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SOME INEQUALITIES FOR RELIABILITY FUNCTIONS

by

Z. W. Birnbaum
University of Washington

and

Je D. Esary
Boeing Scientific Research Laboratories

l. Basic Concepts and Definitions

1.1 With the advent of very complex engineering designs such
as those of high-speed computers or supersonic aircraft, it
has become increasingly impPrtant to study the relationship
between the functioning and\}ailure of single components and
the performance of the entire system and, in particular, to
be able to make quantitative statements about the probability
that the system will perform according to specifications. It
is the aim of this paper to present some inequalities for

this probability.

l.2 We shall assume that there are only two states possible
for every component of a system, as well as for the system
itself: either it functions or it fails. When the system
consists of n components, we shall ascribe to each of them
a binary variable which will indicate its state
{l when the i-th component functions

. O when the i-th component fails

for i =1, 2, ¢¢s, n « Similarly we ascribe to the entire

system a binary indicator variable
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1 when the system functions
{ O when the system fails.
When the design of a system is known, then the states of all
n components i.e., the values of X1y Xpy c0ey X determine
the state of the system, that is the value of u so that

u = Q (x;, Xpy **0 xn)
where (¢ 1is a function assuming the values O or 1 . This

function @ will be called the structure function of the

system. The indicator variable X4 will sometimes be

referred to as 'component 9 " and ¢ will sometimes be

called "structure Q' . The n-tuple of O's or 1's
(Xy9 Xpy seey X)) = X

will be called the yvector of component states or, in short,

the ''state vector'. It can assume any one of the 2% values

represented by the vertices of the unit-cube in n-dimensional

space: (0, Oy eeey 0)y, (1, O,y eeey 0), (1, 1, ¢oey O), ove,

(1, 1, ¢+s, 1) This set of all possible values of x will

be denoted by In « Thus the structure function Q(xl, oy o0y

xn) = Q@ (x) 1is a binary function on In .

1.3 We shall furthermore assume that the state of each
comnonent is decided by chance, so that the value actually
assumed by 9 is a binary random variable xi with the
probability distribution

Pr {X; =1} = p;

\ 1'1’2’ -00,11
Pr{inO’ 'qi.l-pi

and we shall make the assumption that xl, x2, soey Xn are
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totally independent. The probability Py will be called

the reliability of the i-th component.
In the following it will always be assumed that

(10301) pl = p2 =2 eee = pn = p

that is, that all components have the same reliability, e-.g.

the reliability of the least reliable component.

l.4 For a known structure function ¢(§) the value of p
determines the probability that the system will function
(1.4.1)  Pr {0(X) =1 [p} = hy (p)

i.e., the reliability of the system for given component

ENEIVAL. DCRRRRRTI. R el e B
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reliability p . The function hQ(p) is called the reliability
function for @ ; we will mostly denote it by h(p) omitting
the subscript ¢ .

In this paper we shall nresent inequalities for h'(p) ,
the derivative of the reliability function, which can be
obtained when only partial information about @(x) is
available. Ve shall then discuss a procedure by which such
inequalities can be used to obtain some conclusions about
h(p) -

l.5 The assumption of 1.2 is restrictive since it precludes
consideration of systems whose components may function only
partially and yet the systems will deliver a satisfactory
verformance. Similarly, the assumption of 1.3 is rather
special, since often functioning or failure of different
components of a system is correlated. Nevertheless, these

two assumptions are a reasonable approximation to many




practical situations, and they make it possible to simplify

the theory to a manageable level.

1.6 For state vectors X, y we shall use the following

notations:
x<y vwhen x; {y; for i=1,2, ey n
X<y when x <y and Xy < 3 for some
(Ops X) = (Xpy Xpy coey X990 Oy Xppe oooy Xp)
Qs X) = (X150 Xpy eoey K30 1y Xeygy ooey Xp)
0= (0y Oy «++y 0) l-= (1, 1, ¢¢ey 1)
A component Xy is called essential for the structure Q(x)
if there exists a state vector x* such that
¢ (lk’ x*) £ 0 (Ok’ x*)
If O(x) is any function on In , not necessarily a structure

function, the same definition of an essential component can be

used.

1.7 For given n there are 2(2n) possible different
structure functions. Among all these possible structure
functions we shall single out the class of coherent structure
functions which is defined in the following, (this definition
was introduced in [1]) and which not only has some intuitive
appeal but also has been found;to have a number of rather
interesting properties [2]. |

A structure function @(x) is coherent when it fulfills

the following conditions:
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(1.7.1) Ox) < Oy for x<3
(1.7-2) 0Q = 0, Q) = 1.

From now on we shall assume that all structure functions

ccnsidered are coherent.

1.8 A state vector x is called a path for @ when
0(x) =1
and x 1is called a cut for ¢ when
O(x) =0 .
This terminology is analogous to that used in circuit theory.
From ¢ being coherent follows immediately that
(a) if x is a path for ¢ and x <y, then y 1is a path
for ¢ ,
(b) if x isacut for ¢ and x>y, then y is a cut
for ¢ .
For every state vector x e I~ we define
n
S(x) = I Xy = number of functioning components in
X and call Sz;% the size of x .
For a given structure @(x) - we consider the following
numbers:
(1.8.1) Aj = number of paths of size § , for j =0, 1, 2,
ceey n

Obviously one has

(1.8.2) AJ < (31) v J =0y 1, ¢eey ne




1.9 For ¢(x) coherent one can prove [1] that

A A
(1.9.1) (—n‘)i < z%%_I) for § =0,1, eeeyn-1
J J

(1.9.2) h(0) =0, h(l) =1
(1.9.3) h'(p) >0 for 0<p<1l.

2. Inequalities for h'(p) and grids for h(p)

2.1 Let us assume that, for all reliability functions h(p)

belonging to a certain class x y One can prove an inequality

of the form

(2.1.1) n'(p) > Y(pyh) , forall 0<p<l, 0<h<K1l.

This means that there exists a function ¥ (p, h) on the unit

square 0 < p<1l, 0L h< 1, such that when a curve

reoresenting h(p) e®f passes through a point (p, h) then

the slope of that curve at that point must be at least ¥ (p, h).
If the inequality is replaced by equality, then (2.1.1)

becomes a differential equation

(2.1.2) X' = (py B

which under very general assumptions on ‘f(p,x) has a one-

parametric family of solutions '&(p) with the parameter ¢ .

We shall say that the family of curves representing the functions

X(p) for O0<pg<1l forms a grid for the class M. In

view of (2.1.1), this grid has the following properties:

1*  Through every point (p, h) in the unit square goes
exactly one grid curve zc(p)

22 if the curve representing a reliability function h(p) ¢ ¥

_

F RS

s

="




goes through a point (p, h) and xc(p) is the grid
curve going through the same point, then h'(p) >
X.(p) = ¥(p, h) . This means that if the curve
h(p) € x intersects any grid curve, then it inter-
sects it from below. It should be noted, however, that
there may be points in the unit square 0<p<1 ,
O <£h< 1l such that no curve h(p) ¢ x goes through
them. |
The knowledge of a grid may be utilized in various ways
which will be discussed later, but the most immediate application
is the following: |
Assﬁme that all one knows about a reliability function
h(p) € x is that for given component reliability P
it assumes a known value h(po) = h° « Then there exists a

narameter value ¢

e Such that 'X,co (rg) = h, , and from grid

proverty 2° it follows that

h(p) > X, (p) for all p > p, -

2.2 It is well known that for the class zc consisting of
reliability functions for all coherent structures the inequality

: h l1-h
(2.2.1) h'(p) 2 -12)3&':—1;;211

holds for 0 < p <1l . This inequality, obtained for two-
terminal networks in (3] and generalized in [1] to all coherent
systems and in (4] to the case of components with unequal

reliabilities, is of the form (2.1.1). The corresponding




differential equation of the form (2.1.2) is

Its general integral is

Z.(p)
(2.2.3) T-%,m ° cr‘ﬁLp y¢2>0,0<p<1

and this one-parameter family of curves forms the so-called

Moore-Shannon grid. Fig. 1 indicates the shape of the curves

of this family which, for ¢ =1 , includes the diagonal
X (p) =p .

2.3 We shall need the following concepts defined by analogy

with terms used in the theory of circuits: the lé&hgth IQ
of a system @ is the smallest number of compoments such
that if only they function, the structure functions; the
width ) of ¢ is the smallest number of compone: ts such
that if only they fail, the structure fails.

According to these definitions we have

¢(x) = 0 for all x such that S(x) < IQ -1

O(x) = O for some x such that ¥ < S(x) < n -w
(2:3:1) ®(x) = 1 for some x such that Y < S(x) < n-w

@(x) =1 for all x such that n-w + 1 < S(x) .

Sometimes the only information one has about a system ¢
consists of the knowledge of IQ s Or ww and, possibly,
Al or A, . The remainder of this section will be devoted
to the problem of obtaining grids when some or all of the

parameters Y , w , Al » A, are known.
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According to (2.%.1) we compute

n
= = z z - PeX = =
E {o(x) (s(x) - 21} eolE P(x) (3 - ) P{X = x}

- n

TG0t o Pap™d e 2 (-n_z pd-pP .
J=X S(x)=J Jen-w+l S(x)=J

- F n

TG0 A PP e T e (B P

J=X J=n-w+l

hence, using formula (6.3) in [4] for p; = p, = «+¢ = D, ,
we obtain

cov {0(X), S(O} = p(1-p) h'(p) = E {0(X) 8(D)) -

E o0} E{50}=

n=w

Y nip) + = (3-¥) A, pd(1-p)*~d 4
=X J

5 (30 H pd(1-p)™d - h(p) np =

J=n=-w+l |
n-w n ny 3 - i
(X - np) h(p) + jz (3-1) Ay pd(2-p)2d & Jgﬁ_wl(d-l’) () p°Q-p

Using the inequality

Aj 21 for Y<jsn-w

which follows from (2.3.1), and inequality (1.9.1), one obtains

n

> Max (AI:-J-),l}, for ¥ <j<n-w.

A
n
2

J

Since
)
A R g l in—%} 1 _ (n-j+1 n=-3+2) ... g
n n- + + cee "
()
and n-j > ¥ implies Biéfl > n-++2 I 231 > 1, hence ?




i o

> 1

< Y implies Ei-}fl < Bﬂig < eeo< BLo,
n

e

&

we conclude

A, > A 532 for j<n-}
J b 4 (111) e

A, >1 for j>n-=-})

J
and finally we obtain the inequality

p(1-p) h'(p) > (X-np) h(p) +

A n=-Y
- £ (-1 (3‘) pI(r-p)®d &
(8 3= |
Y
(2:3.3)
Ne=W
T (3=1) PIQ-p)*d .
J=n=)+1

L @n @t

J=n-wel
In this inequality, the first sum may be empty if Y >n - )Y ,
and the second sum may be empty if w > ¥ = 1 . Both these
sums are erpty when Y > n - ¥ and w > Y-1 which implies
¥ + w>n, so that, in view of the known inequality

l+w<n+l,onethenhas Y+wsasn or Y+ws=n+1-.
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Inequality (2.%.3) is of the form (2.1.1). The
corresponding differential equation of the form (2.1.2) is

A |
. _ L=n 2%y () Iml(ggyn-d-l
X o(I-p + (g) e (3= (J)p (1-p) +
T (3D p¥laepyil
J=n=Y+1
(203.4)

n
E @0 (P pta-m™

J=n-w+l
and, again, the first or the second sum or both cam be empty.
The general solution of (2-3-4) is

n
. X (y_yn=% n-Y (J) _
X. = cp” (1-p) + Ay JEI+1 ZH; pd(1-p)2=d &

(2+3.5)

n-w n
z p'j(l-p)n J 4 z (g) pd(l-p)n h
Jan=)Y+1 J=n=-w+1l

The family of functions (2.%3.5) constitutes a grid for
the class df reliability functions corresponding to coherent

systems with given n, Y, w and AZ « This class will be
denoted by xc(n, Y, w, AI) .

If Y and w are known, but Az is not known, then
(2.%.3) can be replaced by a (weaker) inequality by setting

AI = 1 , and one obtains the grid
Fopomt , % @ 3, -
A, = cp”(1-p) + z -ﬂ- pd(1-p)2-d &
Ju)+1 (z)

(2:3.6)

n=w n
. pla-p™ + = (Dl
Jun=Y+1 J=n-w+l

41“&:\' T
ot e AL

e e

L
el
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for the class xc(n, Y W) of reliability functions
corresponding to coherent systems with given n, Y, and w .

If only n and )Y are known, then the resulting grid

is
n-Y (%)

X, = ep*(1-p)>F + : §+1 zﬁ; pd(1-p)29 o

(2.3.7) n g

r  pd(1-p)?d

J=n-Y+1

When in (2.3.3) all terms on the right side are omitted,

I

but the first, one arrives at the particularly simple grid
for xc(n,l) :

(2.3.8) X, = cpf-p™F . | 3

For h(p) € %(n, X, w, AI) one always has

n
J(1onyB-d Xeq_ayn=x
n(p) = Apf(l-p®F 4 E, A@td-p)TE > Apt(-p)

so that no h(p) in this class can go through points in the

region h < AIPI(I-P)n-I . l

2.4 Again using (2.3.1) one computes
n

E {[1-0(X)] [n-w-S(X)1} = Jfo S(§)-a [1-9(x)] (n-w-3) P{X=x}=

-1 -W=1
£ (n-w-J) (3‘) pd(1-p)™d 4 T
=0 J=X

where A} = (3’) - Ay = number of cuts of size j . Hence
cov {0(X), ()} = p(1-p) B'(p) = E {0() 5(x)} - Ef(X)}E{sR)} -

(1 - B(p)] (ap - (2-w))+ ‘T (a-w-3) ) pI(1-p)®d 4

(n-w-3) A; pJ(1-p)B~d =~

J-
n-‘z'-l ( A 3(1 n-J
DW= e - =

35y J) y P p)




and dunlicating the arguments of Section 2.3 one obtains
p(1-p) h'(p) > (1-h(p)] (np-(n-w)] +

¥-1
2 (a-w=3) (P pIa-p™ .
3=0
(2.4.1) .
We
L (nw-3) pI(1-p)®7 4
3=X
A* _y Bb-w-1 ny _J D=
2 I (new-3) (P pP-p)TY
(w) d’w &

an inequality of the form (2.1.1). As was done in Section 2.3
with regard to inequality (2.3.3), we may retain all or some
terms of the right side of (2.4.1), replace in each case
inequality by equality, integrate the resulting differential
equations, and obtain grids for the respective classes of
reliability functions. We consider here explicitly only the
case when all but the first term on the right side of (2.4.1)
are omitted. One obtains then the simple grid

(2.4.2) X.(p) = 1-cp”™" (1-p)¥

for the class aﬂc(n,w) of reliability functions for coherent

systems for which n and w are known.

2.5 The use of several grids for the same class of reliability
functions.

2:5.1 If there are several different grids for a given
class @€ of reliability functions, then all these grids can be

used to obtain lower bounds for an h(p) ¢ A which are better
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than bounds based on any single of the grids. For exanmple,
let us consider a class xfor which there are two grids

] ! *
Za(p) and )\b(p) with parameters a and b , respectively

If for an h(p) € J( it is known that h(p,) = hy , then one
can determine a, and b, so that Z.a'(p.) = A.b‘(p.) =h, ,
and choose that one of the curves 'X- (p) ’ A‘b (p) which is

4 steeper at p, - If, say, Z'(p.) > 7\1" (p,) then 1. (p )
will be used as a lower bound for h(p) for p > Pe until,
possibly, it intersects some ,curve of the A-grid which is

steeper at the point of intersection, i.e., until the first
value Py > Py such that for some bl one has A‘b (pl) =
1

xa.(pl) . )"él(pl) >x¢;.(p1) « Then Abl(p) can be used as a

lower bound for p > Py » etc. Fig. 2 illustrates this
nrocedure .

In some cases an analytic discussion can be carried out
for the use of several grids, and a practically useful example

of such a discussion follows.

2+5.2 In sections 2.2, 2.3, and 2.4 we have seen that the
families of curves (2.%.8), (2.2.3) and (2.4.2) are grids for
the class J’c(n, X, w) « For the purposes of our discussion

we rewrite the equations of these grids

(2:5.2:1) %,(p) - ap*(1-p)**
b
(2.5-2-2) kb(p) - mm
( (2.5.2.3) uo(p) = 1 = ep”M(1-p)¥ .
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In order that the curve of each of these families passes
through a given point (pl, hl) the corresponding parameters

must assume the values

h
1
a =
S
by = 2L, 1-py
1l p1 I:HI
1-h
1
€ = n-w W 5
pl (1‘p1)

The derivatives of the three curves passing through (pl, hl)
at that point are

h, (X¥-np, )
' 1 1
(2.5.2.4) xal (r) = 31T)
h.(1-h_ ) -
(2.5.2. ' . 1L
5.2-5) M, (P - ST
' (l-hl) (w-n+np1)
(2'5'-2’6) ucl (pl) = EI(]:_plj o .

We have

[}
zhl (pl) >0 if and only if O < p; < %

X;l (p;) > 0 for all Py O0<p <1
uél (py) >0 if and only if Eﬁﬁ <p <1

s that (2.5.2.1) 1is a non-trivial grid only for 0 < p <&
(2+5.2.%) only for Qﬁﬁ <p; <1, while the Moore-Shannon
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grid (2.5.2.2) consists of functions which increase for all
p and hence is useful for 0 < p< 1.

In view of the known inequality Y +w<n+ 1 , we
have % < EH, except for the case when Y + w =n + 1
which occurs if and only if the structure is " Y out of n " ;
in this case h(p) = ng (?) pj(l-p)n'd and is completely

known. In all other cases the intervals (O, %), (é, 25!) ’

nN=w
( n

consider only grids (2.5.2.1) and (2.5.2.2), for é <p< 95!

y 1 ) are non-overlapping,and for 0 < p < % we need to

only grid (2.5.2.2), and for 25! < p<1l only grids (2.5.2.2)

and (2.5.2+3). Comparing the derivatives (2.5.2.4) and (2.5.2.5)
we see that the X -grid is steeper for 0 < p < % if and only
if h>np- Y+ 1, and comparing (2.5.2.5) and (2:5.2.6) we
find that the u-grid is steeper.for EE! <p<1l if and only
if h>np-n+w. The narallel lines hs=np -~ ¥ + 1 and

h anp-n+ w divide therefore the unit square in three
regions, from left to right, such that the X-grid is steepest

at all points of the first region, the A-grid in the second

and the u-grid in the third region. $

2¢5.3 A svecific example is vpresented in Figure 3. For
n=10, Y=5, ws=2, the lines ~N
() n = 1Cp-4

(12) h = 1Cp - 8
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partition the unit square in the three regions described in
the preceding section. The curves of the Moore-Shannon grid
(2.5.2.2), shown before in Figure 1, are reproduced in
Figure 3 in solid lines and, in addition, several curves of the
X-grid (2.5.2.1) are indicated by dotted lines, and of the
u-grid (2.5.2.3%) by broken lines.

If it is known that h(p) c@e (n = 10, ¥ = 5, w = 2)
and that the graph of h(p) goes through the point P, =
(.20, «05) , then our theory tells us that for p > .20 that

graph is bounded from below by a curve which goes along the

X-curve through Pl to its intersection with Il, then along
the Moore-Shannon curve (in this case the diagonal) to its
intersection with 12 , then along the wu-curve. This lower
bound is indicated by a heavy line.

Similarly, if a reliability function h(p) of our
family is known to go through P, = (+%4, .10) then for
P 2 -34 one obtains for h(p) the lower bound indicated by
the heavy line beginning at Py

Another lower bound for h(p) going through P3 = (%32, +40)
is indicated by the heavy line beginning at that point.

Addendum
It should be mentioned that an improvement of the Moore-
Shannon grid has been recently obtained. One can show that the

following inequalities hold for all h(p) € Jv;
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(-p log p) h'(p) > -h log h
(-(1-p) log (1-p)] h'(p) > -(1-h) log (1l-h).

The corresponding grids are

(1) X (p) =2° ,e>0
(11) Z(p) =1-@Q-p°, c>0.

These grids are an improvement on (2.2.3), since (i) is

steeper than the corresponding Moore-Shannon curve at every
point such that p > h , and (ii) at every point such that
p <h . A derivation of this new grid is being prepared for

nublication [5].
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