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THEORY OF MICROPOLAR FLUIDS 

A. Cemal ErIngen 

Purdue University 

ABSTRACT: 

Equations of motion, constitutive equations and boundary conditions 

are derived for a class of fluids named micropolar fluids. These 

fluids respond to micro-rotational motions and spin inertia and 

therefore, can support couple stress and distributed body couples. 

Thermodynamical restrictions are studied in detail and field equations are 

obtained for the density, velocity vector and micro-rotation vector. 

The system is solved for a channel flow exhibiting certain interesting 

phenomena. 
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1.  INTRODUCTION 

1 2 
The theory of microfluids introduced by Eringen ' deals with 

a class of fluids which exhibit certain microscopic effects arising 

from the local structure and micro-motions of the fluid elements. 

These fluids can support stress moments and body moments and are 

influenced by the spin inertia. The theory of microfluids are, 

however, too complicated even in the case of constitutively linear 

theory and the underlying mathematical problem is not easily amenable 

to the solution of non-trivial problems in this field« 

A subclass of these fluids is the micropolar fluids which exhibit 

the micro-rotational effects and micro-rotational inertia. This 

class of fluids possesses certain simplicity and elegance in 

their mathematical formulation which should appeal to mathematicians. 

The micropolar fluids can support couple stress and body couples only. 

Physically they may represent adequately the fluids consisting of 

dijile  elements. Certain anisotropic fluids, e.g. liquid crystals 

which are made up of dumbbell molecules, are of this type. In fact, 

animal blood happens to fall into this category. Other polymeric 

fluids and fluids containing minute amount additives may be repre- 

sented by the mathematical model underlying micropolar fluids. 

3 k 
Recent experiments with fluids ' containing extremely small 

amount of polymeric additives indicate that the skin friction near a 

lA.  C. Eringen, Int. J. Engng. Scl, £, 205 (196k)• 

2 
A. C. Eringen, "Proc. XI Intern. Congress of Appl. tech." Springer- 

Verlag (1965)- 
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rigid body in such fluids are considerably lower (up to 30-35^) 

than the same fluids without additives. The classical Wavier-Stokes 

theory is incapable of predicting these findings since it contains 

no mechanism to explain this new physical phenomena. At the Naval 

Hydrodynamic Conference at Bergen last year, September 1964, the 

author suggested thav the microfluid theory may contain Just the 

right mechanism required. While it is too early to make the final 

conclusion on this question, the problem of channel flow worked 

out in this paper is a positive indication of this conjecture. 

In Arts. 2 and 3 we give a resume of the theory of microfluids 

formulated in Ref. 1. The  theory of micropolar fluids is developed 

in Art. 4. In Art. 5 the thermodynamics of such fluids are studied 

and the restriction on the viscosity coefficients are obtained. 

In Art. 6 we give the field equations and boundary conditions and 

present the similarity parameters. The last section of the paper 

(Art. 7) is devoted to the solution of the problem of channel flow 

of micropolar fluids. 

3 
^J. V. Hoyt and A. G. Pabula,  "Ifce effect of Additives on Fluid friction/ 

U.S. »aval Ordnance Test Station Report (19#0. 

V. M.  Vogel and A. N. Bitterson,  "An Experimental Investigation of the 

Effect of Additives Injected into the Boundary Layer of an Underwater 

Body," Pacific Naval Lab. of the Defense Res. Board of Canada, ifct. 64-2. 

A. C. ErIngen, Proc 

September 10, 1964. 

5 
A. C. ErIngen, Proc. 5th Symposium on Naval hydrodynamics, Bergen, 
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2. IAWS OF MOTION 

In our previous work, Ref• 1, we formulated a theory of micro- 

fluids whose behavior is governed hy a set of laws of motion and a 

constitutive theory. Some of these laws are new to the mechanics 

of continua and others are modifications and extensions of the well- 

known principles of mechanics. Theee are 

Conservation of mass: 

|£ ♦ (p vk)>k   * 0 in T (2.D 

Balance of momentum: 

w + piti -;.} - °        in  y       (2-2) 

Balance of first stress moments: 

*i - 8»i+ w+p(ii» - v • °   in v     <2-3> 

Conservation of energy: 

*   a   \l vJ,k + (Vl " tki) VkJ + \tm w+ \,t ♦ * 

in      *y        (2.») 

Principle of entropy: 

s or . ph   - ( *)  -*  > 0 in  ^     (2.5) 

Inequality (2.5) ie exioaatized to be valid for all Independent pro- 

ceeeee. In these equation» 
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a. 
im 
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*k 

h 

1 

0 

mass density 

velocity vector 

stress tensor 

body force per unit mass 

micro-stress average 

the first stress moments 

the first body moments per unit mass 

inertial spin 

internal energy density per unit mass 

gyration tensor 

heat vector directed outward of the body 

heat source per unit mass 

entropy per unit mass 

temperature 

Throughout this paper ve employ a rectangular coordinate system 

x , x2 ,  Xw and the Bulerian representation, Fig. 1. All vectors 

and tensors are referred to a set of spatial rectangular coordinates 

so that no need arises for differentiating their co variant, contra variant 

and mixed components from each other. An index followed by a comma 

represents partial differentiation with respect to space variable x. 

and a superposed dot indicates material differentiation» e.g. 

'M *7 
dvk 
3T + \,t *i (2.6) 
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Here and throughout this paper repeated indices denote summation 

over the range (l, 2,  3). 

For the spin inertia ve have the kineraatical relation (Jtef. 1, 

eq. 5.5) 

\l    s Sal ^mk + Vnk Vmn) (2*7) 

where i .    « i,  is called micro-inertia moments and according to 

the lav of conservation of micro-inertia, they satisfy the partial 

differential equations (Ref. 1, eq. 2.l6) 

km + i v_ - i_ v_ - i,_       0       in  f     (2.8) i      T  ± V   — A    V    — JL    V 
dt     km,r r   rm rk   kr rm 

Expressions (2.1) to (2.5) and (2.8) are valid at all parts of the 

body B having volume y     and surface j    ,  except at finite 

number of discontinuity surfaces, lines and points. At the surface 

C/      of the body we have the boundary conditions 

tki \   r tg on    & (2.9)     I 

\tm\   '   \m on    y (2-10) 

where £ is the exterior normal to $f  and t. and \       are 

respectively the surface tractions and surface moments acting on $f • 

Ve note that while equations (2.1), (2.2) are well-known from 

the classical continuum mechanics, equations (2.3), (2.M and (2.8) 
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are new. The first two of these equations (eq. 2.3 and 2,k)  reduce 

to classical results • 

when Aj.  = i   = v   ■ 0 * Equation (2,3) is, however, mich 

more general than (2.11) and is the result of the new principle of 

balance of first stress moments as against the limited axiom of balance 

of moment of momentum of the classical theory. Equations (2.8) have, 

of course, no counterpart in the classical continuum theory. 

If we exclude the heat conduction phenomena, in the present 

theory, the determination of motion requires the determination of the 

nineteen unknowns 

p(*,t) , ita (ac,t) , vk(ac,t) , v^ (*,t) (2.12) 

as against the four unkn»- JS   v     and    p   of the classical theory. 

A. C. Bringen,  "fenllnear Theory of Continuous Media/ McOraw Kill (1962). 



3. CONSTITUTIVE EQUATIONS OF WJCROFLÜIDS 

In Ptef. 1 we also gave a set of constitutive equations for micro- 

fluids. For a non-heat conducting medium these are expressed as 

relations between (t,, ,  s . , \,  ) and the objective quantities 

bki •- \,i*\i (5-2) 

\tm   '-   VW,. <3'3> 

and p and i   . Of these <£ is the rate of deformation tensor 

and £ and a. are two new tensors respectively called micro- 

deformation rate tensor of second order and gyration gradient. Both 

of these latter quantities transform like absolute tensors under any 

rigid motion of the frame of reference, i.e. they are objective. 

Hence they are suitable for use as the independent constitutive 

variables. 

For ehe present work we produce here only the results of the 

linear constitutive theory of micro-isotropic fluids (i.e. i.  ■ i 6. ). Km      Km 

For the nonlinear theories the reader is referred to Ref. 1. 

i = [.¥ ♦ X tr 4 ♦ *o tr (fc-£)] I ♦ 2u4 * *0(fe-4) ♦ ^tf-ft)   (3^) 
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£   =   [-IT + A tr 4 + no tr (t-4)] I ♦ 2u Ä + 5X (fc-fcT-24) (3.5) 

kirn 1    (rl Vr + 72 V + '3 
arrm) 8W + (r4 aJrr + ', *rir 

6   rr/'    km     w7   krr     '8   rkr     '9   rrk'    £m 

+ 710 akim * 711 Sml * 712 aikm + 713 amki + rl^f ftimk 

* 715 \ft (3.6) 

where £ is the unit tensor and A , A , u ,  u , u , 1 , J , 

and 7  to 7.- are the viscosity coefficients. Also tr denotes 

trace and a superscript T indicates transpose, e.g., 

I   a 
10 0 
0 10 
0    0   1 

trbki 5 bkk > bki ■ b £k 

The equation of state for these fluids can be shown to have 

the form 

€ = c(l,p" ) (3.7) 

so that the thermodynamic pressure w   and the temperature 6   are 

defined by 

T  :  - 
dp 
T 'n,i e i 37 'p,i (3.8) 

For a detailed treatment on thermodynamics see Ref. 1. For the thermo- 

dynamics of micropolar fluids see section 3 below. 



For non-heat conducting media, the nineteen unknowns (2.12) 

must satisfy the thirteen partial differential equations obtained by- 

substituting (2.7) and (3.*0 to (3.6) into (2.1) to (2.3) and the 

six equations (2.8) so that ehe number of independent equations are 

equal to that of unknowns. Equations so obtained are nonlinear in 

the inertia terms and highly complicated otherwise. The  purpose of 

the present paper is to give a new theory applicable to a large 

class of fluids falling within the framework of the microfluid 

theory presented above, however possessing adequate mathematical 

simplicity to make the engineering problems tractable. 
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k.    MICROPOIAR FLUIDS 

A microfluid will be called micropolar if for all motions 

Micropolar fluids exhibit only micro-rotational effects and can 

support surface and body couples. Fluid points contained in a 

small volume element, in addition to its usual rigid motion, can 

rotate about the centroid of the volume element in an average sense 

described by the gyration tensor v . No micro-stretch of particles 

are, however, allowed (v'  is skew-symmetric). Ihus micropolar 

# 
fluids consist of a kind of dumbbell molecules. 

We now proceed to show that a class of microfluids satisfying 

(4.1) exists. The theory of such fluids is the subject of the 

remainder of this paper. 

Condition (4.1) implies that 

a, ,  ■ -a., (4.2) 
kim     /km 

Calculating K .     and -X . from (3.6) and equating them and 

using (4.1)2 and (4.2) we find that if (4.1) is to be valid for all 

motions we must have 

The present work complements our previous work, Ref. 2, on a similar 

suDject. 



ll 

77 - r8   ■   o (4.3) 

710 " 712 + 711 ■ 713    "    ° 

so that 

In view of skew-symmetry conditions (4.1) the independent number 

of    v       and   K.     are respectively 3 and 9.    ftius it is natural 

to introduce two new sets of variables    v     and   DL .   by 

Vr    '-   Kki VW ' vk/    *   erW Vr <*•« 

where    €, .     is the alternating tensor.    Here the axial vector    v 
KID 1 

will be called micro-rotation vector and a,_ the couple stress 

tensor. Ine sign convention for m.  is identical to that of the 

stress teiisor and is shown on Fig. 2. Similarly we introduce micro- 

* 
lnertial rotation o  and body couple I hy 

The couple stress, body couple and micro-inertial rotation intro- 

duced here are identical to those defined in Ref. 6, Art» 31. 
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ar 5 "€rki°ki    '    aki s -2crW ^r (^7) 

*   s  -6bJ,,      ,       I, .  s  -26 . . 1 (4.8) r -   rki ki     '     ki      rki r v  ' 

Now multiply (2.3) by € .  and use (4.5) to (4.8) Since 

s . ■ s.  this results in mi   im 

mrk,r + «Mr *Jr + p(,k " V '   ° (^9) 

Similarly using (4.5) and (4.6) in (2.4) we may replace the equation 

of energy by 

<* -   \l  (vi,k - W V + \l  V + «k,k + ph (4-10> 

An alternative but useful form to (4.10) is obtained by using 

i,k ki        ki ki        kirn   m 

where 

.    1 (vu , - v# . ) (4.11) wki = r uk,i - vi,k 

and 
i> the classical spin tensor/ w  is the verticity vector. Ifeüee 

" = \l d<k - \l «Mr {ur + V + "ki V + qk,k + °h       (4-12> 
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The  boundary conditions (2.10) are similarly replaced by 

m . n lrknr '   \ on y <*.13) 

where m.  ■ €.- X   is the surface couple vector acting 

on £r  . Next we turn our attention to the constitutive equations. 

Equation ().^) can be put into the form 

\t    '-    (-*+ \ vr,r> \t * »V <VM + Vl,*]  + Kv ^i>k-«Wr
v
r) (*•*> 

where we set 

u - |i + u,  5 Li K  *o  Kl   pv ,   2(^ - n )  5 % (fc.15) 

An alternative form to (^.1*0 is 

tu,  ■  (-TT + X  d  ) 6U, + (2u  + K ) <L . - K     CWJ  («  + V )      (^.16) 
ki v rr  ki   *v   v  Ki   v klr  r   r ' 

If we multiply (h.k) by c -  and use (U.5) and (4.6) this 

equation can be transformed into 

Kl    v r,r kl   v k,l   v 1,K (>.17) 

where 

av ' 2(7i2 • V >     ev ! 2<'a - V 

\ ! 2(71 - 72 * 710 - \Z •  71U + *„> (*.18) 



Ik 

We now substitute (4.16) and (4.17) into (4,12) to calculate the 

rate of internal energy. 

P€ s -7T ± .   + A d., d,. + (2u + K )  d, . d 
kk   v il kk    pv   v  ki £k 

♦ 2Kv (wk + vk)(u,k ♦ vk) + dv v^ vif| 

+ ßv \l  V/,k + 7v V V + qk,h + ph (^19) 

The assumptions of micro-isotropy and the skew-symmetry of 

V'   when used in (2.8) gives 

gr a 0      or     i = const * j/2, on material lines (4.20) 

Finally we give an expression of the inertial rotation 

r     rki ki     rki   4k   nk In' 

using (4.1) this reduces to 

Summarizing the results: Basic equations of motion (2.1), (2.2), 

(4.9) energy (4.10) and the constitutive equations (4.14) and (4.17) 

constitute a proof that the micropolar fluids may exist as a subclass 

of microfiulds whenever (4.3) i£ satisfied. The thermodynamic restric- 

tions on the viscosities are studied in the following article 

i 
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5. THERMODYNAMICS OF MICROPOLAR FLUIDS 

In this paper we are primarily concerned with the non-heat 

conducting microfluids. In accordance with the principle of equi- 

presence (Ref. 6, Art. kk)  every constitutive dependent variable 

must be a function of the same list of variables until contrary is 

shown to be the case. In harmony with this practice then the 

equation of state of micropolar fluids must have the general form 

c ■ «(1, P'\ dw, bu, Vm) (5.1) 

The dependence on   i    is dropped since    i « const   along a material 

line.    We proceed to show that the dependence of    €    on   4 , fe   and 

a_   can be eliminated on the ground of the second law of thermodynamics 

(2.5).    Eliminating    (q.   .   + ph)/0   between (4.10) and (2.5) we get 

«* ■ ?} + \ \t <*j,k - \tr V + I \t Vl,k + ^   *   ° (5'2) 

Using (5*1) this becomes 

pr    •    pn (1 - V W + T rTT   p * 6 (5TT   dk/ * 5D77   bk/ * 3a— ak/m} 

op k/       ki       k/m 

This inequality must be satisfied for all Independent changes of *) , 
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•   •   • 
4 9  fe > & and e u • Since it is linear in these quantities, it 

cannot be maintained for all independent variations of these quanti- 

ties unless 

I  . *   . 0  ,  *   --   0 (5.3) 
*(w)  *üi      ^V 

\   -   0 (5.1*) 

»r I - »£!•«* + »*kl W,l: - W V + »Vl V * °    «5.6) 

where through (2.1) we replaced p by -P^Vk • In (5«3) a paranthesis 

enclosing indices indicates the symmetric part, e.g. 

<k      .1 /dc     ds % 

Since any function € of a symmetric tensor d , can always be 

expressed as a function d/ ,v f© see from (5.3) that € must be 

independent of 4 , fc and a, . Using (**.l6) and (^.17) the inequality 

(5.6) is further reduced to 

pr i i [A d^.d., + (2u + K ) d_d,^ ♦ 2* (w, + vj(u, +v )♦ v     v kk ££   ^v   v' kl Ik    v N k k  k k 

3 vu . v. . + 0 v, , v. . ♦ 7 v. . v, . ] > 0 (5.7) v k,k /,/   v k,i i,k  'v J,k l,k  - w ' 

• ! If I .1 (5.5) 
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We have thus proved 

Iheorem 1.   Ihe necessary and sufficient conditions for the local 

Clauaius-Duhem inequality (2.5) to be satisfied for all independent 

processes are: (i) e must be independent of 4 t  t and a, ; 

(ii) temperature 0 and pressure TT must be defined by (3*8) and 

(iii) inequality (5.7) must be satisfied for all possible motions. 

We now investigate the restrictions emanating from the satisfaction 

of (5.7) for all independent & ,    w + v and v,  . It is clear 

that for all values of <& irrespective of u> + v and v   we 

must have the classical conditions 

, (5A + 2u + K )    >   0 , JL     >   0 e w v  v  v -     '   e  — 

which are necessary and sufficient for the non-negativeness of the 

terms containing & . Similarly we must also have 

K /$     > 0 v'   - 

in order that pT   be non-nagative for all values of u> + v . 

Finally the conditions in a , ß  and 7  are obtained by making 

the last three terms in (5.7) non-negative, i.e. 

This expression can be written as a quadratic form In a nine dimen- 

sional sp»c*; i.e. 



• 
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aiJ yi yJ   *  °       '       alJ   -   aji 

where 

yi " vi,i     » y2 ■ v2,2     .    y3 > v3>3 

y7 s V     > y8 
s v     .    y9 - vlj5 

an - a22 - a
53 - I (ov + ßv + >V> » a12 ■ ai3 = V6 

a
^5 ■ a67 " a89 ' ßy/6 

\k ' a
55 =   »66 *   a77   =   a88   =   aQ9   3   V6 

all other   a        =   0 . 

The characteristic values *±    of a  are obtained by solving the 

equation 

w(,u-|V 

The nine roots for a are 

al '   a2 ' a3 • \ - ßv 

au = a5 . a6 . a? - a8 - 7y + 

aQ » Ja + 0 +r 
9     v  Kv  'v 

v= I . VA 



. 
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In order that the a  y y  > 0 to be satisfied for all y  we 

must have 

(rv - ßv)/e > o ,    (rv + ßv)/e    >  o 

(3av + ßy + 7y)/e >  o 

Hence 

Theorem 2.   The necessary and sufficient conditions for the inequality 

(5.7) to be satisfied for all motion are 

(3\ + 2"v 
+ \)l*  > o     ,      uv/e  >  o    ,   Ky/e  > o 

(3ay + 2r5)/e  > o     ,    -7y/e < ßy/e < yje   ,   7y/e  > o 
(5.8) 

These are the conditions on the viscosity coefficients. In general 

ve also have 6   >   0  . 

Corollary. The necessary and sufficient condition for the local 

ClausJus-DuheL inequality to be satisfied for all independent processes 

are (5.8). This result is clear as a combination of Theorems 1 and 2. 



,.,,,, ,:^u-«, -> -   %.    ^r,-W.HPt    —■>-■.- «**< -vf-" - .„,.,_ 
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6.    FIELD EQUATIONS 

The differential equations satisfied by    p , v     and    v     are given by 

(2.1) and combinations of (4.1^)and (4.17) with (2.2) and (4.9), i.e., 

-*k + (\ + uv> vi,ki + W + V' \it + Kv €Um v»,i 

+ P(fk - vk)    =0 (6.2) 

(Q,v + V Vi,ki + \ vk,*i + V 6k/m \,l * 2"v vk 

+ P(*k - J \)    *   o       (6.3) 

where a superposed dot indicates the material differentiation, i.e. 

The partial differential equations (6.1) to (6.3) are the field 

equations of the micropolar fluids. Under appropriate initial and 

boundary conditions they are capable of predicting the behavior of 

such fluids in a unique fashion. The existence and uniqueness 

theorems must of course be proven in order for the underlying mathe- 

matical problem to be "veil-posed." Presently we only suggest some 
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initial and boundary conditions. 

Initial conditions at t • 0 

p(&0) = PO(X) 

vkU>0) = vk(x) (6.5) 

\(£,0) - vk(ac) 

where p ,  v  and v  are to be prescribed throughout 

Boundary conditions at a rigid boundary 

xte^t)   -- ZB 

(6.6) 
*UB,t) = vB 

vhere £_ is a point on a rigid boundary having prescribed velocity 

y_ and prescribed micro-rotation vector v_. Conditions (6,6)  express 

the assumption of adherence of the fluid to the solid boundary. 

Boundary conditions involving prescribed forces and moments 

In place of (6,6)  we may prescribe boundary forces and moments as 

expressed by (2.9) and (U.13), i.e. 

(6.7) 

Other types of mixed conditions are possible. The  final Judgement 

on these questions requires theoretical work on the question of 
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existence and uniqueness and experimental work on the flow conditions. 

Equations (6.1) to (6.3) are expressed in rectangular coordinates. 

Vector expressions of these equations useful for work in other systens 

of coordinates are 

g£ + 2 • (P x) s 0 (6.8) 

(\ + 2uv + ^v) 2 2 • X - (nv + ^v) 2 x 2 x x + Ky v x v - 2 7T 

+ P£ • Pt g| -xx (2x v) + |2(Z2)]        (6.9) 

(av 
+ \ + 7V) 2 2 • 2 - rv 2 x 2 x x + *y 2 x x 

- 2*v v + pi  : pjv (6.10) 

where v does not possess as simple an expression as x • There 

is, however, no particular difficulty in calculating it through its 

tensorial form, cf. [2, 17, also Appendix]. 

We note that for  K = a « ß «= y    =0 and vanishing £ 

through (6.3) we get v ■ 0 and (6.2) reduce to the celebrated 

Navier-Stokes equations. Note also that for K ■ 0 the velocity 

X and the micro-rotation are uncoupled and the global motion is 

unaffected by the micro-rotations. 

The classical Stokes conditions 3A + 2u »0 for the micro- 
v   v 

polar fluids have the corresponding form 

3Xy + 2uv + KV - 0 (6.11) 
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to which we place no great faith. 

For an incompressible fluids p = const , 2 * Z  s 0 and 

IT   is replaced by an unknown pressure p to be determined from 

the boundary conditions. 

The similarity parameters of the micropolar fluids are obtained 

by non-dimensionalizing equations (6.1) to (6.3). Thus let L and 

T be respectively some characteristic length and time and 

jc    s    jc/L      ,      t    =    t/T      ,      7   =    v/vo      ,      v    =    V/VQ 

7T   ■   TT/TT0     ,    p   =   p/p0   ,     f   *   j/f0     ,     J   =   j/Jo (6.12) 

are 
where    TT   , p    , v    ,  v    , f     and   J   /some reference values of   ir   , o '    o       o       o '    o uo ' 

P ,   \x\ *   l-VI  ,   l£l    and   J    respectively.    Substituting  (6.12) into (6.1) 

to (6.3) and using (6.4) we get the non-dimensional equations 

OF 
n_ 2£    +   (J?.).    *   0 (6.13) 

3 AF K  »K 

1    l,kt       2    k,ii        3   k/m   m,l       4    ,k 

+ ?("6 r* * "5 ^   ■ X' 7i}    '   ° (6-lM 

■,  v. . . + a, v.   J4 + m_ €. ,    v    . - 2m,   V. l    J,ki       2   k,//       3   kim   m,l     ™    k 

+ ?(»6Ik-n5|    -V.v,)    ■   0 (6.15) 
i 



. 
. 

2k 

where 

n.     =    (A   + Li  )/p v L      ,      n0    i    (u    + K )/p v L    ,  n    « K v /p v 
1    -    v v     Kv '   o o        '        2 v*v        v"  o o      '    3       v o'Ho c 

n,     =    7T /p v ,      nc    =    L/T/        ,      nc    =    f L/v c 

4 0'  op        '        5 '    o 6 o '  o 

DL,    =    (a   + ß )/p J v      ,    m0    s   j /p j v     ,    m-    =    K/P J v •"1    -       v     Kv//Ko o o    '      2 'v/Kcro o    '      3 v/Hoüo o 

mi,    ;    K L/p j v        ,      ra_    =    n,      ,      nu      =    i L/j v v 
4 v '  oo o      '        5 3 o      "      o/uooc (6.16) 

Of these n , np are the reciprocal Reynold numbers, n. , n_ 

and n^ are well-known from the Navier-Stokes theory. The present 

theory introduces six new numbers namely n, , m. , HL , DL ; m. 

and ni£ . For a given fluid m  is proportional to mp so that the 

only new parameters are 

n_ ■ K v /p v   i BU ■ 7 /p J v  j m,  ■ K L/p J v 
3    v o' o o  '  2    'v'  ouo o '  4    v /hcro o 

m, s m./m- = v L/v  , iiv = I  L/j V V 
3    V 3   o ' o '  6   o,uooc (6.17) 

"Hie four of these new similarity parameters represents the relative 

importance of rotational viscosities to the inertia terms and the 

fifth m, the relative micro-rotation velocity to the velocity. 
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7. FLOW OF MICROPOIAR FLUIDS IN A CIRCUIAR PIPE 

Here we give the solution of the field equations (6.8) to (6.10) 

for a steady motion of micropolar fluids in a circular channel. The 

appropriate coordinate system for this problem is the cylindrical 

coordinates (r, B,  z) with z taken along the axis of the pipe. For 

a steady flow we seek to determine the velocity and micro-rotation 

components 

v ■ v = 0    ,       v ■ w(r) r0 z 

Cp m  m m  0     , <P'  ■ <?)(r) 
r   z u 

(7.1) 

Equation of continuity (6.8) is satisfied identically for p « const. 

and (6.9) and (6.10) with £ ■ £  = 0 give p  ■ p  « 0 and 
,r   ,6 

(li + K  ) (rw')' + K  (rv)' - rp (7.2) 
V   V ,z 

7  (V + r" v)1 - K  w' - 2* v « 0 (7.3) 

where a superposed prime indicates differentiation with respect to r. 

We also used p to denote hydrostatic pressure in place of TT. 

From (7.1) ve solve for v'. Hence 

w'- (% + \)1 («v+ 2 p,z) + cir_1 (7,1° 

IJext substitute v'  Into (7-3)-    This gives 

v" + V- (k2 + ^)v-Pr (7.5) 
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where 

kg     2Mv + .       ^   1/2 p , «v ft     (7.6) 
%v + \     \ 2(nv + /cv)rv      dz 

The general solution of (7.5) ie found to be 

v • A I (kr) + B Kx(kr) - Fk"2r (7-7) 

where I (p) and K (p) are modified Bessel functions of first order 

and first and second kind respectively. Substituting this into 

(7A), and integrating the result we obtain 

w - K  (u + K  r1 k"1 [- A I (kr) + B K (kr)] 
V V   V o o 

1 -1   2 (7'8) 

+ - ( 2uy + /cv)  p^r + C1 log r + C 

where I and K are modified Bessel functions of zeroth order and 
o    o 

first and second kind respectively and C is an arbitrary constant. 

Both w and v must be bounded at r ■ 0. Since K (kr), K.(kr) 

and log r become infinite for r ■ Ö we must have B ■ C ■ 0. We 

assume that the fluid sticks to the boundary r - a, i.e., 

v(a) - 0     ,   v(a) - 0 (7.9) 

Using (7.7) and (7.8) we determine A and C leading to the solution 
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va/vo   - p - jjjj}> (7.11, 

where 

2 . .-1 dp 
v   S - l    2M O     :r o v       v       dz 

P » r/a (7.12) 

x 6 ^* a*-^^)i/2 a 
v       v       v 

Here w is the maximum velocity in the classical Poiseuille flow 

which occurs at r ■ 0. The solution (710) goes into the classical 

Poiseuille flow for K   ■ 0 and (7.11) gives v - 0. 

According to (5 »8) with 0 > 0 we have \i , K   and y   non- 

negative. Thus A is a real number. For various values of X we 

give on Fig. k  plots of velocity difference from the classical 

Poiseuille flow and on Fig. 5 vh/w . From Fig. h as well as Fig. 

3 we see that the velocity profile is no longer parabolic. Moreover 

the velocity here is smaller than that of the classical Navier-Stokes 

fluids. Of course, micro-rotation v is altogether missing in the 

Navier-Stokes theory. 

The non-vanishing components of the stress tensor and those 

of the couple stress are obtained through expressing (U.lU) and 

(4.17) in cylindrical coordinates. Hence 

t  ■ t  «t  ■ - p 
rr   66       zz 

1 dp 
t  - - -* a p 
rz  2 dz 



<.:-*«../^^^■.^.^'i;^*■''^;-■vr•'%":■■■!^>•■?■;•■^^-^■,^ 
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zr     2dz ,v+Kv   !l(X) (715) 

1 IAA} 

- <VV mre 

We note that t I  t  whenever K ^ 0. 
rz   zr        v 

On Figs. 6 to 7 are shown the surface tractions and couples on 

the fluid surface adjacent to the wall at p ■ 1 for dp/dz < 0, ß < 0 

and of course y   > 0. The shearing stress t  has the same expression 

as in the classical theory. However the existence of the distrib- 
(Fig. 3) 

uted couples m  on the fluid surface/wilü produce an effect in a 

thin layer near the wall, equivalent to reduction of the surface 

shear. Clearly then the present theory gives rise to a boundary 

layer phenomena not present in the Navier-Stokes theory. This new 

boundary layer is controlled with the parameter X. 

We believe that the theory of ralcropolar fluids opens up a 

very worthwhile branch of fluid mechanics. It should find important 

applications dealing with a variety of fluids. It should, in 

particular cast new directions in the theory of turbulence. Rich 

theoretical and experimental studies are awaiting the future workers. 
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Fig. 1    Coordinates 

V.V 

Fig. 2   Positive Couple Stress Coapooents 
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CLASSICAL 
(PARABOLA) 

1. 0    w/w 

Fig. 3 Velocity Profile 
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Fig. k       Adverse Mlcroflov 

-fLi^-v-^v^.  ■    K ..-*»>-- 
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va/v 

Flg.  5      Micro-Rotati on 
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Wg. 6 Shear Stress Difference 
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Flg.  7     Couple Stress 

.  . 
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