UNCLASSIFIED

AD NUMBER

AD469269

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Jul 1965.
Other requests shall be referred to
Director, Rome Air Development Center,
Attn: RTD, Griffiss AFB, NY.

AUTHORITY

RADC ltr, 31 May 1966

THIS PAGE IS UNCLASSIFIED

SECURITY
MARKING

The classified or limited status of this report applies
fo each page, unless otherwise marked.
Separate page printouts MUST be marked accordingly.

4

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF
THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18,
U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF

i{g CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY

NOTICE: When government or other drawings, specificatioas or other
data are used for any purpose other than in connection with a defi-
nitely related government procurement operation, the U. S. Government
thereby incurs no responsibility, nor any obligation whatsoever; and
the fact that the Government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or other data is not
to be regarded by implication or otherwise as in any manner licensing
the holder or any other person or corporation, or conveying any rights
or permission to manufacture, use or sell any patented invention that
may in any way be related thereto.

#

RADC-TR- 65-189, Vol Il

Final Report
N
Neo)
e\
&)
O ~ DESIGN OF RELIABILITY CENTRAL DATA
g MANAGEMENT SUBSYSTEM
| Dr. J. Sable
) (,_.' et al
5o (Averbach Corp)
—~ TECHNICAL REPORT NO. RADC-TR- 65-189
= July 1965
-] e

Information Processing Branch
Rome Air Development Center
Research and Technology Division
Air Force Systems Command
Griffiss Air Force Base, New York

When US Government drawings, specifications, or other data are used for any purpose
other than a definitely related governmen: procurcment operation, the government thereby
incurs no responsibility nor any obligation whatsoever; and the fact that the government
may have formulated, furnished, or in any way supplied the said drawings, specifications,
or other data is not to be regarded by implication or otherwise, as in any manner Licensing
the holder or any other person or corporation, or conveying any rights or pemission to
manufacture, use, or sell any patented invention that may in any way be related thereto

\

Do not return this copy. Retain or destroy.

%

DESIGN OF RELIABILITY CENTRAL DATA £
MANAGEMENT SUBSYSTEM :

Dr. J. Sable

et al

AFLC, OATT, KXo, X Aug 65-188

VOLUME 11
TABLE OF CONTENTS
Paragraph Title Page
SECTION I. INTRODUCTION

1.1 GENERAL e e e e e e e e e e e e e e e e e e 1
1.2 ORGANIZATIONOF VOLUMEII 1
1.3 RECENT DEVELOPMENTS TOWARD GENERALIZED

DATA MANAGEMENT e e e e e 1
1.4 SUMMALRY OF CONCLUSIONS it 1

SECTION II. DATA MANAGEMENT SYSTEM COMPARISON CHART

2.1 A CLASS OF DATA PROCESSING SYSTEMS 2
2.2 COMPONENTS OF THE DATA MANAGEMENT SYSTEM. 2
2.3 SYSTEM CONCEPTS AND TERMINOLOGY 2
2.4 COMPARISON CHART it e e i e e e e e e 2

SECTION IH. DESCRIPTION OF TIIE RELIABILITY

CENTRAL DATA MANAGEMENT SUBSYSTEM

3.1 OBJECTIVES OF THE RELIABILITY CENTRAL 3
3.2 CHARACTERISTICS OF THE DATA BASE 3
3.3 DESIGN OBJLECTIVES OF THE DATA MANAGEMENT

SUBSYSTEM . . o o ot e e e 3-4
3.4 CHHARACTERISTICS OF THE DATA MANAGEMENT

SUBSYSTEMt e e e e e e e e e e e 3-12

SECTION IV. SYSTIEM DESCRIPTIONS AND COMPARISONS

4.1 GENERAL . . e 4
4.2 RETRIEVAL COMMAND ORIENTED LANGUAGE (RECOL) 4-:
4.3 ACSI-MATIC COLLATION SYSTEM 4
4.4 NAVAL AVIATION SUPPLY OFFICE SYSTEM (ASO) 4
4.5 INFORMATION PROCESSING SYSTEM (IPS) 4
4.0 HQ, USAT COMMAND & CONTROL SYSTEM (473L). 4
4.7 COMPILY ON-LINE AND GO SYSTEM (COLINGO) 4
1.8 LANGUAGE USED TO COMMUNICATIE INFORMATION

SYSTEM DESIGN(LUCID) i i e n 4
4.9 ADVANCED MANAGEMENT SYSTEM (ADAM) 4-

SECTION V. SUMMARY OF COMPARISONS AND CONCLUSION
5.1 PROCESSING CAPABILITY e 5
5.2 USER LANGUAGES e e e e 5
5.3 FILE STRUCTURE . . . e e e 5
5.4 PROGRAMMER INTERFACE e e 5
5.5 RESPONSE TIME . e e e e e e 5
5.6 CONCLUSIONS . e e e e s e e 5
fii

SECTION I. INTRODUCTION

GENERAL

AUERBACH Corporation has been retained by Rome Air Development Center*
to design a file structure and an information storage and retrieval system for the planned
U.S. Air Force Reliability Central. Volume I of this Final Report presents a functional
description of the system, called the Reliability Central Data Management Subsystem

(RCDMS). A second basic task under the contract is to show:

(1) how the design has met the specific eperational objectives

of the Reliability Central,
how the design has drawn on the available state of the art, and

where the design philosophy and design techniques advance the

state of automated data management and data analysis technology.

Volume II of this Final Report is presented in response to the second contract requirement,
Volume II compares the design of the Reliability Central Data Management Subsystem
(RCDMS) with cther major data management systems in existence or currently under

development.

It is difficult to present a comparative report of many systems in one technical
area, without giving the erroneous impression that judgment is being passed on the systems
under consideration. There is no such intent in this report. In order to make comparative
analysis meaningful, the functions, design features,and operational capabilities being
designed into the RCDMS are compared separately with each of the other systems. These

comparisons should be treated as comparisons of facts,not as judgments as to whether the

F*Under Contract AF 30(602)-3433

features planned for the RCDMS should have been present in the other systems, Each of

the systems discussed has been designed in response to a different set of objectives:

some as experimental systems, some in response to specialized requirements, some

as technique—proviné vehicles. They have all been designed at different points in the
evolution of data management technology. During the analysis of the systems, AUERBACH
Corporation was impressed with the extent to which the designers met their objectives
while advancing the state of the art. Therefore, the comparison of features present in

the planned RCDMS design against the features present in all the other systems must not
be interpreted as a criticism of these systems. The set of objectives for RCDMS are
quite demanding since it has to be a user-oriented production system. Therefore, it

was necessary to draw on all that is best in the technology. The design of the system
consolidates cc;ncepts, design techniques, and approaches to data management which

were often originally developed by the designers of the systems with which it is now

being compared.

TFurthermore, ther RCDMS design was initiated much later than the systems
with which it is heing compared. RCDMS is now in its design stage, even though concepts,
tecimiques, and operational objectives are firmly defined. The designers were in an ex-
cellent position to draw on the experience of others and to take the experience a step

forward, instead of merely duplicating the past.

1.2 ORGANIZATION OF VOLUME Ii

This Section (Section I) contains general information and background on the

development of data management systems, and a summary of report conclusions.

Section II provides a consolidated chart summarizing the system comparisons

from which the conclusions are drawn,

Section ITT contains a description of the objectives and design of the Reliability
Central Data Management Subsystem (RCDMS), (Section III has been extracted from

Sections I and IV of Volume I in order to add continuity to Volume II),

Detailed comparisons between the RCDMS and each of the other systems

are in Section IV,

A comprehensive discussion of all comparisons and conclusions will be

found in Section V.

1.3 RECENT DEVELOPMENTS TOWARD GENERALIZED DATA MANAGEMENT

The RCDMS is bheing designed to perform as a general-purpose data managemenf

system, in order to meet economically the anticipated growth and changing analytical needs
of the Reliability Central Program. Data management systems are an outgrowth of the
dynamic history of data processing development, and the generalized data management
gsystem approach now represenis the most advanced method of handling and providing for
the use and analysis of large volumes of data, Recent developments leading to the concepts

and development of general-purpose data management systems are outlined below.

1.3.1 Early Query Systems

Whereas procedure-oriented languages had solved many file maintenance
and programming problems, they had not solved retrieval problems. Users wanted to
retrieve data in several different ways, not just by the name of the data but by the

characteristics of the data — the values of data items. In addition, program designers

were aware of the user demands that data often had to be processed only when it satisfied
certain logical conditions, Prior to the introduction of query languages and systems,

programs had to be rewritten each time the set of logical conditions was changed. An

effort was made to apply the generalized program approach to the handling of queries.
The goal was to prepare a single program responsive to a flexible language which
expressed complex legical conditions by means of Boolean operators. One of the
first such languages called QUERY was published in late 1960. QUERY permitted
flexible English-like requests to be stated for retrieval processi. ,. Although never

implemented, QUERY was influential in the development of other query languages.

Other efforts in the early 1960's included the original language developed
for ASCI-MATIC, which used a kind of basic English, and initially permitted the AND
operator only. It was one of the first languages developed which permitted the use of
magnétic disc storage, and was designed with a multi-list structure with link addresses
appearing in a directory rather than in the data records. BASEBALL was another
generalized query system designed for a special purpose. BASEBALL used the
generalized program approach to accept statements very close to normal English,
but was restricted to the special environment imposed by the words and data involved
with the game of baseball. BASEBALL was a limited experiment to show what language

could do to help the interplay between man and machine.

:
The first general-purpose query system was developed during 1961 and 1962

at the David Taylor Model Basin, Called TUFF-TUG, it was the predecessor of IPS

(Information Processing System). Other examples of languages permitting general

queries to any kind of file are RECOL and GIRLS. Different users could conncect their

own file to those systems; they could present their file description to the system, and could

then process a query without any additional programmin” The languages permitted the

unrestricted nesting of logical conditions, as well as the use of relational operators such

as "equal to," “greater than,' and the like. The languages did not permit algebraic

statements. Since no "if'! statement was available in the user language, selective print

formatting and sclective output ordering were not available,

1-4

a1

1.3.2 File Management Systems

A new level of data processing power and generalization was conceived when
system designers realized that many files could be handled if the system were given a
directory describing the format of the files and where the files were located. Such
systems as IPS, COLINGO, and 473L were developed with the notion that once the files
were defined, the system could perform both maintenance and retrieval functions on
many different files on an automatic basis. Thus was born the concept of file
management. The systems possessed an extendzd language and system capability, as
well. For instance, algebraic and functional operators were permitted in search questions.
Complex file maintenance tasks could be performed using Boolean operators in the language
to control the tasks. For example, complex output formats and arrangements could be
achieved with the extensive display capability of the Air Force 473L system. The IPS
system used only magnetic tape. COLINGO had its programs on magnetic disc but its
files were on tape. The 473L system employed only discs, but the system did not utilize
their random access potential. Consequently, it can be said that the early file manage-

ment systems were essentially tape-oriented.

1.3.3 Data Management Systems

The notion has emerged that the functions of data maintenance and retrieval
(as discussed in the previous paragraph) are not ends in themselves. They must be com-
bined with other urer functions in order to realize their full potential., Queries, for
instance, need not show only the status of the data; their output can be used as input
to complex computations for any number of annlytical purposes. Data management
systems attempt to make it easy for the untrained user to link many tasks together
for his use, without having to reprogram any part of the system. Such systems have

within their framework a large repertoire of task-oriented programs which can be linked

together in order to perform a wide variety of specialized jobs. The systems employ

command Janguages with which the user states the parameters and the sequence of

the > ograms to be run. The systems contain large, generalized executive routines which
link the task-oriented programs. In this manner, such data management systems as
ADAM and LUCID have incorporated many specific tasks into a flexible, generalized

and general-purpose framework which can change responses from one user to the next
with minimum change to the system. However, they are not entirely production-

oriented because they are designed for a specific task — that of testing system
designs. Thus far, no truly general-purpose data management systems have been

reported.

Random access storage devices and deep inndexing are changing the nature
of data management systems. The use of random access devices permits data to be
extracted and combined from many files, thereby hlurring the distinction between files,
and causing all data to become part of a large, single entity called a data base. The
combination of random access with the kind of indexing that goes deeply into the content
ot the data adds power to data management systems. Communication between man and
the computer is increased as never before, because man is able to call up large volumes
of information and have it processed according to his wants while he is on~line with the

computer.

1.3.4 RCDMS as a General Data Management System

RCDMS treats the design of a data management system as a unified whole,
‘n whir! the accessibility of data to the user, and the ease of its subsequent manipulation
and annlysis in a production rather than an experimental environment are paramount design
considerations, The design also takes advantage of the resources, both software and hard-
ware, of the RADC EDP cormplex, in which cthe design is to be initially implemented. The

key distinguishing characteristics of the design are as follows:

1-6

(1)

(2)

(3

(4)

Provision of a data description language for entering into
the system data definitions which subsequently govern the
input and structuring of data which the definition describes.
This permits the user to enter into the system any data
structured in response to the user's anticipated need of the

data.

A command language which permits the user to describe
jobs composed of one or more pre-stored program tasks,
by stating data parameters, and identifying the sequence
irn which the tasks are to be executed. The command
language further permits the user to call for the execution
of any job by naming it and supplying data parameters to

be bound at job run time.

Provisions for extracting from the data base any data re-
quired for the execution of user-defined jobs by means of
complex Boolean expressions using A), OR, >,<, =, range,

and functional operators.

Provision ol a directory system with in-depth indexing
capability which permits the vetrieval of any indexed deta
from anywhere in the data basc without the need to

search the data itself.

1-7

®)

(6)

Structuring the data base logically and independently of
the physical location of the data, This makes the dynamic
maintenance of a large data base possible. The changes
in logical structure of the data base, as described by the
directories, need not require physical movement of the
data itself. Correspondingly, physical relocation of the
data need not involve the changes in the logical structure

of the data, as given by the directories.

The structure of the data base lends itself directly to the
application of a Boolean search strategy system which
optimizes retrieval. The search strategy system provides
a flexible interface for a query system with a high level

user language.

1.4 SUMMARY OF CONCLUSIONS

(1)

()

The RCDMS design has drawn heavily on the advances in the state
of the art already achieved in the field of data retrieval and data

management,

The basic contribution made by RCDMS is that it has drawn
together into one system many major aspects currently
associated with data management. This consolidation of system
features should make RCDMS more responsive to user needs
and more of a general-purpose production system than the

other systems surveyed.

1-8

Foa e o s K

B RIS s B LU N

3

4)

The RCDMS design helps to divorce the user from the com-
plexities of the system. RCDMS deals with the data base more
as a single entity than as a collection of files. By permitting
nesting and cross referencing of data, by indexing data auto-
matically, by keeping statistics on data usage, and by providing
the user with flexible and easily-used languages, the RCDMS
design permits the user to alter his data easily when his needs
change. More rigid systems require the user to plan ahead
more carefully, and to become more familiar with the details

of the system so he will be sure his plans can be implemented.

Several original contributions to data management systems are

contained in the RCDMS design:

(a) RCDMS makes full use of the potential of random
access storage by keeping indexing data efficiently
stored in the directory and by using an cptimized
search strategy which accesses only pertiﬁent data

from peripheral storage devices.

(b) RCDMS separates the logical address of data from
the physical addresses so that minimal directory
maintenance is required when data is moved from
one physical location to another, and so that actual
data movement is minimized when the logical structure

of the data base is modified.

i e e s 2 Gamat

(c)

(d)

Of all the systems surveyed, RCDMS appears to have
the most flexible user-oriented method for having

jobs specified by the user. Further, the jobs can be
pre-defined and stored before run time. The program
library directory contains sufiicient parametric data to
permit automatic linking of programs as specified by the

job description.

RCDMS will keep track of and analyze the frequency of
access to various kinds of data, and will automatically
notify cperating personnel of data structure changes
which might be more eificient. Eventually it is hoped
that these changes can be made automatically within
the system. A further by-product of the statistical
analysis is that RCDMS will automatically report the
level of accessibility best suited to a segment of data
and will transmit this information to the RADC Local
Control and Executive Control Programs for their

discretionary use when the data segment is to be stored.

1-10

SECTION H. DATA MANAGEMENT SYSTEM COMPARISON CHART

2.1 A CLASS OF DATA PROCESSING SYSTEMS

The specific class of automatic data processing systems discussed in this
report has been called ""data managerhent gystems." 1In a date mansgement system
(DMS), the software environment of a data processing center provides a tool to a staff of
users, programmers, and operators for maintaining and interrogating a large data base.
The data processing center, on the other hand, exists in a problem environment that
places stringent functional requirements upon it — requirements for the rapid and
accurate assimilation of new data for changes in the data structure, for interrogation

of the data contents, and for analytic results based on data content,

2,2 COMPONENTS OF THE DATA MANAGEMENT SYSTEM

A DMS has a number of elements which can be identified and are discussed
below. The capability of a DMS as a whole depends on how these elements have been
implemented, their flexibility, capability, etc. It is the purpose of this report to attempt
to catalog and evaluate these elements in a number of systems being designed, imp.lemented,
and operated. The system comparison chart included at the end of this section is a summary

of the evaluation of nine data management systems.
The following elements can be identified in a DMS, i

(1) User Language. The user language is the vehicle for

k&

communicating job requests, queries, and, in some

systems, new data structures to the system.

File Structure. The data base is the main resource of the

DMS. The data base has logical structure and content, The
logical structure is represented by the named elements of the
data base and their interrelationships. The conteni is the data

itself, mapped onto the physical storage media of the data

processing center. In some systems this mapping is explicit,
in the form of directories and indexes. In other systemsthe
mapping is implicitly contained in the program logic of the

data management programs,

Processing Capability. The DMS contains programs which

search the data base, maintain the data and its directories,

format the output, and manage the specialized jobs of the center,

Programmer Interface. Libraries of macros and programs,

and procedural language compilers are provided for the pro-

grammer,

Response Time., A major result of designing a DMS as an

integrate 1 whole is an increase in the responsiveness to the
user, usually via direct on-line inquiry consoles. This is
accomplished by providing various levels of priority and
accessibility and using search strategies that take advantage

of the data structures, directories, and random access storage

devices in the system.

2,3 SYSTEM CONCEPTS AND TERMINOLOGY

Since there are no terminology standards in the data management field, and
since many concepts and philosophies of data management are still in their formative

phase, some terminological obstacles have arisen in the description of these data

management systems.

In general, the terminology of the designers has been preserved in describing
the various systems in this report. In some cases, two groups use similar terms to
describe different things and, in other cases, new terms have been given familiar con-
cepts. An effort has been made to guard against confusion through the use of footnotes
and parenthetical remarks when these situations arise. The following remarks are debsig'ned

to serve as further guideposts in reading and evaluating this report.

2,3.1 User Language

The term "user" itself is used ambiguously, due to the different orientations

of the various systems. In RCDMS, COLINGO, and the HQ,USAF system, for example,

the user is the operational staff member who is querying the data base or running a job.
However, in LUCID or ADAM the "user" is the programmer or system designer who :

is modeling or constructing a system.

ot A BN W

The user language is sometimes characterized as a Query Language and
sometimes as a Job Request Language, The following approaches in the designs of

the user language can be observed:

(1) TheQuery Imbedded in the Job Request Language. This is the

approach adopted hy RCOMS, The Job Request Language has

components which can be used to define data structure, modify

data, enter command vocabulary, store data descriptions, and
run jobs which bind the parameters of job descriptions. In this
view, a query is a particular job which assigns parameters to a

. query routine.
.,;1" r 2-3

(2) Job Requests Imbedded in the Query. In this approach, the

query is seen as the more generic e1ement7and specific
system actions can be requested in what is called a query,
This is the approach used in COLINGO and the HQ, USAF

systems.

IR Iy S N e

(3) Separate Job Request and Query Languages. The treatment

of queries and jobs as two separate entities is evident in the
IPS system which treats the query function and the data n.ain~ ¢
tenance function in two separate systems: the IRS (Information

Retrieval System) and the FMS (File Maintenance System),

(4) User-Constructed Languages. Finally, there are systems

such as ADAM which treat the relationship of the Job Request
Language and the Query Language as something to be modelled

by the designer, with no a priori languages built into the system.

It is also illuminating to categorize user languages along two additional

dimensions:

(1) Flexibility with Regard to Language Restrictions, In the

dimension of language flexibility a spectrum of (query) languages
exists, They range from fixed, push-button initiated responses
(which, for example, associate a given fixed status report with

a console push-button) to a natural "near-English" language which
is entered via a keyboard and is capable of eliciting 2 wide range
of responses. An example of a language close to the fixed end of
the spectrum is the ASO query system. COLINGO, on the other

hand, lies near the multiple-response end,

2-4

a1 s A it S gyt

(2) Process versus Goal Orientation, With respect to the

degree of process orientation, a spectrum of languages
exists. They range from procedure-oriented "algebraic"
compiler languages such as JOVIAL to completely process-

independent, goal-oriented languages such as RECOL.

2,3.2 Data Structure Terminology

One aspect in all data management systemé (and essential to their under-
standing) is the clear distinction between data content and data structure, The data
content is referred to as the data base, or as the set of data values that comprise the
declarative statements in the system which are concerned with the outside world (some-
times referred to as the "real world'"), The data base makes up what is usually the
majority (but by no means all) of the data in the data management system. A large
part of the data in the system concerns the vocabulary, structure, definition, and location
of data items in the data base., This data descriptive data (data about data) is located
in the system directory (or directories). The data base is sometimes called the system
files, and a directory is sometimes referred to as a system table, glossary, thesaurus,

index, or (as in ADAM) a roll.

In discussing data structure, il is important to distinguish clearly between
physical structure and logical structure. (A failure to make this distinction clear usually
results in a good part of the confusion and '"semantic noise in this area.) Physical |
structure refers to the disposition of data on the storage media. This covers the
location and disposition of physical data elements usually connotated by such words
as: bits, characters, bytes, words, segments, blocks, tracks, tape reels, etc. These
words refer to the physically accessible data elements that are recognizable by the

hardware at various levels of accessibility.

Logical structure refers to the named data elements and their relationships.
The named data elements are called items and can be categorized into compound
(structured) items and simple (elementary and/or terminal) items. Compound items
are items made up of other items; that is, they have a nested structure. Simple items
are variables or names of properties or attributes of outside-world elements, They take
data values, that is, they are unstructured fields in the data base which can be characterized
as to type (binary, integer, alphanumeric, etc.) and length (fixed length or variable
length), For example, MANUFACTURER may be the name of a simple item or field
which,in a particular instance, in the data base has the value RCA. Synonomously, one
may say the attribute MANUFACTURER has the value RCA. The outside-world elements
that are described by the declarative data of the data base are messages, events, and/or
objects which form the reasor-for-being of the system and are the main concern of its

users.

The term "data-base' itself can be thought of as the name of the maximum item
of data — theroot of a data structure tree and all its subnames. The date base is composed
of lesser compound items called statements, files, records, and links. A file is a com~
pound statement made up of an arbitrary number of statements called records which have

the same logical structure. That is, a replicated item and its parent are called a record 4

and a file, respectively. A link is an item which refers to another item which is physically

remote, logically imbedded but physically non-imbedded. That is, a limk is a reference

to an item with more than one parent,

In some systems, the term "repeated group' or "repeated set' is used to
refer to files that occur within records. The number of nesting levels of items within
items is logically unlimited and may reflect the hierarchic structure of objects in the
outside world (e.g., assemblies and sub-assemblies of components in equipment and

systems),

In early tape-oriented data processing systems there tended to be a synonymy

hetween logical and physical structure which led to unclear terminology and, unfortunately,

some persistent confusion. For example, records and blocks, and files and tapes were
not distinguished one from the other. Later, the term '"physical record" was used for

block and '"physical file" for tape reel.

;
i
:
H

2.3.3 Directory Terminology

Although the data management system may have directories for other thar
data-base functions (e.g., program and job directories), the primary function of this

paragraph is to discuss direetories used for data access.

The scope of directories differs in different systems, A single directory
(ordered listing) may cover the entire data base (as in RCDMS) or only a single file
(as in IPS). A restricted directory scope may have the effect of requiring additional
qualifying information from the user and a knowledge of the data structure, or files,

in the system,

In addition to their scope, directories differ as to the type and depth of infor-
mation derivable from them, and they are usually categorized in this way. Directories
that are ordered by the names of items are called glossaries, term encoding tables, s
thesauri, term lists, etc. When restricted to terminal items, they may he called

property lists, property rolls, attribute tables, etc,

Directories that supply physical format information are sometimes called
format tables (e.g., IPS). When they supply information on logical structure,they are
called logical indexes, item lists, or item position indexes. To point to specific records

and fields, indexes are ordered by attribute and values.

e : L v ————————

Directory size and growthare dependent on both data structure complexity

and data base size.

Term lists are primarily dependent on data structure complexity or vocabulary
size, while indexes tend to have a base size which is dependent on data structure complexity
and a variable component dependent on data base size. These relationships are summarized
in Figure 2-1. When a data structure has been defined,the directory contains at least
a term list, even w'*h no data in the data base. This accounts for the intercept on the
ordinate of Figure 2-1(b), which shows how the total directory size varies with the data

base size for a fixed data struciure complexity.

2.4 COMPARISON CHART

The aspects of data management systems listed in Paragraph 2.1 were
evaluated for nine systems. A summary of the characteristics of these systems is
given in the Comparison Chart (Figure 2-2) at the end of this section. In order tc
establish more clearly what system aspects were sought, a listing of these factors,

under each chart heading, 19 given below:

2.4.1 User Languages
(1) Job Specification Language:

(a) ~Simplicity of job specification for the user.
(b) The ability to define multi-program jobs and their

parameters.

(2) Query Language:
| (a) Simplicity and format convenience for the user.
(b) Use of English vocabulary.
(c) The ability to integrate query output into other functions.

(d) The ability to specify search criteria of arbitrary logical
complexity.

() The ability to specify format of output and display.
2-8

% DY 8y TN s EFOONE NIy T P s X

Term List Size

All fields indexed
)
8
n
>
=t
3
Q
Q
H
3t Q
C — —— — S — — — p— ﬁ
1 % Few fields indexed
| =
Data Structure Complexity Data Base Size

(a) (b)

Figure 2-1. Directory Size and Growth

2-9

R e o R

(3} Data Description Language:

(a) Ease of entry of new data terms, structurc, and

[ormat into the system.

2.4.2 File Structurc
(1) Directory:
(a) The existence of term dictionary, data structure,

and formalt tables.

_(b) The use of logical (structure defining) codes for

data items,

(2) Data Indexing:
(1) The use of tables of addresses of data items by
names and value,
(b) The ability to index selectively and thereby control

index size.

(3) Data Structure:
(1) The ability to define fixed, variable, and optional items.
(b) The ability to define items which are imbedded (nested)
in a parent item to an arbitrary depth,
(¢} The ability to have a number ol imbedded items at a
given level in the structure of a parent item.
(d) The ability Lo cross relerence, or link, to items having

more than one parent item.,

2-10

2,4.3 Processing Capability

(1)

@

3)

(4)

Search Logic:

(@) The use of logic operators AND, OR, and NOT in
search criteria.

(b) The use of relational operators =, #, < , ete. as part
of search condition terms.

(¢) The use of functiocnal and algebraic Operatbrs in ~

search condition terms.

Data/Directory Maintenance:

(a) System routines for generating and updating data and the
directory.

(b) The ability to process data in on-line and batched modes.

Output Formatting

(a) The existence of flexible output format generators.
(b) Sort routines,

() Generalized statistical routines.

Job Management Services:

The existence of a system executive routine offering the
following services:

(a) User job run control including program linkage.

(b) Program paramecter binding.

(c) 1/0 services.

(d) Stored job descriptions (multiple program job descriptions)
(e) Priority scheduling,

() Lxpandable job repertoirc.

2-11

-

O

2.4.4 Programmer Interface

(1)

()

&)

Procedural Language: The compilers or special

languages provided,

Program/Macro Library: The user-specific

and service routines available.

System Program Library Directory: Storage and

maintenance of program parameter lists.

2.4.5 Response Time

1)
(2)

®)

4)

A A S e b 4 S

/
S‘orage Device: Tapes, Pisc etc.

Search Strategy: Th. use of sequential versus

random access techniques.

Priority Processing: The existence of a quick-

response mode,

Levels of Accessibility: The use of more than one

storage medium, and a file structure to take advantage

of various media of different access times.

2-12

—r
SYSTEMS
RCDMS RECOL ACSI-MATIC AS0 1P8
CHARACTERISTICS
Generalized and/or user-specific Yarjous inventory control Great clrcls distance;
analytical programs proccss routines. Latitude /1 tuder.
ANALYTICAL query output under control of job Arithmetic mean oaly. Nene st
FUNCTIONS specification.
AND, OR, NOT operators; AND, OR, NOT operators; AND operator only, but other AND operator: AND, OR, NOT operstors;
SEARCH =, #,>, <, ranges; “Equal" relational operator operators could be added, =, <, range relations. =, #,<, > relations;
LOGIC Functional operators; Nested only. Functional operators.
querics can search at any level
in the data.
Off-line or on-llne file generatich;! None: Both directory and data On-line updating of both data Automatic malntenance routines: Automatic directory
On-line data and directory up- must be maintained off-line by and divectory; Oft-line file generation. maintenance;
PROCESSING | DATA/DIRECTORY|| gaving; rpecial programs. Generalized updating routines. Data update by user programs.
CAPABILITY MAINTENANCE Generalized updating routines.
Generalized report routine for Records may be merged, sorted | Several different special reports Generalized sort: ry
printer and display; and printed; were avallable: | Query-directed format control. format ca
OUTPUT Eventually, query-directed Formatting is controlled by the Generalized print routine. Fixed repart routines.
FORMATTING format centrol. query language. !
Remote inquiry; Pre-stored job Centralized 1/0 package; Two priority levels, Flle maintenance and query
JOB descriptivng; Parameter binding; Dynamic allocation of core and interrupt and save capability. tasks under coutrol of IPS
MANAGEMENT Job run cortrol; Expandable joh Nome peripheral storage; executive.
SERVICES repertoire; 1/0 provided by Minimum job specification.
environmsot, !
An expandable, user-oriented None (It runs in an operating
JOB Job request language; system)
SPECIFICATION Syntax driven scanrer can process; None None
LANGUAGE vaviety of languages. A system language with a limited 1
repertoire of job commands for i
spacific system and
with a semi-lree query format N
(Not developed) Matural English-like query which uses tage o dc:tl(v Machine-oriented [ixed English-llke query langusge; A stpte, B
Executive routine provides for language; attribute values. {ormat with coded ficlds. Corenient format; and Englil
EEJ%UAGES E‘A’rﬁgﬁAGh interface with query language. Acbitrary degree of nesting for On'~ one named file per query. untutored 8
logical conditions language
Many file.
Data specialist-oriented data i
DATA . languages,
DESCRIPTION User-oriented data formats, None None None Nome
LANGUAGE
Term dictionary; Separate, almple divectory for Term directory; Hierarchic directory of A scparatc term dictionary, Dircctory
Index from structure code to each file, giving format Index fror: structure code to attributes and values. format table, and physical location of]
DIRECTORY logical address; definition tables and ficld names | physical address: index for each file.
Format deffnition tables; {loaded by user at run time). No format definition tables.
Conversion to physical address. |
Optional indexing by value to Optional (ndexing by value to No indexing of
FILE DATA an arbitrary depth; an arbitrary depth. " | field values.
: C i 1 in index. | N Linked st structure.
STRUCTURE INDEXING raosa reference linkage ex cne
Arbitrary nesting; Fixed field and record Data related hievarchically: Single-level | Flexible file structure; Sertal-pa
Unlimited number of nested items;| lengtha. Cross referencing; unstructured data. Unlimited nesting in depth with no ne
DATA Fixed, variable and optional Frozen data structure, since and aumber of items; W0 Cross
STRUCTURE items; uo fcrmat definition tables. Variable length but o~ between il
Cross referenced structure, 1 optional ftems,
JOVIAL; A special ACSI-MATIC , Special problom-oriented No proced
PROCEDURAL CS-1; programming language with | language for (ile maintenance Programs
LANGUAGE TRIM. Not applicable attendant assembler. None \ routines. asscmbly
ralled ' AR
Automatic maintenance Macro library controlled by Syatum contrnlled program Il Bystem controtled macro Program
PROGRAMMER | PROGRAM/MACRO| of dibrary; sssembly program. 1lorary. if library, snd library of under cont:
INTERFACE LIBRARY Expandable program repertolre. None || update routincs. exscutive.
Complete program directory No program directory; Automatic
i\'nzﬁ’:m containing sulficient parametric | Library tape is scanned to programs
ROG] data to permit sutomatic linking 81 Iind aggment associsted with Frequently
LIBRAR of programns as specified by job Hone None ystom maintained, file being procesmed. be aaved.
DIRECTORY description.
Auxiliary core; Not more than one magnetic Disc:
STORAGE High-apeed drum; tape reel for each file. Disc-simulsted magnetic tape. Dise
DEVICE Din Muiti-resl magnelic tape.
Disc-simulated magnetic tape,
Optimized, directory-driven Linear search through & serial Direotory-driven random acceas | Combined indox and 1 Linear search through a Linear s¢
SEARCH rundom 40 se8 search strategy file using » singlo, gencralized | wearch strategy using & list-typs | serial sosrch, sarial file using & aingle, paraliel d
STRATEQY ueing i erted st structures soarch routine. structure, Keneralized soarch routine,
RESPONSE
TIME
Priority job processing con- None {(sxcept that provided Priority pi
PRICITY trolted by facility management Two-level priort by operating system environ- r\‘ﬁ!lrllﬁ L
o 'wo-level priority, . .
PROCESSING and users Querien may be batcied. None vel priority. ment) ove
Multi-level nocesaibility on disc: | Single lsvel on maguetic Two levels on disc and
Tape bavk: tape, magnetio wpe.
kg:;‘;SLTY Fant w068es ayater drum and be Bingle levol on diec. Bingle level on tape. Single leve
d system core.
ot TS A SO A VRS e . - o .

merg|

controtl

COL

ACSI-MATIC

AS0O

473L

COLINGO

LUCID

ADAM

Various inventory control

Great circle distance;

Great circle distance;

Mathematical and logical

8um and arithmetic mean, as

Analytical functions cen be

routines, Latitudo/longitude. Sums; operations under control of the part of query. accommodated when defined

an only. None Maximum/minimum values. query language. ‘as part of & system being

evaluated by ADAM.

operators; AND operator only, but other AND operator: AND, OR, NOT operators; AND, OR operstors; AND, OR operators; AND, NR, NOT operators; Handles general search
onal cperator operators could be added. =, <, range relations, =, 4,< . >relations; =,> , < relations; =, >, <relations; =, J; >, <, relations. criteria sa specified by user.
Functional cperators. Functional operators; Search at any level;
No nesting. Functions! operatora require
two passes of tile.
ectory and data On-line updating of both data routincs; director: ;
n 4 v Data maintenance performed Automatic oystem msintenance Changes to data base Off-line data generaticn;

3 n.«l off-ilne by and dire tory; Off-line file generation, maintenance; by special service programs. description require a complete Automatie directory

Generalized updating routines.

Data update by user programs.

Toutines for both directory and
data.

recompilation.

matintensace of structure
(name) changes.

merged, sorted
controlled by the

Several different special reports
were available;
Generalized print routine.

Fixed report routines.

Generalized sert:

Query-directed format control.

Query-directed sort and
format control.

Report generators;
Sort routine.

Generalized output fazilitics
{or console display and
printing.

Output control provided;
Output routines ars user
provided.

Centralized 1/0 package;
Dynamic allocation of core and
peripheral storage:

Minimum job specification.

Two priority levels,
interrupt and save capability.

File maintenance and query
tasks under contrel of IPS
executive.

Remote inquiry;
1/0 package.

Excculive roatine executes

No current provision for

control language

user
analytical programs against
data bare,

Job run control provided;
Entire Job must exist in core.
Remote inquizy.

~like query

of nesting for

A system language with a limited
repettoire of job commands for
spevific system , and

Nonc (It runs in an operating
system).

No separate job language;
Jobg are initiated by query.

User job and query functiona
defined and initiated with a control

with a sem!-free query {ormat
which uses tags to identify
attribute values,

Machine-oriented fixed
format with coded fields.

English-like query language;
Convenient format;

Only one named file per query.

A simple, uniform punctuation
and English-like syntax for
untutored uscrs; A more powerful,
language for complex queries;
Many files per query.

A two-level query structure
for simple or complex queries.

ADAM transtator accepts
user ~defined language.

An English-like language with
a convenient user format.

Automatic translution of
user~-defined query language.
Execution of query follows

None

Nonc

COBOL-type data
description language.

User-orientéd dats.
formats.

ADAM translator accepts
user-defined language.

e directory for
format
and fleld names

Term directory;
Index frowm structure code to
physical address;

Hierarchic directory of
atiributes and values.

A separate term dictlonary,
format table, and physical
index for each file.

Directory to the name and
tocation of cach file,

File directory giving name,
location, and format of
system files,

Concordance dictionary
with complete cross
relerence of data values.

Term dictlonary;
Logical namz to phystcal
location indexing;

at run time). No format definition tables, Format definition tables.
Optional indexing by value to No {ndexing of Complete indexing by To first Jevel by nanie
an arbitrary depth. || flold velues. data values, only.
Linked list structure. None None N
record Data related hierarchically; Single-level || Frexibic fite structure; Serfal-paratlel data storage, Two-level data structure; Nou implied atructure to data base; | Arbitrary depth of nesting:
Cross referencing; unstructured data. Unlimited nesting in depth with no nesting of files ond Onc nested item with up to No embedded structure in con- Unlimited number of neated
Froten data structure, since and number of liems; no cross referencing of data 14 records, cordance; itoms (rcpeat groups):
no format definition tables. | variable longth but no between files, Subacquent organization into Fixed and variablo items.
optional items. two levels.
A gpecial ACSI-MATIC | Srecial problem-oriented No procedural language;
programming language with language for file malntenanco Programs coded in 3 basic
attendant assembler. None ‘| routincs. assembly language COBOL, JOVIAL;: FAP. FORTRAN: DAMSEL,.
| called LAP,
Macro library controtled by System controlled program i| Bystem controlled macra Program and macro library Program/macro library Systein programs In Macro library;
assembly program. llbrary. if itbrary, and ltbrary of under control of the system maintained by system. tibrary with no automatic Service routines.
update routines. executive, maintenance.
| No program directory; Automatic assignment of
| Library tape is scanned to programa to satialy quevrlos;
Nooe Systom maintatned, find segment uasociated with Frequently used querios can System maintained, Nowe in pilot version. Complier controlled,
{ile being proceased. be aaved.
anguetic Disc; Programs on disc;
h file. Disc-simulated magnetic tape, Dise Data ff on magmetic tape;
Multi-resl magnotic tape. Disc, Some data on disc. High-speed drum; Tapes, Disc; Magnotic tape.
a gorial Dirsctory=driven random access Combined index and ‘| Linear search theough a Linenr sesrch of serial- Linesr soarch througha Random accoss search andom sce to named item;

e, generalized

search strategy using a list-type
struoturo,

serial search,

sorial file using & single,
gonoralized search routine.

parallel dats on random access,

seriat file using » uingle,
generalized soarch routine.

stratogy using concordance;
No linoar search roquired,

Sequential search for
specific criterla,

batched.

None

Two-level prioeity,

None (except \hat provided
by operating syntem environ-
ment).

Priority processing by
program categery, three
levels.

None

None In ptlot version.

Priority job processing
controlled by facility
management and users.

Two levels on digo and
magnetic tape.

Single level an disc.

Ringle lovet on tape.

Singtc level on disc,

Two levels,

Disc for programs and
high priority data,
Tapee for muat data.

Directories on drum;
Datn o tapes,

User deflovd.

2-13

Euuro 2-4, Compariston Chart

e TR R R . TR

SECTION IIl. DESCRIPTION OF THE RELIABILITY
CENTRAL DATA MANAGEMENT SUBSYSTEM

OBJECTIVES OF THE RELIABILITY CENTRAL

The Reliability Central Data Management Subsystem (RCDMS) is that part of the

Reliability Central which handles ail reliability data to be processed by electronic means.

To understand the objectives of RCDMS, it is important first to understand the objectives

of the Reliability Central as a whole, These objectives are listed below in terms of the

functions assigned to the Reliability Central:

Mission — The Reliability Central will serve the Air Force

@

as the central management activity for the control of reliability

information, with the objective of improving the reliability of

Air Force equipment,

Data Management — The Reliability Central will provide a

repository of reliability information which will include

validated manufacturers’ reliability data, acceptance test

data and field evaluatipns of parts used, and expected to be

used, in Air Force systems, The responsibility of managing

the repository will include acquisition, validation, reduction,

correlation, analysis, storage, and dissemination of the

reliability data.

(3) Analysis — The repository of the Reliability Central, will

not only contain raw test data déscribing parts reliability,

but it will also contain summaries and analyses of the data

stored in the forms most convenient for the users of the

Reliability Central. The Reliability Central will analyze

3-1

(4)

data at the time of conversion from raw form to summary
form, and it will also perform analyses on a demand hasis
in conjunction with queries initiated hy users of the system.
The system will be designed so that a single.analysis can he

made from data which resides in several dillerent [iles.

Dissemination — The Reliability Central will disseminate

the data on both an automatic and demand hasis to System
Project Officers, contractors, subcontractors, and other
authorized users. Automatic dissemination will be in the
form of predefined reports issued periodically on all aspects
of reliability qualification, part design, selection, test, and
application. Demand dissemination will be in the form of
specific responses to queries which can have an arbitrary

logical complexity.

Maintenance — The Reliability Central will provide for the

maintenance of the data base in a fashion sufficiently flexible

and dynamic to permit the creation of new file structures from

old data with minimum cost and delay. Therc will be many

kinds of files, each with its own structure., The ultimate goal

is that the system will be responsive to changes in usage habits

so that the system can be self-adjusting. The adjustment would
consist ol an automatic restructuring of any file to make it better
suited for anticipated usage in the future. There are no constraints

on the format, structure, or content ol new infornution to he added

to the data base. New information must be able to be added
by creating new files or records in the data base or by

incorporating new information in existing data structures.

(6) ery Access — The Reliability Central will stress the
importance of giving the user convenient access to the data
in two ways. First, the user will be permitted to state his
query in a manner which is simple and which requires no
knowledge about the operation of e system. Second, the
user will be given the choice of having almost immediate
access to the data or of having his query processed on a
scheduled basis. Ultimately, the design will permit the user
to state in his query the analytical functions to be carried out

on the data retrieved in response to his query.

3.2 CHARACTERISTICS OF THE DATA BASE

A description of the data base to be managed by the Reliability Central Data
Management Subsystem will give the reader a better understanding of the objectives and
functions of RCDMS. The specific structure of the data base cannot be described because
it will be evolutionary and will depend on the needs of the users. The general nature can
be described, however, and is set forth below in terms of size and structure. Detailed
treatment of the file structure design is available in AUERBACH Technical Report,
1193-TR-2, produced under AF contract AF30(602)3433,

3.2.1 Data Base Size

The design places no restriction on the ultimate size of the data base. The
Reliability Central Data Management Subsystem 1s designed to accommodate an interim
operation called the Test Operation. The Test Operation will include all the basic

system functions and a large part of the ultimate data base.
3-3

The size of the data base fdr the Test Operation is estimated to be up to 440
million characters, of which 400 million characters are expected to be raw data and
40 million characters are expected to be summary data. In addition, there will be an
estimated need for at least 20 percent of the data base to store the directories which
control the data base. If an extensive depth of individual field indexing is called for, the

storage requirement for directories could expand substantially.

3.2,2 Data Base Structure

The data in the data base will require varying degrees of accessibility. The
raw reliability data resulting from manufacturers' tests, acceptance tests,and field
tests will be accessed relatively infrequently. After the data has been analyzed and
reduced, it will be retained in test summary form and will be accessed more frequently.
The most frequently used data will be placed in component summaries. It is anticipated
that the component summaries will be arranged by major component type (e.g., transistor),
generic class code or IDEP number (e.g., silicon, NPN, power), manufacturer's process
family (e.g., Fairchild Type 100), and part number (e.g., 2N1605). This general
arrangement will have a number of variations depending on the type of data being

retained and on the use to which it is being put.

3.3 DESIGN OBJECTIVES OF THE DATA MANAGEMENT SUBSYSTEM

The general objective of RCDMS is to provide the Reliability Central with
the data management capabilities outlined below. Since the Reliability Central will be
an operational rather than a research facility, it is imperative that the objectives of
RCDMS remain pragmatic rather than take on a speculative tone. In order tc meet
overall Reliability Central objectives, the RCDMS designers have had to incorporate
many general-purpose data nenagement concepts. As & result, when the
design is implemented,it will nct only serve the Reliability Central effectively and
efficiently but it should be equally applicable to a variety of other problems which

require management of a large data base.
3-4

RCDMS is designed to meet th2 [ollowing specific objectives:

3.3.1 Convenience to the User

The overriding theme of RCDMS is that it be a service tool to a multitude
of different users who must be accommodated quickly, effectively, and inexpensively.

This theme permeates all of the design objectives below.

It is assumed thét the types of users will range from those who know nothing
about the system (and who wish to use it without learning more) to those who understand
the system well (and who wish to manipulate its inner workings to their advantage).
Consequently, the system will have a convenient, user-oriented language which shields
some users from the complexities of the system. On the other hand, the system will
be sufficiently flexible (and well documentad) to permit the knowledgeable user to exploit

facilities of the system in order to achieve more than the usual results,

3.3.2 Capability

A suhsystem design must be capable ofv meeting the objectives of the system
as a whole. The RCDMS objectives for a capability which meets the Reliability Central

objectives are discussed below:

(1) Job Specification — The system wi'l have the capability of

storing both generalized system programs and specialized

user programs so that they can be called upon by a user to

be run in the sequence he desires. This job specification
capability should be effected by means of a command language
which is both easy to use and compreuensive in its ability

to specify jobs. Each job will be checked out to the fullest
extent possible at the time of storing so that the system can
assure the maximum probability that a job will run successfully

when it is called.
3-5

(2) File Structure — The system does not specify or imply a
data structure constrained by the nature of the system's
design, but will provide a framework for building any
reasonable logical data structure decired by the user.

A data description language wiil be provided which is
easy to use and which permits specification of any data

to be included in the data base in a logical and consistent
manner. The system design will provide for a wide
variety of files, each with its own data structure. The
records of the files may contain such varied data items
as variable length fields, embedded files, linked files,
optional fields, and the like. The system will also be
able to convert a structure from one form to another,

at the direction of the data base management staff.
Regardless of the file structure in existence at any one
time, the totality of the data base is accessible to the user

for retrieval of any elements specified in a query statement.

(3) Query Language — RCDMS is being designed to incorporate

user--oriented query languages or other uscr-specified
languages. It achieves this capability by utilizing an input
interpreter which is driven by a syntax table, RCDMS
provides the basic capability of handling conditional
gearches of arbitrary logical complexity, in anticipation
of the query language. RCDMS design provides for an
interface with the anticipated query language through a
flexible interface among the query language, the search

s’rategy system, and the RCDMS supervisor,

3-6

PO Y R S B g

O v s gt a0

Compatibility With Environment — RCDMS will be operating

at least during the Test Operation on the Rome Air Develop-
ment Center computer complex in Rome, New York. It is
designed to interface with, and take full advantage of, the

RADC Executive Control System,

3.3.3 Adaptability

All systems exist in an environment of change. The systems that adapt are
those that continue to give useful service. Rigid systems soon outlive their usefulness,

and are replaced. Several-adaptive aspects of RCDMS are discussed below:

(1) Modular Design — The design of RCDMS is modular in

concept s that it can ve expanded with minimum cost and
effort. The initiai implementation of the design will be for
the Test Operation which is an interim operation involving
the basic operation of the system without full capacity or
full capability. At a later time, the size of the data base
will be increased and the capability of the system will be
extended. The design provides for incremental growth of
the data base and the capability and functions of the system,
without the need to redesign and reprogram the initially

implemented basic elements of the system.

Restructuring of Data — It is anticipated that the needs of

i
%

the reliability specialists and contractors using the system
will change and expand, thereby requiring dynamic changes

in the structure of the data hase in order to maintain operational

Y MR o . e 4. P e

cffectiveness. In response to a user command, RCDMS

will be able to extract data from its existing logical structure

and rearrange il into a structure more suitable to current

use. [Furthermore, the sysiem will retain statistics on

data usage so that it will be able to respond automatically

to significant changes in usage patterns, and will be able to
assist the data management personnel in changing data structure.
It is conceivable that ultimately the system will be able to analyze
the new usage need, formulate its own request for the change

in data structure, and execute the change automatically, how-

ever this is not an initial design objective.

General Purpose — The primary responsibility of the RCDMS

is to manage the data base and processing functions of the

Reliability Central. lowever, the RCDMS design will be

able to manage many kinds of data bases and functions,

following its initial application in the Reliability Central.

As previously noted, no truly general-purpose data
management system has hitherto been implemented for pro-
duction operation, cven though the need for data imanagement
is pressing in most branches of the Government. The
Reliability Central hopes to make a signilicant contribution

beyond the prescnt state of the art in this aren,

R B B N Y e O I I e e A S b o+

3.3.4 Cost
The reduction of cost is a major objective in all system design. Since the

Reliability Central is an operational rather than a research facility, cost takes on

added importance. There are two large areas of potential cost reduction in RCDMS:

(1) Implementation Cost — The RCDMS design will consist of a large

number of generalized task subroutines. Many subroutines will be
suitable for use in several parts of the system under varying
circumstances. This multiple utilization of subroutines will

tend to result in a reduction in programming cost during the
implementation stage. A further cost reduction should result
from the moduiar design. When the system is expanded from

the Test Operation capability to the ultimate system capability,
the modular design should provide a stable foundation to which

new functions can be added with minimum cost.

Operating Cost — By making RCDMS job-oriented (as

described in Paragraph 3. 3.2 (1) above), the cost of
operating the system should be reduced significantly
because new jobs can be initiated with relatively little

new programming.

If all of the system functions are performed by generalized

programs that can be linked together in many combinations

the user is required to program only the special functions
associated with his particular need. RCDMS would serve
these special functions in a supporting role with no need

for costly reprogramming of the system,

3-9

3.3.5 Response Time

In line with the objective of giving maximum convenience to the user, RCDMS
is designed to communicate its “esults hack to the user at the earliest possible moment,
consistent with reasonable cost. The design objective of RCDMS is to provide the fastest

response time possible with the stat> of the art bv means of console access. Many questions

and jobs directed toward the data base will require a r: ;id response for the information to
be entirely useful. In addition, experience has showr {Lat vaeries become more effective
if the user is provided with immediate feedb~ck. "™he user has the ppportunity to improve
the query by modifying it. Where schedulc 1 outputs ave called for which require stepping
through the data base in an orderly manner, the system also provides facilities for stepping

through the data using techniques which minimize directory search.

To achieve the system speed and balance commensurate with the concept of

console access, RCDMS is designed to meet the following objectives:

(1) Random Access — Effective console access demands

random access to the data base. The advantages of
console access can be quickly vitiated if the system
must take the time to perform a linear search through
a serial data store, such as 2 magnetic tupe, while the

user waits at the console.

(2) Data Indexing — Random access storage, in turn, demands
a powerful data indexing scheme in order to reap the full
processing potential from the storage medium. If a
restrictive data indexing scheme is employed, an in-
appropriate portion of time is spent to access data,

therchy increasing response time and cost. RCDMS

3-10

BRI v s - - S e O PSR o R

(3)

)

P

employs a data indexing scheme which permits the system
to retrieve from storage oniy those data items that meet
the exact criteria of the query or search regardless of the
distribution of the indexed data sought among the files

comprising the data base.

Levels of Accessibility — A corollary to the problem of

logical access optimization is the problem of physical
accessibility of the data. A large computer facility,

such as the RADC complex, normally employs several
levels of storage media — each with its own access speed.
To reduce overall response time, it is important to allocate
frequently accessed data to the storage medium with the
fastest access time, RCDMS will record the access
frequency of various data groups, and transmit this
information to the RADC complex executive system in

a manner compatible with the complex, to guide the

physical location of data.

Priority Proces3ing — Some queries or jobs are more
important than others. A set of priorities will be established
by data munagement personnel. Ultimately, RCDMS will be
designed to recognize the priorities and to stack the queries
or jobs according to their priority, The RCDMS design is
consistent with a processing capability which organizes
requests for parallel processing of queries with like priority,

and can poss<ss this capability itself, if the system is modified,

3-11

CHARACTERISTICS OF THE DATA MANAGEMENT SUBSYSTEM

The Reliability Central Data Management Subsystem has been designed with
sufficient flexibility to handie many types of data in addition to reliability data., The
principal chiective of the system, however, is to provide a framework within which
reliability data may be analyzed, evaluated, summarized, and stored in such a way that
it may be retrieved easily and quickly by reliability specialists. Two of the system

elements required to perform this function are the common data base and the five user

job request types with their attendant programs. The other system elements are the

directories which point to the data, the system programs which use the directories to

manipulate the data, and the Supervisor program which controls the entire Reliability

Central Data Management Subsystem,

This section summarizes the functions of the five system elements in order to
illustrate how they work together. More detailed information on the subject can be found

in Volume I of this Final Report, specifically in Sections V and VI,

3.4.1 Common Data Base

Since reliability data is the basic element, or resource, of the Reliability
Central Data Management Subsystem, the fundamental strategy of the system is to retain
the data in as flexible and accessible a form as possible. The RCDMS data description
language not only permits the use of variable length fields and optional items, but it also
permits nested structures such as the nesting of a variable length file within a record of
another file. Another feature is the ability to logically link to items that are stored
physically with other generically related items, so that a given item may pe part of
more than one parent item, in the sense of a lattice-type hierarchy, These links are kept
in the RCDMS directory so that the identity of all items to be retrieved is known before any

data access is made, and no access need be made to the parent data which originates the link.

3-12

The data itself will be either in random access or in magnetic tape storage

under the control of the Local Control Program (LCP) of the RCDMS computer and
Executive Control Program (ECP) of the RADC EDP Complex. A preference for one
medium or the other may be stated by RCDMS. Since the ECP can change the physical
location of the data without having to notify RCDMS, data will be requested by means of

a logical name which will not change in spite of any physical data movement.

The logical name of a data item is derived from the relative position of the

item within the structure of the data base. A unique code may be created for each item
in the data base. The logical code is a numeric representation of the nodes in the multi-
list tree structure of the data base, and is called the Item Position Code. Figure 3-1
shows a hypothetical part of the Reliability Central data base. The data items are in-
dicated as branches off a central stem. FEach branch is numbered, in relation to other
branches. A file contains records, or repeated items, which can represent an indefinite

number of ".. inches. Each node has its own ccde.

RCDPMS supplies a standard language for defining the logical structure of data
in the commeon datz base., The language is supplied in two versions. The first is a
simpl.‘ied version which uses an indented outline type structure on a standard form to
signify the reiationsiips between data items and subitems. The second is a more
complex version which uses a formal parenthetic punctuation to signify data class
relationsiups. This cersion is intended for those users who have more knowledge
of the system, and wio wish to use a linear parenthetic string input rather than a
columnar puge forimat, (The system may make a translation fronm the simple to the

complex version mternally before using it for processing.)

(reuonndo)
eydlv

pIooey
jurod 3189,

o[ld ®IE(189 uoyoung DAN

paoooy Afiure g

paoosy epoid
u

| eng epoia |

(¢) Tomuo)
SoUBUSIUTEN

ordwiexq 2IMONIIg 994 °I-¢ 2In3dig

Fequuny T 9vyaz1
jxed adAy DIN

oavy

880001 HAN
qa
€ ¥9'z'1) (T9g21)
888D sngAnueq uonoung [RIIMEN OpoOlW
8890014 DAN
18¥]
omeN
jueudeg
pIooey
J0}818URL],
H

E1ueD
Amaerey

xopuy a[qeL
uonysod Suypooumy
wegf ULIO],

80110399315Q

314

e e o B

In addition to the standard language, RCDMS has the capability of translating

and understanding 2. data description (or other command) language which the user himself

has created. . -i~er can specify the syntactical and semantic rules which are appropriate
for his mic: . % an inform the system of these rules by means of action graphs
(which must *" .- ..;iled with the system), The system uses the action graphs to control

its scan of the user's input, and the system actions specified by the user are taken at the

appropriate time.

3.4.2 Directories

RCDMS provides the user with a definitive data description language which

v
iR S SR SRR IR RN SRR RS

permits him to specify a very wide range of data structures. 'The structural description
of the data is implemented by means of the RCDMS directories, which tie the system to
the data base. By giving the user a flexible language for defining the data logically,

isolated from the problems of handling the data physically, RCDMS achieves a new level

of generality.

The reliability data can be recalled to core memory only by means of system
directories. A function of the directories is to translate the names of data items, first,
into logical codes which describe the relative or logical positions of the items, and,
gecond, into the name of the segment which can be used by the RADC Local Control
Program (LCP) to fetch the data. A segment is a block of 1024 M1218 words, equivalent
to three blocks of 512, 12-bit words, used as the RADC data transfer standard. All
system functions of file maintenance and retrieval depend on the directories to locate
the desired data and to describe it once it has been found. There are four main directories
to thc system., Most of the directories will be quite large and will themselves be kept in
random access storage, thereby requiring their own small subsidiary directory in core

to permit fast access to the main directories by the system.

3-15

e emseta s et i it

Figure 3-2 shows what each directory requires as input, and waat each is

designed to provide.

(1
(2)

(3)

(4)

There are several funetions of the data directories:

They are utilized to focus in on the data;

They are utilized to give a description of the data
in the record (e.g., whether the data is a floating
point or an alphanuineric aumber);

They are utilized to permit extraction of the data:

They contain the index values for the data items so

that searches can be performed within the directories

‘without having to access the data until the end of the

search, when only the correct data items are drawn

from storage.

The description given by the directories is general in nature so that many

types of file structures are permitted and the programs that operate upon the directories

do so in a general manner.

(1)

Term Encoding Table — The basic function of the Term

Encoding Table is to convert the name of a data item from

its alphanumeric input form to a coded form which describes
the logical position of the item in the data structure. The
coded form, called an Item Class Code (ICC), consists of
integers which represent the nodes on the tree structure
describing the data, For example, the ICC for the Transistor
File in Figure 3-1 would be 1,2, The code may be derived in
reverse by tracing the nodes back through the tree siructure
to the root. Thus, the Transistor File is the second node of

the first node, or 1, 2.

3-16

. Field . Index

J\

INPUT TABLE

item
Name
(Term)

OUTPUT .

——s» Item Class Code (ICC)

ICC ——an lem
Position

Values

| — > Item Position Code (IPC)
——» Item Name

——@» Item Type

Segment
Name
List

IPC

Segment

IPC Index

;——-’ Fixed Field Length

——a» RADC Segment Name

o Data Item

Figure 3=2, Directury Inputs and Outputs

When a node is a file, it may contain any number of
records, each of which is a subordinate node, This

class of nodes is represented by the letter R in the ICCs

for items within a record. For instance, the field called
TYPE in Figure 3-1 would have an ICC of 1.2.R.1. Vhen

a series of files are nested within the records of other files,
several Rs can be contained in one ICC, such as the fields
of Test Point Record in Figure 3-1. The ICC in this case
is not unique to any one item, but it describes a class of
items within the files; hence the name: Item Class Code

(ICC).

A given term will have more than one ICC associated with it
if it is used more than once in the J::a structure, This
would be the case if TYPE were the name of a field in both
the Transistor File and the Diode File, Part of the program
function will be to resolve such ambigaities, using qualifying

context or names.

Item Position Index — The Item Class Code must be

converted into a unique code by supplying values for the
R's before a specific item can be retrieved from random
access storage. The conversion is performed by the Item

Position Index, which is arranged by ICC and contains all of

the values by which certain data items have been indexed.

When the ICC has been changed into a unique <et of integers

wiith no R values, it is called an Item Position Corle (IPC).

¢ e

The Item Position Index has two alternate ways of creating

an IPC. First, it can allow a program to generate a series

of successive R values for an ICC,which creates a series of
IPCs and permits the system to step through a file one record
at a time. Second, it can provide the one R value for the unique
IPC which points to .he record satisfying some search criteria

(by means of field value and R-val ¢ index tables).

The Item Position Index supplies other information descrip-

tive of the data, such as the Item Type. The item may be
specified as either a required or optional statement, file,
record, cr field. If the item is a field, it is specified either as
a fixed or variable length field. The length of fixed fields

is also specified. The Item Type also describes whether

the data is floating or fixed point, alphanumeric, or other

mode,

A vital function of the Item Position Index is to retain

indexing data. This data corresponds to the addresses

of data items which have certain indexed values. Since

logical addresses are being used instead of physical addresses,
the RCDMS design can retain the address in a very small space,
often as little as one digit. The powe™ of these indexes comes in-
to play when complex searches for data items can be accomplished
without making any unnecessary accesses to peripheral storage.

The Item Position index can retain index data to any desired level,

3-19

-
g Vgt s <

Frequently accessed data can be more fully indexed,

for instance, than data which is needed less frequently.
This flexibility permits the personnel operating the

Reliability Central to specify the level of indexing which

will produce the minimum expense in the. trade-off between

storage cost for the index data and accessing cost for

retrieving unindexed data.

Another function of the Item Position Index is to retain
the statistical tallies of data usage since all usage must
pass through the Item Position Index. It is from these
tallies that the need for data restructuring will become
evident, The restructuring will be done by reliability
specialists in the beginning. Ultimately it is hoped that

the system will perform its own restructuring. The

tallies are also used to communicate the frequency of
usage to the data base manager of the RADC complex to
indicate where the data should be stored physically in

terms of accessibility.

When the Item Class Code has been converted into a

specific ltem Position Code, it is ready for further

conversion into the name of a specific segment of data

which contains the item.,

3)

(4)

Segment Name List — An Item Position Code is a code for

a unique data item. It embodies sufficient information to be
able to call for its \appropriate data segment, which

is a section of the data base with 1024 18-bit words. De-
termining the name of the segment to be called is the task
of the Segment Name List. When the name has been
determined, it is given to the Local Control Program

(LCP) along with a request for the segment, and the LCP
retrieves the segment from peripheral storage placing it

in a prescribed input area in core memory where the exact

data item can be located.

Segment Index — The final step in retriéving a data item

is taken with the aid of the Segment Index. Each segment

of data begins with a Segment Index which points to the

data items contained in the segment. The Segment Index
uses the IPC and auxiliary information from the Item Position
Index to find its way to the desired item. At this point, there
are several things which may be done with the data. The
item may simply be retrieved, it may ho deleted from the
segment, or it may be used as a foundation upon which to

add new data items to the file.

3.4.3 Job Specification

A job is defined as a sequence of program tasks that accomplishes some

desired user action. The Relinhility Central Data Management Subsystem is designed

3-21

to perform a variety of different jobs with a minimum of programming through the use
of many generalized programs. The user will be able to call on these programs in the
sequence he desires. It is this aspect which gives RCDMS much of its general purpose
nature. The user accomplishes this variety of uses by means of a Job Request. The
Job Requests perform the functions of item definition, data entry, program entry, job

entry, and job running, The first four Job Request types perform system maintenance

functions. The fifth Job Request type permits the user to run jobs of his own on the

system, A standard command lai;juage is provided for the user to specify each job he
wishes accomplished. An additional feature of RCDMS is that the user can also request
creation of his own command language, using syntactical and semantic rules which are

more closely associated with his mission than is the standard language.

Job specification affords both a dynamic and modular expansion to RCDMS,
As to the data base, new data can be added in batches or on-line, with few constraints
on the type of data. As to the system functions, modular additions can be made which

incorporate new task-oriented programs. The Job Request types are summarized below:

(1) Item Definition Request — The logical structure of the

data base can be altered through an Item Definition Request.
An alteration is made in the directory entry which describes
the relationship of the data item to the data base. Possible
alterations include the addition or deletion of data items such

as statements files, records, or fields.

Data Entry Request — Data may be added or deleted by

issuing a Data Entry Request. This type of request would

normally be used for transactions where the data in the data

base does not have to be examined in order to complete

the transaction. More complex transactions may be

effected by combining the Job Entry Request and Job

Run Request described below. Data rmay be entered by
means of a console or by magnetic tape. The data may be
in the internal format of the system, or it may be in the

external format of the data description language.

Program Entry Request — Descriptions of programs are

entered into the system with the Program Entry Request.
The programs and the descriptions of their parameters

are given a unique name and are placed in the Program
Description List, where they are on call for the execution
of jobs at a later time. Program Descriptions are used for
checking purposes to be certain that subsequent jobs, which
call on the programs do so correctly and with the proper

parameter specifications.

Job Entry Request — The Job Entry Request is used to

bring a Job Description into the system. A Job Description
specifies the programs to be run for a job, and the sequence
for running the programs. Any predetermined program
parameters for the job may also be entered hy this means.
A Job Description is usually entered for a job which is run

frequently, so that the job does not have to be specified each

time it is run. A Job Entry Request causes a Job Description
to be stored so that it may be called later by a Job Run Request.
Job Descriptions are checked carefully by the system upon entry)
to be certain that they are compatible with the requirements of

the programs they use.

(5) Job Run Request — A Job Run Request asks for a particular

job to be run, The job must have been described previously i
in a Job Description by means of a Job Entry Request. If the
Job Description specifies all parameters, the Job Run Request
can be as brief as {o simply identify the job name to be run.

However, if the Job Description refers to several programs

requiring parameters which have not been pre-assigned in

the Job Description, the Job Run Request must specify these

parameters in detail. -

3.4.4 Supervisor Program

The Reliability Central Data Processing Subsystem derives its primary
control from the Supervisor Program. A graphic representation of the Supervisor Program
may be seen in Figure 3-3. The Supervisor Program is subservient to a Local Control
Program (LCP) which in turn is subservient to the RADC Executive Control Program (ECP),
The ECP supplies all inputs and receives all outputs through the Local Control Program

(LCP).

(1) Job Request Processor — The portion of the Supervisor

Program which receives all Job Requests froin the user is

3-24

JOBLY
BjRq

il
uodiaosa(d
weaxdoad

weidoid 1osiagadng °g-€ 2andrg

19jsuUel], [OINU0D @——-—

19Jsued] UoTIEW IO --—

!

JodeueN

qop

"

mﬁo%ﬁ oyyroadg
— 19jowreIed

/4

X0SS9001d
ysel

puada

1811
vondiaosaQg
qof

1811
NSTL
108890014
. e ——— —— 1sanbay qop
‘uoryEo1yIoads — ~
o1suUXF qOp swexdoxd

ooy 0avVd

18 w.aom
qor

5-25

called the Job Request Processor. The first function of

the Job Request Processor is to interpret the Job Request

and determine which job is to be done. The Input Scanner,
a subroutine in the Job Request Processor, plays a large
part in this by analyzing the syntax and meaning of the

Job Request. The Input Scanner is driven by a table called

an Action Graph which specifies the syntax of the input

o S il 4

language and the actions to be taken by the Input Scanner.

New user languages can be introduced into the system by

s

preparing new action graphs for the Input Scanner., This
capability permits system specialists to make evolutionary
changes in the user language without having to reprogram

the Input Scanner, *

The Job Description which matches the job Request is .
fetched from the Job Description List. The Job Descriptiou

is comprised of the program names required to do the job,

along with the sequence of the programs and any prescribed

program parameters. The parameter values which have been

presented to the system by the Job Request are used to bind

the remaining unbound parameters in the Job Deseription.

The program indormation in the Job Description is formatted

on the Task List and is forwarded, along with program control,

to the Job Manager.

(2) Job Manager — The Job Manager is responsible for putting

the job together and seeing that it runs accurding to specifications.

3-26

The Job Manager calls those programs which are given in the
Task List, and gives them the required parameters from the
Task List or from previous programs. The Job Manager
continues to monitor the job untii all tasks are completed.

During this time, new tasks may bhe created by the Task

Processor in the form of a Job Extension. When this occurs,
new tasks are passed back to the Jok: Request Processor for

inclusion on the Task List, and the cycle repeats itself.

For example, a query job may call for a query transliation

and the query translation program may use a job extension
when it has established the programs and parameters needed

to execute the query.

Task Processor — A task processor may be any of the

job programs in the system, and it is responsible for
performing the useful processing in the system. The

job programs are executed under their own control, In
addition, all accesses to peripheral storage through the
LCP for the processing of the job itself are controlled

by the task processors or job programs. Reference is
made back to the Job Manager when the task is completed,
when an unsolvable error condition occurs, or when a new

task is encountered which requires an additional program.

3.4.5 System Programs

The programs in the system consist of two types:

(1) System-oriented programs are relatively stable, aund

provide the basic framework for processing data and for

3-27

implementing other programs. They constitute the underlying
programming foundation upon which all other systems tasks
are based. Examples of system-oriented programs are those
which scan input data, which access and manipulate system
directories, which locate data in the data base, and which do

routine jobs such as sorting and merging.

(2) Task-oriented programs are components of user jobs. They

use the system-oriented programs to help them accomplish
the tasks required of the Reliability Central users, The
task-oriented programs are less stable in that they may be
changed to suit the neeus of an evolving task or the user,

and may be added to or deleted from with much less effect

on the system than the system-oriented programs. Examples
of task-oriented programs are those which summarize and
analyze reliability data, those which generate specialized

reports, etc.

The two types of programs are combined by a Job Description and work
together to accomplish useful work., The data manager or reliability specialist respon-
sible for accomplishing a task creates a Job Description through a Job Entry Request.
Although many system-oriented programs concern themselves with system maintenance

only, many others can be used as subroutines in user-oriented prograins.

The use of the two program types may be illustrated by the following example.
A reliability specialist may wish to extract some prescribed fields of data from a
permanent file in order to build a temporary file more suited to his purposes. He may

plan to perform a series of analyses on the new file and huve the results reported in a

3-28

certain order and format. The specialist would issue a set of Job Entry Requests to pro-
duce the necessary Job Descriptions to tell the system what to do. The Job Descriptions
would consist of a list naming both system-oriented and task-oriented programs. The
system-oriented programs would scan the inputs which have been written in a user
language, locate and extract data from the old file, construct the new file structure, and
extract from the new file those data items desired by the analysis routines., If a generalized
report generator were used, it too would be system-oriented in that it would be available

to all system users. The task-criented programs would permit the system to select the
data according to the Boolean logical condition, summarize the data, analyze it, and

prepare the desired output if a specialized report routine were used.

System-oriented programs which deserve special mention are the File Search
and the Table Access Packages. These generalized programs are responsible for all
basic data manipulations and searches. They use the directories for extracting, storing
and altering data in the data base, and for restructuring data into a new form. One
of the prime features of these programs is that they can make full use of the index
data found in the Item Position Index, to perform conditional searches of the data base.
Further, they can manipulate the index data and reduce the number of accesses to
peripheral storage to the absolute minimum, This feature provides the foundation for

accepting a query in any defined query language, and for processing it in an efficient manner,

3-29

SECTION IV, SYSTEM DESCRIPTIONS AND COMPARISONS

- 4,1 GENERAL
Eight data handling systems are described in thié\ section with each system
compared with the Reliability Central Data Management Sub'system. The systems have
been chosen because they represent or illustrate significant contributions to the state
of the art of data management. Several other systems were reviewed but were omitted

from the survey for several reasons. The AIS file management system was excluded

because the non-proprietary part of its documentation is insufficient to describe it in

detail, The Army CCIS-70 project was not included because its programs do not have
the sain: degree of generality found in the other systems. It is felt that the descriptions
of the eight systems and RCDMS cover the major contributions to data management, and

that inclusion of any furthec systems would be redundant.

No attempt has been made to classify the eight systems. Too many overlapping
characteristics exist to make a classification meaningful. Rather, they represent a
spectrum of achievement from the limited query capability of RECOL to the advanced
data management capabilities of ADAM. The other systems can be placed somewhere
in the middie of the spectrum, Their position in the spectrum depends very much on
what system characteristics are important to the user, rather than upon some inherent

ranking.

The authors of this report assume full responsibility for its conients, but
they acknowledge that the system descriptions may contain certain inaccuracies, brought
about by the following conditions:
(1) Most of the systems are in the design or development stage

and are constantly being changed and improved,

S YT 1 3 e e bz - e ety

2

(3)

Due to restrictions of budget and time, some of the
material has been taken from summaries and reviews

rather than from definitive source material,

The report completion schedule did nct permit time for
the system descriptions to be submitted for review to the

designers of the systems treated in the report.

4-2

4,2 RETRIEVAL COMMAND ORIENTED LANGUAGE (RECOL)

4.2,1 Objectives
RECOL is the acronym for REtrieval Command Oriented Language. It was

designed and implemented for an RCA 501 Tape System by W.D. Climenson in 1962,
RECOL more properly belongs under the general heading of a General-Purpose Query
System rather than a Data Management System, since it does not update files nor alter
their structure. It is 2 generalized system in which queries can be posed to the system
in a natural English~like language termed RECOL. RECOL is somewhat limited with
respect to what can be achieved within the present state of the art, but its importance
lies in the historical fact that it is one of the first general query schemes that utilizes

a natural English-like language. Its basic objective was to provide a sophisticated means
of interrogating a linear (i.e., tape) file which would permit the user to state a complex
query conveniently, using any arbitrary combinations of the connectives AND, OR, or
NOT with any degree of nesting. A further objective was to utilize a generalized program

which would be capable of operating on any file which met the constraints of the system,

4,2.2 File Structure

The file structure utilized in RECOL is rather simple. The prografn can operate
upon only one file at a time. A file is restricted to a single tape. Records within a file
are unlinked. That is, one record cannot point to another record., The maximum record
size has been restricted to 160 characters (or two punched cards) in length. Each record
is subdivided into fields. The length of each field within a record is fixed. Each field
may have a different field size, At the time of loading the file, a description of the
record is provided which specifies the name of the field, its length, and the type of

information contained in the field (e.g., integer, alphanumeric, floating point number),

4-3

The pro.ra us have heen written around the data description so that many files having
different formats may be utilized Iy the samc program. The program does not permit

data to he stored on disc. Data cannot exceed one tape in length. .

4.2.3 Language
There is only one language permitted in the system. This is the retrieval
language called RECOL. No maintenance commands can be . "ecified. The user must

maintain his own file prior to placing the data into the computer.

RECOL permits an English-like language expression to be presented to the
computer. An interrogation consists of a group of orders to be executed in sequence.

Five basic orders are permitted. These are SELECT, NAME, ASSOC, EDIT, and SUM.

(1) SELECT — The SELECT order retrieves data records specified
by alogical condition. The logical conditions consist of the following:
Boolean Operators: AND, OR, NOT
Relational Operators: =
The logical condition is unrestricted by the number of

Boolean or relational operators or hv the nesting permitted.

(2) NAME — The NAME order permits a field to be named
/
and a value to he placed in the field by stating a series of
logical conditions. Thus, a new field can be created in a

record. The logical condition is identical to that in SELECT.

(3) ASSOC — The ASSOC order permits records to be associated
if they are related under certain conditions. The ASSOC order
is specified by a set of maximum or minimum differences

permitted between values of file recoi) items. For each

A S——— - i A RN RO

(4)

)

record, the order will examine the remuinder of the
file to determine if any records satisfy these comparison

limits.

EDIT — The EDIT order causes a file to be sorted and
printed (usually a file of selected, named, or associated
records). The ordering of the printed data is specified
by listing the record items from the most significant
criterion to the least. No capability exists for specifying
a logical condition and selection of a field hased upon the

Ingical condition.

SUM — The SUM order counts records and finds average

values., The EDIT order contains SUM.

The basic orders may be combined in various ways to

form an interrogation statement. The orders NAME

and EDIT may be cascaded. It was not possible to determine
the precise syntax for utilizing orders, or all the ways in
which the orders may be presented. Each command to the
machine is preceded by a semicolon. Attrilutes are separated

from values by a colon. A typicui order might be

i SELECT . PAY-TYPE: WEEKLY, SEMI-MON, MON

The order name (s separated from the attribute PAY-TYPE by
an item separator, The attribute PAY-TYPE can take on any
of the valucs listed and be selected. The values are separated

v ommas,

4.2, 4 Implementation Aspects

A batch capability has been designed into the program to t.xe advantage of a
file record while it is in core. Up to five SELECT and/or NAME orders can be executed
in a single pass. The logical conditions specified by the SELECT and NAME orders cause
an executive routine to generate an object program to match the file records against the
conditions, The logical condition is first scanned from left to right and translated into
a Polish prefix format. The prefix form is scanned from right to left to generate a closed
subroutine with true and false exits. The generated subroutines are added to a skeleton

supervisory program which controls the input-output and record typing functions.

4.2.5 Comparison with Reliability Central Data Management Subsystem

As an early query system, RECOL met its own objectives with considerable
success. As a total system, however, RECOL is not germane to the RCDMS objectives

because it deals only with data retrieval, It does not provide a maintenance function or

any of the controlling functions which comprise data management. Other aspects which

make RECOL inappropriate for the RCDMS are the following:

(1) Because RECOL is tape-oriented all query processing
is performed serially, without the advantage of random
access storage. RCDMS anticipates a short response
time and must utilize random access storage at least

for those items which are accessed most frequently.

RECOL can operate on only one iile at a time, RCDMS
will often have queries and data analysis jobs that operate
on several files. The RCDMS provides for access to any

combination of files at any time,

(3) The files used by RECOL are in a frozen format. Once they
have been defined to the system, they cannot be altered
except by means of a separate file maintenance routine,
RCDMS permits files to be redefined by means of a regular

system job request.

(4) Each record in a RECOL file must have the same fixed
format with no variable or optional fields. Files cannot
be contained within files. The data processed by RCDMS
is too varied for such major restrictions, The RCDMS
directories are sufficiently flexible to permit almost any
combination of variable fields, optional fields,and embedded

files within the framework of only minor system conventions.

(5% RECOL contains no data indexing. Since RECOL searches
serially rather than by using random access, it must scan
each data record in the file to be certain that all pertinent
data is retrieved. RCDMS requires data indexing in its

directory because it uses random access storage devices.

§ e e S e S T s 4

The index scheme employed permits the system to fetch
from random access storage only those data items that i

satisfy the criteria of the query being processed.

Although RECOL is not germane to the Reliability Central as a total system,
RECOL still contains several query aspects common to the Reliability Céntral objectives,
Consequently, RECOL experience has contributed to the design of the Reliability Central
Data Management Subsystem. Some of the RECOL conceptual achievements on which
RCDMS designers have drawn are:

(1) The format of each file can be described to the RECOL
processing program so that a single, generalized program

4-7

can be used to process all files. This concept is

also a basic theme of RCDMS.

(2) A number of data manipulations are provided by RECOL,
other than the selection of data by Boolean operators:
(a) Records may be matched and collated as f
determined by specified fields.

(b) Records may be sorted by a predefined sort

key, and printed in a prescribed format.

(c) Data may be summed.

e

These functions, and several others, will be provided
for in RCDMS by means of generalized system programs
which can be sequenced and controlled by the user to meet

his requirements,

(3) RECOL queries can be batched. With RCDMS, there is
less ueed for batching because console and random
access tend to dispose of the queries quickly enough.

In the ultimate system planned for after the Test
Operation, query requests will be organized for

parallel processing by priorities.

(4) Queries can be posed to the RECOL system i1 a natural
English-like language. Arbitrary éombinations of the
logical connectives AND, OR or NOT can be specified
to any degree of nesting by the RECOL user. The program
coding for responding to each query is compiled by the

RECOL system at the time of input.

4-8

o i A

These three aspects of RECOL concern the query language
and will not relate directly to the RCDMS until the query
language for RCDMS is procured. However, these aspects
are of great importance because the RCDMS must provide
the query language with a compatible interface, and with a

means of searching for data using complex logical conditions.

[\ Y

4.3 ACSI-MATIC COLLATION SYSTEM

4,3.1 Objectives
The ASCI-MATIC Collation System is an information storage and retrieval

system designed and implemented by RCA for the Department of the Army, Office of the
Assistant Chief of Staff, Intelligence. A prototype of the full system was implemented
on a Sylvania 9400 Computer with a Data Products Disc File. Design of the system

commenced in 1960-1961 and the prototype was implemented in 1963.

The objective of the information storage and retrieval system was to provide
a common data base which could be utilized by intelligence analysts with difterent area
responsibilities. The prototype system was to be designed to handle all the complexities
of the full system with certain exceptions. The full system was designed to reduce the
amount of effort required of analysts to evaluate, associate,and file new data. The latter
function was to be achieved by automatically collating new information with previously
stored information on the basis of information content. The ability to automatically

collate new information was not part of the prototype system

At the time of the design of the system (1960-61) little previous work existed
in this area. The system is of considerable interest since it is organized to utilize disc,

and effectively accomplishes this objective (within the scope of the system),
The specific system of objectives for the prototype was as follows:

(1) Executive Control — The executive control system was
intended to provide:

(a) Transfer of control between programs to take advantage

of idle time between disc seeks.

et i . i

(b) A centralized input-output package.

(¢) An operating system which scanned inputs to
determine the type of activity to run and to
automatically retrieve and initiate the progran:,

() A dynamically allocated core memory (a trivial
scheme was to be developed and should not be

confused with the full system objective).

(¢) A dynamically allocated disc storage.

(2) File Structure — The file structure was to be designed to:

(a) Facilitate data retrieval by indexing the data in
great depti:,

{b) Permit the retrieval of data which are related
hierarchically.

(¢) Permit the manipulation of lattice-structured
information.

(d) Permit the addition of new terms, the deletion of
old terms, and the addition of relationships of
old terms.

(e) Effectively utilize disc to store the data and indexes
to the data,

(3) Lansguage to be Utilized — An English-like language was

to be designed to: ‘
(8) Query the system. |
(i, Boolean 'AND' statements were to be permitted.
(i1) A specialized sumraary of data was to be permitted
depending upon security.

411

(iii) Retrieval of hierarchically related data
was to be permitted in the retrieval statement.

(iv) Print statements were to be permitted.

(v) Data was to be extracted from records satisfying
queries.,

(b) Establish new information
(i) ADD new data to a record.
(ii) DELETE data from records,

(iii) REPLACE data in records.

4.3.2 File Structure

To permit the rapid retrieval of data, the ACSI-MATIC file structure was
patterned after a list type structure in which the record links were extracted from the
data records and placed in a directory. Thus, the ACSI-MATIC file structure consisted
of a directory (or th~saurus) and the data base. The unit of information in the data base
was termed the Information Record of which there were to be different types such as
Military Organization and Personality. Data entering the system might be pertinent
to several such records. Each rccord type had a set of allowable information that could
be stored in it. However, no data description language existed in the system so that
frequent changes in system requirements meant program changes. Information Records
of a particular type (i.e., Military Organization) could be Jinked to one another by contrining
an address in a particular field locating the linked record. Information Records of one
type could also be linked to another type (e.g., Military Organization could be linked to
Personality), Formation of a new Information Record could be achieved explicitly through
an order (analyst order) or implicitly by the entry of a new message bearing information

to the system.

om—r——

e

it e e

e L o i it raiiomins a2

o g PR R

The system directory consisted of two major entities: a Glossary anda

Hierarchy Index List.

The Glossary served as a list of terms that were acceptable to the system,
For each attribute class (e.g., Personality Name or Job Title), there appeared a listing
of all values acceptable to the class, together with their encodings. The encoding expressed
a hierarchical arrangement of terms within the class. Thus, a tree structure (and more
generally, a lattice structure) of tefms was permitted within the Glossary, The position
of a term in the tree was specified by a binary code called Flexicode, which had the
property that both vertical and horizontal coordinates were well specified. Further,
given any two codes, it is possible to insert a new code between them at the same level,
Codes could not be inserted cenvenie...ly between two levels. A special symbol denoted
that a lattice condition was reached in the tree. Glossaries were maintained in alpha-

numeric sequence.

The aforementioned Flexicodes were maintained in "hierarchical" order in the
Hierarchy Index List, Each term in the list contained the Flexicode for the term it
represented, plus pointers to the Information Records in the file containing information
about the term, and to the glossary record. The pointer to the Information Record
listed the physical address of the record on disc. It was found by the designers that a
modification which would have listed logical names of records in a table consisting of
logical names and their physical names would have saved considerable time in file

maintenance since updating represented a significant portion of the system processing.

The directory (Glossary and Hierarchy Index List) was stored on disc,

Since the Hierarchy Index List and Glossary could be quite long (extending over many

4-13

disc addresses) a method of focusing-in upon the term desired was developed. The
technique involved utilizing subdirectories to the directory proper. For eachGlossary
or Hierarchy, the first word in the Glossary or Hierarchy of each group on disc is .

extracted from the Glossary and set up in a sub-directory. If the sub-directory extended

i o e s e — - .

over several disc accesses, it was subdivided in a similar manner. The main directory,
which consisted of names of Glossaries and the name of the Hierarchy,pointed to the

appropriate sub-directories,

4,3.3 System Processing of Messages, Orders, and Queries |

The system inputs were designed to be independent of the input media. The
system executive routine scanned the input media (paper tape, card) to determine if
inputs existed. If an input was found, it was read intc memory and scanned by a general-

purpose scan routine to determine the input type. The following input types could exist:

(1) An input message.

(2) An analyst's order to operate on data records.

(3) An order to perform thesaurus maintenance.

(4) A query to the data base (in a complex manner).

(5) A report (several different special reports were possible).

Responses from the system were made on & monitor typewriter and a high speed printer.

The input language for message inputs, analyst orders, and queries was similar,
while thesaurus maintenance orders had a somewhat different form. The language for the
former utilized a unique name followed by a delimiter (a colon) to terminate the name
(e.g-, INTER: would represent an interrogation to the system). Following the delimiter
was a series of tags and sub-tags representing several types of information. The first

type represented auxiliary data such as the security of the input, the analyst's name,

4-14 ;
]

the area he represented, the source document, and the date of entry, A tag was
identifiable by terminating delimiter (e.g., : :). The tag represented an aftribute.
Following the attribute was a value, A second class of tags represented information
about the message, order, or query. A tag (or attribute name) would have had several
sub-tags belonging to it. Thus, for example, the tag PER for personality could have
sub-tags for name, job, age, etc. Thus, a record could be considered to have sub-
records belonging to it. In addition to tags representing attributes, other tags relevant
to queries, such as subsumption; and to orders, such as to add a term to a record were
permitted. Tags could be presented in any sequence and the system was capable of

interpreting the input.

Messages were to be the normal method of adding information to the system
files on a continuous basis. To enter a message, knowledge was required only of the
message syntax and tags. System processing was to automatically associate data
with other stored data, if pertinent, to automatically cross index the data, and to
update the file, This feature was to be part of the extended system and was not imple-

mented in the prctotype.

The data base for the prototype system was to be entered using analyst
orders. The orders were fully automated. That is, a new piece of data could be
specified by an order, and the system set up the record, stored it on disc, and cross

referenced the appropriate records in the directory, Orders permitted addition of new

data, modification of an existing Information Record, and deletion of a record. A printout

of the results was submitted upon completion. As a debugging aid, « monitor was de-
signed to permit the system user to obtain a trace of the processing. Since several
centralized packages were utilized (such as 1/0, a thesaurus access package, and an
input processor) it was found that unless one kept track of the processing, it would be

exceedingly difficult to determine where errors had arisen,

4-15

RN

Queries were designed to permit only AND operations for the prototype
system, Apparently little consideration was given to OR and NOT operations and
relational operators other than subsumption and equality. It is apparent, however, that
other relational operators such as #, >, <, and the OR operation could have been added
quite easily, Thus, one can consider that the prototype could have been modified with
ease to permit Boolean statements consisting of a series of AND's followed by a series
of OR's followed by another series of AND's in an alternating fashion. Queries consisted
of an AND search criterion followedby an extract command and a print statement. Although
a sort/merge routine was developed for the system, the scope of the prototype *id nct
consider utilizing the sort/merge with queries and was to be nart of the extended system.
Basic retrieval operations involved the manipulation of indices rather than the viewing of
all records during the data selection process. For example, consider the query, "List all
physicists who are at a particular university." The job glossary would be retrieved to
get the term physicists. The Hierarchy Index List would be entered to retrieve the list of
addresses of all records containing physicists. The university glossary would be
retrieved on the name of the specific university. The Hierarchy Index List for the
university would list the names of all records containing the university name, Matching

these two lists of addresses yielded the address of records containing both terms.
An input processor was developed to:

(1) Handle input format errors,
(2) Check for appropriate tags and sub-tags.
(3) look up glossary terms to determine the system encoding.
(4) Resolve ambiguities (e.g., the location name NEWARK
is ambiguous since many locations in many states can
have the name NEWARK; however, if more information were

provided on input, such as NEWARK, NEW JERSEY, the

4-16

e e tn

E%
#

processor could resolve the discrepancy to determine
a unique encoding).

(5) Structure the data for further system processing,

i 4,3.4 Orders to Perform Directory Maintenance and Directory Use

The prototype system permitted several maintenance orders. The orders
were designed primarily to add new terms to the Glossary and Hierarchy Index List.
The addition of a new term meant that sections of the Directory had to be updated
including the subdirectories an mzin directory. The orders utilized a parenthesized
format. To add a term to a Glossary, or to modify an existing term, the name of the
Glossary had to be given, the name of the term and its hierarchic encoding. A hierarchy

term to be entered into the system had to contain the hierarchic encoding of the term,

the glossary term corresponding to the term,and information as to whether the term
regularly was subsumed or subsumed other terms. The latter was needed in the event
that the term was part of a lattice structure. A subroutine termed MAINT was utilized

hy the order to perform the physical maintenance of records and to maintain the directory.

To permit expansion of the prototype data base, space was left in the disc

addresses assigned to glossary and hierarchy terms to minimize maintenance time.

A central package termed the Thesaurus Access Package (TAP) provided a
means for accessing the data. TAP permitted files to be locked out while maintenance
was performed, took advantage of the fact that a routine required sequencing through
a Glossary or Hierarchy so that directory records already in core did ot have to be
reaccessed, and looped through the main directory and subdirectories to get at the
appropriate terms, Programmers requiring use of the directory did not have to

concern themselves with the structure of the directory and merely requested the

pertinent information and were provided with the appropriate records,

.»m e e e m—— - N

4,3.5 Programming System

Several general-purpose utility routines were developed. The executive
control routine was designed to permit transfer of control between routines, allocate
core storage dynamically (a primitive storage allocation routine was developed), cen-

tralize input-output calls, and allocate disc storage.

The programming system for ACSI-MATIC was composed for an input-command
package, an executive control package, an input-output package, and a collection of

utility packages.

The input-command package accepted and interpreted commands for the
execution of major system functions and for establishing the appropriate programs to

effect the execution of those functions.,

The executive control package for ACSI-MATIC furnished a collection of functions
to enable the linking, loading, binding, and execution of system tasks. In addition, func-
tions to enable parallel processing (up to sixty-four tasks) and dynamic allocation (i.e.,
requests for more space generated at execution time) were available. Basic blocks for
loading, linking, and parallel processing control were kept in terms of chairs of descrip-
tions; i.e., lists of descriptive information were organized via chain links to reflect

program relations, resource allocations, and priority for execution,

The ACSI-MATIC programming system furnished the user with a variety of
utility packages. For example, requests for retrieval of items from the disc file by
name were accepted and handled by the Thesaurus Access Package. In addition to
retrieving data from the files by rame via indices, this package furnished all of the
machinery for adding and deleting entities of the files, Techniques for interlocking accessing
during maintenance and for preserving ancessed information in core for subsequent use
were developed.

4-18

e g e ey A, 1

A second utility package was a comprehensive sort/merge package which was
available to the user. This program allowed sorting on the basis of complex user-

furnished ordering criteria.

A programming language and an assembly program were also developed. The
assembly produced relocatable code and sufficient descriptive infrrmation to satisfy the

requirements of the dynamic allocation and linking algorithms.

4.3.6 Comparison with Reliability Central Data Management Subsystem

The Reliability Central Data Management Subsystem has utilized several
concepts and features in its design that appear in the ACSI-MATIC data retrieval and
query system. In almost all cases, the concepts and features utilized have been
generalizcd in order to increase the power and scope of their application. The

following aspects of ACSI-MATIC have been used and expanded:

(1) The RCDMS file structure is a generalization of the
ACSI-MATIC system. The Teri Encoding Table of tke
RCDMS is equivalent to the totality of glossaries in the
ACSI-MATIC system, The RCDMS directory will contain
subdirectories, as in the ACSI-MATIC system, to permit

one to focus in on the data rapidly.

(2) The concept of a centralized directory access package
of the ACSI-MATIC system was a very useful feature
which has been adopted in a more complex form for the

RCDMS,

4-19

(3) The hierarchic encoding scheme, Flexicode, was a

]
o . e Pl Ao PRV

successful concept. The Item Class Code is its

counterpart in the RCDMS. ’

(4) The advanced search strategies being developed for
the RCDMS are outgrowths of the manipulation of

indices performed by ACSI-MATIC.

(5) The concept of a generalized executive control routine

has been carried forward to RCDMS,

Some of the aspects of ACSI-MATIC from which RCDMS departs in order

to meet its own design objectives are given below:

(1) Data in ACSI-MATIC could not be restructured without -

extensive reprogranrmiming of the system because no data
description language was available. RCDMS has such a

language and will permit logical restructuring of the data

- S g B AT

base.

(2) ACSI-MATIC did not utilize the concept of forming jobs
from a series of generalized, task-oriented programs

although a good measure of program generality was used,

(3) In ACSI-MATIC the Hierarchy Index List pointed to the

physical address ol the data rather than to a logical name

for a record. This meant that moving a data record from
one disc locution 1o another required in excessive amount :

of time to be spent in performing maintenance on the directory.

4-20

[

AR Y

b S P e

In RCDMS, a table has been placed in the directory to

translate logical names of data items into physical names.
This feat*'re separates the main directory from the physical
address of the data, and significantly reduces directory

maintenance.

4-21

NAVAL AVIATION SUPPLY OFFICE SYSTEM (ASO)

4.4.1 Objectives

The ASO (Naval Aviation Supply Office, Philadelphia) System is an inventory
information retrieval pilot system designed by the Moore School of Electrical Engineering
(University of Pennsylvania) under sponsorship of the Systems Research Division of the

Bureau of Supplies and Accounts and the Information Systems Branch of the Office of

Naval Research.

The ASO Systgm,desigﬁ &mcept (executive routine, file structure, and

query/lyguagé)/f\;s been applied experimentally as a pilot model solution to the

e

T Sea Surveillance problem at FOCCLANT., The work on Sea Surveillance was done
by Computer Command and Control Company for the Advanced Planning Division of
the Office of Naval Research. The system description and conclusions presented here

can, therefore, be considered applicable to the Sea Surveillance application.

The ASO is a supply control point responsible for the supply and inventory
of items concerned with naval aviation. It presently maintains eleven major categories
of files but the system discussed here is concerned only with a smzall part of one of them,
the Master Data File (MDF). The MDF concerns some 460,000 inventory items to which
there are approximately 190,000 changes made each month, Of the 46'0,000 items in the
MDF only 4, 100 items, less than 1%, are involved in the pilot system discussed here.
Although the system is not a full-capability data management system, it is being
briefly discuased in this survey because of the unique "multi-list" file structure it

employs,

4-22

The objective of the ASO system is to furnish a user on-line query system
for a random-access data file. Although the system is designed for technical, inventory,
and contract management files, it is applicable to other management problems. The data
in the files was to be accessible through many different categories of retrieval keys or
combinations of retrieval keys in a logical AND/OR specification. The ability to enter

the files by means of remote inquiry stations was {o be provided.

A file maintenance capability was required that could accommodate
approximately 10,000 changes in the technical data per quarter and 3,500 transaction
chaiges daily in the file of 4,100 items. The information retrieval capability was to
accommodate some 200 data requests per day. Periodic output consisting of 15 reports

sequenced by a variety of keys was to be accommodated.

4.4.2 Implementation and Status

The present system consists of an IBM 1410 computer with two 1301 disk
files, console, printer, tape units, and six IBM 1014 remote inquiry stations. The
system is now operational at the ASO with a small portion of their data base, representing
active, quick-iesponse, high cost inventory items, on disk. The system described here

supports a larger, conventional tape-orientea inventory control system.

4.4.3 Components
The system consists of a file structure, a query language, an executive

routine, and various "worker' programs,

4.4.4 File Structure

The unique aspect of the ASO System is its file structure. Theie are two
components to the {ile structure: a set of hierarchical index files and a data file.
The data file is compcsed of records (sets of information relating to one object, for

example, a1 airplane part, identified by its federal stock nuinber (FSN)). The format

4-23

B

of a record describing one object is similar, but not identical to, the format of all other

records. Each record contains values or descriptors (the smallest units of information

that are of interest to the user). A value is a record for a particular attribute such as the
number of parts in stock. The data file is stored sequentially according to values for one
of the attributes (FSN) so that whenever interrogations and changes accumulate, routine
processing can be facilitated by presorting the collected data according to that attribute.
The file may then be treated as a single list comparable to the storage of information on

magnetic tape.

An important feature of the system is the facility to enter the files by the

specification of many different attributes. The way in which this is accomplished is the

essence of the ASO system. It is accomplished through the use of hierarchical index
files, called trees, and the use of a link field (address) associated with each attribute
(other than the main sequencing attribute and other unique attributes) in every record.
Because the link is the address of the next record with the same descriptor (value for the

attribute), the data file is called the ""multi-association" area.

There is one tree for each attribute in the system. The final level of the
tree for each attribute is the list of values that the attribute can take (descriptors) and,
for each value, a pointer (link) to the record address of the vst record which contains
that descriptor value. A link field associated with that attribute ir the record contains the
address of the next record with that descriptor (the link field is omitted for those descriptors
known to be unique, suck as FSN), and sc on 80 that all records with that descriptor are
on a linked list. A higher level in the tree serves as an index to the lower level when
the value list is too large for one track. That is, it is a list of the last data value for

each attribute that can be found on a given track with a link to that track.

4-24

F e e PR TR AR RN TR

4.4.5 uery la e
The query language in the ASO is process-oriented rather than user-oriented.
A query is made up of a fixed sequence of nine nume~ic and mnemonic fields, The fields

are numbered and a "'/" is used as a word separator within a field. The format is as

follows:
/// 1/ (process) // 2/ (key) // 3/ (conditions) //
4/ (elements)'// 5/ (priority) // 6/ (security) //
7/ (requester) // 8/ (input identification) // 9/ (output identification) ///
Fields two through nine are optional. The nine fields have the following
significance:

Field (1) Process. A four-character mnemonic for the process

name.

Field (2) Key. A number indicating whether a single value,
list, or range is desired, and the mnemonic of the

key (FSN, FIIN, etc.).

Field (3) Conditions. A three-character numeric identifying
the attribute, a single digit for the relation (equal,
less-than, etc.), followed by the field values. A l.st
of conditions which are interpreted as a logical AND
oriterion may be specified.

Field (4) Elements, A list of three-digit numbers identifying
the elements to be output.

4-25

Field (5) Priority. A two-digit priority level.
Field (6) Security. A one-digit level.

Fields (7) through (9) are not implemented at present,

4,4.6 Executive Routine

The executive routine stacks requests and execuies them according to
priority. Since the computer is not capable of parallel processing, the executive routine
is not designed to cope with such a facility. Requests may be made from the console or
a remote inquiry station. Answers to a query are made to the unit which is making the
query. There is no real-time interrupt but programs are written so that they transfer to
the executive routine quite frequently (e.g., twice per second). The executive routine
then checks to see if there is a service request at an input device. A low-priority query

program will be interrupted and saved to permit a high priority query to be answered.

4.4.7 Comparison with the Reliability Central Data Management Subsystem

The ASO system is a technically significant suhset of a file management
system, However, in its present lorm the design is not directly applicable to the objec-

tives of RCDMS for the following reasons:

(1) The input capabilities of the ASO system do not provide a
job specification language or a data description language.
The wide variety of jobs and data structures in the Reliahility
Central operation require that RCDMS have both types of

languages.

(2) The ASO query language requires strict sequencing

of tagged ficlds. When preparing a query, recourse

4-26

. A o

¢ b,

o e . e Tt o i, £ Bt o b .

must be made to a handbook of codings for attributes,

descriptors, relations and the like, as well as for the
format of the query itself. The objective of the Reliability
Central is to give the user a more flexible, less demanding

query language.

(3) The search strategy of the ASO system employs the list
structure method. Similar attributes in the data base are
linked by addresses in the data record. This method results
in many accesses to disc while following the chain of linked
data attributes. RCDMS has, in effect, taken all the link
addresses out of the data records and pt them in a list
form in the directory. The RCDMS search strategy is,
first, to manipulate these lists at high speed in core
storage to determine the addresses of all data records
which satisfy all the query criteria. Only the pertinent
data records avre then retrieved from disc, eliminating

all needless nccesses.

(4) The ASO system data structure is limited to a single
level file with no nested or embedded structures. This
restriction reduces the ease of user communication in
problem areas where the data structure is naturally
complex. The Reliability Central data base will require
the flexibility afforded by lthe embedded structures in
the RCDMS design.

The "tree area" of the ASO system directory has a structure which is quite
similar to the RCDMS directory. The system keeps track of data names and groups
by means of a hierarchy of indexes which can be accessed quite efficiently. Thus, it is in
the data structure that searches become inefficient (as discussed in Item (3) above) because
the links are contained in the data records instead of in the directory. Accessing specific
data values involves chaining through links contained in the data itself, Only the lirst

link of each chain is kept in the ASO system directory.

4-28

I e B B L s e T T B B Sy S VR R B S i U W W ST S LR e A N R

)
-8 4.5 INFORMATION PROCLESSING SYSTENM (IPS)
& 4.5.1 Objeetives
. IPS (Information Processing System) is a data management system designed

by NAVCOSSACT (Naval Command and Control System Activity) and implemented by

IBM for a multi-computer environment at FOCCPAC (Fleet Operations Control Center,

Pacific).

The objective of IPS is to provide a éomprehensive file query and maintenance

systém for a command and control center user/programmer staff. Specifically, the

functions that IPS had to serve are as follows:

(1) Data used by command staff personnel had to be structured
into a data base for use of such [unctions as operations,

. intelligence, logistics, and administration,

(2) Dala base maintenance and recall of information had to be
accomplished easily for data structure which may consist

of up to 200 files.

(3) The system had to be used and maintained by staff personnel,

programmers, and operalors.
(4) IPS had to be programmed completely in JOVIAL,

(5) Its general capabilities had to be compatible with Navy

command system dath processing techniques,

4.5.2 Implementaticn and Status

IPS has heen implemented for & CDC 1604-A in the FOCCPAC multi-computer

system oflicinlly designated ns AN/FYR-1(V). The Phase II system, presently operational,

1-29

is a tape-oriented system. Both the IPS system and the data files are operated from

tape. A disc system is currently being proposed.

The implementation language is JOVIAL. Programs in the IPS language run

in the interpretive mode within the IPS executive.

IPS is a generalization and refinement of the TUFF (Tape Update for
Formatted Files) system, developed by IBM for the Operations Research Division

(ORD) of the David Taylor Model Basin.
IPS provides the following capabilities not possessed by TUFF:

(1) The ability to represent and orderr repeated items within

repeated items (nesting several levels of files within records).

(2) The ability to define two or more sets of repeated items (files)

at the same level within a record. |
(3) A query language for querying any data hase file.

(4) A problem-oriented language for describing file

maintenance operations.)

4.5.3 Components

IPS is divided into three major subsystems, the File Maintenance System

(FMS), the Information Retrieval System (IRS), and the Library Maintenance System

(LMS). FMS is used to generate and maintain the formatted files used by the system;

IRS is used for the selective retrieval of data from these formatted files; and LMS is

! used to generate and maintain a file of commonly used tables which are always available
} to the system at "run-time." The tables include the so-called "macro-list'" for qach
data file in the systen:, The macro-list is a program in a "problem-oriented" file &

4-30

maintenance language which updates a particular file in the system. (Each file has a
section of the library tape which has all tables concerned with that file.) The macro-

list is executed interpretively by the IPS executive during the update run,

4.5.4 File Structure

The basic IPS philosophy is that all operational data requirements of the
operations control center can be organized into a set of fundamental structures called
files, where each file exists as a tape reel or series of tape reels (multi-reel file),
and that the structure of each file may be defined in a File Format Table, maintained

as a record on a library tape.
Each file contains four basic types of items:

(1) Fixed length non-repeated items.
(2) Variable length non-repeated items.
(3) Fixed length repeated items.

(4) Variable length repeated items,

Each operational area in the operations control center defines its d .{a

requirements explicitly in this form and develops files for its use,

Each item in a file structure is identified in the File Format Table as to its
type and at what level in the structure it appears. A file structure may contain imbedded
files, called repeated groups, up to 64 levels of nesting, A group of items in a record

(whether repeated or not) which has a name is called a "'set,"

A record in a hypothetical file on Naval Fleet organization is illustrated in
Figure 4-1. FEach record in the file would represent one fleet and would contain the same

logical (although not necessarily the same physical) structure. In Figure 4-1, Fleet A is

4-31

T TR B e v e e

A —
FLEET A e e
FLEET NAME
FLEET COMMANDER —SET
FLEET CMDR RANK
FLEET STATUS —
TASK FORCE 1
TASK NAME
TASK COMMANDER —SET
NO. OF SHIPS
TASK STATUS —
GROUP A ‘
GROUP NAME
GROUP COMMANDER [—SET
NO. OF MEN
GROUP STATUS — RECORD
GROUPB.
GROUP NAME
GROUP COMMANDER —SET
; NO. OF MEN
GROUP STATUS —]
TASK FORCE 2 N
TASK NAME
TASK COMMANDER —SET
, NO. OF SHIPS
-« TASK STATUS —_—
: N
K GROUP C
GROUP NAME
GROUP COMMANDER —SET
NO. OF MEN
GROUP STATUS —_
GROUP D
GROUP NAME
GROUP COMMANDER —SET 3
NO. OF MEN
| GROUP STATUS Jm =

Figure 4-1. Outline of One Record of a File

ka32

A o s o e <5 L L

i
%
g
b

.
¥

a set and consists of the group of items entitled Fleet Name, Fleet Commander,

Fleet Commander Rank, and Fleet Status,

The Information Processing System requires that all sets within a record
be assigned a repeat level number. This level is determined by (1) the number of times
certain sets of items may be repeated within a record and (2) how far up the logical

ladder the set is located from the principal set of the record.

In Figure 4-1, the items listed under Fleet may appear only once per record,
and will constitute the principal set of the record. This set will therefore be assigned a
repeat level number of zero. The sets entitled Task Force 1 and Task Force 2 are at
the next repeat level (number one) because as sub-headings of the principal set Fleet,
they are one step up the ladder. Similarly, Groups are another step removed from the

principal set and are given the repeat level number of two.

There may be as many as sixty-four repeat levels per record, numbered
zero through sixty-three. All of these repeat levels, with the exception of zero, may
appear more than once in a record but the zero repeat level must appear only once per
record. If an item occurs more than once within the same record, it is knownas a
repeated item, In Figure 4-1, the items listed under the set Task Force are repeated
items because they appear more than once in the record. Similarly, if a set appears
more than once within a record, it is called a repeated set. This means that Task Force

is a repeated set and Group is a repeated set within a repeated set.

4.5.5 File Maintenance System (FMS)

The File Maintenance System is an executive system which, at the time of
an update or generation run, reads the file format table and macro-list for the particular

file involved, and executes the macro-list in the interpretive mode.

4-33

The inputs and outputs of the File Maintenance System vary according to

the user’s needs,

The major inputs are the old Master Data File, the Transaction

Data File, the Library File, and the Card Input File. The major outputs are a

new Master Data File, two optional Summary Files, and an Error File.

The Master Data File is the primary output of the FMS and the primary

input to the Information Retrieval System, When the old Master Data File is being

updated and corrected, it will also be input to FMS,

" The Transaction Data File contains the information that is used as input

for generating a new Master Data File or for updating and correcting an existing

Master Data File. The Card Input File contains the run control card and other

data for the particular run,

The,Macro- List is a program which describes to the system how the data

is to be manipulated for the update run. The complete Macro-Instruction Set for FMS

is shown in Table 4-1. Macro-instructions used by FMS are divided into four basic

categories:

(1)
(2
(C)
(4)

Environment establishing instructions, tfor initialization.
Data handling instructions which manipulate the data.
Control instructions for branching.

Output instructions.

4.5.6 Information Ratrieval System (IRS)

The goal of the IRS is to provide for the convenient retrieval of data from the

Master Data Files. Requests are submitted to the system by the user in the IRS language,

4-34

g 10 g, WO ot o (5T o P

fﬂ'-';'ﬁ;‘{i"l’!f?fﬁ:‘if.«h‘fﬁfﬂw’?‘“ e

L

OPERATION

MOVE
coMpAREY
LOOKUP
STORE IN
MOVE

ADD
SUBTRACT
MULTIPLY
DIVIDE
GOTO

1F 'x' goTo'®
STOP

STOP 'AND' WRITE

L.OG' ERROR(®
LOG' COMMENT

WRITE' SUMMARY
t
WRITE' SUMMARY 2

MACRO-INSTRUCTION SET

FIELD A

e B B
< < < < <

C-REG
C-REG

Pt
-

T 0O O

V (NOTE 4)

CLEAR' SUMMARY' -

CLEAR' SUMMARY' 2

PRINT' SUMMARY' -

PRINT* SUMMARY"' 2

INITIALIZE
POSITION

STEP

BUILD

DELETE
GENERATE!?)
CHECK VALID™®

t

w »w ;v w»m

TABLE 4-1. MACRO-INSTRUCTION SET

CONNECTOR

TO
TO

IN TABLE

- \
INDIRECT TO
TO

FROM

BY

BY

AND (OPTIONAL)

EXIT
EXIT
RETURN' TO

EXIT

bha35

FIELD B

I

I, C-REG
I, C-REG
I
I

1 (OPTIONAL)

© 0o O !

o

LEGEND
I = Item name (14 characters maximum)
No * (prefix to item name) = Master Item
* (prefix to item name) = Transaction Item
** (prefix to item name) = First Summary Item
*** (prefix to item name) = Second Summary Item
S = Set name (8 characters maximum)
No * (prefix to set name) = Master Set
‘. * (prefix to set name) = Transaction Set

** (prefix to set name) = First Summary Set
*** (prefix to set name) = Second Summary Set
& O = Operation statement tag

% T = Table name
é V = Value; values are enclosed in (); 120 characters maximum
¥ NOTES
(1) Both fields cannot be values
; (2 X! settings
i Equal Greater
Nequal Valid
Less Nvalid
(3) Prestored system comment written on error tap.
(4) Comment written on error tape
(5) Requires a function call in variable field

TABLE 4-1. MACRO-INSTRUCTION SET (Contd)

The systen: analyzes the request, finds the information, and prints it in a predefined,
user-specified format. Successful use of the system depends upon: (1) a thorough
understanding of both the data structure and the content of the files used, and (2) an -

understanding of the proper use of the query language.

A query consists of a group of statements containing three pérts:

(1) the identification,

(2) the logical search condition, and

—

(3) the output format. '
The logical search condition handles the full Boolean range of AND, OR, and NOT
conditions on the items of a master file. The possible operands are item names, functions,

and values. A function consists of a function name and a group of items and/or values

. o A gt

which serve as inputs to a subroutine. It is used to compute a value not contained explicitly .
in the data. Each term in the logical search condition consists of a left operand, a
relational operator, and a right operand. Relational operators include the usual aigebraic

relationships, and also directional operators, North, Sou. . etc,

Every query must contain a request for a specific form of output. The type
chosen by the user depends on whether or not he desires a report which is a straight
listing of retrieved data or a summary of retrieved data, Four standard outputs are
available from the IRS: list, column, sum, and count type edits. A sort option is

available in a list-type output. 1

4.5.7 Library Maintenance System (LMS)

The function of the Library Maintenance . . stem (LMS) is to provide the
means for the generation and maintenance of the IPS Library File. LMS performs this .

function by accepting tables in the form - ¥ card decks, processing each card deck to produce

4-36

PO,

a particular type of table, and placing each table in the IPS Library File in such a manner

that the table may be retrieved when needed.

The IPS Library File is made up of many segments of data on magnetic tape,
Each segment is uniquely associated with one particular Master Data File and consists of
a series of queries, tables and macro-lists which IPS will use in processing that particular

Master Data File.

Each segment is divided into blocks of data which contain one query, table,
or macro-list that can be used in generating and maintaining the same Master Data File.
The blocks of data within the segment are always placed on tape in the same sequential
order with the first block containing the information necessary for locating all other

blocks of the segment.
. The blocks of data within each segment are in the following order:

R (1) Segment Index Block — This block contains the information

necessary for locating any table in the segment.

(2) Library Queries — These prestored card images of
information retrieval queries are the only tables on the
Library File used b IRS,

(3) Summary Format Tables

(4) Transaction Format Tables Used by FMS

(5) Macro-Lists

(6) Code Conversion Tables

T SIS Sk e e e <

4-37

4.5.8 Comparison with Reliability Central Data Management Subsystem

IPS provides an extremely flexible system for performing serial maintenance
and retrieval functions on a large number of tape files, but it does not provide for the
efficient communication of data between files, or even within one file., Therein lies one
of the basic differences between IPS and RCDMS. RCDMS treats the entire data base as
a single entity, using an integrated directory to describe all data. RCDMS makes a
minor differentiation between files at the/k{gical name level rather than a major differentia-

tion at the physical address level,

Other differences are noted below:
(1) IPS is unable to pose queries that involve mere than

one file, or to pose queries without knowing the particular
file involved. This constraint arises from the fact that
the term dictionary for each file is located in a separate
segment of the Library File, with no single master list of
all system data terms. This forces a deep-nested data
structure in certain files, RCDMS, on the other hand, uses
a common data base approach which keeps all system terms
and format tables in a combined directory structure, thereby

allowing queries to involve any element in the data base.

(2) Because it is a tape-oriented system, IPS consumes con-
s.derable operating time scanning tape. It needs no
indexing scheme because it must look at each record
during its serinl search. In contrast, RCDMS uses an
extensive data indexing capability to maximize its random

access potentinl for retrieving data rapidly.

4-U8

(3) RCDMS provides job definition and job management aspects

which are not included in IPS,

(4) Since programs in the IPS language run in the interpretive
mode, they require more running time than if they had heen
compiled before hand. RCDMS updating functions wili generally

be performed with compiled routines.

Several features of the RCDMS have been drawn {rom IPS expericnce. In the
following areas, RCDMS is indebted to IPS for conceptual development, design techniques,

and approaches to implementation:

(1) IPS provides for a flexible logical data structure and
physical storage format. The ability to nest repeated
groups and to have any number of repeated groups in a
record satisfies most of the basic user needs for individual
data objects. RCDMS provides for the same flexible structure,
as well as for cross linking of files and records through a

directory-contained link system,

(2) IPS uses a term dictionary and format tables to control its
generalized system programs for flexible query and update

operations., RCDMS uses much the same concept.

b N e B e 13t A AL %t i i P

4.6 1IQ, USAF COMMAND & CONTROL SYSTEM (473L)

4.6.1 Objectives
The Headquarters, USAF Command and Control System (473L) is a file

maintenance and retrieval system whose basic function is to assist the USAF staff in
planning and monitoring military operations. It was designed and implemented by IBM

for USAF ESD.

Like other command and control systems of this nature, the HQ, USAF system
has mainly been oriented toward the command staff user rather than toward the ADP
specialist. The system must permit the command staff user requiring data to interact

with the computer and its data files without the assistance of a systems specialist.

There are three classes of users, each placing a somewhat different requirement
on the user language: (1) the Air Staff Officer, who requires a simple, straightforward
language, (2) data control personnel who, through daily use, can be expected to master the
language, and (3) the system programmer to whom the degree of difficulty is secondary to
the power of the language. A language was therefore required, the complexity of which
would be a function of the requested action. For example, the Air\Staff Officer should need
to know only a subset of the total Quefy Language, since he desires a fairly straightforward

retrieval.

Due to the highly dynamic, unstable nature of the data base, the following two
requirements had to be satisfied: (1) programming tools had to be available to the system
programmer which would permit him to access data without tying his program to the data
files as they existed at the time the program was written, and (2) there had to be a means
of retrieving and processing data fmr;\ the time it was loaded into the system data base,

without waiting for a new program to be designed, coded, and debugged.

4-40

A s Y s

st gies et 91 £ i

U SR

e e e
I
H

4,6.2 Implementation and Status

The Operational Training Capability (OTC) phase of 473L was implemented
foryan IBM 1401 system. The entire OTC system was upgraded to an IBM 1410 in
June,1964. A second phase, called the Initial Operational Capability (iOC), involving
a Librascope L-3055, has recently been installed. A third phase, complete Operational

Capability (COC), is scheduled for mid-1965.

4.6.3 Components
The L3055 computer has input-output devices that operate in parallel with

the central processor, and an interrupt feature that allows inputs via communication
consoles and data links. The equipment includes a disc which features a search-by-
content accessing scheme, and fixed read-write heads which have an average access

time of 35 milliseconds, Its capacity is approximately 40 million characters.

The communication console has a typewriter input keyboard, a set of 30 control

keys that may be identified with one of 64 unique overlays, typewriter, and other displays.

In the 473L programming system, the ability to perform a distinct data processing
task is called a capability, and the set of computer programs which makes a capability

possible is called a capability program,* All portions of a capability program are

stored on disc and are called upon by actions taken at a communication console.

*This is called a user task and a user task program in RCDMS, and is called a specific
model and model specific program in ADAM.,

4-41

. . - -
- 2 50 A AT A AR TN T -

The execution of capability programs is under control of a set of programs
called the System Monitor. The System Monitor consists of an Executive Control Program,
a Console Processor Program, and a Loader Program. The System Monitor receives
all inputs to the system, determines whether a particular capability program is required,
calls capability programs and monitors their operation, and receives an indication that
3. capability program has completed its task. Monitoring the operation of a capability
program means: (1) executing the interpretable steps of a program when it is communi-
cating with the console operator, (2) recognizing when the program requires working
storage allocation or other service, (3) calling sel?vice or working programs and giving

them control, and (4) accepting processing requests for 1/0.

4.6.4 File Structure

The files in the OTC system were set up in parallel and the language was designed
to operate solely on parallel files. In a parallel file the values for an individual property
of all objects (records) are stored together, as opposed to a serial file in which the values
for all properties of an object (record) are stored together. Thus, in a parallel file,
each property is associated with a set of entries, one for each object the file describes.
The nth entry of each property value list would be an item of the nth record of the corres-
ponding serial file. Parallel files are inherently limited to a single level structure.
Although parallel files made short data retrievals extremely rapid, they created a
very time-consuming file maintenance procedure. Inthe IOC system files are serial-
parallel: serial in the sense that all properties, or attributes pertaining to one entry,
are stored together in the file; and parallel in the sense that an entry may have a primary
section and a secondary section. These sections are stored separately with each carrying

an address connective to be used by the Query Language in maintaining the relationship

between sections.

4-42

N

Within an entry, values may be carried in four ways:

(1) As a single value where only one value is possible
for an attribute in an entry. This requires a fixed

space for each entry.

(2) As multi-values in which each entry carries

a fixed number of values in an entry. This also

requires a fixed space in the entry.

(3) As multi-values in which each entry carries a
variable number of values in an entry. This

requires only the space necessary for the actual

R T s e

T

number of values possessed by that particular entry.

(49 As remarks or free text on an entry basis.

4.6.5 Query Language
The Query Language itself consists of a vocabulary and a grammar, The

vocabulary consists of two parts, a fixed part and a dynamic part. The fixed part consists
of unique words which describe and control the retrieval process, The dynamic part of
the vocabulary contains words that desoribe the data to be retrieved, that is, the file
indicators, attribute names, etc., of the data base. This portion of the vocabu}ary

is automatically changed by the File Maintenance program any time a file in the system
is added or modified. |

The grammar of the Query Language is implemented by a syntax and a punctuation
set. The syntax refers to the arrangement of words into statements which are meaningful ‘

4-43

to the system. The syntactical relationships are specified by the punctuation and the =
unique words. A simple, uniform, English-like syntax is utilized to make the language
easy to learn and retain. The punctuation set is also simple and uniform. Only as many . L

marks as are required to clearly separate the elements are used.

There are seven basic statement elements of the 473L Query Language. In ¥

order of presentation and common usage the seven elements are the Program Indicator,
File Indicator, Qualifier Conjunction, Quaiifier, Selector Conjunction, Output Director,
and the Output Selector. In certain Query Language statements some of these elements
are omitted and, in very complex query statements, the elements may be difficult to f

recognize. Careful analysis, however, will reduce any Query Language statement to

these elements.

(1) Program Indicator — This is the first word of a Query

Language statement. It directs the system control pro-

P,

gram to use the Query Language program,. It also provides -

a logical English language beginning for the statement. The

e S o=

word RETRIEVE is a program indicator, for example.

(2) File Indicator — This identifies the file from which data
is to be retrieved and always follows the program indicator,

for example, a file name like FORCE STATUS.)

(3) Qualifier Conjunction — The word WITH follows the file

indicator. It serves as a conjunction between the file ‘
indicator and the qualifier. It makes the statemen{ more l

1
readnble and precludes the need for punctuation te identify {

he beginning of the qualifier. |

4-44

¢ b

4

Qualifier — This is the element of the statement which
describes the specific nature of the data to be retrieved.

A qualifier consists of a set of one or mcre modifiers, each

" of which is normally composed of an attribute, a comparator,

and a value. An attribute is a characteristic of the file; a
value is one of the states an attribute may assume; a
comparator defines the logical or mathematical relationship
between the attribute and the value, RUNWAY LENGTH is
an attribute of the sample FORCE STATUS file and 5,000
feet could be a value for RUNWAY LENGTH. The expression
"RUNWAY LENGTH > 5,000" is therefore a valid modifier,
Another modifier could be "COMMAND = TAC." Placing
these two together as "COMMAND = TAC, RUNWAY
LENGTH > 5,000" forms a modifier set that describes
certain entries in the file more specifically. The modifiers ‘
in a set are separated by commas and are logically additive;
that is, an entry must meet the requirements of all the
modifiers in a set to yualify. A simple qualifier contains
only one modifier set. A compound qualifier may be con-
structed by combining several alternative modifier sets.
This could be: "COMMAND = SAC, ACFT POS > 10;
COMMAND = TAC, RUNWAY LENGTH > 5,000." The
semicolon (;) defines the end of one modifier set and the
beginning of the next. It also specifies a logical OR
relationship between the sets. Data may qualify by meeting

either of the modifier set's criteria.

4-45

Output Director Conjunction — The word THEN always -

follows the qualifier. It serves to make the statement more
meaningful from an English language view and acts as the |

separator between the qualifier and the output director.

Output Director — This is normally a single word that

specifies the output device desired and the format in which

the retrieved data is to be presented.

Output Selector — The last part of a Query Language

statement is the output selector. It contains the names
of the attributes that are to be presented in the output and
specifies the detail arrangement of the output within the

general format specified by the output director,

An operator who desires to reuse a Query Statement may,
at this point in the Query Statemant direct that it be added
to a SAVE table without processing, by adding the word
SAVE at the end of the statement. He may also append

remarks to the statement at this time.

A Query Statement is terminated by an End of Message

symbol which is available on the 473L equipment,

Output Options — There are two optional features available
which the operator may use in conjunction with the OUTPUT
DIRECTOR and the OUTPUT SELECTOR to order his data .

and to title his report., The sequence of attributes in the

4-46

[SC I SRR O

R BRI L S e e

e

i b

S e KL i R e

%@”m%“\mm&wmmwwwrwmmw e e o m—

()

output is controlled by the order in which they are listed

in the statement, and the values are normally listed in the
sequence in which they are retrieved from the file. To
develop a more useful output, the operator may specify _
that the data is to be sorted. The expression for SORT

is either INCR, increasing (i.e., A to Z alphabetically

or in increasing numerical order) or DECR, decreasing,
which is the converse, Sorting instructions can only appear
in the output selector portion of the statement and are

expressed in the following form.

—— ATTRIBUTE —— =INCR
=DECR

Sorting may be performed on a number of different

attributes in one statement, The attribute listed first
will be the primary sort, the attribute listed second is

the secondary sort, etc.

The other option in the output is the ability to give any QL
retrieval a title by enclosing the desired title between
asterisks, The title must be entered following the OUTPUT

SELECTOR but preceding the terminal punctuation.

Fuictions — In addition to the basic elements and options
previously discussed, there are a number of special functions
in the Query Langunge that may be expressed in the qualifier
and/or selector portions of n statement. These functions

provide the ability to qualify on or to generate and select

4-47

(10)

data based on data criteria not explicitly stored in the

file. The functions are: Great Circle Distance (GCD)

that computes the distance between two geographic points;
SUM which accurulates the sum of several values of one
existing attribute; and the MIN/MAX function which selects
the minimum or maximum value among several attributes

on an entry basis.

-~

Complex Queries — An additional feature of the Query

Language, the complex query, provides the user with

a powerful tool. A complex query provides the ability
to develop a statement that is composed of several sub-
ordinate queries. Each subordinate query is separated
by a colon (:) and can address the same or a different
system file, The complex query retains data retrieved
by prior subordinate queries as values of modifiers.
Essentially it provides the ability to use data from other

files to qualify and select data from one file,

Assume it is desired to retrieve all SAC units from the
sampie file that possess at least as many aircraft as the
413ATW at DENVA, This could be performed by using

two separate statements by first retrieving the number of
aircraft possessed for the 413ATW, then using the retrieved
value in the modifier of another statement to qualify those
units meeting that requirement. However, one complex

query can perform the same task.

4-48

RETRIEVE FORCE STATUS WITH COMMAND =

SAC, UNIT = 413ATW THEN RETAIN ACFT POS:

RETRIEVE FORCE STATUS WITH COMMAND =

SAC, ACFT POS> [R1, ACFT POS, OR] THEN

LIST UNIT, ACFT POS
The above complex query would retrieve the value for ACFT
POS for the 413ATW in the first subordinate query and auto-
matically insert it 28 a value to the ACr'T POS modifier of the

second subordina.. ;; ery. The second subordinate query

would retrieve all units meeting the desired requirements.

The colon (:) is used to separate the subordinate queries, and
the information enclosed within brackets directs the QL in
locating the data to be used. The R1 denotes the working file,
the attribute ACFT POS denotes the attribute values to be used,
and the OR denotes the relationship of those values when using

them in the statement,

All previous discussions have related to the IOC Query Language.

Additional features being planned for in the COC Query Language

include a means of expressing mathematical computations that

can be used in either the qualifier or selector portions of a

- - i - e - R R S R T T VR B AR TRRALS i

statement. This will be performed by a planned COMPUTE
function. The capability to extract information from several

files to generate a new file that can then be queried will be

.
i
¢

performed by a planned COMBINE function.

4.6.8 Capability and Use

The man-machine interface in 473L is satisfied by several communication

consoles from which operators may enter queries and view replies. A data link permits

4-49

oy iRt NS RHER A W g ¢ ¥

g

b

remote stations to send messages, status reporfs, and inventories directly to the
computer. The information received over the on-line data link is used to update

the data files which are stored on disc. Ma.y users have simultaneous access to the
system files through the use of communicatior. consoles. Access can either be in the
form of a typed query statement or an option selected with the aid of a control panel
overlay that defines a specific capability area. A combination of these two procedures
can be used; for example, an overlay may be used to help an operator construct a query.
Thus the control panel and the query language are complementary, and in the operation

of the console they can be used alternately without interference.

4,6.7 Comparison with Reliability Central Data Management Subsystem

The HQ, USAF system has successfully solved the problem of providing a
command staff with an optimal man-machine interface for on-line, non-planned queries.

In achieving this, some generality has been sacrificed, as described below,

(1) The 473L system does appear to contain 2 mechanism
for quickly defining and incorporating into the data base
a highly structured data set. For example, there appears
to be no capability in the serial-parallel file organization
for representing an arbitrary number of embedded files in
an entry. (This is the capability called "repeated groups"
or "nested rcpeated groups" in NAVCOSSACT IPS). RCDMS
uses its data description language, its Item Definition Job
Request, and its Data Entry Job Request to permiﬁ the uger

to specify and incorporate data structures with any degree
of file nesting.

4-50

B e e

2)

3

4)

The literature does not speak of a capability to cross
reference items within the 473L data base., This limits

the system's ability to give complete answers to queries
which refer to data in several different file sections of the
data base. The RCDMS directories are designed to contain
tables of link addresses from records in one file to records
in other files, The cross rgf'erence can be established

rapidly, because the links are in the directory, and the

records of the file originating the link need not be accessed.

The 473L system does not have a data indexing scheme.
Consequently, query searches involve looking at the data

ratke~ than manipulating directories. The parallel organi-

zation of the files helps to reduce the amount of data handling
in the searches, but the number of accesses to data is more
than if the data were indexed. RCDMS provides for full
indexing of the data to whatever depth the user desires.
The search strategy of RCDMS is to make no access to
peripheral data storage until the name of a specific data
item has been isolated which satisfies the query criteria.

The strategy is designed to eliminate all unnecessary data

accesses.

The ability to store and automatically trigger a complex
sequence of data processing tasks as a production capability
has not been designed into the 473L system, One of the

features which makes RCDMS a general-purpose system

is its ability to receive and store a variety of Job
Descriptions which can be run at any time in the future
without reprogramming. TFurther, the user can intro-
duce new parameters into the programs specified by the

Job Description when the time comes to run the job.

The 473L gystem does not seem able to enter new data
descriptions in a user-oriented language, whereas RCDMS
incorporates a flexible data description language which can
be used in conjunction with an Item Definition Job Request

to make changes in the logical structure of the data base.

The two systems have several objectives and design features in common,

namely:

1)

(2

®

Both systems are designed to ultimately serve a user
population which has little or no knowledge of system
operations, and yet which wishes to use the system

directly, without a specialist acting as an intermediary.

Both system designs strive to handle a dynamic data base
by means of generalized programs wnich do not depend on

any particular data structure.

Both system designs permit a query to be applied through
the whole range of the data base, thereby broadening the

scope of the queries, and increasing the usefulness of the

data base,

4-62

e B A T e 2 it e e g et Yt et

romerneh, vy

PO

whe et g o RPN T TR SR AR

' o0 B - y

4

The 473L system has a unique display capability which
permits a broad variety of output formats for the user.
When the RCDMS development reaches the stage where
the display capability is being designed, the RCDMS

designers will look carefully at the 473L design.

4-53

4.7 COMPILE ON-LINE AND GO SYSTEM (COLINGO) .

4.7.1 Objectives
COLINGO (Compile On-LINe and GO) is a general-purpose storage and
retrieval system developed for the USSTRICOM Interim Command and Control System

by the MITRE Corporation, Bedford, Massachusetts,

COLINGO was designed to provide a computer-based system for data file

generation, maintenance, and retrieval in accordance with uniform but flexible procedures.

It was to be a system that could grow and be easily modified based on the users'

changing operational requirements, and the designers' technical experience.

These objectives and associated constraints dictated the following general

design goals for COLINGO — COLINGO was to be:

(1) A system that would aécept most types of data from

most sources, with minimal reformatting.

(2) A system that would perform almost any logical or

mathematical manipulation of the data.

(3) A system that would allow rapid updating without

imposing difficult constraints on the update format,

(4) A system that would permit on-line programming to
meet many day-to-day problems, and off-line programming

for more complex problems,

4-54

KRN NN WIS, | o G Bt St ik sy et e

- (5) A system with simple program maintenance and extension
capabilities to permit the using command to participate and

guide the evolutionary design of the system.

(6» A system with a good man/chhine interface and control
language, which would be data-compatible with most

associated organizations.

4.7.2 Implementation and Status

COLINGO consists of modular computer programs for an IBM 1401 computer,
Control of the data, computer programs, and equipment is achieved through on-line
interpretive execution of statements in the COLINGO Control Language entered by
cards or from a single console typewriter. Programs are constructed as closed
subroutines which may be written in Autocoder, SPS, or COBOL. Most system files

are on tape, while programs and high priority data are on disc.

A COLINGO "C" Version, handling query aspects, was completed and checked
out in early 1964, COLINGO "D'" which implements additional control features, report
generators, and sort routines was scheduled for completion in mid-1964, A COLINGO

10 is proposed for the IBM 1410,

!
e

4,7.3 Components

The system languages consist of a user language, the COLINGO Control
Language (CCL), and a programming language approaching the capability of COBOL.
All user communication with the computer is accomplished with a CCL message, The

control language, although it contains a basic query language subset, is more than a

query language in the usual sense since CCI messages initiate all system actions including
job execution and control over data, programs, equipment, and output. A typical message

is shown below:

GET A-FILE IF STRENGTH/AUTH GR 500

EXECUTE 01 02 03 IF/NOT PRINT ALL.

(Underlined words are action verbs — all words following an action verb up to the next
action verb are parameters of the next action verb. The parameters following the
EXECUTE action verb are the labeled locations of other messages. Underlining of action

verbs is for clarity only; they are not actually underlined in the message entry).

COLINGO consists of an Executive Program, a CCL interpreter, and a system
of subroutines. It includes no inherent data base or operational capabilities. Its pro-
gramming language and compiler are applicable to almost any data management task, but
are entirely dependent upon the data base specification and programs written for the

particular problem to be solved.

System macros provide a capability for the following action types (each

represented by several macros), used at the CCL level.

Input/output

Data manipulation
Computation

File generation

Update and maintenance

Sequence control

s e A TN L Fray

Rsicugtat i

R I S

A data description language is provided (the COBOL "PICTURE") within the
programming language. Dictionaries are generated by the system to be used by the

data management routines.

4,7.4 Data Structure

The format of a record can extend to two levels; that is, an item may have
one subitem or one parent item (but not both). The formats of the logical records in a
given file are not all necessarily the same, since an item may be a subfile. The program
structure provides for up to one subfile by providing one "master" physical record plus
up to fourteen "trailer' physical records for each iogical record; the trailer records

provide for values in excess of one,

Each record has one attribute, called the "main object property" whose value

is the name of the object represented by the record.

There are apparently no cross references.

4.7.5 Query Language

A query consists of three major phrases.

The first one consists of the single word GET, called the Major Directive,

followed by the File Index, which is the name of the file being queried.

The second phrase begins with the Conditional Directive, IF. IF is followed
by a sequence of one or more property/value conditions. The conditions are conjoined
by the (Boolean) Logical Connectives AND and OR. Each condition consists of three
parts in sequence: an elementary property (or Attribute), an Attribute-Value Operator,

and a value,

4-57

The third major phrase begins with one of the three Sub-Directives,
PRINT, DISPLAY,and COUNT. The remainder of the major phrase is the Sub-

Directive Modifier. The Sub-Directive Modifier 1s either (1) the word ALL, (2) the

word IT, (3) a string of Attributes, or (4) the word NOT followed by a str.ng of attributes.

A representative query and its structure are given below:

GET AFLD IF COUNTRY = US AND RNWY-LNGTH > 7000 PRINT

AF1D- NAME RNWY- LENGTH

4.7.6 Retrieval Logic

An English paraphrase of this query is "Print the names and the lengtus of the
runways of all airfields in the United States which have at least one runway longer than

7000 feet."

The Major Directi. 2, GET, identifies the query. The File Index selects a

particular file for the query. IF always marks the beginning of the second major phrase.

Jhe property/value conditions define conditions which records in the selected file must
meet in crder for their data to he relevant. In the example, the value of the elementary

property COUNTRY must be US and the value of the elementary property RNWY- LNGTH

must be greater than 7000. Subdirectives define the computation to be performed and

the output medium. PRINT specifies a high speed device, DISPLAY a low speed device,

and COUNT directs a count of the qualifying property vi....es in the Sub-Directive Modifier.
The Sub-Directive Modifier specifies the data to oe extracted. In the exnmple, these r'ata

are the values of two elementary propertics. The Sub-Directive Modifier may be the single

word 1T, in which case the values to be extracted are precisely those whose properties

are mentioned in the second major phrase. It may also be the word ALL, which spe.ifies

that all the data in each qualifying recousd is to be extracted.

e T R R :5’:@?*’i%“?ii'rfw,m’"__f a T u ,A_:m-::j.’,"“??

The search component of the retrieval logic begins by reserving a "condition
indicator" for each condition in the second major phrase. If the property named in a
condition is a top level one and the condition is met at least once in the record (i.e.,

in the master record or in at least one of the trailer records) the corresponding indicator

is set. If the property named in a condition is a second-level property, the corresponding
indicator will be set if and only if the condition is satisfied at least once and any other

conditions with properties subordinate to the same top-level property are also met.

When all conditions have been examined, their indicators are "AND-ed"

and "OR-ed" together to determine whether or not the curvent record qualifies.

For a description of the extraction component, assume that only PRINT or

DISPLAY is used as Sub-Directive and that IT and ALL are not used.

" If a top level property is mentioned in the third major phrase and not in the

second, all its values (for the master and all trailer records) are extracted (printed or

displayed).

if a property is mentioned in both, only the qualifying values will be extracted.
If the property is top level, all of its subsumed values will be extracted. A second-level

property can be printed only if its accompanying properties qualify, and only qualifying
values will be printed.

4.7.7 Ca pabilit
Mathematical and logical operations using \ne system's data base are provided
hy both stored program and on-line programming techniques through the use of a query-

contro] language. Control of the data, computer programs and equipment is achieved

4-59

through on-line interpretive execution of the COLINGO Control Language (CCL) instructions
entered by cards or from an inquiry console typewriter. The design includes a Basic
Program Set which provides programs for rapid and convenient data file update, data file
addition, and stored program addition. This design allows sequential expansion of the
Basic Program Set and the addition of special purpose and convenience features. On-line
file generation and on-line programming in COLINGO are an integra’ part of the system
design. Special data maintenance and verification routines as well as automated system
dictionary and vocabulary preparations are also included in the system. These features
will permit evolutionary growth of the system and provide the capability to produce special -

purpose operational programs with a minimum of programming time.

In order for a user to quickly obtain results from a generated data file, a
combined query and programming language was provided to manipulate the data base both
logically and mathematically. Additionally, a general-purpose output program was provided

to present results to the user in formats of his choosing.

A simple allocation scheme for introducing special-purpose programs into the
COLINGO System was provided. This scheme allowed a high degree of communication

between the COLINGO Basic Program (BPS) and the special -purpose programs,

The COLINGO Control Language was structured in a way that provided a convenient
query language to complement a more powerful language useful in many programming
applications. The combined language was designed to divorce the user as far as possible
from the computer equipment configuration and to remove the usual core-size limitations
on the operational problem being programmed. This removal was accomplished by the
process of chaining operational statements together and allocating them to disk, and having

the chain sequentially called in by a small in-core Executive routine,

4-60

SR R e R R P e

R e R B e

:

An essential characteristic of COLINGO is its ability i nap many physical data
formats into its own format in a short time and then to query the resultant formatted data

with facility. As a consequence, COLINGO is a highly flexible information retrieval system.

The COLINGO design achieved a large degree of data and program independence
by not referring to data fields directly, but instead through a data describing dictionary.
This dictionary was created according to COBOL procedures, but achieved the important

advantage of being modifiable on-line by the operator.

Simple data generation and verification programs were included in COLINGO
to generate a large variety of »card and tape data files from external sources, and in addition,
the CCL itself was given the power to manipulate and change its own data base as to content
and format. Thus, not only could the COLINGO System accépt a wide variety of formats,

it could also process and output that same data in a variety of different formats.

4,7.8 Comparison with Reliability Central Data Management Subsystem

COLINGO represents a significant advance in the state of the art of dealing
with large amounts of data on a small computer. The COLINGO degign has a number of
features which are similar to the objectives of RCDMS, but the designs differ widely in
the relationship between the system and the data base. Some of these differences are

discussed below:

(1) Because most of its data is on mag:.ctic tape, COLINGO
is more file-orientec than data-oriented, If a query cannot
be satisfied by the limited QUIC files on disc, the system
must turn to magnetic tape for its answer. COLINGO can
search several magnetic tape files in behalf of one query,
but these files must be searched serially without a logical

4-61

AR

¥
H
§
H
¥

b f
B
£
e

(2)

connection between them because there are no cross
references between files (or within files) of the system.
RCDMS is not restricted in itg access to files because it

deals with'the data base as a single entity. RCDMS has

a consolidated directory as well as random access storage
for all summary data that is normally used to answer queries.
This feature permits the system to update or interrogate files

in parallel, and to link files according to logical criteria.

The search strategy of COLINGO is to scan in a linear
fashion the serially organized magnetic tape files or

data portions drawn from the QUIC files. This means

that all records to be searched must be brought into

core memory, and each record must be compared with
the criteria of the query. RCDMS contains data indexing
in its directories so that it can use a search strategy which
manipulates the directory rather than scanning the data.
Once the pertinent portion of the directory has been
brought imto core memory, the RCDMS search package
can determine under certain circumstances, the exact
addresses of all the data elements which satisfy the query.
In other instances, & small subset of the file is retrieved
and those retrieved records must be compared with the
criteria of the query, as in COLINGO. By accessing only

the pertinent data elements, needless accesses are eliminated.

4-62

I - T

$ L e, P

s e s . 8 R TS A A

(3) The COLINGO search logic does not permit the use of the

NOT operator. In addition, functional operators require

B e B e o

two passes through the file, since a serial search strategy
does not provide the required communication between files
: or between records in a file, This will not be necessary
with the RCDMS design.

(4) COLINGO is able to nest up to fourteen data items within
another data item, but these must be at a single level of
nesting. The data anticipated for the Reliability Central
will require a more complex data structure., RCDMS has
made provision for an arbitrary number of reliability test
records to be associated together at any level in the data

hierarchy.

The features in the COLINGO design which are comparable to
the Reliability Central objectives and RCDMS design are as follows:

(1) COLINGO is one of the few systems surveyed that utilizes
a flexible and wide-reaching data description language. It
uses a language similar to the COBOL "picture." A similar
degree of user and system flexibility is obtained with the data
description language designed for RCDMS, which permits
almost any data structure to be specified, and which will
offer convenient data formats for the user who is not computer-

oriented,

4-63

COLINGO offers a comprehensive capability for file

generation and maintenance.

The COLINGO Control Language is able to specify a wide

variety of jobs and queries. The RCDMS Job Specification

Language has a similar capability for specifying jobs. The

RCDMS query language has not been designed, but the system

search package is designed to accommodate a query language

which:

(a) uses the Boolean operators of AND OR and NOT,

(b) uses such relational operators as =, >, <, and ranges,
(c) permits arbitrary nested conditions,

(d) searches at any level of the data structure.

4-64

e

4.8 LANGUAGE USED TO COMMUNICATE INFORMATION SYSTEM DESIGN (LUCID)

4.8.1 Objectives
LUCID (Language Used to Communicate Information System Design) is a

R SR Ry A

2 A

vt b

general-purpose programming system under development by the System Developmunt
Corporation for ARPA. Its primary objective is to provide a tool for the design of data
management systems. The LUCID view is that any computer-based command and control

system is essentially a data management system and that the problems of the data base

Y R AR RIS L

are central to the problems of design. LUCID attempts to provide the system designer
with a tool that will help solve the problem of system data content and structure earlier
in the design process. It does this by providing both a language in which design of data
management systems can be expressed, and a programming system to convert this

expression of design automatically into something that can be run on a computer.

PR e B et L etTieiaesn

4.8.2 Implementation

- The feasibility model of LUCID is written in J-2 Jovial for the AN/FSQ-32
with tapes and drum. It does not operate under the Q-32 monitor system because of the

space limitations imposed. Assembly language was used for the '/O subsystem but is

B s LT

brlieved to L.e on the order of 5 percent of the total system.

¥
#

Extensive use was made of previous work in developing components of the
LUCID prototype which is currently running. The prototype which was not written with
any expectation of moving it to another machine depends heavily on the drums in the Q-32
system used for the directory and related tables. In addition, the program size (including
communication tables and data) is limited at present to 16K. If the system were implemented

on another (smaller) machine, it would require re-organization.

4-65

R WG v — .
e K R S!S

RTINS AR M A

A separate (non-integrated) Utility system was designed and built for the
programs and libraries which make up the prototype LUCID system. An initial version
consisting of the file description language interpreter, a data load function and a query
capability has been implemented to demonstrate the feasibility of the concept. The full

LUCID design is being reviewed for implementation under a planned SDC time-sharing

system,

The Query System implemented in the feasibility model operates on a single
file (termed data base), and is activated from a console typewriter. Two subcommands

have been defined: PRINT (enumerate on the typewriter), and LIST (creating a tape

file for off-line listing). Only numeric iriformation is obtained, and can be specified
by any arbitrary Boolean and relational expression, In a conversation with the system

designer, it was determined that this facility would be expanded to include alphanumerics

in the planned full implementation.

4.8.3 Components and Data Structure

At present, the LUCID System consists of the three following major functional

components, and their associated system programs:

(1)
(2)
3

A language for describing a data file,

A language to describe inputs into the data file.

A query language to query the data base and retrieve
data from it.

The language processing and system programs are developed from and utilize

the DODDAC Data Base Load (DBL) programs, and the GENDARME System of Data
Processing procedures {tape oriented).

e o T : S R o A A B £ B L S R e S T IR S

4.8.3.1 Data Base Description. In its current version, LUCID accepts a definition of

a data base.* The maximum number of terms currently contemplated for a processable

data base is approximately 100. The data base description can cope with the following

types of items:

(1) Name, meaning an item containing an alphanumeric

string.

4 (2) Descriptors for data whose values are in integer form.
(3) Descriptors for items whose values are in floating point
form.

(4) Descriptors for categories of items where a name for a
& class of items is followed by the word CATEGORIES and
&g descriptors of items composing that class e.g.,

P

: TITLE CATEGORIES MANAGER, CLERK.

(5) Descriptors for strings of items; categories may be

2 ' imbedded in the string e.g.,

v STRING SET CONTAINING

¥ SCHOOL NAME

YEAR MAX. 2000
DEGREE CATEGORIES PHD. MA, BA,

(6) Descriptors of items whose values are to be included in the

data base if the given stated logical condition is satisfied.

#Data base" is the LUCID term for file.

4-67

The data base is read in and Data Base Table directories are created to be {
used subsequently when data input to the data base is submitted. Essentially, the data -
base description can be viewed as description of a file entry, where each data entry in

the file will be described by the terms found in the data base description.

4.8.3.2 Input. Input of data into the data base is carried out intwo steps:
First, a description of the data to be input and of the format
in which it is keypunched is read in and processed. The input
command may specify the data description in the following way:

FORM MEANS SYMBOLIC INPUT

" . o 4. A i ey o, .

Option 1 5 CARD SET IDENTITY n

Option 2 | DATA SET TERMINATOR END

o i smart % s ™

/" PACKED or
Possible '
Data Forms SEQUENCED or

{_ NUMBERED |

followed by: Names of Data to be entered, numbered where
sequenced input is not specified (i.e., sequenced in the sequence

of the original data base description).

The LUCID translator programs operate on this input, producing the ![

following results:

(1) Master List Directory to OPAQUE Tables.

(2) Table describing the Data Base.

(3) Table of Symbolic Inputs. . f

4-68

The data itself can then be read under a command, such as

MAKE (PERSONNEL DIRECTORY) FROM (FORM)
The term MAKE refers to a load file which contains the program to load data.

The system will read the data of one entry at a time, constructing a concor-

dance dictionary for all terms described in the input and for all data values input. The

directory is organized as follows:

(1) COIL Table, containing an entry for each term
of the data base for which input has been defined.

Each entry in the COIL Table points to entries in:

(2) JUST Table. JUST Table contains for each entry
. in COIL Table a list of Values which exist in the

data