UNCLASSIFIED

AD NUMBER

AD469173

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; AUG 1965. Other requests shall be referred to Office of Naval

Research, Washington, DC 20360.

AUTHORITY

onr ltr 28 jul 1977

THIS PAGE IS UNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

a march

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. by

Z. W. Birnbaum

University of Washington

and

J. D. Esary

Boeing Scientific Research Laboratories

Technical Report No. 44

August 18, 1965

Contract N-onr-477(11)

DDC SEP 8 S65

1. 10 - 18 TH

Laboratory of Statistical Research Department of Mathematics University of Washington Seattle, Washington

This research was supported by the Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government.

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked. Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Some Inequalities for Reliability Functions

by

Z. W. Birnbaum

University of Washington

and

J. D. Esary

Boeing Scientific Research Laboratories

Technical Report No. 44

August 18, 1965

Contract N-onr-477(11)

Laboratory of Statistical Research Department of Mathematics University of Washington Seattle, Washington

This research was supported by the Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government.

SOME INEQUALITIES FOR RELIABILITY FUNCTIONS

by

Z. W. Birnbaum University of Washington

and

J. D. Esary Boeing Scientific Research Laboratories

1. Basic Concepts and Definitions

1.1 With the advent of very complex engineering designs such as those of high-speed computers or supersonic aircraft, it has become increasingly important to study the relationship between the functioning and failure of single components and the performance of the entire system and, in particular, to be able to make quantitative statements about the probability that the system will perform according to specifications. It is the aim of this paper to present some inequalities for this probability.

1.2 We shall assume that there are only two states possible for every component of a system, as well as for the system itself: either it functions or it fails. When the system consists of n components, we shall ascribe to each of them a binary variable which will indicate its state

 $x_i = \begin{cases} 1 & \text{when the } i-\text{th component functions} \\ 0 & \text{when the } i-\text{th component fails} \end{cases}$ for $i = 1, 2, \dots, n$. Similarly we ascribe to the entire system a binary indicator variable $u = \begin{cases} 1 & \text{when the system functions} \\ 0 & \text{when the system fails.} \end{cases}$

When the design of a system is known, then the states of all n components i.e., the values of x_1, x_2, \dots, x_n determine the state of the system, that is the value of u so that

$$u = 0 (x_1, x_2, \dots, x_n)$$

where ϕ is a function assuming the values 0 or 1. This function ϕ will be called the <u>structure function</u> of the system. The indicator variable x_i will sometimes be referred to as "component x_i " and ϕ will sometimes be called "structure ϕ ". The n-tuple of 0's or 1's

 $(x_1, x_2, \dots, x_n) = \underline{x}$

will be called the <u>vector of component states</u> or, in short, the "state vector". It can assume any one of the 2^n values represented by the vertices of the unit-cube in n-dimensional space: (0, 0, ..., 0), (1, 0, ..., 0), (1, 1, ..., 0), ..., (1, 1, ..., 1). This set of all possible values of <u>x</u> will be denoted by I_n . Thus the structure function $\phi(x_1, x_2, ..., x_n) = \phi(\underline{x})$ is a binary function on I_n .

1.3 We shall furthermore assume that the state of each component is decided by chance, so that the value actually assumed by x_i is a binary random variable X_i with the probability distribution

 $\begin{array}{rcl} \Pr \{X_i = 1\} &= & p_i & i = 1, 2, \cdots, n \\ & & & & \\ \Pr \{X_i = 0\} &= & q_i = 1 - p_i \end{array}$ and we shall make the assumption that X_1, X_2, \cdots, X_n are

-2-

totally independent. The probability p_i will be called the <u>reliability of the i-th</u> <u>component</u>.

In the following it will always be assumed that (1.3.1) $p_1 = p_2 = \cdots = p_n = p$ that is, that all components have the same reliability, e.g. the reliability of the least reliable component.

1.4 For a known structure function $\Phi(\underline{X})$ the value of p determines the probability that the system will function (1.4.1) Pr $\{\Phi(\underline{X}) = 1 | p\} = h_{\Phi}(p)$ i.e., the <u>reliability of the system</u> for given component reliability p. The function $h_{\Phi}(p)$ is called the <u>reliability</u> function for Φ ; we will mostly denote it by h(p) omitting the subscript Φ .

In this paper we shall present inequalities for h'(p), the derivative of the reliability function, which can be obtained when only partial information about $\Phi(\underline{x})$ is available. We shall then discuss a procedure by which such inequalities can be used to obtain some conclusions about h(p).

1.5 The assumption of 1.2 is restrictive since it precludes consideration of systems whose components may function only partially and yet the systems will deliver a satisfactory performance. Similarly, the assumption of 1.3 is rather special, since often functioning or failure of different components of a system is correlated. Nevertheless, these two assumptions are a reasonable approximation to many

-3-

practical situations, and they make it possible to simplify the theory to a manageable level.

1.6 For state vectors \underline{x} , \underline{y} we shall use the following notations:

 $\underline{x} \leq \underline{y} \text{ when } x_{i} \leq y_{i} \text{ for } i = 1, 2, \dots, n \\ \underline{x} \leq \underline{y} \text{ when } \underline{x} \leq \underline{y} \text{ and } x_{j} \leq y_{j} \text{ for some } j \\ (0_{k}, \underline{x}) = (x_{1}, x_{2}, \dots, x_{k-1}, 0, x_{k+1}, \dots, x_{n}) \\ (1_{k}, \underline{x}) = (x_{1}, x_{2}, \dots, x_{k-1}, 1, x_{k+1}, \dots, x_{n}) \\ \underline{0} = (0, 0, \dots, 0) , \underline{1} = (1, 1, \dots, 1) .$

A component x_k is called <u>essential</u> for the structure $\Phi(\underline{x})$ if there exists a state vector \underline{x}^* such that

 $\phi(l_k, \underline{x}^*) \neq \phi(o_k, \underline{x}^*)$ If $\phi(x)$ is any function on I_n , not necessarily a structure function, the same definition of an essential component can be used.

1.7 For given n there are $2^{(2^n)}$ possible different structure functions. Among all these possible structure functions we shall single out the class of <u>coherent</u> structure functions which is defined in the following, (this definition was introduced in [1]) and which not only has some intuitive appeal but also has been found to have a number of rather interesting properties [2].

A structure function $\phi(\underline{x})$ is coherent when it fulfills the following conditions:

-4-

 $(1.7.1) \qquad \qquad \varphi(\underline{x}) \leq \varphi(\underline{y}) \quad \text{for } \underline{x} \leq \underline{y}$

(1.7.2) $\Phi(\underline{0}) = 0$, $\Phi(\underline{1}) = 1$.

From now on we shall assume that all structure functions considered are coherent.

1.8 A state vector \underline{x} is called a <u>path</u> for ϕ when $\phi(\underline{x}) = 1$

and \underline{x} is called a <u>cut</u> for ϕ when

 $\Phi(\mathbf{x}) = \mathbf{0} \cdot$

This terminology is analogous to that used in circuit theory.

From ϕ being coherent follows immediately that

(a) if \underline{x} is a path for φ and $\underline{x} \leq \underline{y}$, then \underline{y} is a path for φ , (b) if x is a cut for φ and x > x, then \overline{x} is a cut

(b) if \underline{x} is a cut for $\mathbf{0}$ and $\underline{x} \geq \underline{y}$, then \underline{y} is a cut for $\mathbf{0}$.

For every state vector $\underline{x} \in I_n$ we define

 $S(\underline{x}) = \sum_{i=1}^{n} x_i = number of functioning components in$ \underline{x} and call $S(\underline{x})$ the <u>size</u> of $\underline{x} \cdot$

For a given structure $\Phi(\underline{x})$ we consider the following numbers: (1.8.1) A_j = number of paths of size j, for j = 0, 1, 2,

•••, n

Obviously one has

 $(1.8.2) \quad A_{j} \leq \binom{n}{j}, j = 0, 1, \dots, n$

-5-

1.9 For $\varphi(\underline{x})$ coherent one can prove [1] that

 $(1.9.1) \quad \frac{A_{j}}{\binom{n}{j}} \leq \frac{A_{j+1}}{\binom{n}{j+1}} \quad \text{for } j = 0, 1, \dots, n-1$ (1.9.2) $h(0) = 0, \quad h(1) = 1$ (1.9.3) $h'(p) > 0 \quad \text{for } 0$

-6-

2. Inequalities for h'(p) and grids for h(p)

2.1 Let us assume that, for all reliability functions h(p) belonging to a certain class \mathcal{X} , one can prove an inequality of the form

(2.1.1) $h'(p) \ge \Psi(p,h)$, for all $0 \le p \le 1$, $0 \le h \le 1$. This means that there exists a function $\Psi(p, h)$ on the unit square $0 \le p \le 1$, $0 \le h \le 1$, such that when a curve representing $h(p) \in \mathbb{Z}$ passes through a point (p, h) then the slope of that curve at that point must be at least $\Psi(p, h)$.

If the inequality is replaced by equality, then (2.1.1) becomes a differential equation

(2.1.2) **X'** = (p, **X**)

which under very general assumptions on $\Psi(p, \chi)$ has a oneparametric family of solutions $\chi_{c}(p)$ with the parameter c. We shall say that the family of curves representing the functions $\chi_{c}(p)$ for $0 \le p \le 1$ forms a grid for the class χ . In view of (2.1.1), this grid has the following properties: 1^{2} Through every point (p, h) in the unit square goes

exactly one grid curve $\boldsymbol{\varkappa}_{c}(p)$

 2° if the curve representing a reliability function h(p) $\in \mathcal{X}$

goes through a point (p, h) and $\chi_c(p)$ is the grid curve going through the same point, then $h'(p) \geq \chi'_c(p) - \Psi(p, h)$. This means that if the curve $h(p) \in \mathcal{K}$ intersects any grid curve, then it intersects it from below. It should be noted, however, that there may be points in the unit square $0 \leq p \leq 1$, $0 \leq h \leq 1$ such that no curve $h(p) \in \mathcal{K}$ goes through them.

The knowledge of a grid may be utilized in various ways which will be discussed later, but the most immediate application is the following:

Assume that all one knows about a reliability function $h(p) \in \mathbb{Z}$ is that for given component reliability p_0 it assumes a known value $h(p_0) = h_0$. Then there exists a parameter value c_0 such that $\chi_{c_0}(p_0) = h_0$, and from grid property 2° it follows that

 $h(p) \ge \chi_c$ (p) for all $p \ge p_o$.

2.2 It is well known that for the class \mathcal{Z}_{c} consisting of reliability functions for all coherent structures the inequality

(2.2.1)
$$h'(p) \ge \frac{h(p) [1 - h(p)]}{p(1 - p)}$$

holds for $0 \le p \le 1$. This inequality, obtained for twoterminal networks in [3] and generalized in [1] to all coherent systems and in [4] to the case of components with unequal reliabilities, is of the form (2.1.1). The corresponding

-7-

differential equation of the form (2.1.2) is

(2.2.2)
$$\chi' = \frac{\chi(1-\chi)}{p(1-p)}$$

Its general integral is

2.3 We shall need the following concepts defined by analogy with terms used in the theory of circuits: the <u>length</u> χ_{ϕ} of a system ϕ is the smallest number of components such that if only they function, the structure functions; the <u>width</u> w_{ϕ} of ϕ is the smallest number of components such that if only they fail, the structure fails.

According to these definitions we have

 $\begin{array}{l} \varphi(\underline{x}) = 0 \quad \text{for all } \underline{x} \quad \text{such that} \quad S(\underline{x}) \leq \chi_{0} - 1 \\ \\ \varphi(\underline{x}) = 0 \quad \text{for some } \underline{x} \quad \text{such that} \quad \chi \leq S(\underline{x}) \leq n - w \\ \varphi(\underline{x}) = 1 \quad \text{for some } \underline{x} \quad \text{such that} \quad \chi \leq S(\underline{x}) \leq n - w \\ \\ \varphi(\underline{x}) = 1 \quad \text{for all } \underline{x} \quad \text{such that} \quad n - w + 1 \leq S(\underline{x}) \end{array}$

Sometimes the only information one has about a system φ consists of the knowledge of χ_{φ} , or w_{φ} and, possibly, A_{χ} or A_{w} . The remainder of this section will be devoted to the problem of obtaining grids when some or all of the parameters χ , w, A_{χ} , A_{w} are known.

-8-

According to (2.3.1) we compute

 $E \{ \phi(\underline{x}) [S(\underline{x}) - \chi] \} = \sum_{j=0}^{n} \sum_{\substack{j=0 \\ j=0 \\ j=0 \\ j=0 \\ j=0 \\ j=1 \\$

Using the inequality

 $A_j \ge 1$ for $\chi \le j \le n - w$

which follows from (2.3.1), and inequality (1.9.1), one obtains

$$A_{j} \geq \max \left\{ A_{\chi_{\chi}^{(n)}}^{(n)}, 1 \right\}, \text{ for } \chi \leq j \leq n - w$$

Since

$$\frac{\binom{n}{j}}{\binom{n}{\gamma}} = \frac{\chi i (n-\chi) i}{j i (n-j) i} = \frac{(n-j+1) (n-j+2) \cdots (n-\chi)}{(\chi+1) (\chi+2) \cdots j}$$

and $n-j \ge \chi$ implies $\frac{n-j+1}{\chi+1} > \frac{n-j+2}{\chi+2} > \cdots > \frac{n-\chi}{j} \ge 1$, hence

-9-

$$\frac{\binom{n}{j}}{\binom{n}{\gamma}} > 1$$
and n-j < χ implies $\frac{n-j+1}{\chi+1} < \frac{n-j+2}{\chi+2} < \dots < \frac{n-\chi}{j} < 1$,
hence $\frac{\binom{n}{j}}{\binom{n}{\chi}} < 1$

we conclude

$$A_{j} > A_{\chi} \frac{\binom{n}{j}}{\binom{n}{\chi}} \text{ for } j \le n - \chi$$
$$A_{j} \ge 1 \text{ for } j > n - \chi$$

and finally we obtain the inequality

$$p(1-p) h'(p) \ge (\chi-np) h(p) +$$

$$\frac{A}{\chi} \sum_{\substack{j=\chi\\ j=\chi}} (j-\chi) \binom{n}{j} p^{j} (\chi-p)^{n-j}$$

(2.3.3)

$$\sum_{\substack{j=n-\chi+1\\j=n-\chi+1}}^{n-w} (j-\chi) p^{j} (1-p)^{n-j} + (j-\chi) (j) p^{j} (1-p)^{n-j}$$

In this inequality, the first sum may be empty if $\chi > n - \chi$, and the second sum may be empty if $w > \chi - 1$. Both these sums are empty when $\chi > n - \chi$ and $w > \chi - 1$ which implies $\chi + w \ge n$, so that, in view of the known inequality $1 + w \le n + 1$, one then has $\chi + w = n$ or $\chi + w = n + 1$. Inequality (2.3.3) is of the form (2.1.1). The corresponding differential equation of the form (2.1.2) is

$$\chi' = \frac{\chi_{-np}}{p(1-p)} + \frac{\chi}{\binom{n}{\chi}} \sum_{\substack{j=\chi+1 \\ j=n-\chi+1}}^{n-\chi} (j-\chi) \binom{n}{j} p^{j-1} (1-p)^{n-j-1} + (2\cdot3\cdot4) \frac{\sum_{\substack{j=n-\chi+1 \\ j=n-\chi+1}}^{n-w} (j-1) p^{j-1} (1-p)^{n-j-1}}{\sum_{\substack{j=n-w+1 \\ j=n-w+1}}^{n} (j-\chi) \binom{n}{j} p^{j-1} (1-p)^{n-j}}$$

and, again, the first or the second sum or both cam be empty. The general solution of (2.3.4) is

$$\chi_{c} = cp^{\chi} (1-p)^{n-\chi} + A_{\chi} \sum_{\substack{j=\chi+1 \\ j=\chi+1}}^{n-\chi} \frac{\binom{n}{j}}{\binom{n}{\chi}} p^{j} (1-p)^{n-j} + \sum_{\substack{j=n-\chi+1 \\ j=n-\chi+1}}^{n-w} p^{j} (1-p)^{n-j} + \sum_{\substack{j=n-w+1 \\ j=n-w+1}}^{n} \binom{n}{j} p^{j} (1-p)^{n-j} .$$

The family of functions $(2\cdot3\cdot5)$ constitutes a grid for the class of reliability functions corresponding to coherent systems with given n, χ , w and A_{χ} . This class will be denoted by $\mathscr{U}_{c}(n, \chi, w, A_{\chi})$.

If χ and w are known, but A_{χ} is not known, then (2.3.3) can be replaced by a (weaker) inequality by setting $A_{\chi} = 1$, and one obtains the grid

$$\chi_{c} = cp^{\chi}(1-p)^{n-\chi} + \sum_{\substack{j=\chi+1 \\ j=\chi+1}}^{n-\chi} \frac{\binom{n}{j}}{\binom{n}{\chi}} p^{j}(1-p)^{n-j} +$$

(2.3.6)

$$\sum_{\substack{j=n-l+1}}^{n-w} p^{j} (1-p)^{n-j} + \sum_{\substack{j=n-w+1}}^{n} {n \choose j} p^{j} (1-p)^{n-j}$$

-11-

for the class $\mathcal{X}_{c}(n, \chi w)$ of reliability functions corresponding to coherent systems with given n, χ , and w.

If only n and χ are known, then the resulting grid is

$$\chi_{c} = cp^{\chi}(1-p)^{n-\chi} + \sum_{\substack{j=\chi+1 \\ j=\chi+1}}^{n-\chi} \frac{(j)}{(j)} p^{j}(1-p)^{n-j} + j = \chi + 1$$
(2.3.7)

When in (2.3.3) all terms on the right side are omitted, but the first, one arrives at the particularly simple grid for $\mathcal{X}_{c}(n, \chi)$:

(2.3.8)
$$\mathcal{X}_{c} = cp^{\chi}(1-p)^{n-\chi}$$
.

For h(p) $\varepsilon \mathcal{L}_{c}(n, \chi, w, A_{\chi})$ one always has h(p) = $A_{\chi}p^{\chi}(1-p)^{n-\chi} + \sum_{j=\chi+1}^{n} A_{j}p^{j}(1-p)^{n-j} > A_{\chi}p^{\chi}(1-p)^{n-\chi}$ so that no h(p) in this class can go through points in the region h $\leq A_{\chi}p^{\chi}(1-p)^{n-\chi}$.

2.4 Again using (2.3.1) one computes

 $E \left\{ \begin{bmatrix} 1-\varphi(\underline{X}) \end{bmatrix} \begin{bmatrix} n-w-S(\underline{X}) \end{bmatrix} \right\} = \int_{j=0}^{n} \sum_{\substack{X = j \\ j=0 \\ j=0 \\ j=0 \\ j=0 \\ k = j \\ j=0 \\ k = j \\ j=0 \\ k = j \\$

and duplicating the arguments of Section 2.3 one obtains $p(1-p) h'(p) \ge [1-h(p)] [np-(n-w)] +$

$$\begin{array}{c} \chi_{-1} \\ \Sigma \\ j=0 \end{array} (n-w-j) \binom{n}{j} p^{j} (1-p)^{n-j} + \\ (2.4.1) \\ & \\ \begin{array}{c} w-1 \\ \Sigma \\ j=\chi \end{array} (n-w-j) p^{j} (1-p)^{n-j} + \\ j=\chi \\ & \\ \begin{array}{c} \frac{A^{*} n-w}{\binom{n}{w}} & \frac{n-w-1}{\sum} \\ j=w \end{array} (n-w-j) \binom{n}{j} p^{j} (1-p)^{n-j} \end{array}$$

an inequality of the form (2.1.1). As was done in Section 2.3 with regard to inequality (2.3.3), we may retain all or some terms of the right side of (2.4.1), replace in each case inequality by equality, integrate the resulting differential equations, and obtain grids for the respective classes of reliability functions. We consider here explicitly only the case when all but the first term on the right side of (2.4.1) are omitted. One obtains then the simple grid

(2.4.2) $X_{c}(p) = 1 - cp^{n-w} (1-p)^{w}$

for the class $\mathscr{B}_{c}(n,w)$ of reliability functions for coherent systems for which n and w are known.

2.5 The use of several grids for the same class of reliability functions.

2.5.1 If there are several different grids for a given class \varkappa of reliability functions, then all these grids can be used to obtain lower bounds for an h(p) $\varepsilon \varkappa$ which are better

-13-

than bounds based on any single of the grids. For example, let us consider a class \mathcal{X} for which there are two grids $\mathcal{X}_{a}(p)$ and $\lambda_{b}(p)$, with parameters a and b, respectively. If for an h(p) $\varepsilon \quad \mathcal{X}$ it is known that h(p₀) = h₀, then one can determine a. and b. so that $\mathcal{X}_{a_{0}}(p_{0}) = \lambda_{b_{0}}(p_{0}) = h_{0}$, and choose that one of the curves $\mathcal{X}_{a_{0}}(p) + \lambda_{b_{0}}(p)$ which is steeper at p₀. If, say, $\mathcal{X}'(p_{0}) > \lambda'(p_{0})$ then $\mathcal{X}_{a_{0}}(p_{0})$ will be used as a lower bound for h(p) for $p \ge p_{0}$ until, possibly, it intersects some curve of the λ -grid which is steeper at the point of intersection, i.e., until the first value $p_{1} > p_{0}$ such that for some b_{1} one has $\lambda_{b_{1}}(p_{1}) =$ $\mathcal{X}_{a_{0}}(p_{1}) , \lambda_{b_{1}}'(p_{1}) > \mathcal{X}_{a_{0}}'(p_{1}) \cdot Then \lambda_{b_{1}}(p)$ can be used as a lower bound for $p \ge p_{1}$, etc. Fig. 2 illustrates this procedure.

In some cases an analytic discussion can be carried out for the use of several grids, and a practically useful example of such a discussion follows.

2.5.2 In sections 2.2, 2.3, and 2.4 we have seen that the families of curves (2.3.8), (2.2.3) and (2.4.2) are grids for the class $\mathscr{H}_{c}(n, \chi, w)$. For the purposes of our discussion we rewrite the equations of these grids

- (2.5.2.1) $\mathcal{L}_{a}(p) = ap^{\chi}(1-p)^{n-\chi}$
- (2.5.2.2) $\lambda_{b}(p) = \frac{b p}{1 + (b-1)p}$
- (2.5.2.3) $\mu_{c}(p) = 1 cp^{n-W}(1-p)^{W}$.

-14-

In order that the curve of each of these families passes through a given point (p_1, h_1) the corresponding parameters must assume the values

$$a_{1} = \frac{1}{p_{1}^{\chi} (1-p_{1})^{n-\chi}}$$

$$b_{1} = \frac{h_{1}}{p_{1}} \cdot \frac{1-p_{1}}{1-h_{1}}$$

$$c_{1} = \frac{1-h_{1}}{p_{1}} \cdot (1-p_{1})^{w}$$

The derivatives of the three curves passing through (p_1, h_1) at that point are

 $(2.5.2.4) \qquad \chi'_{a_{1}}(p_{1}) = \frac{h_{1}(\chi-np_{1})}{p_{1}(1-p_{1})}$ $(2.5.2.5) \qquad \lambda'_{b_{1}}(p_{1}) = \frac{h_{1}(1-h_{1})}{p_{1}(1-p_{1})}$ $(2.5.2.6) \qquad \mu'_{c_{1}}(p_{1}) = \frac{(1-h_{1})(w-n+np_{1})}{p_{1}(1-p_{1})}$

We have

 $\begin{array}{l} \chi_{a_{1}}^{\prime}(p_{1}) > 0 \quad \text{if and only if } 0 < p_{1} < \frac{\chi}{n} \\ \lambda_{p_{1}}^{\prime}(p_{1}) > 0 \quad \text{for all } p_{1} \ , \quad 0 < p_{1} < 1 \\ \mu_{c_{1}}^{\prime}(p_{1}) > 0 \quad \text{if and only if } \frac{n-w}{n} < p_{1} < 1 \end{array}$

so that (2.5.2.1) is a non-trivial grid only for 0 $(2.5.2.3) only for <math>\frac{n-w}{n} < p_1 < 1$, while the Moore-Shannon

-15-

grid (2.5.2.2) consists of functions which increase for all p and hence is useful for 0 .

In view of the known inequality $\chi + w \leq n + 1$, we have $\frac{\chi}{n} \leq \frac{n-w}{n}$, except for the case when $\chi + w = n + 1$ which occurs if and only if the structure is " χ out of n "; in this case $h(p) = \sum_{j=1}^{n} {n \choose j} p^{j} (1-p)^{n-j}$ and is completely known. In all other cases the intervals $(0, \frac{\gamma}{n}), (\frac{\gamma}{n}, \frac{n-w}{n})$, $(\frac{n-w}{n}, 1)$ are non-overlapping, and for 0 we need toconsider only grids (2.5.2.1) and (2.5.2.2), for $\frac{\gamma}{n}$ only grid (2.5.2.2), and for $\frac{n-w}{n} only grids (2.5.2.2)$ and (2.5.2.3). Comparing the derivatives (2.5.2.4) and (2.5.2.5) we see that the \mathcal{X} -grid is steeper for 0 if and onlyif $h > np - \chi + 1$, and comparing (2.5.2.5) and (2.5.2.6) we find that the μ -grid is steeper for $\frac{n-w}{n} if and only$ if h > np - n + w. The parallel lines $h = np - \chi + 1$ and h = np - n + w divide therefore the unit square in three regions, from left to right, such that the Z-grid is steepest at all points of the first region, the λ -grid in the second and the μ -grid in the third region.

2.5.3 A specific example is presented in Figure 3. For $n = 10, \chi = 5, w = 2$, the lines

 (χ_1) h = 10p - 4 (χ_2) h = 10p - 8 partition the unit square in the three regions described in the preceding section. The curves of the Moore-Shannon grid (2.5.2.2), shown before in Figure 1, are reproduced in Figure 3 in solid lines and, in addition, several curves of the \mathcal{X} -grid (2.5.2.1) are indicated by dotted lines, and of the μ -grid (2.5.2.3) by broken lines.

If it is known that $h(p) \in \mathscr{K}_{c}$ $(n = 10, \ 1 = 5, \ w = 2)$ and that the graph of h(p) goes through the point $P_{1} =$ (.20, .05), then our theory tells us that for $p \ge .20$ that graph is bounded from below by a curve which goes along the \mathscr{K} -curve through P_{1} to its intersection with \mathscr{I}_{1} , then along the Moore-Shannon curve (in this case the diagonal) to its intersection with \mathscr{I}_{2} , then along the μ -curve. This lower bound is indicated by a heavy line.

Similarly, if a reliability function h(p) of our family is known to go through $P_2 = (.34, .10)$ then for $p \ge .34$ one obtains for h(p) the lower bound indicated by the heavy line beginning at P_2 .

Another lower bound for h(p) going through $P_3 = (.32, .40)$ is indicated by the heavy line beginning at that point.

Addendum

It should be mentioned that an improvement of the Moore-Shannon grid has been recently obtained. One can show that the following inequalities hold for all $h(p) \in \mathscr{U}_{c}$

-17-

$$(-p \log p) h'(p) \ge -h \log h$$

[-(1-p) log (1-p)] h'(p) \ge -(1-h) log (1-h).

The corresponding grids are

- (i) $\chi_{c}(p) = p^{c}, c > 0$
- (ii) $\boldsymbol{\chi}_{c}(p) = 1 (1-p)^{c}$, c > 0.

These grids are an improvement on $(2 \cdot 2 \cdot 3)$, since (i) is steeper than the corresponding Moore-Shannon curve at every point such that p > h, and (ii) at every point such that p < h. A derivation of this new grid is being prepared for publication [5].

REFERENCES

- Z. W. Birnbaum, J. D. Esary, and S. C. Saunders,
 "Multi Component Systems and Structures and Their Reliabilities", Technometrics, Vol. 3, No. 1, 1961,
 pp. 55-77.
- [2] J. D. Esary and A. W. Marshall, "System Structure and the Existence of a System Life", Technometrics, Vol. 6, No. 4, pp. 459-462.
- [3] E. F. Moore and C. E. Shannon, "Reliable Circuits
 Using Less Reliable Relays", Journal of the Franklin
 Institute, Vol. 262, 1956, pp. 191-208 and pp. 281-297.
- [4] J. D. Esary and F. Proschan, "Coherent Structures of Non-Identical Components", Technometrics, Vol. 5, 1963, pp. 191-209.
- [5] Z. W. Birnbaum, J. D. Esary, and A. W. Marshall,
 "Stochastic Characterization of Wear-Out for Components and Systems", Boeing Scientific Research Laboratories Document DI-8L-0460, in preparation.

FIGURE 2

MAN BARAN

Western Martin Barry States and St

FIGURE 3

DOCUMENT CONTROL DATA- 860 Tender description of the based of based on marked points want to stread that the stread the stre	Security Classification				
<pre>Identified Activity Compare added Department of Mathematics University of Vash., Seattle, Wash., 98105 A second value of Wash., Seattle, Wash., 98105 A second value of the value of the value of Wash., Second Value of Second Value of Wash., Second Value of Sec</pre>				the everall report is classified)	
University of Wash., Seattle, Wash., 98105 i Report ULE Some Inequalities for Reliability Functions t DENTROL Report No. 44, August, 1965 t ONEND (Lest name Animase Multer Birnbaum, Z. W. and Esary, J. D. t REPORT DATE August 18, 1965 19 5 t ONENT To a shart no. ONR-477(11) t ensure a shart no. ONR-477(11) t ensure a shart no. ULL ABLLITY/LUMITATION HOTICES Qualified requesters may obtain copies from DDC ULL SECONDARY ACTIVE August 18, 1965 t ensure no. ULL ABLLITY/LUMITATION HOTICES Qualified requesters may obtain copies from DDC ULL SECONDARY ACTIVE A method is presented for obtaining lower bounds for h'(p), the derivative of the reliability function of a coherent binary structure with binary components, when only partial information about this structure is available. In particular, the case is studied when only the number of components, the length and the width of the structure are known.	1. ORIGINATING ACTIVITY (Corporate author) Laboratory of Statistical Research		24. REPORT SECURITY CLASSIFICATION Unclassified		
Some Inequalities for Reliability Functions	University of Wash., Seattle,	Wash., 98105			
Technical Report No. 44, August, 1965 * AUTHORNY Cert rame. HITTER Birnbaum, Z. W. and Esary, J. D. * REPORT DATE August 18, 1965 19 5 * CONTRACT OR BANY TO: ONR-477(11) * CONTRACT OR BANY TO: ONR-477(11) * CONTRACT NOCE Qualified requesters may obtain copies from DDC U AVAILABLITY/LUNITATION NOTICES Qualified requesters may obtain copies from DDC * Amethod is presented for obtaining lower bounds for h'(p), the derivative of the reliability function of a coherent binary structure with binary components, when only partial information about this structure is available. In particular, the case is studied when only the number of components, the length and the width of the structure are known.	Some Inequalities for Reliab		8		
s AUTHORIS (Last name for name					
August 18, 1965 August 18, 1965 19 19 5 CONTRACT OR SAANT NO. ONR-477(11) A FROMET NO. NR 042038 C Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices Qualified requesters may obtain copies from DDC Value Ashifty/Limitation Hotices D //www.labeled for obtaining lower bounds for h'(p), the derivative of the reliability function of a coherent binary structure with binary components, when only partial information about this structure is available. In particular, the case is studied when only the number of components, the length and the width of the structure are known. DD //www.lat73	S. AUTHOR(S) (Last name, first name, initial)				
August 18, 1965 19 5 19 5 19 5 19 5 10 CONTACT ON BANATING ONR-477(11) 10 FROJECTION 10 A42038 10 AVAILABLITY/LIMITATION NOTICES Qualified requesters may obtain copies from DDC 10 LUPPLEMENTARY NOTES 11 LUPPLEMENTARY NOTES 12 AVAILABLITY/LIMITATION NOTICES Qualified requesters may obtain copies from DDC 11 LUPPLEMENTARY NOTES 12 AVAILABLITY/LIMITATION NOTICES Qualified requesters may obtain copies from DDC 11 LUPPLEMENTARY NOTES 13 ABSTRACT A method is presented for obtaining lower bounds for h'(p), the derivative of the reliability function of a coherent binary structure with binary components, when only partial information about this structure is available. In particular, the case is studied when only the number of components, the length and the width of the structure are known.	Birnbaum, Z. W. and Esary, J	. D.			
Se CONTRACT ON EARNY NO. ONR-477(11) A PROJECT NO. NR 042038 C. 44 10 AVAILABILITY/LIMITATION HOTICES Qualified requesters may obtain copies from DDC 11 SUPPLEMENTARY NOTES 12 SPONSONING MILITARY ACTIVITY U. S. Navy Office of Naval Research Washington, D. C. 13 ABSTRACT A method is presented for obtaining lower bounds for h'(p), the derivative of the reliability function of a coherent binary structure with binary components, when only partial information about this structure is available. In particular, the length and the width of the structure are known. DD .'SMM. 1473 			AGES		
44 NR 042038 2 2 2 2 2 2 2 2 2 2 2 2 2	Se. CONTRACT OR GRANT NO.				
	5. PROJECT NO.	44			
2 10 AVAILABILITY/LIMITATION NOTICES Qualified requesters may obtain copies from DDC 11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY U. S. Navy Office of Naval Research Washington, D. C. 13 ABSTRACT A method is presented for obtaining lower bounds for h'(p), the derivative of the reliability function of a coherent binary structure with binary components, when only partial information about this structure is available. In particular, the case is studied when only the number of components, the length and the width of the structure are known. DD .'	-	95. OTHER REPORT	NO(S) (Any	other numbers that may be assigned	
TO AVAILABILITY/LIMITATION NOTICES Qualified requesters may obtain copies from DDC 11 SUPPLEMENTARY HOTES 12 SPONSORING MILITARY ACTIVITY U. S. Navy Office of Naval Research Washington, D. C. 13 ABSTRACT A method is presented for obtaining lower bounds for h'(p), the derivative of the reliability function of a coherent binary structure with binary components, when only partial information about this structure is available. In particular, the case is studied when only the number of components, the length and the width of the structure are known. DD 'JORM. 1473	a				
A method is presented for obtaining lower bounds for h'(p), the derivative of the reliability function of a coherent binary structure with binary components, when only partial information about this structure is available. In particular, the case is studied when only the number of components, the length and the width of the structure are known.	11. SUPPLEMENTARY NOTES	12. SPONSORING MILI U.S.Na Office o	TARY ACTI VY f Nava	l Research	
	A method is presented for the derivative of the reliabil structure with binary component about this structure is availant studied when only the number of	lity function nts, when only able. In parts of components,	of a c parti icular	oherent binary al information , the case is	
	D . FORM 1473				
			Sec	curity Classification	

.

	KEY WORDS		LIN	K A WT	LIN	K B WT	LIN	K C			
reliability coherent sys	tems				TUE B						
			1								
		UCTIONS		-1181							
f the contractor, subcontract	Enter the name and address or, grantee, Department of De- tation (corporate author) issuing	<pre>imposed by security classification, using standard statements such as: (1) ''Qualified requesters may obtain copies of this report from DDC.''</pre>									
Il security classification of	Marking is to be in accord-	(2) "] re (3) "	Foreign a port by D U. S. Gov	nnounces DC is no ernment	t authoris agencies	nt and dissemination of this nuthorized." moles may obtain copies of					
25. GROUP: Automatic downgrading is specified in DoD Di- rective 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author-	 this report directly from DDC. Other qualified DDC users shall request through										
ized. 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classifica- tion, show title classification in all capitals in parenthesis											
nmediately following the title DESCRIPTIVE NOTES: 10 sport, e.g., interim, progress, live the inclusive dates when	appropriate, enter the type of	ified DDC users shall request through 									
		cate this fact and enter the price, if known. 11. SUPPLEMENTARY NOTES: Use for additional explana- tory notes. 12. SPONSORING MILITARY ACTIVITY: Enter the name of									
REPORT DATE: Enter th	e date of the report as day, I more than one date appears	the departmental project office or laboratory sponsoring ing for) the research and development. Include address. 13. ABSTRACT: Enter an abstract giving a brief and fo									
umber of pages containing in	on procedures, i.e., enter the formation.	it may also port. If ad be attached	appear a ditional a	leewhere	in the b	ody of the	technice	I re-			
eferences cited in the report.	CES: Enter the total number of NUMBER: If appropriate, enter ontract or grant under which	It is highly desirable that the abstract of classified report be unclassified. Each paragraph of the abstract shall end with an indication of the military decurity classifications of the in- formation in the paragraph, represented as (TS), (S), (C), or (U, There is no limitation on the length of the abstract. How- over, the suggested length is from 150 to 225 words. 14. KEY WORDS: Key words are technically meaningful terms									
he report was written. 6, 8c, 6s 8d. PROJECT NUM illitary department identificat	BER: Enter the appropriate ion, such as project number,										
ial report number by which the ad controlled by the originat: a unique to this report. b. OTHER REPORT NUMBI	NUMBER(5): Enter the offi- e document will be identified ing activity. This number sust ER(5): If the report has been	or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identi flore, such as equipment model designation, trade mane, milit project code name, geographic location, may be used as key words but will be followed by an indication of technical con- text. The assignment of links, reles, and weights is optional						bo bo Identi- militar koy con-			
e by the sponsor), also enter 0. AVAILABILITY/LIMITA	bers (either by the originator this number(s). FION MOTICES: Enter any lim- ion of the report, other than these				-,						
D . 50RM. 1473 (1	BACK)										
	·				Security	Classif	ication				