBM for a multi-computer environment at FOCCPAC (Fleet Operations Control Center,

Pacific).

The objective of IPS is to provide a comprehensive file query and maintenance

7 system for a command and control center user/programmer staff. Specifically, the

functions that IPS had to serve are as follows:

(1) Data used by command staff personnel had to be structured

into a data base for use of such functions as operations,

intelligence, logistics, and administration.

(2) Data base maintenance and recall of information had to be

accomplished easily for data structure which may consist

of up to 200 files.

(3) The system had to be used and maintained by staff personnel,

-progra mm rs, and operators.

(4) IPS had to be p)rogrammed coml)letely in JOVIAL.

(5) Its general capabilities had to be compatible with Navy

command system -&tta processing techniques.

4.5.2 Implemontaticn and Status

IPS has ben implenmentCd for a CDC 160,4-A In the FOCCPAC multi-compluter

system officially designated as AN/FYK- I(V). The Ph'ase 11 system, presently opcrationai,

.1-29

is a tape-oriented system. Both the IPS system and the data files are operated from

tape. A disc system is currently being proposed.

The implementation language is JOVIAL. Programs in the IPS language run

in the interpretive mode within the IPS executive.

IPS is a generalization and refinement of the TUFF (Tape Update for

Formatted Files) system, developed by IBM for the Operations Research Division

(ORD) of the David Taylor Model Basin.

IPS provides the following capabilities not possessed by TUFF:

(1) The ability to represent and ordor repeated items within

repeated items (nesting several levels of files within records).

(2) The ability to define two or more sets of repeated items (files)

at the same level within a record.

(3) A query language for querying any data base file.

(4) A problem-oriented language for describing file

maintenance operations.

4.5.3 Components

IPS is divided into three major subsystems, the File Maintenance System

(FMS), the Information Retrieval System (IRS), and the Library Maintenance System

(LMS). FMS is used to generate and maintain the formatted files used by the system;

IRS is used for the selective retrieval of data from these formatted files; and LMS is

used to generate and maintain a file of commonly used tables which are always available

to the system at "run-time." The tables include the so-called "macro-list" for each

data file in the system. The macro-list is a program in a "problem-oriented" file

4-30

tI

maintenance language which updates a particular file in the system. (Each file has a

section of the library tape which has all tables concerned with that file.) The macro-

list is executed interpretively by the IPS executive during the update run.

4.5.4 File Structure

The basic IPS philosophy is that all operational data requirements of the

operations control center can be organized into a set of fundamental structures called

files, where each file exists as a tape reel or series of tape reels (multi-reel file),

and that the structure of each file may be defined in a File Format Table, maintained

as a record on a library tape.

Each file contains four basic types of items:

(1') Fixed length non-repeated items.

(2) Variable length non-repeated items.

(3) Fixed length repeated items.

(4) Variable length repeated items.

Each operational area in the operations control center defines its d. ta

requirements explicitly in this form and develops files for its use.

Each item in a file structure is identified in the File Format Table as to its

type and at what level in the structure it appears. A file structure may contain imbedded

files, called repeated groups, up to 64 levels of nesting. A group of items in a record

(whether repeated or not) which has a name is called a "set."

A record in a hypothetical file on Naval Fleet organization is illustrated in

Figure 4-1. Each record in the file would represent one fleet and would contain the same

logical (although not necessarily the same physical) structure. In Figure 4-1, Fleet A is

4-31

I

FLEET A

FLEET NAME
FLEET COMMANDER SET
FLEET CMDR RANK
FLEET STATUS

TASK FORCE 1

TASK NAME
TASK COMMANDER -SET
NO. OF SHIPS
TASK STATUS

GROUP A

GROUP NAME
GROUP COMMANDER -SET
NO. OF MEN
GROUP STATUS RECORD
GROUP B

GROUP NAME
GROUP COMMANDER -SET
NO. OF MEN
GROUP STATUS

TASK FORCE 2

TASK NAME
TASK COMMANDER -SET
NO. OF SHIPS
TASK STATUS

GROUP C

GROUP NAME
GROUP COMMANDER -SET
NO. OF MEN
GROUP STATUS

GROUP D

GROUP NAME
GROUP COMMANDER SET
NO. OF MEN
GROUP STATUS

Figure 4-1. Outline of One Record of a File

4I-32

J$

a set and consists of the group of items entitled Fleet Name, Fleet Commander,

Fleet Commander Rank, and Fleet Status.

The Information Processing System requires that all sets within a record

be assigned a repeat level number. This level is determined by (1) the number of times

certain sets of items may be repeated within a record and (2) how far up the logical ...

ladder the set is located from the principal set of the record.

In Figure 4-1, the items listed under Fleet may appear only once per record,

and will constitute the principal set of the record. This set will therefore be assigned a

repeat level number of zero. The sets entitled Task Force 1 and Task Force 2 are at

the next repeat level (number one) because as sub-headings of the principal set Fleet,

they are one step up the ladder. Similarly, Groups are another step removed from the

principal set and are given the repeat level number of two.

There may be as many as sixty-four repeat levels per record, numbered

zero through sixty-three. All of these repeat levels, with the exception of zero, may

appear more than once in a record but the zero repeat level must appear only once per

record. If an item occurs more than once within the same record, it is known as a

repeated item. In Figure 4-1, the items listed under the set Task Force are repeated

items because they appear more than once in the record. Similarly, if a set appears

more than once within a record, it is called a repeated set. This means that Task Force

is a repeated set and Group is a repeated set within a repeated set.

4.5.5 File Maintenance System (FMS)

The File Maintenance System is an executive system which, at the time of

an update or generation run, reads the file format table and macro-list for the particular

file involved, and executes the macro-list in the interpretive mode.

4-33

The inputs and outputs of the File Maintenance System vary according to

the user's needs. The major inputs are the old Master Data File, the Transaction

Data File, the Library File, and the Card Input File. The major outputs are a

new Master Data File, two optional Summary Files, and an Error File.

The Master Data File is the primary output of the FMS and the primary

input to the Information Retrieval System. When the old Master Data File is being

updated and corrected, it will also be input to FMS.

The Transaction Data File contains the information that is used as input

for generating a new Master Data Fýile or for updating and correcting an existing

Master Data File. The Card Input File contains the run control card and other

data for the particular run.

The Macro- List is a program which describes to the system how the data

is to be manipulated for the update run. The complete Macro-Instruction Set for FMS

is shown in Table 4-1. Macro-instructions used by FMS are divided into four basic

categories:

(1) Environment establishing instructions, for initialization.

(2) Data handling instructions which manipulate the data.

(3) Control instructions for branching.

(4) Output instructions.

4.5.6 Information Retrieval System (IRS)

The goal of the IRS is to provide for the convenient retrieval of data from the

Master Data Files. Requests are submitted to the system by the user in the MRS language.

4-34

MACRO-INSTRUCTION SET

OPERATION FIELD A CONNECTOR FIELD B

MOVE I, V TO I

COMPARE(1 ' I, V TO I, V

LOOKUP I IN TABLE T

STORE IN I

MOVE I, V INDIRECT TO I

ADD I, V TO I, C-REG

SUBTRACT I, V FROM I, C-REG

MULTIPLY I, C-REG BY I, V

DIVIDE I, C-REG BY I, V

GOTO 0

IF 'X' GOTO(2) 0

STOP

STOP 'AND' WRITE -

LOG' ERROR(3) -

LOG' COMMENT V (NOTE 4) AND (OPTIONAL) I (OPTIONAL)

WRITE' SUMMARY - -

WRITE' SUMMARY 2 - -

CLEAR' SUMMARY' - -

CLEAR' SUMMARY' 2 - -

PRINT' SUMMARY' - -

PRINT' SUMMARY' 2 - -

INITIALIZE S EXIT 0

POSITION S EXIT 0
STEP S RETURN' TO 0

BUILD S -

DELETE S EXIT 0

GENERATE(5) _

CHECK VALID(5) -

TABLE 4-1. MACRO-INSTRUCTION SET

- --

LEGEND

I = Item name (14 characters maximum)

No * (prefix to item name) = Master Item

* (prefix to item name) Transaction Item

•* (prefix to item name) = First Summary Item

(prefix to item name) = Second Summary Item

S = Set name (8 characters maximum)

No * (prefix to set name) = Master Set

* (prefix to set name) = Transaction Set

** (prefix to set name) = First Summary Set

• (prefix to set name) = Second Summary Set

0 = Operation statement tag

T = Table name

V = Value; values are enclosed in (); 120 characters maximum

NOTES

(1) Both fields cannot be values

(2) 'X' settings

Equal Greater

Nequal Valid

Less Nvalid

(3) Prestored system comment written on error tap,

(4) Comment written on error tape

(5) Requires a function call in variable field

TABLE 4-1. MACRO-INSTRUCTION SET (Contd)

4-5-5
I.".

The systenm analyzes the request, finds the information, and prints it in a predefined,

user-specified format. Successful use of the system depends upon: (1) a thorough

understanding of both the data structure and the content of the files used, and (2) an

understanding of the proper use of the query language.

A query consists of a group of statements containing three parts:

(1) the identification,

(2) the logical search condition, and

(3) the output format.

The logical search condition handles the full Boolean range of AND, OR, and NOT

conditions on the items of a master file. The possible operands are item names, functions,

and values. A function consists of a function name and a group of items and/or values

which serve as inputs to a subroutine. It is used to compute a value not contained explicitly

in the data. Each term in the logical search condition consists of a left operand, a

relational operator, and a right operand. Relational operators include the usual algebraic

relationships, and also directional operators, North, Sot , etc.

Every query must contain a request for a specific form of output. The type

chosen by the user depends on whether or not he desires a report which is a straight

listing of retrieved data or a summary of retrieved data. Four standard outputs are

available from the IRS: list, column, sum, and count type edits. A sort option is

available in a list-type output.

4.5.7 Library Maintenance System (LMS)

The function of the Library Maintenance s. stem (LMS) is to provide the

means for the generation and maintenance of the IPS Library File. LMS performs this . I

function by accepting tables in the for ' r card decks, processing each card deck to produce

4-36 .I
4-

a particular type of table, and placing each table in the IPS Library File in such a manner

that the table may be retrieved when needed.

The IPS Library File is made up of many segments of data on magnetic tape.

Each segment is uniquely associated with one particular Master Data File and consists of

a series of queries, tables and macro-lists which IPS will use in processing that particular

Master Data File.

Each segment is divided into blocks of data which contain one query, table,

or macro-list that can be used in generating and maintaining the same Master Data File.

The blocks of data within the segment are always placed on tape in the same sequential

order with the first block containing the information necessary for locating all other

blocks of the segment.

The blocks of data within each segment are in the following order:

(1) Segment Index Block - This block contains the information

necessary for locating any table in the segment.

(2) Library Queries - These prestored card images of

information retrieval queries are the only tables on the

Library File used b- IRS.

(3) Summary Format Tables

(4) Transaction Format Tables Used by FMS

(5) Macro- Lists

(6) Code Conversion Tables

4-37

4.5.8 Comparison with Reliability Central Data Management Subsystem

IPS provides an extremely flexible system for performing serial maintenance

and retrieval functions on a large number of tape files, but it does not provide for the

efficient communication of data between files, or even within one file. Therein lies one

of the basic differences between IPS and RCDMS. RCDMS treats the entire data base as

asngle entity, using an integrated directory to describe all data. RCDMS makes a

minor differentiation between files at the)'gical name level rather than a major differentia-

tion at the physical address level.

Other differences are noted below:

(1) IPS is unable to pose queries that involve more than

one file, or to pose queries without knowing the particular

file involved. This constraint arises from the fact that

the term dictionary for each file is located in a separate

segment of the Library File, with no single master list of

all system data terms. This forces a deep-nested data

structure in certain files. RCDMS, on the other hand, uses

a common data base approach which keeps all system terms

and format tables in a combined directory structure, thereby

allowing queries to involve any element in the data base.

(2) Because it is a tape-oriented system, IPS consumes con-

J.derabie operating time scanning tape. It needs no

indexing scheme because it must look at each record

during its serial search. In contrast, RCDMS uses an

e extensive data indexing capability to maximize its random

access potential for retrieving data rapidly.

4-38

• ______ •L Li

(3) RCDMS provides job definition and job management aspects

which are not included in IPS.

(4) Since programs in the IPS language run in the interpretive

mode, they require more running time than if they had been

compiled before hand. RCDMS updating functions wili generally

be performed with compiled routines.

Several features of the RCDMS have been drawn from IPS experience. In the

following areas, RCDMS is indebted to IPS for conceptual development, design techniques,

and approaches to implementation:

(1) IPS provides for a flexible logical data structure and

physical storage format. The ability to nest repeated

groups and to have any number of repeated groups in a

record satisfies most of the basic user needs for individual

data objects. RCDMS provides for the same flexible structure,

as well as for cross linking of files and records through a

directory-contained link system.

(2) IPS uses a term dictionary and format tables to control its

igeneralized system programs for flexible query and update

operations. RCDMS uses much the same concept.

I

S~4-:19

4.6 IIQ, USAF COMMAND & CONTROL SYSTEM (473L)

4.6.1 Objectives

The Headquarters, USAF Command and Control System (473L) is a file

maintenance and retrieval system whose basic function is to assist the USAF staff in

planning and monitoring military operations. It was designed and implemented by IBM

for USAF ESD.

Like other command and control systems of this aature, the HQ, USAF system

has mainly been oriented toward the command staff user rather than toward the ADP

specialist. The system must permit the command staff user requiring data to interact

with the computer and its data files without the assistance of a systems specialist.

There are three classes of users, each placing a somewhat different requirement

on the user language: (1) the Air Staff Officer, who requires a simple, straightforward

language, (2) data control personnel who, through daily use, can be expected to master the

language, and (3) the system programmer to whom the degree of difficulty is secondary to

the power of the language. A language was therefore required, the complexity of which

would be a function of the requested action. For example, the Air\Staff Officer should need

to know only a subset of the total Query Language, since he desires a fairly straightforward

retrieval.

Due to the highly dynamic, unstable nature of the data base, the following two

requirements had to be satisfied: (1) programming tools had to be available to the system

programmer which would permit him to access data without tying his program to the data

files as they existed at the time the program was written, and (2) there had to be a means

of retrieving and processing data from the time it was loaded into the system data base,

without waiting for a new program to be designed, coded, and debugged.

4-40

f

4.6.2 Implementation and Status

The Operational Training Capability (OTC) phase of 473L was implemented

!• for an IBM 1401 system. The entire OTC system was upgraded to an IBM 1410 in

June,1964. A second phase, called the Initial Operational Capability (IOC)L involving

a Librascope L-3055, has recently been installed. A third phase, complete Operational

Capability (COC), is scheduled for mid-1965.

4.6,3 Components

The L3055 computer has input-output devices that operate in parallel with

the central processor, and an interrupt feature that allows inputs via communication

consoles and data links. The equipment includes a disc which features a search-by-

content accessing scheme, and fixed read-write heads which have an average access

time of 35 milliseconds. Its capacity is approximately 40 million characters.

The communication console has a typewriter input keyboard, a set of 30 control

keys that may be identified with one of 64 unique overlays, typewriter, and other displays.

In the 473L programming system, the ability to perform a distinct data processing

task is called a capability, and the set of computer programs which makes a capability

possible is called a capability program. * All portions of a capability program are

stored on disc and are called upon by actions taken at a communication console.

*This is called a user task and a user task program in RCDMS, and is called a specific

model and model specific program in ADAM.

4-41

II
The execution of capability programs is under control of a set of programs

called the System Monitor. The System Monitor consists of an Executive Control Program,

a Console Processor Program, and a Loader Program. The System Monitor receives

all inputs to the system, determines whether a particular capability program is required,

calls capability programs and monitors their operation, and receives an indication that

a capability program has completed its task. Monitoring the operation of a capability

program means: (1) executing the interpretable steps of a program when it is communi-

cating with the console operator, (2) recognizing when the program requires working

storage allocation or other service, (3) calling service or working programs and giving

them control, and (4) accepting processing requests for I/O.

4.6.4 File Structure

The files in the OTC system were set up in parallel and the language was designed

to operate solely on parallel files. In a parallel file the values for an individual property

of all objects (records) are stored together, as opposed to a serial file in which the values

for all properties of an object (record) are stored together. Thus, in a parallel file,

each property is associated with a set of entries, one for each object the file describes.

The nth entry of each property value list would be an item of the nth record of the corres-

ponding serial file. Parallel files are inherently limited to a single level structure.

Although parallel files made short data retrievals extremely rapid, they created a

very time-consuming file maintenance procedure. In the IOC system files are serial-

parallel: serial in the sense that all properties, or attributes pertaining to one entry,

are stored together in the file; and parallel in the sense that an entry may have a primary

section and a secondary section. These sections are stored separatelywith each carrying

an address connective to be used by the Query Language in maintaining the relationship

between sections.

4-42

4 -~ I

Within an entry, values may be carried in four ways:

(1) As a single value where only one value is possible

for an attribute in an entry. This requires a fixed

space for each entry.

(2) As multi-values in which each entry carries

a fixed number of values in an entry. This also

requires a fixed space in the entry.

(3) As multi-values in which each entry carries a

variable number of values in an entry. This

requires only the space necessary for the actual

number of values possessed by that particular entry.

(4) As remarks or free text on an entry basis.

4.6.5 Qur In

The Query Language itself consists of a vocabulary and a grammar. The

vocabulary consists of two parts, a fixed part and a dynamic part. The fixed part consists

of unique words which describe and control the retrieval process. The dynamic part of

the vocabulary contains words that describe the data to be retrieved, that is, the file

indicators, attribute names, etc., of the data base. This portion of the vocabulary

is automatically changed by the File Maintenance program any time a file in the system

is added or modified.

The grammar of the Query ILanguage is implemented by a syntax and a punctuation

set. The syntax refers to the arrangement of words into statements which are meaningful

4-43

- - , S

to the system. The syntactical relationships are specified by the punctuation and the

unique words. A simple, uniform, English-like syntax is utilized to make the language

easy to learn and retain. The punctuation set is also simple and uniform. Only as many

marks as are required to clearly separate the elements are used.

There are seven basic statement elements of the 473L Query Language. In

order of presentation and common usage the seven elements are the Program Indicator,

File Indicator, Qualifier Conjunction, Qualifier, Selector Conjunction, Output Director,

and the Output Selector. In certain Query Language statements some of these elements

are omitted and, in very complex query statements, the elements may be difficult to

recognize. Careful analysis, however, will reduce any Query Language statement to

these elements.

(1) Program Indicator - This is the first word of a Query

Language statement. It directs the system control prp-

gram to use the Query Language program. It also provides

a logical English language beginning for the statement. The

word RETRIEVE Is a program indicator, for example.

(2) File Indicator - This identifies the file from which data

is to be retrieved and always follows the program indicator,

for example, a file name like FORCE STATUS.

(3) Qualifier Conjunction - The word WITH follows the file

indicator. It serves as a conjunction between the file

indicator and the qualifier. It makes the statemenf'more

readable and precludes the need for punctuation to identify

he beginning of the qualifier.

4-44

I,..

S2 !4

(4) Qualifier -This is the element of the statement which !

describes the specific nature of the data to be retrieved.

A qualifier consists of a set of one or more modifiers, each

of which is normally composed of an attribute, a comparator,

and a value. An attribute is a characteristic of the file; a

value is one of the states an attribute may assume; a

comparator defines the logical or mathematical relationship

between the attribute and the value. RUNWAY LENGTH is

an attribute of the sample FORCE STATUS file and 5,000

feet could be a value for RUNWAY LENGTH. The expression

"RUNWAY LENGTH > 5,000" is therefore a valid modifier.

Another modifier could be "COMMAND = TAC." Placing

these two together as "COMMAND = TAC, RUNWAY

LENGTH > 5,000" forms a modifier set that describes

certain entries in the file more specifically. The modifiers

in a set are separated by commas and are logically additive;

that is, an entry must meet the requirements of all the

modifiers in a set to qualify. A simple qualifier contains

only one modifier set. A compound qualifier may be con-

structed by combining several alternative modifier sets.

This could be: "COMMAND = SAC, ACFT POS > 10;

COMMAND TAC, RUNWAY LENGTH > 5,000." The

semicolon (;) defines the end of one modifier set and the

beginning of the next. It also specifies a logical OR

relationship between the sets. Data may qualify by meeting

either of the modifier set's criteria.

4-45

I

(5) Output Director Conjunction - The word THEN always

follows the qualifier. It serves to make the statement more

meaningful from an .English language view and acts as the

separator between the qualifier and the output director.

(6) Output Director - This is normally a single word that

specifies the output device desired and the format in which

the retrieved data is to be presented.

(7) Output Selector - The last part of a Query Language

statement is the output selector. It contains the names

of the attributes that are to be presented in the output and

specifies the detail arrangement of the output within the

general format specified by the output director.

An operator who desires to reuse a Query Statement may,

at this point in the Query Statement direct that it be added

to a SAVE table without processing, by adding the word

SAVE at the end of the statement. He may also append

remarks to the statement at this time.

A Query Statement is terminated by an End of Message

symbol which is available on the 473L equipment.

(8) Output Optionx - There are two optional features available

which the operator may use in conjunction with the OUTPUT

DIRECTOR and the OUTPUT SELECTOR to order his data

an.i to title his report. The sequence of attributes in the

4-46

Abe.

output is controlled by the order in which they are listed

in the statement, and the values are normally listed in the

sequence in which they are retrieved from the file. To

develop a more useful output, the operator may specify

that the data is to be sorted. The expression for SORT

is either INCR, increasing (i.e., A to Z alphabetically

or in increasing numerical order) or DECR, decreasing,

which is the converse. Sorting instructions can only appear

in the output selector portion of the statement and are

expressed in the following form.

- ATTRIBUTE =ICR
•" =DECR

Sorting may be performed on a number of different

attributes in one statement. The attribute listed first

will be the primary sort, the attribute listed second is

the secondary sort, etc.

The other option in the output is the ability to give any QL

retrieval a title by enclosing the desired title between

asterisks. The title must be entered following the OUTPUT

SELECTOR but preceding the terminal punctuation.

(9) Functions - In addition to the basic elements and options

previously discussed, there are a number of special functions

in the Query Language that may be expressed in the qualifier

and/or selector portions of a statement. These functions

provide the ability to qualify on or to generate and select

4-47

data based on data criteria not explicitly stored in the

file. The functions are: Great Circle Distance (GCD)

that computes the distance between two geographic points;

SUM which accumulates the sum of several values of one

existing attribute; and the MIN/MAX function which selects

the minimum or maximum value among several attributes

on an entry basis.

(10) Complex Queries - An additional feature of the Query

Language, the complex query, provides the user with

a powerful tool. A complex query provides the ability

to develop a statement that is composed of several sub-

ordinate queries. Each subordinate query is separated

by a colon (:) and can address the same or a different

system file. The complex query retains data retrieved

by prior subordinate queries as values of modifiers.

Essentially it provides the ability to use data from other

files to qualify and select data from one file.

Assume it is desired to retrieve all SAC units from the

sampie file that possess at least as mainy aircraft as the

413ATW at DENVA. This could be performed by using

two separate statements by first retrieving the number of

aircraft possessed for the 413ATW, then using the retrieved

value in the modifier of another statement to qualify those

units meeting that requirement. However, one complex

query can perform the same task.

4-48

RETRIEVE FORCE STATUS WITH COMMAND

SAC, UNIT = 413ATW THEN RETAIN ACFT P08:
RETRIEVE FORCE STATUS WITH COMMANDSAC, ACFT POS> [R1l, ACFT POS, OR] THEN

4LIST UNIT, ACFT POS

The above complex query would retrieve the value for ACFT

POS for the 413ATW in the first subordinate query and auto-

matically insert i+ os a value to the ACfCT POS modifier of the

second subordina,_ -- cry. The second subordinate query

would retrieve all units meeting the desired requirements.

7 The colon (:) is used to separate the subordinate queries, and

the information enclosed within brackets directs the QL -in

locating the data to be used. The Ri denotes the working file,

the attribute ACFT POS denotes the attribute values to be used,

and the OR denotes the relationship of those values when using

them in the statement.

All previous discussions have related to the IOC Query Language.

Additional features being planned for in the COC Query Language

include a means of expressing mathematical computations that

can be used in either the qualifier or selector portions of a

statement. This will be performed by a planned COMPUTE

function. The capability to extract information from several

files to generate a new file that can then be queried will be

performed by a planned COMBINE function.

4.6.6 Capability and Use

The man-machine interface in 473L is satisfied by several communication

consoles from which operators may enter queries and view replies. A data link permits

4-49

remote stations to send messages, status reports, and inventories directly to the

computer. The information received over the on-line data link is used to update

the data files which are stored on disc. Ma.iy users have simultaneous access to the

system files through the use of communication consoles. Access can either be in the

form of a typed query statement or an option selected with the aid of a control panel

overlay that defines a specific capability area. A combination of these two procedures

can be used; for example, an overlay may be used to help an operator construct a query.

Thus the control panel and the query langutage are complementary, and in the operation

of the console they can be used alternately without interference.

4.6.7 Comparison with Reliability Central Data Management Subsystem

The HQ, USAF system has successfully solved the problem of providing a

command staff with an optimal man-machine interface for on-line, non-planned queries.

In achieving this, some generality has been sacrificed, as described below.

(1) The 473L system does appear to contain a mechanism

for quickly defining and incorporating into the data base

a highly structured data set. For example, there appears

to be no capability in the serial-parallel file organization

foy. representing an arbitrary number of embedded files in

an entry. (This is the capability called "repeated groups"

or "nested rCpeated groups" in NAVCOSSACT IPS). RCDMS

uses its data description language, its Item Definition Job

Request, and its Data Entry Job Request to permiA the user

to specify and incorporate data structures with any degree

of file nesting.

4-50

(2) The literature does not speak of a capability to cross

reference items within the 473L data base. This limits

the system's ability to give complete answers to queries

which refer to data in several different file sections of the

data base. The RCDMS directories are designed to contain

tables of link addresses from records in one file to records

in other files. The cross reference can be established

rapidly, because the links are in the directory, and the

records of the file originating the link need not be accessed.

(3) The 473L system does not have a data indexing scheme.

Consequently, query searches involve looking at the data

rat1e? than manipulating directories. The parallel organi-

zation of the files helps to reduce the amount of data handling

in the searches, but the number of accesses to data is more

than if the data were indexed. RCDMS provides for full

indexing of the data to whatever depth the user desires.

The search strategy of RCDMS is to make no access to

peripheral data storage until the name of a specific data

item has bien isolated which satisfies the query criteria.

The strategy is designed to eliminate all unnecessary data

accesses.

(4) The ability to store and automatically trigger a complex

sequence of data processing tasks as a production capability

has not been designed into the 473L system. One of the

features which makes RCDMS a general-purpose system

4-51

... -. -- - _• , •

is its ability to receive and store a variety of Job

Descriptions which can be run at any time in the future

without reprogramming. Further, the user can intro- t
duce new parameters into the programs specified by the

Job Description when the time comes to run the job.

(5) The 473L *stem does not seem able to enter new data

descriptions in a user-oriented language, whereas RCDMS

incorporates a flexible data description language which can

be used in conjunction with an Item Definition Job Request

to make changes in the logical structure of the data base.

The two systems have several objectives and design features in common,

namely:

(1) Both systems are designed to ultimately serve a user

population which has little or no knowledge of system

operations, and yet which wishes to use the system

directly, without a specialist acting as an intermediary.

(2) Both system designs strive to handle a dynamic data base

by means of generalized programs wnich do not depend on

any particular data structure.

(3) Both system designs permit a query to be applied through

the whole range of the data base, thereby broadening the

scope of the queries, and increasing the usefulness of the

data base.

4-52

(4) The 473L system has a unique display capability which

permits a broad variety of output formats for the user.

When the RCDMS development reaches the stage where

the display capability is being designed, the RCDMS

designers will look carefully at the 473L design.

4-53

4.7 COMPILE ON-LINE AND GO SYSTEM (COLINGO)

4.7.1 Objectives

COLINGO (Compile On-LINe and q) is a general-purpose storage and

retrieval system developed for the USSTRICOM Interim Command and Control System

by the MITRE Corporation, Bedford, Massachusetts.

COLINGO was designed to provide a computer-based system for data file

generation, maintenance, and retrieval in accordance with uniform but flexible procedures.

It was to be a system that could grow and be easily modified based on the users'

changing operational requirements, and the designers' technical experience.

These objectives and associated constraints dictated the following general

design goals for COLINGO - COLINGO was to be:

(1) A system that would accept most types of data from

most sources, with minimal reformatting.

(2) A system that would perform almost any logical or

mathematical manipulation of the data.

(3) A system that would allow rapid updating without

imposing difficult constraints on the update format.

(4) A system that would permit on-line programming to

meet many day-to-day problems, and off-line programming

for more complex problems.

4-54

(5) A system with simple program maintenance and extension

capabilities to permit the using command to participate and

guide the evolutionary design of the system.

(6) A system with a good man/machine interface and control

language, which would be data-compatible with most

associated organizations.

4.7.2 Implementation and Status

COLINGO consists of modular computer programs for an IBM 1401 computer.

Control of the data, computer programs, and equipment is achieved through on-line

interpretive execution of statements in the COLINGO Control Language entered by

cards or from a single console typewriter. Programs are constructed as closed

subroutines which may be written in Autocoder, SPS, or COBOL. Most system files

are on tape, while programs and high priority data are on disc.

A COLINGO "C" Version, handling query aspects, was completed and checked

out in early 1964. COLINGO "D" which implements additional control features, report

generators, and sort routines was scheduled for completion in mid-1964. A COLINGO

10 is proposed for the IBM 1410.

4.7.3 Components

The system languages consist of a user language, the COLINGO Control

Language (CCL), and a programming language approaching the capability of COBOL.

All user communication with the computer is accomplished with a CCL message. The

control language, although it contains a basic query language subset, is more than a

4-55

query language in the usual sense since CCL messages initiate all system actions including

job execution and control over data, programs, equipment, and output. A typical message

is shown below:

GET A-FILE IF STRENGTH/AUTH GR 500

EXECUTE 01 02 03 IF/NOT PRINT ALL.

(Underlined words are action verbs - all words following an action verb up to the next

action verb are parameters of the next action verb. The parameters following the

EXECUTE action verb are the labeled locations of other messages. Underlining of action

verbs is for clarity only; they are not actually underlined in the message entry).

COLINGO consists of an Executive Program, a CCL interpreter, and a system

of subroutines. It includes no inherent data base or operational capabilities. Its pro-

gramming language and compiler are applicable to almost any data management task, but

are entirely dependent upon the data base specification and programs written for the

particular problem to be solved.

System macros provide a capability for the following action types (each

represented by several macros), used at the CCL level.

Input/output

Data manipulation

Computation

File generation

Update and maintenance

Sequence control

4-56

A data description language is provided (the COBOL "PICTURE") within the

programming language. Dictionaries are generated by the system to be used by the

data management routines.

4.7.4 Data Structure

The format of a record can extend to two levels; that is, an item may have

one subitem or one parent item (but not both). The formats of the logical records in a

given file are not all necessarily the same, since an item may be a subfile. The program

structure provides for up to one subfile by providing one "master" physical record plus

up to fourteen "trailer" physical records for each logical record; the trailer records

provide for values in excess of one.

Each record has one attribute, called the "main object property" whose value

is the name of the object represented by the record.

There are apparently no cross references.

4.7.5 Query Language

A query consists of three major phrases.

The first one consists of the single word GET, called the Major Directive,

followed by the File Index, which is the name of the file being queried.

The second phrase begins with the Conditional Directive, IF. IF is followed

by a sequence of one or more property/value conditions. The conditions are conjoined

by the (Boolean) Logical Connectives AND and OR. Each condition consists of three

parts in sequence: an elementary property (or Attribute), an Attribute-Value Operator,

and a value.

1-57

The third major phrase begins with one of the three Sub-Directives,

PRINT, DISPLAY, and COUNT. The remainder of the major phrase is the Sub-

Directive Modifier. The Sub-Directive Modifier is either (1) the word ALL, (2) the

word IT, (3) a string of Attributes, or (4) the word NOT followed by a string of attributes.

A representative query and its structure are given below:

GET AFLD IF COUNTRY = US AND RNWY-LNGTH > 7000 PRINT

AFLD- NAME RNWY- LENGTH

4.7.6 Retrieval Logic

An English paraphrase of this query is "Print the names and the lengthis of the

runways of all airfields in the United States which have at least one runway longer than

7000 feet."

The Major Directi, ,, GET, identifies the query. The File Index selects a

particular file for the query. IF always marks the beginning of the second major phrasc.

,he property/value conditions define conditions which records in the selected file must

meet in crd3r for their data to !,e relevant. In the example, the value of the elementary

property COUNTRY must be US and the value of the elementary property RNWY-LNGTH

must be greater than 70=0. Subdirectives define the computation to be performed and

the output medium. PRINT specifies a high speed device, DISPLAY a low speed device,

and COUNT directs a count of the qualifying property v,,.,es in the Sub-Directive Modifier.

The Sub-Directive Modifier specifies the data to be extracted. In the example, these t',ta

are the values of two elementary properties. The Sub-Directive Modifier may be the single

word Ir, in which case the values to be extracted are precisely those whose properties

are mentioned in the second major phrase. It may also be the word ALL, which speWifies

that all the data in each qualifying recoed is to be extracted.

4 .

The search component of the retrieval logic begins by reserving a "condition

indicator" for each condition in the second major phrase. If the property named in a

condition is a top level one and the condition is met at least once in the record (i.e.,

in the master record or in at least one of the trailer records) the corresponding indicator

is set. If the property named in a condition is a second-level property, the corresponding

indicator will be set if and only if the condition is satisfied at least once and any other

conditions with properties subordinate to the same top-level property are also met.

When all conditions have been examined, their indicators are "AND-ed"

and "OR-ed" together to determine whether or not the current record qualifies.

For a description of the extraction component, assume that only PRINT or

$! DISPLAY is used as Sub-Directive and that IT and ALL are not used.

If a top level property is mentioned in the third major phrase and not in the

second, all its values (for the master and all trailer records) are extracted (printed or

displayed).

If a property is mentioned in both, only the qualifying values will be extracted.

If the property is top level, all of its subsumed values will be extracted. A second-level

property can be printed only if its accompanying properties qualify, and only qualifying

values will be printed.

4.7.7 Capabllity

Mathematical and logical operations using Lhe system's data base are provided

by both stored program and on-line programming techniques through the use of a query-

control language. Control of the data, computer programs and equipment is achieved

4-59

OWNW.

through on-line interpretive execution of the COLINGO Control Language (CCL) instructions

entered by cards or from an inquiry console typewriter. The design includes a Basic

Program Set which provides programs for rapid and convenient data file update, data file

addition, and stored program addition. This design allows sequential expansion of the

Basic Program Set and the addition of special purpose and convenience features. On-line

file generation and on-line programming in COLINGO are an integral part of the system }
design. Special data maintenance and verification routines as well as automated system

dictionary and vocabulary preparations are also included in the system. These features

will permit evolutionary growth of the system and provide the capability to produce special

purpose operational programs with a minimum of programming time.

In order for a user to quickly obtain results from a generated data file, a

combined query and programming language was provided to manipulate the data base both

logically and mathematically. Additionally, a general-purpose output program was provided

to present results to the user in formats of his choosing.

A simple allocation scheme for introducing special-purpose programs into the

COLINGO System was provided. This scheme allowed a high degree of communication

between the COLINGO Basic Program (BPS) and the special -purpose programs.

The COLINGO Control Language was structured in a way that provided a convenient

query language to complement a more powerful language useful in many programming

applications. The combined language was designed to divorce the user as far as possible

from the computer equipment configuration and to remove the usual oore-size limitations

on the operational problem being programmed. This removal was accomplished by the

process of chaining operational statements together and allocating them to disk, and having

the chain sequentially called in by a small in-core Executive routine.

4-60

An essential characteristic of COLINGO is its ability ti- inap many physical data

formats into its own format in a short time and then to query the resultant formatted data

with facility. As a consequence, COLINGO is a highly flexible information retrieval system

The COLINGO design achieved a large degree of data and program independence

by not referring to data fields directly, but instead through a data describing dictionary.

This dictionary was created according to COBOL procedures, but achieved the important

advantage of being modifiable on-line by the operator.

Simple data generation and verification programs were included in COLINGO

to generate a large variety of card and tape data files from external sources, and in addition,

the CCL itself was given the power to manipulate and change its own data base as to content

and format. Thus, not only could the COLINGO System accept a wide variety of formats,

it could also process and output that same data in a variety of different formats.

4.7.8 Comparison with Reliability Central Data Management Subsystem

COLINGO represents a significant advance in the state of the art of dealing

with large amounts of data on a small computer. The COLINGO design has a number of

features which are similar to the objectives of RCDMS, but the designs differ widely in

the relationship between the system and the data base. Some of these differences are

discussed below:

(1) Because most of its data is on magi.etic tape, COLINGO

is more file-orientec' than data-oriented. If a query cannot

be satisfied by the limited QUIC files on disc, the system

V must turn to magnetic tape for its answer. COLINGO can

search several magnetic tape files in behalf of one query,

but these files must be searched serially without a logical

4-61

moo-

connection between them because there are no cross

references between files (or within files) of the system.

RCDMS is not restricted in its access to files because it

deals with the data base as a single entity. RCDMS has

a consolidated directory as well as random access storage

for all summary data that is normally used to answer queries.

This feature permits the system to update or interrogate files

in parallel, and to link files according to logical criteria.

(2) The search strategy of COLINGO is to scan in a linear

fashion the serially organized magnetic tape files or

data portions drawn from the QUIC files. This means

that all records to be searched must be brought into

core memory, and each record must be compared with

the criteria of the query. RCDMS contains data indexing

in its directories so that it can use a search strategy which

manipulates the directory rather than scanning the data.

Once the pertinent portion of the directory has been

brought ifo core memory, the RCDMS search package

can determine under certain circumstances, the exact

addresses of all the data elements which satisfy the query.

In other instances, a small subset of the file is retrieved

and those retrieved records must be compared with the

criteria of the query, as in COLINGO. By accessing only

the pertinent data elements, needless accesses are eliminated.

4-62

(3) The COLINGO search logic does not permit the use of the

4i NOT operator. In addition, functional operators require

two passes through the file, since a serial search strategy

does not provide the required communication between files

or between records in a file. This will not be necessary

with the RCDMS design.

(4) COLINGO is able to nest up to fourteen data items within

another data item, but these must be at a single level of

nesting. The data anticipated for the Reliability Central

will require a more complex data structure. RCDMS has

made provision for an arbitrary number of reliability test

records to be associated together at any level in the data

hierarchy.

The features in the COLINGO design whicb are comparable to

the Reliability Central objectives and RCDMS design are as follows:

(1) COLIUNGO is one of the few systems surveyed that utilizes

Li a flexible and wide-reaching data description language. It

uses a language similar to the COBOL "picture." A similar

degree of user and system flexibility is obtained with the data

description language designed for RCDMB, which permits

almost any data structure to be specified, and which will

offer convenient data formats for the user who is not computer-

oriented.

4-63

(2) COLINGO offers a comprehensive capability for file

generation and maintenance.

(3) The COLINGO Control Language is able to specify a wide

variety of jobs and queries. The RCDMS Job Specification

Language has a similar capability for specifying jobs. The

RCDMS query language has not been designed, but the system

search package is designed to accommodate a query language

which:

(a) uses the Boolean operators of AND OR and NOT,

(b) uses such relational operators as =, >, <, and ranges,

(c) permits arbitrary nested conditions,

(d) searches at any level of the data structure.

4-64

S• !

4.8 LANGUAGE USED TO COMMUNICATE INFORMATION SYSTEM DESIGN (LUCID)

i

4.8.1 Objectives

LUCID (Language Used to Communicate Information System Design) is a

general-purpose programming system under development by the System Developmnt

Corporation for ARPA. Its primary objective is to provide a tool for the design of data

management systems. The LUCID view is that any computer-based command and control

system is essentially a data management system and that the problems of the data base

are central to the problems of design. LUCID attempts to provide the system designer

with a tool that will help solve the problem of system data content and structure earlier

in the design process. It does this by providing both a language in which design of data

management systems can be expressed, and a programming system to convert this

expression of design automatically into something that can be run on a computer.

4.8.2 Implementation

The feasibility model of LUCID is written in J-2 Jovial for the AN/FSQ-32

with tapes and drum. It does not operate under the Q-32 monitor system because of the

space limitations imposed. Assembly language was used for the 1/O subsystem but is

believed to Le on the order of 5 percent of the total system.

Extensive use was made of previous work in developing components of the

LUCID prototype which is currently running. The prototype which was not written with

t any expectation of moving it to another machine depends heavily on the drums in the Q-32

system used for the directory and related tables. In addition, the program size (including

communication tables and data) is limited at present to 16K. If the system were implemented

on another (smaller) machine, it would require re-organization.

4-65

A separate (non-integrated) Utility system was designed and built for the

programs and libraries which make up the prototype LUCID system. An initial version

consisting of the file description language interpreter, a data load function and a query

capability has been implemented to demonstrate the feasibility of the concept. The full

LUCID design is being reviewed for implementation under a planned SDC time-sharing

system.

The Query System implemented in the feasibility model operates on a single

file (termed data base), and is activated from a console typewriter. Two subcommands

have been defined: PRINT (enumerate on the typewriter), and LIST (creating a tape

file for off-line listing). Only numeric information is obtained, and can be specified

by any arbitrary Boolean and relational expression. In a conversation with the system

designer, it was determined that this facility would be expanded to include alphanumerics

in the planned full imnplementation.

4.8.3 Components and Data Structure

At present, the LUCID System consists of the three following major functional

components, and their associated system programs:

(1) A language for describing a data file,

(2) A language to describe inputs into the data file.

(3) A query language to query the data base and retrieve

data from it.

The language processing and system programs are developed from and utilize

the DODDAC Data Base Load (DBL) programs, and the GENDARME System of Data

Processing procedures (tape oriented).

4-66

4.8.3.1 Data Base Description. In its current version, LUCID accepts a definition of

& Ia data base. * The maximum number of terms currently contemplated for a processable

data base is approximately 100. The data base description can cope with the following

types of items:

(1) Name, meaning an item containing an alphanumeric

string.

(2) Descriptors for data whose values are in integer form.

(3) Descriptors for items whose values are in floating point

form.

(4) Descriptors for categories of items where a name for a

class of items is followed by the word CATEGORIES and

descriptors of items composing that class e.g.,

TITLE CATEGORIES MANAGER, CLERK.

(5) Descriptors for strings of items; categories may be

imbedded in the string e.g.,

STRING SET CONTAINING

SCHOOL NAME

YEAR MAX. 2000

DEGREE CATEGORIES PHD. MA. BA.

(6) Descriptors of items whose values are to be included in the

data base if the given stated logical condition is satisfied.

S"lDato base" is the LUCID term for file.

4-67

The data base is read in and Data Base Table directories are created to be

used subsequently when data input to the data base is submitted. Essentially, the data

base description can be viewed as description of a file entry, where each data entry in

the file will be described by the terms found in the data base description.

4. 8.3. 2 Input. Input of data into the data base is carried out in two steps:

First, a description of the data to be input and of the format

in which it is keypunched is read in and processed. The input

command may specify the data description in the following way:

FORM MEANS SYMBOLIC INPUT

Option 1 CARD SET IDENTITY n

Option 2 (DATA SET TERMINATOR END

SPACKED or

Possible SEQUENCED or
Data Forms

, NUMBERED

followed by: Names of Data to be entered, numbered where

sequenced input is not specified (i.e., sequenced in the sequence

of the original data base description).

The LUCID translator programs operate on this input, producing the

following results: I

(I) Master List Directory to OPAQUE Tables.

(2) Table describing the Data Base.

(3) Table of Symbolic Inputs.

4-68

I

The data itself can then be read under a command, such as

MAKE (PERSONNEL DIRECTORY) FROM (FORM)

The term MAKE refers to a load file which contains the program to load data.

The system will read the data of one entry at a time, constructing a concor-

dance dictionary for all terms described in the input and for all data values input. The

directory is organized as follows:

(1) COIL Table, containing an entry for each term

of the data base for which input has been defined.

Each entry in the COIL Table points to entries in:

(2) JUST Table. JUST Table contains for each entry

in COIL Table a list of Values which exist in the

data for that term. Each entry in the JUST Table

points to:

(3) ALTO Table. ALTO Table contains a list of addresses

for each value in the JUST Table, pointing to data entries

in which the value occurs.

Thus, a complete concordance (cross-reference) of all data values, terms,

and entries is developed, which lends itself to a rapid search for query purposes. How-

ever, a directory several times the size of the data results.
:4

It is planned to make the concordance optional, so that complete cross-

* .referencing need not result where it is known not to be required.

4-69

II

At present the L.t'CID concepts and directory structure cannot recursively imbed

structures in the data base. Currently processes for an ORGANIZE COMMAND are being

developed, which will result in organizing the completely cross-referenced data base into

two structural levels.

(1) Files, which may be recursive e.g., country, state

within country, city within state.

(2) Tables - e.g., building specification table.

4.8.3.3 Query. The last major component of the LUCID system is QUERY.

The query permits searching the data base in response to a query statement

containing Boolean and relatunal operators. Requests involving summation and development

of simple arithmetic mean are also allowed. The following major query components are

provided:

ITE MS - System will type out list of items available in

the data base

e.g., NAME

SALARY

LENGTH OF SERVICE

ETC.

SHOW - System will show list of values available in data

base for a given data base term.

PRINT - Print, followed by Boolean expression will

result in the retrieval and type out of data

satisfying the Boolean expression. Where a

lengthy output is anticipated, the command should

be LIST; the output will be prepared for printing

on high speed printer.

4--70

COUNT - The system will develop and present a count of

occurrences of a condition specified in query.

4.8.4 Capability and Use

LUCID has a vocabulary of over 200 words which correspond to particular

operations. The user may change the word corresponding to any function very easiiy

on-linz through an equivalence function built into the system. There are also a number

of noise words which have no meaning and are ignored. These noise words help to make

the LUCID input more readable.

The LUCID translator converts the input text into a binary tabular form. These

tables, OPAQUE tables (Operational Parameters to Activate and Qualify Users' Expressions)

are examined by an interpreter which then calls in the necessary GENDARME subroutines

and executes them. Some of the OPAQUE tables are simple and are merely abstracts

of other tables made in the interest of more efficient operation.

Currently, any change in the data base description (such as the addition or

deletion of descriptors) requires complete reentry and reprocessing of the data base

description.

User analytical functions to be executed by user programs referring to the

data base are not provided as part of the LUCID system, nor is a dynamically changeable

user program and job (sequences of programs) library.

The initial version ,, a "yst'-r• i ;. s run in an interpretive mode. It is

being used for demonstration as a base for future development. The inefficiencies of

this mode are offered to allow for convenient debugging and experimentation. The following

facilities are thought of as possible in the future: when the system design is stabilized, a

j 4-71

generation process can be undertaken to produce automatically a set of non-interpretive

programs that perform the same functions that the interpretive system had performed.

This second mode would operate more rapidly, possibly to meet some real-time constraint

that the interpretive system might not be able to meet. The user would continue to use

the interpretive version for development purposes, and would never modify the generated

version. New models are introduced by regenerating. This device would be used in an

effort to obtain the flexibility inherent in interpretive systems, combined with the production

efficiency and non-interpretive versions. Another possibility contemplated is the development

of generators for several different machines, producing a version of the system for a par-

ticular machine after simulating the machine on the original computer in the interpretive

mode.

4.8.5 Comparison with Reliability Central Data Management Subsystem

LUCID and RCDMS are similar in their approach to describing a data base in

a language natura± to the data which the data base is to contain and in their approach to

data Input description and data input. RCDMS, however, provides additional facilities

for operating many user programs either individually or strung into jobs predefined in

rfCDMS library. This facility is not currently provided in the LUCID system.

The points of functional similarity exist in the following areas:

(1) Description of data base.

(2) Description of inputs into the data base.

(3) Facilities for querying data base.

4-72

The differences are found in the following areas:

(1) RCDMS permits updating of data base descri•ion

without having to re-enter and re-process the whole

data base description.

(2) RCDMS provides system prngrams and jobs which

permit the user to prepare itnd execute analytical

and other problem-oriented programs using data

from the data base, without the need for the user to

be concerned with the detailed mechanism of data

retrieval.

(3) RCDMS views the data base as containing data

structures defined by many users for many processes

and is not limited to a single file. Thus, files are

defined containing arbitrary number of records,

within which other files may be defined recursively,

as well as statements and items. At the same time,

the RCDMS directory system permits retrieval across

the data base as a whole. Indexing by data values is

optional, permitting dynamic maintenance of tradeoffs

between search speed and storage requirements.

(4) The size of data base description in RCDMS (i.e..

number of terms) and of the data base itself is limited

by the overall storage capacity of the EDP system in

which it is implemented, rather than by the storage

capacity of the processor available.

4-73

4.9 ADVANCED MANAGE MENT SYSTEM (DM

4.9.1 Objectives

ADAM (Advanced Data Management) is a system being developed by MITRE

Corporation under sponsorship of USAF ESD. The primary purpose of ADAM was to

provide a test-bed for command and control system designs in the System Design

Laboratory -t the MITRE Corporation. The ADAM system was to accomplish this by

providing a software environment in which the languages and the system description

that specifies what the simulated system shall do are considered as data by ADAM and

can be changed with the ease in which the data base of the modeled system can be changed.

The basic ADAM goal is to provide the ability to investigate the behavior of

proposed system designs by creating files for that system, processing queries against

those files, and running users' programs that use the files and the result of file queries.

More specifically, the system must provide the following:

(1) Data input in a wide variety of formats and content. In

general, this will mean that after a description of data

in any machine sensible form has been entered in the

computer, the data will be acceptable for system processing.

(2) Comprehensive facility for updating the data base. This

facility includes the creation, augmentation, alteration and

reorganization of the files on a dynamic basis.

(3) Reorganization of information in reports (and query responses)

according to preplanned specification, including the preparation

of summaries and sorting ou multiple keys. If necessary, the

format in which reports (or query responses) are displayed can

4-74

be specified by an oqwrnor .md c.mn be varied !w him

on a dnamic basis.

(4) Facility for incorporation of "model specific" code (i.e.,

routines and/or models outside of ADAM which pertain

specifically to a given detailed calculation or perlorm a

specialized operational function). Provision should be made

for programming these specific routines in a higher order

language. The program design must permit the concurrent

checkout of such routines without compromising the integrity

of the data base or interfering unduly with the operation of the

rest of the system.

(5) Easy communication with the computer. The use of abbre-

viations and synonyms would be extensive in order to reduce

difficulty of communications with the computer. "Standard"

queries or standard "phrases" in queries and standard formats

should be used where applicable.

(6) Capability to provide the data required for the specific models

and computations for internal use, or for external off-line use.

(7) Provide rapid response to shifting emphasis and priority,

so that both the hardware and and software systems will be

used effectively in satisfying current requirements.

(8) Capability to optimize computer time utilized by batching

outputs so as to allow sorting the data base prior to an output

exercise mode.

4-75

The implicitions of the atyve are that, in general, referees to size,

content. and format of files. messages, and displays must be isolated from the

rigidly coded "'Model Fpecific" programs. These characteristics must be part of the

data base itself. With this information in the data base ADAM becomes generative

and interpretive, thus gaining in generality.

4.9.2 7mplementation

ADAM is being implemented for the IBM 7030 computer (Stretch) with a

65,000 word core memory (64 + 8 bit word length); two type 353 (modified 1301) disc

units with a capacity of two million words, DDI Display consoles with typewriter,

64 computer-selected background transparencies, a CRT display, and a light pencil;

a Stromberg Carlson printer (3000 characters/minute); and a type 7050 Multiplexer-

computer.

4.9.3 Components

There are three elements of the processing task: the data, the equipment,

and the processes. The data are the raw material with which the processing task must

work; the equipment is the tools (processors, storage, and I/O devices) to be used in that

work; and the processes (file maintenance, information retrieval, and model specific

programs) determine the way in which the tools are used on the raw material.

Allocation and control of these elements reside in the ADAM system.

ADAM can be divided into three asynchronously operating sections: Input,

Thrtuput, and Output. A diagram of the structure is given in Figure 4-2.

"11, .',.3k Section is Lite piugraun that responds to a,. t(ihtljpf ',,essage. The

Task is supported by a group of system programs called Thruput Ground while all three

sections are supported by a group of system programs called Ground.

4-76

0 E

94)

0 E0.

4-77

Input, Output, Thruput Ground, and Ground are in the system at all times.

Allocation of primary storage to input and output is not dynamic but a pseudo-infinite

buffer called a STREAM is used which automutically moves data to secondary storage

when necessary.

Ground consists of:

(1) Secondary Storage Manager, which allocates secondary

storage and performs I/O.

(2) Debugging tools.

(3) STREAM Controller.

The Input section consists of four parts; Input Control, Input Recognition,

Task Control, and Interrupted Task Control.

(1) Input Control handles all inputs to the system. It is

essentially a device-oriented program which must be

capable of handling input queries, input messages, updating

messages, file descriptions, and control system input

from teletype input, cards, torn tape, magnetic tape, or

other machine sensible forms. Inputs to the system are

converted, if necessary, by Input Control and presented

to other input programs it a standard system code.

4- 78

(2) .Invut Revomtion .wanx input using rules established for

it to determine the purpose of the input. At this time,

appropriate translation rules are selected for iater use

by the Translator. The task of further processing of this

input takes into account the priority established by the user.

(3) Task Control maintains a task queue and controls sequencing

of tasks in accordance with the user established prio.,ity.

(4) Interrupted Task Control saves the task which was interrupted

and restores it when the interrupting task is completed. Re-

storation of the interrupted task may be either at the point of

interruption or at the beginning of the interrupted task, as

required by the user or program logic.

The Thruput section, the heart of ADAM, has six main parts. These are

Input Translator, Processor, Output Translator, Storage Allocator, Compiler, and

File Management programs. The Input Translator translates input messages (e.g., queries,

updating messages, control inputs, format descriptions) using appropriate transformation

rules and produces entries in a process control table which control the operation of the

Processor.

In addition, the Translator produces a description of the output which will

be produced by the Processor. The Processor interprets the entries ith the process

control table, directs the operation of routines from the program file or the collection

of selected data from the data base, and prepares an output tablc.

S4-79

The following elements are involved in translation and execution of source

(user) language input:

(1) THRUCON - The control program

(2) SEPSCAN - The input interpreter which uses a rules

table for recognizing operators in the source language

and their scope.

(3) SUBSCAN - The table of substitutions.

(4) PURE - "pure" translation. It takes an input called

DIAGRAM which is a diagram of the syntax of a source

language, whose nodes are syntactic types and basic

symbols and whose branches are allowable substitutions.

Tables called STRING and LEX are generated at this stage

of translation. LAP is a program for generating DIAGRAM

from the syntax rules expressed as a substitution grammer

(i.e., Baccus-Naur Form).

(5) TRANSPRO - Initializes OUTPUT FILE, finds generators

for the entries in STRING, and generates the program table

SINTAB (a pseudo-infinite table).

(6) PROCESSOR - the executive that follows the steps of

SINTAB in the Interpretive mode.

(7) COP - An input control progrim.

4-80

The Output Translator, using tables created by the Input Translator and the

Processor, translates data for output from its internal form to a form acceptable to the

Output Control program. Formatting is also accomplished at this time.

The Storage Allocator controls the allocation of main and secondary storage

for routines and file data required by a task. Tapes, printers, storage devices, and input

devices are also allocated centrally. Since programs refer to devices symbolically, the

allocator can change assignments if some units are unavailable. This minimizes the

dependence of any given program on the specific hardware units of any given type.

Higher language compilers are a part of ADAM and produce model specific

programs compatible with the general system. The compiled programs are relocatable

by hardware or software, and have all requirements for data from master files stated in

symbolic form. In this way, data requirements of model specific programs are isolated

from master file structure and storage location.

The File Management program is capable of generating, updating, augmenting,

purging, extracting, reorganizing, and verifying system files.

The Output Control program handles output to all terminal devices. It is able

to transform data presented in a standard form to the form required by the output units.

In addition, this program isolates the rest of the system from the effects of slow output

"devices.

4.9.4 Model Specific Program Characteristics

The model specific programs operate under the executive control of ADAM.

The user can dynamically set priorities for the operation of routines and for the use of

the system hardware for those routines.

4-81

The addition of new model specific programs to the system does not necessitate

the rewriting or recompilation of existing model specific programs. A new model specific

program is added to the system in the same way that the data base is updated or a library

tape is augmented. Only those characteristics of the model specific program which

interact with ADAM will be discussed, since for other than these, the model specific

program characteristics are internal to the routine and are not constrained in any way.

ADAM handles all storage allocation, interrupt control, and I/O assignment

for each of the model specific programs.

Each model specific program, in order to be operated by ADAK, must be:

(1) Identifiable by a unique name, stored within the files used

by ADAM.

(2) Compiled so that the data requirements of the program can

be acted upon by ADAM, i.e., must be compatible with storage

allocation as handled by ADAM.

(3) Compiled so that I/O is handled by ADAM.

(4) Relocatable, either through software or hardware. Model

specific programs must be written to operate within ADAM,

allowing it to handle all specific hardware references. The

model specific program must consider the hardware as

extended by the general program as its environment.

In addition, there must be a capability for implementing model specific

programs and computational routines which use the data base in ways not initially

anticipated. This means that file structures planned for optimal performance nf initial

models may be less than optimal for later models. Thus, "model" programs must not

4-82

require that master files have a specific and unchanging structure. Model programs

must be isolated from changing characteristics. However, file structure cannot be

completely independent of the processing tasks but at any time reflects a compromise

most appropriate to the current state of evolution of the system.

4.9.5 Processing Control

There is a significant difference between a data processing system that

operates sequentially on tasks preplanned by a human staff and one which must accept

information and processing requests in an unplanned manner; i.e., not under control of

the processor but rather at the direction of an external device or operator. Unplanned

occurrences must be handled almost immediately as they may change the task priority

and thus the processing that the system should currently undertake. For communication

links, the information to be transferred may be available only for a short period of time.

In addition, the control program for an on-line system must be capable of controlling the

allocation of its equipment as a function of current load and current availability.

The unique devices to be shared by all programs within a system through

a common control program are discs, drums, core, and some input-output channels.

These devices are rarely assigned for exclusive use by a user program. Master files

also fall into this category because they must be accessed by many programs and cannot

be assigned for exclusive use of any one program.

Other devices and data files in the system are requested by user programs

through a common control program and are assigned for the exclusive use of a program.

The3e devices and data files can then be accessed directly by the user program.

4-83

• J L . J . . . " i , . •I

The third category of equipment, buffered devices such as printer, displays,

typewriters, and other low speed devices, are centrally controlled and are not assigned

exclusively to user programs. The central input-output control program does speed

matching of the devices with the internal processing and handles output separation of

data to the same. device.

4.9.6 Programming Languages

Two procedure-oriented programming languages, FORTRAN and DAMSEL,

are available in ADAM as an initial higher order programming language capability.

Routines prepared in either of these languages require some off-line post-

processing to produce some special binary code with information required to communicate

with data or other routines. This binary routine is what is then inserted into the ADAM

system. Routines and their communication links may also be directly prepared in the

SMAC and STRAP anteirnd assembled off-line. Routines are all relocatable

but are not all automatically segmented. They are limited by the amount of available core

when they are run. All ADAM routines are kept in a file called the "routine file."

4.9.7 Data Structures

Three types of data structures are used in ADAM: Streams, Files, and Rolle.

A Stream is a pseudo-infinite buffer mentioned previously which is allocated to

a task by the Thruput (or Task) Section. Movement of data in a Stream between primary

and secondary storage is accomplished automatically whenever necessary.

The data base itself is in the form of ADAM files. Files are described

physically by self-contained tables and changes in file format are recognized by the

system, specifically by the loader/allocator called RENOVATION. The highest level'

4-84

logical record in a file is called an "object" and is made up of items. Items can

be of the following types:

(1) Fixed - numeric or logical.

(2) Repeating Groups - a file type structure within the

object (record) which has an unlimited number of repetitions

and whose elements may have an internally nested repeating

group. Repeating groups may be named or unnamed.

(3) Raw Data.

(4) Query Valued - these are cross references to other objects,

and functions on items or string substitutions called "Re-

circulation" (Query Valued items may not be implemented

in the initial system).

A Roll is a dictionary or directory that associates external names with their

more concise internal representatives, usually some small integer. This integer is

called the principal value or PV of the name. Synonyms for external names are effected

by a many to one mapping of names to integers; i.e., all synonymous external names

have the same PV. Additionally a roll will have subsidiary values or subvals which give

additional information about the things named in the roll. Within a roll, PV's are unique.

The heart of ADAM data management is the ADAM file and the rolls corresponding

to each file. All data objects, language specs, routines, formats, etc., are carried in files.

A file is a named collection of like things. For example the "airfield" file would contain

information about several specific airfields. Each airfield, e.g., Logan, Hanscom, etc.,

would be an object (record) in the airfield file. The various data about each object are called

properties (attributes). Typical properties for the airfield file would be Location, Number

of Runways, Elevation, etc. The actual data in n file are the values of these properties,

e.g., Boston, 6, 2,000 feet, etc. The set of properties for an object in a file must be the

4-85

same set as for all other objects in that file. Of course, the values of these properties

may change from object to object. The set of all property values for one object in a file

is called an entry (record) in that file. ADAM files are structured serially by entry,

the first entry being the values of the properties that occur once per file, e.g., file

name, file size, data updated, etc.

Each file has associated with it, but physically separate, an object roll

and a property roll. The object roll contains the names and PV's of each object in the

file and subvals which give the object's location in that file. The property roll has the

names and PV's of the properties in the file, and for each property, several subvals

giving type, size, unit of measure, location, legal range of values, etc. Files may

also use rolls to hold the alphanumeric values of some of the file's properties (e. g.,

red, green, up, north, or some other non-numeric value) and carry only the PV's of

these values in the file itself. Many files may share such a roll. Rolls are not only

used by files; the system keeps several rolls for its own internal use.

Property types are fixed-length (integer, floating, small range or low

precision floating, or alphanumeric) and variable-length. The latter consists of query-

valued (some processing is invoked to produce the value), raw (arbitrary string of bits

such as an actual alphanumeric string as opposed to a PV standing for such a string), and

repeating-group. A property of the repeating-group type is simply a collection of sub-

properties, which may themselves be of repeating-group type, nested to arbitrary depth.

4.9.8 Capability and Use

The foregoing has indicated how ADAM provides considerable hardware and

software support for data manai.c'ent system modeling. It does so by providing gereralized

4-86

implementatiopl of those dcata management functions which are considered to be common

1hoU:skecping functions in most systems, namely:

(1) Data base creation, maintenance, and restructuring.

(2) Data base analysis and search.

(3) Input message analysis.

(1) Output, report, and display generation.

(5) -Job sequencing.

In ADAM, generalized programs for implementing these functions are written

without explicit reference to data names, formats, query language, etc. , which are

considered the specifics of the application. Because of this, data terms, data base

organizations, query language syntax. and job routines must be specifiedbIy the

experimenter. But also because of this they become parameters of the system whose

design can be varied and tested.

New input languages or modifications to languages are made through off-line

table interpretation and assembly followed by on-line additions to the language file.

Likewise, program preparation requires off-line compilation and post-processing

followed by on-line additions to the routine file. File generation, processing, and

problem-specific operations, on the other hard, all result from message input through

on-line devices.

41.9.9 Comparison with the Reliability Central Data Management Subsystem

There are some important dissimilarities between ADAM and RCDMS in

terms of design and objectives. ADAM is oriented toward the effective construction

and operation of a system design in a testing environment. RCDMS is oriented

4-87

mo

toward the efficient management of a data base for a production

operation. As a consequence, ADAM tends to sacrifice some operating efficiency in

order to be easily modifiable for changes in the design it is evaluating; RCDMS tends

to sacrifice some flexibility in order to operate efficiently. Some of the specific differences

are discussed below:

(1) ADAM does not have a capability for stringing many

programs together in the form of a predefined job which

can be stored for future use. The job specification function

of the RCDMS design sequences programs according to user

requirements, and makes provision for inserting program

pai, m~ters.

(2) ADAM does not provide automatic program segmentation,

with the result that routines are limited by available core

space. The Local Control Program and Executive Control

System of the RADC complex permit, in effect, unlimited

program size by breaking programs into segments which are

floatable in core storage and which can be called from random

access by segment name. However, where the RCDMS capability

for floatable program segmentation is used, the program so

executed has to operate in interpretive mode.

(3) ADAM makes no provision for indexing of the data base

by carrying the values of the file properties in its directory.

4-88

Except for named items, searching is performed by
4

sequential scan of the file. A major feature of RCDMS

is that it provides for indexing of all data to any depth

of embedding in the data structure. Associated with

this feature is a RCDMS search strategy package which

determines, from the index alone, those data items

which satisfy the criteria of a query, thereby eliminating

all unnecessary accesses to peripheral storage.

On the other hand, ADAM has a great deal of conceptual similarity to RCDMS.

Like ADAM, RCDMS will use highly generalized programs to perform extensive management

functions on large data bases. Some of the areas common to both systems are discussed

below:

(1) System control follows much the same pattern in both

systems.

(2) The two systems use similar file structures. The Object

and Property Rolls of ADAM perform much the same

functions as the Term Encoding Table and Item Position

Index of RCDMS.

(3) Both systems can handle complex data structures, including

variable items and any number of repeated groups, nested

to an arbitrary depth.

(4) Once the jobs have been specified, job run control is much

the same in both systems (except that for ADAM, the entire

job must exist in core).

4- h9

(5) The concept embodied in ADAM's flexible input language

translator has been adapted for use by RCDMS. Each user

is able to set up his own syntactical and semantic rules for

input statements which specify or define his data or his jobs.

The rules are incorporated into the system in the form of

action graphs, and RCDMS uses the appropriate action graph

to control each input translation. However, only one standard

language will be implemented and used for Reliability Central

Test Operations. The syntax analysis technique has been used

because it is effective, rather than to encourage a proliferation

of System Languages.

4-90

SECTION V. SUMMARY OF COMPARISONS AND CONCLUSION

The purpose of this section is to show in what areas RCDMS has drawn on work

already done in the field of data handling, and in what areas it has made an original con-

tribution to data management.

This section performs the function of summarizing and placing in perspective

all the design comparisons between RCDMS and the other systems. Summarizing remarks

are made about each aspect of a data management system. The aspects are the same as

those defined in Section II and in its comparison chart. Section V contains a final

statement which synthesizes the conclusions of the survey.

5.1 PROCESSING CAPABILITY

Until the advent of these generalized systems the processing capability of a data

handling system was a direct function of the specialized goals of the system. The capabil-

ity in many current systems has taken on a general-purpose nature with the advent of

generalized routines in several areas: the search logic used for retrieval, the maintenance

of directories and of the data base, the specialized user programs that accomplish specific

tasks (but which can be written in a generalized form), the rendering of output for external

use, and the management functions performed by the system.

5.1.1 Analytical Functions

The power of a data handling system is greatly enhanced if the system can take

the output of a query search and process it further for the user. Most -systems have a

limited capability in this area. The analytical functions are restricted to tasks which are

specific to the mission of the system and which are called upon by specific commands in

the user language. ADAM is more flexible because the analytical functions can be incor-

*. porated as part of the system being modelled'by ADAM. RCDMS gives the user freedom

5-1

to incorporate his analytical functions into any part of the task he wishes performed by

entering his user-specific programs with a Program Entry Request, and by entering the

parameters and sequence of the programs with a Job Entry Request.

5.1.2 Search Logic

IPS, LUCID, ADAM) and RCDMS are the only systems with an unrestricted

repertoire of search logic operatoro. COLINGO and 473L do not handle the NOT operator.

COLINGO requires two passes of the search file to process functional operators, and

473L permits no nesting in the query. ASO and ACSI-MATIC omit the OR and NOT opera-

tors, as well as functional operators. RECOL omits several of the relational and functional

operators.

5.1.3 Data and Directory Maintenance

All systems but RECOL maintain their directories on an automatic basis. IPS,

RECOL, and 473L require the programmer to maintain the data base with special programs,

but the rest of the systems maintain the data automatically. Most systems generate their

files off-line. RCDMS has both off-line and on-line file generation.

5.1.4 Output Formatting

All systems have some variable means of reporting data to the user. RECOL

provides merging and sorting but no specific formatting services. ACSI-MATIC and ASO

have several rigid report formats that the user can select with the input language. IPS and

473L have generalized sort and formatting routines which are controlled by the query

largags. COLINGO has a report generator and sort routine. LUCID and ADAM provide

umtpat control, but require the user to proviue his own output routines. RCDMS will

irftially have -. gneralized sort and report routine, and will eventually have a more flexible

formattin routine under control of the query language.

5-2

5.1.5 Job Management Services

RCDMS makes a further unique contribution to data management systems by

having not only a job management capability, but also a capability of pre-storing Job

Descriptions for the user. For jobs which are repeated many times with only minor var-

iations, the user can enter the Job Description some time before running the job. RCDMS

will compare the parameters and sequencing of the Job Description with the requirements

of the Program Descriptions in the Program Library Directory, thcreby assuring the user

that the job will be run properly. The user can also change parameters at run time, if

he wishes. RCDMS jobs are to be run by means of console entered job run requests.

All systems provide an executive routine, but with a varying capability for per-

forming job management. RECOL has virtually none of the aspects associated with job

management. Several systems, such as ACSI-MATIC, ASO and IPS, use their executive

to control the generalized system tasks of I/O, maintenance and retrieval, but provide

no means of job speci.ications and job processing. Job-type sequences can be initiated by

the 473L, COLINGO and, to a limited extent by LUCID user languages within the framework

of the language. ADAM provides complete job run control of user specified jobs, as long as

the entire job programs can fit in core memory.

5.2 USER LANGUAGES

Users require three kinds of languages to communicate with a data management

system: a job specification language with which to tell the system what tasks should be

4 performed, a query language with which to ask questions, and a data description language

with which to specify how various data structures should be incorporated into the system.

5.2.1 Job Speciflcation Language

A separate language is provided in IICDMS for job specification. Sovorat of the

systems studied siavo no job specification language. ACSI-MATIC, 473L, and COLINGO

5-3

perform both the job and query specification functions with a combined language. The

RCDMS job language was found to be as complete and flexible as any surveyed since it

incorporates the concept of the ADAM input translator which has the capability of permit-

ting the user to design and specify his own job specification language.

5.2.2 Query Language

The query language has not been defined for RCDMS as yet, so that no compari-

sons can be made. The RCDMS search package, however, has been designed to accom-

modate a flexible query language with a comprehensive search logic, as previously des-

cribed in Paragraph 5. 1.2.

With the exception of the rigid ASO language, all query languages use a flexible,

English-like query format. Due to a flexible input language translator, ADAM users are

able to specify their own query syntax. As mentioned in the previous paragraph, this

feature may not be warranted in the Reliability Central. The 473L and COLINGO query

languages were found to be the ones most pertinent to RCDMS because they operate at two

levels. A simplified version of the languages is available for the casual, untutored user

who has a simple query. A more powerful and flexible version is available for the

specialist or intermediary who has a complex query.

5.2.3 Data Description Language

Most systems have no user-oriented data description language, thereby restric-

ting the ease with which their users can define the structure of the data. Only the more

advanced systems, such as COLINGO, LUCID, and ADAM, make provision for a user-oriented

data description language. As in ADAM, the RCDMS Input language translator permits the

user to specify his own data description language. In addition, RCDMS has a standard data

description language.

5-4

• . 1|1 _ r i

5.3 FILE STRUCTURE

The concept of file structure consists of three elements: (1) a directory for

describing and pointing to a general class of data such as a file, (2) data indexing for

pointing to specific data items such as records and fields, and (3) the data structure itself

which consists of the various formats in which the data can be stored.

5.3.1 Directory

All systems surveyed contain directories to the names and locations of files

within the system. Each directory contains format tables describing the general config-

uration of data within each file, thereby permitting generalized routines to operate on the

files. The directories are consolidated for each system, with the exception of RECOL and

IPS which have a separate directcry for each file. The separate directories require that

each query be directed against only one file. An important feature of the RCDMS directory

is that it contains only logical data addresses, which are converted into physical data ad-

*! dresses only when the data is to be retrieved. Less directory maintenance is required

because the data segments can be moved indiscriminately from one storage level and

location to another without having to alter the logical structure of the directory. This

feature is mandatory for the Reliability Central because of the anticipated growth and

changing structure of the data base during the future life of the Reliability Central.

5.3.2 Data Indexing

RCDMS and ACSI-MATIC are the only systems that provide deep indexing of data.

Some of the systems, such as RECOL and IPS, do not have indexing because they perform

a serial search of magnetic tape, and must scan the data In each record. . Several of the

more advanced systems, such as 473L, COLINGO, LUCID and ADAM, keep at least part

of their data base on disc, but maie only partial use of data indexing. This means the full

5-5

.1

potential of random access is not exploited because portions of the data must still be

searched serially after being brought in from disc. These systems have no index to

point directly to specific data sets required in response to queries. The ASO system

solves part of this problem by using the linked list method of indexing, where data records

with like attributes are linked in a chain by means of link addresses. The linked list

method reduces the number of accesses to random access storage compared to a serial

search, but it has two disadvantages. First, needless accesses are still made during a

search to those data records in the chain which do not meet all the query criteria. Second,

file updating for deletions causes extra accesses to be made in order to maintain the links

in the list structure.

The RCDMS design makes a contribution to data management systems by incor-

porating an efficient capability for indexing the data base in depth similar to the scheme for

ACSI-MATIC. RCDMS accomplishes this indexing by taking the link addresses out of the

data elements, in effect, and placing them in a consolidated list in the directory. The

consolidated list permits the use of techniques which help to diminish the two disadvantages

of the linked-list structure approach. First, no needless accesses are made to data storage

because the consolidated lists can be manipulated to produce the addresses of only those

data records which satisfy the query criteria. Second, the accesses required for index

maintenance are greatly reduced because the changes can be made In a consolidated list

rather than in each individual data record. lData Indexing increases the storage requirement

of a system, depending on how deeply into the stzucture the data is indexed. However, an

indexing code is being designed Into the RCDMS directory which seeks to minimize the

storage requirement for the indices.

5-6

7

5.3.3 Data Structure

Most of the systems surveyed have a restricted data structure. RECOL is the

most restricted, permitting only fixed length fields. 473L and ASO have no nesting of

repeated groups and no cross referencing of records between files or within files.

COLINGO permits one level of nesting but restricts the nested group to fourteen items,

and it has no cross referencing. ACSI-MATIC and IPS permit extensive nesting with an

unlimited number of items in each group, but they have no cross referencing. ADAM

permits deep nesting of data, but no cross referencing.

It is anticipated that the data to be absorbed by the Reliability Central will be

extremely varied and will have many interrelationships. Consequently, RCDMS has been

designed to create a data structure with an arbitrary depth of nesting, an unlimited number

of nested items, fixed, variable or optional data items, and cross references between data

items.

5.4 PROGRAMMER INTERFACE

The data management system must be responsive to the needs of programmers in

order to remain adaptable and efficient. These needs are best met by having an effective

procedural language for creating system programs, by maintaining a useful library of pro-

grams and macro routines, and by providing an effective directory in the working system to

the programs which can be drawn from the library for performing interim tasks or complete

! jobs.

5.4.1 Procedural L:nguage

The more powerful systems (which also tend to be the more job-oriented systems)

provide their users with a procedural language and attendant compilers for conbtructing

special user programs. The programs can be absorbed into the system so as to become a

5-7 t"i
I

part of specific jobs. Examples are the FORTRAN and DAMSEL compilers for ADAM

as well as the JOVIAL and CS-1 compilers planned for RCDMS by RADC. IPS has a

special procedural language oriented to data maintenance routines. Systems with a lesser

job orientation, such as ACSI-MATIC and 473L, provide their own special assembly lan-

guage for a more restricted repertoire of user programs.

5.4.2 Program and Macro Library

The systems with a program sequencing capability tend to have their own library

of programs which can be called by means of the user language, via executive control.

Most of the programs appear to involve query or job maintenance tasks rather than special

user-oriented tasks. Those systems with little or no program sequencing capability tend

to rely on the macro instructions contained in their compilers for program flexibility.

The systems with their own library have the distinct advantage of being able to add modular

program increments to the capability of the system.

5.4.3 System Program Library Directory

A program library directory exists in all but one of the systems that form jobs

by sequenc'ng programs. The library directory is an efficient means of locating a certain

program with the least amount of searching. Only IPS scans its program tape to locate a

program. RCDMS uses its Program Library Directory for a special purpose. The RCDMS

directory contains a complete specification of the parameter requirements for each program.

Thus, RCDMS is able to help the user by checking the parameters of each job description

against the program requirements well before run time. The corollary of this provision is

the ability to specify input-output parameter values at job-run-time, permitting construction

of user jobs from a series of closed subroutines which are parameterized.

5-8

5.5 RESPONSE TIME

D ,ta management systems usually achieve their greatest usefulness by being as

immediately responsive to user demands as possible, within the range of reasonable cost.

By responding rapidly, the system not only gives greater satisfaction to each user, but it

also can take care of more users. Console access is the goal usually desired by system

users, but several factors influence the capability of a system to respond fast enough for

console access. These factors are: the access speed of the device on which the data,

directories and programs are stored; the effectiveness of the search strategy for retrieving

data; the ability to grant priorities to certain requests; and the ability to store frequently

accessed data on the storage device with the fastest access speed.

5.5.1 Storage Device

RECOL and IPS are the only systems restricted solely to the use of magnetic

tape. COLINGO stores its programs and some of its data on disc but most of the data is

stored1 on magnetic tape. All the other systems surveyed use disc for both programs and

data. The storage configuration for RCDMS has not been determined fully as yet, but

present plans are as follows: an auxiliary system core and high speed drum will be used

for storing programs, operating on directories and high priority data; disc will be used

for frequently-accessed data; and magnetic tape will be used for infrequently- accessed

data and for back-up data, until such time as a magnetic card system becomes available.

5.5.2 Search Stratezy

The large majority of systems use a linear search strategy through a serial file

by means of a single, generalized search routine. RECOL and IPS are required to use this

strategy because they use only magnetic tape, which is Inherently serial. 473L, COLINGO,

LUCID, and ADAM employ random access storage devices for at least part of their data, but

5-9

.• :.. ' [.- - ! •

,. "-

S. .. t -- • . •. •.L' ,I

they have no indexing by data values. Consequently, once the directory has been used to select

the file to be searched, the file must be searched serially. The ASO uses a faster strategy,

called the list structure method, which searches through chains of linked data elements with

similar attributes. The list structure method decreases response time, but increases

maintenance time and storage requirements. RCDMS uses an expanded version of the ACSI-

MATIC search strategy. It searches consolidated index lists in its directory and determines

the address of only those data records which meet the criteria of the query. The strategy

eliminates many accesses to storage by retrieving only pertinent data. Systems with data

indexing require more file maintenance than those without indexing, but RCDMS reduces this

maintenance burden compared to the ASO and ACSI-MATIC systems by keeping the index

data in a consolidated list, and by establishing a distinction between the logical structure

and physical storage of data, and by abstracting links from the data base to its directory.

5.5.3 Priority Processing

The degree of provisions for priority processing varies widely in the systems sur-

vcyed. Since IPS is designed to operate as a subsystem in an operating environment, the

environment can supply the priority service. The ASO system has two levels of priority.

ADAM has a complete capability for recognizing and queuing inputs according to priority.

A similar capaibility is planned for the ultimate RCDMS design, but may not be implemented

for the Test Operation.

5.5.4 Levels of Accessibility

All but the more advanced systems have a single level of accessibility to data --

either disc or magnetic tape. COLINGO has two levels: disc for programs and high prioriii

(data, and magnetic tape for the rest of the data. In the ADAM system the user can define

what he wanti on either disc or magnetic tape. RCI)MS will have several levels of accessi-

bility to dtaW, as described in Paragraph 5.5. 1. An auxi1liary system core will be the

5-10

highest level. The next level will be a high speed drum. A third level will be disc, followed

by a fourth level on magnetic tape.

An unusual feature of RCDMS is that it will attempt to control the allocation of

*• data to the various levels of accessibility. After the initial allocation, RCDMS will keep

statistics on the access frequencies to various segments of data, and will calculate the

level best suited for each segment. When a segment is to be stored in the RADC complex,

an indication of the desired store level (from the viewpoint of RCDMS) will be passed along

to the Local Control and Executive Control Programs for their use in allocating storage

to the data (from the viewpoint of the entire complex).

5.6 CONCLUSIONS

(1) The RCDMS design has leaned heavily on the advances in the state

of the art already achieved in the field of data retrieval and data

management.

(2) The basic contribution made by RCDMS is that it has drawn together

into one system many major aspects currently associated with data

management. This consolidation of system features should make RCDMS

more responsive to user needs and more of a general-purpose produc-

tion system than the other systems surveyed.

(3) The RCDMS design helps to divorce the user from the complexities

of the system. RCDMS deals with the data base more as a single

entity than as a collection of fles. By permitting nesting and cross

referencing of data, by indexing data automatically, by keeping

statistics on data usageand by providing the user with flexible and

easily-used languages, the RCDMS design lets the user alter hii

data easily when his needs change. More rigid systems require

5-11

the user to plan ahead more carefully, and to become more familiar

with the details of the system so he will be sure his plans can be

implemented.

(4) Several original contributions to data management systems are

contained in the RCDMS design:

(a) RCDMS makes full use of random access potential by

keeping efficiently stored indexing data in the directory

and by using an optimized search strategy which accesses

only pertinent data from stores available in the computer

systems on which it is implemented. The depth of indexing

is at the user's option.

(b) RCDMS separates the logical addresses of data from the

physical addresses so that minimal directory maintenance

is required when data is moved from one physical location

to another, and so that actual data movement is localized

when the logical structure of the data base is modified.

(c) Of all the systems surveyed, RCDMS has the most flexible

and user-oriented method for having jobs specified by the

user. Further, the jobs can be pre-defined and stored

before run time. The program library directory contains

sufficient parametric data to permit automatic linking of

Sprograms as specified by the job description.

(d) RCDMS will keep track of and analyze access frequencies

to various Iduds of data, and will automatically notify operating

personnel of data structure changes which might be more ef-

ficient. EventuaUy it is hoped that these changes can be made

5-12

automatically within the system. A further by-product

of the statistical analysis is that RCDMS will automatically

determine the level of accessibility best suited to a segment

of data and will transmit this information to the RADC Local

Control and Executive Control Programs for their discretion-

ary use when the data segment is to be stored.

iI

5-134

!I __.... I[

BIBLIOGRAPHY

RECOL

Climenson, W. D. "RECOL - A Retrieval command language," Communs. of ACM
6(3): pp. 117-22 (March, 1963)

ACSI-MATIC

Colilla, R. .;% Samis, "Information structure for processing and retrieving,"
B. A. Communs. of ACM (Jan., 1962)

Gurk, H.- M. ; Minker, "The Design and simulation of an information processing
J. system," J. of ACM 8(2): pp. 260-70 (Apr., 1961)

Miller, L.; Minker, "A Multi -level file structure for information processing,"
J. ; Reed, W. G. ; and Proc. Western Joint Computer Conf. , San Francisco (NJCC
Shindle, W. E. No. 17): pp. 53-9 (May 1960)

--------------- ACSI-MATIC user's manual, IR-62-2, (Jan. , 1962)
CONFIDENTIAL

--------------- ACSI-MATIC input message format, SR-61-4, (Juiy, 1961)
CONFIDENTIAL

---------------- ACSI-MATIC file structure, a reference man ýýlor r-
g'ramiimers, 111-60-2, (Nov , 1962)
CONFIDENIAL

A SO

Perry. B "Technical report on the ASO executive routine.," Report
63-14 (AD 293106) prepared at U. of Pennsylvania -Moore
School

Zimmerman, B., et al. ",Naval Aviation Supply Office inventory retrieval systein,"
Mgt Science 10(3): pp. 421-28 (April, 1964)

Prywe-, N.- S.; "An Ex~ecutive program for multiple consoles," Report 64-13
Miller, D. H, (March, 1964) prepared at U. of Pennsylvania-Moore School

Landauer, W. L "The Tree as stratagem for automatic information handling,"
Report 63-15 (1962) prepared at U. of Pennsylvania -Moore
School

Prywes, N S.; "Thc multi-list system of real-time storage and retrieval,"
Gray. H.G. Proc. IFIP Congress '62 Munich, Germany (Aug. 27-Sept. 1,

1962) ("Information processing 1902"1): pp. 273-78 (1963)

4

INFORMATION PROCESSING SYSTEM

- "Preliminary functional description of the CINCPAC OPCON
information processing system," IBM FSI) NAVCOSSACT
DRG 20 (Nov. 10, 1962)

-- - - Advanced programming developments -- A Survey. Bedford,
Mass., Directorate of Computers, USAF ESD (Sep., 1964)
pp. 18-20

------------ --- User's manual, IPS Phase II
NAVCOSSACT No.123; June 15, 1964 (Rev. Dec., 1984)

Prelininary functional design (PFD), IPS Phase H1
NAVCOSSACT No. 66; (Oct. 24, 1963)

Foster, D. C. "7he Information Processing for the AN/FYK-I(V) data
proceessng set," Proc. Second Congress on Info. System
Sciences: pp. 97-126 (Nov. 1964)

473L

Barlow. A E.; "HQ, USAF Command and Control System query language,"
Cease, D.R. Proc. Second Congress on Info. System Sciences: pp. 47-95

(Nov. 1964)

Advanced programming developments -- A Survey. Bedford,

Mass. Directorate of Computers, USAF ESD, Sep. 1964;
pp. 21-3

Rawdon, W. K. "Query languages in data retrieval systems," TM 3727:
pp. 29-31 (Sept. 1963)

Heistand, R.E. "An Executive system implemented as a finite-state automation,"

Commune. of ACM 7(11): pp. 669-77 (Nov. 1964)

COLINGO

Spitzer, J. F.; "The COLINGO system design philosophy," Proc. Second
Robertson, J.G.; Congress on Info, System Sciences: pp. 1-45 (Nov. 1964)
and Neuse, D.H

Robertson, J. .; "UGSTIRICOM COLINGO "D" system description," Report W-06821
and 8pltzer, J.F. (Jan. 22, 1984)

Croke, J.J.; "Query languages In data retrieval systems,", Report TM4727:
Rawdon, W.K. pp. 22-5 (Sept. 15, 1963)

------- Advanced prormmin develome to -- A Survey. Bedford,
Mass. Directorate of Computers, USAF ESI, Sept, 1964;

5pp. 15-1 5

LUCID

Franks, E. The LUCID system of automatic programming directly from
data processing system design specifications.
SDC FN-6797/000/00; Aug. 9, 1962

Franks, E. System design specifications for LUCID Phase I.
SDC TM-1749/000/00 (series)

Franks, E. "LUCID," Proc. of Symp. on Dev. & Mgt of a Computer -
Centered Data Base, (System Dev. Corp.): pp. 87-96

(Jan. 6, 1964)

- Advanced programming developments -- A Survey. Bedford,
Mass. Directorate of Computers, USAF ESD, (Sept. 1964)

ADAM

Burrows, J.H. "Automated data management (ADAM)," Proc. of Symp. on
Dev. & Mgt of a Computer-Centered Data Base, (System
Dev. Corp.): pp. 63-86 (Jan. 6, 1964)

- -- Advanced programming developments -- A Survey. Bedford,
Mass. Directorate of Computers, USAF ESD, Sept. 1964;
pp. 53-7

Sable, J. D "ADAM (Advanced DAta _t) project," (Jan 27, 1964)
prepared as AUERBACH Corp. trip report
INTERNAL Report

\S

_ _ _ _ _ ___ _ _ _ ___ _ _ _ _ _ _ _ _ _ _

